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Abstract 

        Data assimilation is a critical component for accurate model forecast. This 

dissertation investigated the ensemble-variational hybrid data assimilation methods 

using land based radar and airborne radar data for the prediction of Hurricanes. 

        In the first part of this dissertation, an enhanced version of the hybrid ensemble-

3DVAR data assimilation system for the WRF model is applied to the assimilation of 

radial velocity (Vr) data from two coastal WSR-88D radars for the prediction of 

Hurricane Ike (2008) before and during landfall. In this hybrid system, flow-dependent 

ensemble covariance is incorporated into the varitional cost function using the extended 

control variable method. The analysis ensemble is generated by updating each forecast 

ensemble member with perturbed radar observations using the hybrid scheme itself. The 

Vr data are assimilated every 30 minutes for 3 hours immediately after Ike entered the 

coverage of the two coastal radars. The hybrid system is compared with the WRF 

3DVAR results after tuning to its background error covariance correlation scale. 

              The hybrid method produces temperature increments showing rainband 

structures and positive increments in the vortex core region, and a warm core 

throughout the hurricane depth in the final analysis. In contract, the 3DVAR produces 

much weaker and smoother increments with negative values at the vortex center at 

lower levels. The unturned WRF 3DVAR produces wind increments that are 

inconsistent with the hurricane vortex circulations. Forecasts from the hybrid analyses 

fit the observed radial velocity better than that from 3DVAR, and the 3-h accumulated 

precipitation forecasts are also more skillful. The track forecast is slightly improved by  

 



xvii 

 

the hybrid method and slightly degraded by the 3DVAR compared to the forecast from 

GFS analysis. All experiments assimilating the radar data show much improved 

intensity analyses and forecasts compared to the experiment without assimilating radar 

data. The forecast results indicate that the hybrid method produces dynamically more 

consistent state estimations that lead to lower error growth in the forecast than the 

3DVAR method does, and there is little benefit of including the static component of 

background error covariance for hurricane and radar data assimilation. 

         In the second part of this dissertation, the unified Gridpoint Statistical 

Interpolation (GSI) based hybrid ensemble Kalman filter (EnKF)-three dimensional 

variational data assimilation (3DVAR, DA) system interfaced with the Hurricane 

Weather Research and Forecasting (HWRF) model, is used to assimilate the airborne 

tail Doppler radar (TDR) radial velocity data for tropical cyclone (TC) prediction. In 

this hybrid system, flow-dependent covariance estimated from an ensemble forecast 

updated by the ensemble square root filter (EnSRF) is incorporated into the 3DVAR 

cost function via extended control variables. The thinning algorithm for TDR data was 

also enhanced.  

            The system was first explored using a single resolution configuration where both 

analysis and forecast ensemble perturbations are defined at 9 km grid . We compared 

with the flight level wind and temperature, SFMR remote sensed wind, and air borne 

Doppler radar wind composite produced by HRD, we see that the hybrid analyses  

successfully capture the inner-core structure of the hurricane vortex in terms for both 

wind and temperature fields during the analysis time. The subsequent deterministic  



xviii 

 

forecasts initialized by assimilating airborne radar observations using the hybrid method 

improved the hurricane track and intensity forecasts, compared with EMC operational 

forecast, the forecast initialized by GSI 3DVar with static background covariance, and 

forecast without assimilating TDR data. 

          One advantage of the hybrid method is its easiness to implement the dual 

resolution configuration. In the third part of the study, dual resolution hybrid DA 

method, where the ensemble forecast perturbation and extended control variable are 

configured at 9-km grid while the analysis is performed at 3-km grid, was investigated,. 

The one-way and two-way coupling hybrid DA systems are inter-compared. For dual 

resolution study, a case study and statistics of multiple missions are conducted. Given a 

weaker TC in background fields, the dual resolution method enhanced it by producing 

more detailed cyclonic wind increment and inner core positive temperature increment 

than single low resolution. Verification against radar observed wind analysis and 

National Hurricane Center (NHC) best track shows that the dual resolution applied for 

both analysis and forecast produces more accurate forecast winds than single low 

resolution. On average of 4 missionscases, the experiment with a combination of dual 

resolution hybrid DA method and two-way coupling produces the smallest track and 

intensity forecast errors among various configurations.  
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Chapter 1.  

Introduction and overview 

 

1.1 Background and motivation 

Numerical Weather Prediction (NWP) requires accurate initial conditions to 

produce subsequent weather forecast by complex numerical models. Due to the chaotic 

nature of the atmosphere, small errors initial conditions can be amplified during model 

integration and result in big differences between the forecast and true atmosphere state. 

Thus various data assimilation methods that combine observations and model forecast 

state have been developed and applied for model initialization. 

    Firstly three dimensional variational (3DVAR) data assimilation method has 

been used by many research and operational centers. Traditionally 3DVAR uses static 

covariance that is a statistics of the atmosphere for a period (e.g., 15 days or 30 days). 

Such a static covariance does not reflect current atmosphere flow and the analysis by 

3DVAR could be wrong, especially for some strong weather system such as hurricane, 

where covariance may change dramatically with time and space. The four dimensional 

variational (4DVAR) data assimilation method was developed by assimilating 

observation during a time period, which uses a tangent-linear version of an often 

simplified forecast model implicitly evolves the background error covariance over the 

assimilation period, starting from a typically static estimate of the covariance at the 

beginning of the time window (Courtier et al. 1994). The computational cost for 

4DVAR increased tremendously in comparison with 3DVAR. In addition, great effort is  
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needed to developing and maintaining the complex adjoint model. Nevertheless, the 

4DVAR has been implemented at several operational centers, including European Centre 

for Medium-Range Weather Forecasts (ECMWF), MeteoFrance, and Japan Meteorological 

Agency (JMA). Recently Ensemble Kalman filter (EnKF) proposed by Evensen (1994), has 

been widely used for model initialization. The background error covariance of EnKF is 

estimated from an ensemble forecast perturbations and evolves with data assimilation 

cycling. Such a covariance can be consistent with current flow pattern. The ensemble 

analyses provided by EnKF are the natural choice for initializing ensemble forecasts. 

Without the need for developing and maintaining the adjoint code for variational data 

assimilation algorithm, the implementation of an EnKF is relatively straightforward and 

simple. Given a proper interface, a general EnKF system can be interfaced with 

multiple numerical models. For example, the EnKF in Data Assimilation Research 

Testbed (DART) developed at the National Center for Atmospheric Research (NCAR) 

is applied to various numerical models. Among other limitations, one disadvantage of 

EnKF is that it not easy to incorporate physical constraints (e.g., continuity constraint). 

On the contrary, physical constraints can be easily added to variational algorithm. 

    One better choice is to incorporate flow dependent covariance estimated from 

ensemble forecast into variational algorithm (e.g., Hamill and Snyder 2000; Lorenc 

2003; Etherton and Bishop 2004; Zupanski 2005; Wang et al. 2007ab, 2008ab, 2009; 

Wan 2010, 2011; Wang et. al 2013; Wang and Lei 2014). Hamill and Snyder (2000)  

proposed that the background error statistics for the data assimilation are estimated from  

a linear combination of static 3DVAR covariances and flow-dependent covariances  
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estimated from the ensemble of short-range forecasts. Such a hybrid scheme allows the 

user to weight the relative contributions of the 3DVAR and ensemble-based background 

covariances. They found that, for large ensemble size, the hybrid analysis performs best 

when background error covariances are estimated almost fully from the ensemble. For 

small ensemble size, some lessened weighting of ensemble-based covariances is 

desirable. Meanwhile hybrid scheme improves analysis in sparse data area more than in 

data-rich area. Lorenc (2003) proposed the hybrid method where forecast ensemble 

perturbations used to estimate background covariance are directly incorporated into 

variational cost function through extended control variables. This hybrid method is 

relatively straight-forward when it is coded into existing variational assimilation 

(3DVAR or 4DVAR) system. Wang et al. (2007a)  proved the theoretical equivalence 

of these two hybrid methods.  The potential advantages of a hybrid method compared to 

a standalone Var and EnKF are summarized in Wang 2010. 

               Based on existing WRF 3DVAR system, the hybrid system was first 

developed for WRF ARW model by combining ensemble covariances with the static 

covariances to estimate the complex, flow-dependent forecast-error statistics, using the 

extended control variable method during the variational minimization (Wang et al. 

2008a). This system laid the foundation for the study documented in chapter 2 of  

this dissertation.  Wang (2010) derives the mathematical framework to incorporate  

ensemble covariance in variational minimization for the US NWS’s operational data 

assimilation system Gridpoint statistical interpolation (GSI), Both the 3D and 4D hybrid 

method have been implemented in US NWS’s operational Global Forecast System 

(Wang et al. 2013; Wang and Lei 2014) .  Such hybrid system interfaced with HWRF 
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model laid foundation for the study in chapter 3 and 4 of this dissertation.  Buehner et 

al. (2010) implemented the hybrid method at the Canadian Meteorological Centre for 

their operational global data assimilation system. 

Radar data is one of the most important observations. It has high temporal and 

spatial resolution. Proper use of radar data could obtain both thermodynamic and 

dynamic information. The coastal ground based radar could cover as far as about 200 

km offshore, where there is little three dimensional meteorological data. This area is a 

key for hurricane landfall forecast. Airborne Doppler radar data is another important 

observation oversea for hurricane analysis and forecast, especially for hurricane inner 

core structure. Compared with conventional data such as sounding, radar data need 

additional effort for data quality control process and dealiasing. As the radar data is not 

model quantity additional steps are needed during data assimilation.  

In this research we assimilate land based radar to the hybrid ensemble-3DVAR 

system developed for the WRF model (Wang et al. 2008a) and assimilate airborne radar 

radial velocity data into the Grid Statistics Interpolation (GSI)-based EnKF-Var system 

extended for Hurricane Weather Research and Forecast (HWRF) model. 

        Initial condition is one of the important aspects for a numerical model to 

forecast hurricane accurately. Many previous studies adopted the vortex relocation 

and/or bogussing (e.g., Liu et al. 2000; Kurihara et al. 1995; Zou and Xiao 2000) 

techniques. While such techniques are non-trivial and have been shown to improve the 

hurricane forecast, how to maintain the dynamical and thermo-dynamical coherency of 

the hurricane and its environment is probably the biggest challenge with such methods.  

Thus advanced data assimilation is needed to initialize the model forecast. Such data 
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assimilation (DA) system can effectively use the observations to accurately estimate the 

initial TC vortex and the environment where the TC is embedded in.   

           In Chapter 2 of this study, we assimilate land-base radar radial velocity with 

hybrid ensemble-3DVAR system for WRF model. As a first step of such research, we 

focus on assimilating radar radial velocity data. Meanwhile, this research also performs 

detailed diagnostics to understand the fundamental differences between the roles and 

effects of flow-dependent and static covariances in the TC analysis and forecast.  

 

 

Fig. 1.1 The WRF model domain and National Hurricane Center best track positions for 

Hurricane Ike (2008) from 1800 UTC 12 to 0000 UTC 14 September 2008. Also 

indicated are the Houston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) WSR-

88D radar locations (asterisks) and maximum range (300 km for radial velocity and 

460km for the reflectivity) coverage circles.  
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       More specifically, this research applies and explores the WRF ensemble-3DVAR 

hybrid system (Wang et al. 2008ab) to the assimilation of coastal WSR-88D radar radial 

velocity data for the prediction of Hurricane Ike (2008) (Fig. 1.1). Ike is the second 

costliest tropical cyclones in the recorded history (1900-2010) over the mainland United 

States (http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf).  

        In Chapter 3 of this study, assimilation of airborne radar radial velocity with GSI 

based EnKF-Var system for HWRF model is performed. Traditionally, GSI system, 

operationally adopted by NCEP, uses a static background error covariance matrix. In 

this study, the flow-dependent ensemble covariance estimated from the ensemble 

Kalman filter (EnKF) is incorporated into GSI cost function using the extended control 

variable method. Here the EnKF is a serial implementation of the square root ensemble 

Kalman filter (EnSRF) system, by which the analysis ensemble is generated by 

updating each forecast ensemble member. Both EnKF and GSI are interfaced with each 

other (i.e., the EnKF is using the same observation operator from GSI), and interfaced 

with HWRF model. 
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Fig. 1.2 The HWRF model domain and National Hurricane Center best track positions 

for Hurricane Irene (2011) from 1200 UTC 25 to 0000 UTC 28 August 2011. Also 

indicated are six flight legs of NOAA P-3 mission in green color. 

 

 In this research, we assimilate airborne radar radial velocity data. Meanwhile, this  

study also performs detailed diagnostics to understand the fundamental differences  

 

between the roles and effects of flow-dependent and static covariances in the TC  

analysis and forecast. More specifically, this study applies the GSI 3DVar-based 

ensemble–3DVAR hybrid system to explore the assimilation of NOAA P-3 airborne 

Doppler radar radial velocity data for the prediction of Hurricane Irene (2011) (Fig. 

1.2). Irene (2011) is currently ranked as the seventh costliest hurricane in the United 

States history (interested readers are referred to en.wikipedia.org/wiki/Hurricane_Irene).  
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1.2 Overview of the dissertation 

        This dissertation is organized as follows. Chapter 2 presents the application of 

hybrid ensemble-3DVAR system for WRF model for assimilation of coastal land-base 

radar radial velocity. Chapter 3 presents the research on assimilating airborne radar 

radial velocity using GSI based 3DEns-Var system for HWRF model using a single 

resolution configuration.  Chapter 4 presents the research on assimilating airborne radar 

radial velocity using GSI based 3DEns-Var system for HWRF model using a dual 

resolution configuration.   A general summary and future plan is given in Chapter 5. 
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Chapter 2         

Assimilation of radar radial velocity data with the WRFEnsemble 3DVAR hybrid 

system for the prediction of Hurricane Ike (2008) 

 

2.1 Introduction   

 Tropical cyclones (TCs) are among the most costly forms of natural disaster 

(Pielke et al. 2008). An accurate TC forecast will require not only a numerical model to 

realistically simulate both the TC itself and its environment, but also a data assimilation 

(DA) system that can effectively use the observations to accurately estimate the initial 

Hurricane structure and its environment.   

     To address the TC initialization issue, many previous studies adopted the vortex 

relocation and/or bogussing (e.g., Liu et al. 2000; Kurihara et al. 1995; Zou and Xiao 

2000) techniques. While such techniques are non-trivial and have been shown to 

improve the hurricane forecast, how to maintain the dynamical and thermo-dynamical 

coherency of the hurricane and its environment is probably the biggest challenge with 

such methods.  

        Recently, several studies have explored the use of ensemble-based DA methods 

to initialize hurricane forecasts and have shown great promise (e.g., Torn and Hakim 

2009; Zhang et al. 2009a; Li and Liu 2009; Hamill et al. 2011; Wang 2011; Weng et al. 

2011; Zhang et al. 2011; Aksoy et al. 2012; Weng and Zhang 2012; Dong and Xue 

2012). The key with ensemble-based DA is the use of an ensemble to estimate the  

forecast error statistics in a flow-dependent manner.  Therefore, the observation  
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information will be properly weighted and spread consistent with the background 

hurricane forecasts; and perhaps more importantly, the ensemble covariance can 

realistically infer the flow-dependent cross-variable error statistics and therefore update 

state variables not directly observed in a dynamically and thermodynamically consistent 

manner.   

          One candidate in ensemble-based DA is the hybrid ensemble-variational DA 

method. It has been proposed (e.g., Hamill and Snyder 2000; Lorenc 2003; Etherton and 

Bishop 2004; Zupanski 2005; Wang et al. 2007b, 2008a; Wang 2010), implemented and 

tested with numerical weather prediction (NWP) models recently (e.g., Buehner 2005; 

Wang et al. 2008b; Liu et al. 2008, 2009; Buehner et al. 2010a,b; Wang 2011; Wang et 

al. 2011; Whitaker et al. 2011; Kleist et al. 2011). A standard variational method (VAR) 

typically uses static background error covariance, but a hybrid ensemble-variational DA 

system incorporates ensemble-dervied flow-dependent covariance into the VAR 

framework. The ensemble can be generated by an ensemble Kalman filter (EnKF). 

Recent studies have suggested that hybrid DA systems may represent the “best of both 

worlds” by combining the best aspects of the variational and EnKF systems (e.g., 

Buehner 2005; Wang et al. 2007a, 2008a,b, 2009; Zhang et al. 2009b; Buehner et al. 

2010ab; Wang 2010).  While preliminary tests of the hybrid DA system with real NWP 

models and data have shown great potential of the method for non-TC forecasts (e.g., 

Wang et al. 2008b; Buehner et al. 2010ab) and for forecasts of TC tracks (e.g., Wang 

2011; Whitaker et al. 2011), and there has been a growing body of literature 

documenting the success of using the EnKF to assimilate inner core data for TC  
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initialization at convection-allowing resolutions (e.g., Zhang et al. 2009a, Weng et al. 

2011; Zhang et al. 2011; Aksoy et al. 2012; Weng and Zhang 2012; Dong and Xue 

2012),  to the author’s best knowledge, to date there is no published research applying a 

hybrid DA method to the assimilation of radar data at a convection-allowing resolution 

for TC predictions. This study serves as a pilot study applying the hybrid ensemble-

3DVAR system developed for the WRF model (Wang et al. 2008a) to explore its 

potential for assimilating radar observations for hurricane forecasts. As a first step of 

such study, we focus on assimilating radar radial velocity data. Meanwhile, this study 

also performs detailed diagnostics to understand the fundamental differences between 

the roles and effects of flow-dependent and static covariances in the TC analysis and 

forecast. 

          More specifically, this study applies and explores the WRF ensemble-3DVAR 

hybrid system to the assimilation of coastal WSR-88D radar radial velocity data for the 

prediction of Hurricane Ike (2008) (Fig. 1.1). Ike is the second costliest tropical 

cyclones in the recorded history (1900-2010) over the mainland United States 

(http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf). Previous studies (e.g., Zhao and Xue 

2009) have shown significant impact of the radar data for this case using ARPS 

3DVAR/cloud analysis package.  

             The remainder of this section is organized as follows: Section 2.2 presents the 

methodology and section 2.3 discusses the experiment design. The experiment results 

are discussed in Section 2.4 while the final section summarizes the main conclusions of 

this study. 
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2.2 Methodology  

 

a. The hybrid ensemble-3DVAR scheme 

   A diagram of the hybrid DA system is shown in Fig. 2.1 Similar to Hamill and Snyder  

 
Fig. 2.1 Schematic diagram of the hybrid ensemble-3DVAR forecast-analysis cycle for 

a hypothetical three-member ensemble. Each member assimilates the observations 

containing a different set of perturbations. 

 

 (2000), the following four steps are repeated for each DA cycle: 1. Perform K (K is the 

ensemble size) number of ensemble forecasts to generate background forecast fields at 

the time of analysis; 2. Calculate ensemble forecast perturbations to be used by the 

hybrid cost function for flow-dependent covariance by subtracting ensemble mean from  

 



13 

 

 

each member; 3. Generate K independent sets of perturbed observations by adding 

random perturbations to the observations; 4. Obtain the analysis increment for each 

ensemble member through minimization of the hybrid cost function using one set of 

perturbed observations. Steps 1 through 4 are repeated for each of the follow-on cycles, 

with the ensemble analyses providing initial conditions for step 1. In step 3, the random 

perturbations added to the observations are drawn from a Gaussian distribution with a 

mean of zero and a standard deviation of the observation error. This ‘perturbed 

observation method’ was used in Hamill and Snyder (2000), which corresponds to the 

classic stochastic ensemble Kalman filters (Burgers et al. 1998; Houtekamer and 

Mitchell 1998; Evensen, 2003). In the original work of Wang et al. (2008a), the 

ensemble transform Kalman filter (ETKF) was used to update forecast perturbations.  

        A brief review on the extended control variable method for incorporating ensemble 

covariance into a WRF 3DVAR framework is given here. For detailed discussions, 

readers are referred to Wang et al. (2007b, 2008a).  

         For state vector x, the analysis increment of the hybrid scheme, x', is the sum of 

two terms, 

 



K
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The first term x1' in Eq. (1) is the increment associated with WRF 3DVAR static 

background covariance and the second term is the increment associated with flow-

dependent covariance. Here, the vectors ak, k = 1, …, K, denote extended control  
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variable (Lorenc 2003) for each ensemble member; and the second term of Eq. (1) 

represents a local linear combination of ensemble perturbations. The coefficient ak for 

each member varies in space as discussed later, which determines the ensemble 

covariance localization scale. Specifically, each element of ak, is a sum of the products 

of the ensemble perturbations of state variables multiplied by the corresponding 

traditional control variables, respectively, at the same grid point. xk
e
 is the k

th
 ensemble 

perturbation state vector. The symbol ‘o’ denotes the Schur product (element by 

element product) of the vectors ak and xk
e
.  

The cost function for WRF hybrid ensemble-3DVAR is  
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Jb is the traditional WRF 3DVAR background term associated with the static covariance 

B and Je is the hybrid term associated with flow-dependent covariance. a is defined as 

T T T T

1 2 K( , , , )a a a a . Jo is the observation term associated with observation error 

covariance R. The innovation vector y
o
' is defined as, y

o
' = y

o
 – H(x

b
), where y

o
 is the 

observation vector, x
b
 is the background forecast state vector, and H is the linearized 

observation operator. 

            The weights of the static covariance and flow-dependent covariance are  

determined by factors β1 and β2 according to relationship  

1
11

21




,                                                                            (3) 
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which conserves the total variance.  

             As described in Wang et al. (2008a), the ensemble covariance localization, 

denoted as A, has horizontal and vertical components. In this study, both the horizontal 

and vertical localization are applied. Specifically, the horizontal localization is modeled 

by a recursive filter transform as in Wang et al. (2008a). The vertical localization is 

implemented by transforming the extended control variable a in Eq. (2) with empirical 

orthogonal functions (EOFs). The correlation matrix, denoted as Cov, from which the 

EOFs is derived, follows 

2

1 2 2
Cov( , ) exp

d
k k

L

 
  

 
,                                                (4) 

where d is the distance between model levels k1 and k2 and L is the vertical localization 

radius. Existing EOF codes in the WRF 3DVAR for modeling the vertical static error 

covariance is used for the vertical ensemble covariance localization purpose. 

 

2.3 Experimental design 

 

a. The WRF model configuration 

The Advanced Research WRF (ARW) model version 3 (Skamarock et al. 2008) is 

used in this study. The model is compressible, three-dimensional, non-hydrostatic, 

discretized on an Arakawa C grid with terrain-following mass-based sigma coordinate  

levels. In this study, the WRF model is configured with 401x401 horizontal grid points 

at 5-km grid spacing (Fig. 1.1), and 41 vertical levels with the model top at 100 hPa. 



16 

 

The WRF single-moment six-class scheme (Hong et al. 2004) is chosen for the explicit 

microphysics processes. Since the grid resolution may not fully resolve the hurricane  

convective features, the Grell-Devenyi cumulus parameterization scheme (Grell; 

Devenyi 2002) is included. Other physics  parameterizations schemes used include the 

Yonsei University (YSU) (Noh et al. 2003) scheme for planetary boundary layer 

parameterization, the 5-layer thermal diffusion model for land surface processes 

(Skamarock et al. 2008), the Rapid Radiative Transfer Model (RRTM) longwave 

(Mlawer et al. 1997), and the MM5 shortwave (Dudhia 1989) radiation 

parameterization.  

 

b. The radar data processing 

    The radial velocity data from coastal WSR-88D radars at Houston, Texas (KHGX) 

and Lake Charles, Louisianan (KLCH) are processed using a modified version of the 

Four Dimensional Dealiasing Algorithm (James and Houze 2001). The algorithm was 

originally designed for Doppler radars in European Alps. The modified algorithm by 

this study is capable of reading level-II WSR-88D data and dealiasing the radial 

velocities.  

To dealias radial velocity data, the following steps are performed: First, a wind 

profile is created based on model background, rawindsonde, or wind profiler data. The 

background radial velocity in radar observation space is calculated from the wind  

profile, assuming the wind is horizontally homogeneous. Second, the WSR-88D radial 

velocity is compared with the background radial velocity for a gross check. In this step,  
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aliased radial velocity that needs to be corrected is identified. Third, at each elevation 

angle, spatial dealiasing is performed. The aliased velocity Va will be recovered by 

factored Nyquist velocity Vn,  

Vd = Va + 2NVn  ,                                                                           (5) 

where N is a positive or negative integer whose sign and value are determined by a gate-

to-gate shear threshold of 0.4Vn (James and Houze 2001). After dealiasing is finished, 

the radial velocity interpolated to the Cartesian coordinates is thinned to 10 km spacing 

horizontally and 500 meter vertically. 

Figure 2.2 shows the processed radial velocity at 0.5
o
 elevation angle for KHGX (Fig. 

2.2a) and KLCH (Fig. 2.2b) at 0000 UTC 13 September 2008. These two radars  

 

Fig. 2.2  The radial velocity (interval of 20 m s
-1

) at 0.5
o
 elevation angle from (a) 

KHGX and (b) KLCH WSR-88D radars at 0000 UTC 13 September 2008. Black dot is 

for NHC best-track position of Hurricane Ike (2008) at this time. Asterisks are for radar   

locations. 

 

complement each other by providing scans that are approximately the right angle at the  
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location of Ike’s eye. KHGX covers almost all of Ike’s eye and eye wall. The outbound 

radial velocity on the left side of the eye and inbound radial velocity on the right side of 

the eye reflect the circulation of the hurricane.  KLCH covers only about half of eye and  

eye wall. The outbound radial velocity on the front side of the eye and inbound radial  

velocity on the back side of the eye also reflect the circulation of the hurricane. 

The observation error standard deviation for the radial velocity is set to 2 m s
-1

 during 

the DA. This error value is similar to the values used in (Dowell; Wicker 2009), (Xu; 

Gong 2003), and (Xiao et al. 2009). 

 

c. The data assimilation setup 

  This paper presents five experiments denoted as NoDA, 3DVARa, 3DVARb, HybridF,  

and HybridH (Table 2.1). Experiments differ based on what, if any, assimilation system 

is used for radar data. The experiments are designed to examine the difference of using 

flow-dependent versus static background covariance when assimilating the radar data 

and the impact of DA on the subsequent forecast.  

   The NoDA experiment did not assimilate any radar data, instead the WRF model 

initial condition at 0300 UTC 13 September 2008 simply comes from the 1ºx1º degree  
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Table 2.1 List of experiments 

Experiment                               Description 

  NoDA No radar data assimilation. WRF model initial condition 

interpolated from NCEP 1
o
x1

o
 analysis 

             3DVARa Radar DA using WRF 3DVAR with static covariance from NMC 

method 

  3DVARb Same as 3DVARa, except the horizontal spatial correlation in the 

static covariance is multiplied by 0.3. 

  HybridF Radar DA using hybrid method with full weight given to flow 

dependent covariance, with 1/β1 = 1/1001 and 1/β2 = 1/1.001 in 

Eq. (1) 

  HybridH Hybrid method with equal weight given to static covariance 

(which is the same as 3DVARb) and flow-dependent covariance, 

with 1/β1 = 1/2 and 1/β2 = 1/2 in Eq. (1) 

 

NCEP (National Centers for Environmental Prediction) operational GFS (Global 

Forecast System) analysis. The 6-hourly GFS analyses also provide the lateral boundary 

conditions (LBCs). 

      The “3DVARb” experiment assimilated the radar data using the traditional 3DVAR  
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Fig. 2.3 The flow charts for (a) NoDA experiment, (b) 3DVAR experiments 

(3DVARa and 3DVARb), and (c) hybrid experiments (HybridF and HybridH). 
 

method where the static background covariance is adopted.  The static covariance is 

generated and further tuned as followed.  The NMC method (Parrish and Derber 1992)  

was first employed to generate the static background covariance statistics based on 12-h 

and 24-h WRF model forecasts, starting at 00 UTC and 12 UTC every day, during the 

period from 01 to 15 September 2008. The experiment using the static covariance 

generated by the above procedure without further tuning is denoted as 3DVARa.  

Because the default correlation length scales derived from the NMC method reflects 

mostly large-scale error structures, their direct use may not be appropriate for storm-

scale radar DA (Liu et al. 2005). The horizontal correlation length scale of the static 

covariance is reduced by a factor of 0.3 in experiment 3DVARb and this factor is found  
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to be optimal through experimentations.  The 3DVAR experiments contains three stages 

(Fig. 2.3b): (1) a single 6-h spinup forecast initialized from the GFS analysis at 1800 

UTC, September 12, to produce an initial first guess at 0000 UTC, September 13 for 

radar DA cycles. The spin-up time of 6 hours is based on past experiences and other 

published studies (e.g., Zhang et al. 2009, spin-up time of 9 hours; Aksoy et al. 2012, 

spin-up time of 6 hours); (2) assimilation of radial velocity data from KHGX and 

KLCH radars every 30 minutes for 3 hours; (3) a 21-h deterministic forecast initialized 

by the analysis at the end of the assimilation cycles in (2). The WRF model boundary 

conditions for all three stages are also provided by the operational GFS analyses at 6 

hourly intervals. Experiment 3DVARb serves as a base line for evaluating the 

performance of the hybrid method. 

      Experiments HybridF and HybridH are identical except that the different weighting  

factors β1 and β2 are used in Eq. (2). For HybridF, the full weight is assigned on the 

flow-dependent ensemble covariance (using 1/β1 = 1/1001 and 1/β2 = 1/1.001). For 

HybridH, the static covariance and the flow-dependent ensemble covariance are equally 

weighted (1/β1 = 1/2 and 1/β2 = 1/2), i.e., only half of the flow-dependent covariance is 

used, hence the ‘H’ in the name. The horizontal correlation scale of static covariance in 

HybridH is also reduced by a factor of 0.3 as in 3DVARb. Meanwhile, HybridH uses 

the same flow dependent covariance localization as HybridF, which will be discussed in 

detail in section 2.4.a. 

     Each of the hybrid experiments, HybridF and HybridH, has 40 ensemble members. 

Similar to the 3DVAR experiments, the hybrid experiments have three stages (Fig.  
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2.3c): (1) 6-h ensemble forecasts to spin up a first guess ensemble and provide flow-

dependent covariance at the beginning of the radar DA cycles. The initial and boundary 

conditions for each member are the GFS analysis plus correlated random perturbations 

following Torn et al. (2006) and Wang et al. (2008a,b); (2) assimilation of perturbed 

radial velocity data from KHGX and KLCH radars every 30 minutes for 3 hours by 

variationally minimizing the hybrid cost function, according to the description given in 

the previous section (see also Fig. 2.3); (3) a 21-h deterministic forecast initialized from 

the ensemble mean analysis at the end of the DA cycles in (2). To generate the random 

perturbations in (1), the random-cv facility in the WRF 3DVAR system is employed  

(Barker et al. 2004). First, a random control variable vector is created with a normal 

distribution having a zero mean and unit standard deviation. Then the perturbation 

control variable vector is transformed to the model space to obtain perturbations to the  

model state variables including the horizontal wind components, pressure, potential 

temperature, and mixing ratio of water vapor. The perturbation standard deviations are 

roughly 1.9 m s
-1

 for the horizontal wind components, 0.6 K for temperature, 0.3 hPa 

for model pressure perturbation, and 0.9 g kg
-1

 for water vapor mixing ratio and these 

values are based on the NMC-method-derived background error statistics.    

       Like other ensemble based data assimilation algorithm, the hybrid ensemble-

3DVAR quickly reduces ensemble spread after assimilating observations. To mitigate 

quick reduction of the spread, the relaxation method of Zhang et al. (2004) for ensemble 

covariance inflation was adopted. Specifically, the inflated ensemble posterior 

perturbation x'new is a weighted average of prior perturbation x'f and posterior  
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perturbation x'a, x'new = (1 – b) x'f + b x'a, the relaxation coefficient, denoted as b, is set 

to 0.5 in this study. This formulation retains part of prior perturbation to mitigate quick 

spread reduction. 

 

2.4 Results and discussion  

       The analysis increment of the first DA cycle, the cycling process, the final analysis 

fields, and the deterministic forecasting results will be presented and discussed in this 

section. The subsection organization roughly follows the experiment flow charts in Fig. 

2.3. 

 

a. Single observation test for vertical localization 

Before complete DA experiments are performed, the vertical covariance localization 

in the hybrid scheme is tested by assimilating a single radial velocity observation. 

 
 

Fig. 2.4 The vertical cross section of the wind speed increment (interval of 5 m s-1) 

using a single KHGX radar radial velocity data located at (28.4oN, 93.7oW, 3176 m) 

with an innovation of -38.63 m s-1 using the configurations of experiment HybridF 

but (a) without and (b) with vertical localization at 0000 UTC 13 September 2008. 
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Figure 2.4 shows the wind speed increment produced by HybridF analyzing a single 

radial velocity observation located 3176 m above sea level at 0000 UTC 13 September 

2008. The innovation (i.e., the observed radial velocity minus forecast ensemble mean 

valid at 0000 UTC 13 September) for this observation is -38.63 m s
-1

. Without the 

vertical localization, nonzero increment reaches the top of the model with relatively 

noisy increments at the upper levels (Fig. 2.4a). The horizontal and vertical localization 

radii of 60 and 3 km, respectively, are used in hybrid experiment HybridF (and in 

HybridH). The localization radii were empirically determined. For example, we tested 

20 km, 60km, 200 km, 600 km for horizontal localization and found the 60km showed 

the most reasonable increment. The vertical localization was also tested. The radar  

observation over Ike inner core area is about 3 km above the surface. With 3 km vertical  

localization scale, the influence of radar data could reach the surface. Figure 2.4b shows 

that with such localizations, the analysis increment is more confined around the 

observation location. This single observation test shows that our implementation of the 

vertical localization is taking effect. 

 

b. Wind increments 

      To see the differences in analyzing the radar data using flow-dependent and static 

covariances, the analysis increments from the 3DVAR and hybrid experiments after the 

first analysis time are compared. We first look at the wind increments and will look at 

indirectly related cross-variable increments in the next subsection. 
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Fig. 2.5 The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 

3DVARb, (c) HybridF, and (d) HybridH at 0000 UTC 13 September 2008. 
 

   Figure 2.5 shows the wind analysis increments at 850 hPa, at 0000 UTC 13 

September 2008, the time of first analysis for 3DVARa, 3DVARb, HybridF, and 

HybridH. The increment in 3DVARa using the default NMC-method-derived static 

covariance shows cyclonic and anti-cyclonic increment patterns of rather large scales 

(Fig. 2.5a); the cyclonic increment circulation is centered almost 2 degrees off the 

observation hurricane center to the southsoutheast, while at the hurricane center location 

the wind increment is mostly easterly. To the north the increment circulation shows an 

anti-cyclonic pattern. Such cyclonic and anti-cyclonic increments are also found in a  

previous studies assimilating radar radial velocity data using WRF 3DVAR (e.g., Xiao  
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et al. 2007), but are clearly unrealistic, and do not reflect the fact that a strong vortex 

exists where the background strongly underestimate the strength of the vortex. The 

default background error covariance derived from the NMC method is unaware of the 

hurricane vortex and its spatial correlation scales mostly reflect synoptic scale error 

structures. The net result is the inappropriately large amount of smoothing of the radar 

data in the data dense region and inappropriately large spreading of the information 

outside the data coverage region. The radar data, being collected at high spatial 

resolution, should be analyzed using much smaller spatial correlation scales. This had 

been pointed out in Liu et al. (2005). The use of smaller correlation scales for radar data 

is a common practice in the ARPS 3DVAR system (e.g., Hu et al. 2006; Schenkman et 

al. 2011). Sugimoto et al (2009) also tested the sensitivity of WRF 3DVAR to the 

correlation length scale and the variance of the background covariance for radar data 

assimilation. 

      In 3DVARb, the default horizontal spatial correlation scale is reduced by a factor of 

0.3. The resulting wind increment now shows a more or less symmetric cyclonic pattern 

around the observed center of Ike (Fig. 2.5b). Compared with 3DVARa, the large 

increments are more limited to the region of vortex in 3DVARb, and the increment is 

consistent with the inbound and outbound radial velocity couplets associated with the  

hurricane vortex as observed by KHGX and KLCH radars (Fig. 3). Such results are 

more realistic.  

In HybridF with full weight given to the flow-dependent covariance, the wind  

increment also shows a cyclonic pattern centered around the eye of Ike (Fig. 2.5c), but  
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the increment circulation is less axisymmetric, reflecting the contribution of spatially 

inhomogeneous flow-dependent covariance. When equal weights are placed on the 

ensemble covariance and static covariance in HybridH, the wind increments show a 

pattern that is close to that of 3DVARb, but the increment magnitude is between those 

of the HybridF and 3DVARb (Fig. 2.5d).  

 

c. Temperature increments 

     Because radar radial velocity is the only data type assimilated in this study, any 

increment in temperature is the result of balance relationship applied (if any) and/or due 

to cross-covariance in the background error. Figure 2.6 shows the 850 hPa temperature 

increments for 3DVARb, HybridF, and HybridH after assimilating radial velocity data 

for the first cycle. For 3DVARb, negative temperature increments are found in the  

 
 

 

Fig. 2.6 The 850 hPa temperature analysis increments for (a) 3DVARb (at intervals 

of 0.3 K), (b) HybridF (at intervals of 0.7 K), and (c) HybridH (at intervals of 0.3 

K), at 0000 UTC 13 September 2008. 
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vortex region, and the magnitude is largest near the hurricane enter (Fig. 2.6a). 

Physically, enhanced hurricane vortex circulation should be accompanied by warming 

of the vortex core region, to give a warmer core vortex; hence the 3DVAR temperature 

increment is inconsistent with expected hurricane structures. The negative increment is 

expected of the 3DVAR, because the increment is obtained through a balance 

relationship between temperature and wind and this relationship reflects the thermal 

wind relation. More specifically, the ‘balanced temperature’ increment Tb at a vertical 

level k, in WRF 3DVAR is related to the stream function ψ by a regression relation, 

Tb(k) = Σ1 G(l,k) ψ(l), where G is the regression coefficient and the summation is over 

the vertical index l.  Such a regression relation derived using the NMC-method 

generally reflects hydrostatic, geostrophic, and thermal wind relations (Barker et al. 

2004). A colder core at 850 hPa is consistent with an enhanced cyclonic circulation at 

the 700 hPa seen in Fig. 2.5. Note that at this distance, the lowest radar beams do not 

reach below 850 hPa, hence the enhancement of wind is larger above 850 hPa. 

Therefore the cyclonic wind increment increases with height in the lower atmosphere. 

We note that negative temperature increment is also seen in the low-level eye region of 

analyzed hurricanes in previous studies using Airborne Doppler radar data and WRF 

3DVAR (e.g., Xiao et al. 2009)  

     Different from 3DVAR, the temperature increment obtained in HybridF shows 

positive increments in the eye region (Fig. 2.6b) and spiral patterns in the eye wall and 

outer rainband regions. In this case, the hurricane in the background forecast at 0000 

UTC 13 September 2008 is much weaker than the observation (Fig. 2.7b), which is  
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accompanied by lower temperatures at the core of the vortex than observed. When radar 

observations are assimilated, the background TC vortex is strengthened and therefore 

the core temperature is expected to be increased to be consistent with the warm core 

structure of TCs. The more realistic increment structures in HybridF are the result of 

temperature-wind cross covariances derived from the ensemble, which have knowledge 

of the vortex as a tropical cyclone. In addition, the magnitude of the temperature 

increments in HybridF is an order of magnitude larger than that of 3DVARb; the 

temperature increment in the 3DVAR analysis of Xiao et al. (2009) for Hurricane 

Jeanne (2004) was also weak, reflecting the relative weak thermal wind relationship in 

3DVAR. 

     Same as the wind increment, the temperature increment from HybridH is in-between 

those of HybridF and 3DVARb (Fig. 2.6c). The magnitude is about half that of 

HybridF. The structure of the increment resembles that of HybridF more but the eye  

region has negative instead of positive increments. From this aspect, HybridH is poorer 

than HybridF. 

 

d. Innovation statistics for Vr and minimum sea level pressure in DA cycles 

   The behaviors of 3DVARb, HybridH, and HybridF are further compared by 

examining  
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Fig. 2.7 The forecast and analysis (sawtooth pattern during DA cycling) of (a) 

RMSD of radial velocity (m s-1), and (b) the minimum sea level pressures (hPa) 

together with the NHC best track estimate, for 3DVARb, HybridF, and HybridH 

from 0000 to 0300 UTC 13 September 2008. 
 

the fit of their analyses and forecasts to Vr observations during the DA cycles. The fit is 

defined as the root mean square difference (RMSD) between the model state and 

observations, after the model state is converted to the observed quantities; and such 

difference is also called observation innovation.  Figure 2.7 shows the RMSDs for Vr  

and minimum sea level pressure (MSLP) from HybridH, HybridF and 3DVARb.  Vr 

data of  both KHGX and KLCH are used in the innovation calculation and for the 

hybrid, the ensemble mean is used. In all three experiments, the RMSD for Vr is 

reduced significantly by the analysis within each cycle and the largest reduction occurs 

in the first analysis cycle at 0000 UTC when the observation innovations are the 

greatest. In later cycles, the innovations for the analyses remain roughly between 2.5 

and 3.5 m s
-1

, which is reasonable given the 2 m s
-1

 expected observation error. The 30-
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minute forecasts following each analysis generally increase the Vr innovation by about 

2 m s
-1

, reaching 4-5 m s
-1

 levels. In general, HybridH produces analyses that fit Vr 

observations tightest while HybridF the least and 3DVARb is in-between. Similar is 

true of the 30-minute forecasts. Note that although the analysis increment of HybridH is 

in general (Fig. 2.5 and Fig. 2.6) in-between HybridF and 3DVARb, the root-mean-

square Vr fit to observations in HybridH is not necessarily between HybridF and 

3DVARb. The observation innovation statistics can help us to see if the DA system is 

doing about the right things, but being ‘verification’ against the same set of 

observations that is also used in the DA, it cannot really tell us the true quality of the 

analyses. True measures of the analysis quality require verifications against independent 

observations or verification of subsequent forecasts, which will be presented later. 

       Figure 2.7b shows the fit of the analysis and forecast MSLPs to the best track data 

from the National Hurricane Center. The best track MSLP is more or less constant 

during this 3 hour period, being at about 952 hPa. At the beginning of DA cycling (0000  

UTC 13 September), the MSLP is about 23 hPa higher than the best track estimate. 

Most of the reductions in MSLP in all cases are actually achieved through adjustment 

during the forecasting process, with more than 15 hPa reduction achieved during the  

first analysis cycle between 0000 and 0030 UTC. This is not surprising because wind is 

the only parameter directly measured, and pressure analysis increments are only 

achieved through balance relationships and/or cross covariance, which are apparently 

weak.  

      We note in general, the MSLP decreases faster in the short forecasts between the  
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analyses in the hybrid experiments than in 3DVARb. This is consistent with the fact 

that the hybrid method tends to build a warmer vortex core, and warmer temperature 

tends to induce a lower surface pressure due to hydrostatic balance. A stronger vortex 

circulation will also induce lower central pressure due to cyclostrophic balance. During 

the final 3 cycles, there is clearly over-deepening of the central pressure in HybridH in 

the short forecasts, resulting in a fall of MSLP that is about 5.5 hPa too low compared 

to best track. The final analyzed MSLP in HybridF is about 2.0 hPa too low, which 

should be within the uncertainty range of MSLP best track data. We also note that in 

this study, since the dense radar data define the TC center location rather well (Fig. 2.2) 

and are assimilated every 30 minutes, the TC locations in the first guess ensembles do 

not diverge too much in the 30-minute forecasts throughout the assimilation cycles. 

     Overall, errors in the maximum surface wind (MSW) and MSLP are greatly reduced 

after assimilating radar data in all DA experiments. At 0300 UTC 13 September, the  

end of the DA cycles, the best track MSW and MSLP are 47.5 m s
-1

 and 951 hPa 

respectively. For 3DVARb, HybridF, and HybridH, after assimilating radar radial wind, 

the MSW errors are 1, 0.8, and 2.7 m s
-1

 and the MSLP errors are 0.2, 1.9, and 5.6 hPa, 

respectively. The larger MSW (which is not directly observed) error in HybridH  

suggests that there is over-fitting of the analyzed wind to Vr observations (Fig. 2.7a). 

For NoDA experiment without assimilating radar data, the MSW error is 9 m s
-1

 and 

MSLP error is 29 hPa.  

 

e. The analyzed hurricane structures 
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     We examine next the structure of the hurricane at the end of the DA cycles by  

 

 

 

 

Fig. 2.8 The analyzed sea level pressure (interval of 5 hPa, solid contours) and the 

surface wind vectors (m s-1) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) 

HybridH at 0300 UTC 13 September 2008. The thick solid line indicates the vertical 

cross section location in Fig. 2.9 and Fig. 2.10. 
 

plotting fields at the surface and in vertical cross sections through the analyzed  

hurricane center. Figure 2.8 shows the analyzed mean sea level pressure and surface 

wind vectors for NoDA, 3DVARb, HybridF and HybridH. Compared with NoDA (Fig. 

2.8a), the analyzed vortex circulations are stronger and the minimum sea level pressure 

is much lower in 3DVARb, HybridF, and HybridH (Fig. 2.8b-d). Such primary 
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hurricane circulations (Willoughby 1990) are captured well by the assimilation of radar 

radial velocity data.  

 

 

Fig. 2.9 Vertical cross sections of analyzed horizontal wind speed (interval of 10 m 

s-1, shaded) and potential temperature (interval of 5 K, solid contours) for (a) NoDA, 

(b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 2008.  
 

Figure 2.9 shows the vertical cross sections of horizontal wind speed and potential 

temperature for all four experiments. The locations of cross sections are through the 

analyzed hurricane center and the location of maximum wind speed of each experiment 

as indicated by the thick lines in Fig. 2.8; the locations of MSLP and maximum wind  
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for the four experiments are slightly different. In NoDA, the hurricane eye is much  

wider and the intensity is much weaker than in the three radar DA experiments. Unlike 

the hybrid experiments, the potential temperature contours of 3DVARb (Fig. 2.9b) do 

not bend downward below ~600 hPa. The downward extruion of potential temperature 

contours in  

                        

 

Fig. 2.10  Vertical cross sections of analyzed temperature anomalies (interval of 2 K) 

for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 

September 2008. 
 

HybridF and HybridH indicates a warm core structure (Fig. 2.9c, d). In experiment 

3DVARb (Fig. 2.9b), the maximum wind speed at ~850 hPa on the right side of eye  
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wall is about 10 m s
-1

 larger than those in HybridF and HybridH (Fig. 2.9c, d), but this 

larger wind speed is not accompanied by a warmer core expected of a stronger TC; this 

is an indication that the 3DVAR analysis is not dynamically and thermodynamically 

balanced.  

               Given the inner eye pressure deficit, the warm core should extend through the 

depth of the troposphere based on the hydrostatic approximation (Haurwitz 1935). The 

warm core structure is seen clearly in the vertical cross sections of horizontal 

temperature anomaly, which is the deviation from the mean at the pressure levels (Fig. 

2.10). The temperature anomaly in NoDA is very small (less than 2 K, Fig. 2.10a) while 

that in 3DVARb, HybridF and HybridH exceeds 8 K, with the maximum anomaly 

found between 300 and 500 hPa levels (Fig. 2.10b-d).  This result is consistent with 

observational studies; the strength of hurricane warm core has been shown to negatively 

correlate with MSLP (Halverson et al. 2006; Hawkins and Imbembo 1976). 

The near-zero or negative temperature anomaly below 700 hPa is clear in Fig. 2.10b for 

3DVARb. This is related to the negative 3DVARb temperature increment discussed 

earlier. It is worth noting that the 3DVARb analysis does produce a reasonable warm 

core aloft. In HybridF and HybridH, the positive anomaly extends to the surface (Fig.  

2.10c and 2.10d). In the latter two, the maximum anomaly is found to be at the inner 

edge of hurricane eye wall at about 400 hPa, which should be associated with the eye 

wall warming (LaSeur and Hawkins 1963; Holland 1997).  
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f. The track and intensity forecasts 

       To further evaluate the quality of analyses produced by different DA methods, 

deterministic forecasts initialized from the (ensemble mean in the hybrid cases) 

analyses at 0300 UTC 13 September, the end of the DA cycles, are launched.  The track  

 
 

Fig. 2.11 Deterministic forecast hurricane (a) tracks and (b) minimum sea level pressure 

(hPa) by NoDA, 3DVARb, HybridF, and HybridH as compared to NHC best track 

estimates from 0300 UTC 13 through 0000 UTC 14 September 2008. 

 

forecasts are compared in Figure 2.11a. The center of hurricane is defined as the 

location of MSLP. The initial track errors at 0300 UTC are less than 20 km for all four 

experiments. By 0000 UTC 14 September, the track errors are 98, 117, 84, 64 km for 

NoDA, 3DVARb, HybridF and HybridH respectively. The mean track errors based on  

the hurricane positions at 6-h interval during the period from 0300 UTC 13 to 0000 

UTC 14 September are 41, 57, 41, and 34 km for NoDA, 3DVARb, HybridF, and 

HybridH respectively. Given that our DA experiments do not include environmental 



38 

 

observations, the main effect on the track should come from the changes to the structure 

and intensity of the analyzed hurricane. 

     Figure 2.11b shows the intensity forecasts in terms of MSLP, together with the best  

track MSLP. At 0300 UTC 13 September, the MSLP errors are 28, 0.2, 2.0, and 5.5 hPa 

for NoDA, 3DVARb, HybridF and HybridH respectively. NoDA has the largest MSLP 

error throughout the forecast. The MSLP error in 3DVARb is smaller at the initial time, 

but becomes larger than those of HybridF and HybridH at the later forecast times. 

Overall, the forecast MSLP in the two hybrid experiments is closer to the best track 

MSLP than that of 3DVARb. None of the forecasts capture the slight deepening during 

the first 3 hours of forecast. 

 

g. Verification of forecasts against Vr observations 

                                       

 

Fig. 2.12 Deterministic forecast RMSEs of Vr (m s-1) by 3DVARb, HybridF, and 

HybridH from 0300 to 0900 UTC 13 September 2008. 
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The wind forecasts are further verified against observed radar radial velocity data.  

Figure 2.12 shows the root mean squared errors (RMSEs, strictly it is RMSD because 

observations also contain error) of forecast against observed Vr for 3DVARb, HybridF 

and HybridH. Compared to the best track estimation of wind speed, the radar Vr 

observations are more reliable. At the initial time of 0300 UTC, the RMSE of 3.5 m s
-1

  

from HybridF is slightly larger than those from HybridH (2.6 m s
-1

) and 3DVARb (2.8 

m s
-1

). After the first hour, the HybridF wind forecast fits the observed radial wind best, 

especially after 6 hours of forecast where the error in 3DVARb grows much faster and 

reaching 14.8 m s
-1

 compared to the 8-9 m s
-1

 in the hybrid cases. The much faster error 

growth in 3DVARb, even though its fit to Vr observations at the start of free forecast is 

comparable to that of HybridH and better than HybridF, again suggests that other model 

fields in the 3DVARb analysis are dynamically less consistent with the wind field than  

in the hybrid cases. As shown in Fig. 2.6, major differences exist between the 3DVAR 

and hybrid methods with the cross variable updating. This is further confirmed with the 

performance of HybridH in Fig. 2.12.  Even though the HybridH analysis is even more 

over-fitting to observations than the 3DVAR (Fig. 2.7a), the forecast of HybridH was 

better than the 3DVAR due to the use of ensemble covariance. Interestingly, this over-

fitting to conventional temperature and wind observations in 3DVAR analysis and 

worse fitting to observations in the forecast, compared with Hybrid where the forecast 

ensemble perturbations were used to estimate background error covariance, is also seen 

in other studies with quite different application (Fig. 2 of Wang et al. 2008b). The slight 

better forecast in HybridF than in HybridH at 6 hours suggests the fully flow-dependent  
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covariance during the assimilation cycles is beneficial.  

 

h. Evaluation of rainfall forecasts 

Rainfall forecasts are evaluated by calculating equitable threat scores (ETSs) of 3-h 

 

Fig. 2.13 The equitable threat scores for 3 h accumulated forecast precipitation by 

NoDA, 3DVARb, HybridF, and HybridH at thresholds (a) 5 mm, (b) 10 mm, and (c) 

25 mm, verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 

1200, and 1500 UTC 13 September 2008. 
 

 accumulated precipitation against NCEP Stage IV precipitation analyses (Fig. 2.13). 

For the thresholds of 5, 10, and 25 mm/3 hr and all forecast lead times, the hybrid 

experiments have higher ETSs than 3DVARb. Furthermore, the improvement of the 

hybrid over 3DVARb increases with precipitation threshold, indicating again the 

superior quality of the hybrid DA method. In addition, HybridF has slightly higher ETS 

scores than HybridH for most times and thresholds. The ETS of the hybrid experiments 

is higher than the NoDA for larger threshold and longer forecast lead times.  By further  
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looking at the precipitation patterns, it is found that the precipitation forecasts of 

HybridF more closely match the observed convective spiral band patterns in the inner 

core region while 3DVARb produces too much precipitation in the southeast quadrant 

in the outer band region (the region is within the reflectivity coverage of coastal radars, 

from which the Stage IV precipitation is estimated, c.f. Fig. 1.1) and the radius of the  

 

 

Fig. 2.14  Three-hour accumulated precipitation (mm) by (1
st
 column) NCEP Stage-IV 

precipitation analyses, (2nd column) NoDA, (3rd column) 3DVARb, and (4th column) 

HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 September 2008.  
 

inner core eye wall appears larger than observed (Fig. 2.14). In comparison, the 

precipitation pattern from NoDA case is poorer than the DA experiments especially for 

inner rain bands. We do note that during the earlier hours and for lower threholds, the 

ETSs of NoDA are compariable to those of hybrid schemes and higher than those of 

3DVARb. The exact cause is difficult to acertain. Imblances and adjustments in the 
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3DVAR analyses with short analysis-forecast cycles might have been a cause for the 

poorer performance but this is only a hypothesis.  

 

2.5 Summary and conclusions 

    In this study, the WRF hybrid ensemble-3DVAR data assimilation (DA) system is 

applied for the first time to the assimilation of radial velocity data for a landfalling 

hurricane.  More specifically, radial velocity data from two operational WSR-88D 

radars along the Gulf of Mexico coast are assimilated over a three-hour period after  

Hurricane Ike (2008) moved into the coverage of the two radars, using an enhanced 

version of the WRF hybrid DA system. Instead of using an ensemble transformation 

Kalman filter as in an earlier study to generate the analysis ensemble, we employ in this 

study the ‘perturbed observation’ method. Further, we applied vertical localization 

based on empirical orthogonal functions while continuing to use recursive filters for 

horizontal localization for the flow-dependent ensemble-estimated background error 

covariance. The flow-dependent ensemble covariance is incorporated into the 3D 

variational framework by using the extended control variable method.  

         The radial velocity data are assimilated every 30 minutes over a 3 hour period. 

Results mainly from five experiments are presented. A forecast experiment without 

assimilating any radar data is first carried out to serve as a baseline against which the 

radar-assimilating experiments are compared; this forecast experiment (NoDA) started 

directly from the operational GFS analysis, which contained too weak a hurricane 

vortex.  The four radar DA experiments used the WRF 3DVAR using the static  
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covariance derived from the NMC method (3DVARa), the WRF 3DVAR using further 

tuned static covariance (3DVARb), the hybrid DA system with purely flow-dependent 

background covariance (HybridF), as well as half static and half flow-dependent 

covariance (HybridH), respectively. In the tuned 3DVAR experiment (3DVARb) as  

well as HybridH, the horizontal spatial correlation scale in the static covariance derived 

from the NMC-method is reduced by a factor of 0.3 to produce much more realistic 

wind increments than the default scale (in 3DVARa). The results of analyses and 

forecasts from the five experiments are inter-compared and verified against best track 

data, radar wind measurements, and precipitation data. The main conclusions are 

summarized in the following. 

       (1) HybridF produces the most realistic temperature increments with positive 

values at the hurricane center, corresponding to the warm core structure, while 

3DVARb produces much weaker and smoother temperature increments that are 

negative at the center of hurricane. At the end of assimilation cycles, negative 

temperature anomalies are found at lower levels in the eye region of 3DVARb analysis 

while the hybrid analyses show deep warm core structures. 

         (2) All three DA experiments are able to create analyses that fit the Vr data well, 

and the error reduction by analysis is the largest in the first analysis cycle. Most of the 

minimum sea level pressure (MSLP) reduction is achieved through model adjustment 

during the forecast step of the assimilation cycles. 

       (3) The hybrid experiments improve the Ike track forecast slightly, over the track 

forecast by NoDA starting from the GFS analysis. 3DVARb slightly degrades the track 
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forecast. All radar DA experiments produce MSLP forecasts closer to the best track 

observation than NoDA does.  

        (4) The fit of forecast radial velocity to radar observations of 3DVARb is much 

worse than those of HybridF and HybridH. The forecast results indicate that the overall 

quality of hybrid analyses is better than that of 3DVARb, producing more dynamically 

consistent state estimations that lead to later slower error growth during forecast.  The 

forecast error of HybridF is slightly lower than that of HybridH starting from hour 

three.  

     (5) The equitable threat scores (ETSs) for 3-hour accumulated precipitation forecasts 

in the hybrid experiments are higher than those of 3DVARb for the thresholds and lead 

times considered, and the improvement increases with precipitation threshold, 

indicating again the superior quality of the hybrid DA method.  Among the hybrid 

experiments, HybridF produced slightly better ETSs than HybridH at most verification 

times.   

      (6) The results of this study also show positive impacts of assimilating radar data for 

hurricane initialization, and the hybrid-method-analyzed hurricane has kinematic and  

thermodynamic structures that are consistent with tropical cyclone conceptual models. 

       Finally a point worth noting: the inclusion of static background covariance in 

HybridH in general did not improve the results over HybridF in this case study; i.e., the 

use of flow-dependent covariance in full in general gives better results. Earlier studies 

(Hamill and Snyder 2000; Wang et al. 2007a) suggested that the optimal combination of 

the static and flow-dependent covariance depends on their relative quality. The results  
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in this case study suggest that for hurricanes and radar data, there is likely little benefit 

of including static covariance because if the static covariance is not capable of 

appropriately reflecting the mesoscale and convective-scale nature of hurricanes.   

     We also note that this study represents the first attempt of applying a variational- 

ensemble hybrid data assimilation method to hurricane and radar data assimilation. 

While the results are positive and encouraging, more robust conclusions will need to be 

drawn by testing the method on many more cases.     
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Chapter 3        

Assimilation of airborne radar radial velocity data using the unified GSI-based 

hybrid EnKF-3DVAR system for the prediction of Hurricane Irene (2011) 

 

3.1 Introduction 

        In the previous studies, the vortex bogussing techniques have been used to improve 

the TC initialization (Kurihara et al. 1995; Liu et al. 2000; Zou and Xiao 2000). Such 

techniques usually create a bogus TC vortex that is inserted in the model initial 

conditions. The bogus vortex may be generated from analytical equation with input of 

observed TC intensity and size or extracted from model forecast TC structure that has 

the similar intensity to the observed one. Although bogussing techniques have been 

shown to improve the hurricane forecast, how to maintain the dynamical and 

thermodynamical balances among state variables representing the hurricane remains 

probably the biggest challenge with these algorithms.  

         A series of studies has explored the use of ensemble-based DA methods to 

initialize hurricane forecasts and made great progress (Li and Liu 2009; Torn and 

Hakim 2009; Zhang et al. 2009; Hamill et al. 2011; Li et al. 2011; Wang et al. 2011; 

Weng et al. 2011; Zhang et al. 2011; Aksoy et al. 2012; Li et al. 2012; Weng and Zhang 

2012; Dong and Xue 2013; Wang and Lei 2014). The important aspect with ensemble-

based DA is the use of an ensemble to estimate the forecast error statistics using flow-

dependent error. With flow dependent covariance, the observation will be properly 

spread over surrounding area. Meanwhile, the state variable that is not observed can be 
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updated through the flow-dependent cross-variable error statistics in dynamically and 

thermodynamically consistence.  

          A currently advanced ensemble-based DA method is the hybrid ensemble-

variational DA method. It has been widely investigated during last decade (Hamill and 

Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; Buehner 2005; Zupanski 2005; 

Wang et al. 2007ab, 2008ab, 2009; Wang 2010, 2011; Buehner et al. 2010ab, Wang et 

al. 2013; Wang and Lei 2014; ). While a standard variational method (VAR) typically 

uses static background error covariance, a hybrid ensemble variational DA system 

incorporates ensemble-derived flow-dependent covariance into the VAR framework. 

The ensemble can be generated by an ensemble Kalman filter (EnKF). Recent studies 

have suggested that hybrid DA systems may combine the best aspects of the variational 

and EnKF systems (Wang et al. 2007b; 2008ab; 2009; Wang 2010; Buehner et al. 

2010b, a; Wang et. al 2013). While preliminary tests of the hybrid DA system with 

NWP models and real time data have shown great potential for TC forecasts, further 

studies on operational hybrid DA system applying to TC forecast are practically urgent. 

           Traditionally, global statistical interpolation (GSI) system, operationally adopted 

by NCEP, uses a static background error covariance matrix. In this study, the flow-

dependent ensemble covariance estimated from the ensemble Kalman filter (EnKF) is 

incorporated into GSI cost function using the extended control variable method (Wang 

2010; Wang et. al 2013). Here the EnKF is a serial implementation of the square root 

ensemble Kalman filter (EnSRF) system, by which the analysis ensemble is generated 

by updating each forecast ensemble member. Both EnKF and GSI are interfaced with 
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each other (i.e., the EnKF is using the same observation operator from GSI), and 

interfaced with HWRF model. 

       A previous study using a hybrid ensemble-variational data assimilation system 

for assimilating coastal ground-based radar has shown promising results (Li et al. 2012). 

The ground-based radars cover the hurricanes only when they are near coast. Usually 

hurricanes spend most of life time over sea where observations are rare or not available 

at all. Therefore, National Oceanic and Atmospheric Administration (NOAA) Hurricane 

Research Division (HRD) sent out aircraft equipped with airborne radar, Stepped 

Frequency Microwave Radiometer (SFMR), and other in-flight instruments to obtain 

hurricane inner core observations. Although assimilation of these observations has been 

carried out (Aksoy et al. 2012; Du et al. 2012; Weng and Zhang 2012), further research 

to use more advanced DA system is still necessary. In this study, we focus on 

assimilating airborne radar radial velocity data. Meanwhile, this study also performs  

detailed diagnostics to understand the fundamental differences between the roles and 

effects of flow-dependent and static covariances in the TC analysis and forecast. More 

specifically, this study applies and explores the GSI based ensemble–3DVAR hybrid 

system to the assimilation of NOAA P-3 airborne Doppler radar radial velocity data for 

the prediction of Hurricane Irene (2011) (Fig. 1). Irene (2011) is currently ranked as the 

seventh costliest hurricane in the United States history 

(en.wikipedia.org/wiki/Hurricane_Irene).  

      The remainder of this section is organized as follows: section 3.2 presents the 

methodology and section 3.3 discusses the experiment design. The experiment results 

http://www.noaa.gov/
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are discussed in section 3.4, while the final section summarizes the main conclusions of 

this study. 

 

3.2 Methodology  

 

a. The hybrid ensemble-3DVAR scheme 

      A diagram of the hybrid DA system is shown in Fig. 3.1 The following four steps  

 

 

 

 

 

Fig. 3.1 Schematic diagram of the GSI-based EnKF-variational one way coupled hybrid 

data assimilation system. 

  

Are repeated during each DA cycle: 1) Perform K (K is the ensemble size) number of 

ensemble forecasts to generate background forecast fields at the time of analysis. 2) 

Meanwhile, perform a control forecast for hybrid 3DVAR analysis background. 3) The 
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hybrid 3DVAR system reads ensemble forecast fields and calculates ensemble 

perturbations to be used by the hybrid cost function for flow-dependent covariance. 

Perform hybrid 3DVAR analysis with the observations. 4) The ensemble members are 

updated by EnKF with the same observations in step 3. Step 1 through step 4 are 

repeated for each of the follow-on cycles, with the hybrid 3DVAR analysis in step 3 and 

EnKF analysis in step 4 providing initial conditions for step 2 and step 1 respectively.  

        Similar to WRFDA hybrid, extended control variable method is also used for 

incorporating ensemble covariance into GSI system. Yet, recursive filter is used for 

both vertical and horizontal localization. For detailed discussions, readers are referred to 

Wang (2010).   

        The ensemble for the hybrid ensemble-3DVAR system is updated by using an 

EnKF. The square root filter algorithm (Whitaker and Hamill 2002) was adopted in this 

study. This EnKF code has been efficiently parallelized following Anderson and Collins 

(2007). In this algorithm, both the model state variables and the observation priors (the 

predicted observation variable ensemble members) are updated so as to avoid re-

computing the forward operator after each observation is assimilated. The EnKF is 

interfaced with HWRF model by inputting HWRF forecast data and outputting HWRF 

initial condition data. Meanwhile, the EnKF is interfaced with GSI 3DVAR system by 

using GSI’s observation operators, pre-processing and quality control of assimilated 

data. Covariance localization is used to limit the impact of the observation being 

assimilated. Cut-off distances of 450 km in the horizontal direction and 1.0 scale height 

in the vertical direction are used for the localization. Temporal localization using a 10
3
-

hour cut-off distance is also implemented. Usually, the ensemble based data 
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assimilation algorithm will quickly reduce ensemble spread after assimilating 

observations. To mitigate quick reduction of the spread, the multiplicative inflation  

method is applied. The posterior ensemble perturbations are inflated by a factor 

proportional to the amount of the reduction of the ensemble covariance due to the 

assimilation of observations.    .     

 

3.3 Experimental design 

 

a. The HWRF model configuration 

      The Hurricane Weather Research and Forecasting system (HWRF) model is used in 

this study. (Documentation about this model is available online: 

http://www.dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.5a_Users_Guide.pdf 

http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.5a_ScientificDoc.pdf) 

     The model is a nonhydrostatic primitive equation model using rotated-E grid 

dynamic core. In this study the HWRF is configured with 224X448 horizontal grid 

points at 9-km grid spacing with time step of 20 minutes, and 61 vertical levels with the 

model top at 2 hPa. This configuration except grid points is also used by EMC so that 

EMC and our forecasts can be compared straightforwardly. The microphysics scheme is 

based on the Eta Grid-scale Cloud and Precipitation scheme (Ferrier 2005). Since the 

grid resolution may not fully resolve the hurricane convective features, the Simplified 

Arakawa-Schubert scheme (SASS) cumulus parameterization (Han and Pan 2011) is 

included. Other physics parameterizations schemes include non-local planetary 

boundary layer parameterization (Troen and Mahrt 1986), surface layer 

http://www.dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.5a_Users_Guide.pdf
http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.5a_ScientificDoc.pdf
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parameterization (Sirutis and Miyakoda 1990) and Land/water surface parameterization 

scheme (Tuleya 1994), HWRF short wave (Lacis and Hanson 1974) and long wave 

(Fels and Schwarzkopf 1975; Schwartzkopf and Fels 1991) radiation parameterization 

schemes. 

 

b. The airborne radar data processing 

     The radial velocity data retrieved from the tail Doppler radar aboard NOAA P-3 

aircraft are assimilated in this study. The airborne radar observations are collected and 

processed for data quality control during flight missions. The data quality control 

includes several passes such as removing the observations that represent a reflection off 

sea surface, subtracting the projection of aircraft motion on the radials, and radar 

Nyquist velocity de-aliasing (HRD; Gamache 2005). Then the data, encoded in Binary 

Universal Form for the Representation (BUFR) format, are sent off the aircraft to 

Environmental Modeling Center (EMC) operational use, shared by this study. The flight 

mission for this study was performed by NOAA N42RF aircraft on 25 August 2011. 

The aircraft took off at 1949 UTC from MacDill Air Force Base and made five legs of 

the observations (2048-2157, 2157-2308, 2308-2416, 2416-2531, 2531-2627 UTC). 

Fig. 3.2 shows the five legs and Hurricane Irene (2011) track.    

       The NOAA P-3 tail Doppler radar is a vertical scanning. The scanning procedure of 

each cycle consists of two sweeps for collecting data: one pointing about ~25
o
 forward 

from a plane normal to the flight track and the other pointing about ~25
o
 afterward. The 

antennas switch forward and afterward alternatively when the radial beam reaches the 

highest elevation angle. The radial beams of each sweep form a cone surface. Such a  
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technique is called as fore/aft scanning technique (FAST). As the aircraft moves on 

roughly straight track, FAST scans sweep out a three dimensional region of space 

surrounding the aircraft’s track. The space between two adjacent forward or afterward  

sweeps along the flight track is about 1.4 km.  

         The spacing of radial velocity encoded in BUFR is about 1.2 km along a radial 

beam. Such a radar data spatial resolution is much higher than model resolution, which  

causes that the model resolution is not able to fully resolve the data. Meanwhile, a large 

amount of original data may be potentially correlated. Therefore thinning is conducted 

to reduce the high density of radial velocity observations. The data are organized as one 

sweep scan followed by another. Thinning is performed by three steps: 1) We separate 

forward and afterward scans at a radial with highest earth-relative elevation angle (e.g., 

a radial with elevation angle 88
o
 that is greater than those of two radials immediately 

before and after this radial). 2) Then the three dimensional model space is divided into 

many adjacent cubic boxes. 3) For one cubic box, we keep two radial velocities from 

forward and afterward scans respectively that represent wind components from different 

directions (i.e., about
 
50

o
 apart from each other). These two radial velocities are chosen 

as close as possible to the center of the cubic box.  



54 

 

                             

 

Fig. 3.2 Horizontal distribution of the airborne Doppler radar radial velocity 

observations. 

 

Fig. 3.2 shows TDR data horizontal distributions of the airborne Doppler radar radial  

velocity observations aggregated from all levels for the five legs. We can see the width 

of the swath of TDR data is up to 1 latitude/longitude degree. The hurricane eye whose 

center is indicated by red dot has sparse or void data. Nevertheless we may expect TDR 

data assimilation mainly improve the hurricane inner core fields. 
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Fig. 3.3 Vertical distribution of the airborne Doppler radar radial velocity observations. 

 

       Fig. 3.3 shows vertical distributions of TDR radial velocity data at five legs used by 

data assimilation. The greatest observation density is generally around 880 hPa for all 

five legs where there is plenty of raindrops.  

           The radial velocity observation error is assumed to be 3 m s
-1

. This error value is 

close to the values used in Dowell and Wicker (2009), Xu and Gong (2003), and Xiao et 

al. (2009). The threshold of a radial velocity innovation is set to 15 m s
-1

. The 

observation is discarded if the difference between this observation and background is 

larger than this threshold. 

 

c. The data assimilation setup 

This paper presents five experiments denoted as NoDA, GSI3DVar, 3DEnsVar,  
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and EnKF (Table 1). Experiments differ based on what, if any, assimilation 

system is used for airborne radar data. The experiments are designed to examine the 

difference of using flow-dependent versus static background covariance when 

assimilating the airborne  

Table 3.1 List of experiments 

Experiment                               Description 

  NoDA No radar data assimilation. WRF model initial condition is average 

of 40 members of GFS/EnKF ensemble analysis 

                GSI3DVar Radar DA using GSI 3DVar with static covariance 

  3DEnsVar Same as GSI3DVar, except using flow dependent covariance for 

EnKF 

  EnKF Ensemble Kalman filter with 40 members 

 

 

radar data and the impact of DA on the subsequent forecast. We assimilate only 

airborne TDR radial velocity data. Other available observations are used for 

verification. We define “prior (background)” and “post (analysis)” for the model fields  

before and after data assimilation respectively.      

Fig. 3.4 shows flow chart of experiments carried out in this study. The NoDA 

experiment did not assimilate any observation data, instead the HWRF model initial  

condition at 1200 UTC on 25 August 2011 simply comes from the average of the 40  
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ensemble members from the GFS/EnKF ensemble system at the same time (Fig. 3.4a). 

The forecast of a control run from the GFS/EnKF ensemble system provides the lateral 

boundary conditions (LBCs).  

                        

 

Fig. 3.4 The flow charts for (a) NoDA experiment, (b) GSI3DVar experiments, (c) 

3DEnsVar experiments, and (d) EnKF experiments. 

 

The GSI3DVar experiment assimilated the radar data using the traditional GSI 

3DVAR method where the static background covariance is adopted. The horizontal and 

vertical correlation length scales of original static covariance are reduced by factors of 

0.4 and 0.6 respectively in experiment GSI3DVar. The GSI 3DVAR experiment 

contains three stages (Fig. 3.4b). 1) A single 9.5-h spinup forecast initialized from the  

average of the 40 ensemble members from the GFS/EnKF ensemble system at 1200  
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UTC 25 August 2011 to produce an initial first guess at 2130 UTC, August 25 for radar 

DA cycles. The spin-up time of 9.5 hours is based on past experiences and other 

published studies (e.g., Zhang et al. 2009, spin-up time of 9 hours; Aksoy et al. 2012, 

spin-up time of 6 hours. 2) Assimilation of tail Doppler radial velocity data one flight  

leg by the other. We choose times of the assimilation as close to the center of each leg 

as possible, which are 2130, 2230, 2330 UTC August 25, 0030, 0200 UTC August 26. 

3) A 46-h deterministic forecast initialized by the analysis at the end of the assimilation 

cycles in step 2. The WRF model boundary conditions for all three stages are the same 

as in NoDA. 

The 3DEnsVar has the same three stages as GSI3DVar except that the 

background covariance is estimated from EnKF ensemble perturbations (Fig. 3.4c). 

EnKF experiment has 40 ensemble members. Similar to the 

GSI3DVar/3DEnsVar experiments, the EnKF experiment has three stages (Fig. 3.4d). 

1) 9.5-h ensemble forecasts to spin up a first guess ensemble and provide flow-

dependent covariance at the beginning of the radar DA cycles. The initial and boundary 

conditions for each member are the GFS/EnKF ensemble member forecast. 2) 

Assimilation of tail Doppler radial velocity data. 3) A 46-h deterministic forecast 

initialized from the ensemble analysis mean at the end of the DA cycles in step 2.  

 

3.4 Results and discussion  
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a. Wind and temperature analysis increments 

              To evaluate the impact of assimilated radial velocity data and the differences of 

assimilation methods using flow-dependent and static covariances, we first look at the 

structure and magnitude of analysis increments for wind and then look at that for 

temperature  

         Fig. 3.5 shows the wind increment for experiment GSI3DVar, EnKF, and 

3DEnsVar at 700 hPa for first DA cycle that assimilates radial velocity from first flight 

 

 

Fig. 3.5 The 700 hPa wind analysis increments (m s
-1

) for (a) GSI3DVar, (b) EnKF, and 

(c) 3DEnsVar at 2130 UTC 25 August 2011. 

 

leg. For GSI3DVar, there is cyclonic increment around observed hurricane center 

indicated by a cross sign. However, an anti-cyclonic increment centered at 26
o
 N, 78

o
W, 

with the maximum wind speed increment larger than 30 m s
-1

, is found. We will see that 

increment is not consistent with observed flight level wind. In a previous study (Li et al. 

2012) such a dual pole pattern of cyclonic and anti-cyclonic wind increment is also  
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produced by static covariance 3DVAR method.  For 3DEnsVar and EnKF, we can see 

cyclonic wind increment is found around the hurricane center, with larger wind 

increment at the left of the center, which can be explained well later by comparing with 

flight level wind observation.    

         Because only radial velocity data is assimilated in this study, any increment in 

temperature is a result of balance relationship applied (if any) and/or due to cross 

covariance in the background error. Fig. 3.6 shows the 700-hPa temperature increments 

   

 

 

Fig. 3.6 The 700 hPa temperature analysis increments (at intervals of 0.5 K) for (a) 

GSI3DVar, (b) EnKF, and (c) 3DEnsVar at 2130 UTC 25 August 2011. 

                                                                    

for GSI3DVar, 3DEnsVar, and EnKF after assimilating radial velocity data for the first 

cycle/leg. For GSI3DVar, the temperature increment is relatively smooth and small (- 

0.25
o
 – 0.5

o
). No hurricane circulation pattern is found due to the use of static 

covariance which is homogeneous. There is even negative increment near hurricane 

center. Physically, the warmer core results in lower central pressure and stronger 
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hurricane. As the hurricane in background field is weaker than observation, the analysis 

increment of temperature near hurricane center should be positive in order to raise the 

strength. In other words, we expect a warmer hurricane core after analysis. The  

inconsistence is caused by use of static covariance. More detailed explanation is given 

in Chapter 2. For 3DEnsVar and EnKF, the temperature increments show hurricane-like 

spiral bands with warmer increment near hurricane center. Both the increment pattern 

and enhanced warmer core are a benefit of the use of flow-dependent covariance 

between wind and temperature. Such a result is also shown in the previous study (Li et 

al. 2012).                                                                                            

 

b. Verification with independent in-flight measurements 

         While TDR radial velocity data is assimilated, the aircraft in-flight measurements 

and the Stepped Frequency Microwave Radiometer (SFMR) retrieved surface winds are 

used as independent observations for verification. In this section, we will inter-compare 

the model simulated hurricane inner-core structures, before DA analysis (named as 

“prior”) and after DA analysis (named as “post”), among NoDA, GSI3DVar, EnKF 

(ensemble mean), and 3DEnsVar, and then verify each experiment result against the 

observations from the NOAA P-3 aircraft in-flight measurements and  

the SFMR-retrieved surface winds based on that observed wind speeds, hurricane  

center, and other parameters are obtained. For the purpose of conciseness, we look at  

the results for first and last data assimilation cycle out of total five cycles. 

       Fig. 3.7 shows the comparison between the wind speeds, derived from numerical 

model of GSI3DVar, EnKF, and 3DEnsVar, and that observed by in-flight instruments  
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Fig. 3.7  Flight level wind speed (m s
-1

) observed by in-flight instrument (black line) 

and interpolated from model prior (green line), and post (red line). First flight leg at 

2048 – 2157 UTC: (a) GSI3DVar, (b) EnKF, (c) 3DEnsVar. Last flight leg at 2531 – 

2627 UTC: (d) GSI3DVar, (e) EnKF, (f) 3DEnsVar 

 

At flight level. Here the model-derived wind speeds are interpolated along aircraft flight 

track at 2130 UTC 25 August for first leg (Figs. 3.7a,b,c) and 0200 UTC 26 August 

2011 for 5th leg (Figs. 3.7d,e,f). We notice that model-derived wind speeds, according  

to time and location of observed wind speeds, can be interpolated from time-dependent  

model states during model integration (Du et al. 2012). In Fig. 3.7 the hurricane center 

can be identified by the lowest wind speed at the middle of the curves. We first look at 

wind speeds for first data assimilation cycle at first leg (Figs. 3.7a,b,c). For all 

experiments of GSI3DVar (Fig. 7a), EnKF (Fig. 3.7b), and 3DEnsVar (Fig. 3.7c), it is  
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obvious that the model-defined hurricane center was shifted to the left of observed 

hurricane center before data assimilation and corrected to the observed hurricane center 

after data assimilation. It means that assimilation of TDR Vr improves model simulated 

hurricane position. The observed hurricane central wind speed (black line) is almost 

zero while that interpolated from models of GSI3DVar, EnKF, and 3DEnsVar is about 

10 m s
-1

. We expect such a difference of 10 m s
-1

 will be reduced in later on data 

assimilation cycles. We look at the wind speeds on the left part of the curves. For all of 

GSI3DVar, EnKF, and 3DEnsVar, there is large difference of wind speeds between 

prior (green line) and post (red line), which is consistent with the largest wind analysis 

increment on the left side of hurricane center in Fig. 3.5. For EnKF (Fig. 3.7b), and 

3DEnsVar (Fig. 3.7c), model-derived wind speeds of post are much closer to observed 

wind speed than that of prior. On the contrary, for GSI3DVar (Fig. 3.7a), compared 

with observed wind speed on the most left (182-125 km), the wind speeds of post (red 

line) is about 5 - 20 m s
-1

 below it and that of prior (green line) is about 5 - 10 m s
-1

 

above it. Here the large difference (10 -30 m s
-1

) of model-derived wind speeds between 

prior and post is also consistent with the large wind analysis increment on the very left  

part in Fig. 3.5a. Now Figs. 3.7d, e, f show the results for last data assimilation cycle for 

5th leg. Verification of model-derived wind speeds against observed one at flight level  

also shows superiority of EnKF (Fig. 3.7e) and 3DEnsVar (Fig. 3.7f) over GSI3DVar 

(Fig. 3.7d). For EnKF and 3DEnsVar, model-defined hurricane center of both prior and 

post is very near observed hurricane center. On  
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Fig. 3.8 Surface wind speed (m s
-1

) retrieved by SFMR (black line) and interpolated 

from model lowest level for prior (green line), and post (red line). First flight leg at 

2048 – 2157 UTC: (a) GSI3DVar, (b) EnKF, (c) 3DEnsVar. Last flight leg at 2531 – 

2627 UTC: (d) GSI3DVar, (e) EnKF, (f) 3DEnsVar.  

 

the contrary, for GSI3DVar, model-defined hurricane center is deviated to the left of 

observed hurricane center in prior and corrected to be near observed hurricane center in 

post. For wind speed on the eye wall, especially on the left side, EnKF and 3DEnsVar 

also show smaller errors than GSI3DVar for both prior and post. We may deduce that 

the prior of EnKF and 3DEnsVar receive better benefit than GSI3DVar from previous 

data assimilation cycles. 

          The verification of model surface wind speeds against SFMR-retrieved surface 

wind speeds is shown in Fig. 3.8. The data from all of experiments are interpolated from 

the model lowest level along aircraft flight track at 2130 UTC 25 August 2011 for first 

leg (Figs. 3.8a,b,c) and at 0200 UTC 26 August 2011 for 5th leg (Figs. 3.8d,e,f). 

Generally speaking, verification of model surface wind speed against SMFR-retrieved  
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measurements show similar results to that of the flight level wind speed (Fig. 3.7). 

Moreover, in last data assimilation cycle, for EnKF (Fig. 3.8e) and 3DEnsVar (Fig. 

3.8f), model hurricane centers of both prior and post are very near observed hurricane 

center. On contrary, for GSI3DVar (Fig. 3.8d), model hurricane centers are deviated 

from observed hurricane center, shifting to the left side in prior and right side in post. 

Meanwhile, EnKF and 3DEnsVar show smaller errors of wind speeds on eye walls than 

GSI3DVar for both prior and post. Again, EnKF and 3DEnsVar using flow-dependent 

covariance show superiority over GSI3DVar using static covariance. 

 

c. Innovation statistics for Vr and minimum sea level pressure in DA cycles 

The behaviors of GSI3DVar, EnKF, and 3DEnsVar are further compared by 

examining the fit of their analyses and forecasts to TDR Vr observations during the DA 

cycles. The fit is defined as the root-mean-square difference (RMSD) between the 

observation and model state that is converted to the observed quantities; and such 

difference is also called as observation innovation. Figure 3.9a shows the RMSDs for 

TDR Vr and minimum sea level pressure (MSLP) from GSI3DVar, EnKF, and 

3DEnsVar. The TDR Vr data are used as observation in the innovation calculation. For 

the EnKF, the ensemble mean is used as model state. In all three experiments, the 

RMSD for Vr is reduced significantly by the analysis within each cycle. However, the  
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Fig. 3.9  The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSD 

of TDR radial velocity (m s
-1

), and (b) the minimum sea level pressures (hPa) verified 

against the NHC best track estimate, for GSI3DVar, EnKF, and 3DEnsVar from 2130 

UTC 25 to 0200 UTC 26 August 2011. 

 

RMSD of Vr for GSI3DVar is larger than that from EnKF, and 3DEnsVar at both 

forecast and analysis. Another phenomenon is that the forecast RMSD of TDR Vr for 

3DEnsVar is a little larger than that from EnKF. 

       Figure 3.9b shows the fit of the analysis and short forecast MSLPs to the best-track 

data from the National Hurricane Center. The best-track MSLP decreased from about 

950 hPa at 2130 UTC 25 to 945 hPa at 0200 UTC 26 August 2011. At the beginning of 

DA cycling (2130 UTC August), the MSLP for GSI3DVar and EnKF is about 11 hPa 

higher than the best-track estimate. Generally speaking, MSLPs for all three 

experiments tend to be close to the best-track. Both forecast and analysis MSLPs for 

GSI3DVar are above best-track while, for EnKF and 3DEnsVar, short forecast MSLPs  

are above best track and analysis MSLPs are below best-track. From MSLP evolution 

we are not able to say which experiment is superior over others. But it is obvious that a 

weaker hurricane in background fields is strengthened towards observation by 

assimilation of TDR Vr.  
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d. The analyzed hurricane structures 

          We now examine the structure of the hurricane at the end of the DA cycles at 1 

km height and at vertical cross section through the analyzed hurricane center. The 

model winds from GSI3DVar and 3DEnsVar (EnKF wind field, not shown, is similar to 

that of 3DEnsVar) are compared with the three dimensional hurricane-relative wind  

 

Fig. 3.10 Wind vector and speed (shaded) at 1-km height. (a) HRD TDR Vr analysis. 

The HWRF model simulation of wind, together with sea level pressure (interval of 5 

hPa, solid contours) for (b) GSI3DVar, (c) 3DEnsVar at 0200 UTC 26 September 2011.  

 

analysis derived by HRD based on the quality-controlled TDR radial velocity from all 

five legs. Fig. 3.10 shows the model wind and TDR Vr wind analysis at 1 km height. 

The Vr wind analysis covers most area of the hurricane inner core with maximum wind 

speed at northeast quadrant to the hurricane center. Similar to Vr wind analysis, 

maximum wind speed in 3DEnsVar was also located northeast quadrant to the hurricane 

center. The maximum wind speed (>60 m s
-1

) in GSI3DVar is stronger than that in Vr 

wind analysis (50 – 60 m s
-1

) located at northwest to the hurricane center, which is  
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inconsistent with Vr wind analysis. We can see in 3DEnsVar hurricane centers defined 

by wind and sea level pressure are co-located. On contrary, the hurricane center defined 

by sea level pressure is at north of that defined by wind speed in GSI3DVar (Fig. 

3.10b), which is dynamically inconsistent.  

 

 

Fig. 3.11  Vertical cross section of wind speed (interval of 10 m s
-1

, shaded). (a) HRD 

TDR Vr analysis. The HWRF model simulated wind, together with potential 

temperature (interval of 5 K, solid contours) for (b) GSI3DVar, (c) 3DEnsVar at 0200 

UTC 26 September 2011.  

 

Figure 3.11 shows the vertical cross sections of horizontal wind speed and potential 

temperature for all four experiments. The locations of cross sections are west-east  

through the analyzed hurricane center. In HRD Vr wind analysis (Fig. 3.11a), the 

hurricane eye is clearly shown with maximum wind speed on east eye wall where the 

large wind for 50 – 60 m s
-1

 is below 3 km height. Similar to Vr wind analysis, in  

3DEnsVar (EnKF wind field, not shown, is similar to that of 3DEnsVar), there is also 

large wind for 50 – 60 m s
-1

 on east eye wall below 3 km height. On the contrary, in 

GSI3DVar, the large wind for 50 – 60 m s
-1

 on east eye wall extends to about 11 km 
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height and an extra large wind for 50 – 60 m s
-1

 appears on west eye wall, which is 

considered as noises. Unlike the 3DEnsVar experiments, the potential temperature 

contours of GSI3DVar (Fig. 3.11b) do not bend downward for 2 – 10 km. The 

downward extrusion of potential temperature contours in 3DEnsVar indicates a warm 

core structure (Figs. 3.11c).  

 

e. The track and intensity forecasts 

            To further evaluate the quality of analyses produced by different DA methods, 

deterministic forecasts initialized from the (ensemble mean in the EnKF cases) analyses 

at 0200 UTC 26 August, the end of the DA cycles, are launched. The track forecasts of 

EMC official, NoDA, GSI3DVar, EnKF, and 3DEnsVar are verified against NHC best  

 

 

 

Fig. 3.12 Deterministic forecast hurricane (a) tracks and (b) minimum sea level pressure 

(hPa) by NoDA, GSI3DVar, EnKF, 3DEnsVar, EMC as compared to NHC best track 

estimates from 0200 UTC 26 through 0000 UTC 28 August 2011. 

 

track (Fig. 3.12a). The central position of the forecast hurricane is defined as the 

location of MSLP. The initial track errors at 0200 UTC 26 are less than 20 km for all  
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experiments. By 0000 UTC 28 August, the mean track errors are 67, 58, 47, 32, and 44 

km for EMC official, NoDA, GSI3DVar, EnKF, and 3DEnsVar, respectively. We can 

see the forecast tracks of NoDA and EMC deviate, towards the right (over sea), from 

best track while that of 3DEnsVar and EnKF oscillate along the best track. When Irene 

made landfall at 1200 UTC 27 the sequence (from large to small) of forecast track 

errors are for EMC official, NoDA, GSI3DVar, EnKF, and 3DEnsVar, respectively. 

The mean track errors based on the hurricane positions at 6-h interval during the period 

from 0200 UTC 26 to 0000 UTC 28 August are 58, 47, 32, and 44 km for NoDA, 

GSI3DVar, EnKF, and 3DEnsVar respectively. Given that our DA experiments do not 

include environmental observations, the main effect on the track should come from the 

changes to the inner core structure and intensity of the analyzed hurricane. 

         Figure 3.12b shows the intensity forecasts in terms of MSLP verified against the  

best-track MSLP. According to best track, the Irene strengthened during first 4 hours, 

and then weakened until 1800 UTC 28, maintain almost the same intensity until 0000 

UTC 28 August. At 0200UTC 26 August, the MSLP errors are 5, 17, 4, 2.0, and 3.0 hPa 

for EMC official forecast, NoDA, GSI3DVar, EnKF, and 3DEnsVar, respectively. 

NoDA has the largest MSLP error throughout the forecast due to its too weak at initial 

time. EMC over deepens too much during the whole forecast. The mean MSLP errors 

are 3.3, 4.2, 5.8, 8.2, 10.8 hPa for 3DEnsVar, EnKF, GSI3DVar, NoDA and EMC 

official forecast, respectively. Overall, the forecast MSLP in the two flow dependent  

covariance experiments is closer to the best-track MSLP than that of GSI3DVar. None 

of the forecasts capture the slight deepening during the first 3 h of forecast. Figure 12c  
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shows the intensity forecasts in terms of Vmax at model lowest levels verified against  

the NHC best-track Vmax. Unlike MSLP that generally strengthens first and then 

maintains the same strength level, the best track Vmax generally weakens, from 53 m s
-

1
 to 37 m s

-1
, during the whole forecast time. The Vmax of NoDA and GSI3DVar do not 

depart from Vamx of EnKF and 3DEnsVar very much except that GSI3DVar has too 

strong wind speed at beginning and a spike at 18 UTC 26 August. EMC Vmax has too 

strong wind speed after 18 UTC 26 which is consistent with its MSLP for the same 

time. EMC Vmax shows weaker wind speed than best track for first 12 hours which is 

consistent with its MSLP. NoDA Vmax shows a transition time at 12 UTC 26 where 

NoDA Vmax is lower than best track before it and stronger than best track after it.  

Differently, NoDA MSLP transition time is at about 6 UTC 27. In other words, model 

Vmax values are not subject to model MSLP values exactly.    

 

3.5 Summary and conclusions 

      In this study, the GSI 3DVar‐based hybrid EnKF‐Var data assimilation system 

including both the Var and EnKF components were expanded to HWRF for the 

prediction of hurricane Irene (2011). In the hybrid DA system, the flow-dependent 

ensemble covariances were estimated from an EnKF-generated ensemble and 

incorporated into the variational minimization by using the extended control variable 

method. A 40 member ensemble and single control forecasts are performed. The  

analysis ensemble is generated by updating each forecast ensemble member with a 

serial implementation of the square root ensemble Kalman filter (EnSRKF) system. The  
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air borne Doppler radar radial velocity is for first time assimilated by this EnKF system,  

which is interfaced with GSI by using the same data quality control and observation 

operator. In GSI system, the radar data thinning method is further enhanced (e.g., fore 

and aft sweeps are separated when thinning). Thus in a three dimensional box two radial 

velocities are selected from two different directions (e.g., 50
o
 from each other). Such an 

enhanced part of the thinning method is implemented into EMC operational data 

assimilation system.     

          The tail Doppler radar radial velocity is assimilated leg by leg of an NOAA P-3 

flight mission on 25 – 26 August 2011. We examine the difference of using flow-

dependent and static background covariance when, and the impact of, assimilating  

airborne radar observations by comparing both analysis and forecast with various kinds 

of observations. The examinations are based on four experiments in this study. A 

forecast experiment without assimilating any radar data is first carried out to serve as a  

baseline against which the radar-assimilating experiments are compared; this forecast 

experiment (NoDA) started directly from the average of global GFS/EnKF 40 member 

analysis, which contained too weak a hurricane vortex. The three radar DA experiment 

employed the WRF 3DVAR using the static covariance (GSI 3DVar), the hybrid DA 

system with purely flow-dependent background covariance (3DEnsVar), and EnKF. 

The results of analyses and forecasts from the four experiments are intercompared and 

verified against EMC operational forecast, best-track data, radar wind measurements, in 

situ data, and remote sensed observations. The main conclusions are summarized in the 

following. 
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          Compared with the flight level wind, remote sensed wind, and air borne Doppler  

radar wind synthetic fields, we see that the hybrid analyses (3DEnsVar and EnKF 

components) successfully capture the inner-core structure of the hurricane vortex in 

terms for both wind and temperature fields during the analysis time. The subsequent 

deterministic forecasts of 3DEnsVar and EnKF initialized by assimilating airborne radar 

observations improved the hurricane track and intensity forecasts, compared with EMC 

operational forecast, the forecast initialized by GSI 3DVar with static background 

covariance, and NoDA.   

               Through one Vr observation test, we see that the analysis increment 3DEnsVar  

and EnKF are very similar to each other. There are a little more difference between 

3DEnsVar and EnKF when many observations are used. This may be caused by the 

complex interactions among data and DA methods. We need to do further investigation 

on the difference and similarity between 3DEnsVar and EnKF. 

          The 3DEnsVar has no large superiority over EnKF. However, 3DEnsVar has a 

potential function to include some constraint or extent.  3DEnsVar is also 

straightforward to implement dual resolution capability, which will be a focus of 

Chapter 4 of this dissertation.  In Chapter 4, we will test dual resolutions of 3km grid 

nested in 9 km grid for 3DEnsVar and EnKF. We will investigate and expect that the 

dual resolution of 9 km and 3 km grids produces better hurricane track and intensity 

forecast than single 9 km grid.      

       We note that this study represents the first attempt of applying the GSI 3DVar‐

based hybrid EnKF‐Var data assimilation method interfaced with HWRF model to  

 



74 

 

hurricane and radar data assimilation. We also note that the above conclusions and  

findings are based on only one flight mission of a hurricane reconnaissance. This study 

may be considered as a pioneer of future research for many hurricane cases (missions) 

and operational runs with the same procedures presented in this study.   
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Chapter 4  

Assimilation of Airborne Radar Data using Dual Resolution, GSI-based Var-EnKF 

Hybrid System for TC Initialization and Prediction 

 

4.1 Introduction 

        Variational data assimilation methods have been implemented in many operational 

and research centers. In National Center for Environmental Prediction (NCEP), the 

community Gridpoint Statistical Interpolation (GSI), a three-dimensional variational 

data assimilation (3DVAR) system  is used to initialize global and regional model (Wu 

et al. 2002; Kleist et al. 2009; Tallapragada et al. 2014). Traditionally, the background 

error covariance for GSI is derived with assumptions of spatial and temporal 

homogeneity and isotropy (Usually using NMC method (Parrish and Derber 1992)). For  

the analysis of strong nonlinear and discontinuous features such as TC inner core 

circulation, the use of static background error covariance may be problematic. Some 

GSI 3DVAR experiments show that inner core observations cannot be used due to the  

potential negative impacts caused by static covariance on vortex structure (Tallapragada 

et al. 2014). More advanced ensemble based variational hybrid data assimilation  

methods could address this problem. 

          Ensemble-based DA methods, most of which are in various forms of EnKF 

(Evensen 1994), have been explored to initialize hurricane forecasts and have shown 

great promise (Li and Liu 2009; Torn and Hakim 2009; Zhang et al. 2009; Hamill et al. 

2011; Wang et al. 2011; Weng et al. 2011; Zhang et al. 2011; Aksoy et al. 2012; Li et 

al. 2012; Weng and Zhang 2012; Cavallo et al. 2013; Dong and Xue 2013; Wang and 
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Lei 2014). In ensemble-based DA, background error covariance is estimated for the 

ensemble forecasts that reflect current flow characteristics. Therefore, the observation 

information will be properly spread consistent with current hurricane flow. Meanwhile 

state variable that are not observed could be realistically updated through cross variable 

covariance. 

          A hybrid data assimilation method that combine ensemble-based and variational 

DA systems has become an alternative approach (Hamill and Snyder 2000; Lorenc 

2003; Etherton and Bishop 2004; Buehner 2005; Zupanski 2005; Wang et al. 2007ab, 

2008ab, 2009;  Liu et al. 2008, 2009; Buehner et al. 2010a, b; Wang 2010, 2011; Zhang 

and Zhang 2012; Schwartz et al. 2013; Wang et al. 2013; Zhang et al. 2013a; Zhang et 

al. 2013b; Gao and Stensrud 2014; Schwartz and Liu 2014; Wang and Lei 2014). While 

a standard three- or four-dimensional variational method (3D/4DVAR) typically uses 

static background error covariance, a hybrid ensemble variational DA system 

incorporates ensemble-derived flow-dependent covariance into the VAR framework.  

The ensemble can be generated by an EnKF. Furthermore, how to efficiently couple 

EnKF and hybrid DA systems is investigated. In addition to one-way coupling where 

EnKF is not affected by VAR system, two-way coupling where ensemble mean is  

replaced by VAR analysis is also examined (Zhang and Zhang 2012; Wang et al. 2013; 

Zhang et al. 2013a; Gao and Stensrud 2014). Compared with one-way coupling, two-

way coupling allows EnKF perturbations to evolve around the trajectory of the control 

forecast whose error statistics may be better represented. 

          Due to limitation of computer resource, it is not practical to put all ensemble 

members at high resolution grids that are needed to simulate convective circulations. 
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Several studies tried to incorporate ensemble at multiple resolution in data assimilation, 

mimicking a typical 4DVar system where the tangnent linear adjoint model is typically 

run at reduced resolution. Du (2004) proposed a hybrid ensemble prediction system 

introducing low-resolution ensemble perturbations into a high-resolution forecast that 

produced new high quality ensemble. Gao and Xue (2008a) tested a dual-resolution 

EnKF DA system with a single high-resolution forecast and a low-resolution ensemble. 

The low-resolution ensemble and the high-resolution control forecast run in parallel. 

The background error covariance estimated from the low-resolution ensemble is used to 

update a single high-resolution forecast in producing quality analysis on high resolution 

grid. Rainwater and Hunt (2013) proposed a mixed-resolution ensemble DA system 

(local ensemble transform Kalman filter (LETKF)) obtaining background covariance  

from a combination of a high-resolution ensemble and a low-resolution ensemble that  

produce more accurate analysis than single resolution analysis. In these studies, it is  

noticed that high resolution grid is defined at the same domain  as low resolution grid 

which is still very costly (Gao and Xue 2008a).   

     In this chapter, we propose to implement the dual resolution in hybrid ensemble-

variational framework using the nested grids, which further reduce the computational 

cost.    

             A previous study using a hybrid ensemble-variational data assimilation system 

for assimilating coastal ground-based radar has shown promising results (Li et al. 2012). 

The ground-based radars cover the hurricanes only when they are near coast. Usually 

hurricanes spend most of life time over sea where observations are rare or not available 

at all. Therefore, National Oceanic and Atmospheric Administration (NOAA) Hurricane 

http://www.noaa.gov/
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Research Division (HRD) sent out aircraft equipped with tail Doppler radar (TDR), 

Stepped Frequency Microwave Radiometer (SFMR), and other in-flight instruments to 

obtain hurricane inner core observations. Assimilation of TDR data has been carried out 

using 3DVAR (Du et al. 2012), EnKF (Zhang et al. 2011; Weng and Zhang 2012; 

chapter 3 of this dissertation). In this study, hybrid DA method with dual resolution 

technique for assimilating TDR data is explored first time. More specifically, unified 

GSI based EnKF-3DVAR hybrid DA system is employed to the assimilation of TDR 

data for the hurricane prediction with Hurricane Weather and Research Forecast model 

(HWRF). The EnKF configured at 9-km grid adopts the square root ensemble Kalman  

filter (EnSRF) system (Whitaker et. al. 2002). In addition to 9-km single resolution  

hybrid DA, 9/3 km dual resolution hybrid DA is a focus of this study.  

      In addition to detailed case study for one P-3 mission that shows how dual and 

single resolution hybrid system works step by step, statistics based on multiple missions 

of the same case is also collected.  For case study, we apply hybrid system to the 

assimilation of NOAA P-3 airborne Doppler radar radial velocity data for the prediction 

of Hurricane Irene (2011) initialized at 12 UTC 26 Aug. 2011. Irene (2011) is currently 

ranked as the seventhcostliest hurricane in the United States history 

(en.wikipedia.org/wiki/Hurricane_Irene). Data assimilation and forecast experiments 

are then carried out for all 4 flight missions around 12 UTC 24, 12 UTC 25, 00 UTC 26, 

12 UTC 26 Aug. 2011 for IRENE. (Fig. 4.1) 

     The remainder of this chapter is organized as follows: section 2 presents the 

methodology and section 3 discusses the experiment design. The experiment results are 
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discussed in section 4, while the final section summarizes the main conclusions of this 

study. 

 

 

Fig. 4.1 Hurricane Irene (2011) tracks based on National hurricane Center best-track 

locations. Also indicated are flight tracks of NOAA aircraft missions in red, green, blue, 

and orange color.  
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4.2 Methodology  

 

a. The hybrid ensemble-3DVAR scheme 

      Following Wang et al. 2013, a diagram of the one-way coupled hybrid DA system is 

shown in Fig. 4.2a. The following four steps are repeated during each DA cycle: 1) 

Perform K (K is the  

 

               

 

Fig. 4.2 Schematic diagram of the GSI-based EnKF-variational one/two-way coupled 

hybrid data assimilation system. 
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ensemble size) number of ensemble forecasts to generate background forecast fields at 

the time of analysis. 2) Meanwhile, perform control run forecast for hybrid 3DVAR  

analysis background which are configured at single grid and nested grids. 3) The hybrid 

3DVAR system reads ensemble forecast fields and calculates ensemble perturbations 

for flow-dependent covariance used by the hybrid cost function. Perform hybrid 

3DVAR analysis at each grid with the observations. 4) The ensemble members are 

updated by EnKF with the same observations in step 3. Step 1 through step 4 are  

repeated for each of the follow-on cycles, with the hybrid 3DVAR analysis in step 3 and 

EnKF analysis in step 4 providing initial conditions (IC) for step 2 and step 1 

respectively. For two-way coupled hybrid DA system, step 4 is modified by re-

centering the analysis ensemble around the hybrid analysis that replaces ensemble mean 

to produce final analysis ensemble (Fig. 4.2b). It is expected that with such a 

modification EnKF perturbations may evolve with the trajectory of the control forecast 

so that the ensemble covariance may potentially better represent the error statistics of 

the control forecast. 

       In addition to single resolution application, the extended control variable method 

used for GSI hybrid described in Chapter 3 is further modified here into dual resolution 

manner. For state vector x, the analysis increment of the hybrid scheme, x', is the sum 

of two terms, 
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Most of the explanation of equation (1) is provided in chapter 2 except that L represents 

linear interpolation from ensemble grid at low resolution to analysis grid at high 
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resolution. Specificcally, x’ and x1
’ 
are defined at high resolution while ak and xk

e
 are at 

low resolution. 

The dual cost function for hybrid ensemble-3DVAR is  
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Note that Jb and Jo are at high resolution while Je is at low resolution. The other 

description of equation (2) is provided in chapter 2 and will not be repeated here. We 

further define a new control variable as 
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Equation (1) for hybrid increment can be rewritten as  
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The hybrid is preconditioned by a new variable 
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       According to Wang (2010), the gradients of the cost function (2) with respect to the 

original control variables J '
1x

  and the extended control variables Ja
 are given as  
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L is interpolation from low to high resolution.  

The gradients of the cost function (2) with respect to the new control variables 
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The gradient of cost function with respect to z is 
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Compare (4), (7), (10) , we obtain 

JJ
x  B

z
                                                                                                 (11) 

Therefore, cost function (2) is minimized by iteration of (7) and (11). Note that B and x  

 

in (7) and (11) include extended background covariance and extended control variable. 
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        The GSI hybrid dual resolution DA is realized by three steps: 1) Ensemble forecast 

perturbations xk
e
 used for flow dependent covariance together with extended control  

variables ak are calculated at 9-km grid. 2) The background fields and analysis 

increment x' are calculated at 3-km grid. 3) A linear interpolation is performed between 

1) and 2) during DA minimization.  

        The ensemble for the hybrid ensemble-3DVAR system is updated by using an  

EnKF that is implemented as square root filter algorithm (EnSRF) (Whitaker and 

Hamill 2002) in this study. This EnKF code has been efficiently parallelized following 

Anderson and Collins (2007). In this algorithm, both the model state variables and the 

observation priors (the predicted observation variable ensemble members) are updated 

so as to avoid re-computing the forward operator after each observation is assimilated. 

The EnKF is interfaced with HWRF model by reading HWRF forecast data and 

outputting HWRF initial condition data. Meanwhile, the EnKF is interfaced with GSI 

3DVAR system by using GSI’s observation operators, pre-processing and quality 

control of assimilated data. In EnKF, sample covariance can be spurious due to 

sampling error related to limited ensemble size, model error, and other factors. To 

reduce spurious covariance, localization is used in the state update to limit the impact of 

observations to a specified distance (length scale) from the observation. The localization 

is realized through  polynomial function (Gaspari and Cohn 1999) equivalent to e
-r/c

 

where r is distance normalized by the length scale and c is a constant (0.388). In this 

study, the cut-off localization length scale is 450 km in the horizontal direction, 1.0 

scale height (neutral log of pressure) in the vertical direction,. In GSI hybrid system, the 
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ensemble covariance localization is realized by a recursive filter (Hayden and Purser 

1995). The corresponding covariance localization length scale can be calculated through  

(Gaspari and Cohn 1999) function eh LL
2

15.0
 . Le (450 km) and Lh (123 km) are 

EnKF and GSI hybrid localization length scales respectively. Note that the horizontal 

correlation length scale of GSI static covariance is reduced by a factor of 0.2, 0.4, and 

0.8. 

         Usually, the ensemble based data assimilation algorithm will quickly reduce 

ensemble spread (standard deviation) after assimilating observations. To mitigate quick 

reduction of the spread, the multiplicative inflation method (Whitaker and Hamill 2012) 

is applied in the EnKF. We define “prior (forecast/background)” and “posterior 

(analysis)” for the state variables before and after data assimilation respectively. The 

posterior ensemble perturbations are inflated by a factor proportional to the amount of  

the reduction of the ensemble covariance due to the assimilation of observations. 

(Whitaker and Hamill 2012) 












 1xx ''

new

a

af

a b



                                                                                (12) 

In Eq. (3), '

newx  is inflated posterior perturbation, 'x a
  is posterior perturbation, b is 

inflation factor set to 0.99 in this study, and 
f  and a  are prior and posterior standard 

deviations at each model grid, respectively.4.3 Experimental design 
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a. The HWRF model configuration 

      The Hurricane Weather Research and Forecasting system (HWRF) model is used in 

this study. The model is a non-hydrostatic primitive equation model using rotated-E 

grid dynamic core. In this study the HWRF ensemble is configured at single grid while 

HWRF control run is at either single or nested grid. The horizontal spacing is 9 km  

(224x448 grid points) for single grid and 9 km (224x448 grid points) and 3 km 

(157x322 grid points) for nested grids (Fig.4.3). All grids have 61 vertical levels with   

The model top at 2 hPa. The time step is 15/5 s for 9/3 km grids respectively. These 

configuration parameters are also used by Environmental Modeling Center (EMC) 

operational runs. The microphysics scheme is based on the Eta Grid-scale Cloud and 

Precipitation scheme (Ferrier 2005). Since the grid resolution may not fully resolve the 

hurricane convective features, the Simplified Arakawa-Schubert scheme (SASS) 

cumulus parameterization (Han and Pan 2011) is included. Other physics 

parameterizations schemes include non-local planetary boundary layer parameterization 
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Fig. 4.3 An example of the HWRF model domain. D01 and D02 denote 9 and 3 km 

grids respectively. 

 

(Troen and Mahrt 1986), surface layer parameterization (Sirutis and Miyakoda 1990) 

and Land/water surface parameterization scheme (Tuleya 1994), HWRF short wave 

(Lacis and Hanson 1974) and long wave (Fels and Schwarzkopf 1975; Schwartzkopf 

and Fels 1991) radiation parameterization schemes.  

 

b. The airborne radar data processing 
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      The radial velocity data retrieved from the tail Doppler radar aboard NOAA P-3  

aircraft are assimilated in this study. The airborne radar observations are collected and 

processed for data quality control during flight missions. The data quality control 

includes several passes such as removing the observations that represent a reflection off 

sea surface, subtracting the projection of aircraft motion on the radials, and radar 

Nyquist velocity de-aliasing by the Hurricane Research Division (HRD; Gamache 

2005). Then the data, encoded in Binary Universal Form for the Representation (BUFR) 

format, are sent off the aircraft for operational use. 

 

c. The data assimilation setup 

The data assimilation cycling and subsequent free forecast experiments were 

conducted for hurricane Irene (2011) for four NOAA aircraft missions. The TDR data 

were assimilated with the analysis time (also short forecast valid time) at the center of  

each flight leg. In other words, the TDR data were assimilated flight leg by flight leg. 

Other available observations such as SFMR, flight level onboard wind observations, 

and National Hurricane Center (NHC) best track, are used for verification. Various 

experiments are summarized in Table 4.1. Experiments differ based on what, if any, DA  

system is used for assimilating TDR data. Specifically, the experiments are designed to 

examine the influence of model resolution on the hurricane intensity and track forecast. 

The key technique is the dual resolution hybrid where ensemble covariance and 

extended control variable are calculated at 9 km grid and analysis (increment) is 

calculated at 3 km grid.  
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      All DA experiments consist of three stages. 1) Spinup forecast to produce  

background fields and flow-dependent covariance at the beginning of DA cycles (the 

center of first flight leg). EnKF ensemble initial and lateral boundary conditions (BCs) 

are interpolated from the experimental Global Forecast System (GFS)/EnKF ensemble 

(Hamill et al. 2011), a high-resolution version (T382L64) of the NCEP GFS. HWRF 

control runs (NoDA, GSI, and hybrid) use the average of initial and boundary 

conditions of EnKF ensemble members. GFS/EnKF ensemble forecast are initialized 

every 6 hour. TDR data are usually available around 00 UTC and 12 UTC with a time 

window of about 6 hours. Therefore the spinup forecast time can be 3-9 hours. 2) DA 

cycles for assimilation of TDR data leg by leg. The length of the analysis cycle, 

determined by flight time between the centers of two legs, is usually 1-1.5 hours. The 

DA time window varies 2-5 hours for 2-5 cycles.  3) An about 48-h deterministic  

forecast initialized by the analysis at the end of the assimilation cycles in stage 2. Table 

1 shows all experiments and their purpose performed in this study 
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Table 4.1 List of experiments 

Experiments Description Purpose 

dualHYB1way93 Hybrid analysis and free forecast are at 

9 and 3 km grids. The 9 km and 3 km 

Hybrid background covariances are 

estimated from ensemble forecast 

updated by EnKF at 9 km grid.  

Test if dual resolution 

hybrid DA is better 

than single resolution 

hybrid DA 

dualHYB2way93 The same as dualHYB1way93 except 

that EnKF analysis mean is replaced by 

9 km hybrid analysis.  

Test if the re-center 

method is better than 

others. 

sinHYBe1w9 Hybrid analysis and free forecast is at 9 

km single grid only. Hybrid background 

covariances are estimated from 

ensemble forecast in dualHYB1way93.  

Test single resolution 

hybrid 

DA 

sinHYBe1w93 The same as sinHYB1way9 except that 

9 km and 3 km nested grids are used 

during free forecast.  

compare single 

resolution hybrid DA 

with dualHYB1way93  

sinHYBe2w93 The same as sinHYBe1w93 except 

Hybrid background covariances are 

estimated from ensemble forecast in 

dualHYBe2w93.  

Compare single 

resolution hybrid DA 

with dualHYB2way93 

 

 

sinHYBe1w9 is a hybrid DA experiment using flow dependent covariance 

estimated from EnKF in one-way coupling. Single 9 km grid is used by HWRF model 

forecast and GSI analysis during spinup, DA cycling, and free forecast. Results from 

sinHYBe1w9 show how flow dependent covariance works. This experiment is a control 

run to be compared with all others. 
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sinHYBe1w93 is similar to sinHYBe1w9 with exception that 9/3 km nested 

grids are used for free forecast.  

dualHYBe2w93 is a hybrid DA experiment using flow dependent covariance 

estimated from EnKF in two-way coupling. Nested 9/3 km grids are used by HWRF 

model forecast and GSI analysis during spinup, DA cycling, and free forecast. The 

EnKF ensemble perturbations and extended control variables remain at 9 km grid for 3 

km analysis.  

dualHYBe1w93 is similar to dualHYBe2w93 with exception that one-way 

coupling used between EnKF and hybrid.  

Compared with early studies where same domain coverage is used by high 

(control run) and low (ensemble members) resolutions, using nested grids should be a 

cheaper method. Results from dualHYBe2w93 show how a combination of dual 

resolution, nest grids and two-way coupling works best. Additional experiments are 

performed to evaluate various configurations of forecast and analysis. 

 

4.4 Results and discussion  

 

a. Single observation test for equivalence between EnKF and Hybrid 

        As discussed in Section 2, a recursive filter is used by the hybrid 3DVAR while the 

Gaspari and Cohn (1999) fifth-order correlation function is used by EnKF for 

covariance localization. We configure and tune correlation length scales in hybrid  

3DVAR and EnKF based on Gaspari and Cohn (1999) function so that the hybrid  
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3DVAR and EnKF may use equivalent localization. 

 

 

Fig. 4.4 Vertical cross sections of the wind speed increment (interval of 1 m s
-1

) using a 

single radial velocity with an innovation of 8 m s
-1

 located at (34.78
o
N,  76.78

o
W; 535 

hPa) for 2130 UTC 25 August 2011. Axis are marked by vertical levels and horizontal 

grid points. 

 

             Figure 4.4 shows the cross section of wind speed analysis increment from EnKF 

(Fig. 4.4a) and hybrid 3DVAR (Fig. 4.4b) using a single radial velocity with an 

innovation of 8 m s
-1

. The overall increment patterns of EnKF and hybrid are very 

similar. Specifically, in both EnKF and hybrid 3DVAR, a maximum increment of about  

6 m s
-1

 is found at level 30 and grid 44. The 1 m s
-1

 increment touches surface (level 0) 

and reaches level 38. At about level 30, the 1 m s 
-1 

increment is found horizontally 

from grid 12 to grid 57. We also can see other increment contour lines such as 2, 3, 4, 5 

m s
-1

 show very similar for location and shape. The similarity here is consistent with 
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that between EnKF and hybrid 3DVAR in Zhang et. al (2013), where a 1-K innovation 

is used. 

 

b. Wind and temperature analysis increments 

           To evaluate the impact of dual resolution interpolation from 9 km grid to 3 km 

grid, we first look at the structure and magnitude of wind analysis increments. Fig.4.5 

shows the 700 hPa wind increments with background from nested 9 km (Fig. 4.5a) and 

3 km (Fig. 4.5b) grids for first DA cycle that assimilates radial velocity from first flight 

leg. Both analyses use the same 9 km grid forecast ensemble perturbations for 

covariance estimation. Meanwhile the 9 and 3 km grid background may be generally 

similar as two-way nested method is applied. The main difference between 9 and 3 km 

analysis is caused by dual resolution interpolation L, innovation y
0’

, and H(x). We can 

see both increments show similar cyclonic increment near observed hurricane center. 

The increment patterns over other places are also close to each other. But the increment 

magnitude of 3 km grid (Fig. 4.5b) is obviously larger than that of 9 km grid at east and 

west sides of eye walls as higher resolution can capture more detailed features such as 

peak values. Based on these similarity and difference, we can deduce the dual resolution 

algorithm is effectively working.    
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Fig. 4.5 The 700 hPa wind analysis increments (interval of 5 m s

-1
) with background 

from nested grids at (a) 9 km, (b) 3 km at 0930 UTC 26 August 2011. 

 

      Because only radial velocity data is assimilated in this study, any increment in 

temperature is a result of balance relationship applied (if any) and/or due to cross 

covariance in the background error. Fig. 4.6 shows the 700-hPa temperature increments 

for dualHYBe2w93 (Fig. 4.6a) and sinHYBe1w9 (Fig. 4.6b) after assimilating radial 

velocity data for the first cycle. First of all, both dualHYBe2w93 and sinHYBe1w9 

have warming core increment, with maximum ranging from 0.5
o 

to 1
o
, near the 

observed hurricane center indicated by a cross sign. Based on the hydrostatic  
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Fig. 4.6  The 700 hPa temperature analysis increments (at intervals of 0.5 K) for (a) 

dualHYBe2w93, (b) sinHYBe1w9 at 0930 UTC 25 August 2011. 

 

relationship in core region the hurricane central pressure is negatively proportional to 

the temperature. In addition, gradient wind is the first order approximation. Therefore 

this warming core increment is consistent with cyclonic wind increment as both of them 

result in an enhancement of weaker background hurricane. Though we cannot make 

conclusion which experiment is better based on the temperature increment magnitude, 

the increment structures show that dualHYBe2w93 (Fig. 4.6a) contains more detailed  

hurricane like spiral bands than sinHYBe1w9 in the eye wall and outer area. We know 

small scale convections exist in hurricane circulation and are very important for 

hurricane sustaining. For this aspect, dualHYBe2w93 is superior to sinHYBe1w9. We 
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speculate such an advantage of dualHYBe2w93 comes from higher resolution 

background and corresponding innovation as covariance is of the same resolution for 

both experiments. 

 

c. The hurricane structures 

          We now examine the structure of the hurricane at the end of the DA cycles at 1  

 

 
 

 

Fig. 4.7 Wind vector and speed (shaded, interval of 10 m s
-1

) at 1-km height. (a) HRD 

TDR Vr analysis. The final analyzed wind for (b) dualHYBe2w93, and (c) 

sinHYBe1w93 at 1300 UTC 26 September 2011. 

 

 

km height and at vertical cross section through the analyzed hurricane center at 13 UTC 

26 Aug. 2011. The model winds from dualHYBe2w93 and sinHYBe1w93 

(sinHYBe1w9 using the same analysis as sinHYBe1w93) are compared with the three  

dimensional hurricane-relative wind analysis derived by HRD based on the quality-

controlled TDR radial velocity. Fig. 4.7 shows the model wind and TDR Vr wind  
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analysis at 1 km height. The Vr wind analysis covers most area of the hurricane inner 

core with maximum wind speed at northeast quadrant to the hurricane center. Similar to 

Vr wind analysis, maximum wind speed in dualHYBe2w93 and sinHYBe1w93 was 

also located northeast quadrant to the hurricane center. The maximum wind speed (50 - 

60 m s
-1

) in dualHYBe2w93 covers larger area and also closer to Vr wind analysis (50 – 

60 m s
-1

) than sinHYBe1w93. Therefore, dual resolution is superior to single low 

resolution for 1 km wind analysis.  

 

 

Fig. 4.8 Vertical cross section of wind speed (interval of 10 m s
-1

, shaded). (a) HRD 

TDR Vr analysis. The final analysis wind for (b) dualHYBe2w93, and (c) 

sinHYBe1w93 at 1300 UTC 26 September 2011. Error! Reference source not found. 

 

  Figure 4.8 shows the vertical cross sections of horizontal wind speed and potential 

temperature for TDR Vr wind analysis, dualHYBe2w93 and sinHYBe1w93 final 

analysis at 13 UTC 26 Aug. 2011. The locations of cross sections are west-east through 

the analyzed hurricane center. First, the potential temperatures in eye region bend down 

for both dualHYBe2w93 and sinHYBe1w93 with an exception that sinHYBe1w93 has 

a little flat contour line above 14 km. This reflects the warm core with sinking motion  
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and therefore is consistent with existing theory. In Vr wind analysis, the hurricane eye is 

clearly shown with maximum wind speed on east eye wall where the large wind for 50 

– 60 m s
-1

 is below 4 km height. Similar to Vr wind analysis, in dualHYBe2w93 and 

sinHYBe1w93, there is also large wind for 50 – 60 m s
-1

 on east eye wall below 4 km 

height. However, the area of 50-60 m s
-1

 wind in dualHYBe2w93 is larger and closer to 

Vr analysis than that in sinHYBe1w93. Based on both horizontal and vertical wind 

analysis, dualHYBe2w93 is better than sinHYBe1w93. 

              The experiments dualHYBe2w93, sinHYBe1w93, and sinHYBe1w9 are 

further evaluated by inter-comparison and comparison between model forecast winds 

and Vr analysis during forecast. Specifically, we compare 11 hour HWRF forecast 

winds with Vr analysis winds at 00 UTC 27 Aug. 2011. Fig. 4.9 shows the model wind 

and TDR Vr wind analysis at 1 km height. The Vr wind analysis roughly shows the 

hurricane inner core area with maximum wind speed at northeast quadrant (50-60 m s
-

1
). Similar to Vr wind analysis, maximum wind speed in dualHYBe2w93 was also 
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Fig. 4.9 Wind vector and speed (interval of 10 m s
-1

, shaded) at 1-km height. (a) HRD 

TDR Vr analysis. The HWRF forecast wind for (b) dualHYBe2w93, (c) sinHYBe1w93, 

and (d) sinHYBe1w9 at 0000 UTC 27 September 2011. 

 

 located northeast quadrant (50-60 m s
-1

). On contrary, the large wind speed (50 - 60 m 

s
-1

) in sinHYBe1w93 almost forms a circular around hurricane center, significantly 

different from Vr analysis. Moreover, the maximum wind (>60 m s
-1

) is found at south 

of the center rather than northeast. The sinHYBe1w9 shows too weak wind speed (< 40 
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m s
-1

) that is consistent with its higher CSLP. Based on these comparisons 

dualHYBe2w93 forecast wind is better than both sinHYBe1w93 and sinHYBe1w9. 

         Figure 4.10 shows the vertical cross sections of forecast horizontal wind speed and  

                  

 

Fig. 4.10 Vertical cross section of wind speed (interval of 10 m s-1, shaded). (a) HRD 

TDR Vr analysis. The HWRF forecast wind for (b) dualHYBe2w93, (c) sinHYBe1w93, 

and (d) sinHYBe1w9 at 0000 UTC 27 September 2011. 

 

 

potential temperature for dualHYBe2w93, sinHYBe1w93, and sinHYBe1w9, as well as 

TDR Vr wind analysis at 00 UTC 27 Aug. 2011. The locations of cross sections are  
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west-east through the analyzed hurricane center. In Vr wind analysis, the hurricane eye 

is clearly shown with low wind speed less than 10 m s
-1

 at the center and maximum 

wind speed (50 – 60 m s
-1

) on east eye wall. Similar to Vr wind analysis, in 

dualHYBe2w93, there is also large wind for 50 – 60 m s
-1

 on east eye wall. On the 

contrary, sinHYBe1w9 shows too small wind speed with maximum wind less than 40 m 

s
-1

. Meanwhile, the eye defined by wind speed less than 10 m s
-1

 is only found below 6 

km. And the potential temperature contour lines above 10 km is much flattened 

compared with that in dulHYBe2w93. Both temperature and wind in sinHYBe1w9 

show a weaker hurricane than Vr analysis. While sinHYBe1w93 shows similar 

magnitude of maximum wind (50-60 m s
-1

) on east eye wall the coverage of such 

maximum wind extends up to 8 km height that is higher than counterpart in Vr analysis 

and dualHYBe2w93. We can also conclude that dualHYBe2w93 is better than 

sinHYBe1w93 and sinHYBe1w9 based on comparison among forecast wind and Vr 

analysis. 

          Base on CSLP and maximum wind forecast we can see sinHYBe1w9 produces  

weakest hurricane (weaker than best track) and intensities from dualHYBe2w93 and 

sinHYBe1w93 are mixing. Moreover the trend of forecast intensities from 

dualHYBe2w93 and sinHYBe1w93 generally follow the best track which is consistent 

with above hurricane structure comparison. 

 

d. The precipitable water 

        In the previous sections, we see that the forecast winds in the sinHYBe1w9 are  
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weaker than that in dualHYBe2w93 and sinHYBe1w93. We speculate that simulated 

hurricanes in all these three experiments share the same environment such as large scale 

air flow and sea surface conditions. It is recognized that the same sea surface condition 

(e.g., sea water temperature) may affect hurricane differently due to various factors 

(e.g., surface wind). Nevertheless we examine other model fields such as precipitable 

water that may explain wind difference. We assume high precipitable water is related to 

large latent heating and then enhances hurricane intensity such as maximum winds. Fig. 

4.11 shows precipitable water for dualHYBe2w93, sinHYBe1w93, and sinHYBe1w9. 

For precipitable water at final analysis at 1300 UTC 26 Aug. 2011, all dualHYBe2w93 

(Fig. 4.11a), sinHYBe1w93 (Fig. 4.11b), and sinHYBe1w9 (Fig.4.11c) show hurricane 

like spiral bands. Generally speaking, the magnitude of precipitable water in 

dualHYBe2w93, sinHYBe1w93, and sinHYBe1w9 are similar where the maximum 

precipitable water in dualHYBe2w93 and sinHYBe1w93 (the same as sinHYBe1w9) is 

a little larger than 90 mm. The dualHYBe2w93 with dual resolution analysis shows 

more detailed small scale convective features than sinHYBe1w93 with low resolution 
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Fig. 4.11 Precipitable water (interval of 5 mm) for final analysis by (a) dualHYBe2w93, 

(b) sinHYBe1w93, and (c) sinHYBe1w9 at 1300 UTC 26 September 2011 and forecast 

by (a) dualHYBe2w93, (b) sinHYBe1w93, and (c) sinHYBe1w9 at 0000 UTC 27 

September 2011. 

 

analysis. For the 12-h forecast at 00 UTC 27 Aug. 2011, sinHYBe1w9 (Fig. 4.14f) 

shows much smoother and smaller precipitable water than dualHYBe2w93 (Fig. 4.11d)  

and sinHYBe1w93 (Fig. 4.11e). Specifically, the hurricane like spiral bands are found 

only in dualHYBe2w93 and sinHYBe1w93. The maximum precipitable water in 

dualHYBe2w93 and sinHYBe1w93 is about 90 mm while that in sinHYBe1w9 is about 

80 mm. Recall that the 12-h wind forecast in sinHYBe1w9 (Fig. 4.10) is also obviously  
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smaller and smoother than dualHYBe2w93 and sinHYBe1w93. Thus the wind and 

precipitable water forecast are consistent with each other. We deduce latent heating that 

is positively proportional to precipitable water may play important role for hurricane 

intensity.  

          Having much difference of precipitable water, sinHYBe1w9 and sinHYBe1w93 

share all settings except dual and single resolutions as well as cumulus parameterization 

turned on for sinHYBe1w9 and off for 3 km grid of sinHYBe1w93. To evaluate the 

cumulus parameterization contributing to precipitable water, a modified sinHYBe1w9 

experiment with cumulus parameterization turned off was carried out and shows only 

small change of precipitable water compared with original sinHYBe1w9. Thus we 

speculate dual resolution may be major factor causing different precipitable water 

between sinHYBe1w9 and sinHYBe1w93. 

 

e. The track and intensity forecast RMSEs 

         To further evaluate the quality of analyses produced by different DA methods 

including dualHYBe2w93, dualHYBe1w93, sinHYBe1w93, and sinHYBe1w9, 

deterministic forecasts initialized from the final analyses at 12 UTC 24, 12 UTC 25, 00 

UTC 26, and 12 UTC 26 are launched. The 48 hours track forecasts based on the at 6-h 

interval output of four cases are verified by calculating RMSE against NHC best track 

in Fig. 4.12a. The position of the forecast hurricane of our experiments is defined by 

HWRF utility “GFDL Vortex Tracker”. The initial track errors are about 20-30 km for 

all four experiments. With some oscillation, the track errors increase with forecast lead  
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time. No matter what level of the errors among four experiments is, it is clearly seen 

that the forecast track errors increase in order of dualHYBe2w93, dualHYBe1w93, 

sinHYBe1w93, and sinHYBe1w9. By the end of the 48 hours forecast, the track errors 

are 80, 95, 110, and 135 km for dualHYBe2w93, dualHYBe1w93, sinHYBe1w93, and  

 

 

Fig. 4.12 Deterministic forecast RMSEs for (a) tracks and (b) central sea level pressure 

(hPa), (c) maximum wind by dualHYBe2w93, dualHYBe1w93, sinHYBe1w93, and 

sinHYBe1w9 as compared to NHC best track estimates from 1300 UTC 26 through 

1200 UTC 28 August 2011. 

 

sinHYBe1w9 respectively. Given that our DA experiments do not include 

environmental observations, the main effect on the track should come from the changes 

to the inner core structure of the analyzed hurricane that is related to different analysis 

methods. We may deduce that, in terms of track forecast, dual resolution is better than 

single coarse resolution for either DA step or free forecast. And two-way coupling is 

better than one-way coupling. Using the same numerical model and observations 
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assimilated, better DA method results in better analysis and further produces smaller 

track forecast errors. 

         The forecast CSLP RMSEs are shown in Fig. 4.12b. It is seen that CSLP RMSEs  

ranges from 6-8 hPa for all experiments of dualHYBe2w93, dualHYBe1w93, 

sinHYBe1w93, and sinHYBe1w9. As forecast lead time increases, the RMSEs depart 

for experiments that CSLP RMSE for sinHYBe1w9 grows up to 18 hPa while the 

RMSEs for the other three experiments still range from 4-8 hPa at 48 hour forecast lead 

time. For most forecast valid time dualHYBe2w93 produces smallest CSLP RMSEs 

while sinHYBe1w9 has largest RMSEs. It is noted that comparison between 

dualHYBe1w93 and sinHYBe1w93 is mixing. We further examine maximum wind 

RMSEs (Fig. 4.12c). It is found that the error levels increase in the order of 

dualHYBe2w93, dualHYBe1w93, sinHYBe1w93, and sinHYBe1w9 for most forecast 

lead times. We notice maximum wind RMSE for sinHYBe1w9 is largest though it does 

not depart from others too much as in CSLP RMSEs. Based on both CSLP and 

maximum wind RMSEs, dualHYBe2w93 performs best and sinHYBe1w9 is worst.    

 

4.5 Summary and conclusions 

            In this study, the GSI 3DVar‐based hybrid EnKF‐Var data assimilation system 

including both the Var and EnKF components were expanded to HWRF for the 

prediction of hurricanes Irene (2011). In the hybrid DA system, the flow-dependent 

ensemble covariances were estimated from an EnKF-generated ensemble and 

incorporated into the variational minimization by using the extended control variable 
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method. Forecasts of a 40 member ensemble and control runs are performed. The 

analysis ensemble is generated by updating each forecast ensemble member with EnKF  

in a manner of a serial implementation of the square root ensemble Kalman filter 

(EnSRKF) system. The NOAA P-3 air borne Doppler radar radial velocity is for first 

time assimilated by this EnKF system, which is interfaced with GSI by using the same  

data quality control and observation operator. In GSI system, the radar data thinning  

method is further enhanced (e.g., fore and aft sweeps are separated when thinning). 

Thus in a three dimensional box two radial velocities are selected from two different 

directions (e.g., 50
o
 from each other). Such an enhanced part of the thinning method is 

implemented into EMC operational data assimilation system.     

      The tail Doppler radar radial velocity is assimilated leg by leg of an NOAA P-3 

flight missions around 12 UTC 24, 12 UTC 25, 00 UTC 26, 12 UTC 26 Aug. 2011. We 

examine the difference of using dual resolution and single resolution methods when 

assimilating airborne radar observations by comparing both analysis and forecast with 

various kinds of observations. The examinations are based on four experiments in this 

study. A DA experiment sinHYBe1w9 is a hybrid DA experiment using flow dependent 

covariance estimated from EnKF in one-way coupling between EnKF and hybrid. 

Single 9 km grid is used by HWRF model forecast and GSI analysis during spinup, DA 

cycling, and free forecast. Results from sinHYBe1w9 show how flow dependent 

covariance works. This experiment is a control run to be compared with all others. 

sinHYBe1w93 is similar to sinHYBe1w9 with exception that 9/3 km nested grids are 

used for free forecast.  

dualHYBe2w93 is a hybrid DA experiment using flow dependent covariance  
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estimated from EnKF in two-way coupling. Nested 9/3 km grids are used by HWRF  

model forecast and GSI analysis during spinup, DA cycling, and free forecast. The 

EnKF ensemble perturbations and extended control variables remain at 9 km grid and 

all other steps are performed at 3 km grid during DA minimization so that computation  

is reduced. dualHYBe1w93 is similar to dualHYBe2w93 with exception that one-way  

coupling used between EnKF and hybrid.  

                 The results of analyses and forecasts from the four experiments are verified 

against best-track data, radar wind measurements. The main conclusions are 

summarized in the following. 

          Comparison between dual resolution and single resolution increments shows that 

dual resolution produces more detailed TC-like spiral bands structures than single low 

resolution, while the overall patterns of increment are alike between them (e.g., both has 

warm core increment). Case study shows dual resolution forecast wind is closer to radar 

composite wind than single resolution forecast wind though dual and single resolutions 

produce similar analysis wind. These demonstrate dual resolution method works well 

and is superior to single resolution. 

               The track forecast root mean square errors (RMSE) based on 4 cases and NHC 

best track are compared among four experiments. The error level at all forecast leading 

times increases with experiments of dualHYBe2w93, dualHYBe1w93, sinHYBe1w93, 

sinHYBe1w9. It means, for track forecast, two-way coupling is better than one-way 

coupling. Dual resolution analysis is better than single resolution analysis. Nested grids 

are better than single low resolution for free forecast.     

       We use central sea level pressure (CSLP) and maximum wind to evaluate the  
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hurricane intensity forecast. For central sea level pressure RMSE, dualHYBe2w93 

performs best with least RMSE at most forecast lead times. Meanwhile, sinHYBe1w9 

produces largest RMSE for almost all forecast lead time. The comparison between 

dualHYBe1w93 and sinHYBe1w93 is mixing. Yet dualHYBe1w93 and sinHYBe1w93 

are much closer to dualHYBe2w93 than to sinHYBe1w9 in terms of CSLP RMSE. We 

may draw that dual resolution analysis and forecast is superior to single resolution as  

the former can process more detailed feature than the latter.   

         Maximum wind RMSEs among four experiments do not show as much difference 

as CSLP RMSEs. Even so, we still can see dualHYBe2w93 and dualHYBe1w93 

perform better than sinHYBe1w9. The performance of sinHYBe1w93 is between them. 

The dual resolution again is better than single resolution for maximum wind forecast.   

               Through one Vr observation test, we see that the analysis increment 

sinHYBe1w9 and EnKF are very similar to each other. There are a little more 

difference between sinHYBe1w9 and EnKF when many observations are used. This 

may be caused by the complex interactions among data and DA methods. We need to 

do further investigation on the compatibility between sinHYBe1w9 and EnKF. 

        We note that this study represents the first attempt of applying the GSI 3DVar‐

based dual resolution hybrid EnKF‐Var data assimilation method interfaced with 

HWRF model to hurricane and radar data assimilation. We also note that the above 

conclusions and findings are based on only 4 flight mission of a hurricane 

reconnaissance. This paper may be considered as a pioneer of afterwards research for 

many hurricane cases and operational runs with the same procedures presented here.   
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Chapter 5       

Summary and Future Plan 

 

5.1 General Summary 

         Atmospheric data assimilation that combines observation and forecast model state 

can provide initial condition for weather forecast numerical models. The quality of the 

initial conditions relies on greatly the data assimilation algorithms. Traditional 3DVAR 

used static background error covariance that usually is a statistics of history atmosphere 

state. Therefore such a covariance does not reflect current atmosphere flow and is not 

suitable for weather systems such as hurricane. Recently Ensemble Kalman filter (EnKF) 

is applied for atmosphere data assimilation, where ensemble forecasts are used to estimate 

and evolve flow-dependent error covariance statistics. While EnKF using flow-dependent 

covariance is superior over traditional 3DVAR using static covariance, it is not easy to 

incorporate constraints into EnKF. Now the ensemble variational (EnsVar) method is 

developed and applied for atmosphere data assimilation. In ensemble variational method 

static covariance is replaced (or partly) by flow dependent covariance calculated from 

ensemble forecasts. Therefore ensemble variational method takes advantages from both 

EnKF and variational method. In this research we refer ensemble variational method also as 

hybrid. Today ensemble variational method has several combinations. For example, both 

ensemble and variational methods are three dimensional. Second, ensemble is four 

dimensional but variational method is three dimensional. Also ensemble is three 

dimensional and varitional is four dimensional. For terminologies and differences among  

these combinations, please see Wang and Lei 2014.  In this research we mainly use three  
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dimensional ensemble and variational method, which is very easily modified to include four 

dimensional ensemble. Ensemble variational method is one of the most popular data 

assimilation methods among the research community today. 

            One of the important applications of hybrid method is numerical analysis and 

prediction of hurricanes. Study of hurricane has not only practical but also theoretical 

significances. Hurricane could make tremendous damage of property and life. Meanwhile 

further investigation for hurricane formation, development, structure, and movement is still 

needed.  

       Radar is one of the most important observations for hurricane as there is little or 

none of other observations oversea. While radar could provide spatially and temporarily 

dense data, it is still a challenge to assimilate it. Both radar radial velocity and reflectivity 

are not model state quantity. Proper assimilation method is naturally required.  

      This research consists of advanced data assimilation methods such as EnKF and 

ensemble-variational algorithms. The first part is for ground based radar WSR 88D data 

assimilation and the second and third parts are for airborne tail Doppler radar data 

assimilation. WSR 88D radar radial velocity data is assimilated by the WRF ensemble-

3DVar hybrid system for the prediction of Hurricane Ike (2008). The airborne tail 

Doppler radar radial velocity data is assimilated by GSI-based hybrid EnKF 3DVar 

system for the prediction of Hurricane Irene (2011).    

            In Chapter 2 of this research, the WRF hybrid ensemble-3DVAR data 

assimilation (DA) system is applied for the first time to the assimilation of radial 

velocity data for a landfalling hurricane. Basically, radial velocity data from two land 
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base WSR-88D radars along the Gulf of Mexico coast are assimilated after Hurricane 

Ike (2008) moved into the coverage of the two radars. 

      We conducted five experiments including a forecast experiment without 

assimilating any radar data or other observation is initialized directly from the 

operational GFS analysis; 3DVAR methods that use the static covariance; the hybrid 

DA system using purely flow-dependent background covariance or using half static and 

half flow-dependent covariance, respectively. The main conclusions are summarized in 

the following. 

      For temperature analysis, hybrid method produces hurricane warm core structure 

with positive temperature increment at the center. On the contrary, 3DVAR method 

produces negative temperature anomalies at lower levels in the eye region with much 

weaker and smoother temperature increments that are negative at the center of 

hurricane. All three radar DA experiments created analyses that fit the Vr data well. 

Most of the minimum sea level pressure reduction is achieved through WRF model 

adjustment during the short forecast step of the assimilation cycles 

     Compared with experiments without radar DA, the hybrid experiments improve the 

Ike track forecast slightly. All radar DA experiments produce intensity forecasts closer 

to the NHC best track observation.  

      Compared with 3DVAR method, hybrid produces much better fit of forecast radial 

velocity to radar observations. This means hybrid analysis is of overall better quality 

than 3DVAR, producing more dynamically consistent state estimations that lead to later 

slower error growth during forecast. The equitable threat scores (ETSs) for 3-hour 

accumulated precipitation forecasts in the hybrid experiments are higher than those of 
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3DVAR for the thresholds and lead times considered indicating again the superior 

quality of the hybrid DA method. We also notice that combination of half static and half 

ensemble background covariance did not improve the results over pure flow-dependent 

covariance.  

      In Chapter 3 of this research, the GSI 3DVar‐based hybrid EnKF‐Var data 

assimilation system including both the Var and EnKF components were expanded to 

HWRF for the prediction of hurricane Irene (2011). We couple EnKF and GSI 3DVar 

to provide the flow-dependent ensemble covariances into the variational minimization 

by using the extended control variable method. A serial implementation of the square 

root ensemble Kalman filter (EnSRF) system is used to update each forecast ensemble 

member. To the author’s best knowledge, the air borne Doppler radar radial velocity is 

for first time assimilated by this hybrid system. In GSI system, the original radar data 

thinning method is further enhanced. Such an enhanced part of the thinning method is 

transferred and implemented into EMC operational data assimilation system.     

          The tail Doppler radar radial velocity is assimilated for an NOAA P-3 flight  

mission on 25 – 26 August 2011. We compared the results from hybrid method using 

flow-dependent with the results from 3DVAR using static background covariance. Four 

experiments are carried out in this study including a forecast experiment without 

assimilating any radar data initialized directly from the global GFS analysis; a GSI 

3DVAR using the static covariance; the GSI hybrid DA system using purely flow-

dependent background covariance; and EnKF. The results of analyses and forecasts 

from the four experiments are intercompared and compared with EMC operational 
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forecast, NHC best-track data, radar wind measurements, in situ data, and remote 

sensed observations. The main conclusions are summarized in the following. 

          Verified with observation, we found that the hybrid analyses using flow 

dependent covariance successfully capture the inner-core structure of the hurricane 

vortex. Compared with 3DVAR and EMC operational forecast, GSI hybrid and EnKF 

initialized by assimilating airborne radar observations improved the hurricane track and 

intensity forecasts.   

        In chapter 4 of this research, we investigated dual resolution method. A series of 

experiments were performed including hybrid DA experiment using flow dependent 

covariance estimated from EnKF in one-way or two way coupling manner; hybrid DA 

dual resolution experiment with ensemble covariance at 9 km grid and analysis at 3 km 

grid; experiment with DA cycling at 9 km grid and free forecast at 9/3 km nested grids.  

        Comparison between dual resolution and single resolution increments shows that 

dual resolution produces more detailed TC-like spiral bands structures than single low 

resolution. Compared with radar wind composite for a case study, dual resolution 

forecast wind is better than single resolution forecast wind. This demonstrates dual 

resolution method is superior to single resolution. 

        Based on the NHC best track and for model forecast track, two-way coupling is 

better than one-way coupling. Dual resolution analysis is better than single resolution 

analysis. Nested grids are better than single low resolution for free forecast.     

       Central sea level pressure and maximum wind RMSE is used to evaluate the 

hurricane intensity forecast. According to central sea level pressure RMSE, dual 

resolution method using 9/3 km grids at all performs best with least RMSE at most 



115 

 

forecast lead times. Meanwhile, single resolution method using 9 km grid at all 

produces largest RMSE for almost all forecast lead time. Maximum wind RMSEs also 

show the dual resolution again is better than single resolution for maximum wind 

forecast. Therefore we may draw that dual resolution analysis and forecast is superior to 

single resolution as the former can process more detailed feature than the latter.     

 

5.2  Future plan 

     While many experiments had been carried out during last several years, some 

additional research is still needed. It is supposed that using flow dependent covariance 

should result in better analysis and subsequent forecast than using static covariance. We 

still need to do more diagnostic based on existing simulations. The dual resolution 

analysis for 3DEnsVar is an interesting topic. The advantage of dual resolution analysis 

is that ensemble members can be at coarse grid and variational analysis is performed at 

fine grid. The capability is already available in this data assimilation system. We just 

use the same data and procedure to compare the results from single resolution and dual 

resolution analysis.  Furthermore, we will assimilate satellite data such as radiance and 

wind, drop sounding data, and so on with this method.  
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