THE BIOLOGY OF CUSCUTA

ATTENUATA WATERFAL工

By
LARRY ALAN PRATHER
Bachelor of Science
The University of Tulsa
Tulsa, Oklahoma
1987
Submitted to the Faculty of the
Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for
the Degree of
MASTER OF SCIENCE 'July, 1990

$$
\begin{aligned}
& \text { Thes } \\
& 1990 \\
& \text { pald } \\
& \text { cop }
\end{aligned}
$$

Oklahoma State Univ. Library

THE BIOLOGY OF CUSCUTA ATTENUATE WATERFALL

Thesis Approved:

ACKNOWLEDGMENTS

I express sincere appreciation to Dr. Ronald Tyrl for his guidance throughout my graduate program. Thanks are also extended to Dr. Paul Buck, Dr. Jim McPherson, and Dr. Bill Warde for their time and effort involved in serving on my graduate committee. Their advice and encouragement was much appreciated.

My sincere thanks are also extended to Dr. Warde for his all of his time spent and advice given during the morphological analyses; to Dr. Sira Dabo and Dr. Charles Taliaferro for their advice and use of their lab facilities for the electrophoretic analysis; to Mike Silva for his time and skill involved in producing the figures for the univariate analysis; and to the curators of all the herbaria utilized in this study for their cooperation.

Much appreciation is extended to the Fish \& Wildlife Service for funding this investigation (Project Number 20181-89-00420). Without this support the study would not have been possible.

Finally I would like to thank my family and friends for their encouragement and support throughout the past two years. Special thanks are extended to my parents, Jim and Donna Prather, for their confidence and unfailing support.

TABLE OF CONTENTS

Chapter Page
INTRODUCTION 1
MATERIALS AND METHODS 3
Geographical Distribution 3
Description of Host and Host's Habitat 3
Phenology 4
Seed Germination 6
Reproductive Biology 7
cytology 9
Analyses of Morphological Variation 11
Interspecific Hybridizations 15
Electrophoresis 16
RESULTS 18
Geographical Distribution 18
Description of Host and Host's Habitat 22
Phenology 26
Seed Germination 31
Reproductive Biology 31
Cytology 31
Analyses of Morphological Variation 35
Interspecific Hybridizations 50
Electrophoresis 50
DISCUSSION 54
Geographical Distribution 54
Description of Host and Host's Habitat 54
Phenology 55
Seed Germination 58
Reproductive Biology 60
Cytology 61
Analyses of Morphological Variation 61
Interspecific Hybridizations 67
Electrophoresis 67
Status of Cuscuta attenuata Waterfall 68
LITERATURE CITED 70
APPENDICES 73
Chapter Page
APPENDIX A - HERBARIUM SPECIMENS USED IN THE MORPHOLOGICAL ANALYSES 74
APPENDIX B - MORPHOLOGICAL DATA USED INANALYSES OF VARIATION IN
CUSCUTA 83
APPENDIX C - RESULTS OF CLUSTERING TECHNIQUES 93
APPENDIX D - RESULTS OF DISCRIMINANT ANALYSIS 118

LIST OF TABLES

Table Page

1. Locality information for four populations of Cuscuta attenuata Waterfall studied in this investigation5
2. Locality information for populations of Cuscuta species used in this investigation10
3. Twenty-seven quantitative characters of Cuscuta species used in univariate analysis13
4. Forty-four quantitative and qualitative characters of cuscuta species used in multivariate analysis14
5. Locality information from labels of herbarium specimens identified as Cuscuta attenuata Waterfall20
6. Climatological and soil characteristics of four sites at which cuscuta attenuata was collected and studied23
7. Number of Cuscuta attenuata seeds ($n=100$) germinating during five-day intervals at $30-33^{\circ} \mathrm{C}$ using different scarification regimes32
8. Number of Cuscuta attenuata seeds $(n=100)$ germinating during five-day intervals using different temperature regimes following scarification for 30 min in concentrated sulfuric acid32
9. Number of cuscuta attenuata seeds $(\mathrm{n}=100)$ collected in fall 1989 from the Waterfall Creek, Quanah Parker Lake, and South Canadian River populations germinating during five-day intervals at $30-33^{\circ} \mathrm{C}$ after scarification for 30 min in concentrated sulfuric acid 32
Table Page
10. Fruit set, seed set, and seed germination in populations of Cuscuta attenuata 33
11. Pollen stainability of Cuscuta species 34
12. Means of characters in which Cuscuta attenuata, cuscuta indecora var. indecora, and cuscuta indecora var. longisepala differ 41
13. Characters used to differentiate Cuscuta subsections Indecorae and Lepidanche from Yuncker's 1965 monograph 64
14. Comparison of Cuscuta attenuata Waterfall and Cuscuta indecora var. longisepala Yuncker using characters from the original descriptions 65

LIST OF FIGURES

Figure Page

1. County distribution of Cuscuta attenuata as determined by examination of herbarium specimens 19
2. Sequence of floral maturation in cuscuta attenuata Waterfall 29
3. Means, standard deviations; and ranges for 27 morphological characters scored for five cuscuta taxa 36
4. Portion of a phenogram produced by UPGMA clustering technique 42
5. Portion of a phenogram produced by WPGMA clustering technique 43
6. Portion of a phenogram produced by Complete linkage clustering technique 44
7. Plot of the first principal component against the second principal component in the analysis of morphological variation in five Cuscuta taxa 46
8. Plot of the first principal component against the third principal component in the analysis of morphological variation in five Cuscuta taxa 47
9. Plot of the second principal component against the third principal component in the analysis of morphological variation in five cuscuta taxa 48
10. Esterase banding patterns produced by five cuscuta taxa 51
11. Benzidine peroxidase banding patterns produced by five Cuscuta taxa 52

INTRODUCTION

Cuscuta attenuata Waterfall was first collected in 1964 by U. T. Waterfall in southeastern McCurtain County, Oklahoma, and was described as a species by him in 1971 (Waterfall, 1971). Prior to this study, c. attenuata was known only from three populations in McCurtain County. Because of its limited geographical distribution, \mathbb{C}. attenuata has been considered to warrant possible designation as an endangered species under the guidelines of the" 1973 Threatened and Endangered Species Act (PL 93-205). It was originally proposed as an endangered species in 1978 (Ayensu and DeFilipps, 1978). On the basis of status reports prepared by Tyrl et al. (1978) and Taylor and Taylor (1980), the taxon was designated a Category 1 species by the Fish and Wildlife Service's Office of Endangered Species (1980 FR 45:82500; 1985 FR 50:39526). Species designated Category ' 1 are those for which enough information has been gathered to warrant their listing as threatened or endangered, but more work is considered to be needed to determine critical habitat, if any, and to establish final rules for them.

A detailed study of the biology of \mathbb{C}. attenuata and its relationship to other species of Cuscuta has, not been conducted. This investigation was conducted to
obtain information needed to determine the appropriateness of listing the taxon as threatened or endangered. Specific objectives were to determine its geographical distribution; to describe its host specificity and habitat; describe its population biology, including its phenology, requirements for seed germination, reproductive biology, and cytology; and to elucidate its relationships to other species of Cuscuta by means of electrophoresis, interspecific hybridizations; and morphological studies of floral characters. Support for this undertaking was provided by the U. S. Fish and Wildife Service (Project Number 201811-89-00420).

MATERIALS AND METHODS

Geographical Distribution. To determine the geographical distribution of C. attenuata, all herbarium specimens of Cuscuta from all Oklahoma herbaria and the herbaria at Southern Methodist University, Texas A \& M University, the University of Texas at Austin, Northeast Louisiana University, and the University of Arkansas were examined. The locations of all specimens which were identified as \underline{C}. attenuata were visited if possible and the areas searched for plants. The Red River floodplain in southeastern McCurtain County was also thoroughly searched. Thirteen field trips to 19 areas in Oklahoma, Kansas, and Texas were conducted during the growing season to search for populations of \underline{C}. attenuata.

Description of Host and Host's Habitat. Herbarium specimens were examined and careful observations were made both in the field and in the laboratory to determine the host specificity of C. attenuata. Musselman (1986) suggested that Coleus hybridus (coleus) could serve as a host for many species of cuscuta and thus attempts were made to establish C. attenuata on Coleus hybridus, Pelargonium sp. (florist's geranium), Ambrosia psilostachya (western ragweed), A. trifida (giant ragweed), and Plectranthus australis (swedish
ivy). Seedlings germinated in a petri dish were placed on the moist soil near the base of the young prospective host plant and a moist environment was maintained by watering daily.

To examine the habitat of \mathbb{C}. attenuata and its host plant, the McCurtain County site was visited eight times throughout the 1989, growing season. The South Canadian River and the Quanah Parker Lake sites were visited three times, and the Sabine River site was visited once (Table 1). Detailed observations of the habitat at each of the four sites were made. Soil samples from the Waterfall Creek, Quanah Parker Lake, and the two South Canadian River populations were collected and soil reports were prepared by the Oklahoma State University Cooperative Extension Service Water \& Soil Salinity Testing Laboratory. Mean yearly temperature and precipitation data were gathered from the weather reporting station nearest the site.

Phenology. Detailed observations of the phenology of \underline{C}. attenuata at the Waterfall Creek site were made throughout the 1989 growing season. These observations included those of its vegetative growth; attachment to the host, flowering, and fruiting. Observations of the phenology of C. attenuata at the other three sites were made as possible. At the Waterfall Creek site, observations were made at all hours for several days throughout the flowering period. Observations were made

Table 1. Locality information for four populations of cuscuta attenuata Waterfall studied in this investigation.

State	County	Range, Township, Section	Locality Information
Oklahoma	McCurtain	R24E, T9S, Sec 10, SW $1 / 4$, SW $1 / 4$ R24E, T9S, Sec 10, SE $1 / 4$, SW $1 / 4$ R24E, T9S, Sec 15, NW 1/4, NW 1/4	Along Waterfall Creek where US Hwy 259 crosses, 12.9 km south and 3.2 km east of Idabel.
Oklahoma	Comanche	R14W, T3N, Sec 23, SE $1 / 4$, SE $1 / 4$ R14W, T3N, Sec 23, NE 1/4, SE $1 / 4$	Along the banks of the eastern end of Quanah Parker Lake in the Wichita Mountains Wildlife Refuge about 0.4 km north and 0.4 km west of the junction of OK Hwys 49 and 115.
Oklahoma	Cleveland	R2W, T8N, Sec 7, SW $1 / 4$, SE $1 / 4$	Two populations about 0.4 km apart in right-of-way of a county road connecting Chautauqua and Jenkins streets at the south edge of the city of Norman; on the floodplain of the South Canadian River approximately 0.4 km north of the river channel.
Texas	Rains	not applicable	Along the north-side bank of the Sabine River on east-side of TX Hwy 19 bridge.

at the Quanah Parker Lake site and the South Canadian River site as possible. No observations were made at the Sabine River site because the landowner denied access. Fourteen plants from the Waterfall Creek site, four from the Sabine River site, four from the South Canadian River site, and six from the Quanah Parker Lake site were transferred from the field to the laboratory by carefully digging up infected hosts and potting them in six-inch plastic pots. They were kept at $24^{\circ} \mathrm{C}$ and placed near windows where they received sunlight under natural daylengths. Detailed observations and a photographic record of the flowering and fruiting of \underline{C}. attenuata were made from these plants.

Seed Germination. In order to determine the requirements for seed germination, seeds of C. attenuata were tested using four scarification regimes. Seeds used were collected from the Waterfall Creek population on 3 January 1989 unless otherwise noted. Lots of 25 seeds were immersed in concentrated sulfuric acid for 15, 30,45 , or 60 min to achieve scarification. The seeds were then rinsed in a 10% sodium bicarbonate solution, followed by a rinse in tap water (Gaertner, 1950). They were placed on filter paper covering 15 ml of sand in a petri dish and both the filter paper and the sand were saturated with distilled water (Hutchison and Ashton, 1980). The seeds were placed in an incubator at $30-33^{\circ} \mathrm{C}$ and the number which germinated
during each five-day interval was counted for a period of 30 days. Four replications of each treatment were performed. To examine the effects of mechanical scarification, fifty seeds of C. attenuata were placed on a flat surface and a sheet of sandpaper was rolled over the surface of the seeds until the seed coats were visibly scratched. The seeds were otherwise treated as above.

Four temperature regimes were also tested. Four samples of 25 seedlings were acid-scarified for 30 min , placed on petri dishes using the technique described above, placed in incubators at $20-22^{\circ} \mathrm{C}, 25-28^{\circ} \mathrm{C}, 30-33^{\circ}$ C , or $35-38^{\circ} \mathrm{C}$, and the number which germinated during each five-day interval was counted for a period of 30 days. Four replications of each treatment were performed.

Capsules of C. attenuata were collected in early fall of 1989 from the Waterfall Creek, Quanah Parker Lake, and South Canadian River populations to determine if the capsules collected in January 1989 had been affected by cold weather exposure and to see if germination rates varied from population to population or year to year. The seeds were acid-scarified for 30 min, incubated at $30-33^{\circ} \mathrm{C}$, and otherwise treated as above.

Reproductive Biology. In order to examine the reproductive biology of \underline{C}. attenuata, observations of
its pollination mechanisms were made both in the field and in the laboratory. To determine natural seed set, 100 flowers each were collected from the Waterfall Creek population in 1988 and 1989, and from the Quanah Parker Lake and South Canadian River populations in 1989. No observations were made at the Sabine River site because the landowner denied access. To test for autogamy, seven parasitized plants of Iva annua from the Waterfall Creek population were enclosed in insect-exclusion cages ($31 \mathrm{~cm} \times 31 \mathrm{~cm} \times 17 \mathrm{~cm}$) prior to flower opening. A sample of 100 flowers from these plants and 100 flowers from plants transplanted to the laboratory (see Materials and Methods: Phenology) were collected and seed set was determined. Other manipulations of the laboratory plants from the Waterfall Creek population were performed in order to examine other aspects of reproductive biology. To test for autogamy, 45 flowers were self-pollinated by hand. To test for intrapopulational allogamy, 30 flowers of one individual were hand-pollinated with pollen from another. Seven individuals were involved in these manipulations. To test for interpopulational allogamy, 51 crosses were made between individuals from the Waterfall Creek and Quanah Parker Lake populations, 23 between the Waterfall Creek and South Canadian River populations, and 16 between the Waterfall Creek and Sabine River populations. To test for agamospermy, 40 flowers of
five individuals were emasculated. Seed set from all manipulations was determined. The seeds were scarified in concentrated sulfuric acid for 30 min , placed in an incubation oven at 30-33 C for 30 days, and the number germinating during five-day intervals was counted. Pollen stainability of \underline{C}. attenuata was determined for all four populations (Table 1), and for one population each of \mathbb{C}. indecora var. indecora, \mathbb{C}. indecora var. longisepala, c. cuspidata, and c. compacta (Table 2). Pollen stainability is assumed to be an estimation of viability (Radford, et al., 1974). Anthers with mature pollen were removed from dried specimens collected the previous fall and squashed in cotton blue in lactophenol. Pollen grains stained a dark blue or remained unstained. Five plants from each population were examined except for the Sabine River and C. indecora var. longisepala populations, for which only one suitable specimen was available. Two hundred pollen grains per plant were examined.

Cytology. Mitotic chromosome counts of plants of C. attenuata from the populations at Waterfall Creek, Quanah Parker Lake, and the South Canadian River were obtained from squashed anthers of young flower buds. The best squashes obtained were from flowers about 1 mm long. The flowers were collected, immediately fixed in a modified Carnoy's Solution (chloroform: ethanol: acetic acid; 3:6:1 v/v) for 48 hours, rinsed three times

Table 2. Locality information for populations of Cuscuta species used in this investigation.

Species	State	County	Range, Township, Section	Locality Information
C. indecora var. indecora	Oklahoma	Comanche	R12W, T3N, Sec 18, NE 1/4, NW1/4	West-facing slope of Medicine Park Mountain, just east of the Lake Lawtonka Dam on Medicine Creek.
C. indecora var. longisepala	Oklahoma	Latimer	R18E, T3N, Sec 23, SW 1/4, SW 1/4.	Along the north side of a county road 7.2 km west of Yanush near Sardis Lake.
C. cuspidata	Oklahoma	McCurtain	$\begin{aligned} & \text { R24E; T9S, Sec } 10 \text {, SW } 1 / 4 \text {, } \\ & \text { SW } 1 / 4 \end{aligned}$	Along Waterfall Creek where US Hwy 259 crosses, 12.9 km south and 3.2 km east of Idabel.
C. compacta	Oklahoma	McCurtain	```R25E, T5S, Séc 10, SW 1/4, NE 1/4```	In Beaver's Bend State Park, along Mountain Fork River, just west of US Hwy 259A.

in 70% ethanol for 1 hour, and stored in 70\% ethanol at $4^{\circ} \mathrm{C}$ until use. The anthers were then extracted from the flowers and squashed in aceto-carmine and the chromosomes examined with phase contrast optics (Radford, et al., 1974). Two individuals per population were counted and two counts per individual were made. Analyses of Morphological Variation. A total of 44 quantitative and qualitative floral characters were examined and scored on herbarium specimens of \mathbb{C}. attenuata and other morphologically similar species. Only floral characters were examined because all species of Cuscuta lack roots and leaves and stem features could not be measured consistently on dried herbarium specimens. A total of 186 herbarium specimens were examined: 10 specimens of \mathbb{C}. attenuata, 50 each of \underline{C}. compacta, \mathbb{C}. cuspidata, and \underline{C}. indecora var. indecora, and 26 of C. indecora var. longisepala (Appendix A). All available specimens of C. attenuata and C. indecora var. longisepala which were suitable for study were examined. Five flowers each were examined on several specimens and it was determined that the differences between flowers of the same specimen were negligible, therefore one flower each was used from all specimens and the individual herbarium specimen was treated as an OTU (operational taxonomic unit). Only one individual per population was examined.

One flower with its pedicel and bracts was removed
from each specimen with permission of the curator of each herbarium. To insure morphological differences would not be due to differences in development, all flowers selected had dehiscing anthers. All observations were made after boiling each flower in water until its organs were flexible to facilitate examination of the inner floral ones (Yuncker, 1920). All specimens were examined,with a dissecting microscope at a magnification of $30 x$ in order to score characters. Measurements were recorded to the nearest 0.1 mm using an ocular micrometer. Many of the measurements were incorporated in the analyses as ratios to minimize the effect of size which may be influenced by environmental factors such as light intensity, moisture availability, or soil conditions (Radford, et al., 1974). Twentyseven quantitative characters were used in the univariate analysis (Table 3). Twenty-seven quantitative and 17 qualitative characters were used in the multivariate analysis (Table 4). The data recorded for each specimen are presented in Appendix B.

For each character examined in the univariate analysis, the mean and standard deviation were calculated, and the minimum and maximum were recorded. The multivariate analysis comprised six clustering techniques, a principal component analysis, and a discriminant analysis. Only C. attenuata, C. indecora var. indecora, and C. indecora var. longisepala were

Table 3. Twenty-seven quantitative characters of cuscuta species used in the univariate analysis.

```
Pedicel Length
Number of Bracts at Base of Pedicel
Number of Bracts Along Pedicel
Number of Bracts at Pedicel Apex
Bract Length/Calyx Length
Bract Length/Bract Width
Calyx Length
Length of Calyx Tube/Total Calyx Length
Calyx Length/Calyx Width
Corolla Length/Calyx Length
Corolla Tube Length/Total Corolla Length
Corolla Length/Corolla Width
Corolla Length
Number of Fringes Per Corolla Appendage
Length of Corolla Appendages
Appendage Length/Length of Corolla Tube
Length of Appendage-Corolla Fusion/Appendage Length
Appendage Length/Appendage Width
Filament Length
Anther Length
Filament Length/Anther Length
Anther Length/Anther Width
Longer Style Length
Longer Style Length/Shorter Style Length
Stigma Length/Stigma Width
Ovary Length
Ovary Length/Ovary Width
```

Table 4. Forty-four quantitative and qualitative characters of cuscuta species used in the multivariate analyses.

```
Bract Orientation
Calyx Orientation
Corolla Orientation
Pedicel Length
Number of Bracts at Base of Pedicel
Number of Bracts Along Pedicel
Number of Bracts at Pedicel Apex
Bract Length/Calyx Length
Bract Length/Bract Width
Shape of Bract Margin
Shape of Bract Apex
Presence of Bract Laticifers
Calyx Length
Length of Calyx Tube/Total Calyx Length
Calyx Length/Calyx Width
Overlap of Calyx Lobes
Shape of Calyx Margin
Shape of Calyx Apex
Presence of Calyx Papillations
Presence of Calyx Laticifers
Corolla Length/Calyx Length
Corolla Tube Length/Total Corolla Length
Corolla Length/Corolla Width
Corolla Length
Shape of Corolla Margin
Shape of Corolla Apex
Presence of Corolla Papillations
Inflexing of Corolla Lobe Tips
Number of Fringes Per Corolla Appendage
Length of Corolla Appendages
Appendage Length/Length of Corolla Tube
Length of Appendage-Corolla Fusion/Appendage Length
Appendage Length/Appendage Width
Filament Length
Anther Length
Filament Length/Anther Length
Anther Length/Anther Width
Longer Style Length
Longer Style Length/Shorter Style Length
Stigma Length/Stigma Width
Ovary Length
Ovary Length/Ovary Width
Style Orientation
Presence of Stylopodium
```

examined in the discriminant analysis. The Statistical Analysis System (SAS) was employed to perform these analyses. The clustering techniques used were UPGMA (unweighted pair-group method using arithmetic averages), WPGMA (weighted pair-group method using arithmetic averages), UPGMC (unweighted pair-group method using centroids), WPGMC (weighted pair-group method using centroids), single linkage, and complete linkage. The varimax rotation method was used in the principal component analysis (SAS Institute Inc., 1985). Prior probability of the discriminant analysis was set proportional to the number of specimens of each taxon used in the analysis.

Interspecific Hybridizations. Fourteen plants of I. annua parasitized by C. attenuata from the Waterfall Creek site, four from the Sabine River site, four from the South Canadian River site, and six from the Quanah Parker Lake site (Table 1) were transported to and maintained in the laboratory at Oklahoma State University (see Materials and Methods: Phenology). One plant of C. cuspidata, five of C. indecora var. indecora, and two of $\underset{C}{ }$. indecora var. longisepala from the sites given in Table 2 were transported to the laboratory and likewise maintained. \underline{C}. compacta could not be maintained in the laboratory because its woody hosts proved impossible to transplant and cuttings did not survive under laboratory conditions. Pollen,
however, was collected from five individuals of C. compacta in the field and used immediately in crosses in the laboratory. Crosses were made between individuals of C. attenuata and all other taxa. Individual flowers of C. attenuata were emasculated before anther dehiscence and mature pollen from one of the other taxa was manually transferred to the stigma of the emasculated flower (Radford, et al., 1974). Reciprocal crosses to the other taxa, except C. compacta, were performed in the same manner. Sixteen crosses were performed between \underline{C}. attenuata and \mathbb{C}. indecora var. indecora, 25 between \underline{C}. attenuata and \underline{C}. indecora var. longisepala, 20 between C. attenuata and C. compacta, and nine between C. attenuata and c. cuspidata.

Electrophoresis. Flowering plants of C. compacta, C. cuspidata, C. indecora var. indecora, c. indecora var. longisepala, and $\underset{C}{ }$. attenuata were collected in the field from the populations given in Tables 1 and 2, except the Sabine River population from which no collection of fresh material could be made. These plants were transported on ice to the laboratory and frozen until used in the electrophoretic analyses. Two samples from one individual of each taxon were prepared using the stems and flowers. Flowers were incorporated in the samples because there was not enough stem material to prepare adequate samples. Polyacrylamide gels were run according to the procedures of Laemmli
(1970). Esterase and benzidine peroxidase enzyme systems were examined (Shaw and Prasad, 1970; Hicks, et al., 1982). Two gels of each enzyme system were run.

RESULTS

Abstract

Geographical Distribution. Fourteen herbarium specimens were identified as \mathbb{C}. attenuata, including seven which had previously been identified as other species of Cuscuta. One specimen which had been previously identified as C. attenuata (J. Tayior \& C. Taylor 17011) was identified as C. cuspidata in this study. Three specimens (R. J. Tyrl 1648, J. Taylor 31074, and J. Taylor 28173) were from the location of the holotype (U. T. Waterfall 17157). Labels of two specimens (U. T. Waterfall 17496 and U. T. Waterfall 17191) gave mileages from Idabel, Oklahoma to sites where Waterfall Creek did not occur, although the labels stated that the plants were collected along it. These specimens probably were collected from the type location. The remaining eight specimens were from different locations (Figure 1). Locality information from labels of all herbarium specimens of \mathbb{C}. attenuata are given in Table 5.

Four populations of C. attenuata were located in the field searches, including one at the type location along Waterfall Creek in McCurtain County, Oklahoma (Table 1). The South Canadian River population also was relocated. The Sabine River and Quanah Parker Lake populations are new records for the species. All

Figure 1. County distribution of Cuscuta attenuata as determined by examination of herbarium specimens. Question mark indicates county location questionable.

State	County	Location	Collection Date	Collector \& Number	Herbarıum
Oklahoma	McCurtain	Waterfall Creek, 8 miles south and 2 miles east of Idabel.	10 October 1964	U.T. Waterfall 17517	OKLA
Oklahoma	McCurtain	R24E, T9S, Sec 10, SW 1/4, SW 1/4. Banks and pastures adjacent to Waterfall Creek. N-side of US Hwy 259 bridge ca. 8.5 mi s of Idabel. Heavily grazed pasture; creek banks trampled. Roebuck Clay, ponded, over Red River alluvium. Plants numerous on IVa ciliata and Aster sp. Bromus japonicus abundant, no overstory.	16 October 1978	R.J. Tyrl 1648	OKLA
Oklahoma	McCurtain	On Iva ciliata, edge of pond in Waterfall Creek, 7 miles south and 1.5 miles east of Idabel.	3 October 1970	U.T. Waterfall 17496	OKLA
Oklahoma	McCurtain	Along Waterfall Creek, 7 ml les south and 2 miles east of Idabel.	16 October 1965	U.T. Waterfall 17191	OKLA
Oklahoma	McCurtain	Collected along Waterfall Creek about 8 mi south and 2 mi east of Idabel near highway 259.	24 October 1981	J. Taylor 31074	DUR
Oklahoma	McCurtain	Collected along Waterfall Creek, 8 miles south and 2 miles east of Idabel, near highway 259.	11 September 1979	J. Taylor 28173	DUR
Oklahoma	McCurtain	Along roadside 8 miles south and 0.25 miles west of Idabel.	13 August 1984	J. \& C. Taytor 32518	DUR OCLA
Oklahoma	Cleveland	South Canadian River floodplain 2 miles south of Norman, Cleveland County, OK. In ash-elm bottomland forest. On Iva ciliata.	5 September 1961	P. Buck 524	$\begin{aligned} & \text { OKLA } \\ & \text { TULS } \end{aligned}$
Oklahoma	Beckam	Sandy soil growing on ragweed, Cedar Top Southeastern Beckam County, OK. Growing on Iva ciliata.	12 September 1936	C.J. Eskew 1395	OKL
Kansas	Cowley	Growing on a sp. of Compositae, abandoned field-pasture area; $3 \mathrm{mi} . \mathrm{s} .$, 5 mi . W. Arkansas City.	7 September 1966	R.G. Koch 2156B	OKLA
Texas	Van Zandt	Near Ocean Lake, north of Edgewood.	6 September 1946	E. Whitehouse 16472	SMU

Table 5. (Continued)

*The herbarium label states "Flora of the Lower Rio Grande, by Robert Runyon, Brownsville Texas" There is no mention of a county.
locations extracted from the herbarium specimens were searched except the following which were not visited because the landowner denied access or the locality information was too vague to merit a trip: E. Whitehouse 16472; B. C. Tharp (unnumbered) Jackson County, Texas; B. C. Tharp (unnumbered) Liberty County, Texas; and R. Runyon 2873.

Description of Host and Host's Habitat. Iva annua
L. (formerly I. ciliata Willd.). appears to be virtually the only host of C . attenuata. Commonly known as marshelder or rough sumpweed, I. annua is an annual weed of alluvial plains and other wet areas in the eastern half the U. S. All herbarium specimens of \mathbb{C}. attenuata examined were parasitizing I. annua except one which was parasitizing an unidentifiable species of Aster (aster). No other hosts were observed during the 1989 growing season at any of the sites. No individuals were parasitizing any of the Aster plants growing at Waterfall Creek or the South Canadian River during the 1989 growing season. Species of Aster were absent at the other two sites. In the laboratory, C . attenuata successfully completed its life cycle on Coleus hybridus but did not establish itself on any of the other prospective hosts.

Habitat descriptions of the four sites occupied by C. attenuata populations are given below and in Table 6.

Waterfall Creek: The floodplain adjacent to

Table 6. Climatological and soil characteristics of four sites at which cuscuta attenuata was collected and studied.

Characteristic Wa	Waterfall Creek	South east	Canadian River west	Quanah Parker Lake	Sabine River
			"		
Mean Yearly					
Precipitation (mm)	1204	842	842	664	1071
Mean Yearly					
Temperature (${ }^{\circ} \mathrm{C}$)	17.1	15.5	15.5	16.1	17.8
Elevation (m) 1	103.6	332.2	332.2	454.2	115.8
SCS Soil Type $\begin{gathered}\text { Ro } \\ \text { Clay }\end{gathered}$	Roebuck lay, ponded	Roebuck Clay	Reinach silt Loam	Foard-Slickspot Lawton Loam Rock Land	Gladewater Clay
Texture	Fine	Medium	Medium	Medium	-
Soil pH ,	, 7.1	7.7	7.7	6.7	-
Surface $\mathrm{NO}_{3}-\mathrm{N}\left(\mathrm{kg} \mathrm{ha}{ }^{-1}\right)$	36	4	7	7	-
Surface $\mathrm{SO}_{4}-\mathrm{S}\left(\mathrm{kg} \mathrm{ha}^{-1}\right)$	31	$38^{\prime \prime}$	39	38	-
Mg ($\mathrm{kg} \mathrm{ha}{ }^{-1}$)	1119	605	1119	1119	-
Soil Test Index					
P	91	- 91	149	34	-
K	999	514	803	449	-
$\mathrm{Fe}\left(\mathrm{mg} \mathrm{l}{ }^{-1}\right.$)	77.6	60.7	87.7	99.9	-
$\mathrm{zn}\left(\mathrm{mg} \mathrm{l} \mathrm{l}^{-1}\right.$)	3.28	33.35	40.48	4.52	
Soll Salinity					
Total Soluble Salts (mg l^{-1})	41.58	1140	2376	4633	-
Sodium Absorption Ratio	io 3	1	2	9	-
Exhangeable Sodium (\%)) 2	0	0	10	-
Na (mg l^{-1})	239	63	111	728	-
Ca (mg lis)	461	160	326	326	-
$\mathrm{Mg}\left(\mathrm{mg} \mathrm{l}^{-1}\right.$)	99	15	48	105	-

Waterfall Creek was occupied by a large population of Iva annua. The plants formed a dense stand and were associated with plants of A. trifida, Toxicodendron radicans (poison ivy), Aster ericoides (heath aster), and Solidago sp. (goldenrod). Cephalanthus occidentalis (buttonbush), T. radicans, and Juncus sp. (rush) lined the banks of the creek. The area was originally bottomland forest and had been cleared for pasture. The SCS soil type was Roebuck Clay, ponded. The soil was saturated until June and afterwards became dry and cracked. There was no litter covering the soil adjacent to the plants. South Canadian River: On the South Canadian River floodplain 0.4 km north of the river channel, a large population of I : annua occupied an area in the right-of-way along the north side of a county road. The Iva population was shaded by a stand of young Populus deltoides (cottonwood). Other associated species included A. trifida, Cynodon dactylon (bermudagrass), and Solidago sp. This area was once bottomland forest and had been cleared. Four-tenths km west of this population was another population of Iva in the right-of way. This western population of Iva was not shaded by P. deltoides but was associated with \underline{A}. trifida and \underline{C}. dactylon. The SCS soil type of the area which the
eastern population occupied was Roebuck Clay and that of western population was Reinach Silt Loam. Both of these populations were under standing-water in the spring and early summer and were subject to periodic flooding throughout the year. Two to three cm of litter had accumulated on the surface. Quanah Parker Lake: Along the banks of the eastern end of Quanah Parker Lake in the Wichita Mountains Wildlife Refuge, there was a dense population of I. annua which was host to a population of \underline{C}. attenuata, and formed a distinct band between aquatic plants at the water's edge and the upland vegetation in the area. At the edge of the lake, Scirpus sp. (bullrush) and Carex sp. (sedge) formed a band of vegetation. Between these two bands there was a strip of bare soil 1-1. $1 / 2 \mathrm{~m}$ wide. Above the Iva population was another strip of bare soil 1-1 $1 / 2 \mathrm{~m}$ wide which separated the Iva plants from the dominant vegetation of the area: Schizachyrium scoparium (little bluestem), Andropogon gerardii (big bluestem), Sorghastrum nutans (indiangrass), Aristida oligantha (annual threeawn), A. psilostachya, and Xanthocephalum dracunculoides (annual broomweed). This population of Iva occupied an area which had three SCS soil types: Rock Land, Foard-Slickspots Complex, and Lawton Loam. The population was not subject to
flooding because it was above the maximum water level of the lake. There was $4-5 \mathrm{~cm}$ of litter under the Iva plants.

Sabine River: In the bottomland along the Sabine River where Texas Highway 19 crosses there was a population of I. annua which was host to a population of C . attenuata. The canopy was closed except for an area adjacent to the highway where C. attenuata was found. In the overstory Quercus spp. (oaks), Ulmus americana (American elm), and Salix nigra (black willow) dominated. In the understory, I. annua dominated and plants of \underline{A}. trifida were scattered. The SCS soil type at this location was Gladewater Clay. The site was subject to flooding several times a year. There was no litter below the Iva plants.

Phenology. Seedlings first appeared at the Waterfall Creek site when the soil temperature was near $25^{\circ} \mathrm{C}$, about 15 May in 1989. The seedlings were slender, orange, and rootless. During the first three weeks after germination, they grew in length until they came in contact with a stem of Iva annua. If they did not attach to I. annua within 2-3 days they usually developed a greenish tinge, presumably indicative of the presence chlorophyll. If they did not come in contact with a host stem within 10 to 15 days, they became
dessicated and died. If successful in making contact with a host stem, the cuscuta stem coiled tightly around it and appeared to stop growth.

In five to seven days, the coil around the stem appeared to develop chlorophyll. The portion that extended to the ground became dessicated and died. At the same time, haustoria formed between the cuscuta coil and the host plant. There was no change in appearance for three to four weeks, then several new cuscuta stems appeared and rapidly grew from the initial coil. These new stems radiated from the host stem, came in contact with other I. annua stems, coiled about them, and developed haustoria. Thus many plants surrounding the original host plant were parasitized. The stems connecting host plants usually broke. This sequence of events, excluding seed germination, occurred repeatedly from late May to mid August.

In the field on I. annua and in the laboratory on. both I. annua and Coleus hybridus, stems of C . attenuata sometimes appeared to arise directly from the host stem rather than from an older filament of cuscuta. The host stems at the point of origin were enlarged, scarred, and resembled a gall. On I. annua, three to nine new Cuscuta stems were observed emerging from the swollen area and on C . hybridus as many as 19 were observed.

At Waterfall Creek, flower buds first appeared in the middle of August and sometimes developed to maturity
in less than a week. Herbarium records and field observations indicate that C. attenuata flowers from about 10 August to 24 October. On the first day a bud became visible, it was about 1 mm long and only the calyx was apparent (Figure 2A-left). On day two, the corolla had developed and was equal in length to the calyx. Both were about 1 mm long (Figure 2A-center). On day four, the calyx was still about 1 mm long, but the corolla had elongated to about 2 mm (Figure 2Aright). On day six, the flower was about 3 mm long and began to open (Figure 2B-left). Fourteen of the 20 flowers observed opened within four hours of dawn. The remaining six opened throughout the day. No flowers opened at night. The corolla lobes separated and reflexed at a steady rate over a 3-4 hour period until they were horizontal (Figure 2B-right). The stamens arched inward as the lobes separated. Three to four hours after flower opening had commenced, the anthers began to dehisce inward (Figure 2B-right). Dehiscence took about one hour. The pollen was sticky and remained on the anther for several hours before drying and falling. During this period, the two stigmas were carried upward by the elongating styles. The stigmas brushed against the anthers and pollen was transferred. On day seven the corolla lobes were strongly reflexed and the stamens were arched outward (Figure 2C-left). The styles continued to elongate and typically were

Figure 2. Sequence of floral maturation in cuscuta attenuata Waterfall.
arched outward as well. Because of this arching, a stigma was observed on two occasions to come in contact with the anther of a nearby flower and pollen was transferred.
C. attenuata lacks apparent adaptations for insect pollination. The flowers are not fragrant. No insect visitors were observed at any of the four populations during numerous hours of observation. No cleistogamous flowers were observed in the field or in the laboratory. Self-pollination, as described above, was observed in both the field and the laboratory.

The ovary began to enlarge within a few days of flower opening. On day eleven, the ovary was about 3 mm long and caused the corolla to split (Figure 2c-right). The developing seeds were bright green and could be seen through the translucent capsule wall. The calyx and corolla had begun to dry and wither. The fruit, an irregularly and tardily dehiscent capsule, was mature 14-20 days after the flower bud first appeared (Figure 2D). At maturity, the capsule was about 3 mm in diameter. The corolla had dried and most of it had fallen from the fruit. The calyx had dried as well, but persisted at the base of the capsule. Herbarium records and field observations of C. attenuata indicate that mature fruit are present from about 10 September to 24 October.

The capsules of \underline{C}. attenuata were observed to float
when placed in water although none were observed floating at any of the sites. The Waterfall Creek site was visited on 3 January 1989 and the South Canadian River and Quanah Parker Lake sites were visited on 27 January 1990. At each site on these dates, intact capsules of C. attenuata were still attached to standing dead stems of Iva well after the growing season of both C. attenuata and I. annua.

Seed Germination. The effects of sulfuric acidscarification on seed germination of \mathbb{C}. attenuata are presented in Table 7. Of the 50 seeds which were mechanically scarified, 39 germinated during the first five-day interval and one germinated during the second five-day interval. The effects of the four different temperature regimes upon germination are presented in Table 8. Germination of seeds collected from the populations at Waterfall Creek, Quanah Parker Lake, and South Canadian River in the fall of 1989 are given in Table 9.

Reproductive Biology. Observations of the pollination mechanisms of \mathbb{C}. attenuata were combined with the phenological chronology. Fruit set, seed set, and seed germination from the treatments are given in Table 10. Percentages of stainable pollen are given in Table 11.

Cytology. The chromosomes of C. attenuata were observed at anaphase of the pre-meiotic mitosis.

Table 7. Number of Cuscuta attenuata seeds ($n=100$) germinating during five-day intervals at $30-33^{\circ} \mathrm{C}$ using different scarification regimes.

Table 8. Number of Cuscuta attenuata seeds ($n=100$) germinating during five-day intervals using different temperature regimes following scarification for 30 min in concentrated sulfuric acid.

Temperature in ${ }^{\circ}$ C	5	10	15	20	25	30	Total
$20-22$	58	4	0	0	0	0	62
$25-28$	97	2	1	0	0	0	94
$30-33$	37	0	0	0	0	90	
$35-38$	73	1	0	0	0	0	74

Table 9. Number of Cuscuta attenuata seeds ($\mathrm{n}=100$) collected in fall 1989 from the Waterfall Creek, Quanah Parker Lake, and South Canadian River populations germinating during five-day intervals at $30-33^{\circ} \mathrm{C}$ after scarification for 30 min in concentrated sulfuric acid.

Population	Days						Total
	5	10	15	20	25	30	
Waterfall Creek	88	1	0	0	0	0	89
Quanah Parker Lake	92	2	0	0	0	0	94
South Canadian River	82	0	1	0	0	0	83

Table 10. Fruit set, seed set, and seed germination in populations of cuscuta attenuata.

Table 11. Pollen stainability of Cuscuta species.
Species/Population Stainable Pollen(\%)
C. attenuata
Waterfall Creek 97
Quanah Parker Lake 87
South Canadian River 95
Sabine River 96
C. indecora var. indecora 92
C. indecora var. longisepala 95
C. cuspidata 97
C. compacta 99

Because of small cell size and the relatively large chromosome size, it was difficult to examine meiotic stages, however, the process appeared to be normal. Counts of three populations of C. attenuata revealed that the species had a chromosome number of $2 \mathrm{n}=30$. Analyses of Morphological Variation. The results of the univariate analysis are presented in Figure 3. The ranges of variation of ten characters of \underline{C}. attenuata did not overlap those of \underline{c}. compacta: number of bracts along pedicel, number of bracts at pedicel apex, bract length/bract width, calyx length/calyx width, corolla length/calyx length, corolla length/corolla width, number of fringes per corolla appendage, appendage length/appendage width, filament length, and anther length. The ranges of six characters of C. attenuata did not overlap those of C. cuspidata: bract length/bract width, calyx length, calyx length/calyx width, corolla length, calyx length, and corolla length/corolla width. The ranges of variation of three characters of C. attenuata did not overlap with those of C. indecora var. indecora: calyx length, length of calyx tube/total calyx length, and corolla length/calyx length. The ranges of variation of C . attenuata and C. indecora var. longisepala overlapped for every character examined. There were six characters
 indecora var. longisepala exhibited conspicuous

Figure 3. Means, standard deviations, and ranges for 27 morphological characters scored for five Cuscuta taxa. Means are indicated by vertical lines, ranges by horizontal lines, and standard deviations by horizontal bars. A single vertical bar indicates no variation in that character. Att $=$ C. attenuata; Lon $=\underline{C}$. indecora var. longisepala, Ind = C. indecora var. indecora, com = C. compacta, and cus $=$ C. cuspidata.

Calyx Length (mm)

Corolla Length (mm)

Length of Calyx Tube/Total

Corolla Length/Calyx Length

Corolla Length/Corolla Width

Number of Fringes Per Corolla Appendage

Figure 3. (Continued)

Figure 3. (Continued)

Figure 3. (Continued)
differences: pedicel length, bract length/bract width, calyx length, calyx tube length/total calyx length, calyx length/calyx width, corolla length/calyx length. The means of these characters are given in Table 12. The results of the clustering techniques are presented in Appendix B. Portions of phenograms from UPGMA, WPGMA, and Complete Linkage techniques are presented in Figures 4-6. In each technique, specimens of C. compacta and C. cuspidata formed distinct clusters before clustering with the other taxa. C. indecora var. indecora, C. indecora var. longisepala and C. attenuata did not form distinct clusters but rather formed one large cluster. When the UPGMC, WPGMC, and single linkage techniques were used, distinct clusters were not formed.

In the principal component analysis, the first three components explained 56.4% of the variation. The remaining variation was accounted for by the other factors in $1-4 \%$ increments. The first principal component, which accounted for 31.1% of the variation, was weighted for orientation of the bracts; orientation of the calyx, overlap of the calyx lobes, and papillations of the corolla. The second principal component, which accounted for 18.2% of the variation, was weighted for shape of the bract apex, shape of the bract margin, shape of the corolla apex, shape of the corolla margin, filament length/anther length, and

Table 12. Means of characters by which Cuscuta attenuata, Cuscuta indecora var. indecora, and cuscuta indecora var. longisepala differ.

Character	C. attenuata	C. Indecora var. indecora	C. indecora var. Longisepala
Pedicel Length	1.2	2.6	2.3
Bract Length/Bract Width	2.4	1.8	1.4
Calyx Length	2.7	2.0	1.4
Length of Calyx Tube/Total Calyx Length	0.2	0.3	0.5
Calyx Length/Calyx Width	2.8	2.2	1.4
Corolla Length/Calyx Length	1.2	1.6	2.2

Figure 4. Portion of a phenogram produced by UPGMA clustering technique. This portion contains all of the specimens of cuscuta attenuata. Specimen identification numbers are printed along the horizontal axis.

Figure 5. Portion of a phenogram produced by WPGMA clustering technique. This portion contains all of the specimens of cuscuta attenuata. Specimen identification numbers are printed along the horizontal axis.

Figure 6. Portion of a phenogram produced by complete linkage clustering technique. This portion contains all of the specimens of cuscuta attenuata. specimen identification numbers are printed along the horizontal axis.
number of fringes per corolla appendage. The third principal component, which accounted for 7.1% of the variation, was weighted for bract length/calyx length, calyx length, calyx length/calyx width, papillations of the calyx, and corolla length/calyx length. Plots of the first three principal components against one another are given in Figures 7-9. As can be seen in the plot of the first component against the second component (Figure 7), C. compacta and C. cuspidata formed distinct clusters while c. attenuata, \mathbb{C}. indecora var. indecora, and C. indecora var. longisepala clustered together. Of the characters that the second principal component was weighted for, filament length/anther length was the only one in which C. attenuata and C. indecora var. longisepala differ from \underline{C}. indecora var. indecora. The
 indecora var. longisepala, and . 77 for C. indecora var. indecora. This probably explains the tendency of \mathbb{C}. attenuata and C. indecora var. longisepala to occupy one portion of the cluster. The plot of the first principal component against the third principal component (Figure 8) showed that \underline{C}. compacta and C. cuspidata clustered with one another but separately from C. attenuata, C. indecora var. longisepala, and c. indecora var. indecora which formed a comparatively loose cluster. C. attenuata specimens tended to cluster at one extreme of the group, \underline{C}. indecora var. indecora tended to cluster

Figure 7. Plot of the first principal component against the second principal component in the analysis of morphological variation in five cuscuta taxa. Each letter represents one herbarium specimen (OTU): $A=C$. attenuata, $I=C$. indecora var. indecora, $L=\underline{C}$. indecora var. longisepala, $\bar{O}=\underline{C}$. compacta, and $U=$ C. cuspidata.

Figure 8. Plot of the first principal component against the third principal component in the analysis of morphological variation in five cuscuta taxa. Each letter represents one herbarium specimen (OTU): $A=C$. attenuata, $I=C$. indecora var. indecora, $L=\underline{c}$. indecora var. longisepala, $\overline{0}=\underline{c}$. compacta, and $U=$ c. cuspidata.

Figure 9. Plot of the second principal component against the third principal component in the analysis of morphological variation in five cuscuta taxa. Each letter represents one herbarium specimen (OTU): $A=C$. attenuata, $I=C$. indecora var. indecora, $L=\underline{C}$. indecora var. longisepala, $\bar{O}=\underline{C}$. compacta, and $U=$ C. cuspidata.
at the other extreme, and $\underset{\text { C. indecora }}{ }$ var. longisepala tended to cluster between the two. In the plot of the second component against the third component (Figure 9), C. compacta and C. cuspidata formed distinct clusters while the other three taxa once again were clustered together in the same manner as seen in Figure 8.

The results of the discriminant analysis suggest that only four specimens were misidentified. Those were I29, which had a probability of .518 of being C.
indecora var. longisepala rather than \underline{C}. indecora var. indecora as originally identified; L24, which had a probability of .522 of being \mathbb{C}. attenuata rather than \mathbb{C}. indecora var. longisepala; L25, which had a probability of .975 of being \mathbb{C}. indecora var. indecora rather than C. indecora var. longisepala; and A09, which had a probability of .956 of being \mathbb{C}. indecora var. longisepala rather than C. attenuata. With only two exceptions, all of the remaining identifications had a probability of 0.9 or above of being correct. The two exceptions, L03 and A08 had probabilities of . 81 and .80, respectively, of being correct. All probabilities from the discriminant analysis are presented in Appendix D.

Specimen A09 was replaced in the data set with another flower (A10) from the same specimen. Specimens L24 and L25 were changed to A24 and I51, respectively. the identification of specimen 129 was not changed. A
discriminant analysis was performed on this new data set and all probabilities were $>.93$ that each specimen was correctly identified.

Interspecific Hybridizations. None of the crosses between C. attenuata and the other taxa were successful. Neither fruit nor seed were set.

Electrophoresis. Enzyme bands revealed for esterase and benzidine peroxidase are shown in Figures 10 and 11, respectively. The samples of C. indecora var. indecora and C. indecora var. longisepala have the same banding pattern for esterase, they each have bands A, B, and D. Band D is also present in C. attenuata samples from the populations at Waterfall Creek and Quanah Parker Lake. The \mathbb{C}. attenuata samples from the populations at Waterfall Creek and the South Canadian River share band C, which is unique to those two samples. No band is present in all three samples of \mathbb{C}. attenuata. Three unique bands (E, F, and G) formed for the sample of C. cuspidata and no esterase bands formed for the sample of C. compacta.

The samples of \underline{C}. indecora var. indecora and \mathbb{C}. indecora var. longisepala have three bands in common for benzidine peroxidase, A, H, and J. Band H is also present in the samples C. attenuata from the South Canadian River and Quanah Parker Lake populations. Band J is also present in the samples of \mathbb{C}. attenuata from the Waterfall Creek and Quanah Parker Lake populations.

Figure 10. Esterase banding patterns produced by five cuscuta taxa. The first column represents \mathbb{C}. cuspidata stem material, which was not discussed here. The remaining six columns represent samples of flowers and stems of the taxon indicated above the column.
Cuscuta cuspidata
Cuscuta compacta
$\frac{\text { Cuscuta }}{\text { var. } \frac{\text { indecora }}{\text { indecora }}}$
$\frac{\text { Cuscuta }}{\text { var. } \frac{\text { indecora }}{\text { ongisepala }}}$ $\frac{\text { Cuscuta }}{\text { Waterfall Creek }} \frac{\text { attenuata }}{\text { Wll }}$ River South Canadian R attenuata: Quanah Parker Lake
$<B$ $<A$ O ${ }^{\circ} \mathrm{E}$ ${ }^{8}{ }^{8}$
<E$<\mathrm{H}<\mathrm{H}$$<\mathrm{H}<\mathrm{H}$
$<$ J < J $<$ J < J
Figure 11. Benzidine peroxidase banding patterns produced by five Cuscuta taxa. Column 1 represents C. cuspidata stem material, which was not discussed here. The remaining six columns represent samples of flowers and stems of the taxon indicated above the column.

In addition, the sample of C. indecora var. longisepala has band B in common with the samples of C. cuspidata, and C. attenuata from the South Canadian River and Quanah Parker Lake populations. Band E is present only in the samples of C. attenuata from the South Canadian River and Quanah Parker Lake populations. Band D is unique to the sample of C . attenuata from Waterfall Creek. Bands C, F, and G are unique to C. compacta.

DISCUSSION

Geographical Distribution. C. attenuata is not restricted to McCurtain County, Oklahoma as was previously thought. The discovery of two additional populations by chance suggests that c. attenuata may be fairly widespread but uncommon. Also, the genus is undercollected because of the difficulty in identifying specimens. In addition, the species is easy to overlook in the field because of its inconspicuous habit. The identification of 14 specimens from Oklahoma, Texas, and Kansas suggests that intensive field searches of sites occupied by I. annua and further herbarium studies might lead to the discovery of other populations. The known geographic range of C. attenuata has been expanded by this study, yet the failure to locate other populations in McCurtain County after extensive searches and the host specificity of the species suggest that populations are widely separated throughout its range.

Description of Host and Host's Habitat. In nature, C. attenuata rarely parasitizes anything but I. annua. Tyrl, et al. (1978) and Taylor and Taylor (1980) reported that C. attenuata also parasitized a species of Aster, but the Cuscuta plant had probably parasitized an I. annua plant initially and subsequently parasitized the Aster plants. The successful cultivation of \mathbb{C}.
attenuata on coleus hybridus suggests that further studies may reveal other hosts suitable for cultivation and may determine that C. attenuata is not physiologically restricted to I. annua. It is widely accepted that some species of cuscuta are adapted to a wide variety of hosts, while others have a preference for one or a few species (Yuncker, 1920; Verdcourt, 1948; and Gaertner, 1950). Iva has also been cited as host for C. compacta, c. cuspidata, and c. indecora, by Gandhi, et al. (1987), Musselman (1986), Yuncker (1965).

Except for the presence of a large population of its host, no single habitat feature examined could be correlated with the presence of C. attenuata. However, all of the sites reported in this study occur in a region that has a similar climate. Some features such as mean yearly temperature, soil texture, and soil pH varied little between the sites while others such as mean yearly precipitation, surface nitrate, soil zinc, and salinity varied substantially (Table 6).

Phenology. Few observations of the phenology of \underline{C}. attenuata have been made. Tyrl, et al. (1978) and Taylor and Taylor (1980) briefly discussed phenology in their status reports of the species. The observations reported here agree with their observations. Several workers have reported similar germination dates for other species (Hutchison and Ashton, 1980; Allred and Tingey, 1964; Dawson, 1965) and the early development of
the seedling and attachment to the host is similar to that described for other species by Kuijt (1969), Zietz (1954), and Verdcourt (1948). Others have also reported the presence of chlorophyll in the seedlings of various Cuscuta species (Verdcourt, 1948; Musselman, 1986). Musselman (1986), Austin (1986), and Steyermark (1963) reported similar flowering dates for many species of Cuscuta including C. compacta, C. cuspidata, and C. indecora.

Kuijt (1969), Dean (1954), and Visser (1981)
reported that some species of Cuscuta are capable of perennation inside the host stem. According to their descriptions, the host stem becomes swollen and misshapen at the point of haustorial attachment. This deformation extends completely around the stem and has been referred to as a hypertrophy (Dean, 1937; Kuijt, 1969). Subsequently, the Cuscuta stem is broken and usually falls from the host, but the haustoria remain alive inside the host stem and can overwinter. New Cuscuta stems emerge from the hypertrophies the following growing season. Dean $(1934,1937)$ described the formation of hypertrophies on a number of hosts including several annuals. He observed that new Cuscuta stems often emerge from haustorial tissue imbedded in the cortical parenchyma and xylem of the host. Kuijt (1969) also discussed this phenomenon and added that flowers which originate endogenously also may develop
from the enveloped haustorial coil.
Yuncker (1920) and Verdcourt (1948) failed to observe any insect visitors during numerous hours of observation, although Musselman (1986) observed dipterans pollinating C. rostrata. Yuncker (1920), Verdcourt (1948), Muller (1883), Musselman (1986), and Visser (1981) reported that a few species of cuscuta are fragrant and probably insect pollinated, but that insect pollination is not the rule. Kuijt (1969) stated that within the genus, pollination lacks a high degree of precision. Verdcourt (1948) stated that selfpollination appears to be the rule. Musselman (1986) stated that autogamy is well developed in C. compacta and \mathbb{C}. pentagona. Beliz (1988) reported that \underline{C}. pentagona and C. salina are autogamous. Both Yuncker (1920) and Verdcourt (1948) have reported instances of cleistogamy. It appears that C . attenuata is strictly autogamous because only self-pollination was observed in the field and laboratory.

Seed dispersal in \mathbb{C}. attenuata appears to be unspecialized. Verdcourt (1948) stated that while little evidence is available, water may play a role in seed dispersal in some species. He pointed out that many species of cuscuta commonly occur near water, and that the seeds will sink but entire capsules will often float. Kuijt (1969) described seed dispersal as haphazard and unspecialized. All four observed
populations of C. attenuata were located near water but this may reflect the habitat specificity of the host more than a seed dispersal mechanism, although it is not unrealistic to hypothesize that water may play role in dispersal because the capsules float.

Seed Germination. Scarification increases germination rates dramatically. Only 13\% of unscarified seeds germinated, whereas an average of 84.7% of those seeds chemically scarified for 30 min or more germinated, a 7.7.7\% increase. Of those which were chemically scarified for 15 min, 59\% germinated, a 46\% increase over the control. A minimum scarification time of 30 min is required for optimum germination rates. These results are consistent with those reported by other workers. In a similar experiment, Hutchison and Ashton (1979) reported that maximum germination rates for C. campestris were achieved after 45 min of treatment with concentrated sulfuric acid. Tingey and Allred (1960) reported highest germination rates for \mathbb{C}. approximata after treatment for 60 min . Gaertner (1950) concluded that scarification in concentrated sulfuric acid is an efficient method for breaking the dormancy mechanism in a variety of cuscuta species but that the optimum length of time varies with the age of the seed and the species involved.

Of those seeds which were mechanically scarified, 80% germinated, a 67% increase over the control.

Hutchison and Ashton (1979) reported that mechanical scarification can increase germination by more than 90% in C. campestris. Tingey and Allred (1960) increased germination of \underline{C}. indecora by 12% by using mechanical means and suggested that the percent increase would be higher if the seeds had been more thoroughly scarified.

Temperature also has an impact on germination rates. The highest germination rate (94\%) was achieved with the 25-28 C° temperature range. A slightly lower germination rate (90%) was achieved with the $30-33^{\circ} \mathrm{C}$ temperature range. Under the $20-22^{\circ} \mathrm{C}$ and the $35-38^{\circ} \mathrm{C}$ temperature ranges germination rates of 62% and 74% were achieved, respectively. Allred and Tingey (1964) reported maximum germination rates for scarified seeds at $16^{\circ} \mathrm{C}$ for C. approximata and C. campestris and $21^{\circ} \mathrm{C}$ for C. indecora. Hutchison and Ashton (1980) reported $30-33^{\circ} \mathrm{C}$ as an optimum temperature range for germination of scarified \mathbb{C}. campestris seeds.

The soil temperature at the Waterfall Creek site was $25^{\circ} \mathrm{C}$ on 15 May when seedlings of C . attenuata were first observed. This correlates with the optimum temperature ranges for germination observed in the laboratory, i.e., $25-38^{\circ} \mathrm{C}$. This also correlates with the appearance of young seedlings of I. annua in the field, presumably at the time of infection by \mathbb{C}. attenuata.

The percent germination of the seeds collected in
the fall of 1989 from the Waterfall Creek, Quanah Parker Lake, and South Canadian River populations (89\%, 94\%, and 83% respectively) are similar to the germination percentage of seeds collected from the Waterfall Creek population in January 1989 (84\%, Table 7). This suggests that cold exposure is not required for seed germination as has been shown for C. approximata (Tingey and Allred, 1960), however, the C. attenuata seeds were not moist at the time of exposure as the \underline{C}. approximata seeds were. The results also suggest that there is not a large difference between germination rates of \mathbb{C}. attenuata from different populations or seasons.

Reproductive Biology. Cuscuta attenuata is both autogamous and allogamous. The mechanism of selfpollination was discussed above. The natural seed set and germination and the seed set and germination from both the caged plants and the untreated and manually self pollinated plants in the laboratory (Table 10) are similar. C. attenuata did not exhibit agamospermy; none of the 40 emasculated flowers produced seed.

The success of the crosses between different individuals within a population indicate that \mathbb{C}. attenuata is capable of intrapopulational allogamy. As shown by the results from the interpopulational crosses C. attenuata is capable of interpopulational allogamy. This suggests that gene flow within and between populations is possible, although it is unlikely to
occur often because no evidence of wind dispersal of pollen was observed in this study or reported in the literature and the distance between populations is too great for insect pollinators to bridge. High percentages of stainable pollen agree with the results of Beliz (1988) who reported 95\% to 98\% stainability in Cuscuta species.

Cytology. The mitotic chromosome count of C. attenuata was consistent with the base number of 15 given by Cronquist (1981) and the reported mitotic chromosome number of $2 \mathrm{n}=30$ for c . indecora reported by Pinkava, et al. (1974). An interesting aside is that Cronquist also gives 7 as a base number for the genus. No chromosome numbers have been reported for any other of the taxa encompassed by this study.

Analyses of Morphological Variation. When Waterfall first described C. attenuata in 1971 (Waterfall, 1971) he tentatively placed it in the subsection Lepidanche on the basis of its free sepals. He suggested, however, that formation of a new subsection might be appropriate for the species because its bracteate flowers and capsule shape were not consistent with Yuncker's circumscription of Lepidanche (Yuncker, 1965). Other members of this subsection are C. compacta, C. cuspidata, \mathbb{C}. glomerata, all native to Oklahoma, and \mathbb{C}. squamata, native to Mexico and Texas. C. attenuata can be distinguished from these taxa primarily on the basis
of its attenuate sepals, its pedicellate flowers which have bracts only at the base, and the length of the corolla lobes relative to the length of the corolla tube. Waterfall stated that \mathbb{C}. attenuata resembled \mathbb{C}. compacta. He distinguished them on the basis of their differences in pedicel presence (ㄷ. attenuata has a pedicel, C. compacta does not); location and number of floral bracts (C. attenuata has only one floral bract which is at the base of the pedicel and C. compacta has 1-10 which are situated along the length of the pedicel), and sepal shape (ㄷ. attenuata has lanceolate, attenuate sepals and \underline{C}. compacta has ovate, obtuse sepals). Waterfall also stated that \mathbb{C}. attenuata resembled $\underset{C}{ }$. cuspidata in the presence of pedicels (these are the only two taxa in the subsection Lepidanche which have pedicels), but was different in that C. cuspidata has a much more open inflorescence; ovate, cuspidate sepals; and usually one or two bracts along the pedicels.

Upon close examination it became apparent that the sepals of C. attenuata are fused at the base and not free as Waterfall had stated in his diagnosis. Reexamination of the holotype revealed that its sepals are also fused. Because the free calyx was the character used to place \mathbb{C}. attenuata in the subsection Lepidanche its placement was reevaluated. Interpreting the sepals as fused places C. attenuata in the
subsection Indecorae in Yuncker's 1965 monograph of Cuscuta which is the most recent comprehensive treatment.

A comparison of characters of the subsections Lepidanche and Indecorae described in Yuncker's 1965 monograph is given in Table 13. With the exception of its somewhat dense inflorescence, the characters of \underline{C}. attenuata fall within the circumscription of Indecorae better than Lepidanche. Within the subsection Indecorae, specimens of \mathbb{C}. attenuata key to the taxon \mathbb{C}. indecora var. longisepala. Table 14 compares C. attenuata and C. indecora var. longisepala. The character states are taken from Waterfall's original description of C. attenuata (Waterfall, 1971) and Yuncker's original description of C. indecora var. longisepala (Yuncker, 1920). The two taxa are similar or identical for every character state listed. In 1965 Yuncker examined one of the specimens identified in this study as C. attenuata (C. J. Eskew 1395) and made the following annotation: "C. indecora Choisy. The long narrow calyx lobes would make it var. longisepala Yuncker. However, the specimen looks teratological and may not be the variety but only an abnormal form." This indicates that the specimen did not fit Yuncker's concept of \underline{C}. indecora var. longisepala, yet it was more similar to the taxon than any other.

On the basis of univariate and multivariate

Table 13. Characters used to differentiate Cuscuta subsections Indecorae and Lepidanche from Yuncker's 1965 monograph.

Subsection Indecorae	Subsection Lepidanche
Gamosepalous	Polysepalous Not especially bracteate Much bracteate, flowers surrounded by several closely investing bracts
Inflorescence not	Inflorescence mostly in dense, compact clusters
Flowers pedicellate	Flowers pedicellate or more commonly sessile
Thickened stylopodium	Stylopodium present or absent
Capsule globose or	capsule somewhat conic
globose-depressed	

Table 14. Comparison of Cuscuta attenuata Waterfall and cuscuta indecora var. longisepala Yuncker, using characters from the original descriptions (Waterfall, 1971; Yuncker, 1920).

```
C. attenuata
C. indecora var. longisepala
```

Flowers usually
pedicellate up to 4 mm long

Corolla lobes deltoidovate, about equalling the tube in length, spreading at full anthesis

Corolla appendages ovateoblong, fringed, extending about $1 / 2$ way up the filaments

Capsule slightly depressed-globose, corolla deciduous from the mature capsule

Calyx ovate-lanceolate to narrowly lanceolate, attenuate

Flowers on pedicels \leq calyx length

Corolla lobes triangularovate, shorter that the tube in length, upright to spreading

Corolla appendages oblong
to subspathulate, abundantly fringed, fringe reaching the filaments

Capsule depressed-globose, surrounded by the corolla which eventually splits

Calyx lanceolate, acute
analyses, C. attenuata is a morphologically distinctive taxon albeit very similar to c. indecora, particularly var. longisepala. As revealed by the univariate analysis its distinguishing characters include pedicel length, bract length/bract width, calyx length, length of calyx tube/total calyx length, calyx length/calyx width, and corolla length/calyx length. Cluster analyses revealed that \mathbb{C}. attenuata is distinct from \mathbb{C}. compacta and c. cuspidata but morphologically very similar to C. indecora. C. compacta and C. cuspidata were also shown to be distinct by the principal component analysis. Once again C. attenuata was not separated from C. indecora. The distribution of specimens along the X -axis in Figures 8 and 9 was determined by the third component which was weighted by characters which dealt with variation in the calyces. For those characters C. indecora var. longisepala is always intermediate between \mathbb{C}. attenuata and \mathbb{C}. indecora var. indecora, thus producing the distribution exhibited in the figures.

After the original discriminant analysis was performed, specimens A09, L24, L25, and I29 were reexamined to account for the discrepancies. Specimen A09 was grown in the lab on Coleus hybridus from seed collected from the Waterfall Creek plants, and therefore, was definitely C. attenuata. Its flowers were rather small in comparison to other specimens of \underline{C}.
attenuata. possibly due to cultivation on a host other than I. annua. A large flower from the same specimen was deliberately chosen to replace A09. Specimens L24 and $L 25$ were re-examined and it was determined that they had been misidentified. Specimen I29 was determined to have been correctly identified. Using this new data set the discriminant analysis yielded probabilities of $>.93$ that each specimen was correctly identified.

Interspecific Hybridizations. The lack of fruit set and seed set from all of the interspecific crosses suggests that C. attenuata is genetically isolated from c. indecora var. indecora, c.. indecora var. longisepala, C. compacta and C. cuspidata. Although a small number of crosses were attempted, the techniques utilized were identical to those used for the interpopulational crosses which were successful which indicates that technique was not a factor (Table 10). No hybridizations of Cuscuta species have been reported heretofore (Beliz, 1988). The inability of \underline{C}. attenuata to hybridize with any of the other taxa studied suggests that \mathbb{C}. attenuata is a distinct species.

Electrophoresis. Analysis of the enzymatic proteins of \mathbb{C}. attenuata and its relatives, while only preliminary, does show that there are differences in the banding patterns for those individuals which were sampled. Gottlieb (1976) stated that samples from one or a few populations may be an adequate sample of a
species, but that the population must be sampled thoroughly before conclusions can be drawn. Further, Buth (1984) and Hurka (1984) maintain that to examine intraspecific relationships all taxa should be sampled throughout their geographic range in order to determine enzymatic variation. The sample size in this study does not fulfill either requirement. The banding patterns for the three populations of \mathbb{C}. attenuata sampled, however, are similar.

Status of Cuscuta attenuata Waterfall. Prior to this study C. attenuata was known from only two sites. Herbarium studies revealed nine sites in Oklahoma, Kansas, and Texas where \mathbb{C}. attenuata had been collected. Four populations in Oklahoma and Texas were located via field searches. The sites where the populations were located were the type locality along Waterfall Creek in McCurtain County, Oklahoma; the floodplain of the South Canadian River in Cleveland County, Oklahoma; the banks of Quanah Parker Lake in Comanche County, Oklahoma; and along the banks of the Sabine River in Rains County, Texas. C. attenuata had not been collected in Comanche County or Rains County prior to this study. In nature, Iva annua L. was the only host on which C. attenuata was seen, except one collection on a species of Aster, however, it was cultivated on Coleus hybridus in the laboratory. The only feature common to all four study sites was large populations of the host. \underline{C}. attenuata
germinates in mid May, undergoes vegetative growth throughout the summer, flowers in mid August, and produces fruit within two weeks of flowering. Selfpollination usually occurs on the sixth day after appearance of the flower bud. Seed dispersal is unspecialized. Scarification is required for seed germination which occurs at an optimum temperature range of 25-33 C. The species is capable of autogamy and allogamy. It has a chromosome number of $2 \mathrm{n}=30$.
C. attenuata closely resembles \mathbb{C}. compacta, ㄷ. cuspidata, $\underset{\text { c. indecora }}{ }$ var. indecora, and C. indecora var. longisepala, however, interspecific hybridizations revealed that it is reproductively isolated from these taxa. Analyses of morphological variation, including a univariate analysis and a multivariate analysis involving clustering techniques, a principal component analysis, and a discriminant analysis revealed that \underline{C}. attenuata is distinct from C. compacta and C. cuspidata, but very similar to \mathbb{C}. indecora. Enzymatic protein banding patterns of samples of \underline{C}. compacta, ㄷ. cuspidata, $\underset{\text { c. }}{ }$ indecora var. indecora, c. indecora var. longisepala, and three populations of \mathbb{C}. attenuata showed distinct patterns for each. The evidence presented suggests that \mathbb{C}. attenuata is a distinct species most closely related to \underline{C}. indecora.

LITERATURE CITED

Allred, K. R. and D. C. Tingey. 1964. Germination and spring emergence of dodder as influenced by temperature. Weeds 12:45-48.

Austin, D. F. 1986. Cuscutaceae, In: Flora of the Great Plains, Great Plains Flora Association. University Press of Kansas, Lawrence, Kansas.

Ayensu, E. S. and R. H. DeFilipps. 1978. Endangered and Threatened Plants of the United States. Smithsonian Institution and World Wildlife Fund, Washington, D. C.

Beliz, T. D. C. 1988. A revision of Cuscuta sect. Cleistogrammica using a phenetic and cladistic analyses with a comparison of reproductive mechanisms and host preferences in species from California, Mexico, and Central America. University Microfilms International, Ann Arbor, Michigan.

Buth, D. G. 1984. The application of electrophoretic data in systematic studies. Ann. Rev. Ecol. Syst. 15:501-522.

Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.

Dawson, J. H. 1965. Prolonged emergence of field dodder. Weeds 13:373-374.

Dean, H. L. 1934. Host responses to haustorial invasion of Cuscuta species. Science 80:588.

Dean, H. L. 1937. Gall formation in host plants following haustorial invasion by Cuscuta. Amer. J. Bot. 24:167-173.

Dean, H. L. 1954. Dodder overwintering as haustorial tissues within Cuscuta-induced galls. Proc. Iowa Acad. Sci. 61:99-106.

Gaertner, E. E. 1950. Studies of seed germination seed identification, and host relationships in dodders, Cuscuta. spp. Cornell Univ. Mem. 294.

Gandhi, K. N., R. D. Thomas, and S. L. Hatch. 1987.

Cuscutaceae of Louisiana. Sida 12:361-379.
Gottlieb, L. D. 1976. Electrophoretic evidence and plant systematics. Ann. Mo. Bot. Gar. 64:161-180.

Hicks, P. H., D. A. Sleper, D. D. Randall, and C. F. Crane. 1982. Peroxidase isozyme differences in tall fescue cultivars and allopolyploid accessions. Euphytica 31:175-181.

Hurka, H. 1984. Enzymes as a taxonomic tool: a botanist's view. In: F. A. Bisby, J. G. Vaughan, and C. A. Wright, eds. Chemosystematics: principles and practice. Academic Press, New York.

Hutchison, J. M. and F. M. Ashton. 1979. Effect of dessication and scarification on the permeability and structure of the seed coat of Cuscuta campestris. Amer. J. Bot. 60:40-46.

Hutchison, J. M., and F. M. Ashton. 1980. Germination of field dodder (Cuscuta campestris). Weed Sci. 28:330-333.

Kuijt, J. 1969. The Biology of Flowering Plants. University of California Press, Berkeley, California.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.

Muller, H. 1883. Fertilisation of Flowers. MacMillan \& Co., London.

Musselman, L. J. 1986. The genus Cuscuta in Virginia. Castanea 51:188-196.

Pinkava, D. J., R. K. Brown, J. H. Lindsay, and L. A. McGill. 1974. In: IOPB chromosome number report XLIV. Taxon 23:373-380.

Radford, A. E., W. C. Dickison, J. R. Massey, and C. R. Bell. 1974. Vascular Plant Systematics. Harper \& Row, New York.

SAS Institute Inc. 1985. SAS User's Guide: Statistics, 5th ed. SAS Institute Inc., Cary, North Carolina.

Shaw, C. R. and R. Prasad. 1970. Starch gel electrophoresis of enzymes: a compilation of recipes. Biochem. Genet. 4:297-320.

Steyermark, J. A. 1963. Flora of Missouri. The Iowa

State University Press, Ames, Iowa.
Taylor, R. J. and C. E. Taylor. 1980. Cuscuta attenuata: Status Report. Submitted to U. S. Department of Interior, Fish \& Wildlife Service, Albuquerque, New Mexico.

Tingey, D. C., and K. R. Allred. 1960. Breaking dormancy in seeds of Cuscuta approximata. Weeds 9:429-436.

Tyrl, R. J., J. L. Gentry, Jr., P. G. Risser, and J. J. Crockett. 1978. Field Surveys and Status Evaluation on Proposed and Candidate Endangered Plant Species in Oklahoma. Project Report to the U. S. Department of Interior, Fish and Wildlife Service, Albuquerque, New Mexico.

Verdcourt, B. 1948. Biological flora of the British Isles. Cuscuta L. J. Ecol. 36:356-365.

Visser, J. 1981. South African Parasitic Flowering Plants. JUTA, Johannesburg, South Africa.

Waterfall, U. T. 1971. New species of Cuscuta and Phlox from Oklahoma. Rhodora 73:575-577.

Yuncker, T. G. 1920. Revision of the North American and West Indian species of Cuscuta. Ill. Biol. Monogr. 6:1-141.

Yuncker, T. G. 1965. Cuscuta. North American Flora. Ser. II(4):1-51.

Zietz, H. 1954. Neue Beitrage zur Entwicklungsphysiologie von Cuscuta gronovii. Willd. Biol. Zentralbl. 73:129-155.

APPENDIX A

HERBARIUM SPECIMENS USED
IN THE MORPHOLOLGICAL
ANALYSES

Appendix A contains a list of all herbarium specimens examined in the analyses of morphological variation. The first column is the specimen identification number used in this study, the second is the abbreviation of the herbarium from which the specimen was obtained, the third is the accession number of the specimen, and the final column is the collector and collection number.

Cuscuta attenuata Waterfall

A01	DUR	
A02	JUR Taylor 31074,	
A03	SMU	
A04	OKL 111199	C. \& C. Taylor 32518
A05	OKLA 89319	P. Buck 524
A06	OKLA 102503	R. G. Koch 2156B
A07	OKLA	
A08	OKLA	
A09 A. A. Prather 222		
OKLA		L. A. Prather 216
A10 OKLA		L. A. Prather 231

Cuscuta compacta Juss.
001 OKL 111332 D. Demaree 15591
002 OKL 111273 D. Demaree 13669
003 OKL 111272 D. Demaree 16050
004 OKL 111267 A. Chase 2571
005 TEX 114808 A. Lee 90
006 LL C. L. \& A. A. Lundell 11909
007 LL C. L. Lundell \& S. W. Geiser 11882

008	LL		C. L. \& A. A. Lundell 11767
009	TAES	70369	F. W. Gould \& C. Leinweber 6533
010	UARK		D. M. Moore 410-285
011	UARK	18543	E. M. Merill 880
012	OCLA	7158	L. K. McGrath 4750
013	DUR		G. W. Stevens 2641
014	DUR		J. Taylor 20422
015	DUR		D. Beem 286-B
016	DUR		J. \& C. Taylor 23549
017	OKLA	102469	D. Demaree 15869
018	SMU		E. Whitehouse 22379
019	SMU		C. L. \& A. A. Lundell 11798
020	SMU		C. L. \& A. A. Lundell 11965
021	SMU		V. L. Cory 49810
022	SMU		D. Demaree 42922
023	SMU		D. Demaree 8300
024	SMU		D. Demaree 9521
025	SMU		D. Demaree 34295
026	SMU		D. Demaree 18546
027	NLU	113824	R. D. Thomas 47758
028	NLU	106288	R. D. Thomas \& C. M. Allen 41486
029	NLU	50002	R. D. Thomas 21247
030	NLU	211212	K. H. Kessler \& N. Taylor 2902
031	NLU	174016	C. M. Allen 9695 \& K. Vincent 3050
032	NLU	29024	R. D. Thomas \& C. Smith 22183
033	NLU	50003	R. D. Thomas, et al. 12432
034	NLU	183276	N. Carroll 1973

| 035 | NLU | 154796 | S. E. Schutz 1771 |
| :--- | :--- | :--- | :--- | :--- |
| 036 | NLU | 209088 | R. D. Thomas, D. Taylor, \& P. Laird |
| 82216 | | | |

```
U08 OKL 111256 D. Demaree 18170
U09 OKL 111258 D. Demaree 34244
Ul0 OKL 111261 W. H. Horr E476
U11 OKL 111262 B. F. Bush 95
U12 OKL 111178 J. E. McClary 56
U13 OKL 111180 G. T. Robbins 2237
U14 OKL ll1181 E. D. Barkley 367
U15 OKL 111182 C. Lawson, J. Massey, & G. J.
    Goodman 159
U16 OKL 111177 W. A. McAfee 10
U17 TEX 114827 M. S. Young unnumbered
U18 TEX 291517 H. H. Duval 97
U19 TEX 290029 R. J. Fleetwood 9607
U20 LL D. S. Correll 38056
U21 TEX 114822 C. L. & A. A. Lundell 12039
U22 LL D. S. Correll 30325
U23 LL C. L. Lundell }1196
U24 TEX 114823 B. C. Tharp & Miller 51-346
U25 TEX 114829 M. B. M. unnumbered
U26 TEX 192080 C. M. Rowell, Jr. 4247
U27 LL D. S. & H. B. Correll }3982
U28 UARK 6240 D. M. Moore 400055
U29 UARK 17815 D. Demaree 22623
U30 UARK P. Anderson unnumbered
U31 UARK 18545 G. M. Merrill 1038
U32 UARK 17814 D. Demaree 22449
U33 UARK G. Barber 1850
U34 NLU 221048 R. D. Thomas 84856
```


I12	TEX	195344	C. M. Rowell 60-38A
I13	TEX	114952	L. C. Hinckley unnumbered
I14	LL		D. S. Correll \& I. M. Johnston 19032
I15	TEX	115069	B. L. Turner \& B. C. Tharp 3128
I16	TEX	114989	B. C. Tharp unnumbered
I17	TEX	114934	C. L. \& A. A. Lundell 7059
I18	TEX	114940	B. C. Tharp 3
I19	LL		B. H. Warnock \& W. D. MCBryde 15141
I20	TEX	114953	B. C. Tharp 1595
I21	TEX	114859	W. L. Tolstead 7540
I22	TEX	114937	B. C. Tharp unnumbered
I23	TEX	115084	B. H. Warnock 6448
I24	LL		B. H. Warnock 7225
I25	LL		A. R. \& H. N. Warnock 27920
I26	LL		J. R. Crutchfield 3474
I27	TAES	65406	O. E. Sperry T1375
I28	TAES	15662	S. E. Wolff 2109
I29	TAES	44846	H. B. Parks \& V. L. Cory 29162
I30	TAES	148372	G. Irish 99
I31	TAES	15659	V. L. Cory 17507
I32	TAES	53006	O. E. Sperry 1503
I33	TAES	54543	H. B. Parks 140
I34	UARK	36772	G. J. Goodman 6874
I35	OCLA	14935	L. K. McGrath 16622
I36	OCLA	15025	L. K. McGrath 12204
I37	OCLA	12586	A. Lasseigne 6241
I38	SMU		S. P. Churchil1 2455

I39	SMU		A. Traverse 193
I40	SMU		L. C. \& L. Hinckely 135
I41	SMU		F. B. Jones 269
I42	SMU		C. L. \& A. A. Lundell 9025
143	SMU		C. L. Lundell \& S. W. Geiser 11784
I44	SMU		D. S. \& H. B. Correll 12761
I45	SMU		A. E. Orr 468
I46	SMU		W. M. Longnecker 50
I47	SMU		C. L. \& A. A. Lundell 11905
I48	OKL	111310	G. J. Goodman 6547
I49	OKL	111361	D. Demaree 13066
I50	OKL	111212	U. T. Waterfall 7245
		cuscuta	indecora var. longisepala Yuncker
L01	OKLA		L. A. Prather 205
L02	OKLA	102379	F. H. Means 3839
L03	OKLA	102436	U. T. Waterfall 12432
L04	OKLA	102532	D. Demaree 62617
L05	SMU		W. F. Mahler 6991 \& J. M. Flook
L06	SMU		C. L. \& A. A. Lundell 11673
L07	SMU		V. L. Cory 53360
L08	SMU		J. W. Thieret 8799
L09	SMU		M. C. Johnston, B. C. Tharp, \& B. L. Turner 3616
L10	SMU		O. A. Stevens 117
L11	SMU		C. L. Lundell \& S. W. Geiser 11907
L12	SMU		V. L. Cory 53367
L13	NLU	260246	A. Lasseigne 6321

L14	NLU	273417	C. Hermann 307
L15	OKL	111369	J. W. Graber unnumbered
L16	TEX	114773	L. D. Smith 164
L17	LL		D. S. Correll 33379
L18	TEX	114982	B. C. Tharp 3162
L19	TEX	268162	R. Runyon 2819
L20	TEX		J. Hendrickson 7927
L21	TEX		F. R. Waller 3203 \& J. Bauml
L22	LL		C. L. \&A. A. Lundell 11788
L23	TEX	275011	H. M. Pollard unnumbered
L24	TEX	114983	B. C. Tharp unnumbered
L25	DUR		J. \& C. Taylor 25096
L26	OKLA		L. A. Prather 207

APPENDIX B
MORPHOLOGICAL DATA USED IN ANALYSES
OF VARIATION IN CUSCUTA

Column numbers correspond to list of characters following appendix.

ID $\begin{array}{llllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$

	4	3	3	1.	1	0	0	. 66	2.2	3	2		3.2	. 29	2.9	0		2		1.4	. 53	
	4	3	2	1.2	1	0	0	. 57	2.	3	2	1	2.	. 30	2.	0	3	5	0	1.4	. 62	2
	4	3	3	0.6	1	0	0	. 5	2.	3	2	1	3.2	. 18	3.8	0	3	5	0	1.0	. 61	2.1
A04	4	4	3	0.9	1	0	0	. 72	2.3	3	2	1	2.5	. 13	3.0	0	3	2	0	1.2	. 58	2.4
	4	3	3	1.7	1	0	0	. 88	2.5	3	2	1	2.7	. 31	2.2	0	3	2	0	1.3	. 53	1.9
	4	3	3	0.	1	0	0	1.	3.	3	5	1	2.		2.	0	3	5	0	1.2	. 61	2.0
	4	3	3	2.2	1	0	0	. 78	2.2	3	2	1	3.	. 2	2.6	0	3	5	0	1.0	. 64	1.8
	4	3	3	1.	1	0	0	. 8	2	3	2	1	2.	. 1	2	0	3	2	0	1.	. 59	1.8
	4	3	3	0.8	1	0	0			3	2	1				0	3	2	0	1.3	. 58	2.0
	4	3	3	1.3	1	0	0	. 77	2.	3	2	1	2.	. 1	2.7	0	3	2	0	1.4	. 55	2
001	1	1	4	0.8	1	3	2	. 92	. 89	4	1	0	2	. 43	1.6	1	1	1	0	1		3.4
	1	1	4		1	2	2	. 84		5	1	1.				1	5	1	0	1.8	. 75	. 0
	1	1	4	0.	1	2	2	. 9	. 7	1	1	1	1.	. 5	1.	,	5	1	0	1.	. 73	4.3
004	1	1	3	0.	1	2	1	. 6	. 54	4	1	1	1.	. 2	1.1	1	4	1	0	1.	. 81	4.1
	1	1	5	0.	1	4	2	. 7		5	1	1	2.	. 18	1.1	1	5	1	0	1.6	. 79	3.9
	1	1	4		1	3	2	. 99		5	1	0	2.		1.0	1	5	1	0	1.	. 81	5.6
	1	1	5	0.6	1	2	1	1.2	. 8	5	1	0	2.	.	1	1	4	1	0	1.	. 81	4.5
	1	1	3	1.	1	4	1	. 9	. 84	4	1	0	2	. 13	1	1	4	1	0	1	70	4.7
	1	1	3	0.	1	2	1	. 8		4	1	1	1	. 23	1	1	4	1	0	1	. 75	3.9
	1	1	3	0.	1	2	1	. 90		5	1	0	2	. 17	. 97	1	5	1	0	1.6	. 60	3.4
	1	1	3	1.	2	6	2	. 8	. 4	4	1	1	1		1	1	4	1	0	2.	. 85	4.6
	1	1	3	1.	1	1	1	. 8	. 76	4	1	0	2	. 14	. 95	1	4	1	0	1.4	. 69	3.4
	1	1	4	0.	1	4	2	. 6		4	1	1	2	. 33	1	1	5	1	0	1.4	. 62	4.0
	1	1	4	0.9	1	5	2	. 9		4	1	0	2			1	4	1	0	1	78	5.2
	1	1	4	1.	1	1	1	1.	. 95	5	1	0	2	. 23		1	1	1	0	1.	. 75	4.8
	1	1	4	1	1	1	2	. 96		4	1	0	2	. 21	1.0	1	5	1	0	1	. 74	4.8
	1	1	5	1.	1	3	2	. 6		4	1	0		. 06	1	1	4		0	1.9	. 77	4.6
	1	1	4	0.	1	1	2	1	. 7	1	1	1	2		. 95	1	4	1	0	1.9	68	3.7
	1	1	5	0.	1	2	2	. 6	. 64	4	1	0	2	. 15	1	1	4	1	0	1.7	7	4.2
	1	1	3	0.	1	1	2	1	. 77	4	1	1	2.0	. 12	. 9	1	4	1	0	1.	. 74	3.9
	1	1	4		1	2	2			5	1	1				1	4	1	0	2.4	. 86	
	1	1	4	1.	1	2	2	. 76	. 57	4	,	0	1.	. 12	.	1	4	1	0	1.9	. 77	6.2
	1	1	4	1.	1	3	2	. 6	. 3	1	,	1		. 26	1	1	1	1	0	2.3	. 71	
	1	1	3		1	2	2	. 96		4	1	1	2.		1.1	1	4	1	0	1.8	. 75	4.8
	1	1	4	0.	1	1		1	. 99	5	1	0	2	. 30	. 9	1	4	1	0	2	. 71	5.3
	1	1	4	1.	1	1	1	. 73	. 68	1	1	0	2	. 13	1	1	4	1	0	1.8	. 70	4.8
	1	1	3		1	2	1	. 9		4	1	0	2			1	4	1	0			3.7
	1	1	3	1	1	3	2	.		4	1	1	1		.	1	4	1	0	1.7	. 63	3.3
	1	1	4	0.	1	4	1	. 8	. 7	5	1	1	2	. 17	1	1	5	1	0	1	. 78	4.6
	1	1	5	0.	1	2	2	. 9		1	1	1	1		1	1	4	1	0	1.9	. 65	3.5
	1	1	4	0	1	3	1	. 8	. 7	5	1	0	2	. 18	. 9	1	1	1	0	1.4	. 60	3.8
	1	1	4	1.	1	3	2	. 9	. 7	4	1	0	2.	. 21	1.	1	4	1	0	1.6	. 76	4.7
	1	1	4	1.	1	3	1	. 9	. 9	4	1	0	2.	. 25	1	1	4	1	0	1.8	. 77	5.0
	1	1	4	1	1	2	1	.	. 8	4	1	1	2	. 18	1.1	1	5	1	0	1.7	. 80	4.7
	1	1	5	1.	1	5	1	. 8		4	1	0	2.	. 16	1.		4	1	0	1	. 70	4.3
	1	1	3	1.6	1	2	2	. 8	. 8	5		1	2.	. 40	1	1	1	1	0	1.9	. 71	3.8
	1	1	4	0	2	3	2	. 8	. 7	' 4	1	1	1	. 26	1.	1	4	1	0	1.9	. 7	4.5
	1	1	4	1.	1	3	1	. 9	. 86	5	1	1	2	. 16	1.0	1	5	1	0	1.6	. 73	4.6
	1	1	3	1.2	2	3	2	. 96	. 82	5	1	1	2.5	. 22	1.2		4	1	0	1.6	. 71	5.5
	1	1	4	0.9	1	2	2	. 88	. 7	4	1	1	2.2	. 21	1.0	1	4	1	0	1.5	. 67	
041	1	1	5	1.5	2	5	2	. 78	. 67	1	1	0	2.4	. 14	1.0	1	5	1	0	1.7	. 74	4.1

	4.3	1	2	1			30	2	1.1	33	2.2	1.0	1.0	1.	1.	1.	1.2	. 6	,	. 80	4
A	3.5	,	2	1	1	1	26	2.1	. 97	. 37	1.8	.	. 7	. 91	1.2	1.0	1.0	. 85	1.4	1.	3
A03	3.2	1	2	1	1	1	25	1.8	. 91	. 41	1.5	. 8	. 8	1.0	1.5	2.0	1.0	. 67	1.7	1.1	3
A04	3.1	1	2	1	1	1	25	1.0	. 57	. 54	1.4	. 6	. 7	. 84	1.6	1.1	1.1	. 76	1.1	1.0	3
A05	3	1	2	1	1	1	2	2	1	. 49	1	. 9	. 8	1	1.3	2.	1.1	. 62	1.7	1	3
A06	2.8	1	2	1	1	1	26	1.4	. 80	. 55	1.3	. 6	. 8	. 79	1.1	0.8	1.1	. 71	1.1	. 92	3
A07	3.3	1	2	1	1	1	24	2.1	1.0	. 41	1.6	. 5	. 7	. 63	1.1	0.9	1.1	. 85	1.6	. 91	3
A08	3	1	2	1	1	1	27	1	1.	. 41	1	. 9	. 8	1.	1.	1.	1	. 71	1.4	1.0	3
A	2.8	1	2	1	1	1	25	1.5	. 94	. 4	1.3	. 9	. 7	1.	1.	1.	1.	. 81	1.0	1.1	3
0	3.7	1	2	1	1	1	28	1.6	. 77	. 49	1.9	. 8	. 8	. 91	1.4	2.0	1.1	. 71	1.6	1.2	3
001	3.4	1	1	0	1	1	16	2.3	1.	. 46	4.	. 2	. 4	. 56	1.	1.	1.3	. 80	1.3	1.1	3
002	3.	1	1	0	1	1	18	2	. 85	. 61	4.6	. 3	. 3	. 81	. 95	1.0	1.5	. 83	1.3	1.	3
00	3.2	1	1	0	1	1	07	1.9	. 8	. 35	4.5	. 2	. 4	. 54	1.5	1.1	1.5	. 83	1.3	1.1	3
004	3.5	3	1	0	1	1	12	2.4	. 85	. 35	4.1	. 1	. 5	. 33	1.7	1.2	1.1	. 61	1.2	. 95	3
005	3.6	3	1	0	1	1	11	2.	. 8	. 57	5.6	:2	. 5	. 4	. 7	2.0	1.3	. 87	1.3	1.0	3
	4.	5	1	0	1	1	14	2	. 76	. 65	5	. 2	. 4	. 46	. 90	1.5	1.5	75	1.8	1.	3
007	3.9	1	1	0	1	1	15	2.4	. 76	. 45	4	. 2	. 6	. 29	1.	1.6	1.	. 77	1.3	. 95	3
8	3.3	3	1	0	1	1	17	2.2	. 98	. 46	5	. 2	. 5	. 45	1.3	1.	1.	. 86	1.1	1.2	3
	3.0	3	1	0	1	1	15	2.	. 96	. 41	3.	. 2	. 5	. 40	1.3	1.1	1.3	. 56	1	. 97	3
	3.3	3	1	0	1	1	12	2.	1.0	. 40	3.	2	. 4	. 42	. 92	0.	1.3	. 70	1.3	. 80	3
011	3.9	5	1	0	1	1	14	2.8	. 84	. 45	5.0	. 1	. 5	. 24	1.5	1.6	1.5	. 77	1.4	1.2	3
01	3.	3	1	0	1	1	16	2.	. 97	. 43	4	. 2	. 5	. 4	1.3	1.1	1	. 85	1.4	1.2	3
013	2.9	1	1	0	1	1	13	1.	. 8	. 29	3	. 1	. 4	. 3	1.4	0	1.3	. 68	5	1.1	3
014	4.0	3	1	0	1	1	15	2.6	. 8	. 43	4	2	. 4	. 65	1.0	1.9	1.4	. 63	1.3	1.	3
015	4.5	3	1	0	1	1	10	2.6	. 7	. 4	3	. 2	. 4	. 5	1.	.	1.2	. 65	1.7	1.2	3
16	4.3	3	1	0	0	0	11	2.	. 7	. 45	3	. 3	. 5	. 6	1	1	1	. 73	1.6	1.2	3
	3.6	1	1	0	1	0	12	2	. 74	. 47	4.6	. 1	. 4	. 36	1.1	1.	1	. 74	1.5	1.	3
018	3.8	1	1	0	1	1	13	2	1	. 42	4.4	. 3	3	. 9	. 74	1.1	1	7	3	. 89	3
019	3.5	1	1	0	1	1	11	2.	. 9	. 43	3.8	. 3	. 5	. 6	1.	0.8	1.1	. 89	1.5	1.1	3
020	3.7	1	1	0	1	1	13	2.	. 80	. 60	5.	. 1	. 4	. 36	. 7	1.	1.0	. 78	1.3	. 89	3
	5.	1	1	0	1	1	10	3.4	. 79	. 78	5.0	2	. 3	. 74	. 76	1.	1.	. 67	1.5	. 95	3
02	3.7	1	1	0	1	1	12	2	. 7	. 53	3.	,	. 4	. 46	1.	1.	1.4		1.2	1.0	3
023	3.9	1	1	0	1	1	15	2.	. 76	. 37	4.	. 2	. 5	. 50	1.0	1.3	2.1	. 94	1.4	1.2	3
024	3.7	1	1	0	1	1	11	2.5	. 90	. 35	4.	. 2	. 4	. 42	. 8	1.	1.	. 80	1.3	1.	3
	4.3	1	2	0	1	1	14	2	. 8	. 5	4.1	. 4	. 5	.76	. 91	1.2	1.3	9	1.5	1.2	3
026	4.1	1	1	0	1	1	11	2.5	. 87	. 40	2.3	. 3	. 4	. 74	1.	1.6	1.	. 68	1.5	1.0	3
02	3.4	5	1	0	1	1	16	2.2	. 98	. 4	4.	. 3	. 5	. 55	1.2	1.2	1.3	. 72	1.4	1.	3
028	3.3	1	1	0	1	1	13	2	1.	. 41	3	. 2	. 5	. 42	1.3	0.7	1.1	. 77	1.2	1.1	3
029	4.2	5	1	0	1	1	12	2.5	. 76	. 48	4.0	. 2	. 5	. 42	1.3	0.7	1.	. 79	1.3	1.	3
030	3.4	5	1	0	1	0	10	1.9	. 88	. 4	3.3	2	. 4	. 46	. 93	1.	1.2	. 68	1.1	1.2	3
	3.1	1		0	1	1	12	1.8	. 95	. 44	3	. 2	. 5	. 41	1.5	1.	1.	. 82	1.5	1.2	3
032	4.3	1	1	0	1	1	13	2.5	. 77	. 48	3.9	2	. 4	. 54	. 89	1.3	1.	. 74	1.3	1.1	3
033	4.2	1	1	0	1	1	15	2.5	. 80	. 4	5.3	2	. 1	. 58	1.0	1.5	1.1	. 83	1.4	1.2	3
034	4.0	1	1	0	1	0	14	2.5	. 78	. 3	4.5	2	. 5	. 41	1.3	1.2	1.2	. 77	1.2	1.0	3
035	3.0	5	1	0	1	1	14	2.3	1.1	. 42	3.9	2	. 5	. 31	1.3	1.0	1.2	. 74	1.3	1.1	3
036	3.8	1	1	0	1	1	16	2.4	. 88	. 58	3.6	. 2	. 5	. 38	1.3	1.5	1.1	. 78	1.5	1.1	3
037	3.6	5	1	0	1	0	13	2.2	. 89	. 49	3.7	. 3	. 5	. 60	1.2	1.5	1.3	. 71	1.3	1.0	3
038	3.8	1	1	0	1	1	12	2.5	. 90	. 58	4.8	. 2	. 3	. 62	. 91	1.2	1.1	. 70	1.6	1.2	3
039	4.0	1	1	0	1	1	14	2.4	. 85	. 36	4.2	. 2	. 5	. 38	1.3	1.4	1.2	. 71	1.2	1.1	3
040	3.4	1	1	0	1	1	15	2.1	. 92	. 43	4.4	. 3	. 4	. 59	1.2	1.4	1.1	.67	1.5	1.2	3
041	4.0	1	1	0	1	1	16	2.6	. 87	. 42	4.2	. 3	. 5	. 60	1.3	1.6	1.3	. 78	1.5	1.2	3

$\begin{array}{lllllllllllllllllllllll}\text { ID } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$

			5	0.6		3	2	1.0	. 70	4	1		2.0	. 16	1.1	1	4			2.1	. 68	4
043	1	1	3	0.7	2	2	1	. 83	. 59	4	1	1	1.9	. 19	1.	1	4	1	0	1.6	. 76	
		1	3	0.9	2	3	1	. 92	. 74	1	1		2.6	. 2	1.2	1	1			1.6	. 75	4.
	1	1	3	1.4	1	3	2	1.	. 7	5	1	0	2.	. 15	1.1		4			1.8	. 71	
	1	1	4	0.6	1	3	2	1.	. 73	5	1		2.0	. 22	. 98	1	5			2.	. 67	
	1	1	5	0.7	1	4	2	. 8	. 6	5	1	0	1.9	19						2.	74	. 2
		1	3	1.4	1	3	1	. 85	. 7	4	1		2.3	. 21	1.	1	4			1.7	76	5.6
		1	3	1.1	2	7	2	. 92	. 65	5	1	0	1.9	1	1		5			1.	73	,
	1	1	3	1.1	1	3	1	. 89	. 62	4	1	0	1.9	. 12	95	1	4		0	1.6	. 60	3.
		1	4	0.7	1	1	2	. 86	1.0	2	3		1.5	. 07	1.4	1	1	3	0	2.	5	
	1	1	4	0.8	1	1		. 76	1.		3		1.6	. 15	1.3					2.	. 64	
	1	1	4	1.8	0	1	0	. 80	1.2		3		1.6	. 08	1.4		2	3		2.	61	
	1	1	3	2.9	1	1	2	. 93	1.6		2		1.	. 14	1.					2.	. 58	
	1	1	4	0.9	1	0	3	. 68	1.0	1	3		1.8	. 15	1.3			2	0	2.4	. 60	
	1	1	4	3.9	1	3	1	. 73	1.2	1	2		1.5	. 20	1.			2		2.	5	
		1	3	1.4	1	2	1	. 7	. 84	1	2		1.6	. 20	1.3	1		2	0	2.	. 66	4.
	1	1	3	0.6	1	1	2	. 85	1		3		1.7					3		1.6	5	
		1	4	1.8	1	0	2	. 92	1.5	1	3		1.7	14	1.2		1	3	0	2.	. 70	
		1	4	1.0	1	0	2	85	1.1	3	3		1.5				3	2		2.	. 60	
		1	5	0.5	1	0	2	. 86	. 98		3		1.7	11	1.			4	0	2.	63	
	1	1	3	0.7	1	0	0	. 91	1.3	1	3	1	1.7	. 16	1.3			3	0	2.	46	
	1	1	4	1.3	1	1	-	. 96	,		3		1.		1.6			3	0	2.		
		1	3	0.6	1	0	2	. 75	1.1	1	3		1.4	. 07	1.2	1		3	0	1.	56	
			3	0.6	1	0	1	. 8	1.3	1	3		1.6					3		2.	6	
	1	1	3	1.0	1	0	1	. 7	1.0	2	2		1.7	. 18	1.2			3	0	2.	. 58	
		1	3	1.2	1	2	1	. 7			2		1.8					2		1.		
	1	4	3	1.1	1	0	2	1.	1.	1	3		1.6	. 1	1.7			3	0	2.	. 58	
	1	1	4	0.7	1	0	2	. 75	. 97	1	2		1.6					2		2.		
	1	1	3	1.2	1	0	0	. 98	1.5	1	3		1.7	. 1	1.			2	0	2.	5	
	1	1	4	2.	1	1	2	. 65	1.5		2		1.7	1	1.2			2		2.	. 65	
	1	1	4	2.	1	0	2	. 9		1	3	1	1.	. 0	1.2		3	1		2.	. 67	
			3	4.0	1	2	2	. 9	1.4	1	3		1.					3		2.	. 63	
			5	3.	1	2	1	. 4	. 2	3	2		1.8					2		2.	. 6	
		1	3	1.4	1	1	1	. 93	. 84	3	3		1.8					3		2.		
			3	2.3	1	0	0	. 6	. 2		3		2.					3		1.		
	1		3	0.5		0	2	. 89	. 2	2	3		1.8	17	1.3			3		1.9	55	
			3	0.5		0	2		. 8		4							3		2.	. 5	
	1		4	1.0	1	0	0	. 8	1.2	1	3		1.	.	1.		2	2		2.	. 5	
		1	3	3.	1	2	1	. 9	. 96	2	2		1.6							1.		
	1	1	3	1.9	1	2	2	. 78	1.0	1	3		1.5	. 0	.			2		1.	5	
		1	4	2.6	1	3	0	. 6	. 91		3		1.5					3			65	
	1	1	4	1.0	1	0	1	. 85	. 1	1	3		2.		1.			3		1.	. 5	
		1	3	0.7	1	0	0		. 3		3		2.1					3		2.	. 5	
		1	3	1.1	1	1	0	. 97	1.5	1	3	1	1.6		1.6			3		2.	. 5	
	1	1	4	3.3	1	1	3	. 8	97	1	3		1.7	.			1	3	0	2.	. 57	
			4	0.2	1	0	1			1	3		1.7		. 95			2		2.	. 62	
	1	1	3	3.0	1	1	1	. 74	93	1	3	1	1.9	. 16	1.4		1	3	0	1.	5	
			4	2.1	1	0	2	. 8	. 91	2	3	1	1.8	. 16	1.4		2	3	0	2.6	. 66	
			3	1.4	1	0	0	1.1	96	1	2	1	1.	. 09	1.2	1	1	3	0	2.4	. 66	
			3	0.9	1	1	1	. 93	1.2	2	2	1	1.7	13	1.2	1	1	2	0	2.2	. 57	
			3	2.	1	2	1	. 86	1.3	1	3	1	1.6	. 10	1.1	1	1	3	0	2.6	. 63	
43	1	1	4	0.6	1	0	0	. 98	1.6	2	3	1	1.9	. 16	1.2	1	2	3	0	2.4	. 70	

	4.1	1	1	0	1	1	11	2.2	. 79	. 45	3.8	2	. 4	. 46	1.2	1.1	1.4	. 76	1.2	1.1	3	
0	3.1	1	1	0	1	1	13	2.2	. 95	. 42	4.0	. 3	. 5	. 63	1.4	1.2	1.2	. 68	1.0	1.1	3	
0	4.2	5	1	0	1	1	14	2.6	. 82	. 42	4.1	. 4	. 5	. 69	1.3	1.4	1.2	. 79	1.4	1.1	3	
	3.8	1	1	0	1	0	12	2.2	. 83	. 58	4.	. 3	. 4	. 71	. 86	0.	1.	. 84	1.5	1.	3	1
	4.5	5	1	0	1	1	13	2.	. 86	. 40	4.	. 2	. 5	. 30	1.4	1.4	1.3	. 7	1.3	1.2	3	1
0	3.9	5	1	0	1	1	14	2.1	. 73	. 48	3.4	. 2	. 3	. 68	. 68	1.7	1.3	. 78	1.6	1.0	3	1
048	3.8	5	1	0	1	1	16	2.2	. 7	. 3	3.	. 1	. 5	. 28	. 97	0.8	1.	. 71	1.6	1.	3	
	3.6	1	1	0	1	1	11	2.0	. 8	. 39	4	3	. 5	. 53	1.7	1.3	1.2	. 68	1.4	1.1	3	
050	3.2	1	1	0	1	1	12	1.9	. 98	. 40	3.7	. 3	. 4	. 63	1.4	1.0	1.1	75	1.2	1.1	3	1
U01	3.2	3	3	0	1	1	25	1.5	. 91	. 60	3.9	8	. 7	1.2	2.3	3.2	1.1	. 71	0.8	. 88	3	0
U02	3.8	3	3	0	1	1	26	2.	. 9	. 66	3.9	. 8	. 6	1.4	1.	2.7	1.3	. 80	1.2	. 92	3	1
	3	1	3	0	1	1	29	1.9	. 9	. 56	3	. 8	. 8	1.0	1.1	2.2	1.8	. 77	8	8	3	1
U04	3.8	3	2	0	1	0	29	2.0	. 90	. 6	4	. 7	. 6	1.	1.	3.	1.	1	0.8	. 85	3	0
U05	4.4	3	3	0	1	0	26	2.7	. 98	. 77	4.6	. 8	. 6	1.4	1.7	2.7	1.5	. 76	1.0	. 75	3	1
U06	3	,	2	0	1	0	26	1	. 88	. 53	2	. 6	. 8	. 73	1	1.	1.	77	1.	72	3	1
	3.5	3	2	0	1	0	2	2.3		. 57	4	. 6	. 8	. 77	1.8	2	1.2	. 59	1.1	. 91	3	1
U08	3.3	1	3	0	1	0	26	1.	. 91	. 66	3.2	. 6	. 6	1.1	1.	1.6	1.2	. 75	0.5	. 69	3	0
U09	4	3	1	0	1	0	32	2	. 87	. 70	5	. 7	. 7	. 93	2	2	1.	. 75	1.0	. 62	3.	1
	3.4	3	3	0	1	0	24	1.8	. 88	. 65	3	. 4	. 7	. 60	1.8	2.2	1.4	. 55	1.2	1.0	3	1
	4.1	1	4	0	1	1	30	2.	. 8	. 66	4.9	. 7	. 7	. 9	2.	3.9	1.2	. 60	0.9	1.3	3	1
U12	3.6	1	3	0	1	0	32	1.	. 99	. 61	3	. 5	. 7	. 69	1.7	2.1	1.5	. 74	0.8	. 73	3	1
U13	4.2	3	3	0	1	1	29	2.	. 83	. 64	4	. 6	. 6	1.0	2	3.1	1.2	78	0.8	94	3	1
U14	2.0	3	2	0	1	1	20	1.0	. 90	. 56	2.1	. 5	. 4	1.0	1.4	1.3	1.1	3	0.6	0	3	1
U15	4.0	3	3	0	1	1	26	2.	. 98	. 60	4	. 9	. 7	1	2.	2.3	1.	. 79	0.	. 64	3	1
U16	3.	3	3	0	1	1	28	2	. 92	. 61	4	. 8	. 6	1	1.7	2.7	1.5	74	0.5	60	3	1
U17	2.8	1	3	0	1	1	24	1	. 88	. 63	3	. 4	. 7	. 62	2.1	2.1	1.	. 46	0.7	. 85	3	1
	3.	2	4	0	1	0	16	1.	. 80	. 68	3	. 5	. 7	. 77	1.8	2.3	,	. 60	0.6	93	3	1
	3	3	2	0	1	1	25	2	. 94	. 60	4	. 6	. 8		2.7	3		0	0.7	5	3	1
U20	4.	3	2	0	1	1	33	2	. 97	. 57	2	. 0	. 9	1.1	.	2.8	1	6	7	97	3	1
U21	4.2	3	2	0	1	0	24	2	. 8	. 60	3		. 6	1.0	,	2.9	1	. 67	1.1	84	3	1
	3.3	3	2	0	1	1	16	1.6			3	. 5	. 7	6	2.	8	1.3	5	0.7	. 80	3	1
U23	4.2	3	3	0	1	0	28	2	. 95	. 74	4.	. 6	. 4	1.5	.	2.	1.	7	0.8	90	3	
U24	3.	3	2	0	1	0	22	2.	. 7	. 69	3.	. 7	. 7	1.	2.	3.0	1.	73	1.	70	3	1
	4.8	3	3	0	1	0	32	2	. 9	. 55	4	. 9	. 6	1.5	1.6	3.	1.	. 57	1.0	. 89	3	1
	3.5	3	2	0	1	0	32	1.6	. 98	. 53	3	.	. 8	.	1.7	1.8	2	9	0.8	. 85	3	0
U27	3.5	1	3	0	1	1	16	1.8	. 92	. 5	3.1	. 8	. 8	1.	.	2.9	1.	. 60	0.7	73	3	
8	3.	3	2	0	1	0	26	1.	. 90	. 6	3	. 5	. 5	. 97	1.7	1.5	1.	. 75	0.6	. 80	3	
	4.3	3	2	0	1	1	, 32	2.6	.		3	. 9	. 8	1.1	1.9	3.0	1.2	. 65	0.9	. 81	3	1
U30	2.9	3	2	0	1	1	24	1	1.	. 5	3	. 4	. 8	. 50	1.	1.7	1.3	. 71	0.8	. 91	3	
U3	2.9	3	4	0	1	1	20	1.	. 9	. 4	3	. 4	. 7	. 50	1.8	1.9	1.5	. 82	0.7	. 98	3	1
U32	4.7	3	3	0	1	0	29	2	. 8	.	4	. 7	. 6	1.1	2.1	2.2	1.3	. 63	0.9	. 97	3	
U33	4.2	3	3	0	1	1	36	2.	. 90	. 6	3.4	. 8	. 9	. 96	2.	2.9	1.2	5	0.9	. 72	3	
U34	4.	3	3	0	1	0	22	2.4	. 99	. 56	3.6	. 7	. 8	. 96	1.8	2.8	1.	. 60	0.7	. 71	3	
	3.3	3	3	0	1	1	25	1.	. 91	. 5	4.3	. 5	. 6	. 89	1.6	2.6	1.3	. 59	1.0	. 83	3	
U36	3.3	3	3	0	1	1	35	1.6	. 8	. 6	3	. 8	. 8	1.	1.8	2.7	1.3	. 8	0.5	. 61	3	
U37	4.4	3	2	0	1	1	32	2.2	. 81	. 53	4.0	. 7	. 8	. 87	2.7	3.1	1.1	. 63	0.8	. 74	3	
U38	3.6	3	3	0	1	1	27	1.6	. 85	. 64	3.1	. 7	. 6	1.2	1.8	2.4	1.3	. 70	0.8	. 87	3	
U39	4.6	3	3	0	1	1	23	2.5	. 83	. 58	4.1	. 6	. 8	. 85	2.0	1.8	1.3	. 75	0.7	. 75	3	
U40	3.4	3	3	0	1	0	19	1.6	. 80	. 62	3.6	. 5	. 6	. 89	1.	1.6	1.2	. 56	0.6	. 81	3	
U41	3.7	3	3	0	1	1	27	1.8	. 85	. 65	3.2	. 5	. 7	. 69	1.7	2.7	1.5	. 78	1.0	. 75	3	
442	4.1	3	2	0	1	0	28	2.4	. 90	. 61	3.9	. 8	. 7	1.2	2.4	1.3	1.1	. 75	0.7	. 85	3	
U43	4.5	3	3	0	1	1	32	2.7	. 86	. 63	4.5	. 6	. 6	1.1	1.7	2.2	1.3	. 70	1.0	. 82	3	

$\begin{array}{lllllllllllllllllllllll}\text { ID } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$

		1	3	2.5	1	1	2	. 83	1.0	1	3	1	1.7	. 16	1.3	1	1	3	0	2.1	52	4
445	1	1	5	3.1	1	2	1	. 82	. 78	1	2	1	1.7	. 10	1.2	1	1	2	0	2.5	. 64	5.
446	1	1	4	1.3	1	0	2	. 69	1.1	1	3	1	1.4	. 08	1.2	1	1	3	0	2.	. 56	3
447	1	1	3	3.4	1	0	2	. 74	1.0	2	3	1	1.7	. 1	1.1	1	2	3	0	2.4	64	3.
448	1	1	3	0.8	1	1	1	. 88	1.2	1	3	1	1.8	-12	1.3	1	1	3	0	2.2	. 58	4
449	1	1	3	1.9	1	1	1	1.0	1.3	1	3	1	1.7	. 18	1.3	1	1	3	0	2.3	. 58	4.0
450	1	1	4	1.4	1	0	1	1.0	1.6	1	2	1	1.8	. 13	1.3	1	1	2	0	2.	. 58	4.
101	4	3	3	0.8	1	0	0	1.4	1.3	3	2	1	1.0	. 39	. 96	0	1	2		2.7	39	2.
102	4	3	3	1.7	1	0	0	1.1	1.4	3	2	1	1.1	. 59	1.1	0	1	3	1	2.5	. 59	2.
103	4	3	3	3.7	1	0	0	. 98	1.4	3	2	1	1.1	. 36	1.3	0	1	2		2.	36	,
104	4	3	3	2.5	1	0	0	1.4	1.4	3	2	1	1.3	. 41	2.0	0	1	2	0	2.3	41	3.
105	4	3	3	1.2	1	0	0	1.3	1.4	3	2	1	1.4	. 59	1.1	0	1	2	1	2.0	59	
106		3	3	4.0	0	0	0						1.2	. 50	1.3	0	1	2	1	2.3	. 50	2
107	4	3	3	2.1	1	0	0	1.3	1.3	3	2		1.2	. 57	1.0	0	1	2	1	2.3	. 57	2.
108	4	3	4	3.2	1	0	0	. 78	1.7	3	2	1	1.8	. 64	1.6	0	2	2	0	1.6	. 64	2.
109	4	3	3	1.5	1	0	0	. 97	1.7	3	2	1	1.5	. 32	1.3	0	2	2	0	2.	. 32	2.8
110	4	3	3	4.2	1	1	0	. 92	1.3	3	2	1	1.5	. 50	1.3	0	2	3		2.	. 50	
		3	3	1.3	0	0	0						1.6	. 61	1.5	0	1	3	1	1.8	. 61	
112	4	3	3	3.0	1	0	0	80	1.3	3	2	1	1.5	46	1.	0	2	2	0	2.	. 44	
113	4	3	3	2.8	1	0	0	1.1	1.2	3	2	1	1.3	. 35	1.1	0	3	2	0	2.4	. 35	2.
114	4	3	3	2.7	1	0	0	. 71	1.2	3	2	1	1.5	. 59	1.4	0	3	2	0	2.0	. 59	
115		3	3	3.4	0	0	0						1.4	. 67	1.4	0	1	2	1	1.9	. 67	
116	4	3	3	1.9	1	0	0	1.1	1.5	3	2		1.2	5	1.1	0	1	3		2.3	. 54	
117	4	3	3	4.9	1	0	0	1.2	1.3	3	2	1	1.3	. 63	1.1	0	1	2	1	2.	. 63	
118	4	3	3	1.2	1	0	0	. 89	1.3	3	2	1	1.0	. 43	1.0	0	1	3		2.	. 43	2.3
119	4	3	3	1.1	1	0	0	. 5	1.1	3	2	1	2.0	. 51	1.5	0	1	2	0	1.5	. 52	2.3
120	4	3	3	2.9	1	0	0	. 98	1.1	3	2	1	1.5	. 75	1.1	0	1	2	0	2.	. 57	2.0
	4	3	3	1.7	1	0	0	. 68	. 1		2	1	1.0	. 68	1.0	0	1	2	1	2.5	. 58	
122	4	3	3	3.2	1	0	0	1.0	2.2	3	2	1	1.6	. 33	1.7	0	1	3	0	1.	. 49	2.4
123	4	3	3	1.6	1	0	0	. 84	1.8	3	2	1	2.0	. 56	2.3	0		2	0	1.7	48	
124	4	3	3	3.2	1	0	0	1.0	2.3	3	2	1	1.2	. 55	1.5	0	1	2	0	2.5	. 51	2.8
125	4	3	3	2.6	1	0	0	. 8	1.8	3	2	1	1.4	. 74	1.4	0	1	2	0	2.	. 61	
	4	3	3	2.7	1	0	0	1.6	1.8	3	2	1	0.8	. 40	1.1	0	3	2	1	3.	. 5	
127	4	3	3	1.9	1	0	0	. 76	1.4	3	2	1	1.6	. 64	1.	0	3	2	0	1.	. 53	
128	4	3	3	1.8	1	0	0	. 96	2.0	3	2	1	1.	. 65	1.5	0	3	3	1	1.	. 65	
	4	3	3	1.2	1	0	0	. 54	1.5	3	2	1	2.0	. 43	2.	0	3	2	0	1.5	. 55	
	4	3	3	1.6	1	0	0	1.	1.7		2	1	1.6	. 5	1.	0	3	2	1	2.	. 58	
	4	3	3	3.0	1	0	0	. 81	1.5	3	2	1	1.6	. 57	2.0	0	3	2	0	1.7	. 57	.
	4	3	3	1.3	1	0	0	. 87	1.7	3	2	1	1.	. 46	1.3	0	3	2	0	2.	. 5	
	4	3	3	1.6	1	0	0	. 66	. 7	3	2	1	1.4	. 4	1.7	0	3	2	0	2.3	. 59	
	4	3	3	2.0	1	0	0	. 9	1.4	3	2	1	1.4	. 49	1.1	0	3	2	0	2.	. 61	
	4	3	3	0.9	1	0	0	. 5	1.2	3	2	1	1.5	. 43	1.6	0	3	2	0	2.	. 55	
	4	3	3	1.4	1	0	-	. 7	1.0	3	3	1	1.5	. 5	1.2	0	3	3	0	1.	. 60	
137	4	3	3	1.9	1	0	0	. 97	1.1	3	2	1	1.0	. 45	1.0	0	3	2	0	3.0	. 52	2.
138	4	3	3	2.1	1	0	0	. 7	1.	3	2	1	1.6	. 3	1.	0	3	2	0	1.9	. 56	2.
139	4	3	3	3.0	1	0	0	. 60	1.2	3	2	1	1.7	. 56	1.3	0	3	2	1	2.1	. 60	
140	4	3	3	4.2	1	0	0	. 99	1.8	3	2	1	1.2	. 44	1.	0	1	2	0	2.6	. 51	2.
141	4	3	3	3.3	1	0	0	. 83	1.2	3	2	1	1.3	. 54	1.2	0	3	2	0	2.6	. 53	2.4
42	4	3	3	1.9	1	0	0	. 78	1.1	3	2	1	1.1	. 52	1.2	0	3	2	0	2.5	. 56	2.8
143	4	3	3	1.2	1	0	0	. 87	1.2	3	2	1	1.2	. 45	1.3	0	3	2	0	2.3	. 56	2.
144	4	3	3	1.0	1	0	0	. 74	1.2	3	2	1	1.1	. 43	1.3	0	3	2	0	2.7	. 53	2.
45	4	3	3	1.6	1	0	0	. 81	1.6	3	2	1	1.7	49	1.7	0	1	2	0	1.8	52	

U4	3.6	1	3	0	1	1	30	2.2	. 95	. 49	4.2	. 6	. 8	. 83	1.8	2.7	1.3	. 70	1.0	. 82	3	1
U45	4.2	3	2	0	1	1	24	2.2	. 82	. 58	4.8	. 8	. 6	1.2	1.7	3.0	1.3	. 63	0.9	84	3	1
U46	3.1	2	3	0	1	0	20	1.5	. 86	. 65	3.3	. 5	. 5	. 97	1.6	1.6	1.2	. 65	0.7	. 82	3	0
447	4.2	3	3	0	1	1	30	2.4	. 88	. 62	4.1	. 6	. 6	1.0	1.8	1.4	1.1	. 74	0.8	. 66	3	1
448	3.8	1	3	0	1	0	25	1.9	. 86	. 58	3.9	. 7	. 7	. 91	1.9	2.7	1.5	. 69	0.6	. 67	3	1
U49	3.9	1	3	0	1	1	27	2.1	. 96	. 58	3.9	. 5	. 6	. 74	. 1.6	1.5	1.4	. 70	0.8	70	3	1
U50	3.8	3	2	0	1	1	28	2.0	. 91	. 59	4.1	. 7	. 8	. 94	2.0	1.7	1.4	. 56	0.9	. 82	3	1
101	2.8	1	2	1	1	1	17	1.7	1.0	. 38	2.4	. 4	. 6	. 70	. 93	0.8	1.1	. 84	1.3	75	3	1
102	2.7	1	3	1	1	1	25	1.4	. 88	. 48	2.2	. 4	. 7	. 66	1.1	0.8	1.1	. 78	1.2	. 84	3	1
103	2.5	1	2		1	1	19	1.1	. 83	. 52	1.5	. 4	. 7	. 56	1.2	0.9	1.3	. 73	1.0	. 79	3	1
104	3.0	1	2	1	1		24	1.3	. 80	. 49	1.9	. 4	. 7	. 58	1.5	1.3	1.1	. 78	0.8	. 82	3	1
105	2.8	1	2	1	1	1	22	1.5	. 86	. 47	2.1	. 3	. 7	. 43	1.1	0.9	1.1	. 74	1.1	. 82	3	1
106	2.7	1	3	1	1		20	1.3	. 85	. 51	1.6	. 5	. 8	. 69	1.4	1.1	1.1	. 79	1.1	. 85	3	1
107	2.6	1	2	1	1	1	27	1.5	. 95	. 52	1.6	. 4	. 8	. 48	1.5	1.0	1.1	. 85	1.1	. 86	3	1
108	2.9	1	2	1	1	1	19	1.2	. 76	. 65	1.5	. 7	. 7	. 91	1.1	0.9	1.1	. 78	1.2	. 93	3	1
109	3.0	2	3	1	1	1	28	1.5	. 96	. 31	1.7	. 6	. 7	. 86	1.2	1.0	1.0	. 83	1.0	. 87	4	1
10	3.0	1	2	1	1	1	30	1.8	1.0	. 34	2.0	. 3	. 8	. 43	1.7	1.3	1.2	. 81	1.1	. 87	3	1
111	2.9	1	2	1	1	1	20	1.5	. 95	. 54	2.0	. 6	. 7	. 89	1.2	0.9	1.2	. 79	0.9	. 64	3	1
12	3.3	1	3	1	1	1	24	1.8	. 89	. 42	1.9	. 8	1.0	. 83	1.8	1.6	1.3	. 84	1.5	. 82	4	1
113	3.1	1	2		1	1	33	1.7	. 95	. 41	2.1	. 7	. 8	. 81	1.5	2.1	1.1	. 80	1.4	. 94	3	1
114	2.9	1	3	1	1	1	32	1.6	. 95	. 48	1.4	. 9	. 8	1.2	1.4	1.0	1.0	. 86	1.3	. 90	4	1
115	2.7	1	3	1	1	1	24	2.0	1.3	. 35	2.3	. 7	. 7	. 96	1.2	1.1	1.0	. 58	0.9	. 62	3	1
116	2.7	1	3	1	1	1	21	1.5	. 87	. 40	1.9	. 6	. 7	. 83	1.6	1.2	1.1	. 75	1.2	. 73	3	1
117	2.7	1	2	1	1	1	25	1.6	1.0	. 48	1.9	. 5	. 6	. 85	1.3	1.0	1.2	. 73	1.3	. 79	3	1
118	2.6	1	2	1	1	1	20	1.4	. 87	. 47	1.8	. 4	. 6	. 75	. 92	0.9	1.1	. 74	0.9	. 90	3	1
119	3.0	1	3		1	1	36	1.6	. 99	. 46	1.4	. 6	. 6	1.1	1.3	0.8	1.1	. 85	1.4	. 94	3	1
120	3.6	1	2			1	33	2.2	1.1	. 34	1.9	. 6	. 7	. 78	1.4	1.3	1.0	. 65	1.6	. 75	3	1
21	2.4	1	2	1	1	1	22	1.2	. 84	. 38	1.8	. 4	. 6	. 60	1.7	1.	1.1	. 76	0.8	. 54	3	1
122	3.2	1	2		1	1	28	1.3	. 86	. 39	1.7	. 6	. 7	. 80	1.4	0.7	1.3	. 86	1.1	. 93	3	1
123	3.5	1	2	1	1	1	34	2.0	1.2	. 36	1.7	. 7	. 8	. 83	1.3	1.0	1.1	. 77	1.0	. 74	3	1
124	3.0	1	2		1		30	1.5	. 96	. 44	1.6	. 4	. 7	. 57	1.7	0.7	1.1	. 75	1.0	. 91	3	1
125	2.8	1	2	1	1	1	24	1.7	. 99	. 40	1.7	. 5	. 8	. 60	1.5	0.8	1.2	. 61	1.2	1.0	3	1
126	2.8	1	2	1	1	1	21	1.3	. 87	. 51	1.8	. 4	. 6	. 71	1.2	0.8	1.0	. 78	1.0	1.1	3	1
127	2.9		2	1	1	1	28	1.7	1.1	. 45	1.3	. 6	. 7	. 85	1.2	1.2	1.0	. 85	1.4	. 67	3	1
128	2.9	1	2	1	1	1	30	1.3	. 71	. 39	2.0	. 7	. 7	. 93	1.6	1.0	1.0	. 64	1.2	. 84	3	1
29	3.0	1	2		1	1	23	1.6	. 99	. 47	1.9	. 5	. 9	. 63	1.5	0.7	1.0	. 65	1.0	. 68	3	1
130	3.3	1	2	1	1	1	20	1.4	. 76	. 48	1.6	. 9	. 9	1.0	1.4	1.5	1.2	. 78	1.0	. 90	3	1
131	2.7	1	2		1	1	21	1.8	1.1	. 56	1.9	. 6	. 8	. 63	1.3	1.4	1.3	. 75	1.2	. 90	3	1
132	3.5	1	2	1	1	1	36	2.1	1.1	. 48	2.1	. 7	. 8	. 85	1.8	1.9	1.1	. 70	1.4	. 94	3	1
133	3.1	1	2				28	1.8	. 98	. 52	1.9	. 7	. 7	. 93	1.2	0.9	1.4	. 63	1.0	. 76	3	1
134	3.6	1	2	1		1	28	1.8	. 81	. 48	2.1	. 5	. 6	. 82	1.0	0.6	1.1	. 61	1.4	. 88	3	1
135	2.9	1	3	1	1	1	46	1.7	1.1	. 39	1.7	. 5	. 6	. 94	1.3	0.8	1.2	. 64	0.8	. 55	3	1
136	2.6	1	3	1	1	1	29	1.3	. 87	. 46	1.3	. 4	. 5	. 64	1.3	1.1	1.1	. 76	0.8	. 76	3	1
137	2.9	1	2	1	1	1	19	1.5	. 95	. 42	1.6	. 5	. 7	. 79	1.3	1.4	1.3	. 65	1.2	. 89	3	1
138	3.1	1	2	1	1	1	24	1.6	. 94	. 41	1.7	. 5	. 9	. 58	1.7	1.2	1.1	. 85	1.3	. 76	3	
139	3.5	1	2	1	1	1	36	2.2	1.1	. 43	1.9	. 8	. 7	1.2	1.1	1.6	1.3	. 81	1.2	. 64	3	1
140	3.1	1	3	1	1	1	23	1.4	. 89	. 41	1.8	. 5	. 8	. 62	1.6	1.1	1.0	. 55	1.2	. 97		
141	3.4	1	2	1	1	1	34	1.8	1.0	. 38	1.6	. 5	. 9	. 60	1.3	0.7	1.1	. 82	1.4	. 95	3	
142	2.8	1	2	1	1	1	26	1.3	. 86	. 43	1.7	. 5	. 7	. 74	1.3	0.9	1.1	. 74	1.1	. 90	3	1
143	2.9	1	2	1	1	1	24	1.4	. 88	. 46	1.6	. 6	. 8	. 71	1.5	1.1	1.1	. 73	1.4	. 88	3	1
144	3.0	1	2	,	1	1	20	1.4	. 89	. 43	1.4	. 5	. 7	. 66	1.3	1.2	1.1	. 74	1.0	. 91	3	
145	3.1	1	2	1	1	1	32	1.3	. 81	. 62	1.2	. 7	. 7	. 95	1.2	0.9	1.0	. 84	1.2	. 94	3	

ID	1	2	3	4	5	6	7	8	9	10			13	14	15			18	19	20	21	22
146	4	3	3	2.	1	0	0	. 88	1.2	3	2	1	1.5	. 40	1.3	0	3	3	0	2.0	. 56	2.6
147	4	3	3	2.3	1	0	0	. 95	1.3	3	2	1	1.5	. 38	1.4	0	3	2	0	2.0	. 58	2.7
148	4	3	3	3.0	1	0	0	1.3	1.4	3	2	1	1.3	. 62	1.2	0	1	2	1	2.6	. 57	2.6
149	4	3	3	1.3	1	0	0	1.1	1.5	3	2	1	1.2	. 49	1.1	0	3	2	0	2.4	. 57	2.5
150	4	3	3	1.9	1	0	0	. 79	1.2	3	3	1	1.0	. 44	1.	0	3	2	0	2.5	. 59	2.5
L01	4	3	3	5.3	1	0	0	. 73	1.1	3	2	1	1.5	. 49	1.7	0	2	2	1	1.8	. 55	2.9
LO2	4	3	3	3.4	1	0	0	. 66	2.4	3	2	1	2.3	. 26	2.6	0	3	2	0	1.2	. 58	2.5
L03	4	4	3	3.	1	0	0	. 56	2.0	3	2	1	2.9	. 30	3.	0	2	2	1	1.1	59	2.4
L04	4	3	3	4.1	1	0	0	. 92	2.0	2	3	1	1.8	. 53	2.0	0	3	2	0	1.7	. 62	2.5
L05	4	3	3	2.8	1	0	0	. 74	2.2	3	2	1	1.9	. 23	2.4	0	3	2	0	1.5	. 48	2.5
L06	4	3	3	1.	1	0	0	. 8	1.4	3	3	1	1.7	. 23	3.0	0	3	2	0	1.9	. 52	3.6
L07	4	3	3	2.6	1	0	0	. 69	2.1	3	3	1	2.1	. 38	1.8	0	3	2	0	1.5	. 51	2.4
L08	4	3	3	1.2	1	0	0	. 83	1.3	3	2	1	1.7	. 49	1.3	0	3	2	0	2.3	. 50	2.5
L09	4	3	3	5.3	1	0	0	. 91	2.0	3	2	1	1.7	. 34	1.8	0	3	2	1	1.9	. 50	2.8
L10	4	3	3	1.5	1	0	0	. 72	1.3	3	2	1	1.6	. 39	1.1	0	3	2	0	2.0	. 47	2.3
L11	4	3	3	0.8	1	0	0	. 83	1.9	3	2	1	1.6	. 39	1.8	0	3	3	0	1.9	. 52	2.4
L12	4	3	3	3.	1	0	0	. 9	1.6	3	2	1	2.0	. 17	2.1	0	3	2	0	1.5	. 54	2.2
L. 13	4	3	3	2.8	1	0	0	. 56	1.3	3	2	1	2.3	. 39	1.6	0	3	2	0	1.7	. 47	2.3
L14	4	3	3	3.3	1	0	0	. 46	1.6	3	2	1	2.7	. 50	2.1	0	3	2	0	1.3	. 51	2.8
L15	4	3	3	1.	1	0	0	. 7	2.6	3	2	1	2.9	. 17	4.0	0	3	2	0	1.1	. 62	2.5
L16	4	3	3	2.1	1	0	0	. 85	1.5	3	2	1	1.9	. 26	2.5	0	3	2	0	1.3	. 57	2.2
L17	4	3	3	3.2	1	0	0	. 73	1.3	3	2	1	2.1	. 31	2.0	0	3	2	0	1.4	. 54	3.0
L18	4	3	3	2.6	1	0	0	. 94	2.2	3	2	1	1.9	. 18	2.7	0	3	2	0	1.5	. 53	3.4
L19	4	3	3	3.3	1	0	0	. 5	1.	3	2	1	1.8	. 58	2.3	0	3	2	0	1.8	. 57	3.0
L20	4	3	4	2.2	1	0	0	. 72	2.0	3	2	1	1.9	. 29	2.4	0	3	2	0	1.8	. 53	3.6
L21	4	3	3	1.3	1	0	0	. 81	2.0	3	2	1	1.6	.47	1.4	0	3	2	0	1.7	. 56	2.3
122	4	3	3	0.9	1	0	0	. 51	2.2	3	2	1	2.8	. 31	2.9	0	3	2	0	1.0	. 53	2.1
L23	4	3	3	0.5	1	0	0	1.0	1.8	3	2	1	2.0	. 21	2.0	0	3	2	0	1.5	. 58	1.9
L24	4	3	3	0.7	1	0	0	. 75	2.1	3	2	1	2.5	. 18	2.3	0	3	2	0	1.4	. 62	2.2
L25	4	3	3	3.4	1	0	0	. 54	1.5	3	2	1	1.7	. 56	1.4	0	3	2	0	2.0	. 61	2.7
126	4	3	3	3.7	1	0	0	. 54	1.9	3	2	1	2.8	. 28	2.5	0	3	2	0	1.2	. 57	2.7

ID	23		25			28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	4344
146	3.0	1	3	1	1	1	' 29	1.7	1.0	. 32	1.9	. 5	. 8	. 60	1.4	1.1	1.1	. 70	1.5	. 91	3
147	3.1	1	2	1	1	1	27	1.8	1.0	. 41	2.0	. 4	. 7	. 48	1.2	1.1	1.0	. 82	1.4	. 88	3
148	3.4	1	2	1	1	1	32	1.9	1.0	. 36	1.8	. 6	. 8	. 81	1.5	1.4	1.0	. 73	1.2	. 96	3
149	2.8	1	3	1	1	1	28	1.5	. 91	. 48	1.6	. 9	. 5	1.2	1.4	1.1	1.2	. 71	1.0	. 89	3
150	2.5	1	2	1	1	1	27	1.2	. 84	. 42	1.3	. 9	. 5	1.1	1.1	1.1	1.1	. 74	1.1	. 87	3
L01	2.6	1	2	1	1	1	6	1.6	1.1	. 71	3.0	. 5	. 4	1.3	1.0	0.6	1.1	. 73	1.3	. 96	3
L02	2.8	1	2	1	1	1	32	1.7	1.0	. 39	1.8	. 4	. 8	. 57	1.3	0.7	1.2	. 88	1.2	. 83	3
L03	3.1	1	3	1	1	1	24	1.7	. 94	. 48	1.7	. 7	. 9	. 71	1.6	1.2	1.1	. 63	1.3	. 91	3
L04	3.0	1	2	1	1	1	27	1.9	1.0	. 50	2.1	. 6	. 7	. 85	1.1	1.4	1.1	. 91	1.5	1.1	3
L05	2.8	1	2	1	1	1	28	1.6	1.2	. 47	1.6	. 6	. 8	. 73	1.2	0.8	1.3	. 83	1.4	1.0	3
L06	3.2	1	2	1	1	1	20	1.8	1.1	. 49	2.0	. 7	. 5	1.4	. 91	1.6	1.1	. 77	1.2	. 99	3
L07	3.2	1	2	1	1	1	22	1.6	1.0	. 40	1.7	. 7	. 8	. 91	1.4	1.1	1.2	. 77	1.1	. 94	3
108	3.8	1	2	1		1	26	1.9	. 97	. 37	1.7	. 7	. 7	1.0	1.5	0.6	1.1	. 63	1.1	. 89	3
L09	3.3	1	3	1	1	1	36	2.5	1.5	. 34	1.5	. 9	1.1	. 89	1.6	1.0	1.1	. 73	1.6	. 92	31
L10	3.2	1	2	1	1	1	23	1.9	1.2	. 27	1.6	. 8	. 7	1.1	1.1	1.2	1.1	. 74	1.1	. 85	3
L11	3.1	1	3	1	1	1	18	1.5	. 91	. 40	2.0	. 5	. 6	. 78	1.1	1.7	1.1	. 74	1.0	. 84	3
L12	2.9	1	2	1	1	1	24	1.6	1.1	. 33	1.4	. 7	. 8	. 85	1.5	0.5	1.1	. 84	1.0	. 87	3
L13	3.8	1	2	1	1	1	28	1.8	1.0	. 43	1.6	. 8	. 9	. 87	1.5	1.4	1.0	. 77	1.3	1.0	3
L14	3.5	1	2	1	1	1	31	2.0	1.1	. 46	1.7	. 6	. 8	. 70	1.2	1.0	1.1	. 68	1.4	1.1	3
L15	3.2	1	2	1	1	1	25	1.9	. 98	. 45	2.0	. 6	. 7	. 82	1.3	1.4	1.1	. 78	1.5	. 93	3
L16	2.4	1	2	1	1	1	21	1.2	. 90	. 36	1.4	. 8	. 6	1.2	1.3	0.7	1.0	. 70	0.8	. 74	3
117	2.9	1	2	1	1	1	10	4.6	1.0	. 41	2.0	. 6	. 5	1.2	1.3	0.7	1.1	. 76	1.0	. 75	3
L18	2.9	1	2	1	1	1	27	1.3	. 89	. 34	1.8	. 5	. 6	. 94	1.1	0.8	1.2	. 80	1.0	1.1	3
L19	3.2	1	3	1	1	1	24	1.5	. 82	. 47	1.9	. 6	. 5	. 92	1.4	1.8	1.0	. 57	1.3	. 99	3
L20	3.5	1	3	1	1	1	31	1.9	1.0	. 48	1.9	. 5	. 8	. 65	1.5	0.9	1.2	. 70	1.6	1.4	3
121	2.7	1	2	1	1	1	25	1.7	1.1	. 39	1.6	. 7	. 7	. 89	1.4	1.3	1.1	. 63	1.2	1.0	3
122	2.8	1	2	1	1	1	26	1.6	1.1	. 32	1.6	. 8	. 6	1.2	1.2	1.6	1.0	. 81	1.2	1.2	31
123	3.0	1	2	1	1	1	32	1.7	. 95	. 42	1.7	. 7	. 6	1.2	1.1	1.2	1.1	. 71	1.4	1.1	3
124	3.5	1	2	1	1	1	35	1.9	. 89	. 43	1.5	. 8	. 8	1.0	1.3	1.4	1.2	. 67	1.4	. 88	31
L25	3.4	1	2	1	1	1	28	2.1	1.0	. 41	1.7	. 7	. 9	. 75	1.3	0.8	1.1	. 74	1.1	. 73	31
L26	3.2	1	2	1	1	1	27	1.7	. 93	. 38	1.6	. 6	. 7	. 91	1.3	1.4	1.1	. 77	1.3	. 95	31

Characters Used in the Morphological Analyses of Cuscuta Species

1. Bract Orientation*
2. Calyx Orientation*
3. Corolla Orientation*
4. Pedicel Length in mm
5. Number of Bracts at Base of Pedicel
6. Number of Bracts Along Pedicel
7. Number of Bracts at Pedicel Apex
8. Bract Length/Calyx Length
9. Bract Length/Bract Width
10. Shape of Bract Margin**
11. Shape of Bract Apex***
12. Presence of Bract Laticifers ($0=a b s e n t, 1=p r e s e n t)$
13. Calyx Length in mm
14. Length of Calyx Tube/Total Calyx Length
15. Calyx Length/Calyx Width
16. Overlap of Calyx Lobes ($0=$ no overlap, $1=o v e r l a p$)
17. Shape of Calyx Margin**
18. Shape of Calyx Apex***
19. Presence of Calyx Papillations ($0=a b s e n t, 1=p r e s e n t$)
20. Presence of Calyx Laticifers ($0=a b s e n t, 1=p r e s e n t)$
21. Corolla Length/Calyx Length
22. Corolla Tube Length/Total Corolla Length
23. Corolla Length/Corolla Width
24. Corolla Length in mm
25. Shape of Corolla Margin**
26. Shape of Corolla Apex***
27. Presence of Corolla Papillations ($0=a b s e n t$, 1=present)
28. Inflexing of Corolla Lobe Tips ($0=$ tips not inflexed, l=tips inflexed)
29. Number of Fringes Per Corolla Appendage
30. Length of Corolla Appendages in mm
31. Appendage Length/Length of Corolla Tube
32. Length of Appendage-Corolla Fusion/Appendage Length
33. Appendage Length/Appendage Width
34. Filament Length in mm
35. Anther Length in mm
36. Filament Length/Anther Length
37. Anther Length/Anther Width
38. Longer Style Length in mm
39. Longer Style Length/Shorter Style Length
40. Stigma Length/Stigma Width
41. Ovary Length in mm
42. Ovary Length/Ovary Width
43. Style Orientation*
44. Presence of Stylopodium ($0=a b s e n t, 1=p r e s e n t)$
*codes for orientations are as follows: l=enclosing,
$2=$ inflexed, $3=$ upright, $4=s p r e a d i n g, 5=r e f l e x e d$.
**codes for margin shapes are as follows:
1=denticulate, 2=dentate, 3=entire, 4=ciliate, 5=erose.
***codes for apex shapes are as follows: 1=obtuse,
$2=$ acute, $3=$ acuminate, $4=$ cuspidate, $5=$ attenuate .
APPENDIX C
RESULTS OF CLUSTERING TECHNIQUES

UPGMA Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Average Distance
181	142	I44	2	32.03		0.182784
180	CL181	143	3	23.75	1.71	0.225658
179	I02	I16	2	20.59		0.258710
178	L24	A08	2	19.31		0.260223
177	I05	107	2	17.87		0.28361 .4
176	I4 6	I47	2	16.42		0.309422
175	I37	CL180	4	14.73	2.72	0.311453
174	004	009	2	14.18		0.318602
173	032	033	2	13.50		0.342828
172	U48	U12	2	12.96		0.348642
171	L13	L14	2	12.57		0.348764
170	L07	L12	2	12.26		0.349313
169	I38	CL176	3	11.90	1.41	0.352338
168	CLI79	CL177	4	11.28	2.41	0.352358
167	038	040	2	11.17		0.353354
166	I49	I50	2	11.08	.	0.353384
165	L23	CL178	3	10.88	2.16	0.356115
164	L02	L05	2	10.82	.	0.357351
163	I34	L08	2	10.76		0.364005
162	U39	U47	2	10.69	.	0.366325
161	CL169	I41	4	10.59	1.26	0.366942
160	L10	L21	2	10.55	.	0.367885
159	010	027	2	10.52		0.369904
158	I2 4	125	2	10.48	.	0.372235
157	U44	U49	2	10.46		0.373099
156	CL165	A09	4	10.37	1.47	0.373580
155	022	042	2	10.35		0.379380
154	CL171	L26	3	10.30	1.27	0.381268
153	001	031	2	10.28	.	0.381617
152	U46	U08	2	10.27	.	0.382334
151	028	050	2	10.26	.	0.384853
150	I08	I45	2	10.25	.	0.390047
149	020	024	2	10.23		0.390065
148	103	I18	2	10.23		0.390588
147	CLI63	CL175	6	10.00	2.88	0.391011
146	I27	L25	2	10.01	.	0.391443
145	CL164	CL170	4	9.95	1.48	0.392678
144	A02	A07	2	9.96		0.400968
143	CL146	CL161	6	9.85	1.63	0.405830
142	CL158	I40	3	9.84	1.27	0.408288
141	039	043	2	9.84	.	0.412200
140	U15	U16	2	9.84	-	0.412449
139	136	LII	2	9.84	.	0.414151
138	128	130	2	9.85	.	0.415791
137	I31	133	2	9.85	.	0.417548
136	122	L18	2	9.86	.	0.418257
135	I13	I32	2	9.87	.	0.423763
134	I17	I48	2	9.87 ,		0.427258
133	CL147	CL166	8	9.67	2.74	0.434807
132	029	048	2	9.67	.	0.437275
131	U35	U38	2	9.67	.	0.438044
130	I12	I14	2	9.68	.	0.441610

UPGMA Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Average Distance
129	CL155	CL173	4	9.59	2.05	0.443363
128	CL156	A05	5	9.54	2.00	0.443489
127	U43	U02	2	9.56		0.444085
126	CL168	CL134	6	9.44	2.44	0.448881
125	CL131	CL157	4	9.41	1.47	0.451559
124	CL149	CL167	4	9.36	1.97	0.452139
123	006	047	2	9.38		0.454451
122	I23	CL160	3	9.37	1.70	0.454690
121	CL136	CL145	6	9.31	1.96	0.456918
120	U29	U33	2	9.33		0.459475
119	008	CL159	3	9.32	1.81	0.463924
118	I29	CL137	3	9.33	1.32	0.465526
117	015	025	2	9.36		0.465843
116	CLI25	U4 1	5	9.37	1.23	0.467061
115	CL135	CL143	8	9.28	2.32	0.472793
114	L22	CL128	6	- 9.26	1.80	0.474077
113	012	CL151	3	9.27	1.72	0.474877
112	U21	U24	2	9.30		0.477443
111	CL127	U13	3	9.32	1.21	0.478409
110	U50	U19	2	9.35	.	0.478457
109	CL133	CL139	10	9.26	2.64	0.481357
108	CL122	CL118	6	9.23	1.69	0.483945
107	CL124	036	5	9.24	1.48	0.488109
106	CL126	I10	7	9.23	1.86	0.494116
105	U37	CL110	3	9.26	1.09	0.495065
104	CL115	CL108	14	9.10	2.75	0.496190
103	U32	U42	2	9.14	.	0.499138
102	L15	CLII4	7	9.14	1.70	0.499963
101	CL120	CL111	5	9.15	1.40	0.500598
100	CL106	CL148	9	9.09	2.37	0.501162
99	U34	CL172	3	9.11	2.44	0.501340
98	CLI21	L04	7	9.13	1.68	0.502583
97	CL117	CL129	6	9.11	1.99	0.506840
96	CL150	I19	3	9.13	2.04	0.510749
95	CL98	CL154	10	9.01	3.08	0.511205
94	CL104	CL109	24	8.69	4.66	0.511217
93	U27	CL116	6	8.73	1.54	0.516100
92	U30	U31	2	8.78		0.517254
91	I20	CL142	4	8.82	2.08	0.518837
90	CL162	CL140	4	8.82	2.56	0.520317
89	IO1	CL100	10	8.85	1.58	0.525008
88	CL119	035	4	8.89	1.69	0.527956
87	U07	U10	2	8.95		0.530908
86	CL132	046	3	9.00	1.65	0.532618
85	019	026	2	9.07		0.534771
84	CL9 3	CL90	10	9.02	2.36	0.536641
83	109	CL130	3	9.08	1.65	0.537920
82	CLII3	CL107	8	9.03	2.72	0.538821
81	CL9 4	CL91	28	8.92	3.00	0.541642
80	U45	CL112	3	8.99	1.40	0.543405
79	L06	L16	2	9.07		0.543671
78	CL144	A03	3	9.13	2.14	0.546135

UPGMA Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalized Average Distance
77	U40	U18	2	9.21	-	0.546848
76	U05	U09	2	9.29		0.556217
75	CL89	121	11	9.34	1.72	0.557684
74	CL97	016	7	9.39	1.70	0.560084
73	CL84	CL101	15	9.32	2.80	0.562801
72	CL95	CL102	17	9.09	5.11	0.563152
71	CL123	014	3	9.17	1.73	0.564804
70	U23.	U25	2	9.27		0.566408
69	CL152	U04	3	9.34	2.60	0.567217
68	003	013	2	9.44		0.568876
67	CL153	CL88	6	9.46	2.55	0.573259
66	007	034	2	9.56		0.573694
65	CL105	U22	4	9.65	1.57	0.573931
64	CL72	CL79	19	9.70	1.82	0.579401
63	CL96	CL81	31	9.65	3.08	0.581427
62	U28	CL99	4	9.74	1.99	0.582029
61	CL75	CL138	13	9.75	2.79	0.585499
60	002	005	2	9.87		0.586463
59	CL82	045	9	9.97	1.67	0.591600
58	CL62	CL77	6	10.05	1.68	0.596360
57	CL103	CL70	4	10.16	1.51	0.597190
56	CL71	CL74	10	10.18	2.62	0.599520
55	CL73	U36	16	10.30	1.52	0.599650
54	011	037	2	10.45		0.600461
53	CL63	L19	32	10.57	1.68	0.601250
52	CL64	L20	20	10.69	1.58	0.608760
51	CL55	CL65	20	10.69	2.84	0.609847
50	CL92	U06	3	10.84	1.54	0.612658
49	CL58	CL87	8	10.96	1.69	0.615725
48	CL59	CL85	11	11.06	2.26	0.617690
47	CL174	CL86	5	11.14	3.27	0.620665
46	IO4	I26	2	11.33		0.628367
45	CL56	017	11	11.50	1.60	0.630590
44	CL61	CL4 6	15	11.63	2.24	0.632122
43	CL53	135	33	11.80	1.92	0.633735
42	CL66	CL48	13	11.94	2.06	0.640365
41	CLI41	044	3	12.14	2.95	0.647072
40	CL57	CL76	6	12.32	1.80	0.648243
39	U26	CL69.	4	12.55	1.91	0.649523
38	CL4 3	CL52	53	11.61	13.60	0.650482
37	CL67	CL45	17	11.59	4.27	0.653469
36	CL4 0	CL80	9	11.77	2.13	0.656778
35	CL50	U17	4	12.03	1.45	0.662437
34	CL68	CL42	15	12.24	2.17	0.666249
33	CL51	CL49	28	12.16	5.13	0.667510
32	CL60	CL34	17	12.41	1.92	0.672863
31	L03	A04	2	12.75		0.685082
30	CL32	CL4 7	22	12.84	3.50	0.687722
29	CL54	CL4 1	5	13.17	1.95	0.693725
28	041	049	2	13.58	.	0.693777
27	018	030	2	14.02		0.702074
26	CL3 3	CL36	37	14.00	4.96	0.702212

UPGMA Clustering Results

```Number of Clusters```	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalized   Average Distance
25	CL37	CL30	39	13.83	6.25	0.704549
24	CL39	U01	5	14.32	1.74	0.704908
23	CL38	I39	54	14.82	1.90	0.717979
22	CL35	U14	5	15.40	1.59	0.728073
21	CL29	CL28	7	15.99	1.68	0.735609
20	CL26	U20	38	16.67	1.60	0.739775
19	CL31	CL78	5	17.36	2.61	0.744110
18	CL44	CL23	69	16.10	17.44	0.752055
17	CL20	CL22	43	16.51	4.36	0.768520
16	CL25	CL27	41	17.34	2.16	0.771686
15	CL19	A06	6	18.40	1.60	0.784148
14	CL17	U11	44	19.55	1.87	0.817598
13	CL16	021	42	20.87 '	2.08	0.844445
12	CL18	L01	70	22.39	2.38	0.859813
11	CL12	CL15	76	22.83	8.46	0.865662
10	CL83	A01	4	24.98	3.94	0.872546
9	CL13	CL21	49	25.99	8.28	0.875737
8	CL14	U03	45	29.19	2.34	0.894610
7	CL11	L17	77	33.35	2.58	0.939004
6	CL7	L09	78	39.13	2.66	0.958132
5	CL24	CL8	50	44.61	9.66	0.958976
4	CL9	023	50	58.13	2.50	0.984059
3	CL6	CL10	82	79.31	9.35	1.031846
2	CL5	CL3	132	65.99	68.03	1.080552
1	CL2	CL4	182	.	65.99	1.183175

WPGMA Clustering Results

Number of Clusters	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ \text { F } \end{gathered}$	Pseudo t**2	Normalized McQultty's Similarity
181	I42	I4 4	2	32.03	-	0.182784
180	CL181	I43	3	23.75	1.71	0.225658
179	IO2	I16	2	20.59	.	0.258710
178	L24	A08	2	19.31		0.260223
177	I05	I07	2	17.87		0.283614
176	I46	I47	2	16.42		0.309422
175	I37	CL180	4	14.73	2.72	0.316178
174	004	009	2	14.18	2.72	0.318602
173	032	033	2	13.50	.	0.342828
172	U48	U12	2	12.96	-	0.348642
171	L13	L14	2	12.57		0.348764
170	L07	L12	2	12.26		0.349313
169	I38	CL176	3	11.90	1.41	0.352338
168	CL179	CL177	4	11.28	2.41	0.352358
167	038	040	2	11.17	2. 1	0.353354
166	I49	I50	2	11.08	.	0.353384
165	L23	CL178	3	10.88	2.16	0.356115
164	L02	L05	2	10.82	2.16	0.357351
163	I34	L08	2	10.76	- .	0.364005
162	U39	U47	2	10.69	.	0.366325
161	L10	L21	2	10.64	.	0.367885
160	CL165	A09	4	10.50	1.47	0.369344
159	O10	027	2	10.47	.	0.369904
158	I24	I25	2	10.44	.	0.372235
157	U44	U49	2	10.41	.	0.373099
156	CL169	I41	4	10.37	1.26	0.373922
155	022	042	2	10.35	1.26	0.379380
154	CL171	L26	3	10.30	1.27	0.381268
153	001	031	2	10.28	1.27	0.381617
152	U46	U08	2	10.27	-	0.382334
151	028	050	2	10.26	-	0.384853
150	I08	I 45	2	10.25	-	0.390047
149	020	024	2	10.23	.	0.390065
148	I03	118	2	10.23	.	0.390588
147	I27	L25	2	10.22	-	0.391443
146	CL164	CLI70	4	10.15	1.48	0.392678
145	CL163	CL175	6	9.95	2.88	0.397537
144	A02	A07	2	9.96	2.88	0.400968
143	CL147	CL156	6	9.85	1.63	0.401990
142	CL158	I40	3	9.84	1.27	0.408288
141	039	043	2	9.84	,	0.412200
140	U15	U16	2	9.84	.	0.412449
139	I36	L11	2	9.84	-	0.414151
138	I28	I30	2	9.85	-	0.415791
137	I31	I33	2	9.85	.	0.417548
136	I22	L18	2	9.86	-	0.418257
135	I13	I32	2	9.87	.	0.423763
134	I17	I48	2	9.87		0.427258
133	029	048	2	9.86		0.437275
132	U35	U38	2	9.86		0.438044
131	L22	CL160	5	9.75	2.22	0.438115
130	I12	I14	2	9.75	.	0.441610

WPGMA Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	Pseudo七**2	Normalızed McQuitty Similarity
129	CL155	CL173	4	9.66	2.05	0.443363
128	U43	U02	2	9.67		0.444085
127	CL145	CL166	8	9.52	2.74	0.448292
126	CL168	CL134	6	9.41	2.44	0.448881
125	CL146	CL154	7	9.22	2.81	0.448931
124	CL132	CL157	4	9.20	1.47	0.451559
123	CL149	CL167	4	9.15	1.97	0.452139
122	006	047	2	9.18		0.454451
121	I23	CL161	3	9.18	1.70	0.454690
120	U29	U33	2	9.21		0.459475
119	008	CL159	3	9.20	1.81	0.463924
118	I29	CL137	3	9.22	1.32	0.465526
117	015	025	2	9.24		0.465843
116	CL124	U4 1	5	9.26	1.23	0.467061
115	012	CL151	3	9.26	1.72	0.474877
114	U21	U24	2	9.28		0.477443
113	CL128	U13	; 3	9.30	1.21	0.478409
112	U50	U19	2	9.33	.	0.478457
111	CL143	CL118	9	9.22	2.49	0.480432
110	CL123	036	5	9.22	1.48	0.488109
109	CL126	I10	7	9.20	1.86	0.488656
108	CL121	CL111	12	9.11	2.10	0.489073
107	L15	CL131	6	9.11	1.83	0.489659
106	U37	CL112	3	9.14	1.09	0.495065
105	CL127	CL139	10	9.07	2.64	0.498497
104	U32	U42	2	9.11	.	0.499138
103	CL135	I20	3	9.13	1.54	0.499471
102	CL120	CL113	5	9.14	1.40	0.500999
101	U34	CL172	3	9.15	2.44	0.501340
100	CL148	I21	3	9.17	1.92	0.506741
99	CL116	CL140	7	9.11	2.21	0.506768
98	CL117	CL129	6	9.09	1.99	0.506840
97	CL150	I19	3	9.11	2.04	0.510749
96	CL136	CL125	9	9.04	2.55	0.516385
95	U30	U31	2	9.09		0.517254
94	CL96	L04	10	9.12	1.42	0.521049
93	CL119	035	4	9.14	1.69	0.522753
92	CL107	A05	7	9.20	1.39	0.528731
91	IO1	I26	2	9.25	.	0.528887
90	U07	U10	2	9.30	-	0.530908
89	CL133	046	3	9.34	1.65	0.532618
88	CL99	CL162	9	9.30	2.14	0.533913
87	019	026	2	9.36		0.534771
86	I09	CL130	3	9.40	1.65	0.537920
85	CL103	CL108	15	9.37	2.25	0.539150
84	U45	CL114	3	9.42	1.40	0.543405
83	L06	L16	2	9.48		0.543671
82	CL144	A03	3	9.53	2.14	0.546135
81	U40	U18	2	9.60		0.546848
80	IO4	CL142	4	9.63	2.36	0.548388
79	CL109	CL100	10	9.61	2.60	0.553066
78	U27	U17	2	9.68	.	0.556196

WPGMA Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New cluster	$\underset{F}{\text { Pseudo }}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized McQuitty's Similarıty
77	U05	U09	2	9.76		0.556217
76	CL98	016	7	9.80	1.70	0.556611
75	CL88	U36	10	9.85	1.52	0.557354
74	CL115	CLI10	8	9.82	2.72	0.564283
73	CL122	014	3	9.89	1.73	0.564804
72	U23	U25	2	9.98		0.566408
71	CL152	U04	3	10.04	2.60	0.567217
70	003	013	2	10.13		0.568876
69	CLIO2	CL106	8	10.09	2.70	0.570369
68	CL97	CL105	13	10.00	4.07	0.571558
67	007	034	2	10.10		0.573694
66	CLI53	CL93	6	10.12	2.55	0.582093
65	CL68	L19	14	10.18	1.80	0.585592
64	002	005	2	10.29		0.586463
63	CL9 4	L20	11	10.37	1.87	0.594273
62	CL101	CL81	5	10.42	2.08	0.595357
61	CL104	CL72	4	10.51	1.51	0.597190
60	CL74	045	9	10.60	1.67	0.597511
59	CL79	CL138	12	10.63	2.69	0.598950
58	U28	U14	2	10.76	2.6	0.599801
57	011	037	2	10.89		0.600461
56	CL62	CL90	7	10.97	1.69	0.604749
55	CL95	U06	3	11.10	1.54	0.612658
54	CL174	CL89	5	11.13	3.27	0.615166
53	CL65	CL83	16	11.15	2.78	0.616480
52	CL69	CL75	18	11.16	2.74	0.616699
51	CL9 2	CL82	10	11.12	4.25	0.619781
50	CL80	CL85	19	11.09	3.95	0.626243
49	CL73	CL76	10	11.15	2.62	0.631143
48	CL60	CL87	11	11.25	2.26	0.642649
47	CL52	U22	19	11.38	1.76	0.642676
46	CL78	CL56	9	11.49	1.83	0.646601
45	CL141	044	3	11.66	2.95	0.647072
44	CL61	CL77	6	11.80	1.80	0.648243
43	CL67	CL48	13	11.93	2.06	0.652479
42	CL49	017	11	12.13	1.60	0.653216
41	CL53	CL63	27	11.75	7.84	0.653985
40	U26	CL71	4	11.96	1.91	0.656228
39	CL4 4	CL84	9	12.10	2.13	0.660711
38	135	I39	2	12.36		0.664094
37	CL50	CL4 1	46	12.43	3.16	0.677328
36	CL64	021	3	12.69	1.50	0.682350
35	L03	A04	2	12.98		0.685082
34	CL91	CL59	14	13.23	2.52	0.691667
33	CL57	CL45	5	13.48	1.95	0.692578
32	041	049	2	13.83		0.693777
31	CL6 6	CL54	11	13.92	4.11	0.696839
30	CL4 6	CL47	28	13.89	4.87	0.699155
29	CL35	CL51	12	14.23	2.17	0.700640
28	018	030	2	14.67		0.702074
27	CL4 2	CL4 3	24	14.46	6.91	0.703441
26	CL3 0	CL55	31	14.70	3.06	0.710261

WPGMA Clustering Results

```Number Of Clusters```	Clusters Joined		Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized McQultty's Simılarıty
25	CL31	CL27	35	14.88	3.46	0.725600
24	CL26	CL58	33	15.25	2.49	0.737150
23	CL25	CL70	37	15.68	2.21	0.746705
22	CL3 3	CL32	7	16.24	1.68	0.749762
21	CL40	U01	5	16.91	1.74	0.749778
20	CL37	CL38	48	17.58	2.44	0.750601
19	CL23	CL28	39	18.24	2.18	0.772043
18	CL39	U20	10	19.06	2.05	0.789485
17	CL29	A06	13	19.96	2.61	0.814329
16	CL3 4	CL20	62	19.04	15.71	0.824588
15	CL19	CL36	42	20.02	2.38	0.827303
14	CL18	U11	11	21.27	2.00	0.832247
13	CL16	LOI	63	22.67	2.49	0.875347
12	CL86	A01	4	24.33	3.94	0.884212
11	CL2 4	CL14	44	25.68	4.94	0.913863
10	CL15	CL22	49	26.35	8.28	0.945375
9	CLII	U03	45	29.11	2.34	0.958067
8	CL13	L17	64	32.53	3.17	0.974943
7	CLIO	023	50	37.07	2.50	1.018062
6	CL8	L09	65	43.50	3.10	1.029172
5	CL21	CL9	50	49.57	9.66	1.083579
4	CL6	CL17	78	58.13	14.69	1.127833
3	CL4	CL12	82	79.31	9.35	1.174559
2	CL5	CL7	100	67.29	66.66	1.315223
1	CL2	CL3	182	.	67.29	1.447096

UPGMC Clustering Results

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\text { Number } \\
\text { of } \\
\text { Clusters }
\end{gathered}
$$ \& Clusters \& Joined \& Frequency of New Cluster \& $$
{ }_{F}^{\text {Pseudo }}
$$ \& Pseudo t**2 \& Normalized Centroid Distance

\hline 181 \& I42 \& 144 \& 2 \& \& \&

\hline 180 \& CL181 \& I43 \& 3 \& 32.03
23.75 \& 1.71 \& 0.182784

\hline 179 \& I37 \& CL180 \& 4 \& 15.17 \& 2.72 \& 0.179962

\hline 178 \& IO2 \& I16 \& 2 \& 15.48 \& 2.72 \& 0.240997
0.258710

\hline 177 \& L24 \& A08 \& 2 \& 15.68 \& - \& 0.258710
0.260223

\hline 176 \& I05 \& I07 \& 2 \& 15.37 \& . \& 0.260223
0.283614

\hline 175 \& CL178 \& CL176 \& 4 \& 12.74 \& 2.41 \& 0.283614
0.216777

\hline 174 \& I34 \& CL179 \& 5 \& ?1.12 \& 2.69 \& 0.283976

\hline 173 \& CL174 \& L08 \& 6 \& 1 ic .15 \& 1.38 \& 0.268955

\hline 172 \& CLI73 \& I47 \& 7 \& 9.29 \& 1.82 \& 0.275356

\hline 171 \& CL172 \& I46 \& 8 \& 8.89 \& 1.37 \& 0.247358

\hline 170 \& CL171 \& I41 \& 9 \& 8.51 \& 1.42 \& 0.254653

\hline 169 \& CL170 \& 138 \& 10 \& 8.13 \& 1.48 \& 0.258534

\hline 168 \& 127 \& CL169 \& 11 \& 7.74 \& 1.57 \& 0.2585090

\hline 167 \& CL168 \& L25 \& 12 \& 7.44 \& 1.48 \& 0.273201

\hline 166 \& CL167
CL166 \& L21 \& 13 \& 7.19 \& 1.43 \& 0.273714

\hline 165 \& CL166 \& I32 \& 14 \& 7.03 \& 1.32 \& 0.264811

\hline 164 \& CL165
CLI64 \& 133 \& 15 \& 6.89 \& 1.29 \& 0.263050

\hline 162 \& I25 \& CLI63 \& 16 \& 6.75 \& 1.32 \& 0.267508

\hline 161 \& CL162 \& L11 \& 18 \& 6.51 \& 1.25
1.40 \& 0.262659

\hline 160 \& CL161 \& L07 \& 19 \& 6.38 \& 1.43 \& O. 278433

\hline 159 \& CL160 \& L10 \& 20 \& 6.27 \& 1.36 \& 0.282469
0.278571

\hline 158 \& I24 \& CL159 \& 21 \& 6.16 \& 1.42 \& 0.288534

\hline 157 \& L23 \& CL177 \& 3 \& 6.25 \& 2.16 \& 0.281059

\hline 156 \& CL157 \& A09 \& 4 \& 6.33 \& 1.47 \& 0.265530

\hline 155 \& CL158 \& CL156 \& 25 \& 4.39 \& 8.43 \& 0.278647

\hline 154 \& CL155 \& L13 \& 26 \& 4.89 \& 1.05 \& 0.274284

\hline 153 \& CL154 \& I29 \& 27 \& 4.89 \& 1.08 \&

\hline 152 \& CL153 \& L12 \& 28 \& 4.88 \& 1.13 \& 0.283715

\hline 151 \& CL152 \& I45 \& 29 \& 4.87 \& 1.15 \& 0.289740

\hline 150 \& CL175 \& I18 \& 5 \& 4.92 \& 1.98 \& 0.292421

\hline 149 \& I23 \& CL151 \& 30 \& 4.91 \& 1.19 \& 0.292804

\hline 148 \& CLI50 \& CL149 \& 35 \& 3.85 \& 10.04 \& 0.295838

\hline 147 \& CL148 \& I22 \& 36 \& 3.87 \& 0.98 \& 0.291389

\hline 146 \& CL147 \& I49 \& 37 \& 3.88 \& 1.05 \& 0.298814

\hline 145 \& CL146 \& I13 \& 38 \& 3.90 \& 1.07 \& 0.301612

\hline 144 \& CL145 \& I50 \& 39 \& 3.90 \& 1.10 \& 0.303357

\hline 143 \& CL144 \& I36 \& 40 \& 3.92 \& 1.08 \& 0.303043

\hline 142 \& 004
CLI
l \& 009 \& 2 \& 4.01 \& \& 0.318602

\hline 141 \& CLI
CLI

cli \& 119 \& 41 \& 4.01 \& 1.22 \& 0.322166

\hline 139 \& CL14 ${ }^{\text {CLI }}$ \& L05 \& 42 \& 3.99 \& 1.34 \& 0.333916

\hline 138 \& CL139 \& L16 \& 43
44 \& 3.98
3.97 \& 1.32
1.29 \& 0.336093

\hline 137 \& CL138 \& L04 \& 45 \& 3.96 \& 1.31 \& 0.333064
0.338348

\hline 136 \& CL137 \& I08 \& 46 \& 3.95 \& 1.30 \& 0.340679

\hline 135 \& 032 \& 033 \& 2 \& 4.04 \& \& 0.342828

\hline 134 \& CL135 \& 042 \& 3 \& 4.09 \& 1.75 \& 0.340414

\hline 133 \& 022 \& CL134 \& 4 \& 4.15 \& 1.27 \& 0.300744

\hline 132 \& CL133 \& 025 \& 5 \& 4.19 \& 1.48 \& 0.321607

\hline 131 \& 015 \& CL132 \& 6 \& 4.22 \& 1.66 \& 0.345804

\hline
\end{tabular}

UPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New cluster	$\begin{gathered} \text { Pseudo } \end{gathered}$	Pseudo t**2	Normalized Centrold Distance
130	CL136	I20	47	4.20	1.38	0.346689
129	U48	U12	2	4.28		0.348642
128	CL130	I40	48	4.27	1.38	0.349971
127	CL128	L19	49	4.25	1.37	0.351701
126	038	040	2	4.33		0.353354
125	024	CL126	3	4.39	1.54	0.329749
124	CL125	028	4	4.45	1.26	0.293560
123	CL131	CL124	10	4.22	6.68	0.312347
122	CL142	CL123	12	4.12	2.86	0.328163
121	CL122	050	13	4.14	1.06	0.333718
120	CLI21	008	14	4.16	1.01	0.329913
119	CLI20	027	15	4.18	0.98	0.320235
118	CLI19	010	16	4.21	1.00	0.319291
117	CLI18	012	17	4.23	1.00	0.317811
116	001	CL117	18	4.26	0.99	0.318020
115	CLII6	031	19	4.28	1.08	0.328406
114	CL115	014	20	4.29	1.13	0.339318
113	CLI14	019	21	4.30	1.17	0.341996
112	CLI27	L26	50	4.30	1.46	0.355845
111	CLI13	036	22	4.31	1.26	0.356359
110	CLI12	I30	51	4.31	1.38	0.358344
109	CLIII	020	23	4.32	1.29	0.360328
108	CLIO9	002	24	4.33	1.24	0.360136
107	CL110	L02	52	4.33	1.49	0.363214
106	CL107	L14	53	4.33	1.45	0.359749
105	CL108	045	25	4.34	1.28	0.365201
104	CL105	034	26	4.35	1.27	0.365313
103	CL104	026	27	4.36	1.25	0.365694
102	CL103	016	28	4.37	1.25	0.365813
101	U39	U47	2	4.45		0.366325
100	CL129	U49	3	4.50	1.93	0.366880
99	U44	CL100	4	4.56	1.42	0.332115
98	U41	CL99	5	4.62	1.23	0.313824
97	CLIO1	CL98	7	4.61	3.15	0.298921
96	U38	CL97	. 8	4.67	0.91	0.284272
95	CL96	U16	9	4.73	0.88	0.273085
94	U35	CL95	10	4.78	1.13	0.299562
93	CL94	U50	11	4.83	1.21	0.313602
92	U27	CL9 3	12	4.88	1.20	0.312319
91	CL92	U15	13	4.93	1.18	0.309652
90	CL91	U02	14	4.97	1.26	0.320508
89	CL90	U43	15	5.02	1.21	0.314561
88	CL39	U13	16	5.07	1.15	0.308782
87	CL38	U33	17	5.12	1.18	0.312821
86	CL37	U29	18	5.17	1.19	0.313438
85	CL36	U34	19	5.21	1.33	0.334467
84	CL35	U37	20	5.25	1.39	0.343375
83	CL34	U42	21	5.29	1.43	0.353077
82	CL33	U19	22	5.33	1.42	0.352878
81	CL32	U07	23	5.36	1.38	0.351205
80	CL31	U36	24	5.40	1.46	0.361661

UPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalızed Centroid Distance
79	CL106	L06	54	5.42	1.49	0.374226
78	CL80	U45	25	5.45	1.52	0.374991
77	CL102	007	29	5.49	1.30	0.375364
76	CL78	U21	26	5.52	1.51	0.378316
75	CL79	I04	55	5.55	1.52	0.378918
74	CL77	048	30	5.58	1.33	0.379566
73	CL74	029	31	5.62	1.27	0.372468
72	CL73	046	32	5.66	1.23	0.367950
71	CL75	I28	56	5.70	1.50	0.381268
70	CL71	I10	57	5.74	1.51	0.381425
69	U46	U08	2	5.85	1.51	0.382334
68	CL72	005	33	5.89	1.34	0.385014
67	CL70	I48	58	5.92	1.56	0.385668
66	CL76	U40	27	5.97	1.57	0.387206
65	CL66	U22	28	6.02	1.54	0.389087
64	CL67	L20	59	6.06	1.55	0.390920
63	CL68	013	34	6.11	1.38	0.392420
62	CL65	U10	29	6.16	1.58	0.397572
61	CL62	U28	30	6.21	1.55	0.396168
60	CL61	U05	31	6.27	1.51	0.395475
59	CL60	U09	32	6.33	1.50	0.395878
58	CL59	U32	33	6.39	1.48	0.395566
57	CL63	035	35	6.45	1.41	0.398552
56	CL58	U25	34	6.51	1.49	0.398764
55	A02	A07	2	6.65	1.	0.400968
54	CL64	CL5 5	61	6.54	4.35	0.397563
53	CL54	I35	62	6.61	1.57	0.403769
52	CL56	CL5 3	96	3.50	71.38	0.407867
51	CL52	CL5 7	131	1.70	56.78	0.400750
50	CL51	U30	132	1.72	0.62	0.390089
49	039	043	2	1.77	.	0.412200
48	I12	I14	2	1.81	.	0.441610
47	I09	CL4 8	3	1.85	1.65	0.427518
46	006	047	2	1.90	.	0.454451
45	CL69	UO4	3	1.94	2.60	0.471634
44	CL50	U31	133	1.96	0.97	0.472411
43	CL4 4	U06	134	1.98	0.98	0.476344
42	CL4 3	U17	135	2.00	1.00	0.478151
41	L15	L22	2	2.06	.	0.480112
40	CL4 1	A05	3	2.11	1.36	0.420183
39	CL4 2	CL40	138	2.04	3.25	0.355006
38	U26	CL4 5	4	2.09	1.91	0.481093
37	CL38	CL39	142	1.89	6.62	0.472708
36	CL37	U14	143	1.91	0.99	0.487832
35	CL36	I39	144	1.93	1.08	0.489860
34	CL3 5	I17	145	1.95	1.15	0.502840
33	CL3 4	I03	146	1.98	1.14	0.500369
32	CL3 3	I21	147	2.00	1.20	0.517260
31	CL32	CL4 7	150	1.84	5.25	0.521331
30	CL31	A04	151	1.86	1.17	0.522698
29	IO1	I26	2	1.92	.	0.528887

UPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalized Centroid Distance
28	CL30	CL29	153	1.88	2.47	0.437461
27	CL28	CL49	155	1.81	3.11	0.534113
26	CL27	018	156	1.83	1.18	0.536371
25	CL26	003	157	1.85	1.20	0.540614
24	CL25	U18	158	1.88	1.21	0.541455
23	CL2 4	U24	15.9	1.91	1.21	0.542749
22	CL4 6	017	3	1.98	2.52	0.550328
21	CL23	CL22	162	1.76	5.34	0.509614
20	CL2 1	U20	163	1.79	1.23	0.552442
19	CL20	L03	164	1.81	1.33	0.565637
18	CL19	L01	165	1.83	1.35	0.580103
17	CL18	U23	166	1.86	1.36	0.581741
16	CL17	L17	167	1.89	1.35	0.589109
15	CL16	030	168	1.92	1.40	0.596207
14	011	037	2	2.04		0.600461
13	CL14	044	3	2.18	1.42	0.539020
12	CL15	CL13	171	1.92	4.58	0.468686
11	CL12	U03	172	1.95	1.54	0.634916
10	CL11	U11	173	1.97	1.69	0.664086
9	CL10	A06	174	1.98	1.83	0.691288
8	CL9	A03	175	1.99	1.84	0.693004
7	041	049	2	2.25	.	0.693777
6	CL8	CL7	177	1.98	3.49	0.554638
5	CL6	023	178	2.01	1.81	0.703781
4	CL5	021	179	2.03	1.90	0.713871
3	CL4	L09	180	2.08	1.91	0.716159
2	CL3	U01	181	2.31	1.85	0.716880
1	CL2	A01	182	.	2.31	0.813786

WPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Median Distance
181	I42	I4 4	2	32.03		0.182784
180	CL181	I43	3	23.75	1.71	0.179962
179	I37	CL180	4	15.17	2.72	0.248340
178	102	I16	2	15.48		0.258710
177	L24	A08	2	15.68		0.260223
176	105	107	2	15.37		0.283614
175	CL178	CL176	4	12.74	2.41	0.216777
174	I34	CL179	5	11.12	2.69	0.289635
173	CL174	L08	6	10.15	1.88	0.266309
172	I33	CL173	7	9.28	1.83	0.281004
171	CL172	L21	8	8.48	1.86	0.285161
170	I32	CL171	9	7.88	1.72	0.278136
169	L23	CL177	3	7.91	2.16	0.291059
168	CL169	A09	4	7.89	1.47	0.264051
167	CL170	I4 6	10	7.74	1.20	0.291692
166	CL167	I47	11	7.62	1.16	0.242721
165	CL166	138	12	7.40	1.40	0.247688
164	I27	CL165	13	7.22	1.36	0.257676
163	CL164	L25	14	7.06	1.32	0.275994
162	CL163	I4 1	15	7.03	1.05	0.263587
161	CL175	I18	5	6.98	1.98	0.292421
160	CL161	103	6	6.81	2.08	0.305600
159	004	009	2	6.97		0.318602
158	L22	CL168	5	6.84	2.22	0.319456
157	CL162	I31	16	6.76	1.32	0.321494
156	CL157	L07	17	6.62	1.53	0.298576
155	CL156	L13	18	6.49	1.55	0.266765
154	CL155	- L14	19	6.13	2.49	0.278276
153	CL154	L26	20	5.83	2.36	0.260243
152	CL153	CL158	25	4.58	8.45	0.250703
151	CL152	L05	26	4.56	1.13	0.307440
150	CL151	L02	27	4.50	1.47	0.257373
149	CL150	L12	, 28	4.53	0.81	0.267423
148	CL149	L18	29	4.51	1.20	0.295272
147	I22	CL148	30	4.51	1.10	0.312922
146	032	033	2	4.61		0.342828
145	CL146	042	3	4.67	1.75	0.340414
144	022	CL145	4	4.73	1.27	0.292035
143	CL144	025	5	4.76	1.48	0.346119
142	CL147	I24	31	4.73	1.27	0.347424
141	CL142	I25.	32	4.74	1.05	0.320987
140	CL141	I40	33	4.65	1.73	0.310259
139	CL160	CL140	39	3.69	11.06	0.341829
138	CL139	IO4	40	3.66	1.46	0.336249
137	U48	U12	2	3.74	.	0.348642
136	038	040	2	3.82		0.353354
135	024	CL136	3	3.88	1.54	0.329749
134	CL135	028	4	3.94	1.26	0.289598
133	CL134	050	5	3.97	1.71	0.320457
132	012	CL133	6	3.99	1.73	0.337389
131	I49	I50	2	4.07	.	0.353384

WPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \end{gathered}$	Pseudo t**2	Normalized Median Distance
130	CL138	CL131	42	4.01	1.74	0.343170
129	CL130	L11	43	4.06	0.58	0.319439
128	CL129	I36	44	4.08	0.98	0.290708
127	015	CL143	6	4.11	1.66	0.356874
126	CL128	145	45	4.15	0.71	0.359316
125	CL126	108	46	4.15	1.13	0.318822
124	008	CL132	7	4.16	1.83	0.360213
123	CL124	027	8	4.17	1.55	0.288974
122	CL123	010	9	4.18	1.34	0.299744
121	CL122	CL127	15	3.98	5.26	0.325686
120	CL159	CL121	17	3.91	2.43	0.311450
119	U39	U47	2	3.98		0.366325
118	CL137	U49	3	4.03	1.93	0.366880
117	U44	CL118	4	4.08	1.42	0.311787
116	CL119	CL117	6	4.06	3.34	0.296437
115	U38	CL116	7	4.11	0.92	0.295413
114	CL115	U16	8	4.15	0.93	0.308286
113	CL114	U41	9	4.21	0.87	0.298490
112	U35	CL113	10	4.25	1.13	0.339980
111	CLII2	U50	11	4.28	1.21	0.333542
110	CLll1	U43	12	4.31	1.35	0.370129
109	CLIIO	U02	13	4.34	1.24	0.325644
108	CL109	U15	14	4.39	1.03	0.315758
107	U29	CL108	15	4.41	1.32	0.340969
106	CL107	U33	16	4.45	1.16	0.319312
105	CL106	U13	17	4.49	1.02	0.339185
104	CL105	U37	18	4.51	1.46	0.373545
103	001	031	2	4.59		0.381617
102	CL103	CL120	19	4.57	1.72	0.308730
101	U46	U08	2	4.65		0.382334
100	CL125	I19	47	4.68	1.06	0.386761
99	CL102	035	20	4.68	1.48	0.393138
98	CL100	I29	48	4.72	0.87	0.395072
97	CL98	123	49	4.76	0.95	0.352547
96	CL97	L10	50	4.81	0.88	0.329803
95	CL104	U19	19	4.83	1.52	0.396187
94	CL96	L16	51	4.86	1.08	0.399147
93	CL9 4	L06	52	4.87	1.42	0.388020
92	A02	A07	2	4.95		0.400968
91	U27	CL95	20	5.00	1.12	0.407489
90	CL91	U34	21	5.03	1.27	0.405948
89	CL90	U07	22	5.06	1.45	0.377991
88	CL89	U42	23	5.10	1.29	0.367591
87	CL88	U32	24	5.10	1.87	0.389560
86	CL87	U25	25	5.10	1.74	0.391164
85	CL86	U21	26	5.13	1.43	0.399949
84	CL85	U45	27	5.16	1.32	0.391570
83	CL84	U24	28	5.15	1.87	0.385041
82	039	043	2	5.24	.	0.412200
81	I28	I30	2	5.32	.	0.415791
80	I17	I48	2	5.41		0.427258

WPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	Pseudo t**2	Normalized Median Distance
79	I10	CL80	3	5.49	1.30	0.365464
78	CL79	CL81	5	5.51	2.95	0.354191
77	CL9 3	CL78	57	5.35	4.46	0.384230
76	CL77	L04	58	5.40	1.05	0.367195
75	CL76	I13	59	5.46	0.94	0.391459
74	CL75	I20	60	5.50	1.21	0.401574
73	CL99	019	21	5.56	1.12	0.430056
72	CL73	026	22	5.60	1.32	0.429248
71	CL72	014	23	5.67	1.05	0.417383
70	CL71	007	24	5.71	1.39	0.410935
69	CL70	034	25	5.75	1.34	0.413602
68	CL69	029	26	5.79	1.37	0.402196
67	CL68	048	27	5.84	1.29	0.349881
66	CL67	046	28	5.90	1.23	0.394466
65	I12	I14	2	6.01		0.441610
64	109	CL65	3	6.10	1.65	0.427518
63	CL92	A03	3	6.19	2.14	0.445893
62	L15	CL63	4	6.28	1.34	0.382324
61	CL62	A05	5	6.35	1.69	0.427814
60	CL74	CL61	65	5.91	9.17	0.450440
59	CL60	L20	66	5.97	1.27	0.379805
58	CL59	Li9	67	6.05	1.02	0.407764
57	CL66	006	29	6.10	1.57	0.450534
56	CL57	047	30	6.17	1.41	0.349461
55	CL56	016	31	6.25	1.11	0.462660
54	CL55	017	32	6.32	1.48	0.456083
53	CL101	U04	3	6.42	2.60	0.471634
52	CL83	U05	29	6.51	1.44	0.473314
51	CL52	U09	30	6.60	1.44	0.401747
50	020	036	2	6.74	.	0.479240
49	CL50	045	3	6.87	1.68	0.468888
48	CL54	CL49	35	6.90	2.21	0.372347
47	CL4 8	002	36	7.02	1.09	0.397592
46	CL47	005	37	7.13	1.22	0.407891
45	CL58	L03	68	7.20	1.88	0.481760
44	CL45	A04	- 69	7.28	1.80	0.476371
43	CL51	U23	31	7.39	1.67	0.486586
42	U26	CL53	4	7.53	1.91	0.490528
41	CL4 6	003	38	7.65	1.55	0.498042
40	CL41	013	39	7.79	1.31	0.414849
39	CL4 3	U36	32	7.95	1.25	0.510158
38	CL39	U28	33	8.11	1.57	0.479737
37	CL38	U40	34	8.28	1.34	0.447643
36	CL37	U18	35	8.44	1.62	0.396971
35	CL36	U10	36	8.64	1.31	0.424502
34	CL35	U22	37	8.84	1.35	0.464353
33	CL3 4	U31	38	9.04	1.56	0.453740
32	CL33	U30	39	9.24	1.66	0.393203
31	CL32	U06	40	9.47	1.48	0.418672
30	CL31	U17	41	9.71	1.56	0.481019
29	CL40	CL82	41	9.77	3.47	0.511943

WPGMC Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ \text { t**2 } \end{gathered}$	Normalized Median Distance
28	CL29	037	42	9.98	2.07	0.472888
27	CL28	011	43	10.16	2.36	0.446794
26	CL27	049	44	10.41	1.95	0.456009
25	CL26	041	45	10.68	1.89	0.514791
24	CL3 0	U14	42	10.99	2.07	0.517127
23	101	I26	2	11.49		0.528887
22	CL25	044	46	11.83	2.07	0.529282
21	CL4 2	CL24	46	11.48	8.66	0.538291
20	CL21	U01	47	11.84	2.36	0.521614
19	CL4 4	A06	70	12.23	2.90	0.608339
18	CL23	121	3	12.85	2.35	0.614493
17	CL18	I39	4	13.49	1.81	0.585746
16	CL17	135	5	14.20	1.50	0.518909
15	CL16	CL19	75	14.81	3.35	0.503364
14	CL20	CL15	122	7.47	70.63	0.542296
13	CL14	CL64	125	7.39	5.36	0.579816
12	CL13	A01	126	7.70	2.73	0.653496
11	CL22	018	47	8.39	1.27	0.659304
10	CL11	030	48	9.20	1.50	0.526888
9	CL10	021	49	10.17	1.82	0.684334
8	CL9	023	50	11.30	2.50	0.721509
7	CL12	L17	127	12.84	1.61	0.788303
6	CL7	CL8	177	1.49	66.79	0.698294
5	CL6	U20	178	1.57	1.15	0.686973
4	CL5	U03	179	1.60	1.48	0.655883
3	CL4	U11	180	1.59	1.61	0.683764
2	CL3	L01	181	1.89	1.29	0.979540
1	CL2	L09	182	.	1.89	0.772276

Single Linkage Clustering Results

Number of Clusters	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalized Minimum Distance
181	I42	I44	2	32.03		0.182784
180	CL181	I43	3	23.75	1.71	0.208132
179	I02	I16	2	20.59		0.258710
178	L2 4	A08	2	19.31		0.260223
177	105	I07	2	17.87		0.283614
176	137	CL180	4	15.37	2.72	0.293145
175	CL179	CL177	4	12.74	2.41	0.308341
174	I4 6	I47	2	12.64		0.309422
173	004	009	2	$12.49{ }^{\circ}$		0.318602
172	138	CL174	3	11.94	1.41	0.318689
171	CL176	CL172	7	9.54	4.04	0.328049
170	CL171	I41	8	9.18	1.35	0.328965
169	CL170	I50	9	8.24	2.24	0.337266
168	CL178	A05	3	8.08	2.74	0.338317
167	032	033	2	8.21		0.342828
166	CL175	I18	5	7.99	1.98	0.343006
165	CLI68	A09	4	7.78	1.76	0.343598
164	127	CL169	10	7.58	1.44	0.345259
163	U48	U12	2	7.71	1.4	0.348642
162	L13	L14	2	7.83	.	0.348764
161	L07	L12	2	7.94	.	0.349313
160	038	040	2	8.05		0.353354
159	CL164	I49	11	7.68	1.92	0.353384
158	CL159	I34	12	7.57	1.22	0.353557
157	CL161	CL162	4	7.35	2.47	0.354813
156	L23	CL165	5	7.43	0.90	0.355426
155	L02	L05	2	7.53	-	0.357351
154	CL157	L26	5	7.60	0.81	0.357523
153	CL155	CL154	7	7.44	1.77	0.358618
152	CL158	L08	13	7.43	1.03	0.364005
151	U39	U47	2	7.53		0.366325
150	L10	L21	2	7.62		0.367885
149	028	CL160	3	7.57	1.84	0.369209
148	010	027	2	7.65	.	0.369904
147	I24	I25	2	7.74		0.372235
146	CL152	CL150	15	7.47	2.18	0.372532
145	U44	U49	2	7.56		0.373099
144	CL167	042	3	7.56	1.75	0.377479
143	CL146	I32	16	7.52	1.22	0.377673
142	L22	CL156	6	7.45	1.80	0.378537
141	CL143	CL153	23	5.92	10.12	0.379120
140	022	CLI44	4	5.97	1.27	0.379380
139	CL147	CL141	25	5.84	1.72	0.380171
138	CL139	L25	26	5.90	0.68	0.381015
137	001	031	2	5.99		0.381617
136	U4 6	U08	2	6.07	. .	0.382334
135	CL149	050	4	6.08	1.54	0.384853
134	CL138	133	27	6.11	0.84	0.386271
133	024	CL135	5	6.17	0.88	0.387628
132	108	I45	2	6.25		0.390047
131	020	CLI33	6	6.26	1.41	0.390065
130	CL166	I0 3	6	6.26	2.08	0.390588

Single Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Minimum Distance
129	CL130	148	7	6.26	1.88	0.391839
128	CL134	L11	28	6.28	0.92	0.392598
127	122	CL128	29	6.27	1.16	0.394311
126	CL127	CL142	35	5.40	8.40	0.395645
125	CL126	I36	36	5.37	1.33	0.396805
124	008	CL148	3	5.42	1.81	0.397167
123	CL125	I31	37	5.47	0.65	0.398024
122	CL123	129	38	5.50	0.89	0.398690
121	A02	A07	2	5.58		0.400968
120	CL122	I4 0	39	5.52	1.65	0.400977
119	CL120	L18	40	5.53	1.12	0.408656
118	039	043	2	5.60	1.12	0.412200
117	U15	U16	2	5.67		0.412449
116	CL132	I19	3	5.70	2.04	0.413075
115	CL119	L15	41	5.55	2.49	0.413487
114	I28	I30	2	5.63		0.415791
113	I13	CL115	42	5.62	1.20	0.417995
112	U41	CL117	3	5.67	1.52	0.420224
111	CL113	L16	43	5.68	1.11	0.421249
110	012	CL131	7	5.69	1.76	0.423681
109	CLIII	I23	44	5.72	0.91	0.426427
108	CL129	117	8	5.77	1.46	0.427258
107	U35	CL145	3	5.83	1.63	0.427842
106	CLIl6	CLIO9	47	5.76	1.91	0.428776
105	CL107	U38	4	5.83	1.13	0.432849
104	CL105	CL112,	7	5.84	2.03	0.433990
103	CL124	CL110	10	5.70	3.94	0.434237
102	CL104	U02	8	5.75	1.32	0.435490
101	029	048	2	5.82	2	0.437275
100	I12	114	2	5.90		0.441610
99	I01	CL108	9	5.94	1.54	0.442722
98	CL99	CL114	11	5.89	3.18	0.443773
97	CL140	025	5	5.95	1.48	0.443776
96	CL102	U4 3	9	5.99	1.37	0.444085
95	CL106	L04	48	6.02	1.12	0.446502
94	IO4	CL95	49	5.98	1.84	0.447060
93	CL98	I21	12	6.01	1.50	0.447471
92	CL9 4	I20	50	6.01	1.47	0.448221
91	CL96	CL163	11	6.00	2.31	0.452007
90	015	CL97	6	6.05	1.66	0.453035
89	006	047	2	6.14	1.6	0.454451
88	CLIO3	013	11	6.14	1.68	0.456505
87	CL91	CLI51	13	6.14	2.06	0.458098
86	U29	U33	2	6.23	.	0.459475
85	CL88	034	12	6.25	1.43	0.460893
84	U34	CL87	14	6.28	1.50	0.463314
83	CL86	CL84	16	6.30	1.71	0.463641
82	CL83	U36	17	6.33	1.53	0.464232
81	CL92	L06	51	6.36	1.35	0.466572
80	CL85	036	13	6.41	1.13	0.467591
79	U27	CL82	18	6.47	1.10	0.469187
78	CL79	U50	19	6.55	0.97	0.469753

Single Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ F \end{gathered}$	$\begin{gathered} \text { Pseudo } \\ t * * 2 \end{gathered}$	Normalized Minımum Distance
77	CL93	I10	13	6.62	1.25	0.469766
76	CL90	017	7	6.65	2.23	0.474107
75	CL78	U13	20	6.73	1.01	0.474225
74	CL81	I35	52	6.74	1.69	0.475927
73	U21	U24	2	6.84		0.477443
72	CL75	U19	21	6.88	1.51	0.478457
71	CL72	U37	22	6.95	1.27	0.479596
70	CL173	CL80	15	6.94	2.16	0.482191
69	CL137	CL76	9	6.96	2.50	0.484451
68	CL70	035	16	6.97	1.90	0.487776
67	U07	CL73	3	7.05	1.59	0.492397
66	CL77	CL74	65	6.11	15.64	0.492597
65	CL71	U31	23	6.15	1.84	0.492723
64	CL101	046	3	6.24	1.65	0.494636
63	CL69	016	10	6.32	1.45	0.496174
62	U32	U42	2	6.43		0.499138
61	CL65	U05	24	6.47	1.81	0.499406
60	CL66	A04	66	6.47	2.08	0.499449
59	005	CL64	4	6.55	1.82	0.499829
58	CL68	019	17	6.64	1.21	0.501334
57	CL60	L20	67	6.70	1.38	0.502442
56	CL63	014	11	6.79	1.40	0.502556
55	CL57	I26	68	6.77	2.55	0.505021
54	CL56	CL58	28	6.61	5.15	0.509956
53	CL61	CL67	': 27	6.59	3.29	0.510407
52	CL55	A03	69	6.51	3.49	0.511351
51	CL53	U20	28	6.58	1.73	0.512798
50	CL54	CL59	32	6.58	2.72	0.515719
49	CL51	U30	29	6.65	1.76	0.517254
48	CL49	U28	30	6.74	1.54	0.517580
47	CL50	007	33	6.85	1.19	0.517856
46	CL48	CL62	32	6.92	1.94	0.518997
45	CL4 6	U22,	33	7.04	1.33	0.520481
44	CL45	U40	34	7.16	1.29	0.521241
43	CL52	L19	70	7.30	0.99	0.522283
42	CL4 4	U17	35	7.41	1.60	0.522299
41	CL42	U45	36	7.56	1.14	0.524306
40	CL4 3	L03	71	7.65	1.87	0.527709
39	CL4 1	U10	37	7.81	1.23	0.530908
38	CL40	139	72	7.96	1.36	0.532303
37	I09	CL100	3	8.18	1.65	0.532336
36	CL47	026	34	8.37	1.18	0.534771
35	CL39	U25	38	8.54	1.49	0.534855
34	CL38	CL121	74	8.54	3.42	0.535886
33	CL36	CL39	36	8.66	2.43	0.536240
32	CL35	U09	39	8.88	1.38	0.539208
31	CL33	003	37	9.10	1.51	0.544323
30	CL31	045	38	9.36	1.14	0.545336
29	CL32	U18	40	9.62	1.48	0.546848
28	CL30	002	39	9.93	1.02	0.558247
27	CL136	U04	3	10.30	2.60	0.566133
26	CL29	U23	41	10.62	1.50	0.566408

Single Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \\ \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Minimum Distance
25	CL26	U06	42	10.97	1.43	0.576388
24	CL2 8	018	40	11.35	1.47	0.587064
23	CL2 4	021	41	11.69	2.11	0.590669
22	CL25	U14	43	12.07	2.07	0.599801
21	011	037	2	12.65		0.600461
20	U26	CL27	4	13.26	1.91	0.605554
19	CL23	CL118	43	13.62	3.32	0.610038
18	CL3 4	LOI	75	14.18	2.23	0.617575
17	CL19	049	44	14.82	2.15	0.619790
16	CL17	044	45	15.51	2.29	0.633696
15	CL22	U11	44	16.41	1.87	0.639889
14	CL20	U01	5	17.55	1.74	0.643406
13	CL16	CL21	47	18.46	3.26	0.644190
12	CL13	030	48	19.91	1.51	0.663493
11	CL15	CL12	92	10.61	67.62	0.670203
10	CL11	041	93	11.48	1.62	0.691125
9	CL10	023	94	12.59	1.60	0.703320
8	CL18	A06	76	14.04	2.78	0.725729
7	CL9	U03	95	15.87	1.83	0.732012
6	CL7	CL8	171	3.66	68.56	0.732539
5	CL6	L09	172	4.04	1.99	0.747305
4	CL14	CL5	177	2.86	7.23	0.775659
3	CL4	L17	178	3.63	1.30	0.777332
2	CL37	A01	4	6.28	3.94	0.823232
1	CL3	CL2	182	.	6.28	0.835291

Complete Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New Cluster	Pseudo	Pseudo $t * * 2$	Normalized Maxımum Distance
181	I42	I4 4	2	32.03		0.182784
180	CL181	I43	3	23.75	1.71	0.243183
179	102	I16	2	20.59		0.258710
178	L24	A08.	2	19.31		0.260223
177	105	107	2	17.87		0.283614
176	I46	I47	2	16.42		0.309422
175	004	009	2	15.37		0.318602
174	I37	CL180	4	14.18	2.72	0.330354
173	032	033	2	13.50		0.342828
172	U48	U12	2	12.96		0.348642
171	L13	L14	2	12.57		0.348764
170	L07	L12	2	12.26		0.349313
169	038	040	2	12.00		0.353354
168	I49	I50	2	11.80	-	0.353384
167	L23	A09	2	11.62	.	0.356636
166	L02	L05	2	11.48		0.357351
165	I34	L08	2	11.33		0.364005
164	U39	U47	2	11.20		0.366325
163	L10	L21	2	11.09		0.367885
162	010	027	2	10.99		0.369904
161	I27	138	2	10.90		0.372208
160	I24	125	2	10.83		0.372235
159	U44	U49	2	10.77		0.373099
158	I41	CL176	3	10.74	1.41	0.376998
157	022	042	2	10.68	.	0.379380
156	001	031	2	10.63	-	0.381617
155	U4 6	U08	2	10.58	.	0.382334
154	028	050	2	10.54	.	0.384853
153	108	145	2	10.49		0.390047
152	020	024	2	10.46		0.390065
151	CL179	CL177	4	10.36	2.41	0.390385
150	I03	I18	2	10.33		0.390588
149	CL161	L25	3	10.32	1.10	0.391443
148	A02	A07	2	10.29		0.400968
147	CL171	L26	3	10.28	1.27	0.405013
146	039	043	2	10.24		0.412200
145	U15	U16	2	10.21		0.412449
144	136	L11	2	10.18		0.414151
143	CL160	I40	3	10.15	1.27	0.415599
142	I28	I30	2	10.13		0.415791
141	CL149	I31	4	10.10	1.23	0.416048
140	I22	L18	2	10.08		0.418257
139	CL167	CL178	4	10.07	1.81	0.420506
138	CL166	CL170	4	10.05	1.48	0.421368
137	I13	I32	2	10.04		0.423763
136	I33	CL165	3	10.04	1.33	0.426622
135	I17	I48	2	10.04		0.427258
134	029	048	2	10.02	.	0.437275
133	U35	U38	2	10.01	.	0.438044
132	112	I14	2	10.00		0.441610
131	CL136	CL174	7	9.86	2.78	0.441805
130	U4 3	U02	2	9.85	.	0.444085

Complete Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New Cluster	$\begin{gathered} \text { Pseudo } \end{gathered}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Maximum Distance
129	006	047	2	9.84		0.454451
128	CL137	CL158	5	9.76	1.93	0.458420
127	U29	U33	2	9.75		0.459475
126	015	025	2	9.74		0.465843
125	I23	CL163	3	9.72	1.70	0.465977
124	110	CL135	3	9.69	1.30	0.473083
123	CL133	CL159	4	9.66	1.47	0.476948
122	U21	U24	2	9.66		0.477443
121	U50	U19	2	9.65		0.478457
120	CL1.52	036	3	9.63	1.65	0.479240
119	017	CL157	3	9.61	1.77	0.479762
118	L15	L22	2	9.61		0.480112
117	CL123	U41	5	9.61	1.23	0.481869
116	CL130	U13	3	9.62	1.21	0.482165
115	008	012	2	9.63		0.482516
114	101	CL151	5	9.60	2.55	0.486547
113	CLI41	I29	5	9.64	1.40	0.486976
112	U32	U42	2	9.64		0.499138
111	U37	CL121	3	9.65	1.09	0.500439
110	CL131	CL168	9	9.60	2.45	0.501028
109	U34	U07	2	9.60		0.510407
108	CL140	CL138	6	9.58	1.96	0.512443
107	U30	U31	2	9.59		0.517254
106	U28	CLI72	3	9.57	2.61	0.519147
105	CL139	A05	5	9.60	2.00	0.527602
104	CL120	CL169	5	9.59	1.67	0.531798
103	CLIO8	L04	7	9.59	1.68	0.534243
102	019	026	2	9.60		0.534771
101	CL12.7	CL116	5	9.60	1.40	0.537636
100	CL164	CL145	4	9.55	2.56	0.538790
99	CL115	CL162	4	9.58	1.49	0.540606
98	CLI26	CL173	4	9.58	1.87	0.541557
97	I19	CL125	4	9.58	1.84	0.542066
96	CL150	I21	3	9.60	1.92	0.542578
95	I09	CL132	3	9.62	1.65	0.543504
94	L06	L16	2	9.65	.	0.543671
93	U40	U18	2	9.68	.	0.546848
32	CL148	A03	3	9.68	2.14	0.547211
91	CLI47	L19	4	9.68	2.66	0.549666
90	CLI28	I20	6	9.73	1.63	0.550075
89	U27	U17	2	9.77		0.556196
88	U05	U09	2	9.81		0.556217
87	U4 5	CL122	3	9.85	1.40	0.562505
86	U23	U25	2	9.89		0.566408
85	007	014	2	9.93		0.567017
84	CLI55	U04	3	9.94	2.60	0.568301
83	CL110	CL144	11	9.94	2.53	0.568563
82	003	013	2	9.99		0.568876
81	CL134	046	3	10.05	1.65	0.570599
80	016	045	2	10.10		0.579089
79	CL97	CL113	9	10.13	1.89	0.580001
78	002	005	2	10.19	.	0.586463

Complete Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Jolned	Frequency of New Cluster	$\underset{F}{\text { Pseudo }}$	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Maximum Distance
77	CL156	CL99	6	10.15	2.70	0.589048
76	CL118	CL105	7	10.20	2.09	0.596898
75	011	037	2	10.26		0.600461
74	CL80	034	3	10.32	1.06	0.605034
73	CL91	L20	5	10.37	1.78	0.611464
72	CL114	I26	6	10.41	2.69	0.612544
71	CL89	CL117	7	10.45	1.90	0.613810
70	CL104	CL154	7	10.50	2.12	0.614803
69	CL93	U10	3	10.56	1.35	0.619069
68	CL90	CL143	9	10.56	3.01	0.619309
67	CL111	U22	4	10.64	1.57	0.626431
66	CL124	CL142	5	10.63	2.95	0.627893
65	CL72	I04	7	10.68	2.28	0.628367
64	CL112	CL109	4	10.76	1.64	0.636172
63	U36	CL100	5	10.86	1.58	0.637814
62	CL107	U06	3	10.95	1.54	0.648929
61	CL10.6	CL69	6	10.99	1.85	0.653571
60	CL129	CL98	6	10.98	3.07	0.659888
59	CL146	044	3	11.04	2.95	0.660449
58	CL153	A04	3	11.12	3.19	0.662893
57	I35	I39	2	11.22		0.664094
56	CL77	035	7	11.35	1.47	0.666102
55	CL101	U20	6	11.45	2.00	0.674597
54	U26	CL84	4	11.54	1.91	0.676042
53	CL175	CL81	5	11.58	3.27	0.679134
52	CL96	CL66	8	11.64	2.28	0.686356
51	CL68	CL83	20	11.61	4.29	0.687788
50	CL85	CL102	4	11.72	1.70	0.690521
49	041	049	2	11.86		0.693777
48	CL87	CL88	5	11.94	2.26	0.698054
47	CL103	CL9 4	9	12.08	2.45	0.701499
46	018	030	2	12.24		0.702074
45	CL64	CL86	6	12.40	1.68	0.707990
44	CL79	CL47	18	12.41	3.87	0.708666
43	CL63	CL67	9	12.52	2.54	0.708811
42	L03	CL73.	6	12.72	1.94	0.709649
41	CL50	CL74	7	12.87	1.76	0.716653
40	CL78	CL82	4	13.03	1.97	0.728896
39	CL60	CL119	9	13.24	2.03	0.733557
38	CL75	CL59	5	13.42	1.95	0.751810
37	CL76	CL92	10	13.52	4.25	0.758001
36	CL40	CL70	11	13.72	2.37	0.761687
35	CL71	U14	8	13.94	2.61	0.763041
34	CL4 5	CL48	11	14.16	2.07	0.778704
33	CL36	CL53	16	14.25	3.30	0.791648
32	CL58	CL4 2	9	14.46	2.71	0.791774
31	CL61	CL4 3	15	14.43	4.60	0.809243
30	CL56	CL39	16	14.48	4.70	0.810620
29	CL52	CL51	28	14.32	7.67	0.812828
28	CL54	U01	5	14.72	1.74	0.833942
27	CL35	CL62	11	15.09	2.31	0.848585
26	CL55	U11	7	15.52	2.45	0.856110

Complete Linkage Clustering Results

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Clusters } \end{gathered}$	Clusters	Joined	Frequency of New Cluster	Pseudo F	$\begin{aligned} & \text { Pseudo } \\ & t * * 2 \end{aligned}$	Normalized Maxımum Distance
25	CL3 3	CL4 1	23	15.79	3.04	0.856269
24	CL4 4	CL57	20	16.26	2.74	0.862376
23	CL38	CL49	7	16.80	1.68	0.890732
22	CL30	CL4 6	18	17.22	2.98	0.899209
21	CL65	CL29	35	17.48	5.37	0.904999
20	CL37	A06.	11	18.12	3.09	0.908422
19	CL95	A01	4	18.78	3.94	0.919211
18	CL2 6	CL34	18	19.35	3.70	0.921232
17	L01	L17	2	20.27	.	0.935631
16	CL27	CL31	26	21.26	2.52	0.947862
15	CL22	CL25	41	21.87	4.77	0.956928
14	CL32	CL20	20	22.91	4.14	0.990288
13	CL16	U03	27	24.36	2.59	1.018370
12	CL2 4	CL17	22	25.96	3.85	1.019386
11	021	023	2	28.06		1.028245
10	CL12	L09	23	30.55	3.07	1.074893
9	CL13	CL18	45	32.64	5.95	1.082445
8	CL15	CL23	48	34.46	8.44	1.123604
7	CL8	CLII	50	39.32	2.37	1.160198
6	CL21	CLIO	58	43.66	10.41	1.234476
5	CL2 8	CL9	50	49.75	9.66	1.238503
4	CL14	CL19	24	60.36	11.09	1.294162
3	CL5	CL6	108	43.89	67.26	1.526606
2	CL3	CL4	132	65.99	15.03	1.597149
1	CL2	CL7	182		65.99	1.714660

[^0]
Discriminant Analysis Results (original data)

Discriminant Analysis Results (original data)

ID			Posterior Probability of Membership in TAXA:			
	From taxa	$\begin{aligned} & \text { Into } \\ & \text { taxa } \end{aligned}$	Pr	A	M	$\frac{\mathrm{n} \text { TAXA: }}{\text { L }}$
149	I	I		0.0000		
150	I	I		0.0000	1.0000	0.0000 0.0000
L01	I	L		0.0000	0.0000	1.0000
L02	L	L		0.0000	0.0026	0.9974
L03	L	L		0.1863	-0.0000	O. 0974
L04	L	L		0.0000	0.0000	0.8137
L05	L	L		0.0000	0.0009	1.0000
L06	L	L		0.0000	0.0000	0.9991
L07	L	L		0.0000	0.0000	1.0000
L08	L	L		0.0000	0.0963	1.9037
L09	L	L		0.0000	0.0000	1.9037
L10	L	L		0.0000		1.0000
L11	L	L	\therefore	0.0000	0.0095	- 9999
L12	L	L		0.0000		- 9.005
L13	L	L		0.0001	0.0012	1.0000
L14	L	L		0.0000	0.0012	0.9988
L15	L	L		0.0153	0.0000	- 0.9899
L16	L	L		0.0000	0.0003	-. 9847
L17	L	L		0.0000	0.0000	- 1.997
L18	L	L		0.0000	0.0000	1.0000
L19	L	L		0.0000	0.0040	1.0000
L20	L	L		0.0000	0.0000	1.9960 1.0000
L21	L	I		0.0001	0.0041	0.9958
L22	L	I		0.0002	0.0000	0.9998
L23	I	L		0.0190	0.0021	0.9789
L24	L	A	*	0.5218	0.0019	0.9763
L25	L	I	*	0.0000	0.9746	0.4254
L26	I	L		0.0000	0.0000	0.0254 1.0000
A01	A	A		0.9998	0.0000	0.0002
A02	A	A		1.0000	0.0000	0.0000
A03	A	A		1.0000	0.0000	0.0000
A04	A	A		0.9939	0.0000	0.0061
A05	A	A		0.9934	0.0000	0.0066
A06	A	A		1.0000	0.0000	0.0000
A07	A	A		1.0000	0.0000	0.0000
A08	A	${ }^{\text {A }}$		0.7967	0.0000	0.2033
A09	A	L	*	0.0437	0.0002	0.9561

Discriminant Analysis Results (modified data)

[^1]
Discriminant Analysis Results (modified data)

ID			Posterior Probability of Membership in TAXA:			
	$\begin{aligned} & \text { From } \\ & \text { taxa } \end{aligned}$	Into taxa		A	I	L
I49	I	I		0.0000		
I50	I	I		0.0000	1.0000	0.0000
L01	L	L		0.0000	0.0000	1.0000
L02	L	L		0.0000	0.0064	1.0000
L03	L	L		0.0188	0.0000	0.9936
L04	L	I		0.0000	0.0000	1.9812
L05	I	L		0.0000	0.0001	1.0.9999
L06	L	I		0.0000	0.0000	1.9999 1.0000
L07	L	L		0.0000	0.0000	1.0000
L08	L	L		0.0000	0.0149	1.9851
L09	L	L		$\therefore 0.0000$	0.0000	1.0000
L10	L	L		0.0000	0.0001	1.0
L11	L	L		0.0000	0.0096	0.9999
L12	L	L		0.0000	0.0000	1.0000
L13	L	L		0.0000	0.0028	1.9972
L14	I	L		0.0000	0.0000	1.0000
L15	I	L		0.0064	0.0000	1.0
L16	L	L		0.0000	0.0001	0.9999
L17	I	L		0.0000	0.0000	1.0000
L18	L	L		0.0000	0.0000	1.0000
L19	L	L		0.0000	0.0003	0.9997
L20	L	L		0.0000	0.0000	1.0000
L21	I	L		0.0000	0.0013	0.9987
L22	I	L		0.0000	0.0000	1.0000
L23	L	L		0.0166	0.0001	1.9833
A24	A	A		1.0000	0.0000	0.0000
175	I	I		0.0000	1.0000	0.0000
L2 6	L	I	,	0.0010	0.0000	0.9990
A01	A	A		1. 0000	0.0000	0.0000
A02	A	A		1.0000	0.0000	0.0000
A03	A	A		1.0000	0.0000	0.0000
A04	A	A		0.9989	0.0000	0.0011
A05	A	A	,	1.0000	0.0000	0.0000
A06	A	A		1.0000	0.0000	0.0000
A07	A	A		1.0000	0.0000	0.0000
A08	A	A		0.9918	0.0000	0.0082
A10	A	A		1.0000	0.0000	0.0000

A=Cuscuta attenuata

$I=$ Cuscuta 1 Indecora $v a r$. indecora
$L=$ Cuscuta 1 ndecora var. longisepala

VITA

Larry Alan Prather

Candidate for the Degree of

Master of Science

Thesis: THE BIOLOGY OF CUSCUTA ATTENUATA WATERFALL Major Field: Botany

Biographical:
Personal Data: Born in Tulsa, Oklahoma, 13 March 1965, the son of James L. and Donna S. Prather.

Education: Graduated from Claremore High School, Claremore, Oklahoma, in May, 1983; received Bachelor of Science in Biology from the University of Tulsa in December, 1987. Attended Rocky Mountain Biological Laboratory from June, 1986 to August, 1986; completed requirements for the Master of Science degree at Oklahoma State University in July, 1990.

Professional Experience: Teaching Assistant, Department of Botany, Oklahoma State University, August, 1988 to May, 1989 and January, 1990 to May 1990; Research Assistant, Department of Botany, Oklahoma State University, August, 1989 to December, 1989.

Professional Societies: Oklahoma Academy of Sciences; Oklahoma Native Plant Society.

[^0]: APPENDIX D

 RESULTS OF DISCRIMINANT ANALYSIS

[^1]: A=Cuscuta attenuata
 $I=$ Cuscuta indecora var. Indecora
 $\mathrm{L}=$ Cuscuta 1ndecora var. 1ongisepala

