
AN OBJECT-ORIENTED MODULAR EXPERT

SYSTEM SHELL

By

JIN CREON NA

Bachelor of Science in Electrical Engineering

Hanyang University

Seoul, Korea

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1990

AN OBJECT-ORIENTED MODULAR EXPERT

SYSTEM SHELL

Thesis Approved:

Dean of the Graduate College

13668J~i

ACKNOWLEDGMENTS

I want to show my most heartfelt appreciation to my

major advisor Dr. Blayne E. Mayfield, for his warm

encouragement and guidance on this study. I also like to

extend my thanks to Dr. John P. Chandler and Dr. K. M.

George for their advise and close reading of the thesis,

and for serving as members of my graduate committee.

I would like to express my appreciation to Dr. Eui-Ho

Sub for serving as my major advisor in the beginning of

this study. I also like to express my thanks to my

parents, Joong Bae Na, and Young Keun Na for their love and

support during my thesis writing.

iii

Chapter

I •

I I.

I I I.

TABLE OF CONTENTS

INTRODUCTION • •
OBJECT-ORIENTED CONCEPTS AND
EXPERT SYSTEM SHELLS • • • • •

Object-Oriented Concepts •••
Expert System Shells •••••

.
REVIEW OF CURRENT EXPERT SYSTEM SHELLS •

Page

1

4

4
8

12

Introduction. • • • • • • • • • • • • • 12
Personal Consultant Plus. • • • • • • • • • 13
Nexpert Object. • • • • • • • • • • • • • • 15
Opus. • . • • . . . • • . • • • . • • . . . 17
KEE • 18
HAPS. • • • • • • • • • • • • • • • • • • • 19
LOOPS • • • • • • • • • • • • • • • • • • • 19

IV. AN OBJECT-ORIENTED MODULAR EXPERT SYSTEM SHELL. • 21

Introduction. • • • • • • • • • • • • • • • 21
The Object-Parameters Instance Variable • • 28
The Local Working Memory Instance Variable. 31

Local Working Memory Management for
Recursive Calls and a Hierarchical
Relationship among ESS objects • • • 33

The Rule Base Instance Variable • • • • • • 39
The Inference-Engine-Type Instance

Variable. • • • • • • • • • • • • • • • • 44
User Interface. • • • • • • • • • • • • • • 50
Consultation. • • • • • • • • • • • • • • • 51

V. SUMMARY, CONCLUSION, AND SUGGESTED FUTURE WORK • 54

BIBLIOGRAPHY •• • • • • • • • • • • • • •

APPENDIXES •• • • • . . • • • • • • •
APPENDIX A - OPERATORS THAT ARE USED IN

ANTECEDENT AND CONSEQUENT IN
PRODUCTION RULES • • • • • •

. . .

• • •

APPENDIX B - TRAVEL ASSISTANT EXPERT SYSTEM. . .
iv

58

61

81

64

Figure

Z-1.

z-z.
Z-3.

LIST OF FIGURES

The Class-Subclass Hierarchy • • • • • • • •

Components of an Expert System •
Depth-First Search Strategy together with
Backward-Chaining Paradigm • • • • • • • • •

Page

6

9

11

3-1. An Example of Relationships among Frames 14

3-2. The Access of Each Frame to Rules and
Parameters • • • • • • • • • • • • • 16

4-1. Expert System Shell (ESS) Class •••• • • • 24

4-2. Message Passing between Expert System
Shell Objects. • • • • • • • • • • • • • 25

4-3.

4-4.

The General Configuration of an Object
Oriented Modular Expert System ••••• • •

An Example of the Properties of an
Object-Parameters ••••••••• • • • • •

27

28

4-5. A Hierarchical Relationship among ESS Objects
in Travel Assistant Expert System. • • • • • 30

4-6. The Properties of a Local Working Memory
Element. • • • • • • • • • • • • • • • • • • 32

4-7.1 The Way of Dealing with Dynamic Local Working
Memory Stack. • • • • • • • • • • • • 35

4-7.2 The Way of Dealing with Dynamic Local Working

4-8.

4-9.

4-10.

Memory Stack. • • • • • • • • • • • • • • • 38

An Example of Recursive Calls •••

Sample Rule Base which is the Rule Base
of TRANSPORTATION ESS Object • • • • • •

. .
• •

The Syntax of the Send() Function •• . . .

v

39

41

42

CHAPTER I

INTRODUCTION

OOMESS (an Object-Oriented Modular Expert System

Shell) is an expert system shell which integrates different

knowledge representation schemes into an object-oriented

programming environment. This thesis describes the design

issues of OOMESS. For this thesis, the scope of OOMESS is

limited to backward-chaining inference strategy. OOMESS

provides interface from rules to access the underlying

object-oriented language, which provides the environment

for OOMESS, and to access rule group objects. Rule group

objects will be described in Chapter IV. One of the

motivating forces in the design of OOMESS is a desire to

provide system support for the modularization of a large

rule base into smaller rule groups and to provide flexible

interactions among rule groups.

, OOMESS supports object-oriented design as described

below. To develo~ an expert system (i.e., to solve a

problem) in the OOMESS environment, the problem to be

solved is divided into smaller problems 'according to the

level of detail of the problem. An object-oriented

development concept can be used to divide a problem into

separate smaller problems [BOOC86], for this concept offers

1

2

a mechanism that captures a model of the real world

[BOOC86]. The knowledge base necessary to solve the

problem can also be partitioned into separate smaller ones.

These smaller knowledge bases can be encapsulated into

user-defined objects and Expert System Shell (ESS) objects

which are instances of the Expert System Shell (ESS) class.

User-defined objects can be ~sed for storing more complex

knowledge that is not neatly encapsu~ated in the form of

production rules. ESS objects are used to store rule

groups. ESS objects and user-defined, objects are expected

to have the properties of data abstraction [LISK75] and

information hiding [PARN72] because these objects are

defined within the object-oriented language.

Problem solving is performed through message passing

among ESS objects. This message passing provides very

flexible interactions among rule group objects (i.e., ESS

objects) since one rule group object can send a message to

any of the other rule group objects. Also, the OOMESS

design does not prohibit recursive message passing.

OOMESS, however, does not possess all the properties

of an object-oriented system in the commonly accepted sense

because it has neither class_hierarchy nor inheritance

properties among ESS objects (i.e., every ESS object is an

instance of the ESS class). But OOMESS' is designed to

provide a hierarchical relationship among ESS objects,

which gives children ESS objects the privilege of access to

the Local Working Memory of a parent ESS object. When an

3

ESS object searches for a value in the Local Working Memory

of its parent ESS object, the parent ESS object attempts to

infer the value if it is unknown. An ESS object searches

the Local Working Memory of its parent ESS object when the

variables it is looking for are not declared in its Local

Working Memory. This process is called "Local Working

Memory Inheritance." The details of this feature will be

described in Chapter IV. Except for ESS objects, every

object, defined in the object-oriented programming

environment of OOMESS, has both class hierarchy and

inheritance properties.

The resulting system is one in which a library of ESS

objects (relevant to different problem solving tasks) and

user-defined objects are available. During a consultation,

one ESS object is selected by the user, and the other ESS

objects and/or user-defined objects are selected

automatically by the system through the goal-directed

nature of the system using the support provided by the

environment. This technique should provide an efficient

mechanism for managing large rule sets and voluminous

working memories since a large rule base and a large

working memory are modularized to smaller ones

respectively. Furthermore, this approach supports

reusability, which is a novel concept in expert system

development.

CHAPTER II

OBJECT-ORIENTED CONCEPTS AND EXPERT

SYSTEM SHELLS

Object-Oriented Concepts

Many ideas of object-oriented (0-0) programming were

introduced by SIMULA [DAHL66) in which the fundamental

notions of objects, messages, and classes were employed.

Then the first substantial interactive, display-based

implementation appeared: the SMALLTALK language [GOLD83].

In 1982, Rentsch stated that "Object-oriented programming

will be in the 1980's what structured programming was in

the 1970's" [RENT82]. In 1986, Mark Stefik and Daniel G.

Bobrow [STEF86] observed that there were probably fifty or

more object-oriented programming languages in use. But

different 0-0 programming languages provide varying degrees

of support for the principles of 0-0 programming. One

thing these languages have in common is that they share the

concept of objects which are entities that encapsulate the

data and the procedures that manipulate the data [STEF86].

Programs written in the 0-0 programming languages

consist of objects that combine the properties of

procedures and data since they perform computations and

save local data [STEF86]. In most 0-0 languages, objects

4

5

are divided into two major categories: classes and

instances [STEF86]. A class is a collection of one or more

similar objects called instances [STEF86]. For example,

APPLE is a class since it represents the set of all apples

of APPLE, and APPLE-1 is an instance (Figure 2-1). Figure

2-1 shows the class-subclass hierarchy in a single

inheritance model, which specifies the inheritance

relationship among classes using a tree structure. A class

that is lower in the class.hierarchy than a given class is

called a "subclass"; a class that is higher than a given

class is called a "superclass." When a class (APPLE, for

instance) is placed in the class hierarchy, it "inherits"

variables and procedures (called "methods") from its

superclasses (FRUIT). This· means that an instance of a

class can inherit any variable or procedure defined in the

parent of the class in the class hierarchy. This process

is called "inheritance." For example, APPLE-1 inherits

"sweet" from FRUIT. But if a class redefines any variable

or procedure that already appears in its superclasses, the

redefined variables and procedures in the superclasses are

not inherited by this class. For example, the LEMON class

does not inherit the value of taste from the FRUIT class

because the LEMON class has its own taste variable (Figure

2-1). Inheritance in 0-0 programming languages enables the

easy creation of objects that are almost like other objects

with a few incremental changes (if any), and it further

enhances a knowledge system's ability to reason [BOOC86].

FRUIT
taste: sweet

LEMON
taste: sour

APPLE

II
APPLE-1

OBJECT

BANANA

CLASS-SUBCLASS RELATION

=--- INSTANCE-OF RELATION

VEGETABLE

ONION CUCUMBER

Figure 2-1. The Class-Subclass Hierarchy.

6

7

All actions in 0-0 programming are the consequence of

sending messages between objects. As an example, consider

the message passing scheme employed in Loops [BOBR83],

which is a form of indirect procedure call. Instead of

naming a procedure to perform an operation on an object,

one sends the object a message. A message consists of

arguments and a selector: the selector in the message is

used to find the associated method (a procedure to answer

to the message) in the message-receiving object [STEF86].

The object receiving a message executes its own methods for

performing the required operations. Message sending

supports data abstraction: calling objects do not make

assumptions about the implementation and internal

representations of called objects [STEF86].

o-o programming provides good facilities for

simulation programs, graphics, AI programming, and system

programming [STEF86]. Recently, 0-0 programming languages

have become popular in the area of artificial intelligence

due to their similarity to existing techniques for

knowledge representation such as frame [MINS75] and for

their use in knowledge acquisition [CASA88]. 0-0

programming languages also provide an efficient software

design method in which the decomposition of a system is

based upon the concept of an object [BOOC86]. This

software design method is different from the traditional

functional decomposition methods used in procedure-oriented

programming languages [BOOC86]. According to Booch, the

greatest strength of an object-oriented approach to

software development is that it offers a mechanism that

captures a model of the real world [BOOC86]. According to

Stefik, even though 0-0 programming languages have a long

history, agreement on the fundamental principles of 0-0

programming is needed for standardizing 0-0 programming

languages [STEF86].

Expert System Shells

8

Expert systems have ~een developed since the 1960s,

and the first expert system appeared in the early 1970s: an

expert system is a computer program or a set of programs

capable of performing near, at, or above the level of a

human specialist solving problems in a narrow domain

[SAUE83]. The most significant development in the mid-

1980s has been the proliferation of expert system-building

tools and environments that assist expert system builders

and the users of those expert systems. Any set of software

tools that assists expert system builders in the

development of an expert system beyond programming

languages such as LISP, PROLOG, and SMALLTALK is called an

expert system shell [MART88].

An expert system uses knowledge, facts, and reasoning

techniques to solve problems that normally require human

specialists for their solution [MART88]. The system knows

a great deal about a specific domain of knowledge rather

than a general one. This characteristic is called "highly

'USER INTERFACE~~---------> INPUT DATA

I
v

r---~CONTROL STRUCTURE <
(Rule Interpreter)

v·----------~
KNOWLEDGE BASE GLOBAL DATABASE

(Rule Set) > (Working Memory) <

Figure 2-2. Components of an Expert System
(FIRE88, p. 337].

domain specific."

Most production-rule-based expert systems include the

basic components as shown in Figure 2-2 [FIRE88, p. 337].

9

Production rules [DAVI77], condition/action decision rules,

are normally structured in the form of "IF conditions THEN

actions." If the condition part of a rule is satisfied,

the rule becomes applicable and the action part is

executed. Production rules have been the most effective

knowledge representation for declarative specifications of

domain-dependent behavioral knowledge, and are easily

understood by domain experts [FIKE85]. A user interface

ranges from a simple menu-driven I/0 to sophisticated

natural language dialogues and commands. A knowledge base

is generally structured in the form of production rules.

An Inference engine (i.e., the control structure in Figure

10

2-2) applies the knowledge base information (i.e., rule set

and working memory) for solving problems. The current

problem status is stored in the working memory.

Many expert system control strategies are in use

today. Some of the more popular control strategies are

backward-chaining, forward-chaining, breadth-first search,

depth-first search, heuristic search, problem reduction,

pattern matching, hierarchical control, unification, and

event-driven control [MART88, FIRE88]. One or more of

these strategies is incorporated into the inference engine

of each expert system shell. Backward-chaining and

forward-chaining are strategies used to specify how rules

are to be executed.

As an example of control strategy, the depth-first

search strategy with the backward-chaining paradigm is

considered. Let us consider the following rules [MART88,

p. 241]:

rulel: IF weather is sunny
AND distance <= 20 miles
THEN transportation is bicycle.

rule2: IF transportation is bicycle
THEN no passenger insurance is considered.

rule3: IF no passenger insurance is considered
THEN transportation insurance cost = 0.

rule4: IF no insurance company exists
THEN it is impossible to get insurance.

ruleS: IF it is impossible to get insurance
THEN transportation insurance cost = 0.

When the goal is "transportation insurance cost," the

!transportation insurance cost = of

1 5
v v

no passenger insurance it is impossible to
is considered get insurance

2 6
v v

transportation is - no insurance company
bicycle exists

4
3 I I

v
sunny I r;i stance 20 milesj weather is <=

Figure 2-3. Depth-First Search Strategy together with
Backward-Chaining paradigm [MART88, p.
241]

(

11

process of achieving the goal is illustrated in Figure 2-3

[MART88, p. 241]: the numbers in the figure specify the

order in which the goal is considered.

Although expert system technology is not the ultimate

technology compared with the other aspects of AI

technology, it is the most significant practical product to

emerge from 30 years of AI research [FIRE88]. The

following areas--knowledge representation, knowledge

acquisition, expert system tools, expert system design and

expert system programming--demand further research to

improve expert system technology [MART88, PARS88, SIEG86].

CHAPTER III

REVIEW OF CURRENT EXPERT SYSTEM SHELLS

Introduction

Any set of software tools designed to assist expert

system builders in the development of expert systems beyond

programming languages (like LISP, PROLOG, and SMALLTALK)

can be called an expert system shell [MART88]. In

particular, any expert system building tool that is

designed to be used by knowledge engineers in the

construction of expert systems should be considered an

expert system shell. The basic components of expert system

shells are inference engine, user interface, explanation

facility, and knowledge acquisition facility [MART88].

Some sets of expert system building tools offer

choices of knowledge representation methods and inference

strategies. Therefore, expert system builders can select a

particular knowledge representation scheme and inference

strategy. These tools are not ca!'led expert system shells,

but expert system programming environments [MART88]. In

this paper we use the term "expert system shell" to mean

any collection of expert system building tools. The

following sections describe several commercial expert

system shells that are related to OOMESS.

12

13

Personal Consultant Plus

Personal Consultant, developed by Texas Instruments,

is an expert system shell that helps expert system builders

create expert systems that run on personal computers.

Personal Consultant Plus, an enhanced version of Personal

Consultant, offers an augmented knowledge base capacity, a

frame-based knowledge representation feature, and an

enhanced graphics program interface that allows graphics

and other programs to be used in the rule bases of Personal

Consultant Plus applications [MART88, TEXA87].

Personal Consultant Plus uses frames, parameters, and

rules to represent knowledge bases. To develop an expert

system, to solve a problem, in the Personal Consultant Plus

environment, the problem to be solved is divided into

smaller problems (i.e., smaller rule bases) according to

the level of detail of the problem. Frames [MINS75], which

provide structured representations of stereotyped objects

or classes of these objects, are used to store these

smaller rule bases of the expert system. Rules and

parameters are associated with a frame.

Each knowledge base has a root frame and one or more

subframes. Figure 3-1 shows the relationships among the

frames. The parent-child relationship is obvious from the

figure. For example, the root frame A has as children

subframes 8 and C. A root frame captures the most general

concepts of a domain knowledge, and more specific concepts

root
frame A

I
I I

'

frame B frame c

J
I I

frame D frame E

Figure 3-1. An Example of Relationships
among Frames [TEXA87].

are grabbed by subframes. Properties associated with

frames, parameters, and rules determine their

14

characteristics. Frames, for example, have a property like

GOALS. GOALS are lists of parameters whose values should

be solved when frames are instantiated.

Parameter groups that consist of logically related

parameters can be associated with more than one frame.

Parameters are used to store data in frames. The system

provides rule groups in which rules are organized. Each

frame has a rule group which can be connected with more

than one frame. But frames that have identical rule groups

must also have the identical parameter groups that

correspond to the rule groups.

15

A rule is structured in the form of an IF-THEN

statement. System functions (provided by Personal

Consultant Plus) and user-defined functions can be accessed

from rules; LISP statements can also be used in rules. The

Abbreviated Rule Language (ARL) provides a convenient

format for entering system functions required in rules

[MART88]. A number of properties are associated with

rules. For example, a property, ANTECEDENT, is used to

indicate that the rule uses forward-chaining inference

strategy. Rules whose ANTECEDENT property is not YES can

only be used in the backward-chaining mode.

Personal Consultant Plus provides an inheritance

mechanism which applies to p~rameter groups associated with

frames, which means that parameter groups in parent frames

are inherited by children frames. However, the inheritance

mechanism does not apply to rule groups. The inheritance

mechanism applied to the frames in Figure 3-1 is shown in

Figure 3-2.

Martin and Oxman [MART88] state that "though speed and

memory space continue to be obstacles in building large

expert systems on PCs, the increased capabilities offered

by Personal Consultant Plus make the task easier and more

practicable."

Nexpert Object

Nexpert Object, developed by Neuron Data, is a hybrid

rule- and object-based shell operating on IBM mainframes

frame can access parameters in can invoke rules

A A A B c D

B A B B D

c A c c

D A B D D

E A B E

Figure 3-2. The Access of Each Frame to Rules and
Parameters [TEXA87].

16

in

E

E

E

under VM, VAXstations under VMS, IBM AT, PS/2, Macintosh

Plus, and so forth [ARCI88, NEUR87]. In addition to the

usual rule-based method, Nexpert Object uses a knowledge

representation paradigm with objects [BROW88, NEUR87].

That is, only part of a knowledge base is codified in the

form of rules, and the rest in the form of objects.

Because of this methodology, Neuron Data calls its own

product an "object-based expert system shell." But these

objects do not contain their own rules; Nexpert Object uses

rules to reason about these objects and classes.

Rules in Nexpert Object have forward/backward

symmetry, which means that the same rules can be used for

both forward and backward chaining [BROW88]. A set of

rules that share data or hypothesis, forms a knowledge

island which divides the knowledge base for fast access to

information [BROW88].

17

Rules are comprised of "If ••• Then . . . and Do

" statements, where If is followed by a set of

conditions, Then by a hypothesis, and Do by a set of

actions to be undertaken if all the conditions become true.

Nexpert Object, which provides a dual mode of

knowledge representation and a flexible, graphical

interface, is a more powerful and sophisticated system than

those commonly found on minicomputers and mainframes

(BROW88].

Opus

Opus, an Object-Oriented Production System, is a tool

for rule-based programming in the Smalltalk-80 environment

which integrates a production system paradigm [LAUR87]. A

data-driven production system in Opus allows access to the

full functionality of the Smalltalk-80 language; it also

allows the ability to match rules with arbitrary objects in

the environment [LAUR87). Laursen [LAUR87) points out that

"the design of Opus was driven by the desire for a close

integration of production system, language and environment,

and for maximum freedom of expression in the rule

language."

There are several other production systems written

in object-oriented languages. For example, Humble

[PIER8G) provides an Emycin-like [BUCH84] expert system

shell that runs in the Smalltalk-80 language and

programming environment; Orient84/K [TOK085] adds rules and

working memory to Smalltalk classes; and YAPS [ALLE83]

supports the use of lisp Flavors in working memory

(LAUR87].

KEE

KEE, Knowledge Engineering Environment [KEHL84], has

achieved a great deal of success by integrating frame and

production rule languages to form hybrid representation

facilities that combine the advantages of both languages

[FIKE85].

18

The production rules in the KEE system are represented

as frames. This feature allows rules to be grouped into

classes and to contain supplementary descriptive

information in frame slots. A rule's conditions and

conclusions within a frame are represented by a simple

predicate logic language. Fikes [FIKE85] argues that "a

frame-based representation facility extends the system's

explicitly held set of beliefs to a larger, virtual set of

beliefs by automatically performing a set of inferences as

part of its assertion and retrieval operation."

Fikes [FIKE85] also states that "one of the major

advantages of this kind of hybrid facility is that it makes

the expressive and organizational power of object-oriented

programming available to domain experts who are not

programmers."

19

HAPS

Being successful, expert system technology is applied

to broader and more complex domains than before.

Therefore, expert system shells must have the capability of

handling larger rule bases and a much larger working set;

some expert system shells are also required to operate in

real-time situations [SAUE83].

These constraints are incorporated into the design of

HAPS (the Hierarchical, Augmentable Production System).

HAPS is a goal-directed system, which provides the classes

of production rules, hierarchical levels of working memory,

the dynamic construction of production hierarchies, and

modular, modifiable s~ts of control strategies and conflict

resolution strategies [SAUE83]. HAPS also provides

additional, globally accessible memory types designed to

support the implementation of large expert systems in real

time situation [SAUE83].

LOOPS

LOOPS, developed by Xerox Corporation, is a multiple

paradigm system that adds data, object, and rule-oriented

programming to the procedure-oriented programming of

Interlisp-D which is a dialect of the LISP programming

language [BOBR83]. Therefore, a user can choose the style

of programming which suits his/her application.

Rules in LOOPS are organized into RuleSets that

20

consist of an ordered list of rules and a control

structure. Therefore, In the rule-oriented paradigm,

programs are separated into their RuleSets. The control

structures of RuleSets are data-driven inferencing
' '

strategies that determine which rules are executed: in

LOOPS, there are several different control structures such

as Dol, While1, and DoNext [BOBR83]. The rules, defined as

classes of LOOPS objects, consist of three parts called the

left hand side (LHS) for containing the conditions, the

right hand side (RHS) for containing the actions, and the

meta-description (MD) for containing the rule descriptions

[BOBR83, MART88].,

Since LOOPS is integrated into the Interlisp-D

environment, it provides access to Lisp programming and the

extensive environmental support of the Interlisp-D system

[BOBR83].

CHAPTER IV

AN OBJECT-ORIENTED MODULAR EXPERT

SYSTEM SHELL

Introduction

OOMESS (an Object-Oriented Modular Expert System

Shell) is an expert system shell which is designed to

integrate a production system with an object-oriented

language. This thesis is concerned with the design of

OOMESS. The OOMESS environment is defined on top of an

object-oriented language (e.g., C++, Smalltalk-80, Loops)

[GUTM89]. An obvious advantage of implementing a rule

system within an object-oriented programming language is

the opportunity,to take advantage of the underlying

language and hence to factor the system into modular

components [LAUR87]. The modular components are reusable

software components which tend to be objects or classes of

objects [BOOC86]. Given a rich set of modular components,

our implementation proceeds via composition of these

components. The OOMESS environment consists of a

collection of objects: Exp~~t System Shell (ESS) objects,

Global Working Memory, a backward-chaining inference engine

object, built-in objects, user-defined objects, and a user

interface.

21

22

The Expert System Shell (ESS) class is a template for

the ESS object. The ESS class consists of two methods (New

and Activation) and four instance variables (Inference

Engine-Type, Object-Parameters, Rule Base, and Local

Working Memory). Instances of the ESS class, called ESS

objects, are used for defining rule groups. Global Working

Memory is used for sharing global data among ESS objects.

Local Working Memory is visible only to the ESS object in

which it is defined. Global working memory elements have

the same data structures as local working memory elements.

User-defined and built-in objects, which are written in the

object-oriented language used for implementing OOMESS, can

be accessed from the rules in the Rule Base. Therefore,

some portion of a knowledge base can be stored in user

defined and built-in objects. Built-in objects are

provided when OOMESS is developed, and user-defined objects

can be added by the user (i.e., a knowledge engineer).

Normally, these objects are used for storing more complex

knowledge which is not neatly encapsulated in the form of

production rules. Since built-in and user-defined objects

are defined using the object-oriented language, these

objects may have class hierarchy and inheritance properties

(COX86, MARK86].

The Inference-Engine class may have several different

instances (e.g., backward-chaining, forward-chaining,

hybrid backward- and forward-chaining inference engine

object, etc.). Therefore, all ESS objects do not need to

23

have the same inference strategy. However, for the sake of

simplicity, this thesis assumes that the Inference-Engine

class has only a backward-chaining inference engine object

as its instance; therefore, all ESS objects adopt a

backward-chaining inference strategy uniformly. The

Inference-Engine class can be improved to have other

inference strategies as its instances in future work.

The role of the user interface in OOMESS is to provide

the tools for the user to create expert systems (i.e., ESS

objects, Global Working Memory, and user-defined objects),

and to perform consultations [HEND88].

One of the anticipated advantages of OOMESS is that

when a large knowledge base is developed within OOMESS, it

can be divided into smaller knowledge bases according to

the level of detail of the problem. These smaller

knowledge bases are stored in user-defined objects and ESS

objects. Because user-defined objects and ESS objects are

defined within the object-oriented language, they have the

properties of data abstraction [LISK75] and information

hiding [PARN72].

Now we will examine the instance variables and methods

of the ESS class. The structure of the Expert System Shell

class is shown in Figure 4-1. The Object-Parameters

instance variable contains parameters that determine the

properties of an ESS object. The Rule Base instance

variable contains rules that are structured in the form of

production rules. The Local Working Memory instance

Methods:

New

Activation

Instance Variables:

Object-Parameters

Inference-Engine-Type: BACKWARD (default value)

Rule Base

Local Working Memory

Figure 4-1. Expert System Shell (ESS) Class

24

variable contains elements which are input by a user or the

data inferred in its ESS object as OOMESS executes a

consultation. The Inference-Engine-Type instance variable

is used for selecting one of the instances of the

Inference-Engine class. The Inference-Engine-Type has the

default value BACKWARD which is set to the Inference

Engine-Type of every ESS object unless the default value is

explicitly changed: the value BACKWARD, indicates that the

inference strategy used is backward-chaining. These

instance variables will be described in detail in the

following sections.

The "New" method is used for creating an instance of

the ESS class (i.e., an ESS object). A knowledge ~ngineer

uses this method to create a new ESS object with its

attribute values for Inference-Engine-Type, Object-

25

Parameters, Rule Base, and Local Working Memory. All ESS

objects in an expert system are created when the user

develops the expert system. The development processes of

expert systems 'wi 11 be described in the User Interface

section. The "Activation" method is used for activating an

ESS object during a consultation. The "Activation" method

in an ESS object invokes the inference engine object (i.e.,

an instance of Inference-Engine class) specified by the

value of the Inference-Engine-Type instance variable, and

the invoked inference engine object controls search and

inference in the ESS object; this inference engine has the

privilege of accessing the instance variables of the ESS

object.

Problem solving is performed through message passing

among ESS objects (Figure 4-2). Message passing is

actually executed from rules in the Rule Base. When one

ESS object sends a message to another ESS object, the

inference engine object operating on the message-sending

ESS object 1 ESS object 2 ESS object N

.

r T T
Figure 4-2. Message Passing among Expert

System Shell Objects.

26

object relinquishes control to the activation method of the

message-receiving object, and the activation method invokes

an inference engine object according to the value of the

Inference-Engine-Type.

The general configuration of an object-oriented

modular expert system is shown in Figure 4-3. An object

oriented expert system developed under OOMESS consists of

any number of ESS and user-defined objects, Global Working

Memory, built-in objects, a backward-chaining inference

engine object, and a user interface.

As can be seen in Figure 4-3, the rules of an ESS

object can send messages to user-defined objects, built-in

objects, Global Working Memory, and other ESS objects for

solving goal values. The resulting system is one in which

a library of ESS objects (relevant to different problem

solving tasks) and user-defined objects is available.

Several ESS objects and/or user-defined objects are

selected during the system execution, and the goal-directed

nature of the system guides the search through these

selected ESS objects.

To describe OOMESS, we will use a "Travel Assistant

Expert System" (which is given in APPENDIX B) as an example

in this chapter. The goal of the Travel Assistant Expert

System is to help travelers decide the mode of

transportation. The expert system consists of the ESS

objects TRANSPORTATION, AIRPORT, CAR, CAR-AIR, TRUCK,

PASSENGER-CAR.

USER

l
USER INTERFACE :

" t,

AN
INFERENCE- AN ESS
ENGINE I~ ' I' ,
OBJECT OBJECT

~ I'

USER-DEFINED /

I' ' OR
'

, GLOBAL WORKING
BUILT-IN MEMORY
OBJECTS

' ~
THE OTHER ESS
OBJECTS

Data Flow

: Message Passing

Figure 4-3. The General Configuration of an Object
Oriented Modular Expert System.

27

28

The Object-Parameters Instance Variable

The Object-Parameters determine the properties of an

ESS object. When an ESS object is created, it acquires

characteristics according to the values of the Object-

Parameters. The Object-Parameters consist of OBJECT_NAME,

GOAL_CANDIDATES, PASSED_ARGUMENT, and SUPER_LWMOBJECT. As

an example, the Object-Parameters of the ESS object AIRPORT

are shown in Figure 4-4.

The value of OBJECT_NAME specifies the name of the ESS

object in which it is contained. The GOAL_CANDIDATES

property specifies the possible goal parameters that can be

solved by the ESS object. Local working memory elements

are also called "parameters" in this thesis. When a

OBJECT_NAME: AIRPORT

GOAL_CANDIDATES: COST, MPH,

$_PER_MILE_FLY

PASSED_ARGUMENT: (COST, DISTANCE)
(COST)
(MPH, DISTANCE)
(MPH)

SUPER_LWMOBJECT: TRANSPORTATION

Figure 4-4. An Example of the Properties
of an Object-Parameters.

29

consultation begins, these goal parameters are listed under

the name of every ESS object on the screen. Therefore, the

user can see the possible goals of every ESS object and

select the goal name of a specific ESS object. The

objective of the consultation, then, is to find a value for

the chosen.goal parameter.

The PASSED_ARGUMENT defines the goal names and

arguments passed into and out of its ESS object. The first

parameter in a PASSED_ARGUMENT list contains a goal name,

and there can be any number of passing arguments. For

example, in the first PASSED_ARGUMENT list (COST,

DISTANCE), the first parameter (COST) is a goal name and

the second parameter (DISTANCE) is a passing argument

(Figure 4-4). The PASSED_ARGUMENT lists in an ESS object

are used when the ESS object receives messages sent by

other ESS objects; there is one list for each message.

This feature will be described in detail in The Rule Base

Instance Variable section. The first element of a list is

a goal parameter (refer to Figure 4-4). Only the goals

defined in the PASSED_ARGUMENT lists of an ESS object can

be requested by other ESS objects. If two goals in an ESS

object can be requested from other.ESS objects, there will

be two PASSED_ARGUMENT lists and so on.

The SUPER_LWMOBJECT specifies the name of a parent ESS

object. The parent-child relationship is based on and is

restricted to the Local Working Memory. The hierarchical

relationship among the ESS objects in the Travel Assistant

TRANSPORTATION

AIRPORT CAR-AI~

Figure 4-5. A Hierarchical Relationship among ESS
Objects in Travel Assistant Expert
System.

Expert System defines a tree structure (Figure 4-5). As

30

can be seen in Figure 4-5, an ESS object can not have more

than one ESS object parent. In the hierarchical

relationship, children ESS objects have the privilege of

accessing the Local Working Memory of a parent ESS object.

When children ESS objects search for some value in the

Local Working Memory of their parent ESS object, the parent

ESS object tries to infer the value if it is unknown.

An ESS object searches the Local Working Memory of its

parent when the variables it needs to evaluate are not

declared in its Local Working Memory. This process is

called "Local Working Memory Inheritance." In Personal

Consultant Plus, parameter groups (i.e., local working

31

memories) in parent frames can be accessed (i.e.,

inherited) by children frames. However, the inheritance

mechanism does not apply to rule groups (i.e., Rule Bases)

[TEXA87]. ESS objects are reusable software components,

and when ESS objects are reused in different expert

systems, the Local Working Memory Inheritance among ESS

objects should be maintained in order to avoid

inconsistencies and potential faults.

The Local Working Memory Instance Variable

The Local Working Memory (LWM), which is local to an

ESS object, serves as storage for values input by the user

and the data inferred by the inference engine object while

OOMESS executes a consultation. The Local Working Memory

is an aggregate of local working memory elements. The

properties of each local working memory element are

PARAMETER_NAME, DATA_TYPE, ASK_USER, LEGALVALS, QUESTION,

VALUE, and STATIC_OR_DYNAMIC. An example of the properties

of a local working memory element is shown in Figure 4-6.

Some ideas are adopted from the parameter properties of

Personal Consultant Plus in defining the properties of a

local working memory element.

The PARAMETER_NAME property specifies the name of a

LWM element. The DATA_TYPE is used for declaring the data

type of the LWM element. In OOMESS, data types are limited

to INTEGER, FLOAT, BOOLEAN, and STRING. The INTEGER type

is a signed integer, while the FLOAT type is used for

PARAMETER_NAME: DAYTYPE

DATA_TYPE: STRING

ASK_USER: YES

LEGALVALS: WEEKEND, WEEKDAY

QUESTION: IS IT WEEKEND OR WEEKDAY?

VALUE: NIL

STATIC_OR_DYNAMIC: STATIC

Figu~e 4-6. The Properties of a Local
Working Memory Element.

32

storing floating point numbers; the ranges in the possible

values of these data types depend on the computer system.

The BOOLEAN type can have either TRUE or FALSE. The STRING

type is used for stori·ng a fixed· length character string.

If the value of a LWM element needs to be supplied by

the user, the ASK_U~ER will be set to YES; otherwise, it

wi 11 be set to NO. The· LEGALVALS is used for defining

possible values of a LWM element, and the QUESTION is used

for specifying a prompt. When the user is prompted for the

value of a LWM element, the prompt, included in the LWM

element, will appear on the screen. If a LWM element need

not consult the user to get a value, the LEGALVALS and the

QUESTION will be set to NIL. The VALUE property is

initialized to NIL when a LWM element is created. NIL

33

means that the value of a LWM element is unknown. The

VALUE property will change to the value as soon as the

value of its LWM element is inferred or input by the user.

The STATIC_OR_DYNAMIC has a value either STATIC or

DYNAMIC. When a LWM element has STATIC as the value of

STATIC_OR_DYNAMIC, the LWM element is called a static

parameter. The value of a static parameter is persistent;

its lifetime extends beyond the quration of the

consultation period of the E~S object to the consultation

session. A static parameter is similar to a static

variable in the C programming language [WAIT87]. Usually,

most of the static parameters are templates for user input,

and often the user input values are the same whenever an

ESS object is activated. If a LWM element has DYNAMIC as

the value of STATIC_OR_DYNAMIC, the LWM element (called a

dynamic parameter) will 'be initialized every time its ESS

object is activated. That is, the dynamic parameter values

are local to the activation of the ESS object, whereas the

static parameter values are local to the ESS object.

Local Working Memory Management for

Recursive Calls and A Hierarchical

Relationship among ESS Obiects

Normally, when a message-receiving ESS object

completes its inference and returns control to the message

sending ESS object, only the values of the static

parameters of the message-receiving ESS object are retained

34

and all the values of its dynamic parameters are

initialized to NIL. In some cases, however, a message

receiving ESS object sends a message back to a message

sending ESS object to get some value before it infers the

final goal value. Since the message-sending object already

has some inferred data in its Local Working Memory, the

Local Working Memory has to be initialized. Otherwise,

already inferred data in the Local Working Memory of the

message-sending object affect the result of inference.

Furthermore, the initialized Local Working Memory loses old

values.

The recursive activations of ESS objects can be solved

by the use of a Dynamic Local Working Memory stack.

Figures 4-7.1 and 4-7.2 show an example of dealing with a

Dynamic Local Working Memory stack. TOP is a pointer to

the topmost element,of the Dynamic Local Working Memory

stack. Local Working Memory is divided into Static Local

Working Memory and a Dynamic Local Working Memory stack.

Each element of the Dynamic Local Working Memory stack of

an ESS object is used for storing only dynamic parameters.

Static parameters are stored separately into Static Local

Working Memory. When one ESS object performs its

consultation, the dynamic parameters pointed by TOP and the

static parameters are used in its local working memory.

When one ESS object starts inference, its dynamic

parameters, whose values are all NIL, are pushed into its

Dynamic Local Working Memory stack, and its static

ESS OBJECT_1

I SLWME I CURD ~TOP
SLWM DLWMS

LOCAL WORKING MEMORY

MESSAGE
PASSING 1

)

ESS OBJECT_2

fsLWMEI

SLWM DLWMS

TOP
= 0

LOCAL WORKING MEMORY

(a) When OBJECT_l Sends a Message to OBJECT_2 before
OBJECT_1 Finishes its Consultation.

ESS OBJECT_1

INID ~TOP

lsLWMEI cuRD

SLWM DLWMS

LOCAL WORKING MEMORY

MESSAGE
PASSING 2
(

ESS OBJECT_2

I SLWME I CURD f.-TOP

SLWM DLWMS

LOCAL WORKING MEMORY

35

(b) When OBJECT_2 Sends a Message Back to OBJECT_1 before
OBJECT_2 Finishes its Consultation.

SLWM: Static Local Working Memory
SLWME: Static Local Working Memory Elements
DLWMS: Dynamic Local Working Memory Stack
INID: Initial Dynamic parameters
CURD: Current inferred Dynamic parameters

Figure 4-7.1. The Way of Dealing with Dynamic Local
Working Memory Stack.

ESS OBJECT_l

I SLWMEI CURD f.-TOP

SLWM DLWMS

LOCAL WORKING MEMORY

RETURN
A VALUE)

ESS OBJECT_2

I SLWME I CURD ~TOP
SLWM DLWMS

LOCAL WORKING MEMORY

(C) When OBJECT_l Returns a Value to OBJECT 2 as the
Responding Answer Value of Message Passing 2.

ESS OBJECT_l ESS OBJECT_2

JsLWMEJ CURD

SLWM DLWMS

{-TOP

RETURN
(VALUE

JstwMEJ TOP
= 0

SLWM DLWMS

LOCAL WORKING MEMORY LOCAL WORKING MEMORY

(d) When OBJECT_2 Returns a Value to OBJECT_l as the
Responding Answer Value of Message Passing 1.

SLWM: Static Local Working Memory
SLWME: Static Local Working Memory Elements
DLWMS: Dynamic Local Working Memory Stack
INID: Initial Dynamic parameters
CURD: Current inferred Dynamic parameters

Figure 4-7.2. The Way of Dealing with Dynamic Local
Working Memory Stack.

36

37

parameters are stored into its Static Local Working Memory.

Therefore, TOP is going to be 1 when an ESS object starts

to do inference.

In Figure 4-7.1 (a), OBJECT_l sends a message to

object_2 during its consultation, and OBJECT_2 starts'to do

its consultation. And then OBJECT_2 sends a message back

to OBJECT_l during its consultation. Because OBJECT_l does

not finish its consultation yet (TOP = 1), initialized

dynamic local working memory elements, whose values are all

NIL, are pushed into its Dynamic Local Working Memory stack

(Figure 4-7.1 (b)). When OBJECT_! returns a value to

OBJECT_2 as the responding answer value of OBJECT_2's

message, the Dynamic Local Working Memory stack in OBJECT_l

is popped up (Figure 4-7.2 (c)). Finally, OBJECT_2 returns

a value to OBJECT_l as the response to OBJECT_l's message,

and OBJECT_! continues its consultation. Because OBJECT_2

completely finished its consultation, the TOP of OBJECT_2

has been set to 0 (Figure 4-7.2 (d)).

OOMESS is also designed to provide a hierarchical

relationship among ESS objects, from which children ESS
I

objects have the privilege of accessing the Local Working

Memory of a parent ESS object. When an ESS object looks

for some values in the Local Working Memory of its parent

ESS object, there are 3 cases to consider:

1. The parameter is not declared in its parent's

Local Working Memory.

2. The parameter is declared in its parent's Local

38

Working Memory and the parameter value is known.

3. The parameter is declared in its parent's Local

Working Memory and the parameter value is unknown.

In Case 3, the initialized dynamic parameters of the

parent object should be pushed into its Dynamic Local

Working Memory stack,since the parent ESS object tries to

infer the parameter value (it is possible that the

activation is recursive). In cases 1 and 2, however, the

initialized dynamic parameters of the parent object do not

need to be pushed into the stack because the parent ESS

object does not try to infer the parameter value. In case

"1, the parameter value is searched for in the parent Local

Working Memory of the parent object, which in turn will

repeat the process. Therefore, in Case 3, when the parent

ESS object returns to the child object, the parent object

pops up its Dynamic Local Working Memory. In cases 1 and

2, however, the parent ESS object should not pop up its

Dynamic Local Working Memory.

As an example, let us consider the recursive calls

shown in Figure 4-8. ESS object A has a dynamic parameter

(x) and a static parameter (y). Assume that the initial

values of x and y are 1 and 2 respectively. We further

assume that x and y are not declared in ESS object B, but

they are used in it. 'When A calls B ,(A => B), B can get

the values of x and y (x = 1 and y = 2). Let's assume that

A gets a new x value (x = 2) when B recursively calls A (A

=> B =>A). At this point, if A recursively calls B (A=>

39

A

Dynamic Parameter: X

Static Parameter: y

B c

A => B => A => B

=> means message-sending.

Figure 4-8. An Example of Recursive Calls.

B =>A=> B), B can get the values of x andy (x = 2 andy

= 2): the x value is changed, but they value is not

changed. In order to enforce inheritance, the most recent

effective activation of the object is used.

The Rule Base Instance Variable

Domain knowledge is stored in the Rule Bases of ESS

objects and user-defined objects. OOMESS supports

modularity; therefore a problem can be divided into small

subproblems and the knowledge to solve subproblems can be

stored in ESS objects. For the division of the main

problem into smaller problems, an object-oriented

' development concept [BOOC86] is used since this concept, as

Booch observes, offers a mechanism that captures a model of

40

the real world.

The Rule Base stores rules that are structured in the

form of production rules since production rule

representation offers the advantages of understandability

and ease of modification [LAUR87]. Production rules in

OOMESS have the form "IF antecedent THEN consequent." The

antecedent is made up of one or more conditions that are to

be matched against Local Working Memory, Global Working

Memory, ESS objects, user-defined objects, built-in

objects, local rules in the Rule Base, superclass Local

Working Memory, and/or input by the user. The consequent

specifies the actions to be taken when all the conditions

of the antecedent turn out to be true. For making

condition and conclusion statements in the antecedent and

consequent, parameters, constant values (quoted by " "),

and send() functions are used together with other built-in

operators (defined in Appendix A). The definitions of

operators mostly follow those in the C programming language

[WAIT87]. Every parameter should be declared before it is

used'in rules. A sample Rule Base of an ESS object is

shown in Figure 4-9. All rules in the Rule Base are

linearly linked from rulel to rule9. The sample Rule Base,

which is the Rule Base of the TRANSPORTATION ESS object, is

a portion of the Travel Assistant Expert System Rule Base

(Appendix B). In rulel, rule2, and rule3, the send()

function is used in antecedent. The send() function is

used for sending a message from a rule in Rule Base to a

rulel: IF send(airport.cost(Distance)) <= MoneyAvail
THEN have_money_to_fly.

rule2: IF send(car.cost(Distance)) <= MoneyAvail
THEN have_money_to_drive.

rule3: IF send(car-air.cost) <= MoneyAvail
THEN have_money_to_drive_fly.

rule4: IF (Distance I send(airport.mph(Distance))) <=
TimeAvail

THEN have_time_to_fly.

ruleS: IF (Distance I send(car.mph)) <= TimeAvail
THEN have_time_to_drive.

rule6: IF send(car-air.have_time)

41

THEN have_time_to_drive_fly.

rule7: IF have~oney_to_drive AND
have_time_to_drive

THEN TravelMode = 'drive'.

ruleS: IF have_money_to_drive_fly AND
have_time_to_drive_fly AND

THEN TravelMode = 'drive_and_fly'.

rule9: IF have~oney_to_fly AND
have_time_to_fly AND

THEN TravelMode = 'fly'.

Figure 4-9. Sample Rule Base Which is the Rule Base of
TRANSPORTATION ESS Object.

send(object-name.message-name[(argl, ••• , argN)]

[, return-parameter])

Data types of arg1, ••• ,argN, and return-parameter:
STRING, INTEGER, FLOAT, BOOLEAN.

N is an integer number.
[] specifies optional arguments.

Figure 4-10. The Syntax of the Send() Function

specific ESS object, a user-defined object, or a built-in

object; therefore, the send() function provides

42

interactions among these objects. The syntax of the send()

function is shown in Figure 4-10. The syntax of the first

argument in the send() function follows that used for

message sending in the C++ programming language [STR086,

COX86].

The first argument of the send() function specifies an

object name, a message name, and a passing parameter list.

The second argument specifies the returning parameter name

in which a resulting value is stored. Therefore, only one

value can be received as a result of a message.

For example, in the first argument of the send()

function in rulel, "airport" is an ESS object name, "cost"

is a message name (i.e., a goal name), and "Distance" is an

actual parameter. Therefore, the send() function will send

a message to the airport ESS object with the actual

parameter "Distance" to infer the value of cost; actually,

43

cost is not a method in the airport object, but is a goal

name in the PASSED_ARGUMENT list of the ESS object airport.

The airport object, the message-receiving object, uses one

of its PASSED_ARGUMENT lists, which contains cost in the

first parameter and one more passing parameter (i.e.,

(COST, DISTANCE) in Figure 4-4). The value of the actual

parameter "Distance" is passed to "DISTANCE." After

inferring the value of "cost," the airport object returns

that value to the message-sending object (i.e.,

TRANSPORTATION object) as the reply to the message. If the

airport object can't infer the value of cost, the object

returns NIL and the inference engine object operating on

the TRANSPORTATION object does not consider condition parts

of rulel further, and the antecedent of rulel becomes false

(NIL means unknown or FALSE). If the return parameter is

specified in the send() function, the return value will be

stored in the local working memory element corresponding to

the return-parameter. Because the return-parameter is not

specified in the send() function in rulet, a return value

will be used only for logical operation with MoneyAvail,

and then it will be discarded.

When the send() function sends a message to a user

defined object or a built-in object, in the first argument

in the send() function, the object-name argument is the

name of a user-defined or a built-in object, the message

name is a method name (i.e., a kind of procedure name)

which is inside the message-receiving object, and (arg1,

44

••• ,argN) are passing parameters. This send() function

will be translated by the system to actual message-sending

code, which is language dependent. A user-defined or

built-in object can return only one value as the response

to the send() function. Since OOMESS keeps names of all

ESS objects in a specific expert system, the shell can

distinguish ESS objects from both user-defined and built-in

objects.

The Inference-Engine-Type Instance Variable

As mentioned earlier, every ESS object can select its

own inference strategy using an Inference-Engine-Type

instance variable. Therefore, not all ESS objects need to

have the same inference strategy. However, for the sake of

simplicity, OOMESS currently provides an Inference-Engine

class that has only a backward-chaining inference engine

object as its instance. An Inference-Engine class can be

improved to have several different inference engine objects

as its instances (e.g., backward-chaining, forward

chaining, hybrid backward- and forward-chaining inference

engine object, etc.). Because the backward-chaining

inference engine tries to solve a single goal at any given

time, this property provides expert system builders with an

easy way of dividing a large rule base into smaller ones.

The basic concept of backward-chaining strategy is

described in Chapter II.

The backward-chaining inference engine object

45

operating an ESS object begins by attempting to infer the

value of a goal parameter by searching for a rule whose

THEN consequent assigns a value to the goal parameter.

When it finds a rule, it determines whether the conditions

expressed in the rule's "IF" antecedent are true.

To determine whether the conditions expressed in the

rule's IF antecedent are true, the inference engine object

may need to find the value of one or more parameters

included in the IF antecedent, and the inference engine

object may need to find the value of one or more parameters

included in the right-hand side of the assignment operator

(=) in the THEN consequent to assign a value to the

parameter in the left-hand side. The method of tracing the

value of a parameter included in the IF antecedent or THEN

consequent is described below. If the inference engine

object, operating on an ESS object, infers the value of the

parameter in one of the following steps, it stops the

search.

1. If the inference engine object encounters a send

construct in which the return-parameter is not

specified, one of the following occurs:

1-1. a message to a specific ESS object. The inference

engine object of the message-receiving ESS object

will get control of OOMESS. The result of the

inference is returned as the response to the

message.

1-2. a message to a user-defined or a built-in object.

46

The message-receiving object returns the result.

The result is not stored in the receiving object

Local Working Memory. If the result is NIL, the rule

fails. Stop the search.

2. If a parameter is a local parameter (i.e., the

parameter is declared in the Local Working Memory),

2-1.

a.

b.

search the value of the parameter in the Local

Working Memory:

if the value of the parameter is known, get the

value and stop the search.

if the value of the parameter is unknown and the

ASK_USER property of the parameter is YES, prompt

the user, store the value in the Local Working

Memory, and stop the search.

c. if the value of the parameter is unknown and the

ASK_USER property of the parameter is NO, go to

step 2-2.

2-2. if the inference engine encounters a send

construct in which the return-parameter is

specified, perform the same process as in step 1

except that the return value is stored in the

receiving object Local Working Memory.

2-3. attempt to set the value of the parameter by

looking for a rule whose THEN consequent assigns a

value to the parameter. When it finds a rule, it

determines whether the conditions expressed in the

rule's IF antecedent are true. If the conditions

47

are true, the THEN consequent assigns the value to

the parameter and the parameter value is stored in

Local Working Memory; otherwise, look for another

rule whose THEN consequent assigns a value to the

parameter.

3. If a paramete'r is not a local parameter (i.e., the

parameter is declared in Global Working Memory or the

parent local·working memories),

3-1. search the value of the parameter in the

parent Local Working Memory:

a. if the parameter is not declared in the

parent Local Working Memory, search the parameter

value in the parent Local Working Memory of the

parent object, and so forth.

b. if the par'ameter is declared in the parent Local

Working Memory and the value of the parameter is

known, get the value.

c. if the parameter is declared in the parent Local

Working Memory and the value of the parameter is

unknown, the parent object starts to infer the

value of the parameter. If the parameter is

declared in the GOAL_CANDIDATES of the parent

object, the inference engine object of the parent

object tries to solve that goal value; otherwise,

the inference engine object tr~es to solve all

goals in the GOAL_CANDIDATES until the parameter

value is found.

48

Finally, if the parameter value is unknown, go to

step 3-2; otherwise, stop the search.

3-2. search the parameter value in Global Working

Memory. Perform the same process as in step 2-1

except that the searching takes place in Global

Working Memory. If the parameter value is not

found, go to step 3-3.

3-3. if the inference engine encounters a send

construct in which the return-parameter is

specified, perform the same process as in step 1

except that the return value is stored in the

receiving object Global Working Memory.

3-4. the same process as in step 2-3 except that the

inferred parameter value is stored in Global

Working Memory.

The inference engine object continues the above

searches for parameter values when it evaluates the

antecedent of a rule, up to the point when it determines

that the antecedent will pass or fail. The rule "IF (Pt

AND P2 AND ••• Pn) THEN S" fails if any condition in a

series connected by ANDs fails, and the rule "IF (Pt OR P2

OR ••• Pn) THEN S" fails if a series of conditions

connected by ORs do not contain at least one passing

condition.

As soon as the inference engine object determines that

a rule will pass or fail, it stops tracing parameter values

in that rule. It does not attempt to trace any antecedent

49

parameters that have not yet been evaluated. As a result,

the inference engine object does not prompt the user for

unneeded information or perform inference logic that does

not contribute to the result.

As an example, let's consider the rule base of the

TRANSPORTATION ESS object (Figure 4-9 and APPENDIX B). Let

us assume that TravelMode is the goal. The consequents of

rule7, ruleS, and rule9 assign values to the goal parameter

TravelMode. The inference engine object operating on the

TRANSPORTATION object starts from rule7 to determine

whether the conditions expressed in rule7's "IF" antecedent

are true. The parameter have_money_to_drive, which is the

first condition in rule7's "IF" antecedent, is declared in

the Local Working Memory of TRANSPORTATION object, the

ASK_USER property of the parameter is NO, and the value of

the parameter is unknown (step 2-1.c). Therefore, rule2 is

applied to get the value of have_money_to_drive (step 2-3).

To determine whether the condition expressed in rule2's

"IF" antecedent is true, the expression

"send(car.cost(Distance))" should be evaluated first. The 1

send() function sends a message to the ESS object car with

the actual parameter "Distance" to infer the value of cost

(step 1-1). Because the value of Distance is unknown, the

user is prompted for the value before the send() function

sends a message (step 2-t.b): Distance is declared as a

local parameter and the ASK_USER property of the parameter

is YES. For receiving passing parameters, the car object,

50

the message-receiving object, uses the list (COST,DISTANCE)

which is one of its PASSED_ARGUMENT lists. After inferring

the value of "cost," the car object returns the value of

"cost" as the reply to the TRANSPORTATION object. Then,

the user is prompted for the value of MoneyAvail (step 3-

2): MoneyAvail is declared as a global parameter and the

ASK_USER property of the parameter is YES. After getting

the value of MoneyAvail, the logical operation "<=" is

performed. Because a return-parameter is not specified in

the send() function in rule2, the return value is used only

for logical operation with MoneyAvail, and then it is

discarded. If the result of the logical operation is true,

have_money_to_drive gets the value TRUE, and the second

condition in rule7 is considered. If two conditions in

rule7 turn out to be true, the goal TravelMode gets the

value 'drive' and the consultation concludes.

User Int-erface

The role of the user interface in OOMESS is to provide

the tools for the user to create expert systems (i.e., ESS

objects, Global Working Memory, and user-defined objects),

and to perform consultations [HEND88]. Further, the user

interface may provide a rule network browser, which lets

the user see every logical link between rules [NEUR87], and

a Local Working Memory dependency network, which shows

Local Working Memory dependencies among local working

memories.

51

For example, when the user creates the "Travel

Assistant Expert System," the user interface prompts the

user for the type of knowledge he wants to create: ESS

objects, Global Working Memory, and user-defined objects.

To create ESS objects in the Travel Assistant Expert System

(i.e., TRANSPORTATION, AIRPORT, CAR, CAR-AIR, TRUCK, and

PASSENGER-CAR), the user types in ESS objects. That action

makes the user interface call the "New" method, defined in

the ESS class, which helps the user to create a new ESS

object with its attribute values for Inference-Engine-Type,

Object-Parameters, Rule Base, and Local Working Memory.

After creating all ESS objects, the user types in Global

Working Memory to create Global Working Memory elements

(i.e., MoneyAvail), which are stored into Global Working

Memory. If the user types in user-defined objects, the

user interface provides the editor to help the user create

user-defined objects in the host language (i.e., the

language which provides the environment for OOMESS). The

user interface also helps the user to perform

consultations; this feature will be described in the

following section.

Consultation

When the consultation begins, the user types in a

specific expert system name. Then, OOMESS loads all ESS

and user-defined objects that are part of the expert

system, and lists goal parameter names under the name of

52

every ESS object on the screen. OOMESS obtains the goal

parameter names from the GOAL_CANDIDATES property which is

defined as part of the Object-Parameters of every ESS

object. The user selects a specific goal name in a

specific ESS object, which means that every ESS object can

be directly selected by the user when the consultation

starts. OOMESS now starts to infer the goal value with the

selected ESS object. Normally, OOMESS infers the goal

value through message-passing among the ESS objects of a

specific expert system. Some values can be prompted to the

user except for the goal value if it is necessary during

the consultation; this means that the inference engine

object in every ESS object uses information from both the

knowledge base and the user in order to arrive at a

conclusion.

As an example, let's consider a sample consultation of

the Travel Assistant Expert System (APPENDIX B). To begin

the consultation, the user types in "Travel Assistant

Expert System". Then, OOMESS loads all ESS objects that

are part of the Travel Assistant Expert System (i.e.,

TRANSPORTATION, AIRPORT, CAR, CAR-AIR, TRUCK, and

PASSENGER-CAR). And then, OOMESS lists goal parameter

names under the name of every ESS object on the screen. We

assume that the user selects the goal "mph" in the CAR

object; the GOAL_CANDIDATES of the CAR object contains

cost, $_per_mile_drive, and mph (APPENDIX B). The CARESS

object now starts to infer the goal value. The consequents

53

of ruleS and ruleS assign values to the goal parameter mph

(APPENDIX B). The inference engine object operating on the

CAR object starts from ruleS to determine whether the

condition expressed in the antecedent of ruleS is true.

The parameter Car_Type, which appears in the antecedent of

ruleS, is declared in the Local Working Memory of the CAR

object; the ASK_USER property of the parameter is YES; the

value of the parameter is unknown. Therefore, the user is

prompted for the value of Car_Type. After getting the

value, it is compared with 'Truck'. If the result of the

logical comparison is true, the return value of the send

construct "send(Truck.mph)", which appears in ruleS's

consequent, is assigned to mph. When the value of mph is

found, the consultation ends.

CHAPTER V

SUMMARY, CONCLUSION, AND SUGGESTED

FUTURE WORK

OOMESS (an Object-Oriented Modular Expert System

Shell) is an expert system shell which is designed with the

objective of integrating a production system with an

object-oriented language. This thesis describes the design

of OOMESS. The view projected by OOMESS consists of a

collection of objects with the capability of communicating

with each other. OOMESS provides a backward-chaining

inference strategy, including access from rules to the

functionality of an object-oriented language (i.e., built-

in objects), rule group objects (i.e., ESS objects), and

user-defined objects.

The OOMESS approach to problem solving encourages a

problem to be divided into subproblems according to the

level of detail of the problem. Each subproblem has a

knowledge base associated with it. These separated

knowledge bases are stored in Ests objects and/or user-

defined objects. ESS objects and/or user-defined and

built-in objects are selected during the system execution,

and the goal-directed nature of the system guides the

search through these selected objects.

54

55

There are many advantages to OOMESS:

1. It provides an efficient mechanism for managing a large

rule set compared with expert system shells that do not

provide'rule groups. In OOMESS, a large rule base is

modularized into smaller rule bases and user-defined

objects. This feature should provide an efficient

mechanism for managing a large rule base.

2. It provides very flexible interactions among rule group

objects (i.e., ESS objects) compared with current

commercial expert system shells since one rule group

object can send a message to any of the other rule

group objects, and a message-receiver is allowed to

recursively send a message to the message-sender.

3. It eases understanding of complex systems because the

object-oriented concept can be used to design expert

systems that consist of interacting modules.

4. It provides an incremental method of developing expert

systems because a large knowledge base is divided into

smaller knowledge bases and stored into rule group

objects and use~-defined objects.

5. It provides access from rules to rule group objects,

user-defined objects, and built-in objects.

6. It allows the user to select one of the rule group

objects in a specific expert system when the

consultation starts. Therefore, any rule group object

can be used to trigger inference at the beginning of

the consultation. Personal Consultant Plus, by

58

comparison, always starts the consultation from a root

rule group object (i.e., root frame).

7. It supports reusability. ESS objects are reusable

software components, and when they are reused in

different expert systems, the Local Working Memory

Inheritance among them should be maintained.

OOMESS, however, does not possess all the properties

of an object-oriented system because it does not

incorporate class hierarchy among ESS objects (i.e., every

ESS object is an instance of the ESS class). But OOMESS is

designed to provide a hierarchical relationship among the

ESS objects and Local Working Memory Inheritance. The

children ESS objects have the privilege of having access to

the Local Working Memory of a parent ESS object. If the

values of local working memory elements in a parent ESS

object are unknown when children ESS objects search for

some values in the Local Working Memory of the parent ESS

object, the parent ESS object tries to infer the values.

User-defined and built-in objects, however, have both class

hierarchy and inheritance properties as provided by their

language of definition.

The following improvements are suggested for future

work:

1. In the present design, only one inference strategy is

used. However, it is possible to provide several

different inference strategies. Since every ESS object

can select its own inference strategy using the

Inference-Engine-Type instance variable, all ESS

objects do not need to have the same inference

strategy. OOMESS, however, currently provides an

Inference-Engine class that has only a backward

chaining inference engine object as its instance.

2. The capability to dynamically allocate and deallocate

ESS objects at execution time needs to be added.

3. Explanation facilities [MART88] which inform the user

of the reasoning path OOMESS is taking to solve the

specific problem need to be provided.

4. Certainty factor [MART88, PARS88) which is one method

used for dealing with uncertainties in rule base

systems can be added to OOMESS.

5. Class hierarchy and inheritance properties among rule

group objects can be also added to OOMESS.

In the design of OOMESS, we have attempted to make

provisions for these features to be added in future work.

OOMESS is a new object-oriented expert system shell. It

can evolve and mature in future work.

57

BIBLIOGRAPHY

[ALLE83] Allen, L., "YAPS: Yet Another Production System,"
Technical'Report TR-1146, Department of
Computer. Science, University of Maryland,
(1983).

)ARCI88] Arcidiacono, T., "Expert System On-call," PC TECH
JOURNAL, (Nov. 1988), 112-114.

[BOBR83] Bobrow, D. G., and Stefik, M., "The LOOPS Manual,"
Xerox Palo Alto Research Center, {Dec. 1983).

[BOOC86] Booch, G., "Object-Oriented Development," IEEE
Software, vol. SE-12, No 2 (Feb. 1986),
211-221.

[BROW88) Brown, C •. , and Subramanian, S., "SOFTWARE REVIEWS:
Powerful, visual expert-system shell," IEEE
Software, (Sept. 1988), 98-100.

[BUCH84] Buchanan, B. G., and Shortliffe, E. H. (eds.),
"Rule-based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic
PrograJDJDing Proiect," Addison-Wesley,
Reading, Mass., (1984).

[CASA88] Casais, E., "An object oriented system
implementing KNOs, 11 In Proceeding Conference
on Office Information Systems. (Palo Alto,
CA, March·. 23-35) ~ ACM, New York, (1988), 284-
290.

lcoX84] Cox, B. J., 11Message/Object programming: An
Evolutionary Change in Programming
Technology~" IEEE Software, vol. 1(1) (Jan.
1~84), 50-61.

[COX86] Cox, B. J., "Obiect-Oriented Programming."
Addison-Wesley, Reading, Mass., {1986).

[DAHL66] Dahl, 0. J., and Nygaard, K., "SIMULA -a goal
based simulation language," Communications of
the ACM. 9, (1966), 671-678.

58

59

[DAVI77] Davis, R., and King, J., "An overview of
production systems," In Machine Intelligence
8: Machine Representations of Knowledge, E.
Elcock, and D. Michie, Eds, Wiley, New York,
(1977), 300-332.

[FIKE85] Fikes, R., and Kehler, T., "The Role of frame
based representation in reasoning," CACM 28,
9 (Sept. 1985), 904-920.

[FIRE88) Firebaugh, M. W., "Artificial Intelligence: A
knowledge-based approach," Boyd & Fraser,
Boston. (1988).

[GOLD83) Goldberg, A., and Robson, D., "Smalltalk-80: The
language and its implementation." Addison
Wesley, Reading, Mass., (1983).

)GUTM89] Gutman, A., "Object-Oriented Programming in AI:
New Choices," AI Expert, (Jan. 1989), 53-71.

(HEND88) Hendler, J: A., "EXPERT SYSTEMS: THE USER
INTERFACE," Ablex Publishing Corporation,
Norwood, New Jersey 076~8, (1988).

[KEHL84] Kehler, T. P., and Clemenson, G. D., "An
application. development system for expert
systems,'~ Syst •. Softw. 3,1 (Jan., 1984), 212-
224.

[LAUR87] Laursen, J., and Atkinson, R., "Opus: A Smalltalk
Production System," OOPSLA '87 Proceedings,
(Oct. 4-8, 1987), 377-387.

[LISK75] Liskov, B. H., and Zilles, S. N., "Specification
Techniques for Data Abstractions," IEEE
Software, vol. SE-1, No. 1 (March 1975), 7-
19.

'[MART88] Martin, J., and Oxman, s., "Building Expert
Systems." Prentice-Hall, Englewood Cliffs,
N.J., (1988).

[MINS75] Minsky, M., "A framework for representing
knowledge," In The Psychology of Computer
Vision, P. Winston, Ed. McGraw-Hill, New
York, (1975), 211-277.

[NEUR87] Neuron Data., "Nexpert Object," 444 High Street,
Palo Alto, CA 94301, (1987).

[PARN72] Parnas, D. L., "On the criteria to be used in
decomposing systems into modules," Commun.
ACM, (Dec. 1972), 1053-1058.

60

[PARS88] Parsaye, K., and Chignell, M., "EXPERT SYSTEMS FOR
EXPERTS," John Wiley & Sons, Inc, New York,
(1988).

[PIER86] Piersol, K. W., "The HUMBLE Reference Manual,"
Xerox Special Information Systems, (1986).

[RENT82] Rentsch, T~, "Object-Oriented programming,"
SIGPLAN Notices, vol. 17, no. 9 (Sept. 1982),
51-57.

[SAUE83] Sauers, R., and Walsh, R., "On the requirements of
future expert systems," IJCAI-83, 1, (1983),
110-115.

[SIEG86] Siegel, P., "EXPERT SYSTEMS: A NON-PROGRAMMER'S
GUIDE TO DEVELOPMENT AND APPLICATIONS," TAB
BOOKS Inc., P.O. Box 40, Blue Ridge Summit,
PA 17214, (1986).

[STEF86] Stefik, M., and Bobrow, D. G., "Object-Oriented
Programming: Themes and Variations," AI
magazine 6, 4 (Winter 1986), 40-62.

[STR086] Stroustrup, Bjarne., "The C++ Programming
Language," Addison-Wesley, Reading, Mass.,
(1986).

[TEXA87] Texas Instruments Incorporated., "Personal
Consultant Plus Reference Guide," Data
Systems Group, Austin, Texas. (Aug. 1987).

[TOK085] Tokoro, M., and Ishikawa, Y., "Oriented84/K: A
Language Within Multiple Paradigms in the
Object Framework," Dept of Electrical
Engineering, Keio University, 3-14-1
Hiyoshi, Yokohama 223, Japan, (1985).

[WAIT87] Waite, M., and Prata, S., and Martin, D., "The
Waite Group C Primer Plus User-Friendly Guide
to the C Programming Language," HOWARD W.
SAMS & COMPANY, Indianapolis, Indiana,
(1987).

Operator

=

+ -

* I

()

APPENDIX A

OPERATORS THAT ARE USED IN ANTECEDENT

AND CONSEQUENT IN PRODUCTION RULES

in Order of Increasing Precedence:

Associativity is right to left.

Associativity is left to right.

Associativity is left to right.

Associativity is left to right.

Assignment Operator:

= Assigns its right value to the its left variable.

Arithmetic Operator:

+

*
I

Adds its right value to its left value.

Subtracts its right value to its left value.

Multiplies its right value by its left value.

Divides its left value by its left value.

Relational Operators:

Each of these operators is used for comparing its left

value to its right value.

< less than

61

62

<= less than or equal to

equal to

>= greater than or equal to

> greater than

' -. - unequal to

A simple relational expression consists of a

relational operator with its left and right operands. If a

relational expression becomes true, the relational

expression has the value TRUE. If a relational expression

becomes false, the relational expression has the value

FALSE.

Logical Operators:

Each of these operators, which has relational

expressions as operands, is used for logical operation.

AND logical 'and' operation.

OR logical 'or' operation.

logical 'not' operation.

Logical Expressions:

expression! AND expression2 is true if and only if both

expression! OR expression2

expression!

expression! and expression2

are true.

is true if both expression!
and expression2 or either one
is true.

is true if expression! is

63

false.

Logical expressions are evaluated from left to right;

evaluation terminates as soon as there is evidence that the

expressio~ becomes false.

APPENDIX B

TRAVEL ASSISTANT EXPERT SYSTEM

The Travel Assistant Expert System is a sample expert

system which can be developed and executed under OOMESS.

This expert system helps travelers decide the mode of

transportation.

GLOBAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: MoneyAvail
DAT~TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER ($ XXXXX.XX)
QUESTION: How much money do you have for

travel?
VALUE: NIL

OBJECT ::TRANSPORTATION

OBJECT PARAMETERS

OBJECT_NAME: TRANSPORTATION
GOAL_CANDIDATES: TravelMode
PASSED_PARAMETER: (TravelMode, Distance), (TravelMode)
SUPER_OBJECT: NIL

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: have_money_to_fly, have_money_to_drive,
have_money_to_drive_fly,

64

65

have_time_to_drive, have_time_to_drive_fly,
have_time_to_fly

DATA_TYPE: BOOLEAN
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: TravelMode
DATA_TYPE: STRING
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Distance
DATA_TYPE: FLOAT
ASK_USER: YES '

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: MPH)
QUESTION: How far do you travel?

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Ti~eAvail
DATA_TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: HOUR)
QUESTION: How much time do you have for travel?

VALUE: NIL
STATIC_OR_DYNAMIC: STATIC

RULE BASE

rulel: IF send(airport.cost(Distance)) <= MoneyAvail
THEN have_money_to_fly.

rule2: IF send(car.cost(Distance)) <= MoneyAvail
THEN have_money_to_drive.

rule3: IF send(car-air.cost) <= MoneyAvail
THEN have_money_to_drive_fly. ·

rule4: IF (Distance I send(airport.mph(Distance))) <=
TimeAvail

THEN have_time_to_fly.

rule5: IF (Distance I send(car.mph)) <= TimeAvail
THEN have_time_to_drive.

ruleS: IF send(car-air.have_time)
THEN have_time_to_drive_fly.

rule7: IF have_money_to_drive AND
have_time_to_drive

THEN TravelMode = 'drive'.

ruleS: IF have_money_to_drive_fly AND
have_time_to_drive_fly AND

THEN TravelMode = 'drive_and_fly'.

rule9: IF have_money_to_fly AND
have_time_to_fly AND

THEN TravelMode = 'fly'.

OBJECT :: AIRPORT

OBJECT PARAMETERS

OBJECT_NAME: AIRPORT
GOAL_CANDIDATES: cost, mph, $_per_mile_fly
PASSED_PARAMETER: (cost, Distance), (cost),

(mph,. Distance), (mph)
SUPER_OBJECT: TRANSPORTATION

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: $_per_mile_fly
DATA_TYPE: FLOAT
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Distance
DATA_TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: MPH)
QUESTION: How far do you travel?

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: cost
DATA_TYPE: FLOAT
ASK_USER: NO

66

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: mph
DATA_TYPE: INTEGER
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

RULE BASE

rule1: IF Distance >= 1000
THEN $_per_mile_fly = 0.20.

rule2: IF Distance < 1000 AND
Distance >= 150

THEN $_per_mile_fly = 0.60.

rule3: IF Distance < 150
THEN $_per_mile_fly = 1.00.

rule4: IF TRUE
THEN cost = $_per_mile_fly * Distance.

rule5: IF Distance <= 150
THEN mph = 250.

ruleS: IF Distance> 150.AND
Distance < 500

THEN mph = 350.

rule7: IF Distance >= 500
THEN mph = 400.

OBJECT : : CAR

OBJECT PARAMETERS

OBJECT_NAME: CAR
GOAL_CANDIDATES: cost, $_per_mile_drive, mph
PASSED_PARAMETER: (cost, Distance), (cost)

{$_per_mile_drive), (mph)
SUPER_OBJECT: TRANSPORTATION

67

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: cost
DATA_TYPE: FLOAT
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: $_per_mile_drive
DATA_TYPE: FLOAT
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Distance .
DATA_TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: MPH)
QUESTION: How far do you travel?

VALUE: NIL ,
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Nu~of_Cylinder
DATA_TYPE: STRING
ASK_USER: YES

LEGALVALES: 4_Cylinder, 6_Cylinder, 8_Cylinder
QUESTION: What kind of car do you have?

VALUE: NIL
STATIC_OR_DYNAMIC: STATIC

PARAMETER_NAME: Road_Type
DATA_TYPE: STRING
ASK_USER: YES

LEGALVALES: Highway, Local_Road
QUESTION: What is road type?

VALUE: NIL
STATIC_OR_DYNAMIC: STATIC

PARAMETER_NAME: Car_Type
DATA_TYPE: STRING
ASK_USER: YES

LEGALVALES: Truck, Passenger_Car
QUESTION: What kind of car do you have?

VALUE: NIL
STATIC_OR~DYNAMIC: STATIC

68

PARAMETER_NAME: mph
DATA_TYPE: INTEGER
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

RULE BASE

rulel: IF Num_of_Cylinder == '4_Cylinder'
THEN $_per_.ile_drive = 0.03

rule2: IF Num_of_Cylinder == '6_Cylinder'
THEN $_per_mile_drive = 0.05

rule3: IF Nu~of_Cylinder == '8_Cylinder'
THEN $_per_.ile_drive = 0.06

rule4: IF TRUE
THEN cost = $_per_mile_drive * Distance

ruleS: IF Car_Type == 'Truck'
THEN mph= send(Truck.mph).

ruleS: IF Car_Type == 'Passenger_Car'
THEN mph= send(Passenger-Car.mph).

OBJECT :: CAR-AIR .

OBJECT PARAMETERS

OBJECT~NAME: CAR-AIR
GOAL_CANDIDATES: cost, have_time
PASSED_PARAMETER: (cost)

(have_time)
SUPER_OBJECT: TRANSPORTATION

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: Air_Cost
DATA_TYPE: FLOAT

69

ASK_USER: NO
LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Air_Distance
DATA_TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: MPH)
QUESTION: How far do you travel by airplane?

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Road_Distance
DATA_TYPE: FLOAT
ASK_USER: YES

LEGALVALES: POSITIVE FLOAT NUMBER (UNIT: MPH)
QUESTION: How far do you travel by car?

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: Car_Cost
DATA_TYPE: FLOAT
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: have_time
DATA_TYPE: BOOLEAN
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

PARAMETER_NAME: cost
DATA_TYPE: FLOAT
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

RULE BASE

rulel: IF send(airport.cost(Air_Distance),Air_Cost) AND
send(car.cost(Road_Distance),Car_Cost)

THEN cost = Air_Cost + Car_Cost

70

71

rule2: IF ((Air_Distance I send(airport.mph(Air_Distance)))
+ (Road_Distance I send(car.mph)))
<= TimeAvail

THEN have_time

OBJECT ..U. TRUCK

OBJECT PARAMETERS

OBJECT_NAME: TRUCK
GOAL_CANDIDATES: mph
PASSED_PARAMETER: (mph)
SUPER_OBJECT: CAR

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: mph
DATA_TYPE: INTEGER
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

RULE BASE

rulel: IF Road_Type -- 'Local_Road'
THEN mph = 45.

rule2: IF Road_Type == 'Highway'
THEN mph = 55.

OBJECT :: PASSENGER-CAR

OBJECT PARAMETERS

OBJECT_NAME: PASSENGER-CAR
GOAL_CANDIDATES: mph
PASSED_PARAMETER: (mph)
SUPER_OBJECT: CAR

INFERENCE ENGINE TYPE: BACKWARD

LOCAL WORKING MEMORY ELEMENTS

PARAMETER_NAME: mph
DATA_TYPE: INTEGER
ASK_USER: NO

LEGALVALES: NIL
QUESTION: NIL

VALUE: NIL
STATIC_OR_DYNAMIC: DYNAMIC

RULE BASE

rulel: IF Road_Type == 'Local_Road'
THEN mph = 55.

rule2: IF Road_Type == 'Highway'
THEN mph = 65.

72

VITA

Jin Cheon Na

Candidate for the Degree of

Master of Science

Thesis: AN OBJECT-ORIENTED MODULAR EXPERT SYSTEM SHELL

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Seoul, Korea, July 30, 1964,
the son of Joong Bae Na and Young Keun Na.

Education: Graduated from Young-11 High School,
Seoul, Korea, in February, 1983; received
Bachelor of Science Degree in Electrical
Engineering from Hanyang University in February,
1987; completed the requirements for the Master
of Science degree at Oklahoma State University in
May, 1990.

Professional Experience: Teaching Assistant, Depart
ment of Computing and Information Science,
Oklahoma State University, August, 1989, to
present.

