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CHAPTER I 

INlRODUCTION 

Background 

A very basic computer architectural principle, which was 

proposed by von Neumann in 1945, has been used successfully for 

almost 40 years. The development of von Neumann computers has 

grown amazingly. ~ Very Large Scale Integration (VLSI) technology 

has enormously improved the processor capabilities and drastically 

reduced the cost of implementing a CPU. 

The growth rate never has satisfied completely the newer and 

more complex applications developed for computer systems. The 

nature of both data and processing tasks is changing. Vast quantities 

of nonnumeric data, such as sentences, symbols, speech, graphics and 

images are handed. Processing requirements are becoming more 

demanding w'ith artificial intelligence applications than scientific 

calculation [ 4 7]. Some difficulties have surfaced from the historical 

comp~ter design which uses only one CPU. Two main difficulties are 

in the realms of software programming and ,processor performance 

[33]. A semantic gap exists between the von Neumann programming 

languages and the problems in the real world. The approaches to 

increase the speed of conventional architectures have reached theu 

hmit and fail to take advantages of electronic technology. 

1 
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However radical advances in technology and programming 

languages continue to open new possibilities for computer 

architectures. Progress toward some new computer architectures 1s 

expected to be made quickly [47]. 

One kind of architectures under consideration is parallel von 

Neumann machine which is a number of sequential processors tied to 

a single memory (shared memory) or each with its own memory 

(distributed memory). This architecture has attracted wide interest, 

but has many drawbacks. Interdependencies of instructions in 

programs reduce the opportunity for a conventional multiprocessor 

to attain a high level of concurrence. Interdependencies between 

address spaces of processes causes a processor-memory 

interconnection problems. 

ConventiOnal languages such as Fortran are based on a global 

state model of computer operation, these languages are unsuitable 

for the next generation of computers, and can eventually be 

abandoned for VLSI scientific computation. Now functional, or 

applicative, programming languages and dataflow models of 

computation are the only known foundation appropriate for a 

computer base language [20]. 

A possible solution to the problem of efficiently exploiting 

concurrence of computation on a large scale is dataflow architectures, 

which show promise of making use of VLSI and parallelism. They 

are compatible with modern concepts of program structure; 

therefore, they should not suffer from the difficulties of 

programming that have hampered other approaches to highly 

parallel computation [20]. 
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Highly concurrent computation is a natural consequence of the 

dataflow concept [20]. In a dataflow computer, an instruction is 

ready for execution as soon as all its operands have arrived. There 

is no concept of control flow. Dataflow computers do not have 

program location counters. Many instructions of a dataflow program 

may be available for execution at once. 

There exists a widespread agreement that future generation 

computers should have at least the following features [ 49]: 

i) high parallelism and scalability exploiting the potentialities 

of VLSI (Very Large Scale Integration) and communication tech­

nologies; 

ii) efficient and reliable support to very high level 

programming languages, logic and/or functional and object oriented. 

Many computer scientists believe that the next generation of 

computers will be based on a non-von Neumann architecture. The 

fifth-generation architectures possible include both data-driven and 

reduction computers [48]. 

Because the research topic of this thesis is based on the 

dataflow architectures, in the next chapter the dataflow architectures 

will be dtscussed in detail. 

Project Motivation 

The idea of data-driven computation is old [30] [ 41]. Only m 

recent years have architectural schemes developed because of their 

attractive anticipated performance and their capability of supporting 

general user languages. Research on data flow is in progress in at 
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least a dozen of laboratories in the US, Europe, and Japan. Several 

dataflow computers have been built, and more hardware projects are 

being planned. 

Sorting is very frequently a fundamental data processing step. 

Much effort has been devoted to improve sorting algorithms because 

of it's practical importance as well as its theoretical interest [28]. 

Sorting may be one of the ftrst large scale uses of dataflow in the real 

world. The use of dataflow architectures for performance 

improvement of sorting is a very attractive area of research in 

computer science. It can accelerate development of dataflow 

computer from resear,ch period to its practical application period. 

"Do the dataflow architectures improve the sorting algorithms?" 

and "How to improve the sorting algorithms on the new 

architectures? " are the new research problems which confront us. 

Terminology 

Control-driven computers: a computer in which an instructions 

is ready for execution as soon as it is selected by program counter. 

Data-driven computers: a computer in which an instruction is 

ready for execution as soon as all its operands have arrived. 

Demand-driven; i.e , reduction computers: a computer in which 

the requirement for a result tnggers the operation that will generate 

it. 

Computation rule: the rule which selects a subset of 

instructions in the program for possible execution. 
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Firing rule: the rule for making a decision whether to execute 

an instruction based on examination of each instruction's actual 

arguments. 

Static dataflow architecture: a dataflow architecture which 

allows at most one token per arc in a dataflow graph. 

Dynamic dataflow architecture: a dataflow architecture which 

tags each token and keeps them in a common pool of storage. 

Sorting: a process to arrange items in a set according to a 

predefined ordering relation. 

Internal sorting algorithms: , sorting algorithms which arrange 

data in main memory. 

External sorting algorithms: sorting algorithms which arrange 

data in external storage. 

Problems Described and Discussed 

Chapter II gives a preliminary literature review. Chapter III 

contains the relationships among dataflow architectures and sorting 

algorithms. In Chapter IV two dataflow sorting machines are 

designed and the dataflow database machines is introduced. Chapter 

V present the summary, conclusions and suggested future research. 



CHAPTER II 

PRELIMIMAR Y LITERATURE REVIEW 

About 20 years ago, R. M. Karp and R. E. Miller [30], J. Rodriguez 

at MIT and D. Adams at Stanford [41] begin to work on research that 

eventually led to the development of concepts in dataflow systems 

[1]. The first designs by J. B. Dennis [21] and J. Rumbaugh [42] were 

made at MIT. The first dataflow computer began work in July, 1976 

[19]. Important advances have been made since that time. Many 

researchers are investigating dataflow concepts as an alternative to 

von Neumann systems and languages. Comparison of dataflow 

computers are in [20], [26] and [44]. Excellent surveys can be found 

in [48], [51] and [52]. 

Control Flow, Dataflow and Reduction 

There are two types of data flow architectures: data-driven and 

demand-driven (reduction) [48]. Control flow computation requires a 

different approach in each of these two types of data flow 

architectures. Their simple operational computation are presented in 

this section. 

6 
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Control Flow Computation 

Until recently, most computers used very basic architectural 

principles proposed by von Neumann in 1945. 

The concepts of control flow and data flow computing are 

distinguished by the control of computation sequences in two distinct 

program representations [ 45]. The control flow program 

representation of the statement Z=min(a,b,c,d) is shown in Figure 1. 

In the traditional sequential control flow model, there is a single 

thread of control which is passed from instruction to instruction 

(Figure 1a). Explicit control transfers are caused by using operators 

such as GOTO. In the parallel control flow model (Figure 1 b), Special 

parallel control operators such as FORK and JOIN are used to specify 

parallelism explicitly. The operators allow more than one thread of 

control to be active at an instant, and to provide means for 

synchronizing these threads, as demonstrated in Figure 1 b. Special 

features are identified below for both the sequential and the parallel 

control flow model [29] [48]: 

( 1) Data is passed between instructions via references to 

shared memory cells. 

( 2) Flow of control implicitly is sequential, but special control 

operators can be used explicitly for parallelism. 

(3) Program counters are used to sequence the execution of 

instructiOn in a centralized control environment. 

( 4) The flows of data and control are separate, they can be 

made identical or distinct. 



------------------------> 

IF a<b THEN tl=a ELSE t1 =b; IF c<d )'HEN t2~ ELSE t.2=<{; IF_ t1 <t2 THEN 2=Jl ELSE Z=j2; 

a:(4) b:(2) 

(a) sequential 

r-------------------------------->12: r------->i3: 
I 

I 
I 

I 

I 
I , 

FORK i2 if a<b then tl=a else tl=b GOTQ 
o. ;,. ..._ I ,._ f 

a:(4) b:(2) 

(b) parallel "FORK-JOIN" 

Ftgure 1. Instruction Executton in a Control Flow Computer for Z=mm(a,b,c,d) 00 
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Control flow computers have a control-driven organization that 

the program has complete control over instruction sequencing. 

Synchronous computations are performed in control flow computers 

using centralized control. 

Dataflow Computation 

In a data-driven computation, instructions are activated by 

the availability of data tokens as indicated by the black dots in 

Figure 2. Data flow programs are represented by directed graphs, 

which show the flow of data between instructions. Each instruction 

consists of an operator, one or two operands, together with one or 

more destinations to which the result (data token) will be sent. Five 

interesting features in the data flow model are listed below [29] [ 48]: 

( 1) Intermediate or final results are passed directly as data 

tokens among instructions. 

(2) There is no concept of shared data storage as embodied in 

the traditional notion of a variable. 

(3) Program sequencing is constrained only by data 

dependency among instructions. 

( 4) Execution consumes data tokens. The values are no longer 

available as inputs to this or any other instruction. 

( 5) Flows of control are bound to the flow of data. 

Data flow computers have a data-dnven organization that is 

characterized by a passtve examination stage. 



4 2 5 1 

i1: ( min ( ) ( ) i3/1 ) i2: ( min ( ) ( ) i3/2 ) 

i3: ( ~) ()~ 
(a) Stage 1 ~ 

4 2 5 1 

i1: ( min ( ) ( ) i3/1 ) i2: ( min ( ) ( ) i3/2 ) 

i3: ( ~) ()~ 
(b) Stage 2 ~ 

il: ( min 

4 

() () 

2 

i3/l ) i2: ( min 

5 

J) o
1 

i3(2 ) 

i3:(~) (~ 
(c) Stage 3 ~ 

Figure 2. Instruction Execution m a Dataflow 
Computer for Z=min(a,b,c,d) 

10 
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Instructions are examined to reveal the operand availability, 

upon which they are executed immediately as soon as the functional 

units are available. 

Reduction Computation 

The demand-driven architectures have their foundation in 

functional languages. These languages are based on the lambda 

calculus. , Programming is effected by using them to write 

mathematical equations rather than by conventional programming. 

The expressions represented as graphs are reduced by evaluation of 

their branches or sub-graphs. The reduction is done only when the 

result of the sub-graph is required; that is, on demand. Different 

parts of the graphs can be reduced or evaluated in parallel. 

There are two reduction models [ 45]: string reduction and 

graph reduction. Both forms of recurrence have a recurrent control 

mechanism. 

String reduction has a "by value" data mechanism. In string 

reduction, the instruction accessing a particular definition will make 

and manipulate a separate copy of the definition. Each instruction 

consists of an operator followed by literals or embedded references 

used to demand the corresponding input operands. The example 

(Figure 3) shows the evaluation of the definition a by using string 

reduction. The reference, Z, is overwritten by the definition. Next, 

the operation of a minimum operator is suspended while its 

arguments 11 and 12 are evaluated. Finally, the expression is said to 



definition 

a:(4) b:(2) c:(5\ d:(l) 

il.:L_min \ b{ \ ( min c J 
~il i2) 

demand copy 

( ... Z ... ) ( ... (minili2) ... ) 

(a) Stage 1 

definition 

a:(4) bj2) c:(5) 

. \ b/) '2 ( ·" rrun a 1 : rrun c 

\ 
Z: ( min 1 i2 ) 

d/1) 

d ) .....,.. __ ---.. 

demand copy 

( ... ( min i1 i2 ) ... ) ( ... (min (min a b) (min c d)) ... ) 

(b) Stage 2 

===> ( ... ( min ( min 4 2 ) ( min 5 1 ) ) ... ) 

====> ( ... ( min 2 1 ) ... ) 

> ( .. .1 ... ) 

(c) Stage 3 to 5 

F1gure 3. String Reduction Program 
for Z=min(a,b,c,d) 

12 
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be reduced when all the arguments of the expressions are replaced 

by literal values and the expression is evaluated. 

In graph reduction, the instruction accessing a particular definition 

manipulates references to that definition. The arguments are by 

references, using pointers unlike string reduction by values. In the 

example (Figure 4 ), some instruction demands the value associated 

with Z, but, instead of making a copy of the definition, the reference 

is traversed until it is reduced and value is returned. One way to 

identify the original source of the definition is to embed a reference 

in the definition. This traversal of the reference is continued until 

the expression is reduced and the value is returned. 

The main features of reduction are [48]: 

( 1) program structures, instructions, and arguments all are 

expressions; 

(2) there is no concept of data storage (variables may exist but 

are not necessarily associated with a storage location); 

(3) there are no additional sequencing constraints over and 

above those implied by demands for operands; 

( 4) demands may return simple or complex arguments such as 

a function (as input to a higher-order function). 

Control Flow vs. Dataflow 

The concept of dataflow systems is different from the concept 

of conventional von Neumann systems. Dataflow computers operate 

asynchronously without sequential control and use a distributed 

memory instead of a single updatable memory. 
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definition 

a:(4) b:(2) c:(5) d:(l) 

1l~1~~c\ 
a:(4) b:(2) c:(5) d:(l) 

1l~~rru~L )=> 

Z: ( mm il 12 ) Z: ( mm i1 12 j/1 ) 

J. ( . z ... ) demand 

11 :( 

II _/ 

II 
II 
II 
~ 

a:( 4) b:(2) c:(5) d:( 1) 

'/./. ~~ 
rrun a b Z/1 ) 12:( rrun c d Z/2 ) 

~ ~ 
Z: ( rrun ll 12 J/1 ) 

~--------------------~/ 

(a) Stage 1 to 3 

a:( 4) b:(2) c:(S) d:( 1) a:(4) b:(2) c:(5) d:(l~ 

1l.(nun 4 2 Z/1) i2:(min 5 1 Z/2) ==> i1 :(2) 12:(1) =1Z:(l) I 
"~ Z:( rrun ll 12 j/1 ) Z:( mm 2 1 J/1) ____ / 

(b) Stage 4 to 6 

Figure 4. Graph Reduction Program 
for Z=min(a,b,c,d) 
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The fundamental difference in the two families of architectures 

is that instruction execution in a conventional computer is under 

program-flow control, whereas in a data flow computer is driven by 

the availability of data. 

Static and Dynamic Dataflow Architectures 

Static and dynamic dataflow architectures are two distinct 

types of implementations of the abstract dataflow model [8]. 

Static Dataflow Architecture 

Static dataflow allows at most one token per arc in dataflow 

graphs. It provides a fixed amount of "storage" per arc. A static 

dataflow computer organization is shown in Figure 5. 

In a static dataflow machine data tokens move along the arcs 

of the data flow program graph to the operator nodes. The nodal 

operation ts executed when all its operand data are present at the 

input arcs. Only one token is allowed to exist on any arc at any given 

time; otherwise, the successive sets of tokens cannot be used to 

acknowledge the proper timing in transferring data tokens from 

node to node [29]. 

Dynamic Dataflow Architecture 

Dynamic architectures tag each token and keeps it in a common 

storage pool. They provide dynamic allocation of token storage from 

the common pool. Tokens carry tags to indicate their logical position 



Update 
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Memory una 
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Figure 5. A Static Dataflow Computer Organizatton 
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on the arcs. Figure 6 shows a dynamic dataflow computer 

organization. 

In a dynamic dataflow architecture, the tagged tokens are used, 

so that more than one token can exist on an arc. The tagging is 

achieved by attaching a label which uniquely identifies the context of 

a particular token with each token. This dynamically tagged 

dataflow model suggests that maximum parallelism can be exploited 

from a program graph. 

Sorting Algorithms 

The related activities of sorting, searching and merging are 

central to many computer applications. Sorting alone has been said 

to account for more than 30% of all computer time spent [22]. 

Sorting is not only one of the most important problems in 

computer science but it occurs in every other field of science also. 

What Is a Sorting Algorithm? 

Sorting algorithms arrange items in a set according to a 

predefined ordering relation. String information and numerical 

information are the two most common types of data. 

Internal and External Sorting Algonthms 

There are numerous algonthms available for sorting: mternal 

sorting algorithms, whtch arrange data in main memory; and external 

sorting algorithms, which arrange data in external storage. 
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There is a variety of the simple and more advanced internal 

sorting algorithms, such as Shellsort, Quicksort, etc. (see [6] [9] [22]). 

When the keys to be sorted are general and have no known 

structure, a lower-bound result [3] states that sequential algorithms 

will require at least 0 (n log n) time to sort a sequence of n keys. 

Many optimal algorithms like Quicksort and Heapsort, whose run 

times match this lower bound, can be found in the literature [3]. 

In principle, any internal sorting algorithm can be used to sort 

files which are stored in external memory. In practice, internal 

sorting algorithms are not used to sort external files because it can 

be too inefficient to process the file other than sequentially, 

especially if stored data values must be exchanged [34 ]. Files are 

ordinarily too large to fit within main memory, so we exclude the 

possibility of reading an entire file into an array, sorting it internally, 

then writmg out the sorted array. The objective is to sort an external 

file by reading it sequentially, only one portion at a time, in order to 

create longer and longer runs (sorting consecutive subsequences). A 

run is natural if it is maximal: i.e., it is not a subrun of a longer run. 

A run is artificial if it has a prescribed length. In sortmg a file, it is 

desirable to require as few passes as possible. Most external sorting 

algorithms are based on the principle of mergmg [ 40]. 

Parallel Sortins 

Sorts of extremely large size are becommg more and more 

common. For instance, banks each night typically sort the checks of 

the current day into increasing order by account number. Then the 
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accounting files can be updated in a single linear pass through the 

sorted file [2]. Many computer scientists believe that the key to 

obtaining much higher speeds is the abandonment of the 

conventional von Neumann architecture and the adoption of new 

designs, in which calculations are performed in parallel rather then 

in a fixed sequence [37]. 

With the developing of parallel computer architectures the 

field of parallel sorting has grown enormously in the past decade 

[16]. 

There are many incomparable models of parallel computation 

being used among computer scientists. Richards collected together 

the different investigations until 1986 into one bibliography [40]. A 

very nice survey of parallel sorting is in [16]. The latest publications 

dealing with parallel sorting algorithms are [4] [5] [14] [15] [18] [23] 

[24] [27] [38] [39] [43] [55]. 

The theoretical basis of much of the work on comparison-based 

sorting can be traced either to the study of sorting networks or to the 

study of parallel decision trees. The premier result in parallel 

sorting is the existence of an O(logN) time sorting network as shown 

by Ajtai, et al [ 40]. In the parallel decision tree model there is no 

penalty assigned for scheduling and allocating work to the processing 

elements and there is no cost for routing data. The width of a 

computation is the maximum number of simultaneous comparison 

and the depth is the number of parallel comparison steps in the 

worst case. 

External sorting is used to solve sorting problems in which the 

amount of data dwarfs the number of processors. There are "merge-
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and-split" operations based on standard merging approaches as well 

as the substitution of normal comparison steps. 



CHAPTER ill 

THE RELATIONSHIPS AMONG DATAFLOW 

ARCHITECTURES AND SORTING 

ALGORITIIMS 

There are two fundamental questions in the research on 

dataflow architectures: "Can the advantages of dataflow architectures 

be used for efficient sortmg?" and "How do dataflow architectures 

improve sorting?" In this chapter, the first question is discussed. 

The research on using dataflow architectures to improve 

sorting is based on: 

( 1) basic concepts; 

(2) organization of computation; 

(3) program organization; 

( 4) machine organization. 

In order to give a comparative survey, control flow, is 

discussed with dataflow and reduction. The discussions in this 

chapter are based on the concepts presented by Treleaven et al [48]. 

Basic Concepts 

Chapter II describes the basic concepts of dataflow 

architectures. High parallelism is a natural consequence of the 

dataflow concept. The basic operation of sorting is comparison 

22 
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between two values. Parallel sorting is possible and can improve the 

efficiency. The sorting algorithms and dataflow architectures mesh 

well together. The concepts of dataflow architectures support the 

improvement of sorting algorithms. 

Computation Organization 

Computation organization within a dataflow architecture can be 

classified by considering computation as a continuous repetition of 

three phases: selecting, examining and executing. 

In the selecting phase, a set of instructions is chosen by a 

computation rule for possible execution. Only instructions chosen in 

the selecting phase may be executed, but selection does not 

guarantee execution. Imperative, innermost and outermost rules are 

three types of computational rules. The expression to get the 

minimum number from the set (a, b, c, d, e, f, g, h ... ) using parallel 

tree-sort algorithm is shown in Figure 7. 

In the examining phase, each of the instructions previously 
-
chosen in the selecting phase is examined by a firing rule to see if it 

is executable. If an instruction is executable, it is passed on to the 

next phase for execution; otherwise, the examining phase may take 

some action, such as delaying the instruction. 

In the executing phase which is broadly similar m all 

computation organizations, instructions are actually executed. As a 

result of execution the state of the computer is changed. Results are 

available to other parts of the program. Execution may produce 

globally perceived changes (such as changing the state of a globally 



The expression to get the minimum number from 

the set (a, b, c, d, e, f, g, h ... ) using 

parallel tree-sort algorithm 

Imperative: Instruction selected depending on the value of 

program counter (PC). 

24 

( ... (min (min (min a b) (min c d) ) , (min (min e t) (min g h) ) ) ... ) 

1 
PC 

Innermost: Instructions selected are the most deeply nested 

( ... (min (min (mr a b) (mi c d) ) ' (min (ln e t) (mr g h) ) ) .•. ) 

Outermost: Instructions selected are most outer. ( ... (T (min (min a b) (min c d) ) , (min (rmn e t) (min g h) ) ) .) 

Figure 7. The Computation Rules Apphed to an Expression 
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shared memory) or produce localized ,-changes (For example, an 

expression is replaced by its value). 

The fetch part of the fetch-execute control cycle is the selecting 

phase of control flow computation. In the selecting phase, the 

instructions to be used are chosen by the program counter. Once 

chosen by selecting, instructions are not checked by an examining 

phase, but automatically passed on to execution. The executing phase 

of control flow instructions is allowed to change any part of the state 

of computation. Control flow uses a shared memory to communicate 

results. The state of computation is represented by the contents of 

this shared memory and the program counter register(s). A program 

counter is updated at the end of each cycle either implicitly or 

explicitly in the case of GOTOs. 

The control flow refers to the computation organizations in 

which instructions are executed as soon as they are selected. For all 

computation organizations in control flow, the examining phase is 

redundant and instruction sequencing is independent of program 

structure. 

In dataflow, instructions are executed as soon as all theu 

arguments are available. So the selecting phase of dataflow 

computation may be viewed as logically allocating a computing 

element to every instruction. The examining phase implements the 

dataflow fire rule, which requires all data to be available before 

execution can take place. If the values are not available, the 

instruction will not be executed and remain dormant during the 

execution phase. In dataflow, the execution phase changes a local 
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state consisting of the executing instructions. The instruction 

consumes data values and places a result value in each destination. 

The dataflow refers to the computation organizations wherein 

instructions passively wait for some combination of their data values 

to be available. This implies a selecting phase, which logically 

allocates computing elements to all instructions, and an examining 

phase, which suspends nonexecutable instructions. The key 

governing execution is the availability of data. 

Reduction computers have different rules in their selecting 

phase. The choice of the computation rule is a design choice for a 

particular reduction computer. Innermost and outermost rules are 

the commonest rules used in reduction. The computation rule in a 

reduction computer determines the allocation of computing elements 

at the beginning of each computatiOn cycle. In the examining phase 

the arguments are examined to see whether execution is possible. If 

possible, the instruction is executed. Otherwise, the arguments are 

suspended until all input values are available for execution. The 

instruction set of a reduction computer may contain many different 

firing rules; each instruction has the rule most suited to it. The 

execution phase in a reduction machine involves rewriting an 

instruction. The instruction is replaced by its result. 

Reduction refers to the computation organization where 

instructions are selected only when the value they produce is needed 

by another already selected instruction. All outermost reduction 

architectures are demand-driven computation organization. In 

reduction computers with an innermost computation rule, 

instructions never are chosen by selecting until their arguments are 
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available. This restriction means that all arguments reaching the 

examining stage are preevaluated, exactly as occurs in dataflow. 

Thus innermost computation organizations are data-driven. 

Control-flow computers have a control-driven computation 

organization. Instructions are selected by program counter and once 

selected they are immediately executed. But in the selecting phase, 

The instructions to be used are sequentially chosen by a program 

counter. Data-flow computers have a data-driven computation 

organization. In the selecting phase, the computing elements are 

locating to the instructions if they are available. The dataflow fire 

rule of examining phase requires all data to be available before 

execution. In the three phases of dataflow, computation organization 

has high parallelism. Some reduction computers are demand driven 

and some are data driven. As in simple dataflow architectures, all 

instructions execute only when their arguments become available. 

From the point of computation organization, control flow is 

suited only to the sequential data input and sequential sorting 

algorithms. Data flow and reduction can get greater parallelism for 

sorting if all the data is available simultaneously. 

Program Organization 

The program organization shows the way of machine code 

programs which are represented and executed in a computer 

architecture. The data mechanism and the control mechanism are 

two basic computation mechanisms of program organization for these 

three groups of computers. The Figure 8 is a summary of the 
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relationship of these computational mechanisms to the three groups 

of computers. 

The control mechanism of control flow is based on "sequential". 

The basic data mechanism of control flow is "by reference". The 

effects of changing the contents of a memory cell are immediately 

available to other users. 

Iteration may cause a potential problem for parallel control flow. 

Program fragments with loops may lead to logically cyclic graphs in 

which each successive iteration of a loop could execute concurrently, 

giving the possibility of multiple-data items being stored in the same 

memory. So special precautions need to be taken in a representation 

of program to ensure that the natural asynchronous execution does 

not lead to unwanted indeterminacy, such as by using two schemes 

of feedback and recursion. 

Dataflow is based on a "parallel" control mechanism and a "by 

value" data mechanism. Flows of data and control are identical in 

dataflow. A copy of a partial result is passed directly by a data 

token from the producer to the consumer instruction. There are 

independent copies of shared data. 

The basic format [7] [50] of a reference is in Figure 9. The 

process field P is used for separating mstances of an instruction N 

that may be executing in parallel, either within a single program or 

distinct programs. The instruction field N is used for identifying the 

consuming instruction to which the data token is being passed. The 

argument field A is used for identifying in which argument position 

of the instruction N the token is to be stored. In the machine code of 

a dataflow computer, the values of the N and the A field are usually 
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Figure 9. The Basic Format of a Reference in Dataflow 
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statically embedded in the code at compile time. But the value of P 

is dynamically generated at run time by the system. 

Dataflow must take similar precautions as in parallel control 

flow. Same as control flow, by using feedback and recursion can 

avoid unwanted indeterminacy. A third scheme for supporting 

iteration in dataflow computers is based on an additional iteration 

number field [7] [50] in each reference, for example, P/N/A/1. This 
' 

iteration number field distinguishes individual data tokens, logically 

flowing on a particular arc by giving each token a unique I value, for 

example, 1, 2, 3. 

Reduction is based on recursive control mechanism and either a 

by-value or a by-reference data mechanism. Reduction is inherently 

recursive. Because a by-value data mechanism is used, in string 
I 

reduction separate copies of actual arguments are generated for each 

formal parameter occurrence. String manipulation is best suited to 

innermost computation rules where functions are applied only to 

previously evaluated arguments. 

outermost computation rules [48]. 

Graph reduction is suited to 

Control-flow program organizations are less efficient than 

dataflow because they have a separation of flows of control from 

flows of data. For example, m control flow, passing the partial result 

of a subexpression to the enclosing subexpression requires three 

operations: stonng the result, sending the control flow, and loading 

the result. However, in dataflow there is only one operation: 

sending the data token. The data token scheme combines both the 

by-value data mechanism and the data-driven control mechanism. 
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The simplicity and the parallel nature of program organization are 

the major advantages of dataflow. 

Transfering data is another basic operation in the sorting 

algorithms. So making communication quick can improve the speed 

of sorting. Using data token scheme to transfer data would be much 

faster than control flow. In the von Neumann machine the processor 

issues a memory request and waits for the result to be produced. 

The memory cycle time is invariably greater than the processor cycle 

time. This problem is much more severe in a multiprocessor because 

the time to process a memory request is generally much greater than 

in a single processor and is unpredictable. The dataflow architecture 

is an extreme solution to the memory latency problem: the processor 

never waits for responses from memory; it continues processing 

other instructions. Instructions are scheduled based on the 

availability of data. Otherwise, because communication is quick, the 

processes can be made very small, about the size of a single 

instruction in a conventional computer. This makes segmentation 

trivial and improves scalability. 

Machine Organization 

Machine Organization is the configuration of a machine's 

resources; they are allocated to support a program organization. 

There are three basic classes of machine organization: centralized, 

packet communication, and expression manipulation. 

A centralized machine is shown in Figure 10. There are a 

single processor, communications, and a memory resource. 
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A packet communication machine organization is shown in 

Figure 11. There are a circular instruction execution pipeline of 

resources in which processors, communications and memories are 

interspersed with "pools of work." Parallelism is obtained either by 

having a number of identical resources between pools or by 

replicating the circular pipelines and connecting them by the 

communications. 

Expression manipulation machine organization consists of 

identical resources usually organized into a regular structure such as 

a vector or tree, as shown in Figure 12. Each resource contains a 

processor, communication and memory capability. 

A centralized organization is most suited to sequential control 

flow. The simplicity, both for resource allocation and 

implementation, is its advantage. The lack of parallelism is its 

disadvantage. A packet communication organization for control flow 

can achieve parallelism, but it lacks the concept of an implicit next 

instruction. An expression manipulation machine organization for 

control flow is suited to a parallel FORK-JOIN style of control flow, 
' 

but incurs additional FORK and JOIN style control operators. 

It is hard to imagine a centralized machine organization for dataflow 

because there are a large number of potentially executable 

instructions. Packet communication provides two alternative 

organizations to support dataflow. Figure 13 shows the first scheme 

which is based on storing data tokens into an instruction and 

executing the instruction while it is complete. Figure 14 shows the 

second scheme which is based on matching data tokens. Dataflow 
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architectures in which the processors are connected by dataflow 

graphs are built by expression manipulation machine organization. 

Reduction can be supported efficiently by any of the three 

machine organizations because of the various computational rules for 

it. A centralized organization is best suited to a sequential form of 

reduction. A packet communication and expression manipulation 

organization are suited to a parallel computational rule. 

Comparison between two values and data transfer are basic 

operations in sorting. Sorting algorithms can have a high degree of 

parallelism. The packet communication and expression manipulation 

organizations for dataflow are two of the best machine organizations 

for sorting algorithms. A packet communication organization is most 

suited for a general-purpose sorting machine. An expression 

manipulation organization is most suited for a special-purpose 

sorting machine. 

Dataflow architectures and sorting algorithms are suited to 

each other in terms of the basic concept, computation organization, 

program organization and machine organization. Dataflow 

architectures strongly support improvement of sorting algorithms. 



CHAPTER IV 

DATAFLOW SORTING MACHINES 

This chapter is concerned with the architecture of dataflow 

machines for improving parallel sorting algorithms. Special-purpose 

dataflow sorting machines, general-purpose dataflow sorting 

machines, and dataflow database machines are discussed. 

Special-Purpose Sorting Machines 

Finding a good mapping of a parallel sorting algorithm onto a 

hardware architecture is a feasible way to build a special-purpose 

sorting machine. To fix the processing elements as a tree or a vector 

is not a good way to design a general-purpose dataflow machine, but 

it is a good idea for a special-purpose sorting machine. A binary tree 

data structure with (2n-l) nodes is used to sort n numbers in a serial 

tree selection sorting algorithm. Sorting by selection seems to be the 

best method of sorting which allows avoidance cumbersome 

exchanging, insertions, and other operations performed on a file 

records [32]. A special-purpose sorting machine in which the 

processors are fixed as a binary tree is proposed below. It is adapted 

from a parallel tree-sort algorithm reviewed in the paper by Bitton, 

et al [16]. The algorithm is introduced first. 

40 
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A Parallel Tree-Sort Alaorithm 

The binary tree, which has 2n-1 nodes, has n leaves, and 

initially one number is stored in each leaf. Sorting is performed by 

selecting the minimum of n numbers first, then the minimum of the 

remaining (n-1) numbers, etc. 

The binary tree structure is used to find the minimum number 

by iteratively comparing the numbers in two sibling nodes, and 

moving the smaller number to the parent node. By simultaneously 

performing comparisons throughout the binary tree, a parallel tree 

sort is obtained [11]. A simple example is shown in Figure 15. 

Consider a set of n processors interconnected to form a binary 

tree with one processor both at every pair of leaf nodes and at pairs 

two interior nodes of the tree (see Figure 16). By starting with one 

number at each leaf processor, the minimum can be transfered to the 

root in log(n) parallel comparison and transfer steps. At each step, a 

parent processor receives one or two element from each of its two 

children processors, performs a companson, retains the larger 

element, and transfers the smaller one to its parent, Then empty 

side receives another element from the child processor, The sorting 

is completed in time O(n). It will be a binary parallel merging tree if 

a set of ordered data ts the input to each leaf (see Figure 17 for a 

simple example). 

Parallel Tree Sortini-Merging Processor 

The dataflow graph of a tree sorting-merging processor is 

shown in Figure 18. There are two kinds of operators in the dataflow 
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Figure 16. The Sorting-Merging Processors in a Panillel Tree 
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graph: function operators and control operators. The comparison­

function operators, such as >, < and =, are often using for sorting 

algorithms. Two control operators, switch and merge, are used often 

for sorting algorithms also. The advantages of a tree-sorting 

processor are simple: no program is necessary and it is easy to make 

such a processor on a VLSI chip. The whole tree can be made by 

either connecting several chips or only by one chip. 

Figure 19 is an outline of a proposed special-purpose dataflow 

parallel tree sorting machine. Figure 20 shows the DPTSM1 

(Dataflow Parallel Tree Sorting Machine 1) machine. There are 64 

binary sorting-merging trees (each has 1024 leaves) and one 

merging tree which has 64 leaves. So the maximum number for 

sorting once is 85736. Both the input pool and output pool can be 

connected to the secondary storage. 

General-Purpose Sorting Machines 

The special-purpose machine can get high efficiency when the 

input data number is near a certain number, such as 85736 for the 

DPTSM1 machine. This kind of machine improves sorting for special 

work. Its disadvantage is its lack of flexibility. When the number of 

data input is not dose to the given number, then many sort-merge 

processors will be wasted. 

A general-purpose sorting machine has more flexibility than 

special-purpose sortmg machine. This kind of sorting machine is 

more convenient for a research center, but it is more complex than 

the special-purpose sorting machine. Figure 21 is an outline of a 
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proposed general-purpose dataflow sorting machine. Figure 22 

shows the GPDSMl (General-purpose Dataflow Sorting Machine 1) 

machine. Many terminals can use GPDSMl at the same time. In 

order to use all processors efficiently, there are a master operating 

system and several slave parallel operating systems to manage the 

work in the machine. The master operating system manages global 

resources and communications among the slave parallel operating 

systems. In case of need, the master operating system can help a 

parallel operating system borrow some resources from others. The 

master operating system can synchronize the the slave parallel 

operating systems to manage resources. The operating systems can 

be implemented by either hardware or software. This is a packet 

communication machine organization. There is a processor for each 

kind of operation, such as addition, comparison, and logical operation. 

Comparison processors are the most used. The processors are 

connected according to the algorithms of the program. The 

connecting of processors is very flexible. The numbers t, m, p of 

Term t, Mm, and Pp in Figure 22 are determined by the require­

ments before final design. 

Dataflow Database Machines 

Both general-purpose and special-purpose machines can 

improve the time required for sorting a large list of data. For 

inserting a few data in the ordered list, the whole list should be 

sorted again with the new data. 
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A dataflow database machines has significant potential 

parallelism in the form of searching, sorting, and various kinds of 

updates [12). Their architectures are based on the principles of data­

driven computation. This kind of machine consists of a large number 

of disk units, each equipped with a separate processing element. 

According to this model, the database is represented as a network in 

which each node is conceptually an independent, asynchronous 

processing element, capable of communicating with other nodes by 

exchanging messages along the network arcs. To answer a query, 

one or more such messages, called tokens, are created and injected 

into the network. These tokens propagate asynchronously through 

the network in search of result satisfying the given query. The 

asynchronous nature of processing permits the model to be mapped 

onto a computer architect11re consisting of large numbers of 

independent disk units and processing elements. 

The database is a dataflow graph, where each node has 

associated node to be mapped onto possibly a different PE node, 

resulting in a high degree of parallelism during execution. An 

integral part of the model is a high-level data manipulation language 

that permits the user to specify queries and updates by prescribing 

the flow of tokens through the database sets. 

A distributed and deadlock/restart-free dataflow database 

machine is described in [12]. It is based on the token-tagging 

scheme used in dataflow systems. The model has been implemented 

on a simulated computer architecture to obtain some preliminary 

performance estimates. The result of these simulations may be 

found in [13] and [25]. A prototype of this machine has been 
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developed and is currently operational [12]. It incorporates 16 

processing elements, each having a 32-bit INMOS transputer and a 

200 Mbyte disk. Performance testing of the prototype is currently in 

progress. A commercial version of this machine is being developed 

by Hyperstore Systems Inc., of Irvine, California. 



CHAPTER V 

SUMMARY, CONQ..USIONS, AND SUGGES'IED 

RJ1URE RESEARCH 

Summary and Conclusions 

In the last few decades, the problem of sorting a given file has 

become one of the most important problems in computer science. 

Many new algorithms have been presented in order to solve this 

problem. Sorting extremely large sets of data is becoming more 

common. But even the best sorting algorithm consumes the time of 

O(n log n) [31]. Since this time is unsatisfactory for many practical 

sorting tasks, then construction of dedicated sorting machines has 

occurred [10] [35] [46] [53] [54]. A common property of these 

machines is that a comparator is their basic component, and 

comparison of two numbers is the basic operation. At least, log (n!) 

comparisons are necessary for sorting a set of n keys. The purpose 

of new sorting machines is to make as many comparisons as possible 

in parallel. 

Dataflow architectures show promise of making use of both 

VLSI and parallelism. In a dataflow computer an instruction is 

ready for execution as soon as all its operands are available. Either 

intermediate or final results are passed dtrectly as data tokens 

among instructions. The total amount of time required for data 
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transfer time in dataflow computers is much less than what is 

required in control flow computers. 

Comparison between two values and data transfer are basic 

operations in sorting algorithms. Sorting algorithms can have a high 

degree of parallelism. Improvement of sorting algorithms can be 

effected computer architectures which have high parallelism and 

which minimize the total time required for data transfers. 

Parallel sorting architecture can be classified into two major 

categories: sorting that requires special hardware or processors, and 

sorting that can be implemented either on general purpose computer 

networks, or on multiprocessor systems [55]. 

When algorithms and architectures mesh well together, the 

architecture supports the algorithm [36]. High parallelism is a 

natural consequence of dataflow architectures. Therefor dataflow 

architectures strongly support parallel sorting algorithms. 

There are three kinds of sorting computers which use dataflow 

architecture for performance improvement: special-purpose dataflow 

sorting machines, general-purpose dataflow machines, and dataflow­

database machines. The processors of a special-purpose dataflow 

sorting machine can be structured according to a parallel sorting 

algorithm. They are fixed-processor dataflow structures. They are 

efficient for a sorting center which performs sorting for customers. 

The processors of a general-purpose dataflow sortmg machine are 

structured dynamically by the programs. They are efficient either 

for a big research center or for a large university which has many 

kinds of large sorting tasks. A dataflow-database machine consists of 

a large number of disk units, each equipped with a separate 
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processing element. It has been designed to exploit the potential 

parallelism for a database in which there is frequently searching, and 

sorting, as well as various kinds of updates. 

Suggested Future Research 

A future research topic in the study of general-purpose sorting 

machines is how to connect the processors dynamically. This is a 

communication problem as well. At present, using hardware is one 

of the ways to solve this problem. A better and more convenient 

way communications technique is needed in the future. 

For special purpose sorting machines, one of the future 

research problems is how to use the processors efficiently. Partial 

control of processors can been added to improve the efficiency. 

Otherwise, making machines more flexible is another important 

problem in the future study. 

The dataflow-database machine' is in the practical use period. 

Combining processors and storage together can be the best way of 

dataflow-database machine. Then the modifications of sorted file can 

been done by database itself. 
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