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PREFACE 

A new scaled-variable-reduced-coordinate framework for the 

correlation of pure fluid saturation properties was developed. 

Correlations valid over the entire saturation range from the triple 

point to the critical point were developed for correlation of vapor 

pressures, liquid densities and vapor densities of widely varying 

compounds. The correlations are consistent with scaling theories in 

the near-critical region, and compare favorably with the existing 

literature models. The three correlations were extended to generalized 

models to provide predictive capability with average absolute 

deviations within 1.5%. 
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CHAPTER I 

INTRODUCTION 

The saturation properties of pure fluids play a major role in both 

the theoretical understanding of fluid phase behavior and in the design 

and operation of a multitude of industrial processes. Such properties 

are essential both when used directly in calculations, or when used as 

input to a variety of models and applications. 

Because pure fluids represent the limiting conditions of mixtures, 

such properties are essential to vapor-liquid equilibrium calculations 

of multi-component systems. The importance of adequate property 

correlations is evident when a de~ived quantity such as dp/dT is 

needed, or when equation of state parameters are required. For 

example, accurate pure-fluid saturation properties are needed to 

estimate input variables (e.g.', Tc, Pc' w) for a number of generalized

parameter equations of state that have been d~veloped to facilitate 

generalized predictions of mixture properties (1,2,3). 

Although the literature contains many correlations (4-8) for 

predicting saturation properties, many of these correlations suffer 

from a limited range of applicability and poor suitability for 

generalization. Furthermore, the need for specialized correlations for 

each saturation property amplifies the usefulness of an efficient and 

reliable unified framework for the prediction of saturation properties. 

The majority of the existing correlations are based on one of two 
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approaches: equations of state (4,5,9) which attempt to relate the 

p,v,T behavior over the entire fluid region, or corresponding states 

theory (CST) (10-14) which relates two specific thermodynamic variables 

in the saturated region. In general, while equations of state are more 

efficient in correlating thermodynamic properties, they are incapable 

of accurately predicting a number of saturation properties of vapor and 

liquid phases simultaneously. Because of this inadequacy, the CST 

method has been more successful. The present work utilizes the CST 

concepts to develop a unified framework for the correlation of 

saturation properties. 

The goal of this work was to develop a framework for the proper 

reduction and correlation of saturated properties over the entire 

bounded saturation region. More specifically, work was directed at 

correlation of properties of saturated pure fluids over a temperature 

range extending from the triple point to the critical point. The 

characteristics of the desired framework are: 

(1) ability to correlate a number of saturation properties (at the 

desired precision) over the full saturation range from the triple 

point to the critical point, 

(2) ability to satisfy established theoretical limiting behavior for 

the properties considered, 

(3) ability to predict the behavior of fluids of widely varying 

chemical nature, 

(4) suitability for generalization to provide predictive capability, 

and 

(5) simplicity. 



This study involves the development of the general framework for 

precise representation of saturation properties and its application to 

the correlation of pure-fluid vapor pressure, and saturated liquid and 

saturated vapor densities. Discussions are included regarding the 

development of each property correlation, evaluations of the proposed 

framework for use as a correlative tool, and extension of the proposed 

correlations to simple generalized models. 

3 



CHAPTER II 

LITERATURE REVIEW 

During the course of this work, a review of relevant literature 

was conducted. No attempt is made here for an extensive discussion of 

the numerous studies in this area. Only the prediction methods which 

offer good correlative or predictive capabilities will be addressed. 

Specifically, literature dealing with the correlation of pure fluid 

vapor pressure and liquid and vapor densities was surveyed. The 

theories of corresponding states and critical point scaling law 

behavior significant to the specific properties considered were also 

briefly reviewed. 

Vapor Pressure Correlations 

The literature contains many correlations for prediction of 

' saturation vapor pressure of pure fluids (8,15-19). Most of the 

existing equations show some basis in the Clapeyron relation which may 

be expres~ed as the ~hermodynamically exact equation: 

d(lnp) ~H 

(1) 
d(l/T) ~z 

Since ~ and ~Z are not known explicitly as functions of temperature or 

pressure, the right side of Equation (1) cannot be integrated 

analytically. However, assumptions regarding the temperature 

4 



dependence of ~ and ~Z (17) can aid in the development of a vapor 

pressure equation. Most of the existing equations (8,16,18) simply 

express lnp as a function of 1/T (or T) as suggested by Equation (1). 

5 

Three high precision vapor pressure correlations which are valid 

over the entire saturated region from the triple point to the critical 

point were chosen for comparison with the present work. Descriptions 

the correlations considered for vapor pressure prediction as well as 

the other saturation properties studied appear in Appendix A. Wagner 

(16) utilized a statistical method known as "stepwise multiple 

regression analysis" to determine the most significant terms in an 

equation which expresses lnp as a polynomial-type function of (1-T/Tc). 

His resulting equation contains four parameters and correctly exhibits 

the observed non-analytical behavior of (d2p/dT2) at the critical 

point. Iglesias-Silva and co-workers (17) developed a vapor pressure 

equation by assuming a temperature dependence for ~H near the triple 

point and a functionality for (d2p/dT2) near the critical region 

similar to that suggested by scaling theory. Their resulting set of 

equations contains three parameters and compares very favorably with 

other correlations (17). Gomez-Nieto and Thodos (18) developed a set 

of equations for prediction of vapor pressures of non-polar pure 

substances, Their correlation is included as a comparison in this work 

because it represents a nearly generalized correlation requiring only 

the normal boiling point and critical point properties as input 

variables. 

Liquid Density Correlations 

A wide variety of saturated liquid density equations (7,20-26) 



appear in the literature. Most of these equations express liquid 

density as a polynomial-type function of (1-T/Tc). Extensive reviews 

of available models are given elsewhere by several authors (7,20,22). 

Based on a survey of the literature cited above, two correlations 

which are rated highly in the literature (4,21,22) were chosen for 

comparison with this work, and are described in Appendix A. Both 

Spencer and Danner's modified Rackett equation (22) and Hankinson and 

Thomson's correlation (21) provide precise liquid density predictions. 

The modified Rackett equation contains one substance-specific 

parameter. Hankinson and Thomson's correlation is a one-parameter 

equation applicable in the range of 0.25<Tr<0.98. 

6 

Vapor Density Correlations 

Several models which are in fairly wide use have been recommended 

for the prediction of saturated vapor density (4,6,27). However, these 

methods suffer from the major drawback of requiring both temperature 

and pressure to calculate vapor density and were not considered for 

comparison with the proposed model. Instead, an equation which 

expresses vapor density as a function of temperature only and which is 

very useful as a data reduction tool was chosen as a comparison for 

this work. 

Several authors (28,29,30) have used equations similar to one used 

by Goodwin (31) (described in Appendix A) for the correlation of ethane 

vapor densities. Goodwin's equation contains six parameters and 

expresses lnp as a polynomial-type function of (Tc-T)/(Tc-Tt) in powers 

of 1/3 from 1.0 to 2.0. A leading term with an exponent of 0.35 as 

used by Goodwin (31) for ethane was used for all fluids considered. 
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The equation provides highly precise vapor density representations. 

However, the model parameters do not appear to be generalizable and use 

of this equation as a predictive tool is not promising. 

Review of Relevant Theory 

As stated above, two of the desired model characteristics are the 

ability to predict the properties of fluids of widely varying chemical 

nature and the ability to satisfy established theoretical limiting 

behavior for the properties considered. Therefore, a review of 

corresponding states theory and critical point scaling law behavior was 

conducted. A brief suffimary of these topics is included to emphasize 

their significance and influence on this work. 

Corresponding States Theory 

The principle of corresponding states asserts that physical 

properties dependent on intermolecular forces are related to the 

properties at the critical point in the same way for all fluids. In 

1939, Pitzer (33) provided a theoretical development based on 

statistical mechanics of simple molecules which showed that the 

compressibility factor may be expressed as: 

E V 

Z = Z(- ,-) 
kT Na3 

where e = energy parameter of molecular interaction 

a = molecular separation corresponding to the minimum 

potential energy of interaction. 

k =Boltzmann's constant 

(2) 



By applying the conditions that the first and second derivatives 

of pressure with respect to volume equal zero at the critical point, 

Equation (2) can be shown (10) to be equivalent to: 

z (3) 

Pitzer and Curl (13) demonstrated the applicability of this principle 

to normal fluids by utilizing the acentric factor and extending 

Equation (3) such that: 

z (4) 

Equation (4) can be further generalized to include as many substance

dependent parameters as necessary: 

z (5) 

8 

For a pure fluid in the saturated region, only one variable is 

required to fix the state of the system, and the compressibility factor 

(or any other saturation property) can be related to the temperature 

as: 

Y - Y(Tr, a1 , a2, ... an) (6) 

where Y = any saturation property 

The significance of the corresponding states principle is evident from 

Equation (6) in which a property, Y, can be related to temperature for 

all substances with the same correlation form. The goal of correlation 

efforts based on the corresponding states principle then becomes 

precise representation of saturation properties in terms of reduced 

variables with simple generalizable relations for the set of structural 
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parameters. 

Scaling Law Behavior 

Scaling laws are universal relations among the various 

thermodynamic variables in the immediate vicinity of the critical point 

as established both by observation and by theor~tical models. The 

relations pertinent to this work can be expressed mathematically as: 

(7) 

where, Y vapor pressure or saturated liquid or vapor density 

A a system specific proportionality constant 

B universal critical point exponent common for all fluids 

Extensive discussions of universality and critical point exponents are 

given elsewhere (34-39). Only those results of scaling law theories 

which are pertinent to this work will be mentioned here. 

Scaling theory (16,35) places the following requirement for the 

limiting behavior of the vapor pressure at the critical point: 

' ( 8) 

While scaling theory provides "'!- clear as'sessment for the value of 

d2p/dT2 at the critical point, little information exists regarding the 

limiting value of dp/dT. In the study of carbon dioxide, Sengers and 

Chen (40) have used a value of 1.0 for the critical exponent, B, of 

Equation (7) to represent vapor pressure data near the critical point. 

The critical exponents of the saturated liquid and vapor density 

curves are identical, and experimentally observed values for these 
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exponents are usually near 0.35 (34). Accurate theoretical predictions 

for these critical exponents based on three-dimensional Ising-like 

systems provide a critical exponent for the density curves of 0.325 

(37). Such a value for this critical exponent leads to the well 

accepted criterion that: 

Lim (dp/dT) co (9) 
T~Tc 

Lim (d2p) 
T_,.Tc --- co (10) 

dT2 

Following the works of Charoensombut-amon and Kobayashi (41) and 

Gasem and co-workers (82), the usefulness of Equation (7) can be 

extended to lower temperatures for the saturation densities by coupling 

the order parameter equation, 

N 
~ ~ = ~ b;(r)~+i 'I'+ - 'I'- .... (11) 

i=O 

and the rectilinear diameter equation, 

(12) 

to develop the following expression for the correlation of coexisting 

phase densities: 

M N 
4>± = tPc + ao(r)l-a + ~ aJ·(r)j + (1/2) h bi(r)~+i 

j=l i=O 
(13) 

4> order parameter (+/- for the liquid and vapor phases, 

respectively) 



a,~ universal scaling-law exponents 

N,M number of expansion terms 

a,b system-specific constants 

11 

The leading term (i=O) of Equation (13) is the limiting scaling-law 

behavior of the order parameter, ~. and the subsequent terms in the 

summation are the Wegner corrections (32) to the limiting scaling 

behavior. While such an extension is capable of precise representation 

of phase densities, several parameters are required (ai's and hi's) and 

difficulty in generalizing these parameters deters further development 

of a predictive correlation based on this type of equation. 



CHAPTER III 

FRAMEWORK DEVELOPMENT 

For a pure fluid in the saturated region, only one fluid property 

is required to fix the state of the system. Thus, pairs of properties 

may be related as: 

(14) 

where Y a saturated fluid property 

X independent correlating variable 

and a indicates a saturation condition. 

This relation describes changes in a dependent thermodynamic variable 

due to changes in an independent variable. For example, one can 

determine the vapor pressure as a function of temperature by 

integrating the following equation: 

dp (15) 

For the general case given by Equation (14), applying the boundary 

condition that, 

Y = Yc at X (16) 

one obtains, 

(17) 

This equation can then be recast as, 

12 
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(18) 

where 9 is used to express the integral quantity and a is a set of 

structural parameters descriptive of the molecular behavior of the 

fluid of interest. The variable ac is included as a consequence of the 

boundary condition tbat at X=Xc, Y=Yc and a=ac. 

To benefit from another boundary condition at the triple point, a 

second equation can be written as, 

(19) 

Equations (18) and (19) can be combined to produce the following 

expression for the determination of fluid saturation properties in 

terms of well defined limits (the critical point and the triple point): 

(20) 

To facilitate the correlation of saturation properties, an assumption 

was made that a could be removed from the right side of Equation (20) 

by way of the following variable transformation:: 

Q 
y 

ya_ya 
c t 

where, a: 

(21) 

(22) 

While this transformation is an assumption, its success is supported by 

the correlation of vapor pressure (42), liquid density (43) and other 

saturation properties. 
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The final step in the development of the general model involves 

expressing the right side of Equation (21) as a function of only one 

variable defined as, 

€ = ------- (23) 

so that Equations (21) and (22) may be written as, 

8(e) (24) 
~-~ 

c t 

(25) 

In this way, the structural dependence of fluid behavior is now well 

referenced between the limiting behaviors at the critical point (which 

exhibits elements of universality) and the triple point (which is 

highly substance specific). 

The framework given by Equations (24) and (25) is identical to 

that which has been used in previous studies at Oklahoma State 

University to correlate physical properties, where Y included such 

properties as Tb, Tc, Pc' and w (1,2,44) for normal paraffins, and e 

was expressed as: 

(26) 

where cl correlation constant 

X carbon number 

a c 2 (a second correlation constant) 

Such a definition has lead to precise correlations for these physical 

properties of normal paraffins with reasonable extrapolation 



capability, allowing for predictions of properties for the heavier 

members of this homologous series (for which experimental data are 

unavailable). 

15 



CHAPTER IV 

DATA REDUCTION PROCEDURE 

Various strategies have been suggested for the reduction of vapor 

pressure data (16,45) with each trying to reflect the level of 

confidence placed in the different measurements considered. Although 

highly precise and internally-consistent data are available, special 

attention is still recommended when dealing with pressures below 1 kPa, 

since such measurements tend to have relatively larger percentage 
y 

errors (45). 

Ideally, a weighted least squares objective function is desirable 

for all of the properties studied, since this permits each data point 

to be assessed an appropriate weight to reflect the uncertainty 

associated with the measurement. For the systems considered in this 

study, however, excellent overall fits were obtained using the relative 

error objective function given below: 

(27) 

where Yexp experimental saturation property 

calculated saturation property 

The present model includes both the triple point (Yt) and critical 

point (Yc) saturation properties as input variables. To avoid the 

uncertainties in these two end points having a disproportionate effect 

on the overall quality of fit, both end point saturation property 

16 
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values were treated as adjustable parameters and were evaluated as part 

of the overall regression, but were constrained to differ from the 

literature values by no more than the average relative error of the 

data points in the regression. The end point saturation properties 

used as input parameters in the evaluations of the literature models 

were treated in the same manner. 

The procedure used in the development of all correlations given 

here consisted of the following. First, a database was compiled 

containing highly reliable data for the development of each 

correlation. Where possible, experimental data were used to avoid the 

influence of other workers' smoothing functions on the development of 

these correlations. Second, this database was used to test the ability 

of the proposed model to correlate the saturation properties of widely 

varying chemical species using as many substance-specific parameters as 

required, and comparisons were made w,ith the selected literature 

models. Finally, generaliz,ed models for vapor pressure and liquid 

density were developed based on this database and checked against data 

on other substances in a second database which, in general, consisted 

of lesser quality data. A preliminary generalized correlation was 

developed for prediction of vapor densities, but it has not been 

checked against additional data. 

A Marquart (46) nonlinear ·regression procedure was employed in the 

calculations. Definitions of the statistics used in this study are 

given in the Nomenclature. 

Database Employed 

Appendix B gives a complete list of the physical properties and 
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the ranges and sources of all data used in the development stage of 

each correlation and in the development of each model generalization. 

Also included in Appendix B are the ranges and sources of all data used 

to check the generalized models for vapor pressure and liquid density. 

A comprehensive description of all cases studied during the course of 

this work is given in the following chapter. 



CHAPTER V 

VAPOR PRESSURE MODEL 

Model Development 

The development of the vapor pressure correlation involves 

determination of the functions for 9 and a of Equations (24) and (25). 

Appendix B details the database employed in this study to determine the 

forms of the 9 and a functions. Table B.l gives the critical and 

triple point properties used and Table·B.2 presents the sources and 

ranges of data used. 

A variety of functional forms for 9 and a were evaluated in the 

course of this work. As a ,result (based on regressions of the data set 

in Table B.2), the following equations are proposed to describe the 

temperature dependence of 9 and a: 

B 

9 (28) 
1 - A 

and 

ac - a € + C€2 
(29) 

ac - at 1 + c 

where, 

Tc - T 
€ = (30) 

Tc - Tt 

A,B,C correlation constants 

19 
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ac the limiting value of a at the critical point temperature. 

at the limiting value of a at the triple point temperature. 

Thus, recasting Equation (24), 

(31) 

and applying Equations (28), (29), and (30) as definitions for 8, a, 

and e results in the proposed model for the correlation of pure-fluid 

vapor pressure, where Y becomes p. 

Figure 1 illustrates the variation of the reduced vapor pressure 

with reduced temperature for a number of compounds with different 

degrees of acentricity and polarity. The figure indicates that the 

reduced vapor pressure depends upon two separate factors -- the 

temperature and the chemical nature of the substance. 

Using the proposed framework given by Equation (31), the 

variations in the vapor pressure with temperature and chemical 

structure are presented by two simple functions both of which are 

temperature dependent. The first, given by Equation (28), presents the 

effect of reduced temperature on the correlating function, 8, and the 

second, as shown in Figure 2, depicts the variation of the scaling 

exponent, a, with reduced temperature, e. As given, the proposed 

correl~tion: 

(a) provides for a universal representation for the scaled-then

reduced pressure, 9, in terms of the reduced temperature, e, 

and 

(b) accounts for variation due to' the chemical structure through 

the limiting values of the scaling exponent (ac and at). 

(Note that in the context of this work, a scaled variable is one raised 
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to a power, e.g., ya, and a reduced variable is one divided by the 

critical property, Y/Yc, or the adjusted critical, (Yc-Y)/(Yc-Yt).) 

Further evidence for the ability of ac and at to account for 

effects of variation in the chemical species is given by Figure 3, 

where values of ac and at show a strong correlation with the reduced 

triple point temperature, Trt• which is highly substance dependent. 

Figure 3 also shows predicted values,of ac and at which are described 

later in this chapter. 

Criteria of Evaluation 

23 

One of the basic requirements for a useful saturation property 

correlation is accurate representation of experimental data (within 

their uncertainty) over the complete saturation range. Figures 4 and 5 

present error plots for ethane and nitrogen in which B, ac, and at in 

Equations (28) and (29) are treated as system specific parameters. The 

quality of fit produced by the proposed vapor pressure correlation is 

excellent and compares favorably with the results obtained from the 

Wagner (16) and Iglesias et. al. (17) equations. 

Several criteria for the development of vapor pressure 

correlations have been proposed over the years by Riedel (19), Waring 

(8), Ambrose (47) and Chase (15). While such criteria have evolved 

from experimental and phenomenological observations, most lack a sound 

theoretical basis. Accordingly, careful examination of the validity 

for such criteria is required prior to their adoption. 

Scaling theory (16,35,36) places the following requirement for the 

limiting behavior of the vapor pressure at the critical point 



0.6 
I 

Q) 
c 
<1l 
p, 

0. 5-1 0 
1-1 
p.. 

cs 
. 0.4 

1-z w 
z 
0 
.0. 
[;j 0.3 

l!l 
z EB 
H 
.J 
·<( 

:~ 0.2 

I 
~ 

0. 1 -1 

0 

0.2 

Q) .-l Q) Q) c Q) 
Q) <lS Q) !ii Q) s:: 0 l:lt::.-l Q) c 

Q) <lS Ct::<ll-MO t>C<lS s:: -M t:: ec s:: s:: ..., 
<lS Q) rl "" s:: 1-1 0 tJ tll 1:: (lJ 0 0 s:: 

<lS ::l .c oc >. 0 <1l (lJ ~· Q) .C 0 N 1-1 ._, 0 .c I'll ~~il..:l-5 ...,"Ot:l ..., "' 1:: .j.J Q) DO N ..., I <lS :> I Q) ~ Q) >r! tJ "" 0 w 1:: ::>:: 0 w f;L, w !3 ::X:: t:: ;:.: l'llZ< < u 

t1! 

0 ~ + 
m rl:J 

m 
19tf.J1 m m 

m m em 

rn d3 

* * ~lit • ~ 
~~ ~~~ ~ X 

A 

I 

0.3 0.4 0.5 0.6 0.7 

REDUCED TRIPLE POINT TEMPERATURE. T/Tc 
ODD a AAA (ac - at) c 

SOURCE 
+++ ac from Equation (36) XXX (ac-at) from Equation (37) 

Figure 3. Effect of Reduced Triple Point Temperature on Limiting 
Values of Vapor Pressure Scaling Exponents 

I 

o.a 

N 
+'-



0.5 

0.4 

0.3 

~ 
0.2 

D 

z 
0 

0.1 0 

H 
1-
<t 
H 0.0 

~ 
§. 

> 
UJ 
0 

~ 
~ -0.1 Q 

~ ~ C!J 

-0.2 !;, 

-0.3 s 
-0.4 

-0.5 
'T 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TEMPERATURE • (Tc-T) I (Tc-Tt) 

SOURCE D 0 D This Work Case 1 0 0 0 Wagner (16) /;,/:i./:i. Iglesias (17) 

Figure 4. Comparison of Ethane Vapor Pressure Representations 

6 

6 

D 

1 

N 
I.Jl 



z 
0 
H 
f-
<l; 
H 
> 
lJJ 
CJ 

~~ 

0.2 

0.1 

0.0 

I ~ 1:.. 

-0.1 

1:.. 

A &} 
~ 
fi} 

~~ a /). 

tr] ~A~2 ~ ~ 
9~:.. ~ 
~:..f!} ~ 

1:.. 
1:.. 

D. 

t:. 

1:.. t:. 

1:.. 

l:..fil 
' 

0 ~ CJ 
0 

~ 

-0.2T------r----~------~----~------r------,-----.------~----~-----__J 
0 0.1 0.2 0 3 0.4 0.5 0.6 0.7 0.8 0.9 1 

TEMPERATURE • (Tc-T) / (Tc-Tt) 

SOURCE 0 0 0 This Work Case 1 0 0 0 Wagner (16) I:.. I:..!:. Iglesias (17) 

Figure 5. Comparison of Nitrogen Vapor Pressure Representations 

N 
0\ 



d2p 
Lim(-) 
T~Tc dT2 

27 

(32) 

The proposed correlation satisfies this scaling law behavior. However, 

it is at odds with the Riedel-Plank criterion, which requires a zero 

value for da/dT (a= (T/p)(dp/dT)) at the critical point. Similarly, 

Wagner (16) concluded that the Riedel-Plank criterion is not suitable 

for the fluids he considered. He stated that it cannot be entirely 

excluded that both da/dT and d2p/dT2 would become infinite as T+Tc. 

While scaling theory provides a clear assessment for the value of 

d2p/dT2 at the critical point, little information exists regarding the 

limiting value of dp/dT. An expression for (dp/dT)c for the proposed 

correlation is as follows: 

(l-ac) 
Pc ac ac 1 BlnA B-1 

(dp/dT) = (---HPc - Pt )( ) (--) e (33) 

e+O ac Tc - Tt A-1 

Thus, the limiting value of dp/dT at the critical point depends on the 

value of B. For the fluids considered in this study, a value of B<l 

was found to be optimum. This implies that dp/dT at the critical point 

is infinite. During the course of the evaluation of the proposed 

correlation, it was found that setting B=l or B>l, to force (dp/dT)c to 

be either zero or finite, consistently resulted in a worsened fit of 

the experimental data. 

Based on the proposed correlation, the approach of dp/dT to 

infinity as the critical point is approached is,rather slow, since the 

value of dp/dT remains finite at e=lo- 10 . Actually, the value of dp/dT 

at e=lo-10 for ethane was found to be comparable to that obtained using 



the Wagner equation, which produces a finite limiting value for 

(dp/dT)c. 

The Waring criterion (8) requires a minimum to exist in the ~H/~Z 

vs Tr plot at a reduced temperature of about 0.8 to 0.85. This 

criterion, in turn, would satisfy Thodos'(l8) observation for the 

existence of an inflection point in lnp curve with (1/T), since 

d(lnp) 
-R ------- (34) 

d(l/T) 

Figure 6 presents the variation of ~/~Z with reduced temperature for 

ethane as given by the proposed correlation which is clearly in 

agreement with Waring's criterion. 

28 

The discussion thus far has dealt with criteria that apply at 

temperatures above the normal boiling point. For lower temperatures, 

T<0.6Tc, comparison of the calculated ~/~Z values with those based on 

experimental measurements offers a reasonable check on the 

applicability of a given correlation at low temperatures. Such 

agreement between the two quantities signifies that the rate of change 

of pressure with respect to temperature is in accordance with the 

Clausius-Clapeyron equation expressed by Equation (34). As shown in 

Figure 6, a favorable comparison exists between the calculated ~H/~Z 

and those based on experimental measurements (deviations within 0.5%). 

Model Evaluation 

As indicated by Equations 28-30, the proposed correlation contains 

five parameters, A, B, C, ac, and at. Studies have indicated, however, 

that good precision is retained when some of these parameters are 



rl 

0 
E 

'-,. 

J 

1-
u 

' a.. 
u 

a.. 

' N 
1-
£; 

N 
<l 

' .I 
!<l 

25000 

~ 

20000 

g § 
f] 

0 t) 
0 g 

15000 
o o o o o a fl -.~>cr/ 

oco 0 ~ «» o «D o o~~~Q.IY 

10000 0. 8 0. 9 1 
0.2 0 3 0 4 0 5 0.6 0 7 

REDUCED TEMPERATURE , T/Tc 

SOURCE 0 0 0 Goodwin (1976) 0 0 0 This Work 

Figure 6. Ethane dp/dT Variation with Temperature 
N 
1.0 



30 

treated as universal constants. Simple values for two of the 

parameters (A= 2/3, C = 4/3) were determined by regression of the data 

set in Table B.2. Five cases were studied during the evaluation of the 

vapor pressure model and are described in Table I. 

The evaluation of the first two cases is presented in Table II and 

the regressed parameters for these cases are reported in Table C.l of 

Appendix C. In the first case, (Case 1), A and Care treated as 

universal constants, and ac, at, and B are substance-specific. In 

Case 2, ac and at are treated as substance-specific and B is common. 

Comparison of the results for the two c~ses indicates that for the 

most accurate representation of experimental data, the flexibility 

offered by a three constant equation is desirable and leads to precise 

representation of the experimental data for each of the various fluids 

considered (RMSE = 0.021, and %AAD- 0.057). In comparison, the 

results of Case 2, a two-constant model, show only a minor 

deterioration in the overall quality of the fit (RMSE = 0.022, and %AAD 

= 0.067). Possibly more significant from a data correlation point of 

view is the distribution of error for a given fluid where, as expected, 

Case 1 is better. 

Table II also presents a comparison of the present work with two 

correlations which are rated favorably in the literature (17,45). 

Contrasting the results obtained for Cases 1 and 2 to those of Wagner 

(a four-constant equation) (16) and Iglesias et al. (a three-constant 

equation) (17) indicates a general equivalence in performance (%AAD 

within 0.1%), with both Case 1 and Wagner's equation giving slightly 

better fits (%AAD of about 0.05%). 

Assessment of the overall value of the present correlation, based 
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TABLE I 

DESCRIPTIONS OF ALL CASES STUDIED IN THE PRESENT WORK 

Case Description 

---------------- Vapor Pressure Correlation ---------------
(Equations 28-30) 

1 Three-parameter model. 
A=2/3, C=4/3 
B, ac, ~a regressed as substance-specific parameters. 

2 Two-parameter model. 
A=2/3, B=0.985, C=4/3 
ac, ~a regressed as substance-specific parameters. 

3 One-parameter model. 
A=2/3, B=0.985, C=4/3, ~a from Equation (37). 
ac regressed as a single substance-specific parameter. 

4 Generalized model from triple point to critical point. 
A=2/3, B=0.985, C=4/3, ac from Equation (36), 
~a from Equation (37). 

5 Generalized model from normal boiling point to critical 
point. 
A=2/3, B=0.985, C=4/3, ac and ~a from Equations (36) 
and (37) with Tt and Pt replaced by Tb and 1.01325 bar. 

Liquid Density Correlation ---------------
(Equations 38-40) 

6 Three-parameter model. 
B=0.325 
A, ac, ~a regressed as substance-specific parameters. 

7 Two-parameter model. 
A=4/3, B=0.325 
o:c, ~a regressed as substance-specific parameters. 

8 One-parameter model. 
A=l.07068, B=0.325, ~a from Equation (44). 
ac regressed as a single substance-specific parameter. 

9 Generalized model from triple point to critical point. 
A=l.07068, B=0.325, ac from Equation (45), ~a from 
Equation (44). 



TABLE I (Continued) 

Case Description 

10 Generalized model from normal boiling point to critical 
point. 
A=l.07068, B=0.325, ac and ~a from Equations (45) and 
(44) with Tt and Pt replaced with Tb and Pb· 

----------------- Vapor Density Correlation ----------------
(Equations 46-48) 

11 Four-parameter model. 
A2=0.S, B2=1.325, C=0.7 
A1, B1, ac, ~a regressed as substance-specific 
parameters. 

12 Three-parameter model. 
Al=4.8, A2=0.S, B2=1.325, C=0.7 
B1, ac, ~a regressed as substance-specific parameters. 

13 Two-parameter model. 
Al=4.8, A2=0.S, Bl=0.325, B2=1.325, C=0.7 
ac and ~a regressed as substance-specific parameters. 

14 One-parameter model. 
Al=3.11, A2=0.6, Bl=0.325, B2=1.269, C=0.6, ~a from 
Equation (51). 
ac regressed as a single substance-specific parameter. 

15 Generalized model from triple point to critical point. 
Al=3.11, A2=0.6, Bl=0.325, B2=1.269, C=0.6, ~a from 
Equation (51), ac from Equation (SO). 

32 
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TABLE II 

VAPOR PRESSURE MODEL EVALUATION 

This Work Literature 

Case 1 Case 2 Wagner (16) Iglesias(l7) 

RMS, %AAD RMS, %AAD RMS, %AAD RMS, %AAD 
bar bar bar bar 

Methane 0.005 0.015 0.005 0.016 0.005 0.015 0.010 0.053 
Ethane 0.017 0.054 0.021 0.068 0.017 0.056 0.018 0.065 
Propane 0.015 0.067 0.012 0.066 0.010 0.039 0.010 0.063 
Argon 0.003 0.017 0.006 0.025 0.002 0.015 0.005 0.024 
Nitrogen 0.002 0.016 0.005 0.024 0.002 0.015 0.003 0.030 
Benzene 0.006 0.014 0.008 0.019 0.004 0.014 0.014 0.051 
C02 0.004 0.007 0.004 0.007 0.008 0.013 0.032 0.043 
Water 0.051 0.043 0.034 0.047 0.022 0.022 0.033 0.047 
Fluorine 0.007 0.069 0.006 0.072 0.002 0.051 0.010 0.079 
n-Butane 0.037 0.176 0.030 0.184 0.026 0.131 0.032 0.172 
Ammonia 0.028 0.031 0.054 0.056 0.026 0 .Oll 0.047 0.048 
Acetone 0.017 0.054 0.024 0.055 0.018 0.061 0.016 0.048 
Oxygen 0.018 0.084 0.018 0.106 0.006 0.032 0.020 0.127 
n-Decane 0.001 0.057 0.002 0.061 0.001 0.054 0.002 0.142 
Hydrogen 0.002 0.056 0.012 0.105 0.005 0.071 0.012 0.196 
Methanol 0.040 0.092 0.064 0.169 0.027 0.065 0.037 0.088 
Ethanol 0.057 0.154 0.060 0.251 0.038 0.077 0.072 0.157 
Ethylene 0.006 0.066 0.009 0.073 0.006 0.063 0.019 0.171 

Overall 0.021 0.057 0.022 0.067 0.014 0.045 0.023 0.081 

Case 1: A=2/3,C=4/3 
Case 2: A=2/3,B=0.985,C=4/3 



on the number of regressed parameters and the potential for simple 

generalizations, shows it to be it highly viable and perhaps superior 

to others evaluated. Extension of the proposed model to a completely 

generalized form based on the compounds given in Table B.2 follows. 

Model Generalization 
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The ultimate goal of any correlation development is a generalized 

model that can provide precise and reliable a priori predictions for 

all systems including those .on which no experimental data are 

available. The ability of Case 2 (in which only ac and (ac-at) are 

treated as substance-specific parameters) to provide highly precise 

predictions for a wide range of chemical species has already been 

demonstrated. This, along with the observed systematic dependence of 

ac and (ac-at) with reduced triple-point temperature, as shown in 

Figure 3, suggests the possibility for the development of a generalized 

model based on the generalization of ac and (ac-at). The development 

of a generalized equation for ac begins with the assumption that ac can 

be expressed as, 

(35) 

in which fi represents the basic functional dependen~e of ac on the 

reduced initial point temperature· (preferably the triple-point 

temperature) and fs represents the observed variation of ac with Zc for 

simple fluids. The wj's represent other correction terms included to 

account for variations of ac with known physical properties. Based on 

close inspection of Figure 3, three wj corrections were included: the 

first to account for variation in Zc from a simple fluid Zc value of 
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0.29, the second to account for variations in w, and the third to 

account for observed variations in the ratio of w/Zc. Based on 

regressions of the data set given in Table B.2, the following form was 

selected for ac: 

w (3w-w/Zc) 
+ cs + c6 - 3.0] (36) 

Similar arguments lead to the following form for (ac-at): 

c 2 c4 c4 (Zc-0.29) 
C1Trt + C3Zc + (C1-l)Trt + [C3 - l.O]C7 (37) 

The constants c1-c7 were determined from regressions of the data set 

given in Table B.2 and are reported in Appendix C in Table C.2. In 

order to test the generality of the relations given in Equations (36) 

and (37), a database of 29 additional substances was compiled as given 

in Table B.3 of Appendix B. The vapor pressures of all substances 

shown in Tables B.2 and B.3 were then predicted using Equations (36) 

and (37). Results of three cases based on the generalized equation are 

given in Table III. In Case 3, (ac-at) is determined from Equation 

(37) and ac is a regressed substance-specific parameter, and in Case 4 

both ac and (ac-at) are calculated from Equations (36) and (37). Case 

5 shows the results of using the normal boiling point as the lower 

vapor pressure point (Trb is substituted for Trt) along with Equations 

(36) and (37) to predict vap?r pressures between the normal boiling 

point and the critical point. 

The results of Case 3 demonstrate the advantages of a one-

parameter model using the proposed framework. The quality of the fit 

obtained (%AAD = 0.58%) combined with the convenience of only one 
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TABLE III 

EVALUATION OF GENERALIZED VAPOR PRESSURE MODEL 

This Work Literature 

Case 3 Case 4 Case 5 Gomez (18) 

RMS, %MD RMS, %AAD RMS, %AAD RMS, %AAD 
Substance bar bar bar bar 

Methane 0.049 0 209 0 017 0.346 0.043 0.335 Q.021 0.118 
Ethane 0.020 0.084 0.018 0.083 0.121 0.499 0.027 0 152 
Propane 0.058 0.241 0.044 0.362 0.116 0.478 0.028 0. 592 
Argon 0.067 0.264 0.064 0.342 0.063 0.323 0.053 0.242 
Nitrogen 0.030 0.188 0.030 0.282 0.026 0.363 0.044 0.354 
Benzene 0.029 0.072 0.015 0. 211 0.060 0.403 0.022 0.541 
Carbon Dioxide 0.074 0.187 0 096 0.302 0.096 0.302 0.030 0.065 
Water 0.150 0.134 0.207 0 590 1.365 2.487 3.594 10.21 
Fluorine 0.005 0.066 0.030 0. 776 0.099 0.444 0.043 0.553 
n-Butane 0.047 0 265 0.036 0. 371 0.157 0.968 0.023 l.l16l 
Ammonia 0.048 0.060 0 091 0.206 0.195 0.474 0. 712 3.378 
Acetone 0.035 0.195 0 024 0.274 0.084 0.388 0.034 2 517 
Oxygen 0 017 0.141 0.057 1.094 0.045 0.337 'o. 037 1.441 
n-Decane 0.053 0.274 0 002 0.800 0.008 0.378 0.006 1. 227 
Jlydroljen 0.040 0 667 0.032 0 800 0.008 0.161 0.041 3.142 
Methanol 0 138 0. 765 0.063 0 628 0 742 3.063 0.173 2.866 
Ethanol 0.301 1 631 0 257 1 799 0.096 0. 291 0 427 2 320 
Ethylene 0.096 0 388 0 075 1. 510 0.039 0.248 0.055 2.186 

Neon 0.053 0.392 0 068 0.602 0.052 0.428 0.108 2 117 

Propylene 0 010 0 309 0.061 2.948 0.061 0.384 0.028 1 057 

o-Xylene 0.079 0.419 0 144 1.431 0.150 0.823 0.015 0.494 

Acetic Acid 0.294 1.188 0 515 7 027 0.902 5.222 0.453 9.248 

Propanol 0.444 2 090 0 177 3.463 0.138 1. 053 0.421 9 240 

tert-Butanol 0.188 1. 338 0 062 1 438 0.104 0.974 0. 272 5 648 

Hydrogen Cyanide 0.182 0.%5 0 397 4 080 0.360 2.196 0. 271 3. 317 

Toluene 0.066 0 301 0.104 0.978 0.123 0.635 0 017 0 321 

Methyl Isobutyrate 0.354 2.269 0.187 2 375 0.116 1. 910 0.244 3 218 

Acetylene 0.393 0 859 0 589 1.613 0.587 1. 608 0 395 1 716 

Bromine 0.184 0.578 0 416 1 828 0.215 0.252 0.152 1 007 

Hethyl Chloride 0.411 1. 792 0.691 2.798 0.767 1.132 0 665 2.314 

Chlor~ne 0.080 0.255 0 067 0.533 0.067 0.496 0.076 0 570 

Carbon Tetrachloride 0.162 1 755 0.182 2.345 0.242 0.784 0.170 3.245 

Deuterium 0.053 0.470 0 078 1. 218 0.053 0.347 0.116 2. 721 

Deuteriwn Oxide 0.078 0.214 0 032 0.440 1.166 1. 725 2.597 14 68 

n-Heptane 0.067 1 312 0 026 2 500 0.129 0.901 0.005 0.986 

Refrigerant 11 0.023 0 141 0 060 1. 073 0.130 0 563 0 025 0 469 

Refrigerant 12 0.024 0 090 0.093 1.454 0.136 0.604 0.013 0 239 

Refrigerant 13 0.272 1. 524 0.140 2.954 0.034 0.413 0.174 12.94 

Refrigerant 13Bl 0.025 0 130 0 044 0. 724 0.037 0.288 0 074 0 664 

Refrigerant 22 0.170 0.869 0 019 1. 408 0.115 0.519 0.010 1. 280 
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TABLE III (Continued) 

This Work Literature 

Case 3 Case 4 Case 5 Gomez (18) 

RMS, %MD RMS, %MD RMS, %MD RMS, %AAD 
Substance bar bar bar bar 

Refrigerant 23 0.064 0.172 0.150 1. 351 0.174 0.603 0.097 1.433 
Refrigerant 113 0.016 0.147 0.019 0.215 0.063 0.522 0.032 0.444 
Refrigerant 114 0.066 0.528 0.029 1.606 0.060 0.504 0.065 0.764 
Refrigerant 115 0.043 0.296 0.106 1.093 0.058 0.365 0.050 0.284 
Refrigerant 500 0.021 0.063 0.112 1. 612 0.085 0.888 0.889 21.79 
Sulfur Dioxide 0.080 0.842 0.082 0.939 0.138 0.535 ·0.110 1.610 
Xenon 0.062 0.282 0.057 0.576 0.059 0.502 0.117 0.388 

Overall 0.111 0.583 0.125 1.349 0.206 0.832 0.277 2.927 
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substance-specific input variable makes this an attractive approach in 

dealing with complex molecular species for which completely generalized 

predictions are inadequate. 

Table III also presents a comparison of Case 4 with the 

predictions of the Gomez-Thodos model (18) which requires the normal 

boiling point, Tb, as an input variable. As shown in Table III, Case 4 

and Gomez-Thodos (18) are essentially equivalent for normal fluids with 

Case 4 providing considerably better predictions for polar fluids such 

as water. For the various fluids included in this comparison, the 

proposed framework appears to give better predictions as indicated by 

the overall %AAD of 1.35%, which is about half the value obtained from 

the Gomez-Thodos model. 

In the event that the triple point conditions are not available as 

input parameters, the normal boiling point may be used as the lower 

vapor pressure point (where Trb is substituted for Trt) along with 

Equations (36) and (37) to predict vapor pressures between the normal 

boiling point and the critical point with reasonable accuracy. Results 

using the normal boiling point as the lower end point are shown as Case 

5 in Table III. Case 5 indicates that for most fluids considered use 

of the normal boiling point as the lower vapor pressure point results 

in only minor changes in the quality of vapor pressure predictions 

(%AAD of 1.35% and 0.83% for Cases 4 and 5, respectively). These 

results may be attributed to the fact that vapor pressure measurements 

below atmospheric pressure contain larger uncertainties. 



CHAPTER VI 

LIQUID DENSITY MODEL 

Model Development 

The developme~t of the liquid density model follows the same 

procedure as for the vapor pressure model. The forms for the 9 and a 

functions of Equations (24) and (25) were determined from regressions 

of the saturated liquid density data given in Tables B.4 and B.5 of 

Appendix B. The same definition for a·was chosen as for the 

correlation of vapor pressures, 

9 = (38) 
1 - A 

along with the following form for a, 

(39) 
1 - A 

where Tc - T 
€ = (40) 

A correlation constant 

B theoretical scaling law exponent value of 0.325 

ac the limiting value of a at the critical point temperature. 

at the limiting value of a at the triple point temperature. 

39 



Thus, recasting Equation (24), 

(41) 

and applying Equations (38), (39), and (40) as definitions fore, a, 

and e results in the proposed model for the correlation of pure-fluid 

saturated liquid densities, where Y becomes PL· 

Figure 7 illustrates the variation of the reduced densities with 

reduced temperature, e, for some of the compounds listed in Table B.S. 

The figure indicates that the reduced density depends on both the 

temperature and the chemical structure of the substance. 
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As with the vapor pressure model, the proposed correlation given 

by Equation (41) represents the variations in the liquid density with 

temperature and chemical structure with the two simple functions, e and 

a, both of which are temperature dependent. The first, as given by 

Equation (38), represents the effect of reduced temperature on the 

correlating function, 9, and the second, as shown in Figure 8, depicts 

the variation of the scaling exponent, a, with the reduced temperature, 

e. Again, the ability of ac and at to account for effects of variation 

in the chemical species is demonstrated by Figure 9, where values of ac 

and at show a strong correlation with the reduced triple-point 

temperature, Trt• which is highly substance-dependent. 

Criteria of Evaluation 

One of the desired features of the saturation property correlation 

is accurate representation of experimental data (within their 

uncertainty) over the complete saturation range. Figures 10 and 11 
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illustrate the ability of the proposed liquid density correlation, as 

shown for ethane. Figure 10 shows the results for three cases (Cases 

6-8) described in Table I. While regression of the three model-

parameters (A, ac, at) of the proposed liquid density correlation 

certainly fits the experimental data within their precision, the 

quality of fit produced by regressing only one model parameter remains 

excellent. Figure 11 shows that Case 8 (one substance-specific 

parameter, ac) compares favorably with the results obtained from the 

Hankinson-Thomson (21) and the modified Rackett (22) equations within 

the range of application deemed most appropriate for these two 

correlations (0.25 < Tr < 0.95), 

As discussed earlier, scaling-law behavior provides a constraint 

on the behavior of density near the critical point (34). In the 

immediate vicinity of the critical point, coexisting densities should 

be described by Equation (7). Accordingly, to satisfy the stated 

requirement of obeying the theoretical limits of behavior at the 

critical point, the proposed model must, in an expanded form, yield a 

leading term with the appropriate scaling-law exponent (35). In an 

expanded form the present model can be written as, 

p (42) 

44 

Thus, the current model has a leading term similar to that of Equation 

(7). The currently accepted value for the density critical point 

scaling exponent, as predicted by three-dimensional Ising-like systems, 

is 0.325 (35). This is the value adopted forB in Equation (38). 

Comparison of Equation (42) with Equation (13) discussed earlier 

suggests that the proposed model produces a functional form similar to 
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that obtained from extended scaling theory with the added advantages of 

being a closed-form equation and containing parameters that appear 

descriptive of molecular structure. 

Model Evaluation 

As indicated by Equations (38) and (39), the proposed correlation 

contains four parameters, A, B, ac, and at. The present studies, 

however, have indicated that a good level of precision may be obtained 

by treating some of the parameters as universal constants that apply to 

all fluids, and, as already stated, B was set equal to the theoretical 

scaling-law value of 0.325 for all cases considered. 

Five specific cases were studied as described in Table I and 

results of the first three cases (Cases 6-8) are presented in Table IV. 

In Case 6, the three model parameters (A, ac, at) are treated as 

substance-specific parameters. In Case 7, only ac and at are treated 

as substance-specific, and in Case 8, (ac - at) comes from a 

generalized equation discussed in the next section and only ac is 

treated as substance-specific. Values for the regressed parameters of 

these cases are listed in Table C.3 of Appendix C. 

Comparison of Cases 6-8 indicate that for the most accurate 

representation of experimental data, the flexibility offered by a three 

constant equation is desirable and leads to precise representation of 

the experimental data for the various fluids considered (RMSE = 0.96 

Kg/m3 and %AAD = 0.10). By comparison, the results of Case 7 (a two 

constant model) show only minor deterioration in the overall quality of 

the fit (RMSE = 1.07 Kg/m3 and %AAD = 0.11). Possibly more significant 

from a correlation point of view, however, is the distribution of error 
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TABLE IV 

LIQUID DENSITY MODEL EVALUATION 

This Work Literature 

Case 6 Case 7 Case 8 Rackett (22) Hankinson(21) 

RMSE %AAD RMSE %AAD RHSE %AAD RMSE %AAD RMSE %AAD 
Substance Kg/m3 Kg/m3 Kg/m3 Kg/m3 Kg/m3 

He thane 0.639 0 159 0 682 0.180 0 641 0.159 0.369 0.086 0.585 0.127 
Ethane 0.707 0.080 0. 713 0.081 0. 715 0.085 1. 327 0.192 0.954 0.121 
Propane 0.364 0.044 0.374 0.046 0.422 0.055 1. 993 0.250 1.292 0.157 
n·Butane 0. 296 0.040 0. 296 0.040 0.508 0.068 1. 373 0.179 0.763 0.100 
Benzene 1.197 0.208 1. 236 0.215 1.459 0.234 1. 380 0.138 1.948 0.193 
N~trogen 0 968 0.127 0.949 0.125 0.941 0.127 2.832 0.364 1.892 0.239 
F1uor~ne 0.310 0.022 0.409 0 030 0.987 0.068 2.337 0.134 0.764 0.040 
Argon 1.240 0.085 1. 386 0.101 1.410 0.105 3. 792 0.282 1.642 0.116 
C02 0 405 0.037 0 458 0.040 0.416 0.036 2.565 0.209 2.851 0.236 
Ammon~a 0.179 0.026 0 199 0 030 1.021 0.145 1.302 0.183 3.974 0.560 
Water 1. 999 0 184 2.474 0 196 11.99 1.177 31.67 3.069 23.73 2.103 
Hydrogen 0.174 0.229 0.191 0.253 0 441 0.610 1.071 1.421 1.507 1. 981 
Hethanol 2.232 0.286 2.486 0 328 2.278 0. 311 19.37 2.383 15.80 1.909 
Propylene 0. 391 0.056 0.379 0.055 0 591 0.071 4.297 0.539 3.850 0.479 
Neon 0.952 0.082 1 048 0.093 2.015 0.183 3.506 0.287 5.082 0.380 
Oxygen 0.537 0 048 0.559 0 050 0.556 0.050 3.076 0.225 1.248 0.085 
Freon 12 1. 526 0.095 1. 597 0 100 2.388 0.141 6.425 0.261 5.308 0.219 
Acet~c Acid 0.713 0.065 1 457 0 130 1. 354 0.137 19.93 2.029 7.408 0. 731 
Acetone:; 1 370 0.174 1.409 0 180 5.874 0.691 9.223 1. 088 12.05 0. 778 

n-Decane 0 911 0.121 0 895 0 117 2.099 0.212 2.444 0 259 2.761 0.373 

Cyc1ohexane 0.912 0.101 0.909 0.101 1. 819 0.218 2.083 0.244 2.038 0. 2l~4 

Hydrogc:;n 1. 202 0.119 1.192 0 118 1. 535 0.153 28.27 3.009 33.00 2.825 

F1uor~de 

Overall 0.959 0.099 1.071 0 108 2.828 0.189 10.24 0.629 9.041 0.531 

Case:; 6: B=0.325 
Case 7: A=4/3, B-0.325 
Case 8 A=l 07068, B=0.325, ~a from Equat1on (44) 



for a given fluid, where (as expected) Case 6 produces better error 

distribution as shown in Figure 10 for ethane. 

Extension of the proposed liquid density correlation to a 

generalized model through the development of generalized equations for 

ac and (ac -at) follows. 

Model Generalization 

Development of a generalized model for prediction of saturated 

liquid densities is done through the development of generalized 

equations for ~a and ac. As shown in Figure 9, a strong relation 

exists between the regressed values for ~a and ac and Trt· A linear 

relation was established between ~a and Trt for simple fluids (those 

with Zc values near 0.29): 

(43) 

The variations exhibited by other fluids were then accounted for by an 

exponential relation such that: 

(C3 + C4Zc) 
C1 + C2Trt (44) 
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While the form of Equation (44) is merely a depiction of the observed 

variation of ~a with Trt for simple fluids, the exponential term was 

selected to account for deviation from simple fluid behavior through 

the value of Zc. As shown in Case 8 (in which ac is a single 

substance-specific parameter and ~a is from Equation (44)) in Table IV, 

the overall quality of fit remains reasonable (RMSE = 2.83 kg/m3 , %AAD 

= 0.19). However, individual fluids such as water show significant 

deviations. 



so 

The one-parameter model as represented by Case 8 compares very 

favorably with the one-parameter models of the modified Rackett 

equation (22) and the Hankinson-Thomson correlation (21). As shown by 

the results given in Table IV, using the same database and constrained 

to their recommended range of application, both the modified Rackett 

correlation (RMSE 

correlation (RMSE 

10.24 kg/m3 , %AAD = 0.63) and the Hankinson-Thomson 

9.04 kg/m3 , %AAD- 0.53) produce more than twice 

the error obtained from the present correlation. Perhaps more 

importantly, the new model covers the full saturation range, while the 

literature models were evaluated only over the range of 0.25<Tr<0.95. 

Case 9 of Table V presents the results of a completely generalized 

model in which the following form for ac (developed on the similar 

arguments given above for ~a) along with the above relation for ~a was 

used: 

(C7 + Cgw) 
C5 + C6Trt (45) 

Values for the constants c1 through c8 were determined from regressions 

based on data for the first 14 compounds listed in Table B.S and are 

listed in Table C.4 of Appendix C. The remaining eight compounds in 

Table B.S were used along with the compounds listed in Table B.6 as 

checks on the generalized model and the errors shown in Table V are 

based on the parameters in Table C.4. As shown in Table V, the only 

fluid which shows a significant deviation is water with a %AAD of 

6.23%. This may be attributed to the strong hydrogen-bonding nature of 

water. 

As with the generalized model for vapor pressure, reasonable 
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TABLE V 

RESULTS OF THE GENERALIZED LIQUID DENSITY MODEL 

Case 9 Case 10 

RMSE %AAD RMSE %AAD 
Substance Kg/m3 Kg/m3 

Methane 1. 84 0.63 1. 70 0.61 
Ethane 1.01 0.16 2.40 0.61 
Propane 0.51 0.37 1. 68 0.34 
n-Butane 0.76 0.10 1.61 0.27 
Benzene 2.38 0.35 1.72 0.29 
Nitrogen 2.57 0.31 2.69 0.34 
Fluorine 1. 39 0.10 0.43 0.03 
Argon 5.04 0.43 4. 71 0.40 
Carbon Dioxide 3.54 0.35 3.54 0.35 
Ammonia 2.81 0.41 1.10 0.16 
Water 54.87 6.23 23.48 2.84 
Hydrogen 0.90 1.19 0.45 0.64 
Methanol 2.74 0.34 27.95 4.18 
Propylene 2.70 0.44 0.94 0.17 
Neon 3.32 2.97 2.05 0.19 
Oxygen 2.52 '0.23 0.61 0.05 
Refrigerant 12 3.&8 0.25 4.12 0.29 
Acetic Acid 6.36 0.68 7.99 0.92 
Acetone 12.67 1. 53 3.00 0.33 
n-Decane 3.19 0.51 23.51 4.93 
Cyclohexane 3.57 0.41 4.24 0.45 
Hydrogen Fluoride 2.03 0.23 2.63 0.35 
Acetylene 7.04 1. 37 7.04 1. 37 
Bromine 25.65 0.94 21.96 0.78 
Methyl Chloride 9.35 0.87 12.25 1. 21 
Chlorine 11.92 0.83 7.25 0.52 
Carbon 1. 98 0.12 2.15 0.13 

Tetrafluoride 
iso-Butane 1.00 0.16 2.28 0.42 
n-Heptane 3.30 0.49 1.43 0.21 
Refrigerant 13 15.05 1. 05 13.97 0.96 
Refrigerant 22 25.44 1. 93 13.31 1.05 
Sulfur Dioxide 17.03 1.12 18.55 1. 37 
Toluene 3. 92 0.53 3.02 0.44 
Xenon 12.70 0.28 30.61 1.17 

Overall 7.50 0.82 7.54 0.83 
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predictions are obtained (RMSE = 7.54 kg/m3, %AAD = 0.83) by using the 

normal boiling point as the lower liquid density value along with 

Equations (44) and (45) discussed above. The results of this case 

(Case 10) are presented in Table V for all of the compounds considered. 



CHAPTER VII 

VAPOR DENSITY MODEL 

Model Development 

The development of the vapor density model follows the same 

procedure as for the vapor pressure and liquid density models. The 

forms for the 9 and a functions of Equations (24) and (25) were 

determined from regressions of the saturated vapor density data given 

in Tables B.7 and B.8 of Appendix B. Similar forms for 9 and a were 

chosen as for the correlation of liquid density, 

Bl B2 
1 - Al€ - A € 2 

9 (46) 
1 - Al - A2 

c 
ac - a 1 - Al€ - A2€ 

(47) 
ac - at 1 - Al - A2 

where 
Tc - T 

€ = (48) 

Tc - Tt 

ac the limiting value of a at the critical point temperature. 

at the limiting value of a at the triple point temperature. 

Thus, recasting Equation (24), 

53 
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y (49) 

and applying Equations (46), (47), and (48) as definitions fore, a, 

and e results in the proposed model for the correlation of pure-fluid 

saturated vapor densities, where Y becomes Pv· 

Figure 12 illustrates the variation of the reduced vapor density 

with reduced temperature, e, for the compounds listed in Table B.7. 

The figure indicates that the reduced density depends on both the 

temperature and the chemical structure of the substance. 

As with the vapor pressure and liquid density models, the proposed 

correlation given by Equation (49) represents the variations in the 

vapor density with temperature and chemical structure with two 

functions, 9 and a, both of which are temperature dependent. The 

first, as given by Equation (46), represents the effect of reduced 

temperature on the correlating function, 9, and the second, as shown in 

Figure 13, depicts the variation of the scaling exponent, a, with the 

reduced temperature, e. Close inspection of Figure 13 reveals why the 

additional complexity is required in the functions for e and a. The 

shape of the a function for vapor density is not as simple as those for 

vapor pressure and liquid density shown in Figures 2 and 8, 

respectively. 

Criteria of Evaluation 

As already discussed, one of the desired features of the 

saturation property correlation is accurate representation of 

experimental data (within their uncertainty) over the complete 

saturation range. Figure 14 compares the proposed vapor density 
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correlation with that of Goodwin's equation (31) for ethane. The case 

shown is Case 11 (described in Table I) in which A1, B1, ac, and ~a are 

treated as substance-specific parameters. Figure 14 shows that Case 11 

(a four constant model) is comparable to Goodwin's six constant model. 

As discussed earlier, the constraints on the behavior of density 

near the critical point are the same for the vapor and liquid phases. 

Accordingly, the vapor density model must yield a leading term with the 

appropriate scaling-law exponent (35). The proposed model can be 

expanded to provide a form similar to Equation (42) in which the 

leading exponent is represented by the smaller of B1 and B2 of Equation 

(46). The currently accepted value for the density critical point 

scaling exponent is 0.325 (35) and this is the value used for B1 in 

Cases 13-15 as described in Table I. 

As with the liquid density model, the proposed model, in an 

expanded form, produces a similar functional form to Equation (13) 

obtained from extended scaling theory with the added advantages of 

being a closed-form equation and containing parameters that appear 

descriptive of molecular structure. 

Model Evaluation 

As indicated by Equations (46) and (47), the proposed correlation 

contains seven parameters, A1 , A2 , B1 , B2, C, ac, and at. Present 

studies, however, indicate that a good level of precision may be 

obtained by treating some of the parameters as universal constants that 

apply to all fluids. 

Five specific cases were studies as described in Table I and 

results of the first three cases (Cases 11-13) are presented in Table 



VI. In Case 11, four of the model parameters (Al, B1, ac, and at) are 

treated as substance-specific parameters. In Case 12, B1 , ac, and at 

are treated as substance-specific parameters, and in Case 13, only ac 

and at are treated as substance-specific parameters and B1 is fixed at 

the theoretical scaling-law value of 0.325. Values for the regressed 

parameters for these cases are listed in Table C.5 of Appendix C. 
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Comparison of Cases 11-13 indicate that for the most accurate 

representation of experimental data, the flexibility offered by a four 

constant equation is desirable and leads to precise representation of 

the experimental data for the fluids considered (RMSE = 0.356 Kg/m3 and 

%AAD = 0.167). By comparison, the results of Case 12 (a three constant 

model) show only slight deterioration in the overall quality of the fit 

(RMSE = 0.633 Kg/m3 and %AAD = 0.178). Reduction of the proposed model 

to a two constant model as shown by Case 13 again results in only 

slight deterioration in the overall quality of fit (RMSE = 0.739 Kg/m3 

and %AAD = 0.200). 

Extension of the proposed vapor de~sity correlation to a 

preliminary generalized model through the development of generalized 

equations for ac and (ac-at) follows. 

Preliminary Model Generalization 

The development of the preliminary vapor density model 

generalization consisted in re-regressing the constants for each of the 

sets of generalized equations for ac and ~a developed for the vapor 

pressure and liquid density models. The equations developed based on 

the vapor pressure model proved to be superior and, therefore, the 

equations for ac and ~a are as follows: 
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TABLE VI 

VAPOR DENSITY MODEL EVALUATION 

This Work Literature 

Case 11 Case 12 Case 13 Goodwin (31) 

RMSE %MJ) RMSE %AAD RMSE %AAD RMSE %AAD 
Substance Kg/m3 Kg/m3 Kg/m3 Kg/m3 

Methane 0.291 0.230 0.310 0.222 0.350 0.227 0.232 0.187 
Ethane 0.115 0.121 0.311 0.194 0.247 0.211 0.110 0.097 
Propane 0.160 0.134 0.169 0.142 0.197 0.143 0.157 0.285 
n-Butane 0.143 0.277 0.270 0.297 0.197 0.304 0.083 0.143 
Benzene 0.600 0.287 0.767 0.276 0.766 0.276 0.468 0.252 
Nitrogen 0.046 0.083 0.279 0.119 0.158 0.121 0.014 0.051 
Fluorine 0.221 0.117 0.133 0.114 0.169 0.117 0.182 0.084 
Argon 0.745 o·.l35 1.567 0.164 1. 573 0.164 0.218 0.071 
C02 0.014 0.009 0.203 0.088 0.680 0.111 0.003 0.004 
Ammonia 0.034 0.024 0.124 0.063 0.,124 0.063 0.042 0.019 
Water 0.040 0.049 0.037 0.051 1.464 0.346 0.104 0.031 

Overall 0.356 0.167 0.633 0.178 0.739 0.200 0.236 0.133 

Case 11: A2=0.5, B2=1.325, C=0.7 
Case 12: Al=4.8, A2=0.S, B2=1.325, C=0.7 
Case 13: Al=4.8, A2=0.S, B1=0.325, B2-1. 325, c-0.7 
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w (3w-w/Zc) 
+ c5 + c6 - 3.0] (50) 

c2 c4 c4 (Zc·0.29) 
C1Trt + C3Zc + (C1-l)Trt + [C3 - l.O]C7 (51) 

Values for the constants C1 through c 7 are listed in Table C.6 of 

Appendix C. Because of the preliminary nature of this generalization, 

the vapor density generalization was not checked against a second 

database as the vapor pressure and liquid density models were. The 

generalization as given above works well for the fluids considered; 

however, the correction terms must be re-evaluated in order to 

accommodate strongly polar and hydrogen-bonding fluids such as alcohols 

and organic acids. 

Results of two cases (Cases 14 and 15) based on the preliminary 

generalization are shown in Table VII. In Case 14, ~a is calculated 

from Equation (51) and ac is treated as a single substance-specific 

parameter. In Case 15, ac and ~a come from Equations (50) and (51), 

respectively, and the model is completely generalized. 

As shown in Table VII, the generalized model results in overall 

%AAD of less than 1.0%. This demortstrates the viability of a 

generalized vapor density model which is capable of providing 

predictions for all classes of fluids once better equations for ac and 

~a are developed. 
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TABLE VII 

RESULTS OF PRELIMINARY GENERALIZED 
VAPOR DENSITY MODEL 

Case 14 Case 15 

RMSE %AAD RMSE %AAD 
Substance Kg/m3 Kg/m3 

Methane 0.403 0.310 1.204 1. 378 
Ethane 0.542 0.612 0.375 0.671 
Propane 0.736 1. 247 0.197 1.084 
n-Butane 0.394 0.552 0.608 0.896 
Benzene 0.576 0.369 0.880 0.493 
Nitrogen 0.112 0.122 0.118 0.310 
Fluorine 1.964 0.461 1.126 1.026 
Argon 1.680 0.320 2.089 1.521 
Carbon Dioxide 1.824 0.673 0.822 1.450 
Ammonia 0.602 0.406 0.275 0.883 
Water 1.235 0.533 1.152 0.995 

Overall 0.999 0.460 1. 061 0.996 



CHAPTER VIII 

DISCUSSION 

A unified treatment of the saturation properties of various 

chemical species is well found~d in the basics of corresponding states 

(5,9-13). On a macroscopic basis, the two-parameter theory establishes 

Tc and Pc (or vc) as reducing coordinates. This development has lead 

to property correlations that apply satisfactorily to simple symmetric 

molecules. Pitzer and co-workers (64) extended the utility of the CST 

approach to non-polar fluids in general by introducing a third 

parameter, the acentric factor, to account for size-shape effects. 

The present work, as expressed by Equations (24) and (25), 

suggests that there are advantages in scaling the thermodynamic 

property prior to normalizing by the reducing coordinates such that, 

(52) 

Most important of these advantages is that such a variable 

transformation leads to simpler relationships bet~een independent (T) 

and dependent (p or p) variables, and is a convenient means to account 

for variation in chemical structure. 

Also, an integral element of this approach is the constraining 

effects of limiting the correlation range between two well-defined 

limits (the triple and critical points). Notice here that the choice 

for the lower temperature limit was dictated by the desire of having a 
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correlation over the full saturation range. 

Regarding the proposed definitions for a and a, the results 

indicate that the proposed definitions correspond with the required 

criteria discussed earlier. It also appears that a general function 

for a can be written as, 

N EBi 
N - ~ Ai 

i=l 
9 == (53) 

N 
N - ~ Ai 

i=l 

with as many terms as necessary to accomodate the complexity of the 

property under consideration. In expanded forms, the proposed models 

contain leading exponents similar to those predicted by scaling theory. 

However, the proposed framework does not preclude other definitions for 

e or a if the alternative definitions prove to be better or 

theoretically more acceptable. 

As indicated by the generalized equations for ac and ~a for the 

properties considered, both Zc and w were employed for parameter 

generalization. The inadequacy of either parameter to fully 

characterize variation in molecular structure of anormal fluids has 

been documented in the past by several investigators (83-86), and 

attempts nave been made to overcome such shortcoming. The present 

study indicates that a realistic possibility exists for the development 

of a meaningful indexing parameter for variation in molecular structure 

based on ac. Perhaps such an undertaking will facilitate generalized 

predictions for highly demanding molecular structures for which Zc and 

w characterization is inadequate. 
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The present work demonstrates the ability of the proposed model 

both as a correlative tool and as a framework for development of 

generalized predictive equations. The models for vapor pressure, 

saturated liquid density and saturated vapor density were all shown to 

be capable of representing the experimental data within their 

uncertainty with either three or four substance-specific parameters. 

While the quality of experimental data varies for the properties 

considered (uncertainties in vapor pressure of about 0.05 %AAD, 

uncertainties in liquid densities of about 0.1 %AAD and uncertainties 

in vapor densities of ~bout 0.15 %AAD), generalized predictions for all 

three properties resulted in average errors of about 1.0 %AAD for all 

compounds considered. 

In summary, several advantages can be cited for the proposed 

framework based on the evaluation of its abilities in correlating vapor 

pressures and saturated liquid and vapor densities, including: 

1. This method offers a highly precise and efficient approach for 

correlating saturation properties over the full saturation 

range. 

2. The present work 'demonstrates the benefits of scaling the 

thermodynamic variable in addition to reduction as required by 

the corresponding states principle. 

3. The parameters of 8 and a can be defined in a manner that 

facilitates compliance with the theoretical requirements of 

scaling theory and the desired attributes of phenomenological 

observations. 

4. The pres'ent work has demonstrated the importance of using 

structural parameters defined at the triple point (at) where 



fluid behavior is highly substance-specific as well as those 

defined at the critical point (ac) where fluid behavior is 

universal. 

5. The model parameters obtained appear to have some underlying 

physical significance, which may be exploited in quantifying 

the extent of fluid polarity. 
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6. As demonstrated, the proposed approach is capable of providing 

predictive generalized correlations. 



CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

A new framework is proposed for correlating saturation properties 

using a scaled-variable-reduced-coordinate approach. Utility of this 

approach is demonstrated by the correlation of the vapor pressures and 

saturated liquid and vapor densities of a number of compounds at 

temperatures from the triple point to the critical point. New 

correlations based on the proposed method result in precise 

representation of vapor pressures (%AAD within 0.1), saturated liquid 

densities (%AAD within 0.1), and saturated vapor densities (%AAD within 

0.2) of diverse chemical species. In addition, the proposed model 

compares favorably with the existing literature correlations with the 

added advantages of covering the full saturation range and obeying 

scaling-law behavior in the near-critical region. 

Although the approach is essentially empirical, the results 

obtained suggest an underlying physical significance for the model 

parameters and show an excellent potential for generalized predictions. 

This is demonstrated by generalized equ~tions for the model parameters 

in which average errors of about 1.0% are obtained for prediction of 

vapor pressure and saturated liquid and vapor densities. 

Several issues concerning the proposed correlations remain to be 

resolved. The generalization for the vapor density correlation is 

incomplete. Because of the scarcity of good quality vapor density data 

67 



68 

available in the literature and time constraints, a second database was 

not compiled to test the generalized correlation. Therefore, a 

thorough evaluation of the proposed correlation for ac and ~a is 

required. 

The data for saturated liquid and vapor densities should be 

combined and regressed simultaneously to develop equations for the co

existing phases that are in complete agreement with the theories of 

scaling law in the near-critical region. Such an effort would allow 

construction of generalized equations for the two phase densities with 

the same value of ac for both phases. Similarly, investigation should 

be extended to include the vapor pressure in order to produce a value 

for ac that is a critical point property representative of molecular 

structure and polarity for each compound. 
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The following literature models are presented only to show their 

basic functional form and degree of complexity. This Appendix is not 

intended as a complete account of these correlations. The appropriate 

references should be referred to for more complete descriptions and 

details. 

Vapor Pressure Correlations 

Wagner .!.l2l 

Tc 
ln(p/pc) = --(nlr + n2r 1 · 5 + n3r3 +n4r6) 

T 

where r = 1 - T/Tc 

substance-specific correlation parameters. 

Iglesias-Silva. et. al. ilZl 

where 
-a2 + b/R 

Po= ao + a1(a3t + l)(b/R)exp( ) 

Pt 
ao 1 -

Pc - Pt 

a1 -(a0-l)exp(a2-b/R) 

a2 = bi/RTt 

a3 ... ------
Tt 

a 3t + 1 

Poo 2 - a4(l-t) + a5 (l~t) 2 - 8 + a6(1-t) 3 + a7(1-t) 4 

2 5 
as -0.11599104 + 0.29506258a4 - 0.00021222a4 

2 3 
a 6 -0.01546028 + 0.08978160a4 - 0.05322199a4 



5 
a7 = 0.05725757 - 0.06817687a4 + 0.00047188a4 

N = 87Trt 

9 = 0.2 

R = gas constant 

T - Tt 
t 

Tc - Tt 

p - pt 
p 

pc - pt 

and a4 , b, b1 substance-specific correlation parameters. 

Gomez-Nieto and Thodos ~ 

1 7 
= /3(- -

Tm 
r 

1) + -y(Tr - 1) 

where 

s = ----

m = 0.64837exp(O.l0982s) - 2725.2/[exp(2.0133s)] 

9.168xlo12 3.6529 
f3 -4.39474 - ----- + -----------

e5·95s exp(5473/s3 · 5) 

-y = -1.0668 - 0.33056s + 1.6363exp(O.ll063s) 

Liquid Density Correlations 

Modified Rackett Equation i21l 

[l+(l-Tr)2/7] 
1/p = (RTc/Pc)ZRA 

where 

ZRA is a single substance-specific parameter. 
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Hankinson and Thomson iZ1l 

vs 
-; = vro[1 - wvr11 
v 

2 3 
vr1 = [e + f(Tr) + gTr + hTr]/(Tr-1.00001) 

a = -1.52816 

b = 1.43907 

c = -0.81446 

d == 0.190454 

e ... -0.296123 

f = 0.386914 

g = -0.0427258 

h = -0.0480645 

and v* is a single substance-specific correlation parameter. 

Vapor Density Correlation 

Goodwin illl 

y = A1u + A2x0.35 + A3x + A4x4/3 + AsxS/3 + A6x2 

where 

1n(pc/P) 
y = 

1n(pc/Pt) 

(Tc/T-1) 
u = 

(Tc/Tt-1) 

x=---

and A1, A2, A3, A4, AS, A6 substance-specific,correlation 
parameters. 
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TABLE B.l 

PHYSICAL CONSTANTS USED IN DEVELOPMENT OF THE 
PROPOSED VAPOR PRESSURE CORRELATION 

Critical Point Triple Point 
Substance Source 

T,K P, bar T,K P, bar 

Methane 190.530 45.957 90.68 0.1174 48 
Ethane 305.330 48.714 90.348 1.13lxlo- 5 31 
Propane 369.80 42.42 85.470 1. 6808xlo- 9 50 
Argon 150.86 48.979 . 83.804 0.6895 17,16 
Nitrogen 126.200 34.002 63.148 0.1252 16 
Benzene 562.161 48.898 278.681 4.7823xlo- 2 17,51 
Carbon Dioxide 304.14 73.775 216.58 5.180 40,53 
Water 647.13 220.55 273.16 6.1173xlo- 3 54 
Fluorine 144.31 52.15 53.4811 2.52xlo- 3 28 
Butane 425.16 37.960 134.86 6.736xlo- 6 55 
Ammonia 405.4 113.04 195.48 6.075xlo- 2 56 
Acetone a 508.10 47.0 * 57 
Oxygen 154.581 50.429 54.36 1.46xlo- 3 56 
n-Decanea 617.6 21.076 * 4 
Hydrogen 33.18 13.13 13.95 0.072 59 
Methanol a 512.64 80.971 * 47 
Ethanol a 513.92 61.484 * 47 
Ethylene 282.34 50.4 103.986 1. 2xlo- 3 66 

a) The triple point vapor pressure was not available for this 
compound. The lowest available data point was used in place of 
the triple point. 
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TABLE B.2 

SOURCES AND RANGES OF VAPOR PRESSURE DATA 
USED IN MODEL DEVELOPMENT 

Temperature Pressure No. of 
Substance Range, K Range, bar Source Points 

Methane 90.68 - 190.53 0.1174 - 45.957 48 43 
189.90 - 190.39 45.09 - 45.79 49 71 

Ethane 90.348 - 305.33 1.13lxl0- 5 - 48.714 31 131 
Propane 85.47 - 369.80 1. 6808xlo- 9 - 42.42 so 54 
Argon 83.804 - 150.651 0.6895 - 48.578 16 58 
Nitrogen 63.148 - 126.200 0.1252 - 34.002 16 68 
Benzene 278.681 - 377.07 0.04782 - 2.000 51 28 

320.00 - 560.00 0.3205 - 47.726 52 13 
Carbon 217.113 - 276.165 5.3033 - 37.7152 63 19 

Dioxide 269.179 - 304.14 31.3227 - 73.775 40 37 
Water 273.16 - 647.13 6.1173Xlo- 3 - 220.55 54 39 
Fluorine 53.4811 - 144.31 , 2.52xlo- 3 - 52.153 28 123 
Butane 134.86 - 425.16 6.736xlo- 6 - 37.960 55 79 
Ammonia 195.48 - 405.4 0.06075 - 113.04 56 23 
Acetone 259.175 - 508.10 0.04267 - 47.0 57 47 
Oxygen 54.36 - 154.581 1.46xlo- 3 - 50.429 56 21 
n-Decane 268.148 - 490.292 1. 7xlo- 4 - 2.7002 58 34 
Hydrogen 13.95 - 33.18 0.072 - 13.13 59 21 
Methanol 288.049 - 352.776 0.09815 - 1. 78306 60 7 

353.46 - 512.64 1. 8300 - 80.971 47 12 
Ethanol 292.772 - 362.756 0.05726 - 1. 55824 60 12 

373.29 - 513.92 2.2623 - 61.484 47 14 
Ethylene 104.11 - 175.84 0.00124 - 1.4551 61 31 

200.00 - 282.15 4.554 - 50.222 62 28 



83 

TABLE B.3 

SOURCES OF VAPOR PRESSURE DATA USED TO TEST 
THE VAPOR PRESSURE GENERALIZATION 

Temperature Pressure No. of 
Substance Range, K Range, bar Source Points 

Neon 24.56 - 44.448 0.43379 - 26.64 56 23 
Propylene 87.89 - 365.57 9.5xlo- 9 - 46.646 56 29 
o-Xylenea 336.610 - 418.517 0.062742 - 1.03906 68 9 

432.17 - 630.33 1.4644 - 37.318 69 20 
Acetic Acida 293.15 - 594.75 0.01537 - 57.84 67 30 
Propanol a 258.15 - 536.85 0.00133 - 50.55 67 16 
tert-Butanola 304.15 - 356.05 0.0799 - 1.01325 70 5 

356.48 - 508.87 1. 01353 - 42.32 71 13 
Hydrogen Cyanidea 267.25 - 456.65 0.266 - 50.66 70 11 
Toluene a 308.516 - 384.659 0.06357 - 1.03903 68 9 

398.32 - 591.79 1.5049 - 41.066 69 21 
Methyl 284.9 - 467.5 0.034 - 11.51 72 22 

Isobutyratea 
Acetylene 192.4 - 308.7 1. 283 - 62.47 59 14 
Bromine a 260.0 - 584.2 0.042 - 103.4 59 17 
Methyl Chloridea 180.0 - 416.0 0.0165 - 69.0 59 26 

416.25 66.79 73 1 
Chlorine a 233.15 - 417.16 0. 7746 - 77.11 59 20 
Carbon 110.0 - 227.5 0.0286 - 37.45 59 13 

Tetrachloride a 
Deuterium 18.7 - 38.34 0.1709 - 16.65 59 22 
Deuterium Oxide 277.0 - 644.7 0.00668 - 218.4 59 25 
n-Heptanea 200.0 - 540.1 2.0xlo- 5 - 27.35 59 27 
Refrigerant ua 200.0 - ,471. 2 0.0043 - 44.09 59 20 
Refrigerant 12a 170.0 - 384.95 0.00867 - 41.25 56 23 
Refrigerant 13a 91.0 - 302.0 3.817xlo- 6 - 38.70 59 23 
Refrigerant 13Bla 170.0 - 340.2 0.059 - 39.64 59 19 
Refrigerant 22a 150.0 - 369.3 0.0017 - 49.89 59 23 
Refrigerant 23a 149.82 - 299.09 0.0429 - 48.36 59 16 
Refrigerant 113a- 240.0 487.5 0.0233 34.11 59 25 
Refrigerant 114a 190.0 - 419.0 0.0058 - 32.61 59 24 
Refrigerant usa 199.82 - 353.09 0.1604 - 31.55 59 16 
Refrigerant 500a 200.0 - 378.6 O.lz'19 - 44.26 59 19 
Sulfur Dioxidea 200.0 - 420.0' 0.02056 - 66.19 59 23 

430.8 77.83 4 1 
Xenon 161.4 - 289.7 0.816 - 58.21 59 14 

a) The lowest data point for this compound is not the triple point. 



TABLE B.4 

PHYSICAL CONSTANTS USED IN DEVELOPMENT OF THE 
PROPOSED LIQUID DENSITY CORRELATION 

Substance 

Methane 
Ethane 
Propane 
n-Butane 
Benzene 
Nitrogen 
Fluorine 
Argon 
Carbon Dioxide 
Ammonia 
Methanol 
Acetic Acid 
Acetone 
Hydrogen 

Fluoride 
Waterb 
Hydrogenb 
Propbleneb 
Neon 
Oxygenb 
Refrigerant 12b 
n-Decaneb 
Cyclohexaneb 

Critical Point 

T,K 

190.555 
305.33 
369.80 
425.16 
561.75 
126.26 
144.31 
150.86 
304,14 
405.40 
512.70 
594.75 
508.15 
461.15 

647.13 
33.18 

365.57 
44.448 

154.581 
384.95 
617.55 
553.4 

Dens it~ 
Kg/m 

160.43 
204.48 
218.69 
227.85 
304.64 
314.10 
573.80 
535.62 
467.72 
235.00 
274.73 
350.60 
273.00 
290~00 

322.00 
3i.43 

223.00 
483.00 
436.10 
558.00 
236.00 
273.25 

Triple Point 

T,K 

90.68 
90.348 
85.47 

134.86 
278.68 

63.15 
53.481 
83.78 

216.58 
195.48 
175.4 
289.80 
178.20 
189.58 

273.16 
13.95 
87.89 
24.56 
54.36 

115.40 
243.5 
279.7 

Dens it~ 
Kg/m 

451.56 
651.92 
732.78 
735.27 
896.51 
869.70 

1704.77 
1414.8 
1178.12 

733.86 
904.98 

l052.87a 
947.32a 

1193.0 

999.78 
77.04 

768.85 
1249.3 
1306.8 
1829.29a 

671.10 
794.la 

Source 

29 
31 
50 
55 
74 
66 
75 
76 
53 
77 
59 

78,4 
79,4 

51 

54 
59 
56 
56 
56 

56,4 
59 

4 

a) The triple point density was not available for this compound. 
A value for this point was regressed from the three parameter 
model. , 
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b) The last eight compounds were included in the model development, 
but were not included in the development of the generalized 
equations. These compounds served as checks on the generalized 
model. 



Substance 

Methane 
Ethane 
Propane 
n-Butane 
Benzene 
Nitrogen 
Fluorine 
Argon 
Carbon 

Dioxide 
Anunonia 
Methanol 
Acetic Acid 
Acetone 
Hydrogen 

Fluoride 
Watera 
Hydrogen a 
Propylene a 
Neon a 
Oxygen a 
Refrigerant 
n-Decanea 
Cyclohexanea 

TABLE B.5 

SOURCES AND RANGES OF LIQUID DENSITY DATA 
USED IN MODEL DEVELOPMENT 

Temperature Density 
Range, K Range, Kg/m3 Source 

90.68 - 190.555 160.43 - 451. 56 29 
90.348 - 305.33 204.48 - 651.92 31 

85.47 - 369.8Q 218.69 - 732.78 so 
134.86 - 425.16 227-.85 - 735.27 55 
278.68 - 561.75 304.64 - 896.51 74 

63.15 - 126.26 314.10 - 869.70 66 
53.481 - 144.31 573.80 - 1704.77 75 

83.78 - 150.86 535.62 - 1414.8 76 
216.58 - 304.14 467.72 - 1178.12 53 

195:48 - 405.40 235.00 - 733.86 77 
175.4 - 512.7 274.73 - 904.98 59 

293.15 - 594.75 350.60 - 1049.1 78 
329.25 - 508.15 273.00 - 750.00 79 
189.58 - 461.15 290.00 - 1193.0 51 

273.16 - 647.13 322.00 - 999.78 54 
13.95 ,- 33.18 31.43 - 77.04 59 
87.89 - 365.57 223.00 - 768.85 56 
24.56 - 44.448 483.00 - 1249.3 56 
54.36 - 154.581 436.10 - 1306.8 56 

12a 170.0 - 384.95 558.00 - 1686.1 56 
243.5 - 617.55 236.00 - 671.10 59 

310.93 - 510.93 509.06 - 759.44 80 
288.15 - 313.15 759.67 - 783.31 81 
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No. of 
Points 

61 
60 

121 
73 
60 
3~ 
48 
70 
23 

68 
37 
16 
10 
30 

39 
21 
30 
22 
12 
14 
33 

7 
5 

a) The last eight compounds were included in the model development, 
but were not included in development of the generalized 
equations. These compounds served as checks on the generalized 
model. 
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TABLE B.6 

SOURCES OF LIQUID DENSITY DATA USED TO TEST 
THE LIQUID DENSITY GENERALIZATION 

Substance 

Acetylene a 
Bromine a 
Methyl Chloridea 
Chlorine a 
Carbon 

Tetrafluoride a 
iso-Butane 
n-Heptane 
Refrigerant 13a 
Refrigerant 22a 
Sulfur Dioxidea 
Toluene a 
Xenon 

Temperature 
Range, K 

192.4 - 308.7 
260.0 - 584.2 
175.0 - 416.0 

233.15 - 417.16 
100.0 - 227.5 

113.6 - 408.0 
182.6 - 540.1 

91.0 - 302.0 
150.0 - 369.3 
200.0 - 425.1 
270.0 - 591.8 
161.4 - 289.7 

Density 
Range, Kg/m3 

230.41 - 609.76 
1179.94 - 3219.57 

364.96 - 1131.22 
571.43 - 1587.30 
625.78 - 1862.20 

224.01 - 741.29 
232.56 - 773.99 
553.10 - 1863.24 
496.28 - 1610.57 
524.66 - 1615.77 
291.38 - 887.31 

1099.99 - 2965.6 

No. of 
Source Points 

59 15 
59 18 
59 27 
59 20 
59 14 

59 24 
59 28 
59 23 
59 23 
59 24 
59 25 
59 14 

a) The lowest data point for this compound is not the triple point. 



Substance 

Methane 
Ethane 
Propane 
n-Butane 
Benzene 
Nitrogen 
Fluorine 
Argon 

TABLE B.7 

PHYSICAL CONSTANTS USED IN DEVELOPMENT OF THE 
PROPOSED VAPOR DENSITY CORRELATION 

Critical Point Triple Point 

T,K Densit3 T,K Densit3 
Kg/m Kg/m 

190.555 160.43 90.68 0.25153 
305.33 204.48 90.348 4.565xlo- 5 
369.8 218.69 85.47 1. 86lxlo- 8 
425.16 227.85 134.86 3.4916xlo- 5 
561.75 304.64 278.68 0.1617 
126.26 314.1 63.15 0.6803 
144.31 573.8 53.481 0.02166 
150.86 535.62 83.78 4.0502 

Carbon Dioxide 304.14 467.83 216.58 13.762 
Ammonia 405.4 235.0 195.48 0.063906 
Water 647.13 322.0 273.16 4.85Sxlo- 3 
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Source 

29 
31 
so 
55 
74 
66 
75 
76 
53 
77 
54 



Substance 

Methane 
Ethane 
Propane 
n-Butane 
Benzene 
Nitrogen 
Fluorine 
Argon 
Carbon 

Dioxide 
Ammonia 
Water 

TABLE B.8 

SOURCES AND RANGES OF VAPOR DENSITY DATA 
USED IN MODEL DEVELOPMENT 

Temperature Density 
Range, K Range, Kg/rn3 Source 

90.68 - 190.555 0.25153 - 160.43 29 
90.348 - 305.33 4.565x1o- 5 - 204.48 31 

85.47 - 369.8 1.861x1o- 8 - 218.69 50 
134.86 - 425.16 3.4916x1o- 5 - 227.85 55 
278.68 - 561.75 0.1617 - 304.64 74 

63.15 - 126.26 0.6803 - 314.1 66 
53.481 - 144.31 0.02166 - 573.8 75 

83.78 - 150.86 4.0502 - 535.62 76 
216.58 - 304.14 13.762 - 467.83 53 

195.48 - 405.4 0.063906 - 235.0 77 
273.16 - 647.13 4.855xlo- 3 - 322.0 54 
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No. of 
Points 

123 
40 
42 
57 

124 
33 
48 
70 
23 

68 
39 



APPENDIX C 

CORRELATION PARAMETERS 
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TABLE C.l 

VAPOR PRESSURE CORRELATION PARAMETERS 

Case 1 Case 2 Case 3 

Substance B a:c lla: a:c lla: a:c 

He thane 0.985563 0.367628 0.076820 0.367095 0. 077123 0.371700 
Ethane 0.982571 0.286707 0.118977 0.285817 0.118164 0.285372 
Propane 0.985976 0.253856 0.133578 0. 254118 0.133961 0.255443 
Argon 0.987831 0.403972 0.061925 0.406640 0.064018 0.414108 
Nitrogen 0.987541 0.371782 0.073122 0.373573 0.07l~591 0.377375 
Benzene 0.983012 0.337015 0.078684 0.335910 0.077850 0.337606 
co2 0.985512 0.445291 0.042534 0.446087 0. 043218 0.457551 
Water 0.986568 0.274569 0.082424 0.275168 0.082894 0.276237 
Fluorine 0.982217 0.323592 0.102246 0.322449 0.101325 0.322053 
n-Butane 0.990349 0.270732 0.111373 0.272124 0.112467 0.271161 
Ammonia 0.989999 0.312871 0. 075813 0.315470 0.077826 0. 315722 
Acetone 0.989068 0.312321 0.067950 0. 314483 0.069519 0.317348 
Oxygen 0.979662 0.325301 0.107611 0.323157 0.105933 0.322093 
n-Decane 0. 987354 0.263208 0.087572 0.264044 0.088207 0.2614<!3 
Hydrogen 0.997330 0.389571 0.061751 0.398497 0.068486 0.414538 
Hethano1 0.999291 0.279051 0.057560 0.287404 0.064084 0.221509 
Ethanol l. 006410 0.284439 0.069511 0. 296183 0.078389 0.224465 
Ethylene 0.983463 0.315356 0.104812 0.314739 0.104325 0.311464 

Case l; A=2/3,C-4/3 
Case 2; A-2j3,B=0.985,C~4/3 

Case 3: A-2/3,B=0.985,C=4/3, lla: from Equation (37) 
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TABLE C.2 

GENERALIZED VAPOR PRESSURE CORRELATION PARAMETERS 

Parameter Value 

A 2/3 

B 0.985 

c 4/3 

c1 0.433 

c2 1. 722 

c3 0. 775 

c4 0.897 

c5 0.799 

c6 0.941 

c7 2.643 
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TABLE C.3 

LIQUID DENSITY CORRELATION PARAMETERS 

Case 6 Case 7 Case 8 

Substance A ac /:;a ac /:;a ac 

Methane 1.119060 0.479863 0.112207 0.647437 0.006665 0.435407 
Ethane 1.142850 0.436693 0.216771 0.568740 0.211788 0.379341 
Propane 2. 611240 1. 099890 0.344095 0.543798 0. 319112 0.356572 
Butane 1.132100 0.444000 0. 272154 0.582482 0. 273629 0.380897 
Benzene 0.996839 0.343297 0.196180 0.609486 0.189819 0.401532 
Nitrogen 1.186830 0.417869 0.099689 0.531293 0.090338 0.310962 
Fluorine 0.999988 0.283543 0.068485 0.547022 0. 051145 0.357890 
Argon 0.839481 0.058751 0.003228 0.534819 0.000051 0.315294 
Carbon 1. 036500 0.350685 0.002506 0.622000 -0.027913 0.384784 

Dioxide 
iillunonia 1.007070 0.297064 0.018095 0.544497 0.003316 0.377891 
Water 2.706580 1.496900 -2.207570 0.856363 -1.361430 0.816625 
Hydrogen 0.827320 0.049119 -0.835918 0.589107 -1.028740 0.497705 
Methanol 0.585547 0.145008 0.286887 0.822422 0.228084 0.652780 
Propylene 1.174510 0. 411040 0.330174 0.512190 0.335123 0.331967 
Neon 0.945980 0. 203411 -0.206676 0.563611 -0.268330 0.366828 
Oxn;en 1.181670 0.415199 0.117573 0.524581 0.112928 0.3304!~9 

Refrigerant 12 1. 688020 0.752660 0.305095 0.555367 0.304232 0.364902 
Acetic Acid 1. 042800 0.477317 0.145933 0.684254 0.000904 0.51989ll 
Acetone 1.146500 0.429629 0.806172 0.548103 0.836744 0.310002 
n-Decane 1.145870 0.424179 -0.009054 0.554032 -0.028542 0.369567 
Cyclohexane 1.152770 0.496339 0.361115 0.631257 0.363992 0.367142 
Hydrogen 1. 273470 0.458965 0.521769 0.490716 0.526583 0.348649 

Fluoride 

Case 6: B=0.325 
Case 7: A=4/3, B-0.325 
Case 8: A=l.07068, B=0.325, l:J.a from Equation (44) 
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TABLE C.4 

GENERALIZED LIQUID DENSITY CORRELATION PARAMETERS 

Parameter Value 

A 1. 07068 

B 0.325 

c1 3.63493 

c2 -3.73713 

c3 0.32786 

c4 -0.90951 

c5 0.36141 

c6 2.95802 

c7 16.4993 

Cg -25.4640 



TABLE COS 

VAPOR DENSITY CORRELATION PARAMETERS 

Case 11 Case 12 

Substance A1 B1 ac ~a B1 ac ~a 

Methane 4059721 0033755 0. 36775 0007699 0033242 0036252 0007275 
Ethane 4017212 0.34062 0035917 0016873 0032286 0034664 0015761 
Propane 4065540 0032959 0032468 0019239 0032625 0.32188 0018980 
n-Butane 50 50615 0 0 31167 0031703 0014011 0032730 0032665 0014843 
Benzene 5084762 0.29704 0.33931 0007431 0. 31811 0035800 0008930 
Nitrogen 5. 87072 0.30545 Oo35250 - 0006114 0032553 0037491 0007759 
Fluorine 4.55948 0.32874 0.37535 0.12967 0032274 0.37037 0.12556 
Argon 3. 34672 0.37023 0043686 0.09707 0.33895 0.33710 0.03081 
C02 7. 21477 0 0 27737 0.28528 0 001110 0.30981 0036032 0005641 
Ammonia 5.61799 0.30769 0.31088 0.07033 0.32440 0032418 0.08051 
Water 4.84526 0030476 0.31992 0.10490 0030569 0.32082 0010564 

Case 11: A2=0.5, B2=1.325, C~Oo7 

Case 12: A1=4.8, A2-oos, B2=1.325, c~o.7 
Case 13: A1=4.8, A2-0.S, Bl=0.325, B2=1.325, C=Oo7 
Case 140 A1=3o1l, A2-0.6, B1-0o325, B2=1.269, C=0.6, ~a from Equation (51) 

Case 13 

ac !J.a 

0037461 0007990 
0034448 0015600 
0032304 0019087 
0032866 0014984 
0034796 0008326 
0.37585 0.07813 
0.36765 0.12378 
0.36461 0004504 
0031549 0.03391 
0.32340 0.08007 
0029974 0.09220 

Case 14 

ac 

0054645 
0 0 48271 
0 0 44723 
0045878 
0.49332 
0.54742 
0.52177 
0.56244 
0.51264 
0.45408 
0.42079 

\.0 ..,_. 
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TABLE C.6 

GENERALIZED VAPOR DENSITY CORRELATION PARAMETERS 

Parameter Value 

Al 3.110 

A2 0.600 

Bl 0.325 

B2 1. 325 

c 0.600 

cl 0.2998 

c2 0.4365 

c3 0.9884 

c4 0.8631 

c5 0.7532 

c6 0.9489 

c7 30.704 
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