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PREFACE 

This work actually began in 1985 while in the position of Manager of Winding 

Development at Beloit R&D where I recognized the need to develop a means of accurately 

measuring the fundamental roll structure variables of stress and strain during winding for 

production quality control, as well as the possible closed-loop control of the entire winding 

process. The need for such a measurement became even more apparent when I developed 

a consistent means of evaluating the resolution of roll structure measurements that were 

based on different quantities such as hardness, tension and density. The resolution 

evaluation was based on the number of measurements required to discern a known change 

in roll structure to a specified statistical confidence. The outcome of an extensive series of 

tests showed that all current methods were unreliable, but the density analyzer faired better 

than most and had the additional advantage that it was inherently capable of automated on­

line measurements. 

Assisted by my staff computer programmer who wrote the background data 

acquisition task, we sought to improve the density hardware and software. 

Simult:meously, I b~gnn an extensive review of winding models Y\ith the hopes of tying 

these stress models to experimental measurement. In particular, I hoped that a simple 

conversion fonnula could be constructed which changed density measurements into 

wound-in-stress. The pursuit of this formula proved as elusive as the alchemy of 

changing lead to gold. 

In 1987 I left full-time employment at Beloit to work in the newly formed Web 

Handling Research Center, and simultaneously pursue a Ph.D. in \1echanical Engineering. 

Though I had many accomplishments in the nearly three years at Beloit R&D, I was 

fru'-trated not to find the alchemy of the density to stress transfonnation. Still convinced 

that the successful measurement of web stresses during winding could revolutionize the 

fiL·ld. l p:-nrn,cd the topic J' ll\!th J \\"\.'11 T I~tndlir~~ project <ind thesi<:. topic. 
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In the summer of 1988, the project was restarted with careful emphasis on a 
building block approach. The inspiration that seeded this final successful effort was a 

recognition that all winding models to date were determined systems so that perhaps by 
reformulating the constitutive equations we could determine wound-in-stress from some 
other measurement of the winding roll. All winding models to date were boundary valued 
problems defined by a 2nd order differential equation with core stiffness and wound-in­

tension boundary conditions. The problem with the wound-in-stress boundary condition 

was that it is extremely difficult to determine. Indeed, that is the parameter we most want 
to know about winding. The breakthrough came when I rewrote the boundary condition 

for the outer radius as the sum of the defmmed thicknesses of all layers of the web plus the 

inner core radius. This radius boundary condition could be measured with equipment 

similar to the density analyzer, but in addition required web thickness measurements. 

Now the problem is formulated in terms of quantities that could be measured 

during winding! However, preliminary work indicated that the resolution of the density 

analyzer type diameter measurements needed to be improved several orders of magnitude 
to be suitable to this new approach. Additionally, a means of accurately measuring web 

thickness had to be deve;oped. Once again, I began the redesign of the density type 

measurement, however this time without staff assistance. In December of 1988, the new 

data acquisition system composed of high count encoders, caliper measurement, data 

acquisition boards and computer were used to measure the winding of about 40 rolls of 

paper at Beloit's winding lab in Rockton Illinois. 

Analysis of the data bilck at Oklahoma State Cniversity showed an order of 

magnitude improvement in the resolution of the new measurements. Also, a superior 
alternative to the density quantity was defined as radial compression which also served as 

the boundary condition which drives the stress calculation routines. Though I now realize 

that a direct conversion formula from density to stress is not the correct approach, density­
like measurements are the input to stress calculation routines. 

The primary outcomes of this research are vastly improved ro11 structure 
measurements that can be made during winding or unwinding based on the fundamental 

p:tramcters of stresses and strains. Additional contributions are the measurement of caliper 

and an improved understanding of winding and winding models. I sincerely hope that this 
\\ (lrk will be ntcncled h others to ; l ude ztlternatiw methods of cztliper and radii 

:~1e.:,, ,,_:11ent. nn\ \\i:iding :r1o,kl\ .:·hlrno:'t ii~~;'('rt~uHiy. ''l'rlic.ition to the clcsed-loop 
, ,,,,t,r>]l,f the windin.:; t'rc)cess. 
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CHAPTER I 

INTRODUCTION 

Winding 

Winding is a process whereby a thin, flat and flexible material is wound in a spiral 

fashion into a roll. Materials such as film, foil, paper and textiles are wound into rolls that 

range from just a fraction of an ounce, such as capacitors, to reels of paper more than ten 

feet in diameter and 30 feet long weighing more than 60 tons, to coils of metal that are 

even heavier. A common motivation for winding is that a wound roll provides a 

convenient geometry to produce, ship and use. Also, roll-to-roll winding is used to edit 

the web, add an intermediate process such as coating or finishing, or to salvage 

unacceptable rolls. Finally, rolls may be used to provide a buffer between two stages of 

web processing so that the upstream process can nm more consistently despite changes in 

throughput of the downstream process. 

Winding machines arc composed of multiple rollers made of aluminum, steel or 

synthetics upon which are processed one or more winding or unwinding rolls of web. 

Though winding machines have been running well before the tum of the century and vary 

considerably in appearance, the basic configurations remain unchanged. As seen in 

Figure 1, the roll may be center wound without a lay-on roller, surface wound with a 

roller. or a combination of center and surfacing winding. A lay-on roller. sometimes also 

called a rider roller, is nipped against the winding roll and partially wrapped by the 

incoming web. Configurations can be further subdivided by noting there may be more 

than one roller. such as the two-drum winder, ha\ multiple axially staggered rolls such as 

the duplex winder. or have multiple sequentially processed rolls such as the turret winder. 

Roll-; nny be \\i'L:nd l:pon ~r1rc:-; m:tdc <'f finer. p!::qic or ~;eeL or l'pon shafts 

v-. hi~ h 1 11~iY he -;r)1id nr C\f:lr:Jc~t:>le. c1r \\ ithout :!ny ''!jJf)('rt at the roll's interior [ 1-13, 

124]. As seen in Figure 2. rolls are often restrained from axial or CD (cross direction) 

movement during winding by chuck or shaft holders. Without this restraint, it would be 

diffi\_·ult to \\.inrl :1 roll\\ ith strJ.ight planar edges. 



Figure 1 

WINDER CONFIGURATIONS 

a. Centerwind 

b. Surfacewind 

c. Turret 

d. Two Drum 

e. Duplex 

Top View End Vie·w 



Figure 2 
CHUCKS AND SHAFTS 

a. Roll Held by Core Chucks 

b. Roll Held by Core Shaft 



Though there are numerous winder designs for the myriad of applications, the 

components in a winder are typified by those of the two-drum winder, shown in Figure 3, 

which is commonly used in the paper industry. The unwind stand holds the parent roll 

securely but may move sideways to 'chase' the winding roll to cause a straight buildup of 

the roll edges [51]. The guide roller is used to preserve web geometry on downstream 

components and even out tension from front to back of the web by pivoting on one end. 

Spreader rollers may be used to lay the web flat as well as to spread individually cut webs 

on winders equipped with slitters [107]. The windup section may include one or more 

rollers or drums to provide additional web tension and to squeeze out entrained air [103]. 

Fully automated winders also include additional equipment to insert cores, fasten the web 

to cores, and to eject the finished rolls [92]. Finally, winders have many sensors such as 

load cells for web tension [ 69, 71 ], actuators such as electric drives and pneumatic brakes 

[ 101] to set speed and tension, and controllers such as PLC's, drives and computers [90, 

100, 104, 105]. 

The two essential issues in the economics of winding are productivity and quality. 

Productivity is the ability of the winder and crew to match or exceed the output of the 

upstream process. If the winder should fall sufficiently behind, the upstream process may 

have to be temporarily shut down until the winder can catch up, causing a loss of output. 

Productivity parameters include the acceleration and top speed of the winder, roll change 

time and reliability [91-93, 126]. Though productivity is an important consideration, it is 

not the subject of this thesis and will not be considered further. 

Roll quality is also vitally important to the profitability of web processes because 

rolls which do not meet customer requirements must be salvaged or scrapped. Roll quality 

is defined as the absence of defects that make the roll unsalable, and may be either present 

prior to winding or induced during the winding process [95-97, 125]. Those defects 

present prior to winding such as nonuniform thickness, nonplanarity or uneven coating are 

seldom improved by the winding process. However, there are many roll quality defects 

that the winder itself can introduce such as tears, starring and telescoping [99, 108, 109, 

1231. These winder induced defects are commonly attributed to improper roll structuring 

which are best quantified as radial and tangential stress distributions inside a wound roll 

1hough historically roll structure was also described using hardness, tension and density 

[116, 117, 119]. 



After Slitter Roller 

Bottom Slitter 

Top Slitter 

Before Slitter Roller 

L'nwind Log 
(Parent, Jumbo, Reel) 

Figure 3 

WINDER COMPONENTS 

Guide 
Roller 

Spreader 
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The TNT's of Winding 
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The complex details of the winding process can be avoided for a time by using a 

black-box approach as seen in Figure 4. Knowledge of the system then falls into three 

categories: input parameters, the process laws. and output results. Input parameters are 

\Jri:lhles which may he controlled to optimize the output results which can be loosely 

cie~crihcci as roll quality. The process l:m:; are tk COihtant :md irn ioLJte behavior of 

physiL·al S) ~tcms \\hi~_ h Me described by engineering mechanics. material behavior, and 

other hasic sciences. Ultimately, the goal of winding research is to detem1ine values for 
the controll:lhlc input parameters such that roll CJ.Uality is maximized. This involves 

\', inding mcx_icb. paLlmctcr measurement required by the models, and optimiz~ltion theory. 



Figure 4 

BLACK BOX MODEL OF WINDING 
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The input parameters which are the easiest to control are the Tl\i!'s of winding: 

Torque, Nip, Tension, and speed [102]. Machine builders will usually give the operator 

the ability to adjust the NT's via benchboard controls [90]. As seen in Figure 5, torque 

may be applied as a differential between the front and back drum on two-drum winders, or 

through a center-shaft on duplex winders. Nip is the pressure in PLI (lbs per lineal inch of 

width) between the winding roll and a roller or drum. Tension is the lineal load (PLI) 

applied on the web draw immediately upstream of the winding roll. 

The T.'."Ts (Torque, 1\'ip, Tension and speed) of winding are setpoint functions of 

rewound roll diameter. as seen in Figure 6. The T:\Ts of winding are often linearly 

ckcrc~l'ing fn•m start to finish to give the rolla structure \\hich is hard near the core and 

ck._ JC<l'-i ng ~ml>o;~ly to a ,ofter fini~h at \he out,ide. Rider :-oll nip on a two drum\\ inder 

i~ r·.:rlL<jlS 1hL 1110'->1 L'(>mpli._,tted of the Cc}I1troL bccwse the Wtal back drum nip is the sum 

,)f rider roll nip,· 1] weight and winding angle geometry [1 02, 1 03]. 



Figure 5 

THE TNT'S OF WINDING 
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Increasing any of the Th'T's will usually make the roll harder at that point and vice 

versa. However, the TNT's can't be arbitrarily specified on an unlimited range. Torque is 

limited to the available friction which depends on the coefficient of friction between drum 

and web and the nonnal force detennined by roll weight, geometry and (rider roll) nip 

loading. Exceeding the friction limit will simply cause slipping and possible instability and 

sheet marking. \:ip can't be negative, nor can it be so much as to knead the rewound roll 

to increased interlayer slippage to the point of creping or shear bursts on paper. I\ip also 

must not be too low on nonporous materials such as film. or air entrainment will increase. 

TL·nsion can't be too low else the propensity to wrinkling will be increa'>ed and the sheet 

rLill 'lidY nutter .. -\rlditillil:illy. \'-<.:!-1 ten,ion l'~ln't he ;;,c'fc;;"(:d tno mu,"h bc;,:tuse p~1per web 

hr,·:1ks ;1rc :n1 '''l''flrh·ntial function of \'.cb tension. Tli;h v.cb Ic;>~ic.n on fi1m rna:, C<1usc 

unclesirahle plastic creep which may not be even across the width, if the properties of the 

film ;1rc not unifnnn across the width. 



Figure 6 

TYPICAL SETPOINT FUNCTIONS FOR THE TNT'S 
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The point to remember is that though the TNT's are the most easily controlled 

inputs. they often have narrow ranges of useful adjustment. The operator must find a 

delicate balance between all of these parameters to wind acceptable rolls [94]. 

Additionally, the task is made even more difficult because the material properties change 

intentionally with grade changes and unintentionally due to manufacturing process 

instabilities. These material propeny· changes cause the optimum winding profiles to vary 

with time. 

Il10u:;h -;clmt" qu:mtiutive l\.no\>. kdge c\.ists of th~: rebtiCll1'hip bet\\een the T'\Ts 

and roll defects. this is usually empirical in nature so that the relationships are application 

dependent. In practice, the determination of TNT setpoints is usually done by the operator 

h:lsed on prior \uhjecti\c C\.pcrience. /\dditinnally, different operators may chose different 

\Ctpoints fc)r the s:1mc prcxiuct and machine. 



Web Properties 

Some web properties have a strong influence on roll structure. These include 

caliper [73, 74, 89], density, yield and tensile strengths, coefficient of friction [ 66], 

coefficients of expansion, porosity, as well as the elastic moduli in the z-direction (ZD) 

[79, 88] and machine-direction (MD) [54-64, 70, 75, 82-87, 89]. However, there are 

many web properties that are routinely tested which have essentially no effect on the 

quality of roll structuring including optical properties such as brightness, color and 

opacity. If one was to choose an optimum (fictitious) web for winding, it would probably 

have high: caliper, strength, friction, porosity; and low: anisotropy (MD/ZD modulus), 

and coefficients of expansion. 

Two points must be made about web properties as inputs to the winding process. 

First, though some properties have a profound influence on winding, they can't usually be 

considered an input variable for the purpose of optimizing winding because they are 

generally specified by end use. Therefore, average web properties are not an input 

variable that can be used to optimize winding. Neither are paper properties a modifiable 

output from the winding system because web properties are seldom measurably changed 

by the winding process [Ill]. 

Secondly, the mechanical properties vary with MD position (or time) and cross­

direction (CD) position. These variations or deviations from target have as much influence 

on the winding behavior as the averages or means. One example of this behavior is paper 

wt.:b breaks which occur at rare local weaknesses in the web. It can be shown that the web 

break problem is more influenced by the variations of strength than by the average strength 

[178, 191, 192]. Another example is ropes and corrugations that are almost entirely 

related to variations of caliper across the web. Reducing web property variations to 

optimize winding though desirable, is difficult in practice because the production and 

winding of webs may be on widely separated machines under different supervision. 

\Vinding \fodels 

The winding process is the connection between input variables and output results. 

The process is a system of ir1\io1ate physicalla\\S th:1t describe the paper <;tresses in a roll 

rc:-;ulting from various injlut par~m1cters. The il'lp<:•rt:lnce of rhe-,e phy:-:ical laws are that 

they can quantitatively describe some aspects of roll quality, allowing roll structure 

predictions for any set of input parameters. These laws, which are usually solid 

mcchJnics formulations. can be coded into a computer to run 'what if scenarios to 

optimize winding on a computer much like husinesses use sprcJ.dshcets to mcx:lel prcx:lucts. 



The advantage of computer modeling is that many combinations of inputs can be 
run in a short time at no risk to the product, while searching for optimum combinations of 

inputs. The difficulties of modeling are that some web properties required by the models 
such as radial modulus and caliper are difficult to measure, model verification is difficult 
because stresses are difficult to measure, and defect models are just emerging. 

The analytical modeling of roll winding using mechanics equations began in the 
late 50's using linear isotropic hoop stress formulas in an accretion model [115, 129, 
131]. The model superimposed the stresses due to the addition of a single wrap upon the 

existing stress distribution as wraps are added from the core to the finish diameter. 
Subsequent works removed model restrictions by allowing for anisotropy [127, 137, 149-

153],andlaternonlinearanisotropy [132, 133,140,141, 186]. Thecurrentstateofartof 
winding models gives a close description of centerwinding. However, the effects of the 
nip, air entrainment, inter layer slippage and CD variations remain to be incorporated into a 

single description of winding. 

Roll Structure Measurement 

Returning to Figure 4, it can be seen the output results from winding are loosely 

described as roll structure, which is some measure related to winding stress as a function 

of roll diameter. For most roll structure measurements and for most materials, the ideal 
roll structure will be a profile shape similar to Figure 7, which shows a hard (tight) start, 

with a smooth transition to a softer (looser) finish. Diffc:rcnccs in ideal roll structuring for 

a particular grade are represented by different values of the starting and finish hardness. 

This often used figure is the result of the cumulative experiences of many winding experts, 

but is not presently quantifiable. This means that roll structure quality control efforts are 

limited to measuring roll structure profiles to compare with the ideal profile shape, and 
using other techniques such as judgment or statistics to set initial and final magnitudes. As 

a consequence, roll structuring has been and still is primarily an art rather than a science. 

The earliest device used to measure roll-structure quality was the backtender's stick 

or "billy club", which is a short wooden stick that the operator struck against the roll to 

sound its tightness or hardness. Quantification of hardness became possible with the 
in v c: n t ion of the Rhome t e r and Schmidt I1 am mer in the 1 9 60 · s [ 1 55, 15 6, 15 9]. 

Tc~.·hniques for the measurement of ten::,ion, ~tre<;5 3.nd :--train v. ere devcluped ,md include 

the Cameron Gap [174], J-line [106, 108, 121], strain gages [160, 161, 168, 172], and 
the Beloit WIT-WOT rewinder [166, 167]. Interlayer pressure or radial stress have been 
qu~ntificd by using the Smith needle, Core Torque [161], thin pressure gages [128, 163] 
,n1d ~Kouqic techniques [165] 



Figure 7 

OPTIMUM ROLL STRUCTURE 
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The most recent innovation in roll structure measurement is the density analyzer 

which enables online measurement of roll structure [14-38]. The density analyzer is a 
computerized data acquisition system which calculates the bulk compression of wound 
rolls based on rewound roll diameter measurements. The density analyzer is the first truly 

~lutomate-d roll structure measurement method with high resolution [169, 171]. Since the 

density analyzer hardware serves as a platform for this new stress measurement technique, 
it will be described in more detail in Chapter 6. 

The Measurement of Web Stresses During \Vinding 

Though there are numerous methods of measuring roll structure. none is currently 

able to measure the fundamental parameters of wound-in-stress during winding or 

unwinding. The primary objective of this \vork is to develop a successful \VIS (wound­
in \tre<;s) mc:t>;UflllH.'llt te ... ·hni,lue th:H L·ould be used for Libnrator;· <..:tuclies, production 

ql::dity l·nnt:ol :u1d rcrhJps fur btcr applic1tion by others to the closed-loop control o 

\vinding to a target stress leveL This measurement technique is a merging and extension of 

the density analyLer, \vhich has demonstrated a relatively high sensitivity, with the 
funcizlmC'ntal and first principle winding models. 



The difficulty with current winding models is that they all assume an outer 

boundary condition of a known WIS, which is extremely difficult to measure or detem1ine 

except for the limited case of pure centerwinding on machines equipped with tension and 

caliper sensors. To avoid this difficulty, a new boundary condition was defined which 

uniquely determines the state of a roll and allows displacements, strains, and stresses to be 

calculated. This new boundary condition is a displacement of the outer surface of the roll 

caused by winding stresses. This new boundary condition simply states that the change in 

roll diameter over some sample interval is equal to the sum of tt · thicknesses of web 

added, plus the sum of the incremental deformations of each layer and the core caused by 

winding stresses. 

Since web caliper and changes in roll diameter can be measured, the sum of the 

deflections can be calculated as a resultant deformation of the outer surface. The 

equipment to prototype this new stress measurement system are encoders for measuring 

diameter, a caliper gage, and a computer data acquisition system. Thus, the hardware is 

similar to the density analyzer except that in addition to diameters, web caliper must also be 

measured. However, the stress measurement algorithm, which is essentially a 

. reformulation of traditional winding models, bears no resemblance to the density analyzer. 

Current winding models are second order differential equations written in terms of 

radial stresses with a core stiffness inner boundary condition, and a radial pressure 

boundary condition just under the outer layer. However, the same constitutive equations 

of winding can be also be assembled into a differential equation formulated in terms of 

displacements instead of radial stresses. In this case, the outer boundary condition is a 

displacement of the outer surface of the roll which can be measured using equipment 

described above. Once the displacement field is calculated, strains and then stresses can be 

calculated. Thus, by reformulating the winding differential equation using displacements, 

and measuring the displacement outer boundary condition, all web stresses and strains can 

be calculated at any location in the roll, and at any time during winding. Thus, the new 

measurement technique calculates the condition of the roll based on web material 

properties, caliper, and diameter. 

Basic Contributions of this Research 

ll1c ]":mary .:.T>ntrihution l)f this work i~; a new houndary cr,ndition for all '"inding 

models which allows the solution of displacements, strains, stresses, and most 

importantly, wound-in-stres~;es from easily measured quantities of roll diameter and web 

caliper. This rc:-ults in not only a new winding model, but a new way to solve all existing 

''-inding mcxlels. Thus for the first time. winding stresses can be easily measured. 



Another major contribution resulting from this project is an improvement in the 

hardware and software of the existing density analyzer that yields an order of magnitude 

improvement in resolution over existing methods. Also a new roll structure parameter, 

radial compression, was defined which removes the floating zero and caliper dependence 

problems of density calculations. 

Additional work includes a very complete review of current winding models such 

as those of Altmann [127], Yagoda [149-154], Pfeiffer [140, 141], and Hakiel [132, 133] 

and others. This review includes a check of their derivations, determining the numerical 

accuracy of stress computations based on a standardized set of input parameters, and a 

review of the scope of application and limitations. As a consequence of this careful check, 

errors and limitations in winding models were revealed that were not previously 

documented. Computer codes written for these models, which are included in the 

appendices, are some of the few ever published. 

Similarly, all roll structure measurement methods are reviewed, and the most 

common are evaluated for accuracy, resolution and other criteria. A method of comparing 

the resolution of unlike measurements is fully developed. Similarly, data acquisition 

· design for density and stress analysis is also fully documented so that a system can be 

optimized for a particular application. 

All careful research work such as this begins by laying a solid foundation, which 

represents previous work in the area, upon which is placed new contributions. This can 
be represented by a pyramid made of technology blocks. These blocks of technology 

should ideally mate closely with their neighbors such that a solid structure is obtained. As 

seen in Figure 8, the pyramids of analytical and experimental technologies will have only a 

partial overlap because some analytical work has not been experimentally verified and 

some experimental work has yet no identified underlying analytical expression. 

What makes this work unique in the winding area is that a bridge has been made 

between analytical and experimental technologies at the highest level. The analytical 

portion of this new measurement system not only can accommodate all present 

fundamental winding models, it is extensible because it is a methodology rather than a 

distinct model in itself. Similarly, the experimental measurement techniques used are the 

most sensiti\e yet develnped fnr winding. yet are easily applied in a lab or production 
<'n\ irc,nment. 

ultimately, perhaps the greatest contribution of this work is to embody the greater 

pan nf roll structure analytical and experimental knowledge in a single source. Thus, this 

\\t1rk can serve as both a comprehensive tutorial ~md rcfcr<?nce \vhcre none other exists. 



Figure 8 

BASIC CONTRIDUTIONS OF THIS RESEARCH 

- Measurement of Stresses During Roll Winding 

- Measurement Technology 

~ Analytical Winding Technology 

Thesis Overview 

In addition to detailing the prototype measurement of stresses during winding, this 

thesis is also a rather complete treatment of roll structure. Chapter 2 develops the 

constitutive equations which describe the physics of the wound roll, and how they are 

assembled into models. Chapter 3 is a review of existing winding models, their 

application, and their limitations. Chapter 4 describes more complex roll behavior for 

which some analytical work exists such as air entrainment, centrifugal stresses, anelastic 

behavior and nips. Chapter 5 describes roll structure measurements based on impact, 

friction, strain, pressure and other parameters. 

Chapter 6 derives the equations for the density analyzer, as well as documenting 

system design and sizing criteria. Chapter 7 derives the mathematics of a new winding 

model formulation which is the basis of this new work. Chapter 8 describes the particular 

hardware and Chapter 9 outlines the soft v. are used for this prototype. Chapter 10 

Jcvc lups a 1~1cthod for evaluating the accuracy :ind re)nl uti on of any roll ~tructure 

measurement in general, and stresses in particular. Finally, Chapter 11 gives 

recommendations for improvement and future work. An extensive set of appendices is 

included which contains a complete bibliography, computer programs and output listings 

for the v:uious winding models. 



CHAPTER 2 

PHYSICS OF THE WOUND ROLL 

Roll Physics and Boundary Conditions 

This chapter develops the constitutive equations which model elements of the 

behavior of a wound roll. These constitutive equations can then be assembled into a larger 

equation which describe the stresses resulting from the addition of a single wrap onto an 

existing roll. To model the winding of an entire roll, the effects of each wrap from the 

core to the finish diameter are added or superposed onto the previous stresses of all 

underlying layers. The principal results of this wound roll modeling are a prediction of 

material stresses at any diametrallocation, and at any time during the course of the winding 

of a roll. 

The constitutive equations serve as the foundation of wound roll modeling. These 

equations include equilibrium which means the material is in a stable balance, strain­

displacement \vhich means no gaps or overlaps in the material arc allowed, and stress­

strain relations which describe the stiffness of a material. Though nearly all winding 

models use the same set of constitutive equations, they are approximations of real 

behavior. For example, the static equilibrium equation assumes the wound roll is not 

accelerating, yet the wound roll is in a very dynamic state during winding. The strain­

displacement relations state there are no gaps formed, yet adjacent layers in a roll may not 

be in contact due to air entrainment, wrinkling and other causes. Finally, stress-strain 

relationships assume a single equation time invariant dependency, yet stress-strain curves 

vary with loading and unloading as well as with time due to creep and stress relaxation. 

Despite the inevitable differences between modeling and real system behavior 

1:\'\\ ever, the COihtitutive equations arc a clo;;e de\LTiption l>f many \'- inding situ:ltions. 

Ik>\\C\Cr. the :!''Umptions and appru,im:J:iuns of mnckling mu~t be ck;.nly understood as 

they apply to any particular application. To validate wound roll analytical modeling, 

internal consistency can be checked as given in Chapter 3. ~,.,rJ experimental measurements 

can be made such as outlined in Chapter 5. For this project, internal consistency is 

clwcJ..:ed in Chapter 7, and cxpcriment:1l me:1surements are reported in Chapter 10. 
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The constitutive equations are then assembled into a larger second order differential 
equation which must be solved for the incremental stresses caused by the addition of a 
single wrap. This equation is described in the section on the roll. Additionally, a second 
order differential equation requires two boundary conditions. These boundary conditions 
are at the core and the outside of the roll, and are also described in the following sections. 
One of the major contributions of this research is an alternative description of the outer 
boundary condition. Finally, the differential equation must be solved for each wrap added 
from the core to the finish diameter of the roll. Though the winding equation will not be 
solved until Chapter 3, the accretion nature of the winding solution is described here. 

The Roll 

The roll is wound under tension from the core outward to the finish diameter as a 
continuous spiral of a thin, flat and relatively flexible material. The number of layers 
comprising the finished roll can be as few as a couple dozen wraps for materials such as 
fiberglass batts or carpet, to more than 10,000 wraps for a large reel of paper. The 
objective of wound roll modeling is to calculate the incremental stresses within each layer 
of the roll due to the addition of each wrap of material, and ultimately to sum or integrate 
the effects of all wraps on the final stress distribution of the roll. Though the effect of each 
wrap is similar to the previous, the wound-in-tension (WIT), the roll outside diameter, 
radial modulus and other parameters will vary sli~htly. 

The addition of wraps makes the wound roll model different from more typical 
structural analysis of cylinders whose geometry does not change significantly. Due to this 
geometry change, winding is an accretion problem which is difficult to analyze using more 
traditional approaches such as FinitP Element Modeling, which would require changing the 
mesh and rerunning the analysis for each wrap added from the core to the finish diameter. 
Thus, the computational demand and complexity suggests an alternative approach may he 
more appropriate. 

Most of the winding models begin by constructing a set of constitutive equations 
which define the behavior of the material in a cylindrical coordinate system as will be 
outlined below. Thnugh winding is a spiral geometry, winding models make the 
::[lprn\i:lution that <?~lch \\r:tp i:-. a S(j:lrare (nnccntric ring in non \1iding contact v.ith the 
rim.: .tbL)\·e and ~·ne:lth as '-.ccn in FiQure 9. Further assumptions tvpicallv state that the 

- -..._; .,1 .,I 

\\ inding roll ahvays remains cylind1ical with no circumferential or axial variations. 



Figure 9 

SPIRAL WINDING AND RING APPROXIMATION 

Spiral Winding Ring Approximation 

The next step is to derive the static equilibrium equations which state that the forces 

on any segment of a ring must halance in both the radial and tangential directions as seen in 

Figure 10. Though Yagoda [150, 151] and Chang [130] considered dynamic forces, most 

authors will simplify the math greatly by assuming dynamics are negligible. Since the 

model has cylindrical symmetr:· the tangential direction equilibrium is automatically 

satisfied which leaves only the radial equilibrium to consider. 

Summing the forces (stress times area) in the radial direction gives, 

(1) (. doR .) ( ) d8 
0R r d8 - OR+-- dr lr + dr) d8 + 2 OT dr sin- = 0 

dr 1 2 

(2) 



Figure 10 

FORCES ACTING ON A WRAP SEGMENT 

Figure 11 

DISPLACEMENTS OF A WRAP SEGMEI\'T 



The strain-displacement relations are derived from the assumed displacements of 

the wrap segment as seen in Figure 11. Defining displacement w to be positive outward, 

the net radial deformation is 

(3) ( w + d; dr) - w = d; 

and the radial strain is the differential displacement divided by initial thickness or 

Similarly, the net circumferential deformation is 

(5) r d8 - (r + w) d8 

Hence, the circumferential strain is change in length divided by initial length or 

(6) 
w d8 w 

ET = = 
r d8 r 

Finally, the anisotropic material stress-strain relations are given by 

(7) ER = 
O"R O"T 
·--- JlT-
ER ET 

(8) CYr O"R 
ET = )lR-

ET ER 

Simultaneously solving equations (4), (6), (7) and (8) for the displacement w gives the 

second order differential equation for winding of linear anisotropic materials as 

\\ hich has a solution of the form 



At this time, it is appropriate to note that the winding differential equation can just 

as easily be expressed in terms of stresses and strains in addition to the displacement 

formulation shown above. Indeed, the equation will always be of the form 

(11) 

where the variable x could be either displacement w, stresses <JR or 0T, or strains ER or 

ET Though the constants A and B as well as the two boundary conditions will depend on 

which variable the equation is expressed in, the solution techniques are the same and the 

results will be equivalent. As an example, the equation could be formulated in terms of 0R 

as 

(12) 

in which case the coefficients A and B are given as 

(13a) A = 3 

(13b) B 

where equations (13) were simplified using a strain energy constraint [132, 133] 

= (14) 
!lR !lT 

A single ply of many materials has a near linear stress-strain response for z­

direction loading, which results in a constant out-of-plane modulus. However, a srack of 

even linear materials is often significantly non-linear for out-of-plane loading. 

Consequently, the radial modulus, ER, is non-constant and is typically a function primarily 

of the radial loading. <JR [79, 132, 133]. Thus in general, 



This non-constant modulus complication has numerous implications that will be 

treated more thoroughly in the next chapter on wound roll models. However. at this time 

it is appropriate to note that the assembly of the constitutive equations requires taking a 

derivative of an expression containing ER and/or ET with respect to radius. Since both 

moduli are varying with respect to radius because stresses vary with radius, high order 

terms will then appear in the A and B constants. These additional terms have not been 

noted in any of the previous winding models, which can be a significant oversight for 

some formulations. 

In any case, the wound roll is described by a linear second order differential 

equation with non-constant coefficients. However, before a complete solution can be 

found, two boundary conditions associated with this second order equation must be 

specified. The first boundary condition is determined by the amount of support or 

stiffness provided by the core while the second is determined by the amount of tension on 

the outer wrap as it is wound into the roll. These essential boundary conditions will be 

described shortly. 

It is timely to again restate the objective in wound roll modeling which is to 

calculate the material stresses inside the roll, at any radial location (wrap) and at any time 

during the winding process. As seen in Figure 12, the state of stress on any wrap is 

described by both radial stresses and tangential stresses which are interdependent through 

the equilibrium equation. The radial stresses are always compressive for non-adhering 

materials and represent the pressure between the layers of material. However, the 

tangential stresses may be tensile or compressive and represent the inplane loading of the 

material. As will be shown shortly, the value of these stresses are different for each layer 
of material. 

Web stresses inside the roll are important as they have a profound influence on 

many defects. For example, if the compressive radial stresses are too low, the friction 

force between layers might be insufficient to lock the layers together to form a stable 

structure. Undesirable axial slippage. known as telescoping, and circumferential slippage, 

known as J -linin e. or e.earine.. result from external loadin £ on rolls with low interlaver 
.._, ...... ...... ....... o/ 

pressures [ 106, 1081. Additionally, a core supponed roll may open up on the underside of 

the core if the interlayer pressure is less than the stresses due to gravity and core support 

lnddine. [96. 10:21, Con rsely if the compressiYe radial <;tresses are too high, sof· 

~ll~ltni:ll" "uch as ti"\UC may k1sc bulk pcmlJncntly due to creep,\\ hile coated \\Cbs coulc 

smudge, and some films may 'wring' together. Tangential stresses also have sim=lar 

restrictions. If tangential stresses are excessively high, materials can tear, burst or n1pture. 

Cl)t1\cr..;ely, if tangential stresses are too compressive on a thin flexible material, creping 

:tnd sLnTing l'ould occur [1091. 



Figure 12 

STRESSES ACTING ON A WRAP SeGMENT 

0 radial 

0 tangential 

Though analytical roll defect theories are yet to be developed, one can envision 

optimizing the sm1ctural design of a roll by specifying values for controllable variables 

v, hich minimize defects a':>sociated with undesirable stress distributions. Blaedel outlined 

such an approach in his thesis 'A Design Approach to Winding a Roll of Paper' [128]. In 

his work, he described how penalty functions could be assembled and a minimum found 

which in theory would also minimize defects. As described earlier, the controllable 

parameters also have constraints, not necessarily related to roll structure, which also must 

be specified if the optimizing model is to well represent real winding. 

Finally. it must be noted that the radi:..tl and tangential stresses can't be optimized 

independently because they are intimately coupled through the equilibrium equation. 

Generally this means that an optimum radial stress profile for example, could well result in 

~ln 'lildc,ir~lhlc r:mgcntial <;tress profile and \icc \Crsa. fnr <'\J.n!ple, the typical near 

,unc-,Unt rddial <;tr~:s'\ profile as a function of Ji,tmcier provides pres-.;ure and friction 

required for roll structural stability. However, the coupled tangential stresses are then 

compressive and could lead to creping and buckling. 



The Core 

Core stiffness is one of the two boundary conditions used in all winding models. 

Though core stiffness is not as important as the wound-in-tension at the roll's current outer 

surface because it affects a much smaller volume of web, it is still important enough that it 

be treated thoroughly. Unfortunately, core stiffness has been inadequately covered in 

winding articles to date. Typically, core stiffness is defined without derivation or 

explanation of application. As a consequence, there has been confusion over the 

distinction between core stiffness and core material modulus. In this section, core 

stiffness is derived and discussed in detail, and will be shown to depend primarily by the 

modulus of the material it is made from (paper, steel or plastic), as well as its inside and 

outside diameters. 

A deriva' · rm of core stiffness (Ec) begins by defining stiffness as a radial stress 

divided by a radicu strain (nondimensional displacement w/r) at the core outer radius: 

(16) 

where 

E - <JR I 
c - w/r r = ro 

Ec = core stiffness input to winding models 

crR = radial pressure 

w = radial displacement (positive outward) 

ro = core outer radius = roll inner radius 

Inserting the tangential strain-displacement relation (6), ET = i, and pressure as a 

negative radial stress, into (16) gives 

(17) = --~P--"o-

where 

Po = radial pressure between roll and core 

ET = tangential strain 

If \\C rc\\ritc this \'qu:lli\ln i" a mnre LtmiliJ.r form. we see tl1J.t this lkfinition of core 

~tiffness appears similar to Hooke's Law except that the coupling is between radial stress 
and UJn~ential strain. 



The radial strain-stress relation for an isotropic material in cylindrical coordinates is 

(19) 

where Ecm is the Young's modulus for the core material which is different from the core 

modulus which we seek to define which is dependent on geometry as well as material. 

The stresses on a pressurized isotropic cylinder are given by Roark and Young's 

"Fom1ulas for Stress and Strain" [ 176] as 

a2 b2 (P0 - Pi) 1 p a2 - P0 b2 
1 

O"R = -+ 
(20a) b2 - a2 r2 b2 - a2 

a2 b2 (P - P·' 1 p. a2 - P0 b2 
0 1/ 1 

O"T = -+ 
(20b) b2 - a2 r2 b2 - a2 

where 

a = inner ra~ . 'IS 

b = outer radius 

P· I = mner pressure 

Po outer pressure 

Setting r = b, Pi= 0 and relabeling; P0 as Po. a as rc, bas ro to be consistent with wound 

roll terminology, the radial and tangential stresses at the rolVcore interface are given from 
equations (20) as: 

(21 a) aR = - Po 

(21 b) GT 



Inserting (21a), (21b), and (19) into (17) and simplifying we get an equation for 

isotropic core stiffness as 

(22) 

where 

Ec = core modulus used in winding models 

Ecm = core material modulus 

~ = core Poisson ratio 

ro = roll inner (core outer) radius 

rc = core inner radius 

This equation can be nondimensionalized, as will be done shortly, or can be 

manipulated into a form more suitable for engineering calculation. Noting that core, pipes 

and tubes are commonly specified by an inner diameter (de = 2 rc) and a wall thickness 

(tc = ro- rc) instead of radii, we can rewrite equation (22) as 

(23) 

At this time, it is appropriate to again clearly delineate the rlifference between Ec 

and Ecm· Ec is used in all winding models and is a core system stiffness which depends 

on material and geometry. Ecm is a material property which is the Young's modulus of the 

core material. 

While equations (22) and (23) are descriptive of cores constructed of isotropic 

materials, fiber cores are slightly anisotropic so that this case must also be developed. The 

anisotropic case can be derived from previous definitions along with the tangential stress 

distribution of an anisotropic cylinder with external pressure which can be derived from 

Altmann's [ 127] equation (44) 

s - ds b ') Tv. 
+ a s-2~ s 



where dT is the contribution of tangential stress at nondimensionalized radius r by a 

pressure T w I s on the outside of an anisotropic cylinder of nondimensionali:: ~d outer 

radius sand 

::JR = ET 
ER 

::lc = ET 
Ec 

~ = l(~T + ::JR~R) 
2 

0 = t (~T - ::JR ~R) 

y = I.Yo2 + ::JRI 
a = y- o 

~ = y + 0 

a = Y - ~ - ::lc 

Y + ~ + ::lc 
b = 1 - a 

Noting that for this application, r =sand dT = <JT, and T wls = CJR, we can rewrite (24) as 

(25) CJT = CJR (-a - a ~ s·2r) @ r = s 
1 + a s·2r 

where sis the ratio ro Ire· Inserting (25) into the core stiffness definition (17) and using 

the stress-strain relation (6), a solution of the anisotropic core stiffness is given as 

(26) 
EcR EcT 

Ec = -----------

EcR (a - a~ s·2Y)- ~eREcT 
, 1 + a s·2Y 

where 3c = 0 for the intermediate parameters given in (24). The radial and tangential 

moduli can be measured by cutting a small rectangular specimen and measuring strains as 

it is loade(j uniaxially in t\vo directions. 

equation (22) by setting Ecm = EcR = EcT and ~ = ~cR = ~cT giving intermediate 

parameters 

=JR = L 3c -= oo, ~ := )1. o = 0, '( = 1. ex = 1, ~ = 1, a= -1, and b = 0 



and equation (26) then becomes for the isotropic case 

(27) 

which is entirely equivalent to (22). 

With equations (22), (23) or (27), core stiffnesses can be calculated for commonly 

used cores and compared against values used in the literature. Table 1 was generated 

using Ecm = 500,000 PSI and flc = 0.3 which are typical values for the fibre and plastic 

material used to manufacture cores. 

From this table, it can that Ec increases with increasing Ecm and increasing 

nondimensional wall thickness ( tc I rc ). Additionally, with the exception of Schedule 40 

.steel pipe, the core modulus varies only slightly for the wide range of applications shown. 

These results are similar to the historically assumed values of core stiffness; Yagoda [149-

153j with a modulus of 20,000-100,000; Altmann [127] with a modulus of 100,000; and 

Hakiel [ 132, 133] with 100,000 and 200,000 psi. 

If we use Yagoda's model[152, 153] and a standard set of inpnt parameters, to be 

detailed later, we can observe the effect of core stiffness on the stresses near the core. 

Figure 13 shows that the tangential stresses on the first few wraps near the core vary from 

a 2600 psi compressive stress for a zero stiffness core to a 500 psi tensile stress for an 

infinitely stiff core. Unfortunately, the largest sensitivity to core stiffness corresponds to 

values similar to real cores so that greater care should be used to select appropriate values. 

If the core is too soft. the tangential stresses near the core will be large and compressive 

which increases the potential for buckling and creping. 

Radial stresses near the core are not plotted her llecause there is much less 

sensitivity to core stiffness. The radial stresses vary from only 0 to 61 psi for core 

qjffnesses of zero and infinity respectively. Additionally, the depth of effect is also 

"umn., h:lt sm:lllcr ,\s the anisntropy of the web ma;crial is irKrea:--ed hnwcver. the effect 

llf lili,. '-iiff;1css is ,<111lC\\ h:tt ;rc~ltcr in m:.:gr:itude and inflcicnce:; a much larger depth and 

\ olume of web material. For the case presented here however, the effect of core stiffness 
extends to only about 100( of the radius range which comprises only about 1% of the 

volume of m;ltcrial in th.•! roll. 



Table I 

THE STIFFNESS OF COMMONLY USED CORES 

Material Inner Diam. 

Fibre/Plastic 1.5 

3.0 
II II 

4.0 
II 

II 6.0 

Steel 3.068 

Wall Thick. 

0.1 

0.25 

0.50 

0.50 

1.0 

1.0 

0.216 

64,672 

80,147 

152,838 

117,493 

217,391 

152,838 

4,090,124 

consumer rolls 

film, paper 

II 

board grades of paper 

lightweight coated paper 

Despite the seemingly well behaved core boundary condition as presented 

previously in this section, there are several complications that need to be considered for 

accurate wound roll modeling. These complications include hygroscopic behavior of fiber 

cores, deflections and geometry. However, this project will only briefly review the major 

mechanics implications of complex core behavior on roll winding. For further 

information, the reader can turn to the bibliography which contains a separate section for 

publications on cores. 

Spiral fiber cores are continuously wound from multiple narrow strips of kraft 

paper which have passed through a (sodium silicate) adhesive bath [2, 3, 5, 9, 13]. The 

number of strips and their thickness determines the nominal wall thickness of the core. 

These strips are continuously wound on a helix under tension from a crossed winding belt 

on a mandrel [ 136]. After the cores are cut to length, they are then air or oven dried [1]. 

However, a problem results if fiber cores are not dried to hygroscopic equilibrium prior to 

winding. A wet core inside a roll will give up moisture to its environment and shrink 

radially in the process. As a consequence. some or all of the radial pressure at the core can 

be lost as the core dries which increases the propensity to telescoping. 
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CORE STIFFNESS AND TANGENTIAL STRESS 

1000 

--- 0 ·-rJ:l 
c. 
'-' 

B Ecore=in finity 
rJ:l 
rJ:l --+- Ecore=lES 
Q.) • Ecore=3E4 ... ..... 

-1000 • Ecore=lE4 rr.; 
• Ecore=O -~ ·-..... WIS = 750 PSI, Ri = 2", Ro = 20" = Q,) Erad = 1,000 PSI, Etan = 750,000 PSI eJ) 

= -2000 MUrad= MUtan = 0.01 
~ 

E-c 

1.9 2.0 2.1 2.2 2.3 2.4 2.5 

Radius (in) 

Other core modeling problems result from deflection. An example is the extremely 

nonuniform nip across the width of an end loaded core which is nipped against a drum or 

roller [ 11 ]. Not only does the deflection result in deviations from cylindricity, the wound­

in-tension (WIT) is also nonuniform across the width because of nip non-uniformity. 

Another example is cores that are bowed due to residual stresses of manufacturing or creep 

during storage [ 111. These bowed cores cause winding tensions and nips to be 

nonuniform across the width, and as a function of rotational position. Additionally, cores 

will tend to buckle under excessive axial chuck load which c::wses nonunifom1 nips and 

tensions. 



Finally, cores are not necessarily uniform in geometry. Diametrical differences 
between cores of a single set will cause large differences in wound-in-tension on a two 
drum winder. The small cores will see a much smaller torque, nip and tension than the 
larger cores in that set. Similarly, diametrical differences within a single core are even 
found on recycled iron cores which are belled on the ends from unwind chucks [ 1 0]. 
Also, many cores are notched on the ends which gives a nonuniform radial support and 
can cause high roll reject rates due to crepe wrinkling on lightweight grades [ 11, 191, 
192]. 

The Roll Outside 

The second boundary condition required to solve the second order differential 
boundary valued winding equation comes from the outer surface of the roll. The mgoing 
wrap of material is under some tension which varies with diameter, and as a function of 
the TNT's (torque, nip, and tension), as well as other physical properties such as drum 
roller surface, drum capstan wrap angle, and the coefficient of friction between the web 
and the drum roller. Traditionally the wound roll models have assumed a wound-in­
tension (WIT) as a function of rewound roll diameter. From WIT, one can calculate the 
outer boundary condition either as 

(28a) crR 
-WIT 
- --- @ r = rn 

rn 

(28b) GT = WIS = WIT 
h @ r = rn 

where 

WIS = wound-in-stress (lbfin2) 

WIT = wound-in-tension (lb/in) 

or 

h = web sample thickness or caliper (in) 

rn = radius to the roll outside at the current sample (in) 

If the winding differential equation is posed in terms of radial stress as most 
author" have dnne. then the hnl~ndary CLl!ldition (28a) is used. Tiov,ever as mentioned 
<'Mlic·r. th,, ,Lf'fl'rl'lltial equ:!tic1n can be f(lrn:liLJted in terms of ;:Jcli:ll stre::;s. ungential 
qress, radial strain, tangential strain, or radial displacements. If the equation is posed in 
terms of tangential stresses, then (28b) could be used. However, there is a subtle 
diffderh:c bcc·ause (2~b) is a t;mgential boundary condition for the middle of the outer 
wrap, \\ hile (2Ra) i-; for the pre\sure bctv. ecn the underside of the nuter wrap and the top 
~ick of second wrap. 



Similarly, the differential equation could also be posed in terms of strains. 

However, the boundary conditions would then require known strains which are presently 

unmeasurable. Though another valid boundary condition is that the radial stress is zero at 

the outer surface, this would yield a zero stress solution because the outer boundary 

condition needs to be nonzero to 'force' a non-niviai solution. 

To reiterate, the winding differential equation can be formulated in a number of 

equivalent ways. However to apply the winding models, the outer boundary condition 

must be measurable. For the traditional radial stress formulations, WIT has been 

extremely difficult to measure in practice except for the rather limiting case of pure 

centerwinding. Thus, wound roll modeling with the traditional formulation has been more 

of an academic exercise than an applicable tool. This is exacerbated by a dearth of roll 

defect theories which could help determine optimum stress profiles. 

Another approach, which is the basis of this work, is to use an alternative 

boundary condition that could be more easily measured. This is done by noting that web 

caliper and roll radii can be measured during winding, and that the deformation of the outer 

roll surface uniquely determines a boundary condition. More specifically, the stress 

induced displacement of the outer surface of the roll is the difference in radii between 

consecutive samples minus the summation of the caliper of the N individual layers 

comprising that sample, or written as an expression, 

N 

(28c) wk = (rk- rj) - L Ck,n 

n = 1 
--------------------' 

This new boundary condition, more completely described in Chapter 7, is one of the major 

contributions of this research and allows a new and useful way to reformulate all present 

winding models. 

The radii at consecutive samples can be accurately measured in a manner similar to 

the density analyzer using encoders as described in Chapter 6, and the caliper can be 

measured using a variety of contacting or non-contacting gages. Hence, the outer roll 

displacement can be determined which allows a unique solution of the WIS during that 

<;ample. Since this ~11ows an indirect measure of \VIS as a function of roll diameter, radial 

,\ncl t:mgenti:1l qi\_y,e-; at any point i:1 the roll anl, :any current di-tmetcr L'dn be calculated 

u~ing ( ·:•e of many \\,)LJnd roll models. Thus. in"'L'ad of assuming a \VIS profile, it can be 

inferred from measurements of radius and caliper using wound roll equations. 



The Accretion Nature of Winding 

With a solution to the boundary valued winding differential equation, to be derived 
later. one can calculate the incremental stresses inside the roll due to the addition of only 
one \nap'. However. a complete solution requires recalculating the incremental stresses 
at each internal \\Tap and adding them to the previous stresses. for each wrap added from 
the core to the finish diameter. At each step. one has a snapshot of the radial and tangential 
stress profile at that instant of time and at that current outer diameter. 

After the addition of the first wrap. a single calculation for radial and tangential 
stresses are made for wrap one. After \\Tap two, calculations are made for wrap one and 
two and so on to give an arithmetical progression of the number of calculations required. 

Written as an equation, the number of calculations required are 

(29) 
n 

#calculations = L 
"'Tap i = () 

= 1+2+3+ ... +n = 
n (n+ 1) 

2 

. Hence. the number of calculations is approximately proportional to the square of the 

number of \\Taps. 

The thickness of wraps in the real roll and the thickness of '\\nps' in the wound 

roll mcxlel need not be necessarily equal. However, there are several constraints that must 
be met when choosing a \nap thickness for wound roll models. The first requirement in 
that regard is that the number of wraps must be large enough to give a good resolution of 
the rapidly changing stress gradient, but not so large as to cause excessive computation 
time or numerical instability. The second requirement is that the W1S profile must be equal 
for the real roll and the roll mcxlel. For example, a 0.001" thick web under 1000 psi WJS, 
which would give a \\'IT of 1 PLL could be modeled by a 0.01" thick web under 1000 psi 
WIS. which would give a \VIT of 10 PLI. 

To check whether sufficient wraps are used in a wound modeL one needs to run 
the model using two different \\Tap thicknesses (same core and finish diameter), and 
compare the stress profiles. For example, a 0.1" thick wrap (180 \\Taps and 16,290 
c:llcllations l and a 0 05" thick wrap (360 wraps and 65.980 calculations) yield a 3o/c 
m-:,::1~\1:~1 dif',·r•,'rh'e r,,, :1 p:tr:ic,;LJ.r :--et ofj:::-:·'clctas [ 115]. Tl:is indic:1;e~ th:Jt 200 wrC\pS 

\\ i:J _;>. e <:·::-.:<ent (';~;:r:ccr;:ig aL.._·uracy for that p.miculctr set of p<irJ.mctcrs. This check 

should be considered when setting up wound roll models. The higher the anisotropy or 
variation in WTS 1':-Clfile,, the larger the numba of wraps \\,'hich are required to calculate 
:-,!rc~scs to a gi .. ·cn accuracy. 



CHAPTER3 

WOUND ROLL MODELS 

Overview of Wound Roll Models 

Wound roll web stresses, as described m Chapter 1, must be controlled to 

minimize damage to the product. Additionally, the wound roll stress profiles must be 

controlled so that the roll will have sufficient structural integrity to maintain its cylindrical 

geometry despite subsequent handling loads. The purpose of wound roll modeling is to 

predict web stresses inside the roll as a function of material properties, geometry and WIT 

(wound-in-tension) profiles. These computer simulations allow wound roll design 

experimentation to take place off-line without risk to the product. These simulations can 

be used to find optimum winding conditions which can then be verified experimentally 

with trials on pilot plant or production winding machines. 

Wound roll modeling using mechanics formulations, such as described in 

Chapter 2, was first developed over three decades ago. Since then, there have been 

numerous models developed by industrial and academic researchers. While these models 

generally use the same constitutive equations, there are differences between them in terms 

of generality, mathematical development, and computational performance. These 

differences will be explored in this chapter. 

The primary difference in the models is an evolution whereby the models have 

become more general in the behavior that can be described, and thus more representative of 

real winding. The trend is most apparent in terms of moduli where the isotropic model 

[ 13 1] was superseded by a linear anisotropic model [ 127], and finally by a nonlinear 

anisotropic model [ 132. 1.33]. Each model is a superset of the preYious such that it could 

ck"crihc new bch~l\ior in :~dd>ion to that de:'l'fihed bv cZJr1ier r~!ndels. Arlditionallv. 

,.,,mr•\·\ b,_'h.i\inr "t!i.'h as stress rc:a\~Hion ll44, 145] and ~_'entrifugally induced stresses 

[150, 151] were also mndelled. Current research is focused on extending winding models 

to the cn•ss direction and rkscribing the behavior of a nip. 

33 



Another difference between models is the mathematical techniques used to 

assemble the constitutive equations into a working set of equations. The equation for the 

incremental pressure distribution for the addition of a single wrap on the isotropic model is 

a closed-form equation. However, the anisotropic model produces an integral which can't 

be solved explicitly, so must be evaluated numerically [127] or by using series 

approximations [ 149-153]. Finally, the nonlinear anisotropic model has no closed-form 

solution but rather is solved as a matrix of finite difference approximations for each layer 

in the roll, and for each layer added [132, 133]. 

In the development of the more complex models, some higher order terms are 

omitted for solution expediency. As will be shown, neglecting terms can have anything 

from a negligible to debilitating effect on solution accuracy depending on the model and 

input parameters used. Similarly, though most of the models described here are absolutely 

rigorous, the choice of different solution techniques results in varying computer 

performance and accuracy. As will be shown, winding models are ill-conditioned and 

prone to numerical difficulties. It is easy to find sets of input parameters whose solution 

time and accuracy varies by several orders of magnitude from one model to the next. 

Consequently, the distinct winding models will be checked for rigorously accurate 

mathematical development, as well as solution performance. Despite the differences in 

development of the models, one expects that they yield the same stresses for the same set 

of input parameters. Thus, by comparing the outputs of each of the models for the same 

set of inputs we can verify the perfonnance of each. Appendix B contains a standardized 

set of input parameters as well as the outputs from the various models. This close 

inspection of winding model development and perfonnance have yielded some surprises 

that will be described in this chapter. 

A Simple Linear Isotropic l\fodeJ 

The linear isotropic model is the oldest winding model dating from the late 1950's 

with Guttennan's work for the US government on magnetic tape winding [ 131 ]. Shortly 

thereafter, similar work was also performed by Carlow and Walls for the textile industry 

[ 1 ~9]. Since then many other Juthors have rep,1rted results u;;ing -;imple isotropic 

:,1,1ckling [134, 135, 146, 147,154, 179]. finally, this mc1del w:h aho inciependently 

derived by the author for the Beloit Corporation winding studies and serves as the basis 
for this report [115]. 



The linear isotropic mcx:lel has several disadvantages with respect to more modern 

models because the assumption of isotropy does not well model typical paper and film 

winding because the ratio of the tangential to radial moduli can approach 1,000 for some 

materials. Additionally, the linear model often does not run significantly faster than less 

restrictive models for a given solution accuracy. Despite these limitations however, this 

model does have unique features which can justify its discussion: 

1. It is an ideal introduction to winding models for instructional purposes because of 

its simplicity, yet it retains a similar development and set of constitutive equations 

as the more sophisticated models. 

2. It is a useful check for the proper behavior of other winding models. If linear 

isotropic parameters are chosen for a modern model, it must yield the same 

answers as this simple model. Using this linear isotropic model, a restriction was 

found on the Yagoda linear anisotropic model. Though Yagoda's formulation is 

the fastest and most accurate solution for linear anisotropy, it is incapable of 

solving certain combinations of input parameters including the isotropic case. 

3. There may be applications of the winding of thick linear isotropic materials, such 

as steel or linoleum which might be mcx:leled adequately with a simple model. 

The radial and tangential stress distribution for a linear isotropic thick-walled 

cylinder due to internal and external pressure is given in several handbooks [ 176], and is 

also rcdcrived by Rnisum from displacement fields [ 115] as: 

(30a) 

(30b) 

where: 

r/ ro2 (Pj -Po) 1 Po ro2 - pi r;2 
CJR = --------- + 

r 2 - ro2 r2 r 2 - ro2 J J 

') 2 ( 1 Po r(? PJ r/ rt r0 PJ - Po) -
CJT = -+ 

r2 ') ) r 2 ") - ret r- - ro-J J 

Pj =external pressure (betv.·een current outer wrap j, and body of roll) 

Po= internal pressure (between roll and core) 

rj .c.;; kurrcnt) roll oc:tsidc rcuiius 

ro : rnll i:111cr (core Clllkr r:1dius) 

The pressure, Pj, between the current outer wrap j and body of the roll is calculated from 

the winding ten,ion or stress as: 



(31) 
WITj hWISjlr=rj 

P· = -- = 
J r r· J J 

Equation (31) is a restatement of the outer boundary condition given in equations (28). 
The variables in equations (30) are generally known with the exception of the core 
pressure Po which can be derived using the definition of core stiffness derived previously 

(16): 

(32) -Po 
=~---

ET r = ro 

While the tangential strain in the roll for an anisotropic cylinder is given as (8), the 

isotropic cylinder is simplified to: 

(33) 

If we set r = ro in equations (30), insert into (32) and (33), and solve for Po (using 

Macsyma® on the Symbolics 3650), we calculate the core pressure as: 

(34) 
2 r 2 E Po = P ---··- J _c _____ _ 

J (r/- ro2 ) (E + )l Ec) + (r/ + ro2 ) Ec 

Now the stress distribution due to the addition of one wrap of thickness h during 
winding can be calculated using equations (30) for the stress distribution given the outer 
pressure from (31 ), and the core pressure from (34). In other words, the change in the 

roll's internal stress distribution caused by the addition of a single wrap is calculated for all 
internal wraps from the core and current outer radii as a function of Young's modulus E 
core modulus Ec, the WIT (Wound-in-Tension) and wrap thickness h. 

The wound roll model computer program then simply increments the outer wrap j 
by the 'wrJp thickness' h for radii from the core to the finish radius. At each wrap. the 
progr~:m cJ.lculaks the incremental cc~ntributic•n of tr3.t C\!crnal wrap to all internal V-raps 
etJlL! ::L~d:-, :he fL'sult tc1 the pre' ious \·Jlucs using the prin.::ipk of sdpcrposition. An outline 
of the computer code to solve this linear isotropic winding model, which is similar to many 
of the other mcxiels. is as follows: 



input variables 

initialize tangential stress array using a function describing the wound-in-stress distribution 

increment external wrap j from core to finish radius loop in steps of h 

calculate wound-in-stress at current outer radius 

calculate Pj from equation (31) 

calculate Po from equation (34) and core stiffness equation (22, 23, 26 or 27) 

increment internal wrap i from core to current outer wrap j stress loop in stens of h' 

calculate incremental radial stress from (30a) 

calculate incremental tangential stress from (30b) 

update radial and tangential stresses (new stress= old stress+ incr. stress) 

end stress loop 

end wrap loop 

print final stress distribution 

There are two stepsize increments for the two nested program calculation loops. 

The first increment is the outer loop of the program which is incremented from the core 

radius plus h, to the finish radius of the roll rn, in increments of the calculation wrap 

·thickness (h). As described at the end of Chapter 2, the choice of calculation wrap 

thickness (h) is arbitrary and need not equal the real web thickness as long as the WIS 

(wound-in-stress) is the same for calculation and real web thicknesses. The choice of 

calculation thickness is a compromise between accuracy and solution time. 

Generally as the calculation wrap thickness (h) is decreased, and consequently the 

number of calculation wraps increases, the solution accuracy will increase. However, the 

solution time will also increase approximately by the square of the number of calculation 

wraps as given by (29). Though some models may have numerical instability if the 

number of calculation VvTaps is too great, the isotropic model is generally well-behaved in 

this regard. 

The inner program loop is incremented from the core radius to the current winding 

rad1us in steps of the print increment in radius (h'). The print increment in radius (h') has 

no effect on accuracy but only determines the number of radii at which stresses are 

calculated. For the isotropic model, the solution time will increase inversely proponionally 

to the pr:nt iiKrcmcnt in rJdius (h'). Tho~:gh the choi-::c of print in,,rcn'lcnt in radius (h') is 

<J:_;~1in :lrbitr<try cx~L·pt tl'lat it mL.:st be :m integral mu]tipk of the i..'~:lct:Luion wrap thicKness 

lh), for simplicity h' is generally chosen to be equal to h. An example stress distribution 

for the isotropic model is shown in Figure 14. 



Figure 14 
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Despite the oversimplifications of the isotropic model, there are several conclusions 

that can be obtained that will in general hold using more general models: 

1. The radial stress at the outside of the roll is always zero because there are no 

externally applied pressures. 

2. The radial pressure is always compressive, and generally becomes more 

compressive at increasing distances from the roll outside. 

3. The tangential stress at the outside of the roll is always equal to the wound-in­

stress (WIS) because that was one of the requisite boundary conditions for the 

solution. 

4. The tangential ::;tress. which is initially tensile at the current roll outside, decreases 

:ll incrca-;;ing di->Llncc" frClm the roll out,ick and may hecome coiT'rressive. 

:". TI1crc arc high --tress gr:!dienb in the vicinity of the core. 

6. The simple isotropic model is linear and superposition holds such that doubling the 

value of a £'Dnstant WIS profile will double the \·alue of stresses at all wraps. 

However, the superpo~irion assumption will not be valid for all cases and 
p~1r1icul:Jrly fur the nllx._krn nonJinear models. 



Linear Anisotropic Models 

Anisotropy is a characteristic of some materials which have properties whose 

values depend on the direction of measurement. In particular, many wound roll materials 

have Young's moduli (stiffnesses) which are greater in the MD (machine direction) than in 

the ZD (out-of-plane direction) [56, 57, 115]. Materials such as film can be slightly 

anisotropic due to manufacturing processes which may pull long molecular chains to a 

preferred orientation. Paper, which is composed of a complex network of wood fibers, 

can be highly anisotropic because fibers themselves have a much higher stiffness along 

their axis than across it, and are generally oriented in the plane of the web. However, even 

metals which have a very linear stress-strain response as a single web can be anisotropic 

when measured as a stack property. 

Wound roll models simplify the fully anisotropic condition to that of an orthotropy 
such that there are three independent moduli in the MD, CD and ZD and several Poisson 

ratios. The three principal axes of the material are mutually perpendicular and closely 

aligned with the roll. The MD of the web corresponds to the tangential direction in the 

roll, the CD of the web corresponds to the axis of the roll, and finally the ZD of the web 

corresponds to the radial direction in the roll. Further simplification results for most 

models which do not consider variation along the CD. This leaves two moduli, ER and 

ET, and two Poisson ratios, !lR and !lT, which describe the behavior of the wraps of 

material as it is wound into a roll for most of the currently used models. 

While ET can be measured as a single strip in a standard tensile test machine, ER 

must be measured as a stack. In both cases, the applied load or stress and the resulting 

deflection or strain are measured in the direction corresponding to the MD and ZD of the 

material. The anisotropy ratio of the stack material, which is simply the ratio ETIER, has a 

large effect on the resulting wound roll stress patterns and can vary from just over 1 to 

more than 1,000 for typical web materials. 

The Poisson ratios describe the strains in one direction resulting from loads applied 

in another. The Poisson ratio !lR, sometimes denoted as 11 TR' represents the ratio of 

strain in the tangential direction divided by the strain in the radial direction for loads 

applied in the tangential direction. Similarly !lT, sometimes denoted as ,URT represents 

the ratio of strain in the rildial direction divided by the qr,lin in the Lingcnti:ll direction for 

lr1;lds applied in the radial direction. The effect of Poi-.:"on r:11ios L'n wnund roll stress 

patterns are usually much smaller than moduli [148], and many materials such as paper 
have near zero Poisson ratios. 



Direct measurement of stack Poisson ratios are extremely difficult in practice [ 115], 

and many authors use relationships between more easily calculated properties to indirectly 

predict these ratios [55, 59, 61, 84]. For example, Hakiel correctly observed that the 

strain energy constraint 

= (35) ~R ~T 

predicts that the two Poisson ratios are not independent [132, 133]. However, it should 

be noted that these relationships are derived from solid mechanics of ideal materials, 

whereas stacks are structures composed of often less than ideal materials. Indeed, the 

application of the constraint to predict one Poisson ratio given the measurement of the 

other along with moduli has not always agreed with experimentally measured results. 

Furthermore, most authors do not use this constraint as it reduces the generality of the 

model and does not simplify the math significantly. However as mentioned earlier, since 

the sensitivity of winding models to Poisson ratios is slight, the debate over whether to 

apply these relationships is somewhat academic. 

In the next two sections, two linear anisotropic models are discussed which 

represent the next step in the evolution of winding models. These models by Altmann and 

Yagoda use the same constitutive equations, share an identical initial development, but use 

different techniques for solving the winding integral. Consequently, the primary 

differences are in the accuracy and speed of computation. As will be shown, while 

Yagoda's model is usually much faster and more accurate, it suffers from a small loss in 

generality in dealing with small anisotropy ratios and variable WIS (wound-in-stress) 
profiles. 

Altmann ~1odel 

The first linear anisotropic winding model was formulated by Heinze Altmann m 

1968 [ 127]. He began with the governing differential equation for winding in cylindrical 

coordinates assembled from the constitutive equations described in Chapter 2 which are 

( ?- 6) 

with l>Oundary conditions 

O'R O'R 
Ec = V:.;;-; == @ r == ro 

ET 

(~7a) 



-WIT 
(37b) OR = _ ____,_J @ r = rj 

rj 

where 

w= 

r= 

ro = 

rj = 
Ec= 

ER= 

ET= 

Radial Displacement (in) 

Radial Location (in) 

Inner (Core) radius (in) 

Current outer radius (in) 
Core Modulus (lb/in2) 

Radial Modulus (lb/in2) 

Tangential Modulus (lb/in2) 

~R = Radial Poisson Ratio 

~T = Tangential Poisson Ratio 

OR= Radial Stress (lb/in2) 

OT = Tangential Stress (lb/in2) 

WITj = 

The assumed form of the solution is 

(38) w =A r a + B r -~ 

Current Winding Tension (lb/in) 

\\hich can be verified to satisfy the differential equation [l 15, 127]. The next step is to 

write the differential equation for the boundaries of the range to the core and the cunent 

outside. This will yield two equations to solve for the particular solution constants A and 

B. Altmann had considerable insight into the nondimensionalization of the elastic and 

geometric parameters so that the derivation did not become unwieldy. Roisum [115] 

rederived the solution from Altmann's [127] outline to verify integrity and through this 

exercise gained appreciation of the elegance of the solution. Later, Roisum used the 

computer algebra application Macysma to find alternative solution forn1ulations, which 

though conect were more cumbersome than Altmann's. After considerable algebra, the 

solution for the radial and tangential stress distribution inside a winding roll for a single 

wrap of thickness ds is given as 



where the secondary parameters are defined as: 

:JR = ET 
ER 

:lc = ET 
Ec 

j.l = t (j.lT + :JR j.lR) 

8 = t (j.lT - :JR j.lR) 

y = I-! 82 + :JR I 

a= y- 8 

~ = y + 8 
y - j.l - :lc 

a = _:_---'---
y + j.l + :lc 

(40) b = 1 - a 

and s is the dummy variable of integration from internal radius of interest r, to finish 

·outside radius R. The spatial variables, s, r, and R, are nondimensionalized with respect 

to core radius to simplify the derivation and condense the fommlas. The accretion nature 

of the wound roll system then is modeled by simply integrating the contribution to the 

incremental stresses, doR and doT, from the radius of interest r to the finish outside radius 

R. Additionally, the initial wound-in-stress for each layer, WISs, must be added or 

superimposed upon the stresses caused by layers added above. Thus, the final stress 

disuibution is given as 

( 41 a) 
WISs --- ds 

s 



Although this is a closed form expression for wound roll stresses, the integral must 

be evaluated numerically because bandy are not integers, and the WIS profile with respect 
to current winding outer radius will not in general be a simple function. An outline of the 
computer code to solve Altmann's winding model is as follows, and the code is given in 

the Appendix A. 

input variables 
calculate intermediate parameters 
increment internal radius loop 

goto subroutine integrate lower decade 

goto subroutine integrate upper decade 
calculate stresses 

end increment radius loop 

print stress distribution 

subroutine integrate (from internal radius of interest to finish radius) 
initialize 
integrate loop 

calculate integration panels using Simpson or similar technique 
end integrate loop 

return from subroutine 

The increment for the loop in main program's 1 >dy detem1incs the interval over 
which stresses \vill be calculated and printed, and ha~ no effect on the accuracy of the 
solution. However, the increment size for the integration subroutine loop does have a 
tremendous effect on solution accuracy. Several numerical integration techniques were 
investigated to find an accurate and practical integration methcx:l to calculate this extreme!) 
difficult integral, and will be discussed in more detail shortly. 

Plotting the w;nding integrand from equations (41) as a function of radius, it 
becomes apparent wh) the integral is so difficult to solve with numerical accuracy. As 
seen in Figure 15, the integrand can easily vary more than 25 orders of magnitude from 
one end of the range to the other. The gradient is steeper with higher anisotropies and 
high~r finish/core diameter ratios. The steeply varying characteristics of the integrand as a 
function of r~1di~il p,>~.;iti(lfl is also ,hared by -;tres,es. :::r:~lins and disrlac~.mcnts due to the 
:Jdcliri,'rl of d :--inglc \nap. ·n1i, hch:l\ior i~ \.·,lllsed hc:,·ausc e:1ch L1yer tends to he self 
supporting to the pressures from layers above, much as an arch can support external loads 
without intemal support. Consequently, the addition of a single wrap significantly affects 
only the first few \\Taps immediately beneath, and climinishe:-; rapidly \\ith depth. 



Figure 15 
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This rapidly diminishing communication from a layer to those beneath have strong 

implications for roll structure measurement. First, measurements taken on the roll's 

surface will be unable to resolve changes made on layers deeper in the roll. Similarly, a 

large change in wound-in-stress at a particular radial location will be undetectable a short 

distance away. 

Comparing Altmann's winding model described by equations (41) and plotted in 

Figure 16, and the isotropic model described by equations (30) and plotted in Figure 14, 

we can investigate the effect on material anisotropy on wound roll stress distributions. 

This comparison of the windjng of anisotropic and isotropic materials, yields the following 

differences: 
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1. 1l1e magnitudes of the radial stresses for the unisotropic model are much less than 

for the isotropic model for the same WIS profile. 

2. The radial and tangential stress distribution for constant WIS are nearly flat, equal 

in value in the middle radii of large rolls, and slightly compressive throughout most 

of the roll. This very near equality of radial and tangential stresses can be used as a 

quick check of the accuracy of constant WIS linear anisotropic stress calculations. 

_ . The stress gradients at the core are somewhat less with the anisotropic model than 

for the isotropic model. 

4. Both the isotropic and Altmann models must and do yield nearly identical 

calculations for stresses using an isotropic set of conditions as seen in Appendix B. 

!Iowcvcr, -;incc anisotropy is a more gcncnll and mnrc reprc.;;entative condition of 



As mentioned earlier, the primary differences in winding models are generality, 

and numerical performance in terms of accuracy and speed. For the Altmann model, the 

accuracy and speed of calculation are directly related to the difficulty in numerically 

evaluating the winding integral, where the integrand can vary by more than 20 orders of 

magnitude from the core to the outer radius. Several numerical techniques for improving 

performance were tried and are discussed here. 

However, before accuracy can be objectively evaluated, several difficulties must be 

resolved. First, we must define accuracy. If accuracy is defined in terms of absolute 

error, then the tangential stresses, which tend to be numerically higher than radial stresses, 

will tend to appear larger than their real significance. Conversely if accuracy is defined in 

terms of relative error, then the error will approach infinity near the zero crossing of 

tangential stresses. 

In addition to differences in the error for radial and tangential stress calculations, 

errors will vary with radial position in a roll. For example, finite difference models such 

as Hakiel's generally perform poorly for radii near the core where the number of 

calculation points is smaller. If RMS or another similar measure of error is used to 

evaluate the entire region as opposed to discrete points, then the effort required to evaluate 

error becomes quite large. For this simple evaluation however, the relative error is based 

on the tangential stress at a radius of 5". 

The second issue that must be resolved is determining what the 'correct' stress 

values arc which will be used as a reference for the error calculation. One possibility is to 

vary the grid spacing to find convergence of a model. Unfortunately, though this is a 

useful check, convergence does not necessarily guarantee correctness. However, if the 

convergence of stresses in one model agrees quite closely to the stresses predicted by 

another model for the same input parameters, then the confidence in both models is quite 

high. This fortunate condition is the basis for this simple error analysis. Specifically, for 

a wide range of parameters the Altmann model will converge to the stresses predicted by 

the Yagcx:ia model (to be discussed shortly) to more than 10 decimals of accuracy. 

The third issue is that the error depends considerably upon the input parameters 

used. For example, while most models have numerical difficulty as the anisotropy ratio 

inl'r~·ascs hcyond some value '-UCh as 1000. the Yagocla model does well at high 

;,r:i-.,otrc)ri,·s hut m;,y not C\Cn h~· :1hk to calculJte qn·<:..;cs for low ani,otro;>ies. for the 

following examples. a standard set of input p::u-ameters typical of some winding conditions 

are used and corresponds to those given in Figures 15, 16 and Appendix B. 



Finally, stress calculation accuracy and speed also depends on the original source 

code, the compiler, the microprocessor, as well as the math coprocessor. For example, 

the ubiquitous but primitive GW basic on the IBM PC has been found unacceptable for 

many winding models due to numerical overflow of its single precision math. Obviously, 

speed of computation will improve with compilation, math coprocessor support, as well as 

processor speed. Due to these and many other difficulties in evaluating accuracy, the 

following error analysis though objective and representative, is somewhat simplistic. 

The most straightforward approach to evaluating the winding integral is to use 

Simpson's 1/3 rule, and to increase the number of panels to evaluate its effect on accuracy. 

From Table 2a, we see that the Altmann formulation converges to the Yagoda results if the 

number of integration panels is high. This gives us high confidence in both the Altmann 

and Y agoda formulations. 

While engineering accuracy of wound roll stresses is easy to obtain with Altmann's 

model using as few as 100 panels, extreme accuracy is not. For example, if we want to 

know the stresses at 1 inch locations in the winding of a roll from a 2 inch to 20 inch 

radius to an accuracy of 1 part in 1 OE8, we would need to call the integrate subroutine 136 

·times, and the integrand function 13,600,000 times. Clearly we would like a more 

efficient method of obtaining a specified level of accuracy. From the large number of 

panels required for high accuracy, it may be suspected that the winding integral must be 
unusual because the error term 

(42a) 

should be very smalL and specifically for our case of l 00,000 panels equal to 

(42b) 4.2E-17 rv (S) 

However since the error is relatively large, the fourth derivative of the integr:· ~d must be 

very large. The high gradients for the winding integral, stresses, strains and 

displacements create numerical difficulties for winding mcxlel calculations. 



A classical approach to increase numerical accuracy and/or reduce the number of 
calculations is to use Rhomberg Extrapolation. With this method for example, a 

calculation is made at a coarse spacing and then again at a mesh twice as fine. Using these 
two results, an extrapolation can be made which predicts the calculation result as if it was 
made with a mesh four times as fine as the original. This extrapolation can be repeated 

several times. Unfortunately as seen in Table 2b, the winding integral errors actually 

increase using Rhomberg Extrapolation. 

Because the integrand is very steep near the core, it would be reasonable to make 

the 'mesh' smaller in that region. Since many of the common numerical integration 
methods require constant space grids, one could divide the integration region into several 
subregions. Though each subregion would have constant internal spacing, the subregion 
in areas of steep gradient could have a finer mesh than those which are in areas of 
moderate gradient. For example, the entire integration region from the radius of interest r, 
to the outside radius R, could be divided into decades, each with the same number of 
panels, and the total near 1000 panels. Using this procedure, the 3 decade evaluation 
would have 334 panels for each of the regions r to r+O.Ol(R-r), and r+O.Ol(R-r) to 
r+O.l (R-r), and r+O.l (R-r) to R. As seen in Table 2c, the two decade integration is the 

optimum for this case and improves accuracy more than two orders of magnitude. 

Other methods were investigated such as adaptive step size integration as well as 

combinations of methods such as using decade varying panel widths along with Rhomberg 
Extrapolation. However, the best result obtained was by using Simpson's 1/3 rule for a 
l\VO decade varying panel width for an L~curacy improvement of about 100 times over the 

unmodified Simpson's integration method. Consequently, this procedure was 
implemented in the computer coding for the Altmann model given in Appendix A. 

Though Altmann pioneered analytical winding with a mathematically correct 
model, and many subsequent authors use his nondimensionalization scheme, he had errors 
in his graphs that later stirred criticism. Altmann's figure 1 shows a constant stress region 

that has a slightly inaccurate value, and more importantly no stress gradient near the core 
[ 127]. We can only surmise that the e'.,eme difficulty of accurate numerical calculation of 

the winding integral with the limited computing resources in the 1960's may have yielded 
these errors. Furthermore. the stresses at the core might not have been calculated or might 
h:1vc heen a<.,~umed in ermr with rc:--pect to the large con<;tant "iress region. 



Table 2a 

WINDING INTEGRAL EVALUATION ERRORS 
vs #of INTEGRATION PANELS 

#Panels 

10 

100 

1,000 

10,000 

100,000 

Table 2b 

% Error for 0 1_ 

-204.18 

-0.41036 

-0.000046342 

-0.000000004 7 641 

-0.00000000011392 

WINDING INTEGRAL ERRORS 
vs #of RHOMBERG EXTRAPOLATIONS 

# Extrapol's 

0 

1 

2 

Table 2c 

Logl 0 of !relative error! 

-6.33 

-5.03 
-5.97 

WINDING INTEGRAL ERRORS 
vs #of DECADES 

t! Decades 

1 

2 

3 
4 

Lot: 10 of i relative error I 

-6.33 

-8.87 
-8.44 

-7.91 

However, though his calculations and graphs might not have been accurately 

computed. his mathematical fonnulation was mechanically sound and without error. 

.Additionally as shown by the more than 10 digit agreement with Yagoda's model, the 

.\ltm,1nn formulation can he accuraicly computed if -;;ufficicnt (.·.are ic; given to numerical 

inll'gration. Thus, as illustrcned here v-. ith .\limann and later v. ith otl1er models. 

mathematical soundness is necessary but not sufficient to guarantee accurate stress 

predictions. Numerical considerations are also a requisite part of any winding model 

devclnpment or applicZJtion. In any case, .Al!lnann's place in winding history is assured 

for his model has heen referenced in more winding papers than any other. 



Yagoda Model 

Yagoda published a number of works on winding models in the late 1970's [ 149-

153]. However, they have been generally overlooked due to the scholarly nature in which 

they were written, and due to the intricate math required. Yagoda developed a 

hypergeometric series evaluation of the winding integral to correct what he believed were 

errors in Altmann's [127] solution near the core. As shown in the previous section 

however, Altmann's solution is mathematically correct and the errors in stresses were due 

to numerical evaluation problems rather than development. 

To verify the numerical accuracy of the isotropic and both linear anisotropic 

winding models, they were each run for several sets of input data, and the results are 

tabulated in Appendix B. As typified by Table 3 for one of the test cases, the mcxiels yield 

extremely close answers. This close agreement of stress predictions between 

independently derived models is a benchmark test that is used throughout this thesis to 

check for proper model operation. However, it appears that Yagoda [ 152] may not have 

computed his predecessor's model to check against his own, since differences in the two 

linear anisotropic models when properly calculated are generally less than a fraction of a 

percent. 

Yagoda [149, 152, 153] begins development of his model where Altmann [127] 

left off using the same integral formulation 

(43a) 



with an identical set of dimensionless elasticity parameters 

3R = ET 
ER 

3c = ET 
Ec 

~ = t(!lT + 3R !lR) 

8 = t(!lT - 3R !lR) 

(44) y = IR-~ 3R I 
a = y- 8 

~ = y + 8 
y - !l - 3c 

a=-'-----
y + !l + 3c 

b = 1 - a 

Next, Yagoda nondimensionalizes the radial and tangential stresses with respect to 

the wound-in-stress at the core. The remainder of the derivation consists mostly of 
substituting a hypergeometric series approximation for the winding integral and 

simplifying. After reducing the expression, the radial and tangential stresses are given by 
Yagoda as 

(45a) 

(45b) 

M 

- ( 1 + a r-2Y) I S (r, R, <\>j) Cj r<l>j 
j = 0 

M 

aT = aw - (a - a~ r2Y) I s (r, R, 6_~) cj rOj 
J=O 

where the asymptotic solution to the winding integral is 

00 

S (r, R, Oj) = 1 . ~ 1 _ (L)- (b- oJ _ -/~-(- I -. __ ( ----'-1 )_n __ _ 

- ( b + QJ) - R. - - fa n = 2 ( n - 1 - b + OJ): R2; (L)2'( n 

2 y ~ a R (46) 

~Jild the \\Ound in stress is ~.:\;'r~.~sscd :l\ polynr\miJl of \1 + 1 terms as 

M 

I CJ r¢j 
(47) J ~ () 



Table 3 

STRESS DIFFERE~CES BETWEEN 
Y AGODA AND ALTMANN MODELS 

\V1S=750, ER=1000, ET=750000, EC=100000, UR = 0.01, UT = 0.01 

Values are for the Yagoda model and differences are for the Altmann model. 

All units in English (inch, PSI). 

Dia Radial Rad. Difference Tangential Tan. Diff 
') -30.874148 0.00000179 286.887777 0.00002686 "-

3 -24.682417 -0.00000023 -24.682417 -0.00000730 
4 -24.682417 -0.00000006 -24.682417 -0.00000192 
5 -24.682417 -0.00000003 -24.682417 -0.00000102 
6 -24.682417 -0.0000000 3 -24.682417 -0.00000122 
7 -24.682417 -0.00000005 -24.682417 -0.00000166 
8 -24.682417 -0.00000006 -24.682417 -0.00000196 
9 -24.682417 -0.00000006 -24.682417 -0.00000198 

10 -24.682417 -0.00000005 -24.682416 -0.00000176 
11 -24.682417 -0.00000004 -24.682407 -0.00000139 
12 -24.682413 -0.0000000 3 -24.682276 -0.00000100 
13 -24.682366 -0.00000002 -24.680816 -0.00000064 
14 -24.681932 -0.0000000 1 -24.667202 -0.00000037 
15 -24.678472 -0.00000000 -24.551\613 -0.00000018 
16 -24.654383 -0. ()(X)()()()()() -23.802552 -0.00000007 
17 -24.505524 -0.00000000 -19.130448 -0.00000002 
1R -23.677800 -0. (){X)()()()()() 6.848490 -0.00000000 
19 -19.481\475 -0. ()(',()()()()()() 138.334663 -0.00000000 
20 0. (X)()()()() -0.00000000 750.000000 -0.00000000 

The expression is simplified in the more restrictive case of constant winding tension so that 

\1=0, oo = 0. and Co= 1 yielding 

'% - ( r< -'-~) S - R . C J\ ' '·. -I 01 = 0"' - a. - d f-' r- · _ ( r. . Oj I _: rv: 



The variable wound-in-stress equation (47) reveals a major limitation of the model 

as it can only accommodate a polynomial expression. Real winding profiles vary in a 

noisy manner due to process fluctuations and would be computationally difficult to model 

as an extremely high order polynomial with terms for each wrap. Another difficulty is the 

(b+<P) term in the denominator of equation (46). For the isotropic case, b is zero and <Pis 

zero for the flrst term in the WIS polynomial, so that an undefined division by zero results. 

Additionally, b can be zero for certain combinations of anisotropic parameters. To 

circumvent this small problem in Yagoda's formulation, we simply say that if 

(b+<P) <small, then the first term in equation (46) can be expressed in the limit as 

(b+<P) approaches 0 as -log(r/R), yielding the isotropic asymptotic solution as 

(49) J r ) r2Y ~ ( -l)n 
S (r, R, <Pj)for b = 0 = - lo~R - - .i..J ( ) [ ] n 

2 y a n = 2 n _ 1 _ <l>j R 2y (!_)2y 
2 y a R 

A similar problem occurs in the isotropic case for the first infinite series term (n=2) 

of the first wrs polynomial term (¢=1) for equation (49) where (n-l-(b+<jl)/(2y)) also goes 

to zero. Unfortunately, the limit of this term as given by Macsyma is much more 

complicated. Instead of computing the limit exactly which makes for ugly code, that single 

term was simply omitted in the computer code if b+¢ < small. Though the stress errors 

were typically less than 1% of the WIS for the two isotropic cases tested, it prompted a 

more thorough investigation of Yagoda's proof since he had not called attention to these 

small difficulties. 

Yagoda discarded an entire series of terms [152, eq. 35], which he said could be 

neglected for practical cases. These terms were reinstalled and found to reduce the errors 

by nearly 1/2 for the two isotropic parameter sets with lesser effect on a single recalcitrant 

anisotropic parameter set. Additionally, Yagoda used two other simplifying assumptions 

[ 152, eq's 33a & 33b] that were not checked because they were used early in the 

lk\clupmullof the series snlutiun. an,. c1 redcri\ ~:tic• ·ippeared fnm1idable. 



An outline of the computer code to solve Yagoda's winding model is as follows, and the 

code is given in Appendix A. 

input variables 

calculate intermediate parameters 

increment internal radius loop 

outer summation loop (for number of terms in WIS profile) 

inner summation loop (for infinite series expansion of integral) 

end inner summation loop 

end outer summation loop 

end increment raclius loop 

The increment for the outer loop in program's body determines the interval over 

which stresses will be calculated and printed, and has no effect on the accuracy of the 

solution. Within this loop, there are two other nested loops. The intermediate summation 

loop is executed as many times as there are terms in the WIS polynomial profile. The 

inner summation loop is executed until the remaining terms in the infinite series terms 

become very small. The only difficulty here is exiting the inner loop before numerical 

underflow. This underflow occurs due to large exponents, and it is difficult to predict 

from the value of the current term in the series whether · ~ next term in the series will 

explode. 

One outstanding advantage with Yagoda's solution is that it can be extremely 

computer efficient for simple WIS profiles. For example, the Altmann solution for the 

anisotropic case of Table 2 required 100,000 iterations to reach 12 place accuracy while 

Yagoda's only required one series term except near the core (75 terms at 2", 2 terms at 3"). 

Addit,onally, for many sets of input the Yagoda model will calculate stresses to 

extraordinary accuracies as evidenced earlier by the convergence of Altmann's model. 

Thus, it is possible for the Yagoda model to calculate stresses to many orders of magnitude 

greater accuracy, and to do so at a miniscule fraction of the time other models require to 

achieve even modest accuracy. The disadvantages of the Yagoda model are difficulties 

with cases of low anisotropy ratios and/or highly variably \VIS profiles. 

In addition to his convention;:\! winding model. Yagoda also extended his model to 

include the effect" ofu~ntrifugally induced ::-,trc;:;-;es [150, 151] Tn this \\i.Jrk he COih.·luded 

that the effects of centrifugal forces are small but not negligible. This and other more 

complex wound roll behavior will be discussed in more detail in Chapter 4. 



In summary, Yagoda's model is numerically consistent with the isotropic and 
Altmann models. The primary advantage of the Yagoda model is extraordinary accuracy 
and extremely fast calculation time, while the primary disadvantage of the Yagoda model is 
limitations in the complexity of the WIS profile that can be easily accommodated. Thus, 
the best application of the Yagoda model is where extremely accurate data needs to be 

computed quickly to verify other models. 

Nonlinear Moduli 

The three models discussed thus far, the isotropic, Altmann's and Yagoda's, have 
all assumed that the material properties are constants. However, material properties are 
seldom constants, and will vary with load, load history, strain rate, time, temperature, 
moisture and other factors for a given material. In particular as we will see, the radial or 

stack modulus ER will depend strongly on the interlayer pressure OR· Moduli are defined 
as the slope of the stress-strain curve as 

(50) = d 0 R = f(oR and other factors) 
d ER 

Figure 17 shows the stress-strain curves for one of the materials tested in this 
project, and typifies most web materials. The first and most important observation is that 
the stress-strain curves are nonlinear, and consequently the radial modulus is not a 
constant but rather depends strongly on the stack pressure. The second observation is that 
the load and unload curves follow different paths, and the area between these curves 
represents the nonconservative hysteretic energy loss due to a single load-unload cycle. A 

third observation is that the strain does not return to zero upon unload. This means that the 
specimen will retain a permanent change in dimension of the same sign as the applied load, 
although some of this will be recovered with time. Finally, the stress-strain curves 
'walks' to the right as a function of loading cycles. However after one full load-unload 

cycle, the stress-strain curves tend to quickly stabilize. Because of these and other 
~.nmpkxities, \ arious procedures ~md \imrlifications are used to adequately model a 
~~~dllrial's fir:;t c•rdcr ,rress-~train h~_'h~i\iOr. 
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Moduli are indirectly measured using a tensile testing machine equipped with 

suit<tble grips or pl<ttens. MD and CD moduli arc generally tested in ,_ -,sion only, and the 

specimen strips are mounted in lightly loaded grips. These specimens are typically 1" 

wide by 4-6" long. To reduce the stress concentration at the grips and consequently 

reduce the frequency of breaks initiating at the grips, they are either covered with a soft 

elastomer to spread out the loa< :md increase friction, or the grips have a large radii such as 

defined by Tappi standards. However, the ZD modulus is only measured in compression 

as a single ply or stack loaded betv.'een rv.·o parallel platens. 

The platens used for radial or ZD modulus measurement may either be larger or 

smaller than the specimen stack. The easiest approach. and that proposed by Pfeiffer [79], 

uses specimens cut somewhat larger than the circular loading platens. \Vith this method, 

110 >]X'Cicll cutting m :1lignmcnt of the specimens is required. Howe_, a it assumes that the 

~Jl·tive area is that of the platens. \Ct there arc end dkcts iust bcvond the platens as the 
• J • 

stack specimens bend away from the stack's center. These end effects may bias the 

mc2surement in the direction of a stiffer modulus. 



A more difficult approach, is to carefully cut and align specimens into a stack 

which is smaller than the loading platens. However, whether the specimens are cut 

individually and collated or sawed as a stack, end effects are still present. If the specimens 

are cut and collated, they may not be of precisely the same length and width, or may not be 

precisely aligned, both of which will bias the measurements in the direction of a softer 

modulus. If the specimens are sawed, the edges of the material may fray or laminate with 

an unpredictable bias of the modulus measurement. 

After the stack specimens have been prepared and fixtured, the tensile testing 

machine must be set up to compress the stack at a specified strain or load history through 

one or more cycles. Pfeiffer suggests a strain rate control such that the specimen is loaded 

to 100 psi over the course of 60 seconds, held at 100 psi for 60 seconds, and unloaded for 

about 60 seconds [79]. This load history, though by no means a standard, is typical of 

procedures used by others. However, the maximum load should be selected on the 

measured or anticipated maximum interlayer pressures for the specific product and process 

to be modeled. Obviously, rolls of tissue, carpeting or fiberglass insulation will have 

considerably less pressure than rolls of calendered paper, film or steel. Additionally 

because of the stabilization of the stress-strain response after the first complete load cycle, 

it is common to report the results for the second loading curve. 

The instrumentation used for moduli measurement ,,re typically strain gage load 

cells for load measurement and L VDT's for displacement. These load and displacement 

signals are either recorded on chan paper, or preferably by computer data acquisition 

which simplifies subsequent data reduction. The tensile test machine, load cells, and 

displacement measurement must be suitably sized for loads and travel. With stacks 

typically about 10 square inches in cross section and about one inch high, this translates to 

a load cell capacities of several hundred pounds and a displacement resolution on the order 

of 0.001 ". Care must be taken with larger tensile test machines to avoid overloading the 

load cells. 

The load-displacement data gathered from the tensile tester must be first convened 

to stresses and strains, and then the derivative must be calculated for the modulus as 

defined by equation (50). Ultimately however, the data must be convened (curve-fitted) 

into an expression where modulus is a function of interlayer pressure or stress as required 

by the nonlinear\\ inding model. The two conm1only u"cd curve fits for stack stress­

-;trains arc the CXJ'<llh:nti:ll <tnd the polyiwmial. and will ec1ch be dbcribed in turn. It 

should be emphasized at this time that these stress-strain and resulting modulus 

expressions are strictly empirical in nature, as there are presently no first principle 

cl~?:-~-riptions of nonlinear qack re"ponse. 



The exponential curve fit proposed by Pfeiffer is of the form 

where <JR is the interlayer stress, e is the base of the natural logarithm, ER is the radial 

strain, and where K 1 and K2 are curve-fitted constants [71 (with changes in nomenclature 

for consistency)]. The radial modulus can then be calculated for (51 a) by taking the 

derivative as given in (50). 

Pfeiffer, Frye and many others in the paper industry attach almost a mystical 

significance to the K 1 and K2 constants, particularly in their purported relationship to the 

propensity to certain roll structure defects. However, there is no published evidence of the 

significance of these constants. Additionally, though the exponential curve will fit most 

paper grades and other materials very well, its practical implementation is difficult. First, 

the -K 1 corrective term in (51 a), which is required so that the stress is zero at zero strain, 

adds complexity to the curve fitting procedure. Instead of using a simple fitting program, 

the exponential fit becomes iterative where K1 is subtracted from the stress strain data 

prior to the next iterative fit. Secondly, the formulations (51) are given in terms of radial 

strains, instead of the stresses in which winding models are typically posed. Thus, a 

simple modulus expression as a function of interlayer pressure or stress is difficult to 

achieve. 

The polynomial curve fit proposed by Hakiel is of the form 

where the Ks are determined by polynomial curve fitting. While the radial modulus 

expression is the requ; j input for winding models, the stress-strain curve itself is not 

particularly useful. Much difficulty can be avoided by performing the derivative (50) 

numerically on the raw stress-strain data before curvefitting, instead of curvefitting 

followed by an analytical derivative as used by Pfeiffer's exponential. Though a high 

correlation fit can often lx' nhtained without the K 3 rem1. the K 1 term must not be negative 

]"\(•~_·:nJSC it \\tlUld nut make rhysic:ll ~cnse. \ddition:dly, the KJ term may have to be 

~r,_':ttn th:m --:r1me '-Tli:Jll positive nlue bcc:wsc C\trcmely high ~tni;;otrOp) ratios may cause 

tremendous numerical difficulties with some implementations of winding mcxlels. 



The radial moduli for this project was tested in a similar fashion to that described 
above. Specifically, the specimens were cut to 2.5" x 4.0" on a guillotine cutter and 
collated into stacks approximately 2" tall. The stacks were ,,Jaded and unloaded through 
four complete triangular loading cycles on an Instron programmed in strain rate control 
from zero to 50 psi, with each complete load cycle taking approximately 6 minutes. Data 
was acquired with an IBM PC clone using Labtech Notebook software and Metrabyte data 
acquisition cards. The data acquisition rate was 1/second which gave approximately 150 
data points for each load or unload segment. 

The first step of data reduction was to average the raw data by 5 to decrease signal 
noise which would interfere with a good numerical derivative. Secondly, the displacement 
signal offset was subtracted for each load or unload segment so that the displacement was 
zero at zero load. Similarly, the tare load of the upper platen was also subtracted off. 
Thirdly, load was convened to stress by dividing by the 1 0" cross-sectional area, and 
displacement convened to strain by dividing by the original stack height. Founhly, a 2 
point central numerical derivative was computed to give the change in slope of the stress­
strain data as a function of pressure as indicated by (50). Finally, the resulting 
modulus/pressure data was curve fitted using the polynomial method given by (52). 

The results of the moduli measurement for three of the materials tested for this 
project are given in Table 4. As seen here, the initial stiffness is considerably greater for 
the coated board than for the other two materials. More significantly, the strain hardening 
rate varies considerably between these paper grades. Though the curve fitted moduli 
c:>-.pressions are highly correlated with the original data, there is a significant variability 
between the first and subsequent load cycles. Additionally, it is expected that there will be 
a significant property variance in many web materials within a single roll, so that the tested 
sample may not necessarily be representative of the average for that roll. Thus the 
difficulties associated with hysterisis, creep, propeny variance and other complex material 
behavior gives some uncenainty in the radial modulus which is used as a winding model 
input parameter. 

Similarly, the tangential moduli may also possess complexities, panicularly for 
non-elastic materials such as paper, nonwovens, and highly stressed films. For example, 
most paper grades have nonlinear stress~strain curves. are hysteretic, and have the 
propensity to creep. Since the tangential nor1lincarities arc L:~llally much smaller than radial 
nonlincarities, rnnst wi11ding models have neglected this t>chavior. IIov.cver, nonlinear 
models such as Hakiel's described in the next section can be extended to include more than 
the predominant radial nonlinearity. 



Table 4 

RADIAL MODULI 

Material Load Cycle Radial Modulus (psi) Correlation (R2) 

NC paper I 17.812 + 33.831 *P 0.999 

NC paper 2 22.698 + 36.071 *P 0.997 

NCpaper 3 28.483 + 35.062*P 0.990 

NC paper 4 34.526 + 35.949*P 0.983 

NC paper calculation 20 + 35*P 

LWCpaper 23.660 + 51.175*P 0.996 

LWC paper 2 42.724 + 54.480*P 0.990 

LWCpaper 3 24.405 + 57 .600*P 0.998 

LWC paper 4 32.918 + 58.191*P 0.996 

LWC paper calculation 30 + 55*P 

ctd board 1 61.949 + 112.47*P- 1.2013*P"2 0.998 

ctd board 2 65.009 + 118.52*P - 1.3371 *P"2 0.997 

ctd board 3 74.612 + 114.73*P - 1.2247*P"2 0.994 

ctd board 4 79.924 + 119.36*P- 1.3279*P"2 0.997 

ctd board calculation 70 + 115*P- 1.27*P"2 

Some of the nonlinearity in the radial stress-strain curves can be qualitatively 

explained in terms of the geometry of contact between layers. This begins by noting that 

there are gaps and incomplete contact between layers. Materials such as paper and 

nonwovens are by nature rough and porous so that only the peaks of adjacent layers are in 

contact. Nonporous materials such as film may not be in complete contact due to the 

entrainment of air during winding as evidenced by a measurable decrease in density of the 

roll beyond that of the material from which it was wound. Finally, all material have 

unintentional vanac1ons in thickness and deviations from flatness. If these materials are 

thick enough, bending stiffness can resist complete contact at low interlayer pressures. 

Despite the various mechanisms of incomplete contact, the result will be similar. As 

intcrlayer pre-;<-:urc incrca"eS. the prop1_1rtion of ;1rea in cnntact increases bring more 

m;tkr: ·1 ;iHO •Jlll!pr''"'inn. 'Thus. the <:tek T10dulus will tend to in\.·rcasc :1.nd c:,i:-;1-•roach the 

hulk stiffness of the material as the interlayer pressure and contact area increases. The 

nonlinearity in the tangential stres~-strain curves can be qualitatively explained in terms of 

the hrca~ing and pos-.;ible reforming of bonds. In the case of p::1per, it is the bonds 

bctwceil fih\..'rs, and f()r films it is the bonds between polymer chains. 



Hakiel Mode I 

The next step in the evolution of winding models was to incorporate the nonlinear 

radial modulus. Hakiel l132, 133] was the first to publish such a solution using finite 

difference techniques, and later Willett and Poesch [186] made incremental improvements 

to this basic approach. While previous and simpler winding models were able to reduce 

much of the solution to closed form expressions, the complexities of a nonlinear modulus 
precluded a predominantly mathematical treatment. Instead, the Hakiel model relies 

heavily on numerical approximations of the winding differential equation. This numerical 

approach freed the evolution of winding models from more restrictive descriptions. 

However as will be shown, this freedom came at the cost of increased computation time 

and a much greater threat of numerical round-off error and instability. 

The constitutive equations and assembly technique are essentially identical to the 

isotropic, Altmann and Yagoda models. The only significant variation is that the radial 

modulus, ER, is allowed to vary as a function of interlayer pressure as indicated in the 

previous section and defined by equation (50). However as with the previous models, 

though they are formulated in a similar fashion, the solution technique is very different. 

Rather than merely echoing Hakiel's solution, the following derivation will extend 
the model slightly beyond its original formulation so that the solution is more general. The 

principle extensions are reducing the constraint imposed on Poisson ratios by strain 
energy, including higher order derivative cross product terms for better accuracy, and to 

extend the model to include a nonlinear tangential modulus. It should be emphasized that 

these deviations from Hakiel's original solution are not corrections, because I have verified 

his solution to be absolutely correct as formulated by rederiving the solution on a symbolic 

math application, Macsyma, as well as many numerical checks against other winding 

models. In addition to these extensions, the nomenclature is changed somewhat from the 
original publication so that this thesis work is consistent. Finally, since this is currently 

the best winding model to date, its derivation will be more complete than earlier models. 

The radial equilibrium equation of a single 'layer' has been derived as equation (2) 

in Chapter 2. and given more thoroughly in Altmann's publication [ 127], and will only be 
restated here as 

(53) 



The strain-displacement relations for a cylinder have been derived in Chapter 2 as 

equations (4) and (6) and are merely restated here as 

(54) 

(55) 

dw 

dr 

The stress--strain relations contain the radial and tangential moduli which are now allowed 

to vary as some function of radial and tangential stresses respectively as 

ER 
daR 

f(CJR and other factors) = = 
d ER 

ET 
d 0T 

f(CJT and other factors) = = 
d ET 

However, though the moduli vary directly as some function of stresses and other 

factors, they will as a consequence vary with radial position because stresses vary with 

radial position. Consequently, the moduli in the stress-strain relations given by Altmann 

[ 127] and equations (7) and (8) are rewritten to emph<1si1e their (indirect) dependence on 

radial position. 't\otc that because the sensitivity to Pois~ ·atios is small, and they have 

been assumed to be constants [ 148] 

(56) 
0R Or 

ER = !lT--
ER (r) ET (r) 

(57) 
OT 0R 

ET = !lR--
ET (r) ER (r) 

Finally, the core stiffness definition derived in Chapter 2 is given again as 

w/rlr=ro 



Thus, equations (53) through (58) represent the constitutive equations that define 

the physics of all consistent winding models in general, and this nonlinear winding model 

in particular. The next steps are to assemble these constitutive equations into a 2nd order 

winding differential equation. 

While the order in which the operations are performed to obtain the differential 

equation is not unique and will lead to an equivalent expression, the ease of derivation is 

very dependent on order. Furthermore, the simplest path is not easy to determine until in 

fact the derivation is complete. Fortunately, symbolic computer algebra can greatly reduce 

derivation time, reduce the chance of error, provide a log of the derivation, and even 

convert expressions into computer code. Two applications were used for this and other 

derivations in this thesis. The first and most powerful is Macsyma running on a 

Symbolics machine. The second is Mathematica running on an Apple Macintosh which 

was used for the bulk of derivations for this project. Though Mathematica lacks some 

advanced mathematical features, is somewhat easier to use and integrates well into report 

and computer code writing. 

Strains can be eliminated from this system of equations by combining equations (54) and 

(56) as 

(59) 
dw 
dr 

Or 
~T--

ET (r) 

and by combining (55) and (57) as 

(60) 

The displacement, w, can be eliminated by taking the derivative of (60) with respect tor 

and setting this equal to (59). Although not proved until Chapter 7, the winding 

differential equation is not dependent of derivatives of ET, so that it can be regarded 

simply as a variable whose value must be determined just prior to evaluating the 

differential equation. Finally, this equation is solved for the derivative of tangential stress 

as 

(61) crT'= (ERErcrR + ~RERETcrR- ER2crT- ~TER2crT- r~RETER'crR 

+ ~RERETcrR')/(rER2) 



The derivative of the tangential stress can be eliminated by solving (53) for the tangential 
stress and taking the derivative and setting this expression equal to (61). Finally, this 
equation can be solved for the tangential stress as a function of radial stress and material 

properties as 

(62) crT= (ERETcrR + ~RERETcrR- r~RETcrRER' + r~RERETcrR'- 2rER2crR' 

- r2ER2crR")/((1 + ~T)ER2) 

Now the differential equation can be assembled by inserting the tangential stress 
expression (62) into the equilibrium equation (53). This expression is then expanded and 

collected upon the r2crR"· the rcrR'· and the erR terms. Finally, the equation is put in a 

standard form as 

(63) 

where 

A = ( 3 + ~T - ~R ::) 

B = 

(-(1 +~R)ERET + (1 +~T)ER2 

Next, the boundary conditions at the core and the outside of the roll must be 
derived. The boundary condition at the core can be solved simply from the system of 
equations of equilibrium (53), tangential stress-strain (57), and the definition of core 
stiffness (58) by eliminating the tangential stress and tangential strain. This boundary 
condition at the core is a derivative such that 

(64) 

The outer boundary condition at the current applied wrap is 

I - - WITr ~ rn 
(65) CYR r=rn- -----

rn 



There are a few main differences between this derivation and that given by Hakiel 

[132, 133]. First, he used the strain compatibility equation for cylindrical 

(66) 
der 
r- + ET - ER = 0 

dr 

instead of the strain displacement relations (54) and (55). However, these expressions are 

exactly equivalent so that the resulting differential equation will be equivalent. 

Another difference which may be significant however, is that a derivative cross 

product term resulting from the derivative in the equilibrium equation, ER', was omitted 

from the derivation. Since radial modulus is a function of radial pressure which is not a 

constant, the radial modulus will vary indirectly as a function of radial position. Hence, 

the ER' term is nonzero for stacks with nonlinear radial moduli. Looking at the first and 

last terms in the numerator forB in equation (64), it may be possible that the ER' term is 

negligible. This would happen if either ~R or ER' were small, or their product with r 

were small compared with ER· If the ER' term is omitted, the expression for A remains 

the same, but B becomes 

(67) B = (1 + ~T- (1 + ~R)~:) 

However, it will be shown in Chapter 7 that the higher order derivative term 

"IOuld not be dropped for the case of the nonlinear radial moduli with the displacement 

formulation because it is a dominant term. Therefore, it is conservatively suggested that 

the full form be retained. Also as will be shown in Chapter 7, a full nonlinear model must 

include not only the derivative of radial modulus with respect to radius, but also the 

derivatives of the Poisson ratio terms which were not retained in the previous derivation. 

Perhaps surprisingly however, the derivative of the tangential modulus need not be 

included even for nonlinear tangential moduli. 

An additional restriction imposed by the Hakiel derivanon. which was removed for 

generality in our derivation. is that of strain energy which states that the moduli and 
Poi-.:-.:on ratios ;1rc related bv 

(68) 



It is conservative to not constrain the solution since the strain energy constraint has 

not been experimentally verified on a single ply of a complex material such as paper, and 

much less as a stack [ 186]. Though Hakiel set both Poisson ratios to zero in his analysis 

and thus the strain energy constraint would not affect his results, it may be significant for 

other systems. If the strain energy constraint from (68) is also included, the A and B 

terms of (64) reduce exactly to Hakiel's solution: 

(69) A = 3 

B - (g2 - 1) 

where 

g2 ET 
= -

ER 

Now that the differential equation given by (64) has been assembled, it must be 

solved in the region from the core to the current outer radius. Since a closed-form 

analytical solution to (64) may not be possible for the general case where the A's and B's 

vary for every internal wrap, numerical solutions must be used. In particular, the finite 

difference method is used where the derivatives are approximated by numerical 

differences. Since the finite difference method will be described in more detail in Chapter 

7, only a brief overview will be given here. 

In the finite difference method, each internal layer is described by a linear algebraic 

approxirnation of the differential equation. The equations for all the layers are assemblea 

into matrices which can be solv~:d for the incremental radial stress distribution. From the 
incremental radial stress distribution, the incremental tangential stresses can be calculated 

using the equilibrium equation (53). Both radial and tangential incremental stresses are 

then added to the previously existing stress distributions. This procedure is embedded in a 

loop which is repeated for every wrap added from the core to the finish diameter. 

There are a few decisions that must be made when implementing finite difference 

computer modeling. This first is the order of the difference approximation, and is typically 

either a 3 or 5 point central difference. Though both Hakiel [132, 133] and Willett and 

Poesch [ 186] used 3 point differences. conventional wisdom indicates that using higher 
order approximations will improve the accuracy and/or decrease the computer code 

solution time. I-!O\\Cver. ~C'\cral c,•mparative runs using both 3 and S point differences 

indil·at-: thdl the 3 point w:..ts -,ignifiL·antly more CPC efficient in obtaining a u~rtain 
accuracy. i\'ot surprisingly as we have seen before, the numerically ill-conditioned nature 

of wound roll physics seems to defy many standard numerical techniques. Since the 3 
point difference h:1s h,:en used by other authors, results in simpler code, and may be rnore 
l'fficicnt; it m:.:y be the prcferTCJ order. 



Another decision which also affects both accuracy and solution time is grid size or 
calculation wrap thickness. Although probably not numerically ideal because of the high 
gradients at the core and outside, all authors to date have used consistently spaced grids 

because it is much simpler to code. However as described in the end of Chapter 2, the 
calculation wrap thickness need not equal the real web thickness as long as the value of the 
wound-in-stress is preserved. The effect of grid size on solution time can be estimated 

from equation (29), which indicates that solution time is inversely proportional to the 
square of the grid size. Thus, halving the grid size will quadruple the solution time. 

The effect of grid size on solution accuracy is not as easily determined however. It 
is expected that as a grid is reduced from a coarse size to a finer size that solution accuracy 

will increase. However if the grid is made ever finer, eventually numerical roundoff errors 

due to small differences will dominate and accuracy will begin to suffer. Indeed if it is 
made fine enough, the solution will blow up. Though numerical roundoff errors can be 

reduced by using double or higher precision, they can't be eliminated. 

Figures 18 shows the effect of grid size on the stresses calculated for the Linear 

Isotropic Standard case (see Appendi,x B for parameters). As seen here, the solutions for a 

· 0.1 II and 0.05 11 grid give almost identical results. However, as the grid is reduced to 
0.02", the tangential stresses begin to become numerically unstable, and at 0.01 II both 

radial and tangential stresses have become unstable. Halving the grid size yet again will 

cause the solution to completely blow up. Thus, too fine of a grid can actually reduce 
accuracy. 

Figures 19 shows the effect of grid size on the other end of the problem spectrum 
for the Linear Anisotropic Standard case. As the grid becomes finer, the radial stresses 

converge to the correct answer. If we were patient enough however, we could also make 

this set of input parameters also blow up if the grid were reduced sufficiently. One 
curiosity remaining is why the tangential stresses seem to be unaffected by grid size for 

this parameter set. This is easily explained by noting that tangential stresses are calculated 

from the radial stresses and the equilibrium equation. As seen in Figure 19a, the 
imperfectly calculated radial stresses are too negative, but their slopes are too positive. 
This coincidental near cancelation of errors occurs primarily for cases of highly anisotropic 

materials. 

One u'.eful tr,:nd '>'- hi~·h can l:>c used to ch,~ck rhe !'rupcr b...:h~i\ il)r of winding 

:1i<'ckls o'"·c·urs for the case of highly (lincZJ.r) ani:.ouupil: Jtt<ttcriab wuuiH.l under constant 
tension which have a large ratio of the finish radius to the core radius. In this case, the 
rarlial and tan['ential stre' ""will be nl~arJy const3nt and nearly equal to a half dozen digits 
through the intcnnediate dht!11eters of the roll. 
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Perhaps a more useful view of the effect of numerical error is to plot it against grid 
size. ·n1is is easily done for cases in which the correct answers are already known bec:1use 

uf the existence of independent models such as Altmann and Yagoda. As shown in Figure 

20, error is halved as the grid size is halved (quadruple the calculation time). Eventually 
however, the grid becomes too fine and error increases dramatically from a near zero value 

due to numerical roundoff. The error graph then consists of two regions. In the coarse 

region, the error is inversely proportional to the grid size. In the fine region, the 
magnitude of both the stresses and stress errors increase dramatically with decreasing grid 

size. Finally, the boundary between the regions should be of near minimal and near zero 
error. 

Though this behavior has not been predicted from first principles error analysis, 

this trend hJs hccn nh.;;erved in all finite difference formulJtinns nf wound rolls models, 

<fld f( 1r ~1ll l ~!:-:c-.; (lf in rut ;':;r.:Iilc·li:rs thJ.t h:i\C been run. J-fo\<.·cvcr. it 'hould be noted that 

;he uptimurn grid :--i;c dcL·rcascs significantly with increasing ani~otropy ratio, and is 

affected by nther paramf:ters. Thus, this observation of error halving for excessively 
coarse grids can perhaps allow prediction of optimum grid size for cases in which the 

,·\liTect answers are not ;:llrcady knov.:n. Also. better values of stresses could be 

cxtr,ipc,Lltcd fl)r CZlscs in \\ hich the optimum grid size results in excessive c3lcularion time. 



In summary, Hakiel's winding model is currently the most general and the most 

useful because of its nonlinear radial modulus capabilities. It is mathematically correct, 

consistent with previously discussed models, and yields stress values that are very close to 

the other models as seen in Appendix B, provided that a proper grid size is chosen. 
However because of the unfortunate effect of numerical approximation, this model should 

always be run with more than a single grid size (double and halve the expected optimum) 

to compare results. Finally, a more general formulation would release the strain energy 

constraint, include the radial modulus derivative cross product, and allow for nonlinear 

tangen6al moduli. 

Willett and Poesch Model 

Two years after Hakiel's model [132], Willett and Poesch [186] published a nearly 

identical nonlinear winding model. Similarities include not only nonlinear radial modulus 

capabilities, but also the finite difference solution technique and experimental verification 

of radial stresses by the axial press test (see Chapter 5). However, though Willett and 

Poesch were not the first to solve the nonlinear model, they did extend its capabilities 

somewhat. 

First, the initial formulation included stresses and strains due to thermal changes. 

However, thermal analysis was not inves6gated in the published examples. Additionally, 

thermal expansion alone may not be useful unless coupled with a heat transfer model (as 

will be derived in Chapter 4). Secondly, they developed a novel solution to the difficult 

problem of Poisson ratio measurement using laser diffraction. From this experiment they 

concluded that the strain-energy constraint, which gives a relationship between Poisson 

ratios and moduli, did not hold for the magnetic tape material tested. Finally, they used a 

SOR (successive over relaxation) solution of the finite difference equation system instead 

of direct solution by the Gauss method. However, whether SOR improves accuracy or 

decreases solution time has not been demonstrated. 

Though the Willett and Poesch anicle was generally correct and consistent with 

other models, two errors were uncovered. The first was a statement that the system of 

equations is tridiagonal and symmetric. The finite difference equations are tTidiagonal only 

if thrc·' point clcrintive C!pprox.imations are used, and the system is in general 

:wr:-;\·llii11Ctric as \~ill he "Ccn in C'hdJ)!er 7. S•:-<J1ndlv, in their te"\t 2nd their Fi:c.ure 8 thev 
- ,.1 ...... ../ 

labeled Altmann's model as isotropic which is rather limiting since it was the first 
anisotropic model [ 127]. In summary, the Willett and Poesch model is essentially identical 

to IL!kicl's except str:1in-cncrgy was not assumed (which is more general) and a different 

sn1utiun technique was used (which has not yet hecn demonstrated superior). 



Pfeiffer Model 

Pfeiffer is one of the more prolific winding authors with articles in guiding [ 48], 

radial modulus measurement [79], nips [110-112], and particularly roll structure 
measurement [ 165-167]. Additionally, he made a foray into analytical modeling of the 

winding of materials with nonlinear moduli [140, 141]. His novel formulation is based on 

a strain energy balance between incoming wound-in-tension energy and energy stored in a 

roll due to the addition of wraps. 

This model is formulated from some of the constitutive relations that the previously 

discussed models use such as equilibrium, and a simplified stress-strain relation, as well 

as an identical outer boundary condition. However, his model is not consistent with the 

standard approaches because it does not include a core stiffness parameter and Poisson 

ratios. Additionally, he constrains the radial stress-strain behavior strictly to 

.. Though this strictly empirical relationship does indeed work for some materials, it may not 

necessarily model all materials well. The isotropic and linear anisotropic material cases are 

two examples, which are well covered ir this text, that could not be modeled with 

Pfeiffer's exponential relationship. 

However, there are even more serious questions ahout the veracity of Pfeiffer's 
model. First, Hakiel's Figure 8 [ 133] compares his model with Pfeiffer's using the same 

data. The resulting difference in radial stress exceeds 10% in some regions, which is far 

larger than the fractional percent difference between other winding models. Though 
Pfeiffer later updated his model [141] to correct an equation which had no theoretical basis 

and claimed that the models yielded the same stresses, this has yet to be independently 

verified. 

Secondly, the shape of the tangential stress profiles are different than obtained by 

all of the other consistent models. In particular, while the tangential stress profile should 

have a positive second derivative at the outside (curve is concave up), Pfeiffer's [141 

Figure 41 has a negative second derivative. \Vhether this problc:m was fixed by the update 

i-; :1ho 1wt known. Thirdly. he claims a coarse grid of 100 clements is suffiL·ient to obtain 

hL~ttn thdn 17c :h'Cur;tcy. Tyric.·:illy the other nJ()dcls require SC\ eral thousand clements to 

model highly nonlinear cases such as these. Fourthly, a multiplicity of units and incorrect 

c0nversion factors given in the article create concern about the care by which the work was 

rr·:pared. 



However, the most damaging critique is given by Penner [ 139] who shows 
analytically that Pfeiffer's model is not energy consistent with the Altmann and Hakiel 

models which are consistent between themselves. We have shown in this chapter that the 
Isotropic, Altmann, Yagoda and Hakiel models are formulated from the same type of 
constitutive equations, and from Appendix B that they yield very precise numerical 

agreement. Consequently, Pfeiffer's model is at the very least inconsistent with these well 

proven mcxlels, and perhaps even incorrect from a mechanics viewpoint. 

In summary, though Pfeiffer has numerous achievements in experimental winding, 

his analytical model is in serious question. First, it is not as general as the Hakiel model 
and secondly, it is not strictly consistent with all of the other models. Its only advantage is 

its apparent speed of calculation compared to models other than Yagoda's. Perhaps these 

inconsistencies will ultimately be shown to be negligible in practice. However, until this 

has been verified for a range of cases for a particular application, or until the potentially 

consistent energy formulation is corrected, its usefulness will remain in doubt. 

Lekhnitskii Model 

Lekhnitskii presents two interesting solutions to the stress distribution inside a 

pressurized composite ring [137]. Although his solutions to anisotropic rings are not 

strictly winding models because they are not accretive, they contain all the necessary 
elements to evolve into winding models provided that the two boundary conditions are 

inclurled, and that the solution for stress distribution is itera1ed for wraps added from the 

core to the finish diameter of the wound roll. Simplistically, this could be formulated in a 

manner very similar to the Isotropic model presented earlier. However, these formulations 

will not be performed here as it is beyond the scope of this project. Additionally as will be 
seen, these formulations may not extend the generalities of winding models beyond their 
present capabilities. 

The first solution is for the radial and tangential stress distribution of a 'roll' 
composed of layers of concentric rings of identical thickness h (which can be thick) which 

is pressurized on either or both boundaries. What makes this formulation unique is that 

each layer c:1n have independently distinct material properties such as moduli. Thus, it 
Ct1uld m<><icl the winrling of cnmpo"itc materials such as tapes with relatively thick 
:H:;H_:sivcs, clr \;!ri,Jtinn~ ir1 propatics in the \1D \\hich could he di,c·re:ized to the nearest 

wrap. Finally the core boundary condition becomes immediately integrated into the 

solution as it would be nothing more than the inside rings (several are required to meet the 

constant thickness rn]uirement), where the innermost contained the zero pressure 
hounLLlry '- ondition. 



However, core boundary conditions are already handled by the current winding 

models, so that no additional capabilities are generated. Similarly, though not widely 

implemented, the composite material and variable MD properties could be handled by 

current winding models. The composite material can be modeled as a single wrap with 

effective material properties calculated from relative thicknesses and individual moduli. 

The only compromise is that the stress distribution within a single wrap is not directly 

generated by the winding model. The variable MD properties can also be handled by the 

finite difference models using lookup tables or formulas. Lookup tables are already 

required to calculate the nonlinear radial modulus at any particular radius. 

The second solution is for the radial and tangential stress distribution of a 'roll' 

whose material properties vary as a power law function of radial position given by 

where n is an arbitrary real number. Unfortunately, since radial modulus is a direct 

function of radial pressure and only very indirectly of radial position, this power law 

relationship may be extremely restrictive. 

In summary, while Lekhnitskii's formulations are novel and more closed-form 

than most, their application may be quite limited. This is primarily because they may 

provide no more generality than existing models. Consequently, the practical motivation 

to assemble and extend these solutions into working winding models is missing. 

A Tangential Stress Formulation 

As mentioned in Chapter 2, all current winding models are described by differential 

equations which follow the form 

(72) 2 d2x dx 
r -- + A r- + B x = 0 

dr2 dr 

\>.here x can rq~rc;;cnt one of five variahks \\ i1ich include: di-;pl~lcemcnL w. strc:o;ses, CJR 

or CJT, or strains, CJR or CJr. The only diffcrcnces are the l\\O boundary conditions and the 

variable coefficients A and B which depend on the formulation. In this section, this 

principle will be demonstrated by deriving a tangential stress fonnulation very much along 

the lines of the Hakiel radial stress fom1ulation. furthermore, in Chapter 7 a displacement 

fonnulation will also be given. 



The tangential stress formulation uses precisely the same set of constitutive 

equations as the Hakiel model and include equilibrium (53), strain-displacement (54, 55), 

stress-strain (56, 57) and well as the boundary conditions at the core (58) and current outer 

surface (65). The only difference is the order in which the equations are assembled. Since 

the tangential stress formulation results in much longer intermediate expressions, only an 

outline will be given of the derivation in a table form. Again, the symbolic math 

application Mathematica was used to increase the efficiency of the derivation and ensure 

accuracy. 

(73) 

where 

Eq'n Source 

1 equilibrium constitutive equation 

2a radial strain-displacement constitutive equation 

2b tangential strain-displacement constitutive equation 

3a radial stress-strain constitutive equation 

3b tangential stress-strain constitutive equation 

4 w' = 2a into 3a 

5 w = 2b into 3b 

6 w' =derivative of 5 

7 sr' = solve 4 equal to 5 for sr' 

8 sr = solve 7 into 1 for sr 

9 sr' =derivative of 8 

10 diffeq = 9 and 8 into 1 

11 diffeq =expand and collect sr", sr' and sr terms 

12 diffcq-= reduce to standard form 

The differential equation in standard form then becomes 

A= (3*erl\2 + der*er*r + 3*er"·2*ur- der*er*r*ur- 2*der/\2*r/\2*ur + er/\2*ut 

+ er/\2*ur*ut- der*er*r*ur*ut)/(er*(er + er*ur- der*r*ur)) 

B = (er/\2- er*et + dcr*er*r + er/\2*ur- 3*er*et*ur + dcr*er*r*ur 

+ 2'\kr*ct*r*ur- 2*der''\2*r/\2*ur- 2*cr*ct*ur~'·2 + 2*dcr*ct*r*ur/\2 

+ cr/\2*ut ~· dcr""er*r*ut + er~"·2*ur*ut + der*er*r""ur*ut-

2*der/\2*r/\2*ur*ut)/(er*(er + er*ur- der*r*ur)) 

and \\here the typography is <mplified such that 'der' for example, is the derivative of the 

r,tdi~d 1~wdulus \\ ith respect to rddius, and uris the radial Pnisson ratio etc. 



Although the A and B coefficients could be obviously simplified if the radial 

modulus derivatives were set to zero as in Hakiel's model, the full general form has been 

retained here. Finally, the core and outer boundary conditions must be derived. Again in 

an abbreviated outline the core stiffness derivative is derived as: 

Eg'n Source 

1 core stiffness definition constitutive equation 

2a radial strain-displacement constitutive equation 

2b tangential strain-displacement constitutive equation 

3a radial stress-strain constitutive equation 

3b tangential stress-strain constitutive equation 

4 w' = 2a into 3a 

5 w = 2b into 3b 

6 w' = derivative of 5 

7 sr =solving 4 equal to 6 for sr 

8 st' = solving 7 and 2b into 1 for st' 

9 set er'=O since it is not req'd as seen from radial stress formulation 

(74) 

Finally, the outer boundary condition is very simply 

Thus, the tangential stress formulation starts from identical equations and shares a 

very parallel derivation. Consequently, it has precisely the same generality as the extended 

Hakiel model since variable wound-in-stress profiles. nonlinear moduli and all the other 

features are supported. However. there are two minor differences. First, the radial stress 

is calculated from the tangential stress profile using the equilibrium equation as 

(76) 

This d(T;\:lti\e ::Hht he 'lcr;).:J fwP ··~outer ~urL1ce, \\here the r:1diZJ.l ..;;rcss is known, 

thruugh all layers sequentially to tnc core. Thus, the radial stress calculation will 

accumulate error with decreasing radii. Secondly, the computer solution efficiency will be 

different from the r;Jclial stress formulation. 



In summary, the winding differential equation can be described in one of five 
different mechanics parameters, all of which begin with an identical set of constitutive 
equations. The differences between thes~·· formulations are the coefficients A and B, the 
boundary conditions, and solution efficiency which will be described in more detail in 
Chapter 7 where the displacement formulation is derived, computer coded and evaluated. 
The tangential stress formulation though derived, is not computer coded and evaluated here 
as it is beyond the scope of this project. The only practical justification to code this 
formulation would be the possibility of improvements in computer solution efficiency. 
However, the tangential to radial stress calculation would need to be posed as an 
integration before the accumulative error problem were eliminated such that computer 
solution efficiency gains were even possible. 

Summary of Winding Models 

This chapter has followed the evolution of winding models from the simple 
isotropic model, to the linear anisotropic models by Altmann and Yagoda, to the nonlinear 
anisotropic models by Hakiel and others. With the evolutionary trend of increased model 
generality, the solutions became less closed-form and consequently more reliant on 
numerical approximations. Unfortunately as a consequence, the computer solution time 
and the propensity to numerical error also increased. 

It has been shown through careful rcdcrivation and comparison of stress output 
that the Isotropic, Altmann, Yagoda, and Hakiel models are entirely consistent within their 
range of application. Thus, while the earlier models might have been supplanted by more 
general models, they have been useful as a cross check of accuracy. Similarly, this close 
scrutiny has revealed numerous smaU oversights in the published winding model articles to 
date. Furthermore, it has been shown that Pfeiffer's model, though accepted for years, is 
not consistent. 

In addition to those articles discussed in detail, there are several others published. 
These others have not been reviewed here simply because they are not distinct models. 
for example, Catlow et al [129] and Harland [124, J:iS] are applications of existing 
j,otrnric mndel'. and Wnlfcm1an [ 146. 147] rcitcTZltcs the :\ltmann mn~kl. In this strictest 
'-L"nse, the '1'.1gnda and Willett & Prx"ch mudc]<.; are :--imply new 'nlc:tion techniques 
applied to the Altmann and Hakiel models respectively. Thus, the evolution of winding 
models over the last three decades can be simply classified into three stages: ER = ET, ER 

-t: ET, ER = f(CJR)· 



In practice, the choice of model depends on which will perfonn the required stress 

calculation as quickly as possible within the required accuracy constraints. Since most real 

winding situations involve nonlinear radial moduli, the Hak:iel model (or variant) would be 

the preferred choice. However since it is a finite difference model, great care must be 

taken to make certain that the grid size is not adversely affecting the solution by running 

the same problem at more than one grid spacing. The only exception to the Hakiel model 

choice might be the Yagoda model if computational speed and accuracy is at a premium, 

and where the situation can be adequately modeled with a simple polynomial WIS profile, 

high anisotropy, and constant radial modulus. 

In this chapter, a somewhat idealized model of winding is presented which may not 

well describe some situations. In the next chapter, more complex roll behavior such as air 

entrainment, nips, hygroscopic diffusion will be discussed. In some cases, these 

behaviors have analytical solutions which can be combined with the idealized winding 

model, while in others the behavior is only qualitatively understood. Additionally, 

Chapter 7 will present winding models which can be used for the measurement of stresses 

during winding, as well as developing the finite difference approximations to the Hakiel 

and other models. Finally, the appendices contain the computer code and calculated stress 

output for the models discussed in this chapter. 



CHAPTER 4 

COMPLEX WOUND ROLL BEHAVIOR 

Overview of Complex Behavior 

The idealized wound roll modeling presented in Chapters 2 and 3 describe the 

radial and tangential stress distributions as a function of WIS (wound-in-stress) profiles, 

geometry and material properties. The stress predictions from these models have been 

frequently verified to accuracies better than 10% [128, 132, 133, 186] using experimental 

measurements such as thin pressure transducers and the axial press test which will both be 

described in Chapter 5. Thus, the simplified wound roll models can adequately describe 

the physics of winding for some cases which are typically the centerwinding of elastic 

webs wound uniformly v :th respect to the CD, without slippage and without air 

entrainment. 

However, n1any real "inding situations arc complicated by other phenomenon not 

presently described by the idealized winding models. These phenomenon include external 

and body forces beyond the WIS boundary condition such as nips [ 110, 166, 167], 

centrifugal stresses [ 150, 151], and gravity. The idealized winding model also simplifies 

the material description to elastic behavior, yet many materials have significant anelastic 

behavior such as hysteresis [79], creep, stress relaxation [144, 145]. Furthermore, 

winding wide nonporous webs at high speeds will entrain air between the layers [ 188], so 

that the effective radial modulus is reduced beyond the value given by static testing, and 

changes with time as air is squeezed out. The idealized models all assume cylindrical 

geometry, yet real rolls are lobed around the circumference [ 122], deform around nips, 

and vary significantly in the CD direction [ 195]. Deviatiom from cylindricity can become 

q~1it1: ~c·vl"fe if ckfect' such ~h crepes [ 109], cornJg,;::uns. di~hing [108] ctnd starring are 

prc::-en!. fi: 1 ~Jly, !he str:.:.in-di::,p1aL·cment relations assume no interlayer slippage, yet 

smooth low friction webs do slip inside a roll [ 1 06]. 
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Some wound roll complications have analytical solutions or empirical treatments. 

However in most cases, only a minimal subjective understanding exists. Examples of 

analytical solutions include centrifugal stress [150, 151], and stress relaxation [ 144, 145]. 

An example of an empirical treatment is determinin~ WIS as a function of winding tension, 

nip, and material [ 166, 167]. However, virtually all of the noncylindricity complications 

presently have no analytical or empirical methods which can be incorporated into 

fundamental roll structure stress analysis. 

Though most of these complications exists to one degree or another for most 

winding conditions, the significance can vary widely from negligible to dominant 

depending of the details of the application. Thus, the first step in analysis is to determine 

the significance of a suspected complication. In some cases, there are experimental tests 

designed to quantify behavior. Examples include interlayer slippage which can be 

quantified by the J-line test [ 1 06], air entrainment which can be quantified for films by 

comparing material and roll densities, and roll shape [ 173]. However even if the 

phenomenon is quantified, the significance of its contribution to radial and tangential stress 

. distributions are still not usually determined. Ultimately, the best test for significance is to 

compare predicted and measured roll stresses. 

If a complication is determined to be significant, then its effect must be included in 

wound roll model analysis. In some cases, the complications can be analyzed separately 

from the idealized \VOund roll model. for example, the effective WIS for winders with 

nips can be determined experimentally [166, 167], and then the idealized wound roll mcx:lel 

can be run. Conversely, the effect of stress relaxation can be analyzed after the wound roll 

model is run [ 144, 145]. However, in some cases the complication must be analyzed 

simultaneously with the simplified wound roll model such as the effect of centrifugally 

induced stresses [ 150, 1511. 

The inclusion of this chapter on wound roll complications is justified for at least 

three reasons. First, they affect the stress distributions beyond that predicted by simple 

and traditional wound roll models and thus serve as a checklist if discrepancies arise 

between predicted and measured stresses. Secondly, a simplified wound roll model is an 

iiitc~wd pan of this rrnject on the mea~urcmcnt of stres:'es during roll winding, and thus 

;hi:--, .. ,p:cr '-Crv~~s a" a Jiq of ~lwricnmings nf the approi1ch :111d ;;ugge-;ts future v, ork by 

others. Thirdly and most importantly however, these complications affect stresses and 

str:lins and as a consequence affect roll defects whose minirnization is the ultimate goal of 

all v,ork of this type. 



The Effect of a Nip on Wound-In-Tension 

Many rolls are wound in either a surface or center-surface winding configuration 

such that the incoming web first enters a winding roll under a nip formed by a drum or 

rider roller. There are several reasons why a nip is used. First, the nip helps exclude air 

from being wound into the roll on nonporous webs. Second, many large rolls are more 

practically supported over a drum than through a center shaft which might be prone to 

excessive deflection due to gravity. Thirdly, a nip can allow a torque differential to be 

input into a roll if both the winding roll and nipping roller are motor driven. Finally, 

winding in the presence of a nip increases the WIT (wound-in-tension) beyond the free 

web tension which allows a somewhat independent choice of web tension for optimum 

transport through the winder, and WIT for optimum wound roll structure. Thus, WIT can 

be increased by either increasing web tension, increasing nip, or both. 

It is the effect of nip loading on WIT that is most relevant to winding models as it 

is a required input parameter, and furthermore is one of the more useful control parameters 

. for wound roll optimization. Unfortunately, though web tension and nip loading are easy 

to measure or determine, their combined effect on WIT is not. Thus in order to use wound 

roll modeling tools, the WIT as a function of web tension and nip must be determined. An 

arnlytical and experimental approach will be described here, as well as their shortcomings. 

The analytical approach begins by noting that the stress distribution in a nip may be 
similar to the Hertzian contact between two parallel cylinders which in its simplest form 

was solved almost a century ago. Since then, the generality of the contact problem 

solution has been extended considerably to include such effects as tangential loads due to 

rolling friction. Much of this work has been performed by J.O. Smith and others of the 

University of Illinois at Urbana. 

Rather than delve into the mathematics of contact solutions which will be shown to 

be inadequate in determining WIT, only an overview will be given. As seen in Figure 21, 

the pressure distribution between the relatively hard drum or rider roller and the winding 

roll is somewhat parabolic in shape. The geometry of this pressure profile is characterized 

primarily by the contact v. rdth, the pc:1k pressure. and the area under the cur\.:e which is the 

lineal nip load. In arlditinn to the -;tresses at the conuct bctv.ccn the two cylinders, there 

are also stresses inside the wound roll which will be superimposed upon the already 

existing stress distribution due to \vinding. 



Figure 21 

CONTACT PRESSURES IN A WINDING NIP 
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The principal stresses are both compressive and decrease in magnitude at 

increasing depth and increasing distance from the centerline of contact [ 196]. However, 

the maximum shear stress occurs below the surface at depth of a fraction of the nip width 

deep. There are several implications of these superimposed contact stresses on wound roll 

behavior. First, the maximum radial or intcrlaycr stress may be increased by the presence 

of the nip. This may adversely effect permanent bulk reduction on some materials such as 

tissue and toweling, and may damage nip sensitive materials such as tapes and carbon type 

paper. Secondly, if the shear stress is sufficiently large to overcome interlayer friction, 

slippage may occur which can increase the propensity to v..Tink.,'",g. 

Despite the quantification of stress distributions and the qualitative understanding 

of trends resulting from analytical contact pressure solutions, the fundamental question of 

how the nip affects wound-in-tension is still unanswered. Even if the solutions are 

improved to include anisotropy and rolling friction, this analytical approach falls short 

because it is an elastic formulation. Thus after the nip has passed, the stress distribution 

v.ill rerum to precisely the same stilte as it was prior to the nip. Consequently, the simple 

el:lstic '-·ontact solution \\ill lea\·c no rc<::iclual effect on the roiL which is in oppo.;;ition to 

cxpnimcntal observations that the nip does leave a residual effect l32, 97, 98, 166. 167]. 

Thus, a useful contact model must be extended to include interlayer slippage and friction. 

This extension, v..hich is the subject of current research by Dr. J.K. Good at the Web 

Handling Research Center, is of fundamental importance to predict WIT for use in 

winding models'" ith nips. 



The second primary approach to determining the effect of nip loading on WIT is to 

measure it. Though there have been numerous attempts at measuring WIT which will be 

described in Chapter 5, none has been more successful than Pfeiffer's WIT-WOT lab 

rewinder [ 166, 167]. This single drum duplex lab rewinder can measure either wound­

off-tension on the unwind, or wound-in-tension on the windup section. This is 

accomplished by wrapping the outer layer of the roll over a load cell tension roller, back 

over the roll, and out into the sheet run. 

Using this rewinder, Pfeiffer experimentally measured the combined effects of web 

tension and nip loading on WIT. After collecting data from numerous runs, he empirically 

fit a WIT expression as 

(77) 

where 

WIT = ~ lo~ N ; A ) + C : ~ N 

but not> F N 

WIT = wound-in-tension (pli) 

T = web tension (pli) 

and A through Fare curvefit coefficients 

The resulting coefficients for three grades of paper are given in Table 5, and the WIT as a 

function of nip loading and tension is shown in Figure 22. 

Table 5 

WIT COEFFICIE:\'TS FOR 3 PAPER GRADES [166] 

37.5#/3000ft"2 38#/3000ft"2 32#/3000ft"2 

Coef. calendered haft lwc mae:az:ine newsprint Units 

A 6.99 4.75 17.02 pli 
B 0.257 0.736 0.34 1/pli 

c 6.35 7.44 17.29 pli 
D 1.28 1.34 0.83 none 
E 0.584 0.314 0.31 none 
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Figure 22 

EFFECT OF NIP AND TENSION ON WIT 
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From Pfeiffer's experimental testing, several conclusions can be made. 

1. WIT increases with increasing nip loading 

2. WIT increases with increasing web tension 

3. WIT increases due to web tension are limited by available interlayer friction 

4. it may be possible to wind in tension with nip only (without any web tension) 

Despite the revolutionary nature of Pfeiffer's work, it has several application 

limitations. First, the work is entirely empirical without first principles basis. Secondly, 

because it is empirical, each material must be tested to determine the required coefficients. 

Thirdly, since there are few winders such as the WIT-WOT, access to obtain this type of 

data is limited. Fourthly, experimental studies such as this are extremely time-consuming. 

Fifthly. no effect oftonjuc differential is in~._ludt'd in the original work. Fin:1lly t!,ough not 

mentioned by Pfeiffer, the cocffil'icnts also depend on the diameter of the nip roller and its 

surface condition. A simple model indicates that the effect of nip on \VIT decreases with 

the square root of drum diameter [ 1 02]. Thus, this work would need to be repeated for 

\':lrious nips. tensions and torque differentic!ls, on ead1 material, and for each specific 

roller. 



The effect of nips also affects this project for the measurement of web stresses 
during roll winding. As will be seen in Chapter 7 and Appendix D, the WIT is increased 

by increasing the torque differential, nip loading, web tension or a combination. 
However, this project completely bypasses the difficulty of determining the effect of 
torque, nip and tension on WIT. Indeed, one of the primary justifications of this project is 

to determine WTT by simple measurements coupled with winding models. Thus, while the 
traditional mouds often require the knowledge of the T~1's (torque, nip, tension) on 
WIT, this project does not. The reason for the difference is that the traditional models 

require knowledge of WIT (which depends on the TNT's) as an input to the models, 

while WIT is an output from this project's model. 

The Effect of Torque Differential on Wound-In-Stress 

Just as with nip, torque differential between a winding roll and a roller, or between 

two nipping rollers also effects WIT. There is a functional difference however, because 
while nip can only increase WIT, torque differential can either increase or decrease WIT 

beyond the incoming web tension. However, there is linle published work on the effect of 

torque. Odell found a measurable difference in density as a function of torque differential 
changes f32j. Hadlock proposed that torque differential be converted by statics to a force 
on the incoming nip roller that directly adds or subtracts from the incoming tension [102]. 

Again fortunately, this project can detect changes in WIT resulting from torque differential 
without specifically modeling the phenomenon. 

The Effect of Speed Changes on Torque and Nip 

When a surface driven winder accelerates or decelerates, the force to change the 
speed of the winding roll is often transmjtted through the outer layer at the winding nip. In 

this case. the effective WIT will be changed in a manner not unlike a programmed torque 
differential. As seen in Figure 23 for a two-drum winder, the tangential load transmitted 
through the winding nip will tend to cause a hardening of the roll during deceleration. 

Additionally. the balance of nip loading on both drums changes such that the load on the 
back drum decreases during deceleration, while the load on the front drum increases. This 
phcnunwnon is very "imildr tn rhc increase in ln:1ding on the front tires of an ::wtomobile 
during hr;i~ing. D(·,rite the h:1ck cb11n nip ckcrc<t-,e, the t:fftct of irKrcasing ten:sion on the 
sheet during deceleration is usually larger in magnitude [32]. However, the details of the 
drive motor programming on load sharing between the two drums during speed changes 
will h:nc an cffc\..·t on the magnitude of the rc-;riJting V/IT ch;mge. 



Figure 23 

EFFECT OF DECELERATION ON TORQUE AND NIP 
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Softens Roll 

The effect of acceleration and deceleration on torque and nip can easily be 

calculated from kinematics given the acceleration rate, inertia (rewound roll diameter, 

density), drum geometry and drive motor load sharing. However, the same problem 
arises as in the previous two sections as to how to calculate WIT from torque differential 

and nip loading. Thus, once those two issues arc resolved, the effect of speed changes on 

WIT will be easily quantifiable. 

Centrifugally Induced Stresses 

In addition to changes in speed, rotation of the roll at any speed will alter the stress 

distribution of the rewinding roll due to centrifugally induced stresses. These centrifugal 
stresses are superposed onto the already existing roll stresses due to addition of wraps 
under tension. Just as with the traditional winding models, the centrifugal models use a 

similar set of constitutive equations. but the equilibrium equation must by supplemented by 
!J,,cJy fur,es due to iiccclcration. ll1ere ~m: tv.o c\.:ntrifu_:;al ml><k!c:: >.hich vary in generality 

as well i.l" :--ulution technique which will be de..;cribcd below. T _first is analogous to a 

the isotropic model and has a simple closed form solution, while the second is analogous 
to the linenr anisotropic model and has an exceedingly complex solution which is 

intim;ltcly tied to a tr:lrlitional winding model. 



The isotropic centrifugal model derived by Roisum [115] is based on a closed form 

solution given by Roark and Young [ 176] for the radial and tangential stresses in a 
homogeneous annular disk with a central hole (zero core stiffness) rotating at a constant 

velocity. These radial and tangential stresses are 

3+1...l pci( 2 2 (78a) aRc = - 8 - 386.4 rk + ro 

where 

aRc = centrifugal radial stress at an interior radius (psi) 

aTe = centrifugal tangential stress at an interior radius (psi) 

l...l = Poisson ratio 

p = density (lb/in"3) 

w = angular rotational frequency (rad/sec) 

ro = radius of core O.D. (in) 

ri = radius at which stresses are to be calculated (in) 

rk = radius at current outer surface (in) 

and O'Rmax occurs @ ri Y ro rk 

Just as with the traditional isotropic winding model, the solution is closed form and 
does not depend on the modulus of the material (except through core stiffness). The stress 

distribution for a typical paper roll density winding at 6000 FPM is shown in Figure 24. 

Radial and tangential stresses are tensile throughout the roll, with tangential stresses 

slightly larger in magnitude. Also as with the traditional winding models, the radial 

stresses must be and are zero at the outer surface. and are zero at the inner surface if the 

core stiffness is zero. The peak radial stresses and its radial location occur at an 
intermediate location. The peak of the tangential stresses however, is at the core (for a 

zero stiffness core). 

1l1e effect of the centrifugal Slrc~;;es Clre smzill hut not negligihk when compared 

\'-ith the traditional isotropic v.inding model. :\dd;:i~>nally as we have seen from the 

traditional winding models, we would expect that the magnitude of the radial stresses to 
decrease and the magnitude of tangential stresses to increase with increasing anisotropy. 
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Though the isotropic centrifugal model is very easy to apply, it does have severe 

shortcomings. first, the model presented here assumes a zero core stif' ~ss boundary 

condition although this could be extended much as the isotropic winding'" Jdel has been. 

Secondly, the model assumes isotropy which is not representative of most winding cases. 

Though the trends of the isotropic model will in general hold true for anisotropy, the 

values of the stresses will be considerably different. 

The next step in the evolution of centrifugal models was the anisotropic model 

developed by Yagoda [ 150, 15 1]. The difference between his centrifugal model and his 

earlier winding model [ 149, 152, 153 J is that the effective WIT changes as a function of 

rotational speed. This effective WIT. which is input directly into his traditional winding 

model, is the summation of three terms. The first is the v.:eb tension used by all winding 

models. The second is a siov,·down term which occurs due to the decrease in rotational 

"reed as the roll diameter huilds even at conqant ~;urface srced. The third is a shutdown 

tcnn ~.·"used by a decrease in surface speed. Tl1e dctdils of the second and third centrifugal 

tem1s were not rederived for this project because they are even more complex than his 

hyperbolic solution of the traditional winding model. liowever he did conclude that for 

the L·ascs tested, tho.t the second and third tenns of the centrifugal contributions nearly 

L·:mcelcd, so thz1t the net effect of centrifugal '•\rces may be negligible. 



Air Entrainment 

Another effect of speed on winding is the entrainment of air into the wound roll. 

As seen in Figure 25, the translation of the incoming web and rotation of the roll drags a 

boundary layer toward and often into the roll. Additionally as seen from the side view, the 

distribution can't be uniform across the CD because the air at the edge of the roll will 

simply leak out. If there were a continuous boundary of air between web layers, there 

would be no effective interlayer friction and the structural integrity of the roll would be 

completely lost. This problem can be quite severe when winding nonporous webs such as 

film, and can severely limit the maximum operating speed of many winders to around 

1000 FPM. 

For many winding conditions however, the interlayer air boundary is not complete 

and is nominally trapped in a parabolic cavity with the ends relatively sealed. However, 

the distribution is likely to be thicker in low caliper gage bands, and need not necessarily 

be distributed uniformly around the circumference as evidenced by bubbles under the outer 

layer on the ingoing side of a nip. Consequently, the distribution of air in a roll in a real 

wound roll is likely complex. 

One of the most effective methods to reduce the amount of entrained air is to wrap 

the incc.ning web around a nipping roller, and is standard practice on most nonporous 

web winders. The amount of entrained air decreases with increasing nip roller load and 

decreasing nip roller diameter [53]. Many rollers are grooved to increase traction. 

IIowevcr, the winding nip roller may need be smooth and cylindrical else there will be 

unnipped and unrestricted channels for the air to follow into the roll. Additionally, the 

volume or thickness of air entrained into the roll increases with increasing speed, width, 

nip nonuniformities, and roll diameter; and decreases with increasing web tension, and 

web porosity [53]. For relatively incompressible nonporous webs. the volumetric 

percentage of air entrained into a wound roll can be estimated from 

(79) % Air = l OO Pma_~:1al - Pwound ro)] 

Pmatcrial 

!Iowever, the \·nlume and disrrihution chJnges with time due to end leakage, leakage 

tLr11LJgh ]~11 1\>llS wchs, rcpc<~tcd p.1:::sagc uf nips ancl other ch:mgcs 111 loading due to 

pru~..·c ~ ~i ng and kwd lin g. 



Figure 25 

AIR ENTRAINMENT INTO A ROLL OR ROLLER 

Side View Front View 

The bulk of the analytical work in air entrainment originates from foil bearing 

theory [197-203]. However, though the inlet region of the foil bearing and winding roll 
are similar, their exit geometries differ considerably because in the case of the winding roll 

there is no exit. Additional limitations include incompressibility, no bending stresses, and 
.often the solutions assume an infinitely wide system, so that CD effects are not 

considered. An interesting addition to traditional foil bearing theory was performed by 

Tajuddin who appended a simplified rider roll model onto the inlet region of the foil 

bearing model [53]. However though this model was pioneering, it is similarly 
constrained to the limitations described above and the rider roll addition also carries many 

assumptions to make the math tractable. The experimental work in foil bearing air layer 

mcasUJ. 1cnt includes optical, capacitance and other precision position sensors [204]. 

Thus, the current state of art in analytical foil bearing theory results in solutions 

that are simultaneously difficult and simplified beyond useful application to real winding 

systems. Similarly, beyond equation (79) there has been no published work on the 

experimental measurement of air layer distributions in a wound roll. However, even if the 

distribution of air in a wound roll were determined, an equally formidable challenge to 

incorporate this information into wound roll modeling would need be solved. First, the 

roll would then be a composite material whose web behavior would be described by quasi­

static mechanics equations, and the air layer would be described by time dependent fluids 
equations. Funhermore, these models should he formulated and solved together because 

the r;<cl;.d <;trc..;s <;train c~istrihution \\nuld ~lfkct the fluid pressure, \\hik ~~t the s~1me time 

tlh~ Jlll'S::--urc \\CHild affe-ct the radial stress-strain distribution. De~pite the difficulties 
however, the integration of air entrainment into winding models is requisite to their 

application for m:my real systems such as the winding of film. 



The Cross Direction 

Current winding models are accretive descriptions of stresses, strains, and to a 

lesser extent material properties, that vary in the radial and tangential direction. However, 

in many real winding conditions the material properties also vary significantly in the CD. 

In most cases, this is an unintentional result of less than perfect profile control on the 

machine which produces the web. The most significant CD variations on wound roll 

structure are usually caliper, tension, and perhaps modulus. However, web CD variations 

can also be intentional. One example would be discrete labels or stickers arranged in a 

matrix on a larger flat backing materiaL 

There are several experimental measurements which can profile across the width 

which include hardness measurements such as the Rhometer, Schmidt Hammer and 

Backtender's Friend, as well as other measurement principles such as thin pressure 

transducers and the Cameron Gap. These methods and others will be described in more 

detail in Chapter 5. There is ample evidence from measurements such as these that a high 

. gradient of profile is correlated to the propensity to certain defects such as corrugations 

[96, 193]. 

However, there is very little published analytical work on CD effect on winding. 

One exception is Spitz's model of the change in the tension profile of a web with a CD 

caliper variation as it is wound over an incompressihle roll [142]. Spitz and others [162, 

195] suggest a good measure of CD profile is radius variation 

(SO) RV = lOO rmax- rmin 

ravg 

where a 1 o/t- variation in caliper or wound roll radius would be considered excessive. 

However, simplistic CD models such as these are unsatisfying as they are not 

mechanically consistent with traditional winding models because they Jack basic features 

such as equilibrium and stress-strain equations. If CD effects were properly modeled then 

the rclc\ant strc\scs \\Guld lx: rarkll. t~ing~.·ntial, CD as wcll as the first appe,1rance of shear 

:-.tre:;~cs in \\inding m0<kls. The in p1ane :-.hear stresses could pednps then be coupled to 

wrinkling models for a prediction of ropes and corrugations. 



Hygrothermal Response 

Paper taken from a paper machine reel and wound on a winder has a moisture level 

which is not necessarily in equilibrium with its storage environment. Similarly, film taken 

from a tenter is often much warmer than the ambient room temperature. Also, many 

petrochemical webs may contain volatile solvents from their manufacture which may 

diffuse into the environment with time. In all of these cases, the web and wound roll will 

take on or give up moisture or heat with time until it reaches equilibrium with its 

environment. In the case of paper products the equilibrium moisture content will be 

around 5%, and in the case of film the equilibrium temperature will be around room 

temperature. The effects of moisture changes on rolls can be quite vivid as evidenced by 

the innocuous but severe moisture welts or wrinkles occurring on the exterior of overly 

dried paper rolls. 

Due to a high coefficient of hygroscopic expansion of paper, small changes in 

moisture content will result in large changes in stresses and strains. Similarly, changes in 

temperature of films and foils will also result in changes in stresses and strains. This can 

be easily seen from the orthotropic stress-strain relations (7) and (8) when expanded to 

include hygrothermal behavior as 

(81) 
OR aT 

ER = 1-lT- + <XR tlT + ~R tlC 
ER ET 

(82) Or OR 
ET = 1-lR- + <XT tlT + ~T tlC 

ET ER 

However, before these expanded stress-strain relations can be inserted into 

winding models, the changes in moisture or temperature distributions must first be 

determined. The following material is based on analysis by Roisum ( 114] for moisture 

content of paper and was experimentally verified by weighing a small paper roll over the 

course of many weeks [ 118]. However, thermal analysis can be performed identically 

using this same procedure except that the material properties are thermal instead of 

hygroscopic expansion coefficients and the distribution is temperature instead of moisture. 

1\rulysis of the hygrothcrmal re-.,punse uf \~c)tmd rolls is an \.''\ample where CD 

effects must be included because the moisture (heat etc) will diffuse from all exterior 

surfaces including the faces, the outer surface and possibly the core. The following 

analysis is hac;erl on fick's Law of Diffusion which is identical in form to the Fourier 

equation for heat conduction in solids l205]. 



Assuming isotropy, radial symmetry and no moisture generation, Fick's Law can be 

written in cylindrical coordinates in r, z and t variables as 

(83) + 

where 

1 ac 
r dr 

+ = 
1 ac 
D at 

C = moisture content(%) 

or temperature Tin degrees Fahrenheit 

r = radius (in) 

z = CD position (in) 

t = time (sec) 

D = hygroscopic diffusion constant (%/in2/sec) 

or thermal or chemical diffusivity 

Using a forward finite difference approximation for the temporal derivative and a central 

finite difference approximation for the spatial derivatives, (83) becomes 

(84) 
( c~~z - c~.z ) = ( c~-.z -2~.z + c~+.z) + ( c~+.z - c~_.z) + ( c~.z- - 2~.z + c~.z_) 

D L\t L\r2 2 r L\r L\z2 

where 

t denotes current rime 

t+ denotes current time plus L\t 

+- subscripts denotes current radius or CD position +- & or L\z respectively 

Solving (84) for future moisture at node r,z and collecting like tenns gives 

( _1 - _I_ ) ( D L\ r ) ct -
L\r2 2rL\r r-.z 

+ ( _l_ + --1 ) ( D 6t ) c~ ... z 
L\r2 2rL\r 

(85) C~~z - + ( : 2 ) ( D :".t) C~.z-

+ ( z~ ) ( 0 ;\t ) c~.z-

+ [1 - ( - 1 + __l_) (2 o ~t)l ct 
~r2 6z2 J r,z 

\dclition::Jily for numerical st:Jhility, the last tcnn in (85) mu.;;t be non-negative. If we let 

the mesh size be the same in the rand z directions then 



for a given mesh size, (Llx = & = ~z), the maximum time step interval ~t is given as 

or for a given time step interval, ~t, the minimum mesh size ~x is given as 

Thus, equation (85) defines the solution of moisture distribution of the interior 

points of the roll in the next time step given the current moisture at the current and adjacent 

nodes. However in addition to the interior solution, the boundary conditions must also be 

defined. There are two mathematical possibilities which are a fixed or gradient moisture. 

Strictly speaking, the moisture distribution is convective for both moisture and 

temperature. However in the case of moisture, the convective hygroscopic rate is so large 

that the outer layer of paper products very quickly reaches equilibrium and is maintained 

there. This is analogous to a well insulated wall which is near room temperature on the 

interior, and outdoor temperature on the exterior. However in the case of temperature, 

both rolls of film and paper often feel warm to the touch, so that a convective boundary 

condition should be used. Though a convective boundary condition is easy to implement 

on the above finite difference model, determining the convective constant could be quite 

difficult in practice. 

The computer solution of the model is quite easily performed by predicting the 

moisture distribution of the next time step based on the current distribution and equation 

(85). This is implemented in three nested loops. The outer loop merely increments the 

time and other simple housekeeping. The middle and interior loops scan across the nodes 

in the rand z directions respectively. 

ln the following example problem, a 40" long by 40" diameter roll was modeled 

\\ ith a me~h with .\r-= ,\z = 1" ~inJ cu~t c= 0 25. 1l1c initial concentration was uniformly 

'-t't at C 0 at timet·~ n representing either J. .:.ct or h\lt roll. The bc,~:ndary conditions at all 

exterior ~urfJ.ces \\Cre set to C1 at timet> 0 which represent drying or cooling. 



The results of this example problem showed that the roll which was initially 

unifonnly wet, asymptotically approached a uniformly dry roll after a sufficiently long 

time. However as seen in Figure 26 for 50 time steps into drying, the distribution of 

moisture is quite nonuniform. In particular, the roll is drier near the exposed surfaces than 

in the interior where moisture has yet to be diffused out. 

There are several implications of the nonuniform moisture distributions for web 

handling of materials with nonzero coefficients of hygroscopic expansion. First in the 

case of drying, the outer edges will have a shorter length than the center which will cause 

baggy centers. Conversely in the case of wetting, the center will have a shorter length than 

the edges which will cause baggy edges. 

Additionally, there are several implications of nonuniform distributions for 

winding. First in the case of drying, the outer layers will contract first which may increase 

radial stresses significantly on the roll's periphery. In the case of wetting, the outer layers 

will expand first as welts or ridges. Also, cores which have a moisture content in excess 

. of equilibrium will shrink upon drying to the point that some or all radial pressure at the 

core will be lost [161]. Finally, nonuniform distributions coupled with creep and stress 

relaxation could result in webs which are permanently nonuniform in camber. 

Again, this simple example problem applies identically to nonuniform temperature 

distributions for cooling of film or foil materials because the constitutive equations are 

identical. Additionally, this simple analysis can easily be extended to convective ooundary 

conditions, ooundary conditions which vary along the face, OD, or core (but not directly 

with circumferential position with this 2D model), and boundary conditions that vary with 

time. Also, anisotropic diffusion coefficients can be directly used because the radial and 

ZD terms in (85) are completely uncoupled. This case could occur with the rolls of 

laminate materials or film with a significant interlayer air film which acts as an insulator. 

The experimental verification of this simple example was easy to perform in the 

case of moisture whose average value can be determined by simply weighing a drying roll 

periodically over the course of several months [118]. Additionally from this work, the 

~nnccpt of a time cc·n~tant was defined \\hich i-; the time for the moi'lurc etl;Hcnt to reach 

(,?;'(()fits final cqu ium \ J~uc after a step chJ.ngc at the boundary. This time constant 

concept can be applied to an exposed web in an open draw, a specific location in a roll, or 

as a hulk property of the roll. 
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The time constant of hygrothermal analysis determines if it must be run 
simultaneous to traditional winding models, or can be decoupled. From the experimental 
work, it was found that the bulk drying time constant for a 40"x40" paper roll is on the 
order of one year, though it is somewhat sensitive to roll size and web material. Thus, 
drying takes place over a much longer period than the winding cycle and can be analyzed 
separately. Similarly, it was found that the moisture time constant for even a thin paper 
web exposed on both sides was typically longer than one minute [ 115]. Thus, the web's 
moisture content may not change significantly during its time of passage from the unwind 
to the winder, and thus can be assumed to be that measured on the interior of the 
unwinding roll. 

The changing moisture and temperature distributions are relatively easy to 
determine by using equation (85). Additionally due to the long time constants, 
hygrothermal strains can be superposed onto the stress distribution already existing due to 
winding as a separate analysis step. However, applying the hygrothermal strains to rolls 
presents a problem because wound roll models describe behavior in the radial and 
tangential directions while hygrothermal strains occur in all three axes. A simplification 
would result if these strains were analyzed on a single plane normal to the roll axis such as 
at the end or center. Then the distribution on that plane could be input into the expanded 
stress-strain relations. 

To solve the resulting hygrothermal stress would involve rederiving a winding 
model such as IIakiel's presented in Chapter 3 \vhile retaining the hygroscopic and thermal 
tcnns, which could be done without difficulty. Next, the expanded model would be 
solved once for a single system of equations which as the result of superposed 
hygrothermal radial and tangential stresses. The outer boundary condition for this analysis 
would be a zero radial stress for there are no wraps added during the process of drying or 
cooling. Finally, the hygrothermal radial and tangential stresses can be superposed onto 
the already present winding stresses for a total stress distribution. Notice that this differs 
from the traditional model, which is accretive. in that the solution for the incremental 
stresses need on be done once for a given moisture distribution. However, the analysis 
would need be repeated if the stresses are desired for more than a single time in the drying 
process. Also, Tramposch gives a similar but more restrictive thermal model [145]. 

In c:ummary, hygrnth~rmal response can l:>c signifiLant for the\\ inding of many 
m;~terials where the web is not in hygroscopic or thermal equilibrium with its environment. 

Hygrothermal distributions are easy to detem1ine using the finite difference solution of the 
Fourier equation. From these distributions, an expanded traditional winding model can 
c:tlculate the resulting hygrothem1al stresses provided that the distribution is Jssumed 
constant across its width. 



Anelastic Response 

All traditional winding models assume that the web material is elastic. This 

assumption implies that the material will load and unload along the same stress-strain 

curve. However as seen from Figure 17 in Chapter 3, the load and unload cycles of real 

materials follow distinctly different paths. Furthermore, the elastic assumption implies that 

the web material will return to the same shape and length after unloading. However as 

seen from stress-strain curves of real materials, webs may assume a ,,rmanent strain of 

the same sign as the loading stress after the load has been removed. This behavior is 

evidenced by baggy lanes on overstretched nonuniform gage materials, changes in 

registration, flat spots on rolls which were stored on the floor, and permanent loss of 

thickness or bulk as will be seen in caliper data in Chapter 8. Finally, the elastic 

assumption implies that no energy is absorbed in a load/unload cycle. Yet if this was true, 

the coefficient of rolling friction of a wound roll would be quite low, while in fact the 

rolling friction of some soft materials is quite high. 

Clearly, the assumptions of elastic behavior may not model real materials well. 

There are several viscoelastic models, though they are generally empirical, which are able 

to represent some of the complex behavior described above. As seen in Figure 27, the 

most common models are the Maxwell, Kelvin, and 4 Parameter models. All of the 

models can describe creep and stress relaxation. However, the Maxwell model predicts 

indefinite amounts of creep under a constant load. Similarly, the Kelvin model is unable to 

describe partial recovery after load removal. Consequently though much more difficult, 

the 4 Parameter model is able to bener represent real web behavior. 

Though much work exists on viscoelasticity, particularly for t..e Maxwell and 

Kelvin models, little has been applied to wound roll geometries. However, Tramposch 

has solved the isotropic [ 144] and anisotropic [ 145] stress relaxation of the 4 Parameter 

model applied to a disk with a zero load outer boundary condition, and an elastic inner 

boundary condition, under an arbitrary initial stress condition due to winding. 

Additionally, the model allows for thermal strains for the simple case of a constant initial 

temperature disk cooling under constant temperature boundary conditions. Though this 

model is mechanically consistent with the traditional winding models, it is easily the most 

m:ithematically complex derivation in winding. De,pite the complexity· however, analysis 

'LH_h as this is requi,itc for extending the traditional v.inding model beyond its simplified 

elastic assumptions. 
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Current windin 6 models assume no interlayer slippage in the derivation of the 
strain-displacement relations for a cylinder. However, there is ample experimental 

evidence that slippage does occur under some conditions. This includes direct 

measurement using the J-line [106, 109], rolling cylinders across flat stacks [97, 98, 110], 

and the increase in WIT with increasing nip load [ 166. 168]. \Vhile interlayer slippage can 

,1ccur during unwinding and centerwinding, in most cases slippage is significant only in 

the presence of a nip and is most pronounced on low coefficient of friction materials [ 106, 

1 08] .. 1\dditionally. it has been observed that in both cases of J -Jines near the core on a 
L\lfC q:pp,)rtcd Ull\\ind ::nd on the oc:ter surface of Zl Sclrface nipped '"-inrlup, that the 

inkrb~cr ~lippag .~ gcn\_'rally in the direction ofhn,cning of the \\cb [106. 108]. The 

juqification for modeling slippage is therefore because it affects the stresses in a wound 
roll, is not currently described by tradition::l winding models, and is associated with the 

propensity to Cl'rtain defects such as crepe\\ rinH::s [ 109]. 



Thus, there is some experimental work which quantifies interlayer slippage based 

on measurement, such as the J-Line given in Figure 28. Unfortunately, there is no first 

principle analytical models which can predict the magnitude of slippage, or well determine 

its effect on wound roll stress distributions. However, there is promising research in this 

area begun by Dr. J.K. Good at the WHRC using finite element modeling with friction 

elements between layers. These analytical models when developed would not only predict 

the magnitudes of slippage, but as importantly determine why slippage occurs in the first 

pl::1ce. 

Though analytical models explaining why slippage occurs are lacking, a model 

which explains how slippage must have occurred to meet experimental measurement has 

been proposed by Roisum and is the basis for the following discussion [121]. This model 

requires two measurements of a J-line geometry as inputs to a slippage function which 

then yields the distribution of interlayer slippage as a function of depth beneath the roll 

surface, and as a function of time or added wraps. Additionally, the model can calculate 

the change in tangential stresses due to slippage. 

The model begins by assuming that there is a slippage function which can describe 

the movement of each layer with respect to the one beneath for each wrap addition during 

the winding roll. Furthermore, it is assumed that this function moves with the outer 

surface much as the outer boundary condition of a traditional winding model moves with 

the outer surface. From these very nonrestrictive assumptions, the entire slippage model 

can be constructed. 

Figure 29 shows a simplified schematic of the application of a slippage function 

and its effects on the shape of the J-line. For example, with the addition of wrap 'e' the 

interior layers each move with respect to its underlying wrap by an amount specified by the 

slippage function. Thus, wrap d's movement is the sum of d with respect to c, c with 

respect to b and so on. With the addition of wraps f and beyond, the process is repeated 

again for each revoluti'~n, except that the slippage function moves with the surfae:.. 

Though not necessary, the slippage function chosen here is maximum at the surface and 

decreases with depth. The result of the addition of numerous wraps with this type of 

depth decreasing slippage function is that J-line movement which is initially fast, soon 

stahilizes into the characteristic']' shape. 

from this -;,'hcm;!tic, it c:tn be seen thJ.t the tutal iiH)\ ~mcnt of ;tny layer at any 

current outer wrap is the result of two effects. The first is the summation of relative 

movement of layers beneath for the addition of a single wrap, and the second is the 

<;upcrpo~ition of this rno\cmcnt for the addition of all wraps from the moment the J-line 

w:b ~truck until the srccificd number of \:..rap~ have been added. 
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J-LINE GEOMETRY 

c = max. circum. movement 
c/a = slope of tip 

d = depth below J -line tip 
rl = radius when line struck 
r2 = radius after winding 

Figure 29 

SLIPPAGE FUNCTION SCHEMATIC 
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Though this can be also be expressed as a double summation for numerical calculation 

[121], this total J-line movement will be expressed here as: 

(86) 

where 

j(D) =relative slippage function (in/wrap"2) 

J(d,n) =new position of J-line (in) 

d =depth below J-line tip to point of interest (wraps) 

D =independent variable of slippage function (wraps) 

w =current number wraps added (O<w<n) (wraps) 

m =number wraps from point of interest to core 

n =total number wraps added since J-line snapped (wraps) 

The double integration limits and are better shown in Figure 30. The inner 

integrand is the slippage function which when computed yields the inches of movement 

per wrap added as a function of wraps beneath the current outer surface, and follows the 

current building of the outer surface by wrap addition. The outer integration yields the J­

line deformed position as a function of depth below the J-line tip and the number of wraps 

added. However, the J-line does not move radially outward as does the slippage function. 

Thus far, no assumptions have been made whatsoever about the form of the 

slippage function, only that one exists and depends directly on depth beneath the current 

surface. However, in order to quantitatively apply the model the form of the function must 

be detennined. Additionally once the form of the function is found, the parameters or 

constants must be determined for any particular situation. 

There may be several approaches to determining the slippage function including 

first principles modeling and experimental measurement. However, as yet no first 

principles slippage models have been published. 'dditionally, direct experimental 

me~i"tm::mc'nt of the <;]ippage function for a real S)\km may be quite difficult becaw,' the 

,Jippage between any two :1djaccnt layers v..ill he quite ~mall for the ~lddition of only a 

single wrap. 



Figure 30 

SLIPPAGE FUNCTION AND J-LINE 
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Fortunately, the J · · ne position itself is easy to measure as it is the double 

summation of slippage of all layers beneath and for all wraps added. Thus, while the 

slippage function itself may not be easily measured, several empirical forms can be tried to 

see which may yield a J-line position which agrees with experimental measurement and 

observation. In particular, at least three J -line observations must be predicted by the 

slippage function fonn. First, the growth of the J-line slewing during normal winding 

must be rapid at first but quickly slow or freeze to a final shape when the J-line is 

sufficiently below the current outer surface to be under negligible influence from events on 

the distant outer boundary. Similarly, the growth of J-line slewing under the condition of 

no paper addition such as during a web snapoff and stop must agree with observed real 

hehavior. Finally, the shape of the J -line at any instant will in general have grea· t 

mnvcmcnt at the tip and decreasing to near 1.cro 111ovcmcnt at the root. Thus, tne 

rcc ,_mcnts of matL'hing the measured J-line sh<tpe as a function of rc\olutions of the 

rev.uund roll during normal winding and the case of rotation without adding wraps both 

constrains and gives confidence to any slippage function which describes these behaviors. 



The experimental measurements used for determining the best form of the slippage 

function and ultimately verifying the model are taken from Lucas [ 1 09] and are given in 
Table 6a. These measurements are made for the same L WC paper grade running on the 
same winder for both the normal winding and the no wrap addition case, and the J -line 

shape parameters refer to Figure 28. 

Three 2-parameter slippage functions were evaluated and include a constant, linear, 
and exponential functions. Additionally, the parameters for each of the slippage function 
forms were solved using a calculus derivation, to be given shortly, and based on the shape 
measurements given in Table 6a. The 'A' parameter determines the maximum relative 
slippage between the current outer layer and the one beneath. The 'B' parameter is related 

to the depth of influence of the interlayer slippage. The relative slippage functions are 

graphed in Figure 31. 

The results of the modeling for normal winding are shown for the three slippage 

function forms in Figure 32a. Though the slippage functions for each of these cases is 
very different, the resulting J-lines are very similar. Indeed, they all predict precisely the 

same maximum tip deflection, c, and the same tip slope, c/a, and have a shape very similar 

to those generally observed. The only major difference is the depth of influence, which 
Lucas characterizes by a 'r' parameter [109]. If this was the only test of the slippage 

function form, the constant model is slightly closer to the appropriate shape and gives a 'r' 

parameter almost identical to the experimental measurement, though this is difficult to 
measure accurately. 

However, the slippage function form and model must also describe the effects of 

revolutions without adding wraps, such as after a web snapoff. This is also computed 

using the same constants A and B as above, and the same equation (85) except that the 

upper limit of integration of the inner integral is D=d instead of D=d+w because w is zero 

due to the fact that the current surface is the same as the surface at which the J-line was 

struck (no web added), and that the upper limit of the outer integral represents revolutions 

instead of wraps added. The results of the model for the case of a snapoff is shown in 
Figure 32b. As seen here, the predicted J-line deformation for the three slippage function 

forms is very different. Clearly, though the exponential model does not predict J-line root 
quite as well in a normally v.ound roll, it matches tip slope, a. within about 1 o/c of Lucas's 
m,',lsured values. i\dditiornlly. the model predicts 501 r\.'volutions \\Cre \•.ound to ::lchieve 

the' -.:h~1pc mea- cd by I 1 JCa.'. \l., l;ich com:::-,p<>nds to a tyric3l -;lowdown pe'riod for the 
winder used in that study. 



Table 6a 

J-LINE SHAPE MEASUREMENTS [109] 

Param~t~r Description NQnnal Valu~ SnapQff Valu~ 

c max tip movement 0.43" 2.80" 

a tangency of slope at tip 0.23" 0.24" 

r depth of movement 0.42" 0.66'' 

Table 6b 

SLIPPAGE FUNCTION FORMS EVALUATED 

Fyn~tiQn jCD) Eg:yatiQn A (inLwrap"2) 
Constant A for D<B, 0 for D>B 0.0000730 
Linear A*(l-D/B) for D<B, 0 for D>B 0.0000494 
Exponential A *exp( -D/B) 0.0000366 

Figure 31 

SLIPPAGE FUNCTION PLOTS 
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Figure 32a 
J-LINE DEFORMATION- NORMAL WINDING 
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Figure 32b 
J-LINE DEFORMATION - AFTER SNAPOFF 
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One final check on the behavior of the model is to determine if the progression of 

the J-line movement matches the observation that the movement begins fast but quickly 

stabilizes. As seen in Figure 33, the J-line progression predicted by the model does indeed 

show a rapid initial movement followed by stabilization. 

The experimental measurements used for the preceding discussion were for J -line 

deformation of the outer surface due primarily to the passage of nips during winding. 

However, a similarly appearing phenomenon can occur at the core of a core supported 

unwind. In both cases, the J-line movement is generally in the direction of loosening 

which is also the direction of winding or unwinding. However, the shape of the J-line in 

the ca..;;e of a core supported winder is slightly different. Again, the relative slippage model 

was used to try to predict the core J-lines given by Frye [96]. However, the three slippage 

functions used above did not yield the turn-in of the J-line tip or the indefinite J-line 

progression which is characteristic of core slippage. However, the model did predict 

proper core J-line shapes with two small changes, as seen in Figure 34. First, that the 

slippage function was rectangular. Secondly, that the slippage function moved outward 
one wrap for every two revolutions. 

The progression of J-line movement for any relative slippage function is solved 

easily by using either a computer program to compute the double summation or by using 

the integral given in (86). Though there is more generality in the double sum, an analytic 

slippage function can be solved directly to give many insights into slippage. In particular, 
the exponential slippage function 

(87) j(D) = Ae(DIB) 

can be inserted into (86). Simplification results if the lower limit is assumed to be infinity 

\vhich corresponds physically to depth of slippage influence which is negligibly small 

compared to the distance to the core. In this case, the first integration yields 

fw=n 
jd+w) 

(88) J(d,n) = -AB w = 
0 

e ll3 dw 

and finally, another intcgr:nion yields the dcf(1m1ed J~line shape 

( 8 9) J ( d, n) = A B 2 e -d/B ( 1 - e ~niB ) 
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Figure 33 

PROGRESSION OF THE J-LINE DURING WINDING 
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Figure 34 

J-LINE SLIPPAGE ON A CORE SUPPORTED UN\VIND 
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Equation (89) can be tested for proper behavior such as 

if n = 0 then J = 0: therefore no movement unless there is wraps or revolutions added 

if n = oo then J = AB/\2exp( -d!B): therefore movement is bounded 

if n = oo and d = 0 then J = AB/\2: maximum deformation occurs at tip 

The slippage parameters A and B can be calculated from measurements of J-line 

geometry from equation (89) for the exponential form. The maximum tip deflection, c, is 

calculated for a depth of zero and for a large number of added wraps such that J-line 

movement is stabilized and is given by 

(90a) c = J(O,oo) = AB 2 

Similarly, the tip slope is calculated for a depth of zero and for a large number of added 

wraps by taking the derivative of the J-line at the tip and is given by 

(90b) slope= t~ = d ddn) I = ABe·diB{I-e·n!B) ln=oo = AB 
a d = 0, n = 00 

where tis the web thickness and c and a are the tip deflection and tangency respectively 

illustrated in Figure 28. Finally, equations (90) can be solved for the exponential slippage 

parameters A and B as 

(91 a) B (wrap) = a (in) 
t (in) 

. 2 c (in) 
(91 b) A (m/wrap ) = --· --'-----

[B(wrap)] 2 

Finally, the J-line movement can also be used to calculate the change in tangential stress 

due to interlayer slippage for small movements as 

(92) C>Tslip = 
6 

ETET = ET-- = 
2 rr r1 2 rr r1 a 

For the lnrge J-linc movement given by Lucas [109]. and a thickness of0.003'', a radius at 

v.hich the J-linc \\d\ struck of 10" and a mc)dulus of .:"00,000 psi. the re-.,ulting change in 

tZill~cntial :-,tress \\:JS -4--1.6 psi \\hi,_:h is a '-111Jll fral'tion of \\Clund-in-stress. The ~mall 

effect of ~lippagc on average stresses has also been noted by other authors using different 
techniques [ 168]. 



Several other interesting conclusions result also from this analysis. First, is that 

the area under the relative slippage curves for any function form must all be equal as they 

are proportional to the tip slope. Secondly, widely varying relative slippage functions will 

yield shapes very similar to measured J-line geometries, so that the technique is not very 

sensitive to uncertainties of the slippage function form. Thirdly no matter what form is 

chosen, large J-line deflections are predicted by a maximum slippage between the outer 

and second wraps of only 50 millionths of an inch per revolution. 

However, there are limitations to the relative slippage modeling. First, it assumes 

that the relative slippage function remains significantly constant with time or added wraps, 

yet friction coefficients, radii and nip loadings do change during roll winding. Secondly, 

it assumes that the slippage is constant around the circumference as do all other winder 

models, and thus can only predict average trends. Yet, perhaps the severest slippage 

problem is crepe wrinkling which results when the slippage occurs abruptly in a narrow 

circumferential region. Unfortunately, this average relative slippage technique is currently 

unable to describe circumferential dependence. Also, the relative slippage technique is 

. currently limited to reverse engineering of how movement must have occurred to prcxiuce a 

given J -line geometry. A better understanding would be achieved if the relative slippage 

was predictable from first principles modeling, which is the :,ubject of current research 

efforts at the WHRC. 

In summary, the relative slippage technique can be used to model the average 

accumulated movement of every layer for every revolution, and describe the J-line shape 

provided that slippage as a function of depth is known from either first principles 

modeling, direct measurement, or from measurement of J-line geometry. The calculation 

of J-line shape at any time can be calculated most generally from a computer program 

which keeps track of a double sum for every layer beneath the J-line tip. However analytic 

relative slippage functions though more restrictive, have closed form J-line deformation 

expressions which are more convenient. From the modeling, very small relative slippage 

between any two layers during a single revolution of the wound roll results in large J-line 

defom1ations. However, even large J-line deformations represent relatively small changes 

in the stress state of the roll, provided that the slippage is uniformly distributed around the 

,,ircumfaence. 



Gravity and External Loading 

In addition to the winding nip described earlier in this chapter, there are several 

other loads which can be applied to the wound roll. Several of the more typical loading 

cases are shown in Figure 35. First, there may be rolling nips aside from the winding nip. 

In the case of the two drum winder, there are also nips at the rider roll and front drum. 

Additionally, there is an internal rolling nip between the core and inner layers which can be 

considerably larger in magnitude than external nips for large core supported rolls. There is 

strong evidence that all rolling nips can lead to interlayer slippage at the core [96] as well 

as at the outside [106, 109]. Additionally, there is strong evidence that in addition to the 

winding nip the other rolling nips can also effect WIT changes beyond that produced by 

the web tension and winding nip [97, 98, 168]. 

However, several loading cases commonly occur during storage or handling which 

affect internal web stress distributions that are not uniformly distributed around the 

circumference. These loads to produce permanent set may be relatively low and act for a 

long time, or high and act for a short time. An example of a low load acting for a long 

. time is rolls lying on the floor or in storage racks which have the tendency to retain flat 

spots. These flat spots induce web flutter and tension surges which may impair 

productivity of the process served by the unwind [120, 122]. Rolls stored in a core 

supported stand also take on an eccentric set which similarly affects subsequent 

processing. Consequently, many rolls are supported on end which considerably reduces 
anelastic deformation. 

Conversely, if the loads are high enough they need only act over a short period to 

induce permanent changes in shape and stress distributions. One example is the grab truck 

which squeezes the roll on opposite sides of the OD [ 173]. Another example, which is 

common in roll handling equipment, is stopping a moving roll with roll stops that are too 

stiff. Though both low loads for long periods and high loads for short periods both affect 

roll stress distributions nonuniformly, there is a difference. The impact or grab truck 

squeeze loading is much more likely to trigger starring type defects. 

Currently. there is little published analytical work describing the superposition of 

circumfcrentially nonuniform loading on wound roll stresses. Though finite element 

mndcling may acldrcss some a-;pcL'tS of the prt1hlcm. the analysis is inherently very 

n,)11linc:1r due to l'OiltdCt :n~1Jing d~ainst a cuned -.;urface and anclastic behavior. 

However, there is some experimental work on roll shape profiling which can help 

diagnose the causes and quantify effects of nonuniform loading [ 173] which will be 

cli'l'LJ"'cd further in Chapter 5. 
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Roll Defect Theory 

Though minimizing roll defects is the principal goal of the science of analytical and 

experimental winding research, very little has been published in this area. What little does 

exist comes primarily from experimental studies such as the correlation between caliper or 

hardness gradients and wrinkle or burst defects [96], and the minimum radial pressure at 

the core required to avoid loose cores [161]. The reasons for the dearth of roll defect 

theories may be due to application dependence, complexity, lack of either understanding or 

confidence in winding principles, or simply that the state of the art has yet to mature to 

meet its ultimate goal. Whatever the reason however, in this section some simple roll 

defect theories will be proposed which are assembled from established mechanics 

principles. 

The simplest failure theories state that materials will fail if the stress exceeds the 

ultimate strength, or more conservatively the yield strength of the material. The stresses 

imposed on the material are the superposition of both the traditional wound roll model 

stresses and more complex behavior such as external loading at nips or hygroscopic 

stresses. Since the wound roll system is highly anisotropic, there will be failure criteria in 

both the radial and tangential directions. Additionally, many materials have different yield 

magnitudes in tension and compression. Thus, no fewer than four boundaries exist for the 

stress profile, and each will be discussed in turn. 

(93a) <YR.r > <YR compressive yield for all r 

The radial pressure must not exceed the yield pressure of the material which may 

lead to permanent loss of bulk for soft materials such as tissue, or cause breakdown of 

constituents such as with carbonless paper, or cause extrusion of components such as with 

tape adhesives, or cause wringing of layers together such as with films. In the absence of 

external loading and other complexities, the location of the maximum radial pressure as 

seen in the figures from Chapter 3 for the typical \VIS profile and high core stiffnesses is 

at the outer core radius. If external loading due to core support is also included. the 

maximum radial pressure at the core is further increased due to the core/roll nip. 

However, in many ca,cs the external lo:1ciing at the roll periphery may dominate due to 

l'\Cl'ssi\ e nips. heavY rolls l\ inc: on their pcrird·icT\ 1'r rollin£ impact. 
"" "" ..___, .1 "' '-

(9 3 b) <YR,r < 0R tensile yield for all r 



The maximum interlayer tension non-adhesive materials can withstand inside a 
wound roll is less than or equal to zero. However, adhesive materials can withstand some 
interlayer tension if it is less than the strength of the adhesive bond. In the absence of 
unusual complexities, the maximum interlayer tension will occur on the bottom side of the 
core/roll nip for heavy core supported rolls for which Hussain suggests a minimum 50 psi 
pressure for newsprint [161]. However, the interlayer pressure may also go to zero on 
either side of a heavy nip as evidenced by bubbles of entrained air which may cause 
wrinkling and creasing if the bubble goes through the nip unevenly or suddenly. 

(93c) crT,r > crT compressive yield for all r 

There is a lower limit on tangential stress to avoid buckling or compressive 
yielding. The location of the minimum tangential stress for typical WIS profiles and high 
core stiffness occurs at the core radius. However, the tangential stress can often be 
compressive throughout all but the outer radii of the roll. 

(93d) crT,r < crT tensile yield for all r 

Finally, the upper limit on tangential stress avoids web breaks or tensile yielding. 
The location of the maximum tangential stress in almost all cases is at the roll OD and is 
equal in magnitude to the WIS. However in addition to the traditional wound roll stresses, 
drying or cooling may superpose even greater tangential tensions upon the material [114]. 

These failure theories are somewhat simplistic as the material is under biaxial 
stress, where the stress in one direction affects failure in the other. In materials science, 
more advanced failure theories include the superposition of these two directions such as in 
maximum shear, octahedral shear, distortion energy and Von Mises stresses. 
Additionally, materials science also includes other more complex failure theories such as 
fracture and cumulative damage due to fatigue. However. a more relevant interaction of 
winding stresses occurs for starring or buckling failures where the compressive tangential 
stress promotes instability and the compressive radial stress promotes stability. 

These failure theories thus far discussed are based on stresses and material failure. 
However. there are several roll structure requirements hased on deflection that also must 
he met. fc•r example. the v..inding of\\ ide rolls on 'lender ~_·ores may re~;ult in ex.cessive 
hcw.ing uf the l'••re rlue to its own v..cight or nkrnJI nip loarling [11]. Ailother core 
example is that the ID of the core must not expand under load beyond the stroke of 
cxpandahle shafts. 



Other deflection based failures can result if there is any interlayer slippage 

deflection due to external loading The simplest example is that the interlayer pressure and 

friction must be high enough to unwind a roll which is braked through the core without 

interlayer slippage. In this case, the interlayer frictional torque must be greater than torque 
applied to the unwind or centerwind by web tension at all radial locations. 

(94) 2 1t 1 r2 1J. G"R_r > roo * WIT for all radii r 

The failure modes described above are those for which a simple mechanics 

description exists. Unfortunately, there are numerous other failures modes for which even 

classification and appelation are ambiguous [99]. Though these are often very application 

dependent and are often more of a material defect nature than strictly winding, they are 

nevertheless a very important aspect to the economics of winding. 

Furthermore though there are numerous failure modes, there are few controllable 

parameters. As discussed in Chapter 1, process constraints often exist which preclude 
varying such things as machine geometry and material properties to optimize winding . 

. Indeed, the only general controllable variable is the WIS profile which depends on the 
TNT's (torque, nip, tension and speed), each of which has its own constraints. Thus, the 
number of failure modes far exceeds the number of variables which can be controlled. The 
results of this mismatch of problems and solutions is that in general roll defects can't be 
eliminated and the best one can hope for is the reduction in their number and severity. 

The science of optimizing winding then becomes one of minimizing a penalty 

function which is quantified as the sum of the products of the cost of a defect and the 
frequency of occurrence for each defect type as a function of the controllable variable(s). 

In other words, the defects must be quantified and their net effect minimized through 
multivariate nonlinear optimization with constraints. Though Blaedel devoted his thesis to 
developing 'A Design Approach to Winding a Roll of Paper', his contribution was merely 

to outline the necessary tools as he did not apply the technique to a real or even simulated 

winding system. 

In summary, the goal of the science of winding is to minimize defects. In simple 

cases of material limit based failures and simple winding systems, many of the tools are 

:llrc~ld\ in ]>lace to minimi1e a ~irH!le defect t\·ne at a time. However.. true optimization 
.I ...... "' t 

:l\\;J;ts :1dditic,nal qttdntitati\t~ dc\-clnpment~ in the de~cripiion of more complex roll 

behaviors, and more comprehensive roll defect theories. 



CHAPTER 5 

ROLL STRUCTURE MEASUREMENT 

Background 

The ultimate goal of roll structure measurement is to determine if visually 

undiscernible defects are present in a roll so that it may be rewound or culled, and future 

defects prevented by appropriate changes in controllable parameters. It is believed that if 

measurements are too low that the roll will not have sufficient integrity to survive 

subsequent handling. Conversely, a high measurement might indicate the potential for 

. bursts and other damage by overstressing the material. Additionally, the desirable profile 

is often believed to be harder at the core and tapering smoothly to a softer finish, and 

uniform across the width [102]. An abrupt change in the profile as a function of diameter 

or width are presumed to indicate the potential for starring and corrugations respectively. 

Many publications have evidenced the cause and effect relationship between 

changing the TNT's (Torque, l\'ip and Tension) of winding and a resulting change in some 

roll structure measurement. Unfortunately, there is very little published data to support the 

widely held belief that roll defect prediction can be made from roll structure measurements. 

If better quantitative relationships between roll structure measurement and roll defects are 

established, then it would be appropriate to consider designing the structure of a roll such 

that defect frequencies are reduced. Blaedel outlined such an approach using penalty 

factors and optimization routines, though he did not actually implement the concept [ 128]. 

Roll structuring is the profiling of the Tl\'T's of winding as a function nf roll 

diameter such that the roll is wound tight enough to survive loads during winding, 

handling, shipping and unwinding: but not so tight as to damage the material. The concept 

of roll structure mc2'-urcmcnt and control to optimize winding and to minimize defects 

evolved ,Jowly in a paLlllel dC\clopment \\ ith v..inding machine controls [90]. Recent 

microprot:essor technology evolution has also influenced roll structure measurement, 

especially for the density analyzer and for data acquisition. 
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The evolution began with winders that were only equipped with a weighted strap 

brake on the unwinding roll to crudely set web tension. At this time, roll structure 

measurements were made by operators who struck rolls with short wooden clubs known 

as backtender's sticks to sound roll tightness or hardness. Though roll hardness as 

measured by a billy club is not a fundamental roll structure property and lacks quantitative 

definition, it is nonetheless useful and omnipresent at most winders. 

In the 1950's and 60's, pneumatic control of unwind brakes for web tension, rider 

roller nip load, and electric drive control of drum torque differential gave operators the 

ability to vary the setpoint TNT's (torque, nip, tension and speed) as a function of current 

diameter to optimize the wind [90]. Simultaneously a better understanding of the 

relationship of TNT's to roll quality evolved from observations that varying these control 

parameters produced observable effects in roll ••ardness. Consequently, a proliferation of 

inventions were designed to quantify roll structure or hardness profiles which included 

tests such as the gap test, and instruments such as the Rhometer. Though the need for 

good roll structure measurement methods is as strong as ever, one of the few concepts to 

appear in the last two decades was the density analyzer which is a computer based 

instrument which measures ingoing web length and roll rotation. The density analyzer 

development parallels the application of PLC and other computers to control TNT 

setpoints. 

There are many measurement methods that have been used to attempt roll stnJcture 

profiling. Most of these methods arc based on either hardness such as the Rhometer and 

Schmidt Hammer; or friction such as the core torque, pull tab and Smith Needle; or strain 

such as the Cameron Gap test. Furthermore, all present methods will either profile across 

the width of the roll or with diameter but not both, so that a complete three (or more) 

dimensional picture of winding is very difficult to obtain [ 169, 171]. The impact hardness 

testers will profile across the width, but only at the current outer diameter unless the roll is 

unwound and measured at various diameters. The remaining methods will profile as a 

function of diameter, but will only give an effective average of variations across the width. 

Since the TNT's are usually programmed as a function of diameter instead of width, roll 

structure measurements profiled as a function of diameter are better suited for determining 

optimum control setpoint functions. Com•'rsely. profiling Jcross the width is better suited 

fur diJ.gnosing problems with CD (Cross Direction) nonuniformities in the web and 

winding machine. 



Since roll structure measurement has been invention driven, there is a blurring of 

definitions such that hardness, density and tension are used almost synonymously, though 

conversion and direct comparison between these different units of measure are not usually 

possible. Only those units that are closely related to the fundamental roll structure 

parameter of web stresses such as the gap test and WIT can be converted. Though in 

principle it would be possible to convert interlayer pressure profiles and density profiles to 

WIS profiles if supplemented by winding models, this has not been done. 

Despite the wide variety of measurement techniques available, methods based on 

the fundamental parameters of web stresses are confined to special lab studies because of 

immense practical difficulties. Furthem1ore, only the density analyzer is able to monitor 

roll structure with any semblance of online measurement automation. Clearly there is a 

need for a fundamental roll structure measurement method than can operate in a production 

environment as well as a lab. This unfulfilled need for a good winding measurement is the 

impetus for this thesis work, which is the marnage of analytical modeling with an 

extension of density analyzer hardware. 

In this chapter, the various roll structure measurements based on hardness, 

pressure, strain and other means will be discussed. Though there are more than a dozen 

methods, most have been only applied for special research studies. Thus in addition to 

their principles of operation, application and limitations will also be described. The 

interested reader will find a more thorough treatment of roll quality measurement by 
Roisum [169, 170] 

Rho meter 

Quantification of roll hardness became possible with the invention of the Rhometer 

in 1965 by Pfeiffer. The principle of operation of the Rhometer, shown in Figure 36, is 

analogous to an electronic version of the backtender's stick where hardness of the roll is 

judged by the magnitude of the rebound. The handheld Rhometer contains a small trigger 

activated striker which is instrumented with an accelerometer. After the striker is released, 

the peak impulsive deceleration of the striker hitting the rewound roll is converted by 

ckL·tronics into :1 reading displayed on a meter. The meter is graduated into 'Rhos' where 

1 Rho = 3 G's (accckr;Hion of gravity). The value of the rc:1ding is rcl:1ted to an 

integration of the interlayer pressure of the outer inch or so of material. Further 

improvements to the original design by Beloit's Wheeler division incorporate a traversing 

L'diTiagc drive for automatically profiling hardness acro~s a roll or set of rolls, strip chart 
output, and modernized ekctronics. 



Rhometer sales are about equally divided between paper and film, but is more 

predominant in the United States than elsewhere. Despite the Rhometer's popularity, it 

does have several drawbacks. It is sensitive to operator technique, so that variations are 

seen between different operators, and beginners have difficulty in obtaining consistent 

readings due to slight variations in the way it is held. Also, the Rhometer has an 

undesirable sensitivity to grade and roll diameter. Dense grades such as supercalendered 

paper and film read higher than more compressible grades for identical WIS values. 

Additionally, the Rhometer will read higher on small diameter rolls than larger rolls. 

Though the Rhometer is not based directly on the fundamental roll stress parameter, the 

readings are more sensitive to roll structure changes than many other measurements [169, 

171]. Additionally, the Rhometer is one of the few measurements that have been 

correlated to roll defects. Burns showed that a 100% Rhometer screening would flag 

about half of the rolls containing bursts, which made it a useful go/nogo quality control 

tool despite its high rate of false positives [156]. 

Schmidt Hammer 

The Paper Roll Hardness Tester, also known as the Schmidt Hammer and Schmidt 

Concrete Tester, is also an impact tester. This handheld device is composed of a spring 

loaded plunger/hammer which is pressed against a roll causing a compression of the 

spring, as seen in Figure 37. When depressed sufficiently, the spring is released causing 

the plunger to strike the roll and rebound ll59]. The magnitude of the rebound is recorded 

on a mechanical pointer scale as well as on an optional strip chart. This device, marketed 

by Testing Machines Incorporated, was used originally to measure concrete hardness and 

later modified to measure roll structure. The Schmidt Hammer has been used to diagnose 

paper manufacturing process problems which result in hardness variations across the 
width [193]. 

Though both the Rhometer and the Schmidt Hammer are both handheld hardness 

testers. there are several differences. The Rhometer measures peak deceleration while the 

Schmidt Hammer measures a parameter more closely related to the coefficient of 

restitution. While the Rhometer is prevalent in the l'nited States, the Schmidt Hammer is 

the preferred m(·thod in European paper mills. \1ost importilntly huwevrr, the Schmidt 

I L:nmn has been It'~ ted to gi\'c poor resolution of sen"iti\ i;: :o roll qructure changes on 

some grades [169, 171]. Due to their handheld convenience, the Rhometer, Schmidt 

I Iammer and the Smith i\'eedle which will be descrihed shonly, are the only roll structure 

mca-;ures that are commonly used in production. 



Backtender's Friend 

While the Rhometer and Schmidt Hammer are suitable for cross machine hardness 

profiling, the Backtender's Friend marketed by Accuray profiles hardness as a function of 

roll diameter as well as CD position. The Friend is 'a traversing carriage mounted wheel 

which rides on the rewinding roll. The wheel has a sensor button on the periphery which 

bumps the roll once per revolution and records the value of the impact. The carriage 

moves the wheel sideways to profile across the width of the building reel. Sensor signals 

from the Friend are recorded and processed by a computer and displayed on a video 

monitor which plots hardness as a function of CD position for every traverse of the 

sensor. 

The Friend's extremely high price compared to the handheld hardness testers 

reflect the additional capacity to do limited control of supercalender air showers, which is 

its primary application. The Friend's computer takes inputs from the wheel hardness 

sensor and sends output corrections to electrically operated cooling air shower valves. In 

CD positions where the hardness is relatively low, the Friend will add additional cooling 

of the supercalender roll, so that the caliper is increased at that point. Bonazza in a four 

month study concluded that installation of the Friend reduced culled rolls by about 44% 

[155]. 

In addition to the extremely high price, the Friend has several other practical 

limitations. The sensor wheel and caniage are bulky, su that packaging would be quite 

difficult on many winders. The contacting nature of the sensor wheel would be 

objectionable to many materials that are delicate or pressure sensitive. The basic principle 

of hardness measurement is not yet related to the fundamental parameters of wound roll 

stress, so that first principles application is precluded. Finally, the resulting roll structure 

profile plots appear noisy, so that resolution is likely to be quite low. The development of 

practical modeling or measurement which simultaneously describes both the radial and CD 

remains as elusive as ever. 



Figure 36 

THE RHO METER ROLL HARDNESS TESTER 

Figure 37 

THE SCHMIDT ROLL HARDNESS TESTER 



Smith Needle 

Of the several friction based measurements of interlayer pressure, the Smith Needle 

is the only method that is commonly used in the production environment. The Smith 

Needle, more formally known as the Smith Roll Tightness Tester, is presently marketed 

by Testing Machines Incorporated. The Smith Needle is a handheld device that consist of 

a spring loaded needle indenter which is penetrated between the layers of paper on the roll 

of paper as seen in Figure 38. The Needle has a spring loaded flange which insures the 

tester is held perpendicular to the roll end and has a dial indicator for registering the 

tightness reading. The needle is attached through a spring to the dial indicator movement. 

The principle of operation of the Smith Needle is to measure the force required to 

penetrate a needle to a constant depth of about 1/2" into the face of the rewound roll. This 

force is the sum of the web/needle friction plus the force required to separate the layers of 

paper, both of which are determined in part by the radial stress in the roll at the point of 

measurement. However, the values given by the instrument are not force but arbitrary 

units peculiar to this device. Because the Smith Needle reading is dependent on friction, 

measurements have a large variability and are dependent on the material. The Smith 

Needle is supplied in two versions: Model A for medium roll hardness, and Model B for 

high roll hardness. 

Although the Smith Needle is easily able to profile roll structure as some function 

of interlayer position and radial position, it has a few drawbacks. As mentioned earlier it 

i~ friction dcprndent, so that compari)ons between grades can't be made. Additionally, 

the Smith Needle and other friction based devices have large scatter in readings due to 

friction variations, so that many readings are required to given statistical confidence to the 

results. Finally, the Smith Needle can be considered a destructive measurement for some 

lightweight grades because the needle may nick the web edge during penetration, which 

may cause the web to break when it is unwound. 

Core Torque Test 

The core torque teq wa-; dcvclnped by Hu'-"J.in in 1977 as a quality control test to 

idc11tify wh,•ther a winding \tart \\JS tight ennl!gh, SO that suffi,icnt f:ipcricore friction 

was develcy.:d to allow for unwinding without core slippage [161]. As seen in Figure 39, 

the test requires only a torque v.'Tench fitted with a keyed steel core plug. 



Figure 38 

THE SMITH ROLL TIGHTNESS TESTER 

Figure 39 

THE CORE TORQVE TEST 

F 



The torque required for core slippage is measured, and can be converted to radial stress at 

the core by the following formula 

(95) 

where 

<JR = radial stress at the core (lbjin2) 

T = torque to slip (in-lb) 

~ = coefficient of static friction between core and material 

(0.3-0.4 for paper on fiber cores) 

L = length of core (in) 

D = outer diameter of core (in) 

Hussain indicated for newsprint that a minimum radial stress should be 15 psi for 

fiber cores and 50 psi for steel cores, which was also verified by measurements of cores 

equipped with strain gages. He also had determined that core diameter variations, which 

have a large effect on core pressure for conventional two drum winders, should be no 

more than 0.015". Though the core torque test is simple and reliable, it does have several 

drawbacks. The test is likely to yield different values corresponding to torque in the 

tightening and loosening direction of the wind. Additionally, the method must consider 

that a fiber core may initially test well, but due to subsequent drying and shrinkage much 

of the core pressure may be lost. Also, there is a practical difficulty in manually applying 

enough torque to cause slippage on long and/or large diameta cores. l\1ost importantly 

however, the core torque test yields only a single data point corresponding to the average 

radial pressure at the core, and as such can't be used for profiling. 

Pull Tab Test 

The pull tab test involve winding thin steel or plastic tabs into the roll at various 

diameters. After the roll has stopped, the force required to remove the tabs can be 

mea~ured with a force gage as seen in Figure 40. Interlayer radial pressure can then be 

ca\.·ul:lted frt)Jll the removal force. coefficient of friction. ·;d area of the tab [ 138, 1571. 
f;nprovcmcnts in the test are seen if the tab~ :m:: encased in ~1n erwclopc v.ith k-;-.; variation 

of friction coefficient than the material to be tested. This test is potentially hazardous when 

inserting tabs into a winding nip, is very time-consuming, can yield noisy data, and may 

<isrupt the winding geometry and stresses with the insertion of the tabs. As a 

, (msequence, its application is limited. 
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THE AXIAL PRESS TEST 
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Axial Press Test 

Another test that can profile interlayer pressure by friction measurements similar to 

the pull tab test is the axial press test. In this test, a male and female die are placed 

concentrically on the two faces of the roll and loaded in a press as seen in Figure 41. 

Radial pressure can then be calculated from the force required to slip (telescope) the roll 

axially, the diameter of the dies, and the coefficient of friction between material. This test, 

developed by Hakiel, is even more involved than the pull tab but will yield less noisy data 

because of the much larger measurement area [ 132, 133, 186]. 

Thin Pressure Transducers 

Pressure transducers that are thin and flexible may be wound into the roll for a 

direct measurement of interlayer pressure. Pressure transducers of suitable geometry that 

have been wound into a roll include capacitance gages, resistance gages, strain gage load 

cells and piezoelectric film. The capacitance gage is a compressible (!.1<<0.5) dielectric 
sandwiched between thin brass plates. As the pressure is increased, the plate separation 

decreases and the dielectric constant increases which can be measured with a capacitance 

meter. Miniature soil pressure transducers, which are capacitance gages, were first used 

by Hussain to measure interlayer pressure in 1968 [160]. Subsequently, Blaedel [128] 

and Wolfermann [ 147] both used these gages to verify linear anisotropic winding models. 

The procedure is similarly involved as the pull tab test such that the gages must be 

calibrated under static loading inside a stack. Additionally, the gages can have an 

undesirable sensitivity to curvature which must be taken into account. 

Resistance gages are a pain iatrix of carbon potted in an elastic binder which are 

screen printed onto a thin plastic sheet with electrical leads. As the thin composite is 

loaded under pressure, the matrix compresses which decreases carbon separation and 

consequently resistance which can be measured at the leads. Force Sensing Resistors 

(FSR's) are a trade name for one particularly successful formulation which has reduced the 

undesirable cross sensitivity to loading in other axes. temperature, moisture and other 

factors [ 163]. Thin strain gage lond cells or prc~;sure trnnsducers are also available which 

have been wound into rolls. bu; arc somcv. hat thicker than oihcr alternatives, and are not 

flc\ible in bending. rin:1lly. pioockctric (Kynar htind) film has also been v.ound into 

rolls. Unfortunately, the piezofilm has such a short time constant that it is more suitable 

for dynamic measurements such as transient pressures going through a nip than longer 

mcct::;urcmcnts such as interlaycr pressure during winding. 



Acoustic Interlayer Pressure Measurement 

Although acoustic measurements are frequently used for web elastic moduli 

measurements [55-57, 64, 68, 72, 76, 81, 85] and occasionally on free span web tension 

[71], its application to interlayer pressure measurement has been limited. In most cases, 

the acoustic measurements make use of the fact that the time of flight of a sound wave 

through a material is dependent on elastic moduli and material stress [ 157]. Pfeiffer used 

this approach in 1966 for one of the first measurements of interlayer pressure profiles in a 

roll [165]. He began by measuring sonic velocity through a stack loaded into 

compression. The time of flight of the acoustic wave from the transducer on one end of 

the stack to a pickup on the other was measured as a function of compressive pressure. 

Later, he outfitted a rewound roll with an acoustic transducer at the core and a pickup 

which could be set at various radii. From the stack calibration, and the time of flight 

measurement inside the roll, he inferred compressive pressure profiles as a function of 

radial location. 

As novel and inventive as this approach was, Pfeiffer's results are not corroborated 

·by later analytical and experimental stress profiles. The compressive pressure profile, 

though approximately correct in value, has a shape thar is inappropriate. He further 

compounded errors by calculating the tangential stress distribution as a derivative of the 

pressure distribution. Though analytically correct, the process of taking a derivative of 

noisy and uncertain data yields even greater problems. Even today, pressure 

measurements can seldom be milde with sufficient accuracy that would allow tangential 

stress calculations. This is but one of many examples where winding authors have not 

independently verified their analytical and experimental efforts, thus care must be taken 

when interpreting their conclusions. 

Caliper Method 

The average caliper of a stack of material can be measured as a function of 

interlayer compression in a tensile test machine. This caliper versus pressure curve can be 

used to infer pressure inside a roll at various radii if the radial distance spanned by a 

knov..n number of layers is carefully measured. This procedure has 'even1l difficulties that 

rcnda the r~'c;ults quc·stionable. first, the c;tack j, me;:surcd under uni2xial <;tre:-;s while the 

roll is under bi:lx.ial qrcss. If the material has a nonzero~ R· the tangential stresses will 
affect the radial deflection. Secondly, layers are difficult to count and radial span is 

difficult to measure. Thirdly, the method will not work well in areas near the core and 

outside where the stress graclicnts are high. Most impurtantly however, this method 

assumes unifom1 caliper which is seldom a good assumption to make. 



lL.('I 

Cameron Gap 

Of the many measures of tangential stress or strain, the Cameron Gap is the only 

method that is commonly used in the production environment. The Cameron Strain test, 

more commonly known as the Cameron Gap test, has been used to analyze roll structuring 

for more than 25 years, and was adapted as a Tappi standard test in 1963 (174). This test 

requires only a sharp knife to slit the outer layer, a fine scale or magnifying reticle to 

measure the gap. and a flat tap to measure roll circumference. From these measurements, 

tangential strm an be calculated as 

(96) 
Gap Width 

ET@ r = r,_ = _C_ir_c_u_rnf~er_e_n-ce_o_f _R_o_ll 

The Gap test is one of the few based on a fundamental stress or strain parameter. 
The strain can easily be converted to stress by multiplying by the materials tangential 

modulus of elasticity. The Tappi standard indicates a maximum allowable strain of 0.21-
0.23% be used as an acceptance criteria for 40 lb publication paper. This corresponds to 
about 1,000 psi wound-in-stress or about 30% of the ultimate strength of the sheet. 

Though this test is fundamental, is a Tappi standard, and used by several authors, there are 

several problems. First, the measurement is extremely difficult to make with accuracy, 
especially at small diameters [169, 171]. Secondly, the test yields only a single data point 

corresponding the average strain at the outer diameter. Consequently, to profile a roll as a 

function of diameter, the entire roll would have to be slabbed down and destroyed. 
Additionally, in the process of severing a layer, slight stress redistributions in the roll 

occur due tot: c relief of the pressure supplied by that outer layer. 

Slit RoJl Face 

The radial location of the tangential paper stresses trans1t10n from tension to 

compression (about 15o/c of the way from the outer surface) can be inferred by slitting the 
roll face radially with a sharp razor from the core to the outside. At radial locations where 

the tangential stresses are tensile. the slit will open, and where compressive, will tend to 

close. This c;;cldom uq·d method is both destructive, ,ippro\imatc and also redistributes the 
\l:c:-,scs in the rc,JJ in the nled-.,urcTTll..'nt process. 



Radially Drilled Holes 

Holes drilled radially into a roll of paper from the outside to the core are initially 
circular in shape. If the roll is slabbed down, paper stresses are released which will cause 
the initially circular holes to take an elliptical shape [ 168]. This change in shape represents 

the tangential strains in the paper roll after it was wound and could be converted to stresses 
provided that Poisson ratios were near zero. The major diameter of the holes are difficult 

to measure accurately, and the test is obviously destructive. 

Strain Gages 

Strain gages though ubiquitous in structural measurement, are very difficult to 

apply for wound roll stress measurement. Hussain used strain gages bonded to the inside 

of a core to measure the effect of increasing pressure due to wrap addition [ 161]. 
However, since the cylindrical wraps quickly become self supporting of external pressure, 

the core measurement shows increasing pressure for the addition of only a couple inches 

of radial addition of the web. Hussain also bonded strain gages directly to the web prior to 
winding to measure changes in tangential stress as a function of wrap addition [160]. 
Finally, Rand and Eriksson also bonded strain gages to the web and observed the 

circumferential stress changes as a function of circumferential location going through a 
nip, and as a function of diameter [ 168]. Strain gages must be calibrated when bonded to 
web because the stiffness of the gage and web are comparable. Furthermore, bending, 
cross loading, adhesive bonding, and gage leads limit this approach for stress 
measurement strictly to involved lab studies. 

J -Line 

The J-Line test measures the extent of interlayer slippage at the core or outside of a 
roll as a function of winding or unwinding revolutions. The test, illustrated in Figure 42, 

involves snapping a radial line on a winding or unwinding roll with a chalked line [ 106, 
109]. As the wind progresses, the initially straight line may quickly skew in the direction 
of the wind but will slow i1nd eventually freeze after se\·eral revolutions fl57]. J-Line 

:1lO\ernent is usually a.;;soci;Jtd with nip mllers (lf core supported rolls on gL:Jes with low 

fri.:.·ticll1 coefficients such as L WC paper. The rn;1gnitude and angle of the defc>nned line tip 
provides a quantitative measure of strain changes due to slippage [121]. Though the 
awrage change in strain is usually small, the slippage mayo· ~ur ahruptly in a single layer, 

which might indicate a possible crepe wrinkle. A more (.ktailed discussion of intcrlayer 
-;lippage is given in Chapter 4. 



WIT-WOT Rewinder 

The WIT-WOT (Wound-In-Tension, Wound-Off-Tension) rewinder is a single 

drum duplex laboratory winder designed and build in the 1960's for Pfeiffer's classic 

works on tensions during winding [166, 167]. The principle of operation of both the WIT 

and WOT loops is that the outer layer of the roll is passed over load cells for tension 

measurement prior to entering and exiting the roll respectively. As seen in Figure 43, the 

unwind section is composed of a brake whose torque is determined by the free web 

tension setpoint and the web tension load cell. The windup section is a speed controlled 

drum with the surface winding nip provided by loading cylinders. 

Pfeiffer and others demonstrated that the WIT-WOT winder is able to measure 

tensions with great resolution, even to the point of resolving variations in a single wrap 

due to a splice. However, though the WIT and WOT profiles for a single rr1ll have a very 

similar shape, the WOT tension can be much lower than the WIT. Whether this is due to 

differences in the two tension loops ,. whether this is a reflection of anelastic behavior 

such as creep and stress relaxation, or whether some fundamental problem exists remains 

. to be determined. Since the tension profiling must be done at extremely low speeds ( <200 

FPM) due to air entrainment, and there are only a few of these winders in the world, this 

measurement approach is defmitely limited to specialized lab studies. 

However, rewinders of any type may be used for detailed and careful testing of 

rolls in a mill environment. As the roll is unwound slowly, it can be profiled across its 

width and at v;uious diameters to give a complete three-dimensional picture of the roll's 

structure. For example, a Rhometer could take readings at one inch increments across the 

width of the roll and at one inch diameter increments as the roll is unwound. Additionallv, 

this rewinder testing can be augmented by other test methods as well as close visual 

inspection. 

X-Ray Tom graphy 

Computerized X-ray tomography has been used on rewound rolls to attempt to 

di'-ldll roll defects ~111d prnfile [ 16-:1-l. Though thi-; method wa' sensitive to hasis weight 

\::ri~!tinns. the L( )rrch:inn of !•:Jmngretphy readings to dckcts (ll roll structure profile were 

not est.1blished. 



Figure 42 

THE J-LINE TEST FOR INTERLAYER SLIPPAGE 

c = max. circum. movement 
c/a = slope of tip 

r = depth of influence 
rl = radius when line struck 
r2 = radius after winding 
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Roll Shape Profiling 

One of the fundamental assumptions in wound roll models is that the roll is 

cylindrical such that it has a constant radius at each layer as a function of circumferential 

and CD position. The circularity assumption comes into play in the equilibrium equation, 

while variations about CD position not currently modeled for the most part. Though rolls 

are not perfectly cylindrical as measured by several methods, the effect on wound roll 

model accuracy has not been established. 

Radii as a function of circumferential location has been measured in winding rolls 

for the purpose of estimating forcing functions for wound roll vibration using cam 

followers attached to L VDT's or by a pantograph mechanism inserted into the core and 

swung around to trace the roll's periphery [173]. The shape of the roll as a function of 

circumferential position can then be described by using a Fourier approximation as [ 120, 

122] 

(97) r(8) = ro + r1 co~e + e1) + r2 cos(2e + 82) + ... = r0 + I ri cos(ie + eJ 

where 

r(8) is the radius at circumferential location e 

ro is the nominal or average radius 

ri is the ith contribution of sidedness 

i is the sidedness number 

e is the circumferential location 

ei is the phase relationship of sidedness 

i=l 

Not only does the shape of the roll affect surface winder vibration, it also causes periodic 

free web tension transients during unwinding [ 120, 122, 158]. Additionally, the roll's 

shape may be altered due to handling loads such as the two point radial squeeze of clamp 

trucks and other loading conditions described in Chapter 4 [1581. 

In addition to profiling radius as a function of circumferential location, a profile as 

a function of CD position may be obtained by a device described by Quint [162]. The CD 

profiler consists of a stand to hold a roll and a pair of caliper arms mounted on a traversing 

cuTiage. The caliper arms ride on cam follov.crs on opposite diarnctral locations on the 

wll and '-~p;tration of the anns is m~asured by a I.VDT a~ the Clrms tra\crsc dov.n the axis 

of the roll for a profile of diameter as a function of CD position. Quint claims from this 

study that a caliper nonunifom1ity as small as a few millionths of an inch can affect roll 

performance. However, the method received little attention and is no Jon_ 'fused. 



Nip Width and Pressure 

In addition to the thin pressure gages described earlier, there are other methods 

better suited to nip width and/or pressure measurement. Indeed, nip width can often be 

large enough to be conveniently measured by a simple ruler. If not, there are several kinds 

of nip impression papers that will determine the shape of the contact between two 

cylinders. These nip impression papers contain encapsulated dyes which break open 

under a specified pressure. For example, Beloit Manhatten manufactures a nip impression 

paper that is something like carbon paper. Similarly, Fuji film is a more capable nip 

impression paper which can give a quantitative indication of the magnitude of the nip 

pressure at any location by measuring the color intensity of the dye with a special optical 

meter. 

The application of these papers is to determine the width of the nip as well as its 

shape which should nominally be rectangular. However, the pressure distribution of real 

calender or winder nips varies tremendously across the width such that it is not unusual to 

have contact over less than half of the length of the nip. Deviations of the contact shape 

from rectangularity are used to diagnose problems such as caused by misalignment, 

loading nonuniformity, deflection, roller diameter differences, and web caliper differences. 

However, these products do have several application problems. First if nip width 

is to be measured, the paper must be inserted into a disengaged nip which is then engaged. 

Secondly, the activation pressure of the products are undesirably sensitive to temperature, 

moisture and cross loading such as shear. Thirdly, they have a limited activation pressure 

range such that the low pressure at the periphery of the contact will not activate the dye so 

that the nip is actually wider than measured. Finally, the measurement is difficult and 

possibly dangerous to perform under actual running conditions so that its application is 

usually limited to static tests. 

Once nip width is measured and total lineal load determined by measurement or 

calculation, then peak nip pressure can be estimated. This is based on the solution to the 

Hertzian contact between two parallel isotropic cylinders [ 115]. Though real nips are often 

complicated by such things as anisotropy. sandwiched materials, or tangential loads such 

as rolling friction, the pres"urc profiles still remain approxinutely parabolic. Thus 

\98) -- 1.277 E_ 
b 

\\here Clmax .:.: peak pressure near center of nip (psi) 
p lir1callo~Jd (pli) 

b c.:: contact v..idth (in) 



Summary 

Several methods of roll structure measurement have been described here. 

Additionally, all of Chapter 6 will be devoted to the density analyzer as it is the most 

modern of the roll structure measurement methods and that upon which this project is 

based. Despite the number of measurements available however, most have only been 

applied on a few occasions for specialized research studies and are unsuitable for 

production monitoring. Even of those that are used in the production environment, their 

application is generally sparse and irregular at best. Only on a fraction of all winders are 

rolls monitored regularly with instruments. 

Desirably, an ideal roll structure measurement would be one that is sensitive, easy 
to apply, profiles with both diameter and CD, and directly based on the fundamental 

parameters of web stresses. Unfortunately, none presently exists which meets all of these 

criteria. Indeed, most of the methods fall short in several characteristics. Thus selection 

for any application is a compromise [169, 171]. The need for a good fundamental roll 

structure measurement, was the impetus for this thesis project. Of the desirable 

characteristics, this project meets all but the profiling with respect to CD. Additionally, 

this is the only new roll structure measurement method developed in more than a decade. 



CHAPTER 6 

THE DENSITY ANALYZER 

Density 

Web density in an unloaded condition, along with caliper (thickness) and basis 

weight (weight/area) are properties that have been monitored for quality control in the 

paper industry for many decades. Low densities of less than 0.01 lb/in3 are desired for 

tissue and toweling where bulk (inverse of density) and absorbency are important. 

Conversely, high densities of more than 0.042 lb/in3 are desired for LWC (lightweight 

coated and supercalendered) where the sheet is filled with clays and other materials to 

provide a dense and smooth printing surface. The density for a typical grade of paper is 

about 0.024 lb/in3 but may range as much as a factor of two, while film is similar at 

typically 0.034 lb/in3 but has a much smaller variation. Density can be calculated from 

basis weight and caliper as 

(99) p = %, where 

p = density (lb/in3) 

b = basis weight (lb/in2) 

c = caliper (in) 

However, basis weight is usually given in units peculiar to a material such as lbs/3000ft2 

for paper and lbs/1300 ft2 for board, and caliper may be given in mils (0.00 1 "). 

Long before the density analyzer instrument was invented, it was noted that the 

density of a web material increased with increasing ZD loading. In particular, high 

\\Ollnd in-tensions rroduced high intcr]ayer pre~'LJres and CClT1SequentJy an increase in 

dcr ,ty that coulJ he discerned with careful mc.1surcments of rn11 di:imctcr and v.eight. In 

l0b 7, Ll'y~1nov P<~icntcd a density meter consisting of a tab inscncd between layers of the 

roll which was connected to a L VDT for measurement of radial deformation as additional 

layers were added during winding l37]. Ho· ever, this crude device gave density only at a 

single data point as ~ function of added wraps, and was not suitable for production 

measurements. 
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In the 1970's, winding literature began to use the term density synonymously with 

wound-in-tension. This included an article in 1970 by Shvetsov who compared the 

density of wound rolls to the unstressed density of the parent material [36]. He defined a 

density index as 

(100) density index = p 
Po 

where 

p = rewound roll density (lb/in3) 

Po = unstressed material density (lb/in3) 

He found this density ratio to vary from 0.80 to 1.09 for more than 600 rolls of paper 

tested from several mills and proposed this measure be used for roll quality control. A 

similar approach is used to estimate the amount of air wound into rolls of impermeable 

material such as plastic film given in equation (79). In 1979, Hewinson obtained an 

United States Patent for a winding machine design, which was claimed to control wound 

roll density at a predetermined value, by winding inside a loop of belt which controlled the 

circumference of the rewinding roll [23]. 

However, it was not until 1980 that the first practical measurement method for 

density became available with the invention of a computerized roll density analyzer. This 

development was headed by Eriksson of the Swedish Newsprint Research Center and 

funded by a consortium of three corporations [19-21]. Since then, machinery builders 

such as ASEA [14], Beloit Corporation [17, 18], General Electric [31], Jagenberg, Voith 

[ 16] and Wartsila, as well as paper companies such as Abitibi Price [30], Champion 

lntemationa . Norpac, St Regis Paper, and Tasman Pulp & Paper [32] have developed 

similar instruments. 

Today there are scores of density analyzers in use on paper mill reels, winders, 

rewinders and unwinds throughout the world. Some of density analyzers are portable 

PC's [ 17, 18, 30], while others are permanently mounted in bench boards or control 

cabinets [ 14, 16]. Since its invention, most of the improvements in the density analyzer 

have been incremental such as faster computers, higher count encoders and a better 

coupling of .crl(]cr-, to the rotating roll and roller. The most novel development atrl:'mpts 

i11cluckd clu-,cd l0op c,•ntrol of density to a tJrget value (unsuccessful). caliper 

compensation schemes [ 16] (questionable), and changing from diameter based to length 

based sampling [ 17] (practical) for monitoring several rolls simultaneously on duplex 

winders. 



Density as a Roll Structure Analysis Tool 

While the density analyzer may not be the most common method of roll structure 

measurement, its performance is by far the best documented in public literature. Eriksson 

showed the effect of torque, nip and tension on wound-in density; the relationship between 

wound-in and wound-off density of roll after long term storage; and the effect of wrap 

sample size [19-21]. McDonald showed correlation between Rho hardness and density; 

the effect of calendering (caliper) on density; and the effect of toryue on density [30]. 

Odell's study was the most complete detailing the effect of source paper machine; the effect 

of torque, nip, tension, speed, acceleration; splices; and set location on the parent log to 

the density profile at the winder [32]. Similar studies were performed later by Granlund 

[22], Komulainen [25, 26], and Holmer [24]. Additionally, several less technical papers 

also proclaim the virtues of the computerized roll density analyzers [ 15, 27, 28, 33]. 

These many studies usually confirm the following conclusions about density 

1. Density profiles follow those of other roll structure measurement methods 

including the Rho hardness, Smith Needle, and wound-in tension. 

2. Density is increased with increasing torque, nip and tension. 

3. Wound-off density is equal or slightly greater than wound-in density after a period 

of storage. 

4. Density increases during acceleratio1., decreases during deceleration and drops 

abruptly if the winder is stopped for a splicing operation. 

5. Density has an undesirable sensitivity to changes in caliper or basis weight [ 16, 18, 

30, 35]. As discussed later in this chapter, this cross sensitivity problem can be 

eliminated by supplementing density measurements with caliper measurements. 

Despite limitations of the density measurement, which will be discussed later, the 

density analyzer possesses most of the attributes of an ideal roll structure measurement 

[ 169, 171]. These include profiling with respect to diameter for diagnosing required 

changes in the TJ'..'T's, recording capabilities, nondestructive resting, ease of use, and 

;no.l.:r<ltc cost. Pnhaps the two greatest adv:1ntagcs huv.cver, are the relatively high 

rl·~nlutinn nf roll stn1cture changes, and the ability tn be >nrkn>cntcd L)r ac:tom~lted on­

line production measurements. For these reasons, this measurement serves as a platform 

for development of the stress measurement device invented for this thesis work. 



Theory of Operation 

The density analyzer, as seen in Figure 44, consists of a winder or unwind, two 

incremental rotary encoders, pulse counters, and a microcomputer. One encoder is used to 

measure web footage and is mounted on a roller or drum which travels at web speed. The 

length of web run during the sample can be calculated as 

(101) lj = rr ~ Pct.i 
pprd 

where 

li = incremental length for sample i (in) 

dd = drum roller diameter (in) 

Pct,i = drum roller encoder pulses for sample i 

ppr d = drum roller encoder pulses per revolution 

Similar to gear calculations, the current rewound roll diameter can be calculated from the 

ratio of the pulses of the two encoders as 

(1 02) dr,i = dct Pd.i pprr 
Pr,i pprd 

where 

d · = rewound roll diameter (in) r ,I 

dct = drum roller diameter (in) 

Pd,i = drum roller encoder pulses for sample i 

p · = rewound roll encoder pulses for sample i r,1 

pprr = rewound roll encoder pulses per revolution 

pprd =drum roller encoder pulses per revolution 

However, the number of wraps. n, of material added during the sample interval is usually 

fixed prior to running as 

(!03) n = Pr.i 

pprr 

where n is typically ;m integer ncar 100 for typical web materials. 
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Also, web surface speed can be calculated using elapsed time between samples as 

1 i 
(104) Sj = 

where 

tj 

si = surface speed during sample i (in/sec) 

li = incremental length during sample i (in) 

ti = time elapsed during sample i (sec) 

which can he u::,cd for winding producti\ity analysis. finally, \\ ith the <Jddition of more 

encoders, accurate speed differentials can be computed between any two rollers or drums 

equipped with encoders. 



The pulses generated by the two or more encoders are counted by counter data 

acquisition boards and passed to the computer for calculation. One of the encoders. 

typically the rewound roll, serves as a timer for sample acquisition. In this mode, the 

number of pulses representing a desired wrap count is loaded into the rewound roll counter 

at the start of every sample. As the roll is winding, the rewound roll encoder pulses are 

counted down from the preset value and the drum roller encoder pulses are counted up 

from zero. When the rewound roll counter reaches zero, the contents of the drum roller 

counter are latched and passed to the computer. Then, the rewound counter is set to the 

preset wrap count and the drum counter is zeroed to start the acquisition cycle anew. At 

each sample, length, speed, density and other parameters can be calculated as a function of 

cuiTent rewound roll diameter. 

The number of wraps in a sample interval selected by the operator has a large effect 

on the performance of the density analyzer. If the wraps are set high, the noise of the 

density profile as a function of wound roll diameter will be reduced but will have so few 

data points that changes of short duration may be missed. Conversely, if the wraps are set 

low, the plot will become so noisy that interpretation becomes difficult. Most density 

. analyzers operate with large wrap counts corresponding to about one inch of diametral 

increase between samples which yields fewer than 40 data points for the density versus 

diameter plot of a typical paper roll. 

The Density Calculation 

Wound roll density, as its name implies, is nothing more than the weight of 

material wound into a given volume. The derivation of wound roll density begins with 

simple definitions for density, weight and volume. 

(105) p = weight 
volume 

(1 06) weight = (length) (width) h 

( 107) volume = TC (d; 2 - d; 12) width 4 . .-

\\here 

b = basis weight (lb/in2) 

di = diameter of current sample 

di-1 = rli J.meter of previous sample 



Solving equations (105-107) simultaneously for density and eliminating weight and 

volume yields 

(1 08) p 
4 b (length) = --C--=--'--

1t (d?- di-1 2) 

Though diameter in particular, as well as other variables in general, are constantly varying, 

the average properties are determined over an entire sample and attributed to the midpoint 

of the sample as seen below. 

Sample i-1 Sample i 

~ 
Diameter i-1 Diameteri time 

Though (1 08) could be calculated from results of (1 01-103 ), it is advantageous to calculate 

density directly from measurements. Solving equations; (101) written for the average of 

diameters at sample i and i-1, (102) written twice for diameters i and i-1, and (103) 

simultaneously for density yields 

(109a) p = 
2 b n2 pprd 

~ (Pd.i - Pd.i-1) 
(no caliper correction) 

The constants in the equation (109) are: n which is the predetermined and fixed 

number of v.Taps during a sample and termed 'wrapcount'; pprd which is the pulses per 

revolution of the drum roller encoder; and dd which is the drum diameter. These constants 

are all easily determined with great precision and will not contribute significantly to 

uncertainties in the density measurement. 

A pseudo-constant in equation (1 09) is the basis weight b, which is almost always 

a<.:-,umecl to be a con<.:tanL hut in reality varies due to v. cb mJ.nufacturing fluctuations. As 

'-L'Cll from equ~ltion (99l, any changes in eiihtr Lll1Stre-,sed material density or unstressed 

material caliper will change the basis weight, which changes the density reading or 

calculation. 



Caliper Sensitivity and Correction 

This cross sensitivity of density to caliper or basis weight changes has been 
documented, but not widely appreciated. McDonald [30] showed that calendering of paper 
increased density values over that of the uncalendered source material, and similar 
observations have also been made by Voith [ 16]. The easiest way to see the effect of 
caliper changes is to wind a roll composed of one or more webs with different gages that 
are spliced together. The roll seen in Figure 45 has a sudden caliper drop of about 8% 
over the diameter range of 30-34", which results in a similar increase in density of 8% 

over the same diameter range. Similar results have been obtained by Roisum in previous 
work [35]. 

The danger in diagnostics of density plots without caliper information is that a 
change such as illustrated in Figure 45 could be misinterpreted as resulting from events 
caused by the winding machine, such as changes in the TNT's. In this example, the 
forces and loads of the winding machine on the web remained approximately constant. 
However, the stresses were increased due to a reduction in material thickness over which 

the forces acted. 

In order to make the diagnostics of density plots more reliable, it is desirable to 

separate the effects of material and machine. One way this can be accomplished, 

developed by Baum [18] and Roisum [35], is to caliper correct density calculations. 
Density can be caliper corrected if thickness measurements are made simultaneously with 
diameter and length measurements from the encoders. From equation (99\ basis weight 
can be calculated from a measured (and assumed constant) unstressed material density, a 
measured thickness, and inserted into the density calculation equation (1 09a) yielding 

(109b) p = 2 Po c n2 pprd 

~ (Pd.i - Pd.i-1) 

A vivid demonstration of the effects of caliper variation on density was performed 
by Scott Baum of Beloit who programmed the loading on a calender to vary with during 

the course of processing rolls. This varying load cause a variation of caliper as high load 
permanently compacted the paper more than lower loads. As seen in Figures 46 and 47 
for a step and L ~p ch;;nge r ·-.;pcctively, the uncorrected density follows inversely \>..ith 
chc1i1ges in caliper. Tiowcvcr with caliper correction using equation ( 109b), the density 

profiles become relatively flat corresponding to the c.,pected and desirable near uniform 
roll structure that was programmed into the TNT's of the winder for those runs. 



However, caliper correction also works well on normal variations of caliper 

resulting from manufacturing process fluctuations. Figure 46 shows a comparison of 

density and caliper corrected density on a single roll which has a significant MD variation 

in caliper. Though the caliper corrected density still contains some caliper information, the 

plot shows a considerable reduction in 'noise'. With caliper correction, the effect of 

changes in winding machine forces stands out more clearly, so that interpretation becomes 

more reliable. In this example, the profile is a sudden step drop in the TNT's at a 20 inch 

roll diameter superimposed on the typical smile profile of two-drum winders. 

As mentioned earlier, the caliper corrected density is most closely related to the 

loads imposed upon the web, while the uncorrected density is most closely related to the 

stresses imposed upon the web. It might be tempting to conclude from this that the 

uncorrected density has the closest correlation to the stresses predicted by the traditional 

analytical winding mcx:iels. However, this is not so because the winding models assume a 

constant caliper, so that any caliper variations must be normalized out just as the caliper 

corrected density has been. The best way to view this is that the radial stress boundary 

condition is the load (ie caliper corrected density) divided by the current outer radius. 

In this discussion there has been the implicit assumption that the density and 

wound-in-stresses are related in a stronger fashion than simple statistical correlation that 

has been well demonstrated. For example, perhaps there exists some conversion function 

between stresses and density based on first principles modeling. As will be indicated the 

end of this chapter and shown in the next, by extending the traditional winding models it is 

pussiblc to calculate density profiles from WIS profiles and material properties. However, 

there would be little practical impetus to do so because stress models contain more 

information than density profiles, so that information would be lost in the conversion. 

Additionally, caliper corrected density like information can be converted to stresses from 

strictly first principles modeling and is the basis of this project. A new roll structure 

measurement, radial compression, will be described in the next chapter which has many 

advantages over the corrected and uncorrected density calculations and is a direct input to 

the outer boundary condition of the stress calculation mcx:iel. 

In conclusion. the traditional density calculation will show the combined effects of 

hoth T?\T changes and caliper changes, so that the separate contributions of each may be 

l.':>-trcmcly difficult to dcten11ine. A lxttn apprnach is to monitor caliper to determine gage 

i'r)n,i':olcncy of the nnterial being wound, from v.hich ch:mges rc'-luircd in the upstream 

manufacturing can be detem1ined. Then use the caliper corrected density (or better yet the 

radial compression from Chapter 7) profile to diagnose roll structuring effects, from which 

changes in the T.\IT's and other winding machine parameters can be determined. 
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Raw Density Data 

The raw data from the drum roller encoder as a function of sample number is a 

straight line whose value at any point is proportional to the current rewinding roll diameter 

as determined by equation (102) and illustrated in Figure 49. If the hardware is operating 

properly, the plot will be a featureless line which would intersect the origin of zero pulses 

at a zero rewound roll diameter. 

However, there can be rare hardware errors where the sample may be double 

triggered which gives a zero count for a sample as shown for sample number 2150. 

Similarly, the trigger may skip a beat which would give a value twice the expected. These 

physically impossible readings which occur perhaps once in every thousand or ten 

thousand samples, cause a total disruption in the density calculation for two consecutive 

samples. Fortunately, these events are easily detected through statistics. If the 

significance of the spike by the Z-test exceeds 3cr or 99.9%, this value may be replaced by 

the expected value. More conservative criteria include removing data that has a probability 

of less than l/2n of occurring where n is the number of samples. The most conservative is 

Chauvenet's principle which allows the removal (replacement) of a single data point if its 

deviation ratio exceeds the standard deviation ratio. 

Finally, the data set may contain a series of consecutive errant values if the winder 

is stopped in the middle of a set such as occurs during a snapoff and splice. In this case, it 

is not generally possible to correct raw data in that region bec:1use the data before and after 

the stop arc not synchronized. Therefore, the density profile must be calculated to the last 

good point before the stop, and again from the f11 st good point after the stop to the end of 

the roll. Though the raw data can't be easily spliced across such an event, the calculated 

density can be. 

Density as a Derivative 

In qualitative terms. density is a measure of the compaction of the material being 

wound during a sample. Alternatively, a density profile represents a radial growth pattern 

of roll diameters during consecutive samples as illustrated in equation (1 08). However, 

dc·n;;ity c~ln ;!lso be viewed in ;;-;relationship to the raw encoder data by noting that it is 

i!·,\c'hcly l'flljil>rtinnal to the lL Terence in drum pubes between consecutive sznnples as 

seen in equation (1 09). As seen in Figure 50, the difference in drum pulses between 

consecutive samples can be a noisy signal which varies about a small positive mean and 

nuy contain n~m1crous spikes. The degree of noise is primZlrily related to the sample size 

intLT\ al "ct by the operator, as mc:1~ured in inches of radial growth. 
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Density is inversely proportional to the pulse difference between consecutive 

samples from equation (109), and the pulse difference is effectively the first derivative of 
the raw pulse data, which can be seen by writing the first derivative as a two point 

backward finite difference approximation. 

(llOa) 2 pt. approx. dp I = l(Pi- Pi-1) + l_ h f' 
ds s = s; h 2 

where 

p = pulses 

1 = sample number 

h = base point spacing (=1 for this examples) 

(l/2)hf' = leading error term 

The reason that pulse differences, and as a consequence the density, can be very 
noisy is because these calculations are derivatives of data, and taking derivatives of data 

increases variation. From classical numerical analysis, we can increase the accuracy by 

either decreasing the base point spacing (sample size), or by using higher order derivative 

approximations such as 

(11 Ob) 3 pt. approx. 

(110c) 4ptapprox. 

dp I 1 ( ) l_ h2 f" -d = 2 h Pi+ 1 - Pi-1 - 6 s s = s, 

dp I 1 - = ····· - (2 Pi+1 + 3 P· 
ds s = s; 2 h 

!) Pi-1 + Pi+2) - _l_ h3 f"'' 
12 

and so on. Unfortunately, both decreasing base point spacing and higher order derivatives 

increase noise considerably, so that this approach is not useful. 

In practice, noise reduction for pulse difference and density calculations are best 
achieved by summing raw data over a sufficiently large diameter increment. The one wrap 
original data sampling size can be increased by summing to give a 20 or 40 wrap effective 

sample size as shown in Figure 51. The higher the effective wrap size, the less noise in 
the resulting plot, and the fewer the resulting plotted data points. So effective wTap size is 
an operator selectable parameter which trades profile resolution for mea,urement 
r~-;olution. Depending on the qu;Jlity of in:--tn;menution, the materiaL the \\indcr, and 

opcrJtur preference, effective wrap size may vary from as little as 0.05" to more than 1.0" 
on the diameter. Higher resolutions can be obtained by higher count encoders that are 
tightly coupled without backlash to the roll and roller, web grades with high friction 
cocffiL·ients that minimi;c interla; er and roll/roller slippage, and grades with uniform 
caliper profiles. 
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Density Noise Reduction 

The character of pulse difference or den<:ity noise can be studied using statistics to 

describe the data distribution. As seen in the histogram of Figure 52, most of the data 

roughly fits a nonnal distribution about a mean corresponding to the average density. In 

addition, there are three outliers on the negative side and one on the positive side that 

correspond to spikes in the data, but are not well described by a Gaussian distribution. 

However, removal of these moderate sized outlying spikes (not to be confused with the 

much larger spikes occurring with double or missed samples) and replacement with their 

expected value did not have a significant effect on density noise because their overall 

contribution was small. Even if the strength of this clipping filter was increased so that 

more and more outliers are replaced by the local mean, the effect on density noise was 

minimal until nearly all values were replaced by the local mean, which is the same as data 

smoothing. Smoothing was also tried, but gave a disagreeable rounding or slurring of the 

data if ilrrlicd with sufficient weight to have an effect. 

Another approach attempted to find a dominant frequency in the spectral content 

that could be removed with a notch filter. However as seen in Figure 53, the pulse 

difkrence d:lta contains no dominant frequency components that would be eligible for 

removal. 
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However, another noise reduction technique that did perform well was the digital 

low pass filter applied after the density calculation in the following loop, 

PRINT "LOW PASS DIGITAL FILTER" 

TElviP = DENS(l) 

FOR Q% = 3 TO NUMSAMPLE% 

DENS (1) = [DENS(Q%) + DENS(Q%-1)- TElv1P*(l-2*LOPASS)]/ (1+2*LOPASS) 

TElviP = DENS(Q%) 

NEXTQ% 

where DENS(Q%) is the calculated density array f r effective sample number Q% of 

NUMSAMPLE% total samples, TEMP is a temporary variable, and LOPASS is the filter 

strength which was set at about 2 for an optimum. 

After several combinations of noise reduction techniques were tried in various 

orders, the following procedure seemed to give the highest profile resolution with the least 

noise: 

1. Double or missed samples are removed and replaced with a local mean. 

2. Samples are summed to about 0.1 "-0.5'' effective diameter difference 

3. Density or caliper corrected density is calculated. 

4. Resulting density values are run through a digital low pass filter. 

Sizing Density Data Acquisition 

The design of density data acquisition systems are restricted by hardware 

limitations of computer memory, computer speed, encoder counts, encoder speed, counter 

speed and the winder itself. Thus, the data acquisition system must be optimized for each 

class of applications determined primarily by the nominal thickness of materiaL the 

maximum rewound roll size and winder speed. Consequently, a system designed for a 

carpet winder whose rolls may have only a few dozen wraps must be sized differently than 

for a system on a paper machine reel wrich may have more than 10,000 wraps. 

fortunately. the useful ra11ge of a particular system is usually wide enough to 

:hcommud~itC mo'lt of the wntJIId r<llb prc)duced on a particular \vinder .. ~ddi:iomtl rzmge 

can be easily obtained by switch selectable quadrature processing of encoder pulses, and 

setup parameters in the softv.'are application. 



In this section, a system sizing example will be given for a series of runs made for 

this project. The design goal of this project was maximum accuracy and resolution, while 

winding speed was reduced as there were no production pressures in the lab environment. 

However, designing for wide potential application did include using the ubiquitous IBM 

PC-AT compatible microcomputer and commonly available data acquisition equipment 

even though more capable equipment exists at higher cost and reduced availability. In 

particular, the following input parameters are used for runs numbered 32-41: 

minimum core outside diameter = do,min = 4.0" 

maximum rewound roll outside diameter = dn,max = 30.0" 

drum roller diameter = dct = 24.0" 

minimum material caliper = Cmin = 0.003" 

minimum computer memory sample array size = Smin = 10,000 

maximum count before overflow of counter or storage = cntmax = 65,536 

maximum winder speed = vmax = 50.0 inches/sec 

maximum encoder or counter frequency = fmax = 1,000,000 hz (encoder) 

maximum data acquisition sample rate = Rmax = 4hz 

The first consideration in sizing the system is the number of raw data samples that 

can be stored in computer memory, which determines the minimum wrap sample size. 

2 Cmin Smin 

(30- 4) -- -~---~ = 
2 X 0.003 X 10,000 

0.433 (111) Dmin = (dn,max - do,min) 
-~------------- --- = 

It is convenient to set the wrap parameter to a conven1ent value, which may preferably be 

an integer. If this was a production application, and in anticipation that the minimum 

caliper will be somewhat less inside a roll due to interlayer pressure, the wrap count might 

be set to 1.0 to extend the range of smaller caliper and/or larger maximum roll diameters. 

However to maximize the resolution of this research project, a \\Tap count of n = 0.5 was 

used. 

i\ow the rewound roll encoder count must be sized such that overflow is avoided. 

From equation (1 03 ), the maximum roll encoder pulses per revolution can be determined. 

( 112) pprr.Inax = 
cnT;nax 

n 
= 

65.536 
.5 

= 131,072 



However, accuracy considerations of the rewound roll encoder are not necessarily 

correlated to increasing the encoder pulses per revolution, ppr, as with the drum roller 

encoder. This is because the roll encoder serves as the timing mark for the start and end of 

sampling, so that consistency of timing is the controlling parameter for accuracy. Though 

higher count encoders will generally have better timing consistency (usually plus or minus 

one pulse error), the once per revolution index pulse will have similar or better consistency 

than the raw pulses, multiplied pulses or quadratured pulses. Indeed, applications where 

the sample size is an integer number of wraps could use an extremely fast photoswitch 

with a once per revolution target in place of an encoder. For example, the Automatic 

Timing & Controls model number 7062AFRN4X4NLX photoswitch has a response of 15 

~s [18]. At a high wound roll rotational frequency of 20 hz, the resolution of this 
photoswitch would be equivalent to a 3,333 ppr encoder, and at lower speeds the 

performance would be even better. Though there are no significant cost differences, the 

advantages of compact packaging, flexible target positioning and a smaller number of 

pulses makes fast photoswitches a viable alternative to rewound roll encoders. For this 

project however, a single channel of a 2500 ppr encoder with a 1 Ox multiplier was used 

yielding pprr = 25,000. 

Next, the drum roller encoder must be sized so that its counter will not overflow at 

large rewound roll diameters. Using equations (1 02) and (1 03), the maximum drum roller 

encoder ppr can be sized as 

(113) pprd,max = 
24 65536 

=-----= 
30 .5 

104,858 
dr,max n 

For these runs, two channels of a 2500 ppr encoders with 1 Ox multipliers were fully 
quadratured (x4) for an effective pulse rate of 1 'XlOOO ppr. 

There are speed limitations for both enccxiers, both counters and the computer data 

acquisition system that must be considered. The limitations are based on the maximum 

rotational frequency of the drum roller and rewound roll. As seen in Figure 54, winders 

may have a simple surface speed profiles composed of acceleration, run and deceleration 

segments. The maximum ppr of the drum roller encoder is then determined bv the 

minimum of the encoder or counter frequency, maximum speed and drum roll diameter as 

Vmax 50 
( 114) ppr d.illax 

rr d: f:-rm rr (24) 1.onn.ooo 

ll1e lesser of the puJ<;e ntes from equations (113) and (114) must be used. 



Figure 54 
REWOUND ROLL SURFACE AND ROTATIONAL SPEED 
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The rewound roll encoder rotational speed is somewhat more complicated than the 

surface speed as seen in Figure 54, due to ever increasing roll diameters. The maximum 

rotational frequency for the simple speed profile occurs at the end of the acceleration 

segment. To calculate this rnaximum frequency, the di<1. .. cter at the end of acceleration 

must first he calculated from core diameter, caliper and acceleration rate as 

(115a) taccel 
Ymax 

= 
accel 

(115b) laccel 
1 

== l taccel Ymax 

( 115c) dr.fmax = {; laccel C + do2 

( 115d) pprr,n1ax = 
Ymax 

Similar to the drum roller encoder, the lesser of the values of equations (112) and ( 115d) 

must be used for the rewound roll encoder pulse rate. 



Finally, the maximum sample frequency of the data acquisition/computer/software 

system must not be exceeded by setting the wrap count too small. This can again be 

calculated from the diameter at the top of acceleration and the surface speed. 

Vmax 
(116) nmin = 

1t dr.fmax Rmax 

In the case of wrap count, the greater of the values predicted by equations (111) and (116) 

must be used. 

From this design procedure, maximum resolution is achieved by sizing the wrap 

count small such that available computer memory is filled as much as possible during a run 

on a large diameter roll of thin caliper. This resolution allows easier detection and 

replacement of errant data values. However, since averaging would always be required at 

such small sample sizes, it may be practical to consider cascading counters and storing data 

as long integers. For example, a 32 bit integer takes twice the memory as a 16 bit integer 

but could store 32,000 times the number of counts. Maximum accuracy is achieved by 

. increasing the drum roller encoder pulse rate such that the array storage at a large rewound 

roll diameter is near overflow. 

Another way in which memory storage could be optimized would be by storing 

differences in pulses between consecutive samples instead of the pulse counts themselves. 

These differences are much smaller, could be nested two per (inh:ger) byte, and are all that 

arc needed for the density calculation. However, there is a practical issue of calculating 

diameter that requires the raw count. One way this could be accomplished is by storing the 

first sample as a raw count and the remainder of the samples as count differences. From 

this data, the raw count at any sample could be reconstructed as the sum of the first raw 

count plus the sum of count differences to the sample being calculated. However, if there 

were a hardware problem such as a missed or double sample. or a web break and splice, 

the raw counts and consequently diameter may not be reconstructed reliably. 

Finally, the data acquisition throughput rates can be increased by using an interrupt 

driven minimal background data acquisition task of high priority coupled through a circular 

huffer to a calculation and display foreground task of lower priority. In this mode, 

;.;;mlJ'k' ;m: ;ll·quircd immcdiiltely on re\\ound roll encoder countdown. while calculation 

.lnd di,rldy wl--.c~ rlace as CPL' time permits. Thus. the ''1mrk rate can be as fast as the 

minimal data acquisition task rather than the entire requirements for processing a sample. 

A more dctztiled discussion of hardware and software is g1ven in Chapters 8 and 9 
n.:::-.pcdively. 



Density and Stress 

Though there have been many publications showing an empirical or statistical 

correlation between density and stress, there is only a single article by Penner which tries 

to establish a fundamental link between these two measures [ 139]. In this article, Penner 

postulates that the increase in density can be calculated as the radial strain on the outer layer 

as it is added under tension. From this he calculates a simple equation linking WIS to 

density changes given radial and tangential moduli as well as current outer radius. 

Unfortunately, this novel effort while yielding plausible results is neither general, 

mechanically consistent, nor correct. The conversion is not general because the relation 

assumes linear anisotropic moduli. The conversion is not mechanically consistent because 

no core stiffness is included. However, the most serious problem is that the density is 

assumed to change strictly due to the radial strain in the outer layer. However as seen 

from equation (1 08), the density calculation is based on a change of diameters which has 

two components. The first is an increase due to the addition of a web wrap of a given 

caliper under no stress. The second is the superposition of the deformations caused by the 

addition of the web wrap under stress. The deformations include not only the outer layer 

but all layers beneath as well. 

However, density can be calculated from WIS and an extension to winding models 

as follows. First, the incremental radial and tangential stresses due to a single wrap are 

ccllculated for all the individual wraps in the roll using a traditional winding model. 

Second, the radial strain for each individual wrap can be calculated from the incremental 

stresses and the radial stress-strain equation (7). Third, the incremental radial deflections 

of each individual wrap can be calculated from the strain-displacement relation equation 

(4). Fourth, the deformation of the outer surface due to stresses is calculated as the sum of 

all the individual wrap radial deflections. Fifth, the new diameter is equal to the old 

diameter plus the caliper of the wrap added, plus the sum of the wrap radial deflections. 

Finally. the density can be calculated from the change in diameters. 

It is also possible to calculate stresses from density as well by doing something like 

the above procedure m reverse. However. a much better approach will be detailed in 

Chapter 7 which bypasses the density calculation and uses diameter and caliper data 

c.;upplemented by a winding model. From the diameter and caliper riata. radial 

c·nmprcs-.,.,>!1 L~tn be calcuLJtcd \\ill he u;.;cd directly as \he outer h<•un,Liry c·ondition of the 

model. 



Summary 

The density analyzer has been described in such detail here because it is one of the 

more useful winding measurements and serves as a platform for this project. This chapter 

has given a thorough derivation of the density parameter based on pulse counts from 

encoders attached to the rewinding roll and roller traveling at web speed. Additionally, a 

design procedure has been outlined as components i·~ed to be selected for a particular 

application. Finally, common data faults such as double triggering and noise have been 

described along with solutions where known. Further information about density can be 

found in Chapter 7 which details an extension to the measurement of stresses, Ch<- ter 8 

which describes hardware, Chapter 9 which describes software, Appendix C which gives 

computer program listings, and the extensive Bibliography. 

The density analyzer, in a procedure given by Roisum, was shown to be able to 

statistically resolve roll structure changes better than most other methods [169, 171]. In 

addition to the Backtenders Friend, it is the only roll structure measurement presently 

available which can operate unattended in a fully automatic fashion. Finally, because of its 

simple, small and rugged components, the density analyzer can be easily configured for 

·most winders. Thus, the density analyzer is currently one of the best roll structure 

measurement devices due to its sensitivity, automation, and application as both a research 

and production monitoring tool. 

The only serious density limitations are its units of measure which are not directly 

related to the fundamental paran1eters of web stresses, undesirable cross-sensitivity to 

caliper changes, a floating reference due to the basis weight input, and the inability to 

profile with respect to the CD. It is the first three of these four limitations that this project 

will address. This is done by supplementing the density like information with caliper and 

incorporating it into an extended winding mcxiel. 



CHAPTER 7 

A NEW WINDING MODEL FORMULATION 

Why a New Approach is Needed 

Most winding models use a similar formulation of a second order differential 

equation with two boundary conditions that are written and solved in an accretive or 

iterative manner as wraps are added from the core to the finish diameter. The differential 

equation is determined primarily by material and geometric properties, the core boundary 

condition by core stiffness, and the outer boundary condition by an assumed wound-in­

stress. Unfortunately, the wound-in-stress profile is rarely known for real winding 

systems except for two rather limiting situations of a centerwinder equipped with caliper 

and tension measurement, or a unique lab rewinder called the WIT-WOT [166,167]. As a 

consequence, useful application of winding models is not only limited by the lack of 

analytical roll defect theories and roll structure design criteria, but also by the lack of 

kno\. ;edge of the wound in-stress which is a vital input to the winding models. Hence 

while winding models have given some useful insights, their application remains for the 

most part an academic exercise. 

If the winding model could be reformulated such that all necessary inputs were 

relatively easv to obtain, useful application could be immediate even without roll structure 

optimization algorithms. This could be accomplished by comparing stress distributions of 

rol. that are judged acceptable with those that are rejected, where the judgement may be 

made by roll structure measurements, statistics. empirical approximations or simple 

subjective observation. This comparison of stress distributions between rolls would be as 
a function of both controllable parameters such as wound-in-tension, and uncontrollable 

parameters such as material properties. With such knowledge, one can adjust controllable 

pdr:imcters -;uch that the <;tress distribution approJches that of rolls deemed to be 

:1~ ccpt:lble. 
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More specifically, if the winding model can take many of its inputs from online 
measurement during winding, the inferred stress distribution can be used as a roll quality 
monitor. Furthermore, if computations can be made accurately and quickly, a computer 
could adjust controllable inputs in closed loop control so that the inferred stress 
distribution closely matches a target stress profile. Finally, when roll structure 
optimization routines are developed [ 128], the reformulated winding model could serve as 
the nucleus of a control strategy that can enhance the quality of winding to the accuracy of 
the measurements, and to the degree which the model reflects real behavior. Thus, 
reformulating the winding model in terms of inputs that can be measured online could 
revolutionize winding through quality control measurement, simple control, and optimized 
control. 

Another major benefit of a new winding model is that it enables the development of 
the first practical measurement of stresses for research or production quality control. 
Though there are other methods described in Chapter 5 that can also measure stresses, they 
all have rather severe limitations of either sensitivity or ease of application [169, 171]. 
However, the new measurement model is sensitive, automated and easily applied on most 
winders or unwinds. 

Overview of the New Model 

The primary difficulty with present winding models is that the outer boundary 
condition of WIS (wound-in-stress) is often difficult to determine for many real winding 
conditions. Reformulation of winding models, which presently assume a WIS profile, to 
a method where required parameters can easily be measured involves recognizing that all 
current winding models are determined systems. These systems are composed of 
constitutive equations which can be assembled and reordered, so that the physics of the 
wound roll is described by a second order differential equation. As seen in Chapter 3, the 
constitutive equations can be reordered, so that equivalent differential equations for the 
determined system can be written in terms of stresses, strains or displacements. In each of 
these formulations, both the inner and outer boundary conditions vary with the 
formulation. 

Presently, the traditional winding models are written in terms of radial stress which 
requires a known radial stress boundary condition at the outer surface which is computed 
from the WIS using equation (28a). However. this new mndel can refomwlate the same 
L'Onstitutive equ::tions into a differential equatio:1 \\ rittcn in terms of displacements. The 
advantage, as will be seen, is that the boundary condition at the outer surface can be 
obtained from density-like measurements of diameter supplemented by caliper. Thus, the 
reformulation to a new and easily measured boundary condition is the essence of this 
work. 



However in adilition to the reformulation, this new model requires a more complete 

solution to the physics of a wound roll than traditional models. This is because in addition 

to ramal and tangential stresses which both approaches yield, the new model also requires 

that strains and displacements be solved as displacement in particular is intimately tied to 

the outer boundary condition. Thus the new approach is a superset of traditional models. 

Another difference between the traditional and the new approach is the direction of 

the solution. Present models begin with an input of a WIS profile and output calculated 

radial and tangential stress profiles. However, the new model begins with an input of a 

displacement profile from diameter and caliper measurements and outputs a WJS profile 

with the radial and tangential stress profiles resulting as intermediate calculations. Thus in 

a certain sense, the new approach is a solution of an extension of the traditional winding 

models in reverse. 

In this chapter, two complete, correct, independent and mechanically consistent 

solutions of the measurement of stresses during winding are given. The first solution, the 

Displacement Formulation, was primarily written in terms of displacement as it is in the 

. closest form to the measurable boundary condition, and stresses are calculated at the final 

step. The advantage of this approach is simplicity. However, the Displacement 

Formulation will be shov.n to be computationally time-consuming as extremely small grids 

are required to obtain a required accuracy for highly nonlinear and/or anisotropic materials. 

Thus a more practical and efficient solution needed development, which resulted in the 

Extended Hakiel Formulation which though more complicated, has a grea1er computational 

efficiency. Even so, several new numerical techniques are needed as the Extended Hakiel 

Formulation requires more calculations than the conventional Hakiel model. Both 

formulations will be discussed in detail in this chapter. 

A comparison of the solution steps for the traditional, Displacement Formulation 

and Extended Hakiel Formulation is given in Figure 55. As evidenced here, the new 

models are more extensive than the traditional model as in addition to stresses, the strain 

and displacement fields must also be calculated. Though the new models require more 

steps, these additional calculations are not very involved because they are based ilirectly on 

the constitutive equations which are much simpler to solve than the differential equation 

v. hich is at the heart of every winding model. However it must be stressed that despite the 

different appearances of the -:;olutions. they arc a11 mechanically consistent in every way as 

:hey rc"ult frc•m the -;amc cnnstituti\c equations. Consequently. the new models share the 

identical set of assumptions and limitations as the traditional winding models. 



Figure 55 
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However, the new approach has nne very distinct difference from traditional 

models in that it is more than just a model. Rather, it is a methodology for measuring 

stresses using any consistent winding model given diameter and caliper measurements. 

Consequently beyond the immediate implementation of this new approach, the future 

benefits are that it is both flexible and extensible. It is flexible because it cares not what 

sensor technique is used to measure diameter and caliper, only that they are available. 

Furthermore, it cares not what winding model is used, only that it is mechanically 

consistent. 

Thus, this methodology can grow to accommodate both improvements in 

measurement as well as winding models. If the measurement of diameter or caliper could 

be made more accurately by lasers for example, it could be directly input into the stress 

measurement algorithm. Similarly, if winding models are extended to include anelastic 

behavior or air entrainment, this methodology can be applied provided that the model is 

mechanically consistent and is thus able to calculate strains and displacements in addition 

to stresses. Finally, this methodology is one of the few technologies that directly connects 

analytical and experimental winding sciences as discussed in Chapter 1. 

To summarize, the measurement of srresses during winding takes diameter and 

caliper measurements and outputs WIS, radial, and tangential stresses. The calculation is 

based on the physics of wound rolls which describe how the outer radius must grow due 

to the addition of wraps and deform due to the addition of these wraps under a wound-in­

stress. Though the measurement of stresses is indirect, so are many other common 

methods. An analogy is a spring scale which takes deflection as its input and outputs a 

force, where the calculation is the familiar spring equation. 

The remainder of this chapter begins with the description of the new outer 

boundary condition which is the essence of this new technique. This new outer boundary 

condition can be nondimensionalized to Radial Compression which can be a stand-alone 

technology and has many advantages over the density calculation. Next, the constitutive 

and differential equations for both the Displacement Formulation and Extended Hakiel 

Formulation are assembled and solved. These sections include derivations of the finite 

difference approximation of differential equations as well as their solution technique. 

Finally, the measurement of stress methodology is evaluated by comparing the outputs of 

the two new models v, ith svnthesizcd anJ real \VIS data. Aclditionnllv. J more extensive - . ' 

trc:1tmcnt of :-:cn,itivity analysis is given in Ch<lpla 10 and the ;1ppendices cont~1in both 

computer code and output for the new mcx:iel. 



A New Outer Boundary Condition 

The outer boundary condition of current winding models requires a force, tension 

or stress measurement as a function of winding radius. This force measurement is 

extremely difficult to accomplish in practice, even in a laboratory environment. After 

considering numerous alternative measurements of some characteristic of the outer 

boundary, diameter or radius might be a prime candidate because of its ease of online 

measurement to high accuracy using encoders and the density analyzer approach. Since 

there is no closed form equation relating roll radii to WIS, the constitutive equations must 

be reformulated and reordered in terms of displacements instead of the customary radial 

stress under the outer wrap. 

The boundary condition for this new approach to winding mcxiels begins by noting 

how a roll grows with the addition of a single wrap, which is modeled traditionally as a 

hoop. This growth from one diameter to another is the superposition of two effects. 

First, the roll will tend to increase in radius by the thickness of the wrap added. Secondly, 

the roll will tend to deform inward as the addition of a wrap under tension will increase the 

incremental radial stresses of all layers in the roll due to the additional interlayer pressure. 

As seen schematically in Figure 56, the compaction is greatest for the outer layers and 

rapidly decreases with depth. Subjectively, the rapidly decreasing compaction with depth 

is due to the self supporting nature of the rings. Quantitatively, this decrease is directly 

due to the incremental radial stress profile which also decreases rapidly with depth. 

The new boundary condition is easiest to understand if the effects of caliper 

addition and roll deformation are separated into two steps. Figure 57 shows a general 

diagram of a roll with j wraps, upon which will be added the kth wrap. Focusing on the 

kth wrap, if it is first added in an unstressed condition, as in the center diagram, the roll 

would then assume a diameter of fk = rj + Ck. However, as wrap k is added under a 

wound in tension, a pressure is developed between wrap j and wrap k. As a consequence, 

the thickness of wrap k is reduced from ck to ck (1 + ER_k)· Similarly, the incremental 
interlayer pressure increases will cause all wnps under v.Tap j to decrease in thickness, 

thus radius rj will decrease to rj' and so on. The core, which is the foundation of the 

wind, will also decrease slightly in radius in response to increasing radial compression. 

Thus, each of the layers of the roll as well as the core will experience an incremental 

dcl.·rcase in thicJ..:ness due to the i:KremL·ntal increase m interlayer comprcss10n as 

qturnific·d by winding models C!nd illu~tr,:ted in figure 56. 
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However, though the distribution of layer compaction or deformation will need to 

be eventually solved, at this time the outer boundary condition is of greatest importance. 

The essential observation that can be made from the new boundary condition illustrated in 

Figure 56 is that the displacement of the outer radius of the roll tends to increase by the 

thickness of the added wrap, ck, and simultaneously decreases by an amount wk due to 

summation of the incremental compaction of all layers, Wk. Though the roll would tend to 

increase its radius by Ck, any positive WIS on wrap k will reduce the radial increase by 

-wk- Thus, from the figure, 

where Wk is defined as positive outward, but will be negative for real winding systems. 

Rearranging the terms and noting that sample sizes for data acquisition and grid sizes for 

model calculations need not necessarily be the same as wrap or caliper thickness, we can 

rewrite the outer boundary condition, equation (117), into its final form as 

. (118) 

where 

n = 1 

Wk = the stress induced radial displacement of outer 'wrap' k (in) 

defined as positive outward 

rj = radius at sample j (in) after addition of wrap j 

fk = radius at sample k (in) after addition of wrap k 

I. = summation of the number of real v,nps corresponding to a 

N wrap data acquisition or calculation sample size 

Ck = the unstressed caliper of theN wraps comprising sample k (in) 

rj' = radius to sample j (in) after addition of a wrap k 

Thus, the outer boundary condition has been reformulated from wound-in­

stresses, which are difficult to determine, to a radial displacement wk. The relevance of 

equation (118) is that the terms of the right hand side can be measured easily during 

winding or unwinding. The radii rj and rk can he measured with great accuracy using 

incr'-·mcntal cnLndcrs and t'fJUatinn (102). The caliper, under wrh tension_ can be 

mc':~qJrcd v.. ith v~Jrinus scnc;ors in the c;hect run just upstrc::m of ~he v.. inding roll. 



The application of the new measurable boundary condition, the radial deformation 

of the roll's outer surface given by (118), is immediate for the Displacement Formulation 

which is written in terms of radial displacement. However, other differential equation 

formulations can also make use of the boundary condition, albeit more indirectly. For 

example, another way the boundary condition can be obtained is to sum up the individual 

compactions of all the individual layers as well as the core. This results from constitutive 

equations given in Chapter 2 such as the incremental radial strain displacement with its 

finite difference approximation 

(119) ER,i 
dw 

dr 
Wj- Wi-1 

=---
h 

If the radial strains are summed for each individual layer from the core to the current outer 

surface then 

k 

(120) Wk = wo + hI ER,i 

i = 1 

which says that the radial deformation of the outer surface is equal to the core deflection, 

wo, plus the average thickness multiplied by the sum over all layers of their incremental 

radial strains. The core stiffness definition, given as equation (16) in Chapter 2 can be 
solved for the core deflection as 

(121) wo = 

The final form of the deflection of the outer surface is obtained by inserting the core 

deformation equation ( 121) and the anisotropic radial stress-strain relations into equation 
( 120) yielding 

Thus, equation ( 122) can be used 10 L·alculate the defom1ation of the outer surface 

c1tJe 10 the inc:remcn1<il radial :md 1:ingentia1 stresses obtained from conventional winding 

models. One application of (122) is for the Extended Hakiel formulation where an 

assumed WIS is adjusted until the measured (118) and calculated (122) incremental outer 
dcfomntions arc equal. 



Caliper Cautions 

The application of the new boundary condition requires both a careful measurement 

of diameter and caliper, and a clear understanding of what caliper means. Careful 

measurement is a requisite because as seen in ( 118), the calculation for deformation is 

subject to numerical errors resulting from what is known as small differencing. In other 

words, the radius difference, deformation and caliper are all extremely small compared 

with the radius. Thus, small uncertainties in measurement will have a large effect of the 

deformation calculation. Addi ·: rmal information on caliper measurement can be found in 

Chapter 8. 

The second requisite is that the caliper used in that equation is a stack property 

which is the arithmetic average distance between layers in a stack which is completely 

unstressed. This is a direct result of the superposition, illustrated in Figure 57, of the 

stress induced radial deformations onto the radial growth due to the addition of the 

thickness of an unstressed web. Typically however, caliper is measured in real systems 

under a state of biaxial loading. First, the caliper measured on a free span of a web 

processing line in under a state of MD tension which is required for web transport. 

Secondly, all contacting caliper gages and even some non-contacting gages exert a ZD 

compressive load upon the web in the measurement area. 

Fortunately however, caliper measured under biaxial loading can be converted to 

the unstressed caliper required by (118) using simple stress-strain relations for the linear 

anisotropic case. This begins by noting that when a web is under stress, it experiences a 

through-thickness strain and change of caliper as 

(123) Cstressed = Cunstressed ( 1 + ER} 

where in this case, ER represents the through-thickness strain. Solving equation (123) for 
unstressed caliper and inserting the stress strain relation (7; ··'Yes 

( 124) C un<,!Jc;sed = C stressed 



The two contributions to the biaxial load are the ZD measurement pressure CJR, and 

the free web rv1D tension induced stress CJT which is the web tension divided by caliper. 
Depending on the application and material, one or both of these terms can be quite 

significant. Though the web tension contribution to thickness changes for the paper used 

the this project's experimental validation are not significant because the poisson ratio is 

near zero, the ZD pressure contribution can't be neglected because of the soft radial 

modulus. 

However, the nonlinear radial modulus of typical materials poses a problem for the 

direct application of (124) because the stiffness is a function of pressure. Fortunately, this 

is easily addressed by using radial stress-strain curves to calculate the change in radial 

strain for a stack initially at a ZD measurement pressure as it is completely unloaded. This 

radial strain is equal in magnitude and opposite in sign as the radial strain given by loading 

from zero to the measurement pressure. This value can be obtained directly from stress­

strain curves such as given by Figure 17, or indirectly from the radial modulus. For this 

project, the ZD caliper measurement sensor imposed a ZD pressure of 7.3 psi. This caused 

a theoretical radial compaction due to a caliper gage measurement pressure of 8.8%, 6.9% 

and 2.7% for the NC, LWC and coated board respectively. However, even this caliper 

correction is somewhat simplistic in that there are some bending stiffness edge effects 

around the periphery of the gage area that reduce the deformation due to gage load. Thus, 

the actual corrections needed will be smaller than predicted by the simplistic approach 

described above. 

Thus, the caliper read by the gage may be significantly lower than the unstressed 

thickness of the web and consequently must be properly accounted for. This is especially 

important in light of the fact that the compression due to interlayer pressures and the 

pressure due to caliper gage measurement may be of similar magnitude. Thus, the 

importance of this correction cannot be overstated. Even the author who derived these 

corrections did not apply them at first, until the resulting radial compression and stress 

calculations yielded nonsense which was traced back to a serious oversimplification of 

taking the caliper readings at face value. The moral here is that instrument calibration and 

proper operation is not enough, one must understand what the instrument readings actually 

imply. In the case of contacting cali~r mea<:.urements, the load applied by the gage affects 

the rc,Jdint;s sul·h thclt acttJal thickness is underestimated. 



Radial Compression 

While wound roll stresses are the ultimate goal of this project, their computation is 
relatively complex and time-consuming. Additionally, some quality control programs may 
not need the fundamental parameters of stresses to simply discriminate relative changes in 
the winding roll. Indeed, nearly all of the most common roll structure measurement 
methods use arbitrary monotonically increasing scales such as Rho, Schmidt, Smith and 
density, which cannot be directly related to stresses. Therefore, it would be appropriate to 

determine if some simple intermediate parameter based on the existing measurements of 
diameter and caliper might suffice in lieu of more complicated stress calculations. 

One possibility would be the radial displacement of the outer surface during 

winding as given by equation (118). In some ways, this is an ideal simple parameter 
because it easily calculated, and is very closely related to the WIS. This relationship is 
monotonic because increasing the WIS will increase the inward radial deflection for any 
combinations of input parameters. Additionally, since the outer boundary condition singly 
drives the solution for WIS, there is obviously a close relationship. Thus, radial 

displacement profiles will match closely in shape, though not scale, the other roll structure 
profiles such as hardness, and tension. 

However, radial displacement does have two drawbacks as a roll structure method. 
The first, though relatively minor, is that the values of radial displacement are extremely 
srnall numbers which may not be intuitive to many of the operators who might use such a 
system. More important however, the value of radial displacement depends on caliper and 
sample size. For small samples, radial displacement is directly proportional to the radial 
difference between consecutive samples. Thus, a 20 wrap sample will deflect twice as 
much as a 10 wrap sample for a given caliper. Similarly, a 10 wrap sample on thicker 
material will deflect more than on a thinner material. Thus, radial displacement has an 
undesirable cross sensitivity to caliper and sample size. 

A simple solution to this problem is to nondimensionalize the radial displacement 
with respect to either caliper or measured differences in radii between consecutive samples. 

Furthermore, if this value is changed in sign so that positive WIS yields a positive 
calculation, as well as multiplied by 100 to express as an intuitive percent, we now have an 
icleal, simple, and intuitive calculation. Thi:-; ncv. parameter, called Radial Compression, 

\\,hich is deriveD from minor m;mipulations of the new outer boundary condition, is simply 
calculated as 



1 I \.J 

N 

2 L Ck,n - {dk- dj) 

(125) Radial Compression 9\k (100%) 
n = 1 

= = N 

2 L ck,n 
n = 1 

As seen in equation (125), the Radial Compression calculation is derived directly 

from easily obtained measurements. The numerator is nothing more than the negative of 

the displacement boundary condition given by (118), while the denominator is the 

nondimensionalization by the measured caliper of the sample. The 2's in the numerator 

and denominator simply convert from radii to diameters, and the 100 multiplier gives 

percent. The nondimensionalization by caliper is not to imply that the compression takes 

place strictly within the sample zone as is assumed by the simplistic density calculation. 

As indicated in Figure 56, the compression though greatest at the OD extends to the core. 

An example of a Radial Compression profile of a roll wound with a step decrease 

is shown in Figure 58. This figure shows the typical smile shaped profile of two-drum 

winding upon which is superposed a step reduction in the TNT's. What is striking about 

this figure is the extremely small spatial resolution of displayed points and the absence of 

measurement noise. These desirable characteristics are not shared by any current roll 

structure measurement method. Though Radial Compression has a distar· ancestry in the 

density analy; ···. it has several distinct advantages. 

1. Radial Compression accounts for caliper variations which increases the resolution 

of the measurement tremendously. As will be shown in Chapter 10, the 

statistically measured improvement in roll structure resolution is one to two orders 

of magnitude over currently used methods! 

2. Radial Compression requires no web properties to be input by the operator, but 

rather measures all quantities needed after the system is initialized for encoder 

counts and roller diameters. Conversely, basis weight is a required operator input 

for density giving the resulting calculations a floating reference depending on the 

value given for basis weight. 

3. Rodial Compression has no zero offset. Thus while Radial Compression is zero 

for \VIS = 0, the density will be the unstres~:.ed density of the materials which can 

vary from 0.01 to 0.05 lb/in"3 for paper grades alone. 
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4. The Radial Compression values are typically a few percent which is intuitively 

easier to relate to than the small,, imals given b:J density. 

5. Is closely related to the funJamental properties of stresses, as it is a 

nondimensionalization of the outer boundary condition which drives the stress 

solution. 

In conclusion. while Radial Compression was not the ultimate goal of this project 

of measuring stresses during winding, it was a very fortunate intermediate outcome. It is 

in many ways an ideal production quality control measure because of its extreme 

sensitivity, ease of measurement and calculation. and the intuitive nature of the scale. 

Thus while it may not satisfy some research needs, its application in a production 

environment can justify its development. Finally even if stresses are the ultimate roll 

structure measure, the Radial Compression calculation is not in vain as it is a 

nondimcnsiorwlization of the outer boundary condition for the two models given in this 

Lhapter. Additionally, Radial Compres~ion provides a quick check of data integrity before 

kngth stress calculations are performed. 



The Displacement Formulation 

As indicated earlier, two stress calculation models were developed. The first given 

here is the Displacement Formulation which is the simpler of the two, but as we shall see 

suffers from numerical calculation difficulties. This model is derived by first writing the 

winding differential equation in terms of displacements because the outer boundary 

condition is already in terms of displacements, although the core boundary condition will 

need reformulation. Next, the finite difference approximations are developed and the 

matrix solution technique selected. Finally, the model is run using simulated data to 

evaluate accuracy, numerical difficulties and sensitivity. 

Though this particular model is of more academic interest because numerical 

difficulties preclude practical application for many real systems, several interesting points 

about winding models in general will be discovered. First, that while the radial stress 

gradient must be included in the derivation, the tangential gradient does not appear. 

Second, the technique of simulating data sets can indirectly verify models over parameter 

ranges that can't be accommodated by other models. Thus, Hakiel's model was 

independently verified for nonlinear radial moduli which are not covered by other models 

such as by Altmann and Yagoda. 

As indicated in Chapter 2, winding models must obey the constitutive equations for 

the physics of the wound roll. However as indicated in Chapter 3, the constitutive 

equations can be assembled in different orders to result in second order winding 

differential equations written in terms of stresses, ~trains or displacements. Thus, the 

Displacement Formulation begins with the constitutive equations 

equilibrium 

daR 
(126) r - + CJR - CJT = 0 

dr 

from the radial strain displacement (4) and stress-strain (7) 

dw 
(127) 

dr 

and from the tanf:l'lltial qrain displ:!cement (6): ,rrcss-strain (8) 



Solving (128) for tangential stress yields 

(129) crT = llR r ET <JR + ER ET w 
rER 

Inserting (129) into (127) and solving for radial stress yields 

(130) CJR = 
ER (r dd~ + llT w) 

r(llR llT - 1) 

1 I --' 

The first derivative of the radial stress with respect to radius can now be obtained from 

(130). However, care must be taken here as to what terms of the equation may vary 

directly or indirectly with radius which will result in cross product terms that have been 

omitted by previous authors (see Chapter 3). Since radial modulus varies directly with 

interlayer pressure, it will also vary indirectly with radial position. Therefore, it must be 

regarded as a variable for the purposes of taking the derivative. However, the Poisson 

. ratios are assumed to be constants for simplicity and because the winding models have a 

demonstrated insensitivity to these material properties. Note that the derivative does not 

include tangential stress so that the derivative cross product is not a parameter of the 

wound roll physics as is the radial modulus derivative. Thus because all formulations me 

equivalent, the radial modulus gradient must be included in any derivation (of nonlinear 

radial modulus models) while the tangential modulus gradient need not. 

The next intermediate steps in the derivation will not be included in entirety because 

of their lengthy expressions. They were solved using a symbolic math application, 

Mathematica, running on an Apple Macintosh. In outline form, the derivative is performed 

on ( 130) as indicated above. Next, the radial stress equation ( 130) is inserted into the 

tangential stress equation (129). This tangential stress result, as well as the derivative of 

radial stress from ( 130) and finally the radial stress expression ( 130) are all inserted into 

the equilibrium equation given by (126). Finally, the winding differential equation written 

in terms of displacements is reduced to standard form so that 

, d2w dw 
( 1 3 1 ) r- + A r · ·- + B w = 0 

dr2 dr 



where 

(131a) A 1 + ET ~ = llT- -jlR + ---
ER ER dr 

(131b) B 
-ET 

+ 
llT r d ER 

= ----
ER ER dr 

and the terms enclosed in the boxes represent the higher order terms resulting from taking 

the derivative of the radial stress expression given by (130). It is interesting to note that if 

these terms are deleted for the case of linear anisotropy, then the coefficients reduce to 

exactly those given by Altmann [ 127] 

(13ld) B = 
ER 

The next question, one of practicality, is whether these higher order terms are 

significant for nonlinear radial moduli models. While it is difficult to make generalizations 

because of the wide variety of material properties for real winding systems, several test 

cases indicated the following. First, the higher order terms are only needed for nonlinear 

models. Second, the high order terms seem to be small for Hakiel's radial stress 

formulation [132, 133]. However, the high order terms may be quite significant for the 

displacement formulation for nonlinear radial moduli. In particular, the high order fourth 

term given by (13la) can be of the same order of magnitude as the first and third terms. 

Without its inclusion, nonlinear radial moduli cases weren't calculated properly. 

Finally, the differential equation given by (131) and the coefficients given by (131b 

& c) hint at numerical difficulties that will be demonstrated shortly. First, the displacement 

field has a much higher gradient than the radial stress field as indicated best by the 

derivative ~iven in (127). High gradients increase the propensity for numerical 

~lpprnxim,lllOn and roundoff errors. Secondly, the inclusion of yet another significant 

dcrintive krm. the high order radial modulL:s dcri\ ative in ( 131 a). can pose problems 

because numerical derivatives increase numerical noise. 
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Since the critical outer boundary condition has been reformulated from stresses to 

radial displacements, the core must also be reformulated to displacements. This begins 

with the definition of core stiffness is given from Chapter 2 as 

(132) Ec = O"R I 
w/r r =To 

The strain-displacement equations (4) and (6) combined with the stress-strain relations (7) 

and (8) can be combined to solve for the first derivative of the displacement at the core in 

terms of Ec, material properties, and displacement at the core as 

033) dw I = - W (-Ec + !lT ER + !lR !lT Ec} 
dr r =ro ERr 

This core gradient boundary formulation in terms of a displacement field can't be solved 

directly, but will be ultimately solved as a finite difference formulation. 

Finite Difference Approximations to Differential Equations 

Although there arc other methods for solving differential equations, one of the 

simplest and most general method is perhaps the finite difference approximation first 

applied to winding models by Hakiel [132, 1331. In this method, the first and second 

derivatives are approximated by difference equations. The first derivative for examp: 1s 

approximated by the difference in values (rise) between two neighboring points divided by 

the grid spacing (run) which is analogous to slope. This is an example of a two point 

forward difference approximation of the first derivative. Additionally, the coefficients 

depend on the base point about which the derivative is computed. Finally, there are higher 

order approximations using more points to compute the approximation even more 

accurately. The approximations can also be derived for second and higher derivatives. 

Tahles 7a and 7b give the finite difference approximations for the first and second 

deriv:Jtivcs u-;ing from tv.o to five points. 



Table 7a 

1ST DERIVATIVE FINITE DIFFERENCE APPROXIMATIONS 
m 

df I = _1_ L ai fi + E 
dx x =Xi m! h i=O 

where: f = function of x 

Xi = base point about which the derivative is calculated, with equal base point spacing h 

m, ai = coefficients 

E = leading error term 

ao at a2 a3 a4 E 
Two point (m=l) 0 -1 1 -1/2 h f' 

1 -1 1 1/2 h f' 
Three point (m=2) 0 -3 4 -1 1/3 h2 f" 

1 -1 0 1 -1/6 h2 f" 
2 -4 3 1/3 h2 f" 

Four point (m=3) 0 -11 18 -9 2 -1/4 h3 f'" 
I -2 -3 6 -I 1/12 h3 f"' 
2 1 -6 3 2 -1/12 h3 f'" 

3 -2 9 -18 11 1/4 h3 f'" 
Five point (m=4) 0 -50 96 -72 32 -6 1/5 h4 f"" 

1 -6 -20 36 -12 2 -1/20 h4 f'"' 

2 2 -16 0 16 -2 1/30 h4 f'"' 
3 -2 12 -36 20 6 -1/20 h4 f"" 
4 6 -32 72 -96 50 1/5 h4 f"" 

Table 7b 

2ND DERIVATIVE FINITE DIFFERENCE 
APPROXIl\1ATIONS 

dlfll. . = _2_~ a· f + E 
2 I h L_. I I dx - m. . o X- X, I= 

where: f = function of x 
xi = base point about which the derivative is calculated, with equal base point spacing h 

m, ai = coefficient" 

E = leading error term 

Three point (m=2) 0 

I 

2 

Four point (m=3J 0 

2 
3 

Five point (m=-ll () 

2 
3 
4 

ao 
1 

I 

1 

6 

3 

0 
-3 

35 
1 1 

-1 

-1 

11 

al 
-2 

-2 
-2 

-15 

-6 

3 
12 

-1 0-+ 
-20 

16 

4 

-56 

12 ~ - _, 

3 0 

-6 3 

-15 6 

114 -56 

6 4 

-30 16 

6 -20 

114 -104 

l1 

-1 

-1 

11 

35 

E 
-1 h f" 
-1/12 h2 r·· 
1 h f" 
11/12 h2 f'" 
-1/12 h2 f"' 
-1/12 h2 f'" 
ll/12h2c· 

-5/6 h3 f'"' 

1/12 h3 f"" 
1/90 h4 f"'" 
-1/12 h3 f"" 

S/6 h3 f"" 



On the the first decisions that must be made on finite difference approximations is 
the order of the approximation. As seen in Tables 7, the error terms given in the last 
column decrease in size as the number of points used in the approximation are increased. 
However, the increase in accuracy comes at a cost of longer computing time per derivative. 
Typically, the net computing time should decrease with increasing order of approximation. 
However, both the Displacement Formulation and Hakiel model computed faster to a given 
accuracy for the cases tested using a 3 point rather than a 5 point approximation. Although 
the 3 point approximation was ultimately selected for application because of speed and 
simplicity, both are included here for completeness. 

Once the order of the approximation IS selected, the finite difference 
approximations are substituted into the derivatives of the winding differential equation. 
Then, like terms are collected. The simplest example will be demonstrated here for the 
internal layers of the Hakiel model. From Table 7a for the three point central difference 
approximation (m=2, i= 1 ), the first derivative is approximated as 

034a) daR! = (-1)aR,j-l + (O)aR.J + (1)aR,j+l 

dr \ r = rJ 2 h 

Similarly from Table 7B for the three point central difference approximation (m=2, i= 1 ), 
the second derivative is approximated as 

The derivative approximations (134) are then inserted into differential equation given 
earlier 

(135) r2 d2aR + A r daR + BaR = 0 
dr2 dr 

to give 

(136) 



Finally, the terms are multiplied out and collected on common radial locations of j-1, j and 

j+ 1 as 

(137) [r(2 -Ah)]aRJ-l + [B-2r2]aR 1· + [r(2 +Ah}]aR.J.+l = 0 
2 h2 . • 2 h2 

This equation represents the finite difference approximation for the winding 

differential equation written in terms of radial stress for the jth layer. Similar equations 

must be written for all of the other layers in the current roll size. These will be assembled 

into a linear system of equations in matrix form as 

(138) [A] (x} = {B} 

where 

[A] = a square matrix composed primarily of coefficients of the finite 

difference approximation of the winding differential equation, 

written in terms of displacements (or stresses or strains) 

{ x} = a column matrix of unknown displacements (or stresses or strains) 

for each layer 

{ B} = a column matrix containing the displacement (or stress or strain) 

outer boundary condition which forces the solution 

This system of equations will be assembled as shown in Figures 59 where the first 

layer corresponds to row 1, and the outer layer corresponds to row n. However, the 

layers adjacent the core and the outside posed even additional complications for both the 3 

and the 5 point approximations. First in addition to the differential equation, they must 

also contain the finite difference approximation of the boundary conditions. The inner 

layers must incorporate the core stiffness, Ec, boundary condition and the outer layers will 

incorporate the boundary condition of a known displacement (stress or strain) at the outer 

surface. Seconc. the order of the approximation must decrease near the core and outer 

layer as well as the point about which the derivative is computed, so that the resulting 

matrix retains either the 3 or 5 wide bandwidth. As a consequence, the inner and outer 

layers use a forward and backward difference respectively, instead of the central difference 

used for the intem1ediate layers. The structure of the resulting 3 point system is shown in 

Figure 59a. Tl1ough more complicated, a 5 point approximation to the winding differential 

equation can abo he 1kri\ Ld as v-.cll for the internal layers J.nd is shown in Figure 59b. 



Figure 59a 
3 POINT WOUND ROLL EQUATION SYSTEM 

1 2 Solution for a n wrap 'w'1 0 

1 2 3 roll in terms of: 'w'2 0 
1. Stresses 

2 3 4 2. Strains 'w'3 0 

3 4 5 3. Displacements 'w'4 0 

i-1 i i+1 'w'i - 0 -
Models: 
1. linear n-5 n-4 n-3 'w'n-4 0 

2. Anisotropic n-4 n-3 n-2 'w'n-3 0 
3. Nonlinear Anisot'c n-3 n-2 n-1 'w'n-2 
4. Others 

n-2 n-1 'w'n-1 el*V 

Figure 59b 

5 POINT WOUND ROLL EQUATION SYSTEM 

1 2 3 Solution for a n wrap 'w'1 0 

2 3 4 roll in terms of: 'w'2 0 
1. Stresses 

2 3 4 5 2. Strains 'w'3 0 

2 3 4 5 6 3. Displacements 'w'4 0 

i-2 i-1 i i+1 i+2 'w'i - 0 -
Models: 
1. Linear n-6 n-5 n-4 n-3 n-2 'w'n-4 0 

2. Anisotropic -5 n-4 n-3 n-2 n-1 'w'n-3 0 
3. Nonlinear Anisot'c n-4 n-3 n-2 n-1 'w'n-2 e2*V 
4. Others 

n-3 n-2 n-1 'w'n-1 el*V_:j 



Equation (137) gives the coefficients of three of the eight distinct tem1s used in the 

3 point matrix system, while the five point approximation has 20 distinct terms. 

Additionally, the terms are dependent on the formulation so that a set must be generated for 

both the displacement and radial stress formulation. Though these derivations are not 

particularly difficult, they can be somewhat lengthy. Therefore, all derivations for the 

finite difference approximations were perfom1ed using a symbolic math package, 

Mathematica by Wolfram Research, running on the Macintosh II. Additionally, 

Mathematica can convert resulting equations into code for the C and Fortran computer 

languages, so that computer ccxle generation is automated, accurate, and expedient. Tables 

8 give the coefficients for the 3 and 5 point formulations of both the displacement and 

radial stress formulation. 

Notice that the coefficients are nearly identical except for near the core. This is the 

result of the fact that the structure of both differential equations are identical, only the A 

and B coefficients are different and are found in equations (131) and (63) respectively for 

the displacement and radial stress formulations. However, the core boundary condition 

also depends on fmmulation, hence the difference for the finite difference approximations 

on the first few layers. In the derivation of the coefficients of Tables 8, the matrix solution 

does not solve directly for the core displacement or radial stress and must be calculated as a 

subsequent step. The justification for this approach is simply to keep the numbering of 

matrix rows and web layers the same without using a zero row pointer which is not 

supported by some computer languages. However, one could just as easily have the core 

displacements come directly from the matrix solution by merely rearranging the equations 

slightly. 

Once the matrix coefficients have been determined, they must be coded into a 

computer program which calculates the values of the A and B coefficients (which are not 

constants in the case of nonlinear moduli), then calculates and assembles the matrix 

coefficients into memory, and finally solves for the unknown solution vector of either 

incremental displacements or radial stresses. This incremental solution must be embedded 

into a loop which iterates for the winding from the bare core to the finish diameter of the 

roll. Accumulated current stresses are calculated simply as the superposition of the 

prnious stress state plus the incremental stresses cakulated from the current solution 

iteration. 



Table Sa 
MATRIX COEFFICIENTS - 3 PT DISPLACEMENT FORMULATION 

Row Col 

1 1 

2 

i - 1 

i 
i i+ 1 

n-1 n-2 

n -1 n -1 

Expression 

(b* core* h" 2+2* a *h * r-4 * r"2-2* core* r"2)/( core *h "2) 

(-(a*h*r)+a* core *h*r+2*r"2+2* core *r"2)/(2* core *h"2) 

(r*(-(a*h) + 2*r))/(2*h"2) 

b - (2*r"2)/h"2 

(r*(a*h + 2*r))/(2*h"2) 

(r*(-(a*h) + 2*r))/(2*h"2) 

b - (2*r"2)/h"2 

c1 = -(r*(a*h + 2*r))/(2*h"2) 

core ( -2*ec*h-3*er*r0+2* er*h*ut+2* ec* h * u r* ut)/( rO* e r) 

wo = (-4*w1 +W2)/core 

Table 8b 
MATRIX COEFFICIENTS- 5 PT DISPLACEMENT FORMULATION 

2 

1 3 

2 1 

2 2 
2 3 
2 4 

i- 2 

i - 1 

i 
i + 1 

i+2 

n-2 n-4 

n-2 n-3 

n-2 n-2 

n-2 n-1 

n-1 n-3 

n-1 n-2 

n- 1 n- 1 

Expression 

(6*b*core*h"2 - 2*a*h*r - 3*a* core *h*r + 6*r"2 -

12* core *r"2)/(6* core *h"2) 

(r*(a*h + 6*a* core *h - 3*r + 6* core *r))/(6* core *h"2) 

(r*(-2*a*h - 9*a* core *h + 6*r))/(54* core *h"2) 

(r*(-(a*h) + 3*r))/(3*h"2) 

b - (;::o*r)/(2*h) - (2*r"2)/h"2 

(r*(a*h + r))/h"2 

-(a*r)/(6*h) 

-(r*(-(a*h) + r))/(12*h"2) 

(2*r*(-(a*h) + 2*r))/(3*h"2) 

b - (5*r"2)/(2*h"2) 

(2*r*(a*h + 2*r))/(3*h"2) 

-(r*(a*h + r))/(12*h"2) 

-(r*(-(a*h) + r))/(12*h"2) 

(2*r*(-(a*h) + 2*r))/(3*h"2) 

b - (5*r"2)/(2*h"2) 

(2*r*(a*h + 2*r))/(3*h"2) 

(a*r)/(6*h) 

(r*(-(a*h) + r))/h"2 

b + (a*r)/(2*h) - (2*r"2)/h"2 

c2 = (r*(a*h + r))/(12*h"2) 

c1 = (-r*(a*h + 3*r))/(3*h"2) 

core = (6*ec*h(1-ur*ut)+11 *er* rO ·er*h*ut)/(18*er* rO) 

wo = (w1 -w212+w3/9)/core 



Table 8c 
MATRIX COEFFICIENTS- 3 PT RADIAL STRESS FORMULATION 

Row .QQl 
1 1 

2 

i - 1 
i 
i+ 1 

n-1 n-2 

n-1 n-1 

Expression 

(b*h"2 + 2*a*core*h*r - 2*r"2 - 4* core *r"2)/h"2 

(a*h*r - a* core *h*r + 2*r"2 + 2* core *r"2)/(2*h"2) 

(r*(-(a*h) + 2*r))/(2*h"2) 

b - (2* r"2)/h "2 

(r*(a*h + 2*r))/(2*h"2) 

(r*(-(a*h) + 2*r))/(2*h"2) 

b - (2* r"2)/h "2 

c1 = -(r*(a*h + 2*r))/(2*h"2) 

core = ec*er* rO /(2*ec*er*h-2*er*et*h-3*ec*er* r0-2*ec*et*h*ur) 

srO = core*(-4*sr1 +Sr2) 

Table 8d 
MATRIX COEFFICIENTS - S PT RADIAL STRESS FORMULATION 

2 

1 3 

2 1 
2 2 
2 3 
2 4 

i- 2 

i - 1 

i + 1 

i+2 

n-2 n-4 

n-2 n-3 

n-2 n-2 

n-2 n-1 

n- 1 n- 3 

n- 1 

n -1 

n-2 

n- 1 

Expression 

b - (a*r)/(2*h) + (6*a* core *r)/h - (2*r"2)/h"2 - (18* core *r"2)/h"2 

(r*(a*h - 3*a* core *h + r + 9* core *r))/h"2 

-(r*(a*h - 4*a* core *h + 12* core *r))/(6*h"2) 

(r*(-(a*h) + 3*r))/(3*h"2) 

b - (a*r)/(2*h) - (2*r"2)/h"2 

(r*(a*h + r))/h"2 

-(a*r)/(6*h) 

-(r*(-(a*h) + r))/(12*h"2) 

(2*r*(-(a*h) + 2*r))/(3*h"2) 

b - (5*r"2)/(2*h"2) 

(2*r*(a*h + 2*r))/(3*h"2) 

-(r*(a*h + r))/(12*h"2) 

-(r*(-(a*h) + r))/(12*h"2) 

(2*r*(-(a*h) + 2*r))/(3*h"2) 

b - (5*r"2)/(2*h'2) 

(2*r*(a*h + 2*r))/(3*h~2) 

(a*r)/(6*h) 

(r*(-(a*h) + r))/h"2 

b + (a*r)/(2*h) - (2*r"2)/h"2 

c2 = (r*(a*h + r))/(12*h"2) 

c1 = (-r*(a*h + 3*r))/(3*h"2) • sr[z] 

core = (ec·er*r)/(6*ec·er*h - 6*er*et*h - 11*ec·er*r - 6*ec*ei*h*ur) 

srO = core • (-18*sr1 + 9*sr2 - 2*sr3) 



Though this outlines the essences of the solution technique, there are several 

caveats to be aware of. First, the A and B coefficients are not constants that can be 

calculated once at the beginning of the program if any of the material properties vary with 

radius. For example, with nonlinear radial moduli the coefficients must be calculated on 

an individual basis every time they are used based on the current accumulated radial stress 

at any particular radial location. Furthermore, calculation of the coefficients is based on 

the previous stress state, and applied for calculating the current stress state. Using old data 

in new calculations is inherent in many finite difference formulations and does not usually 

pose a problem if the mesh is fine enough. However, the A and B coefficients given by 

(131) and (63) contain an anisotropy ratio ET/ER which can result in a division by zero 

error for the roll outside where 0R = 0 if the radial moduli curvefit yields a zero stiffness at 

a zero pressure. 

Secondly to save memory, only the nonzero banded coefficients of the square A 

matrix are stored in memory, so that careful bookkeeping is required. Thirdly, because of 

the fine mesh often required for high anisotropies to maintain solution accuracy and the 

iterative nature of winding solutions, great care must be taken to optimize the matrix 

solution technique. Though Willett and Poesch claimed that the A matrix is symmetric 

[186] which gives a faster solution, this is definitely not the case as seen in the coefficients 

of Table 8. A fast solution technique for the 3 point approximation is the Tridiagonal 

algorithm, and for the 5 point approximation is a modified Gauss routine which only 

solves in the banded nonzero portion of the equation system. 

Fourthly, the differential solution is embedded in a general loop which can only be 

started from the 4th wrap addition for the 3 point approximation and the 6th wrap addition 

for the 5 point approximation. Therefore, the accumulated stresses must be calculated for 

the first few wraps which do not fit into the general equation structure shown in Figures 

59. There are a couple of approaches that could be used to address this problem. First, a 

closed form expression could be derived for the stresses for each of the first few wraps. 

However, this expression would be extremely unwieldy, especially for the 5 point 

approximation. A simpler approach is the estimate the accumulated stresses for the first 

few wraps, then go into the main solution loop, and finally correct the stress state on the 

first wraps by high order extrapolation from wraps immediately above. In any case, the 

first few wraps should not have a significant effect on the final roll ~olution which is 

composed of thousands of wraps. 



Fifthly, tangential stresses can be calculated from the equilibrium equation and 

radial stresses using either incremental values and superposition, or at the very end after 

the final radial stress state is determined. For the traditional winding models, there is no 

need for tangential stress information until the end. Consequently, it is preferable to avoid 

accumulated error incurred by solving the equilibrium equation for every wrap by rather 

calculating tangential stresses only once at the end of the solution. However, tangential 

stresses are required for the Displacement and Extended Hakiel displacement to stress 

models, as tangential stress effects radial displacement through the Poisson ratio. 

Therefore, incremental tangential stresses must be calculated for every wrap for the 

purposes of displacement field calculations only. However, the final tangential stress state 

is not calculated from the superposition of these incremental stresses, but rather from the 

final radial stress state and the equilibrium equation. 

Finally, it is very important in all finite difference approximations to check whether 

the grid is fine enough so that a specified level of accuracy is obtained. As seen in Figures 

19 of Chapter 2, Hakiel's model can be sensitive to grid size. This is even more so for the 

more complicated displacement to stress models as we will see in the next and other 

sections. 

On every iteration of the Displacement Formulation, the displacement field for 

every wrap in the current roll is solved. However, this displacement field must be used to 

calculate the more useful incremental radial and tangential stresses, and in particular the 

WIS at the current outer layer. The incremental radial stress and tangential stress equations 

can be derived from a simultaneous solution of the stress-strain (7, 8) and strain­

displacement equations (4, 6) as 

(139a) crR = 
ER ( r~ + ~T w) 

r ( 1 - ~R ~T) 

(139b) <JT = 
( dw ) ET ~R r~ + w 

r ( 1 - ~R ~T ) 

where the derivative of the di-.,placement field is calculated as a 3 point or 5 point central 

cliff~._'rencc for intermediate layers. and as a fon\ ard difference for the core layers, and as a 

backward difference for the outer layers as given by the formulas in Tables 7. Finally, the 

WIS is calculated from the radial stress under the outer layer and the boundary condition 

(2Ra) as 

(139c) WIS r=rn = rn <JR. r=rn 



In summary, the finite difference approximation and matrix solution technique can 

be used to solved a wide variety of problems including all formulations of winding 

models. The coefficients of the matrix terms result from the finite difference 

approximation to the derivatives in the winding differential equation which are assembled, 

multiplied out and collected upon like radial locations. Though higher order 

approximations are generally most efficient for solving many problems, the winding 

differential equations seem to be best solved using 3 point approximations. The resulting 

matrix system is solved for all wraps in the current roll yielding incremental stresses, 

strains or displacements. Finally, the solution is repeated for all wrap additions from the 

core to the finish diameter and total accumulated values can be calculated either from 

superposition of incremental results or as a final step. 

However, there are many caveats that must be kept in mind for a robust and 

efficient solution. Additionally, radial displacement to stress formulations require solution 

steps beyond that of traditional winding models. In particular, the Displacement 

Formulation requires radial and tangential stresses as well as WIS to be calculated from the 

displacement field. In the next section, the Displacement Formulation will be evaluated for 

accuracy and sensitivity using simulated displacement data. 

Simulating Displacement Data for l\fodel Evaluation 

Once a displacement to stress winding model has been computer coded, it must be 

tested for accuracy and sensitivity. Conventionally, this would be done by taking on-line 

measurements as inputs to stress calculation routines and then verifying the output by 

independent measurements using some other technique. Although this can and will be 

done, this would entail the simultaneously debugging of both the data acquisition and the 

winding model portion of this complex system. A surer approach would be to first debug 

these components separately, then as a system. The check for proper operation of the data 

acquisition hardware was already performed by verifying that the proper rewinding roll 

diameters are displayed. Then the Radial Compression, which is closely related to the 

bnundarv condition driving the winding model. is calculated to demonstrate sensitivitY to 
.I - .......... ' .. 

roll ~1ructure ck1IH2.es as well as insensitivitv to measuremc-nt noise. 
~ . 



However, to check the proper behavior of the displacement to stress model would 

require a 'perfect' input data set, so that any resulting problems would belong strictly to 

the model rather than the input. Since real measured data is flawed, and especially so for 

the noisy environment of winding nonuniform webs, another approach is needed. The 

solution to this dilemma is to create a near perfect but artificial set of displacement data 

using extensions to already existing winding model. 

A schematic of a method developed to calculate a radial displacement data set which 

is used to evaluate the displacement-to-stress models is shown in Figure 60. Data 

simulation begins by picking a set of input parameters to as inputs to one of the 

conventional winding models. Then, the stress-strain and strain-displacement relations are 

used to calculate the incremental radial strains on each layer. The incremental 

displacements, which is equal to radial strain multiplied by thickness, for each layer is 

summed to give a radial displacement at the roll's outer surface. Additionally, the core 

deflection must also be calculated and added to the layer deformation. 

The equations used to extend the conventional winding models to calculate 

displacements come very simply from the constitutive equations for winding. The 

incremental deformation of a single layer can be calculated simply from the radial stress­

strain relation (7) and the definition of strain as 

The core deflection is calculated directly from a rearrangement of the core stiffness 

definition (16) as 

(]41) W() = 

Finally, the total deformation at the outer surface of the roll is simply the sum of the 

individual layer deformations plus the core deformation 

(142) Wn 
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This displacement data set, which is an output of extensions to conventional 

winding models. is then used as inputs for the new displacement-to-stress models. The 

\VIS calculated by the new models, using the same geometry and material properties, 

should be equal to the \VIS originally input into the conventional winding model. If this 

\VIS as a function of radius agreement holds for several widely varying test cases, then 

UiiC can he rca"onably confident that no> nly is the new model consistent and correct, but 

abo the conventional model as well. Even the smallest of errors in the long serial chain 

would cause a difference between input and calculated WIS profiles. Thus, the new 

models can be debugged and screened for proper operation before subjecting them to the 

uncer1ainties of real data from a new measurement technique. 



The input parameter sets, given in Appendix B, used to test conventional winding 

models were also used to evaluate the displacement-to-stress models. As seen in Figure 

61a, the total error accumulated by all the serial calculations were less than 1% for most of 

the radius range for three of the input sets. This is well within most engineering 

requirements and lends confidence that the algorithms are correct. This is especially so 

because the LA T case is one in which all input parameters are nonzero and different, and 

the WIS profile is nonlinear. However as seen in Figure 61 b, a moderate! y ani so tropic 

input set requires a small grid size even for the 5 point derivative used here. Though a 3 

point derivative requires about an order of magnitude smaller grid size, the net computing 

time was similar, and in both cases was much longer than calculating a conventional 

winding model with the same input parameters. 

Next, nonlinear radial moduli test cases were run. At first there was not the 

expected agreement between input and calculated WIS. After considerable searching this 

was traced back to the missing high order terms given in equations (131 ). Then agreement 

to engineering accuracy was obtained, but only for the low anisotropy ratio of 20 

corresponding to the NAT case. Additionally, the calculation time for this case exceeded 

one day for a fast PC based engineering workstation. Thus, the much greater calculation 

time required to obtain a reasonable accuracy for the high anisotropy ratio of 30,000 for 

the real data obtained on the soft NC paper was deemed impractical. 

The qualitative explanation for the numerical convergence difficulties of the 

Displacement Formulation could be as follows. First, the higher order terms in the 

displacement formulation are significant for nonlinear radial moduli, and dominant for 

some input cases. Thus, the coefficients of the displacement differential equation contains 

numerical derivative calculations, and with it an expected propensity for numerical error. 

Secondly, the displacement field has a greater gradient than the radial stress field of 

conventional winding models causing the matrix system of equations to be even more ill­

conditioned and thus prone to numerical roundoff errors. Finally, the displacement to 

stress calculations contain yet another numerical derivative that must be calculated. 

In summary, the Displacement Formulation is mathematically consistent with other 

winding models and is verified with simulated displacement data to yield WIS values 

within engineering accuracy for 5 of the 6 input test cases. However, the formulation 

contains cllculations that arc: far more numerically unstable than conventional \\ inding 

models. Thus\'. hilc the model is rigorous. it may not have pract:cal applil·;nicm bec:w<;e of 

the extremely long computation time required for nonlinear and/or highly anisotropic 

properties that characterize most real web materials. Thus, the Extended Hakiel 

Fonmdation given in the next sectic· \aS developed, so that stresses could be calculated 

more pracrically. 
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Extended Hakiel Formulation 

Since the more straightforward Displacement Formulation was not able to compute 

highly nonlinear or anisotropic data in a practical amount of time, another approach was 

needed. Since Hakiel's model [132, 133] is currently the most general and has been 

subjected to numerous analytically and experimental verifications, it was chosen as the 

foundation for an alternative displacement to WIS model. However, it needed to be 

extended considerably from its origins in order to give the more complete solution required 

by this new approach. First, radial strains and defonnations would need to be calculated, 

so that the measured deformation at the outer boundary could be used. Secondly, the 

solution steps needed reordering, so that instead of WIS being an input to the model as in 

Hakiel's work, it would be the output of this new approach. 

The solution to computing the deformation at the outer boundary is not difficult as 

the incremental radial and tangential stresses can be used to calculate radial strains at each 

layer with the help of the radial stress-strain relations (7). Then the change in thickness for 

each layer can be calculated from the radial strains and the wrap thickness. Finally, the 

deformation at the outer surface is the sum of the change of thicknesses of each layer in the 

roll plus the core deflection. The astute reader will recognize this as precisely the same 

method used to simulate displacement data given in a previous section. Thus, the 

incremental deformation at the outer roll surface due to the addition of a single wrap given 

by equation (142) is repeated here as 

(143) Wn 

The solution to reordering the formulation so that WIS becomes an output instead 
of an input is also not difficult. We recognize that though the moduli may be nonlinear and 

the accretive nature of winding is very nonlinear, the solution of all traditional winding 

models is linear within a single solution step for the addition of a single wrap [132, 133]. 

This can be seen from the matrix system of equations resulting from the finite difference 

approximation. For example, given 

[A] {x} = {B} 

then [A] (x'} = {B'} 

if Bi' = c Bi and xi'= c Xi for all i 



In other words, doubling the WIS forcing function contained in { B} will double 

the incremental radial stresses { x}. Thus, the incremental radial stresses are proportional 

to the WIS. In fact, all stresses, strains and displacements are similarly proportional to 

WIS because the constitutive equations are also linear. However, there are two cautions to 

bear in mind. First, though incremental linearity is exactly true for constant moduli, 

linearity is approached for nonlinear moduli only if the incremental stresses are much 

smaller than the accumulated stresses so the coefficients of the [A] matrix do not change 

significantly from one wrap to the next. This will be the case if the mesh is made 

sufficiently small. This assumption is also shared by Hakiel's solution technique [ 132, 

133] but can be mitigated by using an iterative solution technique such as SOR used by 

Willet and Poesch [186]. Secondly, accumulated linearity is only true for constant moduli 

[132, 133]. 

This proportionality between stresses, strains and displacements as a function of 

WIS can then be used to reorder the WIS from an input to an output as follows. First, a 

WIS is assumed. Next, the displacement at the outer surface, wn,calculated is calculated 

from an extension of Hakiel's (or any other legitimate winding model) as indicated in the 

schematic of Figure 55. Finally, all stresses, strains and displacements are corrected using 

the proportional linearity property of the incremental solution given the calculated and 
measured displacements. Thus for example, 

(144) WIS Wrs [ Wn, measured l 
' Rctual = assumed 

Wn. calculated 

An outline of the solution steps for the Extended Hakiel model, whose code is 

given in Appendix C, is as follows. 

initialize program 

read displacement data from disk file, wn,mcasurcd calculated from (118) 

approximate solution for first 3 layers (for 3 pt derivative) 

loop from layer 4 to finish radius of roll 

assume a WIS oased on the previously calculated WIS 

calculate incremental radial stresses from Hakiel's model 

calculate incremental tangential stresses from equilibrium equation (2) 

calculate <tlld .-;um r.isplaccments to give wn,calculatcd from (142) 

correct incremental radial, tangential and \VIS stTesses by (144) 

accumulated stresses= previous stresses plus incremental stresses 
end main loop 

recalculate accumulated tangential stresses from equilibrium equation (2) 

print and save the solution 



Accelerating the Solution 

Before applying the Extended Hakiel Formulation to a real data set, a couple of 

pre-checks should be made. First, the Extended Hakiel Formulation was checked using 

several simulated data sets as indicated in Figure 60. The results were very uninteresting 

as the stress agreement was generally better than 4 digits. However, this check is not as 

useful for the Extended Hakiel Formulation as is it was for the Displacement Formulation. 

This is because while the data simulation and Displacement Formulation are very different 

and independent by nature, the data simulation and the Extended Hakiel Formulation share 

a highly parallel development. However, it does give confidence to proceed as the data 

simulation using either extensions of Altmann's or Hakiel's models checked using either 

the Displacement or Extended Hakiel Formulations. 

Secondly, Hakiel's original (or any other equivalent traditional) winding model 

should be used to roughly estimate the mesh size required for maximum solution accuracy. 

As cautioned by Figures 18 and 19 as well as many other places elsewhere in this text, all 

runs of winding models should be checked for convergence as a function of varying mesh 

size. If the mesh is made too coarse the accuracy will suffer. Conversely, if the mesh is 

made too fine numerical instability can result. The optimum mesh size and resulting 

accuracy depends upon many factors such as the order of derivative approximation, the 

independent variable chosen for the winding differential equation, and the anisotropy ratio. 

As the anisotropy ratio increases, the optimum mesh size decreases which results in 

lengthy solution times. 

Since the most disabling feature of the Displacement Fonnulation was the inability 

to compute highly nonlinear and anisotropic cases in a reasonable time, the most difficult 

of the real winding data cases was tackled first. The NC paper had an incredibly high 

anisotropy ratio at a near zero interlayer pressure of ETIERip=O = 600,000/20 or 30,000. 

Additionally, the NC paper also had a radial modulus that was also very nonlinear and 

varied from 20 psi at zero interlayer pressure to 17 40 psi at 50 psi interlayer pressure. 

Using the Extended Hakiel Formulation described in the previous section, the WIS 

calculated from the new model and density-like measurements was compared with WIS 

measured on the Beloit WIT-WOT winder and are shown in Figure 62. The comparison 

between the new model and measured results shows clearly that the new model does 

iiidccd predict stresses well for radii larger than 10 inches. Though there are differences 

between predicted and measured stresses, they are less than 15% for larger radii. The 

source of these differences is difficult to pinpoint but could be attributed to approximations 

in the model, errors in the WIT-WOT, material property uncertainty, or stress relaxation. 
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Additionally from Figure 62, we can see that the solution seems to require an even 

finer grid to converge to the proper stresses near the core. Unfortunately, the estimated 

computation time to even complete the 0.68 mil grid computations to the outside is about 

100 hours. Though computing this highly nonlinear run would be out of the question for 

the Displacement Formulation, we are still faced with the difficulty of speeding up the 

solution of the Extended Hakiel Formulation, so that the fine meshes required for highly 

nonlinear systems can be computed in a practical amount of time. 

Consequently, two techniques for solution acceleration were developed which can 

be applied not only to this model, but most other winding models as well. The first 

technique is based on the observation that the incrememal stresses and strains become 

vanishingly small as a function of depth from the current roll surface. Thus rather than 

explicitly solving for all layers in the roll, only the outer layers that are sufficiently affected 

by wrap addition are modeled. Secondly, though meshes need to be fine to capture the 

high gradients, a complete '>Olution is not needed for every layer addition because the effect 

of the addition of layer n+ 1 on a roll is very much like the addition of layer n. Thus, we 

can use the solution for layer n to approximate the effects of the next few layers without 

explicitly solving for them. 



Justification for the first technique for solution acceleration based on explicitly 

solving only the outer region of a roll can be seen in Figure 63. As seen here, the 

incremental radial stresses are largest at the current roll outside and taper rapidly with 

depth. Additionally, the depth of significant incremental radial stress contribution is very 

dependent on the anisotropy ratio such that high ratios will result in a very small depth of 

influence. Since many web materials have anisotropy ratios between 1,000 and 10,000, 

one can see from the plot that the depth of significant influence is relatively small. Though 

it is difficult to see from the graphs, the significance at a 2" depth is in the 2nd and 8th 

digit respectively for the lK and 10K anisotropy ratios. At a depth of 5", the significance 

is incredibly small and is in the 5th and 21st digit respectively for the lK and 10K 

anisotropy ratios. At a depth of 18" and for a 1 OK anisotropy ratio, the significance is 

miniscule and occurs in the 155th digit! No wonder wound roll mathematics are so ill­

conditioned. Thus, below a certain depth the incremental stresses become so small that 

explicit solutions in those depths is both wasteful and can contribute to numerical problems 

due to the orders of magnitude of difference of values across the matrix system. 

Implementing the depth limited solution is quite simple. The solution begins as 

usual from the core until the current radius grows to more than the significant depth. 

Then, the solution only solves the outer (depth deep) layers with an approximate inrL 

boundary condition. This approximate inner boundary condition is a core radius equal to 

the current radius minus the significant depth, and the core stiffness equal to the current 

radial modulus at the layer which is the significant depth below the current surface. The 

only difficulty is determining what the significant depth might be for nonlinear materials. 

An initial estimate can be made by varying the core stiffness from zero to infinity to see 

how far out it significantly influences the stresses. However, a more rigorous check is to 

perform sensitivity analysis on the significant depth as will be given in Chapter 10. 

The depth limited solution is no different in principle as varying the grid size so 

that it is fine in areas of high gradients and values, and lower elsewhere. However, the 

depth limited solution is far more straight forward to implement. The advantages of the 

depth limited solution is tremendous as it reduces solution time from approximately the 

square of the number of grid points in the roll to proportional to the number of grid points 

in a roll. Thus for example, while hah·ing mesh size will quadruple the solution time for 

curm.:ntional solutions. it will only double the solution time for the depth limited solution. 
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The second technique to accelerate solution times is based on the observation that 

the incremental radial stresses do not vary significantly as a function of current radius (or 

radius ratio) for small changes in current outer radius. As seen in Figure 64, the 

incremental radial stress distribution does not vary much for even current outer radii more 

than an inch apart if all other parameters are similar. 

Thus for example, we can use the incremental radial stress explicit solution for 

15.000" current radius to predict the solution for current radii of 15.001" and so on to 

perhaps 15.020". This is done simply by sliding the incremental solution outward one 

wrap for every wrap added, and then adding the incremental solution to the previous 

accumulated stresses to yield the current accumulated stresses. This is equivalent to using 

a coordinate system based on depth beneath the current outer surface and which follows it 

with wrap addition. This solution replication is repeated until the approximation errors 

become significant at which time an explicit solution is again required. As with the depth 

limited solution, the solution replication acceleration is not used until the roll diameter 

becomes sufficiently large. Again, sensitivity analysis is required for each set of input 

parameters to determine how many times the replication can be performed before solution 

accuracy is compromised. The advantages with replication are again tremendous because a 

conservative 20 times replication on a 0.001" grid spacing may reduce the solution time yet 

another order of magnitude beyond the improvements achieved by the depth limited 

solution acceleration. 

Several aspects of the application of the depth limited and replication solution 

acceleration techniques are shown in Figure 65. First, all solutions converge to very 

closely to the WIT-WOT measured WIS for radii greater than 10". Secondly, WIS near 

the core converges in all solutions toward the measured WIS as the mesh becomes finer, 

indicating that the wraps near the core require yet even a finer mesh to converge. Thirdly, 

the conventional and accelerated solutions lie almost on top of each other indicating that the 

acceleration technique need not compromise accuracy. Fourthly, the savings in computer 

solution time are enormous. For a 0.34 mil grid, the accelerated solution computes in 14 

hours where a conventional solution would require 770 hrs, or more than 50 times as 

long. 

Despite the many orders of magnitude better solution response for the accelerated 

Extended Hakiel r mulation over the Di:;placcment formulation, some problems still 

exist. First, the snlution at the 0.34 mil grid became temporarily unstable at a radii range 

of 8-10 inches. This corresponds to 7 hours into a calculation which is about 10,000 grid 

points above the core. Clearly this highly nonlinear and anisotropic case is presenting 

fom1idablc numerical difficulties. 
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Secondly, the WIS predicted by the model has considerable error near the core 

which might have arisen from several sources. First as mentioned several times, the grid 

should be even finer yet for this particular run, which would yield an undesirably long 

computation. Secondly, the real core stiffness is likely to be much lower than the 

theoretical. This re<;ults from the data acquisition instrumentation which was not able to 

take data immediately from the first wrap of the core, but rather useful data begins only 

after a few hundred wraps. Thus, the real core with many wraps of web is much softer 

than the theoretical bare core, which inflates the model's prediction of WIS. Finally and 

most importantly, and for reasons yet unknown, the density, radial compression (Figure 

58) and WIS model reflect acquired data which begins at extremely high values. This 

characteristic is shared by all runs with the NC paper grade, but not with any of the other 

runs on other grades. 

As mentioned previously, the new displacement to stress winding model is more 

complete than traditional winding models. As seen in Figure 66, the new model can 

rredict bndy -;tresses just as tnditional winding models. Though these stresses were not 

c.\.perimcntally· verified, they arc realistic based on measurements on similar rolls, and 

result directly from Hakiel's model given the WIS predicted by the new model. 

Consequently, in addition to hody stresses, the new model also predicts WIS, strains and 

rlisplacements. In other words, the complete mechanics description of roll winding 

physics. 
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PREDICTED ROLL STRESSES- RUN #38 
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Additional Experimental Validation 

In addition to the WIT-WOT experimental validation on the NC paper just 

described, validation for the other two grades tested will also be presented here. The next 

radially stiffer material tested was the LWC (lightweight coated magazine grade) paper. 

Figure 67a shows the WIS predicted on one run and compares with that predicted by 

Pfeiffer's classic WIS formula [166]. The agreement between the new model and the 

Pfeiffer empirical formula is remarkably close except near the start of the calculation run. 

Again though the body stresses were not measured, the stresses calculated from the new 

model and shown in Figure 67b are quite reasonable in that LWC is among the tightest 

wound of paper grades and may have interior interlayer radial pressures of 50-100 psi. 
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Several other observations can be made from this run. First, note how the 

moderate change in WIS due to the nip drop at a 13" radius caused only a tiny change in 

radial stress (because it results from an integration) and a large change in tangential stress 

(because it results from a derivative). Second, note that the optimum mesh size for this 

material is coarser than the mesh size for the previous run whose material had a higher 

anisotropy ratio. This conclusion is consistent with all other finite difference fom1ulations 

of wound roll models. Thirdly, some difficulty was experienced modeling this particular 

run which has an undesirably high sensitivity to the mesh size as will be shown in Chapter 

10. Fourthly, this run illustrates starting the new displacement to stress model after 

considerable material has already been wound. This was necessitated by the fact that the 

initially high rotational speed of the rewound roll outran the data acquisition equipment 

until the roll had built to a 9" radius as described by equation (119). Thus, even though 

useful data was not obtained from the very start of winding, the new model still can be 

applied. The only additional difficulty is choosing an equivalent core stiffness for the 

beginning of the data which minimizes the size of the beginning tail. This equivalent core 

stiffness is approximately the radial modulus on the layer corresponding to the beginning 

data. Just as with starting the model at the core however, the calculation error is highest at 

the beginning where there are fewer grid points to represent the rapidly varying stress 

gradients. 

The last experimental validation run presented here is for the stiffest material tested, 

which is the coated and calender food board (similar to milk carton material). The WIS 

predicted by the new model is compared with WIT-WOT measurements in Figure 68a. As 

seen here, the predicted and measured stress distributions are very close in magnitude, but 

the predicted WIS values are noisier. This additional noise results primarily from the data 

acquisition measurements rather than from the model itself. The spike at a 21" radius was 

caused by a splice in the material. The simple lap splice used on the roll is more than twice 

the nominal thickness of the material (2 time the caliper plus the splice tape thickness). 

This splice when run into the winding roll caused a very audible pounding which lasted for 

dozens of wraps. It is likely that the data spike, which was seen on every thick splice, 

may result from the splice temporarily upsetting either the caliper measurement due to the 

sudden lift or the diameter measurements by the pounding which may have caused 

interlayer slippage on this low coefficient of friction material. However, the greatest 

source of the m ·1surement noise is simply that the material is so stiff that the resulting 

radial deformati\H1S are so small that they are near the limit of the resolution of the 

instrument's ability to measure. Again, though the body stresses were not measured as 

they result directly from Hakiel's already verified model, they are realistic. 
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Conclusion 

This chapter has presented three difL,·ent methodologies for reducing data obtained 

from density-like measurements of roll diameter and web thickness. The first of which 

was radial compression which has the tremendous advantage of extremely fast 

computation. Additionally, the radial compression parameter, as will be shown in Chapter 

10, has improved the resolution of roll structure measurements more than one order of 

magnitude beyond the best currently available. Finally, the radial compression parameter 

was shown to be directly related to the boundary conditio11 of the new wound roll models 

as it is simply the nondimensionalization of the deformation of the outer surface of the roll 

due to wrap addition. 

Since the ultimate goal of this project is to obtain stress calculations from roll 

deformation measurements, the physics of the wound roll must be assembled into a 

differential equation from the cc··stitutive equations. The first and simplest of the two 

deformation to stress models was the Displacement Formulation which was advantageous 

because the measured deformation of the roll's outer surface is simply the displacement 

boundary condition which could be directly input into the Displacement Formulation. This 

model was verified to be consistent with the Linear, Altmann, Yagoda and Hakiel models 

by creating simulated data as inputs to the new model. Unfortunately, the winding 

differential equation based on displacements is even more ill-conditioned than other 

assemblages of the same constitutive equations. Consequently, practical application of the 

Displacement Formulation is limited by the extremely fine mesh, and the consequently 

long computation time required for highly nonlinear and anisotropic systems. 

"··e second of the deformation to stress models was developed by extending 

Hakiel's (or any other consistent model) to calculate and sum the strains and displacements 

on each layer. The Extended Hakiel Formulation was validated with simulated data, WIT­

WOT measured data, and with Pfieffer's empirical equation. This validation was 

performed for widely varying systems including data simulated from the standard 

parameters given in Appendix C, as well as real data from three very different paper 

grades. Though agreement was generally close, there are difficulties. First, materials with 

extremely high nonlinearity or anisotropy ratios are difficult to compute in a reasonable 

length of time, and accuracy is worst nearest the core. At the other end of the range, 

mataials that are radially stiff presc: it dau acquisition measurement difficulties due to the 

e.\ln.'ml·h ~mall ckfnm1ations that must lx resolved. 



Finally, the scope of the issues of u1e data acquisition equipment required to make 
the measurements, and the new model to process the measurements, are so wide that there 
are numerous opportunities for problems. Indeed as we will see in the next chapter, it is 
difficult to merely define what thickness means for some materials, much less to measure 
it. And thickness is just one of the many measured quantities required to implement this 
new model! Similarly, Chapter 4 contains numerous caveats that may present additional 
complexities that are not currently included in wound roll models. Though this new mcxiel 
has been more carefully verified than most both analytically and experimentally, 
implementation in a production environment is not for the faint of heart. 

Additional supporting material required for this new system can be found in the 
following chapters. Chapter 8 describes the hardware and instrumentation which was 
used to prototype this new system. Chapter 9 describes the minimal computer software 
required for the data acquisition and data preprocessing. Additionally, the computer code 
used for data acquisition, data preprocessing and the new model is given Appendix C. 
Chapter 10 details a sensitivity analysis of both the data acquisition measurements and the 
new deformation to stress model. Finally, Chapter 11 describes in more detail some of the 
system implementation difficulties which could be the subject of future work. 



CHAPTER 8 

DATA ACQUISITION HARDWARE 

Introduction 

The roll structure measurements of density and caliper corrected density described 

in Chapter 6, as well as the new measurements developed by this project of Radial 

Compression and Wound-in-Stresses described in Chapter 7, all share the common 

requirement of roll diameter and web thickness measurements. These roll structure 

techniques do not stipulate how diameter and caliper must be measured, and there are 

certainly many ways of doing so. However, these methods require that the diameter and 

caliper inputs be made with extreme precision, moderate speed, and in some cases in a 

noncontacting manner. Thus, only a few of the many methods for geometric measurement 

will be practical and suitable for these roll structure techniques. 

1l1is chapter will describe the winding equipment as well as diameter and caliper 

mcasurLmcnt methods which were used to prototype this project. The winding equipment 

is a state-of-the-art high speed two drum lab winder. The encoders and their signal 

processing for diameter measurement are a conventional approach for density analyzers, 

however effort was made to increase precision beyond that of typically available 

equipment. However, the noncontacting air-floated L VDT gage adapted for measuring 

caliper was a novel, precise, and economical alternative to the conventional approaches to 

on-line caliper measurement which are typically very expensive. Also included is a 

discussion of the difficulties and subtleties of defining and measuring the thickness of thin 

web materials which have a relatively large surface roughness such as paper and textiles. 

Finally. the setup, calibration, perfom1ance, difficulties, limitations and alternatives of this 

prototype are disr:ussed in detail. so that similar and perhaps even more successful systems 

can he rleve loped by others. Obsen ations of prn ious experiences on similar density 

an~11; /C'I systems by the author and others will also be induded as appwpriate. 
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The data acquisition system to measure stresses during winding as defined by this 

project will minimally include: a winder equipped with an encoder coupled to a rolkr 

traveling at web speed and an encoder (or an extremely fast switch) coupled to the core, 

core chuck or core shaft; at least two programmable counters; a caliper gage; an analog 

input card; a computer; and software. There are numerous configurations that could be 

assembled to perform the data acquisition, and the optimum configuration may weii vary 

between applications. For this project prototype however, component selection and 

system design was based on the criteria of accuracy, flexibility, and availability. It is 

likely that any production versions of this system may choose criteria of simplicity and 

robustness of operation at the expense of accuracy or flexibility. 

Since the stress measurement calculation system is serial in nature, the overall 

performance of the system is no better than the weakest component. For example, a 

million pulse per revolution encoder may not outperform modest count encoders if the 

coupling between the winding roll and its enccx:ler has more backlash than one millionth of 

a revolution. Similarly, interlayer slippage inside the wound roll, slippage between the 

rewound roll and the encoder roller, drift in the caliper gage, or erratic response to data 

acquisition interrupts (latency) all contribute to stress measurement noise. Therefore, great 

care must be used to build a system which can measure the small diameter differences and 

caliper to the resolution required to determine wound roll stresses. 

The duration of the experimental portion of this pro_iect was quite short, and 

preceded the completion of the analytical portion of this project by nearly a year. Software 

programming began in November 19R8 for a class project in Digital Data Acquisition and 

Control, and system installation and startup took place at Beloi:'s R&D facility in Rockton 

Illinois during December 15-20, 1988. After installation, the measurement system 

acquired diameter and caliper measurements from December 20-29 on more than 30 rolls 

of papers of four different grades including two grades of LWC (light weight 

supercalendered magazine), heavy coated board (milk carton stock) and NC (similar to 

bond). 

Aside from the winding measurements .. ;laterial properties were measured at 

Beloit's R&D facility using industry standard equipment, with the exception of radial 

modulus which has no test standard and was performed on a MTS tensile tester at OSU. 

The results of these test measurements arc included in the appendices and elsewhere in the 

thesis. 



The Winder 

The Beloit R&D two-drum winder, shown in Figure 69, is a precision pilot plant 

machine such that roller cylindricity, alignment and eccentricity are within a few 

thousandths of an inch. Additionally, the winder is equipped with modern and capable 

sensors for tension, speed and motor loads; and controls which include PLC's and a 

digital electric drive. The flexibility of the control system, partially shown in Figure 70. is 

such that any reasonable torque, nip, tension and speed profiles as a function of rewound 

roll diameter can be easily programmed. Additional support services including an 

instrumentation shop, a machine shop, a paper test lab, and a large stock of paper rolls 

made this facility a near ideal environment for prototype development. Table 9 gives a 

brief summary of the characteristics of the two-drum winder 

Table 9 

BELOIT TWO-DRUM LAB WINDER SPECIFICATIONS 

Speed 0-10,000 FPM Width 48 inch face 

Drive Motors (2) 40 HP drums Roll Diam. 4-60 inch 

(1) 60 liP unwind Drums (2) 24" with .75" gap 

R.R. Nip 0-15 PLI Spreader D-bar 

Tension 0-10 PLI Set Change Fully automated 

PLC Allen Bradley Drive Reliance DCM 
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Incremental Encoders 

Encoder count and wrap count for the stress measurement system must be sized for 

each application as given in Chapter 6 for the density analyzer, and will not be repeated 

here. To summarize, the rewound roll encoder pulses per revolution must be as high to 

increase system accuracy, but not so high as to overflow counters, computer memory. or 

exceed the frequency limit of either the encoders or the counters. 

The ratio of the roller encoder pulses divided by wound roll encoder pulses times a 

constant, given in equation (102), over some wrap sample interval, gives the average roll 

diameter during that sample. Thus, encoder pulses and analog caliper measurements 

determine the radial displacement boundary condition for this stress measurement system, 

as given by equation (118). Since there are two differences, one between consecutive 

diameter samples, and another of the caliper measurement, data integrity is highly 

dependent on both pulse and caliper accuracy as will be further discussed in Chapter 10. 

One obvious way to increase the diameter measurement accuracy is to increase the 

number of pulses per revolution, and commercial encoders with nearly 10 million pulses 

are readily available. However, there are other considerations that make more modest 

encoders a better choice. High count encoders are more expensive, have lower maximum 

rotational speeds, and may exceed counter frequency limitations. Also, high count 

encoders require more memory and computer time to process the data. Additionally, 

though increasing encoder count rate will increase diameter resolution, it will do so 

following the law of diminishing returns as other sources of noise such as slippage begin 

to predominate. Early experiences showed that encoders with less than 1,000 ppr (pulses 

per revolution) adversely effected data intet:.rrity, while Baum showed that encoders more 

than 5,000 ppr gave little additional benefit [ 18]. 

However, the design goal of this project placed high emphasis on accuracy, at the 

expense of winding speed and computer processing time. Thus, an encoder system was 

selected which had 100.000 ppr capabilities as seen in Figure 71 and Table 10. 

Aclclitionally, the desire of flexibility to explore various configurations led to a 2,500 line 

per revolution encoder, with an external 1 OX multiplier, and switch selectable quadrature 

of I, 2, or 4X multiplication. Thus. by simple switch setting, or changes in connections, 

m:my different effcl'tive pubc rate-; can be obtained as given in Table 11. 
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Table 11 

EFFECTIVE PULSE RATES 
(for a 2 ch., 2500 line encoder, with index pulse, lOX multiplier and quadrature) 

Pulses per Rev. Index Multiplier Quadrature 

1 X 

10 X 10 

2,500 1 
5,000 2 

10,000 

25,000 

50,000 

100,000 

10 

10 

10 

4 

1 

2 

4 

Another consideration for accurate diameter measurement is that the encoders are 

closely coupled to their roll or roller without any play or backlash. Since encoders are 

fragile, a compliant coupling is needed to isolate them from mis?~· gnment forces. The 

coupling used for this project was a spiral coil type supplied by the encoder vendor, 

however, a short piece of rubber tubing may also work well. However, this tubing must 

be short and stiff to avoid torsional vibration between the encoder and its roller. Similarly, 

torsional vibration can occur between a drive motor which is connected to a dmm roller 

through a long inshaft. Since the torque of a motor varies as the rotating fields interact, the 

system can be forced into a two mass (motor and dmm), single spring (inshaft) vibration 

mode. 

Encoders connected to a core chuck present another problem because the chuck 

may roll or wobble erratically inside the slightly larger core, even if the core and chuck are 

keyed together. Solutions to chuck/core slippage are application dependent, but may 

include expandable chucks or shafts, higher axial loading of the chuck against the core, or 

a small tapered metal 'spear' on the chuck which penetrates the end of a capped or 

uncapped fiber core, as was used for this project. Since packaging of the wound roll 

encoder can he difficult on production machines, an extremely fast noncontacting 

photoswitch or proximity switch may be a better choice (see Chapter 6). Since 

photoswitches arc smaller Lhan encoders, and can be mounted at some diqance from the 

harsh environment of a rotating chuck, system reliability might be increased for production 

environments. 



Finally, accurate diameter measurements minimize slippage between the web and 
the encoder. If the roller is in a free web span, it should be of low inertia, freely turning, 
and grooved to reduce air entrainment. However, the best location for this encoder is 

coupled to a winding drum, as was done for this project, or to a nip roller which travels at 
the same surface speed as the winding roll. Some benefit may be achieved by using 
encoders on each of the two drums on a two-c Jm winder, and averaging the results. It is 
interesting to note that this configuration has shown that even with drum torque differential 
control, as opposed to drum speed differential, the drums travel at slightly different 

speeds. 

One additional form of slippage that reduces diameter measurement accuracy 1s 
interlayer slippage inside the wound roll, otherwise known as J-line deformation [106]. 
Though interlayer slippage is easy to detect by striking a radial line on a winding roll, and 
observing whether the line bends, it is very difficult to reduce. This type of slippage 
occurs more frequently for lightweight, low friction materials wound with a nip roller such 
as LWC (light weight supercalendered), newsprint, and films. Fortunately, the accuracy 
of the system may not suffer noticeably because moderate J-line movement is calculated to 
have a minimal effect on wound-in-stress [ 121]. However, the erratic stick-slip nature of 
slippage may mean a decrease in measurement resolution due to increased noise. 

A final method of increasing diameter measurement accuracy is to increase the 

wrap count sample size. Though this method is highly successful, there is an unavoidable 
trade-off between measurement noise, and the number of data points in the wound roll 
profile. For example, a 20 wrap effective sarnple size (acquired sample size times 
averaging) will have only half as many points in the resulting roll structure measurement 
profile, but the profile will be about 1/4 as noisy. 

The integrity of the encoder-counter-computer system can be checked in three 
ways. The easiest is by bench top testing of an encoder driven by a variable speed motor. 
The index pulse or additional photoswitch is used to simulate the wound roll encoder. 

while the two encoder channels are used to simulate the roller encoder. Proper operation is 
seen as identical roller counts for a fixed wound roll sample size. Another test of the 

system can be performed after installation by measuring the diameter of a core which is 
rotating in contact with a drum or nip roller, but without winding any material being 

wound onto the core. Proper operation is seen as a series of very closely calculated 
di:1mcters. Finally, the most dem::nding test is to calculate radial cornpression or density 
from measurements made during winding. Even the smallest problems will show as 
extremely noisy plots, or contain spikes which indicate a sampling error. 



Quadrature Conversion 

Typically, encoders provide two channels of output pulses, A and B, that are offset 

in phase by 90 degrees as seen in Figure 72. One common application of the two channels 

is to determine direction of rotation by detecting which pulse train leads the other. More 

important for this project however, the two pulse trains can be combined into a single 

output of four times the single channel output of the encoder through the process of 

quadrature. This will give a higher effective pulse count, and resulting improvements in 

diameter measurement accuracy. 

Though encoder manufacturers provide quadrature conversion products, these 

generally give a non-adjustable times four multiplication. While this may be perfectly 

acceptable for a production model with a limited application range, more flexibility would 

be desirable for a laboratory prototype. Consequently, a custom quadrature conversion 

circuit box, partially shown in Figure 73, was designed with a dipswitch selectable Xl, 2, 

and 4 multiplications. The circuit combines the A and B input channels into a single output 

channel using XOR gates, Schmidt triggers, and other simple electronic components. The 

maximum output frequency rating is adjustable through a resistor setting which determines 

the width of output pulse, and is nominally about 500kHz. 

Another feature provided by the custom quadrature circuit board is electrical 

isolation of the computer's counter card from the encoder's signal lines. This isolation is 

accomplished by standard LED/photodiode pairs in series with all inputs to the circuit 

board. Though this type of protection might not be needed in a lab environment where 

wiring is simple, industrial controls are considerably more complex, with increasing 

chances of miswiring high voltage sources into the TTL level of personal computers. 

Though not implemented on this particular project, analog and digital IO (input/output) 

also should be isolated. Typically, isolation amplifiers will provide overload protection for 

delicate computer equipment from machine sensors and industrial controls, as well as 

providing common mode rejection. and reducing ground loop problems. 

Other electrical design considerations for encoder selection are the type of output. 

For this project and other similar applications, TTL level square wave output with line 

drivers may give better reliability for high count encoders in electrically noisy 

environments. Additionally, cable runs should be short, shielded. and avoid proximity to 

~n1 'CS of electrical noise such as high \Oltage connections to electric motors. As 

ind11.:ated by these discussions, reliable data acquisition design for industrial applications 

are more difficult than for the lab, because of the many additional electrical design 

considerations. 
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Figure 73 

QUADRATURE COI\'VERSION AND ISOLATION CIRCUIT 
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Counter Data Acquisition 

Pulses from both the roll and roller encoders must be counted over some sample 

wrap count and passed to the computer for storage and calculation. Though other 

configurations are possible, typically the rewound roll encoder serves as the timekeeper for 

the start and end of each sample, while only the roller encoder pulses are passed to the 

computer. Consequently, a minimum of two counters are required, where the first counts 

until the preset wrap count value is reached, and the second accumulates counts until a full 

sample signal is received by the first. At that time, the contents of the second counter are 

passed to the computer, and both counters are reset for the next sample. The computer 

then calculates the average rewound roll diameter over that sample from equation (102); 

where the roller count is the variable, and the wrap count and roller diameter have been 

preset prior to run. 

Thus, counter board selection must include at least two counters, but they can't be 

independent because the end of the roller encoder count is determined by the roll encoder. 

Additionally, due to the extremely high frequency of incoming pulses and the criticality of 

not missing even a single pulse, sample latching and some sample processing must be 

done on the counter board, because computer IO and CPU processing time is greater than 

the few microseconds between pulses. Further demands that are placed on counter board 

selection by high count encoders are the high requirements for maximum frequency and 

count values. Given these requirements, the Metrabyte CTM-05 Counter{fimer board for 

the IBM PC series microcomputer was chosen for this application. This board has 

tremendous programming and configuration nexibility, giving it wider capabilities than 

most counter boards. Also, its small size and very modest price make it nearly ideal for 

many PC based counting, timing or frequency data acquisition applications. A brief 

summary of the CTM-05's specifications are shown in Table 12, and its block diagram 

schematic in Figure 74. 

Table 12 

METRABYTE CTM-05 COLl\TER BOARD SPECIFICA TIO:\S 
Counters (5) 16-Bit ProgrammabilitY 

Frequency to 7 MHz L'p/Down & Binary/BCD counting 

Clock 1 MHz frequency Output 

Input Port 8 Bit Latched Triggering and Gating 

Output Port 8 Bit Latched Count and Gate Source 

Software 10 Basic Programs One-Shot or Continuous Outputs 

+ 3rd party Alarm Comparators 
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Numerous configurations are possible with the CTM-05 board due to its extensive 

programmability. Each of the five counters is initialized with a 16 bit (2 byte) command 

code which determines such things as whether it will function in an upcount or downcount 

mode, count source, and count output. Additional flexibility is obtained by how the DB-

29 connector is wired, as well as any interconnections between counters. For example, it 

may be desirable to cascade two counters so that the effective maximum count prior to 

overflow increases from 16 bits (65,536) to 32 bits (4,294,967,296). Thus, cascading 

could allow extremely high pulse rate encoders to be used for a modest doubling of 

memory storage space from integers to long integers, and a less than doubling of the time 

for passing values from the counter card to the computer. Cascading counter #3 to counter 

#4 could be done either by physically wiring the output of #3 to the input of #4, or by 

sending the appropriate initializing software command code. 

Additionally, more than one CTM-05 card can be used simultaneously for 

cascading many high count encoders, provided that the address and interrupt vectors are 

different. As mentioned earlier however, the law of diminishing returns and the weakest 

link serial nature of the system makes it doubtful that any detectable improvement in 

accuracy would be achieved beyond 100,000 ppr unless the entire winder and data 

acquisition system was redesigned to much tighter tolerances. 

For thi~ nrototype, counter #1 was used for the rewound roll encoder, counter #2 

for the sample count, and counter #3 for the roller encoder. Cascading was not needed for 

the prototype system on the rolls tested using 100,000 ppr encoders. However, a small 

increase in encoder rate, roll diameter; or decrease in caliper or available memory, would 

have required cascading to avoid overflow. 

Counter #1, which takes its inputs from the rewound roll encoder, serves as the 

timekeeper for samples and is initialized at the beginning of each sample to a value 

corresponding to the number of pulses for the desired wrap count, which is given in 

equation (103). It is configured in a downcount mode, so that it counts backward from the 

initialized wrap count pulse value towards zero. When counter #1 reaches zero, it sends 

an output which triggers several events that take place entirely on the CTM-05 counter 

board. First, its output is used to increment the sample counter #2 by one. Secondly, its 

output latches the current count in the roller counter #3, and immediately resets counter #3 

to zero. Thirdly. counter #1 i" re~et to the WLlp count pulse value. Finally, counter #l's 

output sends an interrupt to the PC, so that an interrupt driven data handling routine could 

be triggered. Although interrupt driven software was not used for this project, it has been 

for prior projects, and has many advantages that will be discussed later. 



Counter #2, which serves as a sample counter, has the simplest configuration. It is 

initialized to zero only once at the start of every data acquisition run. During each data 

acquisition run, it merely counts the output from counter #1, which increments at the end 

of every sample. The purpose of this counter is to allow a polling mode of data 

acquisition, so that a new sample can be detected as an increase of one in counter #2's 

contents. Additionally, it also can detect a missed sample as an increase of more than one 

in its contents between consecutive polls. 

The use of counter #2 is superfluous for interrupt driven softwart>. except that it 

can more directly determine if samples have been missed. However, even though missed 

or double counted samples are very damaging to data, they are extremely rare for well 

designed systems. There are two principle ways in which a sample can be missed. The 

first is if the system is misdesigned, so that the computer does not have time to read and 

process a value during the time the it takes for samples to be produced. From equations 

(111 ), (115) and (116), this can happen for sluggish processing on small wrapcounts 

during the top of acceleration when the rewound roll frequency is maximum. The second 

way a sample can be missed is if pulses are dropped by the hardware, which is an 

electrical design issue. 

Counter #3's contents, which is the roller encoder pulses during a sample, is the 

essence of the diameter calculation, and is the only value that needs to be passed to the 

computer for storage and calculation. At the beginning of every sample, counter #3's 

contents are initialized to zero; and at the end of every sample, the current contents are 

latched by the output of counter #1. The latched contents are read by the computer either 

on interrupt, or when the next polling of counter #2 indicates a new sample is present, 

depending on which mode the data acquisition software is written in. 

Despite the modest complexity of counter processing, almost all of the work is 

done on the counter board itself, which not only frees the computer from low level 

housekeeping, it also increases the potential throughput of the counter board. Thus, after 

the appropriate control commands have configured each of the counters prior to run, the 

board is nearly self sufficient. The only minimal duties of the computer during data 

aL·quisition arc to merely read the contents of the counters, which must be passed as two 

bytes per counter through the bus. Even the computer IO is assisted by the CTM- . , 

which provides buffering of inputs and outputs so that the computer can process them as 

CPU time becomes available. 



Off-Line Caliper Measurement 

Aside from rewound roll diameter, caliper is the other on-line measurement 

required to predict wound roll stresses, which start with the new displacement boundary 

condition given by equation (118). As with diameter, caliper must also be measured with 

great accuracy due to the differencing nature of the model formulation. Caliper 

measurement can in general be made off-line by testing discrete samples in a lab, or on-line 

with sensors located in a free span of a web processing machine. For the purposes of this 

prototype however, on-line measurements are required for the winding of webs that vary 

even slightly in thickness with time or MD position. Even so, off-line caliper 

measurements are still required to calibrate or check the accuracy of on-line measurements. 

Simple off-line measurements of caliper can be made with a precision (0.0001" or 

better) micrometer. To improve the accuracy of the reading, it is common to measure the 

thickness of a small stack of material and divide by the number of sheets. Dedicated lab 

caliper gaging instruments will improve the accuracy and consistency even more by 

providing a precise loading of the web between precision steel platens, and by having 

higher resolution position sensors, as seen in the top of Figure 75. Though there are many 

different instruments for measuring web thickness, the technology itself is generally a 

mature one, where procedures and standards have been in effect for decades [73, 7 4, 77, 

175-180]. For example, TAPPI test T411 specifies a motor-operated micrometer applying 

7.3 ± 0.3 psi over two circular platens of 0.62-0.64 inch diameter, which are paP 1lel to 

each other within 0.00005 inch [ 175]. This test, written in 1926 and only updated four 

times since, serves as design specifications for caliper gages produced by Emveco, 

Thwing-Alben, TMI and others [77]. 

While caliper measurement of most films is straightforward, paper and other 

materials with porous or rough surfaces present an additional complexity of the very 

definition of thickness itself. The difficulty is similar to the definition of surface 

roughness, which can be specified by peak-peak, RMS, waviness, or in many other ways. 

The Institute of Paper Chemistry, recognizing the need for a better measure of thickness 

for rough gndes, developed a rubberized platen caliper gage [89]. As shown in the 

b()t:om of Figure 7':-.. the soft ruhher conforms to mzcmy of the surface peaks and valleys, 

gi\'ing a better approximation of thickness thun does the peak-peak values of the steel 

platen gages. Other caliper gaging methods include mercury pycnometric displacement, 

and an effective thickness concept solved from simultaneous bending and extensional 

stiffness me asurcmcnts ll79, 180' 
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Though the effective thickness of rough materials may be better described t'sing 

methods similar to IPC's Rubber Platen caliper gage rather than using a steel platen, a 

more representative measure might be to account for how the layers of web stack against 

each other in a wound roll. Thus, instead of a web against steel or a web against rubber, a 

web against web caliper measure may more accurately reflect the wound roll. The Tappi 

test T500, though designed for measuring the thickness a stack of paper in books, uses 

just such a concept [ 175]. In this test, approximately one inch of paper is loaded between 

parallel steel platens under a pre~:;sure of 36.3 ± 1.4 psi, which is a considerably higher 

load than Tappi's test T411 and IP("s gage. 



Though each of these different methods are repeatable and internally consistent, 

they unfortunately give caliper values that can easily vary more than 10% between the 

methods [89]. Since a thorough evaluation of caliper measurement is considerably beyond 

the scope of this project, only an opinion can be offered for the most suitable off-line 

testing for this project. This would combine the best features of several techniques. First, 

procedures and specifications of the T411 standard, which is more thoroughly described 

than other methods, would improve the consistency and resolution of the method. 

Secondly, a stack of material similar to T500 would best approximate wound roll 

behavior, and reduce uncertainty with a larger sample size than the single sheet methods. 

Thirdly, modifying T500 to rubberized platens would minimize end effects of the top and 

bottom layers by giving the platens a compliance closer to what might be seen in a wound 

roll. Finally, the loading would be cycled from zero to perhaps about 100 psi and down to 

zero over two cycles, to quantify the unloaded caliper, as well as the hysteretic nonlinear 

stress-strain stack modulus ER as described in Chapter 3. For this project however, much 

of the verification of the on-line caliper gage was performed using a TMI #449-27 caliper 

gage. Since this instrument conforms to the loading of 7.3 psi guideline of T411, the 

loaded caliper is somewhat less than the unloaded caliper and depends on the stack 

. modulus of the material. The unloaded caliper must be calculated from equation (124) or 

by extrapolating down the stress-strain curve as indicate in Chapters 3 and 7. 

On-Line Caliper Measurement 

While off-line measurement may be useful for quality control and calibration, on­

line caliper measurement is required for the measurement of stresses, as defined by this 

project, for any material whose caliper varies significantly with time or MD position, with 

respect to its anticipated ZD deformation inside a wound roll under interlayer pressure. 

The first commercial on-line caliper gages were based on changes in magnetic reluctance 

between a coil and a steel platen that are separated by the web [77]. Miller and Springer of 

the Springer Corporation used this principle for a contacting gage, where a coil attached to 

a puck loaded the web against the platen by about 0.19 psi. This sensor has an unusually 

high resolution of 10 ~inch. Unfortunately, it is a contacting sensor which could scratch 
or mark many grades of film or paper. A similar variable reluctance sensor is the Calmike 

by Indev Incorporated [73]. With this sensor however, the web is floated on each side on 

an airfilm of about 100 ~inch thickness, by a blower connected to the coil and platen 
which supplies a 20 in H20 pressure. Though this sensor is noncontacting, its accuracy is 

considerably less for two reasons. First, the airfilm is large and can be effected by web 

speed and roughness. Secondly, if the sensor halves are connected to two different cross 

machine beams for CD profiling, caliper rcaclings will vary with changes in relative 

displacement caused by changes in mechanical or them1al loads to the two beams. 



In addition to caliper, basis weight, moisture, and elastic moduli can also effect 

wound roll stresses. Basis weight sensors are as prevalent on paper machine equipment as 

caliper gages. Though basis weight does not enter into this winding stress model, it does 

enter the density analyzer through equation (46). Basis weight, which is mass per unit 

area, is most commonly measured by the absorption of beta particles through the web 

produced by a radioactive source. Web moisture not only affects basis weight, but 

hygroscopic diffusion may cause changing stresses and strains for many materials, such as 

paper and textiles, which increase in length with increasing moisture. Web moisture is 

measured by the absorption of certain wavelengths of infrared energy. Finally, on-line 

modulus and poisson ratio measurement by acoustic methods, developed by the Institute 

of Paper Chemistry, are starting to be used in production environments [56, 57, 68, 77]. 

The Schaevitz Non-Contacting Gage 

Selection of a caliper gage for this project was based on requirements of extremely 

high resolution, moderately fast response, compact size, ruggedness, low cost, and 

compatibility with a wide variety of web materials. Additionally, it may be desirable for 

the sensor to be non-contacting for production applications on mark sensitive grades. 

Since many of the commercial caliper measurement systems were bulky, expensive, and 

did not have a particularly high resolution, alternatives had to be investigated. 

Optical methods were first investigated because of their potential accuracy and 

typically non-contacting nature. Many optical systems, such as the Fotonic sensor by 

Mechanical Technology Incorporated, require materials with special optical properties, 

which severely limit the breadth of application. A laser triangulation system with a linear 

photodetector array, the Chesapeake Laser Systems LTG-21 01, was found to be both 

complex and costly, and had an insufficient resolution of 250 flinch. 

Finally, a non-contacting LVDT caliper gage made by Schaevitz, first noticed in a 

paper test lab basis weight profiling machine, appeared to have most of the desirable 

characteristics required for this project. The gage, shown in Figure 76, consists of a 

double acting air cylinder connected to a L VDT (Linear Variable Differential Transformer), 

which tloats above the work surface on an air film of about 0.003 inches. The float height 

is carefully controlled with a pneumatic servo-follov-.'er \vhich maintains a constant back 

rrcssmc despite changes in the height of the work piece. The gaging force fr01n the air 

nozzle of 15-20 grams over a target diameter 0.062" translates to a pressure of about 0.5-

0.75 psi. Options include: gaging ranges of ±0.050, ±D.125 and ±1.00 inches; larger air 

gap/lighter loading: AC or DC output; breakaway tips: and a special order 5 flinch 
repeatability model. Table 13 gives specifications for the Schaevitz gage. 



Figure 76 
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Table 13 

SCHAEVITZ NON-CONTACTING GAGE SPECIFICATIONS 

Model PPA-050 

Stroke ± 0.050" 

Repeat.1.bility ± 0.0001" * 
Output ± 1 OY DC full scale 

Input 

Response 

Gap 

120 V AC, 30 psi air 

30Hz for< 0.04" 

0.125 in/sec> 0.04" 

0.003" 

& 6 digit LED display Length 8.5'" 

Gage Force 15-20 grams Diameter 1.87" max 

~The repeatability of the gage is very conservatively rated. 

Testing by the vendor and author indicated a± 0.000005" rcpeutability for thin webs. 



Two concerns were expressed by Schaevitz when the requirement of high speed 

operation was described to them. First, the maximum frequency response of 30 Hz 

translates to a minimum resolution of about one foot of web at 6000 FPM. However, this 

project does not require every peak and valley to be profiled at fractional inch increments, 

but rather, only to yield the average web thickness over the sample period. Thus, the 

upper frequency response means that the caliper reading will be some average thickness 

because the mass of the piston can't follow high frequency variations. 

Secondly, Schaevitz was unaware of any application of their sensor at speeds 

beyond a few feet per minute, much less at the thousands of feet per minute of a high 

speed winder, and were concerned with the interaction of entrained air affecting the back 

pressure at the nozzle, and consequently affecting readings. Tests were performed where 

step changes in winder speed would show step changes in caliper readings, if the readings 

were effected by speed. However, no steps in the caliper readings were noticeable at 

speeds to 6000 FPM, although they might have been small enough to be masked by the 

typically large web caliper variations. 

A more thorough testing of the effect of speed on caliper readings would be to 

sample caliper at the same point on a web running at different speeds. This was not 

perfom1ed due to the time consuming setup required to put timing marks on a web which 

would serve as triggers to begin caliper sampling. If it turns out there is a measurable 

effect of speed on caliper readings, this could be easily calibrated out. To simplify the 

already complex nature of this project, many of the tests were run at a near constant low 

speed of 500 FPM to reduce any speed effects if they indeed did exist. 

The Schaevitz gage was mounted on the back side of the web, and between the 

slitter rolls as seen in Figure 77. The bottom platen was moved into the sheet run by 

5/32", so that web tension would cause the web to be loaded lightly against this reference 

surface. Desirably, the gage would be located as close as possible to the winding (or 

unwinding) roll, so that the web passing under the gage during a sample was aligned 

nearly as possible with the web being wound onto the roll during that same sample. The 

95.125'' web span between the gage and the 12 o'clock position on the back drum is 

equivalent to 7 .5" rewound roll circumferences at the core, and 0.75" rewound roll 

circumferences at a diameter of 40 inches. Since a minimum effective wrap count of 10 

was di\played, the gage c:ample and diameter sample overlapped at all times, and 

:-.uhstantially for most of the winding cycle. For this reason and others, it was felt that 

realigning the caliper and diameter data was not necessary, although it could be done 

without much effort. 
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Calibrating the Caliper Gage 

Calibrating the span of high resolution gages, such as the Schaevitz with a 5 flinch 
repeatability, to maximum accuracy is difficult because it is hard to find an independent 

reference gage with such accuracy. Precision gage blocks or micrometers are commonly 

available only down to 100 flinch. Furthermore, even if a target block could be measured 
to very fine tolerances, it may not contact the platen directly underneath the gage head due 

to waviness in the surfaces of either the platen or the target block. Though thin flexible 

materials, such as paper and film with a caliper less than 0.01 ",will be forced against the 

platen by the pressure from the nozzle, gage blocks will not likely contact the platen 

exactly under the measurement point. The dilemma becomes that a thin material does not 

provide a large distance over which to set the span, and a thick material does not confom1 

exactly to the platen. 

Fortunately, the Schaevitz demonstration unit which was used for this project 

included a means to calibrate the span adjustment over a large range while simultaneously 

eliminating the platen conformity problem. The demonstration unit included a fixture for 

holding the gage, as well as a precision 0.0001" micrometer connected to a platen. The 

gage and the micrometer were both fixtured on the same axis. With this arrangement, span 

calibration did not require a reference target block, instead the micrometer adjustable platen 

served as both a platen and a distance reference. 

Calibration began by first setting the micrometer near the extended limit of the gage 

travel and then the unit was zeroed. Then the micrometer was advanced to near the 

contracted limit of gage travel and then the span was set. These steps were then repeated a 

couple of times until the zero and span were repeatable. For this PPA-125 gage, the span 

was adjusted to the 100 flinch accuracy of the micrometer over a 0.100" range. Thus for 

example, the accuracy may be expected to be about 3 flinch for a 0.003" thick web, 
although this would be extremely difficult to verify. After 10 days of continuous use, the 

gage span was rechecked to be within the original 100 flinch micrometer accuracy over the 
0.1 00" range. 



Repeatability of the Schaevitz gage was checked in three ways. The first way is to 

simply retract the gage from the bare platen, lower it to the platen, take a reading, and 

repeat several times. The results of this test for 10 readings was a range from -20 ~-tinch to 

0 ~-tinch with a mean of -7.0 ~-tinch and a standard deviation of 6.7 ~-Linch. The second way 
the repeatability was checked was to check the zero after each winding run on the bare 

platen. The results of this test for 14 runs was a range from -60 ~-tinch to+ 130 ~-Linch with 

a mean of -0.7 ~-Linch and a standard deviation of 42.3 ~-tinch. Thus, even though the 

product specifications list a 100 ~-tinch repeatability, the actual performance is considerably 
better. 

Finally, the repeatability of the Schaevitz gage was checked during actual operation 

by reading nominally the same section of web on every other wind to see if the caliper 

profiles were repeatable. As seen in Figures 78 and 79 for light weight coated and no­

carbon release paper respectively, the profiles are extremely repeatable. There are 

however, differences in the runs on both a large scale and a small scale. On a large scale, 

the consecutive runs show a consistent decrease in caliper which is particularly noticeable 

on the NC paper. This is the result of creep in the paper due to radial loading inside a roll. 

Secondly, on a smaller scale tiny differences in the profiles are the result of small 

misalignments of the readings in the CD direction due to slight changes in tracking of the 

web, misalignment of the readings in the MD direction due to a number of causes, and 

finally due to uncertainty in readings. 

Schaevitz Caliper Readings and Paper Test ' ab Standards 

The Schaevitz caliper readings were compared with the Tappi standard test 

procedure 411 as measured by a TMI #449-27 caliper gage. As shown in Figure 80, the 

Schaevitz gage readings were within the 0.07 mil accuracy of the TMI gage for the 

majority of the grades. However. there appeared a tendency for the Schaevitz to read 

consistently smaller despite the lower gaging pressure, especially for the more porous 

grades. This may be the result of either airflow through the web, or the effective thickness 

con'-·cpt discussed earlier. While grades lighter than about 0.010" will be forced against 

the pLHen due to the air pressure frurn the Schacvitz nozzle, heavier grades required a MD 

tension with a slight protrusion of the platen into the web run to ensure conformity to the 

platen. 
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The instrumentation required for this project JS demanding in precJsJOn, 

occasionally complex, and certainly wide in the scope of complexities. Diameter 

measurement from encoders is complicated by data acquisition hardware and software 

considerations detailed in Chapters 6 and 8 respectively, potential slippage or backlash in 

the system, and the equivalent diameter of noncylindrical rolls based on what is 

fundamentally a circumference measurement. Caliper measurement is similarly complex in 

defining what caliper means for rough-surfaced webs, precise calibration to a tiny fraction 

of the thickness of extremely thin webs, correcting caliper measurements to an unloaded 

condition, as well as air entrainment and porosity considerations resulting from caliper 

measurements taken at speed. Also, the Radial Compression or displacement boundary 

condition is extremely sensitive to small changes in the zero or span of caliper 

measurement as will be seen in Chapter 10. Consequently, slight adjustments in the span 

of the theoretical correction to unloaded caliper may be required to give close agreement 

hct\vccn WIS predicted by the Chapter 7 model and those independently measured. 

l Iowcver, the most serious measurement concern is the ex.tren1e accuracy required in the 

basic measurements required for a moderate accuracy of the resulting calculations for the 

-;mall differencing (diametern+l- diametern- caliper) defined by the model. More will be 

:;aid al>out this issue in Chapter 11. 



CHAPTER9 

DATA ACQUISITION SOFTWARE 

Introduction 

In order to implement the new displacement to WIS models given in Chapter 7, the 

roll cliameter and web caliper data must be made available to the computer in digital fom1 as 
a column array of displacements. Though there may be other ways of obtaining this type 

of data, this project gathers data using an approach similar to the density analyzer 

described in Chapter 6 for measuring roll diameter. In addition however, web caliper must 

also be acquired as an analog value and converted to a digital value in parallel to the roll 

diameter data. 

In order to increase flexibility for this prototype, the software required for 

measuring and calculating WIS from displacements is broken up into three separate 

programs. The first is the data acquisition program, DRWL\TD, which acquires diameter 

measurements from counters and reads caliper from an analog input board, and stores 

these values on disk. The second program, DRcompress, reads the output from the first 

program from disk, smooths the data, and writes radius, density, radial compression, 
displacement, and caliper to disk. The third program, DisWis, reads a displacement file 

created by the second program and calculates WIS as well as radial and tangential stresses. 

The first two programs for data acquisition and data preprocessing are discussed in this 

chapter, while the third for calculating stresses is discussed in Chapter 7. All program 

listings are given in Appendix C. 

Though the stress model cares not how diameter and caliper measurements are 

acquired, the choice of hardware and software will effect the data resolution, cost, ease of 

prototype deve lopmcnt, and reduction to practice. Despite the wide variety of computers 
~md industrial controllers that may pcrfom1 either the data acquisition and/or the model 

simulation, an IBM PC-AT clone was selected because it is universally available. 

230 



However, even within an IBM PC-AT there are a wide variety of hardware and 

software options for data acquisition, which must read two or more encoder counter 

channels as well as an analog input channel for web caliper. Since one of the most 

demanding of the tasks for this project is to acquire and process encoder pulses at high 

speed and with great integrity, the counter card becomes a rather key element. For this 

reason, the Metrabyte CTM-05 high speed counter/timer board discussed in Chapter 8 was 

chosen as an inexpensive but very capable data acquisition option. The Metrabyte 

Dash16F analog board was then chosen for handling the single caliper channel to maintain 

system consistency, though many other boards would perform similarly. 

Once the boards are chosen, the practical choices of software is limited somewhat 

due to the desirability of mutual hardware and software support. Since the Metrabyte 

boards are well established, they are supported by software ranging from custom 

programming in standard computer languages such as Basic or C, to programming within 

a data acquisition application such as with Asystant, to menu driven configuration such as 

with Labtech Notebook. Each of these approaches has advantages and disadvantages that 

must be considered. 

The advantages of using a general purpose data acquisition application include a 

wider variety of tools and functions, usually a much quicker development time, and the 

robustness of professionally written software. However, the disadvantages of general 

purpose data acquisition software include a slower throughput, and a smaller data memory 

availability due to the overhead of many functions that might not be used for a particular 

application. Since roll structure resolution will increase with increasing data throughput 

and memory, it was felt that custom programming was justified for this prototype. 

Additional justification also includes the potential for interrupt driven multitasking for 

increased throughput. which is not always available with many general purpose data 

acquisition applications. 

Primarily because of the interrupt capabilities of C, but also because of its slightly 

faster execution and better portability, it was decided that C would be the best choice of 

language. In particular, Borland's Turbo C 3.0 was used for this project, though other C 

implementations would perform similarly. A Metrabyte Drivers Package from Systems 

Guild was purchased to speed up the development. However, the library contained many 

more functions than required for this project, did not directly support Turbo C's syntax, 

and unfortunately cau,ed numcrnus compilation problems. Consequently, only the library 

functions minimally required oy this project were included, and even they had to be 

rewritten slightly. 



This remainder of this chapter describes the software designed to both acquire and 

preprocess the data, so that it is suitable to be read as an input file by the new winding 

model. Included are a discussion of how the data acquisition read can be triggered, the 

mechanics of how the software controls the data acquisition hardware, and software 

timing. Though some of this discussion is necessarily dependent on the particular 

hardware/software implementation of this prototype, many of the principles will hold for 

other implementations. Finally, a separate program for conditioning the digital data for 

noise reduction and calculation of density, radial compression, and displacement is 

described. 

Polling and Interrupts 

Two encoders are required to calculate roll diameter, one on a fixed diameter drum 

or roller traveling at web speed and the other connected to the rewound roll as defined by 

equation (1 02) and detailed in Chapter 6. However, one is treated as a 'timer' for 

controlling sample size while the other is actually used for the diameter calculation. 

Conventionally, the counter on the rewound roll encoder it the 'timer' and is preset prior to 

a run to a value which determines the number of wraps contained in a sample, and is 

programmed to decrement to zero. Conversely, the drum roller starts counting from zero 

up until the sample interval is complete as determined by the roll encoder. A schematic of 

the arrangement of the encoders and counters in the prototype is shown in Figure 81. 

Thus, the data acquisition software structure must handle the incremental roller 

encoder pulses as they become available as determined by the roll encoder. There are two 

basic approaches as to how the program interacts with the incoming encoder and caliper 

samples. While the caliper can be sampled at any time, the encoder samples come in 

packets that are available on unbuffered boards for only the duration of the time that it 

takes to wind the next wrapcount of layers. If the roll encoder counter is read too soon, 

no new data is available. Conversely, if the roll encoder counter is read too late, a sample 

will be irretrievably mi:.sed. Missing even a single sample in what may be thousands 

t:1ken in the course of\\ inding a roll will severely damage the data and must be a\'oided. 

To :Kcommc)date this variable timing of :he encoder samples without 'missing a beat', the 

software can either operate in an interrupt driven mode. or in a polling mode. 
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The simplest approach is the polling mode, where an additional counter (#2 for 

example) serves as a sample counter which increments by one every time the roll counter 

(#1 for example) decrements from its initial wrapcount value to zero. In the polling mode, 

the sample counter is read continuously until an increment is detected, at which time the 

program reads the roller encoder (#3 for example). Caliper values are read as often as 

possible during the time it takes to wind a sample and summed, so that an accurate average 

caliper can be calculated at the end of the sample. Though other schemes are possible, for 

simplicity the caliper is read every time the sample counter is checked. More caliper 

readings could be obtained per wrapcount if the sample counter is checked only every nth 

caliper reading. However, the latency of responding to the new roller encoder samples 

would be increased such that there is an increased chance of a missed sample at high 

rewound roll rotational speeds. 

A more complex but more computationally efficient approach is by using interrupts 

generated by countdown of the roll enccxler counter to zero, which signals the presence of 

a new rolla encoder sample. In this mClde, the program·s throughput incre:1ses because 

the sample counter does not have to be checked frequently for the presence of a new 

sample. Indeed, the sample counter is neither required nor desirable. Similar to the 

polling mode, the caliper is read as often as possible and summed, so that an accurate 

average can be computed at the end o ~ :he sample. 



This type of programming is also known as background/foreground multitasking. 

The foreground task performs nearly all functions including initialization, reading caliper 

as often as possible, reducing raw data to engineering quantities, as well as printing, 

displaying, and saving data. The only functions of the background task are to read the 

roller counter and set a flag to tell the foreground task that a new sample is available. 

Though the foreground task is small and simple, it has absolute priority to put the 
foreground task to sleep temporarily while it processes the new encoder sample. The only 

communication between the two tasks is a single roller counter value and a data flag status 

which are both globally accessible by the foreground task. 

Since the counter board does all of the necessary low level housekeeping of 

resetting counters and buffering input and output as explained in Chapter 6, both the 
polling and interrupt approaches will function identically. However, there are two reasons 

why the interrupt driven software can have a much higher throughput, which means 

potentially more encoder and caliper readings, and consequently better roll structure 
resolution. The first and simplest is that the program does not need to spend time reading 

a sample counter. However, in practice this overhead is only a small fraction of the total 

duty of the program, so that it does not in itself justify the additional complexity of 
interrupts. 

The second benefit of multitasking for this project is if the maximum throughput of 
the program is increased by decreasing the required CPC time for a minimal handling of 
s;Jmples, instead of requiring all data processing and display be perfom1ed for every cycle. 

This can be accomplished by connecting the background data acquisition task and the 

foreground calculation and display task by a ring memory buffer. In this mode, the 

background task adds data to the top of the buffer as samples become available which is 

driven by the roll counter interrupt. The foreground task will read data off the bottom of 

the buffer as remaining CPU time permits for calculation and display. 

Though using a ring buffer will not increase the average throughput, the maximum 
throughput is increased so that the peak sample frequency, as shown in Figure 54, is more 

easily accommodated. Additionally, the minimum wTapcount given in equation (116) is 

reduced because the maximum sample frequency is determined only by the background 

task execution time rather than the entire execution time of reading data, calculating and 

Ji"pl:!ying a sample. One disadvantage of this approach however, is that when the buffer 

u>ntains more than nne -.ample, the display is lagging behind the winder so that the 

computer data acquisition system is no longer operating in real time. This lag was vividly 

shown on an earlier density analyzer system incorporating multitasking with a ring buffer, 

which continued to process data from a 10,000 FP}.1 run for a minute after the winder had 

finished winding the roll. 



Since interrupt driven multitasking has some advantage over polling, it was the 

first approach tried for this project. The first attempt at multitasking was to use relevant 

core portions of an earlier density analyzer system developed at Beloit which had a 

background task written in C and a foreground task written in Basic. However, many 

difficulties emerged when trying to extract the few lines of code from the nearly 10,000 

lines in the original program without disabling its operation. Additionally, the original 

density program was written in a different version of C which used a real-time toolkit, as 

well as a different version of Basic, so that portability problems were also experienced. 

The second attempt was to modify a textbook example of keyboard interrupts. However, 

the program was very prone to shut down the hard disk drive and the problem was not 

resolved even after consulting an expert in PC programming. Perhaps this was the result 

of conflict between interrupt vectors or differences between the architecture of the PC-AT 

clone and an IBM PC-AT upon which the textbook program was based. The final attempt 

was to use a Basic interrupt toolkit provided with the Metrabyte CTM-05 counter card. 
Again, language version compatibility problems were unresolved. 

Thus, after considerable effort, an interrupt driven structure was abandoned for the 

prototype in favor of the simpler polling mode. Though data integrity was not 

compromised in any way because the counter board latches samples, it required slowing 

the winder so that the wrap count times the rewound roll revolutionary period did not 

exceed the speed at which the computer could process a sample cycle. It is expected that 

future applications of this program would incorporate the faster interrupt driven approach. 

Data Acquisition Program Structure 

The data acquisition program for ellis project, written entirely in Borland's Turbo C 

3.0, is composed of a main program which provides the framework for the application, 

calculates, displays and saves data. The main program calls two subprograms which 

initialize and read the counter card and analog/digital card respectively. The subprogram 

for the counter card is based in part on an earlier density analyzer program, and the 

subprogram for the analog/digital card is based in part from the Metrabyte Drivers Package 

from Systems Guild. The main program, counter subprogram and analog/digital 

<;uhprograrn, called DRWI:-\D.C, ctrctm05.h and drchsh 16.h respectively, are included in 

the appendices and will each be discussed in tum. Although the program is set up for 

polling, only a few modifications would be required to convert the program to interrupt 

driven execution. 



The main program, DRWIND.C, begins by setting up a storage array for roller 

pulses as an unsigned integer, and caliper as a float. Then execution enters the main loop 

of the program which first reads the caliper from analog input channel #1, which is later 

summed to yield an average calculation, and then reads the counter board. There are three 

possible cases from a poll of the sample counter #2, each of which must be handled 

differently. These cases are no increment, and increment of one, and an increment of more 

than one. 

If the sample counter #2 shows no increment, the loop of reading the caliper and 

sample counter is repeated. This means that a new sample is not available. If the sample 

counter #2 shows an increment of one, the roller counter pulses and average caliper are 

stored in their respective arrays. This means a new sample is available. Additionally, the 

sample number, roller counter, caliper value and number of caliper readings during that 

sample cycle are printed to screen for operator feedback. If the sample counter shows an 

increment of more than one, a sample has been missed and an error is printed to the 

screen. If this occurs it will not be possible to 'splice' data across such an event. 

After the data acquisition run is terminated either by exceeding the maximum 

memory storage of about 10,000 sets of samples or on keyboard hit, the sample number, 

the roller pulses and average caliper arrays are written to disk for later processing into 

diameter, density, radial compression or stress calculations. An outline of the main 

program is as follows: 

initialize program 
rnam 

print startup screen 
initialize Metrabyte CTM-05 counter card 
initialize Metra byte Dash 16 analog/digital card 
enable counters 
while sample# is less than maximum storage and keyboard not hit 

if number of caliper readings less than 32000 
increment caliper re<Jding counter 
re<Jd caliper and add to caliper sum 

read counter card 
if new counter sample available 

clisahlc counters 

store roller counter #3 value to array 
compute and store average cal ipcr to array 
print to screen 
;cro the Clliper reac1ing counter and c_·alipcr sum v:1riahlc 

save dat.a arrdys tu disk drive 
print startup screen suhprogram 
save data array to disk suhprogmm 



.:..Jt 

The counter subprogram, drctm05.h must first configure the operation of the board 

and each of the five counters from the many possible modes of operation. This includes 

setting the roll counter #1 in a decrement mode with inputs from channel #1, and the 

sample counter #2 and the roller counter #3 in an increment mode with inputs from the 

output of counter #1 and channel #3 respectively. The inputs and outputs for each of the 

counters may be either physically wired as in the case of the inputs for counters #1 and #2 

and outputs from counter #1 to the interrupt, or selected in software such as counter #2's 

input from the output of counter #1. Additionally, the input triggers must be selected as 

either rising or level edged. Details of the configuration of this particular counter can be 

found in the manuals for the Metrabyte CTM-05 board. 

During data acquisition operation, the sample counter #2 is read to check for an 

increment of one. If so, the roller counter #3 and other optional counters are read into a 

small global data array. Since the counters are 16 bit, while the bus is only 8 bit, the count 

value must be read as two consecutive 8 bit values from each counter. The total count for 

each counter is then the low byte plus 256 times the high byte. An outline of the counter 
program is as follows: 

initialize program 

initialize counter board subprogram 

initialize the master mode register 

for counter #1 to #5 

initialize each counter from a configuration array 

zero all counters 

load counter #l's load register with the wrap count pulse value 

read counter board subprogram 

read roll counter #2 

counter flag = sample#- old sample number 

if counter flag = 0 

no new data 

if counter flag = 1 

increment sample# 

read counters #3 to #5 

if counter flag is not equal to 0 or 1 

print error message 



The analog/digital subprogram is considerably more complex due to the much 

wider variety of data acquisition and control options of the 16 channel Metrabyte Dash 16 

board, and will not be discussed in detail. The programming of this board was simplified 

using portions of the Metrabyte Drivers Package from Systems Guild. It was more 

expedient to only use relevant portions of the drivers rather than the whole package 

because there were numerous incompatibilities between the supported list of C compilers 

and the Turbo C used for this project. The functions used in this subprogram are shown 

below: 

adcD16-

adcranD16-

controlD16-

dacranD16-

initD16-

intvlD16-

!factor-

single channel analog to digital conversion 

sets the conversion channel range for the hardware 

sets up the interrupt, dma and conversion modes 

sets up digital to analog conversion channel range 
initialize IO base address, dma channel etc 

sets timer interval 

splits a long into two factors 

Though the entire data acquisition program is very plain, it is functional, short and 

reasonably efficient. More important however, good modular programming practices were 

used, so that the program is not hardwired to this particular application, but rather is easily 

expanded to additional capabilities. Changing counter or analog configurations, or adding 

channels is made relatively easy by numerous define statements and configuration arrays. 

For example, the counter board can be reconfigured so that an internal clock and/or 

additional rollers can be read on the unused channels #4 and #5. Similarly, additional 

analog input channels, perhaps for torque, nip, tension or speed, could be read and stored. 

For this development prototype however, additional capabilities were not considered 

because memory and throughput would be reduced for the important parameters of roller 

counter pulses and analog caliper values. 

Program Profiling 

Data acquisition throughput is an important parameter that in part determines the 

maximum rotational speed of the rewound roll and minimum wrapcount. If the 

L'('mputer/software system is too slow, the data acquisition cycle may be overru'· 1nd 

samples will be missed. For this project in particular, the program must be able to read the 

encoder counters and the caliper gage at least once during the minimum time it takes to 

wind the layers of web corresponding to the wrapcount sctpoint, which usually occurs at 

the end of the acceleration cycle shown in Figure 54. 



One way to measure throughput of a computer program is to use software 
profilers, which are supplied with some C language development packages. These 
profilers are small programs that monitor the amount of time spent in user selected portions 
of the main application. Using these profilers, the software developer can determine 
quantitatively what portions of the code require the greatest CPU time, so that further 
development effort can maximize processing speed most effectively. These profilers 
unfortunately consume some CPU time themselves, so they affect the timing of the 
software they are trying to measure. Thus profilers may underpredict throughput of 
software such as data acquisition applications that are free running at high frequency. 
Additionally, these profilers may not be able to appropriately measure the timing of 
programs whose execution varies considerably such as during the highly variable winding 

cycle. 

Another alternative to internal timing using software profilers is to use external 
timing. This approach is commonly used to benchmark programs where the execution 
time of one or more cycles of a program or subprogram is timed with a stopwatch. 
Wound roll rotational frequency, determined by surface speed and current diameter, can be 
used as an external clock to measure throughput of this program. In particular, the number 
of caliper readings per sample, which must be greater than zero, as a function of the time it 
takes to wind layers corresponding to the wrapcount value will not only benchmark the 
program, but will also determine how much time is spent on the data acquisition task 
versus the calculation and display tasks. 

The number of caliper readings per sample, which is printed to the screen and used 
to calculate average caliper, can be used along with winder speed and diameter to calculate 
distribution of CPU time as seen in Figure 82. From this data, it takes only 0.5 
milliseconds to read and sum the caliper, and read one counter. However, it takes 104 
milliseconds to read three counters, compute an average, store data to an array, and print 
four numbers to the screen. Since the vast majority of CPU time is used to print numbers 
to the screen, large increases in sample frequency could be achieved by simply reducing 
the amount of data printed to the screen. 

Since the sample number and the number of caliper readings per sample are not 
very useful for production applications, the throughput would be nearly doubled by 
elimirnting these print qatcmcnts. Secondly, the ciJta need not be printed every sample, 
hut only every nth -.;ample. The parameter n might be sized to give about 10-100 prints per 

winding cycle, which is enough for the user to be assured of proper operation, but not 
enough to create a fine real time picture of roll structure, which would have to await 
postprocessing. \Vith these project runs for example, only printing two numbers on the 

screen every 25 aCL]lJisitions would yield up to a 50 fold increase in throughput. 
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Another observation that can be made from Figure 82 is that due to the large print 

overhead, a latency safety fac 'r should be used so that at least one caliper reading, if not 

m:my more, should be made with reliability so that missed samples would be rare. If an 

additional 10% cushion above the required 104 milliseconds is desired, the curvefit 

indicates that an average of 20 caliper readings per sample would be made. In actual 

practice, the uncertainty in print latency seriously impaired reliability if the winder speed 

was above that which produced about 50 caliper readings per sample. Finally, there is no 

point in reading the caliper gage faster than its response (approximately 30Hz). 

\1any of the first runs were made using the normal high acceleration of the lab 

winder, which caused an overrun of the data acquisition for until the wound roll reached 

about 18" in diameter. Consequently, for the winder runs numbered 32-41, the winder 

was accelerated slowly maintaining a minimum of 200 caliper readings until reaching 500 

!P\1 at abc,ut a 12 inL·h rewound roll diameter. at which time the rest of the \\ inding cycle 

was run at a constcllH surLtcc speed of 500 fP.\1. This slow speed is not necessary for 

production applications, but it might have been helpful for this prototype where the effects 

of air e-ntrainment on caliper measurements. slippage, and other undesirable behavior were 

to lx reduced while maintaining an extremely low wrapcount. 



Data Preprocessing 

The design philosophy of the prototype was to both gather data with the best 

resolution possible, as well as preserve as much flexibility as possible. Attempts to 

increase data resolution meant using extremely high count encoders. For the latter mns, 

the encoders used yielded an effective 100,000 pulses per revolution, which was an order 

of magnitude greater than used on any other density-like instmment. Additionally, 

extremely low wrapcounts were used so as to increase the number of raw data points 

which could be used to constmct final calculated values. This both slowed the throughput 

of the prototype and made data set sizes approaching 10,000 samples (200Kb) per run. 

However, the rationale was that data volume could be reduced after acquisition if need be 

by simple averaging, but it could not be made finer than originally constructed. Thus, it 

was hoped that this high data volume would be useful for increasing resolution, allow 

discrete errors to be more easily detected and corrected (Chauvent's principle or other 

technique), and giving more berth for applying smoothing and filtering techniques. 

The desire for flexibility was achieved by isolating the acquisition task from any 

. consequential calculations which might be difficult to undo. Thus, the acquisition task 

only stored the raw roller encoder count and caliper value data. However, because the raw 

data was taken on such fine intervals as described above, it needed preprocessing to 

average or smooth it sufficiently to be suitable for inputs to density, radial compression or 

stress calculations. Chapter 6 contains a more detailed discussion of data noise. Thus, a 

rlata preprocessing task, DRcompress, was written which reads the data stored on disk 

from the acquisition task, smooths the raw data, as well as calculate and writes radius, 

density, radial compression, displacement, and caliper to disk. 

Smoothing the encoder and caliper data was the most difficult task, as a variety of 

techniques were tried with mixed success. However, the following preprocessing 

combination seemed to yield the best results. 

1. smooth roller enccxler count and raw caliper 

calculate diameter and caliper 

2. average diameter and caliper, 

(~::mrothing #=averaging#, COITesponding to about 0.05'' on radius) 

calculate Jcn~ity, deflection. and/or radial compression 

3. digitallowpass filter of density, deflection, and/or radial compression 

(digital!O\vpass filter value setpoint approximately 2) 



where the strength of the digitallowpass filter can be adjusted by the user prior to the data 

conditioning run in the algorithm shown below 

C=VALUE(l) 

FORQ=3TON 

VALUE(Q) = VALUE(Q) + VALUE(Q-1)- C*(l-2*STRENGTH) 

C=VALUE(Q) 

NEXTQ 

A final issue in data preprocessing that the effective wrapcount determined by the 

value of averaging must be set so that data noise is reasonable. If it is too fine the noise 

will be excessive, and if too coarse the spatial resolution of the resulting calculated plot of 

density or other values will be too coarse to detect small duration events such as splices or 

even speed changes. Though the averaging value effects the plot noise, the statistical 

resolution as defined in Chapter 10 is relatively unaffected. Thus, the wrapcount 

multiplied by the averaging is typically set to be aesthetically pleasing. 

However as mentioned in Chapters 3 and 7, winding models have an optimum grid 

size for maximum accuracy, which will not likely be the same size as the effective 

wrapcount acquired by the instrument. Fortunately, the solution for matching the acquired 

wrapcount and the required mo, 1 grid size is straightforward. If the required grid size is 

coarser than the acquired data, the acquired data is simply averaged. If the required grid 

size is finer, the acquired data is replicated. In either case, the deflection is proportional to 

effective wrapcount or grid size as seen in equations (28). Thus for example, if the 

acquired data is replicated by a factor of 10, then the calculated deflection must be divided 

by 10. 

The result of improvements in density analyzer hardware, the addition of caliper 

measurements, and improved data conditioning has simultaneously reduced the noise of 

displayed data points and increased the spatial resolution an order of magnitude better than 

previous density analyzer setups. Additionally as will be seen in Chapter 10, the 

sensitivity of the new system to roll qnJcture changes has been statistically determined to 

he approximately an nrder of magnitude better than any other roll stnJcture measurement 

method. 



Conclusion 

This chapter has described the somewhat dry mechanics of the operation of the data 

acquisition hardware and software. However, this aspect of the project is important as the 

serial nature of this displacement to stress approach requires that each component, which 

includes the data acquisition and preprocessing, maintain data integrity as best possible. 

Furthermore, any future developments of this approach need be aware of the many issues 

brought forth here and in other chapters. 

Since the software was written strictly for prototype development and use by the 

author only, there are several improvements that should be considered in future work. 

First, the high count encoders and very small wrap counts used to attempt to improve 

resolution simply did not pan out. As mentioned in Chapter 6, the law of diminishing 

returns applies where improvements resulting from anything above about 10,000 pulses 

per revolution is masked by other winding equipment sources of noise. Thus, more 

modest encoders and increased wrap counts are indicated which will greatly speed data 

throughput and reduce data volume. 

Secondly, the data conditioning could be merged with the data acquisition tasks if 

sufficient experience is gained in a particular operating environment. Thirdly, the program 

should be converted from polling to interrupt driven to increase throughput. Similarly, the 

data acquisition screen output can be reduced for increased throughput. This should lead 

to instruments capable of keeping up with a 10,000 FPM winder, as already demonstrated 

by similar density-like programs marketed by Beloit. Finally, the plain programming for 

this prototype has a minimal user interface, which must be expanded for general use. It is 

anticipated that if this project is implemented by others for either lab studies or production 

quality control, that an enhanced version of this software will be written which is tailored 

for a specific application or environment. 



CHAPTER 10 

SENSITIVITY ANALYSIS 

Introduction 

This project takes direct measurements of wound roll diameter and web caliper and 

uses those measurements as inputs to calculate a wide variety of wound roll quantities. 

These include web length, speed, and density which were previously available by other 

means. Additionally, this project introduces at least three new measures of roll structure: 

caliper corrected density discussed in Chapter 6, as well as radial compression and 

calculated stress profiles which were both discussed in Chapter 7. However, in order to 

implement these new measures, many developments in wound roll data acquisition were 

also required as described in Chapter 8. Though the density analyzer does provide the 

required diameter measurement, it needed to be supplemented by (on-line) web caliper 

measurements. Furthermore, the precision and resolution of the measurements had to be 

increa~ed beyond that typical of presently available density analyzers. 

The multi-faceted net result of this project can be roughly divided into two areas; 

experimental developments and analytical modeling developments. Each of these areas 

must be evaluated in terms of both accuracy and resolution against an independent 

measure. Thus, this chapter begins with a discussion of accuracy and resolution. Then, 

the resolution of the radial compression measurement is evaluated by comparing with 

several popular present methods such as the Rhometer and WIT- WOT winder. This 

evaluatior ;esults from a novel statistical technique developed by the author for comparing 

sensitivities of instruments which measure in different fundamental quantities or units. 

;\ext, wound roll model accuracy is discussed in general. Finally, the displacement-to­

<.;tress wound roll model is evaluated for accuracy. numerical stability, and sensitivity to 

uncertainties in mechanical properties. \Ve will see that while the new measurement 

method is very sensitive compared \\ ith pre\·ious methods, the model jemanding in 



Accuracy and Resolution Overview 

Since the terms accuracy, precision and resolution are often used loosely and 

synonymously, it is important to bear in mind the distinction used in the discussion of this 

chapter. Accuracy is the ability for a measurement system to closely reproduce an 

independent measure, which may be a standard, reference, or alternative measure that is 

assumed to be more exact and precise. For example, a strain reading on a simple structure 

under an uniaxial load should give a value close to that calculated by the measured load, 

cross-sectional area and modulus of elasticity. Crucial to evaluation of accuracy is the 

existence of an independent measure, with assumed or demonstrated precision. In 

general, accuracy is often calibrated by a zero and span adjustment against a standard 

reference. 

Resolution is the ability to statistically discern small changes in a relevant and 

desired measurement parameter; despite sources of noise which increase data uncertainty 

and undesirable cross-sensitivity to other parameters. For example, a strain gage system 

measures deformations in a structure, but may have an undesirable sensitivity to changes 

in temperature. Other strain measurement systems such as brittle coatings may have a 

greater cross-sensitivity to typical changes in application, temperature, and humidity than 

they do to the strain parameter which is to be measured. In general, resolution is improved 

with care in setup, and by pronerly matching the range of measurement to the application. 

However, evaluating roll structure measurement accuracy and resolution is much 

more difficult than more traditional measurements such as time, length and force for 

example. One reason for this is that the quantification of roll structure is a relatively new 

science with only about three decades of development. As a result, few commercial 

instruments and only one standard exists for roll structure measurement. Another reason, 

is the practical difficulty of sensor or instrument development that is suitable for the harsh 

environment of the winder. Furthermore, since only the exterior of a roll is accessible 

without damaging the web, it is difficult to determine the state of the interior from surface 

measurements. 

Finally, this project is the marriage of both new experimental and analytical 

techniques which must be separated to analyze their independent contributions to the 

overall system. This is especially important clue to the serial nature of the new system. 

ror example, errors and uncertainties in the initial clat:1 acquisition measurements \vill 

propagate downstream through to the calculated results. However, good raw 

measurements processed through calculations which are not numerically stable may result 

in a similarly appearing results. Thus, the need to separate measurement from calculation. 



At this time, it is appropriate do discuss the relative importance of both accuracy 

and resoluti0n. For both production quality control, as well as lab research studies, 

resolution is ule more important of the two criteria. This is especially true at the time of 

this writing where there is a near total absence of quantitative first principle roll defect 

theories based on stress parameters. For quality control, roll structure measurements can 

and are most useful even if they are not accurate due to the lack of an independent 

calibration against a known stress or other reference, such as with the Rhometer or density 

analyzer. Implementation of quality control can be as simple as merely comparing roll 

structure profiles of a sampled roll against those judged to be acceptable or unacceptable 

l156]. Indeed, this is the mode of operation of nearly all winders where roll quality is 

measured. The only real compromise is that the measure of acceptability must be defined 

for each significantly different grade that might be wound on a winder. As long as a 

method has good resolution, which many unfortunately do not, and is practically 

implemented, which unfortunately many are not, the method can be useful without the 

requirement of accuracy. 

The premise that resolution is more important than accuracy, even for research 

applications, is also easy to demonstrate with the case of the Cameron Gap. Though in 

principle the gap test should be very accurate because it is based on basic and simple 

physics of elongation which can be independently verified, the test is almost useless due to 

extreme data noise. Thus without resolution, accuracy has no application. However, 

without accuracy, resolution does have lab application. For example, if a study desired to 

know which of the TNT's caused the more significant roll stmcture change for a given 

system, a measurement with resolution only might yield that answer. Thus, resolution 

without accuracy still allows detection and ranking of many roll structure changes. 

However, once a good resolution has been achieved, such as will be demonstrated 

with this new system, then it is important to turn attention to the accuracy of stress 

measurement. There are two principal reasons why stress measurement is very important. 

The first is that a desirable stress profile does not depend as significantly on small 

differences in web material, as do other measures. Indeed, the typical wound-in-stresses 

for many grades of film, paper and textiles are similar. allowing some generalizations 

between materials to be made. Secondly, it is anticipated that quantitative first principle 

roll defect theories will be developed and validated in the near future. Since these will 

almost undoubtedly be based on mechanics formulations, practical measurements of stress 

will be crucictl to their ultimate application oubide of the laooratory. 



Roll Structure Resolution 

Comparing the resolution of the various roll structure measurements is difficult 

because there are no established standards. This is exacerbated by the fact that nearly all of 

the measurement types have different scales, and there are few first principle or empirical 

conversions between them. However, this resolution comparison problem was addressed 

previously by the author in a paper on roll quality measurement [169, 1711, and will be 

discussed in more detail shortly. The technique developed was to wind a roll with a large 

step change in torque, nip, tension or caliper. Then a series of roll structure measurements 

of the various methods were made on each side of the step. Finally, statistics were used to 

determine the number of measurements required for each of the methods to discern a 

specified step size to a specified statistical confidence. With this method, the resolution of 

different measurement types could be quantitatively ranked for a grade of web, even if the 

quantities or scales were different. 

Resolution of a roll structure measurement is the sensitivity to changes in the 

wound roll such as the TNT's of winding, and a limited sensitivity to extraneous 

parameters that increase data uncertainty and noise. One measure of resolution is 

repeatability. If for example, we make two nominally identical measurements of tension, 

we would expect nearly identical values. This would be easy to check for those methods 

which do not alter the roll in the process of testing. However, if the density analyzer is 

used to profile a roll, it can't be rewound identically to make another run to check for 

repeatability. Similarly, the Cameron Gap cannot be checked for repeatability because 

once a layer is severed to measure the gap, the process cannot be repeated on that same 

layer, and subsequent layers may be under different tensions. Also, the impact based 

hardness tests such as the Rhometer and Schmidt Hammer can't be checked for 

repeatability because the impact compacts the paper at that location making subsequent 

readings higher, and adjacent positions may be at different levels of hardness. 

Factors that affect repeatability are sensitivity to operator technique and 

measurement noise. Typically, those test methods that are manually operated, and 

particularly those that are handheld, are very sensitive to operator technique. Though the 

readings taken by an experienced Rhometer, Schmidt Hammer, or Smith Needle operator 

may be consistent and repeatable within themselves, they may have a different bias or 

offset than those taken by a different experienced operator. Those who have less 

experience operating handheld testers will find con,iderable scatter in their readings as they 

alter the exact grip and motions slightly during a series of readings. If a short term study 

of roll stmcture requires high quality data, a single experienced operator should perform all 

of the testing. as was done for this project. 



Roll structure measurements are often sensitive to orientation and gravity. If 

handheld testers are not oriented consistently, noise will be increased. Gravity will always 

influence measurements because the stresses at the top of the roll are different than at the 

bottom and sides. Web stresses are the superposition of internal stresses known as roll 

structure and external stresses due to gravity and support loading as discussed in Chapter 

4. One example is a core supported roll, which will have higher readings at the top than 

the bottom. Similarly, different readings will be obtained if the roll is stored on end, or 

laying on the floor than when it is supported at the core. Because of this, it is important 

that the most convenient orientation of instrvnent and roll be established, and that all tests 

be performed to that standard for consistency. 

The effect of measurement noise is to decrease the ability ro reliably discriminate 

changes between one roll and the next, or between positions on the same roll. The easiest 

way to increase the accuracy of roll structure testing is to decrease noise by taking many 

readings and reporting the average. Though this will increase the cost of testing, in 

principle any specified level of effective resolution can be obtained simply by taking 

enough measurements. 

To quantify resolution, several observations can be made. First, the measurement 

must be sensitive to changes in the stresses in a roll, as a function of the TNT's for 

example. One way to induce a change in roll structure is to wind a roll with a step change 

in torque, nip, tension and/or caliper. The second observation is that though in principle 

any specified level of effective resolution can be achieved by simply averaging enough 

readings, the best measurement methods would detect roll structure changes with the 

fewest individual readings. The lack of repeatability testing coupled with these 

observations led the author to develop the only current method of evaluating roll structure 

testers l169, 171j. 

To input a known change in roll structuring, a sudden step change in the Tl\"T 

winding parameters is made at some intermediate diameter. The larger the step, the more 

accurate will be the evaluation of test methods under consideration. From the core to 20 

inches, as much torque, nip and tension is applied as the sheet will reliably tolerate. Then 

at 20 inches, the torque, nip and/or tension is dropped as much as possible. Figure 83 

shows a large step drop from 4 PLI to 1 PLI in tension occurring at a diameter of 20 

inches. The object here is not to \vind a good roll, but to evaluate the resolution of test 

methods. If a method can't discriminate gross changes to the roll such as this, which 

some can't, then it will be of no use whatever to sense smaller and more typical changes 

seen during winding. Another method to apply a step input would be to splice together 

two widely different caliper rolls at the unwind, and wind them into a single roll without 

making a step change to the T!\Yf parameters. 
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Once this unusual roll has been wound, it must be unwound while carefully 

m:Jking numerous measurements with each of the methods to be evaluated. A minimum of 

S measurements should be made with each of the instruments at diametral increments of 2 

inches. Some planning is required in the sequencing of the measurements. The density 

analyzer must be run on the roll as it is wound. The friction based Core Torque, Pull Tab 

and Smith Needle should be done prior to unwinding. While most of the other methods 

would be done on a rewinder's unwind, the Cameron Gap must of course be done last 

because it destroys the roll for future measurement. 

Plots of each of the measurement methods against roll diameter are then made 

which would desirably show a step decrease in hardness, tension, or whatever roll 

stnJcture scale is used. at the diameter corresponding to the change in roll structuring 

input. Though a subjective evaluation of resolution can be made by the visual size of the 

step in LOmparisc'n ~ith rl,c noise on the nominally level sections on either side of the step, 

a quantitati\C and hL'itcr L\ :\luation can be nMde if statistics are applied. In particular. the 

Z-test for the significance of the difference of means are be applied to data 1-2" on either 

sick of the step. 



The Z- test is given as [ 177]: 

(145a) z = ~ 1 - ~2 where 
SD 

(145b) SD 

and where 

z = z test parameter taken from s-nonnal distribution table 

SD = 
~1 

~2 

standard error of the estimate 

mean 1-2" before the roll structure step 

mean 1-2" after the roll structure step 

standard deviation before the roll structure step 

cr2 = standard deviation after the roll structure step 

number of measurements before the roll structure step 

number of measurements after the roll structure step. 

For simplicity, the number of measurements before and after the step, n1 and n2, can be 

made the same and called nmcasurcd· Thus, solving equations (145) for Zmeasured gives 

l n 112 { )l 
(146) _l measured f..ll - f..l2 J 

Zmcasurcd - ( ) 
(Jl + (}2 

where Zmcasurcd is the value where the normal table is entered to find the corresponding 

confidence level in per cent. As seen from equation (146), the statistical confidence in 

detecting the difference in means will increase with the number of measurements made and 

the difference in means, and decrease with increasing standard deviation or data scatter. 

However, it may likely be that the number of initial measurements were too low to 

g1ve a desired statistical confidence as given by equations (145), or too high to be 

practical. Thus, equation ( 146) can be also be written for a desirable confidence level to 

predict the required number of measurements as 



Solving equations (146) and (147) simultaneously for the required number of 

measurements to yield a desired confidence level gives 

148) ( Zctesired )2 
( nrequired = nmc; ·cd 

Zmeasured 

Thus from equation (148), the number of required measurements can be calculated given 

measurements for each side of a step for which the Zmcasured statistic is calculated, and 

from a zdcsired detem1ined from a desired confidence level and the normal table. For this 

project, the desirable confidence level used was 90%. 

The procedure for determining resolution is as follows: 

1. Wind a roll with a large step change in torque, nip and/or tension near the midpoint 

diameter. 

2. Take several measurements, at least five and the more the better, at 1-2" on each 

side of the step. 

3. Compute Zmcasurcd from equations ( 145). 
4. Compute nrequircd from equation ( 148). 
5. This test, though time-consuming, should be done at least once for each grade and 

measurement method because different grades behave differently; and wound rolls 

and measurements have uncertainty in themselves, which yields some uncertainty 

in the resulting evaluation. Additionally, the size of the step used in the test and the 

number of measurements taken should yield a high Zmc:.tsured to reduce evaluation 

uncertainty. 

There are several issues that result from this work. First, until now the step size 

was desirably large to increase the resolution of the ranking itself, but unspecified in size. 

Additionally, a good roll structure measurement method must not only statistically discern 

the artificially large step produced by this step, but more important, the arbitrarily smaller 

changes seen in actual winding. However, this same procedure can be used to determine 

the number of required measurements for any arbitrarily sized step in a similar manner as 

above only using a smaller difference in means for equation (147). Thus, the number of 

required measurements are 



As seen from equation (149), the number of required measurements increases as 

one over the square of the size of the desired detectable difference. Thus, it takes four 

times as many measurements to discriminate changes half the size, and 100 times as many 

measurements to discriminate to a change 1/10 the size. Clearly, measurement resolution 

is a very important test design consideration. Additionally as we will see shortly, there is 

an extremely wide range of resolutions among the various methods. 

Another issue that arises is that several methods such as the WIT-WOT, density 

analyzer and stress calculation does not necessarily have only a discrete number of 

displayed data points upon which to evaluate resolution. For example, with the same raw 

data a density analyzer may average 10 sets of raw data to yield a displayed point, or only 

5 to display a point on a graph. As the amount of averaging increases, the spatial 

resolution decreases because there are fewer resulting points. However, each point has 

been more heavily averaged and consequently has a reduced variance. Thus, these devices 

can increase the number of displayed points at the expense of increased noise or vice 

versa. 

To accommodate these 'analog' type measurements into the above formulas, one 

simply interprets n as the number of inches of web added to the diameter of the roll 

corresponding to any displayed sample size, instead of the number of measured points. It 

should not be surprising that the statistical measurement resolution of the 'analog' devices 

are not largely effected by changing the amount of averaging used to produced final data. 

This is because the resolution is dependent largely on the required amount of material that 

must be sampled (wound into the roll) before a statistically significant amount is obtained. 

In other words, many high variance points from low averaging carry a similar significance 

as do fewer low variance points from high averaging. Thus, tne degree of raw data 

averaging for plots of the WIT-WOT and density-like methods is primarily a matter of 

taste. 

The final issue generated by this type of roll structure measurement evaluation is 

that conversion formulas between the methods can be generated from the results. Since 

two values are known for several devices, one for each side of the step, a conversion 

formula of the form y = mx + b is readily calculated, assuming monotonically 

continuously increasing measurements, which is true for all the methods, and linearity, 

which is approximately true for the methods. Thus. it is possible to convert Rhometer 

readings into '"ound in-tension for example. However. it must be understood that this 

empirical conversion will be only valid for a particular web grade wound under very 

similar circumstances, and that extrapolation to other materials and conditions is likely to 

be unreliable. 



Radial Compression Resolution 

In this section, a comparison of the new system with other commonly used roll 

measurement methods will be given. The desire is that this project has resulted in a 

measure with an improved sensitivity to changes in roll structure, and an immunity to 

sources of measurement noise. As given earlier, the net effect of the desirable sensitivity 

to roll structure and the undesirable sensitivity to noise is statistically quantified by the 

number of measurements required to obtain a specified confidence for a specified roll 

structure change. 

Though the new project can calculate several different roll structure measures, 

Radial Compression is selected for comparison for several reasons. First, Radial 

Compression is a potentially stand-alone product of this new project and may have merit of 

its own. Secondly, the Radial Compression calculation follows directly from the diameter 

and caliper measurements so that numerical uncertainty is eliminated, leaving only a 

measure of the quality of the new instrumentation. Finally, Radial Compression is a 

nondimensionalization of the displacement boundary condition which drives the new stress 

model. 

The resolution evaluation testing for this project was done on a roll of NCR paper, 

for runs #38 and #41, which had a step drop in tension from 4 PLI to 1 PLI at a rewound 

roll diameter of 20". The Rhometer, Schmidt Hammer, Smith Needle, density analyzer, 

and radial compression data versus roll diameter are plotted in the next several figures. 

Additionally, results from earlier testing on LWC and newsprint papers are also included 

[169, 171]. Finally, the results of all testing of this nature is summarized in Table 14. 

The legend on these graphs include the material, run number, the number of raw data 

points averaged to produce a display point, and the resolution as defined earlier. 

The Rhometer profile, shown in Figure 84, may be visually interpreted as having a 

step drop. However, despite hundreds of manually obtained readings, the results are 

disappointing and ambiguous. The Schmidt Hammer, shown in Figure 85, appears to 

show no sensitivity to the step drop in roll structuring, but rather seem to be composed 

almost entirely of noise. However, the Smith ~eedle shown in Figure 86, does reflect a 

very noticeable step. The Cameron Gap test performed so poorly for 1\ewsprint, shown 

in Figure 87, LWC which is not graphed, and other non-published work, that it was not 

(\Cn con:,idcred for testing on this project. 0.'early 400 manually obtained measurements 

arc needed to produce these plots, and each displayed data point in these graphs is the 

result of averaging 10 raw data readings. 
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The two density analyzer plots, shown in Figures 88 and 89, are apparently 
sensitive to the step change in roll structure, but contain some amount of noise due 
primarily to changes in the incoming caliper. Radial Compression, which is a new 
parameter defined by this project and shown in Figures 90 and 91, gives an unusually fine 
mesh of data, appears to be relatively' sensitive to roll structure changes, and relatively 
immune to noise. Figure 90 shows more discontinuities that are due to a web break at 9", 
as well as due to a roll that was getting very beat up by the 1Oth run. However, Figure 91 
for the same roll wound earlier shows a level of roll structure detail and sensitivity that is 
unprecedented in the thousands of roll structure plots this author has previously witnessed. 
The trend to note is that the new Radial Compression plot shown in Figure 90 is not only 
displayed at a finer resolution, it does so with considerably less noise. This is the result of 
the addition of caliper information as discussed in Chapter 6. The net result is an order of 
magnitude greater statistical resolution with this new system. 

Finally, the WIT-WOT shown in Figure 92, also gives high sensitivity and detail. 
This is the result of a recent addition of continuous monitoring of the WOT load cells by 
computerized data acquisition. The WIT-WOT winder is a reference point for the best in 
roll structure accuracy and sensitivity. The trend to note is that again the new Radial 
Compression measure has met and exceeded the resolution of the best previously 
obtainable measure. However, this new system developed here has another distinct and 
important advantage since it can be applied to most any lab or production winder or 
unwind, while the WIT-WOT is a specialized instrument that exists in only a few locations 
in the world. 

Table 14 summarizes the resolutions of all methods tested both for this project and 
previous work [ 169, 171]. The quantification of resolution agrees with earlier visual 
observations that there is considerable difference in the performance of the various 
methods. The Cameron Gap and Schmidt Hammer consistently performed so poorly that 
little useful data projects above the noise. The Rhometer, density analyzer and Smith 
Needle, though containing much noise, can discern reasonably small roll structure changes 
given a sufficient number of measurements. The WIT-WOT and new Radial Compression 
measures have significantly better resolutions than the other devices. 

I-Iowever, the reader should be aware that both the resolutions and to some extent 
the ranking of the re-;olution of these methods can be very application dependent. For 
~_'\<m:pk. sn111c devices perform better on soft materials than hard. Therefure conclusions 
should be based on testing for a specific application instead of applying the results as 
generalizations. 
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In conclusion, the new radial compression parameter as well as the computerized 

WIT- WOT stand out clearly as having resolutions one order of magnitude better than the 

best alternative, and three orders of magnitude better the Tappi standard Cameron Gap and 

the Schmidt Hammer made by the leading manufacture of paper test lab instruments. 

Since the WIT-WOT is not available for general use and is not suitable for production 

monitoring, the new winder data acquisition system developed for this project appears 

clearly superior to all other methods currently available due to its extreme resolution and 

wide application. Consequently, the development efforts for this projects could be 

justified solely on the basis of the achievement of the new Radial Compression measure. 

In the next section, the modeling portion of this project will be evaluated for 

numerical stability and sensitivity to the various inputs. 



Table 14 

RESOLUTION OF ROLL STRUCTURE MEASUREMENTS 

Material Run# Method Resolution ~ 
Newsprint D85-028 Cameron Gap 24.450 point 

Schmidt Hammer 5.688 point 

Smith Needle 4.631 point 

WIT-WOT 0.650 inch 

Density 0.396 inch 

Rhometer 0.225 point 

LWCpaper D86-Hahn Schmidt Hammer point 

Cameron Gap 2.359 point 

Density 1.276 inch 

WIT-WOT 0.980 inch 

Rhometer 0.840 point 

Smith Needle 0.126 point 
NCR paper Drwind41 Schmidt Hammer 14.062 point 

Rhometer 0.546 point 

Density 0.360 inch 

Smith Needle 0.166 point 

WIT-WOT 0.020 inch 

Radial Compression 0.031 inch 

NCR paper Drwind38 Radial Compression 0.012 inch 

NOTE: 

These results for Table 14 are for a large programmed step decrease in tension, and at a 

90% statistical confidence. Units for discrete measurements are points which are the 

number of individual readings to be taken. Units for analog measurements which are 

average able are for the sample size in inches of radius of the wound roll. 



Wound Roll Model Accuracy 

Wound roll model accuracy has two elements. First, the mathematical model must 

adequately describe the behavior of a particular real system despite inevitable 

approximations. Note that this requirement depends both on the definition of adequate, 

and the particular system being modeled. Second, the numerical computation of that 

model must be stable, converge and be insensitive to small changes in non-physical 

computational parameters such as grid size. 

Imbedded within this new system is a winding model. Although in principle, any 

mechanically consistent model could be used, Hakiel's model was chosen for the 

prototype as it is one of the most general [132, 133]. Thus, at the very least the new 

prototype shares any limitations of the model imbedded within. Thus, there are likely to 

be many applications where complex behavior such as described in Chapter 4 would 

require an extended or more sophisticated model. However, Hakiel [ 132, 133] and Willet 

& Poesch [ 186] have experimentally verified that the nonlinear anisotropic winding model 

can well describe at least some winding conditions by using the radial press test described 

in Chapter 5. 

Independent of the Hakiel mathematical model is the numerical accuracy of 

calculations. Though both the model and numerical calculations must be accurate to result 

in experimental verification, we can also compare one model against another using the 

same input parameters. Again, Hakiel's model is well tested against other earlier models. 

IIakiel [132, 133J, Wu [14R], and Willet and Poesch [186] have compared the finite 

difference calculation of the nonlinear model against those of Altmann [127]. Similarly, in 

this thesis there are numerous comparisons of the Hakiel model against the isotropic, 

Altmann [ 127] and Yagoda [149J models which are given in Chapter 3 and tabulated in 

Appendix A. Until this project however, the independent anaiy[ical verification for 

nonlinear radial moduli was not perfonned due to the lack of another model. However, 

with the development of the Displacement Fonnulation given in Chapter 7, we now have 

analytic verification for nonlinear radial moduli as well. 

The only caveat however, is to be mindful of the undesirable sensitivity to grid size 

described in Chapter 3 and elsewhere. Thus, the Hakiel finite difference fonnulation must 

be checked with varying grid sizes for any particular set of input parameters. Indeed, this 

is gc)od practil·e for any wound roll computational model as the system is mathematically 

ill··l·onditioned. 



Quantitatively evaluating the accuracy of the calculated wound-in-stress for this 

project has presented some problems. Primarily this is because there are very few 

methods currently available to measure wound roll stresses. Furthermore, those that do 

exist are often noisy, not independently verified or impractically difficult. First, the axial 

press test described earlier is not suitable for the much larger rolls wound for this project. 

That leaves three other means to independently measure wound-in-stresses, all of which 

have some uncertainty. The least common method is to strain gage the web prior to 

winding [160, 168], which is impractically difficult and has not been independently 

verified. Though the Cameron Gap [174] is a Tappi standard test method and yields a 

measure that can be converted to wound-in-stress, it has severe limitations. The Cameron 

Gap has extremely poor resolution, which results in measurement error bands that are so 

large as to render this method nearly useless r 169, 171]. The remaining method that was 

selected for prototype verification was the WIT-WOT winder [166, 167]. 

Accuracy of the new Extended Hakiel displacement to stress model, has been 

already discussed in Chapter 7 where it was developed. As we have seen in Figures 65-
67, this model compares favorably with experimental WIT-WOT measurements as well as 

Pfeiffer's empirical formula [ 166]. However as we will see later in this chapter on model 

sensitivity analysis, calculated stress accuracy is very dependent on the accuracy of the 

many required input parameters. 

Data Acquisition Sensitivity Analysis 

Before we begin the sensitivity analysis of the new displacement-to-stress model, 

we will investigate the effect of some of the adjustable parameters on the data acquisition 

setup as well as data preprocessing. The first parameter of the number of encoder pulses 

per revolution has already been discussed in Chapter 6. Here it was concluded that as long 

as the encoder pulse count exceeded some minimum of about 2000-5000 pulses per 

revolution (for 24'' drums), there was little increase in resolution or benefits achieved with 

higher counts. The point at which the law of diminishing returns takes over depends on a 

number of application dependent considerations. Tightly coupled systems with little 

mechanical backlash or web/drum slippage can benefit from slightly higher counts, while 

sloppier systems will not. While the runs for this project were acquired at incredibly high 

counts up to 100.000 pulses per revolution, it is now concluded th:lt future systems should 

use more moderate values which will reduce encoder costs as well as reduce computer 

memory and disk storage re~uirements. 



The next data acquisition parameter of the wrapcount (the number of revolutions of 

the rewound roll per sample), was also discussed in Chapter 6. Here it was concluded that 

the many system design requirements placed a range of acceptable wrapcounts wherein the 

minimum is determined by considerations such as ensuring that the rewound roll rotational 

rate does not overrun the computer processing of a sample, and that the maximum does not 

overflow the maximum number for the storage variable type which is usually single 

precision integers. However if all other variables are held constant and fall within the 

range described above, then the actual choice of wrapcount does not significantly change 

the effective resolution of the acquired data. In other words, the data resulting from a 

wrapcount of 1 which is averaged by 10 will yield the same results as a wrapcount of 10 

with no averaging. Thus, a good choice of wrapcount is somewhat smaller than the 

anticipated display so there is room for a small but variable amount of averaging. 

Figures 93 shows the utility of this approach of gathering data on a somewhat finer 

scale than will be ultimately used. Here we display the Radial Compression roll structure 

measure for convenience although the principle applies to the other similar 'analog' 

measures of density, caliper corrected density, calculated WIS and even WIT-WOT 

measured stress. In these three figures, all parameters are identical except the amount of 

averaging used in the final display. The top plot is only lightly averaged by 2 and shows a 

somewhat noisy display while the bottom plot is more heavily averaged by 8 which begins 

to limit the spatial resolution for short duration events such as splices or speed changes. 

As discussed earlier, the amount of averaging for the plots is mostly a matter of taste as the 

statistical resolution is not appreciably effected by averaging of this type of measure. 

However, if this data is to be used as inputs to subsequent numerical calculations 

such as displacement-to-stress, then there is a potential advantage of heavier averaging to 

increase numerical stability. Recall from Chapter 7 that the best mesh size for data 

acquisition and calculation are not necessarily the same. Generally, the acquired data can't 

be displayed at such a fine mesh as required by winding model calculations without 

excessive noise. Therefore, the acquired data is usually replic2•ed to the give the small 

mesh required by winding models. 

Finally, the effect of varying the strength of the low-pass digital filter is shown in 

figures 94. Though the effect appears similar to averaging, there are distinct differences. 

firsL averaging reduces the number of data points \vhi1c the application of the filter does 

not. Secondly. if the filter strength is incrc:tscd too much the data plots will become 

unuesirably rounded as it is unable to follow the short teim variations that are seen during 

winding. 
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Model Sensitivity Base Case 

The sensitivity analysis in the next sections investigates both numerical stability as 

well as sensitivity to uncertainties in material parameter inputs. All of these following 
studies are variations of a single parameter about a base case. Run #17 was chosen for 
this base for several reasons. First, it is a run that has not been presented earlier. 

Secondly, the TNT winding conditions were set to that typical of winding for that grade 
and did not include the step drops that were used for TNT sensitivity and measurement 

resolutions. In this discussion, we are investigatin.:c unly the effects of model sensitivity. 
Finally, the coated and supercalendered food board grade for this run is stiff enough, so 
that a coarser mesh can be used. This allows the large number of runs required for this 

analysis to be computed in a reasonable length of time. Most of these runs required about 
15 minutes of processing time to complete. 

The parameters of the base case and the variations are shown in Table 15, where 
typically 3 variations are run for each of 9 different model parameters. Additiona1ly, 
Figure 95 shows the deflection input and the WIS output for the base case run. This 
figure again reinforces the statements that Radial Compression, displacement and WIS 
plots are very similar in trends, only the scales are appreciably different. Finally, Figure 
96 shows the radial and tangential stresses calculated for the base case. Though sensitivity 
analysis could be performed on any of the variables calculated by this new model such as 
radial and tangential stresses and strains, WIS is chosen for several reasons. First, it is the 
goal of the project. Secondly, if the WIS profile is known, then the other variables can be 

easily calculated from conventional winding models or extensions of these models. 
Thirdly, WIS is such a pivotal pan of the new model, it is a very representative measure. 

Sensitivity analysis for conventional winding models usually investigates the effect 

of varying material or geometrical properties on the resulting radial and tangential stress 
distributions. The application of such analysis is to determine what parameters can be 

effectively controlled to optimize wound roll stresses as described in Chapters 1 and 4. 
Though many of the parameters have a significant effect on stresses, practical application 
limits these parameters severely. Typically. an existing winder must process the product 

given it, and the product's properties have not been determined by any considerations of 

winding. Therefor, the only parameter that is typically controllable in a practical sense is 

the \VIS profile determined by the Tr\Ts. Though many who have worked with winding 

models have investigated semitivity, the only published \I. ork of this type was performed 

by Wu ll48]. 
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Table 15 
SENSITIVITY ANALYSIS PARAMETERS 

Parameter .LI..nili Base Variations Figure# 

Preprocess 

Average 4 2, 4, 8 93 

Filter 2 1, 2, 4 94 

Numerical Stability 

Grid Size mils 4.2 2.1, 4.2, 8.4, 18.0 97 

Calc'n Depth inch 2.1 1.0, 2.1' 4.2 98 

Repl'n Depth inch 0.21 0.05, 0.1 0, 0.21 99 

Material Properties 

ER psi 1x 0.9x, l.Ox, 1.1x 100 

ET pSI 1x 0.9x, l.Ox, 1.1x 101 

Ec psi 20K 20, 20K, 20M 102 

)lR .01 0.9x, l.Ox, 1.1x 103 

)lT .01 0.9x, l.Ox, 1.1x 104 
Caliper gain 1.005 1.000, 1.005, 1.001 105 

Though this new model can also share this interpretation of sensitivity analysis, its 

primary application is very different. This is because by the time the roll has been wound 

and the data has been gathered, we can't change parameters such as material properties 

without changing the acquired deflection data. While we can and have varied properties in 

the course of this project, its effect on acquired deflection data does not yield many 

insights. 

However, with a different interpretation the sensitivity analysis to be presented in 

the next sections has great utility. Here we view sensitivity as investigating how 

uncertainties in the input parameters effect the resulting WIS calculation. This is important 

hel·ause we can't measure any property precisely, and many arc not presently practical to 

sample continuously over the entire web. An example of error in measurement is the 

critical calibration of the web caliper gauge. An example of sampling error is how 

cieviations of the moduli of the web wound into the roll from the sample measured in the 

lab effect the WIS profile calculation. Thus, we can simulate uncertainties in the model 

paramctas using the same input data to see its effect on calculated WIS. 



Model Numerical Stability 

Before we investigate sensitivity to material properties, we must ensure that the 
model is numerically stable for the base case to be investigated. An example of this type of 
analysis has been performed in Chapter 3 and elsewhere, where we showed how the 
Hakiel finite difference solution should be run for several different grid sizes to ensure that 
the grid was neither too coarse to follow the extreme stress gradients, nor too fine as to 
cause solution instability. However, though Hakiel's model is embedded in this new 
displacement-to-stress model, using his model for detern1ining optimum grid size such as 
given in Figures 18 and 19 would only be a starting point. This is because the Extended 
Hakiel Formulation contains more calculations which has their own numerical 
implications. Additionally, the real data used here contains more noise than does the 
typically smooth WIS profiles used as inputs for conventional winding models. 

Therefore, in Figure 97 the grid size is varied by almost one order of magnitude to 
see whether the solution is effected appreciably. As seen here, the WIS profiles are close 
in magnitude except at the two extremes of 18.0 mils where the grid size is becoming 
significantly coarse as seen at the lower radii, and at 2.1 mils where the grid size is 
becoming too fine and is beginning to deviate at high radii. This is consistent with earlier 
observations that the optimum grid size is finer near the core than at the roll outside. 
However, the 4.2 mil base case seems to be an optimum and stable compromise for the 
large finish/core diameter ratio range of this wound roll. 

If this was a conventional solution, we would need proceed no further r ·model 
stability checks. However, as described in Chapter 7 we are using solution acceleration 
techniques which also must be investigated separately. The first acceleration technique is 
the depth limited solution which capitalizes on the fact that only the outer portion of the roll 
is appreciably affected by the addition of wraps. As seen in Figure 98, the solution depth 
for the base case of 2.1" is conservative as doubling the depth has no significant effect on 
the resulting WIS profile. However, care must be used because reducing the depth even 
slightly below the base case will have an undesirable effect on accuracy as seen for the 
1.0" depth. Recall that stiffer materials require a greater solution depth. 

Similarly, we investigate the replication solution acceleration technique as shown in 
rigure 99. Here we see that the replication depth of 0.1 0" used on the base case is 
perhaps even too con sen ative and that further solution speedup is possible without 
compromising accuracy. The net effect of depth limited and replication acceleration will 
speed up this and any other model by 10-1000 times with a 84 times improvement seen for 
this ha~e case. 
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Sensitivity to Material Parameters 

As mentioned earlier, there are measurement and sampling uncertainties in the 

inputs to this or any other winding model. Thus, we will investigate how these 

uncertainties effect the calculated WIS profiles. The variations of the material properties 

about the base case given in this section are estimates as too how close we can be sure of 

these properties for typical measurements and sampling practices found in labs or mills 

(for paper grades). In other words, we attempt to bound our uncertainty by varying each 

property above and helow its measured value. 

Figure 100 shows the effect of a 10% greater and smaller radial modulus. Here we 

see that a high radial modulus input will increase calculated WIS profiles approximately 

proportionally and \ice versa. Similarly. Figure 101 shO\VS the effect of a 10o/c variation 

upon tangential modulus. However, in this case an overestimate of tangential modulus 

will underpredict WIS profiles, but will do so to a lesser degree than the proportionality of 

radial modulus. 
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SENSITIVITY TO RADIAL MODULUS 
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Figure 101 
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Figure 102 for the sensitivity to core mcxluL1s has many interesting curiosities, but 

first a review of material given earlier is in order. All consistent winding model 

implementations have a core boundary condition which yields large gradients in both radial 

and tangential stresses, but are localized to very near the core as was seen in Figure 13. 

However, though all models predict this behavior, it has not been experimentally verified. 

Also, most finite difference implementations do not rigorously begin immediately at the 

core, but rather after a couple of 'wraps' where the minimal matrix can be filled. The core 

stresses are extrapolated from the rigorous portion of the calculated stresses. Finally, the 

optimum grid size for the core is considerable finer than the remainder of the roll. 

Similarly, data acquisition hardware complications abounL; at the core. As 

mentioned in Chapter 6, for a variety of reasons density-like hardware is not presently able 

to gather data beginning immediately from the core. The amount of material wound onto 

the core before the first good diameter difference sample can be calculated may be as few 

as a hundred wraps to many inches if the system is sized such that rewound roll rotation 

(lvcrruns the sample processing. Also, if the winder is stopped in the middle of a run for 

any reason such as a web break, the data gathered before and after the stop can't be 

aligned, interpolated or spliced together. Thus, analysis would have to take both halves 

separately, where the second half would require an effective core stiffness input for a 

radius at which the second half began. 



Returning to the sensitivity of core modulus on WIS profiles given in Figure 102, 

we see that varying the core modulus from 20 psi to 20,000 psi has essentially no effect on 

the calculated WIS profile. It is only until the modulus has been increased far beyond 

these values that the stress near the core is effected. However, no published work has 

verified experimentally whether the stress gradients predicted near the core by conventional 

models well represents real behavior. Indeed, the stresses predicted immediately above the 

core for some real winding cases is beyond web material limits. The situation for the 

displacement-to-stress model is even more comp1 Jed by data acquisition considerations. 

Thus, a conservative approach to interpreting stress data near the core would indicate 

caution. 

The next interesting observation is how the 20M core stiffness case suddenly 

begins to deviate from the others at a radius of 13". What makes this so intriguing is that 

the effect of core stiffness for this case should be physically and numerically significant 

only for about an inch or so, yet the deviation begins far above that. Furthermore, the 

solution given here implements the depth limited acceleration, so that the 20M core 

stiffness is no longer even used in the calculations above a radius of 6". Anything above 

that uses an effective core stiffness determined by the radial modulus at the interlayer 

pressure at the calculation depth below the current surface. Though the details of why this 

numerical instability occurred would be difficult to determine, the basic cause can be 

summarized as too many measurement and numerical derivatives in the displacement-to­

stress system. This topic will be discussed in more detail in the next chapter. 

Generally, Poisson ratio has only a minimal effect on most mechanics applications 

and solutions. While this can also be true for winding models, there is an exception as 

seen in Figures 103 and 104. If the Radial Poisson ratio exceeds 0.010, it begins to have 

a tremendous effect on the calculations. Thus, if the strain-energy (Maxwell's) relation is 

used (which is not always in experimental agreement [186]), then the solution will also be 

effected if the Radial Poisson ratio becomes large. While Wu [ 148] comes to similar 

conclusions, the issue of Poisson Ratios in winding mechanics is far from settled. 

Finally, the effect of caliper is shown in Figure 105. As seen here, caliper 

uncertainties as small as 0.59c have a large effect on WlS calculations. This means that for 

a 1 mil material, a caliper gauge calibration and repeatability of and incredibly tight 5 ~inch 

would be required. However, softer materials such as the NC paper were not quite as 

-;ensitivc in that a 1 or 27c caliper uncertainty would lead to a similar change in the WIS 

profile. While the Schaevitz gauge used in this prototype has a specified 5 ~inch 

repeatability, calibrating and maintaining that level accuracy is very difficult. As discussed 

in Chapter 8. this requires either precision gage blocks or micrometers to be used to set the 

span, as w·ell 0s many other considerations such as platen deflection and instrument drift. 
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SENSITIVITY TO TANGENTIAL POISSON RATIO 
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In this chapter, we have investigated accuracy and resolution from many 

viewpoints. From this study, we have found that the data acquisition hardware and Radial 

Compression calculation development has led to a roll structure measure which meets and 

exceeds the resolution of any presently available. Thus because of its ease of use in a wide 

variety of applications, this development may be a significant contribution to winding. 

However, the case of the displacement-to-stress model is mixed. Though the only 

difference between the Radial Compression and WIS profiles are one of scale, the 

displacement-to-stress model yields a far richer array of information. However, this 

additional information comes at a high price. First, the calculations can be quite computer 

intensive, so that the system may not run in real-time as can Radial Compression. 

Secondly, though we have demonstrated some level of accuracy for the c;rress calculations, 

good results will only be achieved if the material and geometric properties are known very 

closely. In particular, the caliper measurement and the radial moduli have the greatest 

effect and are also among the most difficult to measure. In the Ih d chapter, the 

achievements and shortcoming of this project will be reviewed, with sugge:;tions given for 

future improvements beyond that implemented on this prototype. 



CHAPTER 11 

CONCLUSIONS AND RECOMMENDATIONS 

Project Summary 

This project began from several simple insights. First, the best current description 

of wound roll structure is given by winding models using consistent mechanics 

descriptions of displacements, strains and stresses. However, current models were limited 

since a Wound-In-Stress profile was needed as an input, and this was difficult to obtain 

except for the isolated case of pure centerwinding equipped with tension and web caliper 

measurement. Secondly, prior to this time most roll structure measurements were 

unsatisfactory in terms of resolution, wide application, ease of use or other important 

criteria. Though the density analyzer possessed most of the desirable characteristics, it had 

a limitation. The density value is not consistent with mechanics formulations. Thus, the 

most important analytical and experimental winding tools available would not work well 

together. 

Thus, the need was defined to measure the fundamental quantities of stresses 

during winding in a manner that was similarly convenient as the density analyzer which 

can be installed on most any machine and operate in a fully automatic manner. The 

inspiration that modeling and measurement could be married came with the insight that the 

rate of roll growth was what the density analyzer actually measured, and that the rate of 

roll growth might somehow be related to the strains and consequently stresses in a roll. 

Furthermore, winding models were determined systems, so that the roll could only grow 

at a unique rate for a unique set of parameters. 

This project was then proposed for a thesis topic. Its impetus was merely those 

insights strengthened by the boundless optimism of youth. Though several reviewers 

initially stated that the project could not be done, v.:ork was begun with idealistic 

conviction that not only would the project succeed, but that it would revolutionize quality 

control and machine control of \\'inders. 

277 



Looking back after the project prototype has been completed however, the truth lies 

between the impossible and the probable. The insights were transformed into a 

mechanically consistent and simple boundary condition of roll deflection, but only after 

many sketches were drawn to postulate behavior. Next, a system had to be developed to 

measure the deflection data based on roll diameter and caliper. Though roll diameter was 

not particularly difficult, the measurement of caliper to the tolerances required was not off­

the-shelf affordable technology. Then, a winding model had to be rederived from basic 

constitutive equations to describe wound roll physics from an entirely new perspective. 

Once a working model was achieved however, it was scrapped in order to develop yet 

another that calculated with more practical speed. 

Only after the entire system was assembled and experimentally verified did the 

tremendous scope and complexity of the project become apparent. The project's goal was 

to integrate modeling and measurement, which was ground-breaking in itself. However in 

order to do so, both modeling and measurement also had to be pioneered. Furthermore, 

because of the breadth of the project, a careful building block approach was required. 

Thus, wound roll models were rederived and checked numerically where they were 

previously assumed correct. In this process, many missing pieces were filled in such as 

defining core stiffness, and measuring creep inside a roll by changing caliper. 

Additionally, many problems were uncovered such as Pfeiffer's model which was found 

to be inconsistent, and finite difference sensitivity to grid size. 

Thus, one thing led to another, and the project grew far beyond its original 

intentions. This was not without compensation however. First, old winding models were 

scrutinized closer than ever before for mechanical consistency and numerical accuracy. 

Secondly, several new models or extension to existing models were developed. Thirdly, a 

several new roll structure measures were developed including caliper corrected density, 

radial compression and WIS which can all utilize the same raw data. Most promising of 

which was the radial compression which was statistically evaluated at a resolution 

exceeding previous measurement methods. Fourthly, it collected and integrated historical 

and new developments in the science of wound roll modeling and measurement into a 
single source. 

Finally, it did achieve to some degree the original objective of measuring stresses 

during roll winding. Unfortuw·tcly, this mcJsure is somev..hJt more complicated and less 

robust than originally anticip<tted. In the remainder of this chapter, the products and 

shortcomings of this project will be reviewed with a vision toward present application and 
future rt'search 



Contributions 

Due to the scope of this project which encompasses both modeling and 

measurement, this project has resulted in many contributions. Some of these are 

revolutionary such as new winding models and measures. However, there are also many 

incremental or evolutionary facets such as the development of the core stiffness formula 

and the design criteria for sizing encoders. This section will review only those insights 

and developments which are new to the public domain and resulted from this project. 

Chapter 1 clarifies the relationship between control, wound roll physics and 

measurement as given in Figure 4. In particular, it redefines what it is a controllable 

parameter in practice. For example, while it is trivial to change the value of ET in a wound 

roll model, in practice this would rarely be done for the purpose of optimizing the winding 

process. It concludes that the primary application of roll structure modeling and 

measurement is to control the TNT's of winding such that the propensity to application 

dependent defects are minimized. 

Chapter 2 gives an unusually detailed development of the constitutive equations of 

wound roll physics and their assembly into a differential equation. Additionally, boundary 

conditions are either more fully developed, or alternatives give. For example, equation 

(23) and others for calculating the core stiffness used in winding models based on 

geometry and material properties was developed. Furthermore, alternatives to the outer 

boundary condition are given such as equations (28b) and (28c) for tangential stress and 

displacement winding differential equation forn1ulations. Finally, equation (29) is given to 

estimate the calculation time for winding models based on the number of wraps. 

Chapter 3 reviews the Isotropic, Altmann and Hakiel models, as well as portions 

of the Yagoda model, to check for mathematical integrity. In all of these models except the 

Isotropic, several minor problems were uncovered. For example, the Hakiel model 

omitted high order derivative terms, which may be negligible for most cases, and assumed 

the strain-energy relation between moduli and Poisson Ratios, which is at odds with 

experimental evidence. Additionally, Yagoda makes some approximations in his model 

whose impact is not easy to determine. Finally, the Pfeiffer model which was becoming 

popular was found to be flawed and mechanically inconsistent with all the other models. 

Though we would have expected mathematical checks to have been performed on 

prcc('rling models, it seems to have escaped publication. 



It is difficult to determine the effect of minor mathematical inconsistencies and 

assumptions. Additionally, it may be possible for the mathematics to be correct but the 

calculation either difficult or improperly executed. Consequently, another method of 

checking model consistency needed to be defined and performed. Chapter 3 insists that all 

winding models yield the same calculated stress outputs for the same inputs within the 

application range of the particular models. Here, the Isotropic, Altmann, Yagoda and 

Hakiel models have been verified to calculate consistently to within engineering accuracy 

with only a few exceptions. These exceptions are unusual inputs to the Yagoda model, 

and numerical problems if the Altmann integration grid is not fine enough or the Hakiel 

model is not within a range of grid sizes determined indirectly by the input parameters 

used. From this comparison, we have discovered that care must be used with many 

winding models to ensure numerical accuracy. Additionally, the Yagoda model was found 

to be both orders of magnitude faster and more accurate than all other models within its 

application range. Finally, Chapter 3 describes the measurement of nonlinear moduli in 

more detail than given by Pfeiffer. 

Chapter 4 describes a wide range of complex wound roll behavior that is either 

inadequately modeled or not modeled at alL These include loading effects such as gravity, 

nips and handling; complex material behavior such as creep; and complex wound roll 

behavior such as air entrainment. These areas are deficiencies of the present state-of-the­

art and serve as a list of potential future research work. 

However, two new behavior descriptions were included here which was done by 

the author, but outside of this thesis project. The first is the modeling of the hygrothermal 

response of a wound rolL Here we found that simple models can describe the changing 

moisture or temperature of a roll as it heads toward equilibrium with its environment. The 

importance of this behavior is that changing moisture or temperature effects both stresses 

and strains in a rolL Second, a simple model of interlayer slippage is given which is based 

on the single assumption that slippage is a function of depth. The importance of interlayer 

slippage is that it also effects web stresses and strains in a wound rolL This model is 

integrated with and verified by and extension to the J-line experimental technique. 

Chapter 5 contains a description and classification of roll structure measurement. 

In addition to principles of operation, application limitatio·'s are described based on 

experiences of the author and other colleagues \vorking in the area. While there is not 

muLh new n1~lterial here, its complctcne~' and collection into a single source is unique. 



Chapter 6 describes not only the theory and operation of the density analyzer which 

has been done previously, but the design criteria for sizing samples, sampling rates, 

encoders, counters and memory storage which has not been published. This will be useful 

for developers of similar instrumentation. Additionally, an investigation of data noise 

reduction techniques using averaging, smoothing, digital filters, Chauvenet's criterion and 

FFr analysis can be used to improve data quality. Finally and most importantly, caliper 

corrected density and radial compression was developed to mitigate the most glaring deficit 

of current density analyzers, which is noise due to caliper variations. 

Chapter 7 which is the analytical essence of this project introduces three new roll 

structure models or measures. First is radial compression which is easily implemented, 

extremely fast to calculate, and contains the displacement boundary condition which drives 

the solution of stresses in a winding roll. Secondly, the Displacement Formulation was 

derived which calculates all stresses and strains in a wound roll given the measured outer 

boundary displacement. Unfortunately, this straightforward displacement-to-stress 

solution does not calculate quickly enough to be practical. Thus, the Extended Hakiel 

Formulation was derived which solves the same problem using an extension to an 

embedded model. This model which is the culmination of the project was experimentally 

verified using a WIT-WOT winder and Pfeiffer's empirical equations to predict WIS 

within engineering accuracies. 

Chapter 8 describes in detail the winder, sensors, and instrumentation used for the 

development of this prototype. Though much of this equipment is not new, there are 

incremental improvements in both operation and understanding resulting from this project. 

However, an innovation developed was the adaptation of a noncontacting gauge for 

inexpensive and accurate online caliper measurement. This sensor was verified to read 

caliper within the tolerances of standard test lab instruments. Although MD creep has 

already been measured and reported by others, the caliper gauge was used to conclusively 

demonstrate ZD creep as caliper changes on consecutive winds of the same material. 

Chapter 9 on software does not introduce any innovations that were not:_ -=:viously 

implemented. However, Chapter 10 develops a statistical procedure to quantify and rank 

roll structure measurement resolution for devices using different principles and units. 

From this method, the Radial Compression measure was found to meet and exceed the 

resolution of any currently available methcxi. Finally, while the Appendices do not contain 

any truly unique material, it contains the most extensive winding bibliography as well as 

wound roll computer program listing and output yet published. 



Complications 

While this project has introduced many evolutionary and revolutionary 

developments, it has uncovered many areas that would benefit from additional research. 

However to introduce this, it would be appropriate to reiterate and summarize the scope 

and complexity of this stress measurement prototype. From Table 16 which summarizes 

the minimal inputs for this system, we can see that not only are there numerous parameters 

that must be selected or measured, but that many are currently very difficult to obtain. 

Furthermore, these are only the immediate inputs to the computer programs which in many 

cases require some amount of calculation just to obtain. For example, Chapter 6 gives a 

lengthy design procedure just to obtain encoder counts and sample sizes. Additionally, the 

radial modulus results from curve-fitting a derivative of a calculation upon load-deflection 

data. 

The data acquisition inputs of diameter and caliper, while not necessarily new 

technology, required far greater precision in this application than that of typical quality 

control practice. Indeed as we have seen, the calculated stress output is extremely 

sensitive to caliper as the wound roll deformations are quite small. Thus, we are faced 

with not only measurement accuracy, but also with resolution to reduce data noise. 

Ideally, we would like the (averaged and filtered) diameter and caliper measurements to be 

made to accuracies better than about 10 !J.inch, which is approximately an order of 
magnitude higher than the prototype can achieve consistently. This presents not only 

many technical and practical difficulties, but also one of definition. What is the effective 

stack thickness of materials whose surface roughness or void volume is no longer a small 

portion of its thickness? Similar difficulties arise in measuring and defining the nonlinear 

radial modulus for materials which are typically hysteretic. 

The mcx:lel also presents complications which can be more fully explored. First, as 

winding models have become more general, they have become less robust and more 

lengthy to calculate. Thus, new solution techniques are required so that we can solve the 

current models faster and without checking sensitivity for every new case. This will 

become even more acute if any of the many complications described in Chapter 4 are also 

included. Indeed, any of these complications would be a good research topic in itself. 

However, the relative importance of those currently unmodeled behaviors such as creep, 

slippage, or air entrainment varies widely with application. Thus while the behavior 

currently modeled is embedded and relevant in all real systems, much of the unmodeled 

beha,·ior has a narrower scope of application and may not be significant in all cases. Thus 

the law of diminishing returns holds were modeling new behavior requires more effort 

than more basic behavior, and yields a diminishing range of interest and application. 



Table 16 

MINIMAL INPUTS FOR THE 
DISPLACEMENT-TO-STRESS MEASUREMENT SYSTEM 

Measurement 
Roller encoder pulses per revolution 

Rewound roll encoder pulses per revolution 

Drum Diameter 

Wrap count sample size 

Caliper gage gain 

Data Preprocessing 
Averaging value 

Smoothing value 

Digital low-pass filter strength 

Model Numerical Parameters 
Winding model (eg Altmann, Hakiel etc) 

Grid size 

Solution depth (for accelerated technique) 

Solution replication depth (for accelerated technique) 

Model Physical Parameters 
Core and finish diameters (measured uy hardware) 

ER = f(oR) 

ET = f(oT) 

Ec 
~R 

~T 



Further opportunities exist for the improvement of the robustness of the 

displacement-to-stress model solution technique arise by recognizing that better solutions 

would result if the number of derivatives were reduced. The input to the winding model is 

expressed as the difference of consecutive diameters and caliper, which typical of 

displacements is a very small number compared to the diameter. This small differencing, 

though inherently noisy, may be unavoidable because it is the essence of the displacement­

to-stress model. Additionally, the winding differential equation is currently solved as a 
finite difference approximation. Thus, the solution is composed of almost innumerable 

small differences for every wrap of the roll and for every wrap added. Though finite 

difference is ideally suited for many models, the winding model is iterative and has large 

stress gradients spanning tens of orders of magnitudes and may be too ill-conditioned for 

this solution technique. Alternatives may exist however. For example, Altmann posed the 

winding differential equation as an integration, and Yagoda posed it as an infinite series, 

both of which are very stable. Perhaps other technologies such as nondimensional 

approximations or Boundary Element Methods may be applied for better and faster 

solutions. 

In summary, though this project has contributed to wound roll modeling and 

measurement, there remains considerable opportunities for improving the impleme rion 

pioneered by this prototype as well as researching new capabilities of this approach. 

Fortunately, this displacement-to-stress model is extensible and can grow to accommodate 

new wound roll models or diameter/caliper measurement techniques. Thus, this project is 

more than a model and measurement technique, it is a methodology for solving wound roll 

structure problems in a new way. 

2/23/90 
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APPENDIX A 

WINDING MODEL COMPUTER PROGRAM LISTINGS 

Linear Isotropic Model - Roisum 

'WindLiso 

'Stresses During Roll Winding 

'Linear Isotropic, Variable Wound in Stress 

'Roisum Model, 'Mechanics of Roll Winding Vol. 1; Chapt 1-3,4,C-1-3,4 

'Written in Microsoft Ouickbasic Basic 1.0 for Macintosh and 4.0 for PC 

'David R Roisum 4/24/89 

DEFDBL A-Z :'your Basic Language may not support double precision 

DEFINE INPUT VARIABLES HERE *** 

'Wound-In-Stress as a Function of Radius 

WISO = 750 
WIS1 = 0 
WIS2 = 0 

DEF FNWIS(R) = WISO + WIS1*R + WIS2*R"2 

RIR = 2 :'Radius Inner Roll 

ROR = 20 :'Radius Outer Roll 
IR = .01 
PIR = 1 

:'Increment in Radius (set to give 100-1000 steps) 

:'Print Increment in Rad;us (set >= IR) 

:'Modulus, Roll 
:'Modulus, Core 
:'Poisson Ratio, Roll 

ER = 10000 
EC = 1000001 
UR = .01 
COMMENT$= "Linear Isotropic Winding Model" 

DEFINE INPUT VARIABLES HERE 

STARTRUN: 
GOSUB USERIN 

Gut! :;g Started 

NUMPTS% = (ROR-RIR)!PIR + 1 :'Number of total solution points 

DIM SR(NUMPTS%) :'Radial Stress Array 

DIM ST(NUMPTS%) :'Tangential Stress Array 

FOR 0% = 1 TO NUMPTS% :'Initialize Wound-In-Stresses (tang'! stress) 

RPR = RIR + (0%-1)*PIR 

ST(O%) = FNWIS(RPR) 

302 



NEXTO% 

'Echo Input 
LPRINT 
LPRINT "ROISUM LINEAR ISOTROPIC WINDING MODEL" 
LPRINT 
LPRINT "WEB HANDLING RESEARCH CENTER" 
LPRINT "OKLAHOMA STATE UNIVERSITY" 
LPRINT 
LPRINT COMMENT$ 
LPRINT TIME$, DATE$ :'your Basic may not support this statement 
LPRINT 
'Calculate and print wound-in-stress at core, middle and outside of roll 
LPRINT "WOUND IN STRESS="; WISO; " + "; WIS1; "*R + "; WIS2; "*R"2" 
LPRINT "MODULUS, WEB="; TAB(20); ER 
LPRINT "MODULUS, CORE="; TAB(20); EC 
LPRINT "POISSON, WEB= "; TAB(20); UR 
LPRINT "INCREM RADIUS="; TAB(20); IR 
LPRINT 
LPRINT TAB(5); "RADIUS"; TAB(19); "RADIAL STRESS"; 
LPRINT TAB(33);"TANG STRESS"; TAB(58); WIS 
LPRINT 
CLS 
LOCATE 2,1 
PRINT "CALCULATING CURRENT FINISH RADIUS=" 

'*** MAIN LOOP - Compute Winding Stress at various Diameters *** 
'Add layers of thickness IR from core radius RIR to roll finish radius ROR 
'Roll Present Radius is RPR 

FOR RPR = (RIR+IR) TO ROR STEP IR 

LOCATE 2,35 
PRINT FPR 
WIS = FNWIS(RPR) 

:'Screen feedback 
:'Wou nd-1 n-Stress 

'Pres under Outer wrap PO, Pres under Inner Wrap PI, due to add of 1 wrap 
PO = WIS * IR I RPR 
PI = 2*RPR"2*EC*PO I ((RPR"2-RIR"2)*(ER+UR*EC) + (RPR"2+RIR"2rEC) 
'0% is a pointer for stress array, C1 and C2 are intermediate calcs 
0°/o = 0 

C2 = (PI*RIW·2-PO*RPR"2)/(RPR"2-RIR"2) 

'Calculate (print) increment in stresses on all layers 
'beneath the outer wrap and sum assuming superposition 
FOR RRR = RIR TO RPR STEP PIR 

0% = 0% + 1 
C1 = RPR'·2*RIR"2*(PO-PI).'~RPR"2-RIR"2), RRR"2 
SR(O%) = SR(O%) + C1 + C2 
ST(O%) = ST(O%) - C1 + C2 

NEXTRRR 

NEXT RPR 



'*** END MAIN LOOP *** 

'Print loop for calculated stresses 
FOR 0% = 1 TO NUMPTS% 
RPR = RIR + (0%-1 )*PIR 
LPRINT USING "######.##########"; RPR, SR(O%), ST(O%), FNWIS(RPR) 
NEXTO% 

INPUT "DO YOU WANT ANOTHER RUN??", RESPONSE$ 
IF RESPONSE$= ("Y" OR "y") GOTO STARTRUN 
!PRINT "THANK YOU, HAVE A NICE DAY !I" 

''********************** 

'*** EDITING SUBROUTINES *** 
'********************** 

USER IN: 

RETURN 

PRINT "Calculation for the Wound Roll Stress Distribution for the" 
PRINT "LINEAR ISOTROPIC WINDING MODEL with a 2nd order Wound-In-Stress Profile" 
PRINT "Copyright 1989, David Roisum, Web Handling Research Center" 
PRINT 
PRINT "During input, default values may be selected with a <CR> or" 
PRINT "may be changed by typing in a new value." 
PRINT "Errors before <CR> may be corrected by backspacing." 
PRINT "As stresses are calculated, they are printed to screen and LPT1" 
PRINT "The variable wound in stress profile is given as 
PRINT "WIS(R) = WISO + WIS1 *R + WIS2*R"2 where R is the radius in inches" 
PRINT : PRINT 
CALL EDNUM("WISO (PSI)", CDBL(-1 0000), WI SO, CDBL(+ 1 0000)) 
CALL EDNUM("WIS1 (PSI)", CDBL(-1 000), WIS1, CDBL( + 1 000)) 
CALL EDNUM("WIS2 (PSI)", CDBL(-1 00), WIS2, CDBL(+ 1 00)) 
PRINT 
CALL EDNUM("Radius Inner Roll (in)", CDBL(O), RIR, CDBL(1 00)) 
CALL EDNUM("Radius Outer Roll (in)", CDBL(RIR), ROR, CDBL(200)) 
PRINT 
PRINT "Radial calculation increment should be set to give" 
PRINT "1 00-1000 steps between inner and outer roll radius" 
CALL EDNUM("Calculation increment (in)", CDBL(.001 ), IR, CDBL(1 )) 
PRINT 
PRINT "Radial print increment should be set to give" 
PRINT "1 0-100 steps between inner and outer roll radius" 
CALL EDNUM("Print increment (in)", CDBL(.01 ), PIR, CDBL(1 0)) 
PRINT 
CALL EDNUM("Modulus. Roll (psi)", CDBL(1 0). ER. CDBL(1 0000000&)) 
CALL [DNUM("I/ du!us. Core (psi)", CDBL(O). EC. CDBL(1 0000000&)) 
CALL EDI~UM("Po~sson Ratio". CDBl_(O). UR. CDBL(1 )) 
CALL EDAU'HA("Comments?",COMMENT$) 

SUB CHKLIM(LOWLIM, NEWNUM, UPLIM, YNFLAG%) STATIC 
IF NE:WNUM <I OWLIM THEN YNFLAG% = 0 
IF N[WNUM > UPLIM THEN YNFLAG% = 0 

END SUB 



SUB EDALPHA(TEXT$, ALPHA$) STATIC 

PRINT TEXT$; TAB(20); ALPHA$; TAB(40); 
INPUT RESPONSE$ 
IF RESPONSE$ <> ""THEN ALPHA$ = RESPONSE$ 

END SUB 

SUB EDNUM(TEXT$, LOWLIM, DEFNUM, UPLIM) STATIC 

YNFLAG% = 0 
WHILE YNFLAG% <> 1 
PRINT TEXT$; TAB(30); 
PRINT USING "#######.####"; DEFNUM; 
INPUT NEWNUM$ 
IF NEWNUM$ <> ""THEN 

ELSE 

END IF 
\M3\() 

CALL ISANUM(NEWNUM$, YNFLAG%) 
NEWNUM = VAL(NEWNUM$) 
CALL CHKLIM(LOWLIM, NEWNUM, UPLIM, YNFLAG%) 
IF YNFLAG% <> 1 THEN 
BEEP 
PRINT "**ERROR .. NOT A NUMBER BETWEEN "; LOWLIM;" AND ";UPLIM 

END IF 

YNFLAG% = 1 
NEWNUM = DEFNUM 

DEFNUM = NEWNUM 
END SUB 

SUB ISANUM(NEWNUM$, YNFLAG%) STATIC 
YNFLAG% = 1 
LENGTH%= LEN(NEWNUM$) 
FOR 0% = 1 TO LENGTH% 

ASCII% = ASC(MID$(NEWNUM$,0%, 1 )) 

IF(ASCII%<48 ORASCII%57)ANDASCII%<>46ANDASCII%<>45THEN YNFLAG% = 0 
NEXTQ% 

END SUB 
8'D 



Linear Anisotropic Model - Altmann 

'WindAitm 

'Stresses During Roll Winding 

'Linear Anisotropic, Variable Wound in Stress 

'Altmann Model, Tappi Vol 51, No. 4 

'Written in Microsoft Ouickbasic 1.0 for Macintosh and 4.0 for PC 

'David R Roisum 4/24/89 

DEFDBL A-Z :'your Basic may not support this statement 

DEFINE INPUT VARIABLES HERE * • • 

'Wound-In-Stress as a Function of Radius 

WISO = 750 
WIS1 = 0 
WIS2 = 0 

DEF FNWIS(R) = WISO + WIS1*R + WIS2*R"2 

RIR = 2 :'Radius Inner Roll 

ROR = 201 :'Radius Outer Rol! 

PIR = 1 :'Print Increment in Radius 

ER = 1000 :'Modulus, Radial 

ET = 7500001 :'Modulus, Tangential 

EC = 1 00000! :'Modulus, Core 

UR = .01 :'Poissons Ratio, Radial 

UT = .01 :'Poissons Ration, Tangential 

PANEL% = 200 :'Number of Panels for Integration (Even Integer, 100-1 000) 

COMMENT$= "Lin Ani Std" 

DEFINE INPUT VARIABLES HERE 

STARTRUN: 
GOSUB USERIN 

'Getting Started 

NUMPTS% = (ROR-RIR)/PIR + 1 

DIM SR(NUMPTS%) :'Radial Stress Array 

DIM ST(NUMPTS%l :'Tangential Stress Array 

DEF FNINTEG(S,V. -')=WIS*S"(B-1 )/(1 +A*S"-GAM2) :'WINDING INTEGRAL 

'Echo Input 
LPRINT 

LPRINT "ALTMANN LINEAR ANISOTROPIC WINDING MODEL" 

LPRINT 

LPRINT "WEB HANDLING RESEARCH CENTER" 

LPRINT "OKLAHOMA STATE UNIVERSITY" 

LrRINT 
LPRINT COMMENT$ 

LPRINT TIME$, DATE$ :'your Basic may not support this statement 

LPRINT 

'Calculate and print wound-in-stres,, at core, middle and outside of roll 

LPRINT "WOUND IN STRESS = "; WISO; " + "; WIS1: ''*R + "; WIS2; "*R·'2" 



LPRINT "MODULUS, RADIAL = "; T AB(20); ER 

LPRINT "MODULUS, TANGEN="; TAB(20); ET 

LPRINT "MODULUS, CORE="; TAB(20); EC 

LPRINT "POISSON, RADIAL = "; TAB(20): UR 

LPRINT "POISSON, TANGEN = "; TAB(20); UT 

LPRINT "#OF PANELS="; TAB(20); PANEL% 
LPRINT 

LPRINT TAB(5); "RADIUS"; TAB(18); "RADIAL STRESS"; 

LPRINT TAB(35); "TANG STRESS"; TA8(58); "WIS" 

LPRINT 

'Calculate Intermediate Parameters 

ERD = ET/ER :'Dimensionless Radial Modulus 

ECD = ET/EC :'Dimensionless Core Modulus 

V=(UT +ERD*UR)/2 

DEL=(UT -ERD*UR)/2 

GAM=( DEL "2+ERD)".5 
GAM2 = 2*GAM 
ALP=GAM-DEL 
BET =GAM+DEL 

A=(GAM-V -ECD)/(GAM+V +ECD) 

B=1-ALP 

RORD = RORIRIR :'Dimensionless Outer Radius 

0% = 0 :'0 is a pointer for stress arrays 

·••• MAIN LOOP - Compute Winding Stress at various Diameters *** 

FOR RPR = RIR TO ROR STEP PIR 

0% = 0% + 1 
RPRD'""' RPR/RIR :'Dimensionless Present outer Radius 

'Compute Winding Integral (WI) with 2 decades 

WI=O : LOLIM = RPRD : UPLIM = RPRD+.1*(RORD-RPRD) 

GOSUBINTEG 

WI = SUM : LOLIM = UPLIM : UPLIM = RORD 

GOSUBINTEG 
WI= WI+ SUM 

'Compute Stresses and Print 

CONST =WI i (RPRD"B) 

SR(O%) = -(1+A'RPRD"-GAM2) * CONST 

ST(O%)=FNWIS(RPR) - (ALP-(A*BET*RPRD"-GAM2)) • CONST 

LPRINT USING "######.########": RPR, SR(O%). ST(O%). FNWIS(RPR) 

NEXT RPR 

END MAIN I OOP • 

INPUT "DO YOU WANT ANOTHER RUN??", RESPONSE$ 

IF RESPONSE$= ("Y" OR "y") GOTO STARTRUN 

PRINT "THANK YOU, HAVE A NICE DAY II" 



INTEG: 

'Integration by Simpson's 1/3 Rule, FNINTEG is function to integrate 

OX= (UPLIM-LOLIM) I PANEL% :'PANEL WIDTH 
WIS = FNWIS(LOLIM*RIR) 
ES = FNINTEG(LOLIM.WIS) :'END SUM 
WIS = FNWIS(UPLIM*RIR) 
ES = ES + FNINTEG(UPLIM,WIS) 

EVS = 0 : ODS = 0 :'EVEN AND ODD SUM 
FOR 00% = 1 TO (PANEL%/2) 
S = LOLIM + DX*(2*00%-1) 
WIS = FNWIS(S*2) 
ODS= ODS+ FNINTEG(S,WIS) 
WIS = FNWIS(S*2) 
S = LOLIM + DX*(2*00%) 
EVS = EVS + FNINTEG(S,WIS) 
NEXT oc:::F/o 

S = LOLIM + PANEL%*DX 
EVS = EVS- FNINTEG(S,WIS) 
SUM = (ES+4*0DS+2*EVS) *DX/3 

RETURN 

blQIL 
Input Editing Subroutines similar to Roisum Linear Isotropic program are not repeated here 



Linear Anisotropic Model - Yagoda 

'WindY ago 

'Stresses During Roll Winding 

'Linear Anisotropic, Variable WIS 

'Yagoda's Model, ASME 80-WA/APM-23 

'Written in Microsoft Ouickbasic 1 .0 for Macintosh and 4.0 for PC 

'David R Roisum 4/24/89 

DEFDBL A-Z 

'*** DEFINE INPUT VARIABLES HERE 

WISO = 750 
WIS1 = 0 
WIS2 = 0 
RIR = 2 
ROR = 20 
PIR = 1 

ER = 1000 
ET = 7500001 
EC = 1000001 
UR = .01 

:'Wound in Stress constant 

:'Wound in Stress constant, radius multiplier 

:'Wound in Stress constant, radius squared mult'r 

:'Radius Inner Roll 
:'Radius Outer Roll 
:'Print Increment in Radius 
:'Modulus, Radial 
:'Modulus, Tangential 
:'Modulus, Core 
:'Poissons Ratio, Radial 

UT = .01 :'Poissons Ratio, Tangential 

SMALL = 1 D-30 :'Error Tolerance (set tiny, but avoid overflow) 

COMMENT$= "Lin Ani Std" 

DEFINE INPUT VARIABLES HERE 

STARTRUN: 
GOSUB USERIN 

'GETIING STARTED 
NUMPTS% = (ROR-RIR)/PIR + 1 

DIM SR(NUMPTS%) :'Radial Stress Array 

DIM ST(NUMPTS%) :'Tangential Stress Array 

DIM WIS#(3) 
WIS#(O) = WISO 
WIS#(1) = WIS1*RIR 
WIS#(2) = WIS2*RIR~2 

'ECHO INPUT 
LPRINT 
LPRINT "YAGODA LINEAR ANISOTROPIC WINDING rvlODEL" 

LPRINT 
LPRINT "WFB HANDLING RESEARCH CENTER" 

LPRINT "OKLAHOMA STATE UNIVERSITY" 

LPRINT 
LPRINT COMMENT$ 
LPRINT TIME$, DATE$ :'your Basic may not support th1s statement 

LPRINT 
'Calculate and print wound-in-stress at core, middle and outside of roll 



LPRINT "WOUND IN STRESS = "; WISO; " + "; WIS1; "*R + "; WIS2; "*R"2" 
LPRINT "MODULUS, RADIAL = "; TAB(20); ER 
LPRINT "MODULUS, TANGEN = "; TAB(20); ET 
LPRINT "MODULUS, CORE = "; TAB(20); EC 
LPRINT "POISSON, RADIAL = "; TAB(20); UR 
LPRINT "POISSON, TANGEN = "; TAB(20); UT 
'LPRINT "SMALL = "; TAB(20); SMALL 
LPRINT 
LPRINT TAB(5); "RADIUS"; TAB(18); "RADIAL STRESS"; 
LPRINT TAB(35); "TANG STRESS"; TAB(58); "WIS" 
LPRINT 

'Calculate Intermediate Parameters 
ERD = ET/ER :'Dimensionless Radial Modulus 
ERC = ET!EC :'Dimensionless Core Modulus 
V = (UT +ERD*UR)/2 
DEL = (UT-ERD*UR)/2 
GAM= (DEL "2+ERD)".5 
ALP = GAM-DEL 
BET= GAM+DEL 
A = (GAM-V-ERC)/(GAM+V+ERC) 
B = 1-ALP 
GAM2 = 2*GAM 
RORD = ROR!RIR :'Dimensionless Outer Radius 
0% = 0 :'0 is a pointer for stress arrays 

·••• MAIN LOOP - Compute Winding Stress at various Diameters ••• 

FOR RPR = RIR TO ROR STEP PIR 

0% = 0% + 1 
RPRD = RPR/RIR :'Dimensionless Present outer Radius 

'Compute Winding Series Double Summation and Print 
OUTSERIES = 0 
FOR PHI%= 0 TO 2 :'WIS polynomial loop 

IF ABS(WIS#(PHI%)) <SMALL THEN GOTO SKIP1 
'Don't calc small or 0 WIS terms 
D1 = 1 + (B+PHI%)/GAM2 
D2 = (RORD"GAM2/A)*(RPRD/RORD)"GAM2 
SERIES= 0 
FOR N% = 2 TO 100 :'Winding integral series 

DE NOM = (N%-01 )*02"N% 
IF ABS(DENOM) < SMALL THEN GOTO SKIP2 
'1st term of iso'c case = 0 
IF ABS(DENOM) > 1/SMALL THEN GOTO SKIP3 
'exit when terms small 
TERM= (-1)"N%!DENOM 
SERIES =SERIES +TERM 
SKIP2: 

NEXT N% 
SKIP3: 
'if-isotropic, else anisotropic 



IF ABS(B+PHI%) <SMALL THEN 

SERFUNC = -LOG(RPRD/RORD)- RPRD"GAM2*SERIES/(GAM2*A) 
ELSE 
SERFUNC = -(1-(RPRD/RORD)"(-B-PHI%))/(B+PHI%) -

RPRD"GAM2*SERIES/(GAM2* A) 
END IF 

OUTSERIES = OUTSERIES + SERFUNC*WIS#(PHI%)*RPRD"PHI% 
SKIP1: 
NEXT PHI% 

SR(Q%) = -(1 +A*RPRD"-GAM2)*0UTSERIES 

ST(O%) = WIS#(O) + WIS#(1 )*RPRD + WIS#(2)*RPRD"2 - (ALP-A*BET*RPRD"­
GAM2)*0UTSERIES 

LPRINT USING "######.##########"; RPR, SR(Q%), ST(Q%), 
WISO+WIS1*RPR+WIS2*RPR"2 

NEXTRPR 

END MAIN LOOP* * * 

INPUT "DO YOU WANT ANOTHER RUN??", RESPONSE$ 
IF RESPONSE$= ("Y" OR "y") GOTO STARTRUN 
PRINT "THANK YOU, HAVE A NICE DAY!!" 

t1QlL 
Input Editing Subroutines, similar to Roisum Linear Isotropic program, are not repeated here 



NonLinear Anisotropic Model - Hakiel 

'WindHakl 

'Stresses During Roll Winding 
'Nonlinear Anisotropic, Variable WIS 

'Hakiels Model, Tappi Journal, vol 70 no 5, May 1987 

'Written in Microsoft Quick Basic 1 .0 for the Macintosh 
'David R Roisum 6/16/89 

DEFDBL A-Z 
CLEAR, 500000& 

DEFINE INPUT VARIABLES HERE 

'Wound-In-Stress as a Function of Radius 

WISO = 750 :'Wound in Stress constant 

WIS 1 = 0 :'Wound in Stress constant, radius multiplier 

WIS2 = 0 :'Wound in Stress constant, radius squared multiplier 

DEF FNWIS(R) = WISO + WIS1*R + WIS2*R"2 
RIR = 2 :'Radius Inner Roll 

ROR = 20 :'Radius Outer Finished Roll 
IR = .05 
PIR = .5 

:'Radial Thickness of Calculation Interval ie gridsize 

:'LPRINT Increment in Radius 
'Radial Modulus as a Function of Radial Stress 

ERO = 750 :'Radial Modulus constant 

ER1 = 0 :'Radial Modulus constant, radius multiplier 

ER2 = 0 :'Radial Modulus constant, radius squared multiplier 
DEF FNER(SR) = ERO +ER*R + ER*R"2 
ET = 750000& :'Modulus, Tangential 
EC = 1 00000& :'Modulus, Core 
UR = .01 :'Poissons Ratio, Radial 

UT = .01 :'Poissons Ratio, Tangential 
COMMENT$= "Lin Ani Std Input" 
OUTFILE$ = "HD 40:Athesis:DispWIS:Nonlinout" 

DEFINE INPUT VARIABLES HERE 

'Getting Started 
NUMPTS% = (ROR-RIR)/IR 
DIM SR(NUMPTS%+5) 
DIM ST(NUMPTS%+5) 
DIM DSR(NUMPTS%+5) 
DIM DST(NUMPTS%+5) 
DIM AA(NUMPTS%+5.3) 
DIM B(~WMPTS%+5) 

'Echo Input 
LPRINT 

:'Number of total solution points 
:'Radial Stress Array 
:'Tangential Stress Array 
:'Differential Radial Stress Array 
:'Differential Tangential Stress Array 
:'Square Matrix of Drff Eq Terms 
:'Forcing Function Array 

LPRINT "HakieL'Rorsum Nonlinear Anisotropic Winding Model" 
LPRINT 

LPRINT "WEB HANDLING RESEARCH CENTER" 

LPRINT "OKLAHOMA STATE UNIVERSITY" 



LPRINT 
LPRINT COMMENT$ 

LPRINT TIME$ , DATE$ :'your Basic might not support this 
LPRINT 

LPRINT "WOUND IN STRESS = "; WISO; " + ": WIS1; "*R + "; WIS2; "*R"2" 

LPRINT "MODULUS, RADIAL= "; ERO; " + "; ER1; "*R + "; ER2; "*R"2" 
LPRINT "MODULUS, TANGEN= "; TAB(20); ET 

LPRINT "tv'rODULUS, CORE= "; TAB(20); EC 
LPRINT "POISSON, RADIAL = "; TAB(20); UR 
LPRINT "POISSON, TANGEN "" "; TAB(20); UT 
LPRINT "RADIAL INCREMENT= "; TAB (20); IR 
LPRINT 

LPRINT TAB(S); "RADIUS"; TAB(18); "RADIAL STRESS": 

LPRINT TAB(35); "TANG STRESS"; TAB(58); "WIS" 
LPRINT 

'*** MAIN LOOP - Compute Winding Stress at Various Diameters 

STARTRUN: 
GOSUB USERIN 

GOSUB FIRSTLAYERS 

FOR 0% = 2 TO (NUMPTS%-2) 
PRINTO% 
GO SUB FILLMA T 
NN% = 0% 
GOSUB TRIDIAG 
GOSUBSUtv1STR 

NEXTO% 

GOSUB CALCTANG 

END MAIN LOOP* * • 

'Final LPRINT and Save Loop 
OPEN OUTFILES FOR OUTPUT AS #1 
FOR 0% = 0 TO NUMPTS% STEP (PIR/lR) 

LPRINT USING "######.########"; (RIR+0%*1R). SR(O%), ST(O%), 
FNWIS(RIR+0%*1R) 
PRINT #1. (RlR+0%'1R). CHRS(9), SR(O%), CHRS(9), ST(O%) 

NEXT 0% 

CLOSE #1 

1 • • * * • * • * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINES AND STUFF 
''""*****•****"'*******•******** 

FIRSTLAYERS: 
'Approximation assuming small IR 
DDSR = -FNWIS(RIR)*IR/(RlR) 



FOR 00% = 0 TO 3 
SR(OO%) = (3-00%)*DDSR 

NEXTOO% 
RETURN 

FILLMAT: 

RETURN 

'Zero Square Matrix 
FOR ZZ% = 1 TO 0% 

FOR ZZZ% = 1 TO 3 
AA(ZZ%,ZZZ%) = C' 

NEXTZll..% 
NEXTZZ% 

'Initialize First Layer 
ERHERE = FNER(SR(O)) 

CORCONSTH = EC*ERHERE*RIR/(2*EC*ERHERE*IR-2*ERHERE*ET*IR-
3* EC*ERHERE* R I R-2* EC*ET* IR*UR) 

RPR = RIR + IR 
ERHERE = FNER(SR(1 )) 
ADIFF = 3 + UT- UR*ET/ERHERE 
BDIFF = 1-ET!ERHERE*(1 +UR)+UT 
AA(1 ,2) = (BDIFF*IR"2 + 2*ADIFF*CORCONSTH*IR*RPR - 2*RPR"2 -

4*CORCONSTH*RPR"2)/IR"2 
AA(1 ,3) = (ADIFF*IR*RPR - ADIFF*CORCONSTH*IR*RPR + 2*RPR"2 + 

2*CORCONSTH*RPR"2)/(2*1R"2) 
B(1) = 0 

'*** INTERMEDIATE LAYERS *** 
FOR 00% = 2 TO (0%-1) 

ERHERE = FNER(SR(OO%)) 
RPR = RIR + 00%*1R 
ADIFF = 3 + UT - UR*ET/ERHERE 
BDIFF = 1-ET!ERHERE*(1 +UR)+UT 
AA(OO%, 1) RPR*(-ADIFF*IR + 2*RPR)/(2*1R"2) 
AA!00%,2) BDIFF - (2*RPR"2)/IR"2 
AA(00%,3) RPR*(ADIFF*IR + 2*RPR)/(2*1R"2) 
8(00%) = 0 

NEXT (.X;?/o 

'Initialize Under Second Layer 
ERHERE = FNER(SR(O%)) 
RPR = RIR + 0%*1R 
ADIFF = 3 + UT- UR.ET!ERHERE 
BDIFF = 1-ET;ERHERE.(1 +UR)+UT 
AA(O%, 1) = RPR·( -ADIFF·JR + 2·RPR)!(2.1R"2) 
AA(0%,2) = BDIFF - (2.RPR"2jiiR"2 
B(O%) (FNWIS(RPR+2.1R)"IR/(RPR+2.1R))"RPR*(ADIFF•JR + 2·RPR)/(2.1R"2) 

SUMSTR: 
DSR(O) = CORCONSTH * (-4-DSR(1) + DSR(2)) 
DSR(0%+1) = -FNWIS(RIR + (0%+2)*1R)*IR/(RIR + (0%+2)*1R) 



RETURN 

DSR(0%+2) = 0 
'Total Accumulated Stresses 
FOR 000% = 0 TO O"lo+2 

SR(OOO%) = SR(OOO%) + DSR(OOO%) 
NEXTOOO% 

CALCTANG: 

RETURN 

FOR 00% = 1 TO (NUMPTS%-1) 
RPR = RIR + 00%*1R 
DSR = (-SR(00%-1) + SR(00%+1))/(2*1R) 
ST(OO%) = RPR*DSR + SR(OO%) 

NEXTOQ% 
RPR = RIR + NUMPTS%*1R 
ST(NUMPTS%) = FNWIS(RPR) 
ST(O) = 2*ST(1) - ST(2) 

TRIDIAG: 
'Forward 

RETURN 

NOTE: 

FOR I% = 2 TO NN% 

AA(I%,2) = AA(I%,2) - AA(I%, 1 )* AA(I%-1 ,3)/AA(I%-1 ,2) 
NEXT I% 
DSR(NN%) = B(NN%)/AA(NN%,2) 
'Back Substitution 
FOR I%= NN%- 1 TO 1 STEP -1 

DSR(I%) = (8(1%) - AA(I%,3)*DSR(I%+ 1 ))/AA(I%,2) 
NEXT I% 

Input Editing Subroutines, similar to Roisum Linear Isotropic program, are not repeated here 



APPENDIX B 

WINDING MODEL COMPUTER OUTPUT 

Standard Sets of Input Parameters 

TestName LinisoStd LinlsoTst 

WIS 750 900-60R+3R2 

Eradial 10,000 1,000 

Etangen 

Ecore 

).l.Til dial 

100,000 

0.01 

3,000 

.3 

LinAniStd LinAniTst 

750 900-60R+3R2 

1,000 1,000 

750,000 2,000 

100,000 3,000 

0.01 0.1 

).Hangen 0.01 0.2 

The roll inner and outer diameters are 4" and 40" respectively. 

NonLinStd NonLinTst 

1000-20R 900-60R+3R2 

50+ lOOP IOOO+P 

750,000 2,000 

100,000 3,000 

0.01 0.1 

0.01 0.2 

Gridsizes are listed on output and are approximately optimized for each input set. 

Test Input Parameters Solvable by Various Winding Models 

TestName LinisoStd LinlsoTst LinAniStd LinAniTst NonLinStd NonLinTst 
Linlso YES YES no no no no 
Altmann YES YES YES YES no no 
Yagcx:la YES YES YES YES no no 
Hakiel YES YES YES YES YES YES 

Output listings were calculated using the programs given in Appendix A on an Apple 

\Llcintosh II engineering \\orkstation with a 68881 math coprocessor running compiled 

Microsoft QuickBasic 2.0. 
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Roisum Linear Isotropic - Linear Isotropic Standard Input 
Double Precision, 0.01 II grid spacing 

RADIUS RADIAL STRESS TANG STRESS 
2 -2716.089139648347 451.230195245774 
3 -1776.913316531786 -93.214215577751 
4 -1368.961016622711 -161.784541855927 
5 -1124.334302714681 -118. 6568'75741218 
6 -950.988223462363 -45.403753015089 
7 -816.087111214338 34.181055037843 
8 -704.999209561983 112.287578296520 
9 -610.122189840559 186.353363744073 

10 -527.040454773716 255.715551158843 
11 -452.966445333454 320.426033756962 
12 -386.024596155377 380.796059449537 
13 -324.888737438378 437.212794403569 
14 -268.583543474473 490.064768891615 
15 -216.368632120621 539.713025379619 
16 -167.667228040589 586.481912318726 
17 -122.020260203774 630.658279192062 
18 -79.055693418783 672.494076783292 
19 -38.467369450627 712.210117552146 
20 0 750 

Roisum Linear Isotropic - Linear Isotropic Test Input 
Double Precision, 0.01 II grid spacing 

RADIUS RADIAL STRESS TANG STRESS 
2 -1848.919804040042 -378.982564599534 
3 -1363.746898511339 -369.304171243662 
4 -1104.677183896124 -279.271883753002 
5 -930.988545185037 -191.428270300997 
6 -801.397805381332 -114.391719023837 
7 -698.468316023048 -46.329171071259 
8 -613.138429876936 15.828922233406 
9 -540.045966930974 74.796555675239 

10 -475.728746191923 132.738917241148 
::.1 -417.808446176886 191.347110797941 
12 -364.574218966494 251.944447230655 
13 -314.750773101348 315.576322026107 
::.4 -267.360179098793 383.078429403311 
:iS -221.635009714122 455.::_27017576642 
::.6 -176.961339806047 532.275758802559 
17 -132.839987412588 614.982956510562 
::_g -88.s5936l306901 703.631821072781 
., q -44. E 1 SJ~.:_:._g2975 798.545753174523 
20 0 900 



Altmann Linear Anisotropic - Linear Isotropic Standard Input 
Double Precision, 500 integration panels 

RADIUS RADIAL STRESS TANG STRESS 
2 -2719.168287720908 450.891488958481 
3 -1778.907507957044 -94.160536674405 
4 -1370.388470577621 -162.735285109017 
5 -1125.413863173908 -119.490940497067 
6 -951.832554369637 -46.109948902550 
7 -816.761794367702 33.589266518715 
8 -705.545763521336 111.793188736527 
9 -610.568556757327 185.940998458297 

10 -527.406336797364 255.372409009581 
11 -453.266254064694 320.141708003654 
12 -386.269190986620 380.562122606048 
13 -325.086504199421 437.022394105196 
14 -268.741092584622 489.912292817215 
15 -216.491266683294 539.593837811090 
16 -167.759267220252 586.392150766477 
17 -122.085268444883 630.594697985566 
18 -79.096646593645 672.453926434986 
19 -38.486777674079 712 .19105114 6170 
20 0 750 

Altmann Linear Anisotropic - Linear Isotropic Test Input 
Double Precision, 500 intet:,'Tation panels 

RADIUS RADIAL STRESS 
2 -1852.384515179313 
3 -1365.702047218821 
4 -1105.880824749988 
5 -931.753381955097 
6 -801.884657171346 
7 -698.771196311386 
8 -613.316998690568 
9 -540.140226606387 

10 -475.766537620731 
11 -417.809624251420 
:2 -364.553141673888 
13 -314.717867758662 
"-4 -267.322972337603 
- -22:.59883Sl39093 

• r 
j_t: -176.929812455930 
17 -132.315391083203 
18 _QC, . ().4289278396' 
l9 -:~~. ~,E7'92~~-2:·l 7E 
~"' ('o 

Lu v 

TANG STRESS 
-381.176881695709 
-370.904571332521 
-280.347601429153 
-192.140068747041 
-114.854874488709 

-46.621150147191 
15.655294946497 
74.704362994868 

132.701798475285 
191.345950079936 
251.965263283587 
315.608879540561 
383.115296799364 
455.162909519322 
532.307065751763 
615.007400465651 
7S3.648198563683 
'98.553739915461 
900 



Altmann Linear Anisotropic - Linear Anisotropic Standard Input 

Double Precision, 500 integration panels 
RADIUS RADIAL STRESS TANG STRESS 

2 -30.8741467309446 286.887804211512 
3 -24.6824177314037 -24.682424759321 
4 -24.6824175581176 -24.682419426456 
5 -24.6824175294366 -24.682418526276 
6 -24.6824175357524 -24.682418724501 
7 -24.6824175497266 -24.682419163095 
8 -24.6824175591793 -24.682419459780 
9 -24.6824175591991 -24.682419460399 

10 -24.6824175352383 -24.682418708366 
11 -24.6824172227737 -24.682408901352 
12 -24.6824130484000 -24.682277884448 
13 -24.6823665169296 -24.680817447600 
14 -24.6819327377797 -24. 667202854115 
15 -24.6784729392648 -24.558613609243 
16 -24.6543838395132 -23.802553063980 
17 -24.5055243563802 -19.130448952763 
18 -23.6778006169784 6.848490409501 
19 -19.4884753435726 138.334663954891 
20 0 750 

Altmann Linear Anisotropic - Linear Anisotropic Test Input 

Double Precision, 500 integration panels 

RADIUS RADIAL STRESS 
2 -1222.218749964698 
3 -934.355059111110 
4 -792.486401136330 
5 -695.292736856860 
6 -619.607257123521 
7 -556.697294050866 
8 -502.151925123341 
9 -453.321945041163 

10 -408.438684471206 
1 • -366.237844013558 _L...:._ 

l2 -325.772224219263 
13 -286.307544379941 
14 -247.25956l38793l 
15 -208.l53720674793 
1 r 
.;....() -168.598015685745 
1 7 -128.264039057171 ~· 

18 -86.373347898423 
19 -44.:8 7 404?44633 
"~. Lv 

TANG STRESS 
-267.2562536119005 
-387.1369809187124 
-339.466106c370583 
-273.5589436236932 
-209.6429664804782 
-149.4340633627709 

-91.4240975395550 
-33.7366355072319 

25.2972758076904 
87.0600763540708 

152.6790243471283 
223.0747693807944 
299.0049763868126 
381.0991751543895 
469.8856278274778 
565.8118673968592 
669.2504393670993 
730.5610437435063 



Yagoda Linear Anisotropic - Linear Isotropic Standard Input 
Double Precision 

RADIUS RADIAL STRESS TANG STRESS 
2 -2713.7723117286 451.4850463164265 
3 -1774.8455371134 -92.2329741272212 
4 -1366.7934015479 -160.3408207463474 
5 -1122.0349029861 -116.8803672957441 
6 -948.5709866395 -43.3819832461357 
7 -813. 5710105869 36.3880161229551 
8 -702.4009212461 114.6378798454161 
9 -607.4552118269 188.8171869115788 
0 -524.3155217324 258.2711273280686 

11 -450.1921085522 323.0570958744581 
12 -383.2077240358 383.4901890384831 
13 -322.0349041508 439.9603274398612 
14 -265.6973216209 492.8580552367575 
15 -213. 4538118258 542.5459163368045 
16 -164.7269816328 589.3493985622766 
17 -119.0572670220 633.5562299459363 
18 -76.0722353424 675.4190485669375 
19 -35.4654047849 715.1592116401897 
20 3.0187787848 752.9707545982819 

Yagoda Linear Anisotropic - Linear Isotropic Test Input 
Double pr .. cision 

RADiuS RADIAL STRESS 

2 -1861.984655260331 
3 -1373.214886776563 
4 -1112.330738890395 
5 -937.487380947160 
6 -807.069010593882 
7 -703.502921358998 
8 -617.660234267182 
9 -544.141144896211 

10 -479.460479415376 
11 -421.224915012706 
12 -367.713309884723 
13 -317.643020371932 
14 -270.030692313218 
15 -224.104786851638 
16 -179.248191210749 
17 -134.9~g204079437 

18 -90.824209747287 
19 -46.498047433688 
20 -1.689597323547 

TANG STRESS 
-387.256970528129 
-377.054256545626 
-286.112017474197 
-197.476438194652 
-119.786892134994 

-51.182571805065 
11.432249532064 
70. 79l179765009 

129.073606451090 
187.980976675944 
248.844263353252 
312.714647458195 
380.432274102813 
452.676875490123 
530.004894283433 
612.876868394174 
701.677833603243 
~96.732699084761 

898.317971631785 



Yagoda Linear Anisotropic - Linear Anisotropic Standard Input 
Double Precision 

RADIUS 
2 
3 
4 

5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

RADIAL STRESS 
-30.8741485220513 
-24.6824174985462 
-24.6824174966308 
-24.6824174966308 
-24.6824174966308 
-24.6824174966304 
-24.6824174966108 
-24.6824174959148 
-24.6824174790398 
-24.6824171781760 
-24.6824130164965 
-24.6823664963603 
-24.6819327259460 
-24.6784729333297 
-24.6543838370349 
-24.5055243555966 
-23.6778006168298 
-19.4884753435651 

0 

TANG STRESS 
286.8877773449125 
-24.6824174508583 
-24.6824174966307 
-24.6824174966307 
-24.6824174966307 
-24.6824174966200 
-24.6824174960037 
-24.6824174741590 
-24.6824169445210 
-24.6824075016094 
-24.6822768831249 
-24.6808168020134 
-24.6672024827024 
-24.5586134229635 
-23.8025529861975 
-19.1304489281714 

6.8484904141685 
138.3346639551283 
750 

Yagoda Linear Anisotropic - Linear Anisotropic Test Input 
Double Precision 

RADIUS 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
l3 
14 
15 
16 
17 
18 
19 
20 

RADIAL STRESS 
-1221.988316905104 

-934.205640788028 
-792.378403290726 
-695.208174623984 
-619.533857873585 
-556.625863789909 
-502.075484500010 
-453.235266704417 
-408.337978752548 
-366.120524159736 
-325.636723762542 
-286.153171938466 
-247.086383379183 
-207.9624655036~6 

-168.389994560671 
-12P.0410799~6435 

-86.637 7 39892529 

0. 252422907315 

TANG STRESS 
-267.0565449595658 
-386.9556142699403 
-339.3233607654115 
-273.4435788887624 
-209.5413692997986 
-149.3344385067588 

-91.3170180407181 
-33.6148869946906 

25.4389760262427 
87.2253514544250 

152.8700725538183 
223.2925593945338 
299.2494088485162 
381.3692162201099 
470.1 7 94202508006 
566.1268240366979 
669.5933196327355 
780.9080232419544 
900.3567255612833 



Hakiel NonLinear Anisotropic - Linear Isotropic Standard Input 

Double Precision, 0.05" grid spacing 
RADIUS RADIAL STRESS TANG STRESS 

2 -2722.6282124230 404.6215611544 
3 -1783.2370382505 -cl00.5110124930 
4 -1375.1743940724 -168.0070181216 
5 -1130.1369687597 -122.8713164331 
6 -956.2458358644 -48.2694193663 
7 -820.8013279135 32.2919633590 
8 -709.2099937433 111.1226720859 
9 -613. 7913772823 187.1403737604 

10 -530.1208500148 257.8299992484 
11 -455. 4 718825617 323.4012885740 
12 -387.9993296893 384.2626257039 
13 -326.3921200147 440.8646017269 
14 -269.6820269910 493.6393326467 
15 -217.1314694468 542.9791696380 
16 -168.1641276827 589.2318303999 
17 -122.2988614159 633.2785706920 
18 -79.1662110963 674.3948101958 
19 -38.4807037619 712.8839890342 
20 0 750 

Hakiel NonLinear Anisotropic - Linear Isotropic Test Input 

Double Precision, 0.05" grid spacing 

RADIUS RADIAL STRESS TANG STRESS 
2 
3 
4 
5 
6 
7 
8 
9 

10 
ll 
12 
13 
14 
l5 
16 
17 
l8 
, a 
-'· J 

"'I Lv 

-1853.5184285449 
-1368.0755764382 
-1109.6423963395 

-936.0276507209 
-806.2293055923 
-702.9922295757 
-617.3233754971 
-543.8124977281 
-478.9998140736 
-420.5672409642 
-366.8363444l83 
-316.5502531128 
-268.74212::..2590 
-222.651E563941 
-17 7 .6699209789 
-133.2786888770 
-290. 728244'._':44 
-~4i. 5~23328j83 

~ 

-402.5804090006 
-379.1286715968 
-287.3862202508 
-197.3456585154 
-118.7641672231 

-49.5209878887 
13.5769829196 
74.5600120999 

133.9973866259 
193.7083757542 
255.0886878442 
3F· "250478267 
38t.- '60002960 
459.0290052960 
535.9408688305 
618. 796776C' 2J.. 
70E:.919006c..;37 
800.662179".'210 
900 



Hakiel NonLinear Anisotropic - Linear Anisotropic Standard Input 
Double Precision, 0.01" grid spacing 

RADIUS RADIAL STRESS TANG STRESS 
2 -33.5326106256 411. 0095214159 
3 -25.8785184941 -24.6686179947 
4 -25.5774100982 -24.7252041672 
5 -25.3990529480 -24.6891359960 
6 -25.2804318503 -24.6940539513 
7 -25.1963730280 -24.7009541574 
8 -25.1394961546 -24.8875996675 
9 -25.0957409353 -24.7185655959 

10 -25.0583635383 -24.7229046151 
11 -25.0281801760 -24.7273102410 
12 -25.0033801280 -24.7315243552 
13 -24.9827043926 -24.7354274874 
14 -24.9652170238 -24.7377369117 
15 -24.9499464797 -24.7285419513 
16 -24.9335262275 -24.5773409454 
17 -24.7849857052 -19.1454885618 
18 -23.9334529540 7. 3008613135 
19 -19.6755443890 140.3023768920 
20 0 750 

Hakiel NonLinear Anisotropic - Linear Anisotropic Test Input 
Double Precision, 0.05" grid spacing 

RADIUS RADIAL STRESS TANG STRESS 
2 -1222.6849293757 -275.0327539291 
3 -934.8807941796 -392.27 38390796 
4 -794.1913762711 -344.3370238078 
5 -697.5878534286 -277. 6279542071 
6 -622.1736790714 -213.1423311926 
7 -559.3736045302 -152.4383811438 
8 -504.8442068329 -93.9694 729972 
9 -455.9079269859 -34.8230595858 

10 -410.8063649337 25.3535960457 
ll -368.3306859685 88.0292248093 
12 -327.5657801674 154.3697767992 
:i3 -287.797679102.4 225.3108813167 
' ~ -'"' -248.4562.2538:2 301.6124500785 
15 -209.0769733050 383.3989285474 
16. -l69. 27652S0562 472.68862.44921 
'.c7 -l28. 71:2_5927026 569.0166601825 
"p 
~J -87.: 1278817S8 672.2522475833 
2_9 -44.2702372215 132. 1 479l2_63l5 
2C " 0DC: v 



Hakiel NonLinear Anisotropic - NonLinear Anisotropic Standard Input 
Double Precision, 0.01" grid spacing 

RADIUS RADIAL STRESS 
2 -77.6815414186 
3 -62.0306167993 
4 -57.919313.J083 
5 -54.4150998069 
6 -51.2500446622 
7 -48.3305288084 
8 -45.6292088090 
9 -43.0573492005 

10 -40.5818386604 
11 -38.2163706463 
12 -35.9522310366 
13 -33.7794191490 
14 -31.6832929687 
15 -29.6338513182 
16 -27.5575993522 
17 -25.1595421234 
18 -21.7924138092 
19 -15.6998537278 
20 0 

T Ar\G STRESS 
359.9498760896 
-48.1836314597 
-43.1579601670 
-37.8519497723 
-33.0707361052 
-28.6544947909 
-25.0099039336 
-20.2682211276 
-16.3884475694 
-12.7695385457 

-9.3517385462 
-6.0720344780 
-2.7644736124 

1.0324849453 
6.669408866'::: 

21.3030853285 
54.9238357992 

1SC.7385355474 
60S 

Hakiel NonLinear Anisotropic - NonLinear Anisotropic Test Input 
Double Precision, 0.05" grid spacing 

RADIUS RADIAL STRESS 
2 
3 
4 
5 
6 
7 

8 
9 

1Q 

11 
12 
13 
14 

:e 

-1606.7501990180 
-1216.1136272759 

-996. 085806842' 
-845.3995618266 
-732.2470343837 
-642.2377386282 
-567.5369524182 
-503.3l54449432 
-446. 44742C9C:::: 
-39~.325~2=-j2:3 

-257.92_727~32~:2 

-215.2~:3899:3~--

T A0."G STRESS 
-478.68883C84lS 
-322.7629958997 
-286 .1~ ?2:35C8CJ1 

-132.7670858Sl9 
-72.5 1 07511778 
-=._ 1 . C2874:-c634J 

3'.2228393583 



APPENDIX C 

STRESS MEASUREMENT COMPUTER PROGRAMS 

Data Acquisition Program - Main 

I * DRWIND.c - interface routine for 
gathering Wound-in-Stress data using 

Metrabyte data acquisition cards 
CTM-05 counter/timer 
Dash16 analog cards 

Written in Borland Turbo C 3.0 
Copyright (C) 1988 Beloit & WHRC 

(all rights reserved) 

v10 12/17/88 link with DRDASH.h for reading analog card 
v11 12/18/88 link with DRCTM05.h for reading counter card 

*I 

#define TRUE 
#define FALSE 0 

#include "stdio.h" 
#include "dos.h" 

/* our std header files */ 

#include "c:\tc\drcount\drdash16.h" /* Dash16 functions*/ 
#include "c:\tc\drcount\drctm05.h" /* CTM05 functions */ 

/* •• ******************/ 

/* Program constants *I 

;·····················; 
#define MAXSAMPLE 
#define WRAPCOUNT 
#define FILENAME 
FILE ·out: 

I • 

1 0000 
12500 
"c:drwind.dat" 

External functions from stdlib and dos 

I* maximum samples */ 

I* wrap count * 1 

** * ** * ••• **• "'**** *** *** ********* ****** * 

I • 

extern int kbhit(); 
extern int inport(); 
extern void outport(); 



I • 

********************************* 

External functions from drdash16 
********************************* 

* I 

extern int initD16(): 

extern int adcran016(); 

extern int adc016(); 

I • 

******************************** 

External functions from drctm05 

***************************'***** 

extern int initctm(); 

extern int readctm(): 
* I 

I • 

******************************* 

Internal function declarations 
*****************************"*"* 

• I 

void prt_hd r(); 

void saveit(); 

I • 
************'****** 

Global Data Items 
****************** 

• I 

unsigned int sample = 0; 

unsigned int oldsample = 0; 

unsigned int cflag = 1; 

unsigned int count[6]; 

unsigned int cnt3data[MAXSAMPLE]: 

float ain1 data[MAXSAMPLE]: 

/* main: 

I* print header during signon *I 

I* save data array • I 

• This functron reads analog input 1 channel as fast as possible 

• until a new data flag from the counter 2 is detected 

• Then the average caliper and counter 3 data is stored in array. 

• Exits either on Maxsample or Kbhit and data is wntten to disk. 

*I 

main () 

rnt arn1 sample = 0: 

double ain1 sum = O: 

prt_hdr(); 
inrt016(0x310, 1): 

adcran016(0,0); 

ir1;tctm(WRAPCOUNT); 

ENABLE: 

/* initialize Dash16 *I 

/* sets channels for Dash16 *I 

I* initialize CTM05 * 1 



while(sample < MAXSAMPLE && !kbhit()) 

{ 
if(ain1 sample < 32000) 

{ 
ain1 sample = ain' c::.mple + 1: 

ain1 sum = ain1 su - adc016(); 

readctm(); 
if(cflag) 

{ 
cnt3data[sample] 
ain1 data[ sample] 
printf("\n%8u %8u 

count[3]; 
a in 1 sum/ain 1 sample; 

%f %8d", count[2], cnt3data[sample], 

ain1 data[sample], ain1 sample); 

DISABLE; 
getchar(); 
getchar(); 
save it(); 

a in 1 sample = 0; 
ain1sum = 0; 
} 

} /* main *I 

I* prt_hdr() 
prints informative header message 

* I 

void prt_hdr() 

printf ("\nDRwind\n"); 

printf ("\nOn countdown of counter 1 ,"): 

printf ("\ncounter 3 is read and counters reset"); 

printf ("\nelse analog in 1 is read as often as possible.\n\n"); 

} r prt_hdr */ 

/. saveit: 

* saves data array to disk 
.I 

vo1d saveit() 

int i: 
prmtf("Saving data to disk drive\n") 

out = fooen(FIL[~~AME. "w") 

for(J=1 : i<sample ; i++) 
{ 

fprintf(out, "%u \t%f \n". cnt3data[i], ain1 data[i)); 
I * 

printf("\n %Gd %6d %6d", i, cnt3data[i], ain1data[i]); 
* I 



fclose(out): 
printf("\n\nThank you for using DRwind\n"); 

} /* saveit ·; 

I* end of file DRWIND.c */ 



Data Acquisition Program Counter 

!* DRCTM05.h 

*I 

I * 

read Metrabyte CTM-05 counter/timer card 

on interrupt from countdown of counter #1 

Written in Borland Turbo C 3.0 

by David Roisum 11/11/88 

v17 12/18/88 give up on interrupts, use counter 2 as dataflag 

v18 12/18/88 full implementation of polling 2 for dataflag 

v19 12/18/88 success cal drctm05.h from drwind10.c 

************************ 

Interrupt and addresses 
************************ 

* I 

#define CINT _NO 
#define CPORT 
#define DPORT 
#define DPTR 

I • 

OxOA 
Ox301 
Ox300 
Ox17 

/* IRQ2 -- level of the CTM-05 *I 

/* address of command port == base + 1 *I 

/* address of data port == base */ 

!* Data ptr select code */ 

* **** * *** * **** ••• ** * ** * ******* ** * ** •• ***** * * 

Command codes for the Metrabyte CTM-05 card 

···························~················ 
* I 

#define DISARM 

#define LATCH 
#define ARM 
#define MREAD 

#define MLOAD 
#define ENABLE 

#define DISABLE 

I * 

Oxdf !* cmd: disarm or stop counting */ 

Oxbf /* cmd: save current value to hold reg */ 

0 x 7 f /* cmd: load from load reg and arm cntr *I 

Ox1 0 /* modifier for reading */ 

Ox08 !* modifier for load regs */ 

outportb(CPORT,ARM) /* these cmds affect all 5 cntrs ·; 

outportb(CPORT,DISARM) 

*********************************•***** 

External functions from stdlib and dos 
............................................ **•* 

* I 

extern void outportb(int portid, unsigned char value): 

extern unsigned char inportb(int portid): 

I • 
..................................... 

internal funct1on declarations ............................... ,. ........ ... 
• I 

void initctm(unsigned int wrapcount); /* initialize CTM-05 card */ 

void zeroctm(); /* load all counter regs with zero */ 

void readctm(); /* read ctm board ·; 

I * ........................ ,..,.. ....... . 



Counter Configuration Arrays 
***************************** 

* I 

static unsigned int cconfigl[6] 

static unsigned int cconfigh[6] 

I * 

****************** 

Global Data Items 
****************** 

* I 

{OxFO, OxA5, Oxe8, OxAS, OxAS, OxAS}: 

{OxCA, Ox01, OxcO, OxC3, OxC4, OxCS): 

unsigned int cintnum = CINT_NO; 

extern unsigned int sample; 

extern unsigned int oldsample; 

extern unsigned int cflag; 

/* default interrupt number *I 

extern unsigned int count[6]; 

I* initctm() 

* I 

do the one-time only initialization of the CTM-05 card 

this configures each channel's counting features_ 

also sets up the wrap count for channel #1. 

void initctm(unsigned int wrapcount) 

unsigned int i; 

unsigned int lobyte; 

printf("\nlnitializing Metrabyte CTM-05 counter timer board"); 

outportb (CPORT, DPTR); /* set the data pointer ·I 

outportb (DPORT, cconfigi[O]); /* inrt Master Mode Reg *I 

outportb (DPORT, cconfigh[O]); 

/* Configure all counters from array ·; 

for (i=1; i<=5: i++) 

{ 

outportb (CPORT, i): 

outportb (DPORT. cconfigl[i]): 

outportb (DPORT, cconfigh[i]): 

} 

zeroctm(): I* set all load regs with 0 ·; 

lobyte = wrapcount & OxFF; 

outportb (CPORT, (MLOAD+1)); /* load ONE's load reg with our wrap count*/ 

outportb (DPORT, lobyte); /* low bits first */ 

outportb (DPORT, wrapcount >> 8); /* hi bits */ 



} !* initctm */ 

I* readctm() 

* I 

Reads current value from hold register. Normally, the last interrupt 

will have saved the values and all we have to do is read them, 

without disturbing the counting process. 

void readctm() 

unsigned int i; 

/*outportb (CPORT, LATCH);*/ /* uncomment to read values in for debug */ 

/* Read sample counter 2 and check for new data */ 

outport (CPORT, (MREAD + 2)); 

sample = inportb (DPORT) + 256*inportb (OPORT); 

cflag = sample - oldsample; 

if ( cflag == 0) 

if (cflag == 1) 

{ 

count[2] = sample; 

oldsample = sample; 

for (i=3; i<=5; i++) 

{ 

/* no new data */ 

/* new data */ 

outport (CPORT, (MREAD+i)); 

count[i] = inportb (DPORT) + 256*inportb (DPORT): 

} 

if (cflag I= 0 && cflag I= 1) 

{ 

printf("\nCount Data ERROR"); 

oldsample = sample; 

} 

} !* readctm ·; 

/* zeroctm() 

sets all ctm05 load registers to zero 
• I 

void zeroctm() 

unsigned int i; 

DISABLE: 

for (i=1; i<=5: i++) 

{ 

I* stop counting ·; 



} /* zero */ 

outportb (CPORT, (MLOAD+i)); 
outportb (DPORT, 0); 
outportb (DPORT, 0); 
} 

/* end of file DRCTM05.c */ 



Data Acquisition Program - Analog Input 

I * DRDASH16.h 

read Metra byte Dash 16 analog card 
by David Roisum 12/16/88 

Written in Borland's Turbo C 3.0 
v1 12/16 standalone source 
v2 12117 2048 offset subtracted 
v3 12/17 success call drdash16.h from drwind1 O.c 

*I 

#define BASEADDR iobaseD16 
#define ADLOW (BASEADDR) 
#define ADHIGH (BASEADDR + 1) 
#define ADMUX (BASEADDR + 2) 
#define DACOLOW (BASEADDR + 4) 
#define DAC1 LOW (BASEADDR + 6) 
#define STATUS (BASEADDR + 8) 
#define CONTROL (BASEADDR + 9) 
#define CNTENB (BASEADDR + 1 0) 
#define CNT1 (BASEADDR + 13) 
#define CNT2 (BASEADDR + 14) 
#define CNTCTL (BASEADDR + 15) 

#define SINGLEEND Ox20 

#define INTENB Ox80 
#define USEDMA Ox04 

/* Dash16 registers */ 

I* Ready/busy bits in status reg */ 

/* Command bits in control reg */ 

#define LOBYTE(x' 'x & Oxff) /* Device control macros */ 
#define HIBYTE(x) .·· » 8) 
#define SETMUX(a, b) csoutp(ADMUX, (b « 4) I (a & Oxf)) 
#define STARTADC csoutp(ADLOW, 0) 
#define GETADC ((int) csinp(ADLOW) I (int) (csinp(ADHIGH) « 8)) 
#define ISSINGLE (csinp(STATUS) & SINGLEEND) 
#define CLEARINT {csoutp(STATUS, 0);) 
#define TIMEROFF {csoutp(CNTENB,OJ;) 

#define DACMASK 1 r Masks for useless bits ·; 
#defme ADCMASK (ISSINGLE? OxF : Ox?) 

#def1ne csoutp(a,b) outportb(a,b) 
#define cslnp(a) inportb(a) 

;· Runtime variables ·; 
stat1c int iobaseD16 = Ox31 0: 
stat1c int mtD16 = 0; 
static int dmachanD16 = 0; 
static int adclowc, adchighc; 
static int dacchan = 0, scanning = 0; 
static int dacports[2]: 

r Compiler syntax for Turbo C ·; 

;• Base address ·; 

r Programmable interrupt vector ·I 
r DMA channel */ 

/* ADC channel range */ 

/* DAC channel and scan flag */ 

/* DAC port lookup table */ 



I * 

* * ***** ** ********** *** ** * ** * * * ** * * *** * ** * * * * 

* Metrabyte Dash16 functions for 
* initializing card, setting channel range 
* and reading in unclocked mode 

******************************************** 

* I 

I* adcD16 

Single channel ADC conversion. 
Note: this will do auto-scanning if adclowc I= adchighc. 

* I 

int adcD16() 
{ 
int val; 
STARTADC; 
val = GET ADC; 
val = (val » 4) & OxFFF; 
if(IISSINGLE) 

val = val - 2048; 
return (val); 

/* adcranD16() 

Sets conversion range for hardware 
* I 

int adcranD16(1c, he) 
int lc, he; 

{ 
adclowc = lc & ADCMASK; 
adchighc = he & ADCMASK; 
SETMUX(adclowc, adchighc): 
} 

r controiD16() 

• I 

Set up interrupt, drna. and conversin modes. 
If intlev > 1, Interrupts will occur at this level. 
If usedma I= 0, ADC converter will make DMA requests. 
If mode = 0. conversions are software triggered. 

mode = 2. conversion start with rising trigger 0. 
mode = 3. conversions are tr~ggered by clock. 

int cor.:ro1D16(intenb, intlev, usedma. mode) 
1nt u:tenb. 1ntlev. usedma. mode: 

char val; 
val = 0: 
if (intenb) 

val := INTE:NB; 
val I= ((intlev & 7) « 4); 



if (usedma) 

val I= USEDMA; 
val I= (mode & 3); 
csoutp(CONTROL, val); 
} 

/* dacranD16() 
set dac channels 

* I 

int daeran016(1owc, highc) 
int lowe, highc; 

{ 

dacehan = lowe & DACMASK; 
if (lowe != highe) 

scanning = 1; 
else scanning = 0; 
} 

/* initD16() 

* I 

Initialize Dash 16 software and hardware. 
Sets 10 base address, DMA channel, 
adrng to 0,0 and dacrange to 0,0, 
and timer interval to 1 msec 

int initD16(iobase, dmachan) 
int iobase; 
int dmachan; 

{ 
if (iobase) 

iobaseD16 = iobase; 
if (dmaehan) 

dmaehanD16 = dmachan; 
TIMEROFF; 
CLEARINT; 

controiD16(0, intD16, 0, 0); 
adcranD16(0,0); 

dacports[OJ = DACOLOW: 
daeports[1] = DAC1 LOW; 
dacranD16(0, 0): 
intviD16(1 OOOL): 
} 

;• intviD16() 

Sets timer intvl 1n microseconds 

mt intviD16(intvl) 
long intvl; 

{ 
in! faet1, fact2; 
i nt error; 
if (intvl < 30L) 



intvl = 30L; 
error = lfactor(intvl, &fact2, &fact2); 
csoutp(CNTCTL, Ox74); 
csoutp(CNT1, LOBYTE(fact1 )); 
csoutp(CNT1, HIBYTE(fact1 )); 
csoutp(CNTCTL, Ox84); 
csoutp(C NT2, LOBYTE(fact2)); 
csoutp(CNT2, HI BYTE (fact2)); 
return (error); 

/* If actor() 

* I 
Splits a long into two factors 2 <= x <= 32767. 

static int lfactor(rate, pf1, pf2) 
long rate; 
int *pf1, *pf2; 

{ 
long x, y; 
int div; 
X = 1; 

y = rate; 

while (x < 2 II y > 32767L) 
{ 

for (div = 2; div < y; diV++) 
{ 

if (y % div == OJ 
{ 

if (div y) 

*pf1 = x; 
*pf2 = y; 

x·= 2; 
y I= 2; 
} 

x ·= div; 
y I= div; 
break; 
} 

return ((int) (rate - (X • y))): 

1* end of file ORDASH16 h ·; 



Data Reduction -
Diameter, Caliper, Density, Radial Compression, 
and Deflection (for Stress Model) 

'Reads in sequence of raw Pulses (long integer) 

'and analog Caliper (single float) values 

'in two tab separated columns from disk. 

'Calculates and Prints to LPT1 
'Rewound Roll Diameter, Caliper, 

'Density and Caliper Corrected Density, 
'and Radial Compression 

'Deflection is written to disk 

'Note that this program is written to clearly illustrate the calculations 

'A more efficient program can be made (which the author uses ) 

'by elimination of calculations of parameters of no interest 

'and nesting the remaining like calculations in the same loop 

'Written in Microsoft Quickbasic Basic 1.0 for the Mac and 4.0 for PC 

'David R Roisum 4/24/89 

DEFDBL A-Z 
MATSIZE = 1000 
DIM PULSE&(MATSIZE), CALIPER(MATSIZE) 
DIM DIAM(MATSIZE), CALIP(MATSIZE) 

DIM DENSO(MATSIZE), DENSC(MATSIZE), RADCOMP(MATSIZE), DEFL(MATSIZE) 

'***DEFINE INPUT VARIABLES HERE*** 

INFILE$ = "HD 40:DRwind38 OAT" 
LOPASS = .5 
NUMAVG% = 2 
ROLLERDIA = 2 4 

ROLLERPPR = 1 00000& 
NUMWRAP = 20 

BASISWT = 7.2082999999999990-05 

CALIPERGAIN = 69.7 
REPLIC% = 
COMMENT$= 
DEFLFILE$ = 

1 0 :'see note near bot of program list 
"Density & Compression Run 38" 
"DefiOut" 

'Note that caliper is acquired in inches but displayed in m1ls 

'all other variables are in a consistent in-lb-sec system 

.... DEFINE INPUT VARIABLES HERE ... 

STARTRUN: 
GOSUB USERIN 

'Getting Started 

DIAGAIN# = ROLLERDINROLLERPPRiNUMWRAP/NUMAVG% 

DENSCONST# = 2*BASISWT*(NUMWRAP*NUMAVG%)"2*ROLLERPPR!ROLLERDIA 



PRINT "READING RAW DATA FOR INPUT" 
OPEN INFILE$ FOR INPUT AS #1 
0% = 1 
WHILE NOT EOF(1) 

INPUT #1, PULSE&(O%), CALIPER(O%) 
0% = 0% +1 

l/v9D 
NUMSAMPLE% = 0%-1 
CLOSE #1 

'Echo Input 
LPRINT 

LPRINT "ROISUM DENSITY AND COMPRESSION" 
LPRINT 

LPRINT "WEB HANDLING RESEARCH CENTER" 
LPRINT "OKLAHOMA STATE UNIVERSITY" 
LPRINT 
LPRINT "Input Data File is "; INFILE$ 
LPRINT COMMENT$ 
LPRINT TIME$ , DATE$:'your Basic may not support this statement 
LPRINT 
LPRINT "Lowpass Filter Setting ="; 
LPRINT "Averaging Number = "; 

. LPRINT "Original Wrap Count = "; 
LPRINT "Effective Wrap Count = "; 

LPRINT "Number of Raw Samples = "; 
LPRINT 
LPRINT "Drum Roller Diameter = "; 
LPRINT "Drum Roller Pulses per Rev = "; 
LPRINT "Analog Caliper Gain = "; 

LPRINT "Nominal Basis Weight = "; 

LPRINT "Replication for Grid Matching = "; 
LPRINT 
LPRINT 

TAB(30); 
TAB(30); 
T AB(30); 
TAB(30); 
T AB(30); 

TAB(30); 
TAB(30); 
TAB(30); 
TAB(30); 
T AB(30); 

LOP ASS 
NUMAVG% 
NUMWRAP 
NUMWRAP*NUMAVG% 
NUMSAMPLE% 

ROLLERDIA; " inch" 
ROUERPPR 
CALIPERGAIN 
BASISWT 
REPLIC% 

LPRINT "Diameter"; TAB( 15); "Caliper"; T AB(30); "Raw Density"; 
LPRINT TAB(45); "Cal. Density": TAB(60); "Rad. Comp." 
LPRINT 

·••• MAIN LOOPS - Compute Densities and Radial Compression 

'Note that effective means after averaging the raw acquired data 
EFFSAMPLE% = INT((NUMSAMPLE%-NUMAVG%)/NUMAVGa;;,) 
EFFWRAP% = NUMWRAP*NUMAVG% 

PRINT "CALCULATING DIAMETERS" 
FOR 0% = 0 TO EFFSAMPLE% 

PULSESUM& = 0 
FOR 00% = 1 TO NUMAVG% 

PULSESUM& = PULSESUM& + PULSE&(NUMAVG%*0%+00%) 
NEXTCX1% 
DIAM(O%) = PULSESUM&*DIAGAIN# 

NEXTO% 



PRINT "CALCULATING CALIPER AVG" 
CALIPAVG# = 0 
FOR 0% = 0 TO EFFSAMPLE% 

CALIPERSUM = 0 
FOR 00% = 1 TO NUMAVG% 

CALIPERSUM = CALIPERSUM + CALIPER(NUMAVG%*0%+00%) 
NEXTOO% 

CALIP(O%) = CALIPERSUM I NUMAVG%/CALIPERGAIN 
CALIPAVG# = CALIPAVG# + CALIP(O%) 

NEXTO% 

CALIPAVG# = CALIPAVG#/(EFFSAMPLE%+ 1) 

PRINT "CALCULATING DENSITIES" 
PULSESUM1 & = 0 
FOR 0% = 1 TO NUMAVG% 

PULSESUM1 & = PULSESUM1 & + PULSE&(O%) 
NEXTO% 
FOR 0% = 1 TO EFFSAMPLE% 

PULSESUM2& = 0 
FOR 00% = 1 TO NUMAVG% 

PULSESUM2& = PULSESUM2& + PULSE&(NUMAVG%*0%+00%) 
NEXTOO"/o 

DENSO(O%) = DENSCONST# I (PULSESUM2& · PULSESUM1 &) 

DENSC(O%) = DENSO(O%) * CALIP(0%)1CALIPAVG# 
PULSESUM1 & = PULSESUM2& 

NEXTO% 

PRINT "CALCULATING RADIAL COMPRESSION" 
FOR 0% = 1 TO EFFSAMPLE% 

TEMPVAR1 = 2*EFFWRAP%*CALIP(0%)11000 
RADCOMP(O%) = -1 OO*(DIAM(O%)-DIAM(0%-1 )-TEMPVAR1 )ITEMPVAR1 
'note positive is defined as compression 

NEXTO% 

PRINT "CALCULATING OUTER BOUNDARY DEFLECTION" 
FOR 0% = 1 TO EFFSAMPLE% 

TEMPVAR1 = EFFWRAP%*CALIP(0%)/1 000 
DEFL(O%) = (DIAM(O%)-DIAM(0%-1 )/2-TEMPVAR1 
'note positive is defined outward 

NEXTO% 

PRINT "LOW PASS DIGITAL FILTER FOR DENSITY, COMPRESSION and DEFLECTION" 
TEMP1 = DENS0(1) 
TEMP2 = DENSC(1) 
TEMP3 = RADCOMP(1) 
Tf.:MP4 = DEFL(1) 
FOR 0% = 2 TO lTFSAMPLE% 

TEMP 1 = (DENSO(O%)+DENSO(O%- 1 )· TEMP1*(1 -2*LOPASS))1(1 +2*LOPASS) 
DENSO(O%) = TEMP1 

TEMP2 = (DENSC(O%)+DENSC(O%- 1 )· TEMP2*(1 -2*LOPASS))1(1 +2*LOPASS) 
DF:NSC(O%) = TEMP2 

TEMP3 = (RADCOMP(O%)+RADCOMP(OS•;,.1 )-TEMP3*(1 ·2*LOPASS))1(1 +2*LOPASS) 
RADCOMP(O%) = TEMP3 



TEMP4 = (DEFL(Q%)+ DEFL(Q%-1 )-TEMP4*(1-2*LOPASS))/(1 +2*LOPASS) 
DEFL(O%) = TEMP4 

NEXTO% 

PRINT "PRINTING RESULTS TO LPT1" 
FOR 0% = 2 TO EFFSAMPLE% 

LPRINT CSNG(DIAM(Q%)); TAB(15); CSNG(CALIP(Q%)); TAB(30); CSNG(DENSO(Q%)); 
LPRINT TAB(45); CSNG(DENSC(Q%)); TAB(60); CSNG(RADCOMP(Q%)) 

NEXTQ% 

PRINT "SAVING DEFLECTION FILE TO DISK" 
'For input to deflection-to-stress programs 
'Note first you must select averaging to obtain 
'the required smoothness of displayed data 
'displaygridsize = EFFWRAP%*averagecaliper 
'Then you must select the optimumgridsize 
'for the stress calculation by using sensitivity 
'analysis such as given in Chapters 3 and 10 
'Then the replicationfactor is the 
'integer of (displaygridsize/optimumgridsize) 
'Finally the incremental radius used in the 
'deflection-to-stress program is given as 
'IR = displaygridsize/replicationfactor 
'Note that this somewhat involved description 
'is nothing more than independently selecting 
'the gridsize for a good smoothing of the raw data and 
'the gridsize for the deflection-to-stress models 
'and then being able to convert data from one spacing 
'to another 
OPEN DEFLFILE$ FOR OUTPUT AS #1 
FOR Q% = 3 TO (EFFSAMPLE%-1) 

FOR QQ% = 1 TO REPLIC% 
PRINT #1, DEFL(Q%)/REPLIC% 

NEXTOO"/o 
NEXTQ% 
CLOSE #1 

'***END MAIN LOOPS*** 

INPUT "DO YOU WANT ANOTHER RUN??", RESPONSES 
IF RESPONSE$= "Y" GOTO STARTRUN 
IF RESPONSE$= "y" GOTO STARTRUN 

PRINT "THANK YOU, HAVE A NICE DAY II" 

8'D 

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

·••• EDITING SUBROUTINES *** 
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

USER IN: 
PRINT 



PRINT "Calculation for the Wound Roll Structure Distribution" 
PRINT "including; Diameter, Caliper," 
PRINT "Density, Caliper Corrected Density and Radial Compression." 
PRINT "Copyright 1989, David Roisum, Web Handling Research Center" 
PRINT 
PRINT "Input is read from the disk drive upon which has been stored" 
PRINT "two tab separated columns of 
PRINT "drum roller pulse count (long integer) and caliper (single float)." 
PRINT "This post processing routine uses values that have previously" 
PRINT "been acquired from a data acquisition routine." 
PRINT 
PRINT "Two user selectable noise reduction techniques are incorporated." 
PRINT "The averaging number will reduce noise greatly, but also reduce" 
PRINT "the number of data points. The Lowpass Filter will reduce noise" 
PRINT "without reducing the number of data points displayed." 
PRINT "Replication is used for displacement-to-stress model and" 
PRINT "is described in more detail in the program listing" 
PRINT 
PRINT "During input, default values may be selected with a <CR> or" 
PRINT "may be changed by typing in a new value." 
PRINT "Errors before <CR> may be corrected by backspacing." 
PRINT "After all values are calculated, they are printed to LPT1." 
PRINT 
PRINT 
CALL EDALPHA("Input file name",INFILE$) 
NUMAVGFLT = NUMAVG% 
CALL EDNUM("Averaging Number", CDBL(2), NUMAVGFLT, CDBL(1 00)) 
NUMAVG% = NUMAVGFLT 
CALL EDNUM("Lowpass Filter Setting", CDBL(O), LOPASS, CDBL(2)) 
PRINT 
CALL EDNUM("Drum Roller Diam (inches)", CDBL(O), ROLLERDIA, CDBL(1 00)) 
CALL EDNUM("Drum Pulses/Rev", CDBL(1 000), ROLLERPPR, CDBL(1 000000&)) 
CALL EDNUM("Number of Wraps/Sample", CDBL(.1 ), NUMWRAP, CDBL(1 000)) 
PRINT 
CALL EDNUM("Nominal Basis Weight (lb/in2)", CDBL(O), BASISWT, CDBL(1 )) 
CALL EDNUM("Gain on Caliper (Reading/mils)",CDBL(O), ROLLERPPR, CDBL(1 000)) 
REPLICFL T = REPLIC% 
CALL EDNUM("Replication for Defl-to-Stress Mode\s",CDBL(1 ), REPLICFLT, CDBL(1 00)) 
REPLIC% = REPLICFL T 
CALL EDALPHA("Comment?",COMMENT$) 

RETURN 



SUB CHKLIM(LOWLIM, NEWNUM, UPLIM, YNFLAG%) STATIC 
IF NEWNUM < LOWLIM THEN YNFLAG% = 0 
IF NEWNUM > UPLIM THEN YNFLAG% = 0 

END SUB 

SUB EDALPHA(TEXT$, ALPHA$) STATIC 
PRINT TEXT$; " "; ALPHA$; TAB(30); 
INPUT RESPONSE$ 
IF RESPONSE$<> ""THEN ALPHA$ = RESPONSE$ 

END SUB 

SUB EDNUM(TEXT$, LOWLIM, DEFNUM, UPLIM) STATIC 
YNFLAG% = 0 
WHILE YNFLAG% <> 1 

\'lkN) 

PRINT TEXT$; TAB(30); 
PRINT USING "#######.####"; DEFNUM; 
INPUT NEWNUM$ 
IF NEWNUM$ <>""THEN 

ELSE 

CALL ISANUM(NEWNUM$, YNFLAG%) 
NEWNUM = VAL(NEWNUM$) 
CALL CHKLIM(LOWLIM, NEWNUM, UPLIM, YNFLAG%) 
IF YNFLAG% <> 1 THEN 

END IF 

EHP 
PRINT "**ERROR** NOT A NUMBER BETWEEN"; 
PRINT LOWLIM;" AND ";UPLIM 

YNFLAG% = 1 
NEWNUM = DEFNUM 
END IF 

DEFNUM = NEWNUM 
END SUB 

SUB ISANUM(NEWNUM$, YNFLAG%) STATIC 
YNFLAG% = 1 
LENGTH%= LEN(NEWNUM$) 
FOR 0% = 1 TO LENGTH% 

ASCII%= ASC(MIDS(NEWNUM$,0%, 1 )) 
IF (ASCII%<48 OR ASCII%>57) AND ASCII%<>46 AND ASCII%<>45 THEN YNFLAG%=0 

NEXT 0% 
END SUB 



Extended Hakiel Formulation - Deflection-to-Stress Model 

'DisWis? 

'Wound-in-Stresses During Roll Winding 

'Extended Hakiel Formulation 

'Takes a single column of outer roll deflections 

'as an input from disk 

'Outputs Radius, Radial Stress, Tangential Stress, 

'Deflection, and Wound-In-Stress 

'Uses Depth Limited and Replication Accleration Techniques 

'Written in Microsoft Basic 3.0 for the Macintosh 

'David R Roisum 1 I 1 8 I 9 0 

DEFDBL A-Z 
CLEAR, 2000000& 

DEFINE INPUT VARIABLES HERE * 

FILENAME$= "HD 40:DRcomp" 

OUTFILE$ = "HD 40:WIS38" 

COMMENT$= "From Drwind38, avg 20, lopass 2, 140 for 0.25 wrap" 

'Wound-In-Stress as a Function of Radius 

'which may be curvefitted from independently obtained data 

WISO = 900 

WIS1 =-60 
WIS2 = 3 
DEF FNWISIN(R) = WISO + WIS1 *R + WIS2*R"2 

'Radial Modulus as a Function of Radial Stress 

ERO = 20 
ER1 = -35 
ER2 = c 
DEF FNER(SR) = ERO + ER1*SR + ER2*SR"2 

RIR = 2 :'Radius Inner Roll 

MAXPTS% = 20000 

IR = .002714 
DEPTH% = 2000 
DUPLIC% = 40 

PIR = .1 
ET = 600000& 

EC = 1 00000& 
UR = .01 
UT = .01 

:'Number of sets of data, Maximum 

:'Thickness of sample, Nominal 

:'Depth of complete solution, points 

:'Number of times solution is replicated 

:'LPRINT Increment Radius 

:'Modulus, Tangential 

:'Modulus, Core 
:'Poissons Ratio, Radial 

:'Poissons Ratio, Tangential 

DEFINE INPUT VARIABLES HERE* 

'ECHO INPUT 
LPRINT 
LPRINT "DisWis?" 

LPRINT "Displacements » WIS, with Real Data" 

LPRINT "Modified Hakiel Formulation" 

LPRINT "Nonlinear ER, 3 pt deriv" 

LPRINT 
LPRINT "WEB HANDLING RESEARCf.-1 CENTER" 



"*R 11 2" 

LPRINT "OKLAHOMA STATE UNIVERSITY" 
LPRINT 
LPRINT COMMENT$ 
LPRINT FILENAME$ 
LPRINT TIME$ , DATE$ :'your Basic might not support this 
LPRINT 
LPRINT "WOUND IN STRESS="; WISO; " + "; WIS1; "*R + "; WIS2: 

LPRINT "MODULUS, RADIAL = "; 
LPRINT "MODULUS, TANGEN="; 
LPRINT "MODULUS, CORE="; 
LPRINT "POISSON, RADIAL="; 
LPRINT "POISSON, TANGEN="; 
UT 
LPRINT "RADIAL INCREMENT = "; 
LPRINT "SOLUTION DEPTH = "; 
LPRINT "REPLICATION="; 
LPRINT 

ERO; " + "; ER1; "*SR + ": ER2; "*SR 11 2" 
TAB(20); ET 
TAB(20); 8::: 
TAB(20); UR 

TAB(20); 

TAB (20); 
TAB (20); 
TAB (20); 

IR 
DEPTH% 
DUPLIC% 

LPRINT TAB(5); "RADIUS"; TAB(14); "RAD STR"; TAB(24); "TAN STR"; 
LPRINT TAB(34); "DEF-MIL"; TAB(43); "WIS-CALC"; TAB(54); "WIS-ACT"; TAB(67): 

"ERR%" 
LPRINT 

'DIMENSION DATA ARRAY 
DIM D(MAXPTS%) :'Deflection Data 

'RETRIEVE FROM DISK 
'Data is a single column of double precision floats of deflection 
OPEN "1", #1, FILENAME$ 
0% = 1 
WHILE NOT EOF(1) 

INPUT #1, D# 
D(O%) = D# 
0% = 0% + 1 

Vv£f\l) 

CLOSE #1 
PIRD% = PIR/IR 
NUMPTS% = PIRD%*1NT((0%-1)/PIRD%) :'Rounds to nearest LPRINT increment 

'DIMENSION ARRAYS 
DIM WIS(NUMPTS%) 
DIM SR(NUMPTS%) 
DIM ST(NUMPTS%) 
DIM DSR(DEPTH%) 
DIM DST(DEPTH%) 
DIM SRX(DEPTH%) 
DIM W(DEPTH%) 
DIM DW(DEPTH%) 
DIM AA(DEPTH%+4,3) 
DIM B(DEPTH%) 

:'Wound-In-Stress at current outer radius 
:'Radial Stresses 
:'Tangential Stresses 
:'Differential Radial Stresses 
:'Differential Tangential Stresses 
:'Different:al Radial Stresses, temporary 
:'Displacement field 
'Differential Displacement field 

:'Square matrix (coeffecients for displacement) 
:'Known forcing function displacement vector 

'CALCULATE CONSTANTS FOR SPEED OF EXECUTION 
IRSO = IR 112 



I * * * 

IRS02 = 2*1R"2 
'ADIFF = 3 + UT- UR*ET!ERHERE = CONST1 - URET/ERHERE 

'BDIFF = 1-ETIERHERE*(1+UR)+UT = CONST3- CONST2/ERHERE 

URET = UR*ET 
CONST1 = UT + 3 
CONST2 = ET*(1 +UR) 
CONST3 = UT + 1 

MAIN LOOP - Calculate Stresses from Displacements 

'For Nonlinear ER or for internal stresses, it is required that 

'gosub firstlayers and main loop steps from 4 to numpts step 1 

'Tangential stresses are calculated at all times however a more 

'accurate final tangential stress is computed from final radial 

'stresses using calctang 

GOSUB FIRSTLAYERS 
RIRE = RIR 
ECE=EC 

'Calculate explicitly at every solution point until 
'solution depth is reached 
FOR OA% = 5 TO DEPTH% 

0%= QA% 
OB%= 0 
WIS(OA%) = WIS(OA%-1) 
GOSUB FILLMAT 
GOSUB TRIDIAG 
GOSUB CALCDT ANG 
GOSUB SUMDIS 
GOSUB CORSTR 
GOSUBSUMSTR 
RPR = RIRE + 0%*1R 
WISIN = FNWISIN(RPR) 
RELERR = 1 OO*(WIS(OA%)-WISIN)/WISIN 

PRINT USING "########.######": RPR, WIS(QA%), FNWISIN(RPR), RELERR 

NEXTOA% 

'Only calculate to a significant depth deep for remainder of wrap addition 

FOR OA% = (DEPTH%+ 1) TO (NUMPTS%-DUPLIC%+ 1) STEP DUPLIC% 

0%= DEPTH% 
OB% = OA% - DEPTH% 

WIS(OA%) = WIS(OA%-1) 
RIRE = RIR + OB%*1R 
ECE = FNER(SR(OB%)) 
GOSUB FILLMAT 
GOSUB TRIDIAG 
GOSUB CALCDT ANG 
GOSUB SUMDIS 
GOSUB CDRSTR 
GOSUB DUPSTR 
RPR = RIRE + 0%*1R 



WISIN = FNWISIN(RPR) 
RELERR = 1 OO*(WIS(OA%)-W!SIN)!WISIN 
PRINT USING "########.######"; RPR, WIS(OA%), FNWISIN(RPR), RELERR 

NEXTOA% 

GOSUB CALCT ANG 

OPEN "0", #1, OUTFILE$ 

'Final Write to Disk Loop 
FOR 0% = 0 TO NUMPTS% 

RPR = RIR + 0%*1R 
WISIN = FNWISIN(RPR) 
RELERR = 1 OO*(WIS(O%)-WISIN)!WISIN 
WRITE #1, RPR, SR(O%), ST(O%), D(0%)*1 000, WIS(O%) 

NEXTO% 
CLOSE #1 
'Final LPRINT Loop 
FOR 0% = 0 TO NUMPTS% STEP PIRD% 

RPR = RIR + 0%*1R 
WISIN = FNWISIN(RPR) 
RELERR = 1 OO*(WIS(O%)-WISIN)!WISIN 
LPRINT USING "#######.##"; RPR, SR(O%), ST(O%), D(0%)*1 000, WIS(O%), 

WISIN, RELERR 
NEXTO% 
LPRINT 
LPRINT TIME$ 

End Main Loop * * • 

' * • • • * • * • * * * * * • * * * • • • * • * • * * • • 

SUBROUTINES AND STUFF 
'**************************** 

CALCDTANG: 
'Calculates differentia! tangential stresses from SR and equilibrium 
'Note that at the end the accumulated tangential stresses are recalculated 
DSR(O) = CORCONSTH • (-4*DSR(1) + DSR(2)) 
RPR = RIRE + 0%*1R 
DSR(0%-1) = ·WIS(OA%)'1R'(RPR) 
DSR(O%) = 0 
RPR = RIRE 
DDSR = (-3*DSR(O) + 4*DSR(1) - DSR(2))/(2*1R) 
DST(O) = RPR*DDSR + DSR(O) 
FOR 00% = 1 TO (0%-2) 

RPR = RIRE + QQ%*1R 
DDSR = (-DSR(00%-1) + DSR(00%+1))/(2*1R) 



RETURN 

DST(OO%) = RPR"DDSR + DSR(OO%) 
NEXTOO% 
RPR = RIRE + (0%-1 )*IR 
DDSR = (DSR(00%-3) - 4*DSR(00%-2) + 3*DSR(00%-1 ))/(2*1R) 
DST(0%-1) = RPR*DDSR + DSR(0%-1) 
DST(O%) = WIS(OA%) 

CALCTANG: 

RETURN 

'Note this recalculates over previously calculated 
'incrementally added tangential stresses 
FOR 00% = 1 TO (NUMPTS%-1) 

RPR = RIRE + 00%*1R 
DSR = (-SR(00%-1) + SR(00%+1 ))/(2*1R) 
ST(OO%) = RPR*DSR + SR(OO%) 

NEXTOO% 
RPR = RIRE + NUMPTS%*1R 
ST(O) = 2*ST(1) - ST(2) 
ST(NUMPTS%) = WIS(NUMPTS%) 

CORSTR: 

RETURN 

'Linear correction of differential stresses resulting from comparing 
'calculated versus measured outer roll deflections 
FOR 00% = 0 TO 0% 

DSR(OO%) = (D(OB%+0%)/W(O%))*DSR(OO%) 
DST(OO%) = (D(OB%+0%)/W(O%))*DST(OO%) 

NEXTOO% 

DUPSTR: 

fil TURI\J 

'Replication acceleration technique 
'Duplicates the incremental stress solution several times by moving 
'it outward to follow the outer surface during wrap addition 
WIS(OA%) = (D(08%+0%)/W(O%))*WIS(OA%) 
FOR 00% = 1 TO (DUPLIC%-1) 

WIS(OA%+00%) = WIS(OA%) 
NEXT e:t:Yio 
FOR 00% = 0 TO (DUPLIC%-1) 

FOR 000% = 0 TO 0% 
SR(OB%+00%+000%) = SR(OB%+00%+000%) + DSR(OOO%) 
ST(OB%+00%+000%) = ST(OB%+00%+000%) + DST(OOO%) 

NEXT Oe:t:Yio 
NEXT e:t:Yio 

FILLMAT: 
'Fill matrices with terms of differential equation written in terms of dsr 
'Zero Square Matrix 
FOR ZZ% = 1 TO DEPTH% 



FOR ll..Z% = 1 TO 3 
AA(ZZ%,ZZZ%) = 0 

NEXTllZ% 
NEXTZZ% 
'Initialize First Layer 
ERHERE = FNER(SR(08)) 
CORCONSTH = ECE*ERHERE*RIRE/(2*ECE*ERHERE*IR-2*ERHERE*ET*IR-

3*ECE* ER HERE* RIRE-2*E CE* ET* IR* U R) 
RPR = RIRE + IR 
ERHERE = FNER(SH(08+ 1 )) 
ADIFFIR = (CONST1 - URET/ERHERE)*IR 
8DIFF = CONST3- CONST2!ERHERE 
AA(1 ,2) = (BDIFF*IRSO + 2*ADIFFIR*CORCONSTH*RPR - 2*RPR"2 -

4*CORCONSTH*RPR"2)/IRSO 
AA(1 ,3) = (ADIFFIR*RPR - ADIFFIR*CORCONSTH*RPR + 2*RPR"2 + 

2*CORCONSTH*RPR"2)/iRS02 
8(1) = 0 
'*** INTERMEDIATE LAYERS *** 
FOR 00% = 2 TO (0%-3) 

ERHERE = FNER(SR(08%+00%)) 
RPR = RIRE + 00%*1R 
ADIFFIR = (CONST1 - URET/ERHERE)*IR 
8DIFF = CONST3- CONST2/ERHERE 
AA(00%,1) = RPR*(-ADIFFIR + 2*RPR)/IRS02 
AA(00%,2) = BDIFF - (2*RPR"2)/IRSO 
AA(00%,3) = RPR*(ADIFFIR + 2*RPR)/IRS02 
8(00%) = 0 

NEXTOO"/o 
'Initialize Under Second Layer 
ERHERE = FNER(SR(08%+0%-2)) 
RPR = RIRE + (0%-2)*1R 
ADIFFIR = (CONST1 - URET/CRHERE)*IR 
8DIFF = CONST3- CONST2/ERHERE 
AA(0%-2, 1) RPW(-ADIFFIR + 2*RPR)/IRS02 
AA(0%-2,2) 8DIFF - (2*RPR"2)/IRSO 
8(0%-2) = (WIS(OA%)*1R/(RPR+2*1R))*RPR*(ADIFFIR + 2*RPR)/IRS02 

RETURN 

FIRSTLAYERS: 

fiE:: !URN 

'Approximation for first couple of wraps until minimal matrix can be filled 
ST ARTWIS = 1000 
DDSR = -STARTWIS*IR/(RIR) 
FOR 00% = 0 TO 5 

WIS(OO%) = STARTWIS 
SR(OO%) = (5-0Q%)"0DSR 
ST(OQ%) = STARTWIS - (5-0Q%)'0DSR 

NEXT 00"/o 

SUMO IS: 
'Sum displacement of each layer to yield outer boundary deflection 
FOR 00% = 0 TO 0% 



RETURN 

SRX(OO%) = SR(OB%+00%) + DSR(OO%) 
NEXTOO"/o 
DW(O) = DSR(O) * RIRE I ECE 
FOR 00% = 1 TO (0%-1) 

DW(OO%) = (DSR(OO%)/FNER(SRX(OO%))-UT*DST(OO%)/ET)*IR 
NEXTOO"/o 
RPR = RIRE + 0%*1R 
DW(O%) = (.5*DSR(0%-1 )/FNER(SRX(0%-1 ))-UT*(WIS(OA%)+.5*DST(0%-

1 ))/ET)*IR 
W(O) = DW(O) 
FOR 00% = 1 TO 0% 

W(OO%) = W(00%-1) + DW(OO%) 
NEXTOO"/o 

SUMSTR: 

RETURN 

'Calculate accumulated stresses = old stress + incremental stress 
WIS(OA%) = (D(OB%+0%)/W(O%))*WIS(OA%) 
FOR00%=0TOO% 

SR(OB%+00%) = SR(OB%+00%) + DSR(OO%) 
ST(OB%+00%) = ST(OB%+00%) + DST(OO%) 

NEXTOO"/o 

TRIDIAG: 

RETURN 

'Tridiagonal matrix solution method 
'Forward 
FOR I% = 2 TO 0%-2 

AA(I%,2) = AA(I%,2) - AA(I%, 1 )* AA(I%-1 ,3)/AA(I%-1 ,2) 
NEXT I% 
DSR(0%-2) = B(0%-2)/AA(0%-2,2) 
'Back Substitution 
FOR 1% = 0%-2 - 1 TO 1 STEP -1 

DSR(I%) = (B(I%) - AA(I%,3)*DSR(I%+1 ))/AA(I%,2) 
NEXT I% 



APPENDIXD 

EXPERIMENTAL RUN DETAILS 

Web Material Properties 

CtdBrd 

Coated Board 

similarly to milk or food carton stock paper 

Runs numbered 15-25 

LWC 

Lightweight Coated and Supcrcalendered 

glossy magazine paper 

Runs numbered 26-31 

NC 

No Carbon 

similar to writing or bond paper 

Runs numbered 32-41 

Property Units 

Basis Weight g/m2 

Caliper !JITl 
Density glcm3 

MD Tensile Strength N-m/g 

CD Tensile Strength N-m/g 

MD TEA J/Kg 

CD TEA ]/Kg 

MD !v1odulus MN-m/Kg 

CD \1oclulus ~1.""1-m/Kg 

.-\ir Penn BcndLscn ml/min 

Rc,ugh BcndL<>cn ml/min 

Rough Sheffield Shef 

Air Resist, Gurley s/lOOml 

CtdBrd 

219.57 

260.6 

0.843 

71.34 

30.16 

827.9 

1206 

8.b67 

3.344 

41 

96/13 

99/19 

350 

LWC 

60.19 

55.1 

1.092 

44.42 

23.48 

377.1 

826.3 

7.669 

4.309 

17 

25/21 

42/30 

tiC 
51.23 

80.8 

0.634 

67.22 

17.84 

520.5 

586.3 

9.502 

2.615 

64 

412/4.54 

242/242 

406.5 



Winder and Data Acquisition Setup 

For selected runs given in thesis 

Run #17 

Run #24 

Run #31 

Material 

Core Chuck PPR 

Back Drum PPR 
Wraps/Sample 
TNT Program 
Torque 

Nip 
Tension 

Material 
Core Chuck PPR 
Back Drum PPR 
Wraps/Sample 
TNT Program 

Torque 
Nip 
Tension 

Material 
Core Chuck PPR 
Back Drum PPR 
Wraps/Sample 
TNT Program 

Torque 
Nip 

Tension 

Run #3R 

Material 
Core Chuck PPR 

Back Drum PPR 

Wraps/Sample 
TNT Program 

Torque 

Nip 
Tension 

Ctd Brd 

100 

5000 
4 
Plain 
+10% to 10", linear taper to 0%@ 20", 0% 
10 PLI to 10", linear taper to 3 PLI @ 20", 3 PLI 

5PLI 

Ctd Brd 
100x4 
5000x4 
0.75 
Tension Drop 
+ 10% to 10", linear taper to 0% @ 20", 0% 
10 PLI to 10", linear taper to 3 PLI@ 20", 3 PLI 
8 PLI to 27", linear taper to 3 PLI@ 28", 3 PLI 

LWC 
100x4 
5000x4 

0.75 
Nip Drop 
+10% to 10", linear taper to 0%@ 20", 0% 

12 PLI to 25", linear taper to 3 PLI@ 26", 3 PLI 

2PLI 

NC 
2500xl0 

2500x10x4 

0.50 
Tension Drop 
+10% to 10", linear taper to Oo/r@ 20", 0% 

10 PLI to 10". linear taper to 3 PLI@ 20", 3 PLI 
-+ PLI to 20", I in ear tapcr to 1 PLI @ 21 ", 1 PLI 
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