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PREFACE 

Desalting of Tetraethylene Glycol using ion-exchange 

was studied. For the study Batch and Column experiments 

were performed using different ion-exchange resins by 

changing parameters such as Temperature, Water content, 

and the order of the the ion-exchange resins used. Based 

on the experimental results design and cost estimation of 

a desalting plant operating at temperature of 180°F and 

2200F were proposed. This process can also be used for 

other operating temperatures. 
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CHAPTER I 

INTRODUCTION 

Natural gas is a major source o·f energy. Crude 

natural gas from oil wells carries water and other 

contaminants. The water present with crude natural gas 

forms hydrates, which results in high pressure drops in the 

flow pipes during long distance transport, and causes 

problems in gas lift valves during the pumping of oil using 

natural gas (5). The formation of hydrates can be 

prevented by dehumidification of crude natural gas. 

Dehumidification is done by absorption of water with a 

suitable solvent, usually a glycol (7). Dehumidification 

efficiency depends on the high concentrations of glycols, 

approaching 99.9% (2). These high concentrations are 

usually achieved by evaporating water from the glycol in 

recycling units. 

Different glycols are used depending upon the 

compositi~n of the natural gas and the process used. 

Diethylene glycol, triethylene glycol, and tetraethylene 

glycol are suitable absorbants. Triethylene glycol is 

preferred in most applications. Diethylene glycol 

continues to find favor in vacuum regeneration type 

absorption units, and in mixed glycol-amine processes, 

which sweeten and dehydrate simultaneously. Tetraethylene 
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glycol is used mostly in dehydration of high temperature 

gas streams, due to lower glycol vaporization losses (5). 

2 

The water vapor, carried by natural gas, is absorbed 

continuously from the process gas stream by countercurrent 

contact with highly concentrated glycol in a packed or 

bubble tray column. Rich glycol, for recycling, flows to a 

combined glycol still and reboiler, in which glycol 

concentration is increased to approximately 99 % by 

atmospheric boiling at 400oF. The gly~ol is then flashed 

across a throttling valve to vaccum, then reheated to 

400°F, and separated in a vacuum drum, thus yielding glycol 

concentrations as high as 99.9% (9). 

Natural gas containing water also carries dissolved 

mineral salts, predominantly sodium chloride (4). This 

results in gradual accumulation of a significant amount of 

salts in the liquid phase during the, dehumidification 

process. These soluble salts decrease the absorbing 

capacity of the glycol after its recycling. Moreover, 

during recycling, these salts cause corrosion in the 

equipment by forming salt sediments in the hot channels. 

In addition, excessive heat losses by scale formation over 

the heat transfer area are observed. , In order to restore 

glycol absorption ability and to prevent the expensive 

equipment damages, the glycol has to be desalted. 

The current methods of desalting are (4): 

1. Precipitating the salts chemically and removing the 

sediments by filtration or decantation, 

2. Electrolysis or electrodialysis of the salt 

solution, 



3. Decreasing salt solubility by water evaporation, 

4. Removal of salts using ion-exchangers. 

The desired characteristics for desalination are, 

effectiveness, non-complicated, flexability, and low 

operating costs. 

The ion-exchange method is simple, effective and 

inexpensive. The resins are a multimolecular substance 

(iontes), either cation-exchangers or anion-exchangers. 

The general representation of these reactions are, 

~0 + K+ ======== RK + Ko + 

AAo + A- ======== AA + Ao -

3 

Where R is the ionite, Ko+ and Ao- are mobile cations and 

anions respectively, and K+ and A- are electrolyte ions 

(4). Ion-exchange may also take part between ions of 

different valences, but the stoichiometric relation must be 

satisfied. In order to regenerate the exchangers to their 

initial form, the reverse reaction must occur. In the 

ionic-regeneration step, sulfuric acid and sodium hydroxide 

force the reactions in the reverse direction. The 

structure of the ionites should be sufficiently porous and 

permeable to the solution as well as ions to allow 

diffusion. 

Ion-exchange technology has been applied to the 

desalting of diethylene glycol, but the application to 

tetraethylene glycol is new (4). The process of desalting 

tetraethylene glycol by using ion-exchange may be as 

follows: 

1. Removal of mechanical impurities or other solids 

built-up during dehydration by using a membrane or 
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charcoal filter (4), 

2. Exchange of cations on the cationate, 

3. Exchange of anions on the anionate, and 

4. Regeneration of saturated ionites. 

The process stream, tetraethylene glycol, essentially 

contains Na+, Mg++, ca++ and Cl-. The above ion-exchange 

process has been studied in the laboratory to reduce the 

ionic concentration of Cl- in the TEG from 825/ppm to 

25/ppm and thus significantly reduce corrosion problems 

caused by the dissolved salts. Preliminary experiments to 

evaluate temperature, water content, and the order of ion

exchanger used in a batch reactor are performed. Samples 

were collected for analysis ,of residual salts using a 

Dionex 2000i/sp exchange chromatograph. Based on these 

analyses, a column is designed for a continuous desalting 

process. Implementation of this ion-exchange process will 

result in a substantial reduction of ionic impurites in the 

process TEG stream. , This will solve corrosion and fouling 

problems in process equipment. 



CHAPTER II 

LITERATURE REVIEW 

Since high concentration glycol regeneration was 

introduced in 1957, hundreds of glycol dehydration plants 

have been installed worldwide. Since this process began 

however, corrosion problems have been observed with plant 

equipment. This has been the subject of several 

investigations. 

Extensive studies were performed by Lloyd and Taylor 

(6) on the chemical factors effecting corrosion by aqueous 

glycol solutions and some means of controlling this 

corrosion. During this process, the glycol, containing a 

high percentage of water, is subjected to elevated 

temperature and cumulative exposure to the impurities in 

the feed stream, like traces of light acids and oxygen. 

Consequently, in the absence of effective corrosion 

control, steel equipment may develop serious problems over 

a period of time. Lloyd and Taylor conclude, (1) corrosion 

of equipment in contact with a glycol solution is 

negligible as compared with that of vapor condensates, (2) 

the corrosion rate increased with a decrease in pH, (3) at 

elevated temperatures (185°F} glycol autoxidizes in air 

forming aldehydes and acids, and increases corrosion, and 

(4) glycol made alkaline by adding 0.03% of 

monoethanolamine (MEA) showed fairly low corrosion. 

5 
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Low temperature methods of gas preparation with the 

addition and regeneration of glycol has become very common 

(1). But after several years, operation of low temperature 

separation plants showed corrosion problems. Recent 

research indicates that the corrosion problem in the 

dehydration unit is caused by the mineral salts present in 

the water carried by natural gas rather than the 

autoxidation of glycol. Desalination of the,treated 

glycol, and many different methods of desalination were 

proposed by Masteynek et al (4). Matvenko and Yarym-Agaev 

(3) proposed a technological procedure for desalting 

diethylene glycol by benzene. Desalting of solvents using 

ion-exchange is not new. Many studies were made for 

desalting of different glycols, viz., ethylene glycol, 

diethylene glycol, triethylene glycol, and polyethylene 

glycol using ion exchangers and successfully implemented in 

process plants. However no literature is available for 

tetraethylene glycol desalting using ion-exchangers. 

Gritsenko, et al(1) and Masteynek, et al(4) have 

conducted laboratory experiments for removing salts from 

diethyl glycol using ion-exchangers. The glycol was passed 

through three filters: a mechanical filter, a cation 

exchange filter and an anion exchange filter. The 

mechanical filter consists of packed thio-carbonate, 

intended to remove dirt and mechanical impurities from 

diethylene glycol. The cation and anion exchange filter 

consists of packed KU-2 cation exchange and AV-17 anion 

exchange resins, respectively. These are intended to 

remove sodium and chloride. The saturated cation 
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exchangers and anion exchangers were regenerated with one 

percent sulfuric acid and four percent sodium hydroxide, 

respectively. After passing through cationic exchangers, 

the pH of diethylene glycol dropped to about one. After 

the anion exchanger, the final pH of diethylene glycol 

ranged from about seven to nine. By this method they could 

reduce the salts (NaCl) from 20.8 g/1 to 2.1 g/1. They 

also found that if the cation exchanger is regenerated with 

5% ammonium chloride solution (NH4Cl), the pH of the 

diethylene glycol remained at six to seven and there was no 

longer a need for the anion exchange filter. Mastenek, et 

al.(4) also proposed that at high salt content (80-90 

gmsjlit), it is initially necessary to desalt diethylene 
' 

glycol by heating to 100°C-120°c. At this temperature the 

solubility of NaCl decreases and the salt settles at the 

bottom of the reservoir. The diethylene glycol desalted 

initially is subjected to the usual desalting process using 

ion-exchangers. 

The solubility characteristics of salts in a 

particular solvent have been shown to be important before 

desalting. Chianese, et al.(7) studied the solubility of 

NaCl in the glycol-water mixture. They concluded that for 

solvent composition in the range of 50-80 wt% diethylene 

glycol, temperature exhibits little or no influence over 

NaCl solubility, and the solubility of NaCl decreases with 

an increase in temperature of pure glycol solutions. 



CHAPTER III 

EXPERIMENTAL PROCEDURE 

The experimental procedure for desalting of 

tetraethylene glycol using ion-exchange resins is primarily 

divided into three parts: preliminary experiments, 

analysis of samples for residual salts, and column 

experiments. 

Preliminary 

250 ml beaker. 

batch experiments were carried out in a 

Thirty-two experiments were performed at 

four different temperatures (room temperature, 100, 120, 

and 140°F), at two different water compositions(10% by 

volume and 20% by volume), and at different orders of resin 

used (anion first, and cation later). All initial 

experiments were performed in a baffeled 250 ml beaker 

using a mechanical stirrer. The temperature of the beaker 

is maintained within +/- 1.0°F using a waterbath. For all 

these preliminary experiments water and Amberlitre 200 H 

and Amberlite 900 OH resins and 200 ml of tetraethylene 

glycol were used. Also Amberlyst A-21 and Amberlyst 15 

resins were used for comparison. About six grams of ion

exchange resin (about five fold excess capacity) is used 

for the solution initially. The concentration versus time 

data is obtained by monitoring the pH change, which is 

proportional to the change in concentration of the 

dissociated ions of the salts. The pH change is monitored 

8 
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with an Orion Research Ionalyzer model 407A pH meter, until 

equilibrium is reached. Tetraethylene glycol is separated 

from the resin using Whattman filter paper and collected 

for analysis. The resin is stored for regeneration. 

Adsorption by filter paper is assumed negligible. 

Samples are analyzed for residual salts by ion 

chromatography (DIONEX 2000 spi). The tetraethylene glycol 

samples are diluted to one percent to prevent damage to the 

analytic column. A calibration plot of concentration 

verses peak height for standard samples is generated. The 

qualitative and quantitative analysis of the samples is 

done by comparing the retention times and peak heights with 

standards. All the samples were analysed in single run and 

IC calibration was done each time. 

The results from the above experiments are used to 

develop a suitable column design for a continuous process 

that can be used for industrial applications. Laboratory 

scale column experiments were conducted with a half inch 

column at room temperature, gravity feed, with 5-10 grams 

of resin, and 750 ml of tetraethylene glycol. The elluent 

samples are collected with time for analysis. 



CHAPTER IV 

RESULTS AND DISCUSSION 

In this section, the effects of temperature, water 

content and the order of the resin on desalting of 

tetraethylene glycol will be presented. 

Raw data for the batch experiments for different 

conditions of temperature, water content, and the order of 

the resin are listed in Tables 6 through 21 in Appendix A. 

These tables list the pH change with time for four 

different temperatures i.e., Room temperature, 100°F, 

120oF, and 1400F with 10% and 20% water content in the TEG, 

and by changing the order of the resin. The experiments 

were named according to the conditions at which they were 

conducted. For example C-T140-W20 indicates cationic 

treatment followed by anionic treatment at 140°F 

temperature and with 20% water content. 

For the experiments listed in Tables 6 through 21, a 

plot of ln (pH initial/pH) verses time showed a linear 

relationship~ Figure 1 is a plot for the cationic 

treatment of Experiment C-T140-W20. This showed a rapid pH 

change initially which slowed down later. The region where 

pH change is slow shows the attainment of equilibrium. 

The same trend was observed for Experiments 1 to 16. The 

linear relationship confirms first order reaction for the 

ion-exchange process. 

10 
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Figure 1. pHinitialjpH Versus0 Time For Batch Experiment At 140 F With 20% Water Using Cation Treatment First For TEG 
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The anionic treatment for cation treated solution also 

showed the same linear relation for the plot of 

ln(pHinitial/pH) versus time(Fig 2). From the plot it can 

be seen there is an initial lag time. 

The rate constants for ion-exchange reactions for 

Experiments 1 to 16 are calculated from the plots 

ln(pHofpH) versus time. The rate constant.is given by the 

slope of the line. For calculating the rate constants, the 

data points from the region of rapid pH change are 

regressed. The rate constants for these experiments are 

listed in Tables 22 to 25 (Appendix A) . 

Figure 3 shows that the rate constants increase with 

temperature for anion first with 10% water content TEG. It 

did not showed a definite trend with temperature for cation 

first treatment with 10% water content. 

Figure 4 shows that the reaction constant has no 

effect with temperature for anion treatment of cation 

treated 10% water TEG. The cation treatment of anion 

treated 10% water TEG shows an increase with temperature. 

From Figures 3 and 4 it can be seen that the anion 

treatment followed by cation treatment has shown an 

increase in rate with temperature, while cation treatment 

followed by anion treatment has shown little effect with 

temperature. Figures 5 and 6 show a similar effect of 

temperature compared to Figures 3 and 4, respectively. 

It shows that addition of water has no significant effect 

on the rate constants. 

Lag time was observed for anion treatment of cation 

treated solution and cation treatment of anion treated 



3.---------------------------------------~ 

................................................................................... T~:~:··::·r·········· .. 

0~----~~----~~----~----~------~----~ 
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Figure 2. pHinitialjpH Versus0Time For Batch 
Experiment At 140 F With 20% Water 
Using Anion Treatment For Cation 
Treated TEG 
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solution. Figure 7 shows higher lag times for anion 

treatment followed by cation treatment than cation 

treatment followed by anion treatment. A gradual decrease 

in lag time with temperature can also be seen for both type 

of resins and water contents. 

Figure 8 shows that for anion treatment followed by 

cation treatment with 10% water TEG there is no significant 

effect on chloride removal with temperature. This is shown 

by the experimental error bars (Table 26 in Appendix A). 

Calculations of experimental error bars are shown in 

Appendix D. 

Figure 9 shows that cation treatment followed by anion 

treatment with 10% water TEG has a substantial decrease in 

chloride removal with temperature. 

Figure 10 shows that anion treatment followed by 

cation treatment with 20% water TEG has little effect on 

chloride removal with temperature. This is shown by the 

experimental error bars. 

Figure 11 shows that cation treatment followed by 

anion treatment with 20% water TEG has no effect on 

chloride removal with temperature. 

Based on these batch experiment results, column 

experiments were carried out without water and with 15% 

water, and the data is presented in Tables 27 and 28, 

respectively (Appendix A) . Breakthrough curves are 

generated by plotting chloride concentration versus time 

(Figure 12). A small peak was observed initially. This 

might be due to channeling of TEG in the column. In the 



35~-------------------------------------. 

..... 
ME., ·G· 

30 ······················•····················•··········•···•······•···•······ c.uaa.llad(J.OSJRD). ..........•.... 
"',,, Amon Dm(J.OIB20) 

'~ _... 2 5 ....................... .:'!..,. ... ~............................................................ i)di0jj""jijjii_!()iii2D)" .............. . 

---Amon IID(201112o) '~ ... ........................................... --~"C."'"'"'"'"'"'"'"'"'"'"'"'"'""'"'"'"'"'"'"''""'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"''""'"'-··················································· ..... , 
.... ... 

~ ... ~ ........................................................... . ........ :h., .......................................................................... . 
~--'~ 

... 
~ ..... 

... 1 0 ........................................................................................... :':. ... :.:-·············································· ... ... ___ "" 
~-- ... ~--- .... ___ """·--

........ tn. ... _ ... 
"··-., .. """~"'~ 5 .................. ::::::._:;~~:"'-=:.::::::·····: ........................................................................................ . 

...... ,_ ""''"' 

··········-~~::::::::::::::::.:::.~ ... ~ ... h--...... ________ .,. ________ _ 

19 

o+-----~--~----~~----.----.--------.----~ 70 80 90 100 110 120 130 140 
TBMPBR.A.TURB F 

Figure 7. Effect Of Temperature on Lag Times For 
Batch Experiments For TEG With 10% 
And 20% Water Using Cation Treatment For Anion Treated Solution And 
Anion Treatment For Cation Treated Solution 



20 

110~-------------------------------------, 

100 

60 

·························· ··············································································· -e-
A.~ (!lliiQ 

\lln!rmun (!lliiQ • ........................................................................................................... V.Jkmun (!lliiQ ......... . 3IIIE 

50L-----~------------.------------.----~ 74 100 120 
TKMPBRA.TURK F 

Figure 8. Experimental Error Bars And The Effect Of Temperature On The Removal Of Chloride Ions For Batch Experiments For TEG With 10% Water Using Anion Treatment First 



21 

90~----------------------------~-----, 

80 ··············································································································································· 

• 
········································•····················•················· .................................•••.....•..•...•........ 

........................................ .................................•................ : ...............•..... ·-························ 
-a-, .. ~ 

·····•·······················································•·················· . . ........ . M!nJrmn~ • 'ileJdrmnp ~ 20 ······················*······················································································································ 

10L-----~------------r------------.----~ 74 100 120 
TBMPBRATURB F 

Figure 9. Experimental Error Bars And The Effect Of Temperature On The Removal Of Chloride Ions For Batch Experiments For TEG With 10% Water Using Cation Treatment First 



22 

180~-------------------------------------, 

160 

1140 

i 120 

! 100 

I 80 

~ 60 

................•................ 

-&-
•••••••••·•···••·•••·••··•····•••••··••••·•••••···•••••••·•····•••···••·••••••·•••·•·•· •••••·••••••••••·•·•••• AIJI!III! B:IIIO ••• 

ME 
lhlmnm B:111Q 

40 ·················································································································· ... 
ME Vglmnm BliiO 

20~--~--------~r---------r---------~--~ 

7 4 100 120 140 
TBMPBR.ATURB F 

Figure 10. Experimental Error Bars And The 
Effect Of Temperature On The 
Removal Of Chloride Ions For Batch 
Experiments For TEG With 20% Water 
Using Anion Treatment First 



23 

80~----------------------------------------~ 

70 

30 

-e
A-.~ 

• ... V!ntmnm ~ .. 
Vnlmnm~ 

···············•··························································································································· 

.................................................................................................................................................................................... • • 

20~--~----------.---------~--------~----~ 7 4 1 00 120 140 
TBMPERA.TURB F 

Figure 11. Experimental Error Bars And The Effect Of Temperature On The Removal Of Chloride Ions For Batch Experiments For TEG With 20% Water Using Cation Treatment First 



200~-----------------------------------, 

180 

160 
'i 
~ 140 -
~ 120 

! 100 

~ 80 

~ 60 

. ..---------, .............................................•...........................................•. . . . . . . 
········ ....... ................................................................................................................................................... . . . . . . 
....................................................................................................................................................................................... :----······ 

~ . . . . ...................................................................................................................................................................... -:--······· ......... . . . ~ 
············································································································r····················· 

~· 
,' ,, 

···································································································:-t·················· 
.~ 

I 

•' 
························································································~-#··················· 

. . . 40 ................................................................................... 7". .............••....................•........ 

Figure 12. Breakthrough Curves For Column 
Experiments For TEG Without Water 
And With 15% Water Using Cation 
Treatment Followed By Anion 
Treatment 

24 



column run, the lag time was not observed as in the batch 

experiments. 

To study the lag time six batch experiments were 

conducted using wet resin, dry resin, and resin soaked in 

TEG solution (Table 30, Appendix A). Plots were made for 

pH change with time for these experiments. For cation 

treatment first, lag time was not observed (Fig 13). For 

anion treatment of cation treated solution lag time was 

observed (Fig 14). Also, Figure 14 shows that the pore 

size and the shielding effect of water on the resin 

particles are not prominent. 
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CHAPTER V 

PROCESS DESIGN AND COST ESTIMATION 

Ion-exchange processes are proposed for the desalting 

of TEG. The purification loop has a charcoal filter and an 

ion-exchange filter and treats 30 gpm of the 300 gpm TEG 

throughput on a continuous basis. The charcoal filter 

removes the organic impurities, and ion-exchange facility 

will significantly reduce the chloride, sodium, magnesium, 

and calcium ions which tend to accumulate in the glycol. 

The process design and economic evaluation is done 

based on References 10-17. An overall flow diagram for 

the desalting of TEG, including the charcoal filter, is 

given in Figure 15. Valves v1, v2, v3, and v4 control flow 

of TEG in and out of the desalting loop, pH meters M1 and 

M2 measure the TEG pH in and out of the loop. Valves v1 

and v4 remain open at all times while the purification is 

in use. When pH at M2 begins to drop below 8.8 (pH of TEG 

with 25/ppm of Cl was measured as approximately 8.8), the 

operation should be stopped (opening v3 and closing v2), 

and resin should be regenerated or replaced with fresh 

resin. The resin may be effective for approximately 5-6 

months for initial operation. Its effective operation 

after the regeneration will be known only after the system 

is placed in operation. 
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The ion exchange process for purification of TEG is 

considered for three scenarios 

(i) operation at 1800F with regeneration, 

(ii) operation at 180°F and contracting out for 

regeneration, 

(iii) operation at 2200F (i.e. at process stream 

entrance temperature) without regeneration. 

30 

A plant layout for the ion-exchange process at 180°F 

with regeneration is given in Figure 16. It consists of a 

heat exchanger (double pipe), placed next to the charcoal 

filter, two ion-exchange columns, cationic column first and 

anionic column second. For the second case, i.e. 

operation at 180°F and contracting out for regeneration, 

the regeneration will be done outside the plant. For the 

third case, ion exchange process at 220°F, heat exchanger 

will not be present. The plant layout for this process is 

shown in Figure 17. 

The TEG, after passing through the charcoal filter, is 

cooled from 220°F to 1ao°F using a double pipe heat 

exchanger, with water as the cooling medium. The TEG then 

enters the top of the cation exchanger column. The 

residence time in this unit will be about 2 minutes, where 

cations (sodium, magnesium, and calcium) are removed. The 

TEG stream then enters the top of the anion exchange column 

where anions (chlorides) are removed. The residence time 

will be about 2 minutes. The order of the resin used and 

residence time for both the columns are based on the batch 

and column experimental results. 
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During the regeneration process, the regenerants, 8% 

sulfuric acid and 4% Sodium hydroxide, are pumped into the 

cation and anion exchange columns, respectively, from drums 

brought to the site. This regeneration is continued until 

no more sodium, calcium, and magnesium ions can be detected 

in the cation exchanger regenerant and no more chloride 

ions in the anion exchanger regenerant. 

In the second process, the TEG is circulated through 

the purification loop, till the resin capacity is exausted 

(detecter M2). The ion-exchange process is then stopped 

for replacement of the resin, and the used resin is sent to 

a contractor for regeneration. 

In the third proposed process, the TEG stream enters 

the cation exchange column directly, at 220°F, from the 

charcoal filter. At this high temparature, the anionic 

ion-exchange resin will not last long due thermal 

degredation of the resins. The used resins at this 

temperature are not suitable for the regeneration, and are 

to be incinerated and fresh resin is installed. At 220°F 

the fresh resin works well for one time use(19). 

Equipment Sizing and Materials 

This section will present the procedures used to size 

columns, and heat exchangers to be used in the proposed 

design. An estimate of the amount of ion exchange resin 

required and the regenerants for regeneration will also be 

given. 
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lil Cation Exchange Column: 

The size of this column was based on the volumetric 

flow rate of TEG (30 gpm) and on estimated residence time 

at the operating temperature from preliminary experiments. 

The batch experiments showed little or no effect with 

temperature and addition of water. So the residence time 

of C_T140_W20(FIRST), about two minutes, is assumed for the 

process at 180°F. Volume of the column was double the 

volume required by the above constraints to ensure enough 

room was provided for the resin swelling and for the flow 

of TEG. 

A resin porosity of 40% was assumed for the column, 

and the residence time was estimated as two minutes. A 

maximum of 3 ft bed height was assumed in calculating the 

diameter and the length of the column, and are within the 

design limits. 

liil Anion Exchange Column: 

Sizing of the anion exchange column is similar to that 

of cation exchange column. For this, the column 

experimental results were used to find the residence time 

for the column. A residence time of two minutes was 

calculated for the anion exchange column. Characteristics 

of these columns are given in Table 1. 
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TABLE 1 

CHARACTERISTICS OF ION EXCHANGE COLUMNS 

----------------------------------------------------------
Residence Bed Vol 

Time Diameter Height Depth Flow Fraction 

(min) (ft) (ft) (in) (gpm/ft2) Resin 

cat. Ex. 2.o 

An. Ex. 2.0 

3.0 

3.0 

6.0 

6.0 

(iii) Regenerant Requirements: 

36 

36 

4.24 

4.24 

1/2 

1/2 

The amount of acid regenerate (sulfuric acid) required 

for an initial regeneration was estimated as 1.25 times the 

void volume of the resin bed. This volume is estimated to 

be about 10 ft3. 

Similarly the volume of the Caustic regenerate (NaOH) 

was estimated to be about 10 ft 3 . 

lYl Resin Requirements: 

The ion exchange resins are of central importance in 

the ion exchange process. This design is based on the use 

of Rohm and Hass Amberlyst A-15 and A-21. These resins 

were used in the preliminary batch experiments and column 

experiments for the determination of residence time for the 

anion and cation exchange columns. For the present design, 

the volume of cation and anion resins are about 20 ft 3 

each. 
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iY1l Heat Exchanger: 

A heat exchanger will be placed immediately after the 

charcoal filter in the process stream to reduce the 

temperature of TEG from 220°F to 180°F, using cooling 

water. A double pipe counter flow exchanger is choosen for 

this purpose. The solvent heat capacity, density and 

viscosity are given in Appendix D. Cooling water at 75°F 

will be used in the heat exchanger and the hot water 

temperature was set at 85°F, which gave a water flow rate 

of 72 gpm. 

Choosing a NPS one and half inch ID schedule 40 steel 

pipe for the inner tube, the solvent Reynolds number is 

calculated and found to be in turbulent flow. So an 

overall heat transfer coefficient is estimated as 

Uo = 75 btujhr ft2 F. 

Using standard procedures, the area required for the 

heat exchanger was calculated to be 40.7 ft 2 , which gave a 

length of pipe required of about 102 ft(i.e 5x20ft). and 

the pressure drop is calculated of about 2.75 psi, which is 

within the acceptable range. A four inch O.D. schedule 40 

carbon steel pipe is choosen for the water side. 

<vii) Pumps: 

Two 1 HP centrifugal pumps will be necessary to pump 

the acid (sulfuric acid) and caustic(sodium hydroxide). 



Cost Estimation 

A detailed cost estimation is done for the three 

scenarios. The costs for equipment and materials for use 

in the plant expansion were estimated from available 

sources (~3, 14, 15). To update the cost, plant indices 

are used (M and s equipment cost index). 
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Frequency of regeneration or incineration of the resin 

plays a major role in the total plant cost. The frequency 

of regeneration for the process is determined, by assuming 

an overall 100 ppm of NaCl per year, since about 825 ppm of 

salts accumulated in the TEG solution over the last eight 

years. The glycol dehydration unit (GDU) has a glycol 

volume of 48,000 gal. So the ideal regeneration time, 

i.e., the utilization of total resin capacity, was 

estimated about 29 months. But the column experimental 

breakthrough curve gave about 16% utilization of resin. 

So the frequency of regeneration is estimated as about 5 

months. 

The cost estimations for the proposed ion-exchange 

process are given in Tables 2, 3, and 4. The comparative 

fixed capital costs and operating costs are listed in 

Table 5. 



TABLE 2 

COST ESTIMATION FOR ION-EXCHANGE PROCESS AT 180°F 
WITH REGENERATION UNIT 

Fixed Capital Cost 

Equipment Cost 

Description Cost (US $) 

Cation Exchange Column 

Anion Exchange Column 

Heat Exchanger (Double pipe) 

Acid Tank (Two 55gal HDPE Tanks) 

Caustic Tank (Two 55gal HDPE Tanks) 

Two Pumps 

Total Equipment Cost (E) 

Scale up factors 

(i) Equipment erection 40% of E 

(ii) Piping 30% of E 

(iii) Instrumentation 30% of E 

(iv) Utilities 20% of E 

(v) Storage (for used acids and 

caustics) 5% of E 

Total Scale up Factors Cost 1.25E 

Fixed Capitol Costs = ($ 26,600) (1 + 1.25) 

= 60,000 

9000 

9000 

6000 

330 

330 

2000 

26,600 

0.4 E 

0.3 E 

0.3 E 

0.2 E 

0.05E 
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Operating Costs 

Yearly Basis 

Description 

Table 2 (continued) 

!.Cation Exchange Resin 

2. Anion Exchange Resin 

3. Acid Regenerant (3 regenerations) 

4. Caustic Regenerant (3 regenerations) 

5. Maintenance (10% FCC) 

6. Miscellaneous Supplies (10% of Mainten.) 

7. Utilities (power etc.) 

8. Water (75gpm @ 0.05/1000 gal) 

9. Operating Labor 

lO.Supervision (20% of 9) 

11. Laboratory Costs (25% of 9) 

12. Plant overheads (50% of 9) 

13. Capital Charges (15% of FCC) 

14. Rates (2% of FCC} 

Total Operating Costs 
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Cost (US $) 

3,000 

3,000 

200 

200 

6,000 

600 

600 

2,000 

10,000 

2,000 

2,500 

5,000 

9,000 

1,200 

46,000 



TABLE 3 

ECONOMIC EVALUATION FOR ION-EXCHANGE PROCESS AT 1800F 
~D CONTRACTING OUT FOR REGENERATION 

Fixed Capitol Cost 

Equipment Cost 

Description Cost (US $) 

Cation Exchange Column 

Anion Exchange Column 

Heat Exchanger (Double pipe) 

Total Equipment Cost (E) 

Scale up factors 

(i) Equipment erection 40% of E 

(ii) Piping 30% of E 

(iii) Instrumenta~ion 

(vi) Utilities 20% of E 

(v) Storage(used resin etc.) 5% of E 

Total Scale up FaGtors 1.25E 

Fixed Capitol Costs = ($ 24,000) (1 + 1.25) 

= 54,000 

9000 

9000 

6000 

24,000 

0. 4 E 

0.3 E 

0.3 E 

0.2 E 

0.05E 
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Operating Costs 

Yearly Basis 

Description 

Table 3 (continued) 

l.Cation Exchange Resin (40 ft 3 @ $150/ft3) 

2. Anion Exchange Resin ( " 

3. Regeneration Costs (contract @ $75/ft3 ) 

4. Maintenance (10% FCC) 

5. Miscellaneous Supplies {10% of Mainten.) 

6. Utilities (power etc.) 

7. Water (75gpm @ 0.05/1000 gal) 

8. Operating Labor 

9. Supervision (20% of 8) 

10. Laboratory Costs (25% of 8) 

11. Plant Overheads {50% of 8) 

12. Capital Charges {15% of FCC) 

13. Rates (2% of FCC) 

Total Operating Costs 
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Cost (US $) 

6,000 

6,000 

9,000 

5,400 

600 

600 

2,000 

9,000 

1,800 

2,250 

4,500 

8,100 

1,080 

57,000 



TABLE 4 

ECONOMIC EVALUATION FOR ION-EXCHANGE PROCESS AT 2200F 
WITH INCINERATION OF RESIN EACH TIME 

Fixed Capital Cost 

Equipment Cost 

Description Cost (US $) 

Cation Exchange Column 

Anion Exchange Column 

Total Equipment Cost (E) 

Scale up factors 

(i) Equipment erection 40% of E 

(ii) Piping 30% of E 

(iii) Instrumentation 

(vi) Utilities 20% of E 

(vii) Storage(used resin etc.) 5% of E 

Total Scale up Factors 1.25E 

Fixed Capitol Costs = ($ 18,000) (1 + l.25) 

= 41,000 

9000 

9000 

18,000 

0.4 E 

0.3 E 

0.3 E 

0.2 E 

0.05E 
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Operating Costs 

Yearly Basis 

Description 

Table 4 (continued) 

1.Cation Exchange Resin (60 ft 3 @ $150/ft3 ) 

2. Anion Exchange Resin " ) 

3. Incineration Costs (incineration @ $90jft3 ) 

4. Maintenance (10% FCC) 

5. Miscellaneous Supplies (10% of Mainten.) 

6. Utilities (power etc.) 

7. Operating Labor 

8. Supervision (20% of 7) 

9. Laboratory Costs (25% of 7) 

10. Plant Overheads (50% of 7) 

11. Capital Charges (15% of FCC) 

12. Rates (2% of FCC) 

Total Operating Costs 
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Cost (US $) 

9,000 

9,000 

11,000 

4,100 

500 

500 

8,000 

1,600 

2,000 

4,000 

6,000 

800 

57,000 
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TABLE 5 

COMPARITIVE COST ESTIMATION FOR ION-EXCHANGE PROCESSES 

Description 

1) Process at 1800F with 

with regeneration 

2) Process at 1800F with 

contracting out for 

regeneration 

3) Process at 2200F 

without regeneration 

Fixed capital cost operating Cost 

$60,000 $48,000 

$54,000 $57,000 

$41,000 $57,000 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

(1) An ion-exchange unit to purify a TEG stream has 

been designed based on lab scale batch and column 

experiments. This unit is expected to reduce the chloride 

ion concentration from 825/ppm to less than 25/ppm and 

significantly reduce other ionic impurities, and thus, 

decreasing the corrosion and fouling effects in the process 

equipment. 

(2) From the batch and column experiment results it is 

seen that tpe temperature and addition of water have very 

little effect on the removal of ionic impurities for 

cationic treatment followed by anionic treatment. Also 

decreased for anionic treatment followed cationic 

treatment. The cationic treatment first gave better 

results than anionic treatment first. This might be due to 

the type of resin used. 

(3) Lag time was observed when the second resin is 

used for the TEG treatment in batch experiments and the lag 

time was more for cation second than anion second. This 

lag time was not seen in the column experiments. From the 

lag time experiments it is seen that the absence of water 

layer on the resin particles and soaking the resin in pure 

in TEG did not showed any effect on lag time. So the 
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absence of lag time in column experiments may not be due to 

fluid displacement, but could be enhanced diffusion. 

(4) In the ion-exchange process the cation exchange 

column should be followed by anion exchange column. 

Approximate residence times for the cation and anion 
. 

exchange columns are obtained from laboratory experiments. 

The residence times for both anion and cation exchangers 

are about 2 min. 

(5) The resins used in the laboratory work, Rohm and 

Hass Amberlyst 15 and 21 gave consistent results, and the 

design of the plant is based on the characteristics of 

these resins. 

(6) A counter-current regeneration technique should be 

used with the present design for Process 1. This will 

eliminate the coagulation of resin particles. Also 

countercurrent regeneration will be more effective, since 

the ionic impurities congregate at the bottom of the resin 

bed. 

(7) The cost evaluation indicates that the operating 

costs for all the three proposed process are approximately 

the same. 

Recommendations 

(1) A glycol stream purification loop for the removal 

of ionic impurities should be placed in the existing 

purification loop containing the charcoal filter. This 

will significantly reduce the corrsion and fouling problems 

in the process equipment, also will ensure continuous 

operation. 
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(2) The ion-exchange process at 180°F with contracting 

out for regeneration is recommended for the scale up plant. 

(3) Data collected during operation of the system can 

subsequently be used to fine tune the system operating 

parameters. 
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TABLE 6 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 74F FOR 
TEG WITH 10% WATER USING ANION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 0 6.8 7.91 0 
RESIN 1 1 8.3 9.32 1 

2 0 8.9 9.9 2 
3 46 9.6 10.5 3.8 
5 58 11.2 12 6 
6 49 11.9 12.7 6.8 
8 37 12.4 13.2 8.6 
9 12 12.5 13.3 9.2 

10 0 12.6 13.4 10 
12 20 12.8 13.6 12.3 
14 10 12~9 13.7 14.2 
16 30 13 13.7 16.5 
20 0 13.1 13.8 20 
26 45 13.2 13.9 26.8 
42 30 13.3 14 42.5 

EQUILIBRIUM 60 0 13.3 14 60 

CATIONIC 0 0 13.25 14 0 
RESIN 6 30 13.1 13.8 6.5 

10 25 13 13.7 10.4 
15 40 12.9 13.6 15.7 
18 45 12.8 13.5 18.8 
21 10 12.7 13.4 21.2 
23 35 12.6 13.3 23.6 
30 0 12.2 13 30 
33 52 11.7 12.5 33.9 
35 58 11 11.9 36 
36 54 10.6 11.5 36.9 
38 51 9.9 10.8 38.9 
42 6 9.3 10.3 42.1 
46 42 8.7 9.7 46.7 
49 17 7.7 8.8 49.3 
52 33 6.3 7.4 52.6 
56 4, 5 6.2 56.1 
59 10 3.6 4.9 59 0 2 
61 4 2.8 4.1 61.1 
68 45 2 3.4 68.8 
74 55 1.8 3.2 74.9 
81 0 1.7 3.1 81 
90 15 1.6 3 90.3 

110 0 1.5 2.9 110 
EQUILIBRIUM 125 0 1.5 2.9 0 
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TABLE 7 

pH CHANGE VERSUS TIME FO~ BATCH EXPERIMENT AT 74F FOR 
TEG WITH 10\ WATER USING CATION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

CATIONIC 0 0 6.65 7.8 0 
RESIN 1 1 4 5.3 1.01 

2 4 1.8 3.2 2.06 
3 23 1.4 2.8 3.38 
4 45 1.2 2.6 4.75 
5 36 1.1 2.5 5.6 
7 56 0.9 2.4 7.93 

10 5 0.8 2.3 10.1 
16 20 0.6 2.1 16.3 
21 45 0.5 2 21.8 
30 15 0.4 1.9 30.3 
43 0 0.3 1.8 43 
65 0 0.2 1.7 65 

EQUILIBRIUM 80 0 0.2 1.7 0 

ANIONIC 0 0 0.2 1.7 0 
RESIN 1 21 0.4 1.9 1. 35 

2 12 0.5 2 2.2 
3 45 0.7 2.2 3.75 
4 28 0.8 2.3 4.47 
5 40 1 2.5 5.67 
6 15 1.1 2.6 6.25 
7 15 1.3 2.7 7.25 
8 2 1.5 2.9 8.03 
9 2 1.9 3.3 9.03 

10 1 3 4.3 10 
11 14 6 7.2 11.2 
12 18 8 9 12.3 
13 41 9 10 13.7 
14 7 9.2 10.2 14.1 
15 7 9.7 10.6 15.1 
16 12 10.5 11.4 16.2 
18 4 11.7 12.5 18.1 
20 7 12.1 12.9 20.1 
21 5 12.2 13 21.1 
22 25 12.3 13.1 22.4 
24 22 12.4 13.2 24.4 
27 5 12.5 13.3 27.1 
33 0 12.6 13.4 33 
50 0 12.7 13.5 50 

EQUILIBRIUM 70 0 12.7 13.5 0 



TABLE 8 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 74F FOR 
TEG WITH 20\ WATER USING CATION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

CATIONIC 0 0 6.5 7.6 0 
RESIN 0 18 5.5 6.7 0.3 

0 26 5 6.2 0.43 
0 41 4 5.3 0.68 
0 53 3 4.3 0.88 
1 18 2 3.4 1.3 
1 35 1.8 3.2 1.6 
1 57 1.6 3 1.95 
2 38 1,. 4 2.8 2.63 
3 45 1.2 2.6 3.75 
5 33 1 2.5 5.55 

23 25 0.5 2 23.4 
36 30 0.4 1.9 36.5 
70 0 0.3 1.8 70 

EQUILIBRIUM 90 0 0.3 1.8 0 

ANIONIC 0 0 0.3 1.8 0 
RESIN 1 20 0.6 2.1 1.33 

3 25 0.9 2.4 3.41 
5 35 1.3 2.7 5.6 
6 5 1.4 2.8 6.1 
7 50 1.8 3.2 7.83 
8 58 2.2 3.6 9 
9 30 2.5 3.9 9.5 

10 0 3 4.3 10 
10 44 4.5 5.7 10.7 
11 54 6.5 7.6 11.9 
12 52 8 9 12.9 
13 23 8.5 9.5 13.4 
14 38 9.2 10.2 14.6 
15 20 9.5 10.5 15.3 
16 57 10.5 11.4 17 
17 43 11 11.9 17.7 
27 5 12 12.8 27.1 
33 30 12.1 12.9 33.5 
51 30 12.2 13 51.5 

EQUILIBRIUM 70 0 12.2 13 0 
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TABLE 9 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 74F FOR 
TEG WITH 20\ WATER USING ANION TREATMENT FIRST 

RESIN TIME· pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 0 6.5 7.6 0 
RESIN 0 30 8 9 0.5 

1 43 9 10 1.7 
3 1 10 10.9 3 
3 47 11 11.9 3.8 
5 3 12 12.8 5.1 
7 42 12.5 13.3 7.7 
9 17 12.6 13.4 9.3 

11 10 12.7 13.5 11.2 
14 54 12.8 13.6 14.9 
23 0 12.9 13.7 23 
60 0 13 13.75 60 

EQUILIBRIUM 90 0 13 13.75 0 

CATIONIC 0 0 13 13.7 0 
RESIN 17 50 12.5 13.3 17 

27 18 12 12.8 27.3 
31 48 11.5 12.3 31.8 
33 49 11 11.9 33 
36 34 10.5 11.4 36.6 
39 15 10 10.9 39.3 
42 30 9.5 10.5 42.5 
43 4 9 10 43.1 
45 9 8.5 9.5 45.2 
47 13 8 9 47.2 
48 48 7.5 8.6 48.8 
50 3 7 8.1 50.1 
51 2 6.5 7.6 51 
53 10 6 7.2 53.2 
57 27 5.5 6.7 57.5 
60 13 5 6.2 60.2 
63 55 4 5.3 63.9 
65 24 3.5 4.8 65.4 
67 13 3 4.3 67.2 
71 15 2.5 3.9 71.3 
87 40 2 3.4 87.7 
98 30 1.9 3.3 98.5 

120 0 1.8 3.2 120 
EQUILIBRIUM 135 0 1.8 3.2 0 
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TABLE 10 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 100F FOR 
TEG WITH 10% WATER USING CATION TREATMENT FIRST 

I 

RESIN TIME pH pH TIME 
USED m1n sec meter corrected min 

CATIONIC 0 0 6.2 7.3 0 
RESIN 0 15 5: 6.2 0 25 

0 21 4.5 5.7 0.35 
0 27 4 5.3 0 45 
0 32 3.51 4 8 0.53 
0 37 3 4.3 0 62 
0 41 2 5 3.9 0.68 
0 45 2 3. 4 0.75 
0 55 1 5 2.9 0.92 
1 27 1 2.5 1.5 
3 12 0.5 2 3.2 
6 20 0.2 1.7 6.3 
8 28 0.11 1.6 8.5 

EQUILIBRIUM 11 0 ol 1.5 11 

ANIONIC 0 0 0 1.5 0 
RESIN 1 22 0.5 2 1.4 

2 24 1 2.5 2.4 
2 53 1 51 2 9 2.9 
3 6 2 3.4 3.1 
3 12 2 5 3.9 3.2 
3 16 3 4.3 3.3 
3 20 3 5 4.8 3.33 
3 24 41 5.3 3.4 
3 28 4.5 1 5 7 3 5 
3 33 5 6.2 3.55 
3 39 5 5 6.7 3 65 
3 45 6 I 7 2 3.75 
3 51 6 5 7.6 3 85 
3 58 7 8.1 4 
4 8 7.5 8.6 4.1 
4 24 8 9 4.4 
4 52 8. 5' 9 5 4.9 

I 

5 29 9 10 5 5 
6 0 9 5 10.4 6 
6 27 10 I 10.9 6 45 
6 43 10 5 I 11 4 6.7 
6 59 11 1 

I 11.9 7 
7 17 11 5 12.3 7.3 
8 5 12 12.8 8.1 

15 0 12.7 13.5 15 
22 0 12 8 13.6 22 

EQUILIBRIUM 40 0 12 8 13.6 40 
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TABLE 11 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 100F FOR 
TEG WITH 20\ WATER USING CATION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected m1n 

CATIONIC 0 0 6 2 7 3 0 
RESIN 0 8 5 5 6.7 0.13 

0 12 5 6 2 0 2 
0 17 4.5 5.7 0.28 
0 23 4 5 3 0 38 
0 28 3.5 4.8 0.5 
0 32 3 4.3 0.53 
0 35 2 5 3.9 0.58 
0 42 2 3 4 0.7 
1 1 1.5 2.9 1 
1 56 1 2 5 2 
5 4 0.5 2 5 

18 0 0.1 1 6 18 
EQUILIBRIUM 33 0 0 1.5 33 

ANIONIC 0 0 0 1.5 0 
RESIN 1 58 0 5 2 2 

3 34 1 2 5 3.6 
4 42 1 5 2.9 4.7 
5 21 2 3 4 5 35 
5 28 2.5 3 9 5.5 
5 48 3 4.3 5.8 
5 55 3.5 4.8 5 9 
6 2 4 5 3 6 
6 10 4 5 5 7 6.2 
6 19 5 6 2 6 3 
6 28 5.5 6.7 6.5 
6 36 6 7 2 6.6 
6 46 6.5 7.6 6.8 
6 56 7 8 1 6.9 
7 8 7.5 8 6 7 1 
7 28 8 9 7.5 
7 57 8.5 9.5 7 95 
8 36 9 10 8.6 
9 9 9 5 10 4 9 15 
9 35 10 10 9 9 6 
9 59 10.5 11.4 10 

10 36 11 11.9 10 6 
12 10 11 5 12 3 12.2 
23 30 12 12.8 23 5 
45 0 12.05 12 8 45 

EQUILIBRIUM 60 0 12 05 12.8 60 
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TABLE 12 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT lOOF FOR 
TEG WITH lOt WATER USING ANION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 '0 6.2 7.3 0 
RESIN 0 9 7 8.1 0.15 

0 17 7.5 8.6 0.28 
0 33 8 9 0.55 
0 59 8.5 0.5 0.98 
1 31 9 10 1.52 
2 0 9.5 10.5 2 
2 22 10 10.9 2.4 
2 34 10.5 11.4 2.6 
2 43 11 11.9 2.7 
2 56' 11.5 12.3 2.9 
3 23 12 12.8 3.4 
4 33 12.5 13.3 4.5 

11 30 13 13.8 11.5 
18 0 13.1 13.83 18 

EQUILIBRIUM 45 0 13.1 13.83 45 

0 0 13 13.8 0 
10 33 12.5 13.3 10.6 
14 52 12 12.8 14.9 
16 45 11.5 12.3 16.8 
17 34 11 11.9 17.6 
18 5 10.5 11.4 18 
18 34 10 10.9 18.6 
19 19 9.5 10.5 19.3 
20 45 9 10 20.8 
23 12 8.5 9.5 23.2 
26 20 8 9 26.3 
30 45 7.5 8.6 31 
34 45 7 8.1 34 
36 38 6.5 7.6 36.6 
37 50 6 7.2 37.8 
39 7 5.5 6.7 39.1 
40 14 5 6.2 40.2 
41 21 4.5 5.7 41.4 
42 20 4 5.3 42.3 
43 2 3.5 4.8 43 
43 36 3 4.3 43.6 
44 29 2.5 3.8 44.5 
46 42 2 3.4 46.7 
54 25 1.5 3 54.4 
74 30 1.2 2.6 74.5 

EQUILIBRIUM 90 0 1.2 2.6 90 
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TABLE 13 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 100F FOR 
TEG WITH 20% WATER USING ANION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 0 6.2 7.3 0 
RESIN 0 4 6.5 7.6 0.07 

0 9 7 8.1 0.15 
0 17 7.5 8.6 0.3 
0 33 8 9 0.55 
1 0 8.5 9.5 1 
1 34 9 10 1.6 
2 2 9.5 10.4 2 
2 24 10 10.9 2.4 
2 39 10.5 11.4 2.65 
2 51. 11 11.9 2.85 
3 10 11.5 12.3 3.2 
3 57 12 12.8 3.95 
6 33 12.5 13.3 6.55 

16 50 12.8 13.6 16.8 
EQUILIBRIUM 30 0 12.8 13.6 30 

CATIONIC 0 0 12.8 13.6 0 
RESIN 5 4 12.5 13.3 5 

11 34 12 12.8 11.6 
14 16 11.5 12.3 14.3 
15 26 11 11.9 15.4 
16 4 10.5 11.4 16 
16 37 10 10.9 16.6 
17 26 9.5 10.4 17.4 
18 55 9 10 18.9 
20 50 8.5 9.5 20.8 
22 50 8 9 22.8 
24 31 7.5 8.6 24.5 
26 4 7 8 26 
27 20 6.5 7.6 27.3 
28 19 6 7.1 28.3 
29 7 5.5 6.6 29.1 
29 54 5 6.2 29.9 
30 40 4.5 5.7 30.1 
31 27 4 5.3 31.5 
32 10 3.5 4.8 32.2 
32 46 3 4.3 32.8 
33 40 2.5 3.9 33.7 
35 35 2 3.4 35.6 
42 35 1.5 2.9 42.6 
67 40 1.2 2.6 67.7 

EQUILIBRIUM 80 0 1.2 2.6 80 
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TABLE 14 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 120F FOR 
TEG WITH 10\ WATER USING CATION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

CATIONIC 0 0 6 7.2 0 
RESIN 0 5 5.5 6.7 0.01 

0 11 5 6.2 0.18 
0 17 4.5 5.7 0.28 
0 22 4 5.3 0.37 
0 26 3.5 4.8 0.43 
0 ~0 3 4.3 0.5 
0 33 2.5 3.9 0.55 
0 36 2 3.4 0.6 
0 41 1.5 2.9 0.7 
0 59 1 2.5 1 
1 49 0.5 ~ 1.8 
3 45 0.1 1.6 3.8 

EQUILIBRIUM 4 40 0 1.5 4.7 

ANIONIC 0 0 0 1.5 0 
RESIN 0 59 0.5 2 1 

1 35 1 2.5 1.6 
1 50 1.5 2.9 1.8 
2 1 2 3.4 2 
2 5 2.5 3.9 2.1 
2 7 3 4.3 2.12 
2 10 3.5 4.8 2.17 
2 14 ' 4 5.3 2.2 
2 18 4.5 5.7 2.3 
2 22 5 6.2 2.4 
2 27 5.5 6.7 2.45 
2 31 6 7.2 2.52 
2 34 6.5 7.6 2.57 
2 37 7 8.1 2.62 
2 48 7.5 8.6 2.8 
3 6 8 9 3.1 
3 33 8.5 9.5 3.55 
3 57 9 10 3.95 
4 19 9.5 10.5 4.32 
4 37 10 10.9 4.62 
4 47 10.5 11.4 4.8 
4 57 11 11.9 4.95 
5 12 11.5 12.3 5.2 
5 53 12 12.8 5.9 
8 1 12.5 13.3 8 

19 17 12.8 13.5 19.3 
EQUILIBRIUM 40 0 12.8 13.5 40 
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TABLE 15 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 120F FOR 
TEG WITH 20% WATER USING CATION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

CATIONIC 0 0 6 7.2 0 
RESIN 0 4 5.5 6.7 0.07 

0 9 5 6.2 0.15 
0 13 4.5 5.7 0.22 
0 17 4 5.3 0.28 
0 22 3.5 4.8 0.37 
0 25 3 4. 3 0.42 
0 29 2.5 3.9 0.48 
0 32 2 3.4 0.53 
0 42 1.5 2.9 0.7 
1 9 1 2.5 1.15 
2 21 0.5 2 2.35 
5 15 0.1 1.6 5.25 

EQUILIBRIUM 6 50 0 1.5 6.83 

ANIONIC 0 0 0 1.5 0 
RESIN 1 1 0.5 2 1.01 

1 39 1 2.5 1. 65 
1 59 1.5 2.9 2 
2 7 2 3.4 2.12 
2 11 2.5 3 2.18 
2 14 3 4.3 2.23 
2 17 3.5 4.8 2.28 
2 20 4 5.3 2.33 
2 24 4.5 5.7 2.4 
2 27 5 6.2 2.45 
2 30 5.5 6.7 2.5 
2 34 6 7.2 2.57 
2 39 6.5 7.5 2.65 
2 44 7 8.1 2.73 
2 53 7.5 8.6 2.9 
3 9 8 9 3.15 
3 29 8.5 9.5 3.5 
3 50 9 10 3.83 
4 6 9.5 1.5 4.1 
4 22 10 10.9 4.37 
4 33 10.5 11.4 4.55 
4 46 11 11.9 4.77 
5 16 11.5 12.3 5.27 
6 42 12 12.8 6.7 

42 0 12.45 13.2 42 
EQUILIBRIUM 60 0 12.45 13.2 0 
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TABLE 16 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 120F FOR TEG WITH 10% WATER USING ANION TREATMENT FIRST 

RESIN TIME pH pH TIME USED min sec meter corrected min 
ANIONIC- 0 0 6 7.2 0 RESIN 0 7 6.5 7.6 0.12 0 13 7 8.1 0.22 0 23 7.5 8.6 0.38 0 41 8 9 0.68 1 6 8.5 9.5 1.1 1 27 9 10 1. 45 1 46 9.5 10.4 1.8 1 . 58 10 10.9 2 2 5 10.5 11.4 2.1 2 11 11 11.9 2.2 2 24 11.5 12.3 2.4 2 51 12 12.8 2.85 4 4 12.5 13.3 4.1 30 0 13.05 13.8 30 EQUILIBRIUM 45 0 13.05 13.8 0 

CATIONIC 0 0 13 13.7 0 RESIN 8 29 12.5 13.3 8.5 12 11 12 12.8 12.2 13 53 11.5 12.3 13.9 14 38 11 11.9 14.6 15 1 10.5 11.4 15 15 19 10 10.9 15.3 15 47 9.5 10.5 15.8 16 38 9 10 16.6 18 15 8.5 9.5 18.3 20 38 8 9 20.6 23 34 7.5 8.6 23.6 26 47 7 8 26.8 28 44 6.5 7. 6 28.7 29 47 6 7.2 29.8 30 37 5.5 6.7 30.6 31 23 5 6.2 31.4 32 16 4. 5 5.7 32.3 32 59 4 5.3 33 33 28 3.5 4.8 33.5 33 52 3 4. 3 33 34 23 2.5 3.9 34.4 35 20 2 3. 4 35.3 37 59 1.5 2.9 38 48 45 1 2.5 48.8 EQUILIBRIUM 55 50 0.9 2.4 55.9 



62 

TABLE 17 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 120F FOR 
TEG WITH 20\ WATER USING ANION TREATMENT FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 0 6 7.2 0 
RESIN 0 5 6.5 7.6 0.01 

0 10 7 8.1 0.2 
0 17 7.5 8.6 0.3 
0 31 8 9 0.5 
0 53 8.5 9.5 0.9 
1 14 9 10 1.2 
1 29 9.5 10.5 1.5 
1 43 10 10.9 1.7 
1 51 10.5 11.4 1.85 
1 58 11 11.9 2 
2 12 11.5 12.3 2.2 
2 46 12 12.8 2.8 
4 44 12.5 13.3 4.7 

13 15 12.8 13.6 13.25 
EQUILIBRIUM 30 0 12.8 13.6 0 

CATIONIC 0 0 12.8 13.6 0 
RESIN 3 43 12.5 13.3 3.72 

8 51 12 12.8 8.85 
11 12 11.5 12.3 11.2 
12 10 11 11.9 12.2 
12 40 10.5 11.4 12.7 
13 3 10 10.9 13.05 
13 27 9.5 10.5 13.45 
14 13 9 10 14.22 
15 31 8.5 9.5 15.5 
17 6 8 9 17.1 
18 51 7.5 8.6 18.85 
20 38 7 8 20.6 
21 59 6.5 7.6 22 
22 55 6 7.2 23 
23 35 5.5 6.7 23.6 
24 11 5 6.2 24.2 
24 48 4.5 5.7 24.8 
25 24 4 5.3 25.4 
25 58 3.5 4.8 26 
26 27 3 4. 3 26.45 
27 1 2.5 3.9 27 
28 12 2 3. 4 28.2 
32 6 1.5 2.9 32.1 
85 0 0.9 2.4 85 

EQUILIBRIUM 100 0 0.9 2.4 0 



63 

TABLE 18 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 140F FOR 
TEG WITH 20% WATER USING CATION TREATMENT FIRST 

TIME pH pH TIME ln(pHo/pH) 
min sec meter corrected min 

0 0 5.6 6.8 0 0 
0 5 5 6.2 0.08 0.09 
0 8 4.5 5.7 0.13 0.18 
,0 11 4 5.3 0.18 0.25 
0 14 3.5 4.8 0.23 0.35 
0 17 3 4.3 0.28 0.46 
0 19 2.5 3.9 0.32 0.56 
0 21 2 3.4 0.35 0.69 
0 25 1.5 2.9 0.42 0.85 
0 35 1 2.5 0.58 1 
1 4 0.5 2 1.1 1. 22 
2 5 0.1 1.6 2.1 1.45 
2 35 0 1.5 2.6 1. 51 

EQUILIBRIUM 
0 0 0 1.5 0 0 
0 56 0.5 2 0.94 0.04 
1 17 1 2.5 1.28 0.08 
1 27 1.5 2.9 1.45 0.12 
1 32 2 3.4 1. 53 0.16 
1 35 2.5 3.9 1.58 0.21 
1 37 3 4.3 1.62 0.25 
1 39 3.5 4.8 1.65 0.3 
1 42 4 5.3 1.7 0.36 
1 45 4.5 5.8 1.75 0.42 
1 48 5 6.2 1.8 0.47 
1 50 5.5 6.7 1.83 0.54 
1 53 6 7.2 1.9 0.6 
1 57 6.5 7.6 1.95 0.67 
2 4 7 8.1 2.1 0. 75' 
2 14 7.5 8.6 2.23 0.84 
2 28 8 9 2.5 0.92 
2 46 8.5 9.5 2.77 1 
3 1 9 10 3.02 1.14 
3 15 9.5 10.5 3.25 1.27 
3 25 10 10.9 3.42 1.4 
3 33 10.5 11.4 3.55 1. 57 
3 44 11 11.9 3.73 1.78 
4 13 11.5 12.3 4.22 2 
5 51 12 12.8 5.85 2.34 
6 40 12.1 12.9 6.67 2.43 

14 0 12.3 13 14 2.43 
30 0 12.35 13.1 30 2.53 
55 0 12.35 13.1 55 2.53 
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TABLE 19 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 140F FOR TEG WITH 20% WATER USING ANION TREATMENT FIRST 

TIME pH pH TIME ln(pHo/pH) min sec meter corrected min 

0 0 8 9 0 0 0 4 8.5 9.5 0.07 0.1 0 6 9 10 0.1 0.22 0 7 9.5 10.4 0.12 0.33 0 9 10 10.9 0.15 0.48 0 11 10.5 11.4 0.2 0.65 0 13 11 11.9 0.22 0.87 0 19 11.5 12.3 0.32 1.1 0 37 12 12.8 0.62 1.43 1 30 12.5 13.3 1.5 2 3 32 12.8 13.6 3.53 2.5 6 12 12.9 13.65 6.2 2.7 25 0 12.9 13.65 25 2.7 EQUILIBRIUM 
0 0 12.9 13.65 0 0 3 24 12.5 13.3 3.4 0.03 6 0 12 12.8 6 0.06 7 2 11.5 12.3 7 0.1 7 27 11 11.9 7.45 0.14 7 40 10.5 11.4 7.7 0.18 7 46 10 10.9 7.8 0.22 7 52 9.5 10.4 7.9 0.27 7 57 9 10 7.95 0.31 8 5 8.5 9.5 8.1 0.36 8 16 ' 8 9 8.3 0.42 8 34 7.5 8.6 8.6 0.46 8 56 7 8.1 9 0.52 9 16 6.5 7.6 9.3 0.59 9 32 6 7.1 9.5 0.65 9 47 5.5 6.7 9.8 0.71 10 0 5 6.2 10 0.79 10 18 4.5 5.7 10.3 0.87 10 39 4 5.3 10.65 0.95 11 1 3.5 4.8 11 1. OS 11 16 3 4.3 11.3 1.16 11 28 2.5 3.9 11.5 1. 25 11 39 2 3.4 11.65 1.4 12 1 1.5 2.9 12 1.5 13 0 1 2.5 13 1.7 15 51 0.5 2 15.85 1.9 19 20 0.3 1.8 19.3 2 55 0 0 1.5 55 2.2 EQUILIBRIUM 
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TABLE 20 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 140F FOR 
TEG WITH 20% WATER USING CATION(AMBERLYST 15) FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

CATIONIC 0 0 7.3 8. 4 0 
RESIN 0 21 1 2.5 0.35 

0 32 0.5 2 0.53 
EQUILIBRIUM 1 5 0 1.5 1.1 

ANIONIC 0 0 0 1.5 0 
RESIN 1 52 0.5 2 1.9 

3 19 1 2.5 3.3 
4 19 1.5 2.9 4.3 
5 2 2 3.4 5 
5 39 2.5 3.9 5.7 
6 26 3 4.3 6.4 
7 46 3.5 4.8 7.8 

10 16 4 5.3 10.3 
15 15 4.5 5.7 15.3 
70 0 5 6.2 70 

EQUILIBRIUM 100 0 5 6.2 100 
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TABLE 21 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENT AT 140F FOR 
TEG WITH 20% WATER USING ANION(AMBERLYST 21) FIRST 

RESIN TIME pH pH TIME 
USED min sec meter corrected min 

ANIONIC 0 0 7.1 8.2 0 
RESIN 0 10 7.3 8.4 0.16 

0 15 7.4 8.5 0.25 
0 23 7.5 8.6 0.38 
0 33 7.6 8.66 0.55 
0 48 7.7 8.75 0.8 
1 6 7.8 8.85 1.1 
1 33 7.9 8.94 1.55 
1 58 8 9.04 2 
2 45 8.1 9.13 2 
3 48 8.2 9.22 3.8 
5 38 8.3 9.32 5.6 
9 20 8.4 9.41 9.3 

19 20 8.5 9.5 19.3 
49 0 8.6 9.6 49 
70 0 8.7 9.7 70 
95 0 8.8 9.8 95 

122 0 8.9 9.9 122 
160 0 9 10 160 
180 0 9 10 180 

EQUILIBRIUM 200 0 9 10 0 

CATIONIC 0 0 9 10 0 
RESIN 0 4 8.5 9.5 0.07 

0 6 8 9.03 0.1 
0 9 7.5 8.6 0.15 
0 15 6 7.2 0.25 
0 19 5.5 6.7 0.32 
0 22 5 6.6 0.36 
0 25 4.5 5.7 0.42 
0 27 4 5.3 0.45 
0 31 3 4.34 0.52 
0 33 2.5 3.9 0.55 
0 37 1.5 2.9 0.62 
0 41 1 2.5 0.69 
0 46 0.5 2 0.77 
0 58 0.2 1.7 0.97 

EQUILIBRIUM 1 7 0 1.5 1.12 



67 

TABLE 22 

RATE CONSTANTS FOR BATCH EXPERIMENTS FOR TEG WITH 10% AND 20% WATER AT DIFFERENT TEMPERATURES USING 
ANION TREATMENT FIRST 

EXP # TEMP WATER % RATE.CON LAG. TIME 
(deg F) by VOLUME (1/min) (min) 

AT74W10 74 10 0.204 0 

AT74W20 74 20 0.2524 0 

AT100W10 100 10 0.4014 0 

AT100W20 100 20 0.342 0 

AT120W10 120 10 0.501 0 

AT120W20 120 20 0.473 0 

AT140W20 140 20 0.6823 0 
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TABLE 23 

RATE CONSTANTS FOR BATCH EXPERIMENTS FOR TEG WITH 10% 
AND 20% WATER AT DIFFERENT TEMPERATURES USING 

CATION TREATMENT FIRST 

EXP # TEMP WATER % RATE.CON LAG.TIME 
(deg F) by VOLUME (1/min) (min) 

CT74W20 74 10 0.1588 0 

CT74W20 74 20 0.4846 0 

CT100W10 100 10 1. 04 0 

CT100W20 100 20 0.3314 0 

CT120W10 120 10 0.4876 0 

CT120W20 120 20 0.466 0 

CT140W20 140 20 1. 263 0 
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TABLE 24 

RATE CONSTANTS FOR BATCH EXPERIMENTS FOR TEG WITH 10% AND 20% WATER AT DIFFERENT TEMPERATURES USING ANIONIC TREATMENT FOR CATION TREATED TEG 

EXP If: TEMP WATER % RATE.CON LAG.TIME (deg F) by VOLUME (1/min) (min) 

AT74Wl0 74 10 0.04 32 
AT74W20 74 20 0.03 29 
AT100W10 100 10 0.04 14 
AT100W20 100 20 0.07 17 
AT120W10 120 10 0.05 12 

AT120W20 120 20 0.05 8 

AT140W20 140 20 0.23 6 
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TABLE 25 

RATE CONSTANTS FOR BATCH EXPERIMENTS FOR TEG WITH 10% 
AND 20% WATER AT DIFFERENT TEMPERATURES USING 

CATIONIC TREATMENT FOR ANION TREATED TEG 

EXP # TEMP WATER % RATE.CON LAG.TIME 
(deg F) by VOLUME (1/min) (min) 

CT74W10 74 10 0.17 7 

CT74W20 74 20 0.18 8.3 

CT100W10 100 10 0.31 1.6 

CT100W20 100 20 0.16 2.6 

CT120W10 120 10 0.43 1.1 

CT120W20 120 20 0.5 1 

CT140W20 140 20 0.55 0.8 
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TABLE 26 

ANALYSIS OF BATCH EXPERIMENT SAMPLES USING 
ION-CHROMATOGRAPH AND EXPERIMENTAL 

ERROR 

EXP # TEMP Cl- Ions Concentration(ppm) 
deg F Average Minimum Maximum 

A_T74_Wl0 74 68 59 88 A_T100_W10 100 93 82 108 A_T120_W10 120 95 87 108 

C_T74_W10 74 29 19 40 C_T100_W10 100 57 55 74 C_T120_W10 120 71 59 90 

A_T74_W20 74 73 24 105 A_T100_W20 100 115 85 172 A_T120_W20 120 59 37 87 A_T140_W20 140 106 79 125 

C_T74_W20 74 38 26 49 C_T100_W20 -----nro- - 48 29 78 C-T120_W20 120 43 29 58 C_T140_W20 140 38 24 67 
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TABLE 27 

VOLUME COLLECTED AND CONCENTRATION CHANGE WITH TIME 
FOR 500ML TEG WITHOUT WATER HAVING AN INITIAL 

CONCENTRATION OF 330ppm OF CHLORIDE IONS IN 
A COLUMN EXPERIMENT USING 5.0gr OF CATION 

AND ANION RESINS EACH WITH A RESIDENCE 
TIME OF 2 MINUTES 

SAMPLE # TIME VOLUME PEAK CONC. OF 
(MIN) (ml) HEIGHT Cl- (ppm) 

r 0 0 0 0 0 
1 5 22 1 15 
2 10 38 0.9 10 
3 15 54 0.75 4 
4 20 69 0.55 0 
5 25 84 0.35 0 
6 30 99 0.3 0 
7 35 114 0.4 0 
8 40 129 0.4 0 
9 46 148 0.45 0 

10 50 160 0.5 0 
11 55 175 0.6 0 
12 60 190 0.7 2 
13 65 205 0.8 6 
14 70 220 0.9 10 
15 75 236 1.1 17 
16 80 251 1.2 21 
17 85 267 1.3 28 
18 90 282 1. 45 35 
19 95 298 1.5 37 
20 100 314 1.6 41 
21 105 331 1.9 55 
22 110 347 2.2 68 
23 115 363 2.35 74 
24 120 379 2.55 83 
25 125 394 2.8 94 
26 130 409 3 102 
27 135 424 3.1 107 
28 140 439 3.35 118 
29 ·145 453 3.5 125 

.30 180 488 3.5 81 
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TABLE 28 

VOLUME COLLECTED AND CONCENTRATION CHANGE WITH TIME FOR 750m1 TEG WITH 15% WATER HAVING AN INITIAL CONCENTRATION OF 330ppm OF CHLORIDE IONS IN A COLUMN EXPERIMENT USING 5.0gr OF CATION AND ANION RESINS EACH WITH A RESIDENCE TIME OF 2 MINUTES 

SAMPLE # TIME VOLUME PEAK CONC. OF {MIN} { ml) HEIGHT Cl- {ppm) 

0 0 0 0 0 1 5 23 0 0 2 10 43 0 0 3 30 123 0 0 4 35 143 0 0 5 40 163 0 0 6 45 183 0.1 0 7 50 203 0.18 0 8 55 223 0.2 0 9 60 243 0.25 0 10 65 263 0.3 0 11 70 282 0.4 0 12 75 301 0.4 0 13 80 319 0.55 0 14 85 336 0.6 0 15 .90 354 0.7 2 16 95 372 0.75 4 17 100 390 0.9 10 18 105 408 1 15 19 110 426 1.15 21 20 115 444 1.3 28 21 120 462 1.-55 39 22 125 479 1.7 46 23 130 496 1.9 55 24 135 513 2.05 61 25 140 530 2.25 70 26 150 564 2.5 81 27 160 598 2. 95 101 28 170 632 3.25 110 29 180 664 3.7 134 30 190 696 4.1 151 31 200 726 4.5 169 32 210 756 4.7 178 33 220 786 4.5 189 34 230 812 5.2 200 35 240 837 5.5 213 36 250 860 5.5 213 37 270 875 5.5 213 



TABLE 29 

ION-CHROMATOGRAPH CALIBRATION 

CONCE OF Cl
(PPM) 

0.1 
0.25 
0.5 

0.75 
1 

2.5 
5 

PEAK.HT 
(CM) 

0.16 
0.4 

1 
1. 45 
1. 85 

4.2 
10.2 

74 
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TABLE 30 

pH CHANGE VERSUS TIME FOR BATCH EXPERIMENTS AT 74F FOR 
TEG WITH 20% WATER USING WET, SOAKED, AND DRY 

CATIONIC RESINS FIRST 

pH Time in Min 
Wet resin Soaked resin Dry Resin 

7.7 0 0 0 
7.5 0.37 0.27 0.2 

7 0.83 0.63 0.68 
6.5 1.3 1.05 1.13 

6 1.7 1. 42 1.53 
5.5 2.02 1.75 1.85 

5 2.33 1.98 2.12 
4.5 2.6 2.23 2.35 

4 3 2.55 2.67 
3.5 4.15 3.32 3.48 

3 8.05 5.07 6.27 
2.5 24.2 17.17 17.67 
2.4 35 24.5 25 

Equilibrium 
2.4 0 0 0 
2.5 0.88 2.37 2.33 

3 3.92 6.4 6.33 
4 7.33 10.98 11.58 
5 8.15 12.57 13.45 
6 8.87 13.52 14.85 
7 9.67 14.75 16.73 
8 10.5 15.95 19.07 
9 11.4 17.25 22.83 

10 12.88 19.17 30.08 
11 14.78 21.73 44.87 

11.5 15.45 22.7 70 
Equilibrium 
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Chloride ioDB mm\ppm) 

Figure 18. Ion-Chromatograph Calibration 
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6 ...................................................................................................................................... . 
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i4 ········································································································································ 
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Figure 19. pH Change Versus Time For Batch 
ExperiBent For TEG With 20% Water At 140 F Using Cation Treatment First 
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Figure 20. pH Change Versus Time For Batch 
ExperiBent For TEG With 20% Water 
At 140 F Using Anion Treatment For 
Cation Treated Solution 
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EQUIPMENT SIZING AND COST ESTIMATION 

The equipment sizing and cost estimation for the 

design of ion-exchange process at 1800F are given below. 

No data is available at 180°F, but the preliminary 

experiments show little or no effect with temperature on 

the ion-exchange process. 

(i) Cation Exchanger: 

Assuming a residence time of 2 min at 1800F (from 

Experiment C_T140_W20 ): 

TEG flow rate = 30 gpm = 0.06684 ft 3 jsec. 

Void Volume of resin bed = 120 x d.06684 = 8 ft 3 

Assuming a 40% void volume present in the resin bed: 

Volume of resin required = 8/0.4 

= 20 ft 3 

Assuming the resin is half full in the cation exyhanger 

Volume of cation exchanger = 40 ft 3 

Assuming a maximum resin bed depth = 36 inches 

which gives a diameter of the cation exchanger about 3 ft 

the material of construction is chosen to be stainless 

steel. 

D = 3 ft; L = 6 ft. 

80 

cost= {897/256) x $2500 {897,M and S equipment cost index 

1989 third quarter) 

= $9000 

Velocity through the column = 0.0095 ftjsec. 



(ii) Anion Exchanger: 

From column experiments Residence time = 1.7 min 

Therefore choosing a residence time about 2 min. 

Void volume of resin bed 

Volume of resin required 

Volume of anion exchanger 

Diameter of anion exchanger 

Length of anion exchanger 

= 

= 

= 

= 

= 

= 

8 ft3 • 

(8/0.4) 

20 ft 3 . 

40 ft 3 . 

3 ft. 

6 ft. 

Material of construction: stainless steel 

Cost = (897/256) X 2500 

= $9000 

(iii) Volume of Regenerants: 

81 

The volume of regenerant should be sufficient to fill 

the void volume of t~e resin bed= 8 ft 3 . Therefore, 

assuming a regenerant volume required of 

approximately 10 ft 3 . 

Volume of acid regenerant = 10 ft 3 . 

Volume of caustic regenerant = 10 ft 3 . 

(iv) Acid and Caustic Tanks: 

Volume of acid regenerant required= 10 ft3 . 

The acid and caustic can be stored in 55gal HOPE 

tanks. 

Material of construction: HOPE 

Cost (4 X 55gal tanks) = 4 X 165 

= $660 



82 

(v) Heat Exchanger: 

A heat exchanger will be placed immediately after the 

charcoal filter, in the process stream, to reduce the 

process stream temperature from 220°F to 180°F. The heat 

exchanger will be a double pipe, counter flow exchanger. 

The solvent TEG properties are evaluated at an average 

temperature of 200°F 

lgl Solvent Density: 

Density of water at 2000F 

Density of TEG at 2000F 

= 59.8 lbm/ft3 

= 64.0 lbm/ft3 

Assuming the solvent TEG contains 15% water-solvent density 

= 64.0 X 0.85 + 59.8 X 0.15 

= 63.4 lbm/ft3 

iQl Solvent Specific Heat: 

Specific heat of TEG at 2000F 

Specific heat of water at 2000F 

Solvent Specific Heat 

l£1 Solvent Viscosity: 

= 0.53 btuflb °F 

= 1.0 btuflb Op 

= 0.85x0.53 + 0.15x1.00 

= 0.60 btujlb Op 

Viscosity of TEG at Room Temperature = 45 cp 

Viscosity of TEG at 200°F = 4.5 cp 

Viscosity of Water at 200°F = 0.29 cp 

There fore Viscosty of solvent = 0.85x4.5 + 0.15X0.29 

= 0.0026 lbfsec ft 

Choosing a 1.5 inch NPS, Se 40, Steel pipe for the heat 

exchanger, 



Inside Diameter Di = 1. 61 inch 

Area of crossection of pipe 

TEG flow rate 

Velocity through the pipe 

There fore Reynolds number 

= 

Ai 

v 
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0.134 ft 

= 0.0141 ft2 

= 30 gpm 

= 0.06685 

= 4.24 lbmfsec 

= 4.73 ftjsec 

NRe = Di x V x density/viscosity 

= 1.54 X 10.0E4 

which is in turbulent flow. 

No data is avaivlable for the thermal conductivity of 

TEG. So a rough estimation of overall heat transfer 

coefficient is taken. 

From (17), the overall heat transfer coefficient for heavy 

organics in turbulant flow range is 75-125 Btujhr ft2°F. 

estimating an overall coefficient of about 75 Btujhr ft2°F 

Heat required 

Cooling Water: 

= 4.24 X 0.60 X (220 -180) 

= 366154.6 Btu/hr 

Assuming water enters at 75°F and leaves at 85°F 

366154.6 
Amount of water required = = 72 gpm 

1. 0 X ( 85-75 ) 

LMTD: 

( 220-85 ) - ( 180-75) 
= 120°F LMTD = 

ln (135/105) 



Area of Heat Exchanger: 

Q 366154.6 
= 40.7 ft2 = = 

Uo X LMTD 75 X 120 

Heat Exchanger Configuration: 

Heat Exchanger Type 

Inner Tube ( TEG ) 

Outer Tube ( Water 

Area of Heat Exchanger 

Length of Heat Exchanger 

Velocity of TEG in Tube 

Double Pipe Heat Exchanger 

1.5 in Se 40, steel pipe 

4.0 in , carbon pipe 

40.7 ft 2 

20ft (5 X 20) 

4.72 ftjsec 

Pressure Drop Through Exchanger: 

Pressure drop = 
Di * gc 

Friction factor = 0.007 

Pressure drop = 441.8 lbf/ft2 = 3.2 psi 

which is within design limits. 

Cost: 

84 

Double Pipe Heat Exchanger ( surface area ) = 101 ft2 

Cost = $ 6000 

(vii) Pumps: 

Two 1HP centrifugal pumps are required. 

Cost: 

1 HP, centrifugal pumps = $ 2000 
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CALCULATION OF RUN TIME 

From column run breakthrough curves, 5.0 gr of res1n 

treated 450ml of TEG. The ~EG 1n1t1al c1-concentrat1on 1s 

approx1mately 330 ppm. 

1 gr of res1n exchanged 0.02745 gr of Cl-

But actual capac1ty of res1n = 1 3 meqfml = 4.Bmeqfgr 

= 4.8 X 10.0E-3 X 35.5 

= 0.1704 gr of Cl-/gr of Res1n 

Therefore effect1ve capac1ty of the res1n 

= 0.027/0.17 

= 16 % 

Frequency of regenerat1on· 

Volume of TEG = 48,000 

= 1. 81x10E8 ml 

Volume of Res1n = 20 ft3 

= 5.66x10E5 ml 

F1rst Run T1me: 

About 825ppm of salts were accumulated 1n the TEG over 

e1ght years. So, assum1ng approx1mately 100 ppm of NaCl 1s 

accumulated every year: 

1.3x10E-3 X 35.5 X 5.66x10E5 
F1rst Run T1me = 

825(35.5/58.5) X 1.81x10E8 

10E6 

= 0.29 years 
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ACTUAL FIRST RUN TIME 

Actual F1rst Run T1me = 0.29 x 0.16 years 

= 17 Days Approx1mately 

But susequent regenerat1ons w1ll be longer, s1nce 

the feed concentrat1on w1ll not be more thari 25ppm of NaCl, 

and about 100ppm of NaCl 1s accumulated every year. 

Therefore subsequent run t1mes 

1.3x10E-3 X 35.5 X 5.66X10E5 
= -------------------------------

100(35.5/58.5) X 1.81x10E8 

10E6 

= 2.4 years 

Actual run t1me = 2.4 x 0.16 years 

= 5 months approx1mately 
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EXPERIMENTAL ERRORS IN THE ANALYSIS OF TEG SAMPLES 

Exper1mental errors dur1ng the batch exper1ments 

Potent1al errors may ar1se due to the follow1ng. 

(1) We1gh1ng of res1n 

(11) Measur1ng the TEG sample (volume) 

(111) Error 1n the pH meter 
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S1nce f1ve t1mes excess res1n 1s taken for the batch 

exper1ments, these errors may effect the rate constant 

but not the res1dual salt content. So these errors 

are neglected. 

Errors 1n the analys1s of samples by IC 

~ Errors due to the preparat1on of standard solut1ons 

Error 1n we1gh1ng Nacl 

For 800 ppm of cl- o 6592 gr/500 ml 

Th1s can be 0.65920 gr - 0.65929 gr 

Volumetr1c error 1s +/- 5% 

so 500 ml of water can be 475 ml to 525 ml 

Therefore poss1ble cl- 1on concentrat1on range for 

800 ppm 1s 

0.6592/58.5 * 35500/525 * 1000 = 766 ppm of cl-

0.659299/58.5 * 1000/475 * 35500 = 842 ppm of cl

Th1s has been d1luted to 1 ppm - 0.1 ppm 

The error 1n d1lut1ng to 1 ppm 1s 

1.e., 1 ml of 800 ppm/800 ml of water 
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Therefore Range of concentrat1on due to error may 

be 0.95/840 to 1.05/760 

Therefore m1n1mum concentrat1on 1s 

0.95/840 * 766 = 0.866 ppm 

The max1mum concentrat1on 1s 

1.05/760 * 842 = 1.164 ppm 

Therefore Error % 1n standards 1s approx1mately 

-13.4% to 16.4% 

~ Error 1n d1lut1ng TEG samples 

TEG samples are d1luted to 1% 1.e., 5 ml/500 ml 

water. So the poss1ble error range 1s -9.52% to 

10.52%. 

Error From Ion-Chromatograph 

Each sample 1s lnJected 7 t1mes to take the 

average peak helght. The actual peak he1ght m1ght 

l1e between the lowest and the h1ghest of 7 peak 

he1ghts. The IC peak he1ghts for all the samples 

are tabulated 1n table 30 

The overall exper1mental error bar 1s calculated 

comb1n1ng all thes~ 



TABLE 31 

AVERAGE, MINIMUM, AND MAXIMUM PEAK HEIGHTS OF THE TEG SAMPLES IN THE ANALYSIS USING ION-CHROMATOGRAPH 

EXP I Peak He1ght (em) 
Average M1n1mum Max1mum 

AT74W10 1.24 1 1 1.45 AT100W10 1 44 1.3 1 6 AT120W10 1.46 1.35 1.6 

CT74W10 0.93 0 75 1.1 CT100W10 1.15 1 1 1.35 CT120W10 1.3 1 1 1.47 

AT74W20 1.3 1.15 1.45 AT100W20 1. 62 1.5 1. 83 AT120W20 1 17 1.05 1.25 AT140W20 1. 55 1 25 1.75 

CT74W20 1 0 85 1.13 CT100W20 1 1 1.0 1.15 CT120W20 1 0 9 1.15 CT140W20 1 0 95 1.1 
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