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PREFACE

This work actually began in 1985 while in the position of Manager of Winding
Development at Beloit R&D where I recognized the need to develop a means of accurately
measuring the fundamental roll structure variables of stress and strain during winding for
production quality control, as well as the possible closed-loop control of the entire winding
process. The need for such a measurement became even more apparent when I developed
a consistent means of evaluating the resolution of roll structure measurements that were
based on different quantities such as hardness, tension and density. The resolution
evaluation was based on the number of measurements required to discern a known change
in roll structure to a specified statistical confidence. The outcome of an extensive series of
tests showed that all current methods were unreliable, but the density analyzer faired better
than most and had the additional advantage that it was inherently capable of automated on-
line measurements.

Assisted by my staff computer programmer who wrote the background data
acquisition task, we sought to improve the density hardware and software.
Simultaneously, I began an extensive review of winding models with the hopes of tying
these stress models to experimental measurement. In particular, I hoped that a simple
conversion formula could be constructed which changed density measurements into
wound-in-stress. The pursuit of this formula proved as elusive as the alchemy of
changing lead to gold.

In 1987 I left full-time employment at Beloit to work in the newly formed Web
Handling Research Center, and simultaneously pursue a Ph.D. in Mechanical Engineering.
Though I had many accomplishments in the nearlv three vears at Beloit R&D, I was
frustrated not to find the alchemy of the density to stress transformation. Still convinced
that the successful measurement of web stresses during winding could revolutionize the
fiecld. T proposed the topic as both a Web Handling project and thesis topic.




In the summer of 1988, the project was restarted with careful emphasis on a
building block approach. The inspiration that seeded this final successful effort was a
recognition that all winding models to date were determined systems so that perhaps by
reformulating the constitutive equations we could determine wound-in-stress from some
other measurement of the winding roll. All winding models to date were boundary valued
problems defined by a 2nd order differential equatfon with core stiffness and wound-in-
tension boundary conditions. The problem with the wound-in-stress boundary condition
was that it 1s extremely difficult to determine. Indeed, that is the parameter we most want
to know about winding. The breakthrough came when I rewrote the boundary condition
for the outer radius as the sum of the deformed thicknesses of all layers of the web plus the
inner core radius. This radius boundary condition could be measured with equipment
similar to the density analyzer, but in addition required web thickness measurements.

Now the problem is formulated in terms of quantities that could be measured
during winding! However, preliminary work indicated that the resolution of the density
analyzer type diameter measurements needed to be improved several orders of magnitude
to be suitable to this new approach. Additionally, a means of accurately measuring web
thickness had to be deveioped. Once again, I began the redesign of the density type
measurement, however this time without staff assistance. In December of 1988, the new
data acquisition system composed of high count encoders, caliper measurement, data
acquisition boards and computer were used to measure the winding of about 40 rolls of
paper at Beloit's winding lab in Rockton Illinois.

Analysis of the data back at Oklahoma State University showed an order of
magnitude improvement in the resolution of the new measurcments. Also, a superior
alternative to the density quantity was defined as radial compression which also served as
the boundary condition which drives the stress calculation routines. Though I now realize
that a direct conversion formula from density to stress is not the correct approach, density-
like measurements are the input to stress calculation routines.

The prnimary outcomes of this research are vastly improved roll structure
measurements that can be made during winding or unwinding based on the fundamental
parameters of stresses and strains. Additional contributions are the measurement of caliper
and an improved understanding of winding and winding models. 1 sincerely hope that this

work will be extended by others to ¢ lude alternative methods of caliper and radii
mcasurement. new winding models and most inmportantly. application to the closed-loop
control of the winding process.
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CHAPTER 1

INTRODUCTION

Winding

Winding is a process whereby a thin, flat and flexible material is wound in a spiral
fashion into a roll. Materials such as film, foil, paper and textiles are wound into rolls that
range from just a fraction of an ounce, such as capacitors, to reels of paper more than ten
feet in diameter and 30 feet long weighing more than 60 tons, to coils of metal that are
even heavier. A common motivation for winding is that a wound roll provides a
convenient geometry to produce, ship and use. Also, roll-to-roll winding is used to edit
the web, add an intermediate process such as coating or finishing, or to salvage
unacceptable rolls. Finally, rolls may be used to provide a buffer between two stages of
web processing so that the upstream process can run more consistently despite changes in
throughput of the downstream process.

Winding machines are composed of multiple rollers made of aluminum, steel or
synthetics upon which are processed one or more winding or unwinding rolls of web.
Though winding machines have been running well before the turn of the century and vary
considerably in appearance, the basic configurations remain unchanged. As seen in
Figure 1, the roll may be center wound without a lay-on roller, surface wound with a
roller, or a combination of center and surfacing winding. A lay-on roller, sometimes also
called a rider roller, is nipped against the winding roll and partially wrapped by the
incoming web. Configurations can be further subdivided by noting there may be more
than one roller, such as the two-drum winder, hay - multiple axially staggered rolls such as
the duplex winder. or have multiple sequentially processed rolls such as the turret winder.

Rolls may be wound upon cores made of fiber. plastic or xicel, or upon shafts
which may be ~olid or expanduble. or without any support at the roll's interior [1-13,
124]. As seen in Figure 2. rolls are often restrained from axial or CD (cross direction)
movement during winding by chuck or shaft holders. Without this restraint, it would be

difficult to wind a roll with straight planar edges.




Figure 1
WINDER CONFIGURATIONS

a. Centerwind

b. Surfacewind

c. Turret

d. Two Drum

e. Duplex

Top View End View




Figure 2
CHUCKS AND SHAFTS

a. Roll Held by Core Chucks
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b. Roll Held by Core Shaft




Though there are numerous winder designs for the myriad of applicatons, the
components in a winder are typified by those of the two-drum winder, shown in Figure 3,
which is commonly used in the paper industry. The unwind stand holds the parent roll
securely but may move sideways to 'chase’ the winding roll to cause a straight buildup of
the roll edges [51]. The guide roller is used to preserve web geometry on downstream
components and even out tension from front to back of the web by pivoting on one end.
Spreader rollers may be used to lay the web flat as well as to spread individually cut webs
on winders equipped with slitters [107]. The windup section may include one or more
rollers or drums to provide additional web tension and to squeeze out entrained air [103].
Fully automated winders also include additional equipment to insert cores, fasten the web
to cores, and to eject the finished rolls [92]. Finally, winders have many sensors such as
load cells for web tension [69, 71], actuators such as electric drives and pneumatic brakes

[101] to set speed and tension, and controllers such as PLC's, drives and computers [90,
100, 104, 105].

The two essential issues in the economics of winding are productivity and quality.
Productivity is the ability of the winder and crew to match or exceed the output of the
upstream process. If the winder should fall sufficiently behind, the upstream process may
have to be temporarily shut down until the winder can catch up, causing a loss of output.
Productivity parameters include the acceleration and top speed of the winder, roll change
time and reliability {91-93, 126]. Though productivity is an important consideration, it is
not the subject of this thesis and will not be considered further.

Roll quality is also vitally important to the profitability of web processes because
rolls which do not meet customer requirements must be salvaged or scrapped. Roll quality
is defined as the absence of defects that make the roll unsalable, and may be either present
prior to winding or induced during the winding process {95-97, 125]. Those defects
present prior to winding such as nonuniform thickness, nonplanarity or uneven coating are
seldom improved by the winding process. However, there are many roll quality defects
that the winder 1tself can introduce such as tears, starring and telescoping [99, 108, 109,
123}, These winder induced defects are commonly attributed to improper roll structuring
which are best quantified as radial and tangential stress distributions inside a wound roll

though historically roll structure was also described using hardness, tension and density
(116, 117, 119].
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The TNT's of Winding

The complex details of the winding process can be avoided for a time by using a
black-box approach as seen in Figure 4. Knowledge of the system then falls into three
categories: input parameters, the process laws, and output results. Input parameters are
variables which may be controllied to optimize the output results which can be loosely
described as roll quality. The process laws are the constant and inviolate behavior of
physical systems which are described by engineering mechanics, material behavior, and
other basic sciences. Ultimately, the goal of winding rescarch is to determine values for
the controllable input parameters such that roll quality is maximized. This involves

winding models, parameter measurement required by the models, and optimization theory.




Figure 4
BLACK BOX MODEL OF WINDING
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The input parameters which are the easiest to control are the TNT's of winding:
Torque, Nip, Tension, and speed [102]. Machine builders will usually give the operator
the ability to adjust the TNT's via benchboard controls [90]. As seen in Figure 5, torque
may be applied as a differential between the front and back drum on two-drum winders, or
through a center-shaft on duplex winders. Nip is the pressure in PLI (Ibs per lineal inch of
width) between the winding roll and a roller or drum. Tension is the lineal load (PLI)
applied on the web draw immediately upstream of the winding roll.

The TNT's (Torque. Nip, Tension and speed) of winding are setpoint functions of
rewound roll diameter. as seen in Figure 6. The TNT's of winding are often linearly
decreasing from start to finish to give the roll a structure which is hard near the core and
decreasing smoothly to a softer finish at the outside. Rider roll nip on a two drum winder
ts perhaps the most complicated of the controls because the total back drum nip is the sum
of rider roll nip, * -1l weight and winding angle geometry [102, 103].




Figure §
THE TNT'S OF WINDING
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Increasing any of the TNT's will usually make the roll harder at that point and vice
versa. However, the TNT's can't be arbitrarily specified on an unlimited range. Torque is
limited to the available friction which depends on the coefficient of friction between drum
and web and the normal force determined by roll weight, geometry and (rider roll) nip
loading. Exceeding the friction limit will simplv cause slipping and possible instability and
sheet marking.  Nip can't be negative, nor can it be so much as to knead the rewound roll
to increased interlayer slippage to the point of creping or shear bursts on paper. Nip also
must not be too low on nonporous materials such as film, or air entrainment will increase.
Tension can't be too low else the propensity to wrinkling will be increased and the sheet
run may futter. Additionally, web tension can't be increased oo much because paper web
hreaks are an exponental function of web tension. THigh web iension on filin may cause
undesirable plastic creep which may not be even across the width, if the properties of the
film are not uniform across the width.




Figure 6
TYPICAL SETPOINT FUNCTIONS FOR THE TNT'S
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The point to remember is that though the TNT's are the most easily controlled
inputs, they often have narrow ranges of useful adjustment. The operator must find a
delicate balance between all of these parameters to wind acceptable rolls [94].
Additionally, the task is made even more difficult because the material properties change
intentionally with grade changes and unintentionally due to manufacturing process
instabilities. These material property changes cause the optimum winding profiles to vary
with time.

Though some quantitative knowledge exists of the relationship between the T™\T's
and roll defects, this is usually empirical in nature so that the relationships are application
dependent. In practice, the determination of TNT setpoints is usually done by the operator
hased on prior subjective experience. Additionally, different operators may chose different

setpoints for the same product and machine.




Web Properties

Some web properties have a strong influence on roll structure. These include
caliper [73, 74, 89], density, yield and tensile strengths, coefficient of friction [66],
coefficients of expansion, porosity, as well as the elastic moduli in the z-direction (ZD)
[79, 88] and machine-direction (MD) [54-64, 70, 75, 82-87, 89]. However, there are
many web properties that are routinely tested which have essentially no effect on the
quality of roll structuring including optical properties such as brightness, color and
opacity. If one was to choose an optimum (fictitious) web for winding, it would probably
have high: caliper, strength, friction, porosity; and low: anisotropy (MD/ZD modulus),
and coefficients of expansion.

Two points must be made about web properties as inputs to the winding process.
First, though some properties have a profound influence on winding, they can't usually be
considered an input variable for the purpose of optimizing winding because they are
generally specified by end use. Therefore, average web properties are not an input
variable that can be used to optimize winding. Neither are paper properties a modifiable
output from the winding system because web properties are seldom measurably changed
by the winding process [111].

Secondly, the mechanical properties vary with MD position (or time) and cross-
direction (CD) position. These variations or deviations from target have as much influence
on the winding behavior as the averages or means. One example of this behavior is paper
web breaks which occur at rare local weaknesses in the web. It can be shown that the web
break problem is more influenced by the variations of strength than by the average strength
[178, 191, 192]. Another example is ropes and corrugations that are almost entirely
related to variations of caliper across the web. Reducing web property variations to
optimize winding though desirable, is difficult in practice because the production and
winding of webs may be on widely separated machines under different supervision.

Winding Models

The winding process is the connection between input variables and output results.
The process is a system of inviolate physical laws that describe the paper stresses in a roll
resulting from various input parameters. The importance of these physical laws are that
they can quantitatively describe some aspects of roll quality, allowing roll structure
predictions for any set of input parameters. These laws, which are usually solid
mechanics formulations, can be coded into a computer to run 'what if scenarios to
optimize winding on a computer much like businesses use spreadsheets to model products.




The advantage of computer modeling is that many combinations of inputs can be
run in a short time at no risk to the product, while searching for optimum combinations of
inputs. The difficulties of modeling are that some web properties required by the models
such as radial modulus and caliper are difficult to measure, model verification is difficult
because stresses are difficult to measure, and defect models are just emerging.

The analytical modeling of roll winding using mechanics equations began in the
late 50's using linear isotropic hoop stress formulas in an accretion model [115, 129,
131]. The model superimposed the stresses due to the addition of a single wrap upon the
existing stress distribution as wraps are added from the core to the finish diameter.
Subsequent works removed model restrictions by allowing for anisotropy [127, 137, 149-
153], and later nonlinear anisotropy [132, 133, 140, 141, 186]. The current state of art of
winding models gives a close description of centerwinding. However, the effects of the
nip, air entrainment, interlayer slippage and CD variations remain to be incorporated into a
single description of winding.

Roll Structure Measurement

Returning to Figure 4, it can be seen the output results from winding are loosely
described as roll structure, which is some measure related to winding stress as a function
of roll diameter. For most roll structure measurements and for most materials, the ideal
roll structure will be a profile shape similar to Figure 7, which shows a hard (tight) start,
with a smooth transition to a softer (looser) finish. Differences in ideal roll structuring for
a particular grade are represented by different values of the starting and finish hardness.
This often used figure is the result of the cumulative experiences of many winding experts,
but 1s not presently quantifiable. This means that roll structure quality control efforts are
limited to measuring roll structure profiles to compare with the ideal profile shape, and
using other techniques such as judgment or statistics to set initial and final magnitudes. As
a consequence, roll structuring has been and still is primarily an art rather than a science.

The earliest device used to measure roll-structure quality was the backtender's stick
or "billy club”, which 1s a short wooden stick that the operator struck against the roll to
sound its tightness or hardness. Quantification of hardness became possible with the
mmvention of the Rhometer and Schmidt Hammer in the 1960's [155, 156, 159].
Techniques for the measurement of tension, stress and sirain were developed and include
the Cameron Gap [174], J-line [106, 108, 121], strain gages [160, 161, 168, 172], and
the Beloit WIT-WOT rewinder [166, 167]. Interlayer pressure or radial stress have been
quantificd by using the Smith needle, Core Torque [161], thin pressure gages [128, 163]
and acoustic techniques [165]




Figure 7
OPTIMUM ROLL STRUCTURE
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The most recent innovation in roll structure measurement is the density analyzer
which enables online measurement of roll structure [14-38]. The density analyzer is a
computerized data acquisition system which calculates the bulk compression of wound
rolls based on rewound roll diameter measurements. The density analyzer is the first truly
automated roll structure measurement method with high resolution [169, 171]. Since the
density analyzer hardware serves as a platform for this new stress measurement technique,
it will be descrnibed in more detail in Chapter 6.

The Measurement of Web Stresses During Winding

Though there are numerous methods of measuring roll structure, none is currently
able to measure the fundamental parameters of wound-in-stress during winding or
unwinding. The primary objective of this work is to develop a successful WIS (wound-
in-stress) measurcinent technigue that could be used for laboratory studies, production
guality control und perhaps for later application by others to the closed-loop control o
winding to a target stress level. This measurement technique 1s a merging and extension of
the density analvzer, which has demonstrated a relatively high sensitivity, with the
fundamental and first principle winding models.




The difficulty with current winding models is that they all assume an outer
boundary condition of a known WIS, which is extremely difficult to measure or determine
except for the limited case of pure centerwinding on machines equipped with tension and
caliper sensors. To avoid this difficulty, a new boundary condition was defined which
uniquely determines the state of a roll and allows displacements, strains, and stresses to be
calculated. This new boundary condition is a displacement of the outer surface of the roll
caused by winding stresses. This new boundary condition simply states that the change in
roll diameter over some sample interval is equal to the sum of t+ - thicknesses of web
added, plus the sum of the incremental deformations of each layer and the core caused by
winding stresses.

Since web caliper and changes in roll diameter can be measured, the sum of the
deflections can be calculated as a resultant deformation of the outer surface. The
equipment to prototype this new stress measurement system are encoders for measuring
diameter, a caliper gage, and a computer data acquisition system. Thus, the hardware 1s
similar to the density analyzer except that in addition to diameters, web caliper must also be
measured. However, the stress measurement algorithm, which is essentially a
‘reformulation of traditional winding models, bears no resemblance to the density analyzer.

Current winding models are second order differential equations written in terms of
radial stresses with a core stiffness inner boundary condition, and a radial pressure
boundary condition just under the outer layer. However, the same constitutive equations
of winding can be also be assembled into a differential equation formulated in terms of
displacements instead of radial siresses. In this case, the outer boundary condition is a
displacement of the outer surface of the roll which can be measured using equipment
described above. Once the displacement field is calculated, strains and then stresses can be
calculated. Thus, by reformulating the winding differential equation using displacements,
and measuring the displacement outer boundary condition, all web stresses and strains can
be calculated at any location in the roll, and at anv time during winding. Thus, the new
measurement technique calculates the condition of the roll based on web material
properties, caliper, and diameter.

Basic Contributions of this Research

The primary contribution of this work is a new boundary condition for all winding
models which allows the solution of displacements, strains, stresses, and most
importantly, wound-in-stresses from easily measured quantities of roll diameter and web
caliper. This results in not only a new winding model, but a new way to solve all existing
winding models. Thus for the first time, winding stresses cun be easily measured.




Another major contribution resulting from this project is an improvement in the
hardware and software of the existing density analyzer that yields an order of magnitude
improvement in resolution over existing methods. Also a new roll structure parameter,
radial compression, was defined which removes the floating zero and caliper dependence
problems of density calculations.

Additional work includes a very complete review of current winding models such
as those of Altmann [127], Yagoda [149-154], Pfeiffer [140, 141], and Hakiel [132, 133]
and others. This review includes a check of their derivations, determining the numerical
accuracy of stress computations based on a standardized set of input parameters, and a
review of the scope of application and limitations. As a consequence of this careful check,
errors and limitations in winding models were revealed that were not previously
documented. Computer codes written for these models, which are included in the
appendices, are some of the few ever published.

Similarly, all roll structure measurement methods are reviewed, and the most
common are evaluated for accuracy, resolution and other criteria. A method of comparing
the resolution of unlike measurements is fully developed. Similarly, data acquisition

~design for density and stress analysis is also fully documented so that a system can be
optimized for a particular application.

All careful research work such as this begins by laying a solid foundation, which
represents previous work in the area, upon which is placed new contributions. This can
be represented by a pyramid made of technology blocks. These blocks of technology
should ideally mate closely with their neighbors such that a solid structure is obtained. As
seen in Figure 8, the pyramids of analytical and experimental technologies will have only a
partial overlap because some analytical work has not been experimentally verified and
some experimental work has yet no identified underlying analytical expression.

What makes this work unique in the winding area is that a bridge has been made
between analytical and experimental technologies at the highest level. The analyvtical
portion of this new measurement system not only can accommodate all present
fundamental winding models, it is extensible because it is a methodology rather than a
distinct model in itself. Similarly, the experimental measurement techniques used are the
most sensitive vet developed for winding. vet are easily applied in a lab or production
environment.

Ultimately, perhaps the greatest contribution of this work is to embody the greater
part of roll structure analytical and experimental knowledge in a single source. Thus, this
work can serve as both a comprehensive tutorial and reference where none other exists.
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BASIC CONTRIBUTIONS OF THIS RESEARCH
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In addition to detailing the prototype measurement of stresses during winding, this
thesis 1s also a rather complete treatment of roll structure. Chapter 2 develops the
constitutive equations which describe the physics of the wound roll, and how they are
assembled into models. Chapter 3 is a review of existing winding models, their
application, and their limitations. Chapter 4 describes more complex roll behavior for
which some analytical work exists such as air entrainment, centrifugal stresses, anelastic
behavior and nips. Chapter 5 describes roll structure measurements based on impact,
friction, strain, pressure and other parameters.

Chapter 6 derives the equations for the density analyzer, as well as documenting
system design and sizing criteria. Chapter 7 derives the mathematics of a new winding
model formulation which is the basis of this new work. Chapter 8 describes the particular
hardware and Chapter 9 outlines the software used for this prototype. Chapter 10
develops a miethod for evaluating the accuracy and resolution of any roll structure
measurement in general, and stresses in particular. Finally, Chapter 11 gives
recommendations for improvement and future work. An extensive set of appendices is
included which contains a complete bibliography, computer programs and output listings
for the various winding models.




CHAPTER 2

PHYSICS OF THE WOUND ROLL

Roll Physics and Boundary Conditions

This chapter develops the constitutive equations which model elements of the
behavior of a wound roll. These constitutive equations can then be assembled into a larger
equation which describe the stresses resulting from the addition of a single wrap onto an
existing roll. To model the winding of an entire roll, the effects of each wrap from the
core to the finish diameter are added or superposed onto the previous stresses of all
underlying layers. The principal results of this wound roll modeling are a prediction of
material stresses at any diametral location, and at any time during the course of the winding
of a roll.

The constitutive equations serve as the foundation of wound roll modeling. These
equations include equilibrium which means the material is in a stable balance, strain-
displacement which means no gaps or overlaps in the material arc allowed, and stress-
strain relations which describe the stiffness of a material. Though nearly all winding
models use the same set of constitutive equations, they are approximations of real
behavior. For example, the static equilibrium equation assumes the wound roll is not
accelerating, yet the wound roll is in a very dynamic state during winding. The strain-
displacement relations state there are no gaps formed, vet adjacent layers in a roll may not
be in contact due to air entrainment, wrinkling and other causes. Finally, stress-strain
relationships assume a single equation time invariant dependency, vet stress-strain curves
vary with loading and unloading as well as with time due to creep and stress relaxation.

Despite the inevitable differences between modeling and real svstem behavior
however, the constitutive equations are a close description of many winding situations.
However, the assumptions and approvimations of modeling must be clearly understood as
they apply to any particular application. To validate wound roll analytical modeling,
internal consistency can be checked as given in Chapter 3. and experimental measurements
can be made such as outlined in Chapter 5. For this project, internal consistency is
checked in Chapter 7, and experimental measurements are reported in Chapter 10.
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The constitutive equations are then assembled into a larger second order differential
equation which must be solved for the incremental stresses caused by the addition of a
single wrap. This equation is described in the section on the roll. Additionally, a second
order differential equation requires two boundary conditions. These boundary conditions
are at the core and the outside of the roll, and are also described in the following sections.
One of the major contributions of this research is an alternative description of the outer
boundary condition. Finally, the differential equation must be solved for each wrap added
from the core to the finish diameter of the roll. Though the winding equation will not be
solved until Chapter 3, the accretion nature of the winding solution is described here.

The Roll

The roll is wound under tension from the core outward to the finish diameter as a
continuous spiral of a thin, flat and relatively flexible material. The number of layers
comprising the finished roll can be as few as a couple dozen wraps for materials such as
fiberglass batts or carpet, to more than 10,000 wraps for a large reel of paper. The
objective of wound roll modeling is to calculate the incremental stresses within each layer
of the roll due to the addition of each wrap of material, and ultimately to sum or integrate
the effects of all wraps on the final stress distribution of the roll. Though the effect of each
wrap 1s similar to the previous, the wound-in-tension (WIT), the roll outside diameter,
radial modulus and other parameters will vary sli~htly.

The addition of wraps makes the wound roll model different from more typical
structural analysis of cylinders whose geometry does not change significantly. Due to this
geometry change, winding is an accretion problem which is difficult to analyze using more
traditional approaches such as Finit= Element Modeling, which would require changing the
mesh and rerunning the analysis for each wrap added from the core to the finish diameter.
Thus, the computational demand and complexity suggests an alternative approach may be
more appropriate.

Most of the winding models begin by constructing a set of constitutive equations
which define the behavior of the material in a cvlindrical coordinate system as will be
outlined below.  Though winding is a spiral geometry, winding models make the
appronimation that each wrap is a separate concentric ring in non «liding contact with the
ring above and beneath as seen in Figure 9. Further assumptions typically state that the
winding roll always remains cylindrical with no circumf{erential or axial variations.




Figure 9
SPIRAL WINDING AND RING APPROXIMATION
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The next step 1s to derive the static equilibrium equations which state that the forces
on any segment of a ring must balance in both the radial and tangential directions as seen in
Figure 10. Though Yagoda [150, 151] and Chang [130] considered dynamic forces, most
authors will simplify the math greatly by assuming dynamics are negligible. Since the
model has cylindrical symmetr . the tangential direction equilibrium is automatically
satisfied which leaves only the radial equilibrium to consider.

Summing the forces (stress times area) in the radial direction gives,

6
(r+dr)de + 2(0Tdr}sindT =0

/ -

' do
(1) OerG—(oR+—Rdr
dr

which can be simplified for small dB 1o the equilibrium equation for plane stress as
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Figure 10
FORCES ACTING ON A WRAP SEGMENT
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Figure 11
DISPLACEMENTS OF A WRAP SEGMENT
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The strain-displacement relations are derived from the assumed displacements of
the wrap segment as seen in Figure 11. Defining displacement w to be positive outward,
the net radial deformation is

3) (w+%‘§dr)-w=dw

and the radial strain is the differential displacement divided by initial thickness or

dr

dw ) dw
dr

4) ER = (—— dr/dr
Similarly, the net circumferential deformation is

(5) r1d6 - (r+w)dé

Hence, the circumferential strain is change in length divided by initial length or

de_w

rdo r

6) er=

Finally, the anisotropic material stress-strain relations are given by

o) G
(7)  er=-% - pr—t
R Er

c
(8) €T = o HR R
Er Er

Simultaneously solving equations (4), (6), (7) and (8) for the displacement w gives the
second order differential equation for winding of linear anisotropic materials as

which has a solution of the form

(1) w =C ™ + G rB




At this time, it is appropriate to note that the winding differential equation can just
as easily be expressed in terms of stresses and strains in addition to the displacement
formulation shown above. Indeed, the equation will always be of the form

2
25{——)(—+Ard—x+Bx=O
dr? dr

(1) r

where the variable x could be either displacement w, stresses GR or O, Or strains €R or

eT. Though the constants A and B as well as the two boundary conditions will depend on
which variable the equation is expressed in, the solution techniques are the same and the

results will be equivalent. As an example, the equation could be formulated in terms of oR
as

d2
(12) rz—%R— + Ar%sr—R + Bog =0
dr

in which case the coefficients A and B are given as

(13a) A =3

(13b) B

1l
—
]

where equations (13) were simplified using a strain energy constraint {132, 133]

HR  HT
14) = =
(14) Ex ~ Er

A single ply of many materials has a near linear stress-strain response for z-
direction loading, which results in a constant out-of-plane modulus. However, a srack of
even linear materials is often significantly non-linear for out-of-plane loading.
Consequently, the radial modulus, Eg, is non-constant and is tyvpically a function primarily
of the radial loading, og (79, 132, 133]. Thus in general

Iy

(15a) FEg = f(og)

(15b) ET = f(OT)




This non-constant modulus complication has numerous implications that will be
treated more thoroughly in the next chapter on wound roll models. However, at this time
it is appropriate to note that the assembly of the constitutive equations requires taking a
derivative of an expression containing ER and/or ET with respect to radius. Since both
moduli are varying with respect to radius because stresses vary with radius, high order
terms will then appear in the A and B constants. These additional terms have not been
noted in any of the previous winding models, which can be a significant oversight for
some formulations.

In any case, the wound roll is described by a linear second order differential
equation with non-constant coefficients. However, before a complete solution can be
found, two boundary conditions associated with this second order equation must be
specified. The first boundary condition is determined by the amount of support or
stiffness provided by the core while the second is determined by the amount of tension on
the outer wrap as it is wound into the roll. These essential boundary conditions will be
described shortly.

It is timely to again restate the objective in wound roll modeling which is to
calculate the material stresses inside the roll, at any radial location (wrap) and at any time
during the winding process. As seen in Figure 12, the state of stress on any wrap is
described by both radial stresses and tangential stresses which are interdependent through
the equilibrium equation. The radial stresses are always compressive for non-adhering
materials and represent the pressure between the lavers of material. However, the
tangenual stresses may be tensile or compressive and represent the inplane loading of the
material. As will be shown shortly, the value of these stresses are different for each layer
of material.

Web stresses inside the roll are important as they have a profound influence on
many defects. For example, if the compressive radial stresses are too low, the friction
force between layers might be insufficient to lock the layers together to form a stable
structure. Undesirable axial slippage. known as telescoping, and circumferential slippage.
known as J-lining or gearing. result from external loading on rolls with low interlaver
pressures [106, 108]. Additionally, a core supported roll may open up on the underside of
the core if the interlayer pressure is less than the stresses due to gravity and core support
loading [96. 102]. Con rsely if the compressive radial stresses are too high, soft
materials such as tissue may lose bulk permanently due to creep, while coated webs coulc
smudge, and some films may 'wring' together. Tangential stresses also have similar
restrictions. If tangential stresses are excessively high, materials can tear, burst or rupture.
Conversely, if tangential stresses are too compressive on a thin flexible material, creping
and starring could occur [109].




Figure 12
STRESSES ACTING ON A WRAP SEGMENT
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Though analytical roll defect theories are yet to be developed, one can envision
optimizing the structural design of a roll by specifying values for controllable variables
which minimize defects associated with undesirable stress distributions. Blaedel outlined
such an approach in his thesis 'A Design Approach to Winding a Roll of Paper' [128]. In
his work, he described how penalty functions could be assembled and a minimum found
which in theory would also minimize defects. As described earlier, the controllable
parameters also have constraints, not necessarily related to roll structure, which also must
be specified if the optimizing model 1s to well represent real winding.

Finally. it must be noted that the radial and tangential stresses can't be optimized
independently because they are intimately coupled through the equilibrium equation.
Generally this means that an opumum radial stress profile for example, could well result in
an undesirable tangential stress profile and vice versa. For example, the typical near
constant radial stress profile as a function of diameier provides pressure and friction
required for roll structural stability. However, the coupled tangential stresses are then
compressive and could lead to creping and buckling.




The Core

Core stiffness is one of the two boundary conditions used in all winding models.
Though core stiffness is not as important as the wound-in-tension at the roll's current outer
surface because it affects a much smaller volume of web, it is still important enough that it
be treated thoroughly. Unfortunately, core stiffness has been inadequately covered in
winding articles to date. Typically, core stiffness is defined without derivation or
explanation of application. As a consequence, there has been confusion over the
distinction between core stiffness and core material modulus. In this section, core
stiffness is derived and discussed in detail, and will be shown to depend primarily by the
modulus of the material it is made from (paper, steel or plastic), as well as its inside and
outside diameters.

A derivar'on of core stiffness (E.) begins by defining stiffness as a radial stress
divided by a radia: strain (nondimensional displacement w/r) at the core outer radius:

(16) Ec = 2R
/ IT=19
where
E. = core stiffness input to winding models
Or = radial pressure
w = radial displacement (positive outward)
rg = corcouterradius = roll inner radius

Inserting the tangential strain-displacement relation (6), €T = % and pressure as a

negative radial stress, into (16) gives

OR | -
(17) E. = _R; - _Po
ETir=1, ET@r=r10
where
Po = radial pressure between roll and core
€1 = tangential strain
If we rewrite this equation iy a more familiar form. we see that this definition of core

stiffness appears similar to Hooke's Law except that the coupling is between radial stress
and tangential strain.

(18) ©Or = EceT




The radial strain-stress relation for an isotropic material in cylindrical coordinates is

er = OT - Hc OR
(19) Ecm

where E¢p, is the Young's modulus for the core material which is different from the core
modulus which we seek to define which is dependent on geometry as well as material.

The stresses on a pressurized isotropic cylinder are given by Roark and Young's
"Formulas for Stress and Strain" [176] as

a?b?(P,-P;) 1  P;a? - P, b2
OR = ———— +
(20a) b2 - a2 r? b2 - a?
a?b?(P,-P;) 1 P;a% - P, b2
oT = -———— +
(20b) b2 - a2 r? b2 - a?
where
a = Inner ra: .us
b = outerradius
P; = inner pressure
P, = outer pressure

Setting r = b, P; = 0 and relabeling; Py, as P, a as 1, b as r() to be consistent with wound
roll terminology, the radial and tangential stresses at the roll/core interface are given from
equations (20) as:

(2la) or = - Py

-
r02 + 1.2

r02 - rc2

(21b) ot = - Py




Inserting (21a), (21b), and (19) into (17) and simplifying we get an equation for
isotropic core stiffness as

r02 . rc2

(22) E. = Em

I'02 + rc2 - He (r02 - rc2)

where
E. = core modulus used in winding models
Ecm = core material modulus

Hc = core Poisson ratio
rg = roll inner (core outer) radius
I. = core inner radius

This equation can be nondimensionalized, as will be done shortly, or can be
manipulated into a form more suitable for engineering calculation. Noting that core, pipes
and tubes are commonly specified by an inner diameter (d; = 2 r¢) and a wall thickness
(tc = 1( - rc) instead of radii, we can rewrite equation (22) as

de + €

Cmt‘C
de2 + 2A1- pode te + ]

(23) E. = 2E

At this time, it 1$ appropriate to again clearly delineate the difference between E,
and E . E. is used in all winding models and is a core system stiffness which depends
on material and geometry. E_p, is a material property which is the Young's modulus of the
core material.

While equations (22) and (23) are descriptive of cores constructed of isotropic
materials, fiber cores are slightly anisotropic so that this case must also be developed. The
anisotropic case can be derived from previous definitions along with the tangential stress
distribution of an anisotropic cylinder with external pressure which can be derived from
Altmann's [127] equation (44)

(@ - apry b\ T,
ROl [

b 2y[ S

(24) dT= -
r 1 + as“f)




where dT is the contribution of tangential stress at nondimensionalized radius r by a
pressure Ty, / s on the outside of an anisotropic cylinder of nondimensionalizzd outer

radius s and
Er
Jg = =L
R Ex
E
3~ = =L
C Ee

2
YI‘V62+3R‘
o=y-29
B=vy+39d
g= YW -3c

Y+ U+ 3c
b=1-a

Noting that for this application, r = s and dT = o, and Ty,/s = OR, we can rewrite (24) as

a - aPs?

1 + as?y

@ r=s

(25) or= oRr

where s is the ratio r / re. Inserting (25) into the core stiffness definition (17) and using
the stress-strain relation (6), a solution of the anisotropic core stiffness is given as

E
(26) E. = Ecr Ecr
o - afs?
Ecr —B—f) HerEcT
1 + as<

\

where J¢ = 0 for the intermediate parameters given in (24). The radial and tangential
moduli can be measured by cutting a small rectangular specimen and measuring strains as

1t is loaded uniaxially in two directions.

The anisotropic core equation (26) can be checked wgainst the isotropic core
equation (22) by setting Ec; = Ecr = EcT and U = U.R = UcT giving intermediate
parameters

ER:I‘EC:OO‘LL:“‘S:O,YZ1,a:],B:1,a:“l,aI]db:O




and equation (26) then becomes for the 1sotropic case

Ecm
T 2

— +1
Te

2
2 -
Te

which is entirely equivalent to (22).

27) Ec =

- B

With equations (22), (23) or (27), core stiffnesses can be calculated for commonly
used cores and compared against values used in the literature. Table 1 was generated
using E.p, = 500,000 PSI and W = 0.3 which are typical values for the fibre and plastic
material used to manufacture cores.

From this table, it can that E. increases with increasing E., and increasing
nondimensional wall thickness ( t. /1. ). Additionally, with the exception of Schedule 40
steel pipe, the core modulus varies only slightly for the wide range of applications shown.
These results are similar to the historically assumed values of core stiffness; Yagoda [149-
153] with a modulus of 20,000-100,000; Altmann [127] with a modulus of 100,000; and
Hakiel [132, 133] with 100,000 and 200,000 psi.

If we use Yagoda's model [152, 153] and a standard set of input parameters, to be
detailed later, we can observe the effect of core stiffness on the stresses near the core.
Figure 13 shows that the tangential stresses on the first few wraps near the core vary from
a 2600 psi compressive stress for a zero stiffness core to a 500 psi tensile stress for an
infinitely stiff core. Unfortunately, the largest sensitivity to core stiffness corresponds to
values similar to real cores so that greater care should be used to select appropriate values.
If the core 1s too soft. the tangential stresses near the core will be large and compressive
which increases the potential for buckling and creping.

Radial stresses near the core are not plotted her because there is much less
sensitivity to core stiffness. The radial stresses vary from only 0 to 61 psi for core
stiffnesses of zero and infinity respectively. Additionally, the depth of effect is also
somewhat smaller. As the anisotropy of the web material 1s increased however. the effect
of core ~tiffnessis somewhat greater in magnitede and influences a much larger depth and
volume of web material. For the case presented here however, the effect of core stiffness
extends to only about 10% of the radius range which comprises only about 1% of the
volume of material in that roll.




Table I
THE STIFFNESS OF COMMONLY USED CORES

Materi Inner Diam.  Wall Thick. E. Notes

Fibre/Plastic 1.5 0.1 64,672 consumer rolls

" 3.0 0.25 80,147 film, paper

! " 0.50 152,838 !

" 4.0 0.50 117,493

" ! 1.0 217,391 !

" 6.0 1.0 152,838 board grades of paper
Steel 3.068 0.216 4,090,124 lightweight coated paper

Despite the seemingly well behaved core boundary condition as presented
‘previously in this section, there are several complications that need to be considered for
accurate wound roll modeling. These complications include hygroscopic behavior of fiber
cores, deflections and geometry. However, this project will only briefly review the major
mechanics implications of complex core behavior on roll winding. For further
information, the reader can turn to the bibliography which contains a separate section for
publications on cores.

Spiral fiber cores are continuously wound from multiple narrow strips of kraft
paper which have passed through a (sodium silicate) adhesive bath [2, 3, 5, 9, 13]. The
number of strips and their thickness determines the nominal wall thickness of the core.
These strips are continuously wound on a helix under tension from a crossed winding belt
on a mandrel [136]. After the cores are cut to length, they are then air or oven dried [1].
However, a problem results if fiber cores are not dried to hygroscopic equilibrium prior to
winding. A wet core inside a roll will give up moisture to its environment and shrink
radially in the process. As a consequence, some or all of the radial pressure at the core can

be lost as the core dries which increases the propensity to telescoping.




Figure 13
CORE STIFFNESS AND TANGENTIAL STRESS
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Other core modeling problems result from deflection. An example is the extremely
nonuniform nip across the width of an end loaded core which is nipped against a drum or
roller [11]. Not only does the deflection result in deviations from cylindricity, the wound-
in-tension (WIT) is also nonuniform across the width because of nip non-uniformity.
Another example is cores that are bowed due to residual stresses of manufacturing or creep
during storage [11]. These bowed cores cause winding tensions and nips to be
nonuniform across the width, and as a function of rotational position. Additionally, cores
will tend to buckle under excessive axial chuck load which causes nonuniform nips and

tensions.




Finally, cores are not necessarily uniform in geometry. Diametrical differences
between cores of a single set will cause large differences in wound-in-tension on a two
drum winder. The small cores will see a much smaller torque, nip and tension than the
larger cores in that set. Similarly, diametrical differences within a single core are even
found on recycled iron cores which are belled on the ends from unwind chucks [10].
Also, many cores are notched on the ends which gives a nonuniform radial support and
can cause high roll reject rates due to crepe wrinkling on lightweight grades [11, 191,
192].

The Roll Qutside

The second boundary condition required to solve the second order differential
boundary valued winding equation comes from the outer surface of the roll. The ingoing
wrap of material is under some tension which varies with diameter, and as a function of
the TNT's (torque, nip, and tension), as well as other physical properties such as drum
roller surface, drum capstan wrap angle, and the coefficient of friction between the web
and the drum roller. Traditionally the wound roll models have assumed a wound-in-
tension (WIT) as a function of rewound roll diameter. From WIT, one can calculate the
outer boundary condition either as

(28a) OR = ——— @r=T, or
rﬂ

(28b) o1 = WIS = T @r=r,

where

WIS = wound-in-stress (Ib/in?)

WIT = wound-in-tension (lb/in)

h = web sample thickness or caliper (in)

rp = radius to the roll outside at the current sample (in)

If the winding differential equation is posed in terms of radial stress as most
authors have done. then the boundary condition (28a) is used. Ilowever as mentioned
carlier, the differential equation can be formulated in terms of vadial stress. tangential
stress, radial strain, tangential strain, or radial displacements. If the equation is posed in
terms of tangential stresses, then (28b) could be used. However, there is a subtle
diffcrence because (28b) is a tangential boundary condition for the middle of the outer
wrap, while (28a) is for the pressure between the underside of the outer wrap and the top
side of second wrap.




Similarly, the differential equation could also be posed in terms of strains.
However, the boundary conditions would then require known strains which are presently
unmeasurable. Though another valid boundary condition is that the radial stress is zero at
the outer surface, this would yield a zero stress solution because the outer boundary
condition needs to be nonzero to 'force' a non-trivial solution.

To reiterate, the winding differential equation can be formulated in a number of
equivalent ways. However to apply the winding models, the outer boundary condition
must be measurable. For the traditional radial stress formulations, WIT has been
extremely difficult to measure in practice except for the rather limiting case of pure
centerwinding. Thus, wound roll modeling with the traditional formulation has been more
of an academic exercise than an applicable tool. This is exacerbated by a dearth of roll
defect theories which could help determine optimum stress profiles.

Another approach, which is the basis of this work, is to use an alternative
boundary condition that could be more easily measured. This is done by noting that web
caliper and roll radii can be measured during winding, and that the deformation of the outer
roll surface uniquely determines a boundary condition. More specifically, the stress
induced displacement of the outer surface of the roll is the difference in radii between
consecutive samples minus the summation of the caliper of the N individual layers
comprising that sample, or written as an expression,

N
(28¢) | wk = (rk-T1j) - 2, Cim

n=1

This new boundary condition, more completely described in Chapter 7, is one of the major
contributions of this research and allows a new and useful way to reformulate all present
winding models.

The radii at consecutive samples can be accurately measured in a manner similar to
the density analyzer using encoders as described in Chapter 6, and the caliper can be
measured using a variety of contacting or non-contacting gages. Hence, the outer roll
displacement can be determined which allows a unique solution of the WIS during that
sample. Since this allows an indirect measure of WIS as a function of roll diameter, radial
and tangential stresses at any point in the roll anc 1 any current diameter can be calculated
using viie of many wound roll models. Thus, instead of assuming a WIS profile, it can be
inferred from measurements of radius and caliper using wound roll equations.




The Accretion Nature of Winding

With a solution to the boundary valued winding differential equation, to be derived
later. one can calculate the incremental stresses inside the roll due to the addition of only
one ‘wrap. However, a complete solution requires recalculating the incremental stresses
at each internal wrap and adding them to the previous stresses. for each wrap added from
the core to the finish diameter. At each step. one has a snapshot of the radial and tangential
stress profile at that instant of time and at that current outer diameter.

After the addition of the first wrap, a single calculation for radial and tangential
stresses are made for wrap one. After wrap two, calculations are made for wrap one and
two and so on to give an arithmetical progression of the number of calculations required.
Written as an equation, the number of calculations required are

n
(29) #calculations = 3 i = 1+2+3+..+4n = n(n+1)

Hence. the number of calculations is approximately proportional to the square of the
number of wraps.

The thickness of wraps in the real roll and the thickness of 'wraps' in the wound
roll model need not be necessarily equal. However, there are several constraints that must
be met when choosing a wrap thickness for wound roll models. The first requirement in
that regard is that the number of wraps must be large enough to give a good resolution of
the rapidly changing stress gradient, but not so large as to cause excessive computation
ume or numerical instability. The second requirement is that the WIS profile must be equal
for the real roll and the roll model. For example, a 0.001" thick web under 1000 psi WIS,
which would give a WIT of 1 PLI. could be modeled by a 0.01" thick web under 1000 psi
WIS. which would give a WIT of 10 PLI.

To check whether sufficient wraps are used in a wound model. one needs to run
the model using two different wrap thicknesses (same core and finish diameter), and
compare the stress profiles. For example. a 0.1" thick wrap (180 wraps and 16.290
calculationsy and a 0.057 thick wrap (360 wraps and 65.980 calculations) vield a 3%
movmum difference for a pariicular setof paremeters [115]. This indicates that 200 wraps
will Zive sefficient enginecring accuracy for that particular set of parameters. This check
should be considered when setting up wound roll models. The higher the anisotropy or
variation in WIS profiles, the larger the number of wraps which are required to calculate
SIITSses 10 a given accuracy.




CHAPTER 3

WOUND ROLL MODELS

Overview of Wound Roll Models

Wound roll web stresses, as described in Chapter 1, must be controlled to
minimize damage to the product. Additionally, the wound roll stress profiles must be
controlled so that the roll will have sufficient structural integrity to maintain its cylindrical
geometry despite subsequent handling loads. The purpose of wound roll modeling is to
predict web stresses inside the roll as a function of material properties, geometry and WIT
(wound-in-tension) profiles. These computer simulations allow wound roll design
experimentation to take place off-line without risk to the product. These simulations can
be used to find optimum winding conditions which can then be verified experimentally
with trials on pilot plant or production winding machines.

Wound roll modeling using mechanics formulations, such as described in
Chapter 2, was first developed over three decades ago. Since then, there have been
numerous models developed by industrial and academic researchers. While these models
generally use the same constitutive equations, there are differences between them in terms
of generality, mathematical development, and computational performance. These
differences will be explored in this chapter.

The primary difference in the models is an evolution whereby the models have
become more general in the behavior that can be described, and thus more representative of
real winding. The trend 1s most apparent in terms of moduli where the isotropic model
[131] was superseded by a linear anisotropic model [127], and finallv by a nonlinear
anisotropic model [132, 133]. Tach model is a superset of the previous such that it could
describe new behavior in cddition to that described by carlier models.  Additionally,
complex behavior such as stress relaxation [144, 1457 and centrifugally induced stresses
[150, 151] were also modelled. Current research is focused on extending winding models
to the cross direction and describing the behavior of a nip.

(US]
98]




Another difference between models is the mathematical techniques used to
assemble the constitutive equations into a working set of equations. The equation for the
incremental pressure distribution for the addition of a single wrap on the isotropic model is
a closed-form equation. However, the anisotropic model produces an integral which can't
be solved explicitly, so must be evaluated numerically [127] or by using series
approximations [149-153]. Finally, the nonlinear anisotropic model has no closed-form
solution but rather is solved as a matrix of finite difference approximations for each layer
in the roll, and for each layer added [132, 133].

In the development of the more complex models, some higher order terms are
omitted for solution expediency. As will be shown, neglecting terms can have anything
from a negligible to debilitating effect on solution accuracy depending on the model and
input parameters used. Similarly, though most of the models described here are absolutely
rigorous, the choice of different solution techniques results in varying computer
performance and accuracy. As will be shown, winding models are ill-conditioned and
prone to numerical difficulties. It is easy to find sets of input parameters whose solution
time and accuracy varies by several orders of magnitude from one model to the next.

Consequently, the distinct winding models will be checked for rigorously accurate
mathematical development, as well as solution performance. Despite the differences in
development of the models, one expects that they yield the same stresses for the same set
of input parameters. Thus, by comparing the outputs of each of the models for the same
set of inputs we can verify the performance of each. Appendix B contains a standardized
set of input parameters as well as the outputs from the various models. This close
inspection of winding model development and performance have yielded some surprises
that will be described in this chapter.

A Simple Linear Isotropic Model

The linear 1sotropic model is the oldest winding mode! dating from the late 1950's
with Gutterman's work for the US government on magnetic tape winding [131]. Shortly
thereafter, similar work was also performed by Catlow and Walls for the textile industry
[129]. Since then many other authors have reported results using simple isotropic
modeling [134, 135, 146, 147, 154, 179]. Finally, this mode!l was also independently
derived by the author for the Beloit Corporation winding studies and serves as the basis
for this report [115].




The linear isotropic model has several disadvantages with respect to more modern
models because the assumption of isotropy does not well model typical paper and film
winding because the ratio of the tangential to radial moduli can approach 1,000 for some
materials. Additionally, the linear model often does not run significantly faster than less
restrictive models for a given solution accuracy. Despite these limitations however, this
mode] does have unique features which can justify its discussion:

1. Itis an ideal introduction to winding models for instructional purposes because of
its simplicity, yet it retains a similar development and set of constitutive equations
as the more sophisticated models.

2. It is a useful check for the proper behavior of other winding models. If linear
isotropic parameters are chosen for a modern model, it must yield the same
answers as this simple model. Using this linear isotropic model, a restriction was
found on the Yagoda linear anisotropic model. Though Yagoda's formulation is
the fastest and most accurate solution for linear anisotropy, it is incapable of
solving certain combinations of input parameters including the isotropic case.

3. There may be applications of the winding of thick linear isotropic materials, such
as steel or linoleum which might be modeled adequately with a simple model.

The radial and tangential stress distribution for a linear isotropic thick-walled
cylinder due to internal and external pressure is given in several handbooks [176], and is
also rederived by Roisum from displacement fields [115] as:

2. 2(p. 2 2
r-ro“(P;-P P - Pir
(30a) oR = -- o (P O)l+ 0 70 ]
rjz B rJ2 - 192
o) 2 o)
r,°1o” (P, - Po) 1 Porgc - P ri®
(30b) OT = -F———1—— + ———
R (R " - 1g”
where:

Pj = external pressure (between current outer wrap j, and body of roll)
P = internal pressure (between roll and core)
rj = (current) roll outside radius

r() = roll inner (core ouier radius)

The pressure, Pj, between the current outer wrap j and body of the roll is calculated from
the winding tension or stress as:




WITJ _ hWISj’r:rj
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(31) P =

Equation (31) is a restatement of the outer boundary condition given in equations (28).
The variables in equations (30) are generally known with the exception of the core
pressure Pg which can be derived using the definition of core stiffness derived previously
(16):

3 g =% - _Fo_

ET|r=1 ET@r=10

While the tangential strain in the roll for an anisotropic cylinder is given as (8), the
isotropic cylinder is simplified to:

(33 er = S _ER
E

If we set r = r( in equations (30), insert into (32) and (33), and solve for Pp (using
Macsyma® on the Symbolics 3650), we calculate the core pressure as:

21 Ec
(rjz - r02) (E +H Ec) + (r_i2 + r02) Ec

(34) Py = P,

Now the stress distribution due to the addition of one wrap of thickness h during
winding can be calculated using equations (30) for the stress distribution given the outer
pressure from (31), and the core pressure from (34). In other words, the change in the
roll's internal stress distribution caused by the addition of a single wrap is calculated for all
internal wraps from the core and current outer radii as a function of Young's modulus E,
core modulus E., the WIT (Wound-in-Tension) and wrap thickness h.

The wound roll model computer program then simplyv increments the outer wrap ]
by the 'wrap thickness' h for radii from the core to the finish radius. At each wrap. the
program calculates the incremental contribution of that external wrap to all internal wraps
and adds the result to the previous values using the principle of superposition. An outline
of the computer code to solve this linear isotropic winding model, which is similar to many
of the other models, is as follows:




input variables
initialize tangential stress array using a function describing the wound-in-stress distribution
increment external wrap j from core to finish radius loop in steps of h
calculate wound-in-stress at current outer radius
calculate Pj from equation (31)
calculate Pg from equation (34) and core stiffness equation (22, 23, 26 or 27)
increment internal wrap i from core to current outer wrap j stress loop in stens of h'
calculate incremental radial stress from (30a)
calculate incremental tangential stress from (30b)
update radial and tangential stresses (new stress = old stress + incr. stress)
end stress loop
end wrap loop
print final stress distribution

There are two stepsize increments for the two nested program calculation loops.
The first increment is the outer loop of the program which is incremented from the core
. radius plus h, to the finish radius of the roll rp, in increments of the calculation wrap
“thickness (h). As described at the end of Chapter 2, the choice of calculation wrap
thickness (h) is arbitrary and need not equal the real web thickness as long as the WIS
(wound-in-stress) is the same for calculation and real web thicknesses. The choice of
calculation thickness is a compromise between accuracy and solution time.

Generally as the calculation wrap thickness (h) is decreased, and consequently the
number of calculation wraps increases, the solution accuracy will increase. However, the
solution time will also increase approximately by the square of the number of calculation
wraps as given by (29). Though some models may have numerical instability if the
number of calculation wraps is too great, the isotropic model is generally well-behaved in
this regard.

The inner program loop is incremented from the core radius to the current winding
radius in steps of the print increment in radius (h'). The print increment in radius (h') has
no effect on accuracy but only determines the number of radii at which stresses are
calculated. For the 1sotropic model, the solution time will increase inversely proportionally
to the printincrement in radius (h'). Though the choice of print increment in radius (h') is
again arbitrary except that it must be an intcgral muttiple of the caleulation wrap thickness
(h), for simplicity h"1s generally chosen to be equal to h. An example stress distribution
for the isotropic model is shown in Figure 14.




Stress Distribution (PSI)

Figure 14
STRESS DISTRIBUTION FOR THE ISOTROPIC MODEL

1000 WIS = 750 + 0*R + 0*R”2 (PSI)

A\

-10004 ——&8— Radial
——#— Tangential
Linear Isotropic Model
-2000+ Rcore = 2; Rroll =20
ER = 10,000; EC = 100,000
1 UR =0.01
-3000 T T r
0 10 20

Radius (in)

Despite the oversimplifications of the isotropic model, there are several conclusions

that can be obtained that will in general hold using more general models:

n

. The radial stress at the outside of the roll is always zero because there are no

externally applied pressures.

. The radial pressure is always compressive, and generally becomes more

compressive at increasing distances from the roll outside.

. The tangential stress at the outside of the roll is always equal to the wound-in-

stress (WIS) because that was one of the requisite boundarv conditions for the
solution.

. The tangential stress, which is initially tensile at the current roll outside, decreases

atincreasing distances from the roll outside and may become compressive.

. There arc high stress gradients in the vicinity of the core.

6. The simple 1sotropic model is linear and superposition holds such that doubling the

value of a constant WIS profile will double the value of stresses at all wraps.
However, the superposition assumption will not be valid for all cases and
particularly for the modern nonlinear models.




Linear Anisotropic Models

Anisotropy is a characteristic of some materials which have properties whose
values depend on the direction of measurement. In particular, many wound roll materials
have Young's moduli (stiffnesses) which are greater in the MD (machine direction) than in
the ZD (out-of-plane direction) [56, 57, 115]. Materials such as film can be slightly
anisotropic due to manufacturing processes which may pull long molecular chains to a
preferred orientation. Paper, which is composed of a complex network of wood fibers,
can be highly anisotropic because fibers themselves have a much higher stiffness along
their axis than across it, and are generally oriented in the plane of the web. However, even
metals which have a very linear stress-strain response as a single web can be anisotropic
when measured as a stack property.

Wound roll models simplify the fully anisotropic condition to that of an orthotropy
such that there are three independent moduli in the MD, CD and ZD and several Poisson
ratios. The three principal axes of the material are mutually perpendicular and closely
aligned with the roll. The MD of the web corresponds to the tangential direction in the
roll, the CD of the web corresponds to the axis of the roll, and finally the ZD of the web
corresponds to the radial direction in the roll. Further simplification results for most
models which do not consider variation along the CD. This leaves two moduli, ER and

ET, and two Poisson ratios, HR and pT, which describe the behavior of the wraps of
material as it is wound into a roll for most of the currently used models.

While ET can be measured as a single strip in a standard tensile test machine, ER
must be measured as a stack. In both cases, the applied load or stress and the resulting
deflection or strain are measured in the direction corresponding to the MD and ZD of the
material. The anisotropy ratio of the stack material, which is simply the ratio ET/ER, has a

large effect on the resulting wound roll stress patterns and can vary from just over 1 to
more than 1,000 for typical web materials.

The Poisson ratios describe the strains in one direction resulting from loads applied
in another. The Poisson ratio HR, sometimes denoted as HTR, represents the ratio of
strain in the tangential direction divided by the strain in the radial direction for loads
applied in the tangential direction. Similarly g, sometimes denoted as URT. represents
the ratio of strain in the radial direction divided by the strain in the tangential direction for
Joads applied in the radial direction. The effect of Poisson ratios on wound roll stress

patterns are usually much smaller than moduli [148], and many materials such as paper
have near zero Poisson ratios.




Direct measurement of stack Poisson ratios are extremely difficult in practice [115],
and many authors use relationships between more easily calculated properties to indirectly
predict these ratios [55, 59, 61, 84]. For example, Hakiel correctly observed that the
strain energy constraint

(35) HrR _ Kt
Er Er

predicts that the two Poisson ratios are not independent [132, 133]. However, it should
be noted that these relationships are derived from solid mechanics of ideal materials,
whereas stacks are structures composed of often less than ideal materials. Indeed, the
application of the constraint to predict one Poisson ratio given the measurement of the
other along with moduli has not always agreed with experimentally measured results.
Furthermore, most authors do not use this constraint as it reduces the generality of the
model and does not simplify the math significantly. However as mentioned earlier, since
the sensitivity of winding models to Poisson ratios is slight, the debate over whether to
apply these relationships is somewhat academic.

In the next two sections, two linear anisotropic models are discussed which
represent the next step in the evolution of winding models. These models by Altmann and
Yagoda use the same constitutive equations, share an identical initial development, but use
different techniques for solving the winding integral. Consequently, the primary
differences are in the accuracy and speed of computation. As will be shown, while
Yagoda's model is usually much faster and more accurate, it suffers from a small loss in

generality in dealing with small anisotropy ratios and variable WIS (wound-in-stress)
profiles.

Altmann Model

The first linear anisotropic winding model was formulated by Heinze Altmann 1n
1968 [127]. He began with the governing differential equation for winding in cvlindrical
coordinates assembled from the constitutive equations described in Chapter 2 which are

P d:\Nv ET | dW ET
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with boundary conditions
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where

w = Radial Displacement (in)
r= Radial Location (in)
I0 = Inner (Core) radius (in)
I = Current outer radius (in)
Ec= Core Modulus (Ib/in2)
ER = Radial Modulus (Ib/in2)
ET= Tangential Modulus (Ib/in2)
HUR = Radial Poisson Ratio
uT = Tangential Poisson Ratio

= Radial Stress (Ib/in2)
oT = Tangential Stress (1b/in2)
WIT; = Current Winding Tension (Ib/in)

The assumed form of the solution is

(38) w=Ar® + Br-B

which can be verified to satisfy the differential equation [115, 127]. The next step is to
write the differential equation for the boundaries of the range to the core and the current
outside. This will yield two equations to solve for the particular solution constants A and
B. Altmann had considerable insight into the nondimensionalization of the elastic and
geometric parameters so that the derivation did not become unwieldy. Roisum [115]
rederived the solution from Altmann's [127] outline to verify integrity and through this
exercise gained appreciation of the elegance of the solution. Later, Roisum used the
computer algebra application Macysma to find alternative solution formulations, which
though correct were more cumbersome than Altmann's. After considerable algebra, the
solution for the radial and tangenual stress distribution inside a winding roll for a single
wrap of thickness ds 1s given as
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where the secondary parameters are defined as:
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and s is the dummy variable of integration from internal radius of interest r, to finish
"outside radius R. The spatial variables, s, r, and R, are nondimensionalized with respect
to core radius to simplify the derivation and condense the formulas. The accretion nature
of the wound roll system then is modeled by simply integrating the contribution to the
incremental stresses, doR and doT, from the radius of interest r to the finish outside radius
R. Additionally, the initial wound-in-stress for each layer, WISg, must be added or
superimposed upon the stresses caused by lavers added above. Thus, the final stress

distribution 1s given as
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Although this is a closed form expression for wound roll stresses, the integral must

be evaluated numerically because b and y are not integers, and the WIS profile with respect
to current winding outer radius will not in general be a simple function. An outline of the
computer code to solve Altmann's winding model is as follows, and the code is given in
the Appendix A.

input variables

calculate intermediate parameters

increment internal radius loop
goto subroutine integrate lower decade
goto subroutine integrate upper decade
calculate stresses

end increment radius loop

print stress distribution

subroutine integrate (from internal radius of interest to finish radius)
initialize
integrate loop
calculate integration panels using Simpson or similar technique
end integrate loop
return from subroutine

The increment for the loop in main program's “~dy determines the interval over
which stresses will be calculated and printed, and has no effect on the accuracy of the
solution. ITlowever, the increment size for the integration subroutine loop does have a
tremendous effect on solution accuracy. Several numerical integration techniques were
investigated to find an accurate and practical integration method to calculate this extremels
difficult integral, and will be discussed in more detail shortly.

Plotting the winding integrand from equations (41) as a function of radius, it
becomes apparent why the integral is so difficult to solve with numerical accuracy. As
seen in Figure 15, the integrand can easily vary more than 25 orders of magnitude from
one end of the range to the other. The gradient is steeper with higher anisotropies and
higher finish/core diameter ratios. The steeply varving characteristics of the integrand as a
function of radial position is also shared by siresses. strains and displacements due to the
addition of a ~single wrap. This behavior is caused because each laver tends to be self
supporting to the pressures from layers above, much as an arch can support external loads
without internal support. Consequently, the addition of a single wrap significantly affects
only the first few wraps immediately beneath, and diminishes rapidly with depth.




Figure 15
THE WINDING INTEGRAL VS RADIAL POSITION
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This rapidly diminishing communication from a layer to those beneath have strong
implications for roll structure measurement. First, measurements taken on the roll's
surface will be unable to resolve changes made on layers deeper in the roll. Similarly, a
large change in wound-in-stress at a particular radial location will be undetectable a short
distance away.

Comparing Altmann's winding model described by equations (41) and plotted in
Figure 16, and the isotropic model described by equations (30) and plotted in Figure 14,
we can investigate the effect on material anisotropy on wound roll stress distributions.
This comparison of the winding of anisotropic and isotropic materials, vields the following

differences:
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Figure 16
STRESS DISTRIBUTION FOR ALTMANN MODEL
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The magnitudes of the radial stresses for the anisotropic model are much less than
for the 1sotropic model for the same WIS profile.

. The radial and tangential stress distribution for constant WIS are nearly flat, equal

in value in the middle radii of large rolls, and slightly compressive throughout most
of the roll. This very near equality of radial and tangential stresses can be used as a
quick check of the accuracy of constant WIS linear anisotropic stress calculations.

.. The stress gradients at the core are somewhat less with the anisotropic model than

for the isotropic model.

Both the isotropic and Altmann models must and do vield nearly identical
calculations for stresses using an isotropic set of conditions as seen in Appendix B.
[However, since anisotropy is a more general and more representative condition of

winding. aniotropic modcels dre preferred.




As mentioned earlier, the primary differences in winding models are generality,
and numerical performance in terms of accuracy and speed. For the Altmann model, the
accuracy and speed of calculation are directly related to the difficulty in numerically
evaluating the winding integral, where the integrand can vary by more than 20 orders of
magnitude from the core to the outer radius. Several numerical techniques for improving
performance were tried and are discussed here.

However, before accuracy can be objectively evaluated, several difficulties must be
resolved. First, we must define accuracy. If accuracy is defined in terms of absolute
error, then the tangential stresses, which tend to be numerically higher than radial stresses,
will tend to appear larger than their real significance. Conversely if accuracy is defined in
terms of relative error, then the error will approach infinity near the zero crossing of
tangential stresses.

In addition to differences in the error for radial and tangential stress calculations,
errors will vary with radial position in a roll. For example, finite difference models such
as Hakiel's generally perform poorly for radii near the core where the number of
calculation points is smaller. If RMS or another similar measure of error is used to
evaluate the entire region as opposed to discrete points, then the effort required to evaluate
error becomes quite large. For this simple evaluation however, the relative error is based
on the tangential stress at a radius of 5".

The second issue that must be resolved is determining what the 'correct' stress
values are which will be used as a reference for the error calculation.  One possibility is to
vary the grid spacing to find convergence of a model. Unfortunately, though this is a
useful check, convergence does not necessarily guarantee correctness. However, if the
convergence of stresses in one model agrees quite closely to the stresses predicted by
another model for the same input parameters, then the confidence in both models is quite
high. This fortunate condition is the basis for this simple error analysis. Specifically, for
a wide range of parameters the Altmann model will converge to the stresses predicted by
the Yagoda model (to be discussed shortly) to more than 10 decimals of accuracy.

The third issue is that the error depends considerably upon the input parameters
used. For example, while most models have numerical difficulty as the anisotropy ratio
increases beyvond some value such as 1000, the Yagoda model does well at high
anisotropics but may not even be able to calculate stresses for low anisotropies. TFor the
following examples. a standard set of input parameters typical of some winding conditions
are used and corresponds to those given in Figures 15, 16 and Appendix B.




Finally, stress calculation accuracy and speed also depends on the original source
code, the compiler, the microprocessor, as well as the math coprocessor. For example,
the ubiquitous but primitive GW basic on the IBM PC has been found unacceptable for
many winding models due to numerical overflow of its single precision math. Obviously,
speed of computation will improve with compilation, math coprocessor support, as well as
processor speed. Due to these and many other difficulties in evaluating accuracy, the
following error analysis though objective and representative, is somewhat simplistic.

The most straightforward approach to evaluating the winding integral is to use
Simpson's 1/3 rule, and to increase the number of panels to evaluate its effect on accuracy.
From Table 2a, we see that the Altmann formulation converges to the Yagoda results if the
number of integration panels is high. This gives us high confidence in both the Altmann
and Yagoda formulations.

While engineering accuracy of wound roll stresses is easy to obtain with Altmann's
model using as few as 100 panels, extreme accuracy is not. For example, if we want to
know the stresses at 1 inch locations in the winding of a roll from a 2 inch to 20 inch
radius to an accuracy of 1 part in 10E8, we would need to call the integrate subroutine 136
“times, and the integrand function 13,600,000 times. Clearly we would like a more
efficient method of obtaining a specified level of accuracy. From the large number of
panels required for high accuracy, it may be suspected that the winding integral must be
unusual because the error term

(b-a)
(42a) 180

h* £1v (§)
should be very small. and specifically for our case of 100.000 panels equal to

(42b) 4.2E-17 £ (£)

However since the error is relatively large, the fourth derivative of the integrend must be
very large. The high gradients for the winding integral, stresses. strains and
displacements create numerical difficulties for winding model calculations.




A classical approach to increase numerical accuracy and/or reduce the number of
calculations is to use Rhomberg Extrapolation. With this method for example, a
calculation is made at a coarse spacing and then again at a mesh twice as fine. Using these
two results, an extrapolation can be made which predicts the calculation result as if it was
made with a mesh four times as fine as the original. This extrapolation can be repeated
several times. Unfortunately as seen in Table 2b, the winding integral errors actually
increase using Rhomberg Extrapolation.

Because the integrand is very steep near the core, it would be reasonable to make
the 'mesh’ smaller in that region. Since many of the common numerical integration
methods require constant space grids, one could divide the integration region into several
subregions. Though each subregion would have constant internal spacing, the subregion
in areas of steep gradient could have a finer mesh than those which are in areas of
moderate gradient. For example, the entire integration region from the radius of interest r,
to the outside radius R, could be divided into decades, each with the same number of
panels, and the total near 1000 panels. Using this procedure, the 3 decade evaluation
would have 334 panels for each of the regions r to r+0.01(R-r), and r+0.01(R-r) to
r+0.1(R-r), and r+0.1(R-r) to R. As seen in Table 2c, the two decade integration is the
optimum for this case and improves accuracy more than two orders of magnitude.

Other methods were investigated such as adaptive step size integration as well as
combinations of methods such as using decade varying panel widths along with Rhomberg
Extrapolation. However, the best result obtained was by using Simpson's 1/3 rule for a
two decade varying panel width for ar.  ccuracy improvement of about 100 times over the
unmodified Simpson's integration method. Consequently, this procedure was
implemented in the computer coding for the Altmann model given in Appendix A.

Though Altmann pioneered analytical winding with a mathematically correct
model, and many subsequent authors use his nondimensionalization scheme, he had errors
in his graphs that later stirred criticism. Altmann's figure 1 shows a constant stress region
that has a slightly inaccurate value, and more importantly no stress gradient near the core
[127]. We can only surmise that the ev-reme difficulty of accurate numerical calculation of
the winding integral with the limited computing resources in the 1960's may have yielded
these errors. Furthermore. the stresses at the core might not have been calculated or might
have been assumed in error with respect to the large consiant stress region.




WINDING INTEGRAL EVALUATION ERRORS
vs # of INTEGRATION PANELS

# Panels
10

100
1,000
10,000
100,000

% Error for o
-204.18

-0.41036
-0.000046342
-0.0000000047641
-0.00000000011392

Table 2b
WINDING INTEGRAL ERRORS
vs # of RHOMBERG EXTRAPOLATIONS

# Extrapol's Logl0 of Irelative error!
0 -6.33
1 -5.03
2 -5.97
Table 2¢
WINDING INTEGRAL ERRORS
vs # of DECADES
# Decades Logl0 of I relative error |
1 -6.33
2 -8.87
3 -8.44
4 -7.91

However, though his calculations and graphs might not have been accurately
computed, his mathematical formulation was mechanically sound and without error.
Additionally as shown by the more than 10 digit agreement with Yagoda's model, the
Altmann formulation can be accurately computed if sufficient care is given to numerical
mteyration.  Thus, as illustrated here with Altmann and later with other models.
mathematical soundness is necessary but not sufficient to guarantee accurate stress
predictions. Numerical considerations are also a requisite part of any winding model
development or application. In any case, Altmann's place in winding history is assured

for his model has been referenced in more winding papers than any other.




Yagoda Model

Yagoda published a number of works on winding models in the late 1970's [149-
153]. However, they have been generally overlooked due to the scholarly nature in which
they were written, and due to the intricate math required. Yagoda developed a
hypergeometric series evaluation of the winding integral to correct what he believed were
errors in Altmann's [127] solution near the core. As shown in the previous section
however, Altmann's solution is mathematically correct and the errors in stresses were due
to numerical evaluation problems rather than development.

To verify the numerical accuracy of the isotropic and both linear anisotropic
winding models, they were each run for several sets of input data, and the results are
tabulated in Appendix B. As typified by Table 3 for one of the test cases, the models yield
extremely close answers. This close agreement of stress predictions between
independently derived models is a benchmark test that is used throughout this thesis to
check for proper model operation. However, it appears that Yagoda [152] may not have
computed his predecessor's model to check against his own, since differences in the two
linear anisotropic models when properly calculated are generally less than a fraction of a
percent.

Yagoda [149, 152, 153] begins development of his model where Altmann [127]
left off using the same integral formulation
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Next, Yagoda nondimensionalizes the radial and tangential stresses with respect to
the wound-in-stress at the core. The remainder of the derivation consists mostly of
substituting a hypergeometric series approximation for the winding integral and
simplifying. After reducing the expression, the radial and tangential stresses are given by
Yagoda as
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where the asymptotic solution to the winding integral is
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Table 3

STRESS DIFFERENCES BETWEEN
YAGODA AND ALTMANN MODELS

WIS=750, ER=1000, ET=750000, EC=100000, UR = 0.01, UT = 0.01

Values are for the Yagoda model and differences are for the Altmann model.

All units in English (inch, PSI).

The expression is simplified in the more restrictive case of constant winding tension so that

M=0.00=0.and Cno=1 yielding

(482) og = -1 + ar™ S (r.R. o) C 10
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Radial Rad. Difference  Tangential Tan. Diff
-30.874148 0.00000179 286.887777 0.00002686
-24.682417 -0.00000023 -24.682417 -0.00000730
-24.682417 -0.00000006 -24.682417 -0.00000192
-24.682417 -0.00000003 -24.682417 -0.00000102
-24.682417 -0.00000003 -24.682417 -0.00000122
-24.682417 -0.00000005 -24.682417 -0.00000166
-24.682417 -0.00000006 -24.682417 -0.00000196
-24.682417 -0.00000006 -24.682417 -0.00000198
-24.682417 -0.00000005 -24.682416 -0.00000176
-24.682417 -0.00000004 -24.682407 -0.00000139
-24.682413 -0.00000003 -24 682276 -0.00000100
-24.682366 -0.00000002 -24 680816 -0.00000064
-24 681932 -0.00000001 -24.667202 -0.00000037
-24.678472 -0.00000000 -24.558613 -0.00000018
-24.654383 -0.00000000 -23.802552 -0.00000007
-24.505524 -0.00000000 -19.130448 -0.00000002
-23.677800 -0.00000000 6.848490 -0.00000000
-19.488475 -0.00000000 138.334663 -0.00000000

0.000000 -0.00000000 750.000000 -0.00000000




The variable wound-in-stress equation (47) reveals a major limitation of the model
as it can only accommodate a polynomial expression. Real winding profiles vary in a
noisy manner due to process fluctuations and would be computationally difficult to model
as an extremely high order polynomial with terms for each wrap. Another difficulty is the
(b+0) term in the denominator of equation (46). For the isotropic case, b is zero and ¢ is
zero for the first term in the WIS polynomial, so that an undefined division by zero results.
Additionally, b can be zero for certain combinations of anisotropic parameters. To
circumvent this small problem in Yagoda's formulation, we simply say that if
(b+¢) < small, then the first term in equation (46) can be expressed in the limit as

(b+¢) approaches 0 as -log(r/R), yielding the isotropic asymptotic solution as

oo

2y _1\n
49) S (1, R, 0)forb=0 :-104%)_ r -1 :
2yan=2 : 0; |iR27(r 2y|
Ty Tﬁ)

A similar problem occurs in the isotropic case for the first infinite series term (n=2)
of the first WIS polynomial term (¢=1) for equation (49) where (n-1-(b+¢)/(2Y)) also goes
to zero. Unfortunately, the limit of this term as given by Macsyma is much more
complicated. Instead of computing the limit exactly which makes for ugly code, that single
term was simply omitted in the computer code if b+¢ < small. Though the stress errors
were typically less than 1% of the WIS for the two isotropic cases tested, it prompted a

more thorough investigation of Yagoda's proof since he had not called attention to these
small difficulties.

Yagoda discarded an entire series of terms [152, eq. 35], which he said could be
neglected for practical cases. These terms were reinstalled and found to reduce the errors
by nearly 1/2 for the two isotropic parameter sets with lesser effect on a single recalcitrant
anisotropic parameter set. Additionally, Yagoda used two other simplifying assumptions
[152, eq’s 33a & 33b] that were not checked because they were used early in the

development of the series solution, anc a rederivatio ippeared formidable.




An outline of the computer code to solve Yagoda's winding model is as follows, and the
code is given in Appendix A.

input variables
calculate intermediate parameters
increment internal radius loop
outer summation loop (for number of terms in WIS profile)
inner summation loop (for infinite series expansion of integral)
end inner summation loop
end outer summation loop
end increment radius loop

The increment for the outer loop in program's body determines the interval over
which stresses will be calculated and printed, and has no effect on the accuracy of the
solution. Within this loop, there are two other nested loops. The intermediate summation
loop is executed as many times as there are terms in the WIS polynomial profile. The
inner summation loop is executed until the remaining terms in the infinite series terms
become very small. The only difficulty here is exiting the inner loop before numerical
underflow. This underflow occurs due to large exponents, and it is difficult to predict
from the value of the current term in the series whether = : next term in the series will
explode.

One outstanding advantage with Yagoda's solution is that it can be extremely
computer efficient for simple WIS profiles. For example, the Altmann solution for the
anisotropic case of Table 2 required 100,000 iterations to reach 12 place accuracy while
Yagoda's only required one series term except near the core (75 terms at 2", 2 terms at 3").
Additonally, for many sets of input the Yagoda model will calculate stresses to
extraordinary accuracies as evidenced earlier by the convergence of Altmann's model.
Thus, 1t 1s possible for the Yagoda model to calculate stresses to many orders of magnitude
greater accuracy, and to do so at a miniscule fraction of the time other models require to
achieve even modest accuracy. The disadvantages of the Yagoda model are difficulties
with cases of low anisotropy ratios and/or highly variably WIS profiles.

In addition to his conventional winding model. Yagoda also extended his model to
include the effects of centrifugally induced stresses [150. 151]. Tn this work he concluded
that the effects of centrifugal forces are small but not negligible. This and other more
complex wound roll behavior will be discussed in more detail in Chapter 4.




In summary, Yagoda's model is numerically consistent with the isotropic and
Altmann models. The primary advantage of the Yagoda model is extraordinary accuracy
and extremely fast calculation time, while the primary disadvantage of the Yagoda model is
limitations in the complexity of the WIS profile that can be easily accommodated. Thus,
the best application of the Yagoda model is where extremely accurate data needs to be
computed quickly to verify other models.

Nonlinear Moduli

The three models discussed thus far, the isotropic, Altmann's and Yagoda's, have
all assumed that the material properties are constants. However, material properties are
seldom constants, and will vary with load, load history, strain rate, time, temperature,
moisture and other factors for a given material. In particular as we will see, the radial or

stack modulus ER will depend strongly on the interlayer pressure oR. Moduli are defined
as the slope of the stress-strain curve as

(50) Egr = dor _ f(or and other factors)

dER

Figure 17 shows the stress-strain curves for one of the materials tested in this
project, and typifics most web materials. The first and most important observation is that
the stress-strain curves are nonlinear, and consequently the radial modulus is not a
constant but rather depends strongly on the stack pressure. The second observation is that
the load and unload curves follow different paths, and the area between these curves
represents the nonconservative hysteretic energy loss due to a single load-unload cycle. A
third observation is that the strain does not return to zero upon unload. This means that the
specimen will retain a permanent change in dimension of the same sign as the applied load,
although some of this will be recovered with time. Finally, the stress-strain curves
'walks' to the right as a function of loading cycles. However after one full load-unload
cvcle, the stress-strain curves tend to quickly stabilize. Because of these and other
complexities, various procedures and simplifications are used to adequately model a

matertal’s first order stress-strain hehavior.




Figure 17
NONLINEAR STACK STRESS-STRAIN CURVES
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Moduli are indirectly measured using a tensile testing machine equipped with
suitable grips or platens. MD and CD moduli are generally tested in i. ::sion only, and the
specimen strips are mounted in lightly loaded grips. These specimens are typically 1"
wide by 4-6" long. To reduce the stress concentration at the grips and consequently
reduce the frequency of breaks initiating at the grips, they are either covered with a soft
elastomer to spread out the loac and increase friction, or the grips have a large radii such as
defined by Tappi standards. However, the ZD modulus is only measured in compression
as a single ply or stack loaded between two parallel platens.

The platens used for radial or ZD modulus measurement may either be larger or
smaller than the specimen stack. The easiest approach, and that proposed by Pfeiffer [79],
uses specimens cut somewhat larger than the circular loading platens. With this method,
no special cutting or alignment of the specimens is required. THowc . er it assumes that the
active area is that of the platens, yet there are end cffects just beyond the platens as the
stack specimens bend away from the stack's center. These end effects may bias the

measurement in the direction of a stiffer modulus.




A more difficult approach, is to carefully cut and align specimens into a stack
which is smaller than the loading platens. However, whether the specimens are cut
individually and collated or sawed as a stack, end effects are still present. If the specimens
are cut and collated, they may not be of precisely the same length and width, or may not be
precisely aligned, both of which will bias the measurements in the direction of a softer
modulus. If the specimens are sawed, the edges of the material may fray or laminate with
an unpredictable bias of the modulus measurement.

After the stack specimens have been prepared and fixtured, the tensile testing
machine must be set up to compress the stack at a specified strain or load history through
one or more cycles. Pfeiffer suggests a strain rate control such that the specimen is loaded
to 100 psi over the course of 60 seconds, held at 100 psi for 60 seconds, and unloaded for
about 60 seconds [79]. This load history, though by no means a standard, is typical of
procedures used by others. However, the maximum load should be selected on the
measured or anticipated maximum interlayer pressures for the specific product and process
to be modeled. Obviously, rolls of tissue, carpeting or fiberglass insulation will have
considerably less pressure than rolls of calendered paper, film or steel. Additionally

_because of the stabilization of the stress-strain response after the first complete load cycle,
1t 1s common to report the results for the second loading curve.

The instrumentation used for moduli measurement ..re typically strain gage load
cells for load measurement and LVDT's for displacement. These load and displacement
signals are either recorded on chart paper, or preferably by computer data acquisition
which simplifies subsequent data reduction. The tensile test machine, load cells, and
displacement measurement must be suitably sized for loads and travel. With stacks
typically about 10 square inches in cross section and about one inch high, this translates to
a load cell capacities of several hundred pounds and a displacement resolution on the order
of 0.001". Care must be taken with larger tensile test machines to avoid overloading the
load cells.

The load-displacement data gathered from the tensile tester must be first converted
to stresses and strains, and then the derivative must be calculated for the modulus as
defined by equation (50). Ultimately however, the data must be converted (curve-fitted)
1nto an expression where modulus is a function of interlayer pressure or stress as required
by the nonlinear winding model. The two commonly used curve fits for stack stress-
strains are the exponential und the polynomial, and will each be described in turn. It
should be emphasized at this time that these stress-strain and resulting modulus
expressions are strictly empirical in nature, as there are presently no first principle
dexcriptions of nonlinear stack response.




The exponential curve fit proposed by Pfeiffer is of the form
(51a) or = -K; + K;eKa¢€r

where OR is the interlayer stress, e is the base of the natural logarithm, €R is the radial
strain, and where K1 and K> are curve-fitted constants [71 (with changes in nomenclature
for consistency)]. The radial modulus can then be calculated for (51a) by taking the
derivative as given in (50).

(51b) Egp = K, K, eKz€r

Pfeiffer, Frye and many others in the paper industry attach almost a mystical
significance to the K1 and K7 constants, particularly in their purported relationship to the
propensity to certain roll structure defects. However, there is no published evidence of the
significance of these constants. Additionally, though the exponential curve will fit most
paper grades and other materials very well, its practical implementation is difficult. First,
the -K1 corrective term in (51a), which is required so that the stress is zero at zero strain,
adds complexity to the curve fitting procedure. Instead of using a simple fitting program,
the exponential fit becomes iterative where K1 is subtracted from the stress strain data
prior to the next iterative fit. Secondly, the formulations (51) are given in terms of radial
strains, instead of the stresses in which winding models are typically posed. Thus, a
simple modulus expression as a function of interlayer pressure or stress is difficult to
achieve.

The polynomial curve fit proposed by Hakiel is of the form
(52) Er = K; + Ky 0r + K3 0R?

where the K's are determined by polynomial curve fitting. While the radial modulus
expression 1s the requ 4 input for winding models, the stress-strain curve itself is not
particularly useful. Much difficulty can be avoided by performing the derivative (50)
numerically on the raw stress-strain data before curvefitting, instead of curvefitting
followed by an analytical derivative as used by Pfeiffer's exponential. Though a high
correlation fit can often be obtained without the K3 term. the K term must not be negative
because 1t would not make physical sense. Additionally. the Ky term may have to be
greater than some small positive value because extremely high anisotropy ratios may cause
tremendous numerical difficulties with some implementations of winding models.




The radial moduli for this project was tested in a similar fashion to that described
above. Specifically, the specimens were cut to 2.5" x 4.0" on a guillotine cutter and
collated into stacks approximately 2" tall. The stacks were .oaded and unloaded through
four complete triangular loading cycles on an Instron programmed in strain rate control
from zero to 50 psi, with each complete load cycle taking approximately 6 minutes. Data
was acquired with an IBM PC clone using Labtech Notebook software and Metrabyte data
acquisition cards. The data acquisition rate was 1/second which gave approximately 150
data points for each load or unload segment.

The first step of data reduction was to average the raw data by 5 to decrease signal
noise which would interfere with a good numerical derivative. Secondly, the displacement
signal offset was subtracted for each load or unload segment so that the displacement was
zero at zero load. Similarly, the tare load of the upper platen was also subtracted off.
Thirdly, load was converted to stress by dividing by the 10" cross-sectional area, and
displacement converted to strain by dividing by the original stack height. Fourthly, a 2
point central numerical derivative was computed to give the change in slope of the stress-
strain data as a function of pressure as indicated by (50). Finally, the resulting
modulus/pressure data was curve fitted using the polynomial method given by (52).

The results of the moduli measurement for three of the materials tested for this
project are given in Table 4. As seen here, the initial stiffness is considerably greater for
the coated board than for the other two materials. More significantly, the strain hardening
rate varies considerably between these paper grades. Though the curve fitted moduli
expressions are highly correlated with the original data, there is a significant variability
between the first and subsequent load cycles. Additionally, it is expected that there will be
a significant property variance in many web materials within a single roll, so that the tested
sample may not necessarily be representative of the average for that roll. Thus the
difficulties associated with hysterisis, creep, property variance and other complex material
behavior gives some uncertainty in the radial modulus which is used as a winding model
Input parameter.

Similarly, the tangential moduli may also possess complexities, particularly for
non-elastic materials such as paper, nonwovens, and highly stressed films. For example,
most paper grades have nonlinear stress-strain curves. are hvsteretic, and have the
propensity to creep. Since the tangential nonlinearities are usually much smaller than radial
nonlinearities, most winding models have neglected this behavior. Howcver, nonlinear
models such as Hakiel's described in the next section can be extended to include more than
the predominant radial nonlinearity.




Table 4

RADIAL MODULI

Material Load Cycle  Radial Modulus (psi Correlation (R2)
NC paper 1 17.812 + 33.831*P 0.999
NC paper 2 22.698 + 36.071*P 0.997
NC paper 3 28.483 + 35.062*P 0.990
NC paper 4 34.526 + 35.949*p 0.983
NC paper calculation 20 + 35*P

LWC paper 1 23.660 + 51.175*P 0.996
LWC paper 2 42.724 + 54.480*P 0.990
LWC paper 3 24.405 + 57.600*P 0.998
LWC paper 4 32918 + 58.191*P 0.996
LWC paper calculation 30 + 55*P

ctd board 1 61.949 + 112.47*P - 1.2013*PA2 0.998
ctd board 2 65.009 + 118.52*P - 1.3371*PA2 0.997
ctd board 3 74.612 + 114.73*P - 1.2247*P"2 0.994
ctd board 4 79.924 + 119.36*P - 1.3279%PA2 0.997
ctd board calculation 70 + 115%P - 1.27%PA2

Some of the nonlinearity in the radial stress-strain curves can be qualitatively
explained in terms of the geometry of contact between layers. This begins by noting that
there are gaps and incomplete contact between layers. Materials such as paper and
nonwovens are by nature rough and porous so that only the peaks of adjacent layers are in
contact. Nonporous materials such as film may not be in complete contact due to the
entrainment of air during winding as evidenced by a measurable decrease in density of the
roll beyond that of the material from which it was wound. Finally, all material have
unintentional variauons in thickness and deviations from flatness. If these materials are
thick enough, bending stiffness can resist complete contact at low interlayer pressures.
Despite the various mechanisms of incomplete contact. the result will be similar. As
interlayer pressure increases, the proportion of area in contact increases bring more
materictiinto compression. Thus, the stack modulus will tend 1o increase and approach the
bulk stiffness of the material as the interlayer pressure and contact area increases. The
nonlinearity in the tangential stress-strain curves can be qualitatively explained in terms of
the breaking and possible reforming of bonds. In the case of paper, it is the bonds
between fibers, and for films it is the bonds between polymer chains.




Hakiel Model

The next step in the evolution of winding models was to incorporate the nonlinear
radial modulus. Hakiel [132, 133] was the first to publish such a solution using finite
difference techniques, and later Willett and Poesch [186] made incremental improvements
to this basic approach. While previous and simpler winding models were able to reduce
much of the solution to closed form expressions, the complexities of a nonlinear modulus
precluded a predominantly mathematical treatment. Instead, the Hakiel model relies
heavily on numerical approximations of the winding differential equation. This numerical
approach freed the evolution of winding models from more restrictive descriptions.
However as will be shown, this freedom came at the cost of increased computation time
and a much greater threat of numerical round-off error and instability.

The constitutive equations and assembly technique are essentially identical to the
isotropic, Altmann and Yagoda models. The only significant variation is that the radial
modulus, ER, is allowed to vary as a function of interlayer pressure as indicated in the
previous section and defined by equation (50). However as with the previous models,
though they are formulated in a similar fashion, the solution technique is very different.

Rather than merely echoing Hakiel's solution, the following derivation will extend
the model slightly beyond its original formulation so that the solution is more general. The
principle extensions are reducing the constraint imposed on Poisson ratios by strain
energy, including higher order derivative cross product terms for better accuracy, and to
extend the model to include a nonlinear tangential modulus. Tt should be emphasized that
these deviations from Hakiel's original solution are not corrections, because I have verified
his solution to be absolutely correct as formulated by rederiving the solution on a symbolic
math application, Macsyma, as well as many numerical checks against other winding
models. In addition to these extensions, the nomenclature is changed somewhat from the
original publication so that this thesis work is consistent. Finally, since this is currently
the best winding model to date, its derivation will be more complete than earlier models.

The radial equilibrium equation of a single laver' has been derived as equation (2)
in Chapter 2, and given more thoroughly in Altmann’s publication [127], and will only be
restated here as




The strain-displacement relations for a cylinder have been derived in Chapter 2 as
equations (4) and (6) and are merely restated here as

dw
(54) ¢€r = Er—
(55) e = —

T

The stress-strain relations contain the radial and tangential moduli which are now allowed
to vary as some function of radial and tangential stresses respectively as

do

Er = R f(or and other factors)
d g
do

Er = —I_ f(oT and other factors)
d €T

However, though the moduli vary directly as some function of stresses and other
factors, they will as a consequence vary with radial position because stresses vary with
radial position. Consequently, the moduli in the stress-strain relations given by Altmann
[127] and equations (7) and (8) arc rewritten to emphasize their (indirect) dependence on
radial position. Note that because the sensitivity to Poiss  -atios is small, and they have
been assumed to be constants [148]

[e)
(56) er= R g T

T
Er (1) Er ()

(o)
57) e = T - g X

R
Et (1) Er (1)

Finally, the core stiffness definition derived in Chapter 2 is given again as

- ORr
(58) Ec = — -
W/T =1,




Thus, equations (53) through (58) represent the constitutive equations that define
the physics of all consistent winding models in general, and this nonlinear winding model
in particular. The next steps are to assemble these constitutive equations into a 2nd order
winding differential equation.

While the order in which the operations are performed to obtain the differential
equation is not unique and will lead to an equivalent expression, the ease of derivation is
very dependent on order. Furthermore, the simplest path is not easy to determine until in
fact the derivation is complete. Fortunately, symbolic computer algebra can greatly reduce
derivation time, reduce the chance of error, provide a log of the derivation, and even
convert expressions into computer code. Two applications were used for this and other
derivations in this thesis. The first and most powerful is Macsyma running on a
Symbolics machine. The second is Mathematica running on an Apple Macintosh which
was used for the bulk of derivations for this project. Though Mathematica lacks some
advanced mathematical features, is somewhat easier to use and integrates well into report
and computer code writing.

Strains can be eliminated from this system of equations by combining equations (54) and
(56) as

(59) d_\N_ = Or - W or

T
dr  Eg (0 Er (r)

and by combining (55) and (57) as

HR
Et (1) Er (1)

(60) w:r(or GR)

The displacement, w, can be eliminated by taking the derivative of (60) with respecttor
and setting this equal to (59). Although not proved until Chapter 7, the winding
differential equation is not dependent of derivatives of ET, so that it can be regarded
simply as a variable whose value must be determined just prior to evaluating the
differential equation. Finally. this equation is solved for the derivative of tangential stress
as

(61)  of = (ERE[0Op + URERE1OR - Eg20T - HpER20T - rURETER 'OR




The derivative of the tangential stress can be eliminated by solving (53) for the tangential
stress and taking the derivative and setting this expression equal to (61). Finally, this
equation can be solved for the tangential stress as a function of radial stress and material
properties as

(62) o1 =(ERETOR + HRERETOR - THRETORER' + THRERETOR ' - 2rEg2oy’
- 12ER20R")/((1 + ppER?)

Now the differential equation can be assembled by inserting the tangential stress
expression (62) into the equilibrium equation (53). This expression is then expanded and
collected upon the r2cg", the rog’, and the oy terms. Finally, the equation is put in a
standard form as

2
©3) 3R A 9R L po o0
dr2 dr

where
Er
A = - HR —
3+ UT - MR Ey
dE
-(1 +uR)ER Er + (1 +HT)ER2 + rHRETER‘
B = i

Eg?

Next, the boundary conditions at the core and the outside of the roll must be
derived. The boundary condition at the core can be solved simply from the system of
equations of equilibrium (53), tangential stress-strain (57), and the definition of core
stiffness (58) by elimirating the tangential stress and tangential strain. This boundary
condition at the core is a derivative such that

g - ox -EcER + EREr + Ur EcEt
‘r:ro ‘ rEc Er

(65) ORlrery = ——




There are a few main differences between this derivation and that given by Hakiel
[132, 133]. First, he used the strain compatibility equation for cylindrical

der
bt - =0
(66) T + €7 ER

instead of the strain displacement relations (54) and (55). However, these expressions are
exactly equivalent so that the resulting differential equation will be equivalent.

Another difference which may be significant however, is that a derivative cross
product term resulting from the derivative in the equilibrium equation, ER’, was omitted
from the derivation. Since radial modulus is a function of radial pressure which is not a
constant, the radial modulus will vary indirectly as a function of radial position. Hence,
the ER' term 1s nonzero for stacks with nonlinear radial moduli. Looking at the first and
last terms in the numerator for B in equation (64), it may be possible that the ER' term is

negligible. This would happen if either pg or ER' were small, or their product with r
were small compared with ER. If the ER' term is omitted, the expression for A remains
the same, but B becomes

E
(67) B =1 + pr - (1 +uR)Eg—)

However, it will be shown in Chapter 7 that the higher order derivative term
saould not be dropped for the case of the nonlinear radial moduli with the displacement
formulation because it is a dominant term. Therefore, it is conservatively suggested that
the full form be retained. Also as will be shown in Chapter 7, a full nonlinear model must
include not only the derivative of radial modulus with respect to radius, but also the
derivatives of the Poisson ratio terms which were not retained in the previous derivation.
Perhaps surprisingly however, the derivative of the tangential modulus need not be
included even for nonlinear tangential moduli.

An additional restriction imposed by the Hakiel derivation. which was removed for
generality 1n our derivation, is that of strain energy which states that the moduli and
Poisson ratios are related by

68) "X - EL

ErR  Er




It is conservative to not constrain the solution since the strain energy constraint has
not been experimentally verified on a single ply of a complex material such as paper, and
much less as a stack [186]. Though Hakiel set both Poisson ratios to zero in his analysis
and thus the strain energy constraint would not affect his results, it may be significant for
other systems. If the strain energy constraint from (68) is also included, the A and B
terms of (64) reduce exactly to Hakiel's solution:

©9) A =3
B =-(g?-1)
where
2 _ Er
Er

Now that the differential equation given by (64) has been assembled, it must be
solved in the region from the core to the current outer radius. Since a closed-form
analytical solution to (64) may not be possible for the general case where the A's and B's
vary for every internal wrap, numerical solutions must be used. In particular, the finite
difference method is used where the derivatives are approximated by numerical
differences. Since the finite difference method will be described in more detail in Chapter
7, only a brief overview will be given here.

In the finite difference method, each internal layer is described by a linear algebraic
approximation of the differential equation. The cquations for all the layers are assembled
into matrices which can be solved for the incremental radial stress distribution. From the
incremental radial stress distribution, the incremental tangential stresses can be calculated
using the equilibrium equation (53). Both radial and tangential incremental stresses are
then added to the previously existing stress distributions. This procedure is embedded in a
loop which is repeated for every wrap added from the core to the finish diameter.

There are a few decisions that must be made when implementing finite difference
computer modeling. This first is the order of the difference approximation, and is typically
either a 3 or 5 point central difference. Though both Hakiel [132, 133] and Willett and
Poesch [186] used 3 point differences, conventional wisdom indicates that using higher
order approximations will improve the accuracy and/or decrease the computer code
solution time. However, scveral comparative runs using both 3 and 5 point differences
indicate that the 3 point was significantly more CPU efficient in obtaining a certain
accuracy. Notsurprisingly as we have seen before, the numerically ill-conditioned nature
of wound roll physics scems to defy many standard numerical techniques. Since the 3
point difference has been used by other authors, results in simpler code, and may be more
cfficient; it may be the preferred order.




Another decision which also affects both accuracy and solution time is grid size or
calculation wrap thickness. Although probably not numerically ideal because of the high
gradients at the core and outside, all authors to date have used consistently spaced grids
because it is much simpler to code. However as described in the end of Chapter 2, the
calculation wrap thickness need not equal the real web thickness as long as the value of the
wound-in-stress is preserved. The effect of grid size on solution time can be estimated
from equation (29), which indicates that solution time is inversely proportional to the
square of the grid size. Thus, halving the grid size will quadruple the solution time.

The effect of grid size on solution accuracy is not as easily determined however. It
is expected that as a grid is reduced from a coarse size to a finer size that solution accuracy
will increase. However if the grid is made ever finer, eventually numerical roundoff errors
due to small differences will dominate and accuracy will begin to suffer. Indeed if it is
made fine enough, the solution will blow up. Though numerical roundoff errors can be
reduced by using double or higher precision, they can't be eliminated.

Figures 18 shows the effect of grid size on the stresses calculated for the Linear

~Isotropic Standard case (see Appendix B for parameters). As seen here, the solutions for a

-0.1" and 0.05" gnd give almost identical results. However, as the grid is reduced to
0.02", the tangential stresses begin to become numerically unstable, and at 0.01" both
radial and tangential stresses have become unstable. Halving the grid size yet again will
cause the solution to completely blow up. Thus, too fine of a grid can actually reduce
accuracy.

Figures 19 shows the effect of grid size on the other end of the problem spectrum
for the Linear Anisotropic Standard case. As the grid becomes finer, the radial stresses
converge to the correct answer. If we were patient enough however, we could also make
this set of input parameters also blow up if the grid were reduced sufficiently. One
curiosity remaining is why the tangential stresses seem to be unaffected by grid size for
this parameter set. This is easily explained by noting that tangential stresses are calculated
from the radial stresses and the equilibrium equation. As seen in Figure 19a, the
imperfectly calculated radial stresses are too negative, but their slopes are too positive.
This coincidental near cancelation of errors occurs primarily for cases of highly anisotropic
materials.

Onc useful trend which can be used to check the proper behavior of winding
models occurs for the case of highly (lincar) anisotrupic materials wound under constant
tension which have a large ratio of the finish radius to the core radius. In this case, the
radial and tangential stre« 2s will be nearly constant and nearly equal to a half dozen digits
through the intermediate diameters of the roll.
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Figure 20
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Perhaps a more useful view of the effect of numerical error is to plot it against grid
size. This is easily done for cases in which the correct answers are already known because
of the cxistence of independent models such as Altmann and Yagoda. As shown in Figure
20, error is halved as the grid size is halved (quadruple the calculation time). Eventually
however, the grid becomes too fine and error increases dramatically from a near zero value
due to numerical roundoff. The error graph then consists of two regions. In the coarse
region, the error is inversely proportional to the grid size. In the fine region, the
magnitude of both the stresses and stress errors increase dramatically with decreasing grid
size. Finally, the boundary between the regions should be of near minimal and near zero
error.

Though this behavior has not been predicted from first principles error analysis,
this trend has been ohserved in all finite difference formulations of wound rolls models,
and for all cases of input paramicters that have been run. However. it shouid be noted that
ihe optimum grid size decreases significantly with increasing anisotropy ratio, and 1s
affected by other parameters. Thus, this observation of error halving for excessively
coarse ¢rids can perhaps allow prediction of optimum grid size for cases in which the
correct answers are not already known. Also, better values of stresses could be

extrapolated for cases in which the optimum grid size results in excessive calculation time.




In summary, Hakiel's winding model is currently the most general and the most
useful because of its nonlinear radial modulus capabilities. It is mathematically correct,
consistent with previously discussed models, and yields stress values that are very close to
the other models as seen in Appendix B, provided that a proper grid size is chosen.
However because of the unfortunate effect of numerical approximation, this model should
always be run with more than a single grid size (double and halve the expected optimum)
to compare results. Finally, a more general formulation would release the strain energy
constraint, include the radial modulus derivative cross product, and allow for nonlinear
tangential moduli.

Willett and Poesch Model

Two years after Hakiel's model [132], Willett and Poesch [186] published a nearly
identical nonlinear winding model. Similarities include not only nonlinear radial modulus
capabilities, but also the finite difference solution technique and experimental verification
of radial stresses by the axial press test (see Chapter 5). However, though Willett and
Poesch were not the first to solve the nonlinear model, they did extend its capabilities
somewhat.

First, the initial formulation included stresses and strains due to thermal changes.
However, thermal analysis was not investigated in the published examples. Additionally,
thermal expansion alone may not be useful unless coupled with a heat transfer model (as
will be derived in Chapter 4). Sccondly, they developed a novel solution to the difficult
problem of Poisson ratio measurement using laser diffraction. From this experiment they
concluded that the strain-energy constraint, which gives a relationship between Poisson
ratios and moduli, did not hold for the magnetic tape material tested. Finally, they used a
SOR (successive over relaxation) solution of the finite difference equation system instead
of direct solution by the Gauss method. However, whether SOR improves accuracy or
decreases solution time has not been demonstrated.

Though the Willett and Poesch article was generally correct and consistent with
other models, two errors were uncovered. The first was a statement that the system of
equations is tridiagonal and symmetric. The finite difference equations are tridiagonal only
if three point derivative approximations are used. and the system is in general
nonsyrimetric as will be seen in Chapter 7. Sceondly, in their text and their Figure 8 they
labeled Altmann's model as isotropic which is rather limiting since it was the first
anisotropic model [127]. In summary, the Willett and Poesch model is essentially identical
to Hakiel's except strain-energy was not assumed (which is more general) and a different
solution technique was used (which has not yet been demonstrated superior).




Pfeiffer Model

Pfeiffer is one of the more prolific winding authors with articles in guiding [48],
radial modulus measurement [79], nips [110-112], and particularly roll structure
measurement [165-167]. Additionally, he made a foray into analytical modeling of the
winding of materials with nonlinear moduli [140, 141]. His novel formulation is based on
a strain energy balance between incoming wound-in-tension energy and energy stored in a
roll due to the addition of wraps.

This model is formulated from some of the constitutive relations that the previously
discussed models use such as equilibrium, and a simplified stress-strain relation, as well
as an identical outer boundary condition. However, his model is not consistent with the
standard approaches because it does not include a core stiffness parameter and Poisson
ratios. Additionally, he constrains the radial stress-strain behavior strictly to

(70) or = K; - K; eKetr

.Though this strictly empirical relationship does indeed work for some materials, it may not
necessarily model all materials well. The isotropic and linear anisotropic material cases are
two examples, which are well covered ir this text, that could not be modeled with
Pfeiffer's exponential relationship.

However, there are even more serious questions about the veracity of Pfeiffer's
model. First, Hakiel's Figure 8 [133] compares his model with Pfeiffer's using the same
data. The resulting difference in radial stress exceeds 10% in some regions, which is far
larger than the fractional percent difference between other winding models. Though
Pfeiffer later updated his model [141] to correct an equation which had no theoretical basis
and claimed that the models yielded the same stresses, this has yet to be independently
verified.

Secondly. the shape of the tangential stress profiles are different than obtained by
all of the other consistent models. In particular, while the tangential stress profile should
have a positive second derivative at the outside (curve is concave up), Pfeiffer's [141
Figure 4] has a negative second derivative. Whether this problem was fixed by the update
is also not known. Thirdly, he claims a coarse gnd of 100 clements is sufficient to obtain

Tc accuracy. Typically the other models require several thousand clements to

better than 1
model highly nonlinear cases such as these. Fourthly, a multiplicity of units and incorrect
conversion factors given in the article create concern about the care by which the work was

prepared.




However, the most damaging critique is given by Penner [139] who shows
analytically that Pfeiffer's model is not energy consistent with the Altmann and Hakiel
models which are consistent between themselves. We have shown in this chapter that the
Isotropic, Altmann, Yagoda and Hakiel models are formulated from the same type of
constitutive equations, and from Appendix B that they yield very precise numerical
agreement. Consequently, Pfeiffer's model is at the very least inconsistent with these well
proven models, and perhaps even incorrect from a mechanics viewpoint.

In summary, though Pfeiffer has numerous achievements in experimental winding,
his analytical model is in serious question. First, it is not as general as the Hakiel model
and secondly, it is not strictly consistent with all of the other models. Its only advantage is
its apparent speed of calculation compared to models other than Yagoda's. Perhaps these
inconsistencies will ultimately be shown to be negligible in practice. However, until this
has been verified for a range of cases for a particular application, or until the potentially
consistent energy formulation is corrected, its usefulness will remain in doubt.

Lekhnitskii Model

Lekhnitskii presents two interesting solutions to the stress distribution inside a
pressurized composite ring [137]. Although his solutions to anisotropic rings are not
strictly winding models because they are not accretive, they contain all the necessary
elements to evolve into winding models provided that the two boundary conditions are
included, and that the solution for siress distribution is iterated for wraps added from the
core to the finish diameter of the wound roll. Simplistically, this could be formulated in a
manner very similar to the Isotropic model presented earlier. However, these formulations
will not be performed here as it is beyond the scope of this project. Additionally as will be
seen, these formulations may not extend the generalities of winding models beyond their
present capabilities.

The first solution is for the radial and tangential stress distribution of a 'roll
composed of layers of concentric rings of identical thickness h (which can be thick) which
is pressurized on either or both boundaries. What makes this formulation unique is that
each laver can have independently distinct material properties such as moduli. Thus, it
could madel the winding of composite materials such as tapes with relatively thick
adhesives, or variations in properties in the MD which could be discretized to the nearest
wrap. Finally the core boundary condition becomes immediately integrated into the
solution as it would be nothing more than the inside rings (several are required to meet the

constant thickness requirement), where the innermost contained the zero pressure
boundary condition.




However, core boundary conditions are already handled by the current winding
models, so that no additional capabilities are generated. Similarly, though not widely
implemented, the composite material and variable MD properties could be handled by
current winding models. The composite material can be modeled as a single wrap with
effective material properties calculated from relative thicknesses and individual moduli.
The only compromise is that the stress distribution within a single wrap is not directly
generated by the winding model. The variable MD properties can also be handled by the
finite difference models using lookup tables or formulas. Lookup tables are already
required to calculate the nonlinear radial modulus at any particular radius.

The second solution is for the radial and tangential stress distribution of a 'roll'
whose material properties vary as a power law function of radial position given by

(71)  Er = Egp 1™

where n is an arbitrary real number. Unfortunately, since radial modulus is a direct
function of radial pressure and only very indirectly of radial position, this power law
relationship may be extremely restrictive.

In summary, while Lekhnitskii's formulations are novel and more closed-form
than most, their application may be quite limited. This is primarily because they may
provide no more generality than existing models. Consequently, the practical motivation
to assemble and cxtend these solutions into working winding models is missing.

A Tangential Stress Formulation

As mentioned in Chapter 2, all current winding models are described by differential
equations which follow the form

2
(72) r2%—2{+ Arir—x+ Bx =0
r

where x can represent one of five variables which include: displacement, w, stresses, Og
or OT, Or strains, og or 6. The only differences are the two boundary conditions and the
variable coefficients A and B which depend on the formulation. In this section, this
principle will be demonstrated by deriving a tangential stress formulation very much along
the lines of the Hakiel radial stress formulation. Furthermore, in Chapter 7 a displacement
formulation will also be given.




The tangential stress formulation uses precisely the same set of constitutive
equations as the Hakiel model and include equilibrium (53), strain-displacement (54, 55),
stress-strain (56, 57) and well as the boundary conditions at the core (58) and current outer
surface (65). The only difference is the order in which the equations are assembled. Since
the tangential stress formulation results in much longer intermediate expressions, only an
outline will be given of the derivation in a table form. Again, the symbolic math
application Mathematica was used to increase the efficiency of the derivation and ensure
accuracy.

equilibrium constitutive equation

radial strain-displacement constitutive equation
2b tangential strain-displacement constitutive equation
3a radial stress-strain constitutive equation
3b tangential stress-strain constitutive equation
4 w' = 2a into 3a
5 w = 2b into 3b
6 w' = derivative of 5
7
8

Eg'n Source
1
2a

sr' = solve 4 equal to 5 for sr'
st = solve 7 into 1 for sr

9 sr' = derivative of 8
10 diffeq =9 and 8 into 1
11 diffeq = expand and collect sr", sr' and sr terms

12 diffeq = reduce to standard form
The differential equation in standard form then becomes

d’c
r2 —T

(73)
dr?

dot
+ Ar— + B =
rdr or =0

where
A = (3*er"2 + der*er*r + 3*er 2*ur - der*er*r*ur - 2*der"2*rA\2*ur + er*2*ut
+ er"2*ur*ut - der*er*r*ur*ut)/(er*(er + er*ur - der*r*ur))
B = (er”2 - er*et + der*er*r + er"2*ur - 3*er*et*ur + der¥er*r*ur
+ 27der*et*r¥ur - 2¥der " 2¥ A 2%ur - 2¥er*et*ur2 + 2xder*et*r*ur2
+er"2Fut + derferfrfut + er®2*ur*ut + der*erfrfurfut -
2*derA2*rA2*ur*ut)/(er*(er + er*ur - der*r*ur))

and where the typography is simplified such that 'der’ for example, is the derivative of the
radial modulus with respect to radius, and ur is the radial Poisson ratio etc.




Although the A and B coefficients could be obviously simplified if the radial
modulus derivatives were set to zero as in Hakiel's model, the full general form has been
retained here. Finally, the core and outer boundary conditions must be derived. Again in
an abbreviated outline the core stiffness derivative is derived as:

core stiffness definition constitutive equation
radial strain-displacement constitutive equation
2b tangential strain-displacement constitutive equation
3a radial stress-strain constitutive equation

Eg'n Source
1
2a

3b tangential stress-strain constitutive equation
4 '=2a into 3a

5 w = 2b into 3b

6 w' = derivative of 5

7 st = solving 4 equal to 6 for sr

8 st' = solving 7 and 2b into 1 for st'

9 set er'=0 since it is not req'd as seen from radial stress formulation

(74) dor _ -GTOEC(_I + UR HT) + ER(l + )
r(Eg + ug Ec)

dr r=rQ

Finally, the outer boundary condition is very simply

(75) OTlr=ry = \NISrzrn

Thus, the tangential stress formulation starts from identical equations and shares a
very parallel derivation. Consequently, it has precisely the same generality as the extended
Hakiel model since variable wound-in-stress profiles. nonlinear moduli and all the other
features are supported. However, there are two minor differences. First, the radial stress
1s calculated from the tangential stress profile using the equilibrium equation as

dog  o©T - Or
76) -~ =
(76) .

This derivative must be stepped fron 7 2 outer surface, where the radial siress is known,
through all layers scquentially to tne core. Thus, the radial stress calculation will
accumulate error with decreasing radii. Secondly, the computer solution efficiency will be
different from the radial stress formulation.




In summary, the winding differential equation can be described in one of five
different mechanics parameters, all of which begin with an identical set of constitutive
equations. The differences between thes= formulations are the coefficients A and B, the
boundary conditions, and solution efficiency which will be described in more detail in
Chapter 7 where the displacement formulation is derived, computer coded and evaluated.
The tangential stress formulation though derived, is not computer coded and evaluated here
as it is beyond the scope of this project. The only practical justification to code this
formulation would be the possibility of improvements in computer solution efficiency.
However, the tangential to radial stress calculation would need to be posed as an
integration before the accumulative error problem were eliminated such that computer
solution efficiency gains were even possible.

Summary of Winding Models

This chapter has followed the evolution of winding models from the simple
isotropic model, to the linear anisotropic models by Altmann and Yagoda, to the nonlinear
anisotropic models by Hakiel and others. With the evolutionary trend of increased model
generality, the solutions became less closed-form and consequently more reliant on
numerical approximations. Unfortunately as a consequence, the computer solution time
and the propensity to numerical error also increased.

It has been shown through careful rederivation and comparison of stress output
that the Isotropic, Altmann, Yagoda, and Hakiel models are entirely consistent within their
range of application. Thus, while the earlier models might have been supplanted by more
general models, they have been useful as a cross check of accuracy. Similarly, this close
scrutiny has revealed numerous small oversights in the published winding model articles to
date. Furthermore, it has been shown that Pfeiffer's model, though accepted for years, is
not consistent.

In addition to those articles discussed in detail, there are several others published.
These others have not been reviewed here simply because they are not distinct models.
For example, Catlow et al [129] and Harland [124, 135] are applications of existing
otropic models. and Wolferman [146, 147] reiterates the Altmann model. In this strictest
sense, the Yagoda and Willett & Poesch models are <imply new solution techniques
applied to the Altmann and Hakiel models respectively. Thus, the evolution of winding
models over the last three decades can be simply classified into three stages: Eg = ET, Eg
# E1, Eg = f(oR).




In practice, the choice of model depends on which will perform the required stress
calculation as quickly as possible within the required accuracy constraints. Since most real
winding situations involve nonlinear radial moduli, the Hakiel model (or variant) would be
the preferred choice. However since it is a finite difference model, great care must be
taken to make certain that the grid size is not adversely affecting the solution by running
the same problem at more than one grid spacing. The only exception to the Hakiel model
choice might be the Yagoda model if computational speed and accuracy is at a premium,
and where the situation can be adequately modeled with a simple polynomial WIS profile,
high anisotropy, and constant radial modulus.

In this chapter, a somewhat idealized model of winding is presented which may not
well describe some situations. In the next chapter, more complex roll behavior such as air
entrainment, nips, hygroscopic diffusion will be discussed. In some cases, these
behaviors have analytical solutions which can be combined with the idealized winding
model, while in others the behavior is only qualitatively understood. Additionally,
Chapter 7 will present winding models which can be used for the measurement of stresses
during winding, as well as developing the finite difference approximations to the Hakiel
and other models. Finally, the appendices contain the computer code and calculated stress
output for the models discussed in this chapter.




CHAPTER 4

COMPLEX WOUND ROLL BEHAVIOR

Overview of Complex Behavior

The idealized wound roll modeling presented in Chapters 2 and 3 describe the
radial and tangential stress distributions as a function of WIS (wound-in-stress) profiles,
geometry and material properties. The stress predictions from these models have been
frequently verified to accuracies better than 10% [128, 132, 133, 186] using experimental
measurements such as thin pressure transducers and the axial press test which will both be
described in Chapter 5. Thus, the simplified wound roll models can adequately describe
the physics of winding for some cases which are typically the centerwinding of elastic

webs wound uniformly v ‘th respect to the CD, without slippage and without air
entrainment.

However, many real inding situations arec complicated by other phenomenon not
presently described by the idealized winding models. These phenomenon include external
and body forces beyond the WIS boundary condition such as nips [110, 166, 167],
centrifugal stresses [150, 151], and gravity. The idealized winding model also simplifies
the material description to elastic behavior, vet many materials have significant anelastic
behavior such as hysteresis [79], creep, stress relaxation [144, 145]. Furthermore,
winding wide nonporous webs at high speeds will entrain air between the layers [188], so
that the effective radial modulus is reduced beyond the value given by static testing, and
changes with time as air is squeezed out. The idealized models all assume cylindrical
geometry, yet real rolls are lobed around the circumference [122], deform around nips.
and vary significantly in the CD direction [195]. Deviations from cyvlindricity can become
quite severe 1f defects such as crepes [109], corrugations, dishing [108] and starring are
present. Finally, the strain-displacement relations assume no interlayer slippage, yet
smooth low friction webs do slip inside a roll [106].
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Some wound roll complications have analytical solutions or empirical treatments.
However in most cases, only a minimal subjective understanding exists. Examples of
analytical solutions include centrifugal stress [150, 151], and stress relaxation [144, 145].
An example of an empirical treatment is determining WIS as a function of winding tension,
nip, and material [166, 167]. However, virtually all of the noncylindricity complications
presently have no analytical or empirical methods which can be incorporated into
fundamental roll structure stress analysis.

Though most of these complications exists to one degree or another for most
winding conditions, the significance can vary widely from negligible to dominant
depending of the details of the application. Thus, the first step in analysis is to determine
the significance of a suspected complication. In some cases, there are experimental tests
designed to quantify behavior. Examples include interlayer slippage which can be
quantified by the J-line test [106], air entrainment which can be quantified for films by
comparing material and roll densities, and roll shape [173]. However even if the
phenomenon is quantified, the significance of its contribution to radial and tangential stress

_distributions are still not usually determined. Ultimately, the best test for significance is to
compare predicted and measured roll stresses.

If a complication is determined to be significant, then its effect must be included in
wound roll model analysis. In some cases, the complications can be analyzed separately
from the idealized wound roll model. For example, the effective WIS for winders with
nips can be determined experimentally [166, 167], and then the idealized wound roll model
can be run. Conversely, the effect of stress relaxation can be analyzed after the wound roll
model is run [144, 145]. However, in some cases the complication must be analyzed
simultaneously with the simplified wound roll model such as the effect of centrifugally
induced stresses [150, 151].

The inclusion of this chapter on wound roll complications is justified for at least
three reasons. First, they affect the stress distributions beyond that predicted by simple
and traditional wound roll models and thus serve as a checklist if discrepancies arise
between predicted and measured stresses. Secondly, a simplified wound roll model is an
inteeral part of this project on the measurement of stresses during roll winding, and thus
thix Capter serves as a hist of shortcomings of the approach and suggests future work by
others. Thirdly and most importantly however, these complications affect stresses and
strains and as a consequence affect roll defects whose minimization is the ultimate goal of
all work of this type.




The Effect of a Nip on Wound-In-Tension

Many rolls are wound in either a surface or center-surface winding configuration
such that the incoming web first enters a winding roll under a nip formed by a drum or
rider roller. There are several reasons why a nip is used. First, the nip helps exclude air
from being wound into the roll on nonporous webs. Second, many large rolls are more
practically supported over a drum than through a center shaft which might be prone to
excessive deflection due to gravity. Thirdly, a nip can allow a torque differential to be
input into a roll if both the winding roll and nipping roller are motor driven. Finally,
winding in the presence of a nip increases the WIT (wound-in-tension) beyond the free
web tension which allows a somewhat independent choice of web tension for optimum
transport through the winder, and WIT for optimum wound roll structure. Thus, WIT can
be increased by either increasing web tension, increasing nip, or both.

It is the effect of nip loading on WIT that is most relevant to winding models as it
1s a required input parameter, and furthermore is one of the more useful control parameters
. for wound roll optimization. Unfortunately, though web tension and nip loading are easy
to measure or determine, their combined effect on WIT is not. Thus in order to use wound
roll modeling tools, the WIT as a function of web tension and nip must be determined. An
analytical and experimental approach will be described here, as well as their shortcomings.

The analytical approach begins by noting that the stress distribution in a nip may be
similar to the Hertzian contact between two parallel cylinders which in its simplest form
was solved almost a century ago. Since then, the generality of the contact problem
solution has been extended considerably to include such effects as tangential loads due to
rolling friction. Much of this work has been performed by J.O. Smith and others of the
University of Illinois at Urbana.

Rather than delve into the mathematics of contact solutions which will be shown to
be inadequate in determining WIT, only an overview will be given. As seen in Figure 21,
the pressure distribution between the relatively hard drum or rider roller and the winding
roll is somewhat parabolic in shape. The geometry of this pressure profile is characterized
primarily by the contact width, the peak pressure. and the area under the curve which is the
lineal nip load. In addition to the stresses at the contact between the two cviinders, there
are also stresses inside the wound roll which will be superimposed upon the already

existing stress distribution due to winding.




Figure 21
CONTACT PRESSURES IN A WINDING NIP
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The principal stresses are both compressive and decrease in magnitude at
increasing depth and increasing distance from the centerline of contact [196]. However,
the maximum shear stress occurs below the surface at depth of a fraction of the nip width
deep. There are several implications of these superimposed contact stresses on wound roll
behavior. First, the maximum radial or interlayer stress may be increased by the presence
of the nip. This may adversely effect permanent bulk reduction on some materials such as
tissue and toweling, and may damage nip sensitive materials such as tapes and carbon type
paper. Secondly, if the shear stress is sufficiently large to overcome interlayer friction,
slippage may occur which can increase the propensity to wrink....g.

Despite the quantification of stress distributions and the qualitative understanding
of trends resulting from analytical contact pressure solutions. the fundamental question of
how the nip affects wound-in-tension is still unanswered. Even if the solutions are
improved to include anisotropy and rolling friction, this analvtical approach falls short
because it is an elastic formulation. Thus after the nip has passed, the stress distribution
will return to precisely the same state as it was prior to the nip. Consequently, the simple
elastic contact solution will leave no residual effect on the roll, which is in opposition to
experimental observations that the nip does leave a residual effect [32, 97, 98, 166, 167].
Thus, a useful contact model must be extended to include interlayer slippage and friction.
This extension, which is the subject of current research by Dr. J.K. Good at the Web
[Tandling Research Center, is of fundamental importance to predict WIT for use in
winding models with nips.




The second primary approach to determining the effect of nip loading on WIT is to
measure it. Though there have been numerous attempts at measuring WIT which will be
described in Chapter 5, none has been more successful than Pfeiffer's WIT-WOT lab
rewinder [166, 167]. This single drum duplex lab rewinder can measure either wound-
off-tension on the unwind, or wound-in-tension on the windup section. This is
accomplished by wrapping the outer layer of the roll over a load cell tension roller, back
over the roll, and out into the sheet run.

Using this rewinder, Pfeiffer experimentally measured the combined effects of web
tension and nip loading on WIT. After collecting data from numerous runs, he empirically
fit a WIT expression as

WIT =l10g(N+A)+ N
B9 A |"C+DN

an but not > F N
where
WIT = wound-in-tension (pli)
T = web tension (pli)
and A through F are curvefit coefficients

The resulting coefficients for three grades of paper are given in Table 5, and the WIT as a
function of nip loading and tension is shown in Figure 22.

Table 5
WIT COEFFICIENTS FOR 3 PAPER GRADES [166]

37.5#/3000ft"2  38#/3000ft"2 32#/3000ft"2

Coef. calendered kraft lwc magazine newsprint Units
A 6.99 4.75 17.02 pli

B 0.257 0.736 0.34 1/pli

C 6.35 7.44 7.29 pli

D 1.28 1.34 0.83 none
E 0.584 0.314 0.31 none




Figure 22
EFFECT OF NIP AND TENSION ON WIT
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From Pfeiffer's experimental testing, several conclusions can be made.

WIT increases with increasing nip loading
WIT increases with increasing web tension
WIT increases due to web tension are limited by available interlayer friction

IOV S .

it may be possible to wind in tension with nip only (without any web tension)

Despite the revolutionary nature of Pfeiffer's work, it has several application
limitations. First, the work 1s entirely empirical without first principles basis. Secondly,
because it 1s empirical, each material must be tested to determine the required coefficients.
Thirdly, since there are few winders such as the WIT-WOT, access to obtain this type of
data is limited. Fourthly, experimental studies such as this are extremely time-consuming.
Fifthly, no ¢ffect of torque differential is included in the original work. Finally though not
mentioned by Pfeiffer, the coefficients also depend on the diameter of the nip roller and its
surface condition. A simple model indicates that the effect of nip on WIT decreases with
the square root of drum diameter [102]. Thus, this work would need to be repeated for
various nips. tensions and torque differentials, on each material, and for each specific
roller.




The effect of nips also affects this project for the measurement of web stresses
during roll winding. As will be seen in Chapter 7 and Appendix D, the WIT is increased
by increasing the torque differential, nip loading, web tension or a combination.
However, this project completely bypasses the difficulty of determining the effect of
torque, nip and tension on WIT. Indeed, one of the primary justifications of this project is
to determine WTT by simple measurements coupled with winding models. Thus, while the
traditional moucls often require the knowledge of the TNT's (torque, nip, tension) on
WIT, this project does not. The reason for the difference is that the traditional models
require knowledge of WIT (which depends on the TNT's) as an input to the models,
while WIT is an output from this project's model.

The Effect of Torque Differential on Wound-In-Stress

Just as with nip, torque differential between a winding roll and a roller, or between
two nipping rollers also effects WIT. There is a functional difference however, because
while nip can only increase WIT, torque differential can either increase or decrease WIT
beyond the incoming web tension. However, there is little published work on the effect of
torque. Odell found a measurable difference in density as a function of torque differential
changes [32]. Hadlock proposed that torque differential be converted by statics to a force
on the incoming nip roller that directly adds or subtracts from the incoming tension [102].
Again fortunately, this project can detect changes in WIT resulting from torque differential
without specifically modeling the phenomenon.

The Effect of Speed Changes on Torque and Nip

When a surface driven winder accelerates or decelerates, the force to change the
speed of the winding roll is often transmitted through the outer layer at the winding nip. In
this case, the effective WIT will be changed in a manner not unlike a programmed torque
differential. As seen in Figure 23 for a two-drum winder, the tangential load transmitted
through the winding nip will tend to cause a hardening of the roll during deceleration.
Additionally. the balance of nip loading on both drums changes such that the load on the
back drum decreases during deceleration, while the load on the front drum increases. This
phenomenon is very similar to the increase in loading on the front tires of an automobile
during braning. Despite the back drum nip decrease, the effect of increasing tension on the
sheet during deceleration is usually larger in magnitude [32]. However, the details of the
drive motor programming on load sharing between the two drums during speed changes
will have an effect on the magnitude of the resulting WIT change.




Figure 23
EFFECT OF DECELERATION ON TORQUE AND NIP
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The effect of acceleration and deceleration on torque and nip can easily be
calculated from kinematics given the acceleration rate, inertia (rewound roll diameter,
density), drum geometry and drive motor load sharing. However, the same problem
arises as in the previous two sections as to how to calculate WIT from torque differential
and nip loading. Thus, once those two issues are resolved, the effect of speed changes on
WIT will be easily quantifiable.

Centrifugally Induced Stresses

In addition to changes in speed, rotation of the roll at any speed will alter the stress
distribution of the rewinding roll due to centrifugally induced stresses. These centrifugal
stresses are superposed onto the already existing roll stresses due to addition of wraps
under tension. Just as with the traditional winding models, the centrifugal models use a
similar set of constitutive equations, but the equilibrium equation must by supplemented by
body forces due to acceieration. There are two centrifugal models “+hich vary in generality
as well as solution technigue which will be described below. T, . first is analogous to a
the isotropic model and has a simple closed form solution, while the second is analogous
to the linear anisotropic model and has an exceedingly complex solution which is
intimately tied 1o a traditional winding model.




The isotropic centrifugal model derived by Roisum [115] is based on a closed form
solution given by Roark and Young [176] for the radial and tangential stresses in a
homogeneous annular disk with a central hole (zero core stiffness) rotating at a constant
velocity. These radial and tangential stresses are

3+ pw ) O 2
(78a) Opc = ( rk2 + 19° - -1
g 3864 r;2
(78b) o, = L P B+ n2 + r2 + IO ) (1 +3u)r2}
C = o A0 A - 1
8 386.4 r;2
where
Orc = centrifugal radial stress at an interior radius (psi)
orc = centrifugal tangential stress at an interior radius (psi)
i = Poisson ratio
) = density (Ib/in?3)
() = angular rotational frequency (rad/sec)
I = radius of core O.D. (in)
T = radius at which stresses are to be calculated (in)
Ty = radius at current outer surface (in)

and  ORmax Occurs @ r1; Yrg Iy

Just as with the traditional isotropic winding model, the solution is closed form and
does not depend on the modulus of the material (except through core stiffness). The stress
distribution for a typical paper roll density winding at 6000 FPM is shown in Figure 24.
Radial and tangential stresses are tensile throughout the roll, with tangential stresses
slightly larger in magnitude. Also as with the traditional winding models, the radial
stresses must be and are zero at the outer surface, and are zero at the inner surface if the
core stiffness 1s zero. The peak radial stresses and its radial location occur at an
intermediate location. The peak of the tangential stresses however, is at the core (for a
zero stiffness core).

The cffect of the centrifugal stresses are small but not negligible when compared
with the traditional isotropic winding model. Additionally as we have seen from the
traditional winding models, we would expect that the magnitude of the radial stresses to
decrease and the magnitude of tangential stresses to increase with increasing anisotropy.




Figure 24
CENTRIFUGAL STRESSES - ISOTROPIC MODEL
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Though the isotropic centrifugal model is very easy to apply, it does have severe
shortcomings. First, the model presented here assumes a zero core stif ess boundary
condition although this could be extended much as the isotropic winding .. vdel has been.
Secondly, the model assumes isotropy which is not representative of most winding cases.
Though the trends of the isotropic model will in general hold true for anisotropy, the
values of the stresses will be considerably different.

The next step in the evolution of centrifugal models was the anisotropic model
developed by Yagoda [150, 151]. The difference between his centrifugal model and his
earlier winding model [149, 152, 153] is that the effective WIT changes as a function of
rotational speed. This effective WIT, which is input directly into his traditional winding
model, is the summaton of three terms. The first is the web tension used by all winding
models. The second is a siowdown term which occurs due to the decrease in rotational
speed as the roll diameter builds even at constant surface speed. The third is a shutdown
term caused by a decrease in surface speed. The details of the second and third centrifugal
terms were not rederived for this project because they are even more complex than his
hyperbolic solution of the traditional winding model. However he did conclude that for
the cases tested, that the second and third terms of the centrifugal contributions nearly
canceled, so that the net effect of centrifugal “arces may be negligible.




Air Entrainment

Another effect of speed on winding is the entrainment of air into the wound roll.
As seen in Figure 25, the translation of the incoming web and rotation of the roll drags a
boundary layer toward and often into the roll. Additionally as seen from the side view, the
distribution can't be uniform across the CD because the air at the edge of the roll will
simply leak out. If there were a continuous boundary of air between web layers, there
would be no effective interlayer friction and the structural integrity of the roll would be
completely lost. This problem can be quite severe when winding nonporous webs such as

film, and can severely limit the maximum operating speed of many winders to around
1000 FPM.

For many winding conditions however, the interlayer air boundary is not complete
and is nominally trapped in a parabolic cavity with the ends relatively sealed. However,
the distribution is likely to be thicker in low caliper gage bands, and need not necessarily
be distributed uniformly around the circumference as evidenced by bubbles under the outer
layer on the ingoing side of a nip. Consequently, the distribution of air in a roll in a real
wound roll 1s likely complex.

One of the most effective methods to reduce the amount of entrained air is to wrap
the incuming web around a nipping roller, and is standard practice on most nonporous
web winders. The amount of entrained air decreases with increasing nip roller load and
decreasing nip roller diameter [53]. Many rollers are grooved to increase traction.
[However, the winding nip roller may nced be smooth and cylindrical else there will be
unnipped and unrestricted channels for the air to follow into the roll. Additionally, the
volume or thickness of air entrained into the roll increases with increasing speed, width,
nip nonuniformities, and roll diameter; and decreases with increasing web tension, and
web porosity [53]. For relatively incompressible nonporous webs, the volumetric
percentage of air entrained into a wound roll can be estimated from

(79) % Air = 100 Pmaterial - Pwound roll

Pmaterial

However, the volume and distribution changes with time due to end lcakage, leakage
through porous webs, repedted passage of nips and other changes in loading due to

processing and handling,




Figure 25
AIR ENTRAINMENT INTO A ROLL OR ROLLER
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The bulk of the analytical work in air entrainment originates from foil bearing
theory [197-203]. However, though the inlet region of the foil bearing and winding roll
are similar, their exit geometries differ considerably because in the case of the winding roll
there is no exit. Additional limitations include incompressibility, no bending stresses, and
.often the solutions assume an infinitely wide system, so that CD effects are not
considered. An interesting addition to traditional foil bearing theory was performed by
Tajuddin who appended a simplified rider roll model onto the inlet region of the foil
bearing model [53]. However though this model was pioneering, it is similarly
constrained to the limitations described above and the rider roll addition also carries many
assumptions to make the math tractable. The experimental work in foil bearing air layer
measur. aent includes optical, capacitance and other precision position sensors [204].

Thus, the current state of art in analytical foil bearing theory results in solutions
that are simultaneously difficult and simplified beyond useful application to real winding
systems. Similarly, beyond equation (79) there has been no published work on the
experimental measurement of air layer distributions in a wound roll. However, even if the
distribution of air in a wound roll were determined, an equally formidable challenge to
incorporate this information into wound roll modeling would need be solved. First, the
roll would then be a composite material whose web behavior would be described by quasi-
static mechanics equations, and the air layer would be described by time dependent fluids
equations. FFurthermore, these models should be formulated and solved together because
the radial stress strain distribution would affect the fluid pressure, while at the same time
the pressure would affect the radial stress-strain distribution. Despite the difficulties
however, the integration of air entrainment into winding models is requisite to their
application for many real systems such as the winding of film.




The Cross Direction

Current winding models are accretive descriptions of stresses, strains, and to a
lesser extent material properties, that vary in the radial and tangential direcion. However,
in many real winding conditions the material properties also vary significantly in the CD.
In most cases, this is an unintentional result of less than perfect profile control on the
machine which produces the web. The most significant CD variations on wound roll
structure are usually caliper, tension, and perhaps modulus. However, web CD variations
can also be intentional. One example would be discrete labels or stickers arranged in a
matrix on a larger flat backing material.

There are several experimental measurements which can profile across the width
which include hardness measurements such as the Rhometer, Schmidt Hammer and
Backtender's Friend, as well as other measurement principles such as thin pressure
transducers and the Cameron Gap. These methods and others will be described in more
detail in Chapter 5. There 1s ample evidence from measurements such as these that a high

_ gradient of profile is correlated to the propensity to certain defects such as corrugations
(96, 193].

However, there is very little published analytical work on CD effect on winding.
One exception is Spitz's model of the change in the tension profile of a web with a CD
caliper variation as it is wound over an incompressible roll [142]. Spitz and others [162,
195] suggest a good measure of CD profile is radius variation

(80) RV = 100 max”Tmin

ravg

where a 1% variation in caliper or wound roll radius would be considered excessive.

However, simplistic CD models such as these are unsatisfying as they are not
mechanically consistent with traditional winding models because they lack basic features
such as equilibrium and stress-strain equations. If CD effects were properly modeled then
the relevant stresses would be radial, tangential, CD as well as the first appearance of shear
stresses in winding models. The in-plane shear stresses could perhaps then be coupled to

wrinkling models for a prediction of ropes and corrugations.




Hygrothermal Response

Paper taken from a paper machine reel and wound on a winder has a moisture level
which is not necessarily in equilibrium with its storage environment. Similarly, film taken
from a tenter is often much warmer than the ambient room temperature. Also, many
petrochemical webs may contain volatile solvents from their manufacture which may
diffuse into the environment with time. In all of these cases, the web and wound roll will
take on or give up moisture or heat with time until it reaches equilibrium with its
environment. In the case of paper products the equilibrium moisture content will be
around 5%, and in the case of film the equilibrium temperature will be around room
temperature. The effects of moisture changes on rolls can be quite vivid as evidenced by
the innocuous but severe moisture welts or wrinkles occurring on the exterior of overly
dried paper rolls.

Due to a high coefficient of hygroscopic expansion of paper, small changes in
moisture content will result in large changes in stresses and strains. Similarly, changes in
temperature of films and foils will also result in changes in stresses and strains. This can
be easily seen from the orthotropic stress-strain relations (7) and (8) when expanded to
include hygrothermal behavior as
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However, before these expanded stress-strain relations can be inserted into
winding models, the changes in moisture or temperature distributions must first be
determined. The following material is based on analysis by Roisum [114] for moisture
content of paper and was experimentally verified by weighing a small paper roll over the
course of many weeks [118]. However, thermal analysis can be performed identically
using this same procedure except that the material properties are thermal instead of
hygroscopic expansion coefficients and the distribution is temperature instead of moisture.

Analysis of the hygrothermal response of wound rolls is an example where CD
cffects must be included because the moisture (heat etc) will diffuse from all exterior
surfaces including the faces, the outer surface and possibly the core. The following
analysis is based on Fick's Law of Diffusion which is identical in form to the Fourier
cquation for heat conduction in solids [205].




Assuming isotropy, radial symmetry and no moisture generation, Fick's Law can be
written in cylindrical coordinates in 1, z and t variables as

2 2
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where
C = moisture content (%)
or temperature T in degrees Fahrenheit
r = radius (in)
z = CD position (in)
t =  time (sec)
D= hygroscopic diffusion constant (%/inZ/sec)

or thermal or chemical diffusivity

Using a forward finite difference approximation for the temporal derivative and a central
finite difference approximation for the spatial derivatives, (83) becomes
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where

t denotes current time
t+ denotes current time plus At

+- subscripts denotes current radius or CD position +- Ar or Az respectively

Solving (84) for future moisture at node r,z and collecting like terms gives
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Additionally for numerical stability, the last term in (85) must be non-negative. If we let

the mesh size be the same in the 1 and z directions then




for a given mesh size, (Ax = Ar = Az), the maximum time step interval At is given as
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or for a given time step interval, At, the minimum mesh size Ax is given as

AXmin 2 V4D At

Thus, equation (85) defines the solution of moisture distribution of the interior
points of the roll in the next time step given the current moisture at the current and adjacent
nodes. However in addition to the interior solution, the boundary conditions must also be
defined. There are two mathematical possibilities which are a fixed or gradient moisture.

Strictly speaking, the moisture distribution is convective for both moisture and
temperature. However in the case of moisture, the convective hygroscopic rate is so large
that the outer layer of paper products very quickly reaches equilibrium and is maintained
there. This is analogous to a well insulated wall which is near room temperature on the
interior, and outdoor temperature on the exterior. However in the case of temperature,
both rolls of film and paper often feel warm to the touch, so that a convective boundary
condition should be used. Though a convective boundary condition is easy to implement
on the above finite difference model, determining the convective constant could be quite
difficult in practice.

The computer solution of the model is quite easily performed by predicting the
moisture distribution of the next time step based on the current distribution and equation
(85). This is implemented in three nested loops. The outer loop merely increments the
time and other simple housekeeping. The middle and interior loops scan across the nodes
in the r and z directions respectively.

In the following example problem, a 40" long by 40" diameter roll was modeled
with a mesh with Ar= Az = 1" and aAt = 0.25. The initial concentration was uniformly
setat C attime t = 0 representing cither a wet or hot roll. The boundary conditions at all

exterior surfaces were set to Cy at time t > 0 which represent drying or cooling.




The results of this example problem showed that the roll which was initially
uniformly wet, asymptotically approached a uniformly dry roll after a sufficiently long
time. However as seen in Figure 26 for 50 time steps into drying, the distribution of
moisture is quite nonuniform. In particular, the roll is drier near the exposed surfaces than
in the interior where moisture has yet to be diffused out.

There are several implications of the nonuniform moisture distributions for web
handling of materials with nonzero coefficients of hygroscopic expansion. First in the
case of drying, the outer edges will have a shorter length than the center which will cause
baggy centers. Conversely in the case of wetting, the center will have a shorter length than
the edges which will cause baggy edges.

Additionally, there are several implications of nonuniform distributions for
winding. First in the case of drying, the outer layers will contract first which may increase
radial stresses significantly on the roll's periphery. In the case of wetting, the outer layers
will expand first as welts or ridges. Also, cores which have a moisture content in excess
_of equilibrium will shrink upon drying to the point that some or all radial pressure at the
core will be lost [161]. Finally, nonuniform distributions coupled with creep and stress
relaxation could result in webs which are permanently nonuniform in camber.

Again, this simple example problem applies identically to nonuniform temperature
distributions for cooling of film or foil materials because the constitutive equations are
identical. Additionally, this simple analysis can easily be extended to convective boundary
conditions, boundary conditions which vary along the face, OD, or core (but not directly
with circumferential position with this 2D model), and boundary conditions that vary with
time. Also, anisotropic diffusion coefficients can be directly used because the radial and
ZD terms in (85) are completely uncoupled. This case could occur with the rolls of

laminate materials or film with a significant interlayer air film which acts as an insulator.

The experimental verification of this simple example was easy to perform in the
case of moisture whose average value can be determined by simply weighing a drying roll
periodically over the course of several months [118]. Additionally from this work, the
concept of a time constant was defined which is the time for the moisture content to reach
63% of its final cqu fum value after a step change at the boundary. This time constant
concept can be applied to an exposed web in an open draw, a specific location in a roll, or
as a bulk property of the roll.




Figure 26

PAPER ROLL MOISTURE / TEMPERATURE DISTRIBUTION
AFTER 50 TIME STEPS OF DRYING / COOLING
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The time constant of hygrothermal analysis determines if it must be run
simultaneous to traditional winding models, or can be decoupled. From the experimental
work, it was found that the bulk drying time constant for a 40"x40" paper roll is on the
order of one year, though it is somewhat sensitive to roll size and web material. Thus,
drying takes place over a much longer period than the winding cycle and can be analyzed
separately. Similarly, it was found that the moisture time constant for even a thin paper
web exposed on both sides was typically longer than one minute [115]). Thus, the web's
moisture content may not change significantly during its time of passage from the unwind
to the winder, and thus can be assumed to be that measured on the interior of the
unwinding roll.

The changing moisture and temperature distributions are relatively easy to
determine by using equation (85). Additionally due to the long time constants,
hygrothermal strains can be superposed onto the stress distribution already existing due to
winding as a separate analysis step. However, applying the hygrothermal strains to rolls
presents a problem because wound roll models describe behavior in the radial and
tangential directions while hygrothermal strains occur in all three axes. A simplification
would result if these strains were analyzed on a single plane normal to the roll axis such as
at the end or center. Then the distribution on that plane could be input into the expanded
stress-strain relations.

To solve the resulting hygrothermal stress would involve rederiving a winding
model such as Iakiel's presented in Chapter 3 while retaining the hygroscopic and thermal
terms, which could be done without difficulty. Next, the expanded model would be
solved once for a single system of equations which as the result of superposed
hygrothermal radial and tangential stresses. The outer boundary condition for this analysis
would be a zero radial stress for there are no wraps added during the process of drying or
cooling. Finally, the hygrothermal radial and tangential stresses can be superposed onto
the already present winding stresses for a total stress distribution. Notice that this differs
from the traditional model, which is accretive, in that the solution for the incremental
stresses need on be done once for a given moisture distribution. However, the analysis
would need be repeated if the stresses are desired for more than a single time in the drying
process. Also, Tramposch gives a similar but more restrictive thermal model [145].

In summary, hygrothermal response can be significant for the winding of many
materials where the web is not in hygroscopic or thermal equilibrium with its environment.
Hygrothermal distributions are easy to determine using the finite difference solution of the
Fourier equation. From these distributions, an expanded traditional winding model can
calculate the resulting hygrothermal stresses provided that the distribution is assumed
constant across its width.




Anelastic Response

All traditional winding models assume that the web material is elastic. This
assumption implies that the material will load and unload along the same stress-strain
curve. However as seen from Figure 17 in Chapter 3, the load and unload cycles of real
materials follow distinctly different paths. Furthermore, the elastic assumption implies that
the web material will return to the same shape and length after unloading. However as
seen from stress-strain curves of real materials, webs may assume a ~~rmanent strain of
the same sign as the loading stress after the load has been removed. This behavior is
evidenced by baggy lanes on overstretched nonuniform gage materials, changes in
registration, flat spots on rolls which were stored on the floor, and permanent loss of
thickness or bulk as will be seen in caliper data in Chapter 8. Finally, the elastic
assumption implies that no energy is absorbed in a load/unload cycle. Yet if this was true,
the coefficient of rolling friction of a wound roll would be quite low, while in fact the
rolling friction of some soft materials is quite high.

Clearly, the assumptions of elastic behavior may not model real materials well.
There are several viscoelastic models, though they are generally empirical, which are able
to represent some of the complex behavior described above. As seen in Figure 27, the
most common models are the Maxwell, Kelvin, and 4 Parameter models. All of the
models can describe creep and stress relaxation. However, the Maxwell model predicts
indefinite amounts of creep under a constant load. Similarly, the Kelvin model is unable to
describe parual recovery after load removal. Consequently though much more difficult,
the 4 Parameter model is able to better represent real web behavior.

Though much work exists on viscoelasticity, particularly for t..e Maxwell and
Kelvin models, little has been applied to wound roll geometries. However, Tramposch
has solved the isotropic [144] and anisotropic [145] stress relaxation of the 4 Parameter
model applied to a disk with a zero load outer boundary condition, and an elastic inner
boundary condition, under an arbitrary initial stress condition due to winding.
Additionally, the model allows for thermal strains for the simple case of a constant initial
temperature disk cooling under constant temperature boundary conditions. Though this
model 1s mechanically consistent with the traditional winding models, it is easily the most
mithematically complex derivation in winding. Despite the complexity however, analysis
such as this is requisite for extending the waditional winding model beyond its simplified
elastic assumptions.




Figure 27
VISCOELASTIC MODELS
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Interlayer Slippage

Current winding models assume no interlayer slippage in the derivation of the
strain-displacement relations for a cylinder. However, there is ample experimental
evidence that slippage does occur under some conditions. This includes direct
measurement using the J-line [106, 109], rolling cvlinders across flat stacks [97, 98, 110],
and the increase in WIT with increasing nip load [166. 168]. While interlayer slippage can
occur during unwinding and centerwinding, in most cases slippage is significant only in
the presence of a nip and is most pronounced on low coefficient of friction materials [106,
108]. Additionally, it has been observed that in both cases of J-lines near the core on a
core supported unwind and on the outer surface of a surface nipped windup. that the
mterlaver slippag s generally in the direction of 1nosening of the web [106. 108]. The
justification for modeling slippage is therefore because it affects the stresses in a wound
roll, is not currently described by traditiona! winding models, and is associated with the
propensity to certain defects such as crepe wrinkles [109].




Thus, there is some experimental work which quantifies interlayer slippage based
on measurement, such as the J-Line given in Figure 28. Unfortunately, there is no first
principle analytical models which can predict the magnitude of slippage, or well determine
its effect on wound roll stress distributions. However, there is promising research in this
area begun by Dr. J.K. Good at the WHRC using finite element modeling with friction
elements between layers. These analytical models when developed would not only predict
the magnitudes of slippage, but as importantly determine why slippage occurs in the first
place.

Though analytical models explaining why slippage occurs are lacking, a model
which explains how slippage must have occurred to meet experimental measurement has
been proposed by Roisum and is the basis for the following discussion [121]. This model
requires two measurements of a J-line geometry as inputs to a slippage function which
then yields the distribution of interlayer slippage as a function of depth beneath the roll
surface, and as a function of time or added wraps. Additionally, the model can calculate
the change in tangential stresses due to slippage.

, The model begins by assuming that there is a slippage function which can describe
the movement of each layer with respect to the one beneath for each wrap addition during
the winding roll. Furthermore, it is assumed that this function moves with the outer
surface much as the outer boundary condition of a traditional winding model moves with
the outer surface. From these very nonrestrictive assumptions, the entire slippage model
can be constructed.

Figure 29 shows a simplified schematic of the application of a slippage function
and 1ts effects on the shape of the J-line. For example, with the addition of wrap 'e' the
interior layers each move with respect to its underlying wrap by an amount specified by the
slippage function. Thus, wrap d's movement is the sum of d with respect to ¢, ¢ with
respect to b and so on. With the addition of wraps f and beyond, the process is repeated
again for each revolution, except that the slippage function moves with the surfac:
Though not necessary, the slippage function chosen here is maximum at the surface and
decreases with depth. The result of the addition of numerous wraps with this type of
depth decreasing slippage function is that J-line movement which is initially fast, soon
stabilizes into the characteristic 'J' shape.

From this schematic, it can be seen that the total movement of anv laver at any
current outer wrap is the result of two effects. The first is the summation of relative
movement of layers beneath for the addition of a single wrap, and the second is the
superposition of this movement for the addition of all wraps from the moment the J-line
was struck until the specified number of wraps have been added.




Figure 28
J-LINE GEOMETRY
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Figure 29
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Though this can be also be expressed as a double summation for numerical calculation
[121], this total J-line movement will be expressed here as:

w=n

D=d+w
86) J(dn) = f j(D) dD dw

D=m=z=o
w=0

where

J(D) = relative slippage function (in/wrap”\2)

J(d,n) = new position of J-line (in)

d = depth below J-line tip to point of interest (wraps)

D = independent variable of slippage function (wraps)

w = current number wraps added (O<w<n) (wraps)

m = number wraps from point of interest to core

n = total number wraps added since J-line snapped (wraps)

The double integration limits and are better shown in Figure 30. The inner
integrand is the slippage function which when computed yields the inches of movement
per wrap added as a function of wraps beneath the current outer surface, and follows the
current building of the outer surface by wrap addition. The outer integration yields the J-
line deformed position as a function of depth below the J-line tip and the number of wraps
added. However, the J-line does not move radially outward as does the slippage function.

Thus far, no assumptions have been made whatsoever about the form of the
slippage function, only that one exists and depends directly on depth beneath the current
surface. However, in order to quantitatively apply the model the form of the function must
be determined. Additionally once the form of the function is found, the parameters or
constants must be determined for any particular situation.

There may be several approaches to determining the slippage function including
first principles modeling and experimental measurement. However, as vet no first
principles slippage models have been published. *dditionally, direct experimental
measurement of the slippage function for a real system may be quite difficult becaus: the
Slippage between any two adjacent lavers will be guite small for the addition of only a
single wrap.




Figure 30
SLIPPAGE FUNCTION AND J-LINE
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Fortunately, the J-"'ne position itself is easy to measure as it is the double
summation of slippage of all layers beneath and for all wraps added. Thus, while the
slippage function itself may not be easily measured, several empirical forms can be tried to
see which may yield a J-line position which agrees with experimental measurement and
observation. In particular, at least three J-line observations must be predicted by the
slippage function form. First, the growth of the J-line slewing during normal winding
must be rapid at first but quickly slow or freeze to a final shape when the J-line is
sufficiently below the current outer surface to be under negligible influence from events on
the distant outer boundary. Similarly, the growth of J-line slewing under the condition of
no paper addition such as during a web snapoff and stop must agree with observed real
behavior. Finally, the shape of the J-line at any instant will in general have grea: t
movement at the tip and decreasing to near zero movement at the root. Thus, tne
rec  oments of matching the mecasured J-line shape as a function of revolutions of the
rewound roll during normal winding and the case of rotation without adding wraps both
constrains and gives confidence to any slippage function which describes these behaviors.




The experimental measurements used for determining the best form of the slippage
function and ultimately verifying the model are taken from Lucas [109] and are given in
Table 6a. These measurements are made for the same LWC paper grade running on the
same winder for both the normal winding and the no wrap addition case, and the J-line
shape parameters refer to Figure 28. '

Three 2-parameter slippage functions were evaluated and include a constant, linear,
and exponential functions. Additionally, the parameters for each of the slippage function
forms were solved using a calculus derivation, to be given shortly, and based on the shape
measurements given in Table 6a. The 'A' parameter determines the maximum relative
slippage between the current outer layer and the one beneath. The 'B' parameter is related
to the depth of influence of the interlayer slippage. The relative slippage functions are
graphed in Figure 31.

The results of the modeling for normal winding are shown for the three slippage
function forms in Figure 32a. Though the slippage functions for each of these cases is
very different, the resulting J-lines are very similar. Indeed, they all predict precisely the
same maximum tip deflection, ¢, and the same tip slope, c/a, and have a shape very similar
to those generally observed. The only major difference is the depth of influence, which
Lucas characterizes by a t' parameter [109]. If this was the only test of the slippage
function form, the constant model is slightly closer to the appropriate shape and gives a'r'
parameter almost identical to the experimental measurement, though this is difficult to
measure accurately.

However, the slippage function form and model must also describe the effects of
revolutions without adding wraps, such as after a web snapoff. This is also computed
using the same constants A and B as above, and the same equation (85) except that the
upper limit of integration of the inner integral is D=d instead of D=d+w because w is zero
due to the fact that the current surface is the same as the surface at which the J-line was
struck (no web added), and that the upper limit of the outer integral represents revolutions
instead of wraps added. The results of the model for the case of a snapoff is shown in
Figure 32b. As seen here, the predicted J-line deformation for the three slippage function
forms is very different. Clearly. though the exponential model does not predict J-line root
quite as well in a normally wound roll, it matches tip slope, a, within about 1% of LLucas's
rcasured values. Additionally, the model predicts 501 revolutions were wound to achieve
the shape meas “ed by Tucas, which corresponds to a typical slowdown period for the
winder used 1n that study.




Table 6a
J-LINE SHAPE MEASUREMENTS [109]

Parameter Description Normal Value Snapoff Value
max tip movement 0.43" - 2.80"
a tangency of slope at tip 0.23" 0.24"
depth of movement 0.42" 0.66"
Table 6b

SLIPPAGE FUNCTION FORMS EVALUATED

Function j(D) Equation A (in/wrap?2) B

Constant A for D<B, O for D>B 0.0000730 78.74

Linear A*(1-D/B) for D<B, 0 for D>B 0.0000494 230

Exponential A*exp(-D/B) 0.0000366 154
Figure 31
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Figure 32a
J-LINE DEFORMATION - NORMAL WINDING
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Figure 32b
J-LINE DEFORMATION - AFTER SNAPOFF
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One final check on the behavior of the model is to determine if the progression of
the J-line movement matches the observation that the movement begins fast but quickly
stabilizes. As seen in Figure 33, the J-line progression predicted by the model does indeed
show a rapid initial movement followed by stabilization.

The experimental measurements used for the preceding discussion were for J-line
deformation of the outer surface due primarily to the passage of nips during winding.
However, a similarly appearing phenomenon can occur at the core of a core supported
unwind. In both cases, the J-line movement is generally in the direction of loosening
which is also the direction of winding or unwinding. However, the shape of the J-line in
the case of a core supported winder is slightly different. Again, the relative slippage model
was used to try to predict the core J-lines given by Frye [96]. However, the three slippage
functions used above did not yield the turn-in of the J-line tip or the indefinite J-line
progression which is characteristic of core slippage. However, the model did predict
proper core J-line shapes with two small changes, as seen in Figure 34. First, that the
slippage function was rectangular. Secondly, that the slippage function moved outward
one wrap for every two revolutions.

The progression of J-line movement for any relative slippage function is solved
easily by using either a computer program to compute the double summation or by using
the integral given in (86). Though there is more generality in the double sum, an analytic
slippage functon can be solved directly to give many insights into slippage. In particular,
the exponential slippage function

(87) jD) = AeP®
can be inserted into (86). Simplification results if the lower limit is assumed to be infinity

which corresponds physically to depth of slippage influence which is negligibly small
compared to the distance to the core. In this case, the first integration yields

wW=n

d+w
(88) J(d,n) = -ABj e{T) dw

w =0
and finally, another integration vields the deformed J-line shape

(89) J(d,n) = AB2ed/B (] _en/B)




Figure 33
PROGRESSION OF THE J-LINE DURING WINDING
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J-LINE SLIPPAGE ON A CORE SUPPORTED UNWIND
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Equation (89) can be tested for proper behavior such as

if n =0then J =0: therefore no movement unless there is wraps or revolutions added
if n = oo then ] = AB”2exp(-d/B): therefore movement is bounded

if n =ec and d = 0 then ] = ABA2: maximum deformation occurs at tip

The slippage parameters A and B can be calculated from measurements of J-line
geometry from equation (89) for the exponential form. The maximum tip deflection, c, 1s
calculated for a depth of zero and for a large number of added wraps such that J-line
movement 1s stabilized and is given by

(90a) c = J(0,0) = AB?

Similarly, the tip slope is calculated for a depth of zero and for a large number of added
wraps by taking the derivative of the J-line at the tip and is given by

_ dX(dn)

(90b) slope = t= = = ABe¥B(1-emB)|,_.. = AB
a dd d:o’n:oo

where t is the web thickness and ¢ and a are the tip deflection and tangency respectively
illustrated in Figure 28. Finally, equations (90) can be solved for the exponential slippage
parameters A and B as

_a(m)

(91a) B (wrap) = T (i)
91b) A (infwrap?) = — 00
[B(wrap)] 2

Finally, the J-line movement can also be used to calculate the change in tangential stress
due to interlayer slippage for small movements as

A Ett ¢
92) o1 = Erer = Er = s

21T 27 @

For the large J-line movement given by Lucas [109]. and a thickness of 0.003", a radius at
which the J-line was struck of 10" and a modulus of S00.000 psi, the resulting change in
tangential stress was 44,6 psi which is a small fraction of wound-in-stress. The small
effect of slippage on average stresses has also been noted by other authors using different
techniques [168].




Several other interesting conclusions result also from this analysis. First, is that
the area under the relative slippage curves for any function form must all be equal as they
are proportional to the tip slope. Secondly, widely varying relative slippage functions will
yield shapes very similar to measured J-line geometries, so that the technique is not very
sensitive to uncertainties of the slippage function form. Thirdly no matter what form is
chosen, large J-line deflections are predicted by a maximum slippage between the outer
and second wraps of only 50 millionths of an inch per revolution.

However, there are limitations to the relative slippage modeling. First, it assumes
that the relative slippage function remains significantly constant with time or added wraps,
yet friction coefficients, radii and nip loadings do change during roll winding. Secondly,
it assumes that the slippage is constant around the circumference as do all other winder
models, and thus can only predict average trends. Yet, perhaps the severest slippage
problem is crepe wrinkling which results when the slippage occurs abruptly in a narrow
circumferential region. Unfortunately, this average relative slippage technique is currently
unable to describe circumferential dependence. Also, the relative slippage technique is
_currently limited to reverse engineering of how movement must have occurred to produce a
given J-line geometry. A better understanding would be achieved if the relative slippage
was predictable from first principles modeling, which is the subject of current research
efforts at the WHRC.

In summary, the relative slippage technique can be used to model the average
accumulated movement of every layer for every revolution, and describe the J-line shape
provided that slippage as a function of depth is known from either first principles
modeling, direct measurement, or from measurement of J-line geometry. The calculation
of J-line shape at any time can be calculated most generally from a computer program
which keeps track of a double sum for every layer beneath the J-line tip. However analytic
relative slippage functions though more restrictive, have closed form J-line deformation
expressions which are more convenient. From the modeling, very small relative slippage
between any two layers during a single revolution of the wound roll results in large J-line
deformations. However, even large J-line deformations represent relatively small changes
in the stress state of the roll, provided that the slippage is uniformly distributed around the

circumierence.




Gravity and External Loading

In addition to the winding nip described earlier in this chapter, there are several
other loads which can be applied to the wound roll. Several of the more typical loading
cases are shown in Figure 35. First, there may be rolling nips aside from the winding nip.
In the case of the two drum winder, there are also nips at the rider roll and front drum.
Addidonally, there is an internal rolling nip between the core and inner layers which can be
considerably larger in magnitude than external nips for large core supported rolls. There is
strong evidence that all rolling nips can lead to interlayer slippage at the core [96] as well
as at the outside [106, 109]. Additionally, there is strong evidence that in addition to the
winding nip the other rolling nips can also effect WIT changes beyond that produced by
the web tension and winding nip [97, 98, 168].

However, several loading cases commonly occur during storage or handling which
affect internal web stress distributions that are not uniformly distributed around the
circumference. These loads to produce permanent set may be relatively low and act for a
long time, or high and act for a short time. An example of a low load acting for a long

. time is rolls lying on the floor or in storage racks which have the tendency to retain flat
spots. These flat spots induce web flutter and tension surges which may impair
productivity of the process served by the unwind [120, 122]. Rolls stored in a core
supported stand also take on an eccentric set which similarly affects subsequent

processing. Consequently, many rolls are supported on end which considerably reduces
anelastic deformation.

Conversely, if the loads are high enough they need only act over a short period to
induce permanent changes in shape and stress distributions. One example is the grab truck
which squeezes the roll on opposite sides of the OD [173]. Another example, which is
common in roll handling equipment, is stopping a moving roll with roll stops that are too
stiff. Though both low loads for long periods and high loads for short periods both affect
roll stress distributions nonuniformly, there is a difference. The impact or grab truck
squeeze loading is much more likely to trigger starring type defects.

Currently. there is little published analytical work describing the superposition of
circumferentially nonuniform loading on wound roll stresses. Though finite element
modcling may address some aspects of the problem, the analysis is inherently very
nonhinear due 10 contact loading against a curved surface and anclastic behavior.
However, there is some experimental work on roll shape profiling which can help
diagnose the causes and quantify effects of nonuniform loading [173] which will be
discussed further in Chapter 5.




Figure 35
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Roll Defect Theory

Though minimizing roll defects is the principal goal of the science of analytical and
experimental winding research, very little has been published in this area. What little does
exist comes primarily from experimental studies such as the correlation between caliper or
hardness gradients and wrinkle or burst defects [96], and the minimum radial pressure at
the core required to avoid loose cores [161]. The reasons for the dearth of roll defect
theories may be due to application dependence, complexity, lack of either understanding or
confidence in winding principles, or simply that the state of the art has yet to mature to
meet its ultimate goal. Whatever the reason however, in this section some simple roll
defect theories will be proposed which are assembled from established mechanics
principles.

The simplest failure theories state that materials will fail if the stress exceeds the
ultimate strength, or more conservatively the yield strength of the material. The stresses
imposed on the material are the superposition of both the traditional wound roll model
stresses and more complex behavior such as external loading at nips or hygroscopic
stresses. Since the wound roll system is highly anisotropic, there will be failure criteria in
both the radial and tangential directions. Additionally, many materials have different yield
magnitudes in tension and compression. Thus, no fewer than four boundaries exist for the
stress profile, and each will be discussed in turn.

(93a) Ogr; > OR compressive yield forall r

The radial pressure must not exceed the yield pressure of the material which may
lead to permanent loss of bulk for soft materials such as tissue, or cause breakdown of
constituents such as with carbonless paper, or cause extrusion of components such as with
tape adhesives, or cause wringing of layers together such as with films. In the absence of
external loading and other complexities, the location of the maximum radial pressure as
seen in the figures from Chapter 3 for the typical WIS profile and high core stiffnesses is
at the outer core radius. If external loading due to core support is also included. the
maximum radial pressure at the core is further increased due to the core/roll nip.
However, in many cases the external Joading at the roll periphery may dominate due to

cxcessive nips, heavy rolls Iving on their periphery or relling impact.

(93}3) OR.r < OR rensile yield forall r




The maximum interlayer tension non-adhesive materials can withstand inside a
wound roll is less than or equal to zero. However, adhesive materials can withstand some
interlayer tension if it is less than the strength of the adhesive bond. In the absence of
unusual complexities, the maximum interlayer tension will occur on the bottom side of the
core/roll nip for heavy core supported rolls for which Hussain suggests a minimum 50 psi
pressure for newsprint [161]. However, the interlayer pressure may also go to zero on
either side of a heavy nip as evidenced by bubbles of entrained air which may cause
wrinkling and creasing if the bubble goes through the nip unevenly or suddenly.

(93¢) orr > OT compressive yield forall r

There is a lower limit on tangential stress to avoid buckling or compressive
yielding. The location of the minimum tangential stress for typical WIS profiles and high
core stiffness occurs at the core radius. However, the tangential stress can often be
compressive throughout all but the outer radii of the roll.

(93d) Orr < OT tensile yield forallr

Finally, the upper limit on tangential stress avoids web breaks or tensile yielding.
The location of the maximum tangential stress in almost all cases is at the roll OD and is
cqual in magnitude to the WIS. However in addition to the traditional wound roll stresses,
drying or cooling may superpose even greater tangential tensions upon the material {114].

These failure theories are somewhat simplistic as the material is under biaxial
stress, where the stress in one direction affects failure in the other. In materials science,
more advanced failure theories include the superposition of these two directions such as in
maximum shear, octahedral shear, distortion energy and Von Mises stresses.
Additionally, materials science also includes other more complex failure theories such as
fracture and cumulative damage due to fatigue. However, a more relevant interaction of
winding stresses occurs for starring or buckling failures where the compressive tangential
stress promotes instability and the compressive radial stress promotes stability.

These failure theories thus far discussed are based on stresses and material failure.
However, there are several roll structure requirements based on deflection that also must
he met. For example. the winding of wide rolls on slender cores may result in excessive
bowing of the core due 1o its own weight or external nip loading [11]. Another core
examplc 1s that the ID of the core must not expand under load beyond the stroke of
expandable shafts.




Other deflection based failures can result if there is any interlayer slippage
deflection due to external loading The simplest example is that the interlayer pressure and
friction must be high enough to unwind a roll which is braked through the core without
interlayer slippage. In this case, the interlayer frictional torque must be greater than torque
applied to the unwind or centerwind by web tension at all radial locations.

(94) 2mlr2pogr, > rop * WIT  forall radiir

The failure modes described above are those for which a simple mechanics
description exists. Unfortunately, there are numerous other failures modes for which even
classification and appelation are ambiguous [99]. Though these are often very application
dependent and are often more of a material defect nature than strictly winding, they are
nevertheless a very important aspect to the economics of winding.

Furthermore though there are numerous failure modes, there are few controllable
parameters. As discussed in Chapter 1, process constraints often exist which preclude
varying such things as machine geometry and material properties to optimize winding.

. Indeed, the only general controllable variable is the WIS profile which depends on the
TNT's (torque, nip, tension and speed), each of which has its own constraints. Thus, the
number of failure modes far exceeds the number of variables which can be controlled. The
results of this mismatch of problems and solutions is that in general roll defects can't be
eliminated and the best one can hope for is the reduction in their number and severity.

The scicnce of optimizing winding then becomes one of minimizing a penalty
function which is quantified as the sum of the products of the cost of a defect and the
frequency of occurrence for each defect type as a function of the controllable variable(s).
In other words, the defects must be quantified and their net effect minimized through
multivariate nonlinear optimization with constraints. Though Blaedel devoted his thesis to
developing ‘A Design Approach to Winding a Roll of Paper’, his contribution was merely
to outline the necessary tools as he did not apply the technique to a real or even simulated
winding system.

In summary, the goal of the science of winding is to minimize defects. In simple
cases of material limit based failures and simple winding svstems, many of the toois are
already in place to minimize a single defect type at a time. [However, true optimization
awaits additional quantitative develnpments in the description of more complex roll
behaviors, and more comprehensive roll defect theories.




CHAPTER 5

ROLL STRUCTURE MEASUREMENT

Background

The ultimate goal of roll structure measurement is to determine if visually
undiscernible defects are present in a roll so that it may be rewound or culled, and future
defects prevented by appropriate changes in controllable parameters. It is believed that if
measurements are too low that the roll will not have sufficient integrity to survive
subsequent handling. Conversely, a high measurement might indicate the potential for

. bursts and other damage by overstressing the material. Additionally, the desirable profile
is often believed to be harder at the core and tapering smoothly to a softer finish, and
uniform across the width [102]. An abrupt change in the profile as a function of diameter
or width are presumed to indicate the potential for starring and corrugations respectively.

Many publications have evidenced the cause and effect relationship between
changing the TNT's (Torque, Nip and Tcnsion) of winding and a resulting change in some
roll structure measurement. Unfortunately, there is very little published data to support the
widely held belief that roll defect prediction can be made from roll structure measurements.
If better quantitative relationships between roll structure measurement and roll defects are
established, then it would be appropriate to consider designing the structure of a roll such
that defect frequencies are reduced. Blaedel outlined such an approach using penalty
factors and optimization routines, though he did not actually implement the concept [128].

Roll structuring is the profiling of the TNT's of winding as a function of roll
diameter such that the roll 1s wound tight enough to survive loads during winding,
handling, shipping and unwinding: but not so tight as to damage the material. The concept
of roll structure measurement and control to optimize winding and to minimize defects
cvolved <lowly in a parallel development with winding machine controls [90]. Recent
microprocessor technology evolution has also influenced roll structure measurement,
especially for the density analyzer and for data acquisition.
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The evolution began with winders that were only equipped with a weighted strap
brake on the unwinding roll to crudely set web tension. At this time, roll structure
measurements were made by operators who struck rolls with short wooden clubs known
as backtender's sticks to sound roll tightness or hardness. Though roll hardness as
measured by a billy club is not a fundamental roll structure property and lacks quantitative
definition, it is nonetheless useful and omnipresent at most winders.

In the 1950's and 60's, pneumatic control of unwind brakes for web tension, rider
roller nip load, and electric drive control of drum torque differential gave operators the
ability to vary the setpoint TNT's (torque, nip, tension and speed) as a function of current
diameter to optimize the wind [90]. Simultaneously a better understanding of the
relationship of TNT's to roll quality evolved from observations that varying these control
parameters produced observable effects in roll siardness. Consequently, a proliferation of
inventions were designed to quantify roll structure or hardness profiles which included
tests such as the gap test, and instruments such as the Rhometer. Though the need for
good roll structure measurement methods is as strong as ever, one of the few concepts to
appear in the last two decades was the density analyzer which is a computer based
instrument which measures ingoing web length and roll rotation. The density analyzer
development parallels the application of PLC and other computers to control TNT
setpoints.

There are many measurement methods that have been used to attempt roll structure
profiling. Most of these methods are based on either hardness such as the Rhometer and
Schmidt Hammer; or friction such as the core torque, pull tab and Smith Needle; or strain
such as the Cameron Gap test. Furthermore, all present methods will either profile across
the width of the roll or with diameter but not both, so that a complete three (or more)
dimensional picture of winding is very difficult to obtain [169, 171]. The impact hardness
testers will profile across the width, but only at the current outer diameter unless the roll is
unwound and measured at various diameters. The remaining methods will profile as a
function of diameter, but will only give an effective average of variations across the width.
Since the TNT's are usually programmed as a function of diameter instead of width, roll
structure measurements profiled as a function of diameter are better suited for determining
optimum control setpoint functions. Conversely, profiling across the width is better suited
for diagnosing problems with CD (Cross Direction) nonuniformitics in the web and
winding machine.




Since roll structure measurement has been invention driven, there is a blurring of
definitions such that hardness, density and tension are used almost synonymously, though
conversion and direct comparison between these different units of measure are not usually
possible. Only those units that are closely related to the fundamental roll structure
parameter of web stresses such as the gap test and WIT can be converted. Though in
principle it would be possible to convert interlayer pressure profiles and density profiles to
WIS profiles if supplemented by winding models, this has not been done.

Despite the wide variety of measurement techniques available, methods based on
the fundamental parameters of web stresses are confined to special lab studies because of
immense practical difficulties. Furthermore, only the density analyzer is able to monitor
roll structure with any semblance of online measurement automation. Clearly there is a
need for a fundamental roll structure measurement method than can operate in a production
environment as well as a lab. This unfulfilled need for a good winding measurement is the
impetus for this thesis work, which is the marmage of analytical modeling with an
extension of density analyzer hardware.

In this chapter, the various roll structure measurements based on hardness,
pressure, strain and other means will be discussed. Though there are more than a dozen
methods, most have been only applied for special research studies. Thus in addition to
their principles of operation, application and limitations will also be described. The

interested reader will find a more thorough treatment of roll quality measurement by
Roisum [169, 170]

Rhometer

Quanufication of roll hardness became possible with the invention of the Rhometer
in 1965 by Pfeiffer. The principle of operation of the Rhometer, shown in Figure 36, is
analogous to an electronic version of the backtender's stick where hardness of the roll is
judged by the magnitude of the rebound. The handheld Rhometer contains a small trigger
activated striker which is instrumented with an accelerometer. After the striker is released,
the peak impulsive deceleration of the striker hitting the rewound roll is converted by
clectronics into a reading displayed on a meter. The meter is graduated into 'Rhos' where
1 Rho = 3 G's (acceleration of gravity). The value of the reading 1s related to an
integration of the interlayer pressure of the outer inch or so of material. Further
improvements to the original design by Beloit's Wheeler division incorporate a traversing
carriage drive for automatically profiling hardness across a roll or set of rolls, strip chart
output, and modernized electronics.




Rhometer sales are about equally divided between paper and film, but is more
predominant in the United States than elsewhere. Despite the Rhometer's popularity, it
does have several drawbacks. It is sensitive to operator technique, so that variations are
seen between different operators, and beginners have difficulty in obtaining consistent
readings due to slight variations in the way it is held. Also, the Rhometer has an
undesirable sensitivity to grade and roll diameter. Dense grades such as supercalendered
paper and film read higher than more compressible grades for identical WIS values.
Additionally, the Rhometer will read higher on small diameter rolls than larger rolls.
Though the Rhometer is not based directly on the fundamental roll stress parameter, the
readings are more sensitive to roll structure changes than many other measurements [169,
171]. Additionally, the Rhometer is one of the few measurements that have been
correlated to roll defects. Burns showed that a 100% Rhometer screening would flag
about half of the rolls containing bursts, which made it a useful go/nogo quality control
tool despite its high rate of false positives [156].

Schmidt Hammer

The Paper Roll Hardness Tester, also known as the Schmidt Hammer and Schmidt
Concrete Tester, is also an impact tester. This handheld device is composed of a spring
loaded plunger/hammer which is pressed against a roll causing a compression of the
spring, as scen in Figure 37. When depressed sufficiently, the spring is released causing
the plunger to strike the roll and rebound [159]. The magnitude of the rebound is recorded
on a mechanical pointer scale as well as on an optional strip chart. This device, marketed
by Testing Machines Incorporated, was used originally to measure concrete hardness and
later modified to measure roll structure. The Schmidt Hammer has been used to diagnose

paper manufacturing process problems which result in hardness variations across the
width [193].

Though both the Rhometer and the Schmidt Hammer are both handheld hardness
testers, there are several differences. The Rhometer measures peak deceleration while the
Schmidt Hammer measures a parameter more closely related to the coefficient of
restitution. While the Rhometer is prevalent in the United States, the Schmidt Hammer is
the preferred method in European paper mills. Most importantly however, the Schmidt
Hammer has been tested to give poor resolution of sensitivii. o roll structure changes on
some grades [169, 171]. Due to their handheld convenience, the Rhometer, Schmidt
Hammer and the Smith Needle which will be described shortly, are the only roll structure
measures that are commonly used in production.




Backtender's Friend

While the Rhometer and Schmidt Hammer are suitable for cross machine hardness
profiling, the Backtender's Friend marketed by Accuray profiles hardness as a function of
roll diameter as well as CD position. The Friend is a traversing carriage mounted wheel
which rides on the rewinding roll. The wheel has a sensor button on the periphery which
bumps the roll once per revolution and records the value of the impact. The carriage
moves the wheel sideways to profile across the width of the building reel. Sensor signals
from the Friend are recorded and processed by a computer and displayed on a video
monitor which plots hardness as a function of CD position for every traverse of the
Sensor.

The Friend's extremely high price compared to the handheld hardness testers
reflect the additional capacity to do limited control of supercalender air showers, which is
its primary application. The Friend's computer takes inputs from the wheel hardness
sensor and sends output corrections to electrically operated cooling air shower valves. In
CD positions where the hardness is relatively low, the Friend will add additional cooling
‘of the supercalender roll, so that the caliper is increased at that point. Bonazza in a four
month study concluded that installation of the Friend reduced culled rolls by about 44%
[155].

In addition to the extremely high price, the Friend has several other practical
Jimitations. The sensor wheel and carriage are bulky, so that packaging would be quite
difficult on many winders. The contacting nature of the sensor wheel would be
objectionable to many materials that are delicate or pressure sensitive. The basic principle
of hardness measurement is not yet related to the fundamental parameters of wound roll
stress, so that first principles application is precluded. Finally, the resulting roll structure
profile plots appear noisy, so that resolution is likely to be quite low. The development of
practical modeling or measurement which simultaneously describes both the radial and CD
remains as elusive as ever.




Figure 36
THE RHOMETER ROLL HARDNESS TESTER

Figure 37
THE SCHMIDT ROLL HARDNESS TESTER




Smith Needle

Of the several friction based measurements of interlayer pressure, the Smith Needle
is the only method that is commonly used in the production environment. The Smith
Needle, more formally known as the Smith Roll Tightness Tester, is presently marketed
by Testing Machines Incorporated. The Smith Needle is a handheld device that consist of
a spring loaded needle indenter which is penetrated between the layers of paper on the roll
of paper as seen in Figure 38. The Needle has a spring loaded flange which insures the
tester is held perpendicular to the roll end and has a dial indicator for registering the
tightness reading. The needle is attached through a spring to the dial indicator movement.

The principle of operation of the Smith Needle is to measure the force required to
penetrate a needle to a constant depth of about 1/2" into the face of the rewound roll. This
force is the sum of the web/needle friction plus the force required to separate the layers of
paper, both of which are determined in part by the radial stress in the roll at the point of
measurement. However, the values given by the instrument are not force but arbitrary
units peculiar to this device. Because the Smith Needle reading is dependent on friction,
measurements have a large variability and are dependent on the material. The Smith
Needle is supplied in two versions: Model A for medium roll hardness, and Model B for
high roll hardness.

Although the Smith Needle is easily able to profile roll structure as some function
of interlayer position and radial position, it has a few drawbacks. As mentioned earlier it
is friction dependent, so that comparisons between grades can't be made. Additionally,
the Smith Needle and other friction based devices have large scatter in readings due to
friction variations, so that many readings are required to given statistical confidence to the
results. Finally, the Smith Needle can be considered a destructive measurement for some
lightweight grades because the needle may nick the web edge during penetration, which
may cause the web to break when it is unwound.

Core Torque Test

The core torque test was developed by Hussain in 1977 as a quality control test to
idenufy whether a winding start was tight enough, so that sufficient paper/core {riction
was develo,.ed to allow for unwinding without core slippage [161]. As seen in Figure 39,
the test requires only a torque wrench fitted with a keyed steel core plug.




Figure 38
THE SMITH ROLL TIGHTNESS TESTER

Figure 39
THE CORE TORQUE TEST




The torque required for core slippage is measured, and can be converted to radial stress at
the core by the following formula

©95) o = —21
npul D2
where
OR = radial stress at the core (lb/inz)
T = torque to slip (in-lb)
u = coefficient of static friction between core and material
(0.3-0.4 for paper on fiber cores)
= length of core (in)

o
Il

outer diameter of core (in)

Hussain indicated for newsprint that a minimum radial stress should be 15 psi for
fiber cores and 50 psi for steel cores, which was also verified by measurements of cores
equipped with strain gages. He also had determined that core diameter variations, which
have a large effect on core pressure for conventional two drum winders, should be no
more than 0.015". Though the core torque test is simple and reliable, it does have several
drawbacks. The test is likely to yield different values corresponding to torque in the
tightening and loosening direction of the wind. Additionally, the method must consider
that a fiber core may initially test well, but due to subsequent drying and shrinkage much
of the core pressure may be lost. Also, there is a practical difficulty in manually applying
enough torque to cause slippage on long and/or large diameter cores. Most importantly
however, the core torque test yields only a single data point corresponding to the average
radial pressure at the core, and as such can't be used for profiling.

Pull Tab Test

The pull tab test involve winding thin steel or plastic tabs into the roll at various
diameters. After the roll has stopped. the force required to remove the tabs can be
measured with a force gage as seen in Figure 40. Interlayer radial pressure can then be
calculated from the removal force. coefficient of friction. ~d arca of the tab [138, 157].
Improvements in the test are seen if the tabs are encased in an envelope with fess variation
of friction coefficient than the material to be tested. This test is potentially hazardous when
inserting tabs into a winding nip, is very time-consuming, can yield noisy data, and may
fistupt the winding geometry and stresses with the insertion of the tabs. As a
consequence, its application is limited.




Figure 40
THE PULL TAB TEST

Figure 41
THE AXTAL PRESS TEST
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Axial Press Test

Another test that can profile interlayer pressure by friction measurements similar to
the pull tab test is the axial press test. In this test, a male and female die are placed
concentrically on the two faces of the roll and loaded in a press as seen in Figure 41.
Radial pressure can then be calculated from the force required to slip (telescope) the roll
axially, the diameter of the dies, and the coefficient of friction between material. This test,
developed by Hakiel, is even more involved than the pull tab but will yield less noisy data
because of the much larger measurement area [132, 133, 186].

Thin Pressure Transducers

Pressure transducers that are thin and flexible may be wound into the roll for a
direct measurement of interlayer pressure. Pressure transducers of suitable geometry that
have been wound into a roll include capacitance gages, resistance gages, strain gage load
cells and piezoelectric film. The capacitance gage is a compressible (1<<0.5) dielectric
sandwiched between thin brass plates. As the pressure is increased, the plate separation
decreases and the dielectric constant increases which can be measured with a capacitance
meter. Miniature soil pressure transducers, which are capacitance gages, were first used
by Hussain to measure interlayer pressure in 1968 [160]. Subsequently, Blaedel [128]
and Wolfermann [147] both used these gages to verify linear anisotropic winding models.
The procedure is similarly involved as the pull tab test such that the gages must be
calibrated under static loading inside a stack. Additionally, the gages can have an
undesirable sensitivity to curvature which must be taken into account.

Resistance gages are a pain. .atrix of carbon potted in an elastic binder which are
screen printed onto a thin plastic sheet with electrical leads. As the thin composite is
loaded under pressure, the matrix compresses which decreases carbon separation and
consequently resistance which can be measured at the leads. Force Sensing Resistors
(FSR's) are a trade name for one particularly successful formulation which has reduced the
undesirable cross sensitivity to loading in other axes. temperature, moisture and other
factors [163]. Thin strain gage load cells or pressure transducers are also available which
have been wound into rolls, but are somewhat thicker than other alternatives, and are not
flexible in bending. Finally, piezoelectric (Kynar brand) film has also been wound into
rolls. Unfortunately, the piezofilm has such a short time constant that it is more suitable
for dynamic measurements such as transient pressures going through a nip than longer
measurements such as interlayer pressure during winding.




Acoustic Interlayer Pressure Measurement

Although acoustic measurements are frequently used for web elastic moduli
measurements [55-57, 64, 68, 72, 76, 81, 85] and occasionally on free span web tension
[71], its application to interlayer pressure measurement has been limited. In most cases,
the acoustic measurements make use of the fact that the time of flight of a sound wave
through a material is dependent on elastic moduli and material stress [157]. Pfeiffer used
this approach in 1966 for one of the first measurements of interlayer pressure profiles in a
roll [165]. He began by measuring sonic velocity through a stack loaded into
compression. The time of flight of the acoustic wave from the transducer on one end of
the stack to a pickup on the other was measured as a function of compressive pressure.
Later, he outfitted a rewound roll with an acoustic transducer at the core and a pickup
which could be set at various radii. From the stack calibration, and the time of flight
measurement inside the roll, he inferred compressive pressure profiles as a function of
radial location.

As novel and inventive as this approach was, Pfeiffer's results are not corroborated
by later analytical and experimental stress profiles. The compressive pressure profile,
though approximately correct in value, has a shape tha: is inappropriate. He further
compounded errors by calculating the tangential stress distribution as a derivative of the
pressure distribution. Though analytically correct, the process of taking a derivative of
noisy and uncertain data yields even greater problems. Even today, pressure
measurements can seldom be made with sufficient accuracy that would allow tangential
stress calculations. This is but one of many examples where winding authors have not
independently verified their analytical and experimental efforts, thus care must be taken
when interpreting their conclusions.

Caliper Method

The average caliper of a stack of material can be measured as a function of
interlayer compression in a tensile test machine. This caliper versus pressure curve can be
used to infer pressure inside a roll at various radii if the radial distance spanned by a
known number of layers is carefully measured. This procedure has several difficulties that
render the results questionable. Tirst, the stack 1s measured under uniaxial stress while the
roll is under biaxial stress. If the material has a nonzero R, the tangential stresses will
affect the radial deflection. Secondly, layers are difficult to count and radial span is
difficult to measure. Thirdly, the method will not work well in areas near the core and
outside where the stress gradients are high. Most importantly however, this method
assumes uniform caliper which is seldom a good assumption to make.




Cameron Gap

Of the many measures of tangential stress or strain, the Cameron Gap is the only
method that is commonly used in the production environment. The Cameron Strain test,
more commonly known as the Cameron Gap test, has been used to analyze roll structuring
for more than 25 years, and was adapted as a Tappi standard test in 1963 (174). This test
requires only a sharp knife to slit the outer layer, a fine scale or magnifying reticle to
measure the gap. and a flat tap to measure roll circumference. From these measurements,
tangential stra; an be calculated as

Gap Width
Circumference of Roll

(96) CT@r=1, =

The Gap test is one of the few based on a fundamental stress or strain parameter.
The strain can easily be converted to stress by multiplying by the materials tangential
modulus of elasticity. The Tappi standard indicates a maximum allowable strain of 0.21-
0.23% be used as an acceptance criteria for 40 1b publication paper. This corresponds to
about 1,000 psi wound-in-stress or about 30% of the ultimate strength of the sheet.
Though this test is fundamental, is a Tappi standard, and used by several authors, there are
several problems. First, the measurement is extremely difficult to make with accuracy,
especially at small diameters [169, 171]. Secondly, the test yields only a single data point
corresponding the average strain at the outer diameter. Consequently, to profile a roll as a
function of diameter, the entire roll would have to be slabbed down and destroyed.
Additionally, in the process of scvering a layer, slight stress redistributions in the roll
occur due to U.c relief of the pressure supplied by that outer layer.

Slit Roll Face

The radial location of the tangential paper stresses transition from tension to
compression (about 15% of the way from the outer surface) can be inferred by slitting the
roll face radially with a sharp razor from the core 1o the outside. At radial locations where
the tangential stresses are tensile, the slit will open, and where compressive, will tend to
close. This seldom used method is both destructive, approximate and also redistributes the
stresses in the roll in the measurement process.




Radially Drilled Holes

Holes drilled radially into a roll of paper from the outside to the core are initially
circular in shape. If the roll is slabbed down, paper stresses are released which will cause
the initially circular holes to take an elliptical shape [168]. This change in shape represents
the tangential strains in the paper roll after it was wound and could be converted to stresses
provided that Poisson ratios were near zero. The major diameter of the holes are difficult
to measure accurately, and the test is obviously destructive.

Strain Gages

Strain gages though ubiquitous in structural measurement, are very difficult to
apply for wound roll stress measurement. Hussain used strain gages bonded to the inside
of a core to measure the effect of increasing pressure due to wrap addition [161].
However, since the cylindrical wraps quickly become self supporting of external pressure,
the core measurement shows increasing pressure for the addition of only a couple inches
of radial addition of the web. Hussain also bonded strain gages directly to the web prior to
winding to measure changes in tangential stress as a function of wrap addition [160].
Finally, Rand and Eriksson also bonded strain gages tc the web and observed the
circumferential stress changes as a function of circumferential location going through a
nip, and as a function of diameter [168]. Strain gages must be calibrated when bonded to
web because the stiffness of the gage and web are comparable. Furthermore, bending,
cross loading, adhesive bonding, and gage leads limit this approach for stress
measurement strictly to involved lab studies.

J-Line

The J-Line test measures the extent of interlayer slippage at the core or outside of a
roll as a function of winding or unwinding revolutions. The test, illustrated in Figure 42,
involves snapping a radial line on a winding or unwinding roll with a chalked line [106,
109]. As the wind progresses, the initially straight line mav quickly skew in the direction
of the wind but will slow and eventually freeze after several revolutions [157]. J-Line
movement is usually associated with nip rollers or core supported rolls on grades with low
friction coefficients such as LWC paper. The magnitude and angle of the deformed line tip
provides a quantitative measure of strain changes due to slippage {121]. Though the
average change in strain is usually small, the slippage may o ~ur abruptly in a single layer,
which might indicate a possible crepe wrinkle. A more detailed discussion of interlayer
slippage is given in Chapter 4.




WIT-WOT Rewinder

The WIT-WOT (Wound-In-Tension, Wound-Off-Tension) rewinder is a single
drum duplex laboratory winder designed and build in the 1960's for Pfeiffer's classic
works on tensions during winding [166, 167]. The principle of operation of both the WIT
and WOT loops is that the outer layer of the roll is passed over load cells for tension
measurement prior to entering and exiting the roll respectively. As seen in Figure 43, the
unwind section is composed of a brake whose torque is determined by the free web
tension setpoint and the web tension load cell. The windup section is a speed controlled
drum with the surface winding nip provided by loading cylinders.

Pfeiffer and others demonstrated that the WIT-WOT winder is able to measure
tensions with great resolution, even to the point of resolving variations in a single wrap
due to a splice. However, though the WIT and WOT profiles for a single rnll have a very
similar shape, the WOT tension can be much lower than the WIT. Whether this is due to
differences in the two tension loops r whether this is a reflection of anelastic behavior
such as creep and stress relaxation, or whether some fundamental problem exists remains

“to be determined. Since the tension profiling must be done at extremely low speeds (<200
FPM) due to air entrainment, and there are only a few of these winders in the world, this
measurement approach is definitely limited to specialized lab studies.

However, rewinders of any type may be used for detailed and careful testing of
rolls in a mill environment. As the roll is unwound slowly, it can be profiled across its
width and at various diamcters to give a complete three-dimensional picture of the roll's
structure. For example, a Rhometer could take readings at one inch increments across the
width of the roll and at one inch diameter increments as the roll is unwound. Additionally,
this rewinder testing can be augmented by other test methods as well as close visual
inspection.

X-Ray Tom graphy

Computerized X-ray tomography has been used on rewound rolls to attempt to
discern roll defects and profile [164]. Though this method was sensitive to hasis weight
variations, the correlation of tomography readings to defects or roll structure profile were
not established.
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THE J-LINE TEST FOR INTERLAYER SLIPPAGE

¢ = max. circum. movement

r
c/a = slope of tip

depth of influence

r1 = radius when line struck
r2 = radius after winding
Figure 43

THE WIT-WOT REWINDER

Ve Tedsion
L ell
WOT Loop N~ 1
Load Cell

(not shown)

\ Unwinding Winding
Roll Roll
B ake)

Drum
If\'ip Cyl.]\_
WIT Loop
Load Cell
(not shown)




Roll Shape Profiling

One of the fundamental assumptions in wound roll models is that the roll is
cylindrical such that it has a constant radius at each layer as a function of circumferential
and CD position. The circularity assumption comes into play in the equilibrium equation,
while variations about CD position not currently modeled for the most part. Though rolls
are not perfectly cylindrical as measured by several methods, the effect on wound roll
model accuracy has not been established.

Radii as a function of circumferential location has been measured in winding rolls
for the purpose of estimating forcing functions for wound roll vibration using cam
followers attached to LVDT's or by a pantograph mechanism inserted into the core and
swung around to trace the roll's periphery [173]. The shape of the roll as a function of
circumferential position can then be described by using a Fourier approximation as [120,
122]

97) r1(0) =19+ 1 cos(e + 61) + 1 cos(26 + 62) + ... =19 + z T; cos(i(%) + 6;)
i=1
‘where
1(0) is the radius at circumferential location 6
r() is the nominal or average radius
rj is the ith contribution of sidedness
11s the sidedness number
6 is the circumferential location
B; is the phase relationship of sidedness

Not only does the shape of the roll affect surface winder vibration, it also causes periodic
free web tension transients during unwinding [120, 122, 158]. Additionally, the roll's
shape may be altered due to handling loads such as the two point radial squeeze of clamp
trucks and other loading conditions described in Chapter 4 [158].

In addition to profiling radius as a function of circumferential location, a profile as
a function of CD position may be obtained by a device described by Quint [162]. The CD
profiler consists of a stand to hold a roll and a pair of caliper arms mounted on a traversing
carriage. The caliper arms ride on cam followers on opposite diametral locations on the
roll and separation of the arms 1s measured by a VDT as the arms traverse down the axis
of the roll for a profile of diameter as a function of CD position. Quint claims from this
study that a caliper nonuniformity as small as a few millionths of an inch can affect roll
performance. However, the method received little attention and is no lon: °r used.




Nip Width and Pressure

In addition to the thin pressure gages described earlier, there are other methods
better suited to nip width and/or pressure measurement. Indeed, nip width can often be
large enough to be conveniently measured by a simple ruler. If not, there are several kinds
of nip impression papers that will determine the shape of the contact between two
cylinders. These nip impression papers contain encapsulated dyes which break open
under a specified pressure. For example, Beloit Manhatten manufactures a nip impression
paper that is something like carbon paper. Similarly, Fuji film is a more capable nip
impression paper which can give a quantitative indication of the magnitude of the nip
pressure at any location by measuring the color intensity of the dye with a special optical
meter.

The application of these papers is to determine the width of the nip as well as its
shape which should nominally be rectangular. However, the pressure distribution of real
calender or winder nips varies tremendously across the width such that it is not unusual to
have contact over less than half of the length of the nip. Deviations of the contact shape
from rectangularity are used to diagnose problems such as caused by misalignment,
loading nonuniformity, deflection, roller diameter differences, and web caliper differences.

However, these products do have several application problems. First if nip width
is to be measured, the paper must be inserted into a disengaged nip which is then engaged.
Secondly, the activation pressure of the products are undesirably sensitive to temperature,
moisture and cross loading such as shear. Thirdly, they have a limited activation pressvure
range such that the low pressure at the periphery of the contact will not activate the dye so
that the nip is actually wider than measured. Finally, the measurement is difficult and
possibly dangerous to perform under actual running conditions so that its application is
usually limited to static tests.

Once nip width is measured and total lineal load determined by measurement or
calculation, then peak nip pressure can be estimated. This is based on the solution to the
Hertzian contact between two parallel isotropic cvlinders [115]. Though real nips are often
complicated by such things as anisotropy. sandwiched materials, or tangential loads such
as rolling friction, the pressure profiles still remain approximately parabolic. Thus

(98)  Opmax = 1277%

where Opax = pcak pressure near center of nip (psi)
p = lincal load (pli)
b = contact width (in)




Summary

Several methods of roll structure measurement have been described here.
Additionally, all of Chapter 6 will be devoted to the density analyzer as 1t 1s the most
modern of the roll structure measurement methods and that upon which this project is
based. Despite the number of measurements available however, most have only been
applied on a few occasions for specialized research studies and are unsuitable for
production monitoring. Even of those that are used in the production environment, their
application is generally sparse and irregular at best. Only on a fraction of all winders are
rolls monitored regularly with instruments.

Desirably, an ideal roll structure measurement would be one that is sensitive, easy
to apply, profiles with both diameter and CD, and directly based on the fundamental
parameters of web stresses. Unfortunately, none presently exists which meets all of these
criteria. Indeed, most of the methods fall short in several characteristics. Thus selection
for any application is a compromise [169, 171]. The need for a good fundamental roll
structure measurement, was the impetus for this thesis project. Of the desirable
characteristics, this project meets all but the profiling with respect to CD. Additionally,
this is the only new roll structure measurement method developed in more than a decade.




CHAPTER 6

THE DENSITY ANALYZER

Density

Web density in an unloaded condition, along with caliper (thickness) and basis
weight (weight/area) are properties that have been monitored for quality control in the
paper industry for many decades. Low densities of less than 0.01 1b/in3 are desired for
tissue and toweling where bulk (inverse of density) and absorbency are important.
Conversely, high densities of more than 0.042 1b/in3 are desired for LWC (lightweight
- coated and supercalendered) where the sheet is filled with clays and other materials to
provide a dense and smooth printing surface. The density for a typical grade of paper is
about 0.024 1b/in3 but may range as much as a factor of two, while film is similar at
typically 0.034 1b/in3 but has a much smaller variation. Density can be calculated from
basis weight and caliper as

99) p =2, where
P
b
C

density (Ib/in3)
basis weight (Ib/in2)
= caliper (in)

However, basis weight is usually given in units peculiar to a material such as 1bs/3000ft2
for paper and 1bs/1300 ft2 for board, and caliper may be given in mils (0.001").

Long before the density analyzer instrument was invented, it was noted that the
density of a web matenal increased with increasing ZD loading. In particular, high
wound-in-tensions produced high interlaver pressures and consequently an increase in
der iy that could be discerned with careful measurcments of roll diameter and weight. In
1967, Ul'yanov paicnted a density meter consisting of a tab inserted between layers of the
roll which was connected to a LVDT for measurement of radial deformation as additional
layers were added during winding [37]. He' ever, this crude device gave density only ata
single data point as » function of added wraps, and was not suitable for production
measurements.
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In the 1970's, winding literature began to use the term density synonymously with
wound-in-tension. This included an article in 1970 by Shvetsov who compared the
density of wound rolls to the unstressed density of the parent material [36]. He defined a
density index as

(100) density index = P
Po

where
p = rewound roll density (1b/in3)
po = unstressed material density (1b/in3)

He found this density ratio to vary from 0.80 to 1.09 for more than 600 rolls of paper
tested from several mills and proposed this measure be used for roll quality control. A
similar approach is used to estimate the amount of air wound into rolls of impermeable
material such as plastic film given in equation (79). In 1979, Hewinson obtained an
United States Patent for a winding machine design, which was claimed to control wound
roll density at a predetermined value, by winding inside a loop of belt which controlled the
circumference of the rewinding roll [23].

However, it was not until 1980 that the first practical measurement method for
density became available with the invention of a computerized roll density analyzer. This
development was headed by Eriksson of the Swedish Newsprint Research Center and
funded by a consortium of three corporations [19-21]. Since then, machinery builders
such as ASEA [14], Beloit Corporation [17, 18], General Electric [31], Jagenberg, Voith
[16] and Wartsila, as well as paper companies such as Abitibi Price [30], Champion
Internationa.. Norpac, St Regis Paper, and Tasman Pulp & Paper [32] have developed
similar instruments.

Today there are scores of density analyzers in use on paper mill reels, winders,
rewinders and unwinds throughout the world. Some of density analyzers are portable
PC's [17, 18, 30], while others are permanently mounted in benchboards or control
cabinets [14, 16]. Since its invention, most of the improvements in the density analyzer
have been incremental such as faster computers, higher count encoders and a better
coupling of :coders to the rotating roll and roller. The most novel development attempts
included closed toop control of density to a target value (unsuccessful). caliper
compensation schemes [16] (questionable), and changing from diameter based to length
based sampling [17] (practical) for monitoring several rolls simultaneously on duplex
winders.




Density as a Roll Structure Analysis Tool

While the density analyzer may not be the most common method of roll structure
measurement, its performance is by far the best documented in public literature. Eriksson
showed the effect of torque, nip and tension on wound-in density; the relationship between
wound-in and wound-off density of roll after long term storage; and the effect of wrap
sample size [19-21]. McDonald showed correlation between Rho hardness and density;
the effect of calendering (caliper) on density; and the effect of torque on density [30].
Odell's study was the most complete detailing the effect of source paper machine; the effect
of torque, nip, tension, speed, acceleration; splices; and set location on the parent log to
the density profile at the winder [32]. Similar studies were performed later by Granlund
[22], Komulainen [25, 26], and Holmer [24]. Additionally, several less technical papers
also proclaim the virtues of the computerized roll density analyzers [15, 27, 28, 33].

These many studies usually confirm the following conclusions about density

1. Density profiles follow those of other roll structure measurement methods
including the Rho hardness, Smith Needle, and wound-in tension.
Density is increased with increasing torque, nip and tension.

3. Wound-off density is equal or slightly greater than wound-in density after a period
of storage.

4. Density increases during acceleration., decreases during deceleration and drops
abruptly if the winder is stopped for a splicing operation.

5. Density has an undesirable sensitivity to changes in caliper or basis weight [16, 18,
30, 35]. As discussed later in this chapter, this cross sensitivity problem can be
eliminated by supplementing density measurements with caliper measurements.

Despite limitations of the density measurement, which will be discussed later, the
density analyzer possesses most of the attributes of an ideal roll structure measurement
[169, 171]. These include profiling with respect to diameter for diagnosing required
changes in the TNT's, recording capabilities, nondestructive testing, ease of use, and
moderate cost. Perhaps the two greatest advantages however, are the relatively high
resolution of roll structure changes, and the ability to be implemiented for automated on-
line production measurements. For these reasons, this measurement serves as a platform
for development of the stress measurement device invented for this thesis work.




Theory of Operation

The density analyzer, as seen in Figure 44, consists of a winder or unwind, two
incremental rotary encoders, pulse counters, and a microcomputer. One encoder is used to
measure web footage and is mounted on a roller or drum which travels at web speed. The
length of web run during the sample can be calculated as

101) 1 = T dd Pa,i
PPTdq
where
l; = incremental length for sample i (in)

dy = drum roller diameter (in)
Pq;i = drum roller encoder pulses for sample i
pprq = drum roller encoder pulses per revolution

Similar to gear calculations, the current rewound roll diameter can be calculated from the
ratio of the pulses of the two encoders as

(102) d;; = dg Pdi PPTr
Pri PPI4
where
dr; = rewound roll diameter (in)
dg4 = drum roller diameter (in)
Pq; = drum roller encoder pulses for sample i
Pri = rewound roll encoder pulses for sample i

ppry = rewound roll encoder pulses per revolution
pprdq = drum roller encoder pulses per revolution

However, the number of wraps, n, of material added during the sample interval is usually
fixed prior to running as

(103) n = ~—
PPI:

where n is typically an integer near 100 for typical web materials.
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Also, web surface speed can be calculated using elapsed time between samples as

[—

(104) N [‘

where
s; = surface speed during sample 1 (in/sec)
I, = incremental length during sample i (in)
t; = tme elapsed during sample i (sec)

which can be used for winding productivity analysis. Finally, with the addition of more
cncoders, accurate speed differentials can be computed between any two rollers or drums
equipped with encoders.




The pulses generated by the two or more encoders are counted by counter data
acquisition boards and passed to the computer for calculation. One of the encoders,
typically the rewound roll, serves as a timer for sample acquisition. In this mode, the
number of pulses representing a desired wrap count is loaded into the rewound roll counter
at the start of every sample. As the roll is winding, the rewound roll encoder pulses are
counted down from the preset value and the drum roller encoder pulses are counted up
from zero. When the rewound roll counter reaches zero, the contents of the drum roller
counter are latched and passed to the computer. Then, the rewound counter is set to the
preset wrap count and the drum counter is zeroed to start the acquisition cycle anew. At
each sample, length, speed, density and other parameters can be calculated as a function of
current rewound roll diameter.

The number of wraps in a sample interval selected by the operator has a large effect
on the performance of the density analyzer. If the wraps are set high, the noise of the
density profile as a function of wound roll diameter will be reduced but will have so few
data points that changes of short duration may be missed. Conversely, if the wraps are set
low, the plot will become so noisy that interpretation becomes difficult. Most density

_analyzers operate with large wrap counts corresponding to about one inch of diametral
increase between samples which yields fewer than 40 data points for the density versus
diameter plot of a typical paper roll.

The Density Calculation

Wound roll density, as its name implies, is nothing more than the weight of
material wound into a given volume. The derivation of wound roll density begins with
simple definitions for density, weight and volume.

weight
(105 p = vOlu%ne

(106) weight = (length) (width) b

T,
(107) volume = Z(dr - di.12) width

where
b =  basis weight (lb/inz)
d; = diameter of current sample
di.1 = diameter of previous sample




Solving equations (105-107) simultaneously for density and eliminating weight and
volume yields

4 b (length)

(108) =
g T (di2 - di_lz)

Though diameter in particular, as well as other variables in general, are constantly varying,
the average properties are determined over an entire sample and attributed to the midpoint
of the sample as seen below.

Sample i-1 Sample i

Diameteri-1 Diameteri tme

Though (108) could be calculated from results of (101-103), it is advantageous to calculate
density directly from measurements. Solving equations; (101) written for the average of
diameters at sample 1 and i-1, (102) written twice for diameters i and i-1, and (103)
simultaneously for density yields

2 b n? ppry
dg (pa.i - Pd.i-1)

(109a) p = (no caliper correction)

The constants in the equation (109) are; n which is the predetermined and fixed
number of wraps during a sample and termed 'wrapcount'; pprq which is the pulses per
revolution of the drum roller encoder; and dq which is the drum diameter. These constants
are all easily determined with great precision and will not contribute significantly to
uncertainties in the density measurement.

A pseudo-constant in equation (109) is the basis weight b, which is almost always
assumed to be a constant. but in reality varies due to web manufacturing fluctuations. As
seen from equation (99). any changes in cither unstressed material density or unstressed
material caliper will change the basis weight, which changes the density reading or
calculation.




Caliper Sensitivity and Correction

This cross sensitivity of density to caliper or basis weight changes has been
documented, but not widely appreciated. McDonald [30] showed that calendering of paper
increased density values over that of the uncalendered source material, and similar
observations have also been made by Voith [16]. The easiest way to see the effect of
caliper changes is to wind a roll composed of one or more webs with different gages that
are spliced together. The roll seen in Figure 45 has a sudden caliper drop of about 8%
over the diameter range of 30-34", which results in a similar increase in density of 8%

over the same diameter range. Similar results have been obtained by Roisum in previous
work [35].

The danger in diagnostics of density plots without caliper information is that a
change such as illustrated in Figure 45 could be misinterpreted as resulting from events
caused by the winding machine, such as changes in the TNT's. In this example, the
forces and loads of the winding machine on the web remained approximately constant.
However, the stresses were increased due to a reduction in material thickness over which
the forces acted.

In order to make the diagnostics of density plots more reliable, it is desirable to
separate the effects of material and machine. One way this can be accomplished,
developed by Baum [18] and Roisum [35], is to caliper correct density calculations.
Density can be caliper corrected if thickness measurements are made simultaneously with
diameter and length measurements from the encoders. From equation (99" basis weight
can be calculated from a measured (and assumed constant) unstressed maicrial density, a
measured thickness, and inserted into the density calculation equation (109a) yielding

2 po ¢ n? pprg
(109b) p =
P dg (pd.i - Pd.i-1)

A vivid demonstration of the effects of caliper variation on density was performed
by Scott Baum of Beloit who programmed the loading on a calender to vary with during
the course of processing rolls. This varying load cause a variation of caliper as high load
permanently compacted the paper more than lower loads. As seen in Figures 46 and 47
for a step and ri: 1p change r=<pectively, the uncorrected density follows inversely with
changes in caliper. However with caliper correction using equation (109b), the density
profiles become relatively flat corresponding to the ¢.pected and desirable near uniform
roll structure that was programmed into the TNT's of the winder for those runs.




However, caliper correction also works well on normal variations of caliper
resulting from manufacturing process fluctuations. Figure 46 shows a comparison of
density and caliper corrected density on a single roll which has a significant MD variation
in caliper. Though the caliper corrected density still contains some caliper information, the
plot shows a considerable reduction in 'noise’. With caliper correction, the effect of
changes in winding machine forces stands out more clearly, so that interpretation becomes
more reliable. In this example, the profile is a sudden step drop in the TNT's at a 20 inch
roll diameter superimposed on the typical smile profile of two-drum winders.

As mentioned earlier, the caliper corrected density is most closely related to the
loads imposed upon the web, while the uncorrected density is most closely related to the
stresses imposed upon the web. It might be tempting to conclude from this that the
uncorrected density has the closest correlation to the stresses predicted by the traditional
analytical winding models. However, this is not so because the winding models assume a
constant caliper, so that any caliper variations must be normalized out just as the caliper
corrected density has been. The best way to view this is that the radial stress boundary
condition is the load (ie caliper corrected density) divided by the current outer radius.

In this discussion there has been the implicit assumption that the density and
wound-in-stresses are related in a stronger fashion than simple statistical correlation that
has been well demonstrated. For example, perhaps there exists some conversion function
between stresses and density based on first principles modeling. As will be indicated the
end of this chapter and shown in the next, by extending the traditional winding models it is
possible to calculate density profiles from WIS profiles and material properties. However,
there would be little practical impetus to do so because stress models contain more
information than density profiles, so that information would be lost in the conversion.
Additionally, caliper corrected density like information can be converted to stresses from
strictly first principles modeling and is the basis of this project. A new roll structure
measurement, radial compression, will be described in the next chapter which has many
advantages over the corrected and uncorrected density calculations and is a direct input to
the outer boundary condition of the stress calculation model.

In conclusion, the traditional density calculation will show the combined effects of
both TNT changes and caliper changes, so that the separate contributions of each may be
extremely difficult to determine. A better approach is to monitor caliper to determine gage
consistency of the material being wound, from which changes required in the upstream
manufacturing can be determined. Then use the caliper corrected density (or better yet the
radial compression from Chapter 7) profile to diagnose roll structuring effects, from which
changes in the TNT's and other winding machine parameters can be determined.
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Raw Density Data

The raw data from the drum roller encoder as a function of sample number is a
straight line whose value at any point is proportional to the current rewinding roll diameter
as determined by equation (102) and illustrated in Fi gure 49. If the hardware is operating
properly, the plot will be a featureless line which would intersect the origin of zero pulses
at a zero rewound roll diameter.

However, there can be rare hardware errors where the sample may be double
triggered which gives a zero count for a sample as shown for sample number 2150.
Similarly, the trigger may skip a beat which would give a value twice the expected. These
physically impossible readings which occur perhaps once in every thousand or ten
thousand samples, cause a total disruption in the density calculation for two consecutive
samples. Fortunately, these events are easily detected through statistics. If the
significance of the spike by the Z-test exceeds 36 or 99.9%, this value may be replaced by
the expected value. More conservative criteria include removing data that has a probability
of less than 1/2n of occurring where n is the number of samples. The most conservative 1s
Chauvenet's principle which allows the removal (replacement) of a single data point if its
deviation ratio exceeds the standard deviation ratio.

Finally, the data set may contain a series of consecutive errant values if the winder
is stopped in the middle of a set such as occurs during a snapoff and splice. In this case, it
is not generally possible to correct raw data in that region because the data before and after
the stop are not synchronized. Therefore, the density profile must be calculated to the last
good point before the stop, and again from the first good point after the stop to the end of
the roll. Though the raw data can't be easily spliced across such an event, the calculated
density can be.

Density as a Derivative

In qualitative terms, density is a measure of the compaction of the material being
wound during a sample. Alternatively, a density profile represents a radial growth pattern
of roll diameters during consecutive samples as illustrated in equation (108). However,
density can also be viewed in its relationship to the raw encoder data by noting that it is
inversely proportional to the di.ference in drum pulses between consecutive samples as
seen in equation (109). As seen in Figure 50, the difference in drum pulses between
consecutive samples can be a noisy signal which varies about a small positive mean and
may contain numerous spikes. The degree of noise is primarily related to the sample size
interval set by the operator, as measured in inches of radial growth.
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Density is inversely proportional to the pulse difference between consecutive
samples from equation (109), and the pulse difference is effectively the first derivative of
the raw pulse data, which can be seen by writing the first derivative as a two point
backward finite difference approximation.

dp 1 Ly e
110a) 2 pt. . - = 2(p;-p;.1) + =h f
(110a) 2 pt. approx asl. . - (Pi-pit) + 5
where
p = pulses
1 =  sample number
h = base point spacing (=1 for this examples)

(1/2)hf" = leading error term

The reason that pulse differences, and as a consequence the density, can be very
noisy is because these calculations are derivatives of data, and taking derivatives of data
increases variation. From classical numerical analysis, we can increase the accuracy by
either decreasing the base point spacing (sample size), or by using higher order derivative
approximations such as

dp 1 1 12 o
110b) 3 pt. . — = ——(Pj+1 - Pi-1) - = he
(110b) 3 pt. approx asl._. = 2h (i1 - Pi) - ¢

d ARAR
(110c) 4 pt approx. 'd% T 215(2 Pis1 + 3P Hpia +Ppis2) - 1-12- h® f

and so on. Unfortunately, both decreasing base point spacing and higher order derivatives
increase noise considerably, so that this approach is not useful.

In practice, noise reduction for pulse difference and density calculations are best
achieved by summing raw data over a sufficiently large diameter increment. The one wrap
original data sampling size can be increased by summing to give a 20 or 40 wrap effective
sample size as shown in Figure 51. The higher the effective wrap size, the less noise in
the resulting plot, and the fewer the resulting plotted data points. So effective wrap size is
an operator selectable parameter which trades profile resolution for measurement
resolution. Depending on the quality of instrumentation, the material. the winder, and
operator preference, effective wrap size may vary from as little as 0.05" to more than 1.0"
on the diameter. Higher resolutions can be obtained by higher count encoders that are
tightly coupled without backlash to the roll and roller, web grades with high friction
coefficients that minimize interlayer and roll/roller slippage, and grades with uniform
caliper profiles.




Figure 51
EFFECT OF SAMPLE SIZE ON DENSITY
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Density Noise Reduction

The character of pulse difference or density noise can be studied using statistics to
describe the data distribution. As seen in the histogram of Figure 52, most of the data
roughly fits a normal distribution about a mean corresponding to the average density. In
addition, there are three outliers on the negative side and one on the positive side that
correspond to spikes in the data, but are not well described by a Gaussian distribution.
However, removal of these moderate sized outlying spikes (not to be confused with the
much larger spikes occurring with double or missed samples) and replacement with their
expected value did not have a significant effect on density noise because their overall
contribution was small. Even if the strength of this clipping filter was increased so that
more and more outliers are replaced by the local mean, the effect on density noise was
minimal until nearly all values were replaced by the local mean. which is the same as data
smoothing. Smoothing was also tried, but gave a disagreeable rounding or slurring of the
data if applied with sufficient weight to have an effect.

Another approach attempted to find a dominant frequency in the spectral content
that could be removed with a notch filter. However as seen in Figure 53, the pulse
difference data contains no dominant frequency components that would be eligible for
removal.
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However, another noise reduction technique that did perform well was the digital
low pass filter applied after the density calculation in the following loop,

PRINT "LOW PASS DIGITAL FILTER"
TEMP = DENS(1)
FOR Q% = 3 TO NUMSAMPLE%
DENS (1) = [DENS(Q%) + DENS(Q%-1) - TEMP*(1-2¥*LOPASS)] / (142*LOPASS)
TEMP = DENS(Q%)
NEXT Q%

where DENS(Q%) is the calculated density array f r effective sample number Q% of
NUMSAMPLE% total samples, TEMP is a temporary variable, and LOPASS is the filter
strength which was set at about 2 for an optimum.

After several combinations of noise reduction techniques were tried in various
orders, the following procedure seemed to give the highest profile resolution with the least
noise:

Double or missed samples are removed and replaced with a local mean.
Samples are summed to about 0.1"-0.5" effective diameter difference
Density or caliper corrected density is calculated.

Resulting density values are run through a digital low pass filter.

AW N =

Sizing Density Data Acquisition

The design of density data acquisition systems are restricted by hardware
limitations of computer memory, computer speed, encoder counts, encoder speed, counter
speed and the winder itself. Thus, the data acquisition system must be optimized for each
class of applications determined primarily by the nominal thickness of material, the
maximum rewound roll size and winder speed. Consequently, a svstem designed for a
carpet winder whose rolls may have only a few dozen wraps must be sized differently than
for a system on a paper machine reel which may have more than 10,000 wraps.
Fortunately. the uscful range of a particular svstem is usually wide enough to
accommodate most of the wound rolls produced on a particular winder. Additional range
can be easily obtained by switch selectable quadrature processing of encoder pulses, and
setup paramcters in the software application.




In this section, a system sizing example will be given for a series of runs made for
this project. The design goal of this project was maximum accuracy and resolution, while
winding speed was reduced as there were no production pressures in the lab environment.
However, designing for wide potential application did include using the ubiquitous IBM
PC-AT compatible microcomputer and commonly available data acquisition equipment
even though more capable equipment exists at higher cost and reduced availability. In
particular, the following input parameters are used for runs numbered 32-41:

minimum core outside diameter = dg pip = 4.0

maximum rewound roll outside diameter = dp pax = 30.0"

drum roller diameter = dq = 24.0"

minimum material caliper = ¢, = 0.003"

minimum computer memory sample array size = Sy, = 10,000
maximum count before overflow of counter or storage = cntp,, = 65,536
maximum winder speed = v, = 50.0 inches/sec

maximum encoder or counter frequency = f. = 1,000,000 hz (encoder)
maximum data acquisition sample rate = Ry, = 4 hz

The first consideration in sizing the system is the number of raw data samples that
can be stored in computer memory, which determines the minimum wrap sample size.

(dn max ~ dO min) (30 - 4)
- -l = - — e —_—— = 4
2 Cmin Smin 2 x 0.003 x 10,000 0.433

(]11) Dmin =

It is convenient to set the wrap parameter to a converient value, which may preferably be
an integer. If this was a production application, and in anticipation that the minimum
caliper will be somewhat less inside a roll due to interlayer pressure, the wrap count might
be set to 1.0 to extend the range of smaller caliper and/or larger maximum roll diameters.
However to maximize the resolution of this research project, a wrap count of n = 0.5 was
used.

Now the rewound roll encoder count must be sized such that overflow is avoided.
From equation (103), the maximum roll encoder pulses per revolution can be determined.

\ cnt, 65.53
(l 12) Pprr‘yﬂax = nn_ax_ = 5,.

= 131,072




However, accuracy considerations of the rewound roll encoder are not necessarily
correlated to increasing the encoder pulses per revolution, ppr, as with the drum roller
encoder. This is because the roll encoder serves as the timing mark for the start and end of
sampling, so that consistency of timing is the controlling parameter for accuracy. Though
higher count encoders will generally have better timing consistency (usually plus or minus
one pulse error), the once per revolution index pulse will have similar or better consistency
than the raw pulses, multiplied pulses or quadratured pulses. Indeed, applications where
the sample size is an integer number of wraps could use an extremely fast photoswitch
with a once per revolution target in place of an encoder. For example, the Automatic
Timing & Controls model number 7062AFRN4X4NLX photoswitch has a response of 15
ps [18]. At a high wound roll rotational frequency of 20 hz, the resolution of this
photoswitch would be equivalent to a 3,333 ppr encoder, and at lower speeds the
performance would be even better. Though there are no significant cost differences, the
advantages of compact packaging, flexible target positioning and a smaller number of
pulses makes fast photoswitches a viable alternative to rewound roll encoders. For this
project however, a single channel of a 2500 ppr encoder with a 10x multiplier was used
yielding ppr, = 25,000.

Next, the drum roller encoder must be sized so that its counter will not overflow at
large rewound roll diameters. Using equations (102) and (103), the maximum drum roller
encoder ppr can be sized as

dg cntpay 24 65536
Jtd Flmax 2% 09930y
drmax D 30 .5 858

(1 13) PPTd,max =
For these runs, two channels of a 2500 ppr encoders with 10x multipliers were fully
quadratured (x4) for an effective pulse rate of 170,000 ppr.

There are speed limitations for both encoders, both counters and the computer data
acquisition system that must be considered. The limitations are based on the maximum
rotational frequency of the drum roller and rewound roll. As seen in Figure 54, winders
may have a simple surface speed profiles composed of acceleration, run and deceleration
segments. The maximum ppr of the drum roller encoder is then determined by the
minimum of the encoder or counter frequency, maximum speed and drum roll diameter as

xdaf 1 (24) 1.000.000
(114) ppramax = Comae o = Y 1 508.000
Vmax 50

The lesser of the pulse rates from equations (113) and (114) must be used.




Figure 54
REWOUND ROLL SURFACE AND ROTATIONAL SPEED
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The rewound roll encoder rotational speed is somewhat more complicated than the
surface speed as seen in Figure 54, due to ever increasing roll diameters. The maximum
rotational frequency for the simple speed profile occurs at the end of the acceleration
segment. To calculate this maximum f{requency, the dia...cter at the end of acceleration
must first be calculated from core diameter, caliper and acceleration rate as

(1158) tace = 2%
accel

1
(115b) 1accel = by taccel Vmax

<

_ 4
(115¢) dy fmax = /\/~ laccel € + d~02
T

T dr,fmax fmax

(115d) pprymax =

Vmax

Similar to the drum roller encoder, the lesser of the values of equations (112) and (115d)
must be used for the rewound roll encoder pulse rate.




Finally, the maximum sample frequency of the data acquisition/computer/software
system must not be exceeded by setting the wrap count too small. This can again be
calculated from the diameter at the top of acceleration and the surface speed.

(116) Nmin = T dr fmax Rmax
min T T —

Vmax

In the case of wrap count, the greater of the values predicted by equations (111) and (116)
must be used.

From this design procedure, maximum resolution is achieved by sizing the wrap
count small such that available computer memory is filled as much as possible during a run
on a large diameter roll of thin caliper. This resolution allows easier detection and
replacement of errant data values. However, since averaging would always be required at
such small sample sizes, it may be practical to consider cascading counters and storing data
as long integers. For example, a 32 bit integer takes twice the memory as a 16 bit integer
but could store 32,000 times the number of counts. Maximum accuracy is achieved by
. increasing the drum roller encoder pulse rate such that the array storage at a large rewound
roll diameter is near overflow.

Another way in which memory storage could be optimized would be by storing
differences in pulses between consecutive samples instead of the pulse counts themselves.
These differences are much smaller, could be nested two per (integer) byte, and are all that
arc needed for the density calculation. However, there is a practical issue of calculating
diameter that requires the raw count. One way this could be accomplished is by storing the
first sample as a raw count and the remainder of the samples as count differences. From
this data, the raw count at any sample could be reconstructed as the sum of the first raw
count plus the sum of count differences to the sample being calculated. However, if there
were a hardware problem such as a missed or double sample, or a web break and splice,
the raw counts and consequently diameter may not be reconstructed reliably.

Finally. the data acquisition throughput rates can be increased by using an interrupt
driven minimal background data acquisition task of high prioritv coupled through a circular
buffer to a calculation and display foreground task of lower priority. In this mode,
samples are acquired immediately on rewound roll encoder countdown, while calculation
and display takes place as CPU time permits. Thus, the sample rate can be as fast as the
minimal data acquisition task rather than the entire requirements for processing a sample.

A more detailed discussion of hardware and software is given in Chapters 8 and 9
respectively.




Density and Stress

Though there have been many publications showing an empirical or statistical
correlation between density and stress, there is only a single article by Penner which tries
to establish a fundamental link between these two measures [139]. In this article, Penner
postulates that the increase in density can be calculated as the radial strain on the outer layer
as it is added under tension. From this he calculates a simple equation linking WIS to
density changes given radial and tangential moduli as well as current outer radius.

Unfortunately, this novel effort while yielding plausible results is neither general,
mechanically consistent, nor correct. The conversion is not general because the relation
assumes linear anisotropic moduli. The conversion is not mechanically consistent because
no core stiffness is included. However, the most serious problem is that the density is
assumed to change strictly due to the radial strain in the outer layer. However as seen
from equation (108), the density calculation is based on a change of diameters which has
two components. The first is an increase due to the addition of a web wrap of a given
caliper under no stress. The second is the superposition of the deformations caused by the
addition of the web wrap under stress. The deformations include not only the outer layer
but all layers beneath as well.

However, density can be calculated from WIS and an extension to winding models
as follows. First, the incremental radial and tangential stresses due to a single wrap are
calculated for all the individual wraps in the roll using a traditional winding model.
Second, the radial strain for each individual wrap can be calculated from the incremental
stresses and the radial stress-strain equation (7). Third, the incremental radial deflections
of each individual wrap can be calculated from the strain-displacement relation equation
(4). Fourth, the deformation of the outer surface due to stresses is calculated as the sum of
all the individual wrap radial deflections. Fifth, the new diameter is equal to the old
diameter plus the caliper of the wrap added, plus the sum of the wrap radial deflections.
Finally, the density can be calculated from the change in diameters.

It is also possible to calculate stresses from density as well by doing something like
the above procedure 1n reverse. However, a much better approach will be detailed in
Chapter 7 which bypasses the density calculation and uses diameter and caliper data
supplemented by a winding model. From the diameter and caliper data, radial
compress.on can be calculiated will be used directly as the outer boundary condition of the
model.




Summary

The density analyzer has been described in such detail here because it is one of the
more useful winding measurements and serves as a platform for this project. This chapter
has given a thorough derivation of the density parameter based on pulse counts from
encoders attached to the rewinding roll and roller traveling at web speed. Additionally, a
design procedure has been outlined as components i.ced to be selected for a particular
application. Finally, common data faults such as double triggering and noise have been
described along with solutions where known. Further information about density can be
found in Chapter 7 which details an extension to the measurement of stresses, Ch..;:ter 8
which describes hardware, Chapter 9 which describes software, Appendix C which gives
computer program listings, and the extensive Bibliography.

The density analyzer, in a procedure given by Roisum, was shown to be able to
statistically resolve roll structure changes better than most other methods [169, 171]. In
addition to the Backtenders Friend, it is the only roll structure measurement presently
available which can operate unattended in a fully automatic fashion. Finally, because of its
simple, small and rugged components, the density analyzer can be easily configured for
‘most winders. Thus, the density analyzer is currently one of the best roll structure
measurement devices due to its sensitivity, automation, and application as both a research
and production monitoring tool.

The only serious density limitations are its units of measure which are not directly
related to the fundamental parameters of web stresses, undesirable cross-sensitivity to
caliper changes, a floating reference due to the basis weight input, and the inability to
profile with respect to the CD. It is the first three of these four limitations that this project
will address. This is done by supplementing the density like information with caliper and
incorporating it into an extended winding model.




CHAPTER 7

A NEW WINDING MODEL FORMULATION

Why a New Approach is Needed

Most winding models use a similar formulation of a second order differential
equation with two boundary conditions that are written and solved in an accretive or
iterative manner as wraps are added from the core to the finish diameter. The differential
equation is determined primarily by material and geometric properties, the core boundary
condition by core stiffness, and the outer boundary condition by an assumed wound-in-
stress. Unfortunately, the wound-in-stress profile is rarely known for real winding
systems except for two rather limiting situations of a centerwinder equipped with caliper
and tension measurement, or a unique lab rewinder called the WIT-WOT [166,167]. As a
consequence, useful application of winding models is not only limited by the lack of
analyvtical roll defect theories and roll structure design criteria, but also by the lack of
know..edge of the wound-in-stress which is a vital input to the winding models. Ience
while winding models have given some useful insights, their application remains for the
most part an academic exercise.

If the winding model could be reformulated such that all necessary inputs were
relatively easy to obtain, useful application could be immediate even without roll structure
optimization algorithms. This could be accomplished by comparing stress distributions of
rol. that are judged acceptable with those that are rejected, where the judgement may be
made by roll structure measurements, statistics. empirical approximations or simple
subjective observation. This comparison of stress distributions between rolls would be as
a function of both controllable parameters such as wound-in-tension, and uncontrollable
parameters such as material properties. With such knowledge, one can adjust controllable
paramcters such that the stress distribution approaches that of rolls deemed to be
acceptable.




More specifically, if the winding model can take many of its inputs from online
measurement during winding, the inferred stress distribution can be used as a roll quality
monitor. Furthermore, if computations can be made accurately and quickly, a computer
could adjust controllable inputs in closed loop control so that the inferred stress
distribution closely matches a target stress profile. Finally, when roll structure
optimization routines are developed [128], the reformulated winding model could serve as
the nucleus of a control strategy that can enhance the quality of winding to the accuracy of
the measurements, and to the degree which the model reflects real behavior. Thus,
reformulating the winding model in terms of inputs that can be measured online could
revolutionize winding through quality control measurement, simple control, and optimized
control.

Another major benefit of a new winding model is that it enables the development of
the first practical measurement of stresses for research or production quality control.
Though there are other methods described in Chapter 5 that can also measure stresses, they
all have rather severe limitations of either sensitivity or ease of application [169, 171].
However, the new measurement model is sensitive, automated and easily applied on most
winders or unwinds.

Overview of the New Model

The primary difficulty with present winding models is that the outer boundary
condition of WIS (wound-in-stress) is often difficult to determine for many real winding
conditions. Reformulation of winding models, which presently assume a WIS profile, to
a method where required parameters can easily be measured involves recognizing that all
current winding models are determined systems. These systems are composed of
constitutive equations which can be assembled and reordered, so that the physics of the
wound roll is described by a second order differential equation. As seen in Chapter 3, the
constitutive equations can be reordered, so that equivalent differential equations for the
determined system can be written in terms of stresses, strains or displacements. In each of
these formulations, both the inner and outer boundary conditions vary with the
formulation.

Presently, the traditional winding models are written in terms of radial stress which
requires a known radial stress boundary condition at the outer surface which is computed
from the WIS using equation (28a). IHowever, this new model can reformulate the same
constitutive equations into a differential equation written in terms of displacements. The
advantage, as will be seen, is that the boundary condition at the outer surface can be
obtained from density-like measurements of diameter supplemented by caliper. Thus, the

reformulation to a new and casily measured boundary condition is the essence of this
work.




However in addition to the reformulation, this new model requires a more complete
solution to the physics of a wound roll than traditional models. This is because in addition
to radial and tangential stresses which both approaches yield, the new model also requires
that strains and displacements be solved as displacement in particular is intimately tied to
the outer boundary condition. Thus the new approach is a superset of traditional models.

Another difference between the traditional and the new approach is the direction of
the solution. Present models begin with an input of a WIS profile and output calculated
radial and tangential stress profiles. However, the new model begins with an input of a
displacement profile from diameter and caliper measurements and outputs a WIS profile
with the radial and tangential stress profiles resulting as intermediate calculations. Thus in
a certain sense, the new approach is a solution of an extension of the traditional winding
models in reverse.

In this chapter, two complete, correct, independent and mechanically consistent
solutions of the measurement of stresses during winding are given. The first solution, the
Displacement Formulation, was primarily written in terms of displacement as it 1s in the
. closest form to the measurable boundary condition, and stresses are calculated at the final
step. The advantage of this approach is simplicity. However, the Displacement
Formulation will be shown to be computationally time-consuming as extremely small grids
are required to obtain a required accuracy for highly nonlinear and/or anisotropic materials.
Thus a more practical and efficient solution needed development, which resulted in the
Extended Hakiel Formulation which though more complicated, has a greater computational
efficiency. Even so, scveral new numerical techniques are needed as the Extended Hakiel
Formulation requires more calculations than the conventional Hakiel model. Both
formulations will be discussed in detail in this chapter.

A comparison of the solution steps for the traditional, Displacement Formulation
and Extended Hakiel Formulation is given in Figure 55. As evidenced here, the new
models are more extensive than the traditional model as in addition to stresses, the strain
and displacement fields must also be calculated. Though the new models require more
steps, these additional calculations are not very involved because they are based directly on
the constitutive equations which are much simpler to solve than the differential equation
which is at the heart of every winding model. However it must be stressed that despite the
different appearances of the <olutions, they are all mechanically consistent in every way as
they result from the same constitutive equations. Consequently, the new models share the

identical set of assumptions and limitations as the traditional winding models.
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However, the new approach has one very distinct difference from traditional
models in that it is more than just a model. Rather, it is a methodology for measuring
stresses using any consistent winding model given diameter and caliper measurements.
Consequently beyond the immediate implementation of this new approach, the future
benefits are that it is both flexible and extensible. It is flexible because it cares not what
sensor technique is used to measure diameter and caliper, only that they are available.
Furthermore, it cares not what winding model is used, only that it is mechanically
consistent.

Thus, this methodology can grow to accommodate both improvements in
measurement as well as winding models. If the measurement of diameter or caliper could
be made more accurately by lasers for example, it could be directly input into the stress
measurement algorithm. Similarly, if winding models are extended to include anelastic
behavior or air entrainment, this methodology can be applied provided that the model is
mechanically consistent and is thus able to calculate strains and displacements in addition
to stresses. Finally, this methodology is one of the few technologies that directly connects
analytical and experimental winding sciences as discussed in Chapter 1.

To summarize, the measurement of stresses during winding takes diameter and
caliper measurements and outputs WIS, radial, and tangential stresses. The calculation is
based on the physics of wound rolls which describe how the outer radius must grow due
to the addition of wraps and deform due to the addition of these wraps under a wound-in-
stress. Though the measurement of stresses is indirect, so are many other common
methods. An analogy is a spring scale which takes deflection as its input and outputs a
force, where the calculation is the familiar spring equation.

The remainder of this chapter begins with the description of the new outer
boundary condition which is the essence of this new technique. This new outer boundary
condition can be nondimensionalized to Radial Compression which can be a stand-alone
technology and has many advantages over the density calculation. Next, the consttutive
and differential equations for both the Displacement Formulation and Extended Hakiel
Formulation are assembled and solved. These sections include derivations of the finite
difference approximation of differential equations as well as their solution technique.
Finally, the measurement of stress methodology is evaluated by comparing the outputs of
the two new models with synthesized and real WIS data. Additionally, a more extensive
treatment of sensitivity analysis is given in Chapter 10 and the appendices contain both
computer code and output for the new model.




A New Outer Boundary Condition

The outer boundary condition of current winding models requires a force, tension
or stress measurement as a function of winding radius. This force measurement is
extremely difficult to accomplish in practice, even in a laboratory environment. After
considering numerous alternative measurements of some characteristic of the outer
boundary, diameter or radius might be a prime candidate because of its ease of online
measurement to high accuracy using encoders and the density analyzer approach. Since
there is no closed form equation relating roll radii to WIS, the constitutive equations must
be reformulated and reordered in terms of displacements instead of the customary radial
stress under the outer wrap.

The boundary condition for this new approach to winding models begins by noting
how a roll grows with the addition of a single wrap, which is modeled traditionally as a
hoop. This growth from one diameter to another is the superposition of two effects.
First, the roll will tend to increase in radius by the thickness of the wrap added. Secondly,
the roll will tend to deform inward as the addition of a wrap under tension will increase the
incremental radial stresses of all layers in the roll due to the additional interlayer pressure.
As seen schematically in Figure 56, the compaction is greatest for the outer layers and
rapidly decreases with depth. Subjectively, the rapidly decreasing compaction with depth
1s due to the self supporting nature of the rings. Quantitatively, this decrease is directly
due to the incremental radial stress profile which also decreases rapidly with depth.

The ncw boundary condition is casiest to understand if the effects of caliper
addition and roll deformation are separated into two steps. Figure 57 shows a general
diagram of a roll with j wraps, upon which will be added the kth wrap. Focusing on the
kth wrap, if it is first added in an unstressed condition, as in the center diagram, the roll
would then assume a diameter of ry = Tj + ck. However. as wrap k is added under a
wound in tension, a pressure is developed between wrap j and wrap k. As a consequence,
the thickness of wrap k is reduced from cy to ¢y (1 + €rk)- Similarly, the incremental
interlayer pressure increases will cause all wraps under wrap j to decrease in thickness,
thus radius T will decrease to rj' and so on. The core, which is the foundation of the
wind, will also decrease slightly in radius in response to increasing radial compression.
Thus, each of the layers of the roll as well as the core will experience an incremental
decrcase in thickness due to the incremental increase in interlayer compression as
quantified by winding models and illustrated in Figure 56.




Figure 56
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Note: This schematic is for the change in thickness due to incremental radial stresses. The actual
thickness profile will follow the accumulated radial stress distribution where the compaction will
be near uniform throughout except that it tapers to zero at the outer boundary.

Figure 57
RADIAL DISPLACEMENTS
Roll Before Roll After Roll After
Wrap Addition Wrap Addition, Wrap Addition,
Wrap Unstressed Wrap Stressed

ck (I +ery)




However, though the distribution of layer compaction or deformation will need to
be eventually solved, at this time the outer boundary condition is of greatest importance.
The essential observation that can be made from the new boundary condition illustrated in
Figure 56 is that the displacement of the outer radius of the roll tends to increase by the
thickness of the added wrap, ¢, and simultaneously decreases by an amount wj due to
summation of the incremental compaction of all layers, wy. Though the roll would tend to
increase its radius by cy, any positive WIS on wrap k will reduce the radial increase by
-wg. Thus, from the figure,

(117) g = Tj + Cx + Wk

where wy is defined as positive outward, but will be negative for real winding systems.
Rearranging the terms and noting that sample sizes for data acquisition and grid sizes for
model calculations need not necessarily be the same as wrap or caliper thickness, we can
rewrite the outer boundary condition, equation (117), into its final form as

. (118) Wi = rk rJ) 2 Ck,n

n=1

where
wg = the stress induced radial displacement of outer ‘wrap' k (in)
defined as positive outward
rj = radiusatsample j (in) after addition of wrap j
rx = radius at sample k (in) after addition of wrap k
Z = summation of the number of real wraps corresponding to a
N wrap data acquisition or calculation sample size
the unstressed caliper of the N wraps comprising sample k (in)
rj’ = radius to sample j (in) after addition of a wrap k

[¢]
s
I

Thus, the outer boundary condition has been reformulated from wound-in-
stresses, which are difficult to determine, to a radial displacement wk. The relevance of
equation (118) is that the terms of the right hand side can be measured easily during
winding or unwinding. The radii T and ry can be measured with great accuracy using
incremental encoders and equation (102). The caliper, under web tension. can be
measured with various sensors in the sheet run just upstream of the winding roll.




The application of the new measurable boundary condition, the radial deformation
of the roll's outer surface given by (118), is immediate for the Displacement Formulation
which is written in terms of radial displacement. However, other differential equation
formulations can also make use of the boundary condition, albeit more indirectly. For
example, another way the boundary condition can be obtained is to sum up the individual
compactions of all the individual layers as well as the core. This results from constitutive
equations given in Chapter 2 such as the incremental radial strain displacement with its
finite difference approximation

dw Wi - W1
119 | = — = —
( ) ER,i ] h

If the radial strains are summed for each individual layer from the core to the current outer
surface then

k
(120) wx = wo + h D, eg;
1i=1

which says that the radial deformation of the outer surface is equal to the core deflection,
w(, plus the average thickness multiplied by the sum over all layers of their incremental
radial strains. The core stiffness definition, given as equation (16) in Chapter 2 can be
solved for the core deflection as

Io ORO
Ec

(121) wq =

The final form of the deflection of the outer surface is obtained by inserting the core

deformation equation (121) and the anisotropic radial stress-strain relations into equation
(120) yielding

OR,i OT,
B "TE
R

k
(e)
(122) wy = rOERO +hY
C 1=

Thus, equation (122) can be used to calculate the deformation of the outer surface
due to the meremental radial and tangential stresses obtained from conventional winding
models. One application of (122) is for the Extended Hakiel Formulation where an
assumed WIS is adjusted until the measured (118) and calculated (122) incremental outer
dcformations are cqual.




Caliper Cautions

The application of the new boundary condition requires both a careful measurement
of diameter and caliper, and a clear understanding of what caliper means. Careful
measurement is a requisite because as seen in (118), the calculation for deformation is
subject to numerical errors resulting from what is known as small differencing. In other
words, the radius difference, deformation and caliper are all extremely small compared
with the radius. Thus, small uncertainties in measurement will have a large effect of the

deformation calculation. Addi-‘onal information on caliper measurement can be found in
Chapter 8.

The second requisite is that the caliper used in that equation is a stack property
which is the arithmetic average distance between layers in a stack which is completely
unstressed. This is a direct result of the superposition, illustrated in Figure 57, of the
stress induced radial deformations onto the radial growth due to the addition of the
thickness of an unstressed web. Typically however, caliper is measured in real systems
. under a state of biaxial loading. First, the caliper measured on a free span of a web
processing line in under a state of MD tension which is required for web transport.
Secondly, all contacting caliper gages and even some non-contacting gages exert a ZD
compressive load upon the web in the measurement area.

Fortunately however, caliper measured under biaxial loading can be converted to
the unstressed caliper required by (118) using simple stress-strain relations for the linear
anisotropic case. This begins by noting that when a web is under stress, it experiences a
through-thickness strain and change of caliper as

(123) Cstressed = Cunstressed (1 + eR)

where in this case, €g represents the through-thickness strain. Solving equation (123) for
unstressed caliper and inserting the stress strain relation (7 < ives

Cstressed

Cunstressed = —
(1 +

(124)
Or oT

Er HTE?




The two contributions to the biaxial load are the ZD measurement pressure Og, and

the free web MD tension induced stress o which is the web tension divided by caliper.
Depending on the application and material, one or both of these terms can be quite

significant. Though the web tension contribution to thickness changes for the paper used
the this project's experimental validation are not significant because the poisson ratio is
near zero, the ZD pressure contribution can't be neglected because of the soft radial
modulus.

However, the nonlinear radial modulus of typical materials poses a problem for the
direct application of (124) because the stiffness is a function of pressure. Fortunately, this
1s easily addressed by using radial stress-strain curves to calculate the change in radial
strain for a stack initially at a ZD measurement pressure as it is completely unloaded. This
radial strain is equal in magnitude and opposite in sign as the radial strain given by loading
from zero to the measurement pressure. This value can be obtained directly from stress-
strain curves such as given by Figure 17, or indirectly from the radial modulus. For this
project, the ZD caliper measurement sensor imposed a ZD pressure of 7.3 psi. This caused
a theoretical radial compaction due to a caliper gage measurement pressure of 8.8%, 6.9%
and 2.7% for the NC, LWC and coated board respectively. However, even this caliper
correction is somewhat simplistic in that there are some bending stiffness edge effects
around the periphery of the gage area that reduce the deformation due to gage load. Thus,
the actual corrections needed will be smaller than predicted by the simplistic approach
described above.

Thus, the caliper read by the gage may be significantly lower than the unstressed
thickness of the web and consequently must be properly accounted for. This is especially
important in light of the fact that the compression due to interlayer pressures and the
pressure due to caliper gage measurement may be of similar magnitude. Thus, the
importance of this correction cannot be overstated. Even the author who derived these
corrections did not apply them at first, until the resulting radial compression and stress
calculations yielded nonsense which was traced back to a serious oversimplification of
taking the caliper readings at face value. The moral here is that instrument calibration and
proper operation is not enough, one must understand what the instrument readings actually
imply. In the case of contacting caliper measurements, the load applied by the gage affects

the readings such that actoal thickness is underestimated.




Radial Compression

While wound roll stresses are the ultimate goal of this project, their computation is
relatively complex and time-consuming. Additionally, some quality control programs may
not need the fundamental parameters of stresses to simply discriminate relative changes in
the winding roll. Indeed, nearly all of the most common roll structure measurement
methods use arbitrary monotonically increasing scales such as Rho, Schmidt, Smith and
density, which cannot be directly related to stresses. Therefore, it would be appropriate to
determine if some simple intermediate parameter based on the existing measurements of
diameter and caliper might suffice in lieu of more complicated stress calculations.

One possibility would be the radial displacement of the outer surface during
winding as given by equation (118). In some ways, this is an ideal simple parameter
because it easily calculated, and is very closely related to the WIS. This relationship is
monotonic because increasing the WIS will increase the inward radial deflection for any
combinations of input parameters. Additionally, since the outer boundary condition singly
drives the solution for WIS, there is obviously a close relationship. Thus, radial
displacement profiles will match closely in shape, though not scale, the other roll structure
profiles such as hardness, and tension.

However, radial displacement does have two drawbacks as a roll structure method.
The first, though relatively minor, is that the values of radial displacement are extremely
small numbers which may not be intuitive to many of the operators who might use such a
system. More important however, the value of radial displacement depends on caliper and
sample size. For small samples, radial displacement is directly proportional to the radial
difference between consecutive samples. Thus, a 20 wrap sample will deflect twice as
much as a 10 wrap sample for a given caliper. Similarly, a 10 wrap sample on thicker
material will deflect more than on a thinner material. Thus, radial displacement has an
undesirable cross sensitivity to caliper and sample size.

A simple solution to this problem is to nondimensionalize the radial displacement
with respect to either caliper or measured differences in radii between consecutive samples.
Furthermore, if this value is changed in sign so that positive WIS yields a positive
calculation, as well as multiplied by 100 to express as an intuitive percent, we now have an
ideal, simple, and intuitive calculation. This new parameter, called Radial Compression,
which is derived from minor manipulations of the new outer boundary condition, is simply
calculated as




1/U

N
2 ) ckn - (dk-dj)

n=1

N
2 Z Ck,n

n=1

(125) | Radial Compression = Ry = (100%)

As seen in equation (125), the Radial Compression calculation is derived directly
from easily obtained measurements. The numerator is nothing more than the negative of
the displacement boundary condition given by (118), while the denominator is the
nondimensionalization by the measured caliper of the sample. The 2's in the numerator
and denominator simply convert from radii to diameters, and the 100 multiplier gives
percent. The nondimensionalization by caliper is not to imply that the compression takes
place strictly within the sample zone as is assumed by the simplistic density calculation.
As indicated in Figure 56, the compression though greatest at the OD extends to the core.

An example of a Radial Compression profile of a roll wound with a step decrease
is shown in Figure 58. This figure shows the typical smile shaped profile of two-drum
winding upon which is superposed a step reduction in the TNT's. What is striking about
this figure is the extremely small spatial resolution of displayed points and the absence of
measurement noise. These desirable characteristics are not shared by any current roll
structure measurement method. Though Radial Compression has a distar: ancestry in the
density analyz -, it has several distinct advantages.

1. Radial Compression accounts for caliper variations which increases the resolution
of the measurement tremendously. As will be shown in Chapter 10, the
statistically measured improvement in roll structure resolution is one to two orders
of magnitude over currently used methods!

3]

Radial Compression requires no web properties to be input by the operator, but
rather measures all quantities needed after the system is initialized for encoder
counts and roller diameters. Conversely, basis weight is a required operator input
for density giving the resulting calculations a floating reference depending on the
value given for basis weight.

3. Radial Compression has no zero offset. Thus while Radial Compression is zero
for WIS = 0, the density will be the unstressed density of the materials which can
vary from 0.01 to 0.05 1b/in”3 for paper grades alone.
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4. The Radial Compression values are typically a few percent which is intuitively
easler to relate to than the small ©* imals given bv density.

5. Is closely related to the fundamental properties of stresses, as it is a
nondimensionalization of the outer boundary condition which drives the stress
solution.

In conclusion, while Radial Compression was not the ultimate goal of this project
of measuring stresses during winding, it was a very fortunate intermediate outcome. It is
in many ways an ideal production quality control measure because of its extreme
sensitivity, ease of measurement and calculation, and the intuitive nature of the scale.
Thus while it may not satisfy some research needs, its application in a production
environment can justify its development. Finally even if stresses are the ultimate roll
structure measure, the Radial Compression calculation is not in vain as it is a
nondimensionalization of the outer boundary condition for the two models given in this
chapter. Additionally, Radial Compression provides a quick check of data integrity before
length stress calculations are performed.




The Displacement Formulation

As indicated earlier, two stress calculation models were developed. The first given
here is the Displacement Formulation which is the simpler of the two, but as we shall see
suffers from numerical calculation difficulties. This model is derived by first writing the
winding differential equation in terms of displacements because the outer boundary
condition is already in terms of displacements, although the core boundary condition will
need reformulation. Next, the finite difference approximations are developed and the
matrix solution technique selected. Finally, the model is run using simulated data to
evaluate accuracy, numerical difficulties and sensitivity.

Though this particular model is of more academic interest because numerical
difficulties preclude practical application for many real systems, several interesting points
about winding models in general will be discovered. First, that while the radial stress
gradient must be included in the derivation, the tangential gradient does not appear.
Second, the technique of simulating data sets can indirectly verify models over parameter
ranges that can't be accommodated by other models. Thus, Hakiel's model was
independently verified for nonlinear radial moduli which are not covered by other models
such as by Altmann and Yagoda.

As indicated in Chapter 2, winding models must obey the constitutive equations for
the physics of the wound roll. However as indicated in Chapter 3, the constitutive
equations can be assembled in different orders to result in second order winding
differential equations written in terms of stresses, strains or displacements. Thus, the
Displacement Formulation begins with the constitutive equations

equilibrium

dogr
126 — 4+ 0r—-or =0
( )rdr R T

from the radial strain displacement (4) and stress-strain (7)

dw OR oT
127) & 2SR 2T
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and from the tangential strain displacement (6) « «tress-strain (8)
oT OR
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Solving (128) for tangential stress yields

UrRTEToRr + ERETwW
OoT =

2
(129) r Er

Inserting (129) into (127) and solving for radial stress yields

Er (rg\l + UT W)
dr

(130) or = -
rlug pr - 1)

The first derivative of the radial stress with respect to radius can now be obtained from
(130). However, care must be taken here as to what terms of the equation may vary
directly or indirectly with radius which will result in cross product terms that have been
omitted by previous authors (see Chapter 3). Since radial modulus varies directly with
interlayer pressure, it will also vary indirectly with radial position. Therefore, it must be
regarded as a variable for the purposes of taking the derivative. However, the Poisson
.ratios are assumed to be constants for simplicity and because the winding models have a
demonstrated insensitivity to these material properties. Note that the derivative does not
include tangential stress so that the derivative cross product is not a parameter of the
wound roll physics as is the radial modulus derivative. Thus because all formulations are
equivalent, the radial modulus gradient must be included in any derivation (of nonlinear
radial modulus models) while the tangential modulus gradient need not.

The next intermediate steps in the derivation will not be included in entirety because
of their lengthy expressions. They were solved using a symbolic math application,
Mathematica, running on an Apple Macintosh. In outline form, the derivative is performed
on (130) as indicated above. Next, the radial stress equation (130) is inserted into the
tangential stress equation (129). This tangential stress result, as well as the derivative of
radial stress from (130) and finally the radial stress expression (130) are all inserted into
the equilibrium equation given by (126). Finally, the winding differential equation written
in terms of displacements is reduced to standard form so that

a3 29V ATSE 4 Bw = 0

dr- T
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131a) A = 1 TP L
(131a) + Mt Ex HR Ex dr
-Er purr d Er
131b) B = +
( ) ERr Er dr

and the terms enclosed in the boxes represent the higher order terms resulting from taking
the derivative of the radial stress expression given by (130). It is interesting to note that if
these terms are deleted for the case of linear anisotropy, then the coefficients reduce to
exactly those given by Altmann [127]

E
(BmA=1+w_lm)
Er
'ET
131d) B = -~
(131d) Ex

The next question, one of practicality, is whether these higher order terms are
significant for nonlinear radial moduli models. While it is difficult to make generalizations
because of the wide variety of material properties for real winding systems, several test
cases indicated the following. First, the higher order terms are only needed for nonlinear
models. Second, the high order terms seem to be small for Hakiel's radial stress
formulation [132, 133]. However, the high order terms may be quite significant for the
displacement formulation for nonlinear radial moduli. In particular, the high order fourth
term given by (131a) can be of the same order of magnitude as the first and third terms.
Without its inclusion, nonlinear radial moduli cases weren't calculated properly.

Finally, the differential equation given by (131) and the coefficients given by (131b
& ¢) hint at numerical difficulties that will be demonstrated shortly. First, the displacement
field has a much higher gradient than the radial stress field as indicated best by the
derivative ¢iven in (127). High gradients increase the propensity for numerical
approximaaon and roundoff errors.  Secondly, the inclusion of yet another significant
derivative term. the high order radial modulus derivative in (131a), can pose problems
because numerical derivatives increase numerical noise.
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Since the critical outer boundary condition has been reformulated from stresses to
radial displacements, the core must also be reformulated to displacements. This begins
with the definition of core stiffness is given from Chapter 2 as

(132) E, = SR

W/T =

The strain-displacement equations (4) and (6) combined with the stress-strain relations (7)
and (8) can be combined to solve for the first derivative of the displacement at the core in
terms of E., material properties, and displacement at the core as

dw
(133) I

_ 'W(’Ec + ur Er + HRHTEC)
Ir=Tp ERr

This core gradient boundary formulation in terms of a displacement field can't be solved
directly, but will be ultimately solved as a finite difference formulation.

Finite Difference Approximations to Differential Equations

Although there are other methods for solving differential equations, one of the
simplest and most general method is perhaps the finite difference approximation first
applied to winding models by Hakiel [132, 133]. In this method, the first and second
derivatives are approximated by difference equations. The first derivative for examp:- is
approximated by the difference in values (rise) between two neighboring points divided by
the grid spacing (run) which is analogous to slope. This is an example of a two point
forward difference approximation of the first derivative. Additionally, the coefficients
depend on the base point about which the derivative is computed. Finally, there are higher
order approximations using more points to compute the approximation even more
accurately. The approximations can also be derived for second and higher derivatives.
Tables 7a and 7b give the finite difference approximations for the first and second
derivatives using from two to five points.




Table 7a
1ST DERIVATIVE FINITE DIFFERENCE APPROXIMATIONS

af - fi + E
dx b - x mtha‘ *

where: f = function of x
xj =  base point about which the derivative is calculated, with equal base point spacing h
m, a; = coefficients
E = leading error term
i a, aj ay ajz ag E
Two point (m=1) O -1 1 -1/2 h "
1 -1 1 1/2 h f
Three point (m=2) 0 -3 4 -1 1/3 h2 "
1 -1 0 1 -1/6 h2 £
2 1 4 3 1/3 h2 "
Four point (m=3) 0 -11 18 -9 2 -1/4 h3
] 2 3 6 -1 1/12 h3
2 1 -6 3 2 -1/12 W3
3 2 9 .18 11 1/4 h3 ™
Five point (m=4) 0 -50 96 =72 32 -6 1/5 h4
1 6 20 36 -12 2 -1/20 h4 £
2 2 -16 0 16 2 1/30 hé £
3 2 12 -36 20 6 -1/20 hé4
4 6  -32 72 -96 50 1/5 h4
Table 7b
2ND DERIVATIVE FINITE DIFFERENCE
APPROXIWATIO’\IS
e 2 afi + E
dx? X = X; m' h
where: f = function of x
xj =  basc point about which the derivative is calculated, with equal base point spacing h
m, a; = coefficients
E = lcading error term
i a, aj as aj ay E
Three point (m=2) 0 1 -2 1 -1 h{"
1 1 2 1 1/12 h2
2 1 -2 1 1 hf"
Four point (m=3) O 6 -15 12 -3 11/12 K2
! 3 -6 0 -1/12 W2
2 0 3 -6 3 1/12 w2 o
3 3 12 -15 6 11/12 h? F'
Five point (m=4) 0 35 104 114 -56 11 -5/6 T
1 11 20 6 4 -1 1/12 h3
2 -1 16 -30 16 -1 1/90 h%
3 1 4 6 -20 11 -1/12 3 o
4 11 56 114 -104 35 5/6 h3




On the the first decisions that must be made on finite difference approximations is
the order of the approximation. As seen in Tables 7, the error terms given in the last
column decrease in size as the number of points used in the approximation are increased.
However, the increase in accuracy comes at a cost of longer computing time per derivative.
Typically, the net computing time should decrease with increasing order of approximation.
However, both the Displacement Formulation and Hakiel model computed faster to a given
accuracy for the cases tested using a 3 point rather than a 5 point approximation. Although
the 3 point approximation was ultimately selected for application because of speed and
simplicity, both are included here for completeness.

Once the order of the approximation is selected, the finite difference
approximations are substituted into the derivatives of the winding differential equation.
Then, like terms are collected. The simplest example will be demonstrated here for the
internal layers of the Hakiel model. From Table 7a for the three point central difference
approximation (m=2, i=1), the first derivative is approximated as

dog|  _ (1)org1 + (0)or, + (1)Orjer

134
S A 2h

Similarly from Table 7B for the three point central difference approximation (m=2, i=1),
the second derivative is approximated as

d’or|  _ (1)ors1 + (-2)or, + (1)Orje1
dr2

(134b)
I=r; h2

The derivative approximations (134) are then inserted into differential equation given
earlier

2
(135) 240k Arddﬂ + Bog = 0
r

dr?
to give
(136)
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Finally, the terms are multiplied out and collected on common radial locations of j-1, j and
j+1 as

r(2+Ah)

(137)
2 h?

ORrj1 + B - 2r2_J0R‘J- +

2-Ah
[——————————r( ) ORrj+1 = 0

This equation represents the finite difference approximation for the winding
differential equation written in terms of radial stress for the jth layer. Similar equations
must be written for all of the other layers in the current roll size. These will be assembled
into a linear system of equations in matrix form as

(138) [A] {x} = {B}

where

[A] = asquare matrix composed primarily of coefficients of the finite
difference approximation of the winding differential equation,
written in terms of displacements (or stresses or strains)

{x} = a column matrix of unknown displacements (or stresses or strains)
for each layer

{B} = acolumn matrix containing the displacement (or stress or strain)
outer boundary condition which forces the solution

This system of equations will be assembled as shown in Figures 59 where the first
layer corresponds to row 1, and the outer layer corresponds to row n. However, the
layers adjacent the core and the outside posed even additional complications for both the 3
and the 5 point approximations. First in addition to the differential equation, they must
also contain the finite difference approximation of the boundary conditions. The inner
layers must incorporate the core stiffness, E.., boundary condition and the outer layers will
incorporate the boundary condition of a known displacement (stress or strain) at the outer
surface. Seconc. the order of the approximation must decrease near the core and outer
layer as well as the point about which the derivative is computed, so that the resulting
matrix retains either the 3 or 5 wide bandwidth. As a consequence, the inner and outer
layers use a forward and backward difference respectively, instead of the central difference
used for the intermediate layers. The structure of the resulting 3 point system is shown in
Figure 59a. Though more complicated, a 5 point approximation to the winding differential
equation can also be derived as well for the internal layers and is shown in Figure 59b.
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Figure 59b
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Equation (137) gives the coefficients of three of the eight distinct terms used in the
3 point matrix system, while the five point approximation has 20 distinct terms.
Additionally, the terms are dependent on the formulation so that a set must be generated for
both the displacement and radial stress formulation. Though these derivations are not
particularly difficult, they can be somewhat lengthy. Therefore, all derivations for the
finite difference approximations were performed using a symbolic math package,
Mathematica by Wolfram Research, running on the Macintosh II. Additionally,
Mathematica can convert resulting equations into code for the C and Fortran computer
languages, so that computer code generation is automated, accurate, and expedient. Tables
8 give the coefficients for the 3 and 5 point formulations of both the displacement and
radial stress formulation.

Notice that the coefficients are nearly identical except for near the core. This is the
result of the fact that the structure of both differential equations are identical, only the A
and B coefficients are different and are found in equations (131) and (63) respectively for
the displacement and radial stress formulations. However, the core boundary condition
also depends on formulation, hence the difference for the finite difference approximations
on the first few layers. In the derivation of the coefficients of Tables &, the matrix solution
does not solve directly for the core displacement or radial stress and must be calculated as a
subsequent step. The justification for this approach is simply to keep the numbering of
matrix rows and web layers the same without using a zero row pointer which is not
supported by some computer languages. However, one could just as easily have the core
displacements come directly from the matrix solution by merely rearranging the equations
slightly.

Once the matrix coefficients have been determined, they must be coded into a
computer program which calculates the values of the A and B coefficients (which are not
constants in the case of nonlinear moduli), then calculates and assembles the matrix
coefficients into memory, and finally solves for the unknown solution vector of either
incremental displacements or radial stresses. This incremental solution must be embedded
into a loop which iterates for the winding from the bare core to the finish diameter of the
roll. Accumulated current stresses are calculated simply as the superposition of the
previous stress state plus the incremental stresses calculated from the current solution
iteration.




Table 8a
MATRIX COEFFICIENTS - 3 PT DISPLACEMENT FORMULATION

Row  Col Expression
(b*core*h”*2+2*a*h*r-4*r~2-2*core*r*2)/(core *h*2)
(-(a*h*r)+a* core *h*r+2*r*2+2* core *r*2)/(2* core *h"2)
(r(-(a*h) + 2r))/(2*h*2)
[ b - (2' A2)/hA2
i+1 (r(a*h + 2%r))/(2*h*2)
1 n-2 (re(- ( hy + 2'r))/(2*h*2)
-1 n-1 b - (2*r*2)/h*2
cl = -(r"(a*h + 2'r))/(2*h*2)
core = (-2*ec*h-3*er*r0+2*er*h*ut+2*ec*h”ur*ut)/(r0"er)
w0 = (-4*wi+w2)/core

Table 8b
MATRIX COEFFICIENTS - 5§ PT DISPLACEMENT FORMULATION

0
o
<

Col Expression
1 (6*b*core*h”2 - 2*a*h*r - 3*a* core *h'r + 6*r"2 -
12* core *r*2)/(6" core *h”2)
(r*(a*h + 6*a* core *h - 3'r + 6" core *r))/(6" core *h*2)
(r'(-2*a*h - 9*a" core *h + 6'r))/(54* core *h*2)
(r(( ) + 37))/(3"h"2)
b - ry/(2*h) - (27r*2)/hr2
+ r))/h*2
/(67h)
(- a'h) + r))/(12*hr2)
+  271))/(37h"2)
b - (57r*2)/(2"h"2)
r(ath + 2'r))/(3*h*2)
-(r(a*h + )/ (12*hr2)
(
r

- N
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»
3’

“(-(a*h) + 1))/(12*h*2)
“(-(ath) + 2°r)/(3*h"2)
*142)/(2*hA2)
“r'(ath + 2°1))/(3*h"2)

)

“(-(a*h) + r))/h*2

b + (a'r)/(27h) - (27r"2)/h*2

c2 = (rr(a*h + r))/(12°h*2)

cl = (-r(a”h + 371))y/(3°h*2)

core = (6*ec*h(1-urut)+11*er* r0 *er*h*ut)/(18%er* r0)
w0 = (wl-w2/2+w3/9)/core
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Table 8¢
MATRIX COEFFICIENTS - 3 PT RADIAL STRESS FORMULATION

Col Expression
1 (b*h"2 + 2*a*core*h*r - 2*r*2 - 4* core *r*2)/h"2
2 (a*h*r - a* core *h*r + 2'r*2 + 2* core *r*2)/(2*h*2)
i-1 (re(- (a h)y + 2*'r))/(2*h*2)
i b - (2* A2)/hA2
i+1 (r(a*h + 2*1r))/(2*h*2)
n-2 (re(- (a h) + 2'1)/(2"h*2)
n-1 b - (2*r*2)/h?2
cl = -(r"(a*h + 2'r))/(2*h*2)
core = ec*er* r0 /(2*ec*er*h-2*er*et*h-3*ec*er* r0-2%ec*et*h*ur)
sr0O = core*(-4*sri1+sr2)
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Table 8d
MATRIX COEFFICIENTS - 5 PT RADIAL STRESS FORMULATION

0
o
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o

Expression
b - (a*r)/(2*h) + (6*a* core *r)/h - (2*r*2)/h*2 - (18" core *r*2)/h*2
(*(a*h - 3"a* core *h + r + 9 core *r))/h"2
-(r*(a*h - 4*a* core *h + 12* core *r))/(6*h*2)
(r (- (a h)y + 3*r))/(3*h*2)
b - (a'r/(2*h) - (27r*2)/hr2
(rr(a*h + r))y/hr2
a'ry/(6*h)
r'(-(a*h) + r))/(12"h*2)
(2°r*(-(a*h) + 2'r))/(3*h*2)
b - (57r*2)/(2"h*2)
r(a*h + 27r))/(83*h*2)
*(a*h + 1))/(12"h*2)
-(r'(-(a*h) + r1))/(12*h*2)

rr(-(ath) + 2'r)/(83"h*2)

(57r22)/(2°h*2)
(2°r*(ah  + 2'1)/(3*h*2)
(a*r)/(6*h)
(rr(-(a*h) + n)hr2
b + (a'rn/(2*h) - (27r1*2)/h*2
{r/(a"h + n)/(127h~2)
¢l = (-r(a”h + 3'r))/(3*h*2) * sr[z]

= (ec’er'r)/{6’ec’er’h - 6'er‘et"h - 11~ec’er'r - B%ec*ei™h”ur)

srO = core " (-187sr1 + 9*sr2 - 2°sr3)
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Though this outlines the essences of the solution technique, there are several
caveats to be aware of. First, the A and B coefficients are not constants that can be
calculated once at the beginning of the program if any of the material properties vary with
radius. For example, with nonlinear radial moduli the coefficients must be calculated on
an individual basis every time they are used based on the current accumulated radial stress
at any particular radial location. Furthermore, calculation of the coefficients is based on
the previous stress state, and applied for calculating the current stress state. Using old data
in new calculations is inherent in many finite difference formulations and does not usually
pose a problem if the mesh is fine enough. However, the A and B coefficients given by
(131) and (63) contain an anisotropy ratio E/Eg which can result in a division by zero

error for the roll outside where og = 0 if the radial moduli curvefit yields a zero stiffness at
a Zero pressure.

Secondly to save memory, only the nonzero banded coefficients of the square A
matrix are stored in memory, so that careful bookkeeping is required. Thirdly, because of
the fine mesh often required for high anisotropies to maintain solution accuracy and the

_iterative nature of winding solutions, great care must be taken to optimize the matrix
solution technique. Though Willett and Poesch claimed that the A matrix is symmetric
[186] which gives a faster solution, this is definitely not the case as seen in the coefficients
of Table 8. A fast solution technique for the 3 point approximation is the Tridiagonal
algorithm, and for the 5 point approximation is a modified Gauss routine which only
solves in the banded nonzero portion of the equation system.

Fourthly, the differential solution is embedded in a general loop which can only be
started from the 4th wrap addition for the 3 point approximation and the 6th wrap addition
for the 5 point approximation. Therefore, the accumulated stresses must be calculated for
the first few wraps which do not fit into the general equation structure shown in Figures
59. There are a couple of approaches that could be used to address this problem. First, a
closed form expression could be derived for the stresses for each of the first few wraps.
However, this expression would be extremely unwieldy, especially for the 5 point
approximation. A simpler approach is the estimate the accumulated stresses for the first
few wraps, then go into the main solution loop, and finally correct the stress state on the
first wraps by high order extrapolation from wraps immediately above. In any case, the
first few wraps should not have a significant effect on the final roll solution which is
composed of thousands of wraps.




Fifthly, tangential stresses can be calculated from the equilibrium equation and
radial stresses using either incremental values and superposition, or at the very end after
the final radial stress state is determined. For the traditional winding models, there is no
need for tangential stress information until the end. Consequently, it is preferable to avoid
accumulated error incurred by solving the equilibrium equation for every wrap by rather
calculating tangential stresses only once at the end of the solution. However, tangential
stresses are required for the Displacement and Extended Hakiel displacement to stress
models, as tangential stress effects radial displacement through the Poisson ratio.
Therefore, incremental tangential stresses must be calculated for every wrap for the
purposes of displacement field calculations only. However, the final tangential stress state
1s not calculated from the superposition of these incremental stresses, but rather from the
final radial stress state and the equilibrium equation.

Finally, it is very important in all finite difference approximations to check whether
the grid is fine enough so that a specified level of accuracy is obtained. As seen in Figures
19 of Chapter 2, Hakiel's model can be sensitive to grid size. This is even more so for the
more complicated displacement to stress models as we will see in the next and other
sections.

On every iteration of the Displacement Formulation, the displacement field for
every wrap in the current roll is solved. However, this displacement field must be used to
calculate the more useful incremental radial and tangential stresses, and in particular the
WIS at the current outer layer. The incremental radial stress and tangential stress equations
can be derived from a simultaneous solution of the stress-strain (7, 8) and strain-
displacement equations (4, 6) as

dw
ER(r—— + HTW)
(139a) og = dr
r{1 - prpr)
ET(per—w + w)
(139b) o1 = dr

(1 - KR BT )

where the derivative of the displacement field is calculated as a 3 point or 5 point central
difference for intermediate layers, and as a forward difference for the core lavers, and as a
backward difference {or the outer layers as given by the formulas in Tables 7. Finally, the
WIS 1s calculated from the radial stress under the outer layer and the boundary condition
(28a) as

(139¢) WIS (., = 1, OR,1=r,




In summary, the finite difference approximation and matrix solution technique can
be used to solved a wide variety of problems including all formulations of winding
models. The coefficients of the matrix terms result from the finite difference
approximation to the derivatives in the winding differential equation which are assembled,
multiplied out and collected upon like radial locations. Though higher order
approximations are generally most efficient for solving many problems, the winding
differential equations seem to be best solved using 3 point approximations. The resulting
matrix system is solved for all wraps in the current roll yielding incremental stresses,
strains or displacements. Finally, the solution is repeated for all wrap additions from the
core to the finish diameter and total accumulated values can be calculated either from
superposition of incremental results or as a final step.

However, there are many caveats that must be kept in mind for a robust and
efficient solution. Additionally, radial displacement to stress formulations require solution
steps beyond that of traditional winding models. In particular, the Displacement
Formulation requires radial and tangential stresses as well as WIS to be calculated from the
displacement field. In the next section, the Displacement Formulation will be evaluated for
accuracy and sensitivity using simulated displacement data.

Siiulating Displacement Data for Model Evaluation

Once a displacement to stress winding model has been computer coded, it must be
tested for accuracy and sensitivity. Conventionally, this would be done by taking on-line
measurements as inputs to stress calculation routines and then verifying the output by
independent measurements using some other technique. Although this can and will be
done, this would entail the simultaneously debugging of both the data acquisition and the
winding model portion of this complex system. A surer approach would be to first debug
these components separately, then as a system. The check for proper operation of the data
acquisition hardware was already performed by verifying that the proper rewinding roll
diameters are displayed. Then the Radial Compression, which is closely related to the
boundary condition driving the winding model, is calculated to demonstrate sensitivity to

roll structure changes as well as insensitivity to measurement noise.




However, to check the proper behavior of the displacement to stress model would
require a 'perfect’ input data set, so that any resulting problems would belong strictly to
the model rather than the input. Since real measured data is flawed, and especially so for
the noisy environment of winding nonuniform webs, another approach is needed. The
solution to this dilemma is to create a near perfect but artificial set of displacement data
using extensions to already existing winding model.

A schematic of a method developed to calculate a radial displacement data set which
is used to evaluate the displacement-to-stress models is shown in Figure 60. Data
simulation begins by picking a set of input parameters to as inputs to one of the
conventional winding models. Then, the stress-strain and strain-displacement relations are
used to calculate the incremental radial strains on each layer. The incremental
displacements, which is equal to radial strain multiplied by thickness, for each layer is
summed to give a radial displacement at the roll's outer surface. Additionally, the core
deflection must also be calculated and added to the layer deformation.

The equations used to extend the conventional winding models to calculate
displacements come very simply from the constitutive equations for winding. The
incremental deformation of a single layer can be calculated simply from the radial stress-
strain relation (7) and the definition of strain as

OR,i OT.i
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The core deflection is calculated directly from a rearrangement of the core stiffness
definition (16) as

Finally, the total deformation at the outer surface of the roll is simply the sum of the
individual layer deformations plus the core deformation
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Figure 60
DISPLACEMENT DATA SIMULATION
TO CHECK STRESS MODEL
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This displacement data set, which is an output of extensions to conventional
winding models, 1s then used as inputs for the new displacement-to-stress models. The
WIS calculated by the new models, using the same geometry and material properties,
should be equal to the WIS originally input into the conventional winding model. If this
WIS as a function of radius agrcement holds for several widely varying test cases, then
onc can be reasonably confident that not  nly is the new model consistent and correct, but
also the conventional model as well. Even the smallest of errors in the long serial chain
would cause a difference between input and calculated WIS profiles. Thus, the new
models can be debugged and screened for proper operation before subjecting them to the
uncertainties of real data from a new measurcment technique.




The input parameter sets, given in Appendix B, used to test conventional winding
models were also used to evaluate the displacement-to-stress models. As seen in Figure
61a, the total error accumulated by all the serial calculations were less than 1% for most of
the radius range for three of the input sets. This is well within most engineering
requirements and lends confidence that the algorithms are correct. This is especially so
because the LAT case is one in which all input parameters are nonzero and different, and
the WIS profile is nonlinear. However as seen in Figure 61b, a moderately anisotropic
input set requires a small grid size even for the 5 point derivative used here. Though a 3
point derivative requires about an order of magnitude smailer grid size, the net computing
time was similar, and in both cases was much longer than calculating a conventional
winding model with the same input parameters.

Next, nonlinear radial moduli test cases were run. At first there was not the
expected agreement between input and calculated WIS. After considerable searching this
was traced back to the missing high order terms given in equations (131). Then agreement
to engineering accuracy was obtained, but only for the low anisotropy ratio of 20
corresponding to the NAT case. Additionally, the calculation time for this case exceeded
one day for a fast PC based engineering workstation. Thus, the much greater calculation
" time required to obtain a reasonable accuracy for the high anisotropy ratio of 30,000 for
the real data obtained on the soft NC paper was deemed impractical.

The qualitative explanation for the numerical convergence difficulties of the
Displacement Formulation could be as follows. First, the higher order terms in the
displacement formulation are significant for nonlinear radial moduli, and dominant for
some input cases. Thus, the coefficients of the displacement differential equation contains
numerical derivative calculations, and with it an expected propensity for numerical error.
Secondly, the displacement field has a greater gradient than the radial stress field of
conventional winding models causing the matrix system of equations to be even more ill-
conditioned and thus prone to numerical roundoff errors. Finally, the displacement to
stress calculations contain vet another numerical derivative that must be calculated.
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