
THE USE OF DATAFLOW ARClll1ECfURES

FOR IMPROVEMENT OF SORTING

ALGORITHMS

By

RENMEI SHU

Diploma

BeiJing Institute of Technology

BeiJing, Chma

1975

Submitted to the Faculty of the
Graduate College of the

Oklahoma State Umversity
m partial fulfilment of
the requirements for

the Degree of
MAS1ER OF SCIENCE

May 1990

-, h-e3,,s
\C{L/()

~CJloJL,l
('J)(J ;:;

THE USE OF DATAFLOW ARCHITECTURES

FOR IMPROVEMENT OF SORTING

ALGORITHMS

Thesis Approved:

~ 4:' Thesis Adv~er ~ ~ .. .

~"'Q;,':f= . !} n-"1.

Dean of the Graduate College

11

1366755

Oklahoma State Univ. Library

ACKNOWLEDGEMENTS

I would like to express my most deep and smcere gratitude to

my maJor adviser, Dr. George E. Hednck, for his gmdance and support

in completing my graduate study, and for his valuable observatiOns

and advisement throughout my thesis research.

I also extend my heartfelt thanks to my other committee

members, Dr Han-Shiang Lau and Dr. Hmzhu Lu, for thetr helpful

advisement and suggestions.

Fmally, I would like to express my appreciatton to my father,

Songgui Shu, and my mother, Yongru Peng, for thetr support and

encouragement. I am also grateful to my husband, Xuzhi Zhang, my

daughter, Jie Joy Zhang, and my brother, Junde Shu, for theu moral

support and patience.

lli

TABLE OF CONTENTS

Chapter Page

I. IN'lRODUCfiON .. 1

Background ... 1
.Project Motivation ... 3
Terminology ... 4
Problems Described and Discussed .. 5

II. PRELIMINARY LITERA1URE REVIEW-............................. 6

Control Flow, Dataflow and Reduction 6
Static and Dynamic Dataflow Architectures 1 5
Sorting Algorithms ... 1 7

III. 1HE RELATIONSIDPS AMONG DATAFLOW
ARCIDTECIURES AND SORTING ALGORITIIMS 2 2

Basic Concepts .. 2 2
Computation Organization ... 2 3
Program Organization .. 2 7
Machine Organization ... 3 2

IV. DATAFLOW SORTING,MACHINES .. 4 0

Special-Purpose Sorting Machines 4 0
General-Purpose Sorting Machines 4 6
Dataflow Database Machines 5 0

V. SUMMARY, CONCLUSIONS, AND SUGGESTED
'F1..JTIJRE RESEA.R rn 5 4

Summary and Conclusions .. 5 4
Suggested Future Research ... 5 6

BffiLIOGAPHY ... 5 7

iv

LIST OF FIGURES

Figure Page

1. Instruction Execution in a Control Flow Computer 8

2. Instruction Execution in a Data-Driven Computer 1 0

3 . String Reduction Progrant ... 1 2

4. Graph Reduction Progrant ... 1 4

5. A Static Dataflow Computer Organization .. 1 6

6. A Dynamic Dataflow Computer Organization 1 8

'
7. The Computation Rules Applied to an Expression 2 4

8. Computation Mechanism of Control Flow, Dataflow,
and Reduction Program Organization .. 2 8

9. The Basic Format of a Reference in Dataflow 3 0

1 0. Centralized Machine Organization .. 3 3

11. Packet Communication Machine Organization 3 5

12. Expression Manipulation Machine Organization 3 6

13. Dataflow Packet Communication with Token Storage 3 7

14. Dataflow Packet Communication with Token Matching 3 8

15. A Example Using Parallel Tree Selection Sort 4 2

16. The Sorting-Merging Processors in a Parallel Tree 4 3

v

F1gure Page

1 7 A Example of Parallel Bmary Merging Sort 4 4

18. The Dataflow Graph of a Sorting-Merging Processor 4 5

19. The Outline of a Special-Purpose Dataflow Parallel
Tree Sorting Machine.. 4 7

20. The DPTSM1 Machtne .. 4 8

21. The Outline of a General-Purpose Dataflow
Sorting Machine.. 4 9

22 The GPDSM1 Machine............................ 5 1

Vl

CHAPTER I

INlRODUCTION

Background

A very basic computer architectural principle, which was

proposed by von Neumann in 1945, has been used successfully for

almost 40 years. The development of von Neumann computers has

grown amazingly. ~ Very Large Scale Integration (VLSI) technology

has enormously improved the processor capabilities and drastically

reduced the cost of implementing a CPU.

The growth rate never has satisfied completely the newer and

more complex applications developed for computer systems. The

nature of both data and processing tasks is changing. Vast quantities

of nonnumeric data, such as sentences, symbols, speech, graphics and

images are handed. Processing requirements are becoming more

demanding w'ith artificial intelligence applications than scientific

calculation [4 7]. Some difficulties have surfaced from the historical

comp~ter design which uses only one CPU. Two main difficulties are

in the realms of software programming and ,processor performance

[33]. A semantic gap exists between the von Neumann programming

languages and the problems in the real world. The approaches to

increase the speed of conventional architectures have reached theu

hmit and fail to take advantages of electronic technology.

1

2

However radical advances in technology and programming

languages continue to open new possibilities for computer

architectures. Progress toward some new computer architectures 1s

expected to be made quickly [47].

One kind of architectures under consideration is parallel von

Neumann machine which is a number of sequential processors tied to

a single memory (shared memory) or each with its own memory

(distributed memory). This architecture has attracted wide interest,

but has many drawbacks. Interdependencies of instructions in

programs reduce the opportunity for a conventional multiprocessor

to attain a high level of concurrence. Interdependencies between

address spaces of processes causes a processor-memory

interconnection problems.

ConventiOnal languages such as Fortran are based on a global

state model of computer operation, these languages are unsuitable

for the next generation of computers, and can eventually be

abandoned for VLSI scientific computation. Now functional, or

applicative, programming languages and dataflow models of

computation are the only known foundation appropriate for a

computer base language [20].

A possible solution to the problem of efficiently exploiting

concurrence of computation on a large scale is dataflow architectures,

which show promise of making use of VLSI and parallelism. They

are compatible with modern concepts of program structure;

therefore, they should not suffer from the difficulties of

programming that have hampered other approaches to highly

parallel computation [20].

3

Highly concurrent computation is a natural consequence of the

dataflow concept [20]. In a dataflow computer, an instruction is

ready for execution as soon as all its operands have arrived. There

is no concept of control flow. Dataflow computers do not have

program location counters. Many instructions of a dataflow program

may be available for execution at once.

There exists a widespread agreement that future generation

computers should have at least the following features [49]:

i) high parallelism and scalability exploiting the potentialities

of VLSI (Very Large Scale Integration) and communication tech­

nologies;

ii) efficient and reliable support to very high level

programming languages, logic and/or functional and object oriented.

Many computer scientists believe that the next generation of

computers will be based on a non-von Neumann architecture. The

fifth-generation architectures possible include both data-driven and

reduction computers [48].

Because the research topic of this thesis is based on the

dataflow architectures, in the next chapter the dataflow architectures

will be dtscussed in detail.

Project Motivation

The idea of data-driven computation is old [30] [41]. Only m

recent years have architectural schemes developed because of their

attractive anticipated performance and their capability of supporting

general user languages. Research on data flow is in progress in at

4

least a dozen of laboratories in the US, Europe, and Japan. Several

dataflow computers have been built, and more hardware projects are

being planned.

Sorting is very frequently a fundamental data processing step.

Much effort has been devoted to improve sorting algorithms because

of it's practical importance as well as its theoretical interest [28].

Sorting may be one of the ftrst large scale uses of dataflow in the real

world. The use of dataflow architectures for performance

improvement of sorting is a very attractive area of research in

computer science. It can accelerate development of dataflow

computer from resear,ch period to its practical application period.

"Do the dataflow architectures improve the sorting algorithms?"

and "How to improve the sorting algorithms on the new

architectures? " are the new research problems which confront us.

Terminology

Control-driven computers: a computer in which an instructions

is ready for execution as soon as it is selected by program counter.

Data-driven computers: a computer in which an instruction is

ready for execution as soon as all its operands have arrived.

Demand-driven; i.e , reduction computers: a computer in which

the requirement for a result tnggers the operation that will generate

it.

Computation rule: the rule which selects a subset of

instructions in the program for possible execution.

5

Firing rule: the rule for making a decision whether to execute

an instruction based on examination of each instruction's actual

arguments.

Static dataflow architecture: a dataflow architecture which

allows at most one token per arc in a dataflow graph.

Dynamic dataflow architecture: a dataflow architecture which

tags each token and keeps them in a common pool of storage.

Sorting: a process to arrange items in a set according to a

predefined ordering relation.

Internal sorting algorithms: , sorting algorithms which arrange

data in main memory.

External sorting algorithms: sorting algorithms which arrange

data in external storage.

Problems Described and Discussed

Chapter II gives a preliminary literature review. Chapter III

contains the relationships among dataflow architectures and sorting

algorithms. In Chapter IV two dataflow sorting machines are

designed and the dataflow database machines is introduced. Chapter

V present the summary, conclusions and suggested future research.

CHAPTER II

PRELIMIMAR Y LITERATURE REVIEW

About 20 years ago, R. M. Karp and R. E. Miller [30], J. Rodriguez

at MIT and D. Adams at Stanford [41] begin to work on research that

eventually led to the development of concepts in dataflow systems

[1]. The first designs by J. B. Dennis [21] and J. Rumbaugh [42] were

made at MIT. The first dataflow computer began work in July, 1976

[19]. Important advances have been made since that time. Many

researchers are investigating dataflow concepts as an alternative to

von Neumann systems and languages. Comparison of dataflow

computers are in [20], [26] and [44]. Excellent surveys can be found

in [48], [51] and [52].

Control Flow, Dataflow and Reduction

There are two types of data flow architectures: data-driven and

demand-driven (reduction) [48]. Control flow computation requires a

different approach in each of these two types of data flow

architectures. Their simple operational computation are presented in

this section.

6

7

Control Flow Computation

Until recently, most computers used very basic architectural

principles proposed by von Neumann in 1945.

The concepts of control flow and data flow computing are

distinguished by the control of computation sequences in two distinct

program representations [45]. The control flow program

representation of the statement Z=min(a,b,c,d) is shown in Figure 1.

In the traditional sequential control flow model, there is a single

thread of control which is passed from instruction to instruction

(Figure 1a). Explicit control transfers are caused by using operators

such as GOTO. In the parallel control flow model (Figure 1 b), Special

parallel control operators such as FORK and JOIN are used to specify

parallelism explicitly. The operators allow more than one thread of

control to be active at an instant, and to provide means for

synchronizing these threads, as demonstrated in Figure 1 b. Special

features are identified below for both the sequential and the parallel

control flow model [29] [48]:

(1) Data is passed between instructions via references to

shared memory cells.

(2) Flow of control implicitly is sequential, but special control

operators can be used explicitly for parallelism.

(3) Program counters are used to sequence the execution of

instructiOn in a centralized control environment.

(4) The flows of data and control are separate, they can be

made identical or distinct.

------------------------>

IF a<b THEN tl=a ELSE t1 =b; IF c<d)'HEN t2~ ELSE t.2=<{; IF_ t1 <t2 THEN 2=Jl ELSE Z=j2;

a:(4) b:(2)

(a) sequential

r-------------------------------->12: r------->i3:
I

I
I

I

I
I ,

FORK i2 if a<b then tl=a else tl=b GOTQ
o. ;,. ..._ I ,._ f

a:(4) b:(2)

(b) parallel "FORK-JOIN"

Ftgure 1. Instruction Executton in a Control Flow Computer for Z=mm(a,b,c,d) 00

9

Control flow computers have a control-driven organization that

the program has complete control over instruction sequencing.

Synchronous computations are performed in control flow computers

using centralized control.

Dataflow Computation

In a data-driven computation, instructions are activated by

the availability of data tokens as indicated by the black dots in

Figure 2. Data flow programs are represented by directed graphs,

which show the flow of data between instructions. Each instruction

consists of an operator, one or two operands, together with one or

more destinations to which the result (data token) will be sent. Five

interesting features in the data flow model are listed below [29] [48]:

(1) Intermediate or final results are passed directly as data

tokens among instructions.

(2) There is no concept of shared data storage as embodied in

the traditional notion of a variable.

(3) Program sequencing is constrained only by data

dependency among instructions.

(4) Execution consumes data tokens. The values are no longer

available as inputs to this or any other instruction.

(5) Flows of control are bound to the flow of data.

Data flow computers have a data-dnven organization that is

characterized by a passtve examination stage.

4 2 5 1

i1: (min () () i3/1) i2: (min () () i3/2)

i3: (~) ()~
(a) Stage 1 ~

4 2 5 1

i1: (min () () i3/1) i2: (min () () i3/2)

i3: (~) ()~
(b) Stage 2 ~

il: (min

4

() ()

2

i3/l) i2: (min

5

J) o
1

i3(2)

i3:(~) (~
(c) Stage 3 ~

Figure 2. Instruction Execution m a Dataflow
Computer for Z=min(a,b,c,d)

10

11

Instructions are examined to reveal the operand availability,

upon which they are executed immediately as soon as the functional

units are available.

Reduction Computation

The demand-driven architectures have their foundation in

functional languages. These languages are based on the lambda

calculus. , Programming is effected by using them to write

mathematical equations rather than by conventional programming.

The expressions represented as graphs are reduced by evaluation of

their branches or sub-graphs. The reduction is done only when the

result of the sub-graph is required; that is, on demand. Different

parts of the graphs can be reduced or evaluated in parallel.

There are two reduction models [45]: string reduction and

graph reduction. Both forms of recurrence have a recurrent control

mechanism.

String reduction has a "by value" data mechanism. In string

reduction, the instruction accessing a particular definition will make

and manipulate a separate copy of the definition. Each instruction

consists of an operator followed by literals or embedded references

used to demand the corresponding input operands. The example

(Figure 3) shows the evaluation of the definition a by using string

reduction. The reference, Z, is overwritten by the definition. Next,

the operation of a minimum operator is suspended while its

arguments 11 and 12 are evaluated. Finally, the expression is said to

definition

a:(4) b:(2) c:(5\ d:(l)

il.:L_min \ b{ \ (min c J
~il i2)

demand copy

(... Z ...) (... (minili2) ...)

(a) Stage 1

definition

a:(4) bj2) c:(5)

. \ b/) '2 (·" rrun a 1 : rrun c

\
Z: (min 1 i2)

d/1)

d),.. __ ---..

demand copy

(... (min i1 i2) ...) (... (min (min a b) (min c d)) ...)

(b) Stage 2

===> (... (min (min 4 2) (min 5 1)) ...)

====> (... (min 2 1) ...)

> (.. .1 ...)

(c) Stage 3 to 5

F1gure 3. String Reduction Program
for Z=min(a,b,c,d)

12

13

be reduced when all the arguments of the expressions are replaced

by literal values and the expression is evaluated.

In graph reduction, the instruction accessing a particular definition

manipulates references to that definition. The arguments are by

references, using pointers unlike string reduction by values. In the

example (Figure 4), some instruction demands the value associated

with Z, but, instead of making a copy of the definition, the reference

is traversed until it is reduced and value is returned. One way to

identify the original source of the definition is to embed a reference

in the definition. This traversal of the reference is continued until

the expression is reduced and the value is returned.

The main features of reduction are [48]:

(1) program structures, instructions, and arguments all are

expressions;

(2) there is no concept of data storage (variables may exist but

are not necessarily associated with a storage location);

(3) there are no additional sequencing constraints over and

above those implied by demands for operands;

(4) demands may return simple or complex arguments such as

a function (as input to a higher-order function).

Control Flow vs. Dataflow

The concept of dataflow systems is different from the concept

of conventional von Neumann systems. Dataflow computers operate

asynchronously without sequential control and use a distributed

memory instead of a single updatable memory.

14

definition

a:(4) b:(2) c:(5) d:(l)

1l~1~~c\
a:(4) b:(2) c:(5) d:(l)

1l~~rru~L)=>

Z: (mm il 12) Z: (mm i1 12 j/1)

J. (. z ...) demand

11 :(

II _/

II
II
II
~

a:(4) b:(2) c:(5) d:(1)

'/./. ~~
rrun a b Z/1) 12:(rrun c d Z/2)

~ ~
Z: (rrun ll 12 J/1)

~--------------------~/

(a) Stage 1 to 3

a:(4) b:(2) c:(S) d:(1) a:(4) b:(2) c:(5) d:(l~

1l.(nun 4 2 Z/1) i2:(min 5 1 Z/2) ==> i1 :(2) 12:(1) =1Z:(l) I
"~ Z:(rrun ll 12 j/1) Z:(mm 2 1 J/1) ____ /

(b) Stage 4 to 6

Figure 4. Graph Reduction Program
for Z=min(a,b,c,d)

15

The fundamental difference in the two families of architectures

is that instruction execution in a conventional computer is under

program-flow control, whereas in a data flow computer is driven by

the availability of data.

Static and Dynamic Dataflow Architectures

Static and dynamic dataflow architectures are two distinct

types of implementations of the abstract dataflow model [8].

Static Dataflow Architecture

Static dataflow allows at most one token per arc in dataflow

graphs. It provides a fixed amount of "storage" per arc. A static

dataflow computer organization is shown in Figure 5.

In a static dataflow machine data tokens move along the arcs

of the data flow program graph to the operator nodes. The nodal

operation ts executed when all its operand data are present at the

input arcs. Only one token is allowed to exist on any arc at any given

time; otherwise, the successive sets of tokens cannot be used to

acknowledge the proper timing in transferring data tokens from

node to node [29].

Dynamic Dataflow Architecture

Dynamic architectures tag each token and keeps it in a common

storage pool. They provide dynamic allocation of token storage from

the common pool. Tokens carry tags to indicate their logical position

Update
urut

(Data
tokens)

Memory una
(mstrucuons)

16

-------------- Fetch
unit (mstrucuon address)

Processmg unu
(processors)

Enabled
mstructton queue

Figure 5. A Static Dataflow Computer Organizatton

17

on the arcs. Figure 6 shows a dynamic dataflow computer

organization.

In a dynamic dataflow architecture, the tagged tokens are used,

so that more than one token can exist on an arc. The tagging is

achieved by attaching a label which uniquely identifies the context of

a particular token with each token. This dynamically tagged

dataflow model suggests that maximum parallelism can be exploited

from a program graph.

Sorting Algorithms

The related activities of sorting, searching and merging are

central to many computer applications. Sorting alone has been said

to account for more than 30% of all computer time spent [22].

Sorting is not only one of the most important problems in

computer science but it occurs in every other field of science also.

What Is a Sorting Algorithm?

Sorting algorithms arrange items in a set according to a

predefined ordering relation. String information and numerical

information are the two most common types of data.

Internal and External Sorting Algonthms

There are numerous algonthms available for sorting: mternal

sorting algorithms, whtch arrange data in main memory; and external

sorting algorithms, which arrange data in external storage.

Matchmg
umt

(Data
tokens)

(Matched token sets)

Processmg umt
(processors)

Memory umt
(mstruct1ons)

Update/
fetch urut

Enabled
mstrucuon queue

Figure 6 A dynamtc dataflow computer organization

1&

19

There is a variety of the simple and more advanced internal

sorting algorithms, such as Shellsort, Quicksort, etc. (see [6] [9] [22]).

When the keys to be sorted are general and have no known

structure, a lower-bound result [3] states that sequential algorithms

will require at least 0 (n log n) time to sort a sequence of n keys.

Many optimal algorithms like Quicksort and Heapsort, whose run

times match this lower bound, can be found in the literature [3].

In principle, any internal sorting algorithm can be used to sort

files which are stored in external memory. In practice, internal

sorting algorithms are not used to sort external files because it can

be too inefficient to process the file other than sequentially,

especially if stored data values must be exchanged [34]. Files are

ordinarily too large to fit within main memory, so we exclude the

possibility of reading an entire file into an array, sorting it internally,

then writmg out the sorted array. The objective is to sort an external

file by reading it sequentially, only one portion at a time, in order to

create longer and longer runs (sorting consecutive subsequences). A

run is natural if it is maximal: i.e., it is not a subrun of a longer run.

A run is artificial if it has a prescribed length. In sortmg a file, it is

desirable to require as few passes as possible. Most external sorting

algorithms are based on the principle of mergmg [40].

Parallel Sortins

Sorts of extremely large size are becommg more and more

common. For instance, banks each night typically sort the checks of

the current day into increasing order by account number. Then the

20

accounting files can be updated in a single linear pass through the

sorted file [2]. Many computer scientists believe that the key to

obtaining much higher speeds is the abandonment of the

conventional von Neumann architecture and the adoption of new

designs, in which calculations are performed in parallel rather then

in a fixed sequence [37].

With the developing of parallel computer architectures the

field of parallel sorting has grown enormously in the past decade

[16].

There are many incomparable models of parallel computation

being used among computer scientists. Richards collected together

the different investigations until 1986 into one bibliography [40]. A

very nice survey of parallel sorting is in [16]. The latest publications

dealing with parallel sorting algorithms are [4] [5] [14] [15] [18] [23]

[24] [27] [38] [39] [43] [55].

The theoretical basis of much of the work on comparison-based

sorting can be traced either to the study of sorting networks or to the

study of parallel decision trees. The premier result in parallel

sorting is the existence of an O(logN) time sorting network as shown

by Ajtai, et al [40]. In the parallel decision tree model there is no

penalty assigned for scheduling and allocating work to the processing

elements and there is no cost for routing data. The width of a

computation is the maximum number of simultaneous comparison

and the depth is the number of parallel comparison steps in the

worst case.

External sorting is used to solve sorting problems in which the

amount of data dwarfs the number of processors. There are "merge-

21

and-split" operations based on standard merging approaches as well

as the substitution of normal comparison steps.

CHAPTER ill

THE RELATIONSHIPS AMONG DATAFLOW

ARCHITECTURES AND SORTING

ALGORITIIMS

There are two fundamental questions in the research on

dataflow architectures: "Can the advantages of dataflow architectures

be used for efficient sortmg?" and "How do dataflow architectures

improve sorting?" In this chapter, the first question is discussed.

The research on using dataflow architectures to improve

sorting is based on:

(1) basic concepts;

(2) organization of computation;

(3) program organization;

(4) machine organization.

In order to give a comparative survey, control flow, is

discussed with dataflow and reduction. The discussions in this

chapter are based on the concepts presented by Treleaven et al [48].

Basic Concepts

Chapter II describes the basic concepts of dataflow

architectures. High parallelism is a natural consequence of the

dataflow concept. The basic operation of sorting is comparison

22

23

between two values. Parallel sorting is possible and can improve the

efficiency. The sorting algorithms and dataflow architectures mesh

well together. The concepts of dataflow architectures support the

improvement of sorting algorithms.

Computation Organization

Computation organization within a dataflow architecture can be

classified by considering computation as a continuous repetition of

three phases: selecting, examining and executing.

In the selecting phase, a set of instructions is chosen by a

computation rule for possible execution. Only instructions chosen in

the selecting phase may be executed, but selection does not

guarantee execution. Imperative, innermost and outermost rules are

three types of computational rules. The expression to get the

minimum number from the set (a, b, c, d, e, f, g, h ...) using parallel

tree-sort algorithm is shown in Figure 7.

In the examining phase, each of the instructions previously
-
chosen in the selecting phase is examined by a firing rule to see if it

is executable. If an instruction is executable, it is passed on to the

next phase for execution; otherwise, the examining phase may take

some action, such as delaying the instruction.

In the executing phase which is broadly similar m all

computation organizations, instructions are actually executed. As a

result of execution the state of the computer is changed. Results are

available to other parts of the program. Execution may produce

globally perceived changes (such as changing the state of a globally

The expression to get the minimum number from

the set (a, b, c, d, e, f, g, h ...) using

parallel tree-sort algorithm

Imperative: Instruction selected depending on the value of

program counter (PC).

24

(... (min (min (min a b) (min c d)) , (min (min e t) (min g h))) ...)

1
PC

Innermost: Instructions selected are the most deeply nested

(... (min (min (mr a b) (mi c d)) ' (min (ln e t) (mr g h))) .•.)

Outermost: Instructions selected are most outer. (... (T (min (min a b) (min c d)) , (min (rmn e t) (min g h))) .)

Figure 7. The Computation Rules Apphed to an Expression

25

shared memory) or produce localized ,-changes (For example, an

expression is replaced by its value).

The fetch part of the fetch-execute control cycle is the selecting

phase of control flow computation. In the selecting phase, the

instructions to be used are chosen by the program counter. Once

chosen by selecting, instructions are not checked by an examining

phase, but automatically passed on to execution. The executing phase

of control flow instructions is allowed to change any part of the state

of computation. Control flow uses a shared memory to communicate

results. The state of computation is represented by the contents of

this shared memory and the program counter register(s). A program

counter is updated at the end of each cycle either implicitly or

explicitly in the case of GOTOs.

The control flow refers to the computation organizations in

which instructions are executed as soon as they are selected. For all

computation organizations in control flow, the examining phase is

redundant and instruction sequencing is independent of program

structure.

In dataflow, instructions are executed as soon as all theu

arguments are available. So the selecting phase of dataflow

computation may be viewed as logically allocating a computing

element to every instruction. The examining phase implements the

dataflow fire rule, which requires all data to be available before

execution can take place. If the values are not available, the

instruction will not be executed and remain dormant during the

execution phase. In dataflow, the execution phase changes a local

26

state consisting of the executing instructions. The instruction

consumes data values and places a result value in each destination.

The dataflow refers to the computation organizations wherein

instructions passively wait for some combination of their data values

to be available. This implies a selecting phase, which logically

allocates computing elements to all instructions, and an examining

phase, which suspends nonexecutable instructions. The key

governing execution is the availability of data.

Reduction computers have different rules in their selecting

phase. The choice of the computation rule is a design choice for a

particular reduction computer. Innermost and outermost rules are

the commonest rules used in reduction. The computation rule in a

reduction computer determines the allocation of computing elements

at the beginning of each computatiOn cycle. In the examining phase

the arguments are examined to see whether execution is possible. If

possible, the instruction is executed. Otherwise, the arguments are

suspended until all input values are available for execution. The

instruction set of a reduction computer may contain many different

firing rules; each instruction has the rule most suited to it. The

execution phase in a reduction machine involves rewriting an

instruction. The instruction is replaced by its result.

Reduction refers to the computation organization where

instructions are selected only when the value they produce is needed

by another already selected instruction. All outermost reduction

architectures are demand-driven computation organization. In

reduction computers with an innermost computation rule,

instructions never are chosen by selecting until their arguments are

27

available. This restriction means that all arguments reaching the

examining stage are preevaluated, exactly as occurs in dataflow.

Thus innermost computation organizations are data-driven.

Control-flow computers have a control-driven computation

organization. Instructions are selected by program counter and once

selected they are immediately executed. But in the selecting phase,

The instructions to be used are sequentially chosen by a program

counter. Data-flow computers have a data-driven computation

organization. In the selecting phase, the computing elements are

locating to the instructions if they are available. The dataflow fire

rule of examining phase requires all data to be available before

execution. In the three phases of dataflow, computation organization

has high parallelism. Some reduction computers are demand driven

and some are data driven. As in simple dataflow architectures, all

instructions execute only when their arguments become available.

From the point of computation organization, control flow is

suited only to the sequential data input and sequential sorting

algorithms. Data flow and reduction can get greater parallelism for

sorting if all the data is available simultaneously.

Program Organization

The program organization shows the way of machine code

programs which are represented and executed in a computer

architecture. The data mechanism and the control mechanism are

two basic computation mechanisms of program organization for these

three groups of computers. The Figure 8 is a summary of the

28

Data Mechanisms
Computation

Mechanisms

By Value By Reference

sequential Control Flow

Control

parallel Dataflow

Mechanisms

recursive String Graph
Reduction Reduction

Figure 8. Computation Mechanisms of Control Flow, Dataflow, and
Reduction Program Organizations

29

relationship of these computational mechanisms to the three groups

of computers.

The control mechanism of control flow is based on "sequential".

The basic data mechanism of control flow is "by reference". The

effects of changing the contents of a memory cell are immediately

available to other users.

Iteration may cause a potential problem for parallel control flow.

Program fragments with loops may lead to logically cyclic graphs in

which each successive iteration of a loop could execute concurrently,

giving the possibility of multiple-data items being stored in the same

memory. So special precautions need to be taken in a representation

of program to ensure that the natural asynchronous execution does

not lead to unwanted indeterminacy, such as by using two schemes

of feedback and recursion.

Dataflow is based on a "parallel" control mechanism and a "by

value" data mechanism. Flows of data and control are identical in

dataflow. A copy of a partial result is passed directly by a data

token from the producer to the consumer instruction. There are

independent copies of shared data.

The basic format [7] [50] of a reference is in Figure 9. The

process field P is used for separating mstances of an instruction N

that may be executing in parallel, either within a single program or

distinct programs. The instruction field N is used for identifying the

consuming instruction to which the data token is being passed. The

argument field A is used for identifying in which argument position

of the instruction N the token is to be stored. In the machine code of

a dataflow computer, the values of the N and the A field are usually

(P I , N

process_j

instruction (node~-~

I A)

argument (arc)----------'

Figure 9. The Basic Format of a Reference in Dataflow

30

31

statically embedded in the code at compile time. But the value of P

is dynamically generated at run time by the system.

Dataflow must take similar precautions as in parallel control

flow. Same as control flow, by using feedback and recursion can

avoid unwanted indeterminacy. A third scheme for supporting

iteration in dataflow computers is based on an additional iteration

number field [7] [50] in each reference, for example, P/N/A/1. This
'

iteration number field distinguishes individual data tokens, logically

flowing on a particular arc by giving each token a unique I value, for

example, 1, 2, 3.

Reduction is based on recursive control mechanism and either a

by-value or a by-reference data mechanism. Reduction is inherently

recursive. Because a by-value data mechanism is used, in string
I

reduction separate copies of actual arguments are generated for each

formal parameter occurrence. String manipulation is best suited to

innermost computation rules where functions are applied only to

previously evaluated arguments.

outermost computation rules [48].

Graph reduction is suited to

Control-flow program organizations are less efficient than

dataflow because they have a separation of flows of control from

flows of data. For example, m control flow, passing the partial result

of a subexpression to the enclosing subexpression requires three

operations: stonng the result, sending the control flow, and loading

the result. However, in dataflow there is only one operation:

sending the data token. The data token scheme combines both the

by-value data mechanism and the data-driven control mechanism.

32

The simplicity and the parallel nature of program organization are

the major advantages of dataflow.

Transfering data is another basic operation in the sorting

algorithms. So making communication quick can improve the speed

of sorting. Using data token scheme to transfer data would be much

faster than control flow. In the von Neumann machine the processor

issues a memory request and waits for the result to be produced.

The memory cycle time is invariably greater than the processor cycle

time. This problem is much more severe in a multiprocessor because

the time to process a memory request is generally much greater than

in a single processor and is unpredictable. The dataflow architecture

is an extreme solution to the memory latency problem: the processor

never waits for responses from memory; it continues processing

other instructions. Instructions are scheduled based on the

availability of data. Otherwise, because communication is quick, the

processes can be made very small, about the size of a single

instruction in a conventional computer. This makes segmentation

trivial and improves scalability.

Machine Organization

Machine Organization is the configuration of a machine's

resources; they are allocated to support a program organization.

There are three basic classes of machine organization: centralized,

packet communication, and expression manipulation.

A centralized machine is shown in Figure 10. There are a

single processor, communications, and a memory resource.

33

Communications

Processor

Memory

Figure 10. Centralized Machine Organization

34

A packet communication machine organization is shown in

Figure 11. There are a circular instruction execution pipeline of

resources in which processors, communications and memories are

interspersed with "pools of work." Parallelism is obtained either by

having a number of identical resources between pools or by

replicating the circular pipelines and connecting them by the

communications.

Expression manipulation machine organization consists of

identical resources usually organized into a regular structure such as

a vector or tree, as shown in Figure 12. Each resource contains a

processor, communication and memory capability.

A centralized organization is most suited to sequential control

flow. The simplicity, both for resource allocation and

implementation, is its advantage. The lack of parallelism is its

disadvantage. A packet communication organization for control flow

can achieve parallelism, but it lacks the concept of an implicit next

instruction. An expression manipulation machine organization for

control flow is suited to a parallel FORK-JOIN style of control flow,
'

but incurs additional FORK and JOIN style control operators.

It is hard to imagine a centralized machine organization for dataflow

because there are a large number of potentially executable

instructions. Packet communication provides two alternative

organizations to support dataflow. Figure 13 shows the first scheme

which is based on storing data tokens into an instruction and

executing the instruction while it is complete. Figure 14 shows the

second scheme which is based on matching data tokens. Dataflow

Memory

Ml ... Mm

Communications

Cl ... Cc

processors

P1 ... Pp

Figure 11. Packet Communication Machine Organization

35

36

Communications

Processors

Memones

(a) Vector

(b) Tree

Figure 12. Expression Manipulation Machine Organization

37

Memory

Unlt

Ml ... Mm

'

Update Instruction Fetch

Umt Addresses Unit

Data "' Processing Executable

Tokens Umt Instruction

PI ... Pp

Figure 13. Dataflow Packet Communication with Token Storage

Matching
1-----~

Unit

Data

Token

Sets of

Tokens

Processing

Unit

Pl ... Pp

Memory

Unit

Ml. .. Mm

Fetch/
~------;

Update

Unit

Executable

Instructions

38

Figure 14. Dataflow Packet Communication with Token Matching

39

architectures in which the processors are connected by dataflow

graphs are built by expression manipulation machine organization.

Reduction can be supported efficiently by any of the three

machine organizations because of the various computational rules for

it. A centralized organization is best suited to a sequential form of

reduction. A packet communication and expression manipulation

organization are suited to a parallel computational rule.

Comparison between two values and data transfer are basic

operations in sorting. Sorting algorithms can have a high degree of

parallelism. The packet communication and expression manipulation

organizations for dataflow are two of the best machine organizations

for sorting algorithms. A packet communication organization is most

suited for a general-purpose sorting machine. An expression

manipulation organization is most suited for a special-purpose

sorting machine.

Dataflow architectures and sorting algorithms are suited to

each other in terms of the basic concept, computation organization,

program organization and machine organization. Dataflow

architectures strongly support improvement of sorting algorithms.

CHAPTER IV

DATAFLOW SORTING MACHINES

This chapter is concerned with the architecture of dataflow

machines for improving parallel sorting algorithms. Special-purpose

dataflow sorting machines, general-purpose dataflow sorting

machines, and dataflow database machines are discussed.

Special-Purpose Sorting Machines

Finding a good mapping of a parallel sorting algorithm onto a

hardware architecture is a feasible way to build a special-purpose

sorting machine. To fix the processing elements as a tree or a vector

is not a good way to design a general-purpose dataflow machine, but

it is a good idea for a special-purpose sorting machine. A binary tree

data structure with (2n-l) nodes is used to sort n numbers in a serial

tree selection sorting algorithm. Sorting by selection seems to be the

best method of sorting which allows avoidance cumbersome

exchanging, insertions, and other operations performed on a file

records [32]. A special-purpose sorting machine in which the

processors are fixed as a binary tree is proposed below. It is adapted

from a parallel tree-sort algorithm reviewed in the paper by Bitton,

et al [16]. The algorithm is introduced first.

40

41

A Parallel Tree-Sort Alaorithm

The binary tree, which has 2n-1 nodes, has n leaves, and

initially one number is stored in each leaf. Sorting is performed by

selecting the minimum of n numbers first, then the minimum of the

remaining (n-1) numbers, etc.

The binary tree structure is used to find the minimum number

by iteratively comparing the numbers in two sibling nodes, and

moving the smaller number to the parent node. By simultaneously

performing comparisons throughout the binary tree, a parallel tree

sort is obtained [11]. A simple example is shown in Figure 15.

Consider a set of n processors interconnected to form a binary

tree with one processor both at every pair of leaf nodes and at pairs

two interior nodes of the tree (see Figure 16). By starting with one

number at each leaf processor, the minimum can be transfered to the

root in log(n) parallel comparison and transfer steps. At each step, a

parent processor receives one or two element from each of its two

children processors, performs a companson, retains the larger

element, and transfers the smaller one to its parent, Then empty

side receives another element from the child processor, The sorting

is completed in time O(n). It will be a binary parallel merging tree if

a set of ordered data ts the input to each leaf (see Figure 17 for a

simple example).

Parallel Tree Sortini-Merging Processor

The dataflow graph of a tree sorting-merging processor is

shown in Figure 18. There are two kinds of operators in the dataflow

8 2 3 6 5 4 7 1
\1 \I \I \I

X X X X

"-xi '\XI

~x/
Step 0

XXX65XXX
\j \I \/ \1
8 3, 4 7

\2l \1/
~X/
Step 2

xxxxxxxx
\/ \I \j \!
8 6 5 7
\3/ \4l

~2/

Step 4

xxxxxxxx
\ 1 \I \I \I
8 X X 7

\61 \51
~4/

Step 6

xxxxxxxx
\1 \I \I \/
X X X X

"8/ "'-11
~6/

Step 8

Step 1

XXX6 XXXX
\I \1 \I \!

8 3 5 7
\ . I

21 \4
~1/

Step 5

xxxxxxxx
\! \j \1 \/

8 X X X
\I \I
6~/7

5

Step 7

xxxxxxx 1x
\I \/ \I \

X X X X
\/ \;

8"'-.. X
-....--.7/
Step 9

Figure 15. An Example Using Parallel Tree Selection Sort

42

43

Figure 16. The Sorting-Merging Processors in a Panillel Tree

44

16 15 14 13

12 1 1 10 9

8 7 6 5

4 3 2 1

I
X, X X X

~/
X

~/
X

X

Figure 17. An Example of J>arallel Binary Merging Sort

X y

switch switch

F T

Merge

Figure 18. The Dataflow Graph of a Sorting-Merging
Processor

45

46

graph: function operators and control operators. The comparison­

function operators, such as >, < and =, are often using for sorting

algorithms. Two control operators, switch and merge, are used often

for sorting algorithms also. The advantages of a tree-sorting

processor are simple: no program is necessary and it is easy to make

such a processor on a VLSI chip. The whole tree can be made by

either connecting several chips or only by one chip.

Figure 19 is an outline of a proposed special-purpose dataflow

parallel tree sorting machine. Figure 20 shows the DPTSM1

(Dataflow Parallel Tree Sorting Machine 1) machine. There are 64

binary sorting-merging trees (each has 1024 leaves) and one

merging tree which has 64 leaves. So the maximum number for

sorting once is 85736. Both the input pool and output pool can be

connected to the secondary storage.

General-Purpose Sorting Machines

The special-purpose machine can get high efficiency when the

input data number is near a certain number, such as 85736 for the

DPTSM1 machine. This kind of machine improves sorting for special

work. Its disadvantage is its lack of flexibility. When the number of

data input is not dose to the given number, then many sort-merge

processors will be wasted.

A general-purpose sorting machine has more flexibility than

special-purpose sortmg machine. This kind of sorting machine is

more convenient for a research center, but it is more complex than

the special-purpose sorting machine. Figure 21 is an outline of a

47

s-m tree 1

s-m tree 2
'

I-- I-.
1-- I-input pool . mergmg tree output pool -

. . . .

.
l

. .
. . .

I

s-m tree 64 1-- r--

.

.

.

Figure 19. The Outline of a Special-Purpose Dataflow Parallel Tree
Sortmg Machine

1 n p u t

s-m tree 1 s-m tree 2

XX XX • XX XX XX ... XX

IV~ ~~~ ~!
\1 I '.I I I

\
\ I
X

\j
X

mergmg tree

X X

~/
X

\

output

p 0 0 1

s-m tree 6js-m tree 64
I
I

lxx XX ••• XX lXX XX ••• XX

)\' ~.~ ~ l~ ~ V 1~/ /'\1 /

\I I
X

X X

~/
X

/

p 0 0 1

Ftgure 20. DPTSMl Machme

48

-
Master Operatmg System Parallel Operatmg Systems

POSl, POS2, POS3 ... POSs

t J l l -
'

Memory Processors Communtcauon

Ml, M2, ... Mm Pl, P2, ... , Pp Cl, C2, ... Cc

Figure 21. The Outline of a General-Purpose Dataflow Sorting
Machine

49

50

proposed general-purpose dataflow sorting machine. Figure 22

shows the GPDSMl (General-purpose Dataflow Sorting Machine 1)

machine. Many terminals can use GPDSMl at the same time. In

order to use all processors efficiently, there are a master operating

system and several slave parallel operating systems to manage the

work in the machine. The master operating system manages global

resources and communications among the slave parallel operating

systems. In case of need, the master operating system can help a

parallel operating system borrow some resources from others. The

master operating system can synchronize the the slave parallel

operating systems to manage resources. The operating systems can

be implemented by either hardware or software. This is a packet

communication machine organization. There is a processor for each

kind of operation, such as addition, comparison, and logical operation.

Comparison processors are the most used. The processors are

connected according to the algorithms of the program. The

connecting of processors is very flexible. The numbers t, m, p of

Term t, Mm, and Pp in Figure 22 are determined by the require­

ments before final design.

Dataflow Database Machines

Both general-purpose and special-purpose machines can

improve the time required for sorting a large list of data. For

inserting a few data in the ordered list, the whole list should be

sorted again with the new data.

Master Operatmg Systems OPS 1 OPS2 . . . OPSo

Term 1>- 8
J-----.j

Term 2>- 8

Term i ~ 8

Term t >- 8

/'\ ~" IN11 IN12 OUT1
'--/ \......J -......._/

.

~~~ 
INk 1 1Nk2 OUTk 
'--../ '--../ '--../ 

/'\/'\~ 
INp 1 INp2 OUTp 
-........:;./ ~ \......../ 

Figure 22. The Structure of GPDSM1 

51 



52 

A dataflow database machines has significant potential 

parallelism in the form of searching, sorting, and various kinds of 

updates [12). Their architectures are based on the principles of data­

driven computation. This kind of machine consists of a large number 

of disk units, each equipped with a separate processing element. 

According to this model, the database is represented as a network in 

which each node is conceptually an independent, asynchronous 

processing element, capable of communicating with other nodes by 

exchanging messages along the network arcs. To answer a query, 

one or more such messages, called tokens, are created and injected 

into the network. These tokens propagate asynchronously through 

the network in search of result satisfying the given query. The 

asynchronous nature of processing permits the model to be mapped 

onto a computer architect11re consisting of large numbers of 

independent disk units and processing elements. 

The database is a dataflow graph, where each node has 

associated node to be mapped onto possibly a different PE node, 

resulting in a high degree of parallelism during execution. An 

integral part of the model is a high-level data manipulation language 

that permits the user to specify queries and updates by prescribing 

the flow of tokens through the database sets. 

A distributed and deadlock/restart-free dataflow database 

machine is described in [12]. It is based on the token-tagging 

scheme used in dataflow systems. The model has been implemented 

on a simulated computer architecture to obtain some preliminary 

performance estimates. The result of these simulations may be 

found in [13] and [25]. A prototype of this machine has been 



53 

developed and is currently operational [12]. It incorporates 16 

processing elements, each having a 32-bit INMOS transputer and a 

200 Mbyte disk. Performance testing of the prototype is currently in 

progress. A commercial version of this machine is being developed 

by Hyperstore Systems Inc., of Irvine, California. 



CHAPTER V 

SUMMARY, CONQ..USIONS, AND SUGGES'IED 

RJ1URE RESEARCH 

Summary and Conclusions 

In the last few decades, the problem of sorting a given file has 

become one of the most important problems in computer science. 

Many new algorithms have been presented in order to solve this 

problem. Sorting extremely large sets of data is becoming more 

common. But even the best sorting algorithm consumes the time of 

O(n log n) [31]. Since this time is unsatisfactory for many practical 

sorting tasks, then construction of dedicated sorting machines has 

occurred [10] [35] [46] [53] [54]. A common property of these 

machines is that a comparator is their basic component, and 

comparison of two numbers is the basic operation. At least, log (n!) 

comparisons are necessary for sorting a set of n keys. The purpose 

of new sorting machines is to make as many comparisons as possible 

in parallel. 

Dataflow architectures show promise of making use of both 

VLSI and parallelism. In a dataflow computer an instruction is 

ready for execution as soon as all its operands are available. Either 

intermediate or final results are passed dtrectly as data tokens 

among instructions. The total amount of time required for data 

54 



55 

transfer time in dataflow computers is much less than what is 

required in control flow computers. 

Comparison between two values and data transfer are basic 

operations in sorting algorithms. Sorting algorithms can have a high 

degree of parallelism. Improvement of sorting algorithms can be 

effected computer architectures which have high parallelism and 

which minimize the total time required for data transfers. 

Parallel sorting architecture can be classified into two major 

categories: sorting that requires special hardware or processors, and 

sorting that can be implemented either on general purpose computer 

networks, or on multiprocessor systems [55]. 

When algorithms and architectures mesh well together, the 

architecture supports the algorithm [36]. High parallelism is a 

natural consequence of dataflow architectures. Therefor dataflow 

architectures strongly support parallel sorting algorithms. 

There are three kinds of sorting computers which use dataflow 

architecture for performance improvement: special-purpose dataflow 

sorting machines, general-purpose dataflow machines, and dataflow­

database machines. The processors of a special-purpose dataflow 

sorting machine can be structured according to a parallel sorting 

algorithm. They are fixed-processor dataflow structures. They are 

efficient for a sorting center which performs sorting for customers. 

The processors of a general-purpose dataflow sortmg machine are 

structured dynamically by the programs. They are efficient either 

for a big research center or for a large university which has many 

kinds of large sorting tasks. A dataflow-database machine consists of 

a large number of disk units, each equipped with a separate 



56 

processing element. It has been designed to exploit the potential 

parallelism for a database in which there is frequently searching, and 

sorting, as well as various kinds of updates. 

Suggested Future Research 

A future research topic in the study of general-purpose sorting 

machines is how to connect the processors dynamically. This is a 

communication problem as well. At present, using hardware is one 

of the ways to solve this problem. A better and more convenient 

way communications technique is needed in the future. 

For special purpose sorting machines, one of the future 

research problems is how to use the processors efficiently. Partial 

control of processors can been added to improve the efficiency. 

Otherwise, making machines more flexible is another important 

problem in the future study. 

The dataflow-database machine' is in the practical use period. 

Combining processors and storage together can be the best way of 

dataflow-database machine. Then the modifications of sorted file can 

been done by database itself. 



BffiLIOGRAPHY 

[ 1] Agerwala, T., "Data Flow Systems," Computer (Feb 1982), 10-12. 

[ 2] Aggarwal, A. and , J. S., "The Input/Output Complexity of 
Sorting and Related Problems," Commun. of the ACM, 31 
(Sep. 1988), 1116-1127. 

[ 3] Aho, A, Hopcroft, J. E. and Ullman, J. D., The Desi&n and Analysis 
of Computer AI~:orithms, Addison-Wesley, Reading, MA, 
1974. 

[ 4] Alon, N. and Azar, Y, "The Average Complexity of Deterministic 
and Rendomized Parallel Comparison-sorting Algorithms," 
SIAM J. Comput., 17 (Dec 1988), 1187-1192. 

[ 5] Alon, N. and Azar, Y., "Finding an Approximate Maximum," 
SIAM J. Comput., 18 (Apr 1989), 216-228. 

[ 6] Amsterdam, J., "an Analysis of Sorts,"~, 10 (Sep. 1985), 104-
108. 

[ 7] Arvind and Gostelow, k. p., "A Computer Capable of Exchanging 
Processors for Time," Proc. IFIP con~:ress (1977), 849-
854. 

[ 8] Arvind and Culler, David E., "Dataflow Architectures," Annual 
Reviews in' Computer Science. 1 (1986), 225-253. 

[ 9] Baase, Sara, Computer AI~:orithms: Introduction to Design and 
Analysis, Addison-Wesley Pubhshmg Company, 1978. 

[10] Batcher, K. E., "Sorting Networks and Their Applications," Proc. 
AFIPS 1968 SJCC, 32, 307-314. 

57 



58 

[11] Beatley, J. L. and Knug, H. T., "A Tree Machine for Searching 
Problems," Proc. of the 1979 International Conference o n 
Parallel Processin& (Aug. 1979) 

[12] Bic, L. and Hartmann, R. L., "AGM: A Dataflow Database 
Machine," ACM Iran. on Database Systems, 14, 1(Mar 
1989), 114-146. 

[13] Bic, L. and Hartmann, R. L., "Simulated Performance of a Data­
driven Database Machine," 1. Paral. Pistrib. Comput., 3, 2 
(Mar. 1986), 1-22 

[14] Bilardi, G., "Merging and Sorting Networks with Topology of 
Omega Network," IEEE Trans. on Computers, 38, 10(0ct. 
1989), 1396-1403. 

[15] Bilardi, G. and Nicolau, A., "Adaptive Bitonic Sorting: an Optimal 
Parallel Algorithm for Shared-memory Machines," SIAM 
J. on Computin&, 18 (Apr. 1989), 216-218. 

[16] Bitton, D., DeWITI, D.J., Hsiao, O.K. and Menon, J., "A Taxonomy 
of Parallel Sorting," Computin& Surveys, 16, 3 (Sept. 
1984), 287-318. 

[17] Carlson, W. W ., "Algorithmic Performance of Dataflow 
Multiprocessors," Computer, (Dec. 1985), 30-40. 

[ 18] Cole, Richard, "Parallel Merge Sort," SIAM J. Comput., 17 (Aug. 
1988), 770-785. 

[ 19] ·Davis, A. L., A Data Flow Evaluation System Based on the 
Concept of Recursive Locahty, In Proceedings of the 
National Computing Conference, AFIPS Press, Reston, Va., 
1979, 1079-1086. 

[20] Dennis, J. B., "Data Flow Supercomputers," Computer (Nov. 
1980), 48-56. 

[21] Dennis, J. B., First Version of a Data Flow Procedure Lan&ua&e, 
In Lecture Notes in Computer Science, Vol. 19, G. Goos and 
J. Hartmams, Eds. Springer, New York, 1974, 362-376. 



59 

[22] Dromey, R. G., How to Solye It by Computer, Prentice-hall 
International, INC., London, 1982. 

[23] Dwork, C., Kanellakis, P. C. and Stockmeyer, L., "Parallel 
Algorithms for Term Matching," SIAM J. Comput., 17 (Aug 
1988), 711-731. 

[24] Faigle, U. and Turan, G., "Sorting and Recognition Problems for 
Ordered Sets," SIAM J. on Computin&, 28, 1 (Jan 1985), 
111-129. 

[25] Hartmann, R. L., A Patabase model and Its Implementation on a 
Hiahly Parallel Architecture. Ph. D. Dissertation, 
Deptmemt of ICS, University of California, Irvine, 1987. 

[26] Hazra, A., a Description Method and a Classification Scheme for 
Data Flow Architectures, in Proceedings of the 3rd 
International Conference on Distributed Computing 
Systems, IEEE, New York, Oct. 1982, 645-651. 

[27] Heide, F. and Wigderson, A., "The Complexity of Parallel 
Sorting," SIAM J. Comput., (Feb 1987), 100-107. 

[28] Horguchi, S., Nakada T. and Shigei, Y., "Experimental Evaluation 
of parallel Sorting on a Multiprocessor System," ~ 
Transactions of the IEICE, E 71, 2 (Feb. 1988), 127-131. 

[29] Hwang, Kai, Computer Architecture and Parallel Processina. 
McGraw-Hill, New York, 1984, 732-738. 

[30] Karp, R. M. and Miller, R. E., "Properties of a Model for Parallel 
Computations: Determinacy, Termination, Queueing," 
SIAM J. Appl. Math, 14, 6 (Nov 1966), 1390-1411. 

[31] Kapral ski, a., "The Maximun and Minimum Selector SELRAM 
and Its Application for Developing Fast Sorting Machines," 
IEEE Tran. on Computers, 38, ll(Nov. 1989), 1572-1577. 

[32j Knuth, D. E., The Art of Computer Programming Vol 3 Sorting 
and Searching, Reading, MA: Addison-Wesley, 1973. 

[33] Komori, Sh1nji and Shima, Kenji, "The Data-Driven 
Microprocessor," IEEE MICRO, (June 1989), 45-59. 



60 

[34] Lew, Art, Computer Science: A mathematical Instruction, 
Prentice-Hall International, INC., London, 1985. 

[35] Nassimi, D. N. and Sahni, S., "Bitonic Sort on a Mesh Connected 
Parallel Computer," IEEE Iran. Comput., C_27, 1(Jan 
1979). 

[36] Paseman, W.O., "Applying Data Flow in the Real World," ~ 
(May 1985), 201-214. 

[3 7] Patton, C., "Data-flow Architecture Unclogs the Bottleneck of 
von Neumann Systems," Electronic Desien (Feb 23, 1984), 
60-61. 

[38] Pippenger, N., "Sorting and Selecting in Rounds", SIAM J. 
Comput., 16, (Dec 1987), 1032-1038. 

[39] Rajasekaran, S. and Reif, J. H., "Optimal and Sublogarithmic 
Time Randomized Parallel Sorting Algorithms,"SIAM J. 
Comput., (June 1989), 594-607. 

[ 40] Richards D., "Parallel Sorting - A Bibliography," SIGACT News, 
18, 1 (Summer 1986), 28-48. 

[ 41] Rodriguez, J. E., A Graph Model for Parallel Computation, Tech. 
Rep. 64, Project MAC, Massachusetts Institute of 
Technology, Cambridge, Mass, 1969. 

[42] Rumbaugh, J., A Data Flow Multiprocessor, Proceedings of the 
1975 Sagamore Computer Conference on Parallel 
Processing, Sagamore, N.Y., 1975, 220-223. 

[43] Schmeck, H, et al, "Systolic S -Way Merge Sort is Optimal," IEEE 
Trans. on Computers, 38, 7(July 1989), 1052-1056. 

[ 44] Srini, V. P., "An Architectural Comparison of Dataflow Systems," 
Computer, 19, 9 (Mar. 1986), 68-88. 

[45] Thakkar, S., Dataflow and Reduction Architectures, Computer 
Society Press of the IEEE, Washington, D.C.(1987). 



61 

[46] Thompson, C. D. and Hung, H. T., "Sorting on a Mesh Connected 
Parallel Computer," Commun. ACM, 20(Apr. 1977), 263-
271 

[47] Treleaven, P. C., Lima, G., "Future Computers: Logic, Data Flow, ... , 
Control Flow?", Computer (March 1984), 47-55. 

[48] Treleaven, P. C., Brownbridge, D. R., and Hopkins, R. P., "Data­
Driven and Demand-Driven Data Flow Computer," A C M 
Computin& Surveys, 14, 1(March, 1982), 93-143. 

[49] Treleaven P. C. and Vanneschi, M., Future Parallel Computers, 
Springer-Verlag, Berlin, Germany, 1987. 

[50] Treleaven, P. C., "Principle Components of a Data Flow 
Computer," Proc. 1978 Euromicro Symp, (Oct. 1978), 366-
374 

[51] Veen, A. H., "Dataflow Machine Architecture," ACM Comput. 
Suryeys, 18, 4 (Dec, 1986), 365-396. 

[52] Vegdahl, S. R., "A Survey of Proposed Architectures for the 
Execution of Functional Languages," IEEE Trans. on 
Computers, C-23, 12 Dec. 1984, 1050-1071. 

[53] Winslow, L.E. and Chow, Y., "The Analysis and Design of Some 
New Sorting Machines," IEEE Trans. on Computers, c-32, 7 
(July 1983), 677-683. 

[54] Wong, F. S. and Ito, M. R., "Parallel Sorting on a Recirculating 
Systolic Sorter," Comput. J., 27, 4(1984). 

[55] Yang, M., Huang, J. S. and Chow, Y., "Optimal Parallel Sorting 
Scheme by Order Statistics," SIAM J. Comput., 16 (Dec 
1987), 990-1003. 



VITA 

Renmet Shu 

Candidate for the Degree of 

Master of Science 

Thesis: THE USE OF DATAFLOW ,ARCillTECfURES FOR IMPROVEMENT 
OF SORTING ALGORITHMS 

Major Field: Computing and Information Sctences 

Biographical: 

Personal Data: Born in Wuhan, China, May 17, 1949, the 
daughter of Song-gut Shu and Zht-ling Wang, Mamed 

Education· Graduated from the htgh school attached to BeiJing 
Institute of Technology, August 1966; received Bachelor 
of Sctence Degree m Automatic Control from BeiJing 
Institute of Technology, BeiJing, China, December, 1975, 
Completed requirements for the Master of Sctence Degree 
at Oklahoma State Umverstty, May, 1990 

Professional Expenence: Research and Teachmg Assistant at 
BeiJing Institute of Technology, Beijing, China 1975-79; 
Software Engineer/System Analysts at BeiJing Institute of 
Technology, BeiJing, China 1980-84; Graduate Assistant at 
Oklahoma State University, Stillwater, Ok, 1987 -present. 




