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CHAPTER 1 

INTRODUCTION 

The alluvium of major river systems from the Arkansas River south 

to the Brazos River contains early to middle Pleistocene volcanic ash 

deposits. This drainage area includes tributaries originating in the 

High Plains, the Raton volcanic field and the Rocky Mountain Front Range 

within the states of Oklahoma, Colorado, New Mexico, Kansas, and Texas 

(Figure 1). 

Thirteen ash deposits are dated (Ward and Carter, 1989) from 

within the High Plains of Kansas and Texas eastward in to central 

Oklahoma to understand the geomorphic history and improve soil and 

geologic mapping. Time is an important factor in the formation of soil 

(Jenny, 1941) and geomorphology (Davis, 1889). Dating soil parent 

materials which are older than 70,000 yr B.P. constitutes a major 

improvement in the understanding of soil formation and geomorphology 

because these dates are rare. 

Within the study area unconsolidated Tertiary and Quaternary 

sediments deposited in a west to east direction overlie Triassic, 

Permian, and Pennsylvanian bedrock. Volcanic ash deposits are 

predominantly early to middle Pleistocene age (dated by the fission

track method on shards; Boellstorff, 1976). The ash deposits are 

contained within five land resource regions, the Southern and Central 

High Plains, the High Plains Breaks, the Rolling Red Plains, and the 
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Reddish Prairies (Figure 2). Extensive middle Pleistocene 

constructional stream terrace surfaces occur with~n the Rolling Red 

Plains. Multiple stream terrace surfaces were recognized across the 

study are by Frye and Leonard (1963) with the highest level being dated 

early Pleistocene to Pliocene and the lowest bordering the Holocene 

floodplains. 

Objectives 

The objective of this research was to use dated volcanic ash 

deposits as time markers to interpret soil formation and geomorphic 

evolution of the Rolling Red Plains. River floodplains and terraces 

provide an excellent setting in which to examine soils and pedological 

processes. When the terraces are dated, the soils can then be placed in 

a realistic chronology and ~onclusions reached on rate of soil 

formation. Geomorphologists can use the properties of the soils to 

study past climatic regimes in the history of the landscape. Knowledge 

of soils found on floodplains and river terraces is especially important 

because these are some of the most densely populated and intensively 

cultivated areas. 
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CHAPTER II 

LITERATURE REVIEW 

Volcanic ash as time marker bed 

Volcanic ash deposits have been located and identified in the 

Central Great Plains since the 1800's (Buttram, 1914; Frye et al., 1948; 

Burwell and Hamm, 1949; Boellstorff, 1976; Izett, 1981; Izett and 

Wilcox, 1982). Early studies considered the deposits as one ash and 

applied the stratigraphic name "Pearlette ash" to deposits in Meade 

County, Kansas. Later investigations in Oklahoma, Texas, Nebraska, and 

Kansas, (Frye et al, 1948), revealed the presence of several ashes of a 

single middle-Pleistocene age in their study of Great Plains and glacial 

geologic deposits. They used the ashes as time marker beds to 

distinguish between Pleistocene and Pliocene deposits. The more recent 

studies by Boellstorff (1976), Izett et al., (1970), and Izett (1981) 

have shown that the ash beds in the Great Plains are of widely differing 

ages and have different volcanic source areas. Izett and Wilcox (1982) 

identified the source areas for the major ash falls as the Yellowstone 

caldera, the Long Valley caldera of California and the Toledo and Valles 

calderas of New Mexico. The ash deposits have been used as time marker 

beds to make regional correlations of geologic deposits because they can 

be dated (Boellstorff, 1976; Naeser and Naeser, 1988) and they have 

widespread occurrence. Karas (1987) used relative topographic position 

and degree of soil development in alluvial deposits to correlate 
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alluvial deposits and assign relative ages to them. The age of the 

Blackwater Draw Formation of the Texas Panhandle was determined by 

Holliday (1988 and 1989) using volcanic ash as time markers and soil

geomorphic indicators. Holliday (1989) also uses the presence of two 

ashes in the Blackwater Draw formation of Texas and New Mexico to show 

that the wide-spread eolian deposit accumulated throughout most of the 

Quaternary. 

Glass shards taken from volcanic ash deposits have been fission

track dated (Ward and Carter, 1989, in review; Boellstorff, 1976; 

Boellstorff and Steinck, 1975). Fission-track dating, classified as a 

radiogenic method of dating according to Colman et al, (1987), is a 

recognized tool in recent research focusing on Quaternary landforms, 

deposits, and geologic events. 

6 

The Rolling Red Plains and Southern High Plains Border regions of 

western Oklahoma, southcentral Kansas, and the eastern edge of the Texas 

Panhandle are covered by a soil mantle of alluvial and eolian origin. 

Reeves and Haynes (1976) describe the Southern High Plains surface as 

being mantled by Quaternary eolian, fluvial, and lacustrine deposits. 

In west-central Oklahoma, early Pleistocene deposits are thought to be 

part of a continuous plain (Carter, 1985) incised by the major rivers 

flowing through the area, namely the Arkansas, Cimarron, North Canadian, 

Canadian, Washita and Red. Ages of the alluvial and eolian deposits in 

that area may be estimated using the volcanic ashes found there. 

Pleistocene alluvial deposits 

Pleistocene alluvial deposits have been identified throughout the 

study area. Kitts (1959, 1965) studied terraces along the Canadian 
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River in Roger Mills and Ellis counties in western Oklahoma and used 

faunal assemblages and volcanic ash deposits to assign ages. Hibbard 

{1944) and Stephens (1960) identified Pleistocene deposits in 

southwestern Kansas and northwestern OK, respectively, using 

stratigraphy and vertebrate paleontology. Fay (1959) noted broad 

constructional surfaces ass~ciated with Pleistocene deposits. He 

identified five discernible terrace levels in the Canadian River basin 

of west central Oklahoma. Volcanic ash was found only in the highest 

terrace. Myers (1959, 1962) describes constructional terrace surfaces 

and Pleistocene terrace deposits in a long, wide band between the North 

Canadian and Cimarron Rivers throughout most of northwestern Oklahoma 

{excluding the Panhandle). These deposits are discontinuous because 

parts have been removed by Late Pleistocene and Recent erosion (Myers, 

1962). Volcanic ash is also noted in these deposits (Fay, 1959). 

Soil surveys have identified the terrace deposits along the major 

streams and the soil landscapes that are associated with them (Gray and 

Galloway, 1969). Soil landscapes are first identified by aerial 

photography. Percent slope is a major consideration, hillslope 

components (Ruhe and Walker, 1968) are used to differentiate expected 

differences in soil type. These soil landscape mapping units are then 

field checked for soil and geologic characteristics. In this way soil 

surveys become a powerful tool in understanding regional soil 

geomorphologic relationships. Soil mapping units are based on land use 

and can include one or more soil series. Soil series are soils that 

have profiles almost alike. They may differ in texture in surface 

layers but horizons are similar in thickness, arrangement and other 

important characteristics (Soil Survey Staff, 1975). The system of soil 
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classification used by the National Cooperative Soil Survey has six 

categories. They are order, suborder, great group, subgroup, family, 

and series. Classification is based on soil properties observed in the 

field or inferred from those observations or from laboratory 

measurements. To date all but two counties in Oklahoma, most of Kansas, 

and about half of Texas is soil mapped. 

Soil development and topography 

Many studies have been made involving soil development and 

topography. Ruhe (1956) showed that specific soils or soil associations 

can be related to each delineated geomorphic surface. Ruhe et al. 

(1967) identifies erosion as the key factor in shaping the landscapes of 

southwestern Iowa and affecting the soil development. 

Bilzi and Ciolkosz (1977) cite time as a major factor in soil 

development. They studied the genesis of four alluvial soils in central 

Pennsylvania to evaluate the importance of time in relation to the 

soils' pedologic age. Radiocarbon methods were used to determine age 

deposits and soils (Birkeland, 1984). 

A field morphology rating scale was used by Bilzi and Ciolkosz 

(1977) to show the distinctness of the horizons in each soil profile. 

The rating scale indicated the similar ages of the first three soils, 

whereas the fourth soil was rated pedologically older. These 

relationships agreed with the findings of the radiocarbon dating or 

chronologie age. Bilzi and Ciolkosz (1977) found that morphological 

properties are effective in distinguishing chronological age differences 

and concluded that pedologic age differences were best identified by the 

relative distinctness of horizons evaluated by a field morphology rating 



scale, their in situ weathering of clay minerals, and the volume of 

illuvial clay films in the B horizons. 

Soil-landscape studies combined with reasonably accurate methods 

9 

of dating events indicate that soil development can be much more rapid 

than originally thought (Hall et al, 1982). The first indication of 

soil formation is usually considered to be when organic matter is 

incorporated in the surface of a parent material (mollie epipedon), with 

the A horizon forming in as little as 24 years (Hall et al, 1982). Clay 

translocation and accumulation in the B horizon generally takes longer 

(> 2000 years) but Hall et al (1982) indicate that under ideal 

conditions the process may be relatively rapid (450 years). Cambic 

horizon or color B horizon formation depends on all the soil forming 

factors (Hall et al, 1982) and are thought to be the first stages of 

subsoil development. 

Gile et al. (1981) stated that soil age was the most important 

factor affecting soil morphology and occurrence at stable locations. In 

the stepped sequence of geomorphic surfaces along the Rio Grande valley 

border, the soils of stable sites are progressively older, thicker, and 

more prominent with increasing elevation of the steps. The horizon of 

carbonate accumulation in desert conditions is the soil horizon that 

exhibits the morphological change and that is .best related to soil age 

(Gile et al., 1981). The stages of carbonate accumulation are useful as 

chronological and stratigraphic markers for the soils. Carbonate can 

accumulate in any desert soil if moisture can enter and there is a 

source of carbonate, in either dust or th~ soil parent material (Gile et 

al, 1981). Increasing soil development is also shown by increasing 

thickness of the carbonate horizon with age. Harden and Taylor (1983) 
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applied the comparative techniques of the soil development index to 

determine whether certain soil properties develop systematically with 

depth and age, and whether they develop similarly in different 

environments. The five properties that correlated most significantly 

with age in the four chronosequences that Harden and Taylor studied were 

total texture, rubification, clay films, dry consistence, and moist 

consistence. It is their conclusion, that if samples are separated and 

grouped according to soil-forming factors and described according to 

Soil Survey Staff (1951, 1982) procedures, the development of soil 

properties is found to be highly correlative with age, and quantitative 

comparisons of development rates can be made. Birkeland (1984) suggests 

that the relative importance of time as a soil forming factor will vary 

from soil to soil. 



CHAPTER III 

METHODS AND MATERIALS 

Land resource areas 

The study area encompasses parts of Kansas, Oklahoma and Texas. 

Figure 2 is a map showing resource areas studied. Land resource areas 

(Soil Survey Staff, 1979) studied were Southern and Central High 

Plains, Central Rolling Red Plains, and Central Rolling Red Prairies, 

(Figure 2). These areas are differentiated for resource inventory and 

separated by land use, elevation and topography, climate, water, soils, 

and potential natural vegetation Soil Survey Staff (1951, 1982). This 

study area has layers of unconsolidated alluvial and eolian sediments, 

which contain volcanic ashes as marker beds. Volcanic ashes had 

previously been collected from 13 localities in the study area and ages 

assigned to them using the radiometric fission-track method on glass 

shards (Ward and Carter, 1989). 

Terrace levels associated with the ashes were identified by 

topographic cross-sections c6nstructed perpendicular to the major river 

systems intersecting the ash deposits. Transects were viewed looking 

upstream in order to maintain uniform perspective. The river basins 

included were: Arkansas, Cimarron, North Canadian, Canadian, Washita, 

Red, and Brazos (Figure 1). Large scale (1:250,000) United States 

Geological Survey topographic quadrangle maps were used to align the 

transects. 

11 



Topographic transect construction 

The transects were constructed at a scale of 1:24,000 using the 

7.5 min. topographic quadrangles. The lengths of the transects ranged 

from 60-120 km. After identifing terrace levels on the transects, the 

transects were scanned into a computer using Hewlett-Packard 

12 

ScanJet Plus scanner with the software program, Scanning Gallery Plus, 

(Version A.03.00 Hewlett-Packard Co., 1988). This process reduced the 

multiple pages of the transects, typically 8 to 17 pages (21.5 x 27 em), 

to one page each per transect. Twelve transects. are included (Figures 

3-14, Appendix A). 

County soil surveys 

Soils along the transects were identified using the county soil 

survey maps (Allgood et al., 1962; Fisher, 1968; Frie et al., 1967; 

Henson, 1978; Hoffman and Glaum, 1979; Koos and Dixon, 1964; Lamar, 

1979; Lofton et al, 1972; Mayhugh, 1977; Moebius and Sparwasser, 1979; 

Moffatt and Conrad, 1979; Mowery et al., 1961; Nance et al., 1960; 

Rockers et al., 1966; Rogers ·and Risinger, 1979; Wheeler, 1973; Williams 

and Welker, 1966; and Wyrich and Williams, 1981). These soil maps were 

prepared from aerial photographs at a scale of 1:20,000 or 1:24,000. 

The topographic transect locations were transferred to the county soil 

surveys. Soils along the transects were identified. Soil mapping units 

were then transferred from the county soil survey to the transects. 

Terraces were identified by either 1) soils with 0-1% slopes or 2) soils 

with profile descriptions within the soil surveys indicating alluvium as 

their parent material. 
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Table 1 (Appendix B) represents the terrace data for the 

transects. Starting on the left side of each transect, the following 

information concerning each terrace was determined and noted: elevation 

(m), width ,(km), distance from river (km), and height from river (m). 

This same information, except width, is also given for the volcanic ash 

localities. The location north or south of the river, the terrace 

number, and the name of the major river are listed. For example, in 

Table 1, Transect C, Ash 10,. on page 23, TS9 Arkansas refers to the 

ninth terrace south of the Arkansas River. This terrace can be seen on 

Transect C, page 41, on the left hand side of the transect. Ash 10 is 

in terrace TS4. Floodplains are. also indicated. Table 2 shows the ash 

terrace levels, the corresponding ash ages from fission-track methods 

(Ward and Carter, 1989), and height above river for each transect. This 

data is listed by drainage basin~ i.e., Arkansas River, Cimarron River, 

etc. The soil series mapped on the ash-dated terraces of each transect 

are given in Table 3 along with their soil classification which was 

taken from the soil surveys. Table 4 contains the soil series and its 

classification of every soil found on the floodplains and the terraces. 

Special notation is made of the terrace containing the ash. Table 5 

identifies soil characteristics that are produced by major soil forming 

proce~ses in the study area. · These processes are partly dependent on 

time and will be used to evaluate the age of the terrace. Generally the 

thickest solum and the thickest calcic and mollie horizons represent the 

most development. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Terrace Characterization 

Stream terraces identified by soil series and landscape form were 

present along all major west to east flowing drainages within the study 

area. Terraces were as high as 204m above current stream level, 

however, the majority of terraces occurred less than 100m (Table 1). 

The highest terraces capped the divides between major streams (Table 1, 

Figures 3-14). Coalescing fans or rock divides were consumed by 

erosion. Middle Pleistocene (0.60 to 1.0 m.y., Table 2) volcanic ash 

deposits are found within alluvial sediments underlying the terrace 

surfaces. Six ash deposits (Ash 34, Transect A; Ash 15, Transect D; Ash 

23, Transect I; Ash 8, Transect B; Ash 13, Transect E; Ash 25, Transect 

K) were contained within terraces that capped divides between drainages. 

Middle Pleistocene terraces which contained the ash deposits ranged from 

14 to 119m above river level. An early Pleistocene to late Tertiary 

ash deposit (2.15 ± 0.24 m.y.) occurred within a terrace 155m above the 

Canadian River (Table 2 and Figure 7). The oldest ash deposit (2.15 ± 

0.24 m.y.) was contained within the highest ash-dated terrace (155m). 

The youngest ash deposit (0.60 ± 0.07) was not found within the lowest 

ash-dated terrace. Relatively old ash deposits; 1.0 ± 0.11 Ma, 0.89 ± 

0.09, 0.88 ± 0.09, and b.74 ± 0.08 were found within the lowest ash

dated terraces, 30m (Kiowa Creek), 21 m (Elk Creek), 21 m (Arkansas 

14 
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River), and 14m (Arkansas River), respectively. Lower terrace levels, 

however, contained younger ash deposits within the same river system 

(Table 2). All river systems do not necessarily have the same rate of 

incision and it is likely that they don't especially with changing 

stream bed lithology. This is controlled by several factors including 

stream capture, resistant underlying geology and sediment load (Gerrard, 

1981). Stream capture was first presented by Fay (1959 and 1965) to 

support the. fact that in some areas accelerated erosion has subdued 

divides and captured sediments and water from an adjacent river. From 

ash dates in the Rosston area (Transect H) i.t appears about 1 million 

years ago the Cimarron River captured part of the N. Canadian River at 

Rosston. This was probably caused by dissolution of gypsum and halite 

beds (Gustavson, 1986) which accelerated the rate of erosion within the 

Cimarron River drainage basin. 

The widest terrace sequence (84.1 km) was found in Transect C on 

the south side of the Arkansas River (Table 1, Figure 3). This sequence 

included 9 terraces up to 79 m above the Arkansas River. The range in 

the length of terrace sequences within all transects (length includes 

distance from river to terrace-capped divide or highest terrace level) 

was 1.2 to 84.1 km. Generally the distance from stream 

to the highest .terrace was between 5 to 30 km. Within 7 out of the 12 

transects the widest terraces were also the highest terrace (Transects 

A, D, E, G, H, I, and L) Maximum terrace width for these high terraces 

ranged from 2.9 to 17.7 km. For four out of the remaining five 

transects the widest terraces occurr~d within the middle to lower 

portion of the sequence (Transects B, C, F, and J). Maximum terrace 

width for these low terraces ranged from 1.2 to 14.2 km. The ash 



deposits were found on the broad terraces. This indicates that the 

middle Pleistocene was a period of wide-spread alluviation in Oklahoma 

compared to the late Pleistocene. There was little difference in 

terrace width within Transect K which averaged 0.8 km. 

Statistics 
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The variables terrace width, distance from river, elevation above 

river, height above river and drainage basin size were plotted and 

fitted to linear regression curves to determine if significant trends 

existed. No trends were evident. Statistical analysis was limited by 

the relatively few ash locations compared to the large size of the study 

area. Each basin will exhibit unique characteristics because of 

possible stream capture, temporal and spatial variations in climate, 

lithology and sediment load. More ash locations are needed within 

different terrace levels, along the entire length of a drainage basin, 

and within several drainage basins before meaningful statistical 

analysis can be achieved. 

Soil classification 

Major soil components of mapping units having a high proportion of 

single series occur on landscapes that are undissected or only slightly 

dissected and that lack substantial deposition by wind; particle size 

does not differ greatly; and discontinuous argillic, calcic, or 

petrocalcic horizons are not present. These soils occur mostly in the 

basin floors. The most complex patterns of soil distribution and the 

largest number of soils in a given area are found in dissected 

landscapes (Gile et al ., 1981). The study area featured landscapes that 
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were undissected, slightly dissected and dissected. 

Twenty-five different soil series were found on terrace surfaces 

dated by ash deposits (Table 3). Five different soil orders were 

represented within these 25 soil series. Twenty soil series were 

identified as Mollisols, 2 soil series identified as Alfisols, 1 soil 

series identified as an Inceptisol and 1 soil series identified as an 

Entisol. The Entisol, Otero, usually present in floodplains, was found 

in a higher terrace because of recent wind erosion. All Mollisols were 

identified as Ustolls at the suborder level. All Alfisols were 

identified as Haplustalfs at the great group level. The majority of the 

soils found on the ash-dated terraces contained argillic horizons 

(Argiustolls, Paleustolls, and Haplustalfs). Only a few soils contained 

calcic horizons (Calciustolls and Calciorthidic Paleustolls). This 

results from a current relatively moist climate which promotes leaching 

of salts and movement of clay. The dominant climate during middle 

Pleistocene was moist, similar to today as is evidenced by the large 

number of Argiustolls present. Argiustolls are indicators of subhumid 

and humid regions with alternating wet and dry periods (Hall, 1983). 

Precipitation amounts average 50-90 em and correlate to ustic to udic 

soil moisture regimes respectively (Pettyjohn et al., 1983). 

Precipitation is not high enough to support forest vegetation, 

therefore, Mollisols were the dominant soil order formed. Soil textures 

within ash-dated terraces were predominantly sandy clay loam, clay loam, 

and loam; however, there was a wide distribution of textures indicating 

fluvial origin instead of eolian origin which has similar texture 

throughout. Clay- textured soils containing greater than 60% clay were 

not present. Although soil series generally had a similar 
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classification at the group suborder and order levels across the entire 

study area, the difference between drainage basins, within the study 

area was apparent because of the differences in bedrock lithologies 

within each basin. Soil series mapped on ash-dated terraces within the 

same basin were similar, i.e., transects B, C, D, H, I, J, and K. 

Soil orders found across terrace and floodplain sequences included 

Entisols, Inceptisols, Alfisols, Mollisols, and Vertisols (Table 4). 

Mollisols were the most numerous soil order mapped on terraces followed 

by Alfisols, Entisols, and Inceptisols. Vertisols were only represented 

by one soil series within TS2 (Transect A, Canadian River). Entisols 

were the most abundant soil order mapped within floodplains (Table 4). 

Mollisols, especially Haplustolls,, were also mapped within floodplains, 

but were much less abundant. Haplustolls are slightly more developed 

than Entisols because Haplustolls contain a mollie epipedon and cambic 

horizon while Entisols do not. The majority of the soil series that 

were recognized within this study were formed on the floodplain and 

terrace constructional surfaces. Argiustolls, Paleustolls, and 

Calciustolls were major soil groups that occurred on terrace surfaces. 

Where terrace surfaces have been eroded and where wind-blown sand has 

reworked the terrace surfaces, soils often lack one or more of the 

following: mollie epipedons, argillic horizons, and calcic horizons. 

Eroded terrace surfaces are mapped as Ustochrepts and Haplustolls. 

Eolian sands are recognized by dune form. Soil series formed within 

eolian sands overlying terrace surfaces are Tivoli, Pratt, Nobscot, 

Enterprise, and Devol. These soils wer~ class~fied as either 

Psammentic, Haplustalfs, Typic Ustipsamments, Arenic Paleustalfs, Typic 

Ustochrepts, or Udic Haplustolls. 



19 

Soils within terrace transects 

In Transect A the thickest solum is found in the Durant soil on 

the uppermost terrace of the Canadian River. This is also the soil 

series which contains an ash, dated at 0.87 ± 0.13 Ma. The parent 

material of the Durant spil is Pleistocene alluvium overlying Cretaceous 

shale and although it has the thickest solum, it does not have the 

thickest mollie horizon which is found in the Clarita soil. Both the 

Durant and Clarita are classified as having a fine family particle size 

class. The Pratt soil on the Arkansas River floodplain of Transect B 

formed in sand dunes of probable Holocene age. The Bethany soil is in 

the fine family and found on the uppermost terrace of the Arkansas 

River. The Bethany soil has the thickest Bt horizon and the thickest 

solum. The Farnum found on all terraces above the floodplain has the 

thickest calcic and mollie horizons. The ash is found in the highest 

terrace dated 0.74 ± 0.08 Ma. Transect C is also on the Arkansas River. 

The thickest solum again is found in the fine textured Bethany soil. It 

also has the thickest Bt horizon, between 2-7 times that of the other 

soils on the terraces. Calcic thickness is greatest in the Clark soil 

which is derived from calcareous alluvium. Eolian soils, Tivoli, 

Elsmere, Pratt, Carwile and Enterprise are found in Transect D in 

Woodward County, OK. Landforms are marked by dune fields. The Nobscot 

soil from Pleistocene loamy/sandy eolian sediments has the thickest 

solum. The fine-silty textured St. Paul soil contained the thickest 

mollie colors while the fine-loamy textured Mansker formed from 

calcareous material had the thickest calcic horizon. Transect E 

contained Pratt and Devol soils which formed in eolian deposits. The 

Cordell and Dill soils formed on rock or strath terraces. The 
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Grandfield and the Carey soils, both formed in Pleistocene alluvium, 

have very thick solums while the Carey also has a thick calcic horizon 

(the only calcic in the transect). Mollie colors are thickest in the 

Pond Creek and the St. Paul which are both of fine-silty texture. The 

fine textured Tillman soil formed from clayey alluvium has the thickest 

solum of Transect F, along with the thickest calcic horizon. The 

Hollister soil also fine textured contained the thickest mollie. 

Transect G contained windblown sediments with Hardeman soils formed 

within them. The Sagerton soil has the thickest solum and thickest Bt 

development. The Wichita soil is fine textured with the thickest calcic 

horizon and no mollie horizon. Mollie color thickness is found in the 

Rotan which also has a very thick solum and Bt horizon. The Mansker of 

Transect H has the thickest solum along with the thickest calcic and Bt 

horizon. The Pratt, a sandy soil of eolian origin, is present adjacent 

to the North Canadian floodplain. Transect I contained no soils formed 

in windblown deposits. The Mansker soil has the thickest solum, Bt and 

calcic horizons. The fine-loamy textured Tipton soil has the thickest 

mollie. The parent materials of the soils on Transect J are calcareous 

Tertiary deposits. The Richfield and Ulysses formed from calcareous 

loess. The Bt thickness is negligible in all soils but the Richfield. 

The thickest solum is found in the Mansic along with the thickest mollie 

and calcic horizons. Transect K also reflects the calcareous Tertiary 

parent materials. Free carbonate is at the surface in most terraces. 

There are no windblown deposits. The Mansker soil has the thickest 

solum, Bt, mollie, and calcic thickness. The fine textured Darrouzett 

soil and the fine textured Olton soil have the thickest solums on 

Transect L which contains very calcareous soils. Estacada has the 



thickest calcic horizon. The Darrouzett, Olton and Estacada all have 

thick Bt horizons. No windblown deposits are present as evidenced by 

the lack of dunes. 
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Terrace soils within a transect are similar as a result of similar 

geomorphological processes, the parent materials and pedologic 

processes. Soils on terraces differ from transect to transect as parent 

materials reflect the characteristics unique to the drainage basin. 

Paleosols 

Evolution of landscapes can be determined by studying the soils. 

Since soil development takes time, a soil represents a part of the 

geomorphological history (Gerrard, 1981). Soils indicate periods of 

stability within cycles of erosion and deposition. While the nature of 

the soil may give insight into environmental conditions during the 

period of soil formation, the correlations between soil properties and 

environments are still not sufficiently established (Birkeland, 1984). 

The soils of greatest use in this respect are those that have been 

buried under later deposits and have had their characteristics 

"fossilized". Buried soils (or buried paleosols) play a vital role in 

the study of the Quaternary because they provide a record of time 

discontinuities in the stratigraphic record. Paleosols are not 

identified by the soil surveys in the study area but this does not mean 

they are not present. To date, only the upper 150 em of the soils have 

been extensively described by the Soil Conservation Service. Paleosols 

buried at a depth greater than 150 em may be present. Buried soils can 

also be difficult to recognize in the field by common methods like 

changes in color, decalcification, structure, cementation, clay 
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accumulation and iron-oxide accumulation. Laboratory characterization 

is being used more frequently to make identification. With increasing 

interest in paleosols and better analytical technique more buried soils 

will be recognized. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATION 

Terraces within the study area were predominantly Pleistocene age; 

however, some surfaces may be as old as late Tertiary. Surprisingly, 

little difference was observed in the development of soils on these 

constructional terrace surfaces. The predominant soil group mapped 

across terrace surfaces was the Argiustoll. Terrace surfaces often 

capped stream divides, making it difficult to associate the terrace 

deposits with a particular stream system. Terrace surfaces extend from 

the High Plains of Texas, Oklahoma, and Kansas into the Rolling Red 

Plains and Reddish Prairies. The Rolling Red Plains of Oklahoma, Texas, 

and Kansas are composed of multiple Pleistocene terraces. Within the 

Rolling Red Plains and Reddish Prairies the terrace deposits can be 

easily distinguished on sand and gravel lithologies. Within the Rolling 

Red Plains and Reddish Prairies terrace deposits are composed of 

reworked Ogallala materials which overlie Permian "redbed" bedrock. 

Within the High Plains and High Plains Breaks, where the Ogallala is 

found in situ, terrace deposits are difficult to distinguish on the 

basis of soil particle lithology. Soil series are distinguished by the 

amount of incorporation of underlying Permian bedrock. Stream terraces 

located within the southeastern section of the study area contain a 

higher percentage of Permian "redbed" lithologies. This inherited red 

color from bedrock lithologies is often confused with soil-developed 
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color (braunification). Eolian sand deposits also modified 

constructional terrace surfaces across several transects. Loess 

deposits are not recognized across the study area but should be 

associated with source-area stream drainages. Paleosols are not 

identified but should exist at depths greater than soil survey 

investigative procedures now allow (1.5 to 2.0 m). Paleosols should 

increase the ability to interpret past changes in climate and 

corresponding periods of eolian and alluvial deposition. 
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TABLE I 

TERRACES DENOTED FROM TRANSECTS 

Terrace Terrace Terrace distance Terrace height 
Terrace elevation width from river above river 

(m) (k.m) {km) (m) 

Transect A, Ash 34 

(Ash 34) (335) (12 .8) (52) 
TS4 Canadian 351 5.9 9.8 67 
River (CAR) 
TS3 (CAR) 341 3.6 4.0 58 
TS2 (CAR) 320 0.7 1.8 36 
TSl (CAR) 317 0.8 0.6 34 
CAR Floodplain 283 1.9 

Transect B, Ash 8 

TS4 Arkansas 493 0.8 32.3 (Ark) 26 (Ark) 
River (ARK), TS4 9.8 (NFN) 43 (NFN) 
North Fork of 
the Ninnescah 
River (NFN) 
TS3 (NFN) 479 0.8 7.3 27 
TS2 (NFN) 472 1.4 4.9 21 
TS 1 (NFN) 466 ().3 1.5 15 
NFN FloodElain 451 0.3 
TN 1 (NFN) , TS2 476 0~9 2.9 (NFN) 24 (NFN) 
Red Rock Creek (RR) 3.0 (RR) 18 (RR) 

TSl (RR) 472 o. 2 . 1.5 15 
(Ash 8) '( 466) (16.9 (Ark)) (< -1 (Ark)) 

(5.5 (NFN)) (15 (NFN)) 
(0.4 (RR)) (19 (RR)) 

RR Flood2lain 457 0.2 
TN 1 (RR) 466 0.6 1.4 9 
TN2 (RR) 470 0.8 2.4 12 
TN3 (RR) 482 5.2 10.4 (RR) 24 (RR) 
TN2 (NFN) • TS3 16.5 (NFN) 30 (NFN) 
(Ark) · 5.5 (Ark) 14 (Ark) 
TS2 (Ark) 474 1.4 2.4 6 
TS 1 (Ark) 472 0.9 0.9 4 
Ark FloodElain 468 1.7 

Transect C, Ash 10 

TS9 Arkansas 552 1.4 84. 1 79 

River (Ark) 
TS8 (Ark) 543 2. 1 75.3 70 
TS 7 (Ark) 530 1.4 67.1 58 
TS6 (Ark) 521 8.5 54.2 49 
TS5 (Ark) 497 1.2 38.4 24 
(Ash 10) (482) (29.3) (9) 
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TABLE I (Continued) 

Terrace Terrace Terrace distance Terrace height 
Terrace elevation width from river above river 

(m) (km) (km) (m) 

Transect c, Ash 10 (con't) 

TS4 (Ark) 493 4.6 23.8 21 
TS3 (Ark) 491 2.7 18.9 18 
TS2 (Ark) 488 14.0 9.4. 15 
TSl (Ark) 482 0.8 2.0 9 
Ark Floodplain 472 1.2 

Transect D, Ash 15 

N. Canad1an River 552 0.3 
NCR Floodplain 
TN1 (NCR) 553 0.9 0.7 1 
TN2 (NCR) 555 0.6 1.8 3 
TN3 (NCR) 564 0.9 3.2 12 
TN4 (NCR) 573 1.1 5.0 21 
TNS (NCR) 585 0.8 8.7 34 
TN6 (NCR) 594 0.4 10.2 43 
TN7 (NCR), 604 4.1 13.6 {NCR) 52 (NCR) 
TS6 Cimarron 22.6 {CI) 174 (CI) 
River (CI) 
(Ash 15) (585) (20.1 (CI)) (155 (CI)) 

(14.9 (NCR)) (34 (NCR)) 
TSS (CI) 598 0.8 20.1 165 
TS4 (CI) 530 0.6 14.3 101 
TS3 (CI) 524 1.8 12.8 94 
TS2 (CI) 451 0.9 2.4 21 
TS1 (CI) 436 0.3 0.6 6 
CI Floodplain 430 1.5 

Transect E, Ashes 13 + 20 

TS6 Washita 591 5. 1 23.2 119 
River (WAR) 
(Ash 20) (573) (20.3) (101) 
TS5 (WAR) 561 1. 5 18.9 88 
TS4 (WAR) 534 0.6 15.5 61 
TS3 (WAR) 530 0.8 13.4 58 
TS2 (WAR) 527 0.6 12.8 55 
TS 1 (WAR) 476 1.2 0.4 3 
WAR Floodplain 472 1.1 
TN1 (WAR) 488 0.3 1.2 15 
TN2 (WAR) 494 '1.8 2.4 21 
TN3 (WAR) 500 0.9 5.8 27 
TN4 (WAR) 520 2.4 8.8 52 
TN5 (WAR) 543 0.6 31.7 70 
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TABLE I (Continued) 

Terrace Terrace Terrace distance Terrace height 
Terrace elevation width from river above river 

{m) (km) (km) (m) 

Transect E, Ashes 13 + 20 (con't) 

(Ash 13) (536) (33. 8 (WAR)) (64 (WAR)) 
(29.3 (CAR)) (73 (CAR)) 

TN6 (WAR) 549 3.0 (WAR) 33.8 (WAR) 76 (WAR) 
TS2 Canadian 1 7. 7 (CAR) 15.2 (CAR) 85 (CAR) 
River (CAR) 
TS 1 (CAR) 509 3.6 3.0 46 
CAR FloodElain 463 1.2 

Transect F, Ash 28 

TWl North Fork 488 2. 1 2.7 18 
of the Red 
River (NFR) 
NFR Flood2lain 470 1.2 
TEl (NFR) 478 1.1 1. 8 9 
TE2 (NFR), 485 1.4 4.6 (NFR) 15 (NFR) 
TW2 Elk 15.2 (Elk) 40 (Elk) 
Creek (Elk) 
TWl (Elk) 476 6.1 6.7 30 
Elk FloodElain 445 1.7 
TEl (Elk) 466 2.7 2.7 21 
(Ash 28) (466) (2.4 (Elk)) (21 (Elk)) 
TE2 (Elk) 470 3.2 7.3 24 
TE3 (Elk) 476 0.8 11.0 30 

Transect G, Ash 27 

Brazos River 412 1.2 
(BRR) FloodElain 
TN1 (BRR) 439 1.7 2.4 27 
TN2 (BRR), 457 7. 7 17.6 (BRR) 46 (BRR) 
TS2 N. Wich1ta 6. 1 (NWR) 61 (NWR) 
River (N"WR) 
(Ash 27) 448 7.3 36 (BRR) 
TS 1 (NWR) 412 0.2 1.5 15 
NWR FloodElain 396 O.J 

Transect H, Ash 21 

TS5 N. Canadian 768 11.0 25.6 115 
River (NCR) 
TS4 (NCR) 732 0.9 18.9 79 
TS3 (NCR) 719 2.3 16.5 67 
TS2 (NCR) 698 2.7 11.3 46 
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TABLE I (Continued) 

Terrace Terrace Terrace distance Terrace height 
Terrace elevation width from river above river 

(m) (km) (km) (m) 

Transect H, Ash 21 con't 

(Ash 21) (719) (9.9) ( 46) 
TS 1 (NCR) 679 1.2 3.6 27 
NCR Flood2lain 652 1.2 
TNl (NCR) 655 1.2 1.2 3 
TN2 (NCR), 680 11 • 0 10.4 27 
TS 1 Cimarron 604 0.8 1.2 6 
River (CI) 
CI Flood2lain 598 1.8 

Transect I' Ash 23 

N. Canadian 655 1:8 
River (NCR) 
Flood2lain 
TN 1 (NCR) 658 0.8 0.9 3 
TN2 (NCR) 665 8.5 6.7 9 
TN3 (NCR), 670 2.9 15.2 (NCR) 15 (NCR) 
TS3 Cimarron 5.8 (CI) 67 (CI) 
River (CI) 
(Ash 23) (662) (6.4 (CI)) (58 (CI)) 

(14. 7 (NCR)) (6 (NCR)) 
TS2 (CI) 631 0.8 3.4 30 
TSI (CI) 613 l • 7 2.4 9 

CI Floodplain 604 2.3 

Transect J, Ash 18 

TSS N. Canad1an 726 0.4 6.7 61 
R1ver (NCR) , 
TS4 (NCR) 720 0.6 5.8 55 
TS3 (NCR) 710 0.4 5.5 46 
TS2 (NCR) 701 1.2 3.4 36 
TSl (NCR) 671 0.4 2.0 6 
NCR Floodplain 665 0.9 
TN 1 (NCR) 680 0.6 ).0 15 
TN2 (NCR) 701 0.9 4.0 (NCR) 36 (NCR) 
TSS Cimarron 13.2 (CI) 73 (CI) 
River (CI) 
TS4 (CI) 695 4.3 10.4 67 
TS3 (CI) 689 0.6 7.6 61 
TS2 (CI) 677 1.8 3.6 43 
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TABLE I (Continued) 

Terrace Terrace Terrace distance Terrace height 
Terrace elevation width from river above river 

(m) (km) (km) (m) 

Transect J, Ash 18 (con't) 

(Ash !8) (658) (2.6) (30) 
TSl (CI) 634 0.3 0.9 6 
CI Flood2lain 628 1.2 

Transect K, Ash 25 

Kiowa Creek 726 1.2 
(KIC) Flood2lain 
TN 1 (KIC) 735 0.6 0.9 9 
TN2 (KIC) 738 1 • l 2.1 12 
TN3 (KIC) 750 l.l 4.0 24 
(Ash 25) (753) ( 4. 6) (27) 
TN4 (KIC) 756 1.2 5.2 30 
TN5 (KIC) 759 0.4 7.0 34 
TS4 N. Canadian 
River (NCR) 735 0.6 8.5 46 
TS3 (NCR) 722 l.l 3.4 34 
TS2 (NCR) 710 0.6 2.4 21 
TS 1 (NCR) 701 0.6 1.2 12 
NCR Flood2lain 689 1.4 

Transect L, Ash 19 

TSS Canadian 957 10.2 47.6 204 
R1ver (CAR) 
TS4 (CAR) 942 8.8 31.1 189 
TSJ (CAR) 908 1.4 23.2 155 
(Ash 19) (896) (23.2) (143) 
TS2 (CAR) 902 3.6 19.8 149 
TS 1 (CAR) 786 0.6 1.8 34 
CAR Flood2lain 753 2.6 
TNl (CAR) 890 1.2 9.8 137 
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TABLE II 

TERRACE LEVEL AND VOLCANIC ASH AGE 

Ash Ash Age Terrace height 
Transect No. (m. y •) above river, (m) 

Arkansas River 
c 10 0.88±0.09 21 
B 8 0.74±0.08 (or Red Rock 15m) 14 

Cimmarron River 
I 23 0.73±0.08 (or N. Canadian 15m) 67 
J 18 0. 60±0. 07 43 

North Canadian River 
D 15 0. 95 ±0 .10 (or Cimmarron 174m) 52 
H 21 0. 65 ±0 .07 46 

Canadian River 
L 19 2.15 ±0. 24 155 
A 34 0.87±0.13 (or Washita 64m) 67 

Washita River 
E 20 0.90±0.12 119 
E 13 0.84±0.09 (or Canadian 85m) 76 

Kiowa Creek 
K 25 1. 00±0. 11 (or N. Canadian 46m) 30 

Elk Creek 
F 28 0.89±0.09 21 

Brazos River 
G 27 0.67±0.07 46 



Ash 
Tran- Ash age 
sect No. (m. Y.) 

A 34 0.87t0.13 

B 8 0. 74t0.08 

c 10 0. 88t0.09 

D 15 0. 95t0.10 

E 20 o. 90.t0. 12 

13 0. 84 tO .09 

F 28 0.89!0.09 

G 27 0.67t0.07 
H 21 0.65:!:0.07 

l 23 0. 73t0 .08 

J 18 0.60t0.07 

K 25 1. OOtO. II 

L 19 2.15!0.24 

TABLE III 

TERRACE SURFACE DATED BY VOLCANIC ASHES 
AND SOILS MAPPED ON TERRACES. 

Soil series 
County on terrace Soil Classification 

Garvin, OK Durant Fine, montmorillonitic, thermic Argiustoll 
Teller Fine-loamy, mixed, thermic Udic Argiustoll 
Konawa Fine-loamy, mixed, thermic Ultic Haplustalf 

Reno, KS Bethany Fine, mixed, thermic Pachic Paleustolls 
Farnum Fine-loamy, mixed, thermic Pachic Argiustoll 

Reno,- KS Clark Fine-loamy, mixed, thermic Typic Calc ius toll 
Ost Fine-loamy, mixed, thermic Typic Argiustoll 
Farnum Fine-loamy, mixed, thermic Pachic Argiustoll 
Shellabarger Fine-loamy, mixed, thermic Udic Argiustoll 

Woodward, OK Mansker Fine-loamy, carbonatic, thermic Calciorthidic Paleustoll 
Enterprise Coarse, silty, mixed thermic Typic Ustochrept 
Pratt Sandy, mixed, thermic Psammentic Haplustalf 

Washita, OK Grandfield Fine-loamy, mixed, thermic Udic Haplustalf 
Altus Fine-loamy, mixed, thermic Pachic Argiustoll 

Custer, OK St. Paul Fine-silty, mixed thermic Pachic Argiustoll 
Minco Coarse-silty, mixed, thermic Udic Haplustoll 
Pond Creek Fine-silty, mixed, thermic Pachic Argiustoll 
Grant Fine-silty, mixed, thermic Udic Argiustoll 

Kiowa, OK Tillman Fine, mixed, thermic Typic Paleustoll 
Hollister Fine, mixed, thermic Pachic Paleustoll 

Knox, TX Sagerton Fine, mixed, thermic Typic Paleustoll 
Harper, OK Otero Coarae-loamy, mixed (calcareous), mesic Us tic Torrtorthent 

Pratt Sandy, mixed, thermic Psammentic Haplusta1f 
Harper, OK Tipton Fine-loamy, mixed, thermic, Pachic Argiu~toll 

Mansker Fine-loamy, carbonatic, thermic Calc iorthidic Paleustoll 
Beaver, OK Richfield Fine, montmorillonitic, Mesic Aridic Argiustoll 

Han sic Fine-loamy, mixed, thermic, Typic Cal<..iustoll 
Beaver, OK Mansker Fine-loamy, carbonatic, thermic Calciorthidic Paleustoll 

Otero Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthent 
Hansic Fine-loamy, mixed, thermic, Aridic Calc ius toll 

Roberts. TX Estacada Fine-loamy, mixed, thermic Calc1orth1d1c Paleustoll 
Paloduro Fine-loamy, mixed, thermic Aridic Haplu~toll 

U"1 
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TABLE IV 

SOILS ON TERRACES 

Terrace height 
above stream Soil series 

Terrace (H) mapped on terrace Classification 

Canadian River 
(CAR) Floodplain 
TSl (CAR) 
TS2 (CAR) 
T53 (CAR) 
TS4 (CAR) 
Ash 34 in 
this terrace 

Arkansas River 
(ARK) Floodplain 

TSl (ARK) 
TS2 (ARK) 
T53 (ARK) 
Ash 8 in this 
terrace 
TS4 (ARK) 

Arkansas River (Ark) 
Floodplain 

TS l (Ark) 

TS2 (Ark) 

--
34 
36 
58 
67 

--
4 
6 

14 

26 

9 

15 

Gaddy 
Yahola 
Minco 
Clarita 
Konowa 
Durant 
Teller 
Konowa 

Pldtte 
Lesho 
\./ann 
Farnum 
Fa~:num 

Farnum 
Bethany 

Shellabarger 
Albion 

Wdnn 
Platte 
Lesho 
Shellabarger 
Farnum 
Farnum 
Tabler 
Vanoss 

Transect A, Ash 34 

Sandy, mixed, thermic Typic Ustifluvents 
Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents 
Coarse-silty, mixed, thermic Udic Haplustalfs 
Fine, montmorillonitic, thermic Udic Pellusterts 
Fine-loamy, mixed, thermic Ultic Haplustalfs 
Fine, montmorillonitic, thermic Vertic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Ultic Haplustalfs 

Transect B, Ash 8 

Sandy, mixed, mesic Mollie Fluvaquents 
Sandy, skeletal, mixed thermic Fluvaquentic Haplustolls 
Coarse-loamy, mixed, mesic Fluvaquentic Haplustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolla 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine, mixed, thermic Pachic Paleustolls 

Fine-loamy, mixed, thermic Udic Argiustolls 
Coarse-loamy, mixed, thermic Udic Argiustolls 

Transect C, Ash 10 

Coarse-loamy, mixed, mesic Fluvaquentic Haplustolls 
Sandy, mixed, mesic mollie Fluvaquents 
Sandy-skeletal, mixed, thermic Fluvaquentic Haplustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine, montmorillonitic, thermic Vertic Argiustolls 
Fine-silty, mixed, thermic Udic Argiustolls 

(.}"1 
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Terrace 

TS3 (Ark) 

TS4 (Ark) 
Ash 10 in 
this terrace 

TS5 (Ark) 

TS6 (Ark) 

TS7 (Ark) 

TS8 {Ark) 

TS8 {Ark) 

TS9 (Ark) 

N. Canadian 

Terrace height 
above stream 

(H) 

18 

21 

24 

49 

58 

70 

79 

River (NCR) Floodplain 
TNl (NCR} 

TABLE IV (Continued) 

Soil series 
mapped on terrace Classification 

Bethany 
Naron 
Shellabarger 
Naron 
Farnum 
Shellabarger 
Clark 
Oat 
Farnum 
Shellabarger 
Shellabarger 
Farnum 
Albion 
Farnum 
Shellabarger 
Shellabarger 
Farnum 
Albion 
Albion 
Farnum 
Clark 
Blanket 
Shellabarger 
Attica 
Pratt 
Tivoli 

Lincoln 

Lincoln 
Las Animas 

Transect C, Ash 10 (con't) 

Fine, mixed, thermic Pachic Paleustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Typic Calciustolls 
Fine-loamy, mixed, thermic Typic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Coarse-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mi~ed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Coarse-loamy, mixed, thermic Udic Argiustolls 
Coarse-loamy, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Typic Calciustolls 
Fine, mixed, thermic Pachic Argiustolls 
Fine-loamy, mixed, thermic Udic Argiustollq 
Coarse-loamy, mixed, thermic Udic Haplustalfs 
Sandy, mixed, thermic Psammentic Haplustalfs 
Sandy, mixed, thermic Typic Ustipsamments 

Transect D, Ash 15 

Sandy, mixed, thermic Typic Ustifluvents 

Sandy, mixed, thermic Typic Ustifluvents 
Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents 

(Jl 
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Terrace 

TN2 (NCR) 

TN3 (NCR) 

TN4 (NCR) 
TNS (NCR) 

TN6 (NCR) 
TN7 (NCR) 
Ash 15 in 
this terrace 

Cimarron River 
(CI) Floodplain 
TS l (C I) 
TS2 (Cl) 
TS3 (CI) 
TS4 (CI) 

TSS (CI) 

TS6 (Cl) 

TABLE IV (Continued) 

Terrace height 
above stream Soil series 

(M) mapped on terrace Classification 

3 

12 

21 
34 

43 
52 

6 
21 
94 

101 

168 

174 

Tansect 0, Ash 15 (con't) 

Lincoln Sandy, mixed, thermic Typic Ustifluvents 
Las Animas Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents 
Tivoli Sandy, mixed, thermic Typic Ustipsamments 
Elsmere Sandy, mixed, Mesic Aquic Haplustolls 
Las Animas Coarse-loamy, mixed (calcareous) mesic Typic Fluvaquents 
Pratt Sandy, mixed, thermic Psammentic Haplustalfs 
Pratt Sandy, mixed, thermic Psammentic Haplustalfs 
Carwile Fine, mixed, thermic Typic Argiaquolls 
Pratt Sandy, mixed, thermic Psamrnentic Haplustalfs 
Pratt- Sandy, mixed, thermic Psammentic Haplustalfs 
Carwile Fine, mixed, thermic Typic Argiaquollq 
Nobscot Loamy, mixed, thermic Arenic Paleustalfs 
Mansker Fine-loamy, carbonatic thermic Calciorthidic Paleustolls 
Enterprise Coarse-silty, mixed, thermic Typic Ustochrepts 
No survey completed for Woods Co., OK 

No survey 
No survey 
St. Paul 
St. Paul 
Vernon 
Mansker 
Enterprise 
Pratt 
Carwile 
Nobscot 

completed for Woods Co., OK 
completed for Woods Co., OK 

Fine-silty, mixed, thermic Pachic Argiustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Fine, mixed, thermic Typic Ustochrepts 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-silty, mixed, thermic Typic Ustochrepts 
Sandy, mixed, thermic Psammentic Haplustalfs 
Fine, mixed, thermic Typic Argiaquolls 
Loamy, mixed, thermic Arenic Haplustalfs 

Mansker 
Enterprise 

Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-silty, mixed, thermic Typic Ustochrepts 

U"l 
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TABLE IV (Continued) 

Terrace height 
above stream Soil series 

Terrace (H) mapped on terrace Classification 

Washita River 
{WAR) Floodplain 
TSI (WAR) 3 

TNI (WAR) IS 
TN2 (WAR) 21 

TN) (WAR) 27 
TN4 (WAR) S2 
TS2 (WAR) ss 
TS) (WAR) sa 
TS4 (WAR) 61 
TN5 (WAR) 70 
TN6 (WAR) 76 
Ash 13 in 
this terrace 

TS5 (WAR) aa 
TS6 (WAR) 119 
Ash 20 in this terrace 
Canadian River 
(CAR) Floodplain 
TS1 (CAR) 46 

TS2 (CAR) as 
Ash 13 in this 
terrace 

Transect E, Ashes 13 + 20 

Yahola 
Clairemont 
Crisfield 
Yahola 
Clairemont 
Crisfield 
Crisfield 
Pratt 
Devol 
Shellabarger 
Carey 
St. Paul 
Corde 11 
Cordell 
Dill 
Carey 
St. Paul 
Minco 
Pond Creek 
Grant 
Grandfield 
Grandfield 
Altus 
Gracemore 

Minco 
Grant 
Pond Creek 
Minco 
Pond Creek 
St. Paul 
Grant 

Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents 
Fine-silty, mixed (calcareous) thermic Typic Ustifluvents 
Coarse-loamy, mixed, thermic Udic Hapluqtollq 
Coarse-loamy, mixed (calcareous) thermic Typic Ustifluvents 
Fine-silty, mixed (calcareous) thermic rypic Ustifluvents 
Coarse-loamy, mixed, thermic Udic Haplustolls 
Coarse-loamy, mixed, thermic Udic Hapluqtolls 
Sandy, mixed, thermic Psammentic Haplustalfs 
Coarse-loamy, mixed, thermic Udic Haplustalfs 
Fine-loamy, mixed, thermic Udic Argiustolls 
Fine-silty, mixed, thermic Typic Argiustolls 
Fine-silty, mixed, thermic Pachic Argiu~tolls 
Loamy, mixed, thermic Lithic Ustochrepts 
Loamy, mixed, thermic Lithic Ustochrepts 
Coarse-loamy, mixed, thermic Udic Ustochrepts 
Fine-silty, mixed, thermic Typic Argiustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Coarse-silty, mixed, thermic Udic Haplustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Fine-silty, mixed, thermic Udic Argiustolls 
Fine-loamy, mixed, thermic Udic Haplustalfs 
Fine-loamy, mixed, thermic Udic Haplustalfs 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Sandy, mixed, thermic Aquic Udifluvents 

Coarse-silty, mixed, thermic udic Haplustolls 
Fine-silty, mixed, thermic Udic Argiustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Coarse-silty, mixed, thermic Udic Haplustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Fine-silty, mixed, thermic Pachic Argiustolls 
Fine-silty, mixed, thermic Udic ArgiustollR 

U1 
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TABLE IV (Continued) 

Terrace height 
above stream Soil series 

Terrace 

Elk Creek (Elk) 
Floodplain 

TEl (ELK) 
Ash 28 in 
this terrace 
TE2 (ELK) 

TE3 (ELK) 
TWl (ELK) 

TW2 (ELK) 

Brazos River 
(BRR) Floodplain 

TNl (BRR) 

TN2 (BRR) 
Ash 27 in this 
terrace 

N. Canadian River 
(NCR) Floodplain 
TNl (NCR) 

(H) mapped on terrace Classification 

--

21 

24 

30 
30 

40 

27 

46 

3 

Clairemont 
Lugert 
Port 
Tillman 

11llman 
Hollister 
Hollister 
Hollister 
Tillman 
nevol 
Grandfield 

Lincoln 
Mangum 
Yahola 
Hardeman 
Sagerton 
Wichita 
Rotan 
Sagerton 

Lincoln 
Las Animas 
Lincoln 

Transect F, Ash 28 

Fine-silty, mixed (calcareous), thermic Typic Ustifluvents 
Coarse-silty, mixed, thermic Fluventic Haplustolls 
Fine-silty, mixed, thermic Cumulic Haplustolls 
Fine-mixed, thermic Typic Paleustolls 

Fine-mixed, thermic Typic Paleustolls 
Fine, mixed, thermic Pachic Paleustolls 
Fine, mixed, thermic Pachic Paleustolls 
Fine, mixed, thermic Pachic Paleustolls 
Fine-mixed, thermic Typic Paleustolls 
Coarse-loamy, mixed, thermic Udic Haplustalfs 
Fine-loamy, mixed, thermic Udic Haplustalfs 

Transect G, Ash 27 

Sandy, mixed, thermic Typic Ustifluvents 
Fine, mixed (calcareous), thermic Vertic Ustifluvents 
Coarse-loamy, mixed (calcareous), thermic Typic Ustifluvents 
Coarse-loamy, mixed, thermic Typic Ustochrepts 
Fine, mixed, thermic Typic Paleustolls 
Fine, mixed, thermic Typic Paleustalfs 
Fine, mixed, thermic Pachic Paleustolls 
Fine, mixed, thermic Typic Paleustolls 

Transect H, Ash 21 

Sandy, mixed, thermic Typic Ustifluvents 
Coarse-loamy, mixed (calcareous), meRic Typic Fluvaquents 
Sandy. mixed, thermic Typic Ustifluvents 
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Terrace 

TN2 (NCR) 

TS l (NCR) 

TS2 (NCR) 
Ash 21 in 
this terrace 
TS3 (NCR) 

TS4 (NCR) 

TSS (NCR) 

Cimarron River 
(Cl) Floodplain 
TSl (CI) 
TS2 (Cl) 
TS3 (Cl) 

Ash 23 in this 
terrace 

TABLE IV (Continued) 

Terrace height 
above stream Soil series 

(H) mapped on terrace Classification 

27 

27 

46 

67 

79 

115 

9 
30 
67 

Pratt 
Richfield 
Dalhart 
Mansker 
Pratt 
Mansker 
Pratt 
Otero 
Mansker 
Mansker 
Otero 
Richfield 
Hansic 
Richfield 
Man sic 
Mansker 

Transect H, Ash 21 (con't) 

Sandy, mixed, thermic Psammentic Haplustalfs 
Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-loamy, mixed, mesic Aridic Haplustalfs 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Sandy, mixed, thermic Psammentic Haplustalfs 
Fine-loamy, carbonatic, thermic Cdlciorthidic Paleustolls 
Sandy, mixed, thermic Psammentic Haplustalf~ 
Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents 
Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 
Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 

Alluvial and broken ----------
land 

Lincoln 

Spur 
Mansker 
Tipton 
Mansker 

Transect I, Ash 23 

Sandy, mixed, thermic Typic Ustifluvents 

Fine-loamy, mixed, thermic Fluventic Haplustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Fine-loamy, mixed, thermic Pachic Argiustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 

U"l 
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TABLE IV (Continued) 

Terrace height 

Terrace 

Cimarron River 
(Cl) Floodplain 
TS1 (Cl) 
TS2 (Cl) 
Ash 18 in this 
terrace 
TS3 (CI) 

TS4 (CI) 

TSS (Cl) 

Kiowa Creek 
(KIC).Floodplain 
TNl (KIC) 

TN2 (KIC) 

TN3 (KIC) 
TN4 (KIC) 
Ash 25 in 
this terrace 
TNS. (KIC) 

above stream Soil series 
(H) mapped on terrace Classification 

6 
43 

61 

67 

73 

--
9 

12 

24 
30 

34 

Las Animas 

Canadian 
Richfield 
Man sic 

Richfield 
Han sic 
Richfield 
Ulysses 
Mansic 
Alluvial and 
land 
Richfield 

Likes 

Mansker 
Otero 
Mansker 
Otero 
Man sic 
Mansker 
Otero 
Mansker 
Mansic 
Han sic 

Transect J, Ash 18 

Coarse-loamy, mixed (calcareous), mesic Typic Fluvaquents 

Coarse-loamy, mixed, thermic Udic Haplustolls 
Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 

broken 

Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 
Fine, montmorillonitic, mesic Aridic Argiustolls 
Fine-silty, mixed, mesic Aridic Haplustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 

Fine, montmorillonitic, mesic Aridic Argiustolls 

Transect K, Ash 25 

Sandy, mixed, thermic Typic Ustipsamments 

Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents 
Fine-loamy, mixed, thermic Aridic Calciustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 
Fine-loamy, mixed, thermic Aridic Calciustolls 

(J1 

co 



TABLE IV (Continued) 

Terrace height 

Terrace 

Canadian River 
(CAR) Floodplain 
TSl (CAR) 
TNl (CAR) 

TS2 (CAR) 

TS3 (CAR) 
Ash 19 in 
this terrace 
TS4 (CAR) 

TSS (CAR) 

above stream Soil series 
(H) mapped on terrace Classification 

34 
137 

149 

155 

189 

204 

Lincoln 

Mobeetie 
Paloduro 
Estacada 
Mansker 
Pullman 
Olton 
Est acado 
Paloduro 
Paloduro 
Est acado 

Pullman 
Olton 
Est acado 
Darrouzett 
Pullman 
Mansker 

Transect L, Ash 19 

Sandy, mixed, thermic Typic Ustifluvents 

Coarse-loamy, mixed, thermic Aridic Ustocreepts 
Fine-loamy, mixed, thermic Aridic Haplustolls 
Fine-loamy, mixed, thermic Calciorth1dic Paleustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 
Fine, mixed, thermic Torrertic Paleustolls 
Fine, mixed, thermic Aridic Paleustolls 
Fine-loamy, mixed, thermic Calciorthidic Paleustolls 
Fine-loamy, mixed, thermic Aridic Haplustolls 
Fine-loamy, mixed, thermic Aridic Haplustolls 
Fine-loamy, mixed, thermic Calciorthidic Paleustolls 

Fine, mixed, thermic Torrertic Paleustolls 
Fine, mixed, thermic Aridic Paleustolls 
Fine-loamy, mixed, thermic Calciorthidic Paleuatolla 
Fine, mixed, thermic Pachic Paleustolls 
Fine, mixed, thermic Torrertic Paleustolls 
Fine-loamy, carbonatic, thermic Calciorthidic Paleustolls 

U'1 
c..o 



TABLE V 

SELECTED SOIL CHARACTERISTICS FOR TERRACES 
ALONG TRANSECTS CONTAINING ASHES 

Mollie 
Terrace Soil Ser1es Family Particle Parent Material 

Size Class 
Depth to Calcic Colors Bt Solum t/k 

free Thickness Thickness Thickness Thickness 
CaCO. Ccml Ccml Ccml {em) Ccml 

TBANSECT A -- ASH 34 !0.87 t 0.13 Mal-Average Annyal Precipitation Ctn cml-91 

Canadian R. Gaddy Sandy Recent sandy surface none none none 51 none 
(CAR) alluvium 
Floodplain 

Yahola coarse-loamy Permian/Pleistocene surface none none none 28 none 
loamy alluv1um 

TSl (CAR) Minco coarse-silty Loamy eolian deposits 140 none 38 none 140 none 
TS2 (CAR) Clarita fine Cretaceous/Permian 25 none 56 none 127 none 

clays 
TS3 (CAR) Konawa fine-loamy Pleistocene sandy/ none none none 61 137 none 

loamy alluvium 
TS4 (CAR)* Durant fine Cretaceous shale 119 none 28 135 163 none 

Teller fine-loamy Pleistocene loamy none none 38 102 152 none 
sediments 

Konawa fine-loamy Pleistocene sandy/ none none none 61 137 none 
loamy alluvium 

TBANSECT B -- ASH 8 !0.74 t 0.08 Mal-Average Annyal Precipitation Cin cml-66 

Arkansas R. Pratt Sandy Sandy eolian deposits none none none 71 102 none 
(ARK) 
Floodplain 

Lesho fine-loamy Alluvium surface none 46 none 46 none 
over sandy 

Wann coarse-loamy Recent alluvium surface none 41 none 41 none 
TS1 (ARK) Farnum fine-1 oamy Loamy old alluvium . 152 41 112 79 152 t,k 
TS2 (ARK) Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 
TS3 (ARK)* Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 

Bethany fine Pleistocene loess 91 none 91 158 203 none 
or alluvium 

Shellabarger fine-loamy Old alluvium none none 48 48 97 none 
Albion coarse-loamy Loamy sediments none none 41 20 69 none 

*Ash in this terrace. 

0'1 
0 



TABLE V (Continued) 

Hollie 
Terrace Soil Sertes Family Particle Parent Material Oepth to Calcic Colors Bt Solum t/k 

S1Ze Class free Thickness Thickness Thickness Thickness 
, l~;ml l~;ml l~;ml l~;ml l~;ml 

IRA~~ECT C -- ~~~ lO {Q,~~ ~ Q,Q2 M~}-8v~r~g~ 8nnui] ~r~~;l~ltitl2D (lo ~ml-2§ 

Arkansas R. Wann coarse-loamy Recent alluvium surface none 41 none 41 none 
(ARK) 
Floodplain 

Pratt sandy Sandy eolian depos1ts none none none 71 102 none 
Lesho f1ne-loamy Alluvium surface none 46 none 46 none 

over sandy 
lSI (ARK) Shellabarger fine-loamy Old alluvium none none 48 48 97 none 

Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 
TS:Z (ARK) Farnum fine-loamy Loamy old alluvium lS:Z 41 112 79 152 t,k 

Tabler fine Calcareous loamy 76 none 112 51 112 none 
Clayey alluvium 

Vanoss fine-silty Pleistocene loamy none none 38 89 127 none 
alluvium 

Bethany f1ne Pleistocene loess 91 none 91 158 203 none 
or alluvium 

Naron fine-loamy Loamy eolian deposits >152 none 91 51 137 none 
Shellabarger fine-loamy Old alluvium none none 48 48 97 none 

TS3 (ARK) Naron fine-loamy Loamy eolian deposits >152 none 91 51 137 none 
Farnum f1ne-loamy Loamy old alluvium 152 41 112 79 152 t,k 
Shellabarger f1ne-loamy Old alluvium none none 48 48 97 none 

TS4(ARK)* Clark fine-loamy Calcareous old 25 114 38 none 38 none 
a 11 uvlum 

Ost f1ne-loamy Calcareous old 36 76 36 36 112 t,tk,k 
alluvium 

Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 
Shellabarger fine-loamy Old alluvium none none 48 48 97 none 

T$5 (ARK) Shellabarger f1ne-loamy Old alluvium none none 48 48 97 none 
Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 

TS6 (ARK) Albion coarse-loamy Loamy sediments .none none 41 20 69 none 
Farnum fine-loamy Loamy old alluvium 152 41 112 79 152 t,k 
Shellabarger fine-loamy Old alluvium none none 48 48 97 none 

TS7 (ARK) Shellabarger f1ne-loamy Old alluvium none none 48 48 97 none 
Farnum f1ne-loamy Loamy old alluvium 152 41 112 79 152 t,k 
Alb1on coarse-loamy Loamy sediments none none 41 20 69 none 

TS8 (ARK) Alb1on coarse-loamy Loamy sediments none none 41 20 69 none 
Farnum f1ne-loamy Loamy old alluvium 152 41 112 79 152 t,k 
Clark f1ne-loamy Calcareous old 25 114 38 none 38 none 

alluvium 
•Ash 10 In th1s terrace. 

(j) 
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TABLE V (Continued) 

Hollie 
Terrace Soil Series Family Particle Parent Material 

S1Ze Class 
Depth to Calcic Colors Bt Solum t/k 

free Thickness Thickness Thickness Thickness 
CaCO. (cml (cml !cml !cml !cml 

TBANSECT C -· ASH 10 !0.88 ± 0.09 Mal-Ayerage Annual prec1o1tat1on !In cml-66 !Con'tl 

TS8 (ARK) Blanket floe Calcareous sediments 107 none 76 61 127 none 
Shellabarger f1ne-loamy Old alluvium none none <48 48 97 none 

TS9 (ARK) Attica coarse-loamy Eolian sediments >76 none 25 28 99 none 
Pratt sandy Sandy eolian deposits none none none 71 102 none 
TivolI sandy Sandy eol tan none none none none 18 none 

sediments 

TBANSECT D --ASH 15 (0.95 t 0.10 Mal-Average Annual Prec!oltatlon (In cml-61 

N. Canadian R. 
(NCR) 
Floodplain Lincoln sandy Sandy recent surface none none none 28 none 
TNl (NCR) Lincoln sandy Sandy recent surface none none none 28 none 

las Animas coarse-loamy Loamy calcareous surface 114 none none 46 none 
alluvium 

TN2 (NCR) Lincoln sandy Sandy recent surface none none none 28 none 
las Animas coarse-loamy Loamy calcareous surface 114 none none 46 none 

alluvium 
TN3 (NCR) T!vol I sandy Sandy eolian sediment none none none none 18 none 

Elsmere sandy Eolian sands or none none 41 none 76 none 
sandy alluvium 

Las Animas coarse-loamy Loamy calcareous surface 114 none none 46 none 
alluvium 

TN-4 (NCR) Pratt sandy Sandy eolian deposits none none none 71 102 none 
TNS (NCR) Pratt sandy Sandy eolian deposits none none none 71 102 none 

Carwile f1ne Loamy alluvium or 89 none none 51 114 none 
eolian sediments 

TN6 (NCR) Pratt sandy Sandy eolian deposits none none none 71 102 none 
TN7 (NCR)* Pratt sandy Sandy eol1an deposits none none none 71 102 none 

Carwile fine Loamy alluvium or 89 none none 51 114 none 
eolian sediments 

Nobscot loamy Ple1stocene loamy/ none none none 122 203 none 
sandy sediments 

Mansker fine-loamy Calcareous loamy surface 137 31 137 168 tk 
material 

Enterpn se coarse-silty Loamy eol tan 46 none none none 102 none 
sediments 

*Ash 1n th1s terrace. 

0"1 
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TABLE V (Continued) 

Hollie 
Terrace So11 Series" Family Particle Parent Material 

Size Class 
Depth to Calcic Colors Bt Solum t/k 

free Thickness Thickness Thickness Thickness 
CaCO. !cml _ _icmL !cml ___ Jcml lcml 

TBANSECT 0 -- ASH 15 (0.95 t 0.10 Mal-Ayeraqe Annual Prec1p1tat1on !in cml-61 !Con'tl 

Cimarron R. no survey 
( C I) 
F1 oodpla In 
TSl (CI) no survey 
TS2 (C 1) no survey 
TSJ (CI) St. Paul fine-silty Pleistocene silty 86 none 114 69 142 none 

sediments or weathered 
Permian sandstone 

TS4 (CI) St. Paul floe-s 11 ty Pleistocene silty 86 none 114 69 142 none 
sediments or weathered 
Permian sandstone 

TSS (Cl) Mansker fine-loamy Calcareous loamy surface 137 31 137 168 tk 
material 

Enterprise coarse-silty Loamy eolian 46 none none none 102 none 
sediments 

TS6 (CI) Pratt sandy Sandy eolian deposits none none none 71 102 none 
Carwile f1ne Loamy alluvium or 89 none none 51 114 none 

eolian sediments 
Nobscot loamy Pleistocene loamy/ none none none lZZ 203 none 

sandy sediments 
Mansker fine-loamy Calcareous loamy surface 137 31 137 168 tk 

material 
Enterprise coarse-silty Loamy eolian 46 none none none 102 none 

sediments 

TBANSECT E --ASH 13 !0.84 t 0.09 Hal. ASH 20 (0.90 t O.lZ Mal-Ayerage Annual Precipitation !In cml-66 

Washita R Yahola coarse-loamy Calcareous loamy surface none none none 28 none 
(WAR) alluvium 
Floodphin 

Clairemont fine-s 11 ty Calcareous silty surface none none none 20 none 
alluvium 

TS1 (WAR) Crisfield coarse-loamy Sandy alluvium none none 41 none 114 none 
Yahola coarse-loamy Calcareous loamy surface none none none 28 none 

alluvium 
Cla1remont f1ne-silty Calcareous silty surface none none none 20 none 

allUVIUm 

0) 

w 



TABLE V (Continued) 

Mollie 
Terrace Soil Serie-s Fam1ly Particle Puent Material Depth tp Calcic Colors Bt Solum t/k 

Size Chss free Thickness Thickness Thickness Thickness 
s I s;ml ls;ml ls;ml ls;ml ls;ml 

IBA~St~l E --as~ 1~ IQ,a! 1 Q,Q~ ~~l. as~ ZQ (Q,2Q 1 Q,lZ ~ll·A~~[IQ~ ~DDYI] er~s;i~1tlti2D (1D s;ml·~~ (~2D'1l 

TN1 (WAR) Crisfield coarse-loamy Sandy alluvium none none 41 none 114 none 
TN2 (WAR) Crt sfleld coarse-loamy Sandy alluvium none none 41 none 114 none 

Pratt sandy Sandy eolian deposits none none none 71 102 none 
Devol coarse-loamy Pleistocene loamy none none none 33 101 none 

and sandy sediments 
Shellabarger fine-loamy Old alluvium none none 48 48 97 none 

TN3 (WAR) Carey fine-silty Permian silty or 36 81 36 86 173 t,tk,k 
sandy redbeds 

TN4 (WAR) St. Paul fine-s11ty Pleistocene silty 86 none 114 69 142 none 
sediments; Perm1an 
sandstone 

TS2 (WAR) Cordell loamy Permian calcareous surface none none none 36 none 
siltstone 

TS3 (WAR) Cordell loamy Permian calcareous surface none none none 36 none 
siltstone 

TS4 (WAR) Dill coarse-loamy Permian sandstone none none none none 81 none 
TNS (WAR) Carey fl ne- sll ty Permian silty or 36 81 36 86 173 t,tk,k 

sandy redbeds 
TN6 (WAR)* St. Paul fine-s ll ty Pleistocene silty 86 none 114 69 142 none 

sediments; Permian 
sandstone 

Hi nco coarse-silty loamy eolian deposits 140 none 38 none 140 none 
Pond Creek fine-silty Loamy loess/alluvium none none 117 61 152 none 
Grant fine-silty Permian silty 119 none 41 41 119 none 

sandstone or shale 
TS5 (WAR) Grandfield fine-loamy Pleistocene 122 none none 76 178 none 

calcareous loamy/ 
sandy sediments 

TS6 (WAR)** Grandfield fine-loamy Pleistocene 122 none none 76 178 none 
calcareous loamy/ 
sandy sediments 

Altus fine-loamy Pleistocene 158 none 89 61 158 none 
calcareous loamy/ 
sandy sed1ments 

Canadian R. Gracemore sandy Recent calcareous 31 none none none 31 none 
(CAR) sandy alluvium 
Floodplain 

*Ash 13 in this terrace; •• Ash 20 in this terrace 
0'\ 
~ 



TABLE V (Continued) 

Holl ic 
Terrace Soil Series Family Particle Parent Material Depth to Calcic Colors Bt Solum t/k 

Size Class free Thickness Thickness Thickness Thickness 
, ''ml !'ml ''ml !t!l!l !tml 

IBAM~E~I E -- 8SH lJ (Q,§~ 1 Q,Q2 ~1l. A~H ZQ IQ,2Q ~ Q,lZ Hil·A~~c~g~ ADDYil ~c~'lRlL1Ll2b lln 'ml-§§ (~gn'tl 

lSI (CAR) Hi nco coarse-silty Loamy eolian deposits 140 none 38 none 140 none 
Grant fine-s 11 ty Permian silty 119 none 41 41 119 none 

sandstone or shale 
Pond Creek fine-s11ty loamy-loess/alluvium none none 117 61 152 none 

TS2 (CAR)* Minco coarse- s 11 ty Loamy eol1an deposits 140 none 38 none 140 none 
Pond Creek f1ne-s 11 ty Loamy loess/alluv1um none none 117 61 152 none 
St. Paul fine-silty Pleistocene silty 86 none 114 69 142 none 

sediments; Permian 
sandstone 

Grant fine-silty Permian silty 119 none 41 41 119 none 
sandstone or shale 

!RA~~E~l E -- 8~H za IQ,§2 ~ Q,Q~ Mil-Av~ci9~ AnDYil ~c~'IRiLiLl2D lin tml-§§ 

Elk Cr. Clairmont fine-silty Calcareous silty surface none- none none 20 none 
(ELK) alluvium 
Floodplain lugert coarse-silty Alluvial sediments 51 none 41 none 107 none 

Port fine-silty Recent calcareous 69 none 69 none 107 none 
loamy alluvium 

TEl (ELK)* Tillman fine-mixed Clayey alluvium surface 81 36 178 206 t,tk,k 
TE2 {ELK) Tillman fine-mixed Clayey alluvium surface 81 36 178 206 t,tk,k 

Hollister f1ne-mlxed Permian calcareous 15 46 81 147 178 t,tk 
clay 

TE3 (ELK) Hollister fine-mixed Permian calcareous 15 46 81 147 178 t,tk 
clay 

TW1 (ELK) Hollister fine-mixed Permian calcareous 15 46 81 147 178 t,tk 
clay 

Tillman fine-mixed Clayey alluvium surhce 81 36 178 206 t,tk,k 
TW2 (ELK) Devol coarse-loamy Pleistocene loamy, none none none 33 102 none 

sandy sediments 
Grandfield fine-loamy Pleistocene 122 none none 76 178 none 

calcareous loamy 
sandy sediments 

•Ash in this terrace. 
en 
U1 



TABLE V (Continued) 

Hollie 
Terrace Soil Series Family Particle Parent Material Depth to Calcic Colors Bt 

Size Class free Thickness Thickness Thickness 
3 {t!!ll !tml !tml !tml 

IRAHSECI G -- ASH ZZ {Q,§Z ~ Q,QZ Mil·A~~ri9~ BDDYi] ~r~,l~ltitlgn !!D 'ml-2§ 

Brazos R. Lincoln sandy Recent sandy surface none none none 
(BRR) material 
Floodplain 

Mangum fine Calcareous clayey surface none none none 
alluvium 

Yahola coarse-loamy Permian and surface none none none 
Pleistocene 
calcareous loamy 
alluvium 

Hardeman coarse-loamy Eolian materials 25 none none none 
TNl (BRR) Sagerton fine Calcareous clayey 64 66 38 196 

loamy sediments 
Wichiti fine loamy clayey alluvium 56 112 none 142 
Rotan fine Quaternary cal- 36 51 64 168 

careous loamy alluvium 
TNZ (SRR)* Sagerton fine Calcareous clayey 64 66 38 196 

loamy sediments 

TRANSECT H -- ASH Zl {Q,§~ ~ Q,QZ Ma}-Av~r~g~ 8no~i] ~r~tigltitlgn {!D tml-~2 

N. Canadian Lincoln sandy Recent sandy surface none none none 
R. (NCR) material 
Floodplain 

Las Animas coarse-loamy Loamy calcareous surface 114 none none 
alluvium 

TN! (NCR) Lt ncol n sandy Recent sandy material surface none none none 
TN2 (NCR) Pratt sandy Sandy eolian deposits none none none 71 

Richfield fine Calcareous loess 41 36 41 25 
Dalhart fine-loamy Pleistocene loamy 71 31 23 74 

eolian deposits 
Mansker fine-loamy Calcareous loamy surface 137 31 137 

material 
TSl (NCR) Pratt sandy Sandy eolian deposits none none none 71 

Mansker ftne-loamy Calcareous loamy surface 137 31 137 
material 

*Ash in this terrace. 

Solum 
Thickness 

{tm} 

28 

61 

28 

91 
213 

168 
203 

213 

28 

46 

28 
102 

51 
127 

168 

102 
168 

t/k 

none 

none 

none 

none 
t,tk,t 

t,tk 
t,tk,t 

t,tk,t 

none 

none 

none 
none 
t,k 
t,k 

tk 

none 
tl< 

(j) 
(j) 



TABLE V (Continued) 

---------------
Moll ic 

Terrace Soil Serl es Family Particle Parent Material Depth to Calcic Colors Bt Solum 
Size Class free Thickness Thickness Thickness Thickness 

3 !~ml !~ml !~ml !~ml !~ml 

IBAHSE~I ~ -- AS~ Zl (Q,§~ 1 Q,QZ ~~l-Av~r~g~ ADDUi] ~r~~laltiti2D liD ~ml-~§ !~2D'tl 

TS2 (NCR)* Pratt sandy Sandy eolian deposits none none none 71 102 
Otero coarse-loamy Alluvial sediments surface 117 none none 36 
Mansker fine-loamy Calcareous loamy surface 137 31 137 168 

material 
TS3 (NCR) Mansker f1ne-loamy Calcareous loamy surface 137 31 137 168 

material 
Otero coarse-loamy Alluvial sediments surhce 117 none none 36 

TS4 (NCR) Richfield fine Calcareous loess 41 36 41 25 Sl 
Mansic f1ne-loamy Tertiary calcareous 31 104 48 none 76 

alluvium 
TSS (NCR) Richfield fine Calcareous loess 41 36 41 25 51 

Hanslc fine-loamy Tertiary calcareous 31 104 48 none 76 
alluvium 

Mansker fine-loamy Calcareous loamy surface 137 31 137 168 
material 

lRAHSE~I 1 -- AS~ ZJ IQ,ZJ 1 Q,Qe ~~l-A~~rigg ADDUI] ~r~~lultltlgo liD ~ml-5§ 

Cimarron R. Lincoln' sandy Recent sandy surface none none none 28 
(C1) material 
Floodplain 
TS1 (C1) Spur fine-loamy Loamy alluvial surface none 38 none 97 

sediments 
TS2 (C1) Mansker fine-loamy Calcareous loamy surface 137 31 137 168 

material 
TS3 (CI)* Tipton fine-loamy Pleistocene cal- 102 none 86 48 168 

careous loamy 
silty alluvium 

Mansker fine-loamy Calcareous loamy surface 137 31 137 168 

*Ash in this terrace. 

t/k 

none 
k 
tk 

tk 

k 
t,k 
k 

t,k 
k 

tk 

none 

none 

tk,tk 

none 

tk, tk 
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TABLE V (Continued) 

Moll tc 
Terrace So11 Sertes Family Particle Parent Material Depth to Calctc Colors Bt 

Size Class free Thickness Thickness Thickness 
3 ls;ml ls;ml ls;ml ls;ml 

IRANSE~I ~ -- a~H 1~ {Q,§Q ~ Q,QZ MAl·Av~[i9~ ADDUi] ~r~s;l~l~itl2D (lD s;ml-~1 

Cimarron R. Las Animas coarse-loamy Calcareous alluvium surface 114 none none 
(C I) 
Floodplain 
TS1 (CI) Canadian coarse-loamy Pleistocene loamy 76 none 38 none 

alluvium 
TSZ (CI)* Richfield fine Calcareous loess 41 36 41 25 

Man sic fine-loamy Tertiary calcareous 31 104 48 none 
alluvium 

< TS3 (CI) Richfield fine Calcareous loess 41 36 41 25 
Hansic fine-loamy Tertiary calcareous 31 104 48 none 

alluvium 
TS4 (CI) Richfteld fine Calcareous loess 41 36 41 25 

Ulysses fine-silty Calcareous loess 25 51 25 none 
Man sic fine-loamy Tertiary calcareous 31 104 48 none 

alluvium 
TSS (CI) Richfield fine Calcareous loess 41 36 41 25 

IRANSE~T ~ -- ASH Z~ !1,0Q 1 Q,ll MAl·Avgri9e ADDUil Prgs;]gititigo (in s;ml-~1 

Kiowa Cr. likes sandy Unconsolidated surface none 25 none 
(KIC) sandstones, alluvial 
Floodplain and eoltan sands 
TNl (KlC) Mansker fine-loamy Calcareous loamy surface 137 31 137 

material 
Otero coarse-loamy Alluvial sediments surface 117 none none 
Mansker f1 ne-1 oamy Calcareous loamy surface 137 31 137 

material 
Otero coarse-loamy Alluvial sediments surface 117 none none 
Mansic fine-loamy Tertiary calcareous 31 104 48 none 

alluvium 
TN3 (KIC) Mansker fine-loamy Calcareous loamy surface 137 31 137 

material 

*Ash in this terrace. 

Solum 
Thickness 

!s;ml 

46 

76 

51 
76 

51 
76 

51 
46 
76 

51 

25 

168 

36 
168 

36 
76 

168 

t/k 

none 

none 

t,k 
k 

t,k 
k 

t,k 
k 
k 

t,k 

none 

tk,tk 

k 
tk,tk 

k 
k 

tk,tk 
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TABLE V (Continued) 

Hollie 
Terrace So11 Series Fam11y Particle Parent Material Depth to Calcic Colors Bt Solum 

Size Class free Thickness Thickness Thickness Th1ckness 
3 !s;ml {s;ml {s;ml !s;ml {s;ml 

!RANSE~T ~ -- AS~ Z~ (l,QQ 1 Q,ll Mll·Av~rag~ ADDYil ~rls;lRllitlQD (lD s;ml-~1 (~QD'll 

TN4 (KIC)* Otero coarse-loamy Alluvial sediments surface 117 none none 36 
Mansker fine-1 oamy Calcareous loamy surface 137 31 137 168 

material 
Hansic fine-loamy Tertiary calcareous 31 104 48 none 76 

alluvium 
TN5 (KIC) Han sic fine-loamy Tertiary calcareous 31 104 48 none 76 

alluvium 

IBAHSECI L -- ASH 12 !Z,l5 ~ Q,Z! ~il·A~Iri91 AnDYil erls;i;itltiQD lln s;ml-51 

Canadian R. Lincoln sandy Recent sandy surface none none none 28 
(CAR) material 
Floodplain 
TS1 (CAR) Mobeetie coarse-loamy Sandy calcareous surface 41 none none 66 

sediments 
TN1 (CAR) Paloduro fine-loamy Calcareous loamy surhce none 31 none 203 

sediments 
Est acado fine-loamy Calcareous loamy surface 211 41 211 252 

materia 1 s 
Mansker fine-loamy Calcareous loamy surface 137 31 137 168 

materia 1 
Pullman fine Calcareous clayey 61 66 61 183 198 

materials 
TS2 (CAR) Olton fine Calcareous loamy 56 112 38 231 252 

materials 
Est acado fine-loamy Calcareous loamy surface 211 41 211 252 

materia 1 s 
Paloduro fine-loamy Calcareous loamy surface none 31 none 203 

sediments 
TS3 (CAR)* Paloduro fine-loamy Calcareous loamy surface none 31 none 203 

sediments 
Est acado fine-loamy Calcareous loamy surface 211 41 211 252 

materials 

•Ash 1n this terrace. 
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TABLE V (Continued) 

Ho11 lc 
Terrace Soil Series Famtly Particle Parent Material 

Size Class 
Depth to Calcic Colors Bt Solum t/k 

free Thickness Thickness Thickness Thickness 
CaCO. CcmL (cml lcml Ccml Ccml 

TBANSECT L -- ASH 19 c2. 15 t 0.24 Hal-Average Anoyal Prec1o1tatton C1o cml-51 <Coo'tl 

TS4 (CAR) Pullman fine Calcareous clayey 61 66 61 183 198 t,tk 
materials 

Olton fine Calcareous loamy 56 112 38 231 252 t,tk,t 
materials 

Est acado fine-loamy Calcareous loamy surface 211 41 211 252 tk 
materials 

Darrouzett fine Loamy, calcareous, 58 64 89 239 254 t,tk 
eolian materials 

ISS (CAR) Pullman fine Calcareous clayey 61 66 61 183 198 t,tk 
materials 

Mansker fine-loamy Calcareous loamy surface 137 31 137 168 tk 
material 

•Ash 10 this terrace. 
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