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CHAPTER I 

INTRODUCTION 

The greenbug, (Schizaphis graminum (Rondani), is an economically 

important pest of small grain cereals and sorghum, (Sorghum bicolor (L.) 

Moench, in the U.S.A. and most parts of the world. The occurrence of greenbug 

biotypes is well documented (Woods 1961, Harvey and Hackerott 1969a, Peters et 

al. 1975, Porter et al. 1982, Kindler and Spomer 1986, and Puterka et al. 1988). 

New biotypes are characterized mainly by their ability to damage host 

plants previously resistant to greenbug populations (Puterka et al. 1988). 

Puterka et al. (1988) characterized new greenbug biotypes G and H using major 

plant sources of greenbug resistance. Greenbug biotype G was found to damage 

all known sources of greenbug resistance in wheat, Triticum aestivum L., but did 

not damage 'Wintermalt' barley; 'Hordeum vulgare L., a variety previously 

reported to be susceptible to all greenbug biotypes. In the same study biotype H 

was reported to be avirulent on all sorghum varieties but severely damaged 'Post' 

a barley variety supposedly resistant to all previously described .biotypes. High 

levels of resistance to greenbugs among barley cultivars were reported in 1945 by 

Atkins and Dahms, but biotype H. was the first to overcome a resistant barley 

cultivar. 

The occurrence of greenbug biotype C on sorghum in 1968 (Harvey and 

Hackerott 1969b) led to a concerted effort to screen gerrnplasm for resistance, 

1 



2 

explain the mechanisms of resistance and its inheritance, and transfer this 

resistance to elite germplasm (Schuster and Starks 1973, Teetes et al. 1974a, b). 

In 1980 biotype E developed and w~ capable of injuring the majority of 

sorghum genotypes resistant to biotype C (Porter et al. 1982). Only four sources 

of resistance to biotype C were resistant, to biotype E (Johnson et al. 1981, Porter 

et al. 1982, Starks et al. 1983). 

A critical prerequisite to resistance management is anticipation of 

development of insect resistance before control actually fails. This involves field 

monitoring and laboratory tests of the field collected samples, which in some 

situations is done when it is already t~o late for new resistant plant genotypes to 

be deployed. 

There are several techniques used for characterizing greenbug biotypes. 

Among such techniques, the, electronic monitoring of feeding behavior h,as been 

very useful in defining possible differences among greenbug biotypes on wheat 

' 
(Niassy et al. 1987), sorghum (Campbell et al. 1982), and barley cultivars (Peters 

et al. 1988). 

Puterka and Slosser (1986) reported on techniques to induce greenbugs into 

sexual cycle and achieve egg hatching and therefore making it possible to cross 

different greenbug biotypes in the laboratory. Breeding greenbug biotypes has 

produced recombinants that have a broader range of virulence than their parents 

(Puterka and Peters 1989a, b). Through the laboratory production of highly 

virulent types, it is now possible to screen potential seurces not yet recognized in 

the field. 

My research at OSU had two somewhat different objectives. They were: 



Determine, by use of the electronic feeding monitor, any differential response in 

feeding behavior by biotypes E, G, and H on resistant 'Post' and susceptible 

'Wintermalt' barley and also to determine the possible relationships with 

development and fecundity; and to evaluate some of the available resistance 

sources in sorghum to determine potential durability of their resistance to the 

laboratory clones of greenbug biotypes and crosses. 

3 



History of Biotypes 

CHAPTER II 

LITERATURE REVIEW 

Greenbug Biotype 

The greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae ), is 

a major pest of small grain cereals and sorghum in the Great Plains of the 

United States and other parts of the world. This aphid was first described in Italy 

(Rondani 1852). The first greenbug infestation in the United States was reported 

on oat in Virginia as early as 1882 (Webster and Phillips 1912). 

Greenbug populations are comprised of distinct races that differ in the 

ability to damage the different resistance sources. These races are commonly 

referred to as 'biotypes' and each biotype is a phenotypic expression of an · 

indefinite number of genotypes (Puterka et al. 1988). The first greenbug resistant 

wheat, Dickinson Selection 28A (DS 28A), was reported by Dahms et al. (1955). 

However, DS 28A was found to be susceptible to the greenbug population in 

1959 while this source was being incorporated into wheat varieties. The race that 

had the ability to damage DS 28A was designated biotype B (Wood 1961). This 

marked the beginning of biotype history of greenbugs. . The identification of 

resistant DS 28A made possible the beginning of biotype classification. By using 

DS 28A wheat as a differential variety, Wood (1961) was able to distinguish two 
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biotypes. Biotype B survived on DS 28A but biotype A did not. In 1968, biotype 

C developed and extended the host range of the greenbug to include sorghum 

(Harvey and Hackerott 1969a). 

Wood and Starks (1972) reported that a major genetic change in the aphid 

population increased its importance as a pest of sorghum. Biotype C had 

increased adaptation and fecundity at extremely high temperatures compared with 

biotype B. c Biotype C also could be distinguished from biotype B by 

morphological differences (Harvey and Hackerott 1969a). 

Harvey and Hackerott (1969b) reported that 'Insave F.A.' rye and Dicktoo 

barley were resistant to both biotype B and the sorghum greenbug. 'Piper' · 

&udangrass was found to be resistant in the seedling stage to biotype B but not to 

the greenbug found in sorghum. They concluded that the difference between 

biotype B from wheat and the greenbug found on sorghum was sufficient to 

designate the sorghum greenbug biotype C. Wood et al. (1969) also 

differentiated biotypes A, B and C on the basis of differences due to 

morphological change in the greenbug and, to preferred feeding sites in the 

leaves. Biotype C predominated the biotype complex in wheat and sorghum up 

to the mid 1980's (Puterka et al. 1982, Kindler et al. 1984). Biotype D, an 

insecticide resistant race was first reported on sorghum in west Texas in 1974. 

Biotype D gives the same reaction on plants as biotype C but is resistant to 

organophosphorous insecticides (Teetes et al. 1975). In 1975, it was reported in 

Texas, Oklahoma, Kansas, Nebraska and South Dakota (Peters et al. 1975, Starks 

and Burton 1977a). 

Porter et al. (1982) reported the collection of a new greenbug biotype E on 
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previously resistant wheat and sorghum. Hackerott et al. (1983) concluded that 

by 1981 this new biotype had largely replaced biotype C in the Great Plains 

States. It is still the predominant biotype in the Great Plains (Kindler et al. 1984, 

Bush et al. 1987, Kerns et al. 1987). Kindler and Spomer (1986) identified 

biotype F which had the ability to damage 'Amigo', but not DS 28A, and was 

later determined to be virulent to 'Largo' wheat (Puterka and Peters 1988). 

Biotype surveys initiated in Oklahoma (Kerns et al. 1987) and Texas (Bush 

et al. 1987) detected two greenbug isolates that were designated biotypes G and 

H, respectively (Puterka et al. 1988). Biotype G was virulent to all known 

sources of resistance in wheat, but was relatively avirulent to sorghum and barley. 

Biotype H shared the same host relationship as biotype E on wheat, but was 

relatively avirulent to sorghum and was the first biotype reported to be virulent to 

greenbug resistant 'Post' barley. The biotypic diversity in greenbugs is far greater 

than first imagined and it is evident that there are many new biotypes to be 

discovered. 

Biotype Concept 

Eastop (1973) defined biotypes as those individuals of an insect species able 

to feed and grow significantly better on a resistant crop variety than other 

genotypes of the same species. Genetic variations in the herbivore pest 

population, gene for gene concept, and host parasitic compatibility and 

competence were some of the factors considered in biotype development 

(Maxwell and Jennings 1980). Biotypes are pest variants capable of overcoming 

the specific resistance of a cultivar, and for their success they must be compatible 



with that specific cultivar and be competent. The variants may have arisen from 

chance mutation or through recombination, or existing polymorphism may have 

been favored through selection pressure from introduced resistant plant cultivars 

which disrupt the genetic balance in the population. Thus with the introduction 

of resistant cultivars, selection tends to proceed in the direction of fitness in pest 

population and individuals with high parasitic compatibility and competence 

establish and increase. 

Biotype Identification 

I prefer to recognize biotypes on the basis of differential response in 

feeding activities, growth and reproduction on selected resistant crop varieties 

(Puterka et al. 1988), but other indicators have been reported. Inayatullah et al. 

(1987) and Fargo et al. (1986) found that alate and apterous greenbug biotypes 

formed morphometrically distinct groups when multivariate analysis was applied 

to a large number of morphological measurements. 

Abid et al. (1989), reported observation of differences in isozyme patterns 

among aphid species and some greenbug isolates. Mayo et al. (1988) have 

observed differences in chromosome measurements between biotypes C/E group 

and B/F group, but no significant differences between the biotypes within a 

group. Comparisons of the mitochondrial DNA digested by restriction enzymes 

have found restriction fragment length polymorphism between biotypes B, C, E, 

and F (Powers et al. 1989). 
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Greenbu~ Reproduction 

The greenbug has two principle life modes in the Uitited States. The 

monoecious anholocyclic mode occurs in the southern region while the holocycle 

may be found in the northern parts of the United States (Webster and Phillips 
# ' 

1912). The greenbug matures in six to eight days and then reproduces by 

parthenogenesis for 20 to 30 days giving birth to 50-60 nymphs. Greenbugs have 

five instars from birth to maturity (Wood and Starks 1975). 

Greenbug sexuals have been report·e~ in laboratory colonies (Mayo and 

Starks 1972). The greenbug holocycle provides a mechanism for genetic 

recombination during, the sexual phase and is likely to produce many different 

combinations of virulence to any number of the resistance sources (Puterka and 

Peters 1990). 

Greenbu~ Feedin~ Behavior and The Electronic Monitor 

The feeding behavior of greenbugs is typical of that of other aphids. As 

aphids probe their hosts, they lower. their heads and protract their antennae 

(Dixon et al. 1990b ). During feeding aphids secrete saliva (salivary sheath and 

8 

watery saliva) which helps them to disrupt plant tissues and insert their stylet into 

the vascular bundles (Miles 1972). Ingestion occurs mainly from sieve elements 

of the phloem which is the preferred feeding site but ingestion can also occur in 

epidermal tissues, mesophyll parenchyma (Pollard 1973, Chatters and Schlehuber 

1951), and xylem (McLean and Kinsey 1967). McLean and Kinsey (1964) 

developed a technique for monitoring and recording aphid feeding and salivation. 
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Aphid feeding behaviors have different wave patterns which can be recorded by a 

strip chart recorder or other system, and these can later be interpreted and 

analyzed statistically. Distinct sequences in wave forms are uniquely associated 

with salivation and/ or ingestion in specific plant tissues (McLean and Kinsey 

1967, Campbell et al. 1982). Brown and Holbrook (1976) reported on an 

improved version of this technique. A small electric current is passed across the 

greenbug while feeding on the potted plant and a complete· circuit is made 

comprising the aphid, plant and the soil. A full description of the feeding 

monitor and the distinct feeding behaviors (baseline, probe, salivation, non

phloem ingestion, x-wave and phloem ingestion) is provided by Niassy et al. 

(1987). 

In plant resistance to aphids, the major differences between resistant and 

susceptible entries of the same ctop have been in length of time taken by the 

aphids in reaching the phloem which was usually longer on resistant than on 

susceptible plants (Dreyer and Campbell 1984 ). Also the amount of time that 

aphids spend ingesting from the phloem was much shorter when the aphids feed 

on resistant entries and they had more difficulty in locating the phloem 

(Campbell et al. 1982, McLean and Kinsey 1968). Niassy et al. (1987) studied 

susceptible and resistant wheat using greenbug biotypes B and E, and found that 

phloem ingestion was longer on susceptible compared to resistant genotypes. 

Also the same authors found that biotype E, during the first four hours of 

monitoring, showed slightly more salivation time, and extensively more phloem 

ingestion on 'TAM 105' than on Largo x TAM 105. Biotype Bin the first four 

hours showed slightly more salivation duration, but shorter phloem ingestion on 
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TAM 105 compared to the resistant 'TAM 107' or Largo x TAM 105 (Niassy et 

al. 1987). Peters et al. (1988) found differences in feeding behavior among 

biotypes B, C, and E using susceptible Wintermalt and resistant Post barley. 

There is a relationship between the reproductive capacity of the greenbug with 

the ability to ingest from the phloem. Greenbug fecundity (Kindler and Spomer 

1986, Niassy et al. 1987) and intrinsic rate of increase (Kerns et al. 1989) of 

biotypes B, C, and E appears to be strongly correlated with the greenbug 

resistance in wheat varieties, 'Amigo', TAM 107 and Largo. Fecundity and 

intrinsic rate of increase of biotype F and G did not increase significantly on 

wheat varieties to which they were virulent compared with varieties to which they 

were avirulent (Kerns et al. 1989). 

Greenbug Damage and Cf.mll&.s.s. 

Plant damage from greenbug feeding occurs as a response to an unknown 

substance in the saliva which ~he aphid injects while feeding. The salivary 

product (assumed to determined by the virulence genes) interacts with the 

complementary gene products in the host plant to begin a cascade of 

physiological reactions in the plant that ultimately results in plant damage 

(Puterka and Peters 1990). The same authors reported that in sorghum, the 

phytotoxic damage manifests itself in quite a different manner. Greenbug 

damage on susceptible sorghum is exhibited as chlorosis, anthocyanosis, and 

necrosis which is a typical phytotoxic reaction. Methylated intercellular pectins 

have been implicated as one of the biochemical factors responsible for sorghum 

resistance to the greenbug saliva (Dreyer and Campbell 1984, Campbell and 
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Dreyer 1985). 

After the outbreak of biotype Con sorghum in 1968, greenbugs have been 

recognized as one of the key destructive insect pests of sorghum, and have caused 

substantial losses to sorghum producers (Harvey and Hackerott 1969a, Starks and 

Burton 1977b ). Coppock (1969) estimated that 7.5 million acres (3,037,500 ha) 

were damaged in 1968 in the United States at a cost to the sorghum producers of 

sixty-eight million dollars. In 1976, greenbug damage and control costs exceeded 

eighty million dollars (Starks and Burton 1977b ). 

Greenbug Control 

Control Alternatives 

Insecticide applications proved successful in controlling greenbugs after the 

outbreak in 1968. However, apart from the huge cost and environmental hazards 

involved with this control method, insecticides do not give long term solution to 

the problem because of the rapid build up of greenbug populations under 

favorable conditions (Dixon 1990a). Biological control although ecologically 

sound, tends to be less predictable and sometimes less reliable than chemical 

control. The use of natural enemies in the control of greenbug had been 

suggested (Walker et al. 1973), and attempts were made to import and establish 

the natural enemies and parasitoids (Eikenbary and Rogers 1973) but effective 

utilization is still debatable (Starks et al. 1974). Natural enemies may not keep 

abreast of the rapid build up of greenbug populations, thus economic damage 

may occur before parasite and predator populations build up (Bynum and Archer 
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1981). 

The third option of controlling greenbugs is host plant resistance, which has 

several advantages: It is economical, specific to the target species, leaves no 

harmful residue in foods or the environment and is usually compatible with 

biological, chemical and other control methods. Painter (1958) defined three 

basic types of host plant resistance mechanisms: Tolerance- Plants produce 

relatively good yield in spite of infestations. Non-Preference (Antixenosis- of 

Kogan and Ortman 1978) Plants are avoided by the insect for oviposition, food or 

shelter. Antibiosis- An adverse effect by plant on the survival and reproduction 

of the insect. Resistance to insect pests is usually the result of more than one 

mechanism. The primary goal of host plant resistance is to breed resistance that 

is durable in the field. Satisfactory success in breeding durable greenbug resistant 

grain sorghum was achieved by breeders despite the biotype shifts (Puterka and 

Peters 1990). Biotype C resistant sorghum, available in 1975 (Starks et al. 1983) 

had a durability of about 10 years. Approximately 38% of the sorghum seed sold 

in 1986 was biotype E resistant (Kerns et al. 1987); therefore, greenbug 

resistance continues to be feasible in sorghum. 

Sources and Mechanism of Resistance 

Atkins and Dahms (1945) observed tolerance to severe infestations of 

greenbugs in the field in a number of wheat varieties in Denton, Texas and 

Lawton, Oklahoma in 1942. The same authors reported high level of resistance 

in barley cultivars. 

The greenbug resistant strain of DS 28A was used by Painter and Peters 
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(1956) to investigate the inheritance of resistance to greenbugs. In 1959 the 

resistance was broken by biotype B (Wood 1961). Within the small grains, 

Amigo is resistant to biotype B and C, but is susceptible to biotype E (Porter et 

al. 1982) and F (Kindler and Spomer 1986). DS 28A and 'CI 9058' are resistant 

to biotype F, but susceptible to biotype B, C, and E (Kindler and Spomer 1986). 

Largo is resistant to biotypes C and E (Porter et al. 1982), but is susceptible to 

biotype B (Webster et al. 1986). 

Biotype G is virulent to these resistance sources in wheat but avirulent to 

'Wintermalt' (WM) barley, whereas biotype H exhibits most of the host plant 

reactions of biotype E but is virulent to Post barley (Puterka et al. 1988). In 

sorghum, the rise of new greenbug biotype C led to concerted efforts to screen 

sorghum germplasm for resistance and to transfer this resistance to adapted 

germplasm. A total of 9 sources of sorghum resistant to greenbug biotype C were 

reported for the seedling and the adult plant stages, (Teetes et al. 1974a, b). By 

1980 at least 90% of the sorghum acreage in the U.S.A. was planted to resistant 

hybrids. These hybrids were derived mainly from SA 7536-1 and KS 30. Both of 

these sources were thought to derive their resistance from the Sorghum virgatum 

(Hack) Staph. (Starks et al. 1983). Only 4 sources of resistance to biotype C 

maintained their resistance when attacked by biotype E. These were PI 264453, 

PI 220248, PI 229828, and Capbam (Sarvasi) (Johnson et al. 1981, Porter et al. 

1982, Hackerott et al. 1983, Starks et al. 1983). The results of comparative 

screening (Starks et al. 1983) for resistance to biotype E in 9 sources of resistance 

to biotype C indicated that Capbam and PI 264453 maintained their resistance at 

about the same level to the new biotype, but that the resistance of PI 220248 was 
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reduced. Peterson (1985) reported that sorghum lines resistant to biotype C are 

not necessarily resistant to biotype E; however, all known sources of resistance to 

biotype E are also resistant to biotype C. Hackerott et al. (1983) reported on 

efforts to screen 9,000 additional germplasm accessions for resistance to biotype 

E. Greenbug biocypes F and the new biotypes G and H were less virulent to 

sorghum (Puterka et al. 1988). 

Schuster and Starks (1973) studied the components of host plant resistance 

to greenbug biotype C using eleven sorghum entries including 'BOK 8' as the 

susceptible check. They concluded that PI 229828, PI 302178, PI 226096, IS-809 

and SA 7536-1 possessed high degrees of all three mechanisms of resistance. 

Tolerance was the main component of resistance in PI 264453, but PI 302231 and 

PI 220248 showed 'relatively low levels of tolerance. Teetes et al. (1974a) in a 

similar study found that PI 264453, SA 7536-1 and KS-30 also showed non

preference and antibiosis. Hackerott et al. (1969) reported that tolerance was the 

major component of resistance in accessions of S. virgatum. although antibiosis 

and/or non-preference were also important in confinement tests. Dixon (1990a), 

reported that out of the twelve varieties tested for biotype E resistance, PI 229828 

had the highest level of tolerance and the least tolerant was PI 302136, with all 

other remaining entries showing intermediate tolerance. Teetes et al. (1974b ), and 

Schuster and Starks (1973) concluded that tolerance was the most desirable and 

enduring mechanism because: 1) It reduced the selection pressure on the insect, 

which would delay evolution of new biotypes; 2) it would be less disruptive of 

the ecosystem since aphid and parasite populations would be maintained at 

adequate levels, and 3) it could easily be integrated with other natural controls. 



Schuster and Starks (1973) concluded further that the antibiosis and non

preference components of resistance would remain effective unless mutations in 

the physiological composition of the greenbug were to occur. 

15 

Resistance of lines derived from S. virgatum was reported to be conferred 

by dominant genes at more than one locus (Hackerott et al. 1969). Several 

studies (Dixon et al. 1990 a) indicate that biotype C resistance derived from IS-

809, SA 7536-1, PI 220248, and PI 302236 is incompletely dominant and simply 

inherited. Resistance to biotype E derived from PI 220248, Capbam, and TAM 

BK42, a derivative of PI 264453, is not inherited as a recessive characteristic. 

Screening Techniques and Greenbug Laboratocy Breeding 

The rise of greenbug biotype C on sorghum led to a concerted effort to 

develop screening techniques to evaluate sorghum germplasm for resistance to 

greenbugs (Starks and Burton 1977a), transfer this resistance to adapted 

germplasm, and elucidate the mechanism of resistance and its inheritance (Dixon 

1990a). Screening methods to separate mechanisms of resistance have been 

described (Schuster and Starks 1973). The greenhouse visual ratings for resistance 

and seedling survival measured the confounded effects of all the three 

mechanisms of resistance, but tolerance was emphasized (Starks and Burton 

1977a). Visual damage ratings in the greenhouse have been shown to have a 

high positive correlation with adult plant resistance under natural field conditions 

(Teetes et al. 1974a, b). 



CHAPTER III 

FEEDING BEHAVIOR AND DEVELOPMENT OF 

BIOTYPES E, G, AND H ON 'POST' AND 

'WINTERMALT' BARLEY 

Introduction 

The occurrence of greenbug, Schizaphis graminum (Rondani), biotypes is 

well documented. New biotypes are characterized mainly by their ability to 

damage host plants previously resistant to greenbug populations (Puterka & 

Peters 1990). 

Kindler & Spomer's (1986) study on development and damage by greenbug 

biotypes and three isolates on resistance sources of small grains, sorghum, and 

blue grass provides a summary of greenbug biotypes in the United States. 

Puterka et al. (1988) using major plant sources of greenbug resistance, 

characterized an Oklahoma isolate and a Texas isolate and designated these as 

new biotypes 'G' and 'H', respectively. Biotype G (GBG) was found to damage 

all known sources of greenbug resistance in wheat, Triticum aestium L., but did 

relatively little damage to 'Wintermalt' (WM) barley, Hordeum vulgare L., a 

variety previously reported to be susceptible to all greenbug biotypes. Biotype H 

(GBH) was relatively avirulent on the sorghum, Sorghum bicolor (L.) Moench, 

varieties tested but severely damaged 'Post', reported to be a resistant barley 

variety to all previously described biotypes (Puterka et al. 1988). 

16 
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High levels of resistance to greenbugs have been reported among several 

barley cultivars (Atkins & Dahms 1945). Greenbug resistance in barley has not 

been broken in more than 40 yrs by any of the biotypes which have prevented the 

cultivation of resistant wheat (Wood 1961, Porter et al. 1982). 

The electronic monitoring of greenbug feeding behavior on wheat has been 

useful in defining possible differences among greenbug biotypes and wheat 

cultivars (Niassy et al. 1987). Monitoring studies using barley have also been 

carried out to differentiate feeding responses of biotypes B, C, and E (Peters et 

al. 1988), but none have been carried out on feeding behavior of biotypes G and 

H. 

The electronic monitoring of aphid feeding behavior developed by McLean 

& Kinsey (1967) provides information on time to initiation, duration, and 

termination of a series of aphid feeding activities, and it also provides information 

on the sequence of these activities (Peters et al. 1988). 

Phloem has been considered the optimum feeding site of greenbugs 

(Chatters & Schlehuber 1951). Niassy et al. (1987) monitored feeding behavior 

of GBB and GBE on wheat and found that the time to beginning of ingestion 

from the phloem was greater on resistant than on susceptible wheat, and the 

duration of phloem ingestion was shorter. Peters et al. (1988) monitored feeding 

behavior of GBB, GBC, and GBE on susceptible and resistant barley and found 

that the greenbug resistant Post caused significantly greater frequencies of 

probing, salivation, and nonphloem ingestion events in GBC and GBE compared 

with the susceptible cultivar WM, but the differences observed on GBB were not 

significant. 
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My objective was to determine whether, by using electronic monitors to 

study feeding behavior, there would be any differential response by biotypes E, G, 

and H on resistant Post and susceptible WM barley and to determine the possible 

relationships with development and fecundity. My hypothesis was that GBG was 

not compatible with either of the two cultivars while GBE would thrive on WM 

only. GBH was supposed to be compatible with b()th cultivars. 

Materials and Methods 

The tests were conducted in the Controlled Environment Research 

Laboratory at Oklahoma State University, and the United States Department of 

Agriculture, ARS, Plant Science Research and Water Conservation Laboratory, 

Stillwater, Oklahoma. Temperature in the feeding monitoring room was 270C 

and the relative humidity was 34% with continuous photophase throughout 

monitoring time. Greenbug biotypes obtained from confirmed cultures were 

maintained on 'Triumph 64' wheat under laboratory conditions. 

Plexiglass ring cages were used to rear even aged adults of the respective 

biotypes (Niassy et al. 1987). The greenbug resistant barley cultivar Post and 

susceptible WM used had known backgrounds (Peters 'et al. 1988). A total of 48 

plastic pots (8 em dia X 10 em high) were filled with sandy soil to a weight of 270 

gms and later planted with the barley seeds. A staggered planting of eight pots 

per day was performed and pots were watered with half-strength Hoagland's 

solution to a weight of 300 gm (field capacity) every other day. The plants were 

kept in a growth chamber with 13:11 L:D photophase, 600 J..LillOl quanta m·2 s·1 

(LI-COR, LI-190 SB held at top of plants), and temperature of 200C. After 
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three weeks plants with a fully formed third leaf were chosen for the experiments. 

The electronic feeding monitors and recording system were similar to those 

described by Niassy et al. (1987). A 9-volt power supply (Oklahoma Engineering 

and Technical Services, 111 Noble Street, Perry, OK 73077) replaced the 9-volt 

batteries and provided a more consistent power flow. Six feeding monitors were 

used per monitoring session. Combinations of host cultivars and three greenbug 

biotypes were selected at random within the block (monitoring session) and were 

randomly assigned to monitors. Feeding was monitored for eight hours. Each 

monitoring session represented a replication and the sessions continue until there 

were six replications per treatment. 

Feeding behaviors, as described for greenbugs on barley by Peters et al. 

(1988), were coded from the chart recorder. Each feeding event was listed and 

duration in minutes was tabulated and evaluated. The feeding behaviors 

observed and recorded were: nonfeeding (baseline), probing, salivation, X-wave (a 

wave form diagnostic of phloem penetration), phloem ingestion, and non-phloem 

ingestion as described by Niassy et al. {1987). Greenbugs produce what is 

recorded as a power surge of approximately 60 sec duration when they first 

penetrate the plant which may be followed by reduced flow and waveforms typical 

of either salivation or nonphloem ingestion. This effort at initiating feeding was 

referred to as probing, although in a broad sense some authors may refer to the 

entire sequence as probing. 

It was assumed that greater frequencies of probes, or withdrawals from the 

phloem and more time in nonfeeding activities were indications of plant 

resistance or of the greenbugs' inability to feed efficiently on the resistant plant 
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(Peters et al. 1988). 

After each greenbug was monitored electronically, part of the third leaf on 

the plant was caged to observe greenbug growth and reproduction using nymphs 

produced by the adults during the feeding monitoring session. Daily observations 

were made to det~rmine developmental time and progenies counted for the 

equivalent period as described by Peters et al. (1988). 

Data were analyzed by a general linear model procedure for analysis of 

variance and tests of genotype/biotype combinations were compared using the "t" 

test at the 5% level for significance (SAS Institute 1985). 

Results and Discussion 

Feedin~ Monitoring 

Frequencies (Table I) of nonfeeding (baseline), probes, and salivation 

events pooled for the three greenbug biotypes were significantly greater on Post 

compared to WM barley. Differences in frequencies among the biotypes were 

nonsignificant on WM. On Post, GBE had significantly greater frequencies of 

these events than H; however, biotype G was intermediate between biotypes E 

and H. Frequencies of X-waves and phloem ingestion events were not 

significantly different among biotypes or between cultivars. 

Mean duration time (Table II) spent not penetrating plant tissues (baseline) 

by greenbugs was significantly greater on Post for GBE and GBG than for GBH 

or than the three biotypes on WM. GBG spent significantly more time per 

salivation event on WM than did GBE and GBH. When mean duration times for 
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the biotypes were pooled, there was no statistically significant difference between 

the cultivars for salivation and nonphloem ingestion event. There were no 

significant differences among biotypes or between cultivars in mean duration of 

nonphloem ingestion or X-wave events. Mean duration of phloem ingestion for 

all biotypes was significantly more on WM than on Post. There was no 

statistically significant differences in duration of phloem ingestion among the 

biotypes although GBG spent less time feeding within phloem on WM compared 

to GBE and GBH. 

Total duration of feeding activities (Table III) for greenbugs provides an 

overall analysis on the apportionment of the 480 minutes into respective feeding 

events. Time spent in non-phloem ingestion and during X-wave activity showed 

no significant differences. Total duration of baseline was significantly greater for 

both GBE and GBG on Post than on WM; this was not the case for GBH which 

had a significantly shorter baseline. time on Post than the other two biotypes. 

GBG spent significantly more time salivating and less total time feeding within 

the phloem than did GBE and GBH on WM. Thus indicating GBG was less 

successful feeding on WM and· conforms with the results by other authors 

(Purteka et al., 1988). 

Development and Reproduction 

The fitness of a biotype is determined by its ability to feed and grow on 

host plants, and its rate of reproduction. The number of nymphs produced will 

depend on the host plant (resistant/susceptible) which should also influence the 

developmental time (the length of time it takes a nymph to develop into an adult 
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and produce its first nymph). Aphids with short developmental times have a 

potentially higher rate of population increase according to Wyatt and White 

(1977), and they proposed that the effective fecundity can be regarded to be the 

number of nymphs produced in a time span equal to the developmental time. 

However, Wyatt and White (1977) cautioned that the assumption is only valid if 

the patterns of reproduction are similar. The number of nymphs produced during 

the period should be half the total fecundity, but they are produced in less than 

half of the adult reproductive period. This approach should give a better 

estimate of population increase potential than would be true for fecundity counts 

for a fixed time interval (Peters et al. 1988). 

GBG took significantly longer to reach first reproduction than did GBE and 

GBH, if results for the cultivars were pooled (Table IV). The relative times for 

GBE and GBH on WM vs Post switched rankings. When all biotypes were 

pooled, time to initiation of first reproduction on Post barley was significantly 

longer than on WM. 

GBE produced significantly more nymphs on WM than did GBG and GBH, 

but on Post GBH produced significantly more nymphs than GBE and GBG. 

Overall more nymphs were produced on WM than on Post. The estimated r m 

(intrinsic rate of increase) for the biotypes when calculated on the mean values 

for WM and Post in Table 4 respectively were: GBE, 0.446 and 0.302; GBG, 

0.339 and 0.264; and GBH, 0.411 and 0.364. I concluded that GBG was less 

successful in feeding and reproducing on barley when compared to GBE and 

GBH which confirms the findings of Puterka et al. (1988). GBH feeding and 

reproduction on Post was significantly better than GBE and GBG. 



CHAPTER IV 

A STUDY OF GREENBUG CLONES ON SORGHUM 

SOURCES OF GREENBUG RESISTANCE 

Introduction 

The greenbug, Schizaphis graminum (Rondani), has been a major insect 

pest of sorghum, Sorghum bicolor (L.) Moench, in the United States since 1968 

when biotype C (GBC) developed (Harvey & Hackerott 1969b, Wood & Starks 

(1972). Dixon et al. (1990a) have given an excellent review of the efforts to 

screen germplasm for greenbug resistance, transfer this resistance to adapted 

germplasm, explain the mechanisms of resistance, and characterize the 

inheritance of resistance in sorghum to the greenbug biotypes. Several authors 

(Schuster & Starks 1973, Teetes et al. 1974a, b) found that the level and 

mechanisms of resistance varied among all sources studied, and they concluded 

that tolerance was the most desirable and enduring mechanism because the 

reduced selection pressure on the insect should delay the evolution of new 

biotypes. 

Porter et al. (1982) reported on the collection of a new greenbug biotype in 

a wheat field near Bushland, Texas in 1979. Hackerott et al. (1983) reported that 

by 1981, biotype E (GBE) had largely replaced GBC in the Great Plains. Only 

four sources of resistance to GBC were resistant to GBE. These were PI 264453, 

PI 229828, PI 220248, and 'Capbam' (Johnson et al. 1981, Porter et al. 1982, 

23 
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Hackerott et al. 1983, Starks et al. 1983). The results of the comparative 

screening (Starks et al. 1983) for resistance to GBE in nine sources of resistance 

to GBC indicated that Capbam and PI 264453 maintained their resistance at 

about the same level to the new biotype, but that the resistance of PI 220248 was 

reduced. None of these three sources was as resistant, based upon average 

damage scores, as were two thirds of the nine sources when infested with GBC. 

Biotype F (GBF) was reported to have varying potential to damage 

sorghum (Puterka et al. 1988), while biotypes G (GBG) and H (GBH) were 

relatively avirulent to sorghum. Puterka & Slosser (1986) reported on techniques 

to induce greenbugs into the sexual cycle and to achieve egg hatching; thereby 

making it possible to cross different greenbug biotypes in the laboratory. 

Breeding greenbug biotypes has produced recombinants that have a broader 

range of virulence than their parents (Puterka & Peters 1989a, b). Through the 

laboratory production of highly virulent types, it is now possible to screen 

potential virulent sources not yet recognized in the field. 

Therefore, the objective of this study was to evaluate some of the available 

resistance sources in sorghum to determine the stability of their resistance to 

aphid genetic stocks, field collections, and greenbug biotypes. This should give 

sorghum breeders a head start to incorporate new resistance sources within the 

sorghum germplasm before the new biotypes develop. This is a kind of insurance 

to continuous use of host plant resistance in greenbug management. 

Materials and Method 

Greenbug clones and crosses from biotypes C, E, and F retained from the 
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genetic studies reported by Puterka and Peters (1990) were maintained as 

parthenogenetically reproducing clones (137 clones) on caged pots of susceptible 

'Triumph 64' wheat in a growth chamber (14:10 L:D, 170C). An additional 18 

field collections and biotype G sib-matings made a total of 155 clones used to 

evaluate sorghum breeding lines containing resistance sources PI 229828, PI 

220248, Capbam, and KS-30. Hereafter "clones" will be used to designate any of 

the greenbug genetic stocks tested. All clones were parthenogenetic progeny of a 

selected single individual. 'Pioneer 8300' sorghum and Triumph 64 wheat were 

included as susceptible checks, since a differential response was expected to the 

crop species among the clones tested (Puterka et al. 1988). 

The six crop entries were planted in a 15 em diam. pot containing sandy 

soil. Each entry was planted in a radial star arrangement with 4 or more seeds 

per row and kept in the growth chamber at (13:11 L:D) photophase with cycling 

temperatures of 25 °C:22 °C. The pots were caged before plant emergence to 

eliminate any possible infestation. The plants in each pot were infested with 150-

250 aphids from a clone when the seedlings were 5-6 d old, and then caged to 

evaluate the damage. The heavY infestation was to ensure that tolerance was 

manifested and the confounding effects of plant antibiosis and antixenosis should 

be reduced (Puterka et al. 1988). If the synchrony between clone multiplication 

and plant emergence brok~ down, as few as 75 aphids were used to infest the 5-6 

d old plants rather than delay infestation and allow plant age to become a factor 

in the comparisons. 

All of the plants in the pot were evaluated when one of the susceptible 

cultivars showed clear signs of severe damage (complete chlorosis or dead plants). 
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Plant damage was scored by a 1 to 6 damage scale ( 1 =no damage to 6 =dead 

plant) as described by Puterka et al. (1988). The data was analyzed using PROC 

GLM and the mean damage ratings of cultivars were compared using Duncan's 

Multiple Range Test (P~.05) (SAS Institute 1985). 

Resistance· classifi~ation criteria were based on: 

Resistant= mean damage rating less than or equal to 3.0 

Intermediate= mean damage rating above 3.0 but less than 4.8 

Susceptible= mean damage rating of 4.8 or above. 

Results and Discussion 

At the seedling stage ~n the growth chamber, almost all the cultivar entries 

differed significantly for the level of tolerance as measured by the average 

damage rating score per cultivar· caused by the various greenbug clones (Table 

V). The clones are arranged alphabetically / numerically in Table V by parent

progeny groups. Since the clones represent varying levels of selection for reaction 

to another series of cultivars tested by Puterka (1988), no attempt was made to 

determine the possible nature of inheritance among the sorghum/biotype sources, 

but the emphasis was on extending our knowledge of potential utility of these 

resistance sources and to determine the applicability of the "star pot" technique. 

The following greenbug clones were noteworthy, since they were observed 

to be highly damaging to all of the sorghum resistance sources: CV61, EC55, 

EE134, EF48, EF106, FE33, FE234 and K4. The least virulent clones to these 

sorghum genotypes were: BD48, CE4, CF81, CY1, FC103, FF4, FF272, FY03, F, 

G, I, SS85, and XX50. The rest of the clones damaged one or more of the 



27 

sorghum genotypes or at least caused an intermediate rating. 

The responses of the susceptible checks to the clonal groups was of interest 

in that 3 of 8 clones of GBC sib-matings caused significantly more damage to 

Triumph 64 than to Pioneer 8300; whereas, the GBE crosses often caused more 

damage to Pioneer 8300, but 11 of 22 crosses involving GBE by GBC, CC77 or 

CC81 caused significantly more damage to Triumph -64. GBF and GBG and their 

progeny caused relatively more damage to the Triumph 64 wheat than to Pioneer 

8300 sorghum as would be expected (Puterka et al. 1988). PI 229828 had the 

highest level of tolerance to most greenbug clones, but it gave a susceptible 

response to 10% of the clones tested. While GBC, GBE and GBF on PI 229828 

caused damage ratings of 2.0, 2.3, and 2.0 respectively, sib-matings and crosses 

involving these biotypes and their progeny had 16 susceptible, 16 intermediate, 

and 102 resistant ratings. PI 220248 was the next best with 28 susceptible, 41 

intermediate, and 65 resistant responses. The responses on Capbam were: 48 

susceptible, 27 intermediate and 57 resistant. On KS 30 the responses were 73 

susceptible, 38 intermediate and only 22 resistant. All 10 of the field collected 

isolates (ALA-A to TM3) caused a susceptible response on KS 30 which further 

eliminates any use for this entry as a resistance source. 

From the study, we can conclude that the potential resistance level of 

Capbam and PI 220248 are moderate while that of PI 229828 is still high, but KS 

30 is of no further value in greenbug resistance breeding. This is particularly 

alarming since Dixon et aJ. (1990) reported that the greater percentage of the 

sorghum hybrids planted commercially in the USA are derivatives of either KS 30 

or SA 7536-1. 
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The large number of intermediate responses observed deserves further 

attention since these tests were not designed to determine the genetic bases for 

these resistance sources. Within row variation in damage ratings was generally 

small but the raw rating scores for KS 30 and PI 220248 appeared most variable 

which suggests more intensive evaluations should be made. 

Crosses between greenbug biotypes C, E, and F were observed to produce 

recombinants, varying in the degree of virulence to sorghum genotypes. Crosses 

between greenbug biotypes E I F and C I E had recombinants which were 

virulent or damaging to many sorghum genotypes. This confirms the report by 

(Puterka and Peters 1989a), that biotypes C, E, and F were heterozygous for 

many virulence loci and that crosses between them resulted in a tremendous 

amount of variability due to the expression of the hidden mutations accumulated 

during parthenogenesis. They further suggested this would explain the greenbugs 

ability to respond to selection pressure and a broad range of hosts. Selection 

among these recombinants can be utilized for future sorghum improvement for 

hybrid production. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Feeding monitor studies were carried out on greenbug biotypes E, G, and 

H to determine any differential response in feeding behavior on susceptible WM 

and resistant 'Post' barley. All biotype-cultivar combinations were also tested for 

differences in developmental time and fecundity. Post caused significantly greater 

frequencies of non feeding, probes, and salivation for GBE and GBG than GBH. 

GBG spent significantly more mean and total duration time salivating and less 

time feeding within the phloem on WM. It also took a significantly longer time 

to begin reproduction and produced fewer progenies than did GBE and GBH on 

WM barley. This indicates GBG is less successful in feeding on WM and 

confirms previous reports about its inability to feed successfully on WM. Both 

GBE and GBH were relatively more successful in feeding within the phloem on 

WM but GBE was less successful on Post. 

Greenbug clones and crosses from biotypes C, E, and F retained from the 

genetic studies reported by Puterka and Peters (1990) and an additional 18 field 

collections and GBG sib-matings were used to evaluate sorghum resistance 

sources PI 229828, PI 220248, Capbam, and KS-30 plus Pioneer 8300 sorghum 

and Triumph 64 wheat. The six crop entries were planted in a 6-inch diameter 

pot in a radial star arrangement with 4 or more seeds. per row and kept in the 

growth chamber. Plant damage was scored by a 1 to 6 damage scale (1 =no 
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damage to 6=dead plant). 

The sorghum cultivars differed significantly in the level of resistance to 

greenbug clone damage. PI229828 had the highest level of resistance, while 

PI220248 and Capbam had moderate levels of resistance. KS30 had a very 

reduced level of resistance compared to the other cultivars. 
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The following greenbug clones were observed to be highly damaging to all 

of the sorghum resistance sources: CV 61, EC 55, EE 134, EF 48, EF 106, FE 33, 

FE 234, and K4. These could be utilized in further screening of sorghum 

resistance sources. 
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TABLE I 
-

FREQUENCIES (X±SE) OF FEEDING BEHAVIORAL EVENTS OBSERVED IN 480 MIN FOR GREENBUG 
BIOTYPES E, G, AND H ON WM AND 'POST' BARLEY. 

No. 
Cultivar Biotype obs Baseline 

E 6 10.0±3.8a 

WM(S) G 6 8.8±3.8a 

H 6 8.3±3.8a 

E 6 36.7±3.8c 

Post (R) G 5 24.8±4.2b 

H 6 19.2±3.8ab 

WM All 18 9.0±2.2a 

Post All 17 26.8±2.3b 

Both E 12 23.3±2.7b 

Both G 11 16.8±2.8ab 

Both H 12 13.8±2.7a 

Probes 

10.0±3.8ab 

8.7±3.8ab 

8.3±3.8a 

36.2±3.8d 

24.6±4.2c 

19.5±3.8bc 

9.0±2.2a 

26.7±2.3b 

23.0±2.7b 

16.6±2.8ab 

13.9±2.7a 

Salivation 

8.8±3.4a 

12.3±3.4ab 

9.0±3.4a 

30.7±3.4c 

22.2±3.8bc 

19.5±3.4b 

10.1±2.0a 

24.1±2.1b 

19.8±2.4a 

17.3±2.5a 

14.3±2.4a 

Nonphloem 
ingestion 

1.0±0.8a 

1.3±0.8a 

1.3±0.8a 

2.2±0.8a 

2.0±0.9a 

1.3±0.8a 

1.2±0.5a 

1.8±0.5a 

1.6±0.6a 

1.7±0.6a 

1.3±0.6a 

Values with same letter in each column are not significantly different (t test, P < 0.05) 

X-wave 

3.0±1.1a 

4.2±1.1a 

3.2±1.1a 

2.2±1.1a 

2.4±1.2a 

4.0±1.1a 

3.4±0.7a 

2.8±0.7a 

2.6±0.8a 

3.3±0.8a 

3.6±0.8a 

Phloem 
ingestion 

3.0±1.1a 

4.0±1.1a 

3.2±1.1a 

2.2±1.1a 

2.2±1.2a 

3.8±1.1a 

3.4±0.6a 

2.7±0.7a 

2.6±0.8a 

3.1±0.8a 

3.5±0.8a 

~ 



Cultivar 

WM (S) 

Post (R) 

WM 

Post 

Both 

Both 

Both 

TABLE II 

MEAN DURATION (MINUTES±SE) OF FEEDING BEHAVIORAL EVENTS OBSERVED IN 480 MIN FOR 
GREENBUG BIOTYPES E, G, AND H ON WM AND 'POST' BARLEY. 

No. Nonphloem Phloem 
Biotype obs Baseline Probes Salivation ingestion X-wave ingestion 

E 6 1.7±0.7a 0.4±0.04a 13.3±7.7a 13.0±10.1a 1.0±0.1a 187±41c 

G 6 2.2±0.7a 0.4±0.04a 37.8±7.7b 34.5±10.1a 0.9±0.la 98±41abc 

H 6 1.8±0.7a 0.4±0.04a 14.6±7.7a 9.1±10.1a 0.8±0.1a 147±41bc 

E 6 4.3±0.7b 0.4±0.04a 14.0±7.7a 12.4±10.1a 0.9±0.1a 1±41a 

G 5 4.8±0.8b 0.5±0.04a 16.2±8.5ab 19.7±11.1a 0.7±0.1a 6±45a 

H 6 1.8±0.7a 0.5±0.04a 17.7±7.7ab 7.0±10.1a 0.8±0.1a 36±41ab 

All 18 1.9±0.4a 0.4±0.02a 21.9±4.5a 18.8±6.0a 0.9±0.1a 144±24a 

All 17 3.6±0.4b 0.4±0.02a 16.0±4.6a 13.0±6.0a 0.8±0.1a 14±24b 

E 12 3.0±0.5ab 0.4±0.03a 13.6±5.5a 12.7±7.2a 0.9±0.1a 94±29a 

G 11 3.5±0.5b 0.5±0.03a 27.0±5.7a 27.1±7.5a 0.8±0.1a 52±30b 

H 12 1.8±0.5a 0.4±0.03a 16.2±5.5a 8.0±7.2a 0.8±0.1a 91±29a 

Values with same letter in each column are not significantly different (t test, P < 0.05) 

\J<I 
(0 



TABLE III 

TOTAL DURATION (MINUTES±SE) OF FEEDING BEHAVIORAL EVENTS OBSERVED IN 480 MIN FOR 
GREENBUG BIOTYPES E, G, AND H ON WM AND 'POST BARLEY. 

No. Nonphloem Phloem 
Cultivar Biotype obs Baseline Probes Salivation ingestion X-wave ingestion 

E 6 20±11a 4±2a 103±28a 20±17a 3±1a 330±31c 

WM(S) G 6 18±11a 4±2a 232±28b 55±17a 4±1a 166±31b 

H 6 15±11a 3±2a 137±28a 20±17a 3±1a 302±31c 

E 6 117±11b 15±2c 299±28bc 42±17a 2±1a 5±31a 

Post (R) G 5 118±12b 12±2bc 289±31bc 37±19a 2±1a 23±34a 

H 6 35±1la 9±2b 321±28c 19±17a 4±1a 92±31ab 

WM All 18 18±6a 4±1a 157±16a 32±10a 3±1a 266±18b 

Post All 17 90±6b 12±1b 303±17b 33±10a 3±1a 40±19a 

Both E 12 69±8b 9±1a 201±20a 31±12a 3±1a 167±22b 

Both G 11 68±8b 7±1a 260±21a 46±13a 3±1a 94±23a 

Both H 12 25±8a 6±1a 229±20a 20±12a 3±1a 197±22b 

Values with same letter in each column group are not significantly different (t test, P < 0.05) 

8 
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TABLE IV 

DEVELOPMENT, REPRODUCTION AND GROWTH OF GREENBUG 
BIOTYPES E, G, AND H ON 'POST AND WM BARLEY. 

No. Time to begin Progeny 
Cultivar Biotype Obs. reproduction produced 

(HRS) 

E 12 142.0±5.4a 35.5± 1.6a 
WM (S) G 12 160.0±5.4bc 21.3± 1.6cd 

H 12 146.0±5.4ab 29.4± 1.6b 

E 10 170.7±5.8cd 18.2± 1.7de 
Post (R) G 10 184.0± 6.6d 15.4± 1.9e 

H 12 156.0±5.4abc 24.5± 1.6c 

WM All 36 149.5±3.1a 28.7±0.9a 

Post All 32 170.0±3.4b 19.3± l.Ob 

Both E 22 156.4±3.9a 27.0± 1.2a 
Both G 22 172.0±4.2b 18.3± 1.3b 
Both H 24 151.0±3.8a 27.0± l.la 

Values with the same letter in each column section are not 
significantly different (t test P < 0.05). 
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TABLE V 

MEAN DAMAGE RATING OF FIVE SORGHUM GENOTYPES AND ONE 
SUSCEPTIBLE WHEAT AT SEEDLING STAGE, AFTER INFESTATION 

BY GREENBUG CWNES. 

CROSS CLONE TRIUMPH PIONEER KS30 PI PI CAP BAM 
8300 220248 229828 

Parent c 6.0A 4.0BC 5.3AB 4.3C 2.00 3.8C 

cxc CC03 5.3AB S.OAB 6.0A 4.5B 3.0C 5.8A 
CC21 6.0A 3.0C 3.0C 3.0C 2.0C 4.5B 
CC31 6.0A 5.3AB 4.8B 5.8B 2.3C 6.0A 
CC32 6.0A 3.0C 6.0A 4.5B 2.00 6.0A 
CC77 6.0A 6.0A 6.0A 6.0A 4.0B 6.0A 
CC79 6.0A 6.0A 5.7A 4.0B 2.0C 3.0BC 
CC81 6.0A 6.0A 4.0B 3.0C 2.00 2.00 
CC137 53A 4.0B 3.3B 5.8A 2.0C S.SA 

CC6@ 1 CX09 4.6A 4.8A 4.7A 3.7AB 2.0C 2.5BC 
CX62 3.6B 5.7A 5.8A 2.6C 2.0C 2.4C 

CC3@ CYOl 6.0A 5.3A 2.8B 2.0B 2.0B 3.3B 
CY02 6.0A 6.0A 5.3B 2.8C 2.00 2.00 
CY39 4.3A S.OA 4.5A 5.3A 2.5B 5.3A 

77 X81 MP03 5.8A 5.8A S.SA 5.7A 3.0B 3.3B 
MP17 4.8A 6.0A 6.0A S.OA 2.8B S.SA 
MP49 5.8A 6.0A 5.8A 2.5C 2.0C 4.0B 
MP61 S.OAB S.SA 4.5B 3.0C 2.00 2.00 
MPllO 5.3A 4.8AB 5.3A 3.8B 2.5C 2.5C 
MPlll S.OB 6.0A 6.0A 4.3B 2.3C 2.5C 
MP112 6.0A S.SA 6.0A 3.0B 2.0C 2.0C 

CC81@ XX02 4.3B 6.0A 4.3B 3.3C 2.00 2.00 
XX33 5.3A 4.5AB 4.0AB 4.7AB 2.0C 3.5B 
XX34 6.0A S.SAB 3.0C 2.5C 5.8AB S.OB 
XX36 5.3A 5.8A 6.0A 2.3B 2.0B 2.0B 
XX37 6.0A 6.0A S.SA 2.8B 2.5B 2.3B 
XX38 4.0AB 5.3A 3.8AB 2.5B 2.3B 2.5B 
XX39 S.OA S.OA 5.3A 3.0C 4.0B 4.0B 
XX41 6.0A 5.3A 6.0A 4.3B 2.5C 2.0C 
XX43 6.0A 4.8B 4.8B 2.5C 2.0C S.SAB 
XX45 6.0A 6.0A S.OB 2.3C 2.0C 2.3C 
XX48 S.OB S.OB S.OB 3.5C 4.8B 5.8A 
xxso 6.0A 2.0B 2.0B 2.0B 2.3B 2.3B 
XX60 S.SA S.SA 6.0A 2.0B 2.0B 
XX61 6.0A 4.0B 4.0B 2.5C 2.3C 6.0A 
XX69 6.0A 2.3BC 2.5BC 3.0B 2.0C S.SA 
XX71 6.0A 5.8A 4.0B 3.3B 2.0C 2.0C 

81XC CV15 6.0A 2.3B 2.0B 2.3B 2.0B 6.0A 
CV27 5.3A S.OA S.OA 2.3B 2.0B 2.0B 
CV59 S.SA S.SA 3.3B 2.8BC 2.3C S.SA 
CV61 6.0A S.OB S.OB 6.0A 6.0A 6.0A 

CX81 BC07 S.OAB S.SAB 6.0A 2.8C 2.0C 4.5B 
BC95 6.0A 2.5C 4.0B 2.3C 2.0C S.OB 

1 Sib mated 
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TABLE V (continued) 

CROSS CWNE TRIUMPH PIONEER KS30 PI PI CAP BAM 
8300 220248 229828 

77XC X C02 6.0A 4.0B 4.0B 4.5AB 2.0C 6.0A 
XC18 4.5A 4.8A S.OA 2.3BC 2.0C 3.0B 
XC58 6.0A 45BC 3.00 53AB 3.8CD 6.0A 

CXE CE04 5.3A 3.0B 3.0B 2.7B 2.0B 2.7B 
CE104 6.0A 5.0B 4.5C 2.00 2.00 2.30 
CE482 4.0C 4.0C 5.3B 6.0A 2.00 2.30 
CE502 S.OA 2.0B 2.0B 3.3B 2.0B S.OA 
CE503 S.OA 5.3A 5.7A 4.8A 2.3B 3.0B 

EXC EC55 6.0A 5.8A 6.0A 5.8A 6.0A 6.0A 
EC68 4.0AB 3.3BC 4.0AB 3.5BC 2.0C 5.5A 
EClOO 5.5A 5.3A 3.3B 4.5AB 3.0B 6.0A 
EC172 6.0A 2.3C 5.0AB 2.0C 2.0C 3.7BC 
EC228 6.0A 5.5A 5.5A 5.5A 2.0B 6.0A 
EC244 6.0A 3.3B 6.0A S.OA 25B 5.5A 
EC250 5.5A 5.3A 4.5A 5.5A 2.3B 5.7A 

EX81 BOll 4.5A 2.0B 2.5B 2.3B 2.3B 4.5A 
BD48 6.0A 2.0B 2.8B 3.0B 2.0B 2.3B 
BD60 5.6A 5.4A 5.4A 3.8B 2.1C 2.5C 

81XE BXOl 6.0A 6.0A 5.8A 4.0B 3.0C 3.0C 
BX02 5.0AB 6.0A 5.8AB 4.5B 2.8C 2.7C 
BX27 4.5A 2.5B 4.3A 3.0B 5.3A 5.0A 

77XE XE03 4.0A' 2.8BC 3.5AB 3.0BC 2.3C 4.0A 
XE67 6.0A 3.0BC 2.3C 2.0C 2.3C 4.3B 
XE68 6.0A ,6.0A 6.0A 6.0A 3.5B 6.0A 
XE76 4.0B 6.0A 5.5A 5.SA 3.0C 6.0A· 

Parent ' E 4.0B 5.7A '5.0AB 4.8AB 2.3C 2.5C 

EXE EE134 4.0A 5.5A S.OA 5.3A S.OA 5.3A 
EE188 3.8B 4.5AB 5.3A 5.3A 2.3C 3.3BC 
EE500 4.0B 3.8B 3.5B 3.8B 2.3C 5.8A 
EE501 4.3AB 4.0AB 4.0AB 3.3B 6.0A 4.0AB 

188EE@ EXOl 5.4AB 4.6B 6.0A 4.9B 2.10 3.5C 
EX76 4.0B 6.0A 5.5A 5.5A 3.0C 6.0A 
EX103 3.0BC 5.8A 5.8A 4.0B 2.0C 4.0B 
EXlll 6.0A 2.0C 4.0B 2.0C 2.0C 2.0C 

EXF EF06 5.4A 5.5A 5.6A 2.1B 2.4B 2.7B 
EF23 5.5A 4.5A 5.5A 3.0B 2.4B 3.2B 
EF33 S.OA S.OA 6.0A S.OA 2.0B 2.7B 
EF44 4.5AB 4.3AB 5.3A 3.3B 5.3A 4.0AB 
EF48 6.0A 6.0A 6.0A 5.8A 6.0A 6.0A 
EF63 5.6A 4.3B 5.8A 2.8C 3.3BC 3.6BC 
EF64 4.0BC 5.3AB 6.0A 4.3BC 3.5C 6.0A 
EF106 S.OB 6.0A 5.3B 5.3B S.OB 6.0A 
EF107 4.8A 2.8BC 3.5B 3.3BC 2.5C 2.8BC 
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TABLE V (continued) 

CROSS CLONE TRIUMPH PIONEER KS30 PI PI CAP BAM 
8300 220248 229828 

37FE@ FP185 4.5A 2.5AB 3.5AB 3.3AB 2.0B 4.5A 
FP207 6.0A 5.8A 5.5A 2.8B 3.3B 2.5B 
FP210 2.7B 5.0A 5.3A 2.7B 4.3AB 3.3B 
FP241 3.7BC 5.3A 3.0C 3.3BC 5.3A 4.0B 
FP242 5.3A 4.0B 4.0B 6.0A 2.0C 2.0C 
FP274~ 6.0A 5.5A 6.0A 2.3B 2.0B 2.3B 

FXE FE33 6.0A 6.0A 5.8A 6.0A 6.0A 6.0A 
FE42 5.0A 5.3A 4.5A 2.0C 2.0C 3.3B 
FE68 6.0A 6.0A 5.8A 2.0B 2.3B 2.3B 
FE74 5.0A 5.5A 5.7A 4.9A 2.0B 2.5B 
FE200 6.0A 6.0A 3.5B 2.0C 3.3B 5.0A 
FE215 6.0A 6.0A 5.3AB 2.0C 4.5B 3.0C 
FE234 5.8AB 5.9A 5.2BC 5.1C 5.5ABC 5.9A 
FE252 5.3B 5.8A 5.5AB 2.0C 2.0C 2.1C 
FE335 5.0B 6.0A 4.5B 2.3C 2.0C 2.3C 

74FE@ FYOl 5.7A 5.3A 6.0A 3.3B 5.3A 5.3A 
FY03 6.0A 3.3B 3.0B 2.0C 3.0B 2.8B 
FY05 6.0A 5.3A . 5.8A 4.8AB 3.0BC 2.0C 

200FE@ FA175 4.0B 6.0A 5.0A 2.30 3.3C 3.0C 
FA227 3.8AB 5.0A 4.5AB 2.0C 2.0C 3.3BC 

234FE@ F031 5.5A 4.5BC 4.0C 3.7C 2.10 5.3AB 
F0185 5.3A 5.5A 2.8B 6.0A 3.1B 

CXF CF4 5.0A 5.3A 4.5B 3.5B 3.3B 5.3A 
CF5 5.3B 6.0A 4.5C 2.00 2.00 2.00 
CF64 5.7A 2.3C 2.0C 3.5B 2.0C 6.0A 
CF27 6.0A 4.0C 4.8ABC 4.3BC 2.00 5.5AB 
CF36 6.0A 6.0A 2.7B 4.8A 2.0B 5.8A 
CF70 6.0A 5.0A 6.0A 3.5B 2.0C 3.3B 
CF81 6.0A 2.8B 2.8B 2.3BC 2.0C 2.3BC 
CF138 6.0A 5.3AB 4.3BC 4.0C 3.8C 5.7A 

138CF@ J057 5.0A 5.0A 5.0A 3.3C 5.3A 4.3B 
J0166 5.0A 5.0A 5.5A 2.0B 2.8B 2.0B 

103FC@ JB36 5.8AB 4.8BC 4.0CO 3.30 3.00 6.0A 

FXC FC25 5.8A 4.1AB 3.0B 3.0B 2.8B 4.8A 
FC83 5.0A 5.0A 5.3A 2.5B 2.0B 2.0B 
FC87 6.0A 5.8A 6.0A 3.3B 3.5B 4.7AB 
FC103 5.5A 5.8A 2.8B 2.8B 2.0B 2.3B 
FC106 5.0AB 6.0A 5.3A 4.0BC 2.00 3.3C 
FC114 5.8A 4.8B 5.8A 2.00 3.3C 2.8C 
FC136 6.0A 3.0B 5.8A 2.3B 2.0B 2.8B 
FC138 6.0A 5.3A 3.0B 3.3B 3.8B 6.0A 
FC143 5.8A 4.5AB 4.7AB 3.0BC 2.5C 5.3A 
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TABLE V (continued) 

CROSS CLONE TRIUMPH PIONEER KS30 PI PI CAP BAM 
8300 220248 229828 

Parent F 5.8A 4.3B 2.0C 2.0C 2.0C 2.0C 

FXF FF4 6.0A 4.5B 2.8C 2.3C 2.3C 2.0C 
FF15 5.5A 4.8AB 4.0B 2.0C 2.5C 2.0C 
FF141 5.0A 5.5A 4.0B 2.5C 2.3C 2.8C 
FF161 6.0A 6.0A 6.0A 2.0B 2.0B 2.0B 
FF203 6.0A 6.0A 6.0A 2.0B 2.0B 2.0B 
FF272 5.0B 6.0A 2.3C 2.0C 2.0C 2.0C 

15FF@ FX4 6.0A 3.5CD 4.0BC 2.80 2.50 4.8B 
FX161 4.8A 2.0B 4.0AB 4.0B 2.0B 2.0B 

Parent G 6.0A 2.8B 2.3B 2.3B 2.5B 2.3B 

GXG SS74 6.0A 6.0A 5.3A 2.3B 2.8B 
SS77 5.8A 3.0BC 3.7B 2.0C 3.0BC 4.0B 
SS85 6.0A 2.3B 2.0B 2.0B 2.3B 
SS102 6.0A 3.3B 3.5B 2.0C 2.3C 2.3C 

Clone2 B 6.0A 5.0B 4.0C 2.50 2.00 2.00 
H 6.0A 4.5B 5.5A 2.0C 3.8B 2.3C 
I 6.0A 4.5B 3.0C 2.00 2.3CD 2.8CD 

ALA-A 6.0A 5.3B 6.0A 6.0A 2.0C 6.0A 
ALA-B 5.0A 4.0A 5.3A 5.0A 2.3B 5.0A 
GA-B 5.0A 5.8A 6.0A 3.5B 2.5C 5.7A 
Kl 3.3C 4.5B 6.0A 2.00 2.00 2.00 
K2 5.5A 5.3A 5.3A 3.8B 5.0A 5.3A 
K4 6.0A 5.8AB 5.3B 5.8AB 5.8AB 6.0A 
NPI 5.8A S.OB 6.0A 5.8A 2.00 3.0C 
P304 4.0B 5.oAi3 6.0A 4.5B 2.0C 2.8C 
TMl 3.3B 5.0A 5.0A 2.0C 2.0C 2.3BC 
TM3 5.8A 6.0A 6.0A 6.0A 2.3B 5.0A 

2 Field Collected Clones from Various States 

Means in each row followed by the same letter are not significantly different at, P ~).05, Duncan's 
Multiple Range Test (SAS Institute 1985). 
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