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THE DIFFUSION OF RESONANCE EXCITATION THROUGH A GAS
CHAPTER I 

INTRODUCTION

"Resonance radiation" is the term applied to radiation emitted hy an 
atom in a transition from an excited state to the ground state.

Resonance radiation is much more ahsorhahle than the other components 
of atomic spectra, and therefore the mechanisms hy which it propagates to 
the wEills of a vessel are considerably more complex.

For example, the 2537A line of mercury at 1 ram. Hg. is appreciably 
absorbed in a distance of .001 cm. It is seen, then, that the transfer 
is a two-stage phenomenon alternately involving the transmission of a 
free photon and a displacement of the excitation energy as captured energy 
in an excited atom.

The phenomenon was first studied by K. T. Compton. ̂  Compton gave a 
thecr̂ etical treatment which regarded the transfer of excitation as a type 
of Brownian motion. His result was a diffusion-type equation for the den
sity of excited atoms, "n", of the form

1.1 |B = d v '2h3t

where D involves \, the mean free path of the photon, and c, the life
time of the individual atom, and is expressed by

1.2 D = .

1. K. T. Compton, Ihys. Rev. 20, 283 (l922).
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Compton ignored the displacement of the excitation energy in an 

excited atom. Later authors do not criticize him for this. However,
X is assumed to he a constant and frequency independent, whereas, in 
reality, if a mean free path does exist it should, hy virtue of the 
Doppler effect, he extremely frequency dependent.

The next attack on the problem hy E. A. Milne‘S did not yield 
results significantly different from Conipton's.

The frequency spectrum of the line was first taken into account 
hy C. Kenty^, whose attempt to calculate an average diffusion co
efficient, on assuming a Doppler line emitted from each volume ele
ment of the gas, and essentially averaging (1.2) over the spectrum 
of the emitted radiation, yielded the untenable result that for an 
enclosure of infinite size this average was infinite. Kenty con
fined his attention to the calculation of a diffusion coefficient for

5the finite case and arrived at much better results'̂  than previous 
workers. However, he too ignored the displacement of excited states 
and, therefore, overlooked what is, in many cases, the most import
ant mechanism in the transport of resonance radiation.

Much greater complexity was added to the theory hy T. Holstein 
who argued that beginning with Compton's uniform absorption coefficient 
l /x , leading to a probability, T(yo), of the radiation travelling a 
distance yP , of the form

1. E. A. Milne, J. Lond. Math. Soc. 1, 1 (1926).
2. C. Kenty, Ihys. Rev. ^  823 (l932).
5. M. W. Zemansky, Ihys. Rev. 843 (1932).
4. T. Holstein, Ihys. Rev. 72, 1212 (1947).



1.3 ' T^) « e ,

one might express the prohahility, T(ya , v ), that a photon vith fre
quency V vill travel a distance j s  as

1.4 T{j ) , v ) -  ,

and. integrating over the frequency spectrum, P(v), one arrives at

1.5 tÇo) = yp(v)e“^^''^ dv .

The term k(v) appearing in the above expression is treated extensively 
in the texts. ̂

The tvo objections to Holstein's work are the same as for the pre- 
ceeding authors. Only one of the tvo important mechanisms is considered, 
namely the displacement of excitation energy during an emission-absorp- 
tion process. Holstein and other authors refer to this displacement as 
the "skip" of the photon. Recently, R. G. Fovler^ has taken note of the 
above deficiency and has mentioned that the diffusion term in the Boltz- 
mann Equation^ must be included. Fovler's argument is quite sinqale and 
irrefutable. Since there are tvo alternately occurring processes in the 
diffusion of resonance excitation, and since, in many cases, the tvo are 
of roughly equal importance, no description that ignores either can be

1. A. C. G. Mitchell and M. W. Zymansky, Resonance Radiation and 
Excited Atoms, (The Macmillan Company, 1934).

2. R. G. Fovler, Handbuch der Physlk, Encyclopedia of Physics 22, 
209 (1954).

3. S. Chapman and T. G. Covling, The Mathematical Theory of Non- 
Uniform Gases, (Cambridge Iftiiversity Press, 1939).



considered adequate.
The second general objection to the preceding work is that too 

early in the theory the authors consider only averages over velocity 
space.

The purpose of this work has heen to arrive at a purely kinetic- 
theoretical description of the phenomena involved in the transport of 
resonance excitation in gases without regard for the subjects of exist
ing arguments such as the existence of a diffusion coefficient.

The author feels that the result has heen that the truly important 
questions have heen previously unasked, and that these questions appear 
with their answers in the conclusion of this dissertation.

In order to test the theory, new types of experiments are suggested. 
Also, new boundary conditions are suggested for the differentio-integral 
equation, since the results indicate that one could never have confidence 
that he had obtained those boundary conditions assumed in this 
dissertation.



CHAPm n

DESCRIPTION OF THE PROBLEM AND DERIVATION 
OF THE EQUATION OF TRANSPORT

We consider that only two states of a gas exist and that there is 
a known initial distrihution of each state.

It is assumed that after initial excitation the distribution of 
neutral atoms is uniform in space and Maxwellian in velocity. We> 
therefore, are neglecting contrihuticns of photons to the dynamical 
state of the gas.

Let f (r̂  c% t)dxdydzdudvdw he the number of atoms in space- 
velocity range (x, x+dx; y, y+dy; z , z-fdz; u, u-fdu; v, v-fdv; v, w*dw) 
at a time t, and let p(r> ̂  t)dxdydzdudvdw hehthe nuniber of excited 
atoms in the same range where

2.1 r « (x, y, z)

represents the position coordinates, where

2.2 "c « (u, V, w)

represents the velocity coordinates.
Now, let a equal the probability per unit time that an excited 

atom will radiate. It is assumed that this probability is the same for 
all atoms regardless of velocity, and is just the Einstein Emission 
Coefficient.

Similarly, let "B" equal an excitation cross section which is de
fined as that area which divided by unit area gives the probabilily of
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absorption per unit length of path of a photon in a region wherein 
eligible absorbers have a density of one per unit volume.

The term "eligible absorbers" will be discussed later. The pro
bability of absorption of a photon by an ineligible absorber is, of 
course, zero.

We assume p «  f.
Now, when an atom with a velocity ̂  emits, the photon suffers a

Doppler shift, dependent upon the component of velocity, Cy, , of the
emitting atom in the direction of emission. For another atom to absorb
this photon it too must have a component of velocity along the line-of-
sight of the photon nearly equal to c« . We assume that there is some

r

fixed value AC such that for an émission-absorption process to take 

place between atoms with velocities and respectively and displaced 

a vector apart the condition

< AC 
2

must be fulfilled, and our absorbing atom is called an eligible receiver. 
Obviously, the time required for a photon to skip from one atom to another 
is so short that it may, for our model, be considered an instantaneous 
process. We may, therefore, neglect the distance travelled by the emitt
ing atom during this process. But, more important, we may associate each 
photon in the gas with some atom in the gas, and look for the distri
bution p(r, t) of excited atoms.

Assuming, that occulting is negligible, the probability that a photon, 
emitted along "p from an atom with velocity *c, will be absorbed in a 
length à.ji will be B times the numiber of atoms eligible to absorb that 
photon in a volume element 1 x 1 x d^ .



7The number of atoms capable of absorbing the photon is included in 
the number of unexcited atoms but since p «  f ve may consider that f is 
the distribution function for just the unexcited atoms, i.e.

2.3 f = f - p .

Hence, the number of atoms eligible to absorb the photon in a 
volume element 1 x 1 x dyp vill be

% y  p  -«» -e© ^  ^
vhere the x and y directions are chosen as tvo orthogonal directions, 
both normal to ^  , and z is taken along - 0 i and vhere f(x, y, z, U, V, 
W, t) takes on an position coordinates vithin the space element and 
an values of velocity components -oo to œ in the x and y directions 
but is limited to Cy, t ~  in the z direction.

Nov, since f(r, t) is uniform in space, the integrations over 
space variables amount to multiplying by 1 x 1 x dy>.

Since a c/2 is very small it may be assumed that the variations 
in f(r^ t) as W varies from ̂  - a  c/2 to Cy, + a c/2 are small and
that the function f(x, y, z, Ü, V, Cy, , t) may be used instead. Hence, 
the integration over V amounts to multiplying by Ac.

Therefore, the number of atoms capable of absorbing the photon is

2.5 1 X 1 X d^ X f(x, y, z, U, V, c , t)dVdIJ
_aa -CD

and the probability per unit length of absorption may be expressed as



8
,00 „cx>

2.6 B a c ^  f ( x ,  y , z, U, V, )dVdU.
- CD -«>

Now.

2.7 f = (27rkfc/

for a Maxwellian distribution where and the conven
tional symbols n, m, k, T are used for gas density, atomic mass, Boltz
mann constant and temperature respectively.

On substituting in the double integral, where M = , we find
Q(Cy* ), the probability of absorption per unit length of path of a pho
ton emitted from an atom with velocity component in the direction of 
emission, to be

. _ \l/2 -me ^/2kT
2.8 Q(c a )  -  nBA c/ 1 e

^ (23kt/

The probability P(yc ) that a photon emitted from an atom with a 
velocity c.- along the line-of-sight of the photon travels at least ar
distance ̂  before recapture is^

,/yV ~ m c ^ / z k T
2.9 -nBAc (m/zTrhT; yc S  '

= e  ^

Now, suppose we wish to determine what happens to our function 
p(?, "c, t) in time.

The explicit time dependence depends upon three processes:
1. Spontaneous emission.

1. J. H. Jeans, The Dynamical Theory of Gases, (Cambridge thiiversity 
Press, 1921).
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2. Loss and gain of members caused by movement into and

out of our space coordinate ranges by excited atoms
with the required velocity coordinates.

3. Absorption by unexcited atoms of photons emitted in 
other regions of the gas.

The term introduced by (l) above is simply -ap(î^ t).
The term introduced by (2) above is the usual second term in the 

Boltzmann Equation, i.e. -c p(i^ ĉ  t).
This term has been neglected in previous work, though a need for 

it has been pointed out by R. G. Fowler, who noted that in many cases 
the mean half life of an atom multiplied by the mean speed of an atom
yields a distance greater than the expected value of the skip distance
of a photon in flight. Therefore, the displacement of excitation energy 
while in captivity becomes the most important mechanism in diffusion.

We neglect the effect of collisions since the mean free path of an 
atom is much greater than the displacement of an atom while in the ex
cited state and, hence, a photon will almost always escape before its 
carrier suffers collision. Of course, for denser gases (r> 10^®) this 
assumption will not hold and the Boltzmann exchange integral would have 
to be added to our equation.

In determining the form of (3) above, we wish to see what contribu-
/

tions to p(i^ t) are made by absorption of photons emitted throughout 
the region.

Let 1?̂  be any point in our region at which an emission might take 
place. Let us first look for the number of photons per unit volume 
emitted in the vicinity of 7^ which could be absorbed at ? by those atoms
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havijîg a velocity component c ' within ± É2 of c . More precisely, ̂ - • 2 f
we may consider that the number of atoms ahout r capable of emitting
photons which coîild, if emitted in the proper direction, be absorbed
in the neighborhood of r by atoms whose velocities have the range
Cyj —  ̂  is just the number of excited atoms in the neighborhood of r̂
whose velocity conçjonent in the direction r - is also ĉ  1 —  .

P 2
Hence, the number per unit volume of excited atoms capable of 

emitting such a photon is

2.10 ^ p ( r /  t) dx^/ ,

where the integration is over velocity space -oto +oa in two ortho
gonal directions both normal to "r - "r^and over ĉ  j) —  in the direction

P 2
? - r̂  ̂. The last integration is equivalent to multiplying by ^ c and 
the integral becomes

2.11 p(r*c', t) dS^^ ,

where the integration is over a plane in velocity space normal to and 
from the origin of velocity coordinates., displaced a distance c^ .

The number of photons emitted per unit time per unit volume about 
r capable of being absorbed in the required velocity-component range 
about ̂  is, then,

a p(r"^ t)dS^/2.12

where

2.15 yO = (r - V |

—... P*



11Eind the restriction on c that it also has a component along 'Z between
_ + AC
>  - T  *

The number of photons that actually do cross a unit area about t  

normal to is the above number multiplied by P(o, ÿ  ), or

2.14 r(/», C^) 5 60 p ( x y * ,  z', u', V*, i^)aSv'.
hirf>^

Next, the fraction of these absorbed per unit volume about r, in a
velocity range d^ = dUdVdW such that ̂  has component c^ along is 
B f(î̂  ^  t) drd?. Therefore, the total contribution of (3) to the 
explicit time dependence of p(r, *c, t) is

f  aAc B f(r, t ,  t) P(p, c, ) S  p(?', t) dSy'
2-15 X  ------------------L - i - ^ -----------------

since obviously every point in the region is a point at which an emission 
can occur.

Therefore, adding the three effects and transposing the first two to 
the left side of the equation, we arrive at our complete equation,

2.16 p c r j ^ ) t )  f  a p c F ^ T j t )  =

0 ^  (f-âE,I^Ptp, Cp)^ p  (F'i 'c'j i) d S v  * d  T o * .

Finally, on substituting for f(3r, ^  t) and P(̂ , ), the modified Boltz
mann Equation for the problem takes the explicit form:

2.17 h  + c - i)  t o . t )  = ^ n

- a ^ - n B A c U s J l ^ p e ^ ^  ,
e  ̂  i )  c f s ^ '  o( t h '  .

. r . - " ' ' " * " ' ' t   _ .I •* •lift#'—i V *  .̂aidi >iASSd6ldi<h*s#4ii



CHAPTER III
APPLICATION OF THE EQUATION TO AN INFINITE SLAB 

Now let us apply our equation to the case of an infinite slah such
that

-L — X — L
3.1 -CO —  y —  OO

»0O 5 2 — OO

Since p(î , ĉ  t) and f(r^ ̂  t) do not depend upon y and z, we might 
just as well look for p(x, o, o, U, V, W, t) and denote it p(x, t). 

Also,
V

3.2 SE ^  t) _ ^  (x, •?, t) ^ Q
ay 3z ^

hence, ^  p(x, ^  t) becomes TJ ̂  ^  and our equation becomes

3.3 -^fAit-rUè^cxiCié) + apix,i,-t-, =  r r &  •

•which we now wish to simplify by integrating over the Sy plane.
We assume that p(x, t), being Maxwellian in velocity initially, 

departs from this type distribution so much more rapidly in the x
direction than in the y and z directions that it remains Maxwellian in
velocity in the y and z directions during the time of interest to us.
Hence, p(x, c, t) takes the form

-m(V^+ W^)/2kT
3.4 F(x, U, t)e

12



and since we are interested in seeing how P(x, c, t) departs from a 
Maxwellian form in time we let F(x , U, t) take the form

-mU VSKP
3.5 F(x, Ü, t) = G(x, U, t)e

and since c^= U^+ we find
-mc^/SkT

5.6 p(x, "cj t) = G(x, U, t)e
In performing the integration over we must make some 

assumption as to the form of G(x, U, t). The simplest assumption is a 
Taylor's expansion in powers of U. Any other expansion, such as Hermite 
Polynomials, would lead to extreme complications in rotating coordinates 
although some simplification in evaluating coefficients could be gained 
by virtue of their orthogonality. Hence, we assume

3.7 G(x , U, t) = n̂  (m/2?kT^(cx(x, t) + p(x, t)U + %(x, t)U^),

where n' is the initial density of excited gas.
In rotating our primed velocity coordinates, we wish one axis to

have the direction of ̂  hence its direction cosines are (x'-x)^,
y'^ , Since will have no component along an axis paralell to
the yz plane, we make this requirement of our V" axis, and we find its
direction cosines to be

0, -z' , y'
( y [f. (y'*' + z

and our third axis then has direction cosines
y'* + z'& , -y'(x'-x) , -z'(x'-x) .

p {y * * ’ *  z'» -)vz + z't
Obviously, the direction cosines of the x axis in terms of the new 
coordinates are
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x'-x , 0 , (y»<. +
F

Nov we require that the conçonent of "c along be and this is 
just U", i.e.
3.8 U" = ^  .

So we have

3.9

and

U' = x'-x ^  z 's }^ W" ,

3.10 c‘*. = .f .
Substituting for U ’ in G(x  ̂U', t), we have

3.11 G(x ‘, U ‘, t) = n’/_^ t )  + p(xj t)(x‘-x) c_
\2l?kT/ IV f  '

+ 7 W  t)(x*-x) ^ t)(y'»^ z'»)^

-4- 2/(x^ t)Cx*-x)(y** «f z \ w"©a. J
/ ^

4 7(x' t)(y't -H Z«a.)
J ,

Substituting for p(x',lc', t), our equation becomes

3.12 ^  a p ( x ^ ^ ^ ± }  =
dx '
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+2 y/»'; HU'-'/My'pt'̂)'̂'̂ IV" + to 'i!)(i^* z ^ j w “’j dWcJVdẑ .

The second term above is an odd function in W" and substituting limits 
-00 < w" reduces it to zero. We may then rewrite the 8y integral as

- m c è /z k T  -

JjooLoo

The two integrals above are evaluated as 2iikT/m and (kT/m)/(2irkT/m) 
respectively. So our equation reduces to

3.14 ||(«, c% O  + ̂  - H Z p U ,  o ’,  t )  =

4 T  tzWTy yû^

tj8rx'àU ''X )Ç ji

f  ' T  ' V
Now we may substitute for p(x, t). To find three equations in 

the three unknowns c((x, t) , yS(x, t) and X(x, t), we multiply the above 
equation through by 1, U, and and each time integrate over velocity 
space, this time in the unprimed coordinates.



CHAPTER IV 
DERIVATION OF EQUATIONS FOR THE FOURIER 
COEFFICIENTS üC(x, t) and i'Cx, t)

To arrive at our first of three equations in a(x, t), yg(x, t) and 
y(x, t), we integrate over all velocity space term by term in our equa
tion 3.14. Let us first look at the integral over the left-hand side of 
the equation, i.e.

^OO — CO
or, since the integrations are not over x or t,

4.2 |_y^ J  j  U p o c j ^ y h d W d V d U

-CO -oo
.CO ,oo ̂ oo

00-00
where p(x, Tj t) has the form

4.3 p f J C j ^ j b U  +  ù ù / ^ j

, -mU^/2kT
In integrating, we will need the integrals of Û ’e i =  0,1...,5.
The integrals over V and W will in every case yield

a  

or
E r r k T
m

Obviously, integrations where the power of U is odd will vanish. 
Knowing

16



4.4

4.5

and

4.6

e ~ ^ ‘  = h j r z x c k T \ ' y ^  
J  m  \ m  J- o o

y  e  ~  ^ & irĵ T y »

— oo

we immediately derive the formulas 
4.7 ^ d Z y  ^ / ) ' ^ o c c x y t )  + iîJ" f) I ,

4.8

4.9

and
4.10

y  U p  dZy =  y 6 c x , t ) j  ,

y  U ^ p d r ^  =  é) + 3 ^

4 ?..
So the left side of our first equation becomes

4.11 ^ h T à J f f X j t )  f  JsJ j s u . i )  ^ q cc i x , t )  t c i K T ^
L à t  m  h t  m  hx  m  J

Since multiplying through in the second case by Ü gives an equation 
similar to (4.2), the integration may be written down immediately as
4.12 f t )  -f t )  a

and similarly the left side of our third equation, obtained by multi
plying through by and integrating, becomes
4.13

•  «T'A-*-



18
The rlghC-hand side of our first equation is equal to

Now, to integrate over velocity space, let us transform to
spherical coordinates with the axis alongp where the new variables are
6, the polar angle; y , the azimuth angle; and c, the speed. Our
Jacobian for such a transformation is c^sin6. Under the integration
there are only two symbols appearing, namely c and ĉ . Since ^  =s ccos@
the right-hand side transforms to nn̂  a&cBf  Vr\ ^  times

4 UflkT/

V f '  " ’ 7 ^  H P c

f  f  f  c^cosdstnd ê 

+ /  J. f  /" y  c^cos^d sinâ «
V f  r  /  4 ^ 0

-AWC --- -

The second term, being odd in 0  about & =^/2, is zero. Integration 
yields simply a factor 27f. over y  in the first and third terms of (4.1$)#
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Letting M=nAcB/ m V/%, we may write the right-hand side of our

\2irkTj
first equation as
4.16

* if -i-, «83 dr.,
w f r

where

4.17

and

4.18

-= r  r  ĉ sinô G ^  ^  " dedc
o o

-mcAoffg
oj.rr . - E O ^ - ^ o A o S ^ - p M Q  ,

^y' / dsmdcos e e ^ ^  ^  dedc .

o 0

In evaluating cP, and , let us expand the term
- r n q ^ COS

^ p M  e  
e ^

as g *. «1̂ then becomes
tta , 0 0  -/nc^O-*cos^8) ■ -‘tn i^  cos^e

4.19 4  = a y
o  o

and similarly
,00 , • m ^ U ' tc o s ^ )  •‘O ^ c o s ^ e

4.20 <̂ 3 'S tn O ccs^ df c^ Q

ka'.
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- em c^cos^e . _ -  9f»c?.C.Qs3.G .

- y o W ^ e  s.AdcdQ.

Integrating first with respect to c, after simplifying by col

lecting exponents of e, J?, becomes

%
4.21

4 .23
Z'rr

■ ' • ■ V  ‘t - i i w n u r à ^o

(•/ * z c I  ~  ' 3 ! a A - ^ s W ^ ‘

which easily integrates to

and similarly integrates to

( ^ ) i ' ^ f ^ { é à - 0  * ; | ^  " " 7

and our complete first equation becomes, dividing out n',

4.24 f ÈZ” t) f A2* %f) f Q oclXj t) ̂ ClK T t) -
dt /n dû mn à )c

In evaluating the right-hand side of the second equation, obtained 

by multiplying the right-hand side of our original equation by U and 

integrating over all velocity space, let us perform two transformations 

of velocity coordinates.

First let us perform a rigid rotation as before when we integrated 

over velocity space in the primed coordinates. The transformation to 

these coordinates will transform Ü to (x^x) ̂  + (y*^ z * ^ W"*. Since
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our W" axis is perpendicular to^, we can see immediately that the
second term above will introduce an integral odd in W" and hence may
be dropped, since U appears linearly in the integrand. Since our

2integrand will now have terms only in c and ĉ  » c cos 9 as before, we 
may transform to spherical coordinates and arrive at the expression for 
the right-hand side of the second equation.

///C O c

A77C
- p M e-p / v i c

y  c ^ c o s ^ d s m B  •
^ F F

^ c o s ^ e

[ ^  ' d i f > d e d c d T ^

- , _ .O i.'rr .z rr

’4' // c '^ c o s^ B ^ sm e #

c o s ^ d
(!'*■ cos 6)-pM6 , , , ,

"  d i p d e d c d Z f ^ » .

In this case the first and third integrals vanish, being odd about 'rt/2. 

The triple integral over velocity space can be recognized as 2ttJ?3, 
evaluated previously, hence our complete second equation becomes, on
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dividing through by n'kT/m,
4.26 à û itK x ti -4 () =

m n à x  3%  '

Since the right-hand side of the third equation is obtained by 
multiplying our original equation by and integrating over all 
velocity space, the integrand will contain, after a transformation by 
rotation as in our second equation,
4.27 t 2 A'-x)fy'k+ Z»A M/T.+( y + Z.'4W

' /»* /
The second term, linear in W'*', yields an integrand odd in W" ' and,
therefore, drops out. The right-hand side of the third equation then 
becomes, after rearranging terms, knowing c* = and

m f

■h/SOe*,tK x '- x )Cf C X j t ) j »

/" e  d v ' ' ' d c .  d x ^ ,

-eo
/"a

Only one term contains an odd power of c^. Since this will yield an odd 
integrand in , it may be dropped. Performing the integrations over V"' 
and W'", the expression becomes
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4.29

ycxj ̂ )JJT +p%'-x)^c( ( x', 6) 

r2 A T cx'-joW *i-e^)nir',é)jT^ * (»'-»>%/} ù J ^ j  d v ^ j

where

# »  Y
>• ;

-oo
A- me.

^  ‘"'de.7*
—oo

and

_ 4 g - - g #/= «  - 7 .
-ex5

4.32 c t e ^ r  r  -  e tc .

The above three Integrals are evaluated in the same manner aŝ !, as

4.33 =  iZ.TrhJ'^ii.  ^ oM  + p ’h4^~ fâM^ —  I  ,
\ tr^ )  U z V 3  'jjVs' /

4.34 

and
4.35 cr̂  -=

Our complete third equation becomes on dividing through by n'' kT/m
4.36 -f 3  H I  ■ t 'S f s T ^ x . t )  i - a o c ( K ,i ) i ‘3a /^ /(X ji'i

/ n o ?  m  ^  m

- o M ( £
4 7 r T f ^ > \ r ^  m  J L / 2  W

iMriiimimriT"iifT-Tr,r,m',#riTri  -■■' - 11 r mi,m  , ■
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CHAPTER V
SIMPLIFICATION OF EQUATIONS. MacLAURIN 
EXPANSION OF FOURIER COEFFICIENTS IN x

Now, let us further simplify calculations by assuming that If'Cx, t) 
equals zero. This limits the time over which our approximate solution 
will be valid. With this assumption our equations become
5. 1 - - t T M ( x , t )  t a  o c £ x ,t) =  o M - J i

a-f /n  a x

( h ~  ^

and
5 . 2  + àoc<x^ i) -i- a j 3 : x ^ i )  =

R P  ^

Now, in order to simplify the form of the equation, let us assume 
Of(x, t) and ̂ (x, t) may be approximated by the following form:
5.3 ocCKjt'i -  -f- X oc,(t) + x ^ o c ^ ( i )

and
5. 4  p o c ^ i ' i  = yÔo'.'Tf) +  X- - h  p ^ c i ) .

Ve notice that we have a predominance of terms inJD, the distance 
{(x'-x)* + y'*+ from the fixed point (x, 0, 0) to the variable
point (x', y', z') with the polar axis in the positive x-direction, d  

being the polar angle and y  the azimuth angle. We remember that 
(x'-x)^ ss cosë. The Jacobian of the transformation is ̂ ^sin0. We see 
that, since x' %= x+yocosô,

25



, .26 « ,5.5 O C ( X j t )  ^ ( o c ^ c i : )  + K o C , U )  -t K ^ o c ^ ( t ) )

f(oC,Ct) + 2.)(OC^(i))jQCOS0 

^ ( o C j ^ ( t ) )  J D ^ C O S ^ Ô

and, similarly,

5.6 = fy6of6  + ^ ( 6)
+ "f % )yo c o s B

+ )yO^C0S^e .

We have no dependence on (p, hence the integration over this
variable yields a factor l i f . The limits over each integration would be

%  (L-x)sec6 /If .(‘Lrx)secO
5.7 -Srr/ f  ..... d p d e  + Z v i f  - , /. .

o a %

New, the series expansion in each equation is obviously absolutely 
convergent for allp  but as p  tends to infinity the integration would 
diverge term by term. However, since a photon "skips" but a short 
distance,y) may be considered to have an upper bound K. In the following, 
let us assume that K exists and is greater than or equal to 2L, the 
thickness of the slab. Then each of the integrals on the right of our two
equations assume the form of the sum of three integrals with limits

5.8

5.9

and

5.10

 ̂a r c  s ec  C/<A-x.) . ( L - x ) s e c d
: f  . . . - d p d e ,

o o

^ a r c s e c ( K A L - x )  X  .

!  I    a p Q B

arc sec(K /L~x ) o

, n  . ( - L - x ) s e c 6  , ,
j  !  • t 0 » c lp  did

a c re  s t c ( H A L ^ x ) ^



27Therefore, our two equations become
5.11 docCx, t) + f < T -KJocfAr.̂ ) =g/V//4‘ i ,

bt m ix B [ J
and
5.12 ^ c x j à ) -t + a j 3 a ^ i )  •= Fz ’i‘ F s ]

dc dx / Z \ J

where
arc sec(K/l-x) . (L-x)sec6

5.13 dT = / /  s i n ô n c C o ( h -i -XQC,(t )

O 0

-hx^(x:^(i)J + -t-Z xoc^ cé^ J  c o s ô p  + cos^ j> ^ *  

-  jM  + ------

and
.arc sec(f</L'x) JL~x)sgcO ■

5.1% ^ j  j  z m e  /c o s ^q VJS^ii)

o o

+ x.^6j ZxjS^Ci)lcos'^jD +jŜ CÙcûsIsjâ j •

and and have the same integrands as J) , hut with limits of 
integration given in 5*9 and 5.10 respectively. Similarly, and Fg 
have the same integrands as F, , hut with limits of integration given in 
5.9 and 5.10 respectively.

Integrating J) first with respect to yj, we have

arc SecCM/L-x) , 1
5.15 cT; = y S//7 0  /  OCo(i) 1-XOC^d) + X OC^^t)h



- ^ - j }
a-x^secd

de
o

Evaluation at the lower limit yields zero, so we have on

substituting = (L-x )/c o s 0

arc sec(P(/L-'x} . .  ,
5.]^ -cT = /  s/nô/jcx^c^)+xoc,it) t  *

0

k-x) _ - CUx)ÎM.  ^ L L zÆ h â ^  -
Uêcûsb i ^ c o s h  j / / F c o s %  4^1^/sces^ J

tfcx:,c )̂ +ZxoC2 (^)lfiLzl£  -
L JLzy&cose s /Scos^d

tJ d z iÉ M L  -  . .  ,1 U ’ X)?
2..^3/kcos%  3lS^^*-cos^e J L 3 / ^ co se

"iLzXlÎM- + . r «11 ûfe 5
4yjCosf®9 S-Z^COS^e 6'3L4Scos^0 JJ

and integrating over 6,

5.17 -c;; = + X 0C/6; + x^oc^f6 j c o s 6

E / 3 C O S 6  2 -3 /v T c o s ^ e  3 ' f / \ /^ c o S %  J

+ [oc, ( 6  t c o s e  -

* (L-x)^M^ -  (L-x.fM^ ..J ĉCj,<6f(ini)%»cose
2 '2/ 4 * ^ c o s ^  3*3IS^^*-eos^0 J L 3/5

- S L z i Ù L .  * ( U - û f M L  r  -  ----- --4/3cose Z 'S ’Z \ / f c o s  6 3 - 6 * 3 i ^ C o s ^ I 8= O
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and substituting our limits

5.1Ü ^  = I joc^céj + 3(oCf(t) + x.^CC^ ( / o y

- K ( L - X ) M  f K ^ ( L - X ) M ^ - , , 1
Z/3  2 -SIS' J

+ |’<x:,(6-^2 xor2,fif)j|l^ ^ ^ /ogr|^ j -  K Ü ^ f M
/

+ K^a-x-)^M^ -  K h L - x fM ^.. 7 + ocjftif (h^^lo^lLcX] 
2 2 /4%  3'3/g%  J 1 3Æ n /</

-KlL-xfM + -jdiLzDlMf, . . ]
4-/3 2'5"' 2/Vf ^•6 '3 l\fs  J

4 . % o c / 6 ( 6j|̂ -( L ^ M  +

l&L
3

J  -joc,cé) f Zxoc, ■»■

-  U = z x f â é l . . J ]
^315^ J I f/T B ' S ' Z l S  3 > 6 - 3 l y / S Jj

Now,

5.19
arc Sec(^/~L-\i) S  . .

=  y j (same integrand as J,...) ^ p Q Q

ctrc-s^tCK/l-x) 0

Integrating fii-st with respect toyo, we have

.arcsec(H/-i-y)
5.20 = y  %  sin d ^ ^ o ('^ ^  + ^ o c ,th  ■ tx h K zi't)^ ^ J tL

o(tc sec(A/i--x)
-A fM  + -J £ * M ^ .. .]  +cos0foc,(t)-*2i(OC.fifj»z/S Mff 4-l<m J L  ̂J

+ X W ' -ic£Mi.../+cos%oe/!‘jrAi 2.V2 3 /T  z .4%  J l3\/2
-K*/W -icS4iL.,.]]c/e,
f / g  6 ' 3 / , / g  J j

and, since

.Z J''*
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. a rc  sec(f</-L~x)

5.21 f  ^mec/e  =  2L
J  A
cure sec(K/l-x)

5.22 . a r c  s e c  (Kf -L-x)
J  cosQsmode =
ctrc sec (KJl -x)

arc secCKJ-L-x) .
5.25 f c o s ^ s m Q d e  -  ,

cfrc sec(H /L-x)  

we have, on integrating over 0,
5.24 x7i = 2L[ocji) +xoC,(é) tx^cc,(é)lî±. - /lM -h

L JLJz 3l^
-  ZLxfcc,(i) tZx.0Cz(t)Uj_^ -

W s  J L Jizy5 3-/I

+ - J ^ Î M L .  .  Z . ( l ^ - i - 3 u ^ ) o c ^ ( i ) [ j —
3 / 6 " %  J 3 13/Z

- K A L  * k 1 M L  -  h h d l .  .. .1
4/1 -5"-2v/+ 6- 3/y? J

Now, Jg is treated very similarly to J,. Remembering that
or r-L-x) s e c 0

5.25 c/j ^  J  j  ( same integrand as J) ) d j ) d 0 ^

arc  sec  (Kf-L-'x) o

and integrating first with respect toys, we have,
TT

5.26 da -  !  5//)^ +X0C/ 6  -t X̂ 0Ĉ {6 j ^ z x L
arc  sec(

- ( L - x ) ^ M  + { L - k & m I  ^ L L zJ ô ÎM I^  . . .] 
Z /S c o s ^  Sld^cos^d H d E c o s ^ e J

+ [oC/ 6  f 2xoCj^ch l f{-L~x)^ - + ± L z p îè ^
L i l Z / z  cos Q 3/3coS^e 2 * 4 ^ c o s ^

- . . .7 ' i -OC^thf(-L x)^ - { - I r - ù t M .
sis^^cos'^e J 13/s cose ^s/Scos^

rrruinfiT-TI'riniii 1 # in imithii i#»rx,iiNwwni uijin̂iip #fi»#*n# 1 #oùîwk%1#Mf*r"'
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. . .]\ qfe>

^'2/fcos% e - s t y s c o s ^  iJ

where the only difference In the integrand at a similar step in J, is re 
replacing of quantities (L-x ) hy (-L-x).

Integrating over 0, and noting that since t̂ 2 < 0 <7Twe must 
integrate sin0/cos0d0 to -log(-cos0) in order that the logarithm term 
have meaning, we have, on integrating over 0,
5.27 %% =  ĵcc^cé) 4- XOC,(T̂ ) CC^Cl)JI^(iL^/oy(-COSO)

- C-L~ , , 1
Z/3 cose a*3i/4coŝ o J

+joC,(^) + (" C O S0 ) - (zL ^ JÛ Ê I^

+ { z L z ÿ j â M L —  - ----]
2'21 '̂ '̂^COS^B 3-3tS^^^COS^e J

- } -0Cp(é)hhLi i (L^/og( - -cos6)
13 /z  ^ 4-J3cose z-s-2!J^cos^e

-icLz&lî&LÊ— —  ,«•11 
S l V S c o s ^ e  J j

6 = cos"
and substituting our limits, lower limit first, we find
5.28 05 z= j ĉXgd) -i- X oc/if)

-  !.L-*x1KM + .  . . 7
Ë.-/3 2 - 3 / / F  3-4/Æ = J

tjcc.iô f 2xa:ift)J(L^^/oÿf^I^J *  L U j^ lK M .

2-2/4%  3-3lS>A J L3Æ ^ l/f /

-a±2ü£üM + cL *x)^ K ^ M ^  -  i L t j c i î a l M f ■ . . ]  
^y/3 Z‘S' 2 i / ^  3‘6*3J/S J

-foC„(é) + x<x,ci> * L r X ) +(L*x)^M^
L JL a /3  2-3//F
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. .] -fo c ,<6 t a le OC; nflIFt f. - fl +xt(^

z - 4 ! V s  J L JL 3>/3 a S T Î »

i - C t i j ü f M ! . . . ]  -oCztfir-Oiii^M *Us2Ùd.’' - ( L t ) c f Æ \
3-3'.5 /̂‘ J L f / F  2-S‘Zi/f 3-6-3/Æ J

Adding J, + Jg

5.29 =|ôCof6 f xoc,(i) + X̂ 0̂ 2(à j j - (L^x)i n j y j

- O ^ / o o / L ^ l  -  K L M  4- 
/2  K /  / ?  3 ' f / / ?

+ L^/W f-
v/J 3J/F 3 / / f  3 ' f / / ÿ

» i x ^ M ^  J +-Joc,( )̂ + 2xcyg(if)jpL^^^/D^^/i^xj

- 'C L u û î /o ^ /L u i ] + ̂ L x K M  - L k K ^ M ^ - ^
\ K  J  3 / 3  3 '3 io ^

-SJJulM. " 2x^M  + L ^ xM^  '•■' L x^M^ -ZJJIaM ?
/ 3  3/3 4 4  J'3/vT

-± ih îh â l -âsSk^f 1 oC^ihï-CL:^ ho iL±jl\
3*3//? 3'3!S^^^ J L 3 / i  I K I

- ( l—x)^Ioq f L-x\ -  L^Kt/t — 3L x^KM. + LP 
3 / 2  K / 2 / 3  2 / 1  2 0

+ 3Lx ^ K ^ M ^  - - Lx^K^M^ t L ^ M
2 0  5 ^ / 5  2 /3

+ 3 L ^ x ^ M  + x^M - - L x ^ M ^
/ 3  2 /3  ZO Z  4

- H f M t  + 5"/^% -h + y 1.
3 > V ^  /8%^ /8v3" ? 4 ^  J

Adding and grouping c o e ff ic ie n ts  o f the CK^(t)'s, ve have

5 . 5 0  ^  oc^cé)l-iLtJÙ.fog(L'hx) - ( L ^ ) lo^ (L-x)
i /2  /2

lYLfxWoa + ( L - x ) lOQ K  + 2L Z L K M  + L K ^ M ^  
•/S  ̂ y/2 ^  /2  /3 4-

- L K l M f  t  -  3 L x ^ M ^
S s ^  ÿ j  / 3  âZ ÿ r  3 / ^

ÈÈw.
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^-2jâM l + IZ L l i îM I  + 1 +OC,(f)f

3 - 4 / / ?  3 -4 ]  V T  J  L

- M L i j l l o g d - * * )  -  X ( L - X )  l a g  lL-)Ci * le lL + t^ lo q K
Æ  /s ^ Vl

■i-yi’/L-itWeoK  + 21%  -  2 l x / ( / V /  +  L x - L t
VZ /z  /3  f  â /r

+1 Î ^ M  + - L ^ x M ‘  -  + z d ' x M ^
V? 7 3  3 / / f  3 / V r  3 7 Î W

+ L 2 J ± d M l  * 2 x ^ m 3  t ( L ± x ï ^ l o g ( L + x )  - i L i ù % l L - - x )
3 - 4 ! J F  3 - 4 ! y / s  2 v/2 2x/2

- ( L * t ' ^ io a K  + LLzJÙ^IogK - L x .  + Z L x K M  - U lK I M I  
2 / z  Z /Z  / 2  4-

+1 % X W ^  - 2 1 2 %/W -  Z x h â .  *■ +  U Î M l
9^/S  v/3 3 \/3  4. 4

- ZL^^xM^ -  4- L^ x f M^  -  g x J M i ^ l  + OC,i i i f  
3'3!Vs 3~3iVs ÎT IT T ^J L

- x^cL-rx'i/oo  (Lfx)  -  xX(L~x'>loq lL—)t) + X h L t x ' i Ina K  
/ 2  / Z  ^ v/Z ^

+ x^tL-x)/oq(L-x) T 2 1 %̂ -  2L X ^KM t  Lx^K^M^  
/Z ^ /3 f

- Lx'-K^M^ + L^X^M  f  %'*14 - I J x lM i  -  3 L x * M ‘
& \/s  ' / s  )/3 3 / V f 3 / V^

+ ZL^y. + /2  T + yfZ.+x)^/o g  (L-^X)
3 ' f / / 3 =  3 - f / /5 =  3 ' f / v ^

—  Îo q (L-y) - y(L-h)f)̂ toqK +  y:(L-yr)^loq/< -
\ /2  v/2 v/2 ^2

^ é d a J J lM . -  2 L r c ^ K ^ M ^  + - 4 - l J x ^ M
V f 4. 9 V f  V3

f  llx I M .'-  * L x 1 M L  -  ± l ± i d M l - S J l x f t d l
3 /3  2 2  3 ' 3 i v ^  S'a/zS"

— 4"y ” ( L j f j û ^ / o o C L t x ) — ( L"“ x ')^/o q (L-'X)
3 -3 !  5 %  3 /2  3 /S

+ tL'i-x)^lo g  K  +  I L - x )^ Io qK  -i-ZJLI + 2Lx^ -  ZL^K //!
3 /2   ̂ 3 / 2  9 /2  3 / 5  3 / 3
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-g U ^K M . * L l i î I M î  f  L s lM iM l -  Â iiÜ M ?

~7% /2  •# 2 7 / f

+ L H d .  + i L l i i l M ^ d M  - L E M l - L h M
9 7 ^  2 /3  </§ 2 /3  ZO 2

-U ilù d l + L»M^ + * s H a îM l f i c I M l l .
*  5'4>/S‘ l B / 3  18/ s -  S ^ / F J

Collecting like terme, the above equation reduces to
5.31 -oJ-yT̂ +Ĵ  = (X:o( ^f/ + v) - ' i L z A l o ^ C L - x )

L /Z  y/s

+ 2 1  l o q K  + - Z L K M  ^ L K 2 ù d l - L A & i f +
Æ  ^  v/5: v/3 4  9 7 s  / 3

+ %^/W - liMf •‘L x l M l  + 2 L f M ?  + 2^ 5]
v ' l  3 / / f  f  Z ' ^ l s ^  3 ' 4 / v ^  3f/V^J

f 0C;̂ tf)p ‘x(l^x\fô (L-tx) -

•f/L+x)* foq(L-tx) (i- log  ( L ’ ^  + X x_ — L^%A/I j-K^M 
2 / z  "ZTz  \/z  Vj 3 / f

-  A±&M f -  L^k^MI 4 -x £ M f7  +oc,(^)r 
e / 2 / ?  /8v2f /60y^J L

-  X ^ q + x ) / o Q ^ l + r )  -  y  ^ / L - X ^ loqCL^X) +X(L±)^/oq(Ux)
/% s/2 \/Z

-% (A -xlT-loq Cl -%) - iL±JÛlloqCU-tx) -'(L~x)'̂toqLL-x) 
y/E 3 /g  ^ 3s/5

+ 2j2 /oqK + &jLf +. 2 1 ^ 2- ^ Z L ^ K M  ^
3 / 1  9 / z  3 / 2  3 / 3  /Z

-LlKLMl + i f M  4-x4a//
2 7 / f  2v/5 6/3 20 /3

+ L ÎM 3 ^ L îx iM l  + x 1 .
5"4/s /2/F 5 ' ^ 0 / B J

Let us nov evaluate
©'/"c 5€c/ .  Cl.-’X ) sec 9 _

3 .32  /> = 1  y  s / n e f j f i f ù ^ x ^ , i t ' >
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+ j cos + 1^,(6 + Z x j 3 g U ) ' J i 3 c o s ^ e

c o s ^ e p ^

Integrating first with respect to^,
c(rc sec if</L-K) j. _

5.33 ^  /  5//7 0AL6„c6 +xyô, (é) + x^2<6/•
o

+y^2C6  c o s + e r o f _ _  - 

- —  1 \
(l-x)sec 6 ,d©

and substituting limits, we have
.arc secC/</i.-x) --

5.34 ^  s / r ? e fu S o f i ) + ;y$(6 + x
o
-  lL-y)^M 4. iL-x'i^Ml  + (L-x) tM^-  1 +f/S, cti

H S ^ c o s ^ e i  I '2*3^ 3 ! 4 ^ c o s d

’M l  
4 -^ ^ c o s e

+  2xj3̂réilf(l-x)̂cose - {L-k)\M '*• LUlJûIa
' Jl 2^  3 ^  2'f5X%c

-ILzjùEML- 1 + yfl̂ fôftLudisizsLÔ -iL z^ùltd . 
3ts^*c0s^e\ / L 3 ' 2^^ 4 * 3 ^

HL=2ûfù4l—    _  11 de ,
5*2*4^'^cos0 6'3f J j

and integrating over 0,
5.35 /f = /rÆ(6 + x A (6 + X - x ) ço s lQ •» Ct.-x)!Â coafi

i r  ^  ^  JL 2.Z3/& 2.33A

- (L-JÜÎMJ/o$ cas e -  (L^x)fAdl  - 1 + \fi,c h
3/-f^ ^l5^*coseJ L



-ir 56 ^
jl - (L~x)^C0S*^O -f (Lrx)^Mcosd - (L-x) M^loo cnSQ

 1 +  j6 ^(é)[-C L ~ x ) f c o s ^ e  + (L-xf/WcosB
3/^^A COSÔ J • i j 4 ' 3 ^

- ( .L -x )^ M y o ^  c o s  9  - fZ. - x ) ^ M ^ 115*.2.4i/i g . 3/5-v*c^os0 J;
(L'*)/k 

cos 6= i
Substituting limits, we have

5'^^ /T =  f x / 3 , ( é )  t  x^j62( é ) l f - L L z2i2l — ^ xifM...
r  ^  ^  JL 2 . 33/e/^

'‘LL=jû1M^Ioq {L-k) ■+ L L z x ^ M ^ lo o  K  - (L-xŸ^/f^K 
3 / 4  3/e  ̂ 3 / f 3 /k  /  4 / 5 5 /2-

t U  >̂ ) - (l-%) W  + ( L - x } y / f l l  Z x £ . ( 6 ) ] »
2 .2^/2 2 .  3 ^ ^  4 / 5 ^  J  r  /  j

f-  CL-x)^ f (L-‘ X \ 4/W  -  C/.-^)^A4  V oo  (L-x)
L 2 ' f ^

+ Cl-x)^/W^/oo/< - + ( L - x ) ^
2-4W e 3 / y ^  2 %.

- +  (.L-x'S^M^ 1 + /6«Cl^)f-XLr_X)f_
357a 3 / 5 5 ^  J ^  L T P w  4 ' 3 ^ K

-C4z 2̂ 1 fM f /o o  fL-x) + LLz ù̂ L M I I o o  K  -  (L- x ) ^ M ^ K
5 - 2 .4 V 2  ^

^ L L - x f  - i L - x f M  4. ( U ^ V L h d l ]3-25/2. ^rrjpz  ^ 7373^ ^ 72-J

Let us now evaluate
arcsec(H/L-K) K

5»37 f% =  J  j  (same integrand as F, ) ^ 0(9.
0/"C 56cf A'/l-x) 0 

Integrating first with respect to 3, we have
arc £ec(/y-L-x)

5.38 /^ = y s/nôfcos dLBoU)-i-x^f U)'*‘xyÔ2̂ (àlj2iL

arc sBciK/L-x)

- m d . x J iîM l - K l M l  ^ + c o s ^ k , i n Z x B , i i ) ] \ j t
2 ^  3!4^ J  r  Jl^



3'.
3̂ /* 2

- /< ^ M ^ ] + C05 ̂ e /S ^ i i )  f K ^  
Bi5®'» J L3'2^

- K t t A .  ^ - K ^ M l  V ^ s  ,
4'3^/^ 5".2' f 6^3/5^ j/

Remembering 5.23, ana since
/ arc .sec(A/-L-x)

cos^s/nec/e =  L^ X '*• Lx^) ,

K
arc sec C/K/l -k)

5.59

and

3.40
arc sec(K/̂ L~x)

f  c o ^ ^ e s m e  = ( 26-^+201^% + I O I ~ x ^ ) .
/ s57?^
arc sec (H/L~x)

our integral for Fg "becomes

- A/> , *M !_  -  ^^M1  ̂ + 2  Jx  ^+5"Lx ''I  &(A.
3 < ^  2 - f %  3 /5 '« '.J  5L  J '

r _ !______ -  M  + Ad—___ _ -  K ^ d ^ — 1 .
L 3 4 ^ K  S - Z ‘ 4 ^^ ‘  6 - 3 l 5 ^ J

Treating ̂  similarly to F/,
fr {-L-x)5ec6 ,

5.42 =y y (same integrand as Fj ) O jadd

arc sec(K/-i.-’K) o  

integrating with respect to p ,

5.43 =y^ smG^ + X (â)jji-L-xJco5 0
arc seciK/‘L‘x)

- 1-l - x)'^M + ( -L~x)^M^ — ( r L -x )^ M^  1 ■rfâié}-i’2xA d)]*
2-3^ aif^/'cosa ^ J



3B
n-L-k)^cosô - (" L- x)̂ A/f 4.
L 2^  2» 4^/* COS e

*/3^(t6)|7-L-k)’̂ c o s 0  - ( L - x)fM  4" ___/ L 3. £3/a 4 - 33/2 5". Z ^ ^ C O S Q

- tL u ù îM l    ] ]  ĉ e ,
S'Sf^^àcos^e  J /

and integrating over 6, we have

3̂ = Afc) -*-yy9.i-é'iir~0’L~x) cos^a + (-L^x)^/\^CQSâ
L ' JL 2*2^ 2*3^'*

- M ^ / o q C-CQS 0) - ( - L - x) ^ M ^ 1 tlySyU)
J/43/&  ̂ HS^^^côsè J U

+ 2z/92fzf)lf-(d-2xV^cos^ + 1-L'k}^Mcos0
r  ][ 3̂ 572

- C - L - x . ) ^ M ^ h Q ( - c a s e )  - (zAz&lfMf_l 
2 - 4 ^  SiS^^^coseJ / L

- C-Z.-x)̂ COŜ O 4- C^L-x')^McoSB - frL'-Y'i^h/l^l o a ( r C O S 6 )  
•372772 f .33/g 5* 2 * 43/^

fclrxlîMil'l
6 ^ 3 1 S 3 ^ J J

TT

e = cos"'(C'i-)f)//<’)

Substituting lim its, we have

5.45 F3 = ^ 2# ^

- lL + x\^K/t l̂aq (L*x) + tL-t%}\M l̂ag K - (L-ttfM^K 
3; ' 3/4-^«

- (Ltx) - +  i L ± n ± A d l l  i-fA(i)i-2A/i)l>2. 33̂  J [/ '  J

[ • ^  -

-!L±jÙÎMlloqf< f  -  L L t ^ + (L - t&
z  - 4  V t  J 3 !  [ s - i / t  2 V i 3*^
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^  log CL r x  ) "i" (L+x.'j^M ^/oQ  K  ^  (L j-y )^A /f^K

+ (A±Zlf_ -  L L ± * a tM . + (L'*-x)^M^ L
3-2^/2 f -3^^ 6 * 3 J S ^ ^  j

Adding F, +^51 we have
3.46 /f + /=3 =  [/Socé) t- X A  ( t)l[ -_Af  - .36xi_ +4.

r  ^  ^  JL 2^ ^  3
?M.

3 ^ X
-f L ^ M  — CL+X'^^M^taq'bi-x) ’- (L-x' i^M^/oqCL — K^

W K  3/43/̂  ^  3 / f ^
t /( -^LxlMlioaK -  2L^M3/<- (gi.xX^

24-  ̂ 4-i5T̂ /̂  4-!S^

fL - - x i M  4. 2L+M?

-*" I6,i6+2x^(6iri!&. 4. - B.iJ ^ M - S L x l h d .
r  ^  J L v/z K ^

+ (_L±^JLfMf/09(A+/J —  fL -x .')^ M ^ / o q  ( L - x ) ^ L^x M ^looK
2.4®̂ ' 2.4̂  ^ 6

- Lx^M^lo^ K  4  SL^'x M ^ K  + QL x ^M^K. -  ,„4.X—
8  3^0 ^  3/3- /̂^

+ 6 1 ± & M _  +  2 X - 3 A /  - Iù L^ k M ^3̂ 5/2 3/ ^ ^ A  3 Ï S ^

3/5* /̂  ̂ J /  L Z-Z^f^K'  ̂ 3' 2 ^

" - (L+x) - (Ljz^^Em K oqLL-'ü )^72.f3/2 ^

+ (L^ i - l O L H ^ 3 L x ^ ) M ^ o o K  - L ^ M ^ K  - L ! x f M £ ^  
^  ' 2-43-vrr Sv/?

- L £ ± M 3 K  i-l 1   4- - A f M .  - i J l l M .
/ 8 / r  3 2 ^ ' 2^  2 -3 ^

- % i & L  + L^A/ya f iJ a I M I ^ L ^
I T s ^  90̂ /S- 5 v C ?  G V 3 T

-i-L ^ M  4- 3 ~ Z .3 x ^ A 4  +  5 " /_ x  1
2  3 ^ ^ /<  33 /2 K  2 - 5 ^ ^ A '  J

and, on adding F̂  to the above, we have
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+ 2Ly /̂W - CL+x)̂ A//̂ /oq(!-*-%) - ii'‘x.ŸM^Io9(L'-x) 
fa  f-8

+jLlAdf/oci< +J ĵl1 M 1 I oqK r uI m I  JzJilMl 
Z f ' 8 72 24

- L^KM^ - Z.<^ K M ^  +_L  ~ ~ * L f M ^
fSy/^ IST^  2/2 3/^ 3/3 so/y

f JLfjWl 1 + -♦-2x/5jf^j]rLix— 3
/ 0 / r  6ovg J I: / JLZ/zT^

V 6%̂  - Z L ^ x M  - z L a ^ M  -t'CLfy^^M^lopCL+x)
2ÆV^ 3 /3 / r  3/3 / f  6 f  ^

-(L-x̂ Â/f̂ loo ( 1-y) - Z-̂y M  ̂/qq /f — Z. ŷ A/t̂ log K  
64- ' Q  ^ 8  ^

-  cf Y A/* -  Lx^M^  + 1 K/W  ̂ + Lx^KM^  - -y 
3 2  52  /5 " /5  /S ’vŜ  2 / 1

+6 L & M .  + 2y3/W - i O L ^ x M ^  - -  v£Mf 1
s/5 -9/3 fs o /s '  TS\/^ 'jS'/s  j

+3, 2- — Ax4 f- ZL'̂ A^ + f lJ x ^ M
' L /0/2K2 /2/{^ 2/2. /5V9/( 3/3 K

+ ZJjlÎM. -LL±xlïAd3fag(L+^)  ~ C^Lr2d£M*/oo CZ-yJ 
j/3/f e o  ^ 60 /

•*■ ( L^+ l o û x  ̂'i‘5Lx^)M  l̂oQ + /Z-̂ f lO L x^ + S Lx 4jA/^
40 2 00

- j £ K M l  *" - L x ^ K M ^  + Zx ̂
73*/y “7 5 V ?  /6-/3= 3 2 ^  2^/2

~ Z-4/y/ - & j M .  7 L Î A 1 1 -hllxlMl
2-3̂ '  ̂ 6/3 90v^ 6 ^

+ i^ j(± M L  4 x î M i l
6 vy 9 0 / 5  J

Grouping coefficients of the p^(t)’s, we find

5.48 /f+Z^ + Z ^ ^  Æ c ^ ^ f  " J z l —  - Z.X ̂ + 2 2 f M  2 L x f M
^  L 6/2/(= zTÎK^ 3 ^ ^  s W f

-  ( L ’t - x ) ^M^toq CL-tx) - Z2— x)^M ^Io Q C L -x)  -t U m ^ïqqK
4-B ' 4-8  ̂ 24



k l
> L d M î tO Q  K  +

B • 7 Z  Z f  i-S > /S

-  Ly - K W 3  <- L -  Z-̂  A/? -  x_^M + U tM ^
IS^Js- Z T T  3/G” 3 /̂3 60 /5"

+ A  CflF -iZx_ - A.y3
/O/? 6 o Æ  J f L U z F r

•T Z L ^ ÿ S/I + iê L ^■/')^A/t^/oq(L-t y)
2S/ZK P ^ K  4 6  '

-‘ ï^CL-^ŸM^locj C /.-/) -f L^x M ^ t o (j K  •f-Z.x^M^/o^K  

+ L^ïtM^  + Lj LIM I’ —
7 2  2 4  4 5 * ^  /5VS" 2 ^

+ L ^ y M '  f- + Z.%
js/â 3/2 eo/S" l o T s  6o7t  ü ïk

+ 1x3 -  ZL^xA/  -  £ 1 jlM + fL ljdlM f/0Q (/.+x)
2 /2 /< '  a v r / f  j y i / (  s 4  ^

-  (jUxl^M?/oy ( l - x )  -  l^x A yypy K  -  L x ^ ^ ^ l ocjK

-L b L M l - L j lE M I  t 
32 32 /5VT /a'YS' 2/2

+ GL^x M  + 2 , y ^ M  - /OL^x A4^ -
S / J  9 / T  iSQy/ÏÏ / r / r  75V ^ J

“i V  - L x f _  + 2 13/2^ + Zlx±A4

"Â*(L* y)^MVon f Ifx) -x lU = z J ^ M ^ /o q (L-x) +
4 8  / 4 8  ^ 2 4  ^

+ jLx^M^fop K  -t- -i-L x ^ M ^
8  ' 7 2  2 4  4575^

^ L y ± m i  i -A c l -^^U LIM  - id M  + L ± x ± M ^ ^ L l s ^
f S / S  2 /2  3 / 3  3 /3  6 0 / f  /0 /3

+&ÎM1 + T L x *  - 4 L ^ x ^ M  - A - L x ^ M
6ÔJ5 7 1 7 ^  T zT ^  3 ^ 3 K  3 / 3 / (
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-t- X fz. + CL-^x) -  'x(L-)t')^M^IoQ (L-x)

32
- L^^^M^h a K  — L x ^ M ^ Io q K  - A I x l M l  - L x ^ M ‘

f ' 4- ' /6 /6
+ 'ê‘^ h d .K M l f Z L x î K M P  - ^/5‘n/3' /iVŜ
+ 4-x<-M - z l * x ^ M ^ - f l - ? « < / W 3  - 1^  

s /3  /5-v? /5 /?  7 f f / r  /ô5f5<ï

- L 1 jsL - U L -  * t U ^ M  +  f i .3 x 2 M  + 2 L x W
1/^K* /jyâ/f 3 , / s k  z T S k

- (lfx)^A/7'/og (Ifx1 - /oo (l-x)
8 0  '  8 0  '

-"-(l^f/Ol^Y^ +.q-l>*)/WX/ooM + i/.f <./OA&^+SLyW 
4 0  2 0 0

- K M ^  K M ^  - -h
7 S ^  iŜ fs isy^ 3- 2^/^

+ Ix^ - 1*/W - L ^ x ^ M -jtiM.-t-jLfMi 
2^  6^/3 V? 6/3 'SOVŜ

+ x f M lT
6 /y sy? 90>Æ' J

Collecting like terms, the ahove reduces to
5.49 - L k I + 2/.3A/ + ZLx^Ml

L S/aK^ 2 /g 9 / I K  3 / J K

- /oo ( L+y )  -iLzi)lMI/oQ(L'-x)
4 8  4-8 ^

+  M ^ t o o K  + L x ^ M ^ I oq K  + f L y ^ M ^
24 ' 8 ' 72 2 4

- L ^ K M ^  - L x > ^ K M ^  + L  - L '^ M  —  x ^ M
43" /5'v^ 2/2 3^3 373

W-14/W3 + l2x2A/3
/Ov3= g W F J  / L

" x(/lfx)^M^/oo (Z. f*y) — xZiZL- y)^A4^/ooẐ -x)
4-8  ̂ 4 8  /

+ (L-t- M ^ /aa (L-hi/'i —  ( M ^ I oq CL-x)
6 4  ' 6 4  ^

g;̂ a îDâPS3Uétîû%2Eo3:l
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CHAPTER VI
EVALUATION OP MacLAURIN SERIES COEPPICIENTS 

and p;(t)'s; 1 = 1,2,3. FINAL SOLUTION

Now our two equations, 3.11 and 5.12 involve six coefficients, the 
â .(t)'s and the p^(t)'s, i = 1,2,3, which we evaluate as follows.

We multiply through each equation hy 1, x and x and each time 
integrate term by term, with respect to x between the limits (-L, L).
We obtain six linear first order differential equations in the time- 
dependent coefficients. The six boundary conditions required for a 
solution are, of course, the values of each at time zero.

To group similar proceedures in each equation, let us carry 
through with the left-hand sides first. The left-hand side of 
equation 5.H becomes, on substituting for a(x, t) and p(x, t), as 
given in 5.5 and 5.4,
6.1 dcCf>(û) + x o / o c t t i )  +  X ^ ctoc^ ) - f - k T B/ Ci )  k T S z C t )

qTE—  — m  ^ ..
+  +  CL X O C X  6;  .

Equation 6.1 jur^grated over the limits -L < x < L gives
6.2 2L c/oCocé) + 2^3 docz.i't) + 2L kTjS.li'i * ZaLoCpCt)

di 3 d i  rfp

Z a , L ? .
3

Multiplying 6.1 by x and integrating, we Fet
6.3 j/oCfCh f -t ZaL^ oc.th .

3 d t  3  r r \ '  3

Similarly, muO tiplying 6.1 by x ̂ and integrating yields
6.4 2J1 o/«c c6 + ZL£ afoc^ch + 2 J j  hJljS, It)

3  d t  S  d t  3  m

44
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fZaUoCet^) + 0C2 I6) ,

3 S

Similarly, the left-hand side of 5.12 hecomes, on substituting for a(x,t) 
and p(x,t),
6.5 dâoCt ) + ^d / 3 d t ) + x ^ dB^(i) i-a,U) -f ZxOCzd'i

W :  dt

i'C ijSolt) +qXyô, + a x ^ y 62c£).
Integrating 6.5 over (-L, L) yields
6.6 + ZLoc,Ct) + aaLjSod)

Multiplying 6.5 by x and integrating, we have
6.7 ± l l o C 2 . ( h  + Z a U f i t é ).

3 3 3
Multiplying 6.5 by x^ and integrating, we have
6.8 gH  4- d/9.(6, + ^=1 oc.it) +

3 c?t
+ Z ^ U j Q z i t )

Now, 6.2, 6.3, 5.4, 6.6, 6.7 and 6.8 are the left-hand sides, 
respectively, of the required differential equations.

Before evaluating the right-hand sides, let us evaluate some 
integrals that will appear. They are;

I
6.9

6.10

6.11

J '  CL-t-x) l o j ( L ' i - % ) d y  =. Z L ^ I o c j Z L  -

J  ^LL-i'X^locjLL’̂ A d t  zz Z ^ loc jZ L

J  x H u % ) / o c j ( U i i ) ( J x ~



k6

6.12 CL'*-x)/o<^(L-ty)dx =  2 ^ loc^ ZL -t- t i f  
75*

6.15 J ^  x̂ (.L-̂ x'>/o(jCL+y)dx 'z 2 ^  locj 2L

6,1k J  (L-x)/oy(L-;^ci/ =  2L‘̂ locj 2L -A :

6.15
, L

J  y (L-x)htj (L-x)dx =  /oj2L -XL
9

6.16 xHi-xMoCjCL-iC) cty = 2L^ lo<jZL

6.17
[_

J ^  X^(L-x)/oy dx =  ^ ^ / a c j  ZL -  4 1 ^
73-

6.18 ^  ^x^(L-)OhcfCL-'X)dy =  Z^locjZL -  23iL«
2 2 5

6.19 J  (Ui‘xŸ‘lojCL+y)dy = Q^locjZL -.8 1 1
9

6.20 J  X = ^^ loc jZ L - x l
9

6.21 J  y‘̂CL’hy)^hcj(L+x)cly = /6L^/ocj ZL -  38/.^  
EES'

6.22 !  x^iLi-xŸ'lotjtL-i-yidy =  IZ^IocjZL - //zZ
2E5-

6.25 J  /ocj(i‘’-x)dx ^Q^jocj ZL - f

6.24 J ' ^ k(L-x)^/oCj (L-K)cbc = é ^ /o ^ Z L •f L l  
9
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6.25

, L
J  X ̂ =1 l e L ^ l o q  Z L  

I S  '
-39Z5”
225

6.26 Z/ X L-x)̂  /o<̂fL-x)o/x =: - i Z l f l o a l L/y / 225

6.27 ÀJ  (1+x) locj^L't'X)c/)( ^ ^ L ^ h c j Z L

6.28 f  x(l + x)3/0^ (/y = i Z l E l o c j Z L -7Z^
25"

6.29 y  y.HL+y)'^/o<j(L*x)dx = Z ^ ^ f o c j Z L -49Z® 
2 25"

6.30 j '  )t}lL+xflocjtL-*->Odx r= ^ Z l T / o C ^ Z L - S U
4-2

6.31 y  x H l + x ') lo<jCL-ty)d/ —  4" A ^  locj 2 /- - /; Z.8
!7S

6.32 L
f  (L-xî /oorZ-xWx 

J - L ' = 4‘L^lo(j Z L -z/

6.35 y' ' x ( L - x ) ^ l o ( j C L - x ) d x = - I Z l P l o q Z L  
5 '

6.34 J  X^(Z^/oy (L~x)cfx = l ^ l o q Z L  
I F  '

-^9Z6
225

6.35 J  (L-x)^locjCL-y)clx = - F 2j 2h c ^ l L ^ .5 L. .

42

6.36 Ly^ x*(L-'xŸlocjCL-x)dlx = 4-4L®/oo2L 
35 ^

- /7/-S 
17F

6.37 y  i L t - x y l o c j  C L f K ) d x ■=. ^ z i F I o q Z L  
S  ^

- 32 
25
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6.38 =  ^4-L^lo(j2L - //2L^ 

2 2 5

6.39 J  x^(Lt‘K)̂ /ocf(Lf‘fOdx =  S5222Io q ZL 
/OS' '

- U j 2_
Z / 0

6.4o - 96^®/oo2/.
35 '

-3t?
/4

6.41 ^  CL'‘X)^/o^(L-x)chf =  locjZL - 32 4-̂  
2 5

6.42 v)ofx =  - e^/ocfZL -tllZjJ.
2 2 5

6.43
,L

j  X o < ^ CLrx)dx ^  ^SZtJ/oalL 
/OS ' - 7/^^ 2/0

6.44 x\L-y)*'lo(̂ CL'-x)dx = -361?Ioo2L 
35- '

+ 31® 
/4

6.45
A

j  CL4x)Voj(L’tx')dx =  52 2A
9

6.46 j  xtL+x)^locjCL’*-x)c(x =  ieO/Jioq2L 
2/ ^

- 3^9 4̂  
ff/

6.47 J  X̂ 0~i‘Xylocj(L-̂ x)dx =  Ig^/oqZL 
2/ ^

6.48
±

j  {L"X)^loj(l-x)cdx =  %ZL^lo<fZL - /6 I® 
5

6.49 J  iCL-x)^tocjCL-'iOdx = " l60Cloij2L + 368 (7 
44/

6.50 .A
J  fo<j(L-x)(/x =r /28L^Ioq2L 

£/ '
- 2444® 

44/
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Now we are ready to determine the right-hand side of our six 

equations in the time-dependent coefficients. These will be bM /2 times 
the respective one of the six integrals we now evaluate.

From 5»31 and the necessary integrals in our proceeding list, we s 
see that

.L
51 I sr OCTpCO— loo 2.L + ~ 2.L^loOiLL + L

J-L  V ^   ̂ n  sfl  ̂ Tz

irédtioQK f ^4L^KM 4. 
sTz ' > n  s n  2 ^ 7 ^

/I 3v(3 6 6 /87F"
+ oc, ié>[-.Z L ^iocfZ L  - J j _  + -if + ^ o o 2L 

9 0 /Ÿ J  L 3 ^  9 /2  3 /?  ^ 7 z  6/2

-S4Î - 8^f_ -hJjLi.] 9 21
/g /2  6 / 2  /8 n/2 J 1 3 / 2 ' 9 / 2

-Zlf/09 2 L ^ ^  - 41^ / o q Z L -  + 41^/oq 3/2 ' fTT 3/2 / 3/2 '
- flf /oo21 + A j L  - ^ / o o  2Z. + id l)o Q K  

9 / 2  3 ^ ^  3 7 T  3vg  ' 3 / 2  3 /2

 ̂±UL ^±Lt - 4L^KM 4.
9 /z  9>/2 3 / j  6 27v^

^  3 o 7 a  / o  / s  27/5 /3vff /g a v g f

which, on collecting terms, reduces to
1

6.52  (xr,t'tr^‘ti^idK ■= o C o U ) ^ ^ i o < ^  2L -h

-4-L%KM
y/S 2 SvÆ' 3^^ 3

f Bl^M^ 1 + oC,(é) r- 41^100 ZL * 4Lf/oo K  *!6L̂  4-SJt J  ̂ L 3pS ' 3 Æ  ^  5 v T

- 4L*/<M + L*K^M*-ZL*K^M^milM -713M'- +eBL’M^ 7. 3/3 6 zyVs ÎS7T 4-S J

2i

ft.;. :
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Similarly,

6*53 r  X. (zT, "*■ =  OC^(é)f~~2l^^^Q 2 L  •+ Z.̂J~l L 3v/2 ' 972
+ g l L l o q  Z i . - i L ' l f  oe,(tyf-ZJiloqZL + 2 i f  

37* ' a y s J  i  3</5 ' 971

- 1^/09  2 i  + 1- 2L*/oq ZL - L f - + ZjtlcqZL
fTS I 97* 3v9 / Tb Tz  3 / g ^

- + 2il - Z L ^ M  + 2L^M +  - È Ü d l
/gÿ? 375 3/1 /5^/3 9  /?7T

- l7 M I^  - i - x l M l  1 +  o C z f o  1 ,Tsv¥ /zeoT̂ J L J
which reduces to

6.54 X +  xJŝdx =  oc,cé)fiî_- 8L^M *f
J-L  LTz /jr /3  9

-  97A ^/W 3l .

Similarly,

6.55 j '  +02.-*sr^)d-x = o c a i h ^ : ^ i o j Z L  + y ^

-2 d ± lo q  ZL + i i f  + 4-L*lcqK+ 4L* -  
37Ï ' 9 /5  3 /5  ' 3/2 "3/3

+ L * K ^ U ^  -  Z L * t< 3 K /1 3 + y 2 / . ^  - L ^ M }
6  2 7 s /?  3 /J  "3v9" /S

- I f M f  v-iZMl + Z-^/Wa +  L T M l 1 + o c4 f o l
to  5 4 7 s  157s- /zePS^J L J

i - o C i ( i ) [ - £ i t h Q  ZL + Z3L4 - y J . l o o Z L  
L 5V2 ' ZZ57Z 5 7 z  '

+ Z3L^ ■+ IZL^IoqZL ~/IL‘  4  IZL^loo ZL
ZZSTz /5v^  ' ZZS72. TWTz '

- i u l _  - z m l l o q Z L  + 49L'^ -ZSJâhqZL  
Z Z S T z  ^ 5 7 1  ' 6 7 S 7 Î  4 5 7 Z  '
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+ - H m / o o K  + ± j j _  t A L i  - ± 1A K M . 

67SVÎ 9^/2 / Z 7 ^  /5V2 9/3

IB 8 / v ^  3 / 3  2 / v / 5  3 0

-iiAfl JJML *LÊM1 f vLfM® 1
30 8 /v ?  3 0 v ^  f ? l ô 7 T J

which reduces to

6.56 + t7g =  oc^ci^ï''M l. \oq2 L looK
J-L L 3 / 2  ' 3/2 '

+ m ±  -  4 - l A K U  + U J S 1ÎA 1  -  2 U - K ^ M ^
QJZ 3/3 6 27/5

+  \6 m / }  - Z J J ^  + U £ J Z ^  +  o c ^ i H - M i o ù l L  
/ 5 V 3  45 isBo/s J L syi !

+ ±l^lopK +ZJ1^- 4-tfKM + '
9</ï ' 3/2 S / T  18 8I</T

+  8 LTM  - U M l  +  j j j j S M L ] .
2 / v ^  / 5 ’ 2 4 3 0 / 3 =  J

From 5.49 and the necessary IntegreuLs In our list, we find

6.57 J ' ‘'(5 ,- iF i  + Fi)d)t = J S o < - h ^ - Ç ^ h ^ 2 L  *

- I l æ i o o Z L  t l f & e  - L *  -
/2   ̂ 4 8  3 /1 7 (2  3 /2 K ^  9 / f / (

2+ 4A*A4 + L*-M̂ ioq 7f + L*M̂ IoqK + L±M.
9dSK !Z ' iZ ' se

+ I Î M .  - S J â m d l  - J L L M ï A I  + 4 ^  - 2 I ! M36 4 5 v 3  45'vS= Æ  3 / 3

- Z L I M .  +  L f M L  + + Z i M L l + Æ r f ) r o ]
S / Î  3 0 / 3 =  /5v<5=  / ^ O v g ' J  / L J

+ Æ  (6T- ultdlhq 2L + 49 - 7Z544f/==2L^  L /go ' /ofioo /So '
*  Z l ^ M ^ i B q Z L - 7 L ^ M ‘ -i-Z L ^ M V o q Z L

10800 15 ' 450 15 '
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-  ZîtùâliocZL -  il^MJIoo 2L

450 /S  ' 4 5  IS *

- ^ 6 ___  +. 4-L^M + 4-L^M + Z£M? +
S/z«^ /5V3A" 27/3À /OO /080

+  ! S M L -  -2 L ^ K M ^  -  2 L ^ K M 3  + 1̂  - L ^ M  -
eoo y s j s  /35v? 3v^ 3/3 ÿ3vT

* L Z È û l^ '] ,^5/3= 30/ÿ T S O T F J

which reduces to

6.58 = y3 a(^l^-d^dI/o<^2 L ■¥ U ^ io c jK

^ --- ^ T S T T 'J  / L ^

Similarly.

6.59 ^  X IF, + Pt-r Fs^dy po Ĉ-> j^oj + p  26

+ 4 -9 L ^ M 3  - T l F M l / o q ^ L  F ± 9 l^ M 3  ^ l^ M VooZL  
10600 16 0  /0 6 0 0  !S

-JZ L Ë M I ^ jj^ io q b l  - J j s t æ -900 /5 ' ' 900 /Ô / ^/(
- I Q jLEjU S  4 I ^ M L  

2 7 / 3K  0 6 ^  ;240 i^ S y /S  9 y /E

- ^ E J lù d - - J Z M S . - J Z M l4^S7T' ZOVs  7>S/5 lOSQy/SJ ' L J

which reduces to
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3h
which reduces to

^.62
L
/  i t  Fg, ) dx zz ̂ 0  y^^M^/ocj ZL + K

? 5 > ? W  \3 5 /S f<  67SVÔ s T z  4-Sy/S

+ 24£M £ ^  B , i h \ - iB M i io Q Z L
z o o  1 5 7 5 ^  J  /  L 3 0  '

- Æ

+ i i  -  + Z L ^ M ^  T 5 j 6 L £ M i l
5 ^  6 3 / 3  2 0 9  Z O Z S ^ J

Hence, 6.2, 6.3, 6.^, 6.6, 6.7 and 6.8 are the left-hand sides, 
respectively, of six differential equations having as right-hand sides, 
respectively, aM̂ 2̂ times 6.52, 6.5^, 6.56, 6.58, 6.60 and 6.62.
Denoting these six equations as I, H, ... ,VI, respectively, let us 
derive six new equations by suitable linear combinations of these, such 
that we may soJve for the derivatives of the â .(t)'s and p^(t)'s.

The proper combinations will be:

6.65 =
JlX
5

— a j m
3

45
6, 6k jr* =

3

6.65
zi£x
3

+ M

8/f
4 5

6.66 zz. S — I vr.

4 5



556.67 3 "  =  ST
Æ .
3 

:JtïïT  +  V E
6.68 SE' = -i :_______

Carrying out the above operations^ we get
6.69  slŝ(̂'> + _ A Tâ,(h -tQoCoCé̂ =■ 5̂'c(A/f_ (oCo(h[-ilt.loQ̂L

dt !6L̂  1 15V2
+ 4LÎ/0Ç K  -f ^  - 4 - L ^ K M  4.

5VS ' 5Vz S 7 3  to

- Z J J J i iM l + 8 L ^ M  - j J M L  ■*■ e U td l .
4-s\/S  7 5 7 3 “  I S  I z s W

+ 4A*/oo2L ~ /6L* -£L*: loqK  + 4-Lf-KM 
9/Z ' ZT/i gym ' 9/S

- Z ± K £ M f  t  Z U - K J M 3  - /6L ^ M  + 7 L ^ M ^
/S  8 / v ^  4  S / 3  I 3 S

-nei/M  ̂ 1 *ac,thf-4-ificq?L s-l-jfJofK +ieif 56 70/S J L IS/? ' IS/S 45/z
- 4 L ‘ K M  I- LSK ^M ^- - 2 L ^ K 3 M 3 +

/S v ^  3 0  /3 5 v ^  7j" v3 225"

4 - M A f M f  * 4 l l l o q Z L  - ■ U t h q n  -
/L -70cr/c‘ / O U T f*  9 J Pt7 Z S /S  27V 2 ' Z7/S.

+ + Z L ^ K ^ M ^ - -- A
Z7/S 54 Z43/S 63/3 I T

1) ,
7 2 9 0 /5 ' JJ .

6.70 + 2  A T /% f6  4. Q0C,(6 =  3 a M
art un * L\^

- 8 l ^  + L f A 4 i  - § 2 4 3 4 ^ 1 ,
7 5 V ^  . 5  IZ 6 0 /5  J

6.71 ctecaCf) + «0C2<f> =  4-5oM  foe., l i)  féJ ^ /o o  2L"5r l 6 L f \  l3/2 '

-  4L f/oo  K  - 2 ^  +  4-1^KM  -  
3/Z • ^  3 /^  6  27vS^
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5T r
6.73 * Zoc^th ^ = ^ a ^ y 3 / C i ) ^ l £ M l l o ^ 2 L

- L l M l h a K  + 27.S - 8L^M + 4L^K M ^
!8 ' 9y/ëH 27/3/f /35V<ÿ

- , 4 ! M £  - 6A'/WS 1 ,
? 3 w  7 2  7 z 5 v ^  J

and
6.74 f C ( j 3 i U ) =  ^j8o U i ^ l y ^ / o ^ 2.L

~ L f M l / o c K  + 2/.S - 8Z.«/W + 4 - L ^ K M ^ - L *
/fi ' i^ T f ^  2 7 / î / f  /3 5 V ?  3/5

T 8L«/W - 7 A W  - g/T/W3 - 7l?M^looZL + 7âMV«,K  
Z7/3 275 225V? 9 0  ' 9 0  '

- I 4 l f  -t- 56L^M  -  ZSL'^KM^ + L* -I6L?M
4 ^ Ï Ï 1 ^  J î W s K  e r s J f  ■■ W  4 ^
+ 7i-®w* T 882.^31 ZL

S W ~  i s W r i  L 270 ^

-2 lB £ h q  K + I4L^ -  .Çai.^M + 28/.8A7WS 
270 '  lâsVÏÏF^ 40SV3K zozW T T

- t?  ■>■ I6Û M  -T Z ^ M Î -  89.L?M^ -LlM lhqZL
9</s /35V T 600  4 7 2 5 /5  3o  '

■^l B M ^ Io o K  — Z J J _ _  + 8Z.8/W - 4 L ^ H M ^
30 '  /y /F /f z  4 5 /3 /f  z z s y s -

+ A f _  - «/T'A/) -*■ p.z_ft/v4g +  f r e t P M ^  ~]\,
9 /5  6 3 /3  2 0 9  Z 0 2 S V ? J j

The above six eauatlons reduce to
6,75 m a o c o c i )  Si ^  oCv,(6|^Woy^

+ 8 2  - /6KA^ -+■ 4 S/<5IM2 4-6Z./W
/35V^ ^5V? 4 0 5 /5: ?5Î¥

2 

/5V5
- ZL^MI. -+ -t- oCpCt)T'-ISL?-/oqZL + 2L

135' . 14115/5 J ' • VtSSJz ̂  K  /5VC-
- t e s l ^ M  ^ + /2âL!M- 3 ^

/35V 5  / 3 5  / 2 / 5 y f  ISÏSTZ  225



6.76 ç(9̂ /(Él + 2kT Bptih f  aoc,cè) — 3olLM  -  8LMdt m 4  L N ^  / 5 v ^
+ - 9 7 J J ^ 3 j  ^

6.77 doc,ié) olocpU) =  4 5 a A / / o C , ( 6 r - _ 2 _ f
W   l 6 l  I i t / 2  4673

+ IZSL^M^ 1 ]  ,
9 5 0 5 7 ^  J /

6.78 ^A.16) -hoc.cf) + gygaĈ J = f 5 ^  L M ^ t i ) ^ L ^ % cjZL

- i d _____  - t lG llM  - 8L^KM3_ + 4 ____-/6/jW
JasTTR^ 4 -0 5 /iK  \ o z 5 / S  4 5 / 2  /35V3

■^UdMl ]  ^ B»(é)r-L̂ /̂f̂ /oq2L -  4-Lf
SOO Z 3 6 Z 5 /s i  ' L 225  225V57^

V 6 4 - L H 4  - & U - K M  + 41?- 
33,7SA k 3%75TS iZSs/z W ZST? 787

- « • ] } •

6.79 g A  + 2K,(6 + y , a , =  3 ^ M j9 ,( i ) ^ l^ i lh ^ jL  + 2 ^

- 8Ü -M  + »Z.^KA//3 r S 4 M  - L H /)^  - 8Ü M I 1 , 
Z7-/5K IS S y s  4-Syî 72 TtSTs J

and
6.8o dâfCé) -t-apzct) z: 45oM/5^(61 -A^6^/oo&L ----

6 ?  ^  f 6 L  V  L /  /C

+ - 8L‘K M 3  - 8 L M  ^ T J â M l
I3S73H 6 7 S ^  /35v? 2700 I5757S \

*ëM - ! ^ I oqZ L  - â l ± — ^  * \6L*M
' i U S  ' K  izsWi^ 4-osji

- BL^M  -  + S i Â f â d î ] ] .
948^3 2384 /4l7SvSJJ

2 0 2 5 ^

•*•- ' ' " --—V - —  —‘ ji : . . . --------.-1  ̂ ..M.'.; .baw. \ T  -  —f r - f t r i *  f t  ‘ V  i  n ii'iiiË i'~ T i iilrt' "Tr i" 'i  M ,* . '/* *  f j y a »  '■»■ *';l." > ■■ » w - i i w . * - f c S M t -  ' %* Ai»
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Now let us approximate the â »(t)'e and (t)*e by the leading terms 

in a MacLauPln Series Expansion,
Our boundary conditions are

6.81 oco(o) = t ( o) = o
oc, <o> =  c yS, (o) =: o
OCziOi -  O ygg(O) =  o .

Hence, evaluating 6.75-6,80 at t=0 gives
6.82

- I6KM + P.K^M^ - AK3M3 +
t s W  4 S  l-OS^/S /35

-i-6£i£M27,
HI7Sv^ J

6.® -  0,

6.81J /ofejcii) =  £ 5 a M . r - ^  + M M - Z L 5 M 5
[ d t  Jt=o I 6 L L 9/2 /-S’

-1- 3 2 1 .
54JVS- J

6.85 ~  ° ’

6.86 I d S . d i ] =  o
{ 3 T / t = o

and

( M . .  =  ° ■

At this point it is obvious that the equations 6,75-6,80 and 
boundary conditions 6.8I force the identities
6,88 z  o

s  0  .... .. ;

s  0 .
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For an approximation, let ns carry only terms to the second power in 

in M, We then have
6.89 (ûLocai'i)] = — p. fl + L M  loQ Z L  — 4-!L M  +

(c/f h-.a L /2   ̂ K 2?5F

6.90 /o/scaté)) =  - t̂ r.S'M  - A4£ l
I rfif //=o LsyTz. J

and

= ° •
Differentiating 6.75, 6.77 and 6.79 and substituting from 6.69-6.91,

we see, on evaluating at time t - 0,
6,92 fçlI-OCo(é)] —  i •» L M  loQ 2 L  -

( 5 ^  /f-o L \ / z  I K  2 4 -y ^

+ +  L ^ h c j ^

- m M ] \ - L M l o o g L  +  M M - U i M :  +  L i M 3 ]Z4-S/2 JL -Jl 'K  24Æ 2v/5J

6 . ®  -  " ' f #  • =  -  “ ‘f ‘

and
6.9it- /ji£_Adi)j =. —  2/.cLpCg(6\ ,

y^ = o (c/f A=o
which, on retaining only terms to the second order in M and collecting 
terms, gives



6l
6.95 ^ j^ o C o (é i j  =  1̂ 1 + / , 4 / f  L/W/oy ^

-  ZAISLM  ̂ I J S S L K M ^  o,76SL^M^  

t  0,600L ^ M ^ I ^ I o c j 2̂  ~ / . e O ^ L ^ M ^ / o c f ^ l  ,

6.96 == a ^ j ^ o , s o o j ^ - >  / . / S 3 M ^

-!“ 0» 3/3M^/oy^J
and
and
6.97 =. a j o . S S ^ ^  "  O . S 7 7 A / f ^ J  .

Substituting the above in MacLaurin Series, ve have from 6.8I and 
6.89-6.97
6.98 o^ o (é) = / - a i ( l  ^ 0 .7 0 7 L M h c i(Z L lK ) -  L ^ o e U M

^ o , 3 7 7 L K M ^  “ o , 2 B 9 L ^ M ^ )  ‘t’ ( a ^ t ^ / 2 ) (  1 

+ I A I 4 L M I o c j C Z L / f < )  -  2 . A / 6 L M  - f l . I S S L K M ^

+ o . y e s L ^ ^ ^  + o ,< 5 o o L ^ i\/^ ( io ( jC Z L /K ))^  

- I . e O i - L ^ M ^ i o j C Z L l K ) )  5

6.99 oĉ fé) = - qi(û.Z50jifi-o.2i3M ^) i- '■/,/63M^^-a3/3f^^/cj(2i/k)l

6.100 p , C t )  zi ( a t y z ^ i o M a ^ M / L  -  0 , S 7 r M ^ )  . 

vhere M is given as
6.101 M  -  nàc B(

Ehnce, our final solution is
6.102 yo«,F,<) = j’‘*|’|oc,(6 +:c®(3£i(<)j

Oo(t), and p,(t) heing given hy 6.98> 6.99 and 6,100, respectively.



CHAPTER VII 
A SUGGESTED EXPERIMENT: CONCLUSIONS

It is of interest to note that, in the non-exponential factor of the 
solution given in 6.102, the velocity-free part is an even function of x 
and the part containing a term U is odd in x. Thus, along with a 
symmetric distribution function for excited atoms which one mi^t expect 
by ignoring the diffusion term in the Boltzmann Equation, one arrives at 
a gradient in populations of cells in phase space, for a given U, 
increasing in the direction of the x-component of velocity. Thus, the 
diffusion term is quite important and suggests that experiments to study 
this gradient would be of considerable interest.

Let us consider and predict results for one possibly interesting 
experiment. Choosing a point R(X, 0, O) on the x-axis at a distance X 
from the center of the slab, 1ft us determine the intensity distribution 
function l(v, tj X, A) when all but a small area A centered on the x-axis 
is shielded from R. Assume X is large both with respect to the dimensions 
of A and with respect to the thickness of the slab. Thus, it may be 
assumed that every incremental volume is at ' the same distance X from R, 
and that the angle it malces with the x-axis is zero

Now the number of excited atoms in a small volume dxdydz whose 
x-conponent of velocity is in the range (U, U+dU) is

.coco
7.1 dxdydzdU/ j  p(x, U, V, W, t)dVdW ,

-03 -09

Tdiich is equal to

62
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7.2 cbcdydzdUn*̂  m + xUp, (t)J«

-muVsKT œ -niV̂ /2kT qj -mW^2kTJ. 00 -niv / c i u .  C O  / c A j .
e dVj^ e dWj,e

-CO -CO

•vdiich reduces to
-mUVsKT

7.5 dxdydzdUn'^ m + x a^(t) + xUp, (t)|e

The nimber of these excited atoms that will emit photons per unit 
time is simply the expression 7» 3 multiplied hy a, the Einstein Emission 
Coefficient. The fraction of those photons emitted that are in the proper 
direction to pass throu^ a unit area ahout R normal to the x-axis is 
l/WC^. Now, the fraction of those photons emitted in the proper 
direction that will reach the edge of the slah, and hence the unit area 
ahout R is just the probability P(L-x, U) that a photon emitted in the 
x-direction from an atom with a velocity-component in the direction of 
emission equal to U will travel at least a distance L-x, the distance to 
the wall. From 2.9 we see that

-mU 72KT
-M(L—x)e

7.4 P(L-x, U) = e

where M  is given in 6.101.

Hence the number of photons emitted per unit time from a volume 
element dxdydz from atoms with x-component of velocity in the range 
(U, U + dU) that will pass throu^ a unit area about R normal to the 
x-axis is * '



6k

-muVsKT
-mU^/2kT - M(L-x)e 

7*5 dxdydzdU an'/ m e ’ »

t (%o(t) + x*ai(t) + xup,(t)}.

The imshlelded part of the slab may he approximated hy a ri^t 
circular cylinder vith its axis along the x-axis and hase of area A. 
Hence, the integration over the y and z-directions yields simply A. 
Integrating over the remaining variable x from -L to L, we find the total 
number of photons emitted per unit time from atoms with an x-axis 
component of velocity in the range (U, Ü + dU) that pass throu^ a unit 
area about R norma] to the x-axis to be

-mU^/SkT
-mU^/2KP - LMe

7.6 dU an* / m e *
inri 2 krl

-mU-/2kT
Mxe

fct<,(t) + x^a^Ct) + xUp, (t)|e dx.
-A
A

Before proceeding with the integration let us examine the above 
expressions. The terms will contain a factor exp(-mU^/2KP) or 
Uexp(-mU^/2kT) which will dominate any integration of 7*6, over U, 
involving infinite limits, 1 'Hospital's Rule and Jordan's Lennna assure 
that 7.6 has values and the integration of T,6 over infinite limits of Ü 
has veilues. However, we can see immediately that the integrations by 
parts-over X  will yield terms which will not have values for all U. This 
is precisely the problem we encountered earlier, and we shall handle it 
in the same manner, i.e. expanding exp(^Ixexp(-mU^2kT)) in a Taylor's 
Series about x=0.



65Since ea^anding the exponential term under the integral in 7-° gives 
-mUVSKT

Mxe -mU*/2kT -2mU /2kT
7.7 e ^ 1 + Mxe +(MV/2)e ,

we may approximate 7*6 by a similar expression where the integration is 

over a polynomial in x. Obviously the odd powers of x will integrate to 
zero, hence the even powers of the polynomial + I^x^ + P^x^ where

7*8 Po = Q̂ o(̂ ) 2/-2mU^/2kT -mU72kT
7.9 FgX= g^(t)M^x^e + x*ag(t) + Mx^Up,(t)e

2
and

-2mUVsKr
7.10 F^x^= g^(t)M^x^ e

2
integrate to

7.11 2LQfo(t)
-2mUV2KT -mU^2kT

7.12 L^ao(t)M*e + 2L*ai(t) + 2ML^Up,(t)e
3 5 3

and 
-2mU^2kT

7.13 lfg&(t)M^e
5

respectively. Hence the integral term in 7*6 may be approximated as
-jnUV2KP.

7.14 ĵ 2igç(t) 4. ̂ gg(t)J + j ^ ^ u p , ( t ) e  |m

-2muV2kT.

Now, ccntinuing approximations to terms in M^,
-IMexp(-mU^/2kT) -mN^/2KP -2mn2/2kT

7.15 e = 1 - IMe + (L^MV2)e ,

and substituting 7-1^ and 7» 15 into 7.6, multiplying out and retaining
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terms only to powers of two in M, we find the total nnmber of photons 
emitted per unit time from atoms with an x-compcnent of velocity in the 
range (Û  U + dU) that pass throng a unit area ahout R normal to the 
x-axis to he
7.16 dlTan’A/ m M2I aJt )  + + F2L^U ,̂ (t) - L/2Tao(t)

W f e )  1  ° -3 '  J l 3  [
. -buVsKT , ’ , -

+ e M + f/rajt) + lfa2(t)|

-L^a^Up,(t)j+ L^^SLcxJt) +

-2mu72KU  ̂ -mÛ /21sT C  ̂
e M^je \ I

which reduces to
-  -mU721sT

7.17 dUan*A/ m t̂flgLâ Çt) + 2L^g,(t)b
Tn^l2iika?)lL 5 J

-  -2mUV2kt
+ |'-2L*a^(t) - ^ ♦ajt) + ^ u p ,  (t)Je M

-5mUV2KP

At this point it is important to note that the distribution over U, 

equivalent to spectral distribution, is skewed to the r i ^ t  from a 

Maxwellian distribution. This, of course, suggests that the gas does work 

on the radiation and is itself cooled in the loss of resonance radiation. 

Also, since the terms in U  are all odd functions of U, it appears that 

the total number of photons crossing a unit area about R normal to the 

X-axis is independent of the diffusion term in our Boltzmann-like 

equation. Thus, it is argued that the important experimental work in this 

area should be more toward spectroscopic studies rather than integrated
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intensity measurements.

However, let us look at the form of the integrated intensity 
e%3)ression. Expression 7.1? integrated over Ü between the limits (-00,00) 
becomes
7.18 ^ » A |ĵ 2La.(t) + ^ ^ a g ( t ) J  +^jj2L*a„(t) -^a&(t^ M

+ lW(%o(t) + 8L®’a2(t)lM*].
/5L 3 15 ‘ J /

Substituting in 7.I8 for a^Ct) and a^(t) from 6.98 and 6.99, we have, on
retaining only terms to second power in M
7.19 ■ an‘AL(( 1 - at(L + 0.707LMlog(2L/K) - 1.125LM + 0.577LKM^

2nX2
-0.385L^M2)+(aH^/2)( 1 + 1.4l4imog(2L/K) - 2.249LM 
+ 1.155LKM^ + 0.377I*̂ M̂  +: 0.500L*M^(log(2L/K))^ 
-1.500L^M^log(2L/K))) + ( -O.7O7LM - at( -O.7O7IM 
-0.500L^M^log(2L/K) + 0.796L^M^) + (a^t^/2)( -O.7O7LM 
-L®M^log(2L/K) + 1.590L^M^)) + ( 0.770L‘m^
-at( 0.770L*M*) + ( a«tV2)( 0.770L^M^))), 

which reduces to ;
7.20 an*AL(( 1 - O.7O7LM + 0.770L^M^) - at( 1 - 1.832LM

2trX̂
+ 1.181L^M^ + 0.707IMlog(2L/K) + O.577LKM*’

• - 0.500L^M^log(2L/K)) + (a^t^/2)( 1 - 2.956LM
+1.9671% ^  + 1.4l4imog(2L/K) + 0.500L*M*(log(2L/K))^ 
- 2.500L^M^log(2L/K))).

Note that for small L or K this approaches
7.21 an’AL( 1 - at + a^^ )

2îiX̂  2
which is an approximation for
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-at

7.22 an»(2LA)e .
4îtX^

Now, in our expansions, undouttedly for certain values of K, we have 
trouble. We have no difficulty in showing that we have absolute conver
gence, in fact uniform absolute convergence. But, in spite of this fact, 
the slow convergence gives us difficulty. We can to the degree of a 
approximation we seek here, look at the special case vhere K is taken 
to equal 2L. For this case 7*20 reduces to
7.25 an’AL (( 1 - O.7O7LM + 0.770L^M^) - at( 1 - O.678IM

2trX̂
+ 1.i81L*M^) + (a*t^/2)( 1 - 2.956LM + 1.96tl^M^)).

Now, the above results are for the initieil distribution uniform 
in space and Maxwellian in velocity. As has been pointed out earlier, 
the total intensity of emitted radiation does not appear frequency 
dependent, but the spectral distribution changes with time. This fact 
makes study and tests of theory extremely difficult.

Therefore, it is suggested that a new kind of experimental set-up 
be en^loyed in order to allow steady state measurements to be made 
instead of instaneous measurements. Dr. R. G. Fowler has suggested 
that a continuous source be used with its spectral distribution 
unimportant. As the radiation penetrates the gas, all but the 
resonance radiation would be immediately transmitted. Dr. Fowler’s 
suggestion, then, was to chop the source at a given time and study 
the relaxation of the gas. This seems far superior to electron-beam 
excitation or secondary excitation using another vessel of an 
identical gas as the source. However, it seems that since resoneuice 
scattering is much more pronounced than elastic scattering, the



69possibility of steady state measurements of scattering in the resonance 
frequencies would yiely much more reliable results.
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Jeans, Ĵ  H, The Dynamical Theory of Gases. London: Cambridge 
University Press, I92I.

Kourganoff, V. Basic Methods in Transfer Problems. London: Oxford 
University Press, 1952.

Mitchell, A. C.-G. and Zymansky, M. W. Resonance Radiation and 
Excited Atoms. New York: The Macmillian Company, 195L.

Mum aghan, P. D. Introduction to Applied Mathematics. New York:
John Wiley and Sons, Inc.,

Articles

Fowler, R. G. " The Blockading of Resonance Radiation", Handbuch 
der Physik, Encyclopedia of Physics, XXII, I95I4., 209.

Holstein, T. " The Ingorisonment of Resonance Radiation", Physical 
Review, LXXII, June, 19^7, 1212.

70



APPENDIX

In deriving our diffusion equation, we assumed that 
for an émission-absorption process to take place the 
component of the two atoms' relative velocity along 
their join must have a value in the range (-Ac/2, a c/2). 
Such an assumption is equivalent to the approximation 
of a function by a step function. Let us analyze this 
more closely.

It is obvious that we may examine the case of an 
absorbing atom at rest, since we are interested only in 
relative velocities in an émission-absorption process.
Let us assume that we have an unexcited atom at rest 
and an excited atom moving toward it with a speed v.

Now, the probability distribution function of radia
tion emitted from an atom at rest is given by 
A.l P(i); -il) = + «ft)
where
A.2 ^ - 2e^T)^^/3mc^
and t) being the frequency of emitted radiation, the
maximum of the probability curve and c the speed of light. 
It will be noted that c is used differently in this one 
instance, and in all other places in the text c stands for
the speed of an atom. The terms e and m are,of course, the
charge and mass of an electron. For an atom moving toward 
an observer at rest with speed v this distribution is,

71
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by virtue of the Doppler shift, transformed to
A.3 Plii; 1̂ 0+Ai(>) = / 1 ______ __

2 7 t  (V - Vo- t i V o 4

where is the Doppler shift of the maximum by
virtue of the velocity v. It will be noted that this
is not an exact transformation, since each frequency
is shifted proportional to its rest value. However the
effect is negligible since the values of are appr
appreciable over such a small range of V. Hence, one
may consider that the function is simply shifted to
the right by an amount aV, determined by the speed v
of the approaching emitter.

!
Now, our objective is to determene relative proba

bilities of an émission-absorption event to occur with 
varying values of speeds of an approaching, or retreat
ing, emitter. To do this, we note that the probability 
of emission of a photon in a neighborhood of frequency 
is proportional to the value of P(t/jx ,̂+ a Vo ) and the 
probability of this photon being absorbed is proportional 
to the value of P(î ; ), hence, the probability of an
émission-absorption process to occur is proportional to 
A.4 git'ii) m (V ; ) P(V; T/o+ -̂*4 ) dV.-Coo

The above integral will be a function of and, 
normalized over the range (- 0 0 , 0 0 ) will yield the 
relative probabilities of émission-absorption processes 
for selected ranges of Doppler shifts of V© or, equiva-
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lently, selected ranges of v. In our text we wish to
substitute for this function a step function zero over
most of the line and uniform in height for a finite
interval with jI at its center.

Evaluating term A.4, we find
A-5 g ( w j  = f”/y 1 I.

jL 12-n- 1
-CO

The above integral is evaluated, using complex variables, 
integrating around a circular path in the upper half
plane and along the real line, to be
A.6 g i ù i i )  T y 1______ .

IT

It will be seen that the above function integrated from 
minus infinity to plus infinity yields the value one. 
Hence, has all the properties of a probability distri
bution function and is the function we wish to approxi
mate by the step function
A.7 h( aVo) s Ô — — 00 < ûx/o < - 5x//a

z. __ SiJ/t, < < fv/z
r 0 C Al̂ o < flO

To do this we minimize the integral 
A.Ô / “*(g-h)^g d(Wo )•'-oo
by setting the derivative of the above with respect to 
Sif equal to zero. Carrying out the steps necessary, 
noting that A.Ô is actually the sum of three integrals
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with their limits functions of the variable of differen
tiation, we arrive at the equation
A.9 tan”^ q = q£______________

(q2- + IJ (Tf- q)
where
A.10 q =

We are interested in the smallest non-zero positive 
root of equation A.10.

After determining our q we find W / 2  - q/. This 
is the maximum frequency in our step function. The 
next step is to find the speed nc/z. which would give 
this shift. Multiplying this speed by two gives us our &c.


