
DESIGN AND IMPLEMENTATION OF A GRAPH-BASED

INTERFACE FOR NETWORK MODELING (GIN)

USING AN OBJECT-ORIENTED

APPROACH

By

CHAKRADHAR R. NANGA

Bachelor of Engineering

Bangalore University

Bangalore, India

1987

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1990

DESIGN AND IMPLEMENTATION OF A GRAPH-BASED

INTERFACE FOR NETWORK MODELING (GIN)

USING AN OBJECT-ORIENTED

APPROACH

Thesis Approved:

Dean of the Graduate College

ii

1366838

Oklahoma State Univ. Library

ACKNOWLEDGMENTS

I wish to express my grateful appreciation to Dr.

George E. Hedrick for his intelligent guidance and for

accepting to be the major advisor an~ Dr. Ramesh Sharda for

his interest, direction, wisdom, and counsel during the

conduct of this study, writing of this thesis and throughout

my graduate program. I also wish to thank my committee

member Dr. David W. Miller for his guidance, inspiration,

and invaluable aid.

Additionally, I wish to thank Mr. David Steiger of OXY­

USA, Inc. for providing the software and the facilities for

the research. Finally, I wish to express my gratitude to

Dr. Keith Willett for his support by employing me as a

graduate research assistant.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

General Statement of the Problem . . . • • 1
Objective of the Study • . . 2

II. RELATED STUDIES . 3

User Interfaces in OR/MS 3
User Interface Design Issues • . 8
Object Oriented Programming. 9

Classes 11
Methods and Messages. 11
Polymorphism. 13
Data Abstraction. 13
Inheritance 14
Late Binding. 15
Windowing Environments. • 18
Summary 18

Scope of the Study • . . 19

III. USER INTERFACE IMPLEMENTATION . 21

Message Protocols. • 21
Netwindow Class 23
Tboxwindow Class. • . . 28
Arc, Supply and Demandtool Classes. . 28
Supplynode and Demandnode Classes . . 30
Supeditnode and Demeditnode Classes . 31
Arcdialog Class 31
Netdatabase Class • 32
Costflowdialog Class. 33

Network Creation, Modification, Solution . 34
Support Tools. 43

Microsoft Windows • . . 43
Actor • . 45

Current Status of the System 49

IV. SUMMARY AND CONCLUSIONS .. 50

iv

Chapter Page

V. RECOMMENDATIONS FOR FURTHER STUDY. 51

BIBLIOGRAPHY ...

APPENDIXES ...

APPENDIX A - NET FILE FORMAT.

APPENDIX B - PIC FILE FORMAT.

v

52

56

57

59

LIST OF FIGURES

Figure

1.

2.

3.

4.

5.

Instance Class Hierarchy .

Basic Network Window

Window after Network Creation.

Window after Network Solution. . ..

WM PAINT Method for Window Class

vi

Page

22

35

41

42

48

CHAPTER I

INTRODUCTION

General Statement of the Problem

The operations research field has made many important

advances in the solution of network problems. New solution

algorithms and implementation techniques have reduced the

cost of solving network problems dramatically. However, very

little progress has been made in the interface between these

models and the model users.

Developing a user interface is very different from

developing conventional software. The traditional methods,

techniques, and tools that work well for software

development are proving not to work so well for the

development of user interface software (Hix, 1989). This

demands that new approaches like object-oriented programming

be used for the development of such software.

The purpose of this study is to develop a graphical

user interface for a transshipment network model, using

object-oriented techniques. The interface provides the

capability to: 1) display the model's network structure on

the CRT, 2) change the appropriate model parameter(s)

corresponding to the desired 'what-if' scenario, and 3)

1

resolve the model and graphically display the resulting

optimal flows and values on the CRT.

This user interface is based on the NETFORMS(Network

Formulation) concepts. NETFORMS is a modeling technique

which presents mathematical problems in the form of

symbolic, pictorial networks and augmented network

structures (Glover, 1977).

Objective of the Study

2

The objective of this study is to design, implement

and test an interactive graphics-based modeling system for

transshipment networks using the concepts of object-oriented

programming. The system supports the development,

specification, modification, and use of transshipment

network models. The network building phase uses interactive

computer graphics to produce a pictorial representation of

the network on the CRT. The system incorporates a network

solver algorithm to solve the displayed network through an

external solver program and then to display the results

along the network on the screen.

CHAPTER II

RELATED STUDIES

User Interfaces in OR/MS

The Operations Research(OR) community, over the past

few years, has seen a substantial increase in the use of

microcomputers to support its traditional skills of

mathematical model solutions. Important advances have been

made in the solution techniques of mathematical programming

models. However, significantly less progress has been made

in the interfaces between these models and the model users.

For many OR projects, 'the user interface has been primarily

an afterthought, a necessary evil, but not given a great

deal of attention' (Jones, 1988).

Yet different user interfaces for the same task

produce significant, measurable differences in user

performances (Card, et al, 1980) . If the techniques are

designed to promote maximum understanding of the complexity

of the underlying problem, the user interface should be as

helpful and sophisticated as the underlying algorithm

(Jones, 1988) .

This lack of progress in user interfaces is even more

important if, as Geoffrion (1976) suggests, that the

3

principal benefit of an OR project is 'insight, not

numbers'.

4

Suitable representations of problems have been clearly

shown to be critical to solution finding and learning. Polya

(1957) suggests dr~wing a picture to represent mathematical

problems. This is in harmony with Maria Montessori's

teaching methods for children (1964). Thomas and Malhotra

(1980) found that subjects given spatial representations

were faster and more successful in problem-solving than

subjects given an isomorphic problem with a temporal

representation. Deeper understanding of relationship between

problem solving and visual perception can be obtained from

Arnheim (1972) and McKim (1972) .

Physical, spatial, or visual representations also

appear to be easier to retain and manipulate than do textual

or numeric representations (Shneiderman, 1987) . Werthheimer

(1959) found that subjects who memorized the formula for the

area of a parallelogram, A = h x b, rapidly succeeded in

doing such calculations. On the other hand, subjects who

were given the structural understanding of cutting off a

triangle from one end and placing it on the other end could

retain the knowledge more effectively and generalize it to

solve related problems.

Thus the use of pictorial representations enhances the

insightful analysis of mathematically modeled problems. One

such pictorial representation is NETFORMS (for NETwork

5

FORmulationS), a modeling technique which presents

mathematical programming models in the form of symbolic,

pictorial networks and augmented network structures (Glover,

1977) .

Hurrion (1986) and Billington (1987) report a

significant improvement in a person's understanding of a

semi-structured to unstructured operations research problem

and the person's subsequent confidence in a solution when

visual interactive modeling tools are used.

Many modeling languages have been developed to

simplify the complex and involved model transformation task

(Fourer, 1983). LINGO/PC (Paul 1989) and GAMS (Bisschop,

1982) are two examples of modeling languages. Both are text­

based modeling languages which require that the model be

manually transformed from the modeler's form to an algebraic

form. These languages then algorithmically transform the

algebraic form into the optimizer form and call the solver.

Tabular and summary reports are produced as outputs by both

languages.

This shows that significantly little has been done as

far as the graphics and user interface parts are concerned,

in spite of their advantages in these kind of applications.

Creating good user interfaces for software is very

difficult. Interface software is inherently difficult to

write because frequently it must control many devices, each

of which may be sending streams of input events

6

asynchronously (Myers, 1989) . Interface software is often

large, complex, and difficult to debug and modify. An

application's interface can account for a significant

fraction of the code. Surveys of artificial-intelligence

applications, for example, report that 40 to 50 percent of

the code and runtime memory are devoted to interface aspects

(Bobrow, 1986).

As interfaces become easier to use, they become harder

to create. The easy-to-use, direct-manipulation interfaces

popular on many modern computer systems are among the most

difficult to implement. These interfaces let the user

operate directly on objects that are visible on the screen,

performing rapid, incremental actions (Schneiderman, 1983) .

Interfaces are not only difficult to crea~e, but there

are no design strategies that guarantee that the resulting

interface will be easy to learn or easy to use. The only

reliable way to generate quality interfaces is to test

prototypes with users and modify the design based on their

comments (Swartout, 1982) .

This method, called iterative design, has been used to

create some of today's best interfaces. For example, a mail

system's interface was tested with users and modified

iteratively. In the final version, without any instruction,

76 percent of the commands that novices generated performed

the expected operation, compared with 7 percent for the

initial version (Good, 1984).

7

New technology is constantly increasing the

developers' palette of interaction devices, styles, and

techniques, and yet many conventional languages do not have

constructs for incorporating a window, an icon, or a mouse

(Hix, 1989). This suggests that new methods, techniques, and

tools be used to support the revolution in user interface

design.

The object oriented approach to programming is rapidly

becoming accepted as a way of organizing large and complex

problems so that they are modular and extensible. The

programs are organized as a large collection of active

objects which communicate by sending messages. Object­

oriented languages are especially suitable for windowing

environments.

Linton, Vlissides, and Calder (1989) state that user

interfaces should be object-oriented. They further observe

that objects are natural for representing the elements of a

user interface and supporting their direct manipulation.

Objects provide a good abstraction mechanism, encapsulating

states and operations, and inheritance makes extension easy.

Compared with a procedural implementation, user interfaces

written in an object-oriented language are significantly

easier to develop and maintain (Linton, 1989) .

User Interface Design Issues

In the last decade, software has progressed rapidly

from noninteractive to highly interactive programs. The

direct involvement of users during the execution of these

interactive programs has completely altered our view of how

programs should interface to the outside world.

8

User interaction forces software engineers to consider

many human-factors issues, such as ease of use and

presentation of information. These concerns have led to

interaction styles that include graphical displays, menu­

based input, and mouse-based selection.

As a result, many products that prospered five years

ago would meet with an early demise if they were introduced

today. Even the successful interactive graphical products of

today may be subject to early obsolescence if they do not

evolve with the emergence of newer interaction technologies.

Good user interfaces are difficult to construct. When

Wordstar's user interface was redesigned to produce Wordstar

2000, the effort was a major one, about equivalent to

writing an entire new program (Dodani et. al., 1989).

Such an enormous effort suggests that little or no

code from the previous version could be reused. This is

probably due to the older user interfaces being intimately

intertwined with the code that supported the word processing

application. Such a total overhaul of code to introduce the

latest interaction technology must clearly be avoided.

9

Interactive software provides a large incentive to

implement the user interface as an independent component.

Separation from the application has several advantages.

First, one can subdivide the user interface into components

that can be glued together. Second, it is possible to

rapidly modify the interface for reuse in other applications

that have similar interaction requirements. Third, one can

alter or even replace the interface with no adverse affects

on the code that defines the application. Finally, it is

possible to develop the interface in an iterative manner, in

which one produces successive prototypes until a design that

satisfies the needs of the application and its users is

found.

From these advantages, a number of principles and

techniques emerge. The principles are reusability and

encapsulation. The techniques are rapid prototyping and

iterative development. To support the production of

interactive graphical interfaces, one needs a design

methodology and a development environment that supports each

of these principles and techniques. This is where object­

oriented design and programming come into play.

Object Oriented Programming

Object-oriented programming techniques are not new,

but they are becoming more popular as programmers tackle

increasingly complex projects. Object-oriented programming

10

can help simplify the development of elaborate programs by

breaking them down into logical objects that manage their

own behavior and hide internal complexity. Windowing

applications in particular are easier to develop and

maintain if object-oriented programming techniques are used

(Urlocker, 1989).

The term object-oriented programming has been used to

mean different things, but one thing these languages have in

common is objects. Objects are entities that combine the

properties of procedures and data since they perform

computations and save local state (Stefik et al., 1986).

In traditional procedural languages like C or Pascal, the

programmer defines data structures and writes functions and

procedures to operate on the data. Although normally a

correspondence exists between functions and the data on

which they operate, most procedural languages offer no

formal support for this correspondence; it is entirely the

programmer's responsibility to manage an abstraction.

On the other hand, when a program is divided into

objects, it more closely represents the logical design that

is being implemented. As a result, object-oriented programs

are generally easier to understand and maintain than the

procedural programs (Urlocker, 1989).

Definitions of terms used with object-oriented

programming follow.

11

Classes

Every object belongs to a class that defines its type.

We say that an object is an instance of its class. The class

definition comprises of two things: the specifications for

data formats and the coding of the methods the instances of

the class will later respond to.

Different classes are related according to a

hierarchy. One ancestor class might give rise to many

descendant classes, which might, in turn, be ancestors of

yet other classes. The instructions and data formats are

passed along to descendants.

Methods and Messages

All of the action in object-oriented programming comes

from sendi£1g messages between objects. Programming in an

object-oriented language involves creating objects and

sending them messages or commands to do things. For example,

we can create a window and then show it on the screen. In

the object-oriented language Actor, this is done using the

messages shown below:

it*/

W := defaultNew(Window, "SAMPLE"); /*First create

show(W,1); /*display it*/

In this case Window is a predefined Actor class. When W

receives the show message, the Actor language system looks

for the matching set of instructions in its class

definition, and executes them. This results, in this case,

in the corresponding window being shown on the screen.

12

Thus, to get anything done in an object-oriented

language, a message is sent to an object. The object looks

to see if it knows how to do what it has been asked to, and

if it does, it executes the correct function or procedure.

In object-oriented languages, however, these are not called

functions or procedures--they are called methods. More

formally, programming in an object-oriented language is a

process of sending a message to an object. The message is

then matched up with a method, which is then executed.

Messages can be sent to the objects by stating the

method one wants to execute, followed by the object, called

the receiver, to which the message is being sent.

print("Hello");

A message looks similar to a procedure or a function

call in a procedural language--on purpose. However, we are

not sending a parameter to a procedure. We are sending a

print message to "Hello", a String object. "Hello" looks to

see if it has a method defined by the name of print, and if

it does, it executes that method.

13

Polymorphism

The difference between methods and messages should be

kept clear in mind. Often the terms are used

interchangeably, but although they are related, they are two

different concepts. Consider the examples below:

print(14);

print("Hello");

In both cases, we are sending a print message to an object.

However, in the first case the receiver is 14, an instance

of class Int. In the second case, the receiver is "Hello",

an instance of class String. Although we are sending the

same print message, different print methods will be executed

in each case. Putting this in general terms, we say that the

same message can result in the execution of different

methods, depending on the class of the receiver. This

quality is called polymorphism. It is a very powerful

concept, because it more closely parallels the way we think.

Data Abstraction

Message sending supports an important principle in

programming: data abstraction. This means that the calling

programs should not make assumptions about the

implementations and internal representations of data types

that they use. Its purpose is to make it possible to change

14

underlying implementations without changing the calling

programs. A language supports data abstraction when it has a

mechanism for bundling together all of the procedures for a

data type. In object-oriented programming the class

represents the data type and the values are its instance

variables; the operations are methods the class responds to.

Objects have a clear division between public protocol

and private implementation. For example, we might have a

stack object that defines a public protocol based on the

push and pop operations. The stack may be implemented as an

array with variables that maintain the first and the last

positions, but this representation would be considered

private. By adhering to the public protocol, we can change

the implementation of stacks, say, to linked lists, without

having to rewrite any of our code.

Inheritance

Specialization is a technique that uses class

inheritance to elide information. Inheritance enables the

easy creation of objects that are almost like other objects

with a few incremental changes. Inheritance reduces the need

to specify redundant information and simplifies updating and

modification, since information can be entered and changed

in one place.

Mechanisms like inheritance are important because they

make it possible to declare that certain specifications are

15

shared by multiple parts of a program. Inheritance helps to

keep programs shorter and more tightly organized.

The simplest model of inheritance is hierarchical

inheritance. In a hierarchy, a class is defined in terms of

a single super class. A specialized class modifies its

superclass with additions and substitution. Addition allows

the introduction of new varia~les, properties, or methods in

a class, which do not appear in one of the superclasses in

the hierarchy. Substitution (or overriding) is the

specification of a new value of a variable or property, or a

new method for a selector that already appears in some

superclass. Both kinds of changes are covered by the

following rule. All descriptions in a class (variables,

properties, and methods) are inherited by a subclass unless

overridden in the subclass.

Using inheritance one can focus on those parts of the

program that are application specific. Inheritance

encourages the development of small, reusable classes that

become building blocks for more sophisticated classes.

Inheritance also lets programmers customize existing objects

for unique behavior without writing the object from scratch.

This approach results in less code to maintain and test and

more rapid development from prototype to final application.

Late Binding

By their nature, object-oriented languages institute

16

late binding, the ability to match messages with the

appropriate methods at run time rather than at compile time.

This contrasts with an early-bound language such as C or

Pascal in which the variables and functions which work on

them are matched together, or bound, at compile time.

The power of late binding is evident in the case where

we want to perform some general task like printing an object

when we don't know what type of object we're dealing with.

At runtime, the language determines the class of the object

and appropriately sends the message.

It is possible to take late binding one step further

by allowing one to leave open until runtime not only the

class of the receiving object,' but also the message name

itself. That is, one can send an arbitrary message with the

perform method, and, used correctly, this can be extremely

powerful. The idea is ,to include the message name as a

parameter in the perform message:

perform(receiver,parameterl,parameter2, ,selector)

The receiver is the object which is to receive the message.

The selector is a Symbol giving the name of the method that

is to be executed.

When selector is a constant, perform is a variation on

the normal way of sending messages:

perform("Hello",#print);

Hello

Sam := 16;

perform(Sam,#sqrt);

4

However, the real power of perform becomes evident

when selector is a variable:

Meth := #sqrt;

Sam:= 16;

perform(Sam,Meth);

4

Meth := #print;

perform(Sam,Meth);

16

Sam := "Hello";

perform(Sam,Meth);

"Hello"

17

The power of perform can be tapped in handling the

menu selection events in an application. Proper use of this

mechanism eliminates much of the control structure that

tends to complicate conventional code. This supports a very

18

clean, data-driven approach to programming.

Windowing Environments

One of the major advantages of object-oriented

programming languages is the ability to control windowing

environments. As a matter of fact, windowing and

object-oriented programming have co-evolved over the last

two decades as a revolution in the programming environments.

Most windows exhibit the same fundamental behavior -

they are created, opened, closed, and moved around on the

screen. Although windows are simple to use, window behavior

is complex to program. And with procedural languages like C,

there is no concept of a class to organize and retain the

complex behavior of windows. It must be reprogrammed into

each window.

On the other hand, systems like Actor have predefined

window classes that already behave in a standard way. A

window is merely an instance of a window class. Once the

class is defined, the windows just roll off the assembly

line. One never reinvents the window. The advantage is that

all generic capabilities, for e.xample, of a window class,

like resizing, displaying and dragging work properly without

having to write or test a single line of code.

Summary

Specialization and message sending synergize to

19

support program extensions that preserve important

invariants (Stefik, et al., 1986). Polymorphism extends

downwards in the inheritance network because subclasses

inherit protocols. Instances of a new subclass follow

exactly the same protocols as the parent class, until local

specialized methods are defined. Splitting a class, renaming

a class, or adding a new class along an inheritance path

does not affect simple message sending unless a new method

is introduced. Similarly, deleting a class does not affect

message sending if the deleted class does not have a local

method involved in the protocol. Together, message sending

and specialization provide a robust framework for extending

and modifying programs.

Scope of the Study

This study applied the concepts of object-oriented

programming to design and develop a system, called GIN (an

acronym for ~raph-based ~nterface for Network Modeling),

used for formulating, solving and analyzing minimum cost

flow network models. The system is implemented in an

interactive, graphics-based, microcomputer environment using

the pictorial representations of NETFORMS.

The implementation of the system utilized the

following tools:

* Actor - an object-oriented programming language

and a sophisticated development environment, running under

20

Microsoft Windows.

* Microsoft Windows Software Development Kit - a

set of libraries and utilities that let one create

multitasking, device-independent window based applications.

CHAPTER III

USER INTERFACE IMPLEMENTATION

Message Protocols

We define eight class objects which were developed to

implement the user interface for GIN. These class objects

are:

(1) NetWindow class;

(2) TboxWindow class;

(3) ArcTool, SupplyTool, and DemandTool classes;

(4) SupplyNode and DemandNode classes;

(5) SupEditNodeWin and DemEditNodeWin classes;

(6) ArcDialog class;

(7) NetDataBase class; and

(8) CostFlowDialog class.

Together these classes are placed into the instance

hierarchy shown in Figure 1. This figure also includes an

additional abstract class object, Object, which serves as a

starting point, or root, for the class tree. This class

defines protocols common to all objects in the class tree.

The classes Window, Edit and Dialog are all formal classes

defined by Actor, and the rest of the classes shown in the

class tree inherit class and instance methods from these,

21

22
OBJECT

I WINDOW I NETDATABASE l DIALOG

I NE1WINDOW I I ARCDIALOO I

I TBOXWINDowl I OBJECT J
T

I I I ARCTOOL I t DEMANDNODEI SUPPLYNODE

I SUPPL YTOOL I

I DEMANDTOOL I
.
COSTFLOWDIALOG

EDIT

I SUPEDITNODEWlN I DEMEDITNODEWIN

Figure 1. Instance Class Hierarchy

23

depending on their hierarchical placement in the class tree.

In the following pages I describe the classes

developed for the GIN interface, along with information for

each class, such as which object it inherits from, which

objects inherit from it and the details of the methods

defined for that class.

NetWindow Class

The NetWindow class maintains a picture of a network

in a window. The NetWindow is responsible for the drawing of

the network. NetWindow descends from the class Window and

inherits all of its instance variables and methods. In

addition, more instance variables and methods are added to

this class to suit network creation and manipulation. This

class contains the main command method which matches the

command messages sent by Actor in response to menu events

and edit control changes. This method in turn sends

additional messages to other objects, depending on the

wParam and lParam values it receives as a part of the

message. For example, this method sends an updateName

message to a SupplyNode object whenever the name of a

supplynode changes.

Inherits From:

Inherited By:

Window

TboxWindow

Instance Message Protocols

init
The new method which is used to create an object
sends out the init message, which is responsible
for initializing the newly created object's
instance variables. This method in turn sends out
messages to other objects and to itself which
results in the setting of the node lists,
calculation of the textmetrics, loading of the
appropriate instance variables with the values of
handles to the supply and demand node icons,
setting of the default arc, cost and flow colors
and finally setting the menus.

setMenus
Creates a new dictionary and loads menu resources.
Also, sets up a menu action table each entry of
which consists of a constant ID and a message that
will be performed.

command

drag

Handles menu events. If the contents of the edit
control change, messages are sent to the
corresponding objects indicating the change. Looks
up the ID in the actions table and performs the
appropriate method, if found.

Responds to mouse drags and keeps updating the
point object endpt to the corresponding mouse
position.

beginDrag
Sets the input focus to the window and the mouse
position is saved in the instance variables. Also
sets the instance variable icontodraw to a value
corresponding to the currently chosen icon in the
toolbox.

endDrag
Draws the supplynode or demandnode icon at the
specified point in the client rectangle. If the
connect option has been chosen from the toolbox
the end point is noted down and an arc is drawn
from begpt to endpt.

initNodeLists
Initializes the supply, demand, frompoint, topoint
lists. Each of them are initialized with
OrderedCollection objects of size ten to start
with. These individual lists will grow as objects

24

are added to them.

updateArcs
Updates the beginning and end points of the arcs
connecting two nodes by modifying the
fromPointList and toPointList respectively.

drawConnections
Connects all the nodes, by drawing arcs, after all
the supply and demand nodes are painted.

getNodeName
Creates and runs a modal dialog box so that the
user can enter the name of the supply and demand
node created.

invert ToolBox
Inverts the appropriate child windows in the
toolbox depending on which drawing tool has been
chosen.

findNodeType
Finds and returns the node type (supply or demand)
depending on the ID parameter passed.

getFromNodeName
Returns the name of the fromNode, corresponding to
its relative screen display position.

getToNodeName

dist

Returns the name of the toNode, corresponding to
its relative screen display position.

Returns the distance between two points on the
screen. The returned value is in the form of a
point object.

fileSave
Responds to the menu choice to save the file. If
the file is not yet named, prompts the user for a
name.

fileSaveit
Saves the networks data into a .NET file on disk.
The file conforms to the NETFLO program's FORTRAN
data file format.

savePicFile
Saves information regarding the point object lists
into a .PIC file on disk which is essential for
the reconstruction of the graphical network image

25

on the screen.

fileOpen
Pops up a FileDialog box which is used to read the
name of the network file to be opened for
processing.

fileOpenit
Opens the named file to read the network
information from disk. Copies the file into a
stream so that it can be read faster. Data is read
from the streams corresponding to PIC and RES
files and messages are sent to supply and demand
nodes which result in the corresponding network,
with associated results being displayed on the
screen.

setUpFromPointList
Reads the lines corresponding to frompoint
locations from the stream and adds them in
sequence to the fromPointList object.

setUpToPointList
Reads the lines corresponding to the topoint
locations from the stream and adds them in
sequence to the toPOintList object.

checkError
Checks if there is a file error and displays an
error box. Returns the error number or zero for no
error.

getFromNodeNum
Returns the number of the fromnode, corresponding
to its relative screen display position.

getToNodeNum
Returns the number of the tonode, corresponding to
its relative screen display position.

getNodeReq
Reads the node requirement of a particular node.

readResults
Reads the results from a .RES file and initializes
the cost/flow list objects.

initTextMetrics
Initializes the instance variables tmWidth and
tmHeight to the current width and height (in terms
of one hundredths of an inch) of characters.

26

arcColor
Unchecks the previously selected arc color and
places a check mark in front of the newly chosen
one. Also, sets the instance variable arccolor to
a constant which reflects the currently chosen
color.

findindex
Traverses through the from and to node
orderedCollections and checks for the existence of
the specified node. Returns a value of -1 if the
node is not found.

chngSupNodeName
Runs a dialog box to read the name of the old
supply node and its new name. If the supplyNode
exists then its name is changed to the new name
and messages are sent to the appropriate objects
indicating this change. An error message is
flashed if the node does not exist.

chngDemNodeName

paint

Runs a dialog box to read the name of the old
demand node and its new name. If the demandNode
exists then its name is changed to the new name
and messages are sent to the appropriate classes
indicating this change. An error message is
flashed if the node does not exist.

Sends additional paint messages to the supply,
demand node objects which results in the screen
being redrawn.

deleteNode
Runs a RDNDNAME DIALOG object to read the name of
the node to be deleted. If the node exists then
messages are sent to the corresponding object
resulting in its deletion from the screen as well
as from the internally maintained database. An
error message is flashed when an attempt is made
to delete a node which does not exist.

deleteArc
Runs a CHNDNM DIALOG to object to read the names
of the nodes connected by the arc. If the arc
exists then messages are sent to the corresponding
object resulting in its deletion from the screen
as well as the internally maintained database. An
error message is flashed when an attempt is made
to delete a node which does not exist.

27

28

TboxWindow Class

This is the class associated with the "TOOL BOX"

window. When the application starts up, a toolbox window is

created as a child window of the main NetWindow. Also, this

window contains three child windows -- one each for the

supply, demand, and arc tools.

Inherits From: Net Window

Inherited By:

Instance Message Protocols

create

init

Creates a child window with a border and a caption
TOOLBOX. This is the toolbox window.

Initializes the symbol 'inverted' to nil
indicating that none of the drawing tools have
been chosen from the toolbox currently.

createChildren

paint

Sends 'new' messages to the supplyTool, demandTool
and arcTool classes resulting in the creation of
three child windows, one for each of the drawing
tools.

Sends 'show' messages to each of the newly created
child windows, which results in their display on
the screen.

ArcTool, SupplyTool, and DemandTool Classes

Arc, Supply and DemandTool classes are responsible for

keeping track of which one of them has been currently chosen

by the user. For example, if the user presses the mouse

29

button in the supplyTool window, a message is sent to this

object indicating that a mouse click event has occurred.

Now, this object sends messages to itself to invert its

client rectangle, indicating that it has been chosen.

Similarly, the other two objects are responsible for keeping

track of whether they have been chosen or not. These two

objects also invert their client areas in response to

messages they receive if any mouse activity takes place in

their respective windows' client rectangles.

Inherits From: Net Window

Inherited By:

Instance Message Protocols

create
Creates an arc(supply, demand)Tool child window
with border to display the connect(supply,
demand)node icon.

endDrag

paint

Sets the symbol 'icontodraw' to LINE(ICONl, ICON2)
so that any further mouse activity results in the
corresponding icon being displayed. In addition,
the invertToolBox message is sent to invert the
corresponding child window in the toolbox based on
the currently selected tool.

Redraws the CONNECT(supplynode, demandnode) icons
in the toolbox window.

invertArc(Sup, Dem)Box
Inverts the Arc(Sup, Dem) child window in the
parent toolbox window.

SupplyNode and DemandNode Classes

SupplyNode and DemandNode classes descend directly

from the NetNode class. The SupplyNode and DemandNode

objects keep track of their name, type and the relative

display position on the screen. The relative position of

these nodes have to be saved to avoid recomputing these

coordinate values each time the NetWindow has to redraw

itself. In fact, the SupplyNodeList and DemandNodeList

maintained by the NetNode class are lists of instances of

the objects of the respective SupplyNode or DemandNode

classes.

Inherits From: Object

Inherited By:

Instance Message Protocols

initNupdateSupply(Demand)
Creates a supply(demand) node and initializes its
instance variables with the node's relative
display position on the screen, the type of the
node and its name.

setUpSup(Dem)List
Reads the lines corresponding to the
supply(demand) nodes and adds them to the
supplyNodeList.

addToSupply(Demand)List
Adds the supply(demand) node object to the
corresponding supply(demand)NodeList.

paintSupply(Demand)Nodes
This method draws the supply(demand) node icons on
the screen at their relative display positions. In
addition, it displays the node's name next to it.

30

SupEditNodeWin and DemEditNodeWin

Whenever a supply or a demand node is created a name

must be provided. Appropriate editing facilities are

provided for this. The classes SupEditNodeWin and

DemEditNodeWin, which descend from the Edit class, serve

this purpose. Whenever the name of a supply or demand node

is changed messages are sent by these controls to the

appropriate objects indicating the change.

Inherits From:

Inherited By:

Instance Message Protocols

init
Initializes the newly created edit control to
SUPPLY(DEMAND).

updateSup(Dem)NodeName
Modifies value of the 'name' instance variable of
the corresponding supply(demand) node object, if
the contents of the edit control has changed.
Also, sends messages to the dataBase class
indicating the changes that have taken place.

ArcDialog

The ArcDialog class descends from the formal Dialog

class. Instances of this class are used to initialize and

edit the costs associated with each existing arc.

Inherits From: Dialog

31

Inherited By:

Instance Message Protocols

initDialog
This takes care of the initializations of the
dialog box before it is actually displayed. It
sets the caption and some default values for the
edit controls.

command
This method ends the dialog and returns a value
indicating which of the OK or CANCEL buttons have
been pressed.

NetDataBase

The NetDataBase class descends directly from the

Object class. This database object is responsible for

keeping track of node interconnections and arc attributes.

32

Messages are sent to this object by supply and demand nodes

if a name changes. Also, any changes to the attributes

associated with an arc are sent as messages to this object.

Additions or deletions of nodes/arcs to the network are also

notified to this class through appropriate messages. The

Database object sends messages to self to update any changes

that have occurred.

Inherits From: Object

Inherited By:

Instance Message Protocols

init
Initializes the instance variables representing
the costs associated with an arc to zero.

updtDbVals
Updates the instance variables of the database
object to reflect the changes in the attribute
values associated with arc objects.

updtDbNmFlds
Searches the database for the name, and, if found,
replaces it with the new name of the supply or
demand node object.

printDbase
Prints the contents of the network database at
that particular time.

createNinitDbEntry
Creates a new instance of the database class.
Sends a setDataBaseEntry message to itself.

setDataBaseEntry
Initializes the instance variables of the newly
created database object with the appropriate
values

addToDataBase
Adds a database object to the database
OrderedCollection.

CostFlowDialog Class

This class descends from the Dialog class. Instances

33

of this class are used to read and alter the color settings

of costs and flows when they are displayed. The default

colors for the display of costs and flows are red and green,

respectively.

Inherits From: Dialog

Inherited By:

Instance Message Protocols

initDialog
This sets the dialog box captions and initializes
instance variables (which reflect the state of the
cost/flow display colors) to their default values
of red/green.

command
Sets the instance variables 'cstclr' and 'floclr'
to the ID codes of the currently set radio
buttons. Sends the flipFormat message to itself if
the radio button settings are changed. Notes down
the final color selection if the OK button is
pressed.

getColor
Returns the RGB value of a color, depending on the
color ID from the corresponding radio button in
the groupbox of the displayed dialogbox.

flipFormat
Sets the currently chosen radio button after
resetting the previously chosen ones.

Network Creation, Modification, and Solution

This chapter explains the various parts of the GIN

window. Networks will be created, modified, solved and

saved. Some of the tools and their purposes will be

discussed. In addition, a description of network creation

and its solution is explained.

The basic network window appears on the screen, as

shown in Figure 2, when GIN is launched. This screen

34

contains everything one needs to create, modify, and save a

network. The window consists of a Menu Bar, Tool Box, Close

Box, Size Box, Scroll Bars and a Zoom Box.

The GIN menu bar features five pull-down menus : File,

ArcColors, Results, Change and Delete, in addition to the

35

•••• , •• ., ••••••••• ;.......... • •••• : ••••• :,,;,,.,,.,,, -r •• ·,,·,· •• • ••••• ,.,,.,, •• , ... ,., ••••••

HETWORK PLAHHIHG HODEL
File ArcColors Results! Change Delete

I IIIII I :11},"1

C> 0
COHHECT

Figure 2. Basic Network Window

36

control menu of Microsoft Windows. Some commands will

produce sub-menus or dialog boxes. When one chooses a

command with a ... to its right, a dialog box will appear.

Dialog boxes prompt one to specify various settings

and conditions, or choose specific options. When a dialog

box is displayed, one needs to respond by clicking the

appropriate button box. Some buttons in dialog boxes are

outlined with a thick black line. This indicates the default

action, which is accepted if the return key is pressed

instead of clicking a button. A check mark preceding a menu

item indicates that the item is in effect for the currently

selected network.

The following is a list of the menus and the different

types of commands found on each one:

FILE

ArcColors

Results

Change

Delete

Commands used to save the current network
image and to open a previously saved image
from a file.

To set the color in which the subsequent arcs
will be drawn.

To select the colors of the costs/flows on the
result network image.

Commands used to change the names of the nodes
and edit arc attributes.

Commands used to delete an existing node or an
arc.

The box in the right hand corner of the GIN window

contains the tools one needs to create a new network. There

are three different tools in the tool box : the Supply Tool,

Demand Tool and Connect Tool. The tool box is a child

37

window, which in turn contains three more child windows, one

each for the supply, demand and connect tools. The tool box,

being a child window, can be dragged to any part of the GIN

window by clicking on its title bar and dragging to the

desired location and releasing the mouse button.

A user of GIN would create the network by choosing the

appropriate tools from the tool box. The supply tool is used

to create a supply node and the demand tool is used to

create a demand node. By choosing the connect tool an arc

can be drawn between two existing nodes.

After a supply or demand node icon is chosen from the

toolbox, the user has to click the mouse button in the

client area of the window to create the corresponding node.

As each node is created, a dialog box pops up to read the

name of the newly created node. This name can be changed by

choosing the appropriate option under the Change menu.

Arcs can be drawn between any two existing nodes by

choosing the connect option from the toolbox. After the

connect option is chosen, the user has to drag the mouse,

keeping the right button depressed, from the fromnode to the

tonode and release it at the tonode. This draws an arc

between the two nodes named fromnode and tonode. The arc

class has been designed in such a way that an arc can only

be drawn between two existing nodes. An error message is

flashed and no arc is drawn when an attempt is made to draw

an arc which does not connect two nodes. The color of the

38

arc, by default, is set to blue. This can be changed to a

different color by selecting the desired color from the

arccolors pulldown menu. A child window control is

established along with each of the newly created arcs.

Clicking in this child window control pops up an ''attribute

editor" which can be used to input new attributes or edit

the previously given attributes. The attribute editor

contains three edit window controls, one for each of the

three attributes.

A database class keeps track of details such as which

node is connected to which other nodes and what their

attribute values are. Once an arc is drawn between two

existing nodes and its associated attributes are filled in,

an instance of the database class is created and the

appropriate instance variables are initialized.

It is possible to delete an arc after it is drawn by

choosing the deleteArc option under the Delete menu. A

dialog box is run in response to this choice, requesting the

names of the two nodes connected by the arc. After the two

names are entered and the OK button is chosen, messages are

sent to the arc which results in a value being returned

indicating whether an arc exists connecting the two nodes.

If so, the arc is deleted and the screen is updated to

reflect this change. A message is also sent to the data base

class indicating the deletion of an arc from the network,

requesting the database be updated. Attempt to delete an arc

39

which is non-existent results in an error.

Similarly, an existing supply or a demand node can

also be deleted by choosing the deleteSupply or deleteDemand

node options, respectively, from the Delete menu. A dialog

box is run in response to either of these choices requesting

the name of the node to be deleted. After the name is

entered and the OK button is chosen messages are sent to the

supply, demand node classes which results in a value being

returned indicating the existence of the node. The node is

deleted from the screen, if it exists. The database class is

notified through a message of this change. An attempt to

delete a non-existent node results in an error.

The system has been designed in such a way that any

changes made to the graphical representation of the network

on the screen is automatically reflected in the internal

database. This is achieved by passing messages to the

database class, in response to messages received from

Windows indicating the occurrence of some changes on the

screen.

Thus, at any given instant the contents of the

database reflect the state of the graphical network

displayed on the screen.

A sample network created using this procedure is as

shown in Figure 3.

The network created can be saved in a file for later

retrieval. The Save command under the File menu has to

chosen for this purpose. This command saves two different

files :

40

NET File This file has information about the

graphical network created on screen in a

format suitable for the solver program.

PIC File This file has data which is essential

for the reconstruction of the graphical

network image on screen.

The file formats and their contents are given in

APPENDIX A.

After the network is solved, the user can choose the

Open option from the FILE menu to display the resulting

costs and flows alongside each arc. By default, the costs

are displayed in red and the flows in green. These can be

altered by changing the appropriate radio-button settings

from the corresponding cost/flow group boxes in the

dialogbox, which is displayed in response to the selection

of the Results menu option. Figure 4 shows the network on

the screen after its solution.

41

> •••• •. : •••• ••• • •. ••• ·:-.· : ••• . •• •· •••••••·•• • ••••••• • '••'•• - NETWORK PlAHHIHC HODEl
File ArcColors Results! Change Delete

[::> 0
COHHECT

Source Hode1 Hode2

Sink

Figure 3. Window after Network Creation

42

.. . ~ . . . - NETWORK PLANNING HODEL
file A~cColo~s Results! Change Delete

C> 0
COHHECT

Sou~ce Hode1 Hode2

H Sink

12. 6

Figure 4. Window after Network Solution

Support Tools

Microsoft Windows

Microsoft Windows is an operating environment that

runs under MS-DOS version 2.0 or later, generally on IBM

personal computers or compatible machines.

43

Windows provides a multitasking graphical windowing

environment that runs programs especially written for

Windows and some current programs written for MS-DOS.

Programs especially written for Windows have a consistent

appearance and command structure and are thus often easier

to learn and use than conventional MS-DOS programs. Users

can easily switch between different programs running under

Windows and exchange data between them. Windows programs run

identically on a variety of hardware configurations.

For the future, Windows is also an integral part of

the new protected mode operating system developed by

Microsoft and IBM, Operating System/2. Under this system,

Windows is called the Presentation Manager. The OS/2

Presentation Manager is seen as the principal environment

for new OS/2 application programs (Petzold, 1988).

Windows, like object-oriented languages, operates on a

message-passing paradigm. Objects receive messages that

cause them to change(that is, perform operations on)

themselves. Windows has many objects, but one type of object

ranks first in importance -the object called the "window".

44

From the user's perspective, a window is the

rectangular area that a particular program occupies on the

screen. Although a single program can create many windows,

usually the program has a single main, or top-level window.

To the user this is the program's work space on the screen.

From the programmer's perspective, a window is an

object that receives and processes messages. Messages inform

the window of all events that affect the window.

When a program creates one or more windows, each

window has certain characteristics - a style, a size, a

position on the screen, a character string in its caption

bar, a menu. But a window is defined by more than merely its

appearance. A window is defined also by how it responds to a

particular message.

Windows is an event-driven system, meaning that

programs respond to events that the user or other programs

initiate. These events correspond to actions like pressing a

key, clicking the mouse, or selecting a menu item. Whenever

an event occurs, Windows sends a message to notify the

program.

More specifically, when the user presses a key, for

example, Windows sends a WM_KEYDOWN message with the virtual

key code of the key that was pressed. The "WM" is the

mnemonic for "Windows Message". Other windows messages are

WM_COMMAND (indicating the user selected a menu command),

WM LBUTTONDOWN (the user clicked the left mouse button),

WM_VSCROLL (the user clicked in the vertical scroll bar),

and WM_PAINT (Windows wants the window to redraw itself) .

45

Windows messages are always sent with two parameters

to convey additional information. These are known as the

word parameter, or wParam, and the long parameter, or

lParam. The wParam contains a 16-bit word value; the lParam

sometimes contains a 32-bit long pointer to other data.

If an application has multiple windows, the windows

messages are sent to the appropriate window. For example if

the Fl key is pressed when one window has the input focus, a

message is sent to that window; the main window is not

informed. Making windows responsible for their own events

simplifies application development.

Actor

Several object-oriented programming languages exist

for personal computers (e. g., Smalltalk, C++, Objective-C

and Actor among others) . We selected the Actor object­

oriented programming language to develop our graphical user

interface for the modeling system.

Actor is an object-oriented programming language which

allows the creation of standalone Microsoft Windows

applications. In fact, Actor is a complete programming

environment. One can type the Actor language statements in

the workspace window and get immediate feedback. Windows,

menus, and dialogs can be created and modified directly in

46

the development environment. Code is written in a browser, a

speoial editor that lets a user create new classes and

compiles methods as they are written. The compiler

translates Actor statements into a low-level format used at

run time. The browser also shows the hierarchy of the

classes in the system. Everything in Actor is an object and

all operations are performed by sending messages to objects.

The relationship between Actor objects and Windows

entities is similar to the relationship between file

variables and files in most high-level languages. For

example, in Pascal, one can declare a variable of type File.

To use the variable, however, one must assign it the name of

an actual disk file. The file variable is an abstraction of

the physical file on the disk. In the same way, Actor

objects belonging to classes like Window and Dialog are

abstractions of underlying areas of memory managed by

Windows.

Although both Actor and Windows send messages, the

messages are processed separately. Unlike Windows messages,

Actor messages are not queued at all and are therefore very

efficient. The main function in a Windows application

called, WinMain, normally includes a very short loop that

translates and dispatches Windows messages. The application

must also define a WndProc function that processes the

messages.

From an object-oriented perspective, it is the window

47

itself that responds to the messages. After all, a window is

not just a data structure, it is both the data and the

functionality. Thus Actor manages the WinMain and WndProc

functions, the Windows message queue, and other low-level

details.

Actor translates Windows messages into equivalent

Actor messages, enabling one to process all the messages in

the same way. The Actor classes Window and WindowsObject

define many high-level messages that hide the generic

details of Windows programming and allow the programmer to

concentrate on application specific behavior.

The WM PAINT method defined in the Actor class Window,

automatically locks down an area of memory known as a

display context used for redrawing. It then calls the

Windows function BeginPaint, sends an Actor paint message,

calls the EndPaint function, and lastly frees the memory

used for drawing.

The WM PAINT methods defined for class Window is shown

in Figure 5. Since this method is inherited by all

descendants of class Window, they only need to define a

higher-level paint method that knows how to redraw the

contents of the window. The Actor paint message will be sent

whenever Windows sends a WM PAINT message.

In addition to Windows sending messages, like the

WM PAINT message described above, window objects can send

messages to other windows or even to themselves.

I*
Trap MS-Windows message to paint self, a Window.
Sends a paint(self) message with the dispaly
context.

Self is a Window or ancestor of class Window. The
arguments, wParam and lParam are ignored.

hDC,

*I

hPS,
hDC
hPS
lpPS

lpPS are local variables.
handle to the display context
handle to the paint structure
long pointer to locked down paint
struct

Def WM_PAINT(self, wParam, lParam I hDC, hPS, lpPS)
{
hPS . asHandle(paintStruct);
lpPS . globalLock(hPS);
hDC . Call BeginPaint(hWnd,lpPS);
paint(self,hDC);
Call EndPaint(hWnd,lpPS);
globalUnlock(hPS);
AQ;
} ! !

Figure 5. WM PAINT Method for Window Class

48

Current Status of the System

At present, the external solver cannot be invoked

through the selection of a menu command due to DOSs 640K

limit on applications and the size of the solver (370K) .

49

Hence, the user has to temporarily leave GIN and

invoke the solver at DOS command prompt by typing "NETFLO",

and inputting the appropriate file names as requested. This

process produces the .RES file. Now, GIN has to be invoked

and the OPEN command under the FILE menu has to be chosen

for the results to be displayed graphically on the screen.

CHAPTER IV

SUMMARY AND CONCLUSIONS

We proposed a set of class objects arranged in an

inheritance hierarchy and having corresponding message

protocols. These protocols provide the object-oriented GIN

user the power and flexibility to interact with the

graphical representation of the transshipment network model

on the screen.

Since GIN represents the problem being modeled as a

graphic display, the manager/decision maker can directly use

its mouse-oriented graphis&l interface to formulate, modify

and solve the problem. In addition, the manager can

understand the visual model more easily than the

mathematical model and can thus effectively contribute to

its development and monitor its validity.

Finally, we implemented GIN, in a personal computing

environment, using our proposed class objects and message

protocols. This implementation attests to the feasibility of

an 0-0 graphical user interface for such a modeling

environment and its ease of use for the formulation,

modification and solution of network problems.

50

CHAPTER V

RECOMMENDATIONS FOR FURTHER STUDY

The present study shows that object-oriented GIN is a

viable possibility. Regardless, there are several directions

which future research endeavors might pursue.

First, must extend GIN via both interface and

algorithms to embrace additional network models, especially

generalized networks, networks with single side constraints

and LPs with embedded networks.

Second, we must investigate hierarchical decomposition

and its effect on the comprehension of the model by the

decision maker; i.e., when and how to aggregate groups of

arcs and nodes into a representation with reduced detail and

yet retain as much comprehension as possible.

Third, we must investigate ways to incorporate

sensitivity analysis factors visually into the NETFORM

models. Such factors could help the decision maker determine

which what-if case should be specified next and which model

parameter should be investigated further.

Fourth, we must investigate ways, (perhaps using

Artificial Intelligence (AI)/Expert System(ES)) to create,

automatically, a visual graphic network directly from the n-

51

BIBLIOGRAPHY

Arnheim, R. (1972), "Visual Thinking," University of

California Press, Berkeley, CA.

Bhaskar, K. S. (October 1983), "How Object-Oriented is your

System ? 11 SIGPLAN Notices (ACM) 1 Vol. 18, pp. 8-11.

Billington, J.N. (1987), 11 Visual Interactive Modelling and

Manpower Planning, .. European Journal of Operational

Research, Vol. 30, pp. 77-84.

Bisschop, J. and Meerus, A. (1982), 11 0n the Development of a

General Algebraic Modeling System in a Strategic

Planning Environment," Mathematical Programming Study_

ZQ, North-Holland Publishing Company, pp. 1-29.

Bobrow, D.G., Mittal, S., and Stefik, M. J. (1986), "Expert

Systems: Perils and Promise," Communications of ACM,

Vol. 29, pp. 880-894.

Booch, G. (February 1986), "Object-Oriented Development,"

IEEE Transactions on Software Engineering, Vol. SE-12,

No. 2, pp. 211-221.

Card, S.K., Moran, T. P., and A. Newell (1980), "Computer

Text Editing: An Information-Processing Analysis of a

Routine Cognitive Skill," Cognitive Psychology, Vol.

12, pp. 32-74.

Carroll, J.M., Thomas, J. C., and Malhotra, A. (1980),

52

"Presentation and Representation in Design Problem

Solving," British Journal of Psychology, Vol. 71, pp.

143-153.

Cox, B. J. (198 6) , "Object-oriented Programming: An

Evolutionary Approach," Addison-Wesley Publishing

Company, Reading, MA.

Dodani, M. H., Hughes, C. E., and Meshell, J. M. (March

1989), "Separation of Powers," BYTE, pp. 255-262.

53

Duncan, R. (1986), "Advanced MS-DOS Programming," Microsoft

Press, Redmond, WA.

Foley, J.D., and Van Dam, A. (1984), "Fundamentals of

Interactive Computer Graphics," Addison-Wesley

Publishing Company, Reading, MA.

Fourer, R. (1983), "Modeling Languages versus Matrix

Generators," ACM Transactions on Mathematical Software,

Vol. 9, pp. 143-183.

Geoffrin, A.M. (1976), "The purpose of Mathematical

Programming is Insight, Not Numbers," Interfaces, Vol.

7, No. 1, pp. 81-92.

Glover, F., Klingman, D., and McMillan, C. (1977), "The

NETFORM Concept," Proceedings of ACM 1977 Annual

Conference, pp. 283-289.

Good, M.D. (1984), "Building a User-Derived Interface,"

Communications of the ACM, Vol. 27, pp. 1032-1043.

Hix, D. (1989), "User Interfaces: Opening a New Window on

the Computer," IEEE Software, Vol. ,6, pp. 8-10.

54

Hurrion, R. D. (1986) I "Visual Interactive Modelling, n

European Journal of Operational Research, Vol. 23, pp.

281-287.

Jones, C. (198 8) , "User Interfaces, " Unpublished Manuscript,

The Wharton School, University of Pennsylvania.

Kennington, J. L. and Helgason, R. v. (1980), "Algoritms for

Network Programming," John-Wiley and Sons, Inc., New

York.

Linton, M.A., Vlissides, J. M., and Calder, P. R. (1989),

11 Composing User-Interfaces with InterViews,n Computer,

Vol. 22, pp. 8-22.

McKim, R. H. (1972), "Experiences in visual Thinking,"

Brooks/Cole Publishing Company, Monterey, CA.

Microsoft Windows User Manual, Microsoft Corporation.

Montessori, M. (1964), 11 The Montessori Method," Schoken, New

York.

Myers, A.B. (19 8 9) , "User Interface Tools : An Introduction

and Summary,n IEEE Software, Vol. 6, pp. 15-23.

Myers, B. and Doner, C. (1988), "Graphics Programming Under

Windows," SYBEX, Alameda, CA.

Newman, W. M., and Sproull, R. F. (1979), 11 Principles of

Interactive Computer Graphics," McGraw-Hill, New York.

Ornstein, R. E. (1973), "The Nature of Human Concsiousness,"

Freeman Press.

Paul, J. P. (1989), 11 LINGO/PC: Modeling Language for Linear

and Integer Programming," OR/MS Today, Vol. 16, No. 2.

Petzold, C. (19 8 8) , "Programming Windows, " Microsoft

Press, Redmond, WA.

55

Polya, G. (1957), "How to Solve It," Doubleday, New York.

Schneiderman, B. (1983), "Direct Manipulation: A Step Beyond

Programming Languages," Computer, Vol. 16, pp. 57-69.

Schneiderman, B. (1987), "Designing the User Interface

Strategies for Effective Human-Computer Interaction,"

Addison-Wesley Publishing Company.

Stefik, M. and Bobrow, D. G. (1986), "Object Oriented

Programming: Themes and Variations," The AI Magazine,

Vol. 6, No. 4, pp. 40-62.

Swartout, W. and Balzer, R. (1982), "The Inevitable

Interwining of Specification and Implementation,"

Communications of ACM, Vol. 25, pp. 438-440.

The Whitewater Group, ACTOR, 600 Davis Street, Evanston, IL

60201.

Urlocker, Z. (198 9) , "Whitewater's Actor : An Introduction

to Object-Oriented Concepts, .. Microsoft Systems

Journal, pp. 33-44.

Werthheimer, M. (1959), "Productive Thinking," Harper and

Row, New York.

APPENDIXES

56

APPENDIX A

NET FILE FORMAT

57

I* NUMBER OF NODES *I
IlO

I* NUMBER OF NODE
IlO

I* ONE BLANK LINE *I

NET FILE FORMAT

REQUIREMENT *I
IlO

58

I* NUMBER OF ARCS TO NODE 1, NUMBER OF ARCS TO NODE 2, ..•..
*I
I10 I10 I10 I10 110

I* ONE BLANK LINE *I

I* NAME
*I

A10

FROM TO

110 110

I* ONE BLANK LINE *I

UNIT COST

I10

UPPER BOUND LOWER BOUND

I10 I10

APPENDIX B

PIC FILE FORMAT

59

PIC FILE FORMAT

I* NUMBER OF SUPPLY NODES *I
NS

I* CARTESIAN COORDINATES OF EACH OF THE NS SUPPLY NODES *I
(Xt, Yt)
(X2, y 2)

I* NUMBER OF DEMAND NODES *I
ND

I* CARTESIAN COORDINATES OF EACH OF THE ND DEMAND NODES *I
(Xt, y 1)
(X2, Y2)

I* NUMBER OF ARCS *I
NA

I* CARTESIAN COORDINATES OF EACH FROM POINT OF THE ARC *I
(Xl, yt)
(X2, Y2)

I* NUMBER OF ARCS *I
NA

I* CARTESIAN COORDINATES OF EACH TO POINT OF THE ARC */
(Xl, Yl)
(X2, Y2)

60

Thesis:

VITA

Chakradhar R. Nanga

Candidate for the Degree of

Master of Science

DESIGN AND IMPLEMENTATION OF A GRAPH-BASED
INTERFACE FOR NETWORK MODELING (GIN) USING AN
OBJECT-ORIENTED APPROACH

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Pakala, Andhra Pradesh, India,
February 5, 1965, the son of Dr. N.C.R.Reddy and
Eswari.

Education: Graduated from Sri Sathya Sai Institute of
Higher Learning, Puttaparthi, India, 1982;
received Bachelor of Engineering degree in
Computer Science from Bangalore Institute
of Technology, Bangalore, India in May
1987; completed requirements for the
Master of Science degree at Oklahoma State
University in May, 1990.

Professional Experience: Research Assistant,
Department of Economics, Oklahoma State
University, August, 1988, to February, 1990;
Software Engineer, Kirloskar Computer Services
Limited, June, 1986, to December, 1987.

