
ADAPTING SOFTWARE ENGINEERING PRINCIPLES

TO DIAGRAM, MODULARIZE, AND ANALYZE

RULE-BASED EXPERT SYSTEMS

By

STEVEN BRUCE CUDD

Bachelor of Science in Arts and Sciences

Oklahoma State University

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1990

ADAPTING SOFTWARE ENGINEERING PRINCIPLES

TO DIAGRAM, MODULARIZE, AND ANALYZE

RULE-BASED EXPERT SYSTEMS

Approved :

Dean of the Graduate College

ii

1366387

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Mansur

Samadzadeh for his guidance and direction throughout my

graduate program. Many thanks also go to Drs. George and

Hedrick for serving on my graduate committee.

I also wish to thank my colleagues at MPSI for their on

going support throughout my graduate studies. To Dr. Kyle

Glover for his ideas and discussions that made this thesis

subject possible. To Dr. Jacques LaFrance for his support

and understanding of the work involved in receiving a Mas

ter's degree. To Vernon Sharp who made the long hours of

work and study easier. To Bill and Judi Brody who set the

stage for the final product.

Special thanks are due to my wife, Lisa, for all of her

patience, understanding, and support for my graduate stu

dies. Her love and caring have made the long hours, long

nights, and the long drives all worthwhile.

iii

Chapter

I.

II.

III.

IV.

v.

VI.

TABLE OF CONTENTS

INTRODUCTION AND MOTIVATION.

Background •••.••
Focus of Thesis.

CHAINING FLOW DIAGRAMS

Chaining Types •••••••••
Chaining Flow Diagram ••
Rule Infrastructure ••
Goal Symbol ••••.•••••.
Flow Connections ••••••
Generating a Chaining Flow Diagram.
Algorithm 1

RULE GROUPS •••••

THE

Motivation ••••••••••
Dependent Relation ••
Rule Groups ••••••••

CHAINING FLUX.

13ctc:Jc~~OUllci •••••••••••••••••••••••
Chaining Flux ••••••••••..•••.....•
Terminating and Initiating Rules.
Control Rules

KNOWLEDGE MODULES.

Background •••••••••
Knowledge Modules ••
Algorithm 2 •••••••
Intermediate Representation.

COMPLEXITY •••••.

Background, • •.••••••••.••....•
Spanning Trees •.••.•••.••.•••
Knowledge Module Complexity.

iv

Page

1

1
3

5

5
6
7
8
8

10
12

15

15
16
17

19

19
20
23
24

26

26
27
30
32

34

34
34
36

Chapter Page

VII. CONCLUSION.................................. 39

Benefits '. 3 9
Future Work' . 4 o

REFERENCES •. 42

APPENDIXES .. 44

APPENDIX A- COMPUTER PROGRAM'TO PARTITION
A RULE-BASED KNOWLEDGE BASE....... 45

APPENDIX B - SAMPLE INPUT FOR THE COMPUTER
PROGRAM. • 53

APPENDIX C - SAMPLE OUTPUT FROM THE COMPUTER
PROGRAM. • 57

APPENDIX D - USERS' GUIDE FOR THE COMPUTER
PROGRAM. • 7 6

v

LIST OF FIGURES

Figure Page

1. Rule Infrastructure Symbols •..•....••....•... 9

2. Example of a Rule Infrastructure............. 9

3 . The Goal Symbol. 9

4. A Partial Chaining Flow Diagram ..••.......... 11

5. Example of a Dependent Relation •............. 16

6. Examples of Chaining Flux•............... 23

7. A Knowledge Base Partitioned into
Knowledge Modules. . . . • . . . • • 2 9

8. Intermediate Knowledge Representation Tuples. 33

9. Tree Generating Matrix .•.....••..••.•........ 36

10. Example of Knowledge Module Complexity 38

vi

CHAPTER I

INTRODUCTION AND MOTIVATION

Background

One definition of artificial intelligence states that it

is a subfield of computer science concerned with the possi

bility that a computer can be made to behave in ways that

humans recognize as intelligent behavior in each other [4].

Thus, when presented with knowledge and data about a sub

ject, the computer program could present an answer in much

the same way a human would. To do this, the computer needs

a way to represent the requisite knowledge and data.

One such computer program is an expert system. An expert

system is a computer program that contains knowledge about

objects, events, situations, and courses of actions which

emulate the reasoning process of human experts in a

particular domain [24]. An expert system consists of three

parts: an inference engine, a knowledge base, and a user

interface. The inference engine infers a conclusion from

the knowledge and data provided. The knowledge base stores

the knowledge and references the data in a format which the

inference engine can manipulate. The user interface commu

nicates the state of the inference process to the user.

1

2

Although all expert systems attempt to emulate the human

reasoning process, their representations of knowledge and

data vary. The two most popular forms of knowledge repre

sentation are production (if-then) rules and frames. Pro

duction systems are more widely used and more highly

developed [15]. Therefore, this paper focuses on production

rules as the form of knowledge representation scrutinized.

However, the concepts discussed in this work are not limited

to production systems and can be extended to frames and

other similar knowledge representation forms.

As the use of expert systems becomes more widespread,

several issues develop. Some of the issues involved are the

creation, maintenance, and validation of knowledge bases.

Since expert systems do not depend upon sequential process

ing as conventional programming does, these issues cannot be

solved through conventional software development methodolo

gies. Instead, some principles from software engineering

can be utilized to devise a fresh approach to the aforemen

tioned issues.

Development and maintenance of a large knowledge base is

a non-trivial task. When a developer adds a new rule or

edits an existing rule, the interaction between rules may

change. The results may not be completely predictable.

When using software engineering techniques for conventional

program development, a developer can reduce the cost of fu

ture maintenance by increasing the accuracy of the program

(i.e., confidence in the correctness of the program) and the

3

efficiency of the program development process. By adapting

some of the software engineering techniques, the knowledge

base developer may reduce the knowledge base complexity and

still bring a level of predictability to the expert system

development process.

The IEEE standard glossary on software engineering termi

nology defines software engineering as "the systematic ap

proach to the development, operation, maintenance, and

retirement of software" [9). Previous attempts to link

software engineering and expert system development include

the partitioning of rules [10,11] , measuring the complexity

control in PROLOG and rule-based systems (14,16], data mod

eling of expert systems [7,13], and constructing well

structured knowledge bases [19,20,21].

Focus of Thesis

This work focuses on the adaptations of the software en

gineering principle of flow diagrams (data and control flow

diagrams) to create a chaining flow diagram - a tool for

conceptualization, communication, and abstraction. At the

outset, the idea was to diagram a knowledge base to show the

interactions of the rules to enhance the understandability

of an expert system. Subsequently, the main objective of

using flow diagrams, which subsumes the initial notion, be

came facilitating and expediting expert system development

4

and validation with the subsidiary goal of decreasing main

tenance costs.

Included in this work is also the definition and proposal

of the chaining flux as a software metric for rule-based

knowledge systems. This metric assesses the manner in which

a rule interacts with the other rules of a knowledge base.

This metric is used as a basis for knowledge base

partitioning and refinement.

CHAPTER II ,

CHAINING FLOW DIAGRAMS

Chaining Types

' Two concepts govern rule-based knowledge systems: one is

the exploration of the consequences of an action; the other

is the investigation of ancillary goals. The forward and

backward chains of a rule-based system accomplish these ob-

jectives.

The forward chain is data driven or data directed

[6,15,25]. The inference engine explores the consequence of

assigning a value to a variable. Thus, the data determines

when rules are executed. An analogy can be made to a pro-

gram data flow diagram. Whereas, the data flow diagram in-

dicates the flow of data between procedures of a program,

the forward chains in a knowledge base reveal the flow of

data through the knowledge base. Analogously to a data flow

diagram, this chart initially presents the overall informa-

tion flow through the knowledge base.

The backward chain is goal driven or goal directed

[6,15,25]. The inference engine seeks a value for a needed

variable. The variable is usually associated with a subgoal

- a task to be completed before further advancement of the

5

6

current objective. In their search for a variable's value,

subgoals dictate which rules are fired. This search uti

lizes a program control flow diagram from software

engineering. Similar to a procedural flowchart, the back

ward chains in a knowledge base outline~ the flow of control

through the knowledge base rules. This chart depicts the

control flow of the knowledge base.

Chaining Flow Diagram

By combining forward and backward chaining into one dia

gram, the chaining flow diagram is developed. The chaining

flow diagram shows the interaction of the rules through the

backward and forward chains and unifies both the control and

data flow concepts from software engineering.

Three basic components compose a chaining flow diagram.

The first is the rule infrastructure. The rule infrastruc

ture consists of a rule's name and all variables referenced

in that rule which either initiate or complete a forward or

backward chain. The second is a line, a flow connection,

with a single arrowhead that connects different rules with

common forward and backward'chains. The flow connections

show the interaction and information (datajcontrol) flow

through the rules due to the forward and backward chains.

The third component is the overall goal of the knowledge

system. The chaining flow diagram shows the flow through

the knowledge base when ascertaining a value for the goal.

7

Rule Infrastructure

The rule infrastructure represents the rule's name, for

ward chaining variables, and backward chaining variables.

The chaining flow diagram employs three different symbols to

distinguish the components of the rule. The rule name is

indicated by a rectangle with the rule's name within the

rectangle. The name of a variable within an elongated

hexagon symbolizes a forward chaining variable. An elon

gated hourglass containing the name of a variable denotes a

backward chaining variable. The rule infrastructure displays

the rule name first, followed by the names of the chaining

variables in the same order that they appear in the rule.

Figure 1 contains the rule infrastructure symbols.

One problem that immediately arises is whether the vari

able appearing in the rule infrastructure is referenced in a

hypothesis or conclusion of a rule. To resolve this confu

sion, a bold line is drawn between the symbols holding the

last chaining variable appearing in a hypothesis and the

first chaining variable appearing in a conclusion. The

variables appearing above the bold line are in the rule's

hypotheses and the variables below the bold line are in the

rule's conclusions. A color system also could solve the

problem by providing different colors for the variable names

in the hypotheses and conclusions. For example, the rule

name could be in black, the chaining variables in the hy-

8

potheses could be in red, and the chaining variables in the

conclusions could be in blue. Both of these solutions can

be extended to support the case of a.counter-conclusion if

the expert system supports the IF-THEN-ELSE construct

(another line is drawn between the variables in the conclu

sions and those in the counter-conclusions; or, in a color

system, the chaining variables in a counter-conclusion could

be in a different color) • Figure 2 contains an example of a

rule infrastructure.

Goal Symbol

A special symbol designates the overall goal of the

knowledge base. An elongated hexagon with one end pointing

inward surrounding the goal variable's name designates the

goal. It resembles an arrow since it is always the goal

that triggers the start of the inference process. See Fig

ure 3 for a depiction of the goal symbol.

Flow Connections

If one rule modifies a variable's value and another rule

references the same variable, then a directed line, a flow

connection, is drawn to connect the two rules. The flow

connection indicates the source rule and the target rule.

The source rule is the rule at which the chaining origi

nates. The target rule is the rule at which the chaining

RULE NAME

BACKWARD CHAINING

VARIABLE

FORWARD CHAINING

VARIABLE

Figure 1. Rule Infrastructure Symbols

Parameter VARIABLE# 1, Cha1n1ng BACKWARD

Parameter VARIABLE #2, Chrumng BACKWARD

Parameter VARIABLE #3, Cha1n1ng BACKWARD

Parameter VARIABLE #4, Cha1n1ng FORWARD

Parameter VARIABLE #5, Cha1n1ng FORWARD

Rule RULE $1

VARIABLE #2 • TRUE and

VARIABLE #3 • YES

Then Set VARIABLE #4 to TRUE

Set VARIABLE #5 to AskUser "What Color"

Set VARIABLE # 1 to TRUE

RULE #1

VARIABLE#2

VARIABLE#3

VARIABLE #4

VARIABLE #5

VARIABLE #1

Figure 2. Example of a Rule Infrastructure

) GOAL VARIABLE)

Figure 3. The Goal Symbol

9

terminates. The line's arrowhead points from the source

rule to the target rule.

10

Note that in the case of a forward chain, the source rule

is the rule that modifies the variable's value and the tar

get rule is the rule that references the variable's value.

For a backward chain, the 9pposite is true. This is because

a backward chain is initiated when a rule references a

variable without a,value. The source rule is the rule that

references the variable's value and the target rule is the

rule that modifies the variable's value.

The relationship between source rules and target rules is

not necessarily one-to-one. 'A source rule may have several

target rules, and a target rule may have several source

rules. Furthermore, a variable chain may have multiple

source and target rules. Figure 4 is an example of a par

tial chaining flow diagr~m.

Generating a Chaining Flow Diagram

The creation of a chaining flow diagram is a recursive

procedure. It is built in a left-to-right, top-down fash

ion. Before generating the part of the chaining flow diagram

originating at a given rule, all sections originating at

the given rule's target rule(s) are generated first.

The algorithm that generates the chaining flow diagram

appears after this paragraph. The algorithm assumes, with

out loss of generality, that the knowledge base has only one

Goal VARIABLE 111

Parameter VARIABLE111,Cha1n1ng BACKWARD

Parameter VARIABLE 112, Cha1n1ng BACKWARD

Parameter VARIABLE #3, Cha1mng BACKWARD
Parameter VARIABLE #4, Cha1mng FORWARD

Parameter VARIABLE 115, Cha1mng FORWARD

Parameter VARIABLE 116, Cha1mng BACKWARD

Parameter VARIABLE #8, ChBimng FORWARD

Rule. RULE 111

II VARIABLE #2 • TRUE and

VARIABLE #3 • YES
Then Set VARIABLE #4 to TRUE

Set VARIABLE #5 to AskUser "What Color"

Set VARIABLE #1 to TRUE

Rule RULE 112

II VARIABLE 116 • TRUE
Then Set VARIABLE #2 to TRUE

To Rules

7,16, 17,

23, 81, 106,
113,114,115

Rule RULE 113

Then Set VARIABLE 113 to YES

Rule• RULE #4

II VARIABLE #4 • TRUE
Then ReadF 1le "Users dat"

Rule RULE #5

II VARIABLE #4 • TRUE

Then " D1splayPanel "Cho1ces pan"

Rule RULE #6

II VARIABLE #4 • TRUE

Then PnntMessage "Colors •

Rule RULE 119
Then Set VARIABLE #8to Yes

Set VARIABLE #6to TRUE

Rule RULE 1110
II VARIABLE #8 • Yes
Then ProcessChoiC8

Figure 4. A Partial Chaining Flow Diagram

11

12

goal variable. Two other assumptions for the algorithm are

as follows: no rule can reference itself and a variable

cannot be both forward and backward chaining. In the algo

rithm, the set Vs is the current set of chaining variables

within a given source rules (in the initialization, the goal

variable is chosen), V0 is the initial chaining variable set

(the goal variable) which, when matched by Vs, signals the

end of the algorithm, the set B is the set of all backward

chaining variables in the knowledge base, the set F is the

set of all forward chaining variables in the knowledge base,

and the set I is the set of all rules whose infrastructures

have been drawn. As a post-processing step, at least one

pass may be necessary to make the chaining flow diagram

aesthetically pleasing (e.g., to reduce the number of

intercepts and to distribute the nodes and edges evenly) .

Algorithm 1

Generate a Chaining Flow Diagram.

Input. A knowledge base and its goal variable.

Output. A Chaining Flow Diagram.

Method.

Initialization:

A. Place the name of the goal variable within

the goal symbol.

B. Mark the goal symbol as the current source

rule, s.

C. Construct V0 = Vs = { goal variable }.

D. Construct B = { v v is a backward chaining

variable }.

E. Construct F = { v v is a forward chaining

variable }.

F. Set I= {}.

Body:

For every v in Vs , perform the following:

A. Mark v as the current active variable.

B. If v is in B, construct a set of rules Rv =

{ r I r is a rule that concludes a value for

v }.

C. If v is in 'F, construct a set of rules Rv =
' '

{ r I r is a rule that references v's value

in its hypothesis.}.

D. For every rule r in Rv , perform the

following:

1. Mark r as the current target rule t.

2. If t is not in I, then draw t's infra-

structure to the right of the current

source rule s and add t to I.

3. Draw a connecting arrow originating at

the current active variable v in the

current source rule s and terminating at

the current active variable v in the

current target rule t.

13

E. For every rule r in Rv , perform the

following:

1. Mark r as the current source rule s.

2. Construct Vs = { v I v is a chaining

variable of the current source rule s

that originates at s }.

3. If Vs is non-null, recursively repeat the

Body.

F. If Vs = V0 , then halt.

14

The algorithm terminates when the chaining variable set

Vs returns to its initial state V0 , the goal variable. This

signals that all the chaining flow diagram sections origi

nating at rules which conclude a value for the goal variable

have been generated. Since the number of rules, the number

of variables, and the number of variables referenced in a

rule are all finite, the algorithm always terminates. This

algorithm focuses on just one goal variable. However, it

can be easily extended to include multiple goal variables by

including all of the goal variables in the sets Vs and V0 in

the initialization step.

CHAPTER III

RULE GROUPS

Motivation

To improve the comprehensibility, maintainability, and

general structure of a knowledge system, one can divide the

information in the knowledge base into modules with each

module containing a group of rules that interact closely

among one another. An individual module should have a rea

sonably distinct purpose and essentially should be isolated

from other modules. Ideally, a modification in one module

should have no effect on the execution of other modules.

When modularization is achieved, it delivers clear bene

fits for the knowledge engineer and maintainer. The prime

benefit is expected to be localizing the effects of a rule

modification in well-behaved systems. As stated previously,

the results of adding or modifying a rule can affect other

rules. If a rule is within an isolated module, the effects

of any rule change can be contained within its rule group.

As shown in previous studies with conventional programs,

modularization leads to increased program understanding and

lower maintenance costs (17,18].

15

16

Dependent Relation

A dependent rule is a rule that relies upon the execution

of another rule before it can evaluate all of its hypotheses

and execute its conclusions. In terms of a chaining flow

diagram, a dependency between two rules exists if a chaining

variable, either backward or forward, connects two rules.

The arrowhead on the line indicates which rule is dependent

upon the other one. The target rule is dependent upon the

source rule. We define this relationship between two rules

as a dependent relation. A dependent relation is critical

since it governs the firing of a rule. See Figure 5 for an

example of a dependent. relation.

The dependent relation is transitive. If rule R3 is de-

pendent upon rule R2 and rule R2 is dependent upon rule Rl,

then R3 is also dependent upon Rl by transitivity. To dis

tinguish between the two dependencies, R3 is said to be

directly dependent upon R2 and level-1 dependent upon Rl.

Generalizing, if a rule is shown to be dependent upon

R3 is dependent upon R2. R3 and R2 are dependent upon R1

Figure 5. Example of a Dependent Relation

17

another rule either directly or transitively, it is level-X

dependent· upon that rule with X being the number of rules in

the connection. Thus, a direct dependency is a level-a de

pendency.

The dependent relation is neither reflexive nor symmet

ric, which is to be expected. If a rule were allowed to be

dependent solely upon itself either directly or transitive

ly, then an infinite loop would result. A nonresolvable

paradox develops: the rule cannot execute its conclusions

because it needs the variable's value to evaluate a hypoth

esis; however, the only rule to conclude a value for the

variable is that same rule whose hypotheses can never be

satisfied.

Symbolically, we can.denote the dependency, either di

rectly or transitively, of rule x upon rule y by "x <-- y"

or "Y --> x". To show-the level of dependency between two

rules, we define a dependency function D(x,y). For any two

rules x and y, D(x,y) is the level of dependency of rule x

upon rule y. For instance in the above example, R3 <-- R2,

R3 <-- Rl, R2 <-- Rl, D(R3,R2)=0, D(R3,Rl)=l, and

D(R2,Rl)=O.

Rule Groups

Having defined the dependent relation, we can character

ize a rule group. Intuitively speaking, a rule group is a

collection of rules that are related. Formally, a rule

18

group is a collection of rules that are level-N,

level-(N-l), ... ,level-0, dependent upon a given rule. Thus,

each rule group has two distinguishing features: the rule it

is based upon and the level of dependency. Adding one to

the highest level of dependency in the rule group will be

called the depth of the rule group. The depth of a rule

group is defined to be one plus the maximum of the set {n1 ,

n 2 , ••. , nk} where ni is the dependency level of rule ri.

One is added to prevent a depth of zero when a rule group

consists of one source rule with one or more target rules.

CHAPTER IV

THE CHAINING FLUX

Background

In this section, a metric that measures a rule's influ

ence in the knowledge base is introduced. This measure, the

chaining flux, is based solely upon a rule's chaining vari

ables. The foundation of this measure is derived from the

work done by Henry and Kafura in the area of information

flow metrics [8] and extended to rule-based systems by O'N

eal and Edwards [16].

Henry and Kafura define two measures, fan-in and fan-out,

that are used in the construction of a metric to measure the

complexity of a procedure's connection to its environment.

The fan-in of a procedure is the number of local flows into

the procedure plus the number of data structures from which

the procedure retrieves information. The fan-out of a pro

cedure is the number of local flows from the procedure plus

the number of data structures which the procedure updates.

They proceed to demonstrate that the metric fan-in multi

plied by fan-out is a good indicator of a procedure's com

plexity as correlated with the number of reported faults.

19

20

O'Neal and Edwards extended Henry and Kafura's concept of

fan-in and fan-out to rule-based systems. They state that

"the complexity of a rule is based upon the number of

interactions between the rule and the rest of the program

and, to a lesser degree, the internal complexity of that

rule" [16]. So, to measure the complexity of a rule, O'Neal

and Edwards describe five complexity measures: the data

fan-in, the data fan-out, the object transfer, the rule

fan-in, and the rule fan-out. Of these measures, the only

two of concern here are the rule fan-in and the rule fan

out. These two measures quantify the way rules interact

with one another; the other measures are concerned with

data manipulation, which does not pertain to this study.

They define the rule fan-in as the number of rules which

directly could have caused the rule in question to fire.

Thus, the rule fan-in is the number of possible "predece

ssors" to the rule. They define the rule fan-out as the

number of rules which could become eligible to fire as a

direct result of the rule in question firing. Thus, the

rule fan-out is the number of possible "successors" to the

rule.

Chaining Flux

Analogously to O'Neal and Edwards, this work adapts the

fan-in and fan-out metrics to a rule-based system. In this

regard, a rule in a knowledge system is likened to a proce-

21

dure in a conventional program. Whereas, a procedure is

connected to its environment by procedure calls and argument

transmissions, a rule is connected to its environment by

chaining variables and their values. A rule's connections

to its environment are measured as a function of that rule's

fan-in and fan-out.

We define the fan-in of a rule as the number of source

rules with variable chains to that rule. This expresses the

number of rules which possibly can transfer control to the

rule (which is consistent with O'Neal and Edward's defini

tion of rule fan-in). The number of source rules with

variable chains to a rule may be greater than the number of

incoming variable chains to that rule. This is due to the

fact that an incoming variable chain can originate from more

than one source rule. The fan-in of a rule measures the

potential flow of control into a rule.

We define the fan-out of a rule as the number of target

rules that receive chains from that rule. This indicates

the number of rules that can possibly inherit control from

the rule (again this is consistent with O'Neal and Edward's

definition of rule fan-out). Since a source rule may have

multiple target rules, the fan-out of a rule may be greater

than the number of variable chains that initiate outgoing

chains. The fan-out measures the potential flow of control

out of a rule.

Based on the fan-in and fan-out measures for a rule, we

define the chaining flux metric for a rule. The chaining

22

flux, F(X), of a rule is the number of chaining variables

within the rule multiplied by the square of product of the

rule's fan-in and fan-out.

• 2
F(X) = n * (fan-1n * fan-out) (1)

The chaining flux measures the complexity of a rule's

connection to its environment; i.e., all the other relevant

rules. The factor n denotes the number of chaining vari-

ables in rule X. This factor represents a bulk component

within the rule since bulk metrics like program statements

correlate well with program complexity [3]. The product of

fan-in and fan-out represents the total possible number of

combinations for the transfer of control from a source rule

of rule X to a target rule of rule X. The raising of the

fan-in times fan-out factor to the power of two is consis

tent with Henry and Kafura's paper [8]. One justification

that can be offered for the squaring of the second factor is

that the number of rules which can potentially transfer

control to rule X and the number of rules to which rule X

potentially can transfer control is more critical in

measuring rule X's connection to the rest of the rules than

just the number of chaining variables within rule X. Fur

ther refinement of the formula for chaining flux through

empirical analysis is part of the suggested future work.

Figure 6 has an example of the chaining flux.

23

Terminating and Initiating Rules

We define a terminating rule as a rule that accepts vari-

able chains from source rules but does not initiate variable

chains to any target rules. Thus, a terminating rule does

not transfer control to any other rule; i.e., the flow of

control is ended with a terminating rule. Since a

terminating rule does not transfer control to another rule,

To Rules

7, 16, 17,

23. 81, 106.
113. 114, 115

F<Rule #1) = 5 * (1 * 14)A2 = 980

F(Rule #2) = F(Rule #9) = 2 * (1 * 1)A2 = 2

F(Rule#3) = F(Rule #4) = F(Rule #5) = F(Rule #6) = F(Rule #10) = 1 * (1*0)A2 = 0

Figure 6. Examples of Chaining Flux

24

the fan-out of a terminating rule is zero. With the fan-out

being zero, the chaining flux of a terminating rule is zero.

An initiating rule is a rule that only transfers control

to target rules, but the rule itself is not a target rule

for any other rule. This results in a fan-in of zero and

leads to a chaining flux of zero. But what does an

initiating rule mean? Since no other rules can transfer

control to an initiating rule, the initiating rule can never

execute. Also any rules dependent upon an initiating rule

can never execute. These rules are isolated and cannot be

considered part of the knowledge system since they can never

be executed. Thus, in a knowledge system, the only useful

rules with a chaining flux of zero are the terminating

rules.

Control Rules

One significant consequence of the chaining flux is that

it permits us to single out particular rules that dominate

the flow of control through the knowledge base. These

dominating rules have relatively higher chaining flux scores

than the rest of the rules which reflects their greater in

fluence on the flow of control in the knowledge base. A

rule with a high chaining flux (to be defined below) is re

ferred to as a control rule.

A high chaining flux is knowledge base dependent. The

greater the number of rules and chaining variables in a

25

knowledge base, the higher the possible chaining flux scores

for individual rules and hence the higher the threshold for

the control rules. Also, the chaining flux depends on how

the knowledge system is written. If all of the rules are

strung along in a chain with few terminating rules, then the

chaining flux for each rule may not vary. If the rules are

grouped together with a number of terminating rules, then

there exists a high possibility that the chaining flux for

each rule will vary widely.

A control rule is distinguished from other rules by cal

culating the average chaining flux of the knowledge system.

Thus, a control rule can be defined as a rule with a chain

ing flux greater than the average chaining flux of the

knowledge system. This provides a good mark since these

rules are more complex than the average rule and they can

transfer control from more source rules to more target rules

than the average rule. The concept of the control rule is

used in the next section to partition the rules in a knowl

edge base.

CHAPTER V

KNOWLEDGE MODULES

Background

In this section, an algorithm to partition the rules in a

knowledge system into different modules is presented. Par

titioning the rules is similar to breaking a conventional

program into smaller procedures for conceptual manageabil

ity. A software developer can employ several software

engineering techniques to aid in the design and implementa

tion of conventional programs. However, there are very few

software engineering techniques to help a knowledge engineer

in designing an expert system.

One such technique is outlined by Jacob and Froscher

[10,11,12]. They define a rule relatedness measure as the

basis for a rule partitioning algorithm. They state that

two rules are related if they share a common non-chaining

variable. Depending on the type of relation, they empiri

cally score the relatedness between the rules, then use that

score to partition the rules into distinct groups.

A similar strategy for partitioning rules now follows;

however, there is one distinct difference in the philosophy

of rule partitioning. Jacob and Froscher base their rule

26

27

"relatedness" measure solely on the strength of non-chaining

variables. They ignore chaining variables entirely and ad-

vocate that one should segregate the control knowledge from

the domain knowledge. Since this is not always possible or

desired, we take the opposite approach. The control k~owl

edge emulates the problem solving techniques of the expert.

Thus, by focusing our attention on the c~ntrol knowledge,

the partitioning algorithm can create modules that reflect

the sequence of rule execution. This can help a knowledge

engineer to organize rules anticipating inference paths.

The chaining flux score from the previous section is used

as the basis for rule- partitioning. The chaining flux is

derived solely from the control (chaining) variables. This

gives us the advantage of_partitioning the system in accor-

dance to when the rules execute and which rules execute to-

gether.

Knowledge Modules

We define a knowledge module as a level-N rule group
. .

based upon a base rule which is a target rule that has one

and only one chaining variable leading to it. We refer to

this chaining variable as an interface chain. The interface

chain connects the knowledge module with the remainder of

the knowledge system. It is the interface chain that dic

tates when the rules within the knowledge module are

considered for execution. Note that the interface chain may

28

be derived from several different source rules. Thus, the

interface chain may be one-to-one or many-to-one but never

one-to-many or many-to-many when describing the relationship

of the source rules to the base rule. The interface chain

does not rely on a specific chaining strategy; it may be

either a forward or a backward chaining variable.

The notion of a knowledge module is critical since it

defines a specialized set of related rules that can be ac

cessed only through the interface chain to the knowledge

module. If one disconnects the interface chain, an entire

knowledge module and any dependent knowledge modules will be

isolated. Thus, an expert system can lose integral knowl

edge if an interface chain is severed. We can now visualize

a knowledge system as a collection of specialized knowledge

modules connected by interface chains. Figure 7 contains a

relatively small knowledge base that has been partitioned

into knowledge modules.

A knowledge module is defined as being based upon a

single rule - a base rule. At the outset, a control rule is

selected as the base rule for each knowledge module. Thus,

each knowledge module is based upon a rule that dominates

the flow of control of a part of the knowledge system. Each

knowledge module consists of a control rule and rules

dependent upon that control rule.

Partitioning a knowledge base into separate knowledge

modules is a recursive procedure. After a rule is assigned

to a knowledge module, all of its dependent rules up to a

29

base rule are assigned to the same knowledge module before

proceeding to a different rule at the same level. The fol-

lowing algorithm partitions a knowledge base into knowledge

2' rr-- 3
~ Ill I. I - [

I

1 I ~IIIII l

I
I
l-

r----1

11
I

4
-ll

Figure 7. A Knowledge Base Partitioned into Knowledge
Modules.

30

modules according to control rules. In Algorithm 2 below,

the set R is the set of rules within the knowledge base, the

set B is the set of base rules, the set D is a set of

dependent rules, the set M is the set of rules that have

been marked as already having been included in a knowledge

module, and the set Kb is the set of rules corresponding to

a knowledge module based upon rule b.

Algorithm 2

Partition a Knowledge Base.

Input. A knowledge base and its goal variable.

Output. Knowledge base modules.

Method.

Initialization:

A. Construct R = { r I r is a rule in the

knowledge base }.

B. Set M = {}.

c. For every rule r in R, calculate r's chain

ing flux.

D. Construct B = { r I F(r) > "threshold value"

for the chaining flux }.

E. For every rule r that concludes a value for

the goal variable, if r is not in B, add r

to B.

Body:

A. Set B0 to B.

B. For every b in B, preform the following:

1. Construct Kb = {b}.

2. Construct D = { r I r is in R, r is not

in B, r <-- b (r is dependent upon b),

and r <-/- n (r is not dependent upon n)

for any n in B such that b <-/- n }.

3. For every r in D, perform the following:

a. If r is not in M, add r to M and add r

to Kb.

b. If r is in M and r is not in Kb, then

1. Ki = Ki - { r }.

2. Construct S = { s I s is in R, s is

not is B, s <-- r, and s <-/- n for

any n in B such that b <-/- n }.

3. For every s in s, remove s from M.

4. Add r to B.

C. If B0 = B and M = R, then halt, else repeat

the body.

31

The algorithm terminates when all rules have been as

signed to a knowledge module and no new base rules have been

added. Because the number of rules, the number of vari

ables, and the number of variables referenced in a rule are

all finite, this algorithm always terminates. Even in the

worst possible case is which every rule references every

other rule, the algorithm terminates because it creates one

knowledge module for each rule.

32

This algorithm creates new base rules in step 3b of the

body. A base rule is created when a rule is assigned to

more than one knowledge module. This is done to avoid

overlapping knowledge modules. Also, it insures us that

each knowledge module has one and only one interface chain.

This results in having more knowledge modules than control

rules; and in the worst possible case, a knowledge module

for each rule. If a knowledge module is created for each

rule, then the knowledge system either is very simplistic

(i.e., all rules execute in a single chain) or very complex

(i.e., all rules are connected to one another).

The algorithm partitions a knowledge system. This algo

rithm can be extended-to partition a knowledge system on

several levels. Once the top level is partitioned, another

application of this algorithm to each separate knowledge

module leads to an inner-partitioning of each knowledge

module. With a recursive invocation of the algorithm, not

only can a knowledge base be partitioned, but all of its

knowledge modules can be partitioned into smaller, finer

modules also.

Intermediate Representation

To insure implementation and language independence of the

algorithm, an intermediate form of representation for

knowledge systems is developed. This representation does

not show the rule's intent; rather, it captures the rule

33

chaining aspects needed for the algorithm. This

transformation is different from the representation pres-

ented by O'Neal and Edwards in (16]. Their representation

does not emphasize the rule's chaining aspects; rather, it

emphasizes how the rule accesses, creates, modifies, and

deletes data.

Each rule can be represented by a set of tuples. Each

tuple contains the source rule's name, the target rule's

name, and the name of the chaining variable which connects

the two rules. Since a tuple contains both a source and

target rule, it identifies two rules. Once a system is

built to partition a knowledge system based upon this

representation, we have to build the transformation from the

original implementation to the tuple representation. Figure

8 contains an example of this representation. An implemen-

tation of this algorithm using this representation is given

in Appendix A. An example set of tuples is listed in

Appendix B. The output of the example set of tuples from

Appendix B using the program from Appendix A is given in

Appendix c.

Tuple Representation: < Source Rule, Target Rule, Variable Chain >

Tuples for the Partial Knowledge Base from Figure 4:

< Rule #1, Rule #2, Variable #2 >
< Rule #1, Rule #4, Variable #4 >
< Rule #1, Rule #6, Variable #4 >
< Rule #9, Rule #10, Variable #8 >

< Rule #1, Rule #3, Variable #3 >
< Rule #1, Rule #5, Variable #5 >
< Rule #2, Rule #9, Variable #6 >

Figure 8. Intermediate Knowledge Representation Tuples

CHAPTER VI

COMPLEXITY

Background

Once a knowledge system is partitioned, it is possible to

adapt some of the existing software metrics to measure the

complexity of the newly created knowledge modules and their

interdependencies. The complexity measure uses the graphi

cal representation of the knowledge system provided by the

chaining flow diagram. The approach taken here is similar

to that of Bieman and Edwards to measure the complexity of

data dependency diagrams [2].

Spanning Trees

By basing our complexity measure on the graphical repre

sentation of the chaining flow diagram, we can draw on re-
' ~

sults from graph theory for the metric'. First, we present

some preliminary~definitions from graph ~heory. A graph

G=(N,E) consists of a finite set of nodes N and a finite set

of edges E [5]. To each edge there corresponds a pair of

nodes; if the pair is ordered, then the graph is said to be

directed [5]. A cycle in a graph is a path from some node

34

35

back to itself where no edge appears more than once and the

initial node is the only node appearing more than once (5].

A graph is connected if there exists a path from any node to

any other node (5]. A tree is a connected ~raph with no

cycles (5]. The root node of the tree is a node that is the

predecessor of all other nodes in the tree (5]. A spanning

tree of a directed graph G is a graph ST(G) = (N,E'), where

E' is a subset of E and ST(G) is a tree that includes every

node in G (5]. The rooted spanning tree complexity with

root node n (RSTC(n)) of a graph G is the number of distinct

spanning trees with root n that can be constructed from the

graph consisting of the nodes'and edges of G that are suc

cessors of n [2]. The number of spanning trees within a

graph can be used as a complexity measure. The idea of us

ing the number of spanning trees as a measure of complexity

is not new; it has been described before in graph theory

literature [1,23, as cited in 2].

The rooted spanning tree complexity is calculated as the

determinant of'a tree-generating matrix [2,23]. A tree

-generating matrix is defined as follows: Let G(N,E) be a

directed graph, let n1 be a member of N, and associate a

variable nij with the number of directed edges from node ni

to node nj. The matrix is defined in Figure 9.

36

Knowledge Module Complexity

Since the chaining flow diagram is a tree, by definition,

it contains no cycles. Thus, the tree-generating matrix of

a chaining flow diagram becomes upper triangular. The de

terminant of an upper triangular matrix is the product of

the terms on the main diagonal. In this matrix, each

diagonal term represents the number of incoming edges to one

node. For a chaining flow diagram, the number of incoming

edges to a node is the fan-in of the rule represented by the

node. Thus, the RSTC for a chaining flow diagram rooted at

node n is the product of the fan-in of all the rules depen

dent upon n. The rooted spanning tree complexity of a

chaining flow diagram rooted at node n is a simple measure

of the complexity of a knowledge module or module hierarchy.

Other factors in the complexity of a knowledge module

include the number of rules in the knowledge module and the

depth of the knowledge module. Weighting the rooted span

ning tree complexity by the number of rules and the depth of

La, 2 -a 23 -a
2n

... 2

-a La, 3
-a

32 3n

I .I 3

-a
n2

-a
n3

Figure 9. Tree Generating Matrix

37

the knowledge module yields the knowledge module complexity,

K, for a module X as follows.

K(X) = n * d * RSTC(X) (2)

The number of rules, n, represents a bulk complexity com

ponent and the depth, d, of the knowledge module is an

indicator of the nesting level complexity component.

Weighting the rooted spanning tree complexity with these two

factors creates a metric that is sensitive to three impor

tant components. Figure 10 contains some examples of

knowledge module complexity.

2

~I

1 I

Knowledge Module Complexilles

K(1) 4 * 2 * 1 8

K(2) 6 * 2 * 1 12

K(3) 24 * 2 * 4 192

K(4) 4 * 1 * 2 8

I

I
I

I

iii
I

41 1

Figure 10. Example of Knowledge Module Complexity

38

CHAPTER VII

CONCLUSION

Benefits

The chaining flow diagram delivers some clear benefits to

the developer, maintainer, and end-user. It gives the de

veloper a clear representation of the system. It shows the

maintainer which rules are dependent upon which other rules

as he or she updates the knowledge base for information for

better and more cost-effective maintenance. It demonstrates

the flow of information through the system for the end-user.

overall, it helps an individual to gain a better

understanding of the knowledge system as a whole.

The chaining flux metric presents the knowledge developer

and maintainer with a measure of the flow of control into

and out of a given rule. Used in conjuction with the other

rules of the knowledge system, it shows which rules dominate

the flow of control. It helps the developer and maintainer

quickly grasp which rules control the inference process.

With the chaining flux for each rule calculated, the

knowledge base can then be partitioned according to when

rules execute and which rules operate together. This makes

the knowledge system easier to maintain and understand. It

39

helps the developer and maintainer see how rules interact

with one another and which rules handle certain processes.

Future Work

40

Several areas of this work can be expanded upon or clari

fied with additional time and effort. With respect to the

chaining flow diagram, a program should be written to take a

knowledge system as input and create the corresponding

chaining flow diagram as its output. Also, a study should

compare the chaining flow diagram as a representation of a

knowledge system for a developer, maintainer, and end-user

to other forms of representation.

For the chaining flux metric, knowledge base modulariza

tion, and knowledge module complexity, several knowledge

systems written in different environments need to be com

pared and contrasted. This will allow for further refining

of the factors in the chaining flux definition and it is

conjectured and that it also will demonstrate that the idea

of the chaining flux can be extended to several different

expert system representations.

By studying and comparing different knowledge systems,

the knowledge modularization techniques will be refined

along with the knowledge base complexity measures. Overall,

a methodology for building knowledge systems can be created

using the ideas presented in this paper to deliver expert

system applications that will be easier to understand, to

develop, and to maintain.

41

REFERENCES

[1] Berge, c. 1973. Graphs and Hypergraphs. Amsterdam,
The Netherlands: North-Holland.

[2] Bieman, J., and W. R. Edwards, Jr. June 1985. Mode
ling and Measuring Software Data Dependency Complexity.
Ames: ISU Department of computer Science TR #85-14.

[3] Evangelist, W. M. 1983. Software Complexity Metric
Sensitivity to Program Structuring Rules. The Journal
of Systems and Software 3. 231-243.

[4] Feigenbaum, E., and P. McCorduck. 1983. The Fifth
Generation. Reading, MA: Addison-Wesley Publishing Co.

[5] Gondran, M., and M. Minoux. 1984. Graohs and Algo
rithms. New York: John Wiley & Sons.

[6] Harmon, P., and D. King. 1985. Expert Systems: Ar
tificial Intelligence in Business. New York: John Wiley
& Sons, Inc.

[7] Held, J., and J. Carlis.
eling of Expert Systems.

1989. Conceptual Data Mod
IEEE Expert. 4,1: 50-61.

[8] Henry, s., and D. Kafura. 1981. Software Structure
Metrics Based on Information Flow. IEEE Transactions
on Software Engineering. 7,5: 510-518.

[9] IEEE. 1983. IEEE Glossarv of Software Engineering
Terminology, IEEE Std. 729-1983. New York: IEEE.

[10] Jacob, R., and J. Froscher. 1986. Software Engineer
ing for Rule-Based Systems. Proceedings of the 1986
Fall Joint Computer conference. 1986: 185-189.

[11] Jacob, R., and J. Froscher. Naval Research Laborato
ry. December 17, 1986. Developing a Software Engi
neering Methodology for Knowledge-Based Systems.
Washington D.C.: Naval Research Laboratory Report 9109.

(12] Jacob, R. 1989. Private correspondence.

42

43

[13] Kiernan G., Kolton, A., and E. Schwartz. 1988. Con
structing an Expert System - Software Engineering of a
Different Kind. Proceedings of the 1988 ACM Sixteenth
Annual Computer Science Conference. 1988: 223-231.

[14] Markusz, z., and A. Kaposi.
in Logic-Based Programming.
28,5: 487-495

1985. Complexity Control
The Computer Journal.

[15] Martin, J., and S. Oxman. 1988. Building Expert Sys
tems: A Tutorial. Englewood Cliffs, NJ: Prentice
Hall.

[16] O'Neal, M., and W. R. Edwards, Jr. 1988. Measuring
and Controlling Complexity in Rule-Based Programs.
Proceedings of the IASTED International Symposium EX
PERT SYSTEMS. 1988: 6-9.

[17] Parnas, D. L. 1972. A Technique for Software Module
Specification with Examples. Communications of the
ACM. 15,5: 330-336.

(18] Parnas, D. L. 1972. On the Criteria to be Used in
Decomposing Systems into Modules. Communications of
the ACM. 15,12: 1053-1058.

[19] Pedersen, K. 1989. Well-Structured Knowledge Bases.
AI Expert. 4,4: 44-55.

[20] Pedersen, K. 1989.

(21]

Part II. AI Expert.

Pedersen, K. 1989.
Part III. AI Expert.

Well-Structured Knowledge Bases,
4,7: 45-48.

Well-Structured Knowledge Bases,
4,11: 36-41.

[22] Swigger, K., and R. Brazile. 1989. Experimental Com
parison of Design/Documentation Formats for Expert
Systems. Internationl Journal of Man-Machine Studies.
31: 47-60.

[23] Temperley, H.N.V. 1981. Graph Theory and Applica
tions. Chichester, England: Ellis Horwood Limited.

[24] Texas Instruments. 1988. AI Glossary. Notes of the
Fourth Artificial Intelligence Satellite Symposium.
18-19.

[25) Wiess, s., and c. Kulikowski. 1984. A Practical
Guide to Designing Expert Systems. Tetowa, NJ: Rowan &
Allanheld.

APPENDIXES

44

APPENDIX A

COMPUTER PROGRAM TO PARTITION

A RULE-BASED KNOWLEDGE BASE

45

I*** I
I* Knowledge Partitioning Program *I
I*** I
I* Based upon the knowledge partitioning algorithm using the *I
I* chaining flux metric. Also uses the intermediate knowledge *I
I* representation of rule and variable tuples to make the program *I
I* knowledge base independent. *I
I*** I
I* Input *I
I* A rulelvari able tuple of the form *I
I* <source rule number> <target rule number> <variable number> *I
I*** I
I* Output *I
I* The tuples are placed into a rule representation that is then *I
I* partitioned according to the chaining flux metric. *I
I*** I

#include <stdio.h>

#define true 1
#define false 0

#define is --
#define isnt •=
#define and &&
#define or II
#define not !
#define begin {

#define end }

#define MAXVARS
#define MAXRULES
#define MAXGROUPS
#define MAXTUPLES

#define SOURCE FOR
#define TARGET:FOR

struct infrastructure
begin

int var[MAXVARSl;
i nt control;
int chains in;
int chains:out;
int no vars;
int flUx;
int group;

500
500
500
500

int dependent[MAXRULESl;
end;

struct rule group
begin -

int control rule;
int rule[MAXRULESl;
int no_rules;

end;

struct tuple
begin

int source rule;
int targe(rule;
int var_no;

end;

0
1

struct infrastructure Rule[MAXRULESl;
struct rule group Group[MAXGROUPSl;
struct tuple Tuple[MAXTUPLESl;

main 0
begin

int numtuples, numrules, numgroups;

46

int avg_flux;

I* initialize the program *I
initialize(&numtuples, &numrules, &numgroups);

I* load the tuple file into memory*/

end

if ((numtuples = load_tuples()) isnt 0)
begin

I* put the tuple representation into a rule representation *I
numrules = load_rules (numtuples);
I* find the chaining flux for each rule *I
find_flux (numrules >;
!* calculate the average chaining flux of the system */
avg_flux = average_flux (numrules >;
I* designate rules > average chaining flux as control rules *I
find_control_rules (numrules, &numgroups, avg_flux);
I* group the rules according to the control rules */
if (numgroups > 0)

group_rules (&numgroups >;
I* print the results according to the users choice*/
menu (numtuples, numrules, numgroups, avg_flux);

end

menu (numtuples, numrules, numgroups, avg_flux
int numtuples, numrules, numgroups, avg_flux;

begin
int i, done, choice, max;

done = false;
while (not done

begin
I* print the menu of choices for the user *I
printf ("\n");
printf (***** MAIN MENU *****\n");
printf (1. Statistics\n" >;
printf (2. Show Rule\n" >;
printf (3. Show All Rules\n") ;
printf (4. Show Knowledge Module\n");
printf (5. Show All Knowledge Modules\n" >;
printf (6. Exit\n11);

printf (\n");
printf (11 Choice ==> 11 >;
scanf (11%d11 , &choice);
switch (choice)

begin
I* print
case 1:

I* print
case 2:

the statistics of the entire system*/
printf (11\n" >;
printf (" Nuni:>er of Tuples %d\n11 , numtuples);
printf (11 Number of Rules %d\n11 , numrules >;
printf (11 Number of Partitions %d\n11 , nurngroups);
printf ("Average Chaining Flux %d\n", avg flux >;
for (i = 1, max= 0 ; i <= numrules ; i++)-

if (Rule[il .flux >max)
max= Rule[i].flux;

printf ("Maximum Chaining Flux : %d\n", max >;
break;

the statistics of a given rule *I
printf (11\n");
printf (11 Enter the Rule Number ==> " >;
scanf (11%d11 , &choice >;
if (choice >= 1 and choice <= numrules)

print_rule (choice >;
else

printf ("*** Error ••• lnvalid Rule Number ***\n");
break;

!*print the statistics of all rules *I
case 3: for (i = 1 ; i <= numrules ; i++

print_rule (i);

47

end
end

I* print
case 4:

break;

the statistics of a given group *I
printf ("\n" >;
printf (11 Enter the Partition Nunber ==> 11 >;
scanf ("%d", &choice >;
if (choice >= 1 and choice <= numgroups)

print_group (choice >;
else

printf ("*** Error ••• !nvalid Partition Number ***\n" >;
break;

I* print the statistics of all groups *I
case 5: for (i = 1 ; i <= numgroups ; i++

print_group < i >;
break;

case 6: done = true;
break;

default: printf ("*** Error ••• Invalid Menu Selection ***\n" >;
break;

end

initialize (numtuples, numrules, numgroups
int *numtuples, *numrules, *numgroups;

begin
int i;

*numtuples = 0;
*nunrules = 0;
*numgroups = 0;
I* initialize the rule structures *I
for (i = 0 ; i < MAXRULES ; i++

begin
Rule[i].chains in= 0;
Rule[i].chains-out = 0;
Rule[il .flux =-0;
Rule[i].no_vars = 0;
Rule[il.group = 0;
Rule[i].control = 0;

end
I* initialize the group structures *I
for (i = 0 ; i < MAXGROUPS ; i++

begin
Group[i].control_rule = 0;
Group[i].no_rules = 0;

end
I* initialize the tuple structures *I
for (i = 0 ; i < MAXTUPLES ; i++)

end

begin
Tuple[i].source_rule = 0;
Tuple[il.target_rule = 0;
Tuple[i].var_no = 0;

end

load_tuples 0
begin

int count, source, target, var;
char filename[32];
FILE *fopen(), *fp;

I* get the file name that contains the tuples *I
printf ("Enter the tuple file name==> 11 >;
scanf (11%s11 , filename>;

if (Cfp = fopen (filename, "r")) is NULL)
begin

48

end

print f "*** Error ••• Cannot open %s ***\n", filename >;
return 0 >;

I* cycle thru the file reading in the tuples*/
count = 0;
while C fscanf (fp,"%d %d %d", &source, &target, &var) isnt EOF)

begin
if (count < MAXTUPLES)

begin
Tuple[count].source_rule
Tuple[countl.target_rule =
Tuple[count].var_no = var;
count++;

end

source;
target;

else
printf ("ERROR ••• Too many tuples\n" >;

end

fclose fp >;
return count >;

end

load_rules (numtuples
int numtuples;

begin
int i, j, k, n, source, target, found, count;

I* loop through the tuples and put information into the rule structures *I
for (i = 0 ; i < numtuples ; i++)

begin
source; Tuple[i].source_rule;
target= Tuple[i].target_rule;
Rule[source].chains out++;
Rule[target].chains:in++;
Rule[sourcel .dependent[Rule[source].chains_out] =target;
I* first is for source rule, second is for target rule *I
for (k = 1 ; k <= 2 ; k++)

end

begin
if(kis1)

n = source;
else

n = target;
I* see if variable is already on the rule's list *I
j = 0;
found = false;
while (not found and j < Rule[n].no_vars)

begin

end

if (Rule[n].var[j] is Tuple[il .var_no
found = true;

else
j++;

I* if not on rule's list, put the variable on the list *I
if (not found)

end

begin

end

Rule[n].var[jl = Tuple[il .var_no;
Rule[n].no_vars++;

count = 1;
while (Rule[countl.no_vars isnt 0)

count++;

return (count - 1);
end

flux (n, in, out
int n, in, out;

49

begin
return (n * in * in * out * out >;

end

find flux (numrules
int numrules;

begin

end

int i;

for i = 1 ; i <= numrules ; i++)
Rule[il.flux =flux (Rule[il .no_vars, Rule[i].chains_in,

Rule[i].chains_out >;

average flux (numrules)
int numrules;

begin
int i, total;

total = 0;
for (i = 1 ; i <= numrules ; i++

total= total+ Rule[il.flux;

return total I numrules >;
end

find_control_rules (numrules, numgroups, avg)
int numrules, *numgroups, avg;

begin

end

int i;

for (
if

= 1 ; i <= numrules ; i++
Rule[i] .flux> avg)

create_group (i, numgroups);

group_rules (numgroups
int *numgroups;

begin
int i, j, done;

done = false;
while (not done

end

begin

end

done = true;
j = *numgroups;
for (i = 1 ; i <= j

if (get_dependents
done = false;

i++)
(Group[i].control_rule, numgroups, true))

get_dependents (rulenum, numgroups, newgroup)
int rulenum, *numgroups, newgroup;

begin
int i, j, n, assigned;

I* loop through the target rules trying to assign them *I
I* to the knowledge module of the current marked rule *I
assigned = false;
for (i = 1 ; i <= Rule[rulenuml.chains out; i++)

begin -
j = Rule[rulenum].dependent[il;
n = Rule[rulenunO.group;
I* make sure the target rule is not a control rule *I
if (not Rule[j].control)

begin
I* assign the target rule to the group if unaffiliated *I
if (Rule[j].group is 0)

begin
I* recursively try to assign all its *I

50

end

end

I* target rule's to its knowledge module *I
group_rule C j, n, false >;
get_dependents C j, numgroups, newgroup >;
assigned = true;

I* if the target rule belongs to another group, *I
I* remove it from that group and create another *I
I* group around the target rule *I
else if (Rule[j].group isnt n)

begin

end

delete_rule C j);
if (newgroup)

create_group (j, nungroups) ;
else

group_rule C j, n, false >;
get_dependents (j, numgroups, false >;
assigned = true;

end

return assigned >;
end

create_group (control_rule, numgroups
int control_rule, *numgroups;

begin
C*numgroups)++;
group rule (control rule, *numgroups, true >;

end - -

group_rule (rulenum, groupnum, control)
int rulenum, groupnum, control;

begin
if (control)

Group[groupn~.control_rule = rulenum;
Rule[rulenum].control =control;
Rule[rule~.group = groupnum;
Group[grou~.no_rules++;

Group[groupn~.rule[Group[gro~.no_rules] = rulenum;
end

delete rule (rulenum)
int ruTenum;

begin
int i, j, oldgroup;

I* take rule out of old group *I
oldgroup = Rule[rulen~.group;
for (i = 1 ; i <= Group[oldgroup].no_rules i++

begin
I* shift down by one *I
if (Group[oldgroup].rule[i] is rulenum

begin

end

for C j = i; j < Group[oldgroupl.no_rules; j++)
Group[oldgroupl.rule[j] = Group[oldgroupl.rule[j+1l;

end
Group[oldgroup].no_rules··;

end

print_rule (i)
int i;

begin
int j;

printf (11\n11 >;
printf (11********** RULE %d **********\n11 ,);

printf (11 Variables : 11 >;
for (j = 0; j < Rule[i].no vars; j++

printf c 11 %d 11 , Rule[iJ.var[jl >;
printf (11\n");

51

end

printf (11 Nunber of Vars %d \n11 , Rule[i] .no_vars >;
printf (11 Fan In %d \n11 , Rule[i] .chains_in >;
printf (11 Fan Out %d \n11 , Rule[i] .chains_out);
printf C 11 Chaining Flux %d \n11 , Rule[i] .flux);
printf (11 Knowledge Module %d \n11 , Rule[i] .group);
printf c 11 Dependent Rules : 11);

for (j = 1 ; j <= Rule[i].chains_out; j++
printf (11 %d 11 , Rule[i].dependent[j]);

printf C 11\n11);

print_group C i)
int i;

begin
int j;

printf C 11 \n11) ;

printf (11********** GROUP %d **********\n11 , i);
printf (11 Base Rule : %d \n11 , Group[i].control_rule);
printf (11 Nunber of Rules : %d \n11 , Group[i].no_rules);
printf (, " Rules : 11 >;
for C j = 1 ; j <= Group[i].no_rules; j++

printf (11 %d 11 , Group[il.rule[j] >;
printf C 11\n11);

end

52

APPENDIX B

SAMPLE INPUT FOR THE COMPUTER PROGRAM

53

54

0 1 1
1 2 2
1 3 3
1 4 4
1 5 4
1 6 4
1 7 5
1 16 5
1 17 5
1 81 5
1 33 5
1 106 5
1 113 5
1 114 5
1 115 5
2 9 6
7 8 80
8 96 7
8 10 8
8 11 9
8 12 10
8 13 11
8 14 11
8 15 11
9 10 8
16 18 6
16 19 7
16 20 8
16 37 9
17 93 10
17 19 7
18 21 11
19 22 12
19 23 13
19 24 14
19 25 15
19 26 16
19 27 17
19 28 18
19 29 19
19 30 20
21 31 21
25 47 22
25 121 23
27 34 24
27 36 25
30 32 26
31 92 27
33 34 24
33 28 18
33 29 19
33 30 20
33 35 28
33 25 15
33 36 25
33 37 9
33 20 8
34 38 29
34 39 30
34 40 31
34 41 32
34 37 9'
39 42 33
39 43 34
39 44 34
40 42 33
40 43 34
40 44 34
41 42 33
41 43 34
41 44 34

55

43 45 35
45 46 36
47 48 37
47 49 38
47 50 39
47 51 40
47 52 41
47 53 41
47 54 41
47 55 41
47 56 41
47 57 41
47 58 42
47 59 42
47 60 42
47 61 42
47 62 42
47 63 42
47 64 42
47 65 42
47 66 42
47 67 42
47 68 42
47 69 42
47 70 42
47 71 42
47 72 42
47 73 43
47 74 44
47 75 45
49 76 46
51 77 47
51 78 48
72 79 49
73 80 50
81 82 51
81 83 52
81 92 27
81 93 10
81 84 53
83 85 57
84 86 54
84 87 55
84 88 56
86 89 58
86 90 59
89 91 60
92 94 61
92 95 62
93, 94 61
93 95 62
94 96 7
94 97 63
94 98 64
95 96 7
95 97 63
95 100 65
95 101 66
95 102 67
95 103 68
95 104 68
95 105 68
97 99 69
106 107 70
107 108 71
107 109 72
108 110 73
109 111 74
110 111 74
111 112 75
113 117 76

56

113 118 76
113 116 77
117 119 78
117 120 79
118 119 78
118 120 79

APPENDIX C

SAMPLE OUTPUT FROM THE COMPUTER PROGRAM

57

Enter the tuple file name==> tuples.dat

***** MAIN MENU *****
1. Statistics
2. See Rule
3. See All Rules
4. See Group
5. See All Groups
6. Exit

Choice ==>

Number of Tuples 148
Number of Rules 121

Number of Groups 21
Average Chaining Flux 135
Maximum Chaining Flux 7840

***** MAIN MENU *****
1. Statistics
2. See Rule
3. See All Rules
4. See Group
5. See All Groups
6. Exit

Choice ==> 3

********** RULE 1 **********
Variables 1 2 3 4 5

Number of Vars 5
Chains In 1

Chains Out 14
Chaining Flux 980

Rule Group 1
Dependent Rules 2 3 4 5 6 7 16 17 81 33 106 113 114 115

********** RULE 2 **********
Variables 2 6

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 9

~********* RULE 3 **********
Variables 3

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 4 **********
Variables 4

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 5 **********
Variables 4

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1

58

Dependent Rules :

********** RULE 6 **********
Variables 4

Number of Vars 1
Chains In 1

Chains Out 0
Chaining ·Flux 0

Rule Group 1
Dependent Rules

********** RULE 7 **********
Variables 5 80

Number of Vars 2
Chains In 1

Chains out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 8

********** RULE 8 **********
Variables 80 7 8 9 10 11

Number of Vars 6
Chains In 1

Chains Out 7
Chaining Flux 294

Rule Group 2
Dependent Rules 96 10 11 12 13 14 15

********** RULE 9 **********
Variables 6 8

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 10

********** RULE 10 **********
Variables 8

Number of Vars 1
Chains In 2

Chains OUt 0
Chaining Flux 0

Rule Group 10
Dependent Rules

********** RULE 11 **********
Variables : 9

Number of Vars ': 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 2
Dependent Rules

********** RULE 12 **********
Variables 10

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 2
Dependent Rules

********** RULE 13 **********
Variables 11

Number of Vars 1
Chains In 1

Chains OUt 0
Chaining Flux 0

59

Rule Group : 2
Dependent Rules :

********** RULE 14 **********
Variables 11

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 2
Dependent Rules

********** RULE 15 **********
Variables 11

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 2
Dependent Rules

********** RULE 16 **********
Variables 5 6 7 8 9

Number of Vars 5
Chains In 1

Chains Out 4
Chaining Flux 80

Rule Group 1
Dependent Rules 18 19 20 37

********** RULE 17 **********
Variables 5 10 7

Number of Vars 3
Chains In 1

Chains Out 2
Chaining Flux 12

Rule Group 1
Dependent Rules 93 19

********** RULE 18 **********
Variables 6 11

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 21

********** RULE 19 **********
Variables 7 12 13 14 15 16 17 18 19 20

Number of Vars 10
Chains In 2

Chains Out 9
Chaining Flux 3240

Rule Group 3
Dependent Rules 22 23 24 25 26 27 28 29 30

********** RULE 20 **********
Variables 8

Number of Vars 1
Chains In 2

Chains Out 0
Chaining Flux 0

Rule Group 17
Dependent Rules

********** RULE 21 **********
Variables 11 21

Number of Vars 2
Chains In 1

Chains Out 1

60

Chaining Flux 2
Rule Group 1

Dependent Rules 31

********** RULE 22 **********
Variables 12

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 3
Dependent Rules

********** RULE 23 **********
Variables 13

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 3
Dependent Rules

********** RULE 24 **********
Variables 14

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 3
Dependent Rules

********** RULE 25 **********
Variables 15 22 23

Number of Vars 3
Chains In 2

Chains OUt 2
Chaining Flux 48

Rule Group 14
Dependent Rules 47 121

********** RULE 26 **********
Variables 16

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 3
Dependent Rules

********** RULE 27 **********
Variables 17 24 25

Number of Vars 3
Chains In 1

Chains Out 2
Chaining Flux 12

Rule Group 3
Dependent Rules 34 36

********** RULE 28 **********
Variables 18

Number of Vars 1
Chains In 2

Chains Out 0
Chaining Flux 0

Rule Group 11
Dependent Rules

********** RULE 29 **********
Variables 19

Number of Vars 1
Chains In 2

61

Chains Out 0
Chaining Flux 0

Rule Group 12
Dependent Rules

********** RULE 30 **********
Variables 20 26

Number.of Vars 2
Chains In 2

Chains Out 1
Chaining Flux 8

Rule Group 13
Dependent Rules 32

********** RULE 31 **********
Variables 21 27

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 92

********** RULE 32 **********
Variables 26

Number of Vars 1
Chains In 1

Chains out 0
Chaining Flux 0

Rule Group 13
Dependent Rules

********** RULE 33 **********
Variables 5 24 18 19 20 28 15 25 9 8

Number of Vars 10
Chains In 1

Chains Out 9
Chaining Flux 810

Rule Group 4
Dependent Rules 34 28 29 30 35 25 36 37 20

********** RULE 34 **********
Variables 24 29 30 31 32 9

Number of Vars 6
Chains In 2

Chains Out 5
Chaining Flux 600

Rule Group : 5
Dependent Rules : 38 39 40 41 37

********** RULE 35 **********
Variables 28

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 4
Dependent Rules

********** RULE 36 **********
Variables 25

Number of Vars 1
Chains In 2

Chains Out 0
Chaining Flux 0

Rule Group 15
Dependent Rules

********** RULE 37 **********
Var·iables 9

Number of Vars : 1

62

Chains In 3
Chains Out 0

Chaining Flux 0'
Rule Group 16

Dependent Rules

********** RULE 38 **********
Variables 29

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 5
Dependent Rules

********** RULE 39 **********
Variables 30 33 34

Number of Vars 3
Chains In 1

Chains Out 3
Chaining Flux 27

Rule Group 5
Dependent Rules 42 43 44

********** RULE 40 **********
Variables 31 33 34

Number of Vars 3
Chains In 1

Chains Out 3
Chaining Flux 27

Rule Group 5
Dependent Rules 42 43 44

********** RULE 41 **********
Variables 32 33 34

Number of Vars 3
Chains In 1

Chains Out 3
Chaining Flux 27

Rule Group 5
Dependent Rules 42 43 44

********** RULE 42 **********
Variables 33

Number of Vars 1
Chains In 3

Chains OUt 0
Chaining Flux 0

Rule Group 5
Dependent Rules

********** RULE 43 **********
Variables 34 35

Number of Vars 2
Chains In 3

Chains Out 1
Chaining Flux 18

Rule Group 5
Dependent Rules 45

********** RULE 44 **********
Variables 34

Number of Vars 1
Chains In 3

Chains Out 0
Chaining Flux 0

Rule Group 5
Dependent Rules

********** RULE 45 **********
Variables : 35 36

63

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 5
Dependent Rules 46

********** RULE 46 **********
Variables 36

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 5
Dependent Rules

********** RULE 47 **********
Variables 22 37 38 39 40 41 42 43 44 45

Number of Vars 10
Chains In 1

Chains OUt 28
Chaining Flux 7840

Rule Group 6

64

Dependent Rules 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75

********** RULE 48 **********
Variables 37

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 49 **********
Variables 38 46

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 6
Dependent Rules 76

********** RULE 50 **********
Variables 39

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 51 **********
Variables 40 47 48

Number of Vars 3
Chains In 1

Chains Out 2
Chaining Flux 12

Rule Group 6
Dependent Rules 77 78

********** RULE 52 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 53 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 54 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 55 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 56 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 57 **********
Variables 41

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Depenc;lent Rules

********** RULE 58 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 59 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 60 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

65

********** RULE 61 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 62 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 63 **********
Variables 42

Number of Vars 1
Chains In ,1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 64 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 65 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 66 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 67 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 68 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6

66

Dependent Rules :

********** RULE 69 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 70 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 71 **********
Variables 42

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 72 **********
Variables 42 49

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 6
Dependent Rules 79

********** RULE 73 **********
Variables 43 50

Number of Vars 2
Chains In 1

Chains OUt 1
Chaining Flux 2

Rule Group 6
Dependent Rules 80

********** RULE 74 **********
Variables 44

Number of Vars 1
Chains In 1

Chains OUt 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 75 **********
Variables 45

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 76 **********
Variables 46

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

67

Rule Group : 6
Dependent Rules :

********** RULE 77 **********
Variables 47

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 78 **********
Variables 48

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 79 **********
Variables 49

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 80 **********
Variables 50

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 6
Dependent Rules

********** RULE 81 **********
Variables 5 51 52 27 10 53

Number of Vars 6
Chains In 1

Chains Out 5
Chaining Flux 150

Rule Group 7
Dependent Rules 82 83 92 93 84

********** RULE 82 **********
Variables 51

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 83 **********
Variables 52 57

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 7
Dependent Rules 85

********** RULE 84 **********
Variables 53 54 55 56

Number of Vars 4
Chains In 1

Chains Out 3

68

Chaining Flux
Rule Group

Dependent Rules

36
7
86 87 88

********** RULE 85 **********
Variables 57

Number of Vars 1
Chains In 1

Chains out 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 86 **********
Variables 54 58 59,

Number of Vars 3
Chains In 1

Chains Out 2
Chaining Flux 12

Rule Group : 7
Dependent Rules : 89 90

********** RULE 87 **********
Variables 55

Number of Vars 1
Chains In 1

Chains OUt 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 88 **********
Variables 56

Number of Vars 1
Chains In 1

Chains OUt 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 89 **********
Variables 58 60

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group : 7
Dependent Rules : 91

********** RULE 90 **********
Variables 59

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 91 **********
Variables 60

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 7
Dependent Rules

********** RULE 92 **********
Variables 27 61 62

Number of Vars 3
Chains In 2

69

Chains Out
Chaining Flux

Rule Group
Dependent Rules

2
48
18
94 95

********** RULE 93 **********
Variables 10 61 62

Number of Vars 3
Chains In 2

Chains Out 2
Chaining Flux 48

Rule Group 19
Dependent Rules 94 95

********** RULE 94 **********
Variables 61 7 63 64

Number of Vars 4
Chains In 2

Chains Out 3
Chaining Flux 144

Rule Group 8
Dependent Rules 96 97 98

********** RULE 95 **********
Variables 62 7 63 65 66 67 68

Number of Vars 7
Chains In 2

Chains Out 8
Chaining Flux 1792

Rule Group 9
Dependent Rules 96 97 100 101 102 103 104 105

********** RULE 96 **********
Variables 7

Number of Vars 1
Chains In 3

Chains Out 0
Chaining Flux 0

Rule Group 20
Dependent Rules

********** RULE 97 **********
Variables 63 69

Number of Vars 2
Chains In 2

Chains Out 1
Chaining Flux 8

Rule Group 21
Dependent Rules 99

********** RULE 98 **********
Variables 64

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 8
Dependent Rules

********** RULE 99 **********
Variables 69

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 21
Dependent Rules

********** RULE 100 **********
Variables 65

Number of Vars : 1

70

Chains In 1
Chains Out 0

Chaining Flux 0
Rule Group 9

Dependent Rules

********** RULE 101 **********
Variables 66

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 9
Dependent Rules

********** RULE 102 **********
Variables 67

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 9
Dependent Rules

********** RULE 103 **********
Variables 68

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 9
Dependent Rules

********** RULE 104 **********
Variables 68

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 9
Dependent Rules

********** RULE 105 **********
Variables 68

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 9
Dependent Rules

********** RULE 106 **********
Variables 5 70

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 107

********** RULE 107 **********
Variables 70 71 72

Number of Vars 3
Chains In 1

Chains Out 2
Chaining Flux 12

Rule Group 1
Dependent Rules 108 109

********** RULE 108 **********
Variables : 71 73

71

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 110

********** RULE 109 **********
Variables 72 74

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 111

********** RULE 110 **********
Variables 73 74

Number of Vars 2
Chains In 1

Chains Out 1
Chaining Flux 2

Rule Group 1
Dependent Rules 111

********** RULE 111
Variables

Number of Vars
Chains In

Chains Out
Chaining Flux

Rule Group
Dependent Rules

74 75
2
2
1
8
1
112

********** RULE 112 **********
Variables 75

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

**********RULE 113 **********'
Variables 5 76 77

Number of Vars 3
Chains In 1

Chains Out 3
Chaining Flux 27

Rule Group 1
Dependent Rules 117 118 116

********** RULE 114 **********
Variables 5

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 115 **********
Variables 5

Number of Vars 1
Chains In 1

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 116 **********

72

Variables 77
Number of Vars 1

Chains In 1
Chains Out 0

Chaining Flux 0
Rule Group 1

Dependent Rules

********** RULE 117 **********
Variables 76 78 79

Number of Vars 3
Chains In 1

Chains out 2 '
Chaining Flux 12

Rule Group 1
Dependent Rules 119 120

********** RULE 118 **********
Variables 76 78 79

Number of Vars 3
Chains In 1

'Chains Out 2
Chaining Flux 12

Rule Group 1
Dependent Rules 119 120

********** RULE 119 **********
Variables 78

Number of Vars 1
Chains In 2

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 120 **********
Variables 79

Number of Vars 1
Chains In 2

Chains Out 0
Chaining Flux 0

Rule Group 1
Dependent Rules

********** RULE 121 **********
Variables 23

Number of Vars 1
Chains In 1

Chains OUt 0
Chaining Flux 0

Rule Group 14
Dependent Rules

***** MAIN MENU *****
1. Statistics
2. See Rule
3. See All Rules
4. See Group
5. See All Groups
6. Exit

Choice ==> 5

********** GROUP 1 **********
Control Rule 1

Number of Rules : 28
Rules : 1 2 9 3 4 5 6 7 16 18 21 31 17 106 107 108 110 111 112 109

113 117 119 120 118 116 114 115

********** GROUP 2 **********
Control Rule : 8

73

Nl.lllber of Rules 6
Rules 8 11 12

********** GROUP 3 **********
Control Rule 19

Number of Rules 6
Rules 19 22 23

********** GROUP 4 **********
Control Rule 33

Number of Rules 2
Rules 33 35

********** GROUP 5 **********
Control Rule 34

Number of Rules 10

13 14 15

24 26 27

Rules 34 38 39 42 43 45 46 44 40 41

********** GROUP 6 **********
Control Rule 47

Number of Rules : 34
Rules : 47 48 49

64 65 66 67 68 69 70 71

********** GROUP 7 **********
Control Rule 81

Number of Rules 11

76 50 51 77 78 52 53 54 55
72 79 73 80 74 75

Rules 81 82 83 85 84 86 89 91 90 87 88

********** GROUP 8 **********
Control Rule 94

Number of Rules 2
Rules 94 98

********** GROUP 9 **********
Control Rule 95

Number of Rules 7
Rules 95 100 101 102 103 104 105

********** GROUP
Control Rule

Number of Rules
Rules

********** GROUP
Control Rule

Number of Rules
Rules

********** GROUP
Control Rule

Number of Rules
Rules

********** GROUP
Control Rule

Nllllber of Rules
Rules

********** GROUP
Control Rule

Number of Rules
Rules

********** GROUP
Control Rule

Number of Rules
Rules

10 **********
10
1
10

11 **********
28
1
28

12 **********
29
1
29

13 **********
30
2
30 32

14 **********
25
2
25 121

15 **********
36
1
36

********** GROUP 16 **********
Control Rule : 37

74

56 57 58 59 60 61 62 63

Number of Rules 1
Rules 37

********** GROUP 17 **********
Control Rule 20

Number of Rules 1
Rules 20

********** GROUP 18 **********
Control Rule 92

Number of Rules 1
Rules 92

********** GROUP 19 **********
Control Rule 93

Number of Rules 1
Rules 93

********** GROUP 20 **********
Control Rule 96

Number of Rules 1
Rules 96

********** GROUP 21 **********
Control Rule 97

Number of Rules 2
Rules 97 99

***** MAIN MENU *****
1. Statistics
2. See Rule
3. See All Rules
4. See Group
5. See All Groups
6. Exit

Choice ==> 6

75

APPENDIX D

USERS' GUIDE FOR THE COMPUTER PROGRAM

76

77

Users' Guide for the Program

To start the program, enter the command 'flow' at the unix prompt. The program will first ask

you name of the input file. The input file contains the intermediate knowledge representation tu-

ples describing the knowledge bas~. An intermediate knowledge representation tuple for this program

is the form

< Source Rule Number, Target Rule Number, Variable Number>.

Once the correct file name is entered, the program will calculate the chaining flux of each

rule, determine the control rules of the knowledge base, and then partition the knowledge base into

knowledge modules based upon the control rules.

After the knowledge base is partitioned, the program will then display the main menu and a

prompt for your selection.

***** MAIN MENU *****

1. Statistics

2. Show Rule

3. Show All Rules

4. Show Knowledge Module

5. Show All Knowledge Modules

6. Exit,

Choice ==>

The first choice, statistics, shows the statistics of the entire knowledge system. These in-

elude the number of tuples read from the input file, the number of rules in the knowledge base, the

number of partitions, the average chaining flux of the knowledge base, and the maximum chain1ng flux

of the knowledge base.

78

I
Thetsecond choice, show a rule, displays information about a selected rule. The information

printed includes the variables referenced in the rule, the fan-in of the rule, the fan-out of the

rule, the chaining flux of the rule, the knowledge module to which the rule belongs, and the rules

which are directly dependent upon the selected rule.

The third option, show all rules, displays the above information for each rule in the knowledge

base.

The fourth choice, show a knowledge module, displays information about a partition of the

knowledge base. The information displayed includes the base rule of the knowledge modules, the

number of rules in the knowledge modules, and the rules assigned to the knowledge module.

The fifth choice, show all knowledge modules, displays the above information for each partition

of the knowledge system.

The sixth and final choice, exit, halts execution of the program and returns you back to the

unix prompt.

Thesis:

VITA - '
' '

Steven Bruce Cudd

Candidate for the Degree of

Master of Science

ADAPTING SOFTWARE ENGINEERING PRINCIPLES TO
DIAGRAM, MODULARIZE, AND ANALYZE RULE-BASED
EXPERT SYSTEMS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Warrensberg, Missouri, August
5, 1965, son of George S. and Barabara J. Cudd.

Education: Graduated from Minco High School, Minco,
Oklahoma, in May 1983; received Bachelor of Science
Degree with a double major in Mathematics and Com
puter Science from Oklahoma State University in May
1987; completed requirements for the Master of Sci
ence degree at Oklahoma State University in May
1990.

Professional Experience: Senior Programmer Analyst,
MPSI Systems Inc., June 1987 to July 1989; Senior
Systems Analyst, MPSI Software, July 1989 to pres
ent.

