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Abstract

Highly pathogenic influenza A/H5N1 has persistently but sporadically caused human illness and death since 1997. Yet it is
still unclear how this pathogen is able to persist globally. While wild birds seem to be a genetic reservoir for influenza A,
they do not seem to be the main source of human illness. Here, we highlight the role that domestic poultry may play in
maintaining A/H5N1 globally, using theoretical models of spatial population structure in poultry populations. We find that a
metapopulation of moderately sized poultry flocks can sustain the pathogen in a finite poultry population for over two
years. Our results suggest that it is possible that moderately intensive backyard farms could sustain the pathogen
indefinitely in real systems. This fits a pattern that has been observed from many empirical systems. Rather than just
employing standard culling procedures to control the disease, our model suggests ways that poultry production systems
may be modified.
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Introduction

Highly pathogenic influenza A/H5N1, colloquially referred to

as ‘‘Avian Flu’’, was first identified in Hong Kong in 1997 as a

cause of fatal respiratory illness in humans [1]. After spreading

from Asia to Europe and Africa in 2005, it has persisted since then.

It has been reported from wild waterfowl in Asia [2] and Europe

[3–5], as the cause of outbreaks of poultry disease in Asia, Europe

and Africa [6–12], and as the cause of repeated zoonotic

transmission to humans in Asia, Europe and Africa [13–16].

Although human-to-human transmission is rare, this strain of

avian flu represents a significant pandemic threat, with 360

reported human deaths by the end of 2012 [17], and we now know

artificial selection has been able to create a strain of A/H5N1, that

has only a modicum of mutations from naturally occurring strains,

that can make the virus transmissible among mammals while

remaining pathogenic [18]. Yet it remains unclear why this has not

occurred outside the laboratory. In addition, the case fatality rates

for human A/H5N1 infections remain high [17], as do the

mortality rates in chickens, some breeds of domestic ducks, and

some species of wild birds [19], making control measures difficult

and urgent [20]. Although many agencies and governments have

tried to control A/H5N1 spread with some degree of success, it has

not been eradicated nor displaced by a less pathogenic strain of

Influenza [21,22].

Indonesia, Egypt and Vietnam represent the three main foci of

human A/H5N1, with over 75% of human cases occurring there

[17]. Twelve other countries have reported sporadic and

occasional human cases and 48 additional countries have reported

infected animals [17,23] with no reported spillover to people. Thus

a key question is how A/H5N1 has persisted across the Eastern

Hemisphere, but with only very distinct, geographically disparate

foci of human cases. One explanation for this may be differences

in the nature of poultry farming in affected versus unaffected

countries. In particular, a number of studies have proposed

backyard poultry rearing as a key risk factor for human infection

[8,24–27]. However, many countries that have dense human

populations, extensive backyard poultry rearing, and repeated

presence of A/H5N1, have reported no or only a few human cases

(e.g. Bangladesh, India) [17].

At a large spatial scale, the presence of A/H5N1 in Asia has

been correlated with duck density and rice cropping patterns
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[21,28,29], and its spread has been linked to bird migration and

global poultry trade [30–36]. However, because of high livestock

and human mortality, and the short duration of outbreaks, A/

H5N1 dynamics have been difficult to study. Here we examine the

spatial dynamics of A/H5N1 using theoretical models of disease

spread and attempt to understand its ability to persist in different

types of domestic poultry rearing operations.

It is a well-established theory in ecology that spatial structuring

of a population, as opposed to a single well-mixed population,

may alter dynamics [37,38]. Spatial structure can dampen cycles,

allow for co-existence of pathogens with hosts, and generally

enable the long-term persistence of often lethal pathogens within

a host population [39–41]. Employing a metapopulation

approach has been successfully used to understand the dynamics

of measles in small cities and towns [42], the sporadic nature of

Hendra virus outbreaks [43], rabies in wild and domestic dogs

[44], and cattle diseases [45]. In the current paper, we apply this

understanding specifically to the case of A/H5N1 in domestic

ducks, and poultry more broadly. We will demonstrate that

spatial structuring can allow A/H5N1 to persist for an indefinite

period of time without re-introduction from wild bird popula-

tions. We will also investigate the effects of some possible control

measures, such as culling and cleaning. While these measures

may help reduce the impact and spillover risk of A/H5N1, they

may not be able to eliminate unless the effort put into making

them effective is enormous.

Methods: Model

We designed our model to represent a single species in several

patches (x M {0,…J]}. The model assumes a network of patches,

representing farms, markets, or traders, linked together. Our

model is a stochastic simulation developed using the Gillespie

algorithm [46,47] because we are focused on variability in

persistence, but we present the deterministic skeleton of the model

for simplicity and clarity. Within a patch, the model uses standard

SIR dynamics for each species, with the addition of the presence of

a common environmental reservoir of infection [48]. Within each

patch (x), the dynamics follow these equations:

dSx

dt
~{bSxIx{uSx(1{e{wVx ){mSx{vSxzV(x,S)

dIx

dt
~zbSxIxzuSx(1{e{wVx ){(azmzc)Ix{vIxzV(x,I)

dRx

dt
~cIx{mRx{vRxzV(x,R)

dVx

dt
~sIx{gVx:

ð1Þ

Where S represents the number of susceptibles, I infected, R

recovered, and V virions in the environment. The initial

conditions for all simulations are an entirely susceptible popula-

tion, except for two infected individuals, located in two randomly

chosen patches. We have included the indirect transmission model

of Breban et al. [48], where each infected host sheds virus into the

environment at rate (s), and virions in the environment degrade at

rate (g). We use only the only the warm temperature parameter

values (see Table 1), as we are focused here on poultry in

subtropical and tropical environments. Transmission may occur

indirectly from the environment (u), with a dose-dependence of

likelihood of infection (1{e{wVx ), which depends on virion

infectiousness (w). Direct transmission occurs at rate b. Infected

animals recover at rate (c), or die due to the disease at rate (a). In

addition, there may be non-influenza related mortality (m), for all

categories (Sx,Ix,Rx) of animals. We do not include birth, because

for most real poultry systems, chicks are introduced by other

means. Although not shown, the model keeps track of the number

of dead animals from each infection category. For the introduction

of a single infected individual into a fully susceptible population

(S0), without any infectious virions in the environment, this model

has a within-patch basic reproduction number of:

Figure 1. Two example random networks. (A) A Watt-Strogatz
random small world network with 64 vertices, with f = 2.33 and
r= 0.0596 (as in Table 1), (B) A Barabasi random network with 64
vertices, with the power of the preferential attachment set to 0.5 and
the zero appeal to 1.0, both represent a network of 64 farms and
markets, each with 500 animals.
doi:10.1371/journal.pone.0080091.g001
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Animals may leave the patch at rate (v) from any class,

presumably by human activity in the case of poultry. Animals that

leave their current patch are then moved to another patch

according to the function:

V(x,N)~
P
y

x(x,y)N D
P
y

x(x,y)~1 ð2Þ

Where x(x,y) represents the probability of movement between

patches x and y, given a departure from patch y, and N represents

the appropriate population (susceptible, infected or recovered),

with the constraint that all x(x,y) must sum to 1 across all possible

source patches. Here we use the row normalized adjacency matrix

of a network model to specify the interconnectedness of the system.

In the absence of relevant empirical data, we have examined two

classic random networks. We have used the Watts-Strogatz

random network model, known as the small-world model with

neighborhood (f) and re-wiring probability for global connections

(r) (e.g., Figure 1a) [49]. In order to examine the impact of

network structure, we have also used a Barabasi random network

(e.g., Figure 1b) [50].

Additionally, we have implemented a model of passive

surveillance based control in the model. If the number of dead

birds within a given period (tCrit) exceeds a threshold (ICrit), it is

presumed an authority would be notified given a probability of

reporting (pReport), and that authority would test the living animals

for infection, with a given probability of detection (pDetect). If the

infection is detected, then all animals can be culled, and/or the

environment cleaned (V set to 0).

Although we have developed a full multispecies model, in order

to focus on the effects of population structure, we limit our

consideration to a single species of farmed livestock, namely ducks

[51,52]. We do examine different parameter values, which cover

the case of chickens as well [53]. We also treat the total population

size as fixed at first. Population size becomes variable as animals

move through the network, increasing as animals move in from

other patches, as well as decreasing due to mortality and animals

moving out of patches. We did this so as not to confound the

results of spatial structure with those of population size. We

generally examine equal initial population sizes, again to focus our

results on structure; but we have looked a few key cases with mixed

population sizes.

Results

Our key finding (Figure 2) is that persistence of A/H5N1 is

highly dependent on farm size. For very small patches, the within-

patch R0 of the pathogen is substantially less than one and most

epidemics fail, i.e. there are no cases of secondary transmission.

This is true across different population structures (Figures S1–S5).

The qualitative result is also robust to different parameter values

(Figures S6–S9) [51–53]. Although truly random networks can

require very large patches for persistence, this may be because the

initial two infected hosts frequently land in patches that are

completely disconnected from the rest of the network, and it is only

once the network is small enough that the infection can actually

spread throughout the network (Figure S2). In contrast, the

transitions are very stark for a pure nearest neighbor network, the

other extreme of the Watts-Strogatz model (Figure S1). The results

are qualitatively robust for the topologically very different Barabasi

network (Figure S3), but this does not alter the general qualitative

conclusions. Including a few larger farms in a matrix of small

farms does not alter the results very much until there is a gigantic

farm, which reduces the variability in outcomes (Figure S4 & S5).

At low patch sizes, if there are some cases of secondary

transmission, the epidemic dies out rapidly due to stochasticity

(e.g., Figure 3a). For very large patches, the within-patch R0 of the

pathogen is so high that the epidemic rapidly burns through the

population, and as long as the network is sufficiently connected

that all patches become infected, they all experience a full

epidemic (e.g., Figure 3c). In instances where patches are of

moderate size however, resulting in R0 values between 1 and

approximately 6, patches experience asynchronous local mini-

epidemics (e.g., Figure 3b), which prolong the global epidemic.

However in these cases, the epidemic doesn’t necessarily infect a

large portion of the population, and if pathogenicity is low, may

not cause noticeable outbreaks. Variation in the rates of direct

transmission, mortality, and recovery, as well as the details of

environmental transmission, can alter the pathogen’s ideal patch

size, but does not change the fundamental result that a

metapopulation of moderate sized farms is best for persistence.

Simple mixed initial population size models, with either one

(Figure S4) or five (Figure S5) larger populations, and several

Table 1. Parameters of the model.

Symbol Value/Range Definition Units Reference

b 0.004 direct transmisison animal21 day21 [73]

u 0–0.167 recovery rate day21 [51–53,73]

a 0–0.4 disease mortality rate day21 [51–53,73]

u 0.001 environmental uptake rate day21 [48]

w 1.96 ? 1024 virion infectiousness virion21 Calculation from [48], ID50 from [74]

n 0.14 virus degradation rate day21 [48]

s 105 shedding rate day21 [48]

v 0.00–0.30 movement rate day21 [59]

f 2 network neighborhood patches –

r 0.0596 re-wiring probability –

doi:10.1371/journal.pone.0080091.t001
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smaller moderately sized populations (N = 250) do not alter the

conclusions until these larger populations are quite large (.5000)

relative to the total population size. Even then, the effect is more to

reduce the variability, rather than a strong alteration of the mean.

This highlights the role that the moderate size farms have in

allowing the epidemic to smolder, even if there are a few large

epidemics in the system without any control measures.

In Figure 4, we implement a control program, namely a passive

surveillance program that culls animals and cleans the environ-

ment when influenza is detected. While these measures can

substantially reduce the total number of individuals infected in

larger patches, they are ineffective at curtailing persistence in a

network of moderate sized populations. Figure S9 demonstrates

that our conclusions are general, although the quantitative details

depend on exact parameters.

Discussion

Our model demonstrates a strong role of farm size in the risk of

highly pathogenic avian influenza (HPAI) outbreaks. Our results

suggest that true small-scale subsistence farming at low densities

has a low risk of HPAI outbreaks, and since the risk of outbreaks is

reduced, the risk of spillover to people should be reduced. These

results run counter to a number of previous studies which have

linked human cases of highly pathogenic A/H5N1 influenza to

Figure 2. For a fixed total single species total population size 32,000, without non-influenza mortality (m = 0), the effect of changing
local patch size and patch number on (A) frequency of epidemic failure, (B) median length of epidemic in days, and (C) median total
number of animals infected over 100 simulations. Dotted lines represent the empirical 97.5% and 2.5% percentiles, creating a 95% bootstrap
confidence interval. Other parameters are as in Table 1, including environmental transmission, except a= 0.1111, and v= 0.03, without any infection
control program. Gray area represents parameter region where 1,R0,6 within a patch.
doi:10.1371/journal.pone.0080091.g002
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small-scale, backyard poultry operations and proposed that this is

a major risk factor for future spillover events [54–57], however, the

small and moderate scales (discussed below) in our model are

rarely separated in the empirical literature, as both fall into the

FAO/OIE sector 4 designation [58,59]. In most cases, these

studies consist of investigations of human cases, outbreaks, or

policy recommendations based on epidemiological analyses of

these. Thus results here suggest that patchily distributed very

small-scale low density poultry production are insufficient to

sustain epidemics, and a fragmented trade network may instead

reduce the probability of sustained transmission.

As human density increases, patches of poultry likely become

larger – either from the development of modest poultry production

by local entrepreneurs, or because individual family flocks

intermingle so extensively to become a single flock in high-density

environments, or from a mix of these scenarios. In this case, a

smoldering epidemic might allow an HPAI to persist without ever

causing enough livestock mortality to enable effective intervention.

The countries that have had the most reported H5N1 cases share

these characteristics in common, despite geographic distance.

Indonesia, Vietnam, and Egypt have high human population

density, where people raise poultry both for subsistence and for

income, but on a moderately small, household scale [58].

Our modeling work suggests that truly large-scale poultry

production, such as Concentrated Animal Feeding Operations

(CAFOs), could reduce the persistence of A/H5N1 by reducing

the likelihood of undetected and under-reported smoldering

epidemics and thus reduce the risk of spillover to humans. A

critical part of this would be a control program that succeeds at

identifying outbreaks in these farms sufficiently early to provide a

public health benefit; otherwise smoldering persistence would

become raging epidemics. Additionally, it would need to be clear

that the advantages from making epidemics more detectable offset

the disadvantage of any increase in the size of epidemics for the

risk of spillover to humans. A small number of studies have

highlighted the lack of biosecurity in intensive poultry farms

[60,61]. However, these studies are focused on developed

countries, where there is an expectation of reliable, advanced

biosecurity, and when lapses are identified, they are considered

significant. In developing countries, the difference in biosecurity

between industrial farms and backyard production is likely far

larger, even if neither is as biosecure as in developed countries.

Here, there are potential practical reasons for a protective role of

large-scale farms. In these developing country large-scale farms,

there is likely to be less trading in and out of the population and far

more surveillance for mortality than in small backyard flocks.

Therefore an HPAI outbreak would be large and noticeable and

therefore more likely to be subject to control measures such as the

de-flocking or mass vaccination strategies used widely in China,

southeast Asia and Egypt [58].

Comparing the results from different network structures, it is

clear that this is an important factor, particularly for systems of

larger farms. A nearest neighbor network (no long-distance links

across the network) produced results almost similar to culling.

However, increasing farm size did reduce persistence in all cases,

albeit with different patterns. Yet the critical threshold farm-size

for enabling persistence was similar across network patterns,

demonstrating that the within patch R0 is the most important

factor for this threshold. Unfortunately, the detailed comparative

data on real trade networks, and poultry farming practices across

countries that would be needed to test this model are currently

lacking, or relatively inaccessible proprietary data, although we are

seeking to collaborate with other groups and nations to obtain this

data, as well as working on our own empirical research.

It is important to note that our model can explain the

persistence of A/H5N1 influenza without invoking repeated

introductions from wildlife, or domestic, reservoirs. Wild water-

fowl harbor a diversity of influenza strains, including A/H5N1,

which has been reported from wild birds in Egypt [62], South Asia

[32], China [2,34,63], Europe [64] and Africa [65,66]. However,

Figure 4. For a fixed total single species total population size
(32,000), without non-influenza mortality (m = 0), the effect of
changing local patch size and patch number on (A) frequency
of epidemic failure, (B) median length of epidemic in days, and
(C) median total number of animals infected over 100
simulations. Dotted lines represent the empirical 97.5% and 2.5%
percentiles, creating a 95% bootstrap confidence interval. Here with
control measures implemented, (pReport = 0.9, pDetect = 0.9, tCrit = 1,
ICrit = 5). Gray area represents parameter region where 1,R0,6 within
a patch.
doi:10.1371/journal.pone.0080091.g004

Figure 3. Dynamics over time of for three different simulation runs, solid grey line represents global prevalence of infection across
all patches (farms and markets), colored dashed lines represent abundance of infected individuals within each patch (farm and
market). (A) 1280 patches of size 25, longest simulation run, note only three patches infected, (B) 128 patches of size 250, random simulation run,
note global prevalence always less than 2.5%, (C) 16 patches of size 2000, random simulation run, note near deterministic similarity of epidemic in
each patch.
doi:10.1371/journal.pone.0080091.g003

Metapopulation of AI Enables Persistence

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e80091



while there is evidence for a role of wild birds in the spread and

introduction of A/H5N1 [31], it is not clear what role infected

wild birds play in persistence of HPAIs generally. Our modeling

suggests that the wild birds are not required for persistence, in line

with a recent empirical review by Gauthier-Clerc [67].

Culling remains the most widespread and commonly used

approach for dealing with HPAI infections in endemic countries

[58]. Our model demonstrates the effectiveness of culling in

reducing the number of infected individuals in large poultry

populations. However, neither culling, nor culling and cleaning of

the environment was able to reduce persistence of influenza in our

simulations for metapopulations of moderate sized farms. Our

model results suggest that changes to the type of farms present

within endemic countries would have a more significant impact on

the persistence of HPAI, and therefore the long-term effectiveness

of control programs. In essence, once the protein demands of

country require the intensification of poultry production beyond

subsistence, from an emerging disease risk prospective it may be

best to move to CAFOs as quickly as possible. A preliminary

suggestion in terms of network structure would be to subdivide the

farm to market chain into as many small separate networks as

possible, but this may not be feasible.

In this study, we did not examine the efficacy of vaccination as a

control strategy because of the complexity of escape mutations,

and problems with its long-term use as a control measure

[20,68,69]. Therefore, a model that proposed to examine a

vaccination control strategy would have to include strain variation

and antigenic selection (e.g. [70]), which is beyond the scope of this

work. Future work should investigate the ability of this model to fit

observed dynamics in empirical systems, the potential effects of

variability of initial farm size, and alternate network structure [71],

both empirical and theoretical. This model could be helpful in

optimizing control efforts could potentially yield tremendous

benefits to the poultry industry, as the virus depresses exports in

affected countries, with China and Thailand alone losing $900

million due A/H5N1 from to 2003 to 2005 [72].

Our study demonstrates that moderate size patches of poultry

may substantially contribute to the persistence of influenza in

countries where such production is a dominant force in the poultry

production system. Although passive surveillance and culling may

reduce prevalence, and infection burden, and thus risk of spillover it

is unlikely to eliminate influenza from these countries. Development

of more bio-secure, intensively monitored, larger scale commercial

poultry production may be the best route to risk reduction in

countries with substantial need for intensive poultry production.

Supporting Information

Figure S1 Alternate Watts-Strogatz network, here re-
wiring probability r = 0, thus only the two nearest
neighbors in either direction are connected, and there
are no random long distance connections across the
network. For a fixed total single species total population size

32,000, without non-influenza mortality (m= 0), the effect of

changing local patch size and patch number on (A) frequency of

epidemic failure, (B) median length of epidemic in days, and (C)

median total number of animals infected over 100 simulations.

Dotted lines represent the empirical 97.5% and 2.5% percentiles,

creating a 95% bootstrap confidence interval. Other parameters

are as in Table 1, including environmental transmission, except

a= 0.1111, and v= 0.03, without any infection control program.

Gray area represents parameter region where 1, R0,6 within a

patch.

(TIF)

Figure S2 Alternate Watts-Strogatz network, here re-
wiring probability r = 0, which transforms the network
to an essentially randomly wired network. This can create

sub-networks that are disconnected from the majority of the

network leading to high variability in simulation results, and

pushing the persistence area to very large farm sizes. For a fixed

total single species total population size 32,000, without non-

influenza mortality (m= 0), the effect of changing local patch size

and patch number on (A) frequency of epidemic failure, (B)

median length of epidemic in days, and (C) median total number

of animals infected over 100 simulations. Dotted lines represent

the empirical 97.5% and 2.5% percentiles, creating a 95%

bootstrap confidence interval. Other parameters are as in Table 1,

including environmental transmission, except a= 0.1111, and

v= 0.03, without any infection control program. Gray area

represents parameter region where 1, R0,6 within a patch.

(TIF)

Figure S3 Alternate random network, here a non-
directional Barabasi network [48], with a zero appeal
of 1 and a power of preferential attachment of 0.5. For a

fixed total single species total population size 32,000, without non-

influenza mortality (m= 0), the effect of changing local patch size

and patch number on (A) frequency of epidemic failure, (B)

median length of epidemic in days, and (C) median total number

of animals infected over 100 simulations. Dotted lines represent

the empirical 97.5% and 2.5% percentiles, creating a 95%

bootstrap confidence interval. Other parameters are as in Table 1,

including environmental transmission, except a= 0.1111, and

v= 0.03, without any infection control program. Gray area

represents parameter region where 1, R0,6 within a patch.

(TIF)

Figure S4 Standard small world network (r = 0.6), but
there is now one larger farm of variable size. The top row

of the x-axis is the size of the larger patch, while the bottom row is

the number of smaller patches, all of size 250 hosts. Thus the far

left of the graph is the same as for Figure 1 in the main text. For a

fixed total single species total population size 32,000, without non-

influenza mortality (m= 0), the effect of changing local patch size

and patch number on (A) frequency of epidemic failure, (B)

median length of epidemic in days, and (C) median total number

of animals infected over 100 simulations. Dotted lines represent

the empirical 97.5% and 2.5% percentiles, creating a 95%

bootstrap confidence interval. Other parameters are as in Table 1,

including environmental transmission, except a= 0.1111, and

v= 0.03, without any infection control program.

(TIF)

Figure S5 Standard small world network (r = 0.6), but
there is now five larger farms of variable size. The top

row of the x-axis is the size of each of the five larger patches, while

the bottom row is the number of smaller patches, all of size 250

hosts. Thus the far left of the graph is the same as for Figure 1 in

the main text. For a fixed total single species total population size

32,000, without non-influenza mortality (m= 0), the effect of

changing local patch size and patch number on (A) frequency of

epidemic failure, (B) median length of epidemic in days, and (C)

median total number of animals infected over 100 simulations.

Dotted lines represent the empirical 97.5% and 2.5% percentiles,

creating a 95% bootstrap confidence interval. Other parameters

are as in Table 1, including environmental transmission, except

a= 0.1111, and v= 0.03, without any infection control program.

(TIF)
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Figure S6 Alternate transmission parameters that more
closely resemble H5N1 infections in chickens with no
recovery and faster mortality [51]. For a fixed total single

species total population size 32,000, without non-influenza

mortality (m= 0), the effect of changing local patch size and patch

number on (A) frequency of epidemic failure, (B) median length of

epidemic in days, and (C) median total number of animals infected

over 100 simulations. Dotted lines represent the empirical 97.5%

and 2.5% percentiles, creating a 95% bootstrap confidence

interval. Other parameters are as in Table 1, including

environmental transmission, except b= 0.0081, c= 0, a= 0.32,

and v= 0.05, without any infection control program.

(TIF)

Figure S7 Alternate transmission parameters that em-
phasize environmental transmission more and direct
transmission less, with higher mortality. For a fixed total

single species total population size 32,000, without non-influenza

mortality (m= 0), the effect of changing local patch size and patch

number on (A) frequency of epidemic failure, (B) median length of

epidemic in days, and (C) median total number of animals infected

over 100 simulations. Dotted lines represent the empirical 97.5%

and 2.5% percentiles, creating a 95% bootstrap confidence

interval. Other parameters are as in Table 1, including

environmental transmission, except b= 0.003, u= 0.002,

a= 0.222, and v= 0.143, without any infection control program.

(TIF)

Figure S8 Alternate transmission parameters without
environmental transmission. For a fixed total single species

total population size 32,000, without non-influenza mortality

(m= 0), the effect of changing local patch size and patch number

on (A) frequency of epidemic failure, (B) median length of

epidemic in days, and (C) median total number of animals infected

over 100 simulations. Dotted lines represent the empirical 97.5%

and 2.5% percentiles, creating a 95% bootstrap confidence

interval. Other parameters are as in Table 1, excluding

environmental transmission, i.e. u= 0.0, without any infection

control program.

(TIF)

Figure S9 Less effective control program, pReport = 0.1,
not 0.9. For a fixed total single species total population size

(32,000), without non-influenza mortality (m= 0), the effect of

changing local patch size and patch number on (A) frequency of

epidemic failure, (B) median length of epidemic in days, and (C)

median total number of animals infected over 100 simulations.

Dotted lines represent the empirical 97.5% and 2.5% percentiles,

creating a 95% bootstrap confidence interval. Here with control

measures implemented, (pReport = 0.1, pDetect = 0.9, tCrit = 1,

ICrit = 5).

(TIF)
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