
SENSITIVITY OF GRAPH-THEORETIC METRICS
::,:,.

TO EDGE DIRECTIONS FOR STRUCTURED

AND UNSTRUCTURED PROGRAMS

By

CHINSYHHU
If

Bachelor of Engineering

Tamkang University

Taiwan, Republic of China

1984

Sumitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1990

jh_~~-lj:J)
\C)CI()

H8·13:5
{1 ;,,(

Oklahoma State Univ. Library

SENSITIVITY OF GRAPH-THEORETIC METRICS

TO EDGE DIRECTIONS FOR STRUCTURED

AND UNSTRUCTURED PROGRAMS

Thesis Approved:

~~~.~:~ 
-~rru~_! 

Dean of the Graduate College 

li 

1380786 



PREFACE 

Program complexity can be measured based on graph-theoretic 

metrics such as cyclomatic number, track number, normal number, 

etc. This thesis explores the question of changing the directions of 

the edges on a flow graph and its impact on the graph-theoretic 

complexity metrics. Both structured and unstructured flow graphs 

are considered in this study. 

I wish to express my deepest gratitude to Dr. Mansur H. 

Samadzadeh, my advisor, for his encouragement and confidence in 

this study. His continuous guidance based on his rich experience has 

made a major contribution to my career. His support and 

understanding are forever appreciated. 

I also thank Drs. B. E. Mayfield, J. P. Chandler, and K. M. George 

for serving on my advisory committee, for their valuable comments, 

encouragement, and advisements. 

Finally, I want to send my gratefulness and thanks to my 

parents for their support, encouragement, and patience. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION ..... '................................................................................. 1 

II. LITERATURE REVIEW........................................................................... 5 

2.1 Graphs .. .. .... .... ... . . . . . .... ... . ... .... .... .... .... .... .. . . ........ ..... ... .. .. . ... . . . 5 
2.2 Adjacency Matrices ..................... ......... ......... ... ......... .... . 7 
2.3 Structured ness . . .. ............. ................. ... ......... .. ... ....... .. ... . . 8 
2.4 Dominator Trees............................................................... 12 

Ill. GRAPH-THEORETIC METRICS............................................................. 15 

3.1 Cyclomatic Number ....................... ,.................................. 15 
3.2 Track Number ..................................................................... 16 
3.3 Normal Number ......................... .. ........ ........ ........ ... .. ..... ... .. 18 

3.31 Example .. ...... .. ..... ...... ... . .. . . . . . .. . .. ... . . ........ ... . . .. . . . . . ...... .. 22 
3.4 Number of Intervals ...... ................... .................... ........... 25 
3.5 Number of Spanning Trees ................... ....... ................. 26 
3.6 Summary .............................................................................. 30 

IV. SENSITIVITY OF METRICS TO EDGE DIRECTIONS ....................... 31 

4.1 Structured Flow Graphs ..... .. . ..... .... .... .. . . ........ ... . . .. ... . . . . . .. 31 
4.2 Unstructured Flow Graphs .................. ........ ..... ...... ... .. . 39 
4.3 Validation .......................................................................... 43 
4.4 Summary .............. ............ ........... ....................... ............ ...... 46 

V. RESULTS, SUMMARY, AND FUTURE WORK..................................... 4 7 

5.1 Results................................................................................. 47 
5.2 Summary .............. ............ .............................................. ...... 48 
5.3 Future Work ....... .......... ... ...................... ... ...... ...... .... ... ... ... .. 50 

REFERENCES ......................................................................................................... 51 

iv 



Chapter Page 

APPENDICES 

APPENDIX A - TWENTY FOUR TESTBED FLOW GRAPHS ...... 56 

APPENDIX 8 - FLOWCHART OF THE PROGRAM IN 
APPENDIX C .......................................................... 63 

APPENDIX C - PROGRAM WRITTEN TO CALCULATE THE 
METRICS.............................................................. 68 

v 



LIST OF TABLES 

Table Page 

I. Graph-theoretic numbers of a structured flow graph (G) 
and the same graph with reversed edges (G') ..................... 44 

II. Graph-theoretic numbers of an unstructured flow graph (G) 
and the same graph with reversed edges (G') . . .. . . . . .. . . . . .. . . . . . 45 

vi 



LIST OF FIGURES 

Figure Page 

1. A directed graph G1 ............................................................................. 6 

2. The adjacency matrix of graph G1 of Figure 1 ........................ 8 

3. Four basic forms of unstructuredness......................................... 9 

4. Some unstructured flow graphs ..................................................... 9 

5. A structured program and its flow graph ··················:·········...... 10 

6. An unstructured program and its flow graph ........................... 11 

7. A directed graph G2 . . . . .. .. . . .. .. ... . . .. .. .. .. .. .. . .... ... . .. .. .. . . . . . . . .. . . .. .. . .. .. . . . . . .. . . . . 12 

8. The dominator tree of graph G2 .... ........ .... .... ........ .... ... . . . . . .... .... ... . . 13 

9. Some control structures and their cyclomatic numbers .... 15 

1 0. A directed graph G3 ............ ...... ............. ..................... .... .. .... ........ ... .. .. . 16 

11. Three types of paths .......................................................................... . 17 

12. Two types of mutually crossing tracks .................................... . 18 

13. The subtrees of G3 with roots in L={7, 3, 5, 4} .................... .. 20 

14. The subtree T 3' ..................................................... · ... · .. · ..... · ....... ·· · · .... · .. · 20 

15. . * The furling process of the normal form G3 of the 

graph G3 in Figure 1 0 .................................................................. .. 21 

vii 



Figure Page 

1 6. A directed graph G4 .. .. .... .... .. .. .. .... .. .. .. .. .. .......... .... ................ ...... .. .. .. .. 22 

17. The subtrees of G4 with roots in L={4, 7, 2, 10} ................... 23 

* 18. The furling process of the normal form G4 ............................ 24 

19. Th,e "intervals" of graph G2 ~............................................................. 26 

20. Successive intervals of graph G2 .................................................. 26 

21 . A directed graph G5 .................................... '..... .. .. .. . .. .. .. .. .. .......... ...... .. .. 27 

22. The five directed spanning trees of G5 with root 2 .. .. .. .. .. .. . 28 

23. The five directed spanning trees of G3 with root '1 ............. 29 

24. The dominator tree of G2 with the back edges ....................... 32 

. 
25. The six basic flow graphs, their dominator structures, 

and the decision factors of some of the vertices ........... ... 33 

26. A structured flow graph G6 ............................................................. 37 

27. The dominator tree of G6 with a back edge .............................. 38 

28. The intervals of graph G3 ............ ..... .. ................................. .... .. .. . . .. . 40 

29. An unstructured graph G3' which is graph G3 with 

reversed edges ................. ;............................................................... 40 
' 

30. The two spanning trees of G3' with root 7 ......... ......... ............. 41 

31 . The intervals of graph G3' .... .. .. .. .......... .... . ................... .... .. .. .... .. .. .. . 42 

viii 



CHAPTER I 

INTRODUCTION 

A program should have several properties including being easy 

to read, correct, maintain, and test. Complexity of a program is 

strongly related to these properties and is a significant determinant 

of a software system's success or failure [McCabe89]. There are a 

relatively large number of metrics for measuring software 

complexity. By using these metrics, software engineering managers 

can estimate the cost and schedule of projects and the error­

proneness of software systems, among other things. 

There are many program complexity metrics that have been 

proposed and studied for conventional, procedural programming 

languages.. The most basic and still widely used complexity metric 

is "program length". The notion of program length is not 

standardized. For example, Halstead's interpretation of the length of 

a program depends on the number of operators and operands used in 

the program [Halstead72 and 77]. 

Obviously, static or surface measures cannot directly and 

accurately reflect the running time. For example, a program may 

contain decisions and/or loops. The number of times that the cycles 

in a program flow graph (or the loops in a program) will be executed 

cannot in general be determined from the syntax of a program. The 

1 



2 

running time depends on the values of the variables and/or the 

predicates in the decisions and loops. A fifty-line program, 

containing twenty five consecutive "IF-THEN" structures, could have 

33,554,432 (= 225 ) distinct control paths [McCabe76]. It is the 

input data that determines which paths will be executed and how 

many times. 

The required running time and storage space, which are 

functions of the input data, serve as dynamic measures whereas 

software complexity measures are considered static measures. 

Several graph-theoretic complexity measures have shown that 

software complexity to a large extent is independent of program 

size and dependent on the decision structure (of the flow graph) of a 

program [McCabe76 and Elshoff78]. However, it is worth noting that 

adding or subtracting functional statements (assignment 

statements), while affecting the bulk, does not change the decision 

structure complexity of a program. 

For a flow graph, there are a number of metrics (including 

cyclomatic number, track number, normal number, number of 

intervals, and number of spanning trees) that can be considered 

complexity measurements of the flow graph. A major objective of 

this thesis is to calculate and compare the above-mentioned metrics 

for a number of different flow graphs, some structured and others 

unstructured, and to explore their interrelationships and 

interdependences. 

There are a number of other metrics that are based on concepts 

from graph theory. Schneidewind and Hoffmann proposed "path 

count" and "reachability" [Schneidewind79] as metrics in a flow 



3 

graph. The "path count" [Tai83] of a node is the number of distinct 

paths to reach that node in a flow graph (with the restriction that no 

loop iterates more than once). The "reachability" of a flow graph is 

the sum of the path counts over all the nodes in the graph. The 

average reachability of a flow graph is its reachability divided by 

the number of nodes in the graph [Tai83]. 

Oviedo studied the problem of program complexity in the 

context of high level languages [Oviedo80]. He developed some 

techniques to measure program attributes and formulated a model of 

program complexity. Oviedo attempted to formalize the notion of 

program complexity by defining it in terms of control flow and data 

flow characteristics of programs. The model which is based on the 

control flow and data flow is presumably more accurate and reliable 

than models of program complexity which are based only on the 

program control flow or on the number of program operators and 

operands [Oviedo80]. 

The data flow information in a program has been used for 

measuring program complexity from other perspectives and 

approaches also. One is to use the data flow within a module 

[lyengar82 and Oviedo80]. Another approach is to use the data flow 

among modules to define complexity metrics [Henry81 a and 81 b]. 

Woodward proposed the "knot count" metric, which is based on the 

number of intersections of control flow paths in a program's text 

[Woodward79]. Harrison et al. carried out an analysis and 

comparison of data flow oriented and other program complexity 

metrics [Harrison82]. 

Data flow based complexity metrics can provide guidance for 



4 

data flow based testing. A number of testing criteria based on data 

flow information in programs have been proposed [Laski82, Laski83, 

Rapps82, and Tai80]. 

This thesis is organized as follows. The next chapter is a 

review of some concepts from graph theory that are used in the 

subsequent chapters of this thesis. Each complexity metric has its 

own characteristics and represents the complexity of the control or 

data flow graph of a program from a different viewpoint. Some of 

the more well known metrics are discussed in detail in Chapter Ill. 

Chapter IV explores the question of sensitivity of graph-theoretic 

metrics to edge directions and finally Chapter V consists of the 

results, summary, and some areas of possible future work. 



CHAPTER II 

LITERATURE REVIEW 

This chapter consists of a brief review of the graph-theoretic 

background information that is used in the rest of this thesis. 

Definitions for different types of graphs and the related concepts 

are presented followed by a definition of structuredness and a 

discussion of dominator trees. 

2.1 Graphs 

A graph G consists of two sets V and E. V is a set of vertices 

(or nodes) and E is a set of edges which are pairs of vertices. (The 

graph theory notation and definitions used in this thesis are 

basically from [Horowitz82].) V(G) and E(G) represent the sets of 

vertices and edges of a graph G, respectively. We also can write G = 

( V, E ) to represent a graph. If the edges are unordered pairs of 

nodes in a graph G, the graph is called an undirected graph (or simply 

a graph). Thus, the pairs (v1 ,v2) and (v2,v1) represent the same edge 

{v1 ,v2}. In a directed graph, an edge is represented by an ordered 

pair (v1 ,v2), where v1 is the tail and v2 is the head of the edge. 

Therefore (v1 ,v2) and (v2,v1) represent two different edges. Figure 

1 illustrates a directed graph G1 = ( {1, 2, 3, 4, 5, 6}, {(1, 2), (2, 3), 

(3, 4), (3, 6), (4, 4), (4, 5), (5, 2)} ). 

5 



6 

In a directed graph G, the in-degree of a vertex v is defined to 

be the number of edges for which v is the head. The out-degree of a 

vertex v is defined to be the number of edges for which v is the tail. 

Vertex 3 of G1 in Figure 1 has in-degree 1 and out-degree 2. If a 

vertex has in-degree 0, it is called a source (or a root) of the graph. 

Conversely, if a vertex has out-degree 0, it is called a sink (or a 

leaf} of the graph. Vertex 1 is the source and vertex 6 is the sink of 

G 1 in Figure 1. A node whose out-degree is greater than or equal to 

2, is called a decision node. Similarly, a node whose in-degree is 

greater than or equal to 2 is called a collecting node. In Figure 1, 

vertex 3 is a decision node and ve.rtex 2 is a collecting node. 

Figure 1. A directed graph G1. 

If there is an edge with the same vertex as its head and tail, it 

is called a sling. For example, (v4,v4) is a sling in G1. A path from 

vertex vp to vertex vq in a graph G is a sequence of vertices vp, v1, 

v2 , ... , Vn, vq such that (vp,v1), (v1 ,v2), ... ,(Vn,Vq} are edges in E(G}. The 

length of a path is the number of edges on it. A simple path is a path 

in which all vertices except possibly the first and last are distinct. 



7 

A cycle is a simple path in which the first and last vertices are the 

same. The path (2, 3, 4, 5, 2) is a cycle of G1 in Figure 1. In this 

thesis, we will be dealing with the flow graphs which are directed 

and have a unique source and a unique sink. 

2.2 Adjacency Matrices 

There are several representations for graphs, such as 

adjacency matrices, adjacency lists, and adjacency multilists 

[Horowitz82]. The choice of a representation will depend upon the 

application and the function that one expects to perform on the 

graph. In this thesis, the adjacency matrix is used to represent a 

graph. 

Let G = ( V, E ) be a graph with n vertices. The adjacency 

matrix of G is a 2-dimensional n by, n array, say A, with the property 

that A(i, j) = 1 iff the edge (vi,vj) exists in E(G) and 0 otherwise. 

The adjacency matrix for a directed graph need not be symmetric. 

Using an adjacency matrix, space needed to represent a graph with n 

vertices is n2 bits. When a graph is sparse, most of the elements of 

the matrix are zero's. For a directed graph, a row sum is the out­

degree of the vertex corresponding to that row. Conversely, the 

column sum is the in-degree of the vertex corresponding to that 

column. 

The adjacency matrix of the graph G1 of Figure 1 is depicted in 

Figure 2. From the adjacency matrix, we can answer the following 

questions, among other things. Which vertex is the source (column 

elements are O's) or sink (row elements are O's)? How many edges 



8 

are there in G? Is there any sling or cycle in G? 

0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 1 
0 0 0 1 1 0 
0 1 0 0 0 0 
0 0 0 0 0 0 

Figure 2. The adjacency matrix of graph G1 of Figure 1. 

2.3 Structuredness 

Directed graphs can be divided into structured and 

unstructured graphs based on the programs that they represent. 

Directed graphs are used to represent programs in the form of 

control flow or data flow graphs. If a directed graph contains the 

following four anomalous control structures (Figure 3), it is called 

an unstructured graph [McCabe76]. 

(1) branching out of a loop 

(2) branching into a loop 

(3) branching out of a decision 

(4) branching into a decision 

Actually, an unstructured directed graph cannot just exist 

with only one form of unstructuredness out of the four listed above. 

It exists with at least one pair of the four situations [McCabe76]. 

Some unstructured flow graphs are shown in Figure 4. Conversely, a 

directed graph without branching out of/into a loop/decision, is 

called a structured graph. 



9 

o~ 

(1) (2) (3) (4) 

Figure 3. Four basic forms of unstructuredness. 

(1 ,2) (1 ,3) (2,4) (3,4) 

Fegure 4. Some unstructured flow graphs. 



10 

For example, let's consider two short programs written in C 

[Lin89]. The first program is to calculate the value of xY. The flow 

graph of the program is structured (see Figure 5). The second 

program is to search a value F from an ordered array A(N) with N 

elements, by binary search. The flow graph of this second program 

is unstructured (see Figure 6). 

main() 
{ 

1 int x,y,z,power; 
scanf("o/od, 0/od" ,&x,&y); 
if(y<O) 

2 power = -y; 
else 

3 power= y; 
4 Z=1; 
5 while(power != 0) 

7 
8 
9 

{ 
z = z*x; 
power = power - 1 ; 
} 

if(y<O) 
z = 1/z; 
printf("the answer is o/od",z); 
} 

Figure 5. A structured program and its flow graph. 



11 

· binary_search(A[N],F) 
{ 

1 int low,high,mid,mpos; 
mpos=O; 
low=high=N; 

2 binary: mid=(IOW+high)/2; 

3 if(high<low) goto end; 

4 if(F==A[mid]) goto found; 

5 if(F > A[mid]) goto upper; 

6 [ h ig h=mid-1; 
goto binary; 

7 upper: IOW=mid+1; 
goto binary; 

8 found: mpos=mid; 

9 end: return(mpos); 
} 

Figure 6. An unstructured program and its flow graph. 



12 

2.4 Dominator Trees 

In a directed graph with a unique root node, if every path from 

the root to a node n has to go through a node d, node d is said to 

dominate node n, written d dom n [Aho86]. Under this definition, 

every node dominates itself and the entry node of a loop dominates 

all the nodes in the loop. A useful way of presenting the dominating 

relation is to construct a Dominator Tree. Consider the graph G2 in 

Figure 7 with root node 1. 

Figure 7. A directed graph G2. 

The root node dominates all nodes in G2. Node 2 only 

dominates itself since paths can begin at 1 and go through 3 to the 

other nodes hence bypassing 2. Node 3 dominates all nodes except 1 

and 2. Node 4 dominates all but 1, 2, and 3. Nodes 5 and 6 only 

dominate themselves, since paths can go through either one. Node 7 

dominates 7, 8, 9, and 10. Node 8 dominates 8, 9, and 10. Node 9 and 



10 dominate themselves only. So the Dominator Tree for graph G2 

can be depicted as follows [Aho86]. 

Figure 8. The dominator tree of graph G2. 

One important application of the dominator ·information is to help 

determine the loops of a flow graph. There are two essential 

properties of loops. 

13 

1. A loop has at least one entry node, called the header of the loop, 

which dominates all nodes in the loop. 

2. There must be at least one path from the header back to the 

header again. 

A good way to find all the loops in a flow graph is to search 

for edges in the flow graph whose heads dominate their tails; such 

edges are called back edges. Given a back edge (n,d), Aha et al. 

defined the natural loop of the edge to be d plus the set of nodes that 



14 

can reach n without going through d [Aho86]. Node d is called the 

header of the loop. For example, in graph G2 in Figure 7, 4 dom 7 and 

there is an edge from 7 to 4; thus there is at least one loop between 

4 and 7. Similarly, 3 dom 4 and there is an edge from 4 to 3; hence 

there is at least one loop between 3 and 4 .. 



CHAPTER Ill 

GRAPH-THEORETIC METRICS 

This chapter contains a brief explanation of several graph­

theoretic metrics. The metrics discussed in this chapter are studied 

in Chapter IV regarding their sensitivity to edge directions. 

3.1 Cyclomatic Number 

The cyclomatic number is an important characteristic of a 

flow graph [McCabe76]. It can be used as a basic complexity 

measurement. The cyclomatic number V(G) of a graph G with n 

vertices, e edges, and p connected components is V(G)= e-n+2p. 

Figure 9 illustrates the cyclomatic number of some well known 

control structrues [McCabe76]. 

Control Structure 

SEQJENCE 0 .. o .. o 

IF-ELSE-THEN 
~0~ 
~~0 

WHILE 0-· .. ~0 
UNTIL 

Cyclomatic Number 

V=4-4+2=2 

V=4-4+2=2 

Figure 9. Some control structures and their cyclomatic numbers. 

1 5 



For example, the cyclomatic number of the flow graph G3 in 

Figure 10 is V(G)= 9-7+2=4. 

8 
t. 

Figure 1 0. A directed graph G3. 

3.2 Track Number 

16 

A directed graph G, without slings or multiple edges, can be . 

divided into a number of paths. A path Pa = (v0 ,v1 , ... ,vn) is called a 

track [Culik81] if it is any one of the three different types of paths 

(simple open, simple closed, or snare), where vi '* vj for all i, j = 0, 

1, ... , n-1 and n ~1 (Figure 11). A track decomposition is to divide a 

graph G into tracks which are not mutually crossing one another 

(defined below). Of course, there are many ways to divide a graph G 

and get different tracks on it. The way to get the minimal number of 

tracks is called the maximal track decomposition. Culik has shown 

that the number of tracks under maximal track decomposition is 



17 

equal to IEGI-IVGI + IISCGI + IOutpGI• where IEGI and IVGI are the 

numbers of edges and vertices of G respectively, ISCG is the set of 

all input strong components of G (an input strong component is a 

strongly connected component such that no edge starts from 

'outside' and terminates 'inside' it), and OutpG is the set of all sinks 

of G. In a special case where a connected graph G has a unique 

source and a unique sink, the track number is the same as the 

cyclomatic number (IEGI- IVGI + 2) [Culik81 and McCabe76]. 

.. .. .. .. 
~ 

v 0 = Vn 

' ' ' ' ' ' , 
._a 

v 
n-2 

v 
0 

v 
n-2 

v n simple closed path 
snare path 

simple open path 

Figure 11. Three types of paths. 

A set of tracks P1, P2· ... , Pk· k ~ 2, is called mutually crossing 

if either any two of the tracks are crossing or the starting vertex of 

one track p2 belongs to the other track p1 and the ending vertex of 

track p1 belongs to the other track p2 (Figure 12). 



18 

Figure 12. Two types of mutually crossing tracks. 

For example, the following four sets of tracks of the directed 

graph G3 in Figure 10 are different maximal track decompositions. 

Each set has the same number of tracks, which is called the track 

number of G3. 

a. (1, 2, 3, 7), (2, 5, 6, 3), (3, 4, 5), (5, 4) 

b. (1' 2, 5, 4, 5), (5, 6, 3, 4), (2, 3), (3, 7) 

c. (1' 2, 5, 6, 3, 7), (2, 3), (3, 4, 5), (5, 4) 

d. (1' 2, 5, 4, 5), (5, 6, 3, 7), (2, 3), (3, 4) 

3.3 Normal Number 

A normal form of a directed graph G=(V,E) is a directed graph 

* * * G =(V 'E ) that is functionally equivalent with G [Culik80a]. A 

normal form has the form of a tree with some leaves which are bent 

back to some of the earlier vertices belonging to the paths on which 

they sit [Culik81]. (The concept of being bent back or having a back 

edge will be made clear in the rest of this section.) If there are no 



------

19 

rooted parallel simple paths in G, we call G is an almost-tree 

[Culik77 and SOb]. The normal form of G doesn't have to be a tree, it 

is an almost-tree. There exists exactly one simple path from root to 

any vertex and there does not exist a parallel simple path starting 

from root on the normal form. A normal number is defined by the 

* number of simple paths on the normal form G [Culik81 ]. If the 

* normal form G is not unique, we take the minimal number of simple 

paths as the normal number of G [Culik81 ]. 

A directed graph G is a rooted tree if there exists one source 

vertex r and there is exactly one path from r to each other vertex v *" 
r, called the rooted path of v. For each vertex v of a rooted graph G, 

the rooted subtree Tv is defined as follow: Tv contains exactly those 

vertices and edges of G which belong to paths in G starting from 

vertex v and terminating at the leaves which are the last vertices of 

the tracks on a maximal track decomposition. In a directed tree, if 

the leaves can be bent back to earlier vertices on the paths from the 

root, they are called good leaves. Conversely, the leaves that can 

not be bent back to earlier vertices on the paths from the root are 

called bad leaves [Culik77]. 

* In order to construct a normal form G from a directed graph 

G, there are three steps. The first step is to do the maximal track 

decomposition. For example, we can divide the directed graph G3 of 

Figure 10 into four tracks (1, 2, 3, 7), (2, 5, 6, 3), (3, 4, 5), and (5, 

* 4). The last vertices of the tracks will be the leaves of G . The set 

of these vertices is L={7, 3, 5, 4}. The second step is to construct 

the subtrees T L which start from a root in L and end at the other 



20 

vertices in L. There is no subtree for a sink node that happens to be 

in L. The subtrees of T L for graph G3 of Figure 10, are as follow 

0 

' 
Figure 13. The subtrees of G3 with roots in L={7, 3, 5, 4}. 

At this point, all leaves of the subtrees are bad leaves. If we 

furl T 3 by substituting T 4 and then T 5, T 3 I can be obtained. The 

leaves 3 and 4 in T 3 I are good leaves but 7 is still a bad leaf. 

Figure 14. The subtree T 3 ~. 

The third step is to furl or expand the graph at the root, and 

* use the subtrees to construct the normal form G . Eventually, all 

* the leaves of a normal form G should be good leaves or the sink of 



21 

G. If there are bad leaves, we have to furl the bad leaves by the 

subtrees T L· The furling process of G3 is depicted in Figure15. The 

number of good leaves is the normal number [Culik77]. The path from 

the root to a good leaf is a simple closed loop [Culik81]. 

' I 
I 

, 
I 

,,-----

Figure 15. The furling process of the normal form G3 

of the graph G3 in Figure 10. 

* 



3.3.1 Example 

Consider the directed graph G4 in Figure 16. What is the 

normal form of it? 

The first step is to do the maximal track decomposition. We 

can get the tracks (1, 2, 3, 4, 6, 7, 8, 4), (3, 5, 7), (6, 9, 2), (8, 1 0) 

and L={4, 7, 2, 1 0} and the sink is vertex 10. 

Figure 16. A directed graph G4. 

22 



23 

The second step is to construct the subtrees of T L. 

Figure 17. The subtrees of G4 with roots in L={4, 7, 2, 10}. 

. * The third step 1s to construct a normal form of G4 and furl 

the graph starting from the root. Eventually, we can get four good 

leaves, and four simple closed loops, (1, 2, 3, 4, 6, 7, 8, 4), (1, 2, 3, 

4, 6, 9, 2), (1, 2, 3, 5, 7, 8, 4, 6, 7), and (1, 2, 3, 5, 7, 8, 4, 6, 9, 2), of 

* the normal form G4 . So the normal number of the directed graph G4 

is four. 



-> 

I '... , ...... 

Figure 18. 

0 
# 

\ 
...... 

=> 

I 
I 

I 
I 

(;t 
\# 

... ... ..... 

* 

I 
I 
I 

* ) ........ __ ... 

LEGEND: 

@:sink 
#:bad leaf 
*:good leaf 

' 
' ' 

' ' ' ' ' ' ' 

.....____ ~ ---- , - ........ -- -· 
* The furling process of the normal form G4 . 

24 



25 

3.4 Number of Intervals 

There are a variety of flow-graph concepts, such as "interval 

analysis" that are basically related to structured flow graphs. Aho 

defined a natural loop as follow [Aho86]. An "interval" is defined as 

a natural loop plus an acyclic structure that dangles from the nodes 

of the loop in a flow graph [Aho86]. An important property of 

intervals is that every interval has a header node that dominates all 

the nodes in the interval. Formally, for a given flow graph G with 

source node n0 and a node n of G, the interval with header n, denoted 

l(n), is defined recursively as follows [Aho86]. 

1. n is in l(n). 

2. If m is not the source node and all the predecessors of m are in 

l(n), then m is also in l(n). 

3. Nothing else is in l(n). 

For example, consider the flow graph G2 in Figure 7. Let us 

find the interval partition of the graph G2. We start from the source 

node 1 and put it into 1(1) as the header. Add node 2 to 1(1) because 

2's predecessor is node 1 only. We cannot add node 3 to 1(1) because 

its predecessors are not just node 1 and 2 but also node 4. Thus, 1(1) 

= {1 ,2}. We may now compute 1(3). Add node 3 as the header of 1(3). 

But 1(3) only contains node 3, since node 4's predecessor is not just 

node 3 but also node 7. Thus, 1(3) = {3}. Now let node 4 be the header 

of 1(4), then we can add 5, 6, 7, 8, 9 and 10 to 1(4), because all the 

necessary predecessors are in 1(4) = {4, 5, 6, 7, 8, 9, 1 0}. The graph 

G 2 in Figure 7 is depicted by intervals as follows. 



26 

Figure 19. The "intervals" of graph G2. 

We can take the intervals as new nodes and do an interval 

partition again on the interval graph of G2. By doing that 

successively for graph G2, we will get the following set of graphs. 

==> 

3,4,5,6,7 
8,9,10 

-> 
1,2,3,4,5, 
6,7,8,9, 10 

Figure20. Successive intervals of graph G2. 

3.5 Number of Spanning Trees 

A subgraph H of a rooted directed graph G is called a directed 

spanning tree of G if H is a directed tree which includes all the 

vertices of G. If r is the root of G, then it is also the root of H. To 

construct a directed spanning tree, simply start from the root, edge 

by edge, and add each time an edge of G from a vertex already 

reachable from r in H to one which is not reachable yet [Even79]. 



27 

Even proposed a method to compute the number of directed spanning 

trees of a given directed graph with a specified root [Even79]. 

The in-degree matrix D of a directed graph G=(V,E), where 

V={1, 2, 3, ... , n}, is defined as follows [Even79]. 

{ 
di 0 (i) if i=j, where di0 (i) is the in-degree of vi 

' D(i,j)= 
-k if i * j, where k is the number of edges in G from i to j. 

The number of directed spanning trees with root r of a directe~ 

graph with no self-loops is given by the minor of its in-degree 

matrix which results from the erasure of the r-th row and column 

[Even79]. 

Figure 21. A directed graph G5. 

For example, consider the graph Gs in Figure 21, the in-degree 

matrix D of Gs is as follows: 

2 -1 -1 

D = -1 1 -2 

-1 0 3 



Assume that we want to compute the number of directed 

spanning trees with root 2. We erase the second row and column. 

The resulting determinant is 

2 -1 
-1 3 = 5 

28 

Similarly, assume that we want to compute the number of 

directed spanning trees with root 1 or 3. The resulting determinants 

are as follows. 

1 - 2 

0 3 
= 3 

2 - 1 

- 1 1 
= 1 

The five directed spanning trees with root 2 of the directed 

graph G5 are as follows. 

~ e4 

H1 H2 H3 

0--::--+ 3 
e5 

0. 
!, ~2 {"';:;'\ e3 

~ 3 

H4 H5 

Figure 22. The five directed spanning trees of G5 with root 2. 



29 

As a second example, let's calculate the number of spanning trees of 

G3 with root 1 in Figure 1 0? 

The in-degree matrix of G3 is 

0 -1 0 0 0 0 0 
0 1 -1 0 -1 0 0 
0 0 2 -1 0 0 -1 
0 0 0 2 -1 0 0 
0 0 0 -1 2 -1 0 
0 0 -1 0 0 1 0 
0000 0 01 

The determinant after erasing the first row and column of the 

in-degree matrix is 5. So the number of spanning trees with root 1 

of G3 is 5. The five spanning trees are depicted in Figure 23. 

Figure 23. The five directed spanning trees of G3 with root 1. 



30 

3.6 Summary 

There are a large number of metrics that attempt to measure 

the (conceptual) complexity of programs. A number of these metrics 

are directly or indirectly based on graph theory. A widely used 

measure of program complexity is the cyclomatic number or the 

number of linearly independent paths of a graph representing the 

control flow of a program. If a directed graph has a unique source 

and a unique sink, the cyclomatic number is the same as the track 

number which is the number of tracks on any maximal track 

decomposition of a graph. The normal number of a flow graph is 

another graph-theoretic measure which is the (minimal) number of 

loops among all possible normal forms in the graph. An interval of a 

directed graph is defined as a natural loop plus an acyclic structure 

that dangles from the nodes of the loop in the graph. The number of 

intervals that is obtained by "interval partition algorithm" is called 

the number of intervals of the flow graph. For a directed graph G, 

that is without slings (self loops) but has a root, we can construct a 

directed spanning tree H of G with the same root. The number of all 

possible H's is called the number of spanning trees of G. 



CHAPTER IV 

SENSITIVITY OF METRICS TO EDGE DIRECTIONS 

This chapter explores the sensitivity of the graph-theoretic 

metrics discussed in Chapter Ill to edge directions for structured 

and unstructured flow graphs. All the flow graphs that are 

discussed in this thesis have a unique source and a unique sink (see 

Section 2.1 for the definition of source and sink). For a directed 

graph G, if we change the directions of all of the edges, the value of 

some of the graph-theoretic metrics will change; but some of the 

other metrics will not change regardless of whether the graph is a 

structured or an unstructured flow graph. For example, the 

cyclomatic number is defined based on the number of edges and 

vertices. So it will not change as a result of changing the directions 

of the edges. 

4.1 Structured Flow Graphs 

A directed graph, without branching out of/into a 

loop/decision, is called a structured flow graph (see Section 2.3). A 

structured flow graph (without slings and multiple edges) may be 

composed from the six basic flow graphs (see Figure 25) which have 

their own basic dominator structures. With those structures, it is 

easy to obtain the dominator tree of a structured flow graph. 

If we change all the edge directions of a structured flow graph 

31 



32 

G, we can get a new graph G'. Some of the metrics of G' don't need to 

be recomputed. They can be derived from the original metrics. For 

example, the cyclomatic and track numbers are the same for G and G'. 

The normal number of G can be obtained from the dominator tree of G 

with back edges. Calculation of the normal number of G using this 

method is discussed later in this section. 

If the dominator tree of a structured flow graph has back 

edge(s), there should be some loop(s) in it. For example, the 

dominator tree of graph G2 in Figure 7 with the back edges appears 

in Figure 24. 

Figure 24. The dominator tree of G2 with back edges. 

For a structured flow graph, we can define a "decision factor" 

for a node r of the dominator tree as follows: 1 for SEQUENCE and 

SINGLE-LOOP, 2 for DECISION and DECISION-LOOP, and n for CASE and 

CASE-LOOP (see Figure 25). The decision factor of node r is 

determined based on the nodes which are one lower level than node r. 



33 

For example in Figure 24, the decision factor is 2 for nodes 

1 (DECISION), 4(CASE-LOOP), and 8(DECISION); and the decision factor 

is 1 for nodes 3(SINGLE-LOOP) and ?(SEQUENCE). 

DECISION 

SINGLE­
LOOP 

DECISION­
LOOP· 

CASE­
I.!XP 

Control Flow 
' Graph 

Dominator 
Structure 

b 
Decision Factor 

of Node r 

1 

2 

n 

1 

2 

n 

Figure 25. The six basic flow graphs, their dominator structures, 
and the decision factors of some of the vertices. 



34 

The number of loops that exist in a flow graph is called the 

normal number. One way to obtain this number was mentioned in 

Section 3.3. For a structured flow graph, we also can get this 

number by another method which uses dominator trees with back 

edges and decision factors. With this method, we don't need to 

recompute the normal number if we change all the edge directions of 

G 

ALGORITHM 4.1 

To get the normal number of a flow graph by using its 

dominator tree with back edges and decision factors. 

INPUT: The dominator tree with back edges and decision 

factors of a flow graph. 

OUTPUT: The normal number of the flow graph. 

MEll-100: 

Step 1 

Step 2 

Step 3 

Find a path (V1 ,V2, ... ,Vn) from the source node V1 

to the head node, Vn-1• of the back edge (Vn,Vn-1) 

from the dominator tree with back edges of a 

structured flow graph. 

The product of the decision factors of all of the 

nodes on the path (V1 ,V2, .. ,Vn-1} is the total 

number of loops from the source to the head node, 

V n-1, of the back edge. 

If there exists another back edge, go to Step 1. 



Step 4 

35 

The sum of all the numbers calculated by Step 2 is 

the total number of the simple closed loops of the 

structured flow graph (i.e., the normal number). 

For example, in the dominator tree of G2 with back edges in 

Figure 24, there are two back edges (4,3) and (7,4). By Step 1, the 

path for (4,3) is (1 ,3,4). By Step 2, the product of the decision 

factors of the nodes on the path is 2*1 =2. Similarly, the path for 

(7,4) is (1 ,3,4,7) and the product of the decision ·factors of the nodes 

on the path is 2*1*2=4. By Step 4, the sum is 2+4=6. So the normal 

number is 6. 

Since the number of back edges of a dominator tree is limited 

(O(n2) in the worst case), this method will always halt. The number 

computed by this method is the number of simple closed loops 

starting from the root of the flow graph based on one of the 

definitions of the normal number. The computational time and space 

complexity of Algorithm 4.1 depends on the representation of the 

dominator tree, the number of nodes, and the number of back edges. 

If we change all the edge directions of a structured flow 

graph, a new graph G' results. The normal number of G' can be 

derived either by the method outlined in Section 3.3 or the method 

discussed in this section which is based on constructing the 

dominator tree with back edges. We can also obtain the normal 

number from the original dominator tree with back edges of G. The 

method is outlined below and its properties are similar to Algorithm 

4.1. 



36 

ALGORITHM 4.2 

To get the normal number of a flow graph with reversed edge 

directions by using its original dominator tree with back edges 

and decision factors. 

INPUT: The original dominator tree with back edges and 

decision factors of a flow graph. 

OUTPUT: The normal number of a flow graph with reversed 

edge directions. 

METHOD: 

Step 1 

Step 2 

Step 3 

Step 4 

Find a path {V1,V2·····Vn) from a sink v1 bottom-up 

to the head node Vn of the forward edge {Vn-1 ,Vn). 

The product of t~e decision factors of all of the 

nodes on the path {V 1 , V 2, ... , V n) yields the total 

number of loops. 

If there exists another forward edge, go to Step 1. 

The sum of all the numbers calculated by Step 2 is 

the normal number of G'. 

For example, if we change all the edge directions of G2, the 

normal number of G2' can be calculated by following the steps of the 

algorithm as shown below. 

Step 1 path 1=(10,8,7,4) 

Step 2 The product of the decision factors of the nodes on 



the path is 1 *2*1 *2=4. 

Step 1 path 2=(1 0,8,7,4,3) 

Step 2 The product of the decision factors of the nodes 

on the path is 1 *2*1 *2*1 =4. 

37 

Step 4 The sum is 4+4=8 which is the normal number of G2'. 

For this particular example, the normal numbers of G2 and G2' 

are different. Let's take another example and discuss it in more 

detail. Suppose a structured flow graph G5 is given (Figure 26) and 

we need to answer the following questions. 

1. What is the normal number of this graph? 

2. What is the normal number after we change the edge 

directions? 

Figure 26. A structured flow graph G5. 

The answers to the questions can be obtained by following the steps 

of the algorithms described earlier in this section. 



38 

1. The dominator tree of G6 with back edge (6,5) is as follows. 

Figure 27. The dominator tree of G6 with a back edge. 

By Step 1, the path is (1, 4, 5, 6) .. By Step 2, the number of loops in 

the path is 2*1 *1 =2. Since it only has one back edge, the normal 

number is 2. 

2. Change the sink to source. By Step 1, the path is (1 0, 9, 7, 5, 

6, 5). By Step 2, the number of loops in the path is 1 *1 *2*1 *1 *1 =2. 

So the normal number of G6' is 2 also. 

Based on the aboved-mentioned discussion, we can make the 

following observations. For a structured flow graph, the cyclomatic 

number, which is dependent on the number of edges and vertices, 

will be the same however we change the edge directions. If a 

structured flow graph has a unique source and a unique sink, the 

track number of the graph should be the same as its cyclomatic 

number. So the track numbers of G and G' will be the same for a 



39 

structured flow graph. The number of spanning trees will also be 

the same if we change the edge directions. Since a structured flow 

graph has no branching out of/into loops/decisions, corresponding to 

the out-degree of any decision vertex there should be a collecting 

vertex with the same in-degree. The number of spanning trees is the 

product of the in-degrees of all collecting vertices. After changing 

the edge directions, the new flow graph with a new root which is the 

sink of the original graph must have the same number of spanning 

trees. 

4.2 Unstructured Flow Graphs 

A directed graph, with branching out of/into loops/decisions is 

called an unstructured flow graph (see Section 2.3). Intuitively, an 

unstructured program has a higher complexity than a structured one 

with the same number of edges and vertices on their flow graphs. If 

we change all the edge directions of an unstructured flow graph G, 

an edge branching into/out of a decision/loop of G will become an 

edge branching out of/into a ~ecision/loop of G'. So the new graph G' 

will also be unstructured. 

Let's consider the unstructured flow graph G3 in Figure 10. 

The cyclomatic number and track number of G3 are four (see 

Sections 3.1 and 3.2). The simple closed loops of the normal form 
* G3 are (1, 2, 3, 4, 5, 4), (1, 2, 3, 4, 5, 6, 3), (1, 2, 5, 4, 5), and (1, 2, 

5, 6, 3, 4, 5) (see Section 3.3) hence the normal number of G3 is 

four. The number of spanning trees of G3 with root 1, which are 

depicted in Figure 23, is five (see Section 3.5). The intervals of G3 

are depicted in Figure 28 and the number of intervals of G3 is four. 



40 

Figure 28. The intervals of graph G3. 

If we change all edge directions, we get graph Ga' in Figure 29. 

i 
C0 

8 
t 

Figure 29. An unstructured graph G3' which is graph G3 
with reversed edges. 

The source and sink of G3' are nodes 7 and 1, respectively. 

The edges (3, 2) and (5, 2) which are branching out of a loop (3, 6, 5, 

4, 3) of G3' correspond to the edges (2, 3) and (2, 5) which are 

branching into a loop (3, 4, 5, 6, 3) of G3. The graph G3• is an 

unstructured flow graph also. Now let's calculate the metrics which 

were discussed in Chapter Ill for the graph G3'. 



41 

1. The cyclomatic number is 9-7+2=4. 

2. The sets of tracks of G3' under maximal track decomposition 

may be any of the following situations: 

a. (7, 3, 2, 1 ), (3, 6, 5, 2), (5, 4, 3), and (4, 5); 

b. (7, 3, 6, 5, 4, 5), (4, 3), (3, 2, 1), and (5, 2); 

c. (7, 3, 6, 5, 4, 5), (4, 3), (5, 2, 1), and (3, 2); 

d. (7, 3, 6, 5, 4, 3), (4, 5), (3, 2, 1 ), and (5, 2); 

e. (7, 3, 6, 5, 4, 3), (4, 5), (5, 2, 1 ), and (3, 2); 

f. (7, 3, 6, 5, 2, 1 ), (3, 2), (5, 4, 3), and (4, 5). 

The track number of G3' is four. 

3. The simple closed loops of G3' are (7, 3, 6, 5, 4, 3) and (7, 3, 

6, 5, 4, 5). The normal number of G3' is two. 

4. The spanning trees of G3' rooted at 7 are as follows. 

8 
t 

----~ ... ·0 .. G 

Figure 30. The two spanning trees of G3' with root 7. 

The number of spanning trees of G3' with root 7 is two. 



42 

5. The intervals of G3 I are as follows. 

Figure 31. The intervals of graph G31
• 

The number of intervals of G3 I is four. 

Based on the aboved-mentioned discussion, we can make the 

following observations. For an unstructured flow graph G (with a 

unique source and a unique sink), the cyclomatic number and track 

number are identical and they don't change for G' (the same graph as 

G with reversed edge directions). Since these two metrics are 

dependent on the number of edges and vertices, they will not change 

as a result of changing the edge directions. 

The normal number of an unstructured flow graph G is 

dependent on the loops and the structure of vertices and edges that 

lead into the loop from the source. After we change the edge 

directions of G, the loops have the same vertices but the structure 

of vertices and edges (i.e., the structure of the vertices and edges 

leaving the loops to lead to the sink of G) are different. There seems 

to be no relationship between the structures of getting into a loop 



and leaving out of a loop. So the normal numbers of G and G' don't 

seem to be related and will have to be calculated separately. 

43 

The number of spanning trees of an unstructured flow graph is 

dependent on the given root and the in-degree matrix (see Section 

3.5). The in-degree of a collecting node and the out-degree of a 

decision node are not related in an unstructured flow graph, so there 

are no relationships between the collecting nodes and decision 

nodes. The in-degree matrices of G and G' are different. Therefore 

the number of spanning trees of G and G' are in. general different. 

The intervals of a flow graph are dependent on the nodes' 

precedence from the source and the acyclic structure. There are no 

relationships between the nodes' precedence of an unstructured flow 

graph from the source and sink and a structured flow graph. So, in 

general, the intervals of G and G' are different. 

4.3 Validation 

A number of flow graphs, which have different number of 

vertices and edges, were examined in order to explore the 

sensitivity of the metrics to edge directions for structured and 

unstructured flow graphs (see APPENDIX A). 

These twenty four flow graphs are reproduced from [Culik79, 

Culik81, McCabe76, McCabe89, and Aho86], or designed by the other. 

Some are structured (TABLE 1), the others are unstructured (TABLE 

II). 



TABLE I 

GRAPH-THEORETIC NUMBERS OF A STRUCTURED FLOW GRAPH (G) 
AND THE SAME GRAPH WITH REVERSED EDGES (G') 

No. of No. of No. of 
Graph No. of No. of Cyclomatic Normal Number Spanning Trees Collecting Decision 

Nodes Edges or Track No. G G' G G' Nodes Nodes 

G1 7 8 3 1 2 2 2 2 2 
G2 7 8 3 2 2 1 1 2 2 
G5 7 9 4 2 2 4 4 2 2 
G13 1 0 1 2 4 2 2 4 4 3 3 
G15 1 0 13 5 3 2 6 6 2 2 
G16 1 0 1 4 6 6 8 8 8 4 4 
G21 12 1 5 5 4 1 4 4 2 2 
G22 12 15 5 3 6 4 4 4 4 
G23 12 16 6 0 0 32 32 5 5 

~ 
~ 



TABLE II 

GRAPH-THEORETIC NUMBERS OF AN UNSTRUCTURED FLOW GRAPH (G) 
AND THE SAME GRAPH WITH REVERSED EDGES (G') 

No. of No. of 
Graph No. of No. of Cyclomatic Normal Number 

No. of 
Spanning Trees Collecting Decision 

Nodes Edges or Track No. G G' G G' Nodes Nodes 

G3 7 8 3 2 2 1 1 2 2 
G4 7 9 4 4 2 5 2 3 3 
G6 7 1 0 5 3 5 10 6 3 3 
G7 7 1 0 5 0 0 12 9 3 2 
G8 7 10 5 0 0 12 12 3 3 
G9 7 1 0 5 2 6 6 12 3 3 
G10 7 10 5 6 4 4 2 4 3 
G11 7 1 0 5 4 6 4 3 3 3 
G12 1 0 12 4 4 4 3 3 3 3 
G14 1 0 13 5 3- 5 4 6 4 4 
G17 10 1 5 7 7 8 52 33 6 5 
G18 12 14 4 2 4 2 6 2 3 
G19 12 15 5 2 6 4 4 4 4 
G20 12 15 5 4 4 6 8 3 4 
G24 19 25 8 1 1 16 12 24 5 6 

~ 
01 



46 

4.4 Summary 

In this chapter, we have discussed the sensitivity of graph­

theoretic metrics to edge directions for structured and unstructured 

flow graphs. Cyclomatic number and track number, which are 

calculated based on the number of vertices and edges, do not change 

as a result of the change of edge directions. The number of spanning 

trees and the number of intervals are also the same for structured 

ones because there are no branching out of/into loops/decisions. If 

we change all the edge directions of an unstructured flow graphs G, 

then the new graph G', except for having the same number of vertices 

and edges, is independent of G. The normal number, number of 

spanning trees, and number of intervals of G and G' are in general 

independent for an unstructured flow graph. They have to be 

recalculated by the methods discussed in Chapter Ill. 



CHAPTERV 

RESULTS, SUMMARY, AND FUTURE WORK 

5.1 Results 

For a structured flow graph, the number of binary collecting 

nodes and binary decision nodes should be the same, because there 

are no edges branching out of/into loops/decisions. If we change 

the edge directions, the decision nodes will be changed to collecting 

nodes, and vice versa. TABLE I contains some graph-theoretic 

numbers of structured flow graphs. We can have the following 

observations. 

1. The number of spanning trees of G and G' are the same. 

2. The number of collecting nodes and decision nodes are the same. 

3. Cyclomatic and track numbers are the same. 

4. The normal numbers of G and G' are not necessarily the same. 

TABLE II contains some graph-theoretic numbers of unstructured 

flow graphs. Basically, G and G' are two independent graphs, except 

for having the same number of vertices and edges. We can have the 

following observations. 

1. The number of spanning trees of G and G' are not necessarily 

the same. 

2. The number of collecting nodes and decision nodes are not 

necessarily the same. 

47 



48 

3. Cyclomatic and track numbers are the same. 

4. The normal numbers of G and G' are not necessarily the same. 

5.2 Summary 

In this thesis, adjacency matrices' were used to represent the 

flow graphs. A directed graph is used to represent a program in the 

form of a control flow or data flow graph. If a directed graph 

contains branching out of/into decisions/loops, it is called an 

unstructured flow graph. Otherwise it is a .structured flow graph. 

Actually, an unstructured directed graph cannot exist with only one 

form of unstructuredness. It exists with' at least one pair of the 

four possible situati,ons. 

There are a large number of metrics which attempt to measure 

the conceptual complexity of programs. The cyclomatic number V(G) 

of a graph G with n vertices, e edges, and p connected components is 

V(G)=e-n+2p. Some of the properties of the cyclomatic number are 

as follows. 

1. V(G) >= 1. 

2. V(G) is the maximal number of linearly independent paths in G. 

3. Inserting/deleting functions! elements to/from G does not 

change V(G). 

4. Inserting a new edge increases V(G) by one. 

5. V(G) only depends on the number of decisions and not the 

decision structure. of G. _ 

Track number is the number of tracks of a flow graph under the 

maximal track decomposition which breaks a graph into a set of 

tracks such that no tracks of the set are mutually crossing. We can 



49 

construct many different maximal track decompositions. The 

number of tracks is equal to the cyclomatic number if the graph has 

a unique source and a unique sink. 

The normal number is the minimal number of loops among all 

possible normal forms of a graph. A program is in a normal form if 

its flow graph is a cycle-free almost-tree (some leaves are turned 

back to their ancestors). 

An interval of a directed graph is defined as a natural loop plus 

an acyclic structure that dangles from the nodes of the loop in the 

graph. The number which is obtained by the "interval partition 

algorithm" is called the number of intervals of the flow graph. An 

important property of intervals is that every interval has a header 

node that dominates all the nodes in the interval. 

For a directed graph G, which is without slings (self-loops) but 

has a root, we can construct a directed spanning tree H of G with the 

same root. The number of all possible H's is called the number of 

spanning trees of G. 

The cyclomatic number and track number, which are dependent 

on the number of edges and vertices, do not change as a result of the 

change of edge directions. The number of spanning trees and the 

number of intervals of G and G' will not change for a structured 

graphs as a result of changing the edge directions. But these two 

metrics have no relationships in an unstructured flow graph. The 

normal numbers of G and G' are not necessarily the same no matter 

whether they are structured or not. 



50 

5.3 Future Work 

In this thesis, five graph-theoretic metrics were studied to 

gauge their sensitivity to edge direction changes. Other metrics can 

be used to represent the complexity of a program from other 

viewpoints. The input of the program in APPENDIX C is the adjacency 

matrix of a flow graph. The flow graphs were drawn manually. 

Programs to transform a given program to a flow graph do exist for 

some languages (e.g., FORTRAN). A general-purpose program can be 

written to transform a program written in a number of different 

languages to a flow graph. 



REFERENCES 

[Aho86] 
Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles. 
Technigues. and Tools, Addison,-·Wesley, Reading, Mass,1986. 

[Bollobas78] 
Bollobas, B., Extremal Graph Theory, Academic Press Inc. 
(LONDON) LTD., 1978. 

[Cooper71] 
Cooper, D. C., "Programs for mechanical program verification," 
in Machine Intelligence, B. Maltzer, D. Michie (eds.), 1971, 
pp. 43-59. 

[Culik77] 
Culik, K., "Extensions of rooted trees and their applications," 
Discrete Mathematics, Vol. 18, 1977, pp. 131-148. 

[Culik79] 
Culik, K., "The cyc,lomatic number and the normal number of 
programs," ACM SIGPLAN Notices, Vol. 14, No. 4, Apr. 1979, 
pp. 12-17. 

[Culik80a] 
Culik, K., "Entryc strong components and their application (in 
computer science)," Congressus Numerantium, Vol. 28, 1980, 
pp. 335-350. 

[Culik80b] 
Culik, K., "What is a -flowchart loop and about structured 
programming," ACM SIGPLAN Notices, Vol. 15, No. 1, Jan. 1980, 
pp. 45-57. 

51 



52 

[Culik81] 
Culik, K. and Lang, S. D., "Two funda,mental numbers of directed 
graph," Congressus Numerantjum, Vol. 32, 1981, pp. 231-251. 

[Eishoff78] 
Elshoff, J. L. and Marcotty, M., "On the use of cyclomatic 
number to measure program complexity," ACM SIGPLAN 
Notices, Vol. 13, No. 12, Dec. 1978, pp. 29-40. 

[Even79] 
Even, S., Graph Algorithms, Computer Science Press, Rockville, 
Maryland, 1979. 

[Halstead72] 
Halstead, M. H., "Natural laws controlling algorithm structure?" 
ACM SIGPLAN Notices, Vol. 7 No. 2, Feb. 1972, pp. 19-26. 

[Halstead77] 
Halstead, M. H., Elements of Software Science, New York, 
Elsevier North-Holland, 1977. 

[Harrison82] 
Harrison, W., Magel, K., Kluczny, R., and DeKock, A., "Applying 
software complexity metrics to program maintenance," IEEE 
Computer, Vol. 15, No.9, Sept. 1982, pp. 65-79. 

[Henry81 a] 
Henry, S., Kafura, D., and Harris, K., "On the relationships among 
three software metrics," Performance Eyaluatjon Review, 
Vol. 10, No. 1, 1981, pp. 81-88. 

[Henry81 b] 
Henry, S. and Kafura, D., "Software structure metrics based on 
information flow," IEEE Trans. on Software Engineering, 
Vol. SE-7, No. 5, Sept. 1981, pp. 510-518. 

[Horowitz82] 
Horowitz, E. and Sahni, S., Fundamentals of Data Structures, 
Rev. Ed., Prentice- Hall, 1982. 



53 

[lyengar82) 
Iyengar, S. S., Parameswaran, N., and Fuller, J., "A measure of 
logic complexity of programs," Computer Langyaqes, Vol. 7, 
1982, pp. 147-160. 

[Knuth74] 
Knuth, D. E., "Structured programming with go to statements," 
ACM Computing Surveys, Vol. 6, Dec. 1974, pp. 261-301. 

[Laski82) 
Laski, J. W., "On data flow guided program testing," ACM 
SIGPLAN Notices, Vol. 17, No. 9, Sept. 1982, pp. 62-71. 

[Laski83] 
Laski, J. W. and Karel, B., "A data flow oriented program testing 
strategy," IEEE Trans. on Software Engineering, Vol. SE-9, 
No. 3, May 1983, pp. 347-354. 

[Lin89] 
Lin, J. C. and Chang, C. G., "Zero-one integer programming model 
in path selection problem of structural testing," Proceedings 
of the Thirteenth Annual International Computer Software & 
Applications Conference. COMPSAC89, 1989, pp. 618-627. 

[Linger79] 
Linger, R. C., Mills, H. D., and Witt, B. 1., Structured 
Programming Theory and Practice, Addison-Wesley Publishing 
Company, 1979. 

[Manna73] 
Manna, Z., "Program schemas," in Currents in the Theory of 
Computi~g, Abo, A. V.(ed.}, Prentice-Hall, 1973, pp. 90-142. 

[Mayeda72] 
Mayeda, W., Graph Theory, John Wiley & Sons Inc., Canada, 1972. 

[McCabe76) 
McCabe, I. J., "A complexity measure," IEEE Trans. on Software 
Engineering, Vol. SE-2, No. 4, Dec. 1976, pp. 308-320. 



[McCabe89] 
McCabe, T. J., "Design complexity measurement and testing," 
Communications of the ACM, Vol. 32, No. 12, Dec. 1989, 
pp. 1415-1425. 

[Oulsnam82] 
Oulsnam, G., "Unravelling unstructured programs," ~ 
Computer Journal, Vol. 25, No. 3, 1982, pp. 379-387. 

[Oviedo80] 
Oviedo, E. I., "Control flow, data flow, and program 
complexity," Proceedings of the Fourth Annual. International 
Computer Software & Applications Conference. COMPSAC80, 
1980, pp. 146-152. 

[Rapps82] 

54 

Rapps, S. and Weyuker, E. J., "Data flow analysis techniques for 
test data selection," Proceedings of the Sixth International 
Conference on Software Engjneerjng, 1982, pp. 272-278. 

[Schneidewind79] 
Schneidewind, N. F. and Hoffmann, H. M., "An experiment in 
software error data collection and analysis," IEEE Trans. on 
Software Engineering, Vol. SE-5, No. 3, May 1979, pp. 276-286. 

[Tai80] 
Tai, K. C., "Program testing complexity and test criteria," IEEE 
Trans. on Software Engineering, Vol. SE-6, No. 6, Nov. 1980, 
pp. 531-538. 

[Tai83] 
Tai, K. C., "A program complexity metric based on data flow 
information in control graphs," Proceedings of the Seventh 
International Conference on Software Engineering, 1983, 
pp. 239-248. 

[Temperley81] 
Temperley, H. N. V., Graph Theory And Applications, Ellis 
Horwood Limited, New York, 1981. 



[Tutte84] 
Tutte, W. T., Graph Theory, Addison-Wesley Publishing 
Company, Menlo Park, California, 1984. 

[Woodward79] 

55 

Woodward, M. R., Hennell, M. A., and Hedley, D., "A measure of 
control flow complexity in program text," IEEE Trans. on 
Software Engineering, Vol. SE-5, No. 1, Jan. 1979, pp. 45-50. 



APPENDIX A 

TWENTY FOUR TESTBED FLOW GRAPHS 

56 



57 

1WEN1Y FOUR TESTBED FLOW GRAPHS 

0 
G1 G2 

G3 G4 



58 

G5 G6 

G7 G8 

G9 G10 



59 

G11 

G12 

0 

G13 

G14 



60 

G15 

!':::\ G18 

0 



61 

G19 

G20 

G22 



62 

G23 

G24 



( 

APPENDIXB 

FLOWCHART OF THE PROGRAM IN APPENDIX C 

63 



64 

FLOWCHART OF THE PROGRAM IN APPENDIX C 
-

start 

• get adjacency matrix 
from a filename "prog" 

• 
print the adjacency matrix 
and cyclomatic number 

• 
find the source and 

sink vertices 

+ 
copy adjacency matrix to 
temporary matrix for 
track decomposition 

+ 
track decomposition; starts 
from source and ends at a 
sink or loop, occurred 
* see trac~ decomposition 

flowchart 

• 
save all tracks at 
track_matrix[] [] 

• 
save the last nodes of 
every tracks in leaves[] 



construct a subtree of each 
leaf and save the leaves and 
the number of leaves of each 
subtree in a structure "subtree" 

+ 
lprint all subtrees! 

+ 
construct all. possible tracks 
from the root until leaves 

,_ 
substitute the leaf with the 
subtree until a sink or a loop 
is met, this is called "condensed 
root track" 

+ 
!Print normal number 1 

* jconstruct in-degree generating matrixj 

t 
get the determinant of the minor of its in-degree 
matrix after erasing r-th row and column 

!print the number of sp~nning trees! 

+ 
~ 

65 



track decomposition flowchart 
============================ 

track_matrix [O][O]=so u rce 
next=source, j=O 

reset the first "1" on the temp_matrix[][] 
exist=1 next=column # +1 
save "next" vertex to track_matrix 

YES 

print the source track 

66 



reset the temp_matrix 
value to "0" and save the 
vertex to track_matrix 

find all possible tracks 
until a mutually crossing 
ath or a leaf is met 

I print number I 

67 

YES 



APPENDIXC 

PROGRAM WRITTEN TO CALCULATE THE METRICS 

(FOR MEASURING CYCLOMATIC NUMBER, TRACK NUMBER, 
TRACK DECOMPOSITION, NORMAL NUMBER, AND 

THE NUMBER OF SPANNING TREES) 

68 



69 

PROGRAM WRITTEN TO CALCULATE THE METRICS 

I* Description 

This program determines program complexity by using cyclomatic 
complexity, track number, normal number, and the number of 
spanning tree~. The first step is to construct an adjacency matrix 
from the flow graph. The cyclomatic number C(G) of a graph G with n 
vertices, e edges and p connected components is 

C(G) = e-n+2p 

The second step, is to find track number by track decomposition. 
There are lots of paths to decomposite the flow graph, but the 
number of the tracks of a set under the maximal track decomposition 
must be the same i.e. track number. Every sinks of the tracks are 
called leaves. Every leaves except the sink can build a tree from the 
original flow graph. 

The third step is to construct a normal form of a directed graph. 
The minimal number loops- of the' directed graph is called the normal 
number. 

The fourth step is to construct the number of spanning trees. The 
number of directed spanning trees with root r of a directed graph 
with no self-loops is given by the minor 'Of its in-degree matrix 
which results from the erasure of the r-th row and column. */ 

#define vertex_num 7 
#include <Stdio.h> 
int adj_matrix[vertex_num][vertex_num]; /* adjacency matrix * I 
int temp_matrix[vertex_num][vertex_num]; /* temporary matrix */ 
int track_matrix[vertex_num[vertex_num]; 

/* track decomposition matrix */ 
int loop_comp[vertex_num][vertex_num]; /* cyclic loop matrix */ 
int track_comp[vertex_num]; /* current track components */ 



70 

int source, sink, leaves[vertex_num]; 
int good_leaves[vertex_num],bad_leaves[vertex_num]; 
int normal_num,edge_num,track_num,complexity; 
int leaves_num,good_leaves_num,bad_leaves_num,loop_num; 
struct sub_tree I* to construct a subtree of a leaf* I 
{ 

int root; /* the root of the subtree* I 
int leaf_num; /* the number of leaves of the subtree * 1 
int leaf[vertex_num];/* the components of leaves of subtrees *I 

} ; 
struct sub_tree tree[vertex_num]; 

1****************************************************1 
I * 
/* 
I * 

Main program 
* I 
* I 
* I 

1****************************************************1 

main() 
{ 
int i,j,k,m ,exist, next, loop; 
get_matrix(); 
prt_matrix(); 
get_source_sink(); 
for(i=O;i<vertex_num;i++:) 

I* get adjacency matrix * I 
/* print adjacency matrix * I 

/* to find the source and sink vertices * I 
/* copy adjacency matrix to temporary 

for(j=O ;j<vertex_num ;j++) 
temp_matrix [i] [j] =adj_matrix [i] [j]; 
j=O; 

matrix *I 

track_matrix[O][O]=source; /* track decomposition from source * I 
next=source; 
do { 

exist=O; 
for(i=O;i<vertex_num && temp_matrix[next-1 ][i]==O ;i++) 

/* to search the next component of the track and reset 
the matrix if the vertex is not a sink, there exist a 
next compent 

temp_matrix[next-1] [i]=O; 
if(i != vertex_num) 

{ 
exist=1; 
next=i+1; 

* I 



71 

j++; 
track_matrix[O][j]=next; /* to get the root track * I 
for(k=O ;k<j && track_matrix[O][k] != next;k++); 
if(k<j) 
loop=1; 
for(i=O ;track_matrix[O][i]>O ;i++) 
track_comp[i]=track_matrix[O][i]; /* copy the first to the 

track component * I 
} /* if *I 

}while(exist==1 && loop==O); 
leaves[leaves_num++)=next; /* get the first leaf * I 
track_num++; 
printf("\ntrack %d = ( ",track_num); 
for(i=O;i<=j;i++) /* print the first track * I 
printf("%d ", track_matrix[track_num-1 ][i]); 
printf(")\n"); 
i=O; 
while(track_comp[i]>O) /* from the root track to get the other 

{ 
tracks * I 

next=track_co mp[i]; 
for(j=O;j<vertex_num && temp_matrix[next-1 ][j]==O ;j++) 

' 
if(j==ve rtex_n u m) 

i++; 
else 

{ 
temp_matrix[next-1 )[j]=O; 
track_ma trix[track_nu m][O] =track_ co mp[i]; 
m=1; 
do 

{ 
exist=O; I* reset the exist * I 
next=j+ 1; 
track_matrix[track_nu m][m++ ]=next; 
for(j=O;j<vertex_num && temp_matrix[next-1 ][j]==O;j++); 
if(j<vertex_num && cross(next)==O) 

{ 
temp_matrix[next-1 ][j]=O; /* exist the next one * I 
exist=1; 
} 

} 



while(exist-=1 ); 
track_n u m++; 

72 

printf("\ntrack o/od = ( ",track_num); /* print new track * I 
for(i=O ;track_matrix[track_n um-1 ][i]); 
printf("o/od ", track_matrix[track_num-1 ][i]); 
printf(")\n"); 
i-0; 
} 

} 
printf{"\nTrack Number = %d\n",track_num); 
search_leaves(); I* to get all leaves 
track_num-1; /* to construct subtree 
for{i=O ;i<leaves_num ;i++) 

{ 
tree[i]. root-leaves[i]; 
get_subtree(i, leaves[i]); 
} 

* I 
* I 

track_num=1; 
get_roottree (source); 
loop_num-track_num-1; 
track_num-1; 

/* to construct a root tree * I 
/* right now, it has loop_num loops * I 

for(i-0 ;i<loop_num ;i++) 
{ 
load_track(i); /* load track components from temp_matrix 
for(j=O ;track_comp[j]>O ;j++); 

m-track_comp[j-1 ]; 
while(m !-sink && checkloop(m) ==0) 

{ 
for(k=O;Ieaves[k] != m ;k++); 
m-tree[k].leaf[O]; /* only get the leaves of a subtree 
track_compU++]=m; 
for(loop= 1 ;loop<tree[k] .leaf_nu m ;loop++) 

save_temp(tree[k] .leaf[loop]); 
} 

if(m != sink) 
normal_num++; 
prtroot(); 
} 

printf("\n\nNormal Number = %d\n" ,normal_num); 
} 

* I 

* I 

1****************************************************1 

/* Get the adjacency matrix from the file "prog" *I 
1****************************************************1 



get_matrix() 
{ 
i nt i ,j; 
FILE *ip; 
ip=fopen("prog", "r"); 
for(i=O;i<vertex_num;i++) 
for(j=O ;j<vertex_n um ;j++) 
fscanf(ip, "%d" ,&adj_matrix[i][j]); 
fclose(ip); 
} 

73 

I * * * * * * * * * * * * * * * * * ~ * '* * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * I 
I* Print the adjacency matrix * I 
1*****************~**********************************1 

prt_matrix() 
{ 
int i,j,k; 
printf("\n\nAdjacency Matrix\n\n "); 
for(i=1 ;i<vertex_num;i++) 
printf("%3d" ,i); 
printf("\n "); 
tor( i =0; i<vertex_n u m; i ++) 
printf("---"); 
for(j=1 ;j<vertex_num;j++) 

{ 
pri ntf("\no/o3d I" ,j);, 
for(i=O ;i<vertex_num;i++) 
pri ntf(" 0/o3d" ,adj_matrix[j-1] [i]); 
} 

k=O; 
for(i=O ;i<vertex_nu m ;i++) 
for(j=O ;j<vertex_num ;j++) 
if(adj_matrix[i][j]==1) 
k++: 
printf("\n\n\nCyclomatic Complexity=%3d\n" ,k-vertex_nUfll+2); 
} 



74 

/****************************************************/ 

/* Find the source and sink vertices *I 
1****************************************************1 

get_source_sink() 
{ 
int i ,j; 
for(i=O,source=O;i<vertex_num && source=~O;i++) 

{ 
for(J=O;j<vertex_num && adj_matrix[j][i]==O;j++) 

if(j==vertex_n urn) 
source=i+1; 
} 

for(i=O,sink=O;i<vertex_num && sink==O;i++) 
{ 
for(j=O;j<vertex_num && adj_matrix[i][j]==O;j++) 

if(j==vertex_n urn) 
sink=i+1; 
} 

printf("\nsource = o/od , sink = %d \n",source,sink); 

1****************************************************1 

/* Whether the track decomposition in mutually crossing or not * I 
1****************************************************1 

cross(m) 
int m; 
{ 
int j,k; 
k=O; 
for(j=O ;track_comp[j]>O ;j++) 
if(m==track_comp[j]) 
k=1; 

if(k==O) 
track_comp[j]=m; 
return(k); 
} 

/****************************************************1 

/* Save the last vertex of each track in the leaves array * I 
/****************************************************/ 



search_leaves() 
{ 
int i,j,k,m; 
for(i=O ;i<track_num ;i++} 

{ 
fo r(j=O ;track_matrix[i][j]>O ;j++); 
k=track_matrix [i] [j-1]; 
for(m=O;Ieaves[m] != k && m<leaves_num;m++): 
if( m==leaves_n u m) 

} 

{ 
leaves[m]=k; 
leaves_n u m++; 
} 

printf("\n\nleaves Number = %d\n\nleaves = ( ",leaves_num); 
for(i=O ;i<vertex_num ;i++) 
printf("%d ", leaves[i]); 
printf(")\n"); 
} 

75 

I**************************************************** I 
/* Clear temporary matrix * I 
I**************************************************** I 

cleartemp() 
{ 
int i ,j; 
for(i=O ;i<vertex_num;i++) 
for(j=O ;j<vertex_n u m ;j++) 
temp_matrix[i] [j]=O; 
} 

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I 
/* Save track and current vertex m in temporary matrix * I 
1****************************************************1 

save_temp(m) 
int m; 
{ 
int i; 
for(i=O ;track_comp[i]>O ;i++) 
temp_matrix[loop_n urn] [i]=track_co mp[i]; 
temp_matrix[loop_num++ ][i-1 ]=m; 
} 



76 

1****************************************************1 
/* Load track components from m-th row of the temporary matrix* I 
I**************************************************** I 
load_track(m) 
int m; 
{ 
int i; 
for(i=O ;i<vertex_num;i++) 
track_comp[i]=O: 
for(i=O ;temp_matrix[m][i]>O;i++) 
track_comp[i]=temp_matrix[m][i]; 
} 

1****************************************************1 
/* Construct a subtree of each leaf and print it * I 
1****************************************************1 
get_subtree(i,m) 
int i,m; 
{ 
int j,k,n,r; 
cleartemp(); 
loop_num=1; 
temp_matrix[O][O]=m; 
for(k=O;k<loop_num;k++) 

{ 
load_track(k); 
fo r(j=O ;track_comp[j]>O ;j++) 
m=track_comp[j-1 ]; 
do 
{ 
r=O; /* a flag to check tracks number * I 
for(n=O;n<vertex_num;n++) 

{ 
if(adj_matrix[m-1 ][n]>O) /* if not a sink * I 

{ 
if(checkleaf(n+1 )>0) /* if it is a leaf * I 

{ 
if(r>O) /* there exists at least two tracks * I 
prttrack1 (i,n+1); 
else 
prttrack(i,n+ 1 ); /* there exist only one track * I 
} 



77 

else if(checkleaf(n+ 1 )==0) /*if not a leaf * 1 
{ 
r++; 
if(r==1) 
track_comp[j++ ]=n+ 1; 
if ( r> 1 ) /* if there exists another track * I 

} 

save_temp(n+ 1); 
} 

} /* if * I 
} /* for * I 
m=track_comp[j-1 ]; 
} 
while(r>O); 

} /*for*/ 

I * * * * * * * * * * * * * * * * * * * * * * * * * *, * * * * * * * * * * * * * * * * * * * * * * * * * * I 
/* Print the tracks after track decomposition * I 
/****************************************************/ 
prttrack(s,k) 
int s,k; 
{ 
int i; 
printf( 11\nsubtree o/od ( II ,track_num++); 
for(i=O ;track_comp[i]>O ;i++) 
printf( 11%d II ,track_comp[i]); , 
printf( 11%d )\n 11 ,k); 
i=tree[s] .leaf_nu m; 
tree[s] .leaf[i] =k; 
tree[s] .leaf_n urn++; 
} 

prttrack1 (s,k) 
int s,k; 
{ 
int I,J; 
for(i=O;track_comp[i]>O ;i++) 
I 

j = i -1 ; 
printf( 11\nsubtree 0/od ( ",track_num++); 
for(i=O;i<j;i++) 
printf( 11%d II ,track_comp[i]); 
printf( 11%d )\nil ,k); 



i=tree[s] .leaf_nu m; 
tree[s] .leaf[i]=k: 
tree[ s] .leaf_n u m++; 
} 

78 

1****************************************************1 

/* Construct a root tree which ends at bad leaves * I 
1****************************************************1 

getroottree(m) 
int m; 
{ 
int j,k,n,r; 
cleartemp(); 
loop_num=1; 
temp_matrix[O] [O]=m; 
for(k=O;k<loop_num;k++) 

{ 
load_track(k); 
for(j=O ;track_ co mp[j]>O ;j++) 

m=track_comp[j-1 ]; 
do 
{ 
r=O; I* q flag to check tracks number * I 
for(n=O:n<vertex_num;n++) 

{ . . 
if(adj_matrix[m-1 ][n]>O) /* if not a sink * I 

{ 
if(checkleaf(n+ 1 )>0) /* if it is a leaf * I 

{ 
if(r>O) I* there exists at least two tracks * 1 
prtcycle1 (i,n+1 ); 
else 
prtcycle(i,n+ 1 ); I* t~ere exist only one track * I 

. } 
else if(checkleaf(n+ 1 )==0) /*if not a leaf * I 

{ 
r++; 
if(r==1) 
track_comp[j++]=n+1; 
if( r> 1 ) /* if there exists another track * 1 
save_temp(n+ 1); 
} 



} 

} /* if * I 
} /* for * I 
m=track_comp[j-1 ]; 
} 
while( r>O); 

} /*for* I 

79 

/****************************************************/ 
/* Print the condensed root tree which is su,bstituted by leaves * I 
/****************************************************/ 
prtcycle(k) 
int k; 
{ 
int i; 
printf( 11\nroot-tree %d ( 11 ,track~num++): 
for(i =0 ;track_ co mp[i]>O; i++) 

{ . ' 

temp_ma trix[track_n u m-2] [i]=track_comp[i]; 
printf( 11%d II ,track_comp[i]); 
} 

printf("%d ) .\n",k); 
temp_matrix [track_n u m-2][i]=k; 
} 

prtcycle1 (k) 
int k; 
{ 
int l,J; 
to r(i=O;track_comp[i]>O ;i++) 

j = i-1 ; 
p ri ntf( 11\n root-tree %d ( II, track_n u m++); 
for(i=O;i<j;i++) 

{ 
temp_ma trix[track_n u m-2] [i]=track_com p[i]; 
printf( 11o/od 11,,track_comp'[i]); 
} 

printf("%d )\nil ,k); 
temp_matrix [track_n u m-2][i]=k; 
} 



80 

1****************************************************1 

/* Construct and print root tree which ends at leaves array * I 
1*******************************~*******~************1 

prtroot() 
{ 
int i;. 
printf("\ncondensed root-track o/od = ( o/od" ,track_num++, 
track_comp [0]); 
for(i=1 ;track_comp[i]>O ;i++) 

printf("==>%d", tr:ack_comp[i]); 
printf(" )\n"); · 
} 

I * * * * * * * * * * * * * * * * * * * * * * * * * ~- * * * * · * * * * * * * * * * * * * * * * * * * * * * I 

/* Check whether the vertex m is a leaf or not * I 
1********************~*******************************1 

checkleaf(m) 
int m; 
{ 
int 1 ,J; 
i·=O; 
for(j=O ;j<leaves_n urn ;j++) 
if(leaves[j]==m) 
i= 1; 
return(i); 
} 

1****************************************************1 

/* Check whether vertex m is a loop component or not * I 
1***************.*************************************1 

checkloop(m) 
int m; 
{ 
int 1 ,J; 
for(i=O ,j=O;track_c·omp[i]>O ;i++) 
if(track_comp[i]==m) 
j++; 
return(j-1); 
} 

1**************************~*************************1 

/* Get the number of spanning trees from ·in-degree matrix * I 
1****************************************************1 



sp;;lnning_tree() 
{ 
int i,j,k,n; 

81 

double s,c,x[vertex_num][vertex_num],y[vertex_num][vertex_num]; 
!* add the nondiagonal elements in each column to diagonal 

element and change the sign of ~very nondiagonal elements* I 
for(i=O;i<vertex_num;i++) · · , 

{ 
k=O; 
for(j=O;j<vertex_num;j++) . 

{ 
temp_matrix[j][i] = -adj_matrix[j][i]; I* cbange sign * I 
k += adj_matrix[j][i]; I* add nondiagonal elements * I 
} 

temp_matrix[i][i]=k; /* put the result to diagonal * I 
} . 

printf("\n\nlndegree Generating. Matrix\n\n "); 
for(i=1 ;i<vertex_num+1 ;i.++)' 
printf("%3d" ,i); 
printf("\n "); 
for(i=O;i<vertex_num;i++) 
printf("---"); 
for(j=1 ;j<vertex_num+1 ;j++) 

{ ' . 

pri ntf("\n°/o3d !'" ,j); 
for(i=O ;i<vertex_num ;i++) 

printf("%3d", temp_matrix [j-1 ][i]); 
} 

/* copy the indegree generating matrix to x and y matrix and 
change the value from integer to double precision * I 

for(i=O ;i<vertex_nu m-1-;i++) 
for(j=O ;j<vertex_n um-1 ;j++) 

{ 
x[i] [j]=temp_matrix [i+ 1 ][j+ 1]; 
y ( i] (j] =X [ i] (j) ; 
} 

S=1.0; I* set the initial value is 1 for matrix * I 
n=vertex_num-1; 
for(i=O;i<n-1 ;i++) 
{ 
if(y[i][i] != 0,0) 



s *= y[i][i]; 
else /* if the diagonal is 0, then change with 

82 

the nonzero column * I 
{ 
for(k=i+1 ;k<n;k++) 

{ 
if(y[i][k] != 0.0) 

{ 
for(j=i ;j<n ;j++) 

{ 
C=y[j](k]; 
y [j] [ k] = y [j] [ i] ; 
y[j](i]=C; 
} I* change column * I 

goto a1; 
} /* if *I 

} /* for *I 
s * = y[i][i]; 
goto a2; /* if the row is 0, then end * I 

a 1 : 
s *= -y[i][i]; 

} /* else *I 
for(j=i+ 1 ;j<n ;j++) /* reset the first element of each column to 0 

{ 
if(y[i]DJ != 0.0) 

{ 

of the first row in matrix * I 

c=y[i][j]ly(i][i]; /* get the ratio * I 
for(k=i ;k<n ;k++) 
y[k]DJ -= y(k][i]*c; /* and substitute it * 1 
} /* if *I 

} /* tor *I 
} I* tor *I 
s *= y[n-1][n-1]; 
k=s; 
a2: 
printf("\n\nThe Number of Spanning trees of root ="); 
printf(" %d is %d\n",source,k); 
} 



VITA 

Chinsyh Hu. 

Candidate for the Degree of 

Master of Science 

Thesis: SENSITIVITY OF GRAPH-THEORETIC METRICS TO EDGE 
DIRECTIONS FOR STRUCTURED AND UNSTRUCTURED 
PROGRAMS " 

Major Field:---Computer Science 

Biographical: 

Personal Data: Born in Taoyuan, Taiwan, Republic of China, 
Aug. 12, 1962, the son of Mr. Fu-an Hu and Mrs. Su-in Liu. 

Education: Graduated from the Chung-kung Senior High School, 
Taipei, Taiwan, in July 1980; received the Bachelor of 
Engineering degree with a major in Electronic Engineering 
from Tamkang University, in June, 1984; completed 
requirements for the Master of Science degree at 
Oklahoma State University in December, 1990. 

Professional Experience: Engineer in Development Engineering 
Department, Power Semiconductor Division, General 
Instruments of Taiwan Ltd., Taipei, Taiwan, 
Republic of China, 1986-1988. 


