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CHAPTER I 

INTRODUCTION 

The spotted alfalfa aphid, Therioaphis maculata 

' 
(Buckton) and the pea aphid, Acyrthosiphon pisum (Harr1s) 

are economically important insects in alfalfa production. 

Alternative control measures for these pests, other than 

insecticides, can be of ecological and econom1cal advantage 

(Sorensen et al., 1988). Understanding at the molecular 

level the relationship between these pests and their host 

plants permit even more effective control by host plant 

resistance. Characterizing biochemical markers associated 

with aspects of this interaction related to feeding of 

aphids such as ethylene may indicate what biochemical as 

well as physiological processes are occurring in the 

relationship between aphids and their hosts. 

Ethylene is produced by plants in response to 

environmental stress and is a marker for plant senescence 

(Leshem et al., 1986). Ethylene evolution has been 

demonstrated in conjunction with feeding by the spotted 

tentiform leafminer, Phyllonorycter blancardella F. (Kappel 

et al., 1987) and by the cotton fleahopper, Pseudatomoscel1s 

seriatus (Reuter) (Martinet al., 1988). Ethylene 

production has been shown to be associated w1th 
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hypersensitivity reactions (HR) to plant pathogens in 

resistant plants (Legge & Thompson, 1983). The HR involves 

production of plant defense chemicals like phytoalexins by 

1nduction of key enzymes such as L-Phenylalanineammonia

lyase (EC 4.3.1.5) (PAL). Ethylene is believed to be the 

compound responsible for the activation of genes mediating 

production of such enzymes (Ecker & Davis, 1987). Ethylene 

production by resistant Pinus radiata D.Don in response to 

attack by Sirex noctilio F. has also been documented (Shain 

& Hillis, 1972). It is speculated that ethylene may be 

usedas a marker to distinguish the susceptible and res1stant 

P.radiata. 

Lipid peroxidation is another indication of plant 

stress and senescence. Membranal integrity of cells is 

compromised by actions of phospholipases, hydrolases, and 

lipoxygenase (Leshem et al., 1986). Hilderbrand et al. 

(1986) demonstrated that feeding by the twospotted spider 

mite, Tetranychus urticae Koch, in soybeans caused an 

increase in lipid peroxidation and in the activity of 

lipoxygenase. Products resulting from the action of 

lipoxygenase upon the phospholipid substrates (lipid 

peroxides) decompose to give aldehydes and volat1le 

hydrocarbons such as ethane, pentane (Pitkanen et al., 1989; 

Leshem et al., 1986), and ethylene in combination with 1-

aminocyclopropane-1-carboxylic acid (Bousquet & Thimann, 

1984; Legge & Thompson, 1983). 

The compound 1-aminocyclopropane-1-carboxylic acid 



(ACC) is an immediate precursor to ethylene (Adams & 

Yang,1979). The formation of ACC by ACC synthase is the 

rate limiting step in ethylene biosynthesis (Bleeker, 1987; 

Boller et al., 1979). 

3 

The overall objectives of this study were to (1.) 

determine if ethylene is produced by alfalfa in response to 

aphid feeding and to characterize the production (2.)compare 

the ethylene production by susceptible, toleant, and 

resistant clones (3.) describe the biochemical components of 

ethylene production in response to aphid feeding by 

investigating ACC, the affects of ethylene inhibitors, and 

lipid peroxidation. The above objectives reflect the 

interest in investigating the theory that the response of 

alfalfa to feeding by aphids is a senescence-like process. 



CHAPTER II 

LITERATURE REVIEW 

Effects of Ethylene on Plants 

Since the report by Crocker and Knight (1908), it has 

been known that small amounts of ethylene have a pronounced 

influence on all types of plants. As l1ttle as 0.1~1/1 was 

shown to cause carnation petals to wither. Gane (1934) 

provided chemical evidence that plants themselves produced 

ethylene. Not until 1935 was there a theory impl1cat1ng 

ethylene as an important component in plant development. 

Zimmerman and Wilcoxon (1935) suggested that ethylene may 

play an 1mportant role in the effects caused by indole-3-

acetic ac1d (IAA) such as epinasty. It is now well 

documented that ethylene is an important part of many 

processes mediated by auxins such as IAA (Table I) and 

regulates many important enzymes in plants (Table II). 

Ethylene and Senescence 

Senescence is defined as the deteriorative process that 

1s a natural cause of death (Leopold, 1961). The first 

1ndication that ethylene has a role in fol1ar senescence was 

that the incubation of plant mater1al in the presence of 

ethylene caused loss of chlorophyll (Mack, 1927; Nilsen & 

4 



TABLE I 

DEVELOPMENTAL PROCESSES WHERE AUXIN-INDUCED 
ETHYLNENE PRODUCTION IS THOUGHT TO 

MEDIATE AUXIN ACTION 

1. Abscission 
2. Apical dominance 
3. Branch angle 
4 • Bud growth 
5. Callus, Shoot initiation and growth 
6. Epinasty 
7. Flowering inhibition 
8. Flower~ng, promotion ~n bromel~ads 
9. Flowering, senescence 
10.Flowering, sex expression in cucurbits 
11.Hypertrophy of hypocotyls 
12.Isocoumarin formation in carrots 
13.Latex flow, promotion 
14.Phenylalanine ammonia lyase 
15.Root elongation, inhibition 
16 • Root ini tia·tion 
17.Stem elongation, inhibition 
18.Swelling, onion leaf bases 

Source: Abeles,F.B •• "Ethylene and Plant Development: 
An: Introduction." Ethylene and Plant Development. 
pp 1-8. 
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TABLE II 

ENZYMES REGULATED BY ETHYLENE 

ABSCISSION 
Cellulase 
Polygalacturonidase 

AERENCHYMA 
Cellulase 

RIPENING 
Cellulase 
Chlorophyllase 
Invertase 
Laccase 
Malate dehydrogenase 
Polygalacturonidase 

SENESCENCE 
Ribonuclease 

STRESS 
Beta-1,3-glucanase 
Chitinase 
Cinnamate-4-hydroxylase 
Hydroxycinnamate CoA ligase 
Hydroxyproline rich glycoprotein 
Phenylalanine ammonia lyase 

FUNCTION NOT KNOWN 
Ethylene mono-oxygenase 
Peroxidase 

Source: Abeles,F.B .. "Ethylene and Plant Development: 
An Introduction." Ethylene and Plant Development. 
pp 1-8. 
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Hodges, 1983). The efficacy of the ethylene treatment was 

most pronounced using excised tissue maintained under 

continuous light (Gepstein & Thimann, 1981) and may also be 

dependent upon the maturity of the tissue (Brady et al., 

1974). Treatment of excised tissue with ACC also promoted 

chlorophyll breakdown (Kao & Yang, 1983). Additional 

evidence that ethylene plays a role in foliar senescence was 

the demonstration of an ethylene climacteric during the 

course of the process. A rise in the endogenous levels of 

ethylene has been observed in both freshly detached 

senescing leaves (Aharoni et al., 1979) and in mature green 

leaf tissue excised and induced to senesce after removal 

from the plant (Aharoni et al., 1979; McGlasson et al., 

1975; Roberts & Obsorne, 1981). In the latter instance, the 

rise in ethylene production can occur within 24 hours after 

removal and may be related to a wound phenomenon assoc1ated 

with tissue excisions (Even-Chen et al., 1978). 

A number of workers have documented the appearance of 

the ethylene climacteric as an event subsequent to the f1rst 

visible signs of senescence (Aharoni et al., 1979; Even

Chen et al., 1978). A number of reports correlating the 

ethylene climacteric with the period of most rapid 

chlorophyll loss (Gepstein & Thimann, 1981; Aharoni et al., 

1979; Ferguson et al., 1983) may implicate it as a regulator 

of the rate of senescence. 

The mode of action of ethylene in plants is not 

definitively known. However, it is widely accepted that 
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there is a definite relationship between ethylene production 

and plant senescence and/or plant stress. 

From what is known about the senescence process, it is 

assumed that all plant cells produce ethylene at a constant 

low level. Thus, the ability for ethylene to act as a 

regulator or as an active participant in physiological 

processes is dependent upon one or both of the following 

(1.) a change in sensitivi~y of the cell to the endogenous 

levels of ethylene andjor (2.) a response caused by a change 

in the level of ethylene produced by the tissue (Abeles, 

1985) • 

Biosynthesis of Ethylene 

The biosynthesis of ethylene in plants occurs via a 

relatively simple pathway involving two enzymatic steps. s

adenosyl-L-methionine (SAM) is converted to 1-aminocyclo

propane-1-carboxylic acid (ACC) by the enzyme ACC synthase 

(S-adenosyl-L-methion1ne methylthioadenosine-lyase, EC 

4.4.1.14) (Bleeker, 1987). The intermediate ACC is 

subsequently oxidized to ethylene by a poorly understood 

enzymatic step involving what's commonly referred to as the 

ethylene forming enzyme (EFE) (Bleeker, 1987). It has been 

proposed that a pyridoxal phosphate and a Schiff's base 

intermed1ate are involved in the conversion of s-adenosyl

methionine to ACC (Figure 1). Adam & Mayak (1984) 

reported on an enzyme 1n carnation petals that may be EFE, 

but the results were inconclusive. 



-
C0 8 
I 

CH 3 -3-CH 2 -CH 2 -C-NH 3 
I I /\-

+ 
C0 2 
I 

CH -3-CH -CH -C-H•CH-
3 1 a a 1_.. ~ ~· Adenosine H Adenosine H 

Figure 1. 
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Biosynthetic pathway for ACC production from 
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substituted carboxaldehyde represents enzyme bound 
pyrtdoxal phosphate Modified from Smtth and Hall, 
1984 1.0 
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ACC was first isolated from ripe apples and pears over 

30 years ago (Burroughs, 1957). Burroughs (1960) observed 

that the amount of ACC increased in pears during storage and 

speculated that this amino acid may be involved in fruit 

ripening. The importance of ACC in plant physiology was 

notrealized until the discovery by Adams & Yang (1979) that 

ethylene was synthesized from ACC (Figure 2). This pathway 

operates in a number of higher plant tissues. 

Cameron et al. (1979) demonstrated that the application 

of ACC to plant tissues (except for preclimacteric flowers 

and fruit) caused a marked increase in the product1on of 

ethylene. This suggests that the enzyme system converting 

ACC to ethylene is largely constitutive and that the 

formation of ACC is the rate-limiting step in this process. 

The enzyme system that is responsible for the conversio~ of 

ACC to ethylene still remains to be completely 

characterized, but the reaction mechanisms and some of the 

degradation products have been identified. As noted by Yang 

(1981) ACC can be oxidized by a hydroxylase to N-hydroxy

ACC which is then fragmented into ethylene and cyanoform1c 

acid. Cyanoformic acid is very labile and breaks down 

spontaneously to carbon dioxide (derived from the carboxyl 

group of ACC) and hydrogen cyanide (derived from carbon 

number one of ACC). Some eviden~e suggests that the 

involvement of hydroperoxides, formed by lipid peroxidat1on 

are necessary for the formation of a free radical 

intermediate of ACC, which in turn undergoes a two electron 
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oxidation to form ethylene (Figure 3) (Legge & Thompson, 

1983). 

There is an alternate pathway for the fate of ACC other 

than the formation of ethylene. Amrhein et al. (1984) 

discovered in buckwheat seedlings that endogenously supplied 

ACC was converted to a conjugate that was identified as 
' 

malonyl-ACe (MACC) (Figure 2). Apelbaum & Yang (1981) had 

previously observed that the loss of ACC during an 

incubation period was greater than the quantity of ethylene 

produced during the same period, suggesting that ACC must 

have been metabolized by some pathway other than that for 

ethylene production. Since MACC is a poor producer of 

ethylene and the conjugation of ACC to MACC is irreversible, 

it is thought that MACC is a biologically inactive end-

product rather than a storage form of ACC in plants (Amrhe1n 

et al., 1982). 

Another mechanism for the production of ethylene by 

plants is through the formation and decomposition of lipid 

peroxides formed from polyunsaturated fatty acids such as 

linoleic acid. Membranal phospholipids are acted upon by 

phospholipase A2 , phospholipase B, lysophospholipase, and 

lipolytic acyl hydrolase to form free polyunsaturated fatty 

acids. These in turn are acted upon by the enzyme 

lipoxygenase (lino~eate:oxygen oxidoreductase, EC 

1.13.11.12) to form conjugated 9- and 13-hydroperoxy fatty 

acids (Galliard, 1979). Verhagen et al. (1978) indicated 

that hydroperoxy fatty acids are further degraded by 
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lipoxygenase to yield volatile hydrocarbons such as pentane, 

ethane and ethylene. 

Peroxidation is described as the process (which 

includes autoxidation) that produces peroxides and their 

degradation products, which includes products such as 

malondialdehyde (MDA), ethane, pentane, and ethylene. MDA 

is used as a measure of lipid peroxidation in many systems 

(Dhindsa et al., 1980). 

The enzyme lipoxygenase plays an important role in the 

generation of lipid peroxides. This enzyme catalyzes the 

oxidation of unsaturated fatty acids containing a 1,4-cis, 

cis-pentadiene system (Vliegenthart & Veldink, 1982). Of 

particular consequence is the oxygenation of linoleic and 

linolenic acids to hydroperoxy derivatives. This process is 

detrimental to the proper,function of membranes in plants, 

causing the loss of fluidity of membranes (membrane lipids 

become more crystalline) at physiological temperatures 

(Pauls & Thompson, 1980). Moreover, this contributes to 

cell deterioration and causes membranes to become "leaky". 

This process in turn contributes to the loss of chlorophyll 

and photosynthate in senescing tissues (Kar, 1986). 

Ethylene Production and Insect Feeding 

Ethylene production by plants in relation to insect 

feeding has been demonstrated by apple leaves in response to 

feeding by the spotted tentiform leafminer (Kappel et al., 

1987) and by cotton in response to cotton fleahopper (Duffey 
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& Powell, 1979; Martinet al., 1988; Burden et al., 1989). 

It was noted that when fed upon, apple leaves produced 

significantly more ethylene than those without feeding. 

Duffey & Powell (1979) postulated that the ethylene produced 

by cotton in response to fleahopper feeding resulted from 

inoculation of the plant with a plant pathogen by the 

fleahopper. However, more recently Martin et al. (1988) 

have suggested that salivary enzymes of the fleahopper are 

responsible for the effect. One of these enzymes, 

polygalacturonase, caused an increased level of ethylene 

production 1n comparison to controls. This was due to 

necrosis caused by degradation of the middle lammelae. 

Burden et al. (1989) demonstrated that the fleahopper itself 

contains indole-3-acetic acid (IAA), an auxin known to 

meditate ethylene activity and 1-aminocyclopropane-1-

carboxylic acid (ACC), the direct precursor to ethylene. 

When injected into plants, whole body homogenates of 

fleahopper nymphs and adults caused an increase 1n ethylene 

evolution compared to controls. 



CHAPTER III 

MATERIALS AND METHODS 

' 
Insect and Plant Rearing 

Colonies of spotted alfalfa aphids (SAA) were reared 

under greenhouse conditions at 25 ± 7°C with a minimum of 16 

hr. photophase. Pea aphids (PA) were maintained in an 

environmental cabinet at 25 ± 2°C with a photoperiod of 

14:10 (L:D). Insects were reared on alfalfa bouquets placed 

in funnel cages. 

Plants used were spotted alfalfa aphid resistant, 

tolerant, and susceptible selections of alfalfa 

(Medicago sativa L.) cultivar OK-08, an Oklahoma Common that 

were previously described by Jimenez et al. (1988). In the 

remainder of this thesis, these plants will be referred to 

as susceptible, tolerant, and resistant. Plants were grown 

~n an environmental chamber at 25 ± 1°C, relative humidity 

of 60%, and a photoperiod of 16:8 (L:D). 

Aged Aphids and Plant Material 

Aphids of three and seven days of age (plus or minus 

one day) were obtained by placing virginopara of SAA and PA 

on trifoliolates and allowing the aphids to produce nymphs. 

The reproductives were removed 24 hrs. later and the nymphs 

16 



were allowed to feed and develop for three or seven days. 

Newly excised trifoliolates were placed in the cages as 

supplement food over seven days. 

17 

Leaves of known age were obtained by marking newly 

emerging trifoliolates from the plant terminal with enamel 

paint at the base of the petiole. Leaves were then excised 

on a particular day as needed. 

Ethylene Assays 

Three SAA or PA (as treatments) or zero aphids (as 

uninfested controls) were placed on susceptible, res1stant, 

or tolerant trifoliolate explants. One aphid was placed on 

each of the three leaflets. These explants were placed in 

12 X 75mm culture tubes (Sargent-Welch Co.), with the cut 

ends of petioles inserted in 1ml of 1% tissue culture 

gradeagar (Gibco, Lab.) made with 0.1% Hoagland's solution 

(Hoagland & Arnon, 1938), or by placing the cut end of each 

petiole into liquid 0.1% Hoagland's solution contained in a 

500~1 microcentrifuge tube, which was then placed in the 

culture tube. Sample tubes were capped with rubber serum 

caps four hours prior to sampling. Nymphs that had been 

produced by the SAA or the PA, were removed daily prior to 

capping. 

Sampling was done by removing 1ml from the headspace of 

the sample tube and injecting onto a 1/8 11 X 5 1 stainless 

steel column packed with activated alumina (60/80 mesh). 

The column was installed in a Hewlett-Packard Model 5840 Gas 
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Chromatograph with an oven temperature of 90°C isothermal, 

injector temperature of 100°C, and Flame Ionization Detector 

at 150°C, with Helium as a carrier gas at a rate of 30 

mllmin. The volume of ethylene produced was determined by 

comparing the peak height of sample peaks with a standard 

curve generated using different concentrations of an 

ethylene standard (Neogen, Inc.) The rate of ethylene (C2H4 ) 

production was expressed as follows: 

nl C2H4 I wt. of tissue (gm) I time (hrs) 

where 

1 ppm = 1nllml 

nl C2H4 = nllml C2H4 x val. of sample tube 

Inhibition of Ethylene Biosynthesis 

Inhibition of ethylene production by aminoethoxy

vinylglycine (AVG) and aminooxyacetic acid (AOA) was 

measured at various inhibitor concentrations. The inhib1tor 

solutions were placed into 500~1 microcentrifuge tubes wh1ch 

were placed inside 12 X 75mm culture tubes. Cut ends of 

petioles of explants were then placed in the tubes to allow 

for tissue uptake of the inhibitor. Explants were exposed 

to the inhibitors for seven days. The headspace of each 

tube was sampled daily four hours after capping and the 

amount of ethylene produced in that time period was 

quantified as described earlier. Inhibition was expressed as 

a percentage of ethylene produced by uninh1bited controls. 

The use of these inhib1tors had no appearent affect on 



19 

an aphid longevitiy or fecundity. 

Determination of Lipid Peroxidation 

The level of lipid peroxidation was measured 1n terms 

of malondialdehyde (MDA, a product of lipid peroxidation) 

content determined by a reaction with thiobarbituric acid 

(TBA) (Dhindsa et al.,1980). Trifoliolates were homogenized 

in 500~1 0.1% trichloroacetic acid (TCA) then centrifuged 

for 20 minutes in a Microfuge E (Beckman Instruments) . one 

hundred microliters of supernatant were decanted and 

combined with 400~1 of 20% TCA containing 0.5% TBA. Th1s 

mixture was heated for 30 min. at 95°C, cooled in an ice 

bath and centrifuged for 20 min. The supernatant was 

decanted and absorbance then read with a Beckman DU-65 

specrtrophotometer at 532nm and the value for non-specific 

absorbance at 600nm was subtracted. The MDA was calculated 

using 1ts extinction coefficient of 155 mM- 1 cm-1 • 

Assay for ACC 

ACC concentration in alfalfa tissue was measured as a 

function of the amount of ethylene produced from isolated 

ACC. ACC was isolated from 0.2 gms of tissue homogen1zed in 

4ml of methanol:water:chloroform at a 15:5:3 v;v;v rat1o. 

This homogenate was shaken for 24 hrs. at 4°C. One 

milliliter each of chloroform and water were added to the 

homogenate, this mixture was then centrifuged for 10 

minutes. The aqueous phase was separated, lyoph1l1zed, then 



resuspended in 40ml of 25% acetonitrile. This solution was 

then applied to a 500 mg strong cation exchange column 

(SCX) (Supelco, Inc.). The sex column was then washed 2X 

with 750~1 of acetonitrile, followed by 2ml of 25% 
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acetonitrile containing 5% ammonia, which was then collected 

in a 12mm X 75mm culture tube. This tube contained all the 

amino acids extracted from in the tissue, including ACC, 

which is the only amino acid which reacts with the reaction 

mixture forming ethylene. This mixture was 100~1 of 100~M 

HgC12 and 100~1 of 2:1 vjv solution of 5% NaOCl (Clorox 

bleach) and saturated NaOH (Concepcion et al., 1979). The 

HgC12 solution was injected into the culture tube (sealed 

with a rubber serum stopper) first, shaken, then the 

NaOCl/NaOH solution was added. Ethylene was determined as 

described above. 

Statistical Analysis 

The ANOVA procedure and F tests were used to test 

forsignif~cant differences in means and Scheffe's method was 

used to make multiple comparisons. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Ethylene Production 

The standard curve for the analysis of ethylene was 

linear in the range from 0.1 ppm to 1.0 ppm of ethylene 

(Figure 4). The amount of ethylene in samples was 

determined from this type standard curve. 

In an initial study to determine if ethylene was 

produced in response to SAA feeding, trifoliolates from 

aphid infested and uninfested plants were compared. 
-Trifoliolates were removed from plants and placed in capped 

tubes for four hours and then ethylene was measured. Aphid

infested plants produced significantly more ethylene than 

controls (Figure 5). 

Since ethylene may be produced by excised trifol1olates 

in response to being removed from the plant (wounding), the 

production of ethylene was next monitored over a period of 

several days. In this experimept trifoliolates were removed 

from uninfested plants and each was infested with three 

aphids. Ethylene was then determined each day for seven 

days. The production of ethylene by uninfested leaves was 

highest 24 hours postinfestation and then decreased to low 

levels (Figure 6). Ethylene production by infested leaves 
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increased up to day two and a sustained level of production 

occurred up to seven days postinfestation. It should be 

noted that in this initial experiment no attempt was made to 

select leaves of a known age. 

Two methods were used to verify that ethylene was be1ng 

measured in these experiments. First the retention time of 

the unknown peak was compared to that of ethylene in an 

authentic standard gas mixture and was found to be identical 

(Figure 7). The second method was to treat the sample gas 

ith a 0.2 M solution of Hg(Cl04 ) 2 which is known to 

quant1tatively bind ethylene. This treatment completely 

removed the peak from a gas sample (Figure Sb). Further 

conformation was obtained by treating the Hg(Cl04 ) 2 solut1on 

containing the trapped gas with chloride ion which is known 

to release bound ethylene (Sanders et al., 1989). This 

treatment resulted in the quantitative recovery (95%) of the 

ethylene in the original sample (Figure Sc). These results 

confirm that ethylene was the gas being produced by alfalfa 

in response to SAA feeding. 

Ethylene Production and Age of Tissue 

Aharoni et al. {1979) stated that ethylene was produced 

by mature green plant tissue, but whether ethylene could be 

produced by very old or very young plant tissue was not 

reported. Studies to determine if ethylene production by 

alfalfa infested with aphids is an age-dependent phenomenon 

were done and the results indicate in the alfalfa cultivar 
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tested (OK-08), ethylene production differs according to the 

age of the leaves at infestation, with maximum production 

occurring in tissue eight days of age (Figure 9). In 

subsequent experiments eight day old trifoliolates were 

employed. 

Ethylene Production and Age of Aphids 

Earlier studies by Nickel and Sylvester (1959) 

indicated that the toxic symptoms produced by SAA feeding 

varied with the age of the aphid. Third and fourth instar, 

nymphs produced greater symptoms than younger, first and 

second instar ,nymphs. Spotted alfalfa aphids (SAA) three 

and seven days of age were placed on explants of susceptible 

alfalfa explants of eight days of age. Aphids three days of 

age (Figure 10) appeared to be unable to induce ethylene 

production at the levels observed for aphids seven days old 

(Figure 11). These studies seem to support the findings of 

Nickel and Sylvester (1959), however, due to large var1at1on 

in the data the observed differences were not signif1cant at 

the P ~ 0.05 level. More studies will be required to 

clarify this point. In order to eliminate possible 

complications of aphid age, only aphids of known age (7 

days) were used in subsequent experiments. 

Ethylene Production in Relation to Plant Genotype 

Three alfalfa plant genotypes that were character1zed 

earlier by Jimenez et al. (1988) were used 1n these stud1es. 
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These plants which were selected from OK-08 were defined as 

SAA susceptible, tolerant, or resistant (antibioticjanti

xenotic). Testing the effect of aphid feeding on ethylene 

production was based on findings in other systems using 

susceptible and resistant plants to pathogens (Gwinn et al. 

1989) and insect pests (Shain & Hillis, 1972) where a high 

level of ethylene production was associated with an 
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incompatible or resistant reaction to a particular parasite. 

Ethylene production by SAA infested explants from the 

three plant genotypes was compare~ to uninfested explants 

from each of the respective plant genotypes. Results of 

these studies indicate that ethylene production by 1nfested 

SAA susceptible explants is higher than in uninfested 

explants at three days postinfestation (Figure 11) and that 

the difference was significant to the P ~ 0.05 level six 

days postinfestation (Table III). 

Production of ethylene by resistant explants was 
' 

similar when infested or uninfested (Figure 12) and no 

differences to the P ~ 0.05 level were observed except for 

six days postinfestation (Table III) . 

Production of ethylene by tolerant explants with aphids 

was higher than uninfested explants (Figure 13). The 

differences in production were significant at the P ~ 0.05 

except for one day postinfestation (Table III). 

Ethylene evolution by infested susceptible and tolerant 

genotypes are approximately the same three days post-
' 

infestation, but the resistant gentotype was lower than the 



TABLE III 

ETHYLENE PRODUCTION• BY EXPLANTS FROM SAA SUSCEPTIBLE, 
TOLERANT, AND RESISTANT GENOTYPES WITH RESPECT TO 

APHID FEEDING OVER SEVEN DAYS 

GENOTYPE DAY UNINFESTED SAA INFESTED PA INFESTED 

Susceptible 1 3.06a 2.42a 2.10a 
2 2.12a 2.07a,b 1.19b 
3 1.90a 2.32a 2.11a 
4 1.75a 2.74-a,b 6.16b 
5 1.79a 3.83a,b 5.13b 
6 2.24a 6.71b 7.31b 
7 3.44a 9.93b 9.42b 

Res1.stant 1 1.88a 1.90a 1.31b 
2 1.54a 1. 07a,b 0.87b 
3 1.20a 0.97a l.Sla 
4 0.84a 1.50a,b 1.98b 
5 0.77a 1.66a 3.09b 
6 0.89a 2.00b 2.92b 
7 1.96a 1. 71a 3.10a 

Tolerant 1 1.26a 1.79a 2.29a 
2 0.43a 1.27b 2.44c 
3 0.41a 2.23b 3.41b 
4 0.34a 1.92b 5.75c 
5 0.36a 2.02b 3.18b 
6 0.13a 1.60b 2.09b 
7 0.31a 1.45b 0.95a 

aExpressed as nl/g of fresh wt.jhr 

Means in rows followed by the same letter are not 
significantly different (ANOVA,Scheffe's,P 5 0.05) 
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former (Figure 14). Seven days after infestation the 

tolerant and resistant plants produce similar amounts of 

ethylene, but the susceptible clone produces much more. 
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The,mean production of ethylene for seven days post

infestation was significantly higher for the SAA infested 

explants than for the uninfested explants of the susceptible 

and tolerant lines (Table IV). Susceptible clones produced 

significantly greater amounts of ethylene than resistant 

plants infested for the same time period. For this time 

period, SAA infested tolerant and resistant plants produced 

about the same amount of ethylene. The means in th1s 

comparison are not significantly different. These results 

contradict the reports by Gwinn et al. (1989) and Shain & 

Hillis (1972) with respect to ethylene production by plants 

with resistance to various parasites. It is common for 

resistant plants to produce high amounts of ethylene in 

response to attack. 

Results to this point indicated that the symptoms 

induced by SAA feeding might be senescence-l1ke, in that 

ethylene production was greatly stimulated in susceptible 

plants where symptoms occur. In order to determine if this 

effect was specific to the SAA it was decided to examine the 

effects of another aphid on ethylene production. All of the 

genotypes used support PA. Unlike the SAA, the PA does not 

produce senescence-like symptoms in host plants. This aphid 

would allow us to compare feeding by a so-called tox1c aph1d 

(SAA) and with a non-toxic aph1d (PA). In this study due to 
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TABLE IV 

MEAN ETHYLENE PRODUCTION• BY EXPLANTS FROM THREE 
ALFALFA GENOTYPES FOR SEVEN DAYS 

POST-INFESTATION 

38 

GENOTYPE UNINFESTED SAA INFESTED PA INFESTED 

Susceptible A 2.27a A 4.36b A 5.10b 

Tolerant B 0.46a B 1. 74b B 2.81c 

Res1.stant C 1. 30a B 1.53a B 2.18b 

•Expressed as nl/g of fresh wt.jhr 

Means in rows followed by the same lower case letter are not 
significantly different. (ANOVA,Scheffe's,P ~ 0.05) 

Means in columns preceded by the same upper case letter are 
not significantly different. (ANOVA,Scheffe's,P ~ 0.05) 
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time consideration, most of the studies considered only 

susceptible and resistant plant genotypes with respect to PA 

feeding. 

Ethylene production by susceptible explants infested 

with PA exhibited a pattern similar to susceptible explants 

infested with SAA (Figure 15). The levels of ethylene 

increased over time in infested tissue, however, the 

differences between uninfested and infested became 

statistically significant earlier in the time course (Table 

III). 

Again, ethylene production by resistant explants with 

PA showed the same type of kinetics as the SAA infested 

explants (Figure 16). The differences in means for each 

particular day were slight as compared to uninfested. 

However, there were only two days for which the differences 

were not significant (Table III). 

Means for the seven day infestation period w1th PA 

indicated that the same pattern as when infested with SAA. 

There are significant d1fferences in mean ethylene 

production by the susceptible, tolerant and resistant 
' 

genotypes with the susceptible producing more than the 

tolerant and resistant (Table IV). According to the data, 

PA feeding induces the same response (ethylene product1on) 

in relation to plant genotype as the SAA; the aphid by wh1ch 

the genotypes were selected. 
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Ethylene Production in Relation to Whole 

Plant Infestation 

Up to this point all controlled studies were conducted 

in vitro (except for preliminary studies) using explants. 

Another avenue to be explored is the effect of infesting 

whole plants and measuring ethylene production by these 

tissues. During of infestation, age of the plant tissue at 

infestation, position of the trifoliolate on, the stem, and 

possible systemic effects were parameters investigated in 

this type of system. 
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The first study of the affects on whole plants involved 

infesting SAA susceptible, tolerant, and resistant plants, 

and comparing ethylene produciton to that in uninfested 

,Plants. The plants were heavily infested with 3000-4000 SAA 

per plant. All samples in this study were taken from the 

lowest node of stems having SAA and trifoliolates from 
' uninfested plants were removed from the same relative 

positions. Ethylene production was measured immediately 

after removal of the leaves. 
' 

Figure 17 shows ethylene production by trifoliolates 

from SAA infested and uninfested plants of the susceptible 

type at three, seven, and ten days post infestation. Over 

time, the rate of ethylene production by these trifoliolates 

increased, while the rate for the uninfested tissue remained 

lower and relatively unchanged throughout the study. 

Ethylene product1on by infested plant material was 

signif1cantly greater than uninfested for each of the sample 
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periods. Also, the amount of ethylene produced by tissue 

was significantly greater on ten days than seven days post

infestation, which in turn was significantly greater than 

the amount produced three days postinfestation (Table V). 

Ethylene production for the resistant plant tissue 

increased significantly as the length of infestation 

increased (Figure 18). However,' the amounts of ethylene 

produced by uninfested trifoliolates were not significantly 

different from the amounts produced by aphid infested 

material (Table V). 
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Contrary to observations for susceptible plants, in 

tolerant plants, the amount to ethylene produced by infested 

material decreased over time (Figure 19). But as in the 

susceptible and resistant clones, ethylene production by 

uninfested tolerant plants was lower than the infested and 

remained at a relatively constant rate. Ethylene production 

by infested material decreased significantly over time, 

while there was no significant change in the amount over 

time in the uninfested trifoliolates (Table V) . 

In a second experiment the effects of position on the 

stem, and the age of plant tissue were studied to determine 

if these parameters had any effect on ethylene production. 

Each trifoliolate in each position had a corresponding 

agethus allowing ethylene production to be evaluated in 

relation to age and position simultaneously. Single SAA 

adults were caged on trifoliolates of known age on 

susceptible, tolerant, and resistant plants. Aph1ds were 



TABLE V 

ETHYLENE PRODUCTION• BY TRIFOLIOLATES FROM SAA INFESTED 
PLANTS IN RELATION TO GENOTYPE AND LENGTH 

Plant Status 

Infested 

Uninfested 

Infested 

Uninfested 

Infested 

Uninfested 

OF INFESTATION 

Duration of Infestation 
Day 3 Day 7 Day 10 

2.18a 
{0.61) 

0.97d 
(0.23) 

6.65h 
(2.65) 

0.88d 
(0.33) 

0.86e 
(0.26) 

0.88de 
(0.37) 

Susceptible 

8.75b 
( 1. 98) 

1.10d 
(0.15) 

Tolerant 

3.89i 
(1. 66) 

1.06d 
(0.36) 

Resistant 

1.41f 
(0.47) 

1.16df 
(0.30) 

13.29c 
(4.21) 

0.95d 
(0.86) 

3.29j 
( 1. 54) 

0.49d 
(0.85) 

1. 37g 
(1.21) 

1.05dg 
(0.52) 

•Expressed as nl/g of fresh wt.jhr, mean± (s.d.) 

Means followed by the same letter are not significanlty 
different. (ANOVA,Scheffe's,P 5 0.05) 
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allowed to feed and produce nymphs for one generation {130 

cumulative degree days). Aphids were removed and 

trifoliolates were removed from plants along those adjacent, 

either one node above those infested. Corresponding 

trifoliolates from uninfested plants were harvested and the 

rate of ethylene production measured. 

Ethylene production decreased in susceptible 

trifoliolates from the upper to the lower positions of the 

stem. {Figure 20). Amounts produced by the trifoliolates 

were lower than the the amounts produced by caged 

trifoliolates (uninfested and 1nfested). Ethylene 

production was lower by uninfested tissue. Differences 

inethylene production by infested and un1nfested plants were 

significant, while differences in production by uncaged 

trifoliolates were not signif~cant {Table VI). Table VI and 

Figures 21 and 22 show the same relationship between 

ethylene and position on the plant for tissues from tolerant 

and resistant plants respectively: Differences between each 

genotype were significant for each position including both 

infested and uninfested {Table VI). 

Similar to what is seen with position, ethylene 

production in relation age of tissue decreased as the age of 

the tissue increased. As seen previously, the suscept1ble 

clones produce the most ethylene {Figure 23), followed by 

the tolerant {Figure 24), then lastly the resistant (Figure 

25), all in relation to feeding by the SAA. The uninfested 

plants show the same relationship as the aphid infested 
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TABLE VI 

ETHYLENE PRODUCTION • BY SAA SUSCEPTIBLE INFESTED AND 
UNINFESTED TRIFOLIOLATES IN RELATION TO 

POSITION AND GENOTYPE 

Position GenotYJ;!e 
of Cage 
on Stem Susce)2tible Tolerant Resistant 

Ib uc I u I u 

Top 16.12 3.09 4.60 1. 76 1. 78 1.23 
(5.53) (0.34) ( 1. 19) (0.01) (0.47) (0.02) 

Adjd 1.46a 1.17a 0.78a 1.29a 0.57a 0.85a 
(0.84) (0.12) (0.09) (0.86) (0.10) (0.35) 

Mid 6.62 0.96 2.42 0.92 1.70 0.58 
(0.48) (0.24) (0.77) (0.01) (0.96) (0.01) 

Adj 0.65b 0.71b 0.42b 0.55b 0.81b 0.65b 
(0.22) (0.07) (0.02) (0.04) ( 0 .16) (0.35) 

Bottom 4.49 0.67 1.45 0.45 0.54 0.35c 
(0.78) (0.15) (0.39) (0.10) (0.19) (0.09) 

' 

Adj 0.49c 0.75c 0.44c 0.57c 0.18c 0.35c 
(0.14) (0.05) (0.16) (0.10) (0.03) (0.01) 

•Expressed as nl/g of fresh wt.jhr, 
binfested 

mean ± (s.d.) 

cuninfested 
dTrifoliolates without ·cages; one node above or below 

caged trifoliolates at the Top, Middle, or Bottom 

Means followed by the same letter are not significantly 
different. (ANOVA,Scheffe's,P 5 0.05). 
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tissue, but produce ethylene at much lower levels. This 

ind1cates that ethylene production by alfalfa is dependent 

upon the age of the tissue; younger tissue producing more 

ethylene than older. These results differ from that seen in 

explants, in which trifoliolates of intermediate age produce 

the most ethylene. 

Aphid Feeding and Lipid Peroxidation 

Hilderbrand et al. (1986) observed that in soybeans 

lipid peroxides increase in response to feeding by the 

twospotted spider mite Tetranychus urticae Koch. Spotted 

alfalfa aphid colony food plants infested with SAA were 

samples by removing at random trifoliolates from stems. 

Using a modification of the assay by Dhindsa et al., (1980), 

malondialdehyde, a product of lipid peroxidation, was 

measured in the plant samples. In susceptible alfalfa, 

lipid peroxides, measured as malondialdehyde, increased in 

response to aphid feeing. The amount measured in aphid 

infested foliage was significantly greater than the amount 

measured in uninfested controls (Figure 26). The presence 

of high levels of lipid peroxides may indicate that SAA 

feeding may induce a senecence-like process in susceptible 

alfalfa. 
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Development of an Assay for 

ACC in Alfalfa 

Quantifying the amount of ACC in alfalfa tissue was 

done based on a method by Concepcion et al. {1979). This 

method converts ACC to ethylene, which can be measured by 

gas chromatography. F~gure 27 shows a standard curve 

indicating the amount of ethylene produced from a known 

concentration of an ACC standard. In a preliminary study, 

it was shown that foliage from plants with heavy SAA 
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infestations, contain up to 2 nmolesjgm of fresh wt. of ACC, 

whereas uninfested plant material contained less than 1 

nmolejgm of fresh wt. These results are preliminary, 

however, they are consistant with the higher levels of 

ethylene production in aphid infested tissues. Further 

investigation of ACC levels in relation to aphid feeding and 

plant genotype will need to be done. 

J 

Inhibition of Ethylene Production 

Meijer and Brown {1988) used inh1bitors of ethylene 

synthesis {AVG and AOA) in alfalfa cell culture to inhibit 

so~atic embryogenesis. However, the concentrations used did 

not inhibit ethylene biosynthesis in cell culture. Ethylene 

production by susceptible alfalfa explants when infested 

with SAA was shown to be inhibited by the use of AVG 

{aminoethoxyvinylglycine) and AOA {aminooxyacetic acid) 

{F1gure 28) at concentrations listed in Tables VII and VIII 

respectively. Dose response curves for AVG {Figure 29) and 
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AVG 

TABLE VII 

EFFECT OF AMINOETHOXYVINYLGLYCINE (AVG) 
ON ETHYLENE PRODUCTION IN EXCISED 

TRIFOLIOLATES 

Concentration % ()f Control 
Cmicromolar) ± std. dev. % Inhibition 

670 18.15 ± 4.04 81.15 
500 32.74 ± 11.21 67.26 
330 44.78 ± 22.40 55.22 
170 53.73 ± 11.32 46.27 
100 78.49 ± 20.22 21.51 

80 80.39 ± 25.89 19.61 
40 96.27 + 36.56 3.73 
20 97.61 ± 39.93 2.39 
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AOA 

TABLE VIII 

EFFECT OF AMINOOXYACETIC ACID (AOA) ON ETHYLENE 
PRODUCTION IN EXCISED TRIFOLIOLATES 

Concentration % of Control 
<millimolar> ± std. dev. % Inhibl.tion 

33.3 23.40 ± 5.85 76.60 
16.7 29.26 ± 7.23 70.74 

6.7 42.53 ± 19.72 57.47 
3.3 98.97 ± 32.72 1.03 
1.0 126.82 ± 25.37' -26.28 
0.8 165.28 ± 46.63 -65.28 
0.6 176.04 ± 77.74 -76.04 
0.4 111.56 ± 51.36 -11.56 
0.2 119.94 ± 32.02 -19.94 
0.1 92.68 ± 45.24 7.32 
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AOA (Figure 30) indicate an !050 (dosage at which there is a 

50% inhibition of ethylene production) for each inhibitor. 

The !050 for AVG is approximately 240 ~M and for AOA it is 

approximately 10 mM. An interesting note is that at 

concentrations lower than 3.3mM, AOA actually stimulates 

ethylene production, indicating that these concentrations 

are exhibiting some stress on the plant tissue, and not 

inhibiting ethylene biosynthesis. Inhibitor concentrations 

used had no appearent effect on aphid longevity and 

fecundity. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Spotted alfalfa aphid susceptible, tolerant, and 

resistant explants produced ethylene in response to SAA and 

PA infestation. Newly excised trifoliolates and explants 

from susceptible alfalfa produce ethylene in response to SAA 

feeding. Ethylene production in explants peaked at two days 

postinfestation, and maintained a relatively constant level 

for the remaining five days. Explants eight days of age 

when removed f~om the plant displayed the h~ghest rate of 

ethylene production in response to SAA infestation. 

susceptible explants produced more ethylene than tolerant, 

resistant and uninfested explants in response to feed~ng by 

both aphid species. ToLerant explants were found to produce 

more ethylene than resistant explants. 

Samples removed from plants infested for three days 

produced less ethylene than from plants infeste~ for seven 

days; these in turn produced less ethylene than samples from 

plants infested for ten days. Trifoliolates from res~stant 

plants infested with SAA pr~duced ethylene at a constant low 

rate over the three sample dates. Tissue from tolerant 

plants infested with SAA produced ethylene at signif~cantly 

different rates on each of the sample dates with samples 
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three days postinfestation producing the most ethylene, 

seven days postinfestation producing at the intermed1ate 

rate, and ten days postinfestation producing the least 

amount of ethylene. Trifoliolates from all the uninfested 

plants produced the same low level of ethylene over all of 

the sample dates. 

Ethylene production by SAA susceptible, tolerant, and 

resistant trifoliolates infested with SAA decreased going 

from top to bottom of the stem. Ethylene production was 

greatest by susceptible clones, followed by the tolerant 
' 

clones, then res1stant producing the least amount of 

ethylene. The position on the stem {top to bottom) 

corresponds to the age of the tissue {young to old) which 

indicated that ethylene production decreased in relation to 

an increase in age of tissue. Tissue wh1ch was uninfested 
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showed the same relationship between ethylene production and 

position as the infested trifoliolates, except the level of 

ethylene production was much,lower. The trifoliolates in 

adjacent positions {without cages) produced ethylene at 

lower levels than the uninfested tissue, however the 

'relationship between position and ethylene production, was 

not as clear. 

Lipid peroxidation in susceptible plant material was 

shown to be greater in SAA infested material than in 

material that did not have aphids feeding upon it. L1pid 

peroxidation was measured as the amount of malondialdehyde 

present, which is a product of lipid peroxidation. 



Inhibition of ethylene biosynthesis was shown in SAA 

susceptible tissue by the use of AVG (aminoethoxyvinyl

glycine), an inhibitor of ACC synthase and AOA (aminooxy

acetic acid), a potent transaminase inhibitor. Ethylene 
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production by trifoliolates treated with inhibitors produced 

less ethylene than controls, but was not completely blocked. 

Several conclusions can be made about the affects of 

SAA feeding on alfalfa from the findings of these studies. 

It can be concluded that SAA feeding on alfalfa induce 

ethylene production in alfalfa at a higher rate than seen 1n 

uninfested alfalfa. Ethylene production and the generat1on 

of lipid peroxides are evidence supporting the the theory 

that SAA feeding induces a senescence-like process. L1pid 

peroxides are formed at greater levels in susceptible 

alfalfa fed upon by SAA than in alfalfa not fed upon. 

Ethylene production by alfalfa is an age related 

phenomenon. Older plant tissues produce less ethylene than 

younger. This corresponds to ethylene production by 

tr1foliolates in relation to position on the stem; lower 

foliage producing less ethylene than foliage on the upper 

part of the stem. 
'' 

Length of infestation affects the level of ethylene 

production. In susceptible alfalfa, as the length of 

infestation increases, ethylene production increases up to 

ten days. The opposite effect is seen in tolerant alfalfa. 

In the resistant clones, ethylene production does not change 

within the ten days. 
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These studies indicate that the production of ethylene 

by alfalfa is via methionine metabolism. The inhibitor AVG 

specifically inhibits ACC synthase. Conversion of s

adenosylmethionine to ACC blocked, thus inhibiting ethylene 

biosynthesis. AOA is a potent inhibitor of transamination. 

The inhibition prevents the resynthesis of methionine and 

thus the synthesis of s-adenosylmethionineis blocked. 

Ethylene production in not completely inhibited, but is much 

lower than aphid infested controls. This indicates that 

ethylene production via the breakdown of lipid peroxides may 

be present. 
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