SOIL AND GEOMORPHIC EVOLUTION WITHIN THE ROLLING RED PLAINS USING PLEISTOCENE VOLCANIC ASH DEPOSITS

Ву

JEAN ELIZABETH SHANNON Bachelor of Arts University of South Florida Tampa, Florida 1964

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1990

SOIL AND GEOMORPHIC EVOLUTION WITHIN THE ROLLING RED PLAINS USING PLEISTOCENE **VOLCANIC ASH DEPOSITS**

Thesis Approved:

man Thesis Adviser Utame littapoh D. tu Dean of the Graduate

College

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Brian J. Carter, my major advisor, for his support, guidance and constructive criticism throughout this research. Thanks goes to Dr. John D. Vitek for his enthusiasm, and his technical expertise in the field of geomorphology. I would like to thank Dr. Wayne A. Pettyjohn for his helpful comments and concern.

I would like to recognize the friendships of fellow students who were so encouraging.

TABLE OF CONTENTS

Chapter P			
I. INTRODUCTION	1		
Objectives	3		
II. LITERATURE REVIEW	5		
Volcanic Ash as Time Marker Bed	5 6 8		
II. METHODS AND MATERIALS	11		
Land Resource Areas	11 12 12		
IV. RESULTS AND DISCUSSION	14		
Terrace Characterization	14 16 16 19 21		
V. CONCLUSIONS AND RECOMMENDATIONS	23		
LITERATURE CITED			
PPENDIX A - Figures 3-14	31		
APPENDIX B - Tables I-V	44		

LIST OF TABLES

Table		Page
Ι.	Terraces Denoted From Transects	45
II.	Terrace Level and Volcanic Ash Age	50
III.	Terrace Surface Dated by Volcanic Ashes and Soils Mapped on Terraces	51
IV.	Soils on Terraces	52
۷.	Selected Soil Characteristics for Terraces Along Transects Containing Ashes	60

٢

•

.

LIST OF FIGURES

Figure		
1.	Transect Locations Along Major Rivers Across the Study Area in Kansas, Oklahoma, and Texas	2
2.	Land Resource Areas Across the Study Area in Kansas, Oklahoma, and Texas	4
3.	Topographic Transect A Including Location of Ash 34 and Terrace Sequences	32
4.	Topographic Transect B Including Location of Ash 8 and Terrace Sequences	33
5.	Topographic Transect C Including Location of Ash 10 and Terrace Sequences	34
6.	Topographic Transect D Including Location of Ash 15 and Terrace Sequences	35
7.	Topographic Transect E Including Location of Ashes 13 and 20 and Terrace Sequences	36
8.	Topographic Transect F Including Location of Ash 28 and Terrace Sequences	37
9.	Topographic Transect G Including Location of Ash 27 and Terrace Sequences	38
10.	Topographic Transect H Including Location of Ash 21 and Terrace Sequences	. 39
11.	Topographic Transect I Including Location of Ash 23 and Terrace Sequences	40
12.	Topographic Transect J Including Location of Ash 18 and Terrace Sequences	41
13.	Topographic Transect K Including Location of Ash 25 and Terrace Sequences	42
14.	Topographic Transect L Including Location of Ash 19 and Terrace Sequences	43

CHAPTER 1

INTRODUCTION

The alluvium of major river systems from the Arkansas River south to the Brazos River contains early to middle Pleistocene volcanic ash deposits. This drainage area includes tributaries originating in the High Plains, the Raton volcanic field and the Rocky Mountain Front Range within the states of Oklahoma, Colorado, New Mexico, Kansas, and Texas (Figure 1).

Thirteen ash deposits are dated (Ward and Carter, 1989) from within the High Plains of Kansas and Texas eastward in to central Oklahoma to understand the geomorphic history and improve soil and geologic mapping. Time is an important factor in the formation of soil (Jenny, 1941) and geomorphology (Davis, 1889). Dating soil parent materials which are older than 70,000 yr B.P. constitutes a major improvement in the understanding of soil formation and geomorphology because these dates are rare.

Within the study area unconsolidated Tertiary and Quaternary sediments deposited in a west to east direction overlie Triassic, Permian, and Pennsylvanian bedrock. Volcanic ash deposits are predominantly early to middle Pleistocene age (dated by the fissiontrack method on shards; Boellstorff, 1976). The ash deposits are contained within five land resource regions, the Southern and Central High Plains, the High Plains Breaks, the Rolling Red Plains, and the

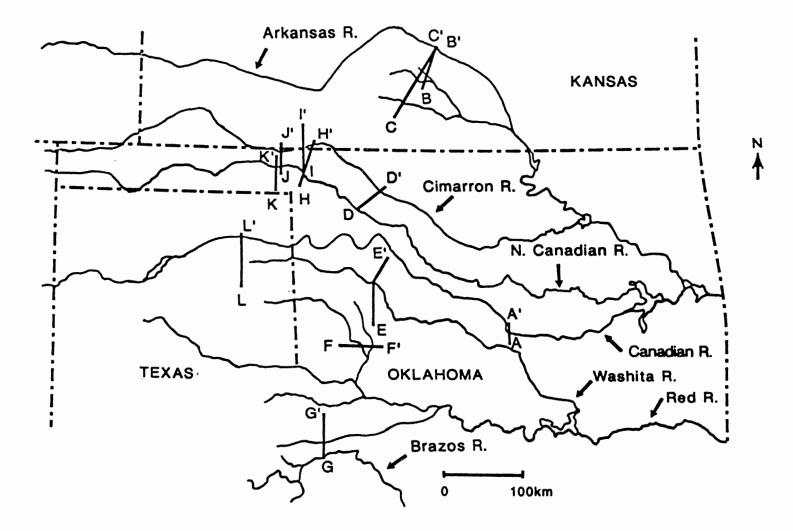


Figure 1. Transect locations along major rivers across the study area in Kansas, Oklahoma, and Texas

Reddish Prairies (Figure 2). Extensive middle Pleistocene constructional stream terrace surfaces occur within the Rolling Red Plains. Multiple stream terrace surfaces were recognized across the study are by Frye and Leonard (1963) with the highest level being dated early Pleistocene to Pliocene and the lowest bordering the Holocene floodplains.

Objectives

The objective of this research was to use dated volcanic ash deposits as time markers to interpret soil formation and geomorphic evolution of the Rolling Red Plains. River floodplains and terraces provide an excellent setting in which to examine soils and pedological processes. When the terraces are dated, the soils can then be placed in a realistic chronology and conclusions reached on rate of soil formation. Geomorphologists can use the properties of the soils to study past climatic regimes in the history of the landscape. Knowledge of soils found on floodplains and river terraces is especially important because these are some of the most densely populated and intensively cultivated areas.

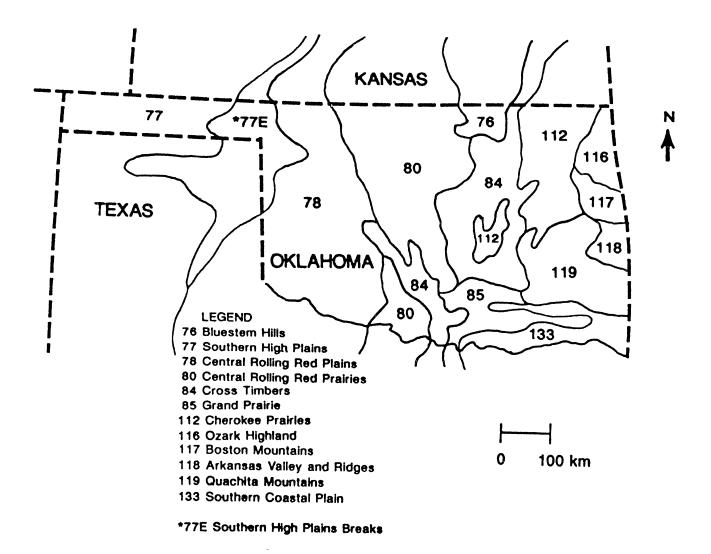


Figure 2. Land resource areas across the study area in Kansas, Oklahoma, and Texas

CHAPTER II

LITERATURE REVIEW

Volcanic ash as time marker bed

Volcanic ash deposits have been located and identified in the Central Great Plains since the 1800's (Buttram, 1914; Frye et al., 1948; Burwell and Hamm, 1949; Boellstorff, 1976; Izett, 1981; Izett and Wilcox, 1982). Early studies considered the deposits as one ash and applied the stratigraphic name "Pearlette ash" to deposits in Meade County, Kansas. Later investigations in Oklahoma, Texas, Nebraska, and Kansas, (Frye et al, 1948), revealed the presence of several ashes of a single middle-Pleistocene age in their study of Great Plains and glacial geologic deposits. They used the ashes as time marker beds to distinguish between Pleistocene and Pliocene deposits. The more recent studies by Boellstorff (1976), Izett et al., (1970), and Izett (1981) have shown that the ash beds in the Great Plains are of widely differing ages and have different volcanic source areas. Izett and Wilcox (1982) identified the source areas for the major ash falls as the Yellowstone caldera, the Long Valley caldera of California and the Toledo and Valles calderas of New Mexico. The ash deposits have been used as time marker beds to make regional correlations of geologic deposits because they can be dated (Boellstorff, 1976; Naeser and Naeser, 1988) and they have widespread occurrence. Karas (1987) used relative topographic position and degree of soil development in alluvial deposits to correlate

alluvial deposits and assign relative ages to them. The age of the Blackwater Draw Formation of the Texas Panhandle was determined by Holliday (1988 and 1989) using volcanic ash as time markers and soilgeomorphic indicators. Holliday (1989) also uses the presence of two ashes in the Blackwater Draw formation of Texas and New Mexico to show that the wide-spread eolian deposit accumulated throughout most of the Quaternary.

Glass shards taken from volcanic ash deposits have been fissiontrack dated (Ward and Carter, 1989, in review; Boellstorff, 1976; Boellstorff and Steinck, 1975). Fission-track dating, classified as a radiogenic method of dating according to Colman et al, (1987), is a recognized tool in recent research focusing on Quaternary landforms, deposits, and geologic events.

The Rolling Red Plains and Southern High Plains Border regions of western Oklahoma, southcentral Kansas, and the eastern edge of the Texas Panhandle are covered by a soil mantle of alluvial and eolian origin. Reeves and Haynes (1976) describe the Southern High Plains surface as being mantled by Quaternary eolian, fluvial, and lacustrine deposits. In west-central Oklahoma, early Pleistocene deposits are thought to be part of a continuous plain (Carter, 1985) incised by the major rivers flowing through the area, namely the Arkansas, Cimarron, North Canadian, Canadian, Washita and Red. Ages of the alluvial and eolian deposits in that area may be estimated using the volcanic ashes found there.

Pleistocene alluvial deposits

Pleistocene alluvial deposits have been identified throughout the study area. Kitts (1959, 1965) studied terraces along the Canadian

River in Roger Mills and Ellis counties in western Oklahoma and used faunal assemblages and volcanic ash deposits to assign ages. Hibbard (1944) and Stephens (1960) identified Pleistocene deposits in southwestern Kansas and northwestern OK, respectively, using stratigraphy and vertebrate paleontology. Fay (1959) noted broad constructional surfaces associated with Pleistocene deposits. He identified five discernible terrace levels in the Canadian River basin of west central Oklahoma. Volcanic ash was found only in the highest terrace. Myers (1959, 1962) describes constructional terrace surfaces and Pleistocene terrace deposits in a long, wide band between the North Canadian and Cimarron Rivers throughout most of northwestern Oklahoma (excluding the Panhandle). These deposits are discontinuous because parts have been removed by Late Pleistocene and Recent erosion (Myers, 1962). Volcanic ash is also noted in these deposits (Fay, 1959).

Soil surveys have identified the terrace deposits along the major streams and the soil landscapes that are associated with them (Gray and Galloway, 1969). Soil landscapes are first identified by aerial photography. Percent slope is a major consideration, hillslope components (Ruhe and Walker, 1968) are used to differentiate expected differences in soil type. These soil landscape mapping units are then field checked for soil and geologic characteristics. In this way soil surveys become a powerful tool in understanding regional soil geomorphologic relationships. Soil mapping units are based on land use and can include one or more soil series. Soil series are soils that have profiles almost alike. They may differ in texture in surface layers but horizons are similar in thickness, arrangement and other important characteristics (Soil Survey Staff, 1975). The system of soil

classification used by the National Cooperative Soil Survey has six categories. They are order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. To date all but two counties in Oklahoma, most of Kansas, and about half of Texas is soil mapped.

Soil development and topography

Many studies have been made involving soil development and topography. Ruhe (1956) showed that specific soils or soil associations can be related to each delineated geomorphic surface. Ruhe et al. (1967) identifies erosion as the key factor in shaping the landscapes of southwestern Iowa and affecting the soil development.

Bilzi and Ciolkosz (1977) cite time as a major factor in soil development. They studied the genesis of four alluvial soils in central Pennsylvania to evaluate the importance of time in relation to the soils' pedologic age. Radiocarbon methods were used to determine age deposits and soils (Birkeland, 1984).

A field morphology rating scale was used by Bilzi and Ciolkosz (1977) to show the distinctness of the horizons in each soil profile. The rating scale indicated the similar ages of the first three soils, whereas the fourth soil was rated pedologically older. These relationships agreed with the findings of the radiocarbon dating or chronologic age. Bilzi and Ciolkosz (1977) found that morphological properties are effective in distinguishing chronological age differences and concluded that pedologic age differences were best identified by the relative distinctness of horizons evaluated by a field morphology rating

scale, their in situ weathering of clay minerals, and the volume of illuvial clay films in the B horizons.

Soil-landscape studies combined with reasonably accurate methods of dating events indicate that soil development can be much more rapid than originally thought (Hall et al, 1982). The first indication of soil formation is usually considered to be when organic matter is incorporated in the surface of a parent material (mollic epipedon), with the A horizon forming in as little as 24 years (Hall et al, 1982). Clay translocation and accumulation in the B horizon generally takes longer (> 2000 years) but Hall et al (1982) indicate that under ideal conditions the process may be relatively rapid (450 years). Cambic horizon or color B horizon formation depends on all the soil forming factors (Hall et al, 1982) and are thought to be the first stages of subsoil development.

Gile et al. (1981) stated that soil age was the most important factor affecting soil morphology and occurrence at stable locations. In the stepped sequence of geomorphic surfaces along the Rio Grande valley border, the soils of stable sites are progressively older, thicker, and more prominent with increasing elevation of the steps. The horizon of carbonate accumulation in desert conditions is the soil horizon that exhibits the morphological change and that is best related to soil age (Gile et al., 1981). The stages of carbonate accumulation are useful as chronological and stratigraphic markers for the soils. Carbonate can accumulate in any desert soil if moisture can enter and there is a source of carbonate, in either dust or the soil parent material (Gile et al, 1981). Increasing soil development is also shown by increasing thickness of the carbonate horizon with age. Harden and Taylor (1983)

applied the comparative techniques of the soil development index to determine whether certain soil properties develop systematically with depth and age, and whether they develop similarly in different environments. The five properties that correlated most significantly with age in the four chronosequences that Harden and Taylor studied were total texture, rubification, clay films, dry consistence, and moist consistence. It is their conclusion, that if samples are separated and grouped according to soil-forming factors and described according to Soil Survey Staff (1951, 1982) procedures, the development of soil properties is found to be highly correlative with age, and quantitative comparisons of development rates can be made. Birkeland (1984) suggests that the relative importance of time as a soil forming factor will vary from soil to soil.

CHAPTER III

METHODS AND MATERIALS

Land resource areas

The study area encompasses parts of Kansas, Oklahoma and Texas. Figure 2 is a map showing resource areas studied. Land resource areas (Soil Survey Staff, 1979) studied were Southern and Central High Plains, Central Rolling Red Plains, and Central Rolling Red Prairies, (Figure 2). These areas are differentiated for resource inventory and separated by land use, elevation and topography, climate, water, soils, and potential natural vegetation Soil Survey Staff (1951, 1982). This study area has layers of unconsolidated alluvial and eolian sediments, which contain volcanic ashes as marker beds. Volcanic ashes had previously been collected from 13 localities in the study area and ages assigned to them using the radiometric fission-track method on glass shards (Ward and Carter, 1989).

Terrace levels associated with the ashes were identified by topographic cross-sections constructed perpendicular to the major river systems intersecting the ash deposits. Transects were viewed looking upstream in order to maintain uniform perspective. The river basins included were: Arkansas, Cimarron, North Canadian, Canadian, Washita, Red, and Brazos (Figure 1). Large scale (1:250,000) United States Geological Survey topographic quadrangle maps were used to align the transects.

Topographic transect construction

The transects were constructed at a scale of 1:24,000 using the 7.5 min. topographic quadrangles. The lengths of the transects ranged from 60-120 km. After identifing terrace levels on the transects, the transects were scanned into a computer using Hewlett-Packard ScanJet Plus scanner with the software program, Scanning Gallery Plus, (Version A.03.00 Hewlett-Packard Co., 1988). This process reduced the multiple pages of the transects, typically 8 to 17 pages (21.5 x 27 cm), to one page each per transect. Twelve transects are included (Figures 3-14, Appendix A).

County soil surveys

Soils along the transects were identified using the county soil survey maps (Allgood et al., 1962; Fisher, 1968; Frie et al., 1967; Henson, 1978; Hoffman and Glaum, 1979; Koos and Dixon, 1964; Lamar, 1979; Lofton et al, 1972; Mayhugh, 1977; Moebius and Sparwasser, 1979; Moffatt and Conrad, 1979; Mowery et al., 1961; Nance et al., 1960; Rockers et al., 1966; Rogers and Risinger, 1979; Wheeler, 1973; Williams and Welker, 1966; and Wyrich and Williams, 1981). These soil maps were prepared from aerial photographs at a scale of 1:20,000 or 1:24,000. The topographic transect locations were transferred to the county soil surveys. Soils along the transects were identified. Soil mapping units were then transferred from the county soil survey to the transects. Terraces were identified by either 1) soils with 0-1% slopes or 2) soils with profile descriptions within the soil surveys indicating alluvium as their parent material.

Table 1 (Appendix B) represents the terrace data for the transects. Starting on the left side of each transect, the following information concerning each terrace was determined and noted: elevation (m), width (km), distance from river (km), and height from river (m). This same information, except width, is also given for the volcanic ash localities. The location north or south of the river, the terrace number, and the name of the major river are listed. For example, in Table 1, Transect C, Ash 10, on page 23, TS9 Arkansas refers to the ninth terrace south of the Arkansas River. This terrace can be seen on Transect C, page 41, on the left hand side of the transect. Ash 10 is in terrace TS4. Floodplains are also indicated. Table 2 shows the ash terrace levels, the corresponding ash ages from fission-track methods (Ward and Carter, 1989), and height above river for each transect. This data is listed by drainage basin, i.e., Arkansas River, Cimarron River, etc. The soil series mapped on the ash-dated terraces of each transect are given in Table 3 along with their soil classification which was taken from the soil surveys. Table 4 contains the soil series and its classification of every soil found on the floodplains and the terraces. Special notation is made of the terrace containing the ash. Table 5 identifies soil characteristics that are produced by major soil forming processes in the study area. These processes are partly dependent on time and will be used to evaluate the age of the terrace. Generally the thickest solum and the thickest calcic and mollic horizons represent the most development.

CHAPTER IV

RESULTS AND DISCUSSION

Terrace Characterization

Stream terraces identified by soil series and landscape form were present along all major west to east flowing drainages within the study area. Terraces were as high as 204 m above current stream level, however, the majority of terraces occurred less than 100 m (Table 1). The highest terraces capped the divides between major streams (Table 1, Figures 3-14). Coalescing fans or rock divides were consumed by erosion. Middle Pleistocene (0.60 to 1.0 m.y., Table 2) volcanic ash deposits are found within alluvial sediments underlying the terrace surfaces. Six ash deposits (Ash 34, Transect A; Ash 15, Transect D; Ash 23, Transect I; Ash 8, Transect B; Ash 13, Transect E; Ash 25, Transect K) were contained within terraces that capped divides between drainages. Middle Pleistocene terraces which contained the ash deposits ranged from 14 to 119 m above river level. An early Pleistocene to late Tertiary ash deposit $(2.15 \pm 0.24 \text{ m.y.})$ occurred within a terrace 155 m above the Canadian River (Table 2 and Figure 7). The oldest ash deposit (2.15 \pm 0.24 m.y.) was contained within the highest ash-dated terrace (155 m). The youngest ash deposit (0.60 \pm 0.07) was not found within the lowest ash-dated terrace. Relatively old ash deposits; 1.0 \pm 0.11 Ma, 0.89 \pm 0.09, 0.88 \pm 0.09, and 0.74 \pm 0.08 were found within the lowest ashdated terraces, 30 m (Kiowa Creek), 21 m (Elk Creek), 21 m (Arkansas

River), and 14 m (Arkansas River), respectively. Lower terrace levels, however, contained younger ash deposits within the same river system (Table 2). All river systems do not necessarily have the same rate of incision and it is likely that they don't especially with changing stream bed lithology. This is controlled by several factors including stream capture, resistant underlying geology and sediment load (Gerrard, 1981). Stream capture was first presented by Fay (1959 and 1965) to support the fact that in some areas accelerated erosion has subdued divides and captured sediments and water from an adjacent river. From ash dates in the Rosston area (Transect H) it appears about 1 million years ago the Cimarron River captured part of the N. Canadian River at Rosston. This was probably caused by dissolution of gypsum and halite beds (Gustavson, 1986) which accelerated the rate of erosion within the Cimarron River drainage basin.

The widest terrace sequence (84.1 km) was found in Transect C on the south side of the Arkansas River (Table 1, Figure 3). This sequence included 9 terraces up to 79 m above the Arkansas River. The range in the length of terrace sequences within all transects (length includes distance from river to terrace-capped divide or highest terrace level) was 1.2 to 84.1 km. Generally the distance from stream to the highest terrace was between 5 to 30 km. Within 7 out of the 12 transects the widest terraces were also the highest terrace (Transects A, D, E, G, H, I, and L) Maximum terrace width for these high terraces ranged from 2.9 to 17.7 km. For four out of the remaining five transects the widest terraces occurred within the middle to lower portion of the sequence (Transects B, C, F, and J). Maximum terrace width for these low terraces ranged from 1.2 to 14.2 km. The ash

deposits were found on the broad terraces. This indicates that the middle Pleistocene was a period of wide-spread alluviation in Oklahoma compared to the late Pleistocene. There was little difference in terrace width within Transect K which averaged 0.8 km.

<u>Statistics</u>

The variables terrace width, distance from river, elevation above river, height above river and drainage basin size were plotted and fitted to linear regression curves to determine if significant trends existed. No trends were evident. Statistical analysis was limited by the relatively few ash locations compared to the large size of the study area. Each basin will exhibit unique characteristics because of possible stream capture, temporal and spatial variations in climate, lithology and sediment load. More ash locations are needed within different terrace levels, along the entire length of a drainage basin, and within several drainage basins before meaningful statistical analysis can be achieved.

Soil classification

Major soil components of mapping units having a high proportion of single series occur on landscapes that are undissected or only slightly dissected and that lack substantial deposition by wind; particle size does not differ greatly; and discontinuous argillic, calcic, or petrocalcic horizons are not present. These soils occur mostly in the basin floors. The most complex patterns of soil distribution and the largest number of soils in a given area are found in dissected landscapes (Gile et al., 1981). The study area featured landscapes that were undissected, slightly dissected and dissected.

Twenty-five different soil series were found on terrace surfaces dated by ash deposits (Table 3). Five different soil orders were represented within these 25 soil series. Twenty soil series were identified as Mollisols, 2 soil series identified as Alfisols, 1 soil series identified as an Inceptisol and 1 soil series identified as an Entisol. The Entisol, Otero, usually present in floodplains, was found in a higher terrace because of recent wind erosion. All Mollisols were identified as Ustolls at the suborder level. All Alfisols were identified as Haplustalfs at the great group level. The majority of the soils found on the ash-dated terraces contained argillic horizons (Argiustolls, Paleustolls, and Haplustalfs). Only a few soils contained calcic horizons (Calciustolls and Calciorthidic Paleustolls). This results from a current relatively moist climate which promotes leaching of salts and movement of clay. The dominant climate during middle Pleistocene was moist, similar to today as is evidenced by the large number of Argiustolls present. Argiustolls are indicators of subhumid and humid regions with alternating wet and dry periods (Hall, 1983). Precipitation amounts average 50-90 cm and correlate to ustic to udic soil moisture regimes respectively (Pettyjohn et al., 1983). Precipitation is not high enough to support forest vegetation, therefore, Mollisols were the dominant soil order formed. Soil textures within ash-dated terraces were predominantly sandy clay loam, clay loam, and loam; however, there was a wide distribution of textures indicating fluvial origin instead of eolian origin which has similar texture throughout. Clay- textured soils containing greater than 60% clay were not present. Although soil series generally had a similar

classification at the group suborder and order levels across the entire study area, the difference between drainage basins, within the study area was apparent because of the differences in bedrock lithologies within each basin. Soil series mapped on ash-dated terraces within the same basin were similar, i.e., transects B, C, D, H, I, J, and K.

Soil orders found across terrace and floodplain sequences included Entisols, Inceptisols, Alfisols, Mollisols, and Vertisols (Table 4). Mollisols were the most numerous soil order mapped on terraces followed by Alfisols, Entisols, and Inceptisols. Vertisols were only represented by one soil series within TS2 (Transect A, Canadian River). Entisols were the most abundant soil order mapped within floodplains (Table 4). Mollisols, especially Haplustolls, were also mapped within floodplains, but were much less abundant. Haplustolls are slightly more developed than Entisols because Haplustolls contain a mollic epipedon and cambic horizon while Entisols do not. The majority of the soil series that were recognized within this study were formed on the floodplain and terrace constructional surfaces. Argiustolls, Paleustolls, and Calciustolls were major soil groups that occurred on terrace surfaces. Where terrace surfaces have been eroded and where wind-blown sand has reworked the terrace surfaces, soils often lack one or more of the following: mollic epipedons, argillic horizons, and calcic horizons. Eroded terrace surfaces are mapped as Ustochrepts and Haplustolls. Eolian sands are recognized by dune form. Soil series formed within eolian sands overlying terrace surfaces are Tivoli, Pratt, Nobscot, Enterprise, and Devol. These soils were classified as either Psammentic, Haplustalfs, Typic Ustipsamments, Arenic Paleustalfs, Typic Ustochrepts, or Udic Haplustolls.

Soils within terrace transects

In Transect A the thickest solum is found in the Durant soil on the uppermost terrace of the Canadian River. This is also the soil series which contains an ash, dated at 0.87 ± 0.13 Ma. The parent material of the Durant soil is Pleistocene alluvium overlying Cretaceous shale and although it has the thickest solum, it does not have the thickest mollic horizon which is found in the Clarita soil. Both the Durant and Clarita are classified as having a fine family particle size class. The Pratt soil on the Arkansas River floodplain of Transect B formed in sand dunes of probable Holocene age. The Bethany soil is in the fine family and found on the uppermost terrace of the Arkansas River. The Bethany soil has the thickest Bt horizon and the thickest The Farnum found on all terraces above the floodplain has the solum. thickest calcic and mollic horizons. The ash is found in the highest terrace dated 0.74 ± 0.08 Ma. Transect C is also on the Arkansas River. The thickest solum again is found in the fine textured Bethany soil. It also has the thickest Bt horizon, between 2-7 times that of the other soils on the terraces. Calcic thickness is greatest in the Clark soil which is derived from calcareous alluvium. Eolian soils, Tivoli, Elsmere, Pratt, Carwile and Enterprise are found in Transect D in Woodward County, OK. Landforms are marked by dune fields. The Nobscot soil from Pleistocene loamy/sandy eolian sediments has the thickest solum. The fine-silty textured St. Paul soil contained the thickest mollic colors while the fine-loamy textured Mansker formed from calcareous material had the thickest calcic horizon. Transect E contained Pratt and Devol soils which formed in eolian deposits. The Cordell and Dill soils formed on rock or strath terraces. The

Grandfield and the Carey soils, both formed in Pleistocene alluvium, have very thick solums while the Carey also has a thick calcic horizon (the only calcic in the transect). Mollic colors are thickest in the Pond Creek and the St. Paul which are both of fine-silty texture. The fine textured Tillman soil formed from clayey alluvium has the thickest solum of Transect F, along with the thickest calcic horizon. The Hollister soil also fine textured contained the thickest mollic. Transect G contained windblown sediments with Hardeman soils formed within them. The Sagerton soil has the thickest solum and thickest Bt development. The Wichita soil is fine textured with the thickest calcic horizon and no mollic horizon. Mollic color thickness is found in the Rotan which also has a very thick solum and Bt horizon. The Mansker of Transect H has the thickest solum along with the thickest calcic and Bt horizon. The Pratt, a sandy soil of eolian origin, is present adjacent to the North Canadian floodplain. Transect I contained no soils formed in windblown deposits. The Mansker soil has the thickest solum, Bt and calcic horizons. The fine-loamy textured Tipton soil has the thickest mollic. The parent materials of the soils on Transect J are calcareous Tertiary deposits. The Richfield and Ulysses formed from calcareous loess. The Bt thickness is negligible in all soils but the Richfield. The thickest solum is found in the Mansic along with the thickest mollic and calcic horizons. Transect K also reflects the calcareous Tertiary parent materials. Free carbonate is at the surface in most terraces. There are no windblown deposits. The Mansker soil has the thickest solum, Bt, mollic, and calcic thickness. The fine textured Darrouzett soil and the fine textured Olton soil have the thickest solums on Transect L which contains very calcareous soils. Estacado has the

thickest calcic horizon. The Darrouzett, Olton and Estacado all have thick Bt horizons. No windblown deposits are present as evidenced by the lack of dunes.

Terrace soils within a transect are similar as a result of similar geomorphological processes, the parent materials and pedologic processes. Soils on terraces differ from transect to transect as parent materials reflect the characteristics unique to the drainage basin.

Paleosols

Evolution of landscapes can be determined by studying the soils. Since soil development takes time, a soil represents a part of the geomorphological history (Gerrard, 1981). Soils indicate periods of stability within cycles of erosion and deposition. While the nature of the soil may give insight into environmental conditions during the period of soil formation, the correlations between soil properties and environments are still not sufficiently established (Birkeland, 1984). The soils of greatest use in this respect are those that have been buried under later deposits and have had their characteristics "fossilized". Buried soils (or buried paleosols) play a vital role in the study of the Quaternary because they provide a record of time discontinuities in the stratigraphic record. Paleosols are not identified by the soil surveys in the study area but this does not mean they are not present. To date, only the upper 150 cm of the soils have been extensively described by the Soil Conservation Service. Paleosols buried at a depth greater than 150 cm may be present. Buried soils can also be difficult to recognize in the field by common methods like changes in color, decalcification, structure, cementation, clay

accumulation and iron-oxide accumulation. Laboratory characterization is being used more frequently to make identification. With increasing interest in paleosols and better analytical technique more buried soils will be recognized.

CHAPTER V

CONCLUSIONS AND RECOMMENDATION

Terraces within the study area were predominantly Pleistocene age; however, some surfaces may be as old as late Tertiary. Surprisingly, little difference was observed in the development of soils on these constructional terrace surfaces. The predominant soil group mapped across terrace surfaces was the Argiustoll. Terrace surfaces often capped stream divides, making it difficult to associate the terrace deposits with a particular stream system. Terrace surfaces extend from the High Plains of Texas, Oklahoma, and Kansas into the Rolling Red Plains and Reddish Prairies. The Rolling Red Plains of Oklahoma, Texas, and Kansas are composed of multiple Pleistocene terraces. Within the Rolling Red Plains and Reddish Prairies the terrace deposits can be easily distinguished on sand and gravel lithologies. Within the Rolling Red Plains and Reddish Prairies terrace deposits are composed of reworked Ogallala materials which overlie Permian "redbed" bedrock. Within the High Plains and High Plains Breaks, where the Ogallala is found in situ, terrace deposits are difficult to distinguish on the basis of soil particle lithology. Soil series are distinguished by the amount of incorporation of underlying Permian bedrock. Stream terraces located within the southeastern section of the study area contain a higher percentage of Permian "redbed" lithologies. This inherited red color from bedrock lithologies is often confused with soil-developed

color (braunification). Eolian sand deposits also modified constructional terrace surfaces across several transects. Loess deposits are not recognized across the study area but should be associated with source-area stream drainages. Paleosols are not identified but should exist at depths greater than soil survey investigative procedures now allow (1.5 to 2.0 m). Paleosols should increase the ability to interpret past changes in climate and corresponding periods of eolian and alluvial deposition.

LITERATURE CITED

- Allgood, F. P., Bohl, J. L., and Mitchell, M. O., 1962. Soil Survey of Beaver County, Oklahoma. U.S. Department of Agricultural Experiment Station, 80 pp. Series 1959. No. 11.
- Bilzi, A. F. and Ciolkosz, E. J., 1977. Time as a factor in the genesis of Four soils developed in recent alluvium in Pennsylvania. Soil Sci. Soc. Am. J., 41:122-127.
- Birkeland, P. W., 1984. Soils and Geomorphology. Oxford University Press, New York, New York. 372 pp.
- Boellstorff, J., 1976. The succession of late Cenozoic volcanic ashes in the Great Plains: a progress report. In "Stratigraphy and faunal sequences - Meade County, Kansas"; Guidebook 24th Annual Meeting, Midwestern Friends of the Pleistocene, May, 1976, Guidebook Series 1, Kansas Geol. Sur.
- Boellstorff, J., and Steinck, P. L., 1975. The stratigraphic significance of fission track ages on volcanic ashes in the marine Late Cenozoic of southern California Earth and Planetary Science Letters, 27:143-154.
- Burwell, A. L., and Ham, W. E., 1949. Cellular products from Oklahoma volcanic ash. Oklahoma Geological Survey Circular No. 27, Norman, OK.
- Buttram, F., 1914. Volcanic dust in Oklahoma. Okla. Geol. Survey Bull. 13, pp. 42-44.
- Carter, B. J., 1985. Preliminary study of soil-landscape age using Pleistocene volcanic ash buried in high terrace deposits across Oklahoma. GSA Abstract #69233, GSA Abstracts with Programs, Vol. 17, No. 3, Feb. 1985.
- Colman, S. M., Pierce, K. L., and Birkeland, P. W., 1987. Suggested terminology for Quaternary dating methods. Quaternary Research. 28:314-319.
- Davis, W. M., 1899. The rivers and valleys of Pennsylvania. National Geographic Magazine, 1:183-253.
- Dodge, D. A., 1977. Soil Survey of Barber County, Kansas. U.S. Department of Agriculture, in cooperation with the Kansas Agricultural Experiment Station, 73 pp.

- Fay, R. O., 1959. Pleistocene Course of the South Canadian River in central western Oklahoma. Oklahoma Geology Notes 19:3-12.
- Fay, R. O., 1965. Geology and mineral resources of Woods County, Oklahoma Geological Survey. Bulletin 106, Norman, Okla.
- Fisher, C. F., 1968. Soil Survey of Blaine County, Oklahoma. U.S. Department of Agriculture in cooperation with the Oklahoma Agricultural Experiment Station, 87 pp.
- Frie, J. W., Brinlee, R. C., and Graft, R. D., 1967. Soil Survey of Greer County, Oklahoma. U.S. Department of Agriculture in cooperation with the Oklahoma Agricultural Experiment Station, 72 pp.
- Frye, J. C., Swineford, A., and Leonard, A. B., 1948. Correlation of Pleistocene deposits of the central Great Plains with the glacial section. J. of Geol. 56(6):501-525.
- Frye, J. C. and Leonard, A. B., 1963. Pleistocene geology of Red River Basin in Texas. Report of Investigation No. 49, Bureau Economic Geology, The University of Texas, Austin, Texas.
- Gerrard, A. J., 1981. Soils and landforms. George Allen and Unwin Ltd. London.
- Gile, L. H., Hawley, J. W., and Grossman, R. B., 1981. Soils and geomorphology in the Basin and Range area of southern New Mexico -Guidebook to the Desert Project. New Mexico Bureau of Mines & Mineral Resources Memoir 39, 222 p.
- Gray, F. and Galloway, H. M., 1969. Soils of Oklahoma. MP 56, DAES Bull., State University Miscellaneous Publication. Stillwater, Oklahoma.
- Gustavson, (ed). 1986. Geomorphology and Quaternary Stratigraphy of the Rolling Red Plains Texas Panhandle Guidebook 22. Bureau of Economic Geology. W. L. Fisher, Director, University of Texas, Austin.
- Hall, G.F., 1983. Pedogenesis and soil taxonomy. Wilding, L.P., N.E. Smeck and G.F. Hall (eds.). Elsevier, New York.
- Harden, J. Jr. and Taylor, E. M., 1983. A quantitative comparison of soil development in four climatic regimes. Quaternary Research 20:342-359.
- Henson, O., 1978. Soil Survey of Custer County, Oklahoma. U.S. Department of Agriculture, Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 54 pp.
- Hibbard, C. W., 1944. Stratigraphy and vertebrate paleontology of Pleistocene deposits of Southwestern Kansas: Geol. Soc. Am. Bull. 55:707-754.

- Hoffman, B. R., and Glaum, S. A., 1979. Soil Survey of Kingman County, Kansas. U.S. Department of Agriculture, in cooperation with the Kansas Agricultural Experiment Station, 107 pp.
- Holiday, V. T., 1988. Mt. Blanco revisited: Soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations. Geology 16:505-508.
- Holiday, V. T., 1989. The Blackwater Draw Formation (Quaternary): A 1.4-plus-m.y. record of eolian sedimentation and soil formation on the Southern High Plains. Geol. Soc. Am. 101:1598-1607.
- Izett, G. A., 1981. Volcanic ash beds: recorders of upper Cenozoic silicic pyroclastic volcanism in the Western United States. J. Geophysical Res. 86(BII)..10200-10222.
- Izett, G. A., and Wilcox, R. E., 1982. Map showing localities and inferred distributions of the Huckleberry Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette family ash beds) of Pliocene and Pleistocene age in the Western United States and Southern Canada. USDI Misc. Invest. Map MI-1325. U.S. Geol. Surv., Reston, VA.
- Izett, G. A., R. E. Wilcox, H. A. Powers, and Desborough, G. A., 1970. The Bishop ash bed, a Pleistocene marker bed in the Western United States. Quaternary Res. 1:121-132.
- Jenny, H., 1941. Factors of soil formation. McGraw-Hill, New York, 281 p.
- Karas, P. A., 1987. Quaternary alluvial sequence of the Upper Pecos River and a tributary, Glorietta Creek, North-Central New Mexico. In: C. Menges (Editor), Guidebook, Friends of the Pleistocene-Rocky Mountain Cell, pp. 159-176.
- Kichler, L. E., Bogard, V. A., White, J. D., Fielder, A. G., and Mobley, H. L., 1985. Soil Survey of Garvin County Oklahoma. U.S. Department of Agriculture, Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station and the Oklahoma Conservation Commission, 199 pp.
- Kitts, D. B., 1959. Cenozoic geology of northern Roger Mills County, Okla. Geological Survey Circular 48, Univ. of Okla. Norman.
- Kitts, D. B., 1965. Cenozoic geology. Ellis County, Oklahoma Geological Survey. Circular 69, University of Oklahoma, Norman.
- Koos, W. M. and Dixon, M. L., 1964. Soil Survey of Foard County, Texas. U.S. Department of Agriculture in cooperation with the Texas Agricultural Experiment Station, 71 pp.
- Lamar, O. W., 1979. Soil Survey of Kiowa County, Oklahoma. U.S. Department of Agriculture in cooperation with Oklahoma Agricultural Experiment Station, 73 pp.

- Lofton, K. T., Blakley, E. R., and Dixon, M. L., 1972. Soil Survey of Hardeman County, Texas. U.S. Department of Agriculture in cooperation with the Texas Agricultural Experiment Station, 84 pp.
- Mayhugh, R. E., 1977. Soil Survey of Pottawatomie County, Oklahoma. U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the Oklahoma Agricultural Experiment Station, 118 pp.
- Moebius, G. E. and Sparwasser, W. A., 1979. Soil Survey of McClain County, Oklahoma. U.S. Department of Agriculture, Soil Conservation Service, in cooperation with Oklahoma Agricultural Experiment Station, 103 pp.
- Moffatt, H. H. and Conradi A. J., 1979. Soil Survey of Washita County, Oklahoma. U.S. Department of Agriculture in cooperation with Oklahoma Agricultural Experiment Station, 122 pp.
- Mowery, I. C., Turner, M. T., Gooch, D., Williams, J. C., Hailey, R. B., and Robinson, T., 1961. Soil Survey of Haskell County, Texas. U.S. Department of Agriculture in cooperation with the Texas Agricultural Experiment Station, 74 pp.
- Myers, A. J., 1959. Geology of Harper county, Oklahoma. Oklahoma Geological Survey Bulletin 80. Norman.
- Myers, A. J., 1962. A middle Pleistocene stream channel. Oklahoma Geology Notes. 22:224-229.
- Naeser, C. W., and Naeser, N. D., 1988. Fission-track dating of Quaternary events. Geol. Soc. Am. Special Paper 227.
- Naeser, C. W., Izett, G. A., and Obradovich, J. D., 1980. Fissiontrack and K-Ar ages of natural glasses. U.S. Geol. Surv. Bull. 1489:1-31.
- Nance, E. C., Nichols, J. D., Kollmorgen, H. L., Daniell, R. E., Costilow, H. L., and Lofton, K. T., 1960. Soil Survey of Harper County, Oklahoma. U.S. Department of Agriculture in cooperation with the Oklahoma Agricultural Experiment Station, 59 pp.
- Nance, E. C., Steers, C. A., Cole, E. L., Miller, M. L., and Fanning, C. F., 1963. Soil Survey of Woodward County, Oklahoma. U.S. Department of Agriculture in cooperation with the Oklahoma Agricultural Experiment Station, 69 pp.
- Pettyjohn, W. A., White, H., and Dunn, S., 1983. Water Atlas of Oklahoma. University Center for Water Research, Oklahoma State University, Stillwater, OK, 72 pp.
- Reeves, C. C. Jr., and Haynes, C. V., 1976. Quaternary stratigraphy and geologic history of Southern High Plains, Texas and New Mexico In W.C. Mahaney (ed.) Quaternary Stratigraphy of North America. Halsted Press, Stroudsburg, PA.

- Rockers, J. J., Ratcliff, I., Dowd, L. W., and Bouse, E. F., 1966. Soil Survey of Reno County, Kansas. U.S. Department of Agriculture in cooperation with the Kansas Agricultural Experiment Station, 72 pp.
- Rogers, C. A. and Risinger, W. M., 1979. Soil Survey of Knox County, Texas. U.S. Department of Agriculture in cooperation with Texas Agricultural Experiment Station, 97 pp.
- Ruhe, R. V., 1956. Geomorphic surfaces and the nature of soils. Soil Science. 82:441-455.
- Ruhe, R. V., and Walker, P.H., 1968. Hillslope models and soil formation, I, open systems, transactions of 9th International Congress of Soil Science, paper 57, 557-60.
- Ruhe, R. V., Daniels, R. B., and Cady, J. G., 1967. Landscape Evolution and Soil Formation in Southwestern Iowa. Bulletin 1349 U.S. Department of Agriculture in cooperation with Iowa Geological Survey.
- Soil Survey Staff, 1951, 1982. Soil Survey Manual. U.S. Department of Agriculture, Agriculture Handbook No. 18.
- Soil Survey Staff, 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. U.S. Department of Agriculture, Agriculture Handbook No. 436, 754 pp.
- Soil Survey Staff, 1979. Map of Land Resource Areas: Oklahoma. U.S. Department of Agriculture, Fort Worth, Texas.
- Stephens, J. J., 1960. Stratigraphy and paleontology of a late Pleistocene basin, Harper County. Oklahoma.
- Storzer, D. and Wagner, G. A., 1971. Fission track ages of North American tektites. Earth and Planetary Science Letters. 10:435-440.
- Tomasu, B. I. and Grimwood, T. D., 1982. Soil Survey of Clark County Kansas. U.S. Department of Agriculture, Soil Conservation Service in cooperation with the Kansas Experiment Station, 121 pp.
- Ward, P. A. III, and Carter, B. J., 1988. Erosion since the Mid-Pleistocene in Western Oklahoma. Anaheim Agronomy Abst., p. 268.
- Ward, P. A. III, and Carter, B. J., 1989. Uranium fission-track ages of glass shards from volcanic ash deposits in the Southern High Plains Border Region. At review. Institute of Tertiary/ Quaternary Studies, 27 pp.
- Wheeler, F. F., 1973. Soil Survey of Ochiltree County, Texas. U.S. Department of Agriculture, in cooperation with the Texas Agricultural Experiment Station, 47 pp.

Williams, J. C., and Welker, A. J., 1966. Soil Survey of Gray County, Texas. U.S. Department of Agriculture, in cooperation with the Texas Agricultural Experiment Station, 73 pp.

Wyrich, J. C., and Williams, J. C., 1981. Soil Survey of Roberts County, Texas. U.S. Department of Agriculture, in cooperation with the Texas Agricultural Experiment Station, 120 pp. APPENDIX A

FIGURES 3-14

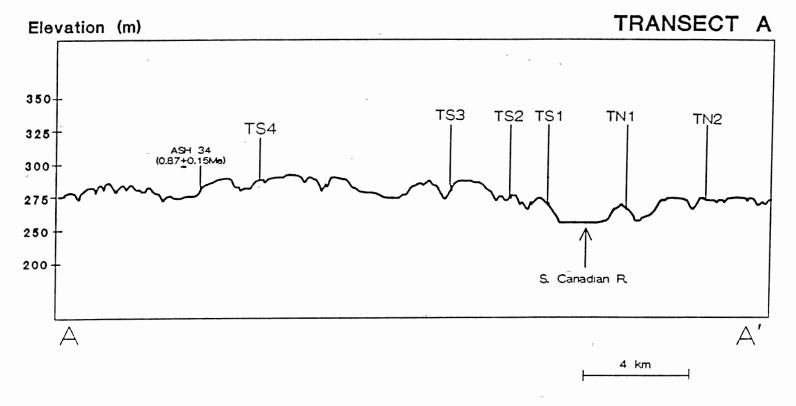


Figure 3. Topographic Transect A Including Location of Ash 34 and Terrace Sequences

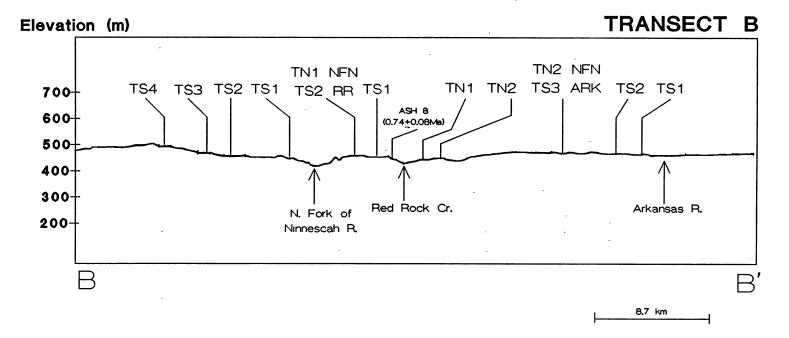


Figure 4. Topographic Transect B Including Location of Ash 8 and Terrace Sequences

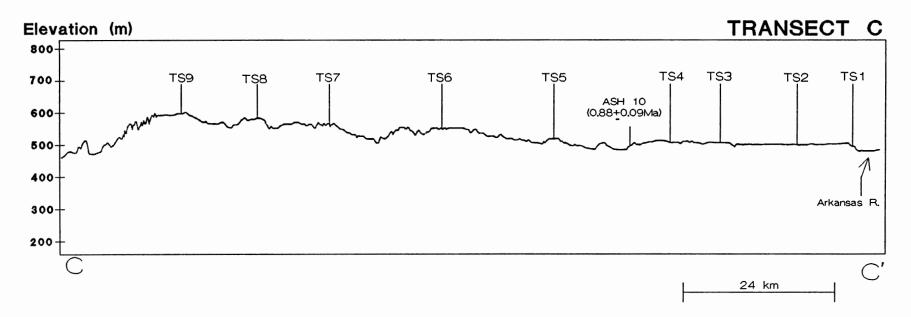


Figure 5. Topographic Transect C Including Location of Ash 10 and Terrace Sequences

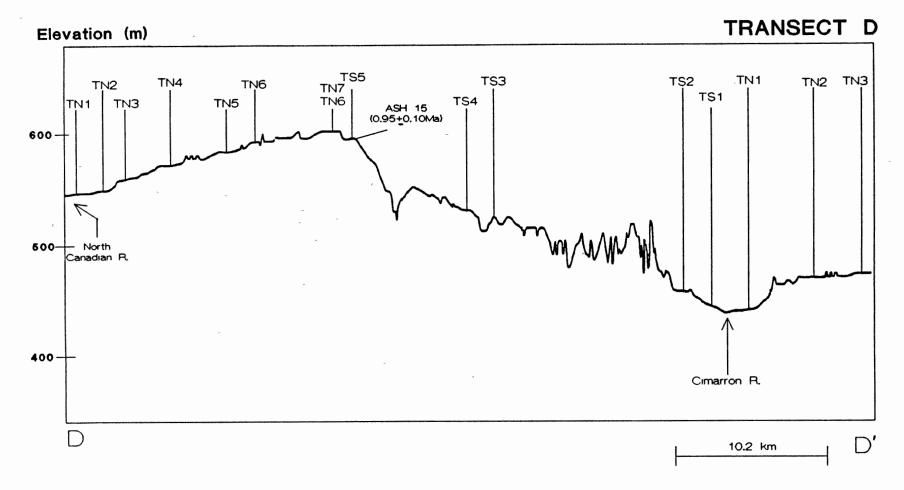


Figure 6. Topographic Transect D Including Location of Ash 15 and Terrace Sequences

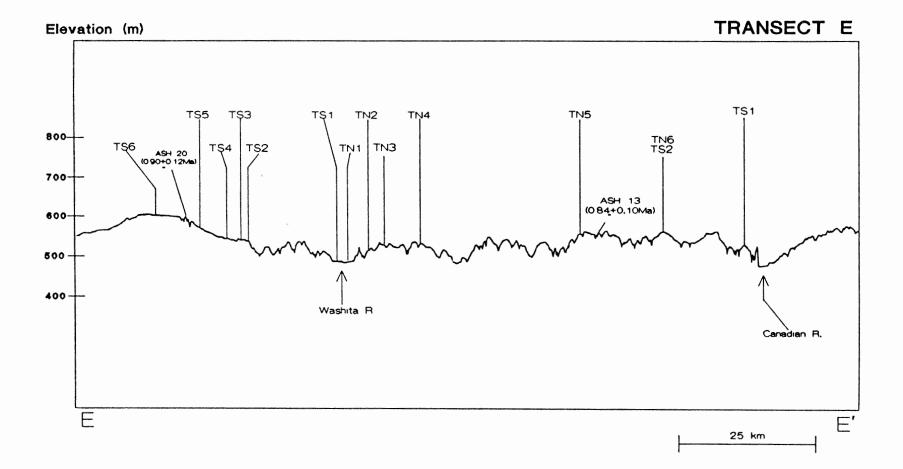


Figure 7. Topographic Transect E Including Location of Ashes 13 and 20 and Terrace Sequences

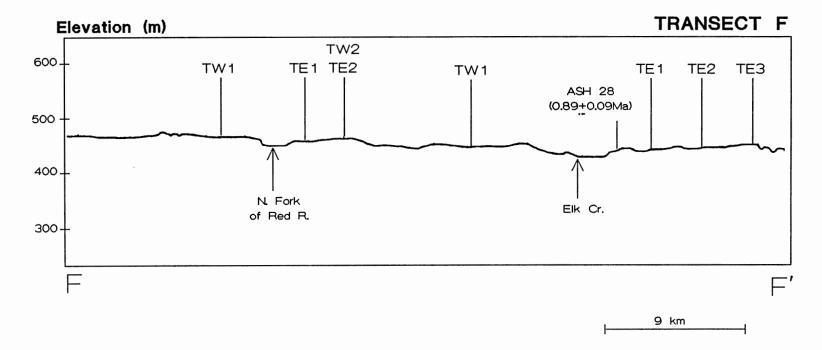


Figure 8. Topographic Transect F Including Location of Ash 28 and Terrace Sequences

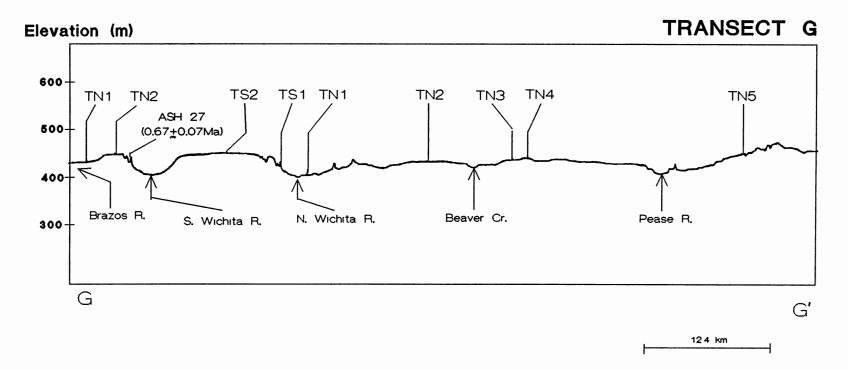
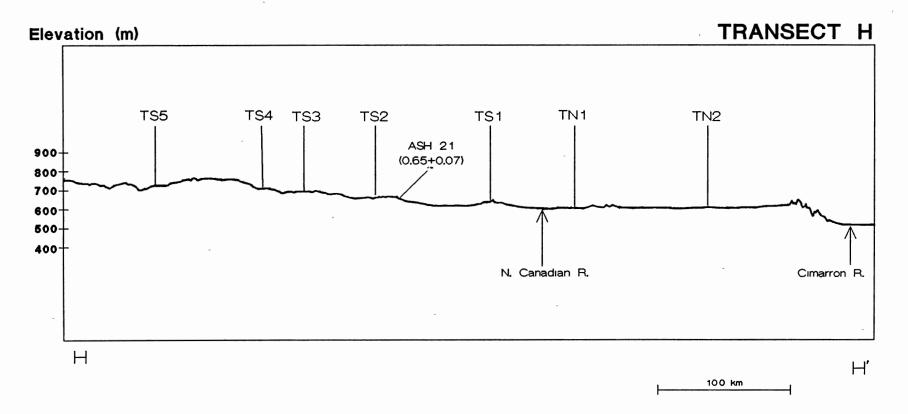
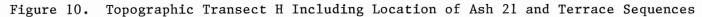




Figure 9. Topographic Transect G Including Location of Ash 27 and Terrace Sequences

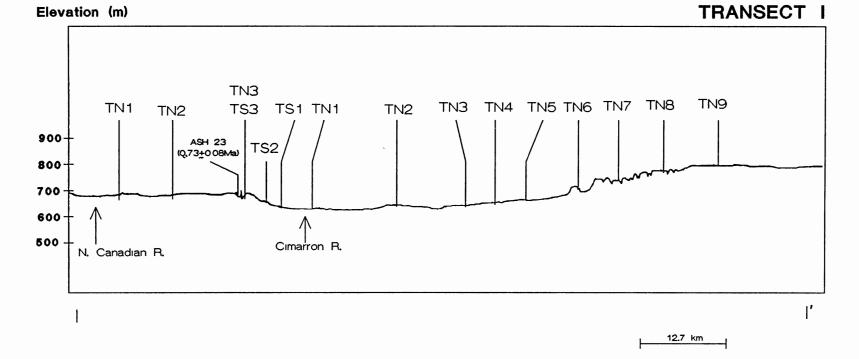
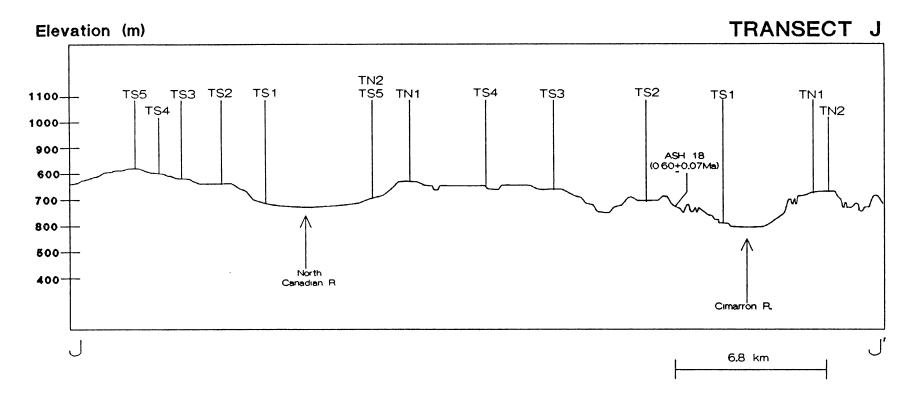



Figure 11. Topographic Transect I Including Location of Ash 23 and Terrace Sequences

.

Figure 12. Topographic Transect J Including Location of Ash 18 and Terrace Sequences

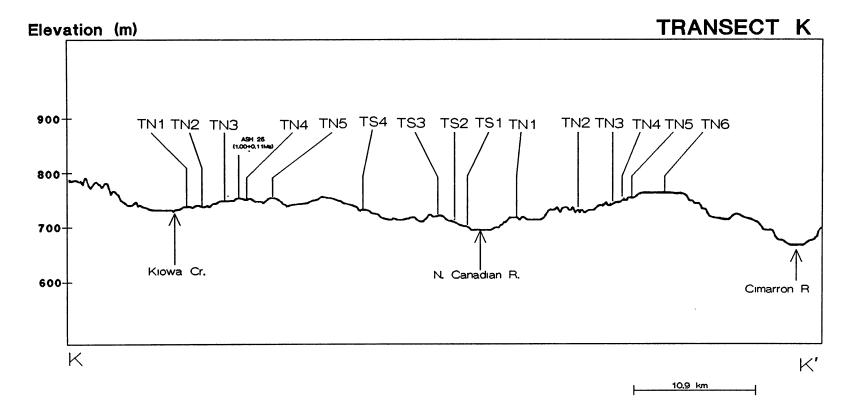


Figure 13. Topographic Transect K Including Location of Ash 25 and Terrace Sequences

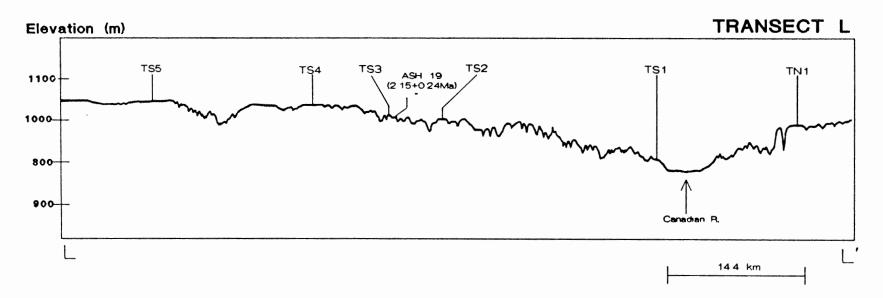


Figure 14. Topographic Transect L Including Location of Ash 19 and Terrace Sequences

APPENDIX B

TABLES I-V

TABLE I

Terrace Terrace distance Terrace Terrace height width from river elevation above river Terrace (km) -(km) (m) (m) Transect A, Ash 34 (335) (12.8)(Ash 34) ---(52) 351 5.9 9.8 67 TS4 Canadian River (CAR) 4.0 341 3.6 58 TS3 (CAR) 320 0.7 1.8 36 TS2 (CAR) 317 0.8 0.6 34 TS1 (CAR) . 1.9 CAR Floodplain 283 -----Transect B, Ash 8 TS4 Arkansas 493 0.8 32.3 (Ark) 26 (Ark) River (ARK), TS4 9.8 (NFN) 43 (NFN) North Fork of the Ninnescah River (NFN) 479 0.8 7.3 27 TS3 (NFN) 1.4 4.9 21 TS2 (NFN) 472 TS1 (NFN) 0.3 1.5 15 466 451 0.3 NFN Floodplain ____ ___ 2.9 (NFN) 476 0.9 24 (NFN) TN1 (NFN), TS2 3.0 (RR) 18 (RR) Red Rock Creek (RR) 472 0.2 1.5 15 TS1 (RR) (16.9 (Ark)) (<-l (Ark))</pre> (Ash 8) (466) (5.5 (NFN)) (15 (NFN)) (0.4 (RR)) (19 (RR)) 0.2 RR Floodplain 457 ---___ 9 TN1 (RR) 466 0.6 1.4 12 TN2 (RR) 470 0.8 2.4 10.4 (RR) 24 (RR) 482 5.2 TN3 (RR) 30 (NFN) 16.5 (NFN) TN2 (NFN), TS3 5.5 (Ark) 14 (Ark) (Ark) 474 . 2.4 6 1.4 TS2 (Ark) 4 472 0.9 0.9 TSl (Ark) --Ark Floodplain 468 1.7 ---Transect C, Ash 10 79 552 1.4 84.1 TS9 Arkansas River (Ark) 70 2.1 543 75.3 TS8 (Ark) 58 TS7 (Ark) 530 1.4 67.1 49 TS6 (Ark) 521 8.5 54.2 24 TS5 (Ark) 497 1.2 38.4 (9) (482) ---(29.3)(Ash 10)

TERRACES DENOTED FROM TRANSECTS

Terrace	Terrace elevation (m)	Terrace width (km)	Terrace distance from river (km)	Terrace height above river (m)
	<u></u>	ransect C, A	sh 10 (con't)	
TS4 (Ark)	493	4.6	23.8	21
TS3 (Ark)	491	2.7	18.9	18
TS2 (Ark)	488	14.0	9.4	15
TS1 (Ark)	482	0.8	2.0	9
Ark Floodplain	472	1.2		
		Transect	D, Ash 15	
N. Canadian Rive	<u>er</u> 552	0.3		
NCR Floodplain				
TN1 (NCR)	553	0.9	0.7	1
IN2 (NCR)	555	0.6	1.8	3
IN3 (NCR)	564	0.9	3.2	12
IN4 (NCR)	573	1.1	5.0	21
IN5 (NCR)	585	0.8	8.7	34
ING (NCR)	594	0.4	10.2	43 53 (NCP)
EN7 (NCR),	604	4.1	13.6 (NCR)	52 (NCR)
CS6 Cimarron			22.6 (CI)	174 (CI)
River (CI)	(505)		(20.1.(27.))	
(Ash 15)	(585)		(20.1 (CI))	(155 (CI))
		• •	(14.9 (NCR))	(34 (NCR))
(CI)	598	0.8	20.1	165
(CI)	530	0.6	14.3	101
CS3 (CI)	524	1.8	12.8	94
S2 (C1)	451	0.9	2.4	21
SI (CI)	436	0.3	0.6	6
I Floodplain	430	1.5		
	<u>T</u> :	ransect E, A	shes 13 + 20	
S6 Washita	591	5.1	23.2	119
iver (WAR)	((101)
Ash 20)	(573)		(20.3)	(101)
S5 (WAR)	561	1.5	18.9	88
S4 (WAR)	534	0.6	15.5	61
S3 (WAR)	530	0.8	13.4	58
S2 (WAR)	527	0.6	12.8	55
SI (WAR)	476	1.2	0.4	3
AR Floodplain	472	1.1		16
N1 (WAR)	488	0.3	1.2	15
N2 (WAR)	494	1.8	2.4	21
N3 (WAR)	500	0.9	5.8 ?	27
N4 (WAR)	520	2.4	8.8	52
N5 (WAR)	543	0.6	31.7	70

TABLE I (Continued)

Terrace	Terrace elevation (m)	Terrace width	Terrace distance from river (km)	Terrace height above river
		(km)		(m)
	Transe	ect E, Ashes l	3 + 20 (con't)	
(Ash 13)	(536)		(33.8 (WAR))	(64 (WAR))
*			(29.3 (CAR))	(73 (CAR))
TN6 (WAR)	549	3.0 (WAR)	33.8 (WAR)	76 (WAR)
TS2 Canadian		17.7 (CAR)	15.2 (CAR)	85 (CAR)
River (CAR)		,		
TSI (CAR)	509	3.6	3.0	46
CAR Floodplain	463	1.2		
		Transect F,	Ash 28	
TW1 North Fork	488	2.1	2.7	18
of the Red				
River (NFR)				
VFR Floodplain	470	1.2		
CEl (NFR)	478	1.1	1.8	9
TE2 (NFR),	485	1.4	4.6 (NFR)	15 (NFR)
W2 Elk			15.2 (E1k)	40 (Elk)
reek (Elk)				
Wl (E1k)	476	6.1	6.7	30
lk Floodplain	445	1.7		
'El (Elk)	466	2.7	2.7	21
Ash 28)	(466)		(2.4 (Elk))	(21 (E1k))
'E2 (E1k)	470	3.2	7.3	24
E3 (E1k)	476	0.8	11.0	30
		Transect G,	Ash 27	
razos River	412	1.2		
BRR) Floodplain	(2.4	
NI (BRR)	439	1.7	2.4	27
N2 (BRR),	457	7.7	17.6 (BRR)	46 (BRR)
S2 N. Wichita			6.1 (NWR)	61 (NWR)
iver (NWR)				3/ (222)
Ash 27)	448		7.3	36 (BRR)
SI (NWR)	412	0.2	1.5	15
WR Floodplain	396	0.3		
		Transect H,	Ash 21	
S5 N. Canadian iver (NCR)	768	11.0	25.6	115
S4 (NCR)	732	0.9	18.9	79
53 (NCR)	719	2.3	16.5	67
52 (NCR)	698	2.7	11.3	46

TABLE I (Continued)

Terrace	Terrace elevation (m)	Terrace width (km)	Terrace distance from river (km)	e Terrace height above river (m)
	-	fransect H,	Ash 21 con't	
(Ash 21)	(719)		(9.9)	(46)
TS1 (NCR)	679	1.2	3.6	27
NCR Floodplain	652	1.2		
TN1 (NCR)	655	1.2	1.2	3
TN2 (NCR),	680	11.0	10.4	27
TSl Cimarron River (CI)	604	0.8	1.2	6
CI Floodplain	598	1.8		
		Transect	I, Ash 23	
N. Canadian River (NCR)	655	1.8		
Floodplain	658	0.8	0.9	3
INI (NCR)	665	8.5	6.7	9
IN2 (NCR)	670	2.9	15.2 (NCR)	15 (NCR)
IN3 (NCR),	670	2.9	5.8 (CI)	67 (CI)
IS3 Cimarron			J.0 (CI)	07 (CI)
River (CI)	(((2))		(6.4 (CI))	(58 (CI))
(Ash 23)	(662)		(14.7 (NCR))	(6 (NCR))
	621	0.8	(14.7 (NCK)) 3.4	30
(CI)	631	1.7	2.4	9
CS1 (CI)	613	1.7	2.4	,
CI Floodplain	604	2.3		
		Transect .	1, Ash 18	
S5 N. Canadian Liver (NCR)	726	0.4	6.7	61
S4 (NCR)	720	0.6	5.8	55
S3 (NCR)	710	0.4	5.5	46
S2 (NCR)	701	1.2	3.4	36
SI (NCR)	671	0.4	2.0	6
CR Floodplain	665	0.9		
N1 (NCR)	680	0.6	3.0	15
N2 (NCR)	701	0.9	4.0 (NCR)	36 (NCR)
S5 Cimarron iver (CI)			13.2 (CI)	73 (CI)
S4 (CI)	695	4.3	10.4	67
S3 (CI)	689	0.6	7.6	61
	009	0.0		**

TABLE I (Continued)

Terrace	Terrace elevation (m)	Terrace width (km)	Terrace distance from river (km)	Terrace height above river (m)
	T	ransect J, A	sh 18 (con't)	
(Ash 18)	(658)		(2.6)	(30)
TSl (CI)	634	0.3	0.9	6
CI Floodplain	628	1.2		
		Transect	K, Ash 25	
Kiowa Creek	726	1.2		
(KIC) Floodplain TNl (KIC)	735	0.6	0.9	9
TN2 (KIC)	738	1.1	2.1	12
IN3 (KIC)	750	1.1	4.0	24
(Ash 25)	(753)		(4.6)	(27)
TN4 (KIC)	756	1.2	5.2	30
TN5 (KIC)	759	0.4	7.0	34
IS4 N. Canadian				
River (NCR)	735	0.6	8.5	46
rs3 (NCR)	722	1.1	3.4	34
CS2 (NCR)	710	Ó.6	2.4	21
ISI (NCR)	701	0.6	1.2	12
ICR Floodplain	689	1.4		
		Transect I	., Ash 19	
CS5 Canadian Liver (CAR)	957	10.2	47.6	204
CS4 (CAR)	942	8.8	31.1	189
S3 (CAR)	908	1.4	23.2	155
Ash 19)	(896)		(23.2)	(143)
S2 (CAR)	902	3.6	19.8	149
SI (CAR)	786	0.6	1.8	34
AR Floodplain	753	2.6		
N1 (CAR)	890	1.2	9.8	137

•

TABLE 1

TERRACE LEVEL AND VOLCANIC ASH AGE

Transect	Ash No.	Ash Age (m.y.)	Terrace height above river, (m)
		Arkansas River	
С	10	0.88±0.09	21
В	8	0.74±0.08 (or Red Rock 15m)	14
		Cimmarron River	×
I	23	0.73±0.08 (or N. Canadian 15m)	67
J	18	0.60±0.07	43
		North Canadian River	
D	15	0.95±0.10 (or Cimmarron 174m)	52
Н	21	0.65±0.07	46
		Canadian River	
L	19	2.15±0.24	155
Α	34	0.87±0.13 (or Washita 64m)	67
		Washita River	
Е	20	0.90±0.12	119
Е	13	0.84±0.09 (or Canadian 85m)	76
		Kiowa Creek	
К	25	1.00±0.11 (or N. Canadian 46m)	30
		Elk Creek	
F	28	0.89±0.09	21
		Brazos River	
G	27	0.67±0.07	46

TABLE III

TERRACE SURFACE DATED BY VOLCANIC ASHES AND SOILS MAPPED ON TERRACES.

Tran- sect	Ash No.	Ash age (m.y.)	County	Soil series on terrace	Soil Classification
A	34	0.87±0.13	Garvin, OK	Durant Teller	Fine, montmorillonitic, thermic Argiustoll
				Konowa	Fine-loamy, mixed, thermic Udic Argiustoll Fine-loamy, mixed, thermic Ultic Haplustalf
в	8	0.74±0.08	Reno, KS	Bethany	Fine, mixed, thermic Pachic Paleustolls
2	Ū	017420100		Farnum	Fine-loamy, mixed, thermic Pachic Argiustoll
С	10	0.88±0.09	Reno, KS	Clark	Fine-loamy, mixed, thermic Typic Calciustoll
				Ost	Fine-loamy, mixed, thermic Typic Argiustoll
				Farnum	Fine-loamy, mixed, thermic Pachic Argiustoll
				Shellabarger	Fine-loamy, mixed, thermic Udic Argiustoll
D	15	0.95±0.10	Woodward, OK	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustoll
				Enterprise	Coarse, silty, mixed thermic Typic Ustochrept
				Pratt	Sandy, mixed, thermic Psammentic Haplustalf
Е	20	0.90±0.12	Washita, OK	Grandfield	Fine-loamy, mixed, thermic Udic Haplustalf
		Altus	Fine-loamy, mixed, thermic Pachic Argiustoll		
	13 .	0.84±0.09	Custer, OK	St. Paul	Fine-silty, mixed thermic Pachic Argiustoll
				Minco	Coarse-silty, mixed, thermic Udic Haplustoll
				Pond Creek	Fine-silty, mixed, thermic Pachic Argiustoll
				Grant	Fine-silty, mixed, thermic Udic Argiustoll
F	28	0.89±0.09	Kiowa, OK	Tillman	Fine, mixed, thermic Typic Paleustoll
				Hollister	Fine, mixed, thermic Pachic Paleustoll
G	27	0.67±0.07	Knox, TX	Sagerton	Fine, mixed, thermic Typic Paleustoll
н	21	0.65±0.07	Harper, OK	Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthent
_				Pratt	Sandy, mixed, thermic Psammentic Haplustalf
I	23	0.73±0.08	Harper, OK	Tipton	Fine-loamy, mixed, thermic, Pachic Argiustoll
		0 (0.0 07	D 011	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustoll
J	18	0.60±0.07	Beaver, OK	Richfield	Fine, montmorillonitic, Mesic Aridic Argiustoll
	25	1 00 0 11	n ov	Mansic	Fine-loamy, mixed, thermic, Typic Calciustoll
ĸ	25	1.00±0.11	Beaver, OK	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustoll
				Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthent
	10	0.16.0.01	D 1 1 1 1	Mansic	Fine-loamy, mixed, thermic, Aridic Calciustoll
L	19	2.15±0.24	Roberts, TX	Estacado	Fine-loamy, mixed, thermic Calciorthidic Paleustoll
				Paloduro	Fine-loamy, mixed, thermic Aridic Haplustoll

TABLE IV

SOILS ON TERRACES

1	ferrace height		
	above stream	Soil series	
Terrace	(M)	mapped on terrace	Classification
		Tra	insect A, Ash 34
Canadian River		Gaddy	Sandy, mixed, thermic Typic Ustifluvents
(CAR) Floodplain		Yahola	Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents
TSI (CAR)	34	Minco	Coarse-silty, mixed, thermic Udic Haplustalfs
TS2 (CAR)	36	Clarita	Fine, montmorillonitic, thermic Udic Pellusterts
TS3 (CAR)	58	Konowa	Fine-loamy, mixed, thermic Ultic Haplustalfs
TS4 (CAR)	67	Durant	Fine, montmorillonitic, thermic Vertic Argiustolls
Ash 34 in	~	Teller	Fine-loamy, mixed, thermic Udic Argiustolls
this terrace		Konowa	Fine-loamy, mixed, thermic Ultic Haplustalfs
		<u>T</u>	ransect B, Ash 8
Arkansas River		Platte	Sandy, mixed, mesic Mollic Fluvaquents
(ARK) Floodplain		Lesho	Sandy, skeletal, mixed thermic Fluvaquentic Haplustolls
()		Wann	Coarse-loamy, mixed, mesic Fluvaquentic Haplustolls
TSI (ARK)	4	Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
TS2 (ARK)	6	Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
TS3 (ARK)	14	Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
Ash 8 in this		Bethany	Fine, mixed, thermic Pachic Paleustolls
terrace		-	
TS4 (ARK)	26	Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
		Albion	Coarse-loamy, mixed, thermic Udic Argiustolls
		Tr	ansect C, Ash 10
Arkansas River	(Ark)	Wann	Coarse-loamy, mixed, mesic Fluvaquentic Haplustolls
Floodplain	, ,	Platte	Sandy, mixed, mesic mollic Fluvaquents
		Lesho	Sandy-skeletal, mixed, thermic Fluvaquentic Haplustolls
TSl (Ark)	9	Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
101 (ALK)	,	Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
TS2 (Ark)	15	Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
152 (ALK)	15	Tabler	Fine, montmorillonitic, thermic Vertic Argiustolls
		Vanoss	Fine-silty, mixed, thermic Udic Argiustolls

52

Terrace	Terrace height above stream (M)	Soil series mapped on terrace	Classification
		Tra	ansect C, Ash 10 (con't)
-			
		Bethany	Fine, mixed, thermic Pachic Paleustolls
		Naron	Fine-loamy, mixed, thermic Udic Argiustolls
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TS3 (Ark)	18	Naron	Fine-loamy, mixed, thermic Udic Argiustolls
-		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TS4 (Ark)	21	Clark	Fine-loamy, mixed, thermic Typic Calciustolls
Ash 10 in		Ost	Fine-loamy, mixed, thermic Typic Argiustolls
this terrace		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TS5 (Ark)	24	Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
TS6 (Ark)	49	Albion	Coarse-loamy, mixed, thermic Udic Argiustolls
		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TS7 (Ark)	58	Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
		Albion	Coarse-loamy, mixed, thermic Udic Argiustolls
TS8 (Ark)		Albion	Coarse-loamy, mixed, thermic Udic Argiustolls
		Farnum	Fine-loamy, mixed, thermic Pachic Argiustolls
		Clark	Fine-loamy, mixed, thermic Typic Calciustolls
TS8 (Ark)	70	Blanket	Fine, mixed, thermic Pachic Argiustolls
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TS9 (Ark)	79	Attica	Coarse-loamy, mixed, thermic Udic Haplustalfs
		Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
		Tivoli	Sandy, mixed, thermic Typic Ustipsamments
			bandy, mixed, chermic typic oberpolaumento
		Tr	ansect D, Ash 15
N. Canadian		Lincoln	Sandy, mixed, thermic Typic Ustifluvents
River (NCR) Flo	odplain		
TN1 (NCR)	1	Lincoln	Sandy, mixed, thermic Typic Ustifluvents
		Las Animas	Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents

53

•

Terrace	Terrace height above stream (M)	Soil series mapped on terrace	Classification
		Tansec	t D, Ash 15 (con't)
TN2 (NCR)	3	Lincoln	Sandy, mixed, thermic Typic Ustifluvents
		Las Animas	Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents
TN3 (NCR)	12	Tivoli	Sandy, mixed, thermic Typic Ustipsamments
		Elsmere	Sandy, mixed, Mesic Aquic Haplustolls
		Las Animas	Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents
TN4 (NCR)	21	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
TN5 (NCR)	34	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
		Carwile	Fine, mixed, thermic Typic Argiaquolls
TN6 (NCR)	43	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
TN7 (NCR)	52	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
Ash 15 in	-	Carwile	Fine, mixed, thermic Typic Argiaquolls
this terrace		Nobscot	Loamy, mixed, thermic Arenic Paleustalfs
		Mansker	Fine-loamy, carbonatic thermic Calciorthidic Paleustolls
		Enterprise	Coarse-silty, mixed, thermic Typic Ustochrepts
Cimarron River		No survey complete	ed for Woods Co., OK
(CI) Floodplain	ı	<i>,</i> .	
TS1 (CI)	6	No survey complete	ed for Woods Co., OK
TS2 (CI)	21		ed for Woods Co., OK
TS3 (CI)	94	St. Paul	Fine-silty, mixed, thermic Pachic Argiustolls
TS4 (CI)	101	St. Paul	Fine-silty, mixed, thermic Pachic Argiustolls
		Vernon	Fine, mixed, thermic Typic Ustochrepts
TS5 (CI)	168	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
		Enterprise	Coarse-silty, mixed, thermic Typic Ustochrepts
TS6 (C1)	174	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
		Carwile	Fine, mixed, thermic Typic Argiaquolls
		Nobscot	Loamy, mixed, thermic Arenic Haplustalfs
		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
		Enterprise	Coarse-silty, mixed, thermic Typic Ustochrepts

T	Terrace height above stream (M)	Soil series mapped on terrace	Classification
Terrace	(៣)	mapped on terrace	Classification
		Transe	act E, Ashes 13 + 20
Washita River		Yahola	Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents
(WAR) Floodplai	n	Clairemont	Fine-silty, mixed (calcareous) thermic Typic Ustifluvents
TSI (WAR)	3	Crisfield	Coarse-loamy, mixed, thermic Udic Haplustolls
		Yahola	Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents
		Clairemont	Fine-silty, mixed (calcareous) thermic Typic Ustifluvents
TN1 (WAR)	15	Crisfield	Coarse-loamy, mixed, thermic Udic Haplustolls
TN2 (WAR)	21	Crisfield	Coarse-loamy, mixed, thermic Udic Haplustolls
		Pratt	Sandy, mixed, thermic Psammentic Haplustalfs
		Devol	Coarse-loamy, mixed, thermic Udic Haplustalfs
		Shellabarger	Fine-loamy, mixed, thermic Udic Argiustolls
TN3 (WAR)	27	Carey	Fine-silty, mixed, thermic Typic Argiustolls
TN4 (WAR)	52	St. Paul	Fine-silty, mixed, thermic Pachic Argiustolls
TS2 (WAR)	55	Cordell	Loamy, mixed, thermic Lithic Ustochrepts
TS3 (WAR)	58	Cordell	Loamy, mixed, thermic Lithic Ustochrepts
TS4 (WAR)	61 -	D111	Coarse-loamy, mixed, thermic Udic Ustochrepts
TN5 (WAR)	70	Carey	Fine-silty, mixed, thermic Typic Argiustolls
TN6 (WAR)	76	St. Paul	Fine-silty, mixed, thermic Pachic Argiustolls
Ash 13 in		Minco	Coarse-silty, mixed, thermic Udic Haplustolls
this terrace		Pond Creek	Fine-silty, mixed, thermic Pachic Argiustolls
		Grant	Fine-silty, mixed, thermic Udic Argiustolls
TS5 (WAR)	88	Grandfield	Fine-loamy, mixed, thermic Udic Haplustalfs
TS6 (WAR)	119	Grandfield	Fine-loamy, mixed, thermic Udic Haplustalfs
Ash 20 in this	terrace	Altus	Fine-loamy, mixed, thermic Pachic Argiustolls
Canadian River		Gracemore	Sandy, mixed, thermic Aquic Udifluvents
(CAR) Floodpla	in		
TS1 (CAR)	46	Minco	Coarse-silty, mixed, thermic udic Haplustolls
		Grant	Fine-silty, mixed, thermic Udic Argiustolls
		Pond Creek	Fine-silty, mixed, thermic Pachic Argiustolls
TS2 (CAR)	85	Minco	Coarse-silty, mixed, thermic Udic Haplustolls
Ash 13 in this	1	Pond Creek	Fine-silty, mixed, thermic Pachic Argiustolls
terrace		St. Paul	Fine-silty, mixed, thermic Pachic Argiustolls
		Grant	Fine-silty, mixed, thermic Udic Argiustolls

1	Cerrace height		
	above stream	Soil series	· · · · · ·
Terrace	(M)	mapped on terrace	Classification
		Tra	insect F, Ash 28
Elk Creek (Elk)		Clairemont	Fine-silty, mixed (calcareous), thermic Typic Ustifluvents
Floodplain		Lugert	Coarse-silty, mixed, thermic Fluventic Haplustolls
•		Port	Fine-silty, mixed, thermic Cumulic Haplustolls
TEl (ELK)	21	Tillman	Fine-mixed, thermic Typic Paleustolls
Ash 28 in			
this terrace			
TE2 (ELK)	24	Tillman	Fine-mixed, thermic Typic Paleustolls
. ,		Hollister	Fine, mixed, thermic Pachic Paleustolls
TE3 (ELK)	30	Hollister	Fine, mixed, thermic Pachic Paleustolls
TW1 (ELK)	30	Hollister	Fine, mixed, thermic Pachic Paleustolls
		Tillman	Fine-mixed, thermic Typic Paleustolls
TW2 (ELK)	40	Devol	Coarse-loamy, mixed, thermic Udic Haplustalfs
• • 4.		Grandfield	Fine-loamy, mixed, thermic Udic Haplustalfs
		Tra	ansect G, Ash 27
Brazos River		Lincoln	Sandy, mixed, thermic Typic Ustifluvents
(BRR) Floodplain	n	Mangum	Fine, mixed (calcareous), thermic Vertic Ustifluvents
(Sum) 12000p2020		Yahola	Coarse-loamy, mixed (calcareous), thermic Typic Ustifluvents
		Hardeman	Coarse-loamy, mixed, thermic Typic Ustochrepts
TN1 (BRR)	27	Sagerton	Fine, mixed, thermic Typic Paleustolls
		Wichita	Fine, mixed, thermic Typic Paleustalfs
		Rotan	Fine, mixed, thermic Pachic Paleustolls
TN2 (BRR) Ash 27 in this	46	Sagerton	Fine, mixed, thermic Typic Paleustolls
terrace			
		Tr	ansect H, Ash 21
N. Canadian Riv		Lincoln	Sandy, mixed, thermic Typic Ustifluvents
(NCR) Floodplai		Las Animas	Coarse-loamy, mixed (calcareous), mesic Typic Fluvaquents
TNI (NCR)	3	Lincoln	Sandy, mixed, thermic Typic Ustifluvents

	Terrace height above stream	Soil series						
Terrace	(M)	mapped on terrace	Classification					
above stream Soil series								
TN2 (NCR)	27	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs					
	_,	Richfield						
		Dalhart						
		Mansker	• • • •					
TS1 (NCR)	27	Pratt						
. ,		Mansker						
TS2 (NCR)	46	Pratt	Sandy, mixed, thermic Psammentic Haplustalfs					
Ash 21 in		Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents					
this terrace		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls					
TS3 (NCR)	67	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls					
		Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents					
TS4 (NCR)	79	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls					
		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls					
TS5 (NCR)	115	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls					
		Mansic						
		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls					
		Alluvial and brok	en					
		land						
		<u>Tr</u>	ansect I, Ash 23					
Cimarron River (CI) Floodplair	 1	Lincoln	Sandy, mixed, thermic Typic Ustifluvents					
TSI (CI)	9	Spur	Fine-loamy, mixed, thermic Fluventic Haplustolls					
TS2 (CI)	30	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls					
TS3 (CI)	67	Tipton	Fine-loamy, mixed, thermic Pachic Argiustolls					
		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls					
Ash 23 in this								

Ash 23 in this terrace

	Terrace height above stream	Soil series	
Terrace	(M)	mapped on terrace	Classification
5		Tra	ansect J, Ash 18
Cimarron River (CI) Floodplain		Las Animas	Coarse-loamy, mixed (calcareous), mesic Typic Fluvaquents
TS1 (CI)	6	Canadian	Coarse-loamy, mixed, thermic Udic Haplustolls
TS2 (CI)	43	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls
Ash 18 in this		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls
terrace		- <u>-</u>	
TS3 (CI)	61	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls
		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls
TS4 (CI)	67	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls
•••		Ulysses	Fine-silty, mixed, mesic Aridic Haplustolls
		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls
		Alluvial and broke	
		land	
TS5 (CI)	73	Richfield	Fine, montmorillonitic, mesic Aridic Argiustolls
		Tr	ansect K, Ash 25
Kiowa Creek (KIC).Floodplain	 n	Likes	Sandy, mixed, thermic Typic Ustipsamments
TN1 (KIC)	9	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
		Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents
TN2 (KIC)	12	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
		Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents
		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls
TN3 (KIC)	24	Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
TN4 (KIC)	30	Otero	Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents
Ash 25 in		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
this terrace		Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls
TN5 (KIC)	34	Mansic	Fine-loamy, mixed, thermic Aridic Calciustolls

	Terrace height above stream	Soil series	
Terrace	(M)	mapped on terrace	Classification
		Tra	insect L, Ash 19
Canadian River (CAR) Floodplai	 n	Lincoln	Sandy, mixed, thermic Typic Ustifluvents
TS1 (CAR)	- 34	Mobeetie	Coarse-loamy, mixed, thermic Aridic Ustocreepts
TNI (CAR)	137	Paloduro	Fine-loamy, mixed, thermic Aridic Haplustolls
		Estacado	Fine-loamy, mixed, thermic Calciorthidic Paleustolls
		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls
		Pullman	Fine, mixed, thermic Torrertic Paleustolls
TS2 (CAR)	149	Olton	Fine, mixed, thermic Aridic Paleustolls
		Estacado	Fine-loamy, mixed, thermic Calciorthidic Paleustolls
		Paloduro	Fine-loamy, mixed, thermic Aridic Haplustolls
TS3 (CAR)	155	Paloduro	Fine-loamy, mixed, thermic Aridic Haplustolls
Ash 19 in		Estacado	Fine-loamy, mixed, thermic Calciorthidic Paleustolls
this terrace			
TS4 (CAR)	189	Pullman	Fine, mixed, thermic Torrertic Paleustolls
		Olton	Fine, mixed, thermic Aridic Paleustolls
		Estacado	Fine-loamy, mixed, thermic Calciorthidic Paleustolls
		Darrouzett	Fine, mixed, thermic Pachic Paleustolls
TS5 (CAR)	204	Pullman	Fine, mixed, thermic Torrertic Paleustolls
		Mansker	Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls

TABLE V

Mollic. Terrace Soil Series Family Particle Parent Material Colors t/k Depth to Calcic Bt Solum Size Class free Thickness Thickness Thickness Thickness CaCO₂ (cm) (cm) (cm) (cm) (cm) TRANSECT A -- ASH 34 (0.87 ± 0.13 Ma)-Average Annual Precipitation (in cm)-91 Canadian R. Gaddy Sandy Recent sandy surface none none none 51 none (CAR) alluvium Floodplain Yahola coarse-loamy Permian/Pleistocene surface 28 none none none none loamy alluvium TS1 (CAR) Minco coarse-silty Loamy eolian deposits 140 none 38 none 140 none TS2 (CAR) Clarita fine Cretaceous/Permian 25 56 127 none none none clays TS3 (CAR) fine-loamy Konawa Pleistocene sandy/ none none none 61 137 none loamy alluvium TS4 (CAR)* Durant fine Cretaceous shale 119 none 28 135 163 none Teller fine-loamy Pleistocene loamy none none 38 102 152 none sediments Konawa fine-loamy Pleistocene sandy/ 61 137 none none none none loamy alluvium TRANSECT B -- ASH 8 (0.74 ± 0.08 Ma)-Average Annual Precipitation (in cm)-66 Arkansas R. Pratt Sandy Sandy eolian deposits none 71 102 none none none (ARK) Floodplain fine-loamy Lesho Alluvium surface none 46 46 none none over sandy Wann coarse-loamy Recent alluvium surface 41 41 none none none TS1 (ARK) Farnum fine-loamy Loamy old alluvium .152 41 112 79 152 t.k TS2 (ARK) fine-loamy Loamy old alluvium Farnum 152 41 112 79 152 t.k TS3 (ARK)* Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k Bethany Pleistocene loess fine 91 none 91 158 203 none or alluvium

none

none

none

none

48

41

48

20

97

69

none

none

Old alluvium

Loamy sediments

SELECTED SOIL CHARACTERISTICS FOR TERRACES ALONG TRANSECTS CONTAINING ASHES

*Ash in this terrace.

Albion

Shellabarger fine-loamy

coarse-loamy

Terrace	Soil Series	Family Particle Size Class		Depth to free CaCO ₃ (cm)		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	I	RANSECT C ASH	10 (0.88 ± 0.09 Ma)-A	verage An	nual Prec	ipitation	(in_cm)-66		
Arkansas R. (ARK) Floodplain	. Wann	coarse-loamy	Recent alluvium	surface	none	41	none	41	none
	Pratt	sandy	Sandy eolian deposits	s none	none	none	71	102	none
	Lesho	fine-loamy over sandy	Alluvium	surface	none	46	none	46	none
TS1 (ARK)	Shellabarge	er fine-loamy	Old alluvium	none	none	48	48	97	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
TS2 (ARK)	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t.k
	Tabler	fine	Calcareous loamy Clayey alluvium	76	none	112	51	112	none
-	Vanoss	fine-silty	Pleistocene loamy alluvium	none	none	38	89	127	none
	Bethany	fine	Pleistocene loess or alluvium	91	none	91	158	203	none
	Naron	fine-loamy	Loamy eolian deposit	s >152	none	91	51	137	none
	Shellabarg	er fine-loamy	Old alluvium	none	none	48	48	97	none
TS3 (ARK)	Naron	fine-loamy	Loamy eolian deposit	s >152	none	91	51	137	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
		er fine-loamy	Old alluvium	none	none	48	48	97	none
TS4 (ARK)*	Clark	fine-loamy	Calcareous old alluvium	25	114	38	none	38	none
	Ost	fine-loamy	Calcareous old alluvium	36	76	36	36	112	t,tk,
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
		er fine-loamy	Old alluvium	none	none	48	48	97	none
TS5 (ARK)	Shellabarg	er fine-loamy	Old alluvium	none	none	48	48	97	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
TS6 (ARK)	Albion	coarse-loamy	Loamy sediments	none	none	41	20	69	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
	Shellabarg	ger fine-loamy	Old alluvium	none	none	48	48	97	none
TS7 (ARK)	Shellabarg	ger fine-loamy	Old alluvium	none	none	48	48	97	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
	Albion	coarse-loamy	Loamy sediments	none	none	41	20	69	none
TS8 (ARK)	Albion	coarse-loamy	Loamy sediments	none	none	41	20	69	none
	Farnum	fine-loamy	Loamy old alluvium	152	41	112	79	152	t,k
	Clark	fine-loamy	Calcareous old alluvium	25	114	38	none	38	none

Terrace	Soil Series	Family Particle Size Class		Depth to free CaCO ₃ (cm)		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	IRANS	ECT C ASH 10	(0.88 ± 0.09 Ma)-Avera	ge Annual	Precipita	tion (in)	cm)-66 (Con	<u>(t)</u>	
TS8 (ARK)	Blanket	fine	Calcareous sediments	107	none	76	61	127	non
	Shellabarge		Old alluvium	none	none	48	48	97	non
IS9 (ARK)	Attica	coarse-loamy	Eolian sediments	>76	none	25	28	99	non
	Pratt	sandy	Sandy eolian deposit:	s none	none	none	71	102	nor
	Tivoli	sandy	Sandy eolian sediments	none	none	none	none	18	nor
]	RANSECT D ASH	15 (0.95 ± 0.10 Ma)-/	verage A	nnual Prec	ipitation	(in_cm)-61		
N. Canadia	in R.	-	-						
(NCR) Floodplair	Lincoln	sandy	Sandy recent	surface	none	none	none	28	no
INI (NCR)	Lincoln	sandy	Sandy recent	surface		none	none	28	no
INT (NCK)	Las Animas		Loamy calcareous	surface		none	none	46	no
	CES ANTINES	COAT SE- TO ANY	alluvium	Surrace		none	none	40	10
TN2 (NCR)	Lincoln	sandy	Sandy recent	surface	none	none	none	28	no
(Las Animas		Loamy calcareous	surface		none	none	46	no
		course roung	alluvium	5411400		none	none		
TN3 (NCR)	Tivoli	sandy	Sandy eolian sedimen	t none	none	none	none	18	no
(Elsmere	sandy	Eolian sands or	none	none	41	none	76	no
			sandy alluvium						
	Las Animas	coarse-loamy	Loamy calcareous	surface	114	none	none	46	no
			alluvium	50		nene	none		
TN4 (NCR)	Pratt	sandy	Sandy eolian deposit	s none	none	none	71	102	no
TN5 (NCR)	Pratt	sandy	Sandy eolian deposit		none	none	71	102	no
(Carwile	fine	Loamy alluvium or	89	none	none	51	114	nc
	ourwrite	11110	eolian sediments	0,	none	none	51		
TN6 (NCR)	Pratt	sandy	Sandy eolian deposit	s none	none	none	71	102	no
TN7 (NCR)		sandy	Sandy eolian deposit		none	none	71	102	n
	Carwile	fine	Loamy alluvium or	· 89	none	none	51	114	n
	Carwille	Tine	eolian sediments	09	none	none	51	114	ne
	Nahaaat	1					100	203	-
	Nobscot	loamy	Pleistocene loamy/	none	none	none	122	203	n
		C 1	sandy sediments					100	
	Mansker	fine-loamy	Calcareous loamy	surfac	e 137	31	137	168	t
			material						
		-							
	Enterprise	e coarse-silty	Loamy eolian sediments	46	none	none	none	102	n

Terrace	Soil Series	Family Particle Size Class		Depth to free CaCO ₃ (cm)	Calcic Thickness (cm)	Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	TRANS	SECT D ASH 15	(0.95 ± 0.10 Ma)-Avera	ge Annual	Precipita	ation (in c	cm)-61 (Con	(t)	
Cimarron R. (CI)	. no survey								
loodplain									
TSI (CI)	no survey								
TSZ (CI)	no survey								
TS3 (CI)	St. Paul	fine-silty	Pleistocene silty sediments or weather	86 ed	none	114	69	142	none
			Permian sandstone				~~		
TS4 (CI)	St. Paul	fine-silty	Pleistocene silty sediments or weather Permian sandstone	86 ed	none	114	69	142	none
TS5 (CI)	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
-	Enterprise	coarse-silty	Loamy eolian sediments	46	none	none	none	102	non
TS6 (CI)	Pratt	sandy	Sandy eolian deposit	s none	none	none	71	102	non
	Carwile	fine	Loamy alluvium or eolian sediments	89	none	none	51	114	non
	Nobscot	loamy	Pleistocene loamy/ sandy sediments	none	none	none	122	203	non
	Mansker	fine-loamy	Calcareous loamy material	surface		31	137	168	tk
	Enterprise	e coarse-silty	Loamy eolian sediments	46	none	none	none	102	non
	IRANSECT E -	- ASH 13 (0.84 ±	0.09 Ma). ASH 20 (0.9	0 ± 0.12 M	la)-Averag	e Annual P	recipitatio	on (in cm)-6	56
Washita R (WAR) Floodplain	Yahola	coarse-loamy	Calcareous loamy alluvium	surface ·	e none	none	none	28	nor
110000141	Clairemon	t fine-silty	Calcareous silty alluvium	surface	e none	none	none	20	nor
TS1 (WAR)	Crisfield	coarse-loamy	Sandy alluvium	none	none	41	none	114	nor
	Yahola	coarse-loamy	Calcareous loamy alluvium	surface		none	none	28	nor
	Clairemon	t fine-silty	Calcareous silty alluvium	surface	e none	none	none	20	noi

TABLE V (Continued)

erra	ice	Soil Series	Family Particle Size Class	Parent Material	Depth tp free CaCO ₃ (cm)		Mollic Colors Thickness (Cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	TRANS	ECT E ASH	13 (0.84 ± 0.09	Ma). ASH 20 (0.90 ± 0	.12 Ma)-A	verage Ann	ual Precip	itation (in	n cm)-66 (Co	n't)
	(WAR)	Crisfield	coarse-loamy	Sandy alluvium	none	none	41	none	114	none
N2	(WAR)	Crisfield	coarse-loamy	Sandy alluvium	none	none	41	none	114	none
		Pratt	sandy	Sandy eolian deposit:	s none	none	none	71	102	none
		Devol	coarse-loamy	Pleistocene loamy and sandy sediments	none	none	none	33	101	none
		Shellabarge	er fine-loamy	Old alluvium	none	none	48	48	97	none
	(WAR)	Carey	fine-silty "	Permian silty or sandy redbeds	36	81	36	86	173	t,tk,
N4	(WAR)	St. Paul	fine-sılty	Pleistocene silty sediments; Permian sandstone	86	none	114	69	142	none
52	(WAR)	Cordell	loamy	Permian calcareous siltstone	surface	none	none	none	36	none
53	(WAR)	Cordell	loamy	Permian calcareous siltstone	surface	none	none	none	36	none
TS4	(WAR)	D111	coarse-loamy	Permian sandstone	none	none	none	none	81	none
TN5	(WAR)	Carey	fine-silty	Permian silty or sandy redbeds	36	81	36	86	173	t,tk,
rn6	(WAR)*	St. Paul	fine-silty	Pleistocene silty sediments; Permian sandstone	86	none	114	69	142	none
		Minco	coarse-silty	Loamy eolian deposit	s 140	none	38	none	140	none
		Pond Creek		Loamy loess/alluvium		none	117	61	152	none
		Grant	fine-silty	Permian silty sandstone or shale	119	none	41	41	119	none
	(WAR)	Grandfield	•	Pleistocene calcareous loamy/ sandy sediments	122	none	none	76	178	none
TS6	(WAR)*	* Grandfield	i fine-loamy	Pleistocene calcareous loamy/ sandy sediments	122	none	none	76	178	none
		Altus	fine-loamy	Pleistocene calcareous loamy/ sandy sediments	158	none	89	61	158	none
(CA	adian R R) odplair		sandy	Recent calcareous sandy alluvium	31	none	none	none	31	none

*Ash 13 in this terrace; ** Ash 20 in this terrace

Terrace	Soil Series	Family Particle Size Class		Depth to free CaCO ₃ (cm)		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
IRAN	SECT E ASH	13 (0.84 ± 0.09	Ma). ASH 20 (0.90 ± 0,	12 Ma)-A	verage Ann	ual Precip	itation (ir	cm)-66 (Co	n't)
TS1 (CAR)	Minco	coarse-silty	Loamy eolian deposits	140	none	38	none	140	none
(0)	Grant	fine-silty	Permian silty sandstone or shale	119	none	41	41	119	none
	Pond Creek	fine-silty	Loamy-loess/alluvium	none	none	117	61	152	none
TS2 (CAR)*	Minco	coarse-silty	Loamy eolian deposits	5 140	none	38	none	140	none
	Pond Creek	fine-silty	Loamy loess/alluvium	none	none	117	61	152	none
	St. Paul	fine-silty	Pleistocene silty sediments: Permian sandstone	86	none	114	69	142	none
	Grant	fine-silty	Permian silty sandstone or shale	119	none	41	41	119	none
			1 28 (0.89 ± 0.09 Ma)-/			ipitation	(in_cm)-66		
Elk Cr. (ELK)	Clairmont	fine-silty	Calcareous silty alluvium	surface	none	none	none	20	none
Floodplain	Lugert Port	coarse-silty fine-silty	Alluvial sediments Recent calcareous loamy alluvium	51 69	none none	41 69	none none	107 107	none none
TE1 (ELK)*	' Tillman	fine-mixed	Clayey alluvium	surface	81	36	178	206	t,tk,
TE2 (ELK)	Tillman	fine-mixed	Clayey alluvium	surface	81	36	178	206	t.tk.
	Hollister	fine-mixed	Permian calcareous clay	15	46	81	147	178	t,tk
TE3 (ELK)	Hollister	fine-mixed	Permian calcareous clay	15	46	81	147	178	t,tk
TWI (ELK)	Hollister	fine-mixed	Permian calcareous clay	15	46	81	147	178	t,tk
	Tillman	fine-mixed	Clayey alluvium	surface	e 81	36	178	206	t,tk,
TW2 (ELK)	Devol	coarse-loamy	Pleistocene loamy, sandy sediments	none	none	none	33	102	none
	Grandfield	fine-loamy	Pleistocene calcareous loamy sandy sediments	122	none	none	76	178	none

TABLE V (Continued)

Terrace	Soil Series	Family Particle Size Class		Depth to free CaCO ₃ (cm)	Calcic Thickness (cm)	Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	1	RANSECT G ASH	27 (0.67 ± 0.07 Ma)-A	verage_An	nual Prec	pitation	(<u>in cm)-66</u>		
Brazos R. (BRR)	Lincoln	sandy	Recent sandy material	surface	none	none	none	28	none
Floodplain	Mangum	fine	Calcareous clayey alluvium	surface	none	none	none	61	none
	Yahol a	coarse-loamy	Permian and Pleistocene calcareous loamy alluvium	surface	none	none	none	28	none
	Hardeman	coarse-loamy	Eolian materials	25	none	none	none	91	none
TN1 (BRR)	Sagerton	fine	Calcareous clayey loamy sediments	64	66	38	196	213	t,tk
	Wichita	fine	Loamy clayey alluviu	m 56	112	none	142	168	t,tk
	Rotan	fine	Quaternary cal- careous loamy alluvi	36	51	64	168	203	t,tk
TN2 (BRR)*	Sagerton	fine	Calcareous clayey loamy sediments	64	6 6	38	196	213	t,tk
		TRANSECT H ASI	1 21 (0.65 ± 0.07 Ma)-	Average A	nnual Prec	ipitation	(in cm)-56		
N. Canadia R. (NCR) Floodplain		sandy	Recent sandy material	surface	none	none	none	28	none
	Las Animas	coarse-loamy	Loamy calcareous alluvium	surface	114	none	none	46	none
TN1 (NCR)	Lincoln	sandy	Recent sandy materia	l surface	none	none	none	28	none
TN2 (NCR)	Pratt	sandy	Sandy eolian deposit		none	none	71	102	none
. ,	Richfield	fine	Calcareous loess	41	36	41	25	51	t.k
	Dalhart	fine-loamy	Pleistocene loamy eolian deposits	71	31	23	74	127	t,k
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
TS1 (NCR)	Pratt	sandy	Sandy eolian deposit	ts none	none	none	71	102	none
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk

errace	Soil Series	Family Particle Size Class		Depth to free CaCO ₁ (cm)		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	TRAN	SECT H ASH 21	(0.65 ± 0.07 Ma)-Avera	ge Annual	Precipita	tion (in c	m)-56 (Con	<u>(1)</u>	
S2 (NCR)*	Pratt	sandy	Sandy eolian deposit:	s none	none	none	71	102	none
	Otero	coarse-loamy	Alluvial sediments	surface	117	none	none	36	k
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
S3 (NCR)	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
	Otero	coarse-loamy	Alluvial sediments	surface	117	none	none	36	k
S4 (NCR)	Richfield	fine	Calcareous loess	41	36	41	25	51	t,k
. ,	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
S5 (NCR)	Richfield	fine	Calcareous loess	41	36	41	25	51	t.k
-	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
		IRANSECT I ASH	1 23 (0.73 ± 0.08 Ma)-	Average A	nnual Prec	ipitation	(in_cm)-56		
Cimarron R (CI) Floodplain		sandy	Recent sandy material	surface	none	none	none	28	non
TS1 (CI)	Spur	fine-loamy	Loamy alluvial sediments	surface	none	38	none	97	no
TS2 (C1)	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk,
TS3 (CI)*	Tipton	fine-loamy	Pleistocene cal- careous loamy silty alluvium	.102	none	86	48	168	nor
	Mansker	fine-loamy	Calcareous loamy	surface	137	31	137	168	tk.

TABLE V (Continued)

Terrace	Soil Series	Family Particle Size Class		Depth to free <u>CaCO₃ (cm)</u>	Calcic Thickness (cm)	Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
]	TRANSECT J ASH	18 (0.60 ± 0.07 Ma)-	Average An	nual Prec	pitation	(in_cm)-51		
Cimarron R. (CI) Floodplain	Las Animas	coarse-loamy	Calcareous alluvium	surface	114	none	none	46	none
TSI (CI)	Canadian	coarse-loamy	Pleistocene loamy alluvium	76	none	38	none	76	none
TS2 (CI)*	Richfield	fine	Calcareous loess	41	36	41	25	51	t.k
	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
TS3 (CI)	Richfield	fine	Calcareous loess	41	36	41	25	51	t,k
	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
TS4 (CI)	Richfield	fine	Calcareous loess	41	36	41	25	51	t,k
	Ulysses	fine-silty	Calcareous loess	25	51	25	none	46	k
	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
TS5 (CI)	Richfield	fine	Calcareous loess	41	36	41	25	51	t,k
-	1	TRANSECT K ASH	25 (1.00 ± 0.11 Ma)	-Average A	nnual Pre	cipitation	(in_cm)-51		
Kiowa Cr. (KIC) Floodplain	Likes	sandy	Unconsolidated sandstones, alluvia and eolian sands	surface 1	none	25	none	25	none
TN1 (KIC)	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk,t
	Otero	coarse-loamy	Alluvial sediments	surface	117	none	none	36	k
	Mansker	fine-loamy	Calcareous loamy material	surface		31	137	168	tk,t
	Otero	coarse-loamy	Alluvial sediments	surface		none	none	36	k
	Mansic	fine-loamy	Tertiary calcareous alluvium		104	48	none	76	k
TN3 (KIC)	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk,t

Terrace	Soil Series	Family Particle Size Class	Parent Material	Depth to free <u>CaCO₃ (cm)</u>		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	TRAN	SECT K ASH 25	(1.00 ± 0.11 Ma)-Ave	rage Annual	Precipit	ation (in	cm)-51 (Cor	<u>1't)</u>	
TN4 (KIC)*	Otero Mansker	coarse-loamy fine-loamy	Alluvial sediments Calcareous loamy material	surface surface	117 137	none 31	none 137	36 168	k tk,tk
	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
TNS (KIC)	Mansic	fine-loamy	Tertiary calcareous alluvium	31	104	48	none	76	k
		IRANSECT L ASH	19 (2.15 ± 0.24 Ma)	-Average An	nual Prec	ipitation	(in_cm)-51		
Canadian R (CAR) Floodplain		sandy	Recent sandy material	surface	none	none	none	28	non e
TS1 (CAR)	Mobeetie	coarse-loamy	Sandy calcareous sediments	surface	41	none	none	66	k
TN1 (CAR)	Paloduro	fine-loamy	Calcareous loamy sediments	surface	none	31	none	203	none
	Estacado	fine-loamy	Calcareous loamy materials	surface	211	41	211	252	tk
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk
	Pullman	fine	Calcareous clayey materials	61	66	61	183	198	t,tk
TS2 (CAR)	Olton	fine	Calcareous loamy materials	56	112	38	231	252	t,tk
	Estacado	fine-loamy	Calcareous loamy materials	surface	211	41	211	252	tk
	Paloduro	fine-loamy	Calcareous loamy sediments	surface	none	31	none	203	none
TS3 (CAR)*	* Paloduro	fine-loamy	Calcareous loamy sediments	surface	none	31	none	203	none
	Estacado	fine-loamy	Calcareous loamy materials	surface	211	41	211	252	tk

Terrace	Soil Series	Family Particle Size Class	Parent Material	Depth to free <u>CaCO₂ (cm)</u>		Mollic Colors Thickness (cm)	Bt Thickness (cm)	Solum Thickness (cm)	t/k
	IRANS	SECT L ASH 19	(2.15 ± 0.24 Ma)-Ave	rage Annual	Precipita	ation (in c	:m)-51 (Con	<u>'t)</u>	
TS4 (CAR)	Pullman	fine	Calcareous clayey materials	61	66	61	183	198	t,tk
	Olton	fine	Calcareous loamy materials	56	112	38	231	252	t,tk,
	Estacado	fine-loamy	Calcareous loamy materials	surface	211	41	211	252	tk
	Darrouzett	fine	Loamy, calcareous, eolian materials	58	64	89	239	254	t,tk
TS5 (CAR)	Pullman	fine	Calcareous clayey materials	61	66	61	183	198	t,tk
	Mansker	fine-loamy	Calcareous loamy material	surface	137	31	137	168	tk

VITA

Jean Elizabeth Shannon

Candidate for the Degree of

Master of Science

Thesis: SOIL AND GEOMORPHIC EVOLUTION WITHIN THE ROLLING RED PLAIN USING PLEISTOCENE VOLCANIC ASH DEPOSITS

Major Field: Environmental Science

Area of Specialization: Hydrogeology

Biographical:

- Personal Data: Born in Garrett, Pennsylvania, March 21, 1943. Three children.
- Education: Graduated from Fort Myers High School, Fort Myers, Florida in May, 1960. Received Bachelors Degree in Geology from the University of South Florida, Tampa, Florida, in May 1964. Attended Florida State University in Tallahassee, Florida. Completed requirements for Master of Science degree at Oklahoma State University, May, 1990.
- Professional Experience: Petroleum geologist with oil company and State Corporation Commission.
- Member of: National Water Well Association, American Association of Petroleum Geologists, Geological Society of America, and Oklahoma City Geological Society.