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CHAPTER I 

INTRODUCTION AND MOTIVATION 

Background 

One definition of artificial intelligence states that it 

is a subfield of computer science concerned with the possi

bility that a computer can be made to behave in ways that 

humans recognize as intelligent behavior in each other [4]. 

Thus, when presented with knowledge and data about a sub

ject, the computer program could present an answer in much 

the same way a human would. To do this, the computer needs 

a way to represent the requisite knowledge and data. 

One such computer program is an expert system. An expert 

system is a computer program that contains knowledge about 

objects, events, situations, and courses of actions which 

emulate the reasoning process of human experts in a 

particular domain [24]. An expert system consists of three 

parts: an inference engine, a knowledge base, and a user 

interface. The inference engine infers a conclusion from 

the knowledge and data provided. The knowledge base stores 

the knowledge and references the data in a format which the 

inference engine can manipulate. The user interface commu

nicates the state of the inference process to the user. 

1 
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Although all expert systems attempt to emulate the human 

reasoning process, their representations of knowledge and 

data vary. The two most popular forms of knowledge repre

sentation are production (if-then) rules and frames. Pro

duction systems are more widely used and more highly 

developed [15]. Therefore, this paper focuses on production 

rules as the form of knowledge representation scrutinized. 

However, the concepts discussed in this work are not limited 

to production systems and can be extended to frames and 

other similar knowledge representation forms. 

As the use of expert systems becomes more widespread, 

several issues develop. Some of the issues involved are the 

creation, maintenance, and validation of knowledge bases. 

Since expert systems do not depend upon sequential process

ing as conventional programming does, these issues cannot be 

solved through conventional software development methodolo

gies. Instead, some principles from software engineering 

can be utilized to devise a fresh approach to the aforemen

tioned issues. 

Development and maintenance of a large knowledge base is 

a non-trivial task. When a developer adds a new rule or 

edits an existing rule, the interaction between rules may 

change. The results may not be completely predictable. 

When using software engineering techniques for conventional 

program development, a developer can reduce the cost of fu

ture maintenance by increasing the accuracy of the program 

(i.e., confidence in the correctness of the program) and the 
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efficiency of the program development process. By adapting 

some of the software engineering techniques, the knowledge 

base developer may reduce the knowledge base complexity and 

still bring a level of predictability to the expert system 

development process. 

The IEEE standard glossary on software engineering termi

nology defines software engineering as "the systematic ap

proach to the development, operation, maintenance, and 

retirement of software" [9). Previous attempts to link 

software engineering and expert system development include 

the partitioning of rules [10,11] , measuring the complexity 

control in PROLOG and rule-based systems (14,16], data mod

eling of expert systems [7,13], and constructing well

structured knowledge bases [19,20,21]. 

Focus of Thesis 

This work focuses on the adaptations of the software en

gineering principle of flow diagrams (data and control flow 

diagrams) to create a chaining flow diagram - a tool for 

conceptualization, communication, and abstraction. At the 

outset, the idea was to diagram a knowledge base to show the 

interactions of the rules to enhance the understandability 

of an expert system. Subsequently, the main objective of 

using flow diagrams, which subsumes the initial notion, be

came facilitating and expediting expert system development 
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and validation with the subsidiary goal of decreasing main

tenance costs. 

Included in this work is also the definition and proposal 

of the chaining flux as a software metric for rule-based 

knowledge systems. This metric assesses the manner in which 

a rule interacts with the other rules of a knowledge base. 

This metric is used as a basis for knowledge base 

partitioning and refinement. 



CHAPTER II , 

CHAINING FLOW DIAGRAMS 

Chaining Types 

' Two concepts govern rule-based knowledge systems: one is 

the exploration of the consequences of an action; the other 

is the investigation of ancillary goals. The forward and 

backward chains of a rule-based system accomplish these ob-

jectives. 

The forward chain is data driven or data directed 

[6,15,25]. The inference engine explores the consequence of 

assigning a value to a variable. Thus, the data determines 

when rules are executed. An analogy can be made to a pro-

gram data flow diagram. Whereas, the data flow diagram in-

dicates the flow of data between procedures of a program, 

the forward chains in a knowledge base reveal the flow of 

data through the knowledge base. Analogously to a data flow 

diagram, this chart initially presents the overall informa-

tion flow through the knowledge base. 

The backward chain is goal driven or goal directed 

[6,15,25]. The inference engine seeks a value for a needed 

variable. The variable is usually associated with a subgoal 

- a task to be completed before further advancement of the 

5 
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current objective. In their search for a variable's value, 

subgoals dictate which rules are fired. This search uti

lizes a program control flow diagram from software 

engineering. Similar to a procedural flowchart, the back

ward chains in a knowledge base outline~ the flow of control 

through the knowledge base rules. This chart depicts the 

control flow of the knowledge base. 

Chaining Flow Diagram 

By combining forward and backward chaining into one dia

gram, the chaining flow diagram is developed. The chaining 

flow diagram shows the interaction of the rules through the 

backward and forward chains and unifies both the control and 

data flow concepts from software engineering. 

Three basic components compose a chaining flow diagram. 

The first is the rule infrastructure. The rule infrastruc

ture consists of a rule's name and all variables referenced 

in that rule which either initiate or complete a forward or 

backward chain. The second is a line, a flow connection, 

with a single arrowhead that connects different rules with 

common forward and backward'chains. The flow connections 

show the interaction and information (datajcontrol) flow 

through the rules due to the forward and backward chains. 

The third component is the overall goal of the knowledge 

system. The chaining flow diagram shows the flow through 

the knowledge base when ascertaining a value for the goal. 
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Rule Infrastructure 

The rule infrastructure represents the rule's name, for

ward chaining variables, and backward chaining variables. 

The chaining flow diagram employs three different symbols to 

distinguish the components of the rule. The rule name is 

indicated by a rectangle with the rule's name within the 

rectangle. The name of a variable within an elongated 

hexagon symbolizes a forward chaining variable. An elon

gated hourglass containing the name of a variable denotes a 

backward chaining variable. The rule infrastructure displays 

the rule name first, followed by the names of the chaining 

variables in the same order that they appear in the rule. 

Figure 1 contains the rule infrastructure symbols. 

One problem that immediately arises is whether the vari

able appearing in the rule infrastructure is referenced in a 

hypothesis or conclusion of a rule. To resolve this confu

sion, a bold line is drawn between the symbols holding the 

last chaining variable appearing in a hypothesis and the 

first chaining variable appearing in a conclusion. The 

variables appearing above the bold line are in the rule's 

hypotheses and the variables below the bold line are in the 

rule's conclusions. A color system also could solve the 

problem by providing different colors for the variable names 

in the hypotheses and conclusions. For example, the rule 

name could be in black, the chaining variables in the hy-
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potheses could be in red, and the chaining variables in the 

conclusions could be in blue. Both of these solutions can 

be extended to support the case of a.counter-conclusion if 

the expert system supports the IF-THEN-ELSE construct 

(another line is drawn between the variables in the conclu

sions and those in the counter-conclusions; or, in a color 

system, the chaining variables in a counter-conclusion could 

be in a different color) • Figure 2 contains an example of a 

rule infrastructure. 

Goal Symbol 

A special symbol designates the overall goal of the 

knowledge base. An elongated hexagon with one end pointing 

inward surrounding the goal variable's name designates the 

goal. It resembles an arrow since it is always the goal 

that triggers the start of the inference process. See Fig

ure 3 for a depiction of the goal symbol. 

Flow Connections 

If one rule modifies a variable's value and another rule 

references the same variable, then a directed line, a flow 

connection, is drawn to connect the two rules. The flow 

connection indicates the source rule and the target rule. 

The source rule is the rule at which the chaining origi

nates. The target rule is the rule at which the chaining 



RULE NAME 

BACKWARD CHAINING 

VARIABLE 

FORWARD CHAINING 

VARIABLE 

Figure 1. Rule Infrastructure Symbols 

Parameter VARIABLE# 1, Cha1n1ng BACKWARD 

Parameter VARIABLE #2, Chrumng BACKWARD 

Parameter VARIABLE #3, Cha1n1ng BACKWARD 

Parameter VARIABLE #4, Cha1n1ng FORWARD 

Parameter VARIABLE #5, Cha1n1ng FORWARD 

Rule RULE $1 

VARIABLE #2 • TRUE and 

VARIABLE #3 • YES 

Then Set VARIABLE #4 to TRUE 

Set VARIABLE #5 to AskUser "What Color" 

Set VARIABLE # 1 to TRUE 

RULE #1 

VARIABLE#2 

VARIABLE#3 

VARIABLE #4 

VARIABLE #5 

VARIABLE #1 

Figure 2. Example of a Rule Infrastructure 

) GOAL VARIABLE ) 

Figure 3. The Goal Symbol 

9 



terminates. The line's arrowhead points from the source 

rule to the target rule. 

10 

Note that in the case of a forward chain, the source rule 

is the rule that modifies the variable's value and the tar

get rule is the rule that references the variable's value. 

For a backward chain, the 9pposite is true. This is because 

a backward chain is initiated when a rule references a 

variable without a,value. The source rule is the rule that 

references the variable's value and the target rule is the 

rule that modifies the variable's value. 

The relationship between source rules and target rules is 

not necessarily one-to-one. 'A source rule may have several 

target rules, and a target rule may have several source 

rules. Furthermore, a variable chain may have multiple 

source and target rules. Figure 4 is an example of a par

tial chaining flow diagr~m. 

Generating a Chaining Flow Diagram 

The creation of a chaining flow diagram is a recursive 

procedure. It is built in a left-to-right, top-down fash

ion. Before generating the part of the chaining flow diagram 

originating at a given rule, all sections originating at 

the given rule's target rule(s) are generated first. 

The algorithm that generates the chaining flow diagram 

appears after this paragraph. The algorithm assumes, with

out loss of generality, that the knowledge base has only one 



Goal VARIABLE 111 

Parameter VARIABLE111,Cha1n1ng BACKWARD 

Parameter VARIABLE 112, Cha1n1ng BACKWARD 

Parameter VARIABLE #3, Cha1mng BACKWARD 
Parameter VARIABLE #4, Cha1mng FORWARD 

Parameter VARIABLE 115, Cha1mng FORWARD 

Parameter VARIABLE 116, Cha1mng BACKWARD 

Parameter VARIABLE #8, ChBimng FORWARD 

Rule. RULE 111 

II VARIABLE #2 • TRUE and 

VARIABLE #3 • YES 
Then Set VARIABLE #4 to TRUE 

Set VARIABLE #5 to AskUser "What Color" 

Set VARIABLE #1 to TRUE 

Rule RULE 112 

II VARIABLE 116 • TRUE 
Then Set VARIABLE #2 to TRUE 

To Rules 

7,16, 17, 

23, 81, 106, 
113,114,115 

Rule RULE 113 

Then Set VARIABLE 113 to YES 

Rule• RULE #4 

II VARIABLE #4 • TRUE 
Then ReadF 1le "Users dat" 

Rule RULE #5 

II VARIABLE #4 • TRUE 

Then " D1splayPanel "Cho1ces pan" 

Rule RULE #6 

II VARIABLE #4 • TRUE 

Then PnntMessage "Colors • 

Rule RULE 119 
Then Set VARIABLE #8to Yes 

Set VARIABLE #6to TRUE 

Rule RULE 1110 
II VARIABLE #8 • Yes 
Then ProcessChoiC8 

Figure 4. A Partial Chaining Flow Diagram 

11 
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goal variable. Two other assumptions for the algorithm are 

as follows: no rule can reference itself and a variable 

cannot be both forward and backward chaining. In the algo

rithm, the set Vs is the current set of chaining variables 

within a given source rules (in the initialization, the goal 

variable is chosen), V0 is the initial chaining variable set 

(the goal variable) which, when matched by Vs, signals the 

end of the algorithm, the set B is the set of all backward 

chaining variables in the knowledge base, the set F is the 

set of all forward chaining variables in the knowledge base, 

and the set I is the set of all rules whose infrastructures 

have been drawn. As a post-processing step, at least one 

pass may be necessary to make the chaining flow diagram 

aesthetically pleasing (e.g., to reduce the number of 

intercepts and to distribute the nodes and edges evenly) . 

Algorithm 1 

Generate a Chaining Flow Diagram. 

Input. A knowledge base and its goal variable. 

Output. A Chaining Flow Diagram. 

Method. 

Initialization: 

A. Place the name of the goal variable within 

the goal symbol. 

B. Mark the goal symbol as the current source 

rule, s. 



C. Construct V0 = Vs = { goal variable }. 

D. Construct B = { v v is a backward chaining 

variable }. 

E. Construct F = { v v is a forward chaining 

variable }. 

F. Set I= {}. 

Body: 

For every v in Vs , perform the following: 

A. Mark v as the current active variable. 

B. If v is in B, construct a set of rules Rv = 

{ r I r is a rule that concludes a value for 

v }. 

C. If v is in 'F, construct a set of rules Rv = 
' ' 

{ r I r is a rule that references v's value 

in its hypothesis.}. 

D. For every rule r in Rv , perform the 

following: 

1. Mark r as the current target rule t. 

2. If t is not in I, then draw t's infra-

structure to the right of the current 

source rule s and add t to I. 

3. Draw a connecting arrow originating at 

the current active variable v in the 

current source rule s and terminating at 

the current active variable v in the 

current target rule t. 

13 



E. For every rule r in Rv , perform the 

following: 

1. Mark r as the current source rule s. 

2. Construct Vs = { v I v is a chaining 

variable of the current source rule s 

that originates at s }. 

3. If Vs is non-null, recursively repeat the 

Body. 

F. If Vs = V0 , then halt. 

14 

The algorithm terminates when the chaining variable set 

Vs returns to its initial state V0 , the goal variable. This 

signals that all the chaining flow diagram sections origi

nating at rules which conclude a value for the goal variable 

have been generated. Since the number of rules, the number 

of variables, and the number of variables referenced in a 

rule are all finite, the algorithm always terminates. This 

algorithm focuses on just one goal variable. However, it 

can be easily extended to include multiple goal variables by 

including all of the goal variables in the sets Vs and V0 in 

the initialization step. 



CHAPTER III 

RULE GROUPS 

Motivation 

To improve the comprehensibility, maintainability, and 

general structure of a knowledge system, one can divide the 

information in the knowledge base into modules with each 

module containing a group of rules that interact closely 

among one another. An individual module should have a rea

sonably distinct purpose and essentially should be isolated 

from other modules. Ideally, a modification in one module 

should have no effect on the execution of other modules. 

When modularization is achieved, it delivers clear bene

fits for the knowledge engineer and maintainer. The prime 

benefit is expected to be localizing the effects of a rule 

modification in well-behaved systems. As stated previously, 

the results of adding or modifying a rule can affect other 

rules. If a rule is within an isolated module, the effects 

of any rule change can be contained within its rule group. 

As shown in previous studies with conventional programs, 

modularization leads to increased program understanding and 

lower maintenance costs (17,18]. 

15 
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Dependent Relation 

A dependent rule is a rule that relies upon the execution 

of another rule before it can evaluate all of its hypotheses 

and execute its conclusions. In terms of a chaining flow 

diagram, a dependency between two rules exists if a chaining 

variable, either backward or forward, connects two rules. 

The arrowhead on the line indicates which rule is dependent 

upon the other one. The target rule is dependent upon the 

source rule. We define this relationship between two rules 

as a dependent relation. A dependent relation is critical 

since it governs the firing of a rule. See Figure 5 for an 

example of a dependent. relation. 

The dependent relation is transitive. If rule R3 is de-

pendent upon rule R2 and rule R2 is dependent upon rule Rl, 

then R3 is also dependent upon Rl by transitivity. To dis

tinguish between the two dependencies, R3 is said to be 

directly dependent upon R2 and level-1 dependent upon Rl. 

Generalizing, if a rule is shown to be dependent upon 

R3 is dependent upon R2. R3 and R2 are dependent upon R1 

Figure 5. Example of a Dependent Relation 
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another rule either directly or transitively, it is level-X 

dependent· upon that rule with X being the number of rules in 

the connection. Thus, a direct dependency is a level-a de

pendency. 

The dependent relation is neither reflexive nor symmet

ric, which is to be expected. If a rule were allowed to be 

dependent solely upon itself either directly or transitive

ly, then an infinite loop would result. A nonresolvable 

paradox develops: the rule cannot execute its conclusions 

because it needs the variable's value to evaluate a hypoth

esis; however, the only rule to conclude a value for the 

variable is that same rule whose hypotheses can never be 

satisfied. 

Symbolically, we can.denote the dependency, either di

rectly or transitively, of rule x upon rule y by "x <-- y" 

or "Y --> x". To show-the level of dependency between two 

rules, we define a dependency function D(x,y). For any two 

rules x and y, D(x,y) is the level of dependency of rule x 

upon rule y. For instance in the above example, R3 <-- R2, 

R3 <-- Rl, R2 <-- Rl, D(R3,R2)=0, D(R3,Rl)=l, and 

D(R2,Rl)=O. 

Rule Groups 

Having defined the dependent relation, we can character

ize a rule group. Intuitively speaking, a rule group is a 

collection of rules that are related. Formally, a rule 
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group is a collection of rules that are level-N, 

level-(N-l), ... ,level-0, dependent upon a given rule. Thus, 

each rule group has two distinguishing features: the rule it 

is based upon and the level of dependency. Adding one to 

the highest level of dependency in the rule group will be 

called the depth of the rule group. The depth of a rule 

group is defined to be one plus the maximum of the set {n1 , 

n 2 , ••. , nk} where ni is the dependency level of rule ri. 

One is added to prevent a depth of zero when a rule group 

consists of one source rule with one or more target rules. 



CHAPTER IV 

THE CHAINING FLUX 

Background 

In this section, a metric that measures a rule's influ

ence in the knowledge base is introduced. This measure, the 

chaining flux, is based solely upon a rule's chaining vari

ables. The foundation of this measure is derived from the 

work done by Henry and Kafura in the area of information 

flow metrics [8] and extended to rule-based systems by O'N

eal and Edwards [16]. 

Henry and Kafura define two measures, fan-in and fan-out, 

that are used in the construction of a metric to measure the 

complexity of a procedure's connection to its environment. 

The fan-in of a procedure is the number of local flows into 

the procedure plus the number of data structures from which 

the procedure retrieves information. The fan-out of a pro

cedure is the number of local flows from the procedure plus 

the number of data structures which the procedure updates. 

They proceed to demonstrate that the metric fan-in multi

plied by fan-out is a good indicator of a procedure's com

plexity as correlated with the number of reported faults. 

19 
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O'Neal and Edwards extended Henry and Kafura's concept of 

fan-in and fan-out to rule-based systems. They state that 

"the complexity of a rule is based upon the number of 

interactions between the rule and the rest of the program 

and, to a lesser degree, the internal complexity of that 

rule" [16]. So, to measure the complexity of a rule, O'Neal 

and Edwards describe five complexity measures: the data 

fan-in, the data fan-out, the object transfer, the rule 

fan-in, and the rule fan-out. Of these measures, the only 

two of concern here are the rule fan-in and the rule fan

out. These two measures quantify the way rules interact 

with one another; the other measures are concerned with 

data manipulation, which does not pertain to this study. 

They define the rule fan-in as the number of rules which 

directly could have caused the rule in question to fire. 

Thus, the rule fan-in is the number of possible "predece

ssors" to the rule. They define the rule fan-out as the 

number of rules which could become eligible to fire as a 

direct result of the rule in question firing. Thus, the 

rule fan-out is the number of possible "successors" to the 

rule. 

Chaining Flux 

Analogously to O'Neal and Edwards, this work adapts the 

fan-in and fan-out metrics to a rule-based system. In this 

regard, a rule in a knowledge system is likened to a proce-
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dure in a conventional program. Whereas, a procedure is 

connected to its environment by procedure calls and argument 

transmissions, a rule is connected to its environment by 

chaining variables and their values. A rule's connections 

to its environment are measured as a function of that rule's 

fan-in and fan-out. 

We define the fan-in of a rule as the number of source 

rules with variable chains to that rule. This expresses the 

number of rules which possibly can transfer control to the 

rule (which is consistent with O'Neal and Edward's defini

tion of rule fan-in). The number of source rules with 

variable chains to a rule may be greater than the number of 

incoming variable chains to that rule. This is due to the 

fact that an incoming variable chain can originate from more 

than one source rule. The fan-in of a rule measures the 

potential flow of control into a rule. 

We define the fan-out of a rule as the number of target 

rules that receive chains from that rule. This indicates 

the number of rules that can possibly inherit control from 

the rule (again this is consistent with O'Neal and Edward's 

definition of rule fan-out). Since a source rule may have 

multiple target rules, the fan-out of a rule may be greater 

than the number of variable chains that initiate outgoing 

chains. The fan-out measures the potential flow of control 

out of a rule. 

Based on the fan-in and fan-out measures for a rule, we 

define the chaining flux metric for a rule. The chaining 
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flux, F(X), of a rule is the number of chaining variables 

within the rule multiplied by the square of product of the 

rule's fan-in and fan-out. 

• 2 
F(X) = n * ( fan-1n * fan-out ) (1) 

The chaining flux measures the complexity of a rule's 

connection to its environment; i.e., all the other relevant 

rules. The factor n denotes the number of chaining vari-

ables in rule X. This factor represents a bulk component 

within the rule since bulk metrics like program statements 

correlate well with program complexity [3]. The product of 

fan-in and fan-out represents the total possible number of 

combinations for the transfer of control from a source rule 

of rule X to a target rule of rule X. The raising of the 

fan-in times fan-out factor to the power of two is consis

tent with Henry and Kafura's paper [8]. One justification 

that can be offered for the squaring of the second factor is 

that the number of rules which can potentially transfer 

control to rule X and the number of rules to which rule X 

potentially can transfer control is more critical in 

measuring rule X's connection to the rest of the rules than 

just the number of chaining variables within rule X. Fur

ther refinement of the formula for chaining flux through 

empirical analysis is part of the suggested future work. 

Figure 6 has an example of the chaining flux. 
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Terminating and Initiating Rules 

We define a terminating rule as a rule that accepts vari-

able chains from source rules but does not initiate variable 

chains to any target rules. Thus, a terminating rule does 

not transfer control to any other rule; i.e., the flow of 

control is ended with a terminating rule. Since a 

terminating rule does not transfer control to another rule, 

To Rules 

7, 16, 17, 

23. 81, 106. 
113. 114, 115 

F<Rule #1) = 5 * (1 * 14)A2 = 980 

F(Rule #2) = F(Rule #9) = 2 * (1 * 1)A2 = 2 

F(Rule#3) = F(Rule #4) = F(Rule #5) = F(Rule #6) = F(Rule #10) = 1 * (1*0)A2 = 0 

Figure 6. Examples of Chaining Flux 
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the fan-out of a terminating rule is zero. With the fan-out 

being zero, the chaining flux of a terminating rule is zero. 

An initiating rule is a rule that only transfers control 

to target rules, but the rule itself is not a target rule 

for any other rule. This results in a fan-in of zero and 

leads to a chaining flux of zero. But what does an 

initiating rule mean? Since no other rules can transfer 

control to an initiating rule, the initiating rule can never 

execute. Also any rules dependent upon an initiating rule 

can never execute. These rules are isolated and cannot be 

considered part of the knowledge system since they can never 

be executed. Thus, in a knowledge system, the only useful 

rules with a chaining flux of zero are the terminating 

rules. 

Control Rules 

One significant consequence of the chaining flux is that 

it permits us to single out particular rules that dominate 

the flow of control through the knowledge base. These 

dominating rules have relatively higher chaining flux scores 

than the rest of the rules which reflects their greater in

fluence on the flow of control in the knowledge base. A 

rule with a high chaining flux (to be defined below) is re

ferred to as a control rule. 

A high chaining flux is knowledge base dependent. The 

greater the number of rules and chaining variables in a 
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knowledge base, the higher the possible chaining flux scores 

for individual rules and hence the higher the threshold for 

the control rules. Also, the chaining flux depends on how 

the knowledge system is written. If all of the rules are 

strung along in a chain with few terminating rules, then the 

chaining flux for each rule may not vary. If the rules are 

grouped together with a number of terminating rules, then 

there exists a high possibility that the chaining flux for 

each rule will vary widely. 

A control rule is distinguished from other rules by cal

culating the average chaining flux of the knowledge system. 

Thus, a control rule can be defined as a rule with a chain

ing flux greater than the average chaining flux of the 

knowledge system. This provides a good mark since these 

rules are more complex than the average rule and they can 

transfer control from more source rules to more target rules 

than the average rule. The concept of the control rule is 

used in the next section to partition the rules in a knowl

edge base. 



CHAPTER V 

KNOWLEDGE MODULES 

Background 

In this section, an algorithm to partition the rules in a 

knowledge system into different modules is presented. Par

titioning the rules is similar to breaking a conventional 

program into smaller procedures for conceptual manageabil

ity. A software developer can employ several software 

engineering techniques to aid in the design and implementa

tion of conventional programs. However, there are very few 

software engineering techniques to help a knowledge engineer 

in designing an expert system. 

One such technique is outlined by Jacob and Froscher 

[10,11,12]. They define a rule relatedness measure as the 

basis for a rule partitioning algorithm. They state that 

two rules are related if they share a common non-chaining 

variable. Depending on the type of relation, they empiri

cally score the relatedness between the rules, then use that 

score to partition the rules into distinct groups. 

A similar strategy for partitioning rules now follows; 

however, there is one distinct difference in the philosophy 

of rule partitioning. Jacob and Froscher base their rule 
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"relatedness" measure solely on the strength of non-chaining 

variables. They ignore chaining variables entirely and ad-

vocate that one should segregate the control knowledge from 

the domain knowledge. Since this is not always possible or 

desired, we take the opposite approach. The control k~owl

edge emulates the problem solving techniques of the expert. 

Thus, by focusing our attention on the c~ntrol knowledge, 

the partitioning algorithm can create modules that reflect 

the sequence of rule execution. This can help a knowledge 

engineer to organize rules anticipating inference paths. 

The chaining flux score from the previous section is used 

as the basis for rule- partitioning. The chaining flux is 

derived solely from the control (chaining) variables. This 

gives us the advantage of_partitioning the system in accor-

dance to when the rules execute and which rules execute to-

gether. 

Knowledge Modules 

We define a knowledge module as a level-N rule group 
. . 

based upon a base rule which is a target rule that has one 

and only one chaining variable leading to it. We refer to 

this chaining variable as an interface chain. The interface 

chain connects the knowledge module with the remainder of 

the knowledge system. It is the interface chain that dic

tates when the rules within the knowledge module are 

considered for execution. Note that the interface chain may 
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be derived from several different source rules. Thus, the 

interface chain may be one-to-one or many-to-one but never 

one-to-many or many-to-many when describing the relationship 

of the source rules to the base rule. The interface chain 

does not rely on a specific chaining strategy; it may be 

either a forward or a backward chaining variable. 

The notion of a knowledge module is critical since it 

defines a specialized set of related rules that can be ac

cessed only through the interface chain to the knowledge 

module. If one disconnects the interface chain, an entire 

knowledge module and any dependent knowledge modules will be 

isolated. Thus, an expert system can lose integral knowl

edge if an interface chain is severed. We can now visualize 

a knowledge system as a collection of specialized knowledge 

modules connected by interface chains. Figure 7 contains a 

relatively small knowledge base that has been partitioned 

into knowledge modules. 

A knowledge module is defined as being based upon a 

single rule - a base rule. At the outset, a control rule is 

selected as the base rule for each knowledge module. Thus, 

each knowledge module is based upon a rule that dominates 

the flow of control of a part of the knowledge system. Each 

knowledge module consists of a control rule and rules 

dependent upon that control rule. 

Partitioning a knowledge base into separate knowledge 

modules is a recursive procedure. After a rule is assigned 

to a knowledge module, all of its dependent rules up to a 
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base rule are assigned to the same knowledge module before 

proceeding to a different rule at the same level. The fol-

lowing algorithm partitions a knowledge base into knowledge 

2' rr-- 3 
~ Ill I. I - [ 
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1 I ~IIIII l 

I 
I 
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r----1 

11 
I 

4 
-ll 

Figure 7. A Knowledge Base Partitioned into Knowledge 
Modules. 
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modules according to control rules. In Algorithm 2 below, 

the set R is the set of rules within the knowledge base, the 

set B is the set of base rules, the set D is a set of 

dependent rules, the set M is the set of rules that have 

been marked as already having been included in a knowledge 

module, and the set Kb is the set of rules corresponding to 

a knowledge module based upon rule b. 

Algorithm 2 

Partition a Knowledge Base. 

Input. A knowledge base and its goal variable. 

Output. Knowledge base modules. 

Method. 

Initialization: 

A. Construct R = { r I r is a rule in the 

knowledge base }. 

B. Set M = {}. 

c. For every rule r in R, calculate r's chain

ing flux. 

D. Construct B = { r I F(r) > "threshold value" 

for the chaining flux }. 

E. For every rule r that concludes a value for 

the goal variable, if r is not in B, add r 

to B. 

Body: 

A. Set B0 to B. 



B. For every b in B, preform the following: 

1. Construct Kb = {b}. 

2. Construct D = { r I r is in R, r is not 

in B, r <-- b (r is dependent upon b), 

and r <-/- n (r is not dependent upon n) 

for any n in B such that b <-/- n }. 

3. For every r in D, perform the following: 

a. If r is not in M, add r to M and add r 

to Kb. 

b. If r is in M and r is not in Kb, then 

1. Ki = Ki - { r }. 

2. Construct S = { s I s is in R, s is 

not is B, s <-- r, and s <-/- n for 

any n in B such that b <-/- n }. 

3. For every s in s, remove s from M. 

4. Add r to B. 

C. If B0 = B and M = R, then halt, else repeat 

the body. 
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The algorithm terminates when all rules have been as

signed to a knowledge module and no new base rules have been 

added. Because the number of rules, the number of vari

ables, and the number of variables referenced in a rule are 

all finite, this algorithm always terminates. Even in the 

worst possible case is which every rule references every 

other rule, the algorithm terminates because it creates one 

knowledge module for each rule. 
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This algorithm creates new base rules in step 3b of the 

body. A base rule is created when a rule is assigned to 

more than one knowledge module. This is done to avoid 

overlapping knowledge modules. Also, it insures us that 

each knowledge module has one and only one interface chain. 

This results in having more knowledge modules than control 

rules; and in the worst possible case, a knowledge module 

for each rule. If a knowledge module is created for each 

rule, then the knowledge system either is very simplistic 

(i.e., all rules execute in a single chain) or very complex 

(i.e., all rules are connected to one another). 

The algorithm partitions a knowledge system. This algo

rithm can be extended-to partition a knowledge system on 

several levels. Once the top level is partitioned, another 

application of this algorithm to each separate knowledge 

module leads to an inner-partitioning of each knowledge 

module. With a recursive invocation of the algorithm, not 

only can a knowledge base be partitioned, but all of its 

knowledge modules can be partitioned into smaller, finer 

modules also. 

Intermediate Representation 

To insure implementation and language independence of the 

algorithm, an intermediate form of representation for 

knowledge systems is developed. This representation does 

not show the rule's intent; rather, it captures the rule 
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chaining aspects needed for the algorithm. This 

transformation is different from the representation pres-

ented by O'Neal and Edwards in (16]. Their representation 

does not emphasize the rule's chaining aspects; rather, it 

emphasizes how the rule accesses, creates, modifies, and 

deletes data. 

Each rule can be represented by a set of tuples. Each 

tuple contains the source rule's name, the target rule's 

name, and the name of the chaining variable which connects 

the two rules. Since a tuple contains both a source and 

target rule, it identifies two rules. Once a system is 

built to partition a knowledge system based upon this 

representation, we have to build the transformation from the 

original implementation to the tuple representation. Figure 

8 contains an example of this representation. An implemen-

tation of this algorithm using this representation is given 

in Appendix A. An example set of tuples is listed in 

Appendix B. The output of the example set of tuples from 

Appendix B using the program from Appendix A is given in 

Appendix c. 

Tuple Representation: < Source Rule, Target Rule, Variable Chain > 

Tuples for the Partial Knowledge Base from Figure 4: 

< Rule #1, Rule #2, Variable #2 > 
< Rule #1, Rule #4, Variable #4 > 
< Rule #1, Rule #6, Variable #4 > 
< Rule #9, Rule #10, Variable #8 > 

< Rule #1, Rule #3, Variable #3 > 
< Rule #1, Rule #5, Variable #5 > 
< Rule #2, Rule #9, Variable #6 > 

Figure 8. Intermediate Knowledge Representation Tuples 



CHAPTER VI 

COMPLEXITY 

Background 

Once a knowledge system is partitioned, it is possible to 

adapt some of the existing software metrics to measure the 

complexity of the newly created knowledge modules and their 

interdependencies. The complexity measure uses the graphi

cal representation of the knowledge system provided by the 

chaining flow diagram. The approach taken here is similar 

to that of Bieman and Edwards to measure the complexity of 

data dependency diagrams [2]. 

Spanning Trees 

By basing our complexity measure on the graphical repre

sentation of the chaining flow diagram, we can draw on re-
' ~ 

sults from graph theory for the metric'. First, we present 

some preliminary~definitions from graph ~heory. A graph 

G=(N,E) consists of a finite set of nodes N and a finite set 

of edges E [5]. To each edge there corresponds a pair of 

nodes; if the pair is ordered, then the graph is said to be 

directed [5]. A cycle in a graph is a path from some node 
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back to itself where no edge appears more than once and the 

initial node is the only node appearing more than once (5]. 

A graph is connected if there exists a path from any node to 

any other node (5]. A tree is a connected ~raph with no 

cycles (5]. The root node of the tree is a node that is the 

predecessor of all other nodes in the tree (5]. A spanning 

tree of a directed graph G is a graph ST(G) = (N,E'), where 

E' is a subset of E and ST(G) is a tree that includes every 

node in G (5]. The rooted spanning tree complexity with 

root node n (RSTC(n)) of a graph G is the number of distinct 

spanning trees with root n that can be constructed from the 

graph consisting of the nodes'and edges of G that are suc

cessors of n [2]. The number of spanning trees within a 

graph can be used as a complexity measure. The idea of us

ing the number of spanning trees as a measure of complexity 

is not new; it has been described before in graph theory 

literature [1,23, as cited in 2]. 

The rooted spanning tree complexity is calculated as the 

determinant of'a tree-generating matrix [2,23]. A tree 

-generating matrix is defined as follows: Let G(N,E) be a 

directed graph, let n1 be a member of N, and associate a 

variable nij with the number of directed edges from node ni 

to node nj. The matrix is defined in Figure 9. 
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Knowledge Module Complexity 

Since the chaining flow diagram is a tree, by definition, 

it contains no cycles. Thus, the tree-generating matrix of 

a chaining flow diagram becomes upper triangular. The de

terminant of an upper triangular matrix is the product of 

the terms on the main diagonal. In this matrix, each 

diagonal term represents the number of incoming edges to one 

node. For a chaining flow diagram, the number of incoming 

edges to a node is the fan-in of the rule represented by the 

node. Thus, the RSTC for a chaining flow diagram rooted at 

node n is the product of the fan-in of all the rules depen

dent upon n. The rooted spanning tree complexity of a 

chaining flow diagram rooted at node n is a simple measure 

of the complexity of a knowledge module or module hierarchy. 

Other factors in the complexity of a knowledge module 

include the number of rules in the knowledge module and the 

depth of the knowledge module. Weighting the rooted span

ning tree complexity by the number of rules and the depth of 

La, 2 -a 23 -a 
2n 

... 2 

-a La, 3 
-a 

32 3n 

I .I 3 

-a 
n2 

-a 
n3 

Figure 9. Tree Generating Matrix 
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the knowledge module yields the knowledge module complexity, 

K, for a module X as follows. 

K(X) = n * d * RSTC(X) ( 2) 

The number of rules, n, represents a bulk complexity com

ponent and the depth, d, of the knowledge module is an 

indicator of the nesting level complexity component. 

Weighting the rooted spanning tree complexity with these two 

factors creates a metric that is sensitive to three impor

tant components. Figure 10 contains some examples of 

knowledge module complexity. 



2 

~I 

1 I 

Knowledge Module Complexilles 

K(1) 4 * 2 * 1 8 

K(2) 6 * 2 * 1 12 

K(3) 24 * 2 * 4 192 

K(4) 4 * 1 * 2 8 

I 

I 
I 

I 

iii 
I 

41 1 

Figure 10. Example of Knowledge Module Complexity 
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CHAPTER VII 

CONCLUSION 

Benefits 

The chaining flow diagram delivers some clear benefits to 

the developer, maintainer, and end-user. It gives the de

veloper a clear representation of the system. It shows the 

maintainer which rules are dependent upon which other rules 

as he or she updates the knowledge base for information for 

better and more cost-effective maintenance. It demonstrates 

the flow of information through the system for the end-user. 

overall, it helps an individual to gain a better 

understanding of the knowledge system as a whole. 

The chaining flux metric presents the knowledge developer 

and maintainer with a measure of the flow of control into 

and out of a given rule. Used in conjuction with the other 

rules of the knowledge system, it shows which rules dominate 

the flow of control. It helps the developer and maintainer 

quickly grasp which rules control the inference process. 

With the chaining flux for each rule calculated, the 

knowledge base can then be partitioned according to when 

rules execute and which rules operate together. This makes 

the knowledge system easier to maintain and understand. It 
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helps the developer and maintainer see how rules interact 

with one another and which rules handle certain processes. 

Future Work 

40 

Several areas of this work can be expanded upon or clari

fied with additional time and effort. With respect to the 

chaining flow diagram, a program should be written to take a 

knowledge system as input and create the corresponding 

chaining flow diagram as its output. Also, a study should 

compare the chaining flow diagram as a representation of a 

knowledge system for a developer, maintainer, and end-user 

to other forms of representation. 

For the chaining flux metric, knowledge base modulariza

tion, and knowledge module complexity, several knowledge 

systems written in different environments need to be com

pared and contrasted. This will allow for further refining 

of the factors in the chaining flux definition and it is 

conjectured and that it also will demonstrate that the idea 

of the chaining flux can be extended to several different 

expert system representations. 

By studying and comparing different knowledge systems, 

the knowledge modularization techniques will be refined 

along with the knowledge base complexity measures. Overall, 

a methodology for building knowledge systems can be created 

using the ideas presented in this paper to deliver expert 



system applications that will be easier to understand, to 

develop, and to maintain. 
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APPENDIX A 

COMPUTER PROGRAM TO PARTITION 

A RULE-BASED KNOWLEDGE BASE 
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I******************************************************************* I 
I* Knowledge Partitioning Program *I 
I******************************************************************* I 
I* Based upon the knowledge partitioning algorithm using the *I 
I* chaining flux metric. Also uses the intermediate knowledge *I 
I* representation of rule and variable tuples to make the program *I 
I* knowledge base independent. *I 
I******************************************************************* I 
I* Input *I 
I* A rulelvari able tuple of the form *I 
I* <source rule number> <target rule number> <variable number> *I 
I******************************************************************* I 
I* Output *I 
I* The tuples are placed into a rule representation that is then *I 
I* partitioned according to the chaining flux metric. *I 
I******************************************************************* I 

#include <stdio.h> 

#define true 1 
#define false 0 

#define is --
#define isnt •= 
#define and && 
#define or II 
#define not ! 
#define begin { 

#define end } 

#define MAXVARS 
#define MAXRULES 
#define MAXGROUPS 
#define MAXTUPLES 

#define SOURCE FOR 
#define TARGET:FOR 

struct infrastructure 
begin 

int var[MAXVARSl; 
i nt control; 
int chains in; 
int chains:out; 
int no vars; 
int flUx; 
int group; 

500 
500 
500 
500 

int dependent[MAXRULESl; 
end; 

struct rule group 
begin -

int control rule; 
int rule[MAXRULESl; 
int no_rules; 

end; 

struct tuple 
begin 

int source rule; 
int targe(rule; 
int var_no; 

end; 

0 
1 

struct infrastructure Rule[MAXRULESl; 
struct rule group Group[MAXGROUPSl; 
struct tuple Tuple[MAXTUPLESl; 

main 0 
begin 

int numtuples, numrules, numgroups; 
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int avg_flux; 

I* initialize the program *I 
initialize( &numtuples, &numrules, &numgroups ); 

I* load the tuple file into memory*/ 

end 

if ( ( numtuples = load_tuples()) isnt 0 ) 
begin 

I* put the tuple representation into a rule representation *I 
numrules = load_rules ( numtuples ); 
I* find the chaining flux for each rule *I 
find_flux ( numrules >; 
!* calculate the average chaining flux of the system */ 
avg_flux = average_flux ( numrules >; 
I* designate rules > average chaining flux as control rules *I 
find_control_rules ( numrules, &numgroups, avg_flux ); 
I* group the rules according to the control rules */ 
if ( numgroups > 0 ) 

group_rules ( &numgroups >; 
I* print the results according to the users choice*/ 
menu ( numtuples, numrules, numgroups, avg_flux ); 

end 

menu ( numtuples, numrules, numgroups, avg_flux 
int numtuples, numrules, numgroups, avg_flux; 

begin 
int i, done, choice, max; 

done = false; 
while ( not done 

begin 
I* print the menu of choices for the user *I 
printf ( "\n" ); 
printf ( ***** MAIN MENU *****\n" ); 
printf ( 1. Statistics\n" >; 
printf ( 2. Show Rule\n" >; 
printf ( 3. Show All Rules\n" ) ; 
printf ( 4. Show Knowledge Module\n" ); 
printf ( 5. Show All Knowledge Modules\n" >; 
printf ( 6. Exit\n11 ); 

printf ( \n" ); 
printf ( 11 Choice ==> 11 >; 
scanf ( 11%d11 , &choice ); 
switch ( choice ) 

begin 
I* print 
case 1: 

I* print 
case 2: 

the statistics of the entire system*/ 
printf ( 11\n" >; 
printf ( " Nuni:>er of Tuples %d\n11 , numtuples ); 
printf ( 11 Number of Rules %d\n11 , numrules >; 
printf ( 11 Number of Partitions %d\n11 , nurngroups ); 
printf ( "Average Chaining Flux %d\n", avg flux >; 
for ( i = 1, max= 0 ; i <= numrules ; i++ )-

if ( Rule[il .flux >max ) 
max= Rule[i].flux; 

printf ( "Maximum Chaining Flux : %d\n", max >; 
break; 

the statistics of a given rule *I 
printf ( 11\n" ); 
printf ( 11 Enter the Rule Number ==> " >; 
scanf ( 11%d11 , &choice >; 
if ( choice >= 1 and choice <= numrules ) 

print_rule ( choice >; 
else 

printf ( "*** Error ••• lnvalid Rule Number ***\n" ); 
break; 

!*print the statistics of all rules *I 
case 3: for ( i = 1 ; i <= numrules ; i++ 

print_rule ( i ); 
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end 
end 

I* print 
case 4: 

break; 

the statistics of a given group *I 
printf ( "\n" >; 
printf ( 11 Enter the Partition Nunber ==> 11 >; 
scanf ( "%d", &choice >; 
if ( choice >= 1 and choice <= numgroups ) 

print_group ( choice >; 
else 

printf ( "*** Error ••• !nvalid Partition Number ***\n" >; 
break; 

I* print the statistics of all groups *I 
case 5: for ( i = 1 ; i <= numgroups ; i++ 

print_group < i >; 
break; 

case 6: done = true; 
break; 

default: printf ( "*** Error ••• Invalid Menu Selection ***\n" >; 
break; 

end 

initialize ( numtuples, numrules, numgroups 
int *numtuples, *numrules, *numgroups; 

begin 
int i; 

*numtuples = 0; 
*nunrules = 0; 
*numgroups = 0; 
I* initialize the rule structures *I 
for ( i = 0 ; i < MAXRULES ; i++ 

begin 
Rule[i].chains in= 0; 
Rule[i].chains-out = 0; 
Rule[il .flux =-0; 
Rule[i].no_vars = 0; 
Rule[il.group = 0; 
Rule[i].control = 0; 

end 
I* initialize the group structures *I 
for ( i = 0 ; i < MAXGROUPS ; i++ 

begin 
Group[i].control_rule = 0; 
Group[i].no_rules = 0; 

end 
I* initialize the tuple structures *I 
for ( i = 0 ; i < MAXTUPLES ; i++ ) 

end 

begin 
Tuple[i].source_rule = 0; 
Tuple[il.target_rule = 0; 
Tuple[i].var_no = 0; 

end 

load_tuples 0 
begin 

int count, source, target, var; 
char filename[32]; 
FILE *fopen(), *fp; 

I* get the file name that contains the tuples *I 
printf ( "Enter the tuple file name==> 11 >; 
scanf ( 11%s11 , filename>; 

if ( Cfp = fopen ( filename, "r" )) is NULL ) 
begin 
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end 

print f "*** Error ••• Cannot open %s ***\n", filename >; 
return 0 >; 

I* cycle thru the file reading in the tuples*/ 
count = 0; 
while C fscanf ( fp,"%d %d %d", &source, &target, &var ) isnt EOF ) 

begin 
if ( count < MAXTUPLES ) 

begin 
Tuple[count].source_rule 
Tuple[countl.target_rule = 
Tuple[count].var_no = var; 
count++; 

end 

source; 
target; 

else 
printf ( "ERROR ••• Too many tuples\n" >; 

end 

fclose fp >; 
return count >; 

end 

load_rules ( numtuples 
int numtuples; 

begin 
int i, j, k, n, source, target, found, count; 

I* loop through the tuples and put information into the rule structures *I 
for ( i = 0 ; i < numtuples ; i++ ) 

begin 
source; Tuple[i].source_rule; 
target= Tuple[i].target_rule; 
Rule[source].chains out++; 
Rule[target].chains:in++; 
Rule[sourcel .dependent[Rule[source].chains_out] =target; 
I* first is for source rule, second is for target rule *I 
for ( k = 1 ; k <= 2 ; k++ ) 

end 

begin 
if(kis1) 

n = source; 
else 

n = target; 
I* see if variable is already on the rule's list *I 
j = 0; 
found = false; 
while (not found and j < Rule[n].no_vars) 

begin 

end 

if ( Rule[n].var[j] is Tuple[il .var_no 
found = true; 

else 
j++; 

I* if not on rule's list, put the variable on the list *I 
if ( not found ) 

end 

begin 

end 

Rule[n].var[jl = Tuple[il .var_no; 
Rule[n].no_vars++; 

count = 1; 
while ( Rule[countl.no_vars isnt 0 ) 

count++; 

return ( count - 1 ); 
end 

flux ( n, in, out 
int n, in, out; 

49 



begin 
return ( n * in * in * out * out >; 

end 

find flux ( numrules 
int numrules; 

begin 

end 

int i; 

for i = 1 ; i <= numrules ; i++ ) 
Rule[il.flux =flux ( Rule[il .no_vars, Rule[i].chains_in, 

Rule[i].chains_out >; 

average flux ( numrules ) 
int numrules; 

begin 
int i, total; 

total = 0; 
for ( i = 1 ; i <= numrules ; i++ 

total= total+ Rule[il.flux; 

return total I numrules >; 
end 

find_control_rules ( numrules, numgroups, avg ) 
int numrules, *numgroups, avg; 

begin 

end 

int i; 

for ( 
if 

= 1 ; i <= numrules ; i++ 
Rule[i] .flux> avg ) 

create_group ( i, numgroups ); 

group_rules ( numgroups 
int *numgroups; 

begin 
int i, j, done; 

done = false; 
while (not done 

end 

begin 

end 

done = true; 
j = *numgroups; 
for ( i = 1 ; i <= j 

if ( get_dependents 
done = false; 

i++ ) 
( Group[i].control_rule, numgroups, true) ) 

get_dependents ( rulenum, numgroups, newgroup ) 
int rulenum, *numgroups, newgroup; 

begin 
int i, j, n, assigned; 

I* loop through the target rules trying to assign them *I 
I* to the knowledge module of the current marked rule *I 
assigned = false; 
for ( i = 1 ; i <= Rule[rulenuml.chains out; i++) 

begin -
j = Rule[rulenum].dependent[il; 
n = Rule[rulenunO.group; 
I* make sure the target rule is not a control rule *I 
if (not Rule[j].control ) 

begin 
I* assign the target rule to the group if unaffiliated *I 
if ( Rule[j].group is 0) 

begin 
I* recursively try to assign all its *I 
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end 

end 

I* target rule's to its knowledge module *I 
group_rule C j, n, false >; 
get_dependents C j, numgroups, newgroup >; 
assigned = true; 

I* if the target rule belongs to another group, *I 
I* remove it from that group and create another *I 
I* group around the target rule *I 
else if ( Rule[j].group isnt n) 

begin 

end 

delete_rule C j ); 
if ( newgroup ) 

create_group ( j, nungroups ) ; 
else 

group_rule C j, n, false >; 
get_dependents ( j, numgroups, false >; 
assigned = true; 

end 

return assigned >; 
end 

create_group ( control_rule, numgroups 
int control_rule, *numgroups; 

begin 
C*numgroups)++; 
group rule ( control rule, *numgroups, true >; 

end - -

group_rule ( rulenum, groupnum, control ) 
int rulenum, groupnum, control; 

begin 
if ( control ) 

Group[groupn~.control_rule = rulenum; 
Rule[rulenum].control =control; 
Rule[rule~.group = groupnum; 
Group[grou~.no_rules++; 

Group[groupn~.rule[Group[gro~.no_rules] = rulenum; 
end 

delete rule ( rulenum ) 
int ruTenum; 

begin 
int i, j, oldgroup; 

I* take rule out of old group *I 
oldgroup = Rule[rulen~.group; 
for ( i = 1 ; i <= Group[oldgroup].no_rules i++ 

begin 
I* shift down by one *I 
if ( Group[oldgroup].rule[i] is rulenum 

begin 

end 

for C j = i; j < Group[oldgroupl.no_rules; j++) 
Group[oldgroupl.rule[j] = Group[oldgroupl.rule[j+1l; 

end 
Group[oldgroup].no_rules··; 

end 

print_rule ( i ) 
int i; 

begin 
int j; 

printf ( 11\n11 >; 
printf ( 11********** RULE %d **********\n11 , ); 

printf ( 11 Variables : 11 >; 
for ( j = 0; j < Rule[i].no vars; j++ 

printf c 11 %d 11 , Rule[iJ.var[jl >; 
printf ( 11\n" ); 
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end 

printf ( 11 Nunber of Vars %d \n11 , Rule[i] .no_vars >; 
printf ( 11 Fan In %d \n11 , Rule[i] .chains_in >; 
printf ( 11 Fan Out %d \n11 , Rule[i] .chains_out ); 
printf C 11 Chaining Flux %d \n11 , Rule[i] .flux ); 
printf ( 11 Knowledge Module %d \n11 , Rule[i] .group ); 
printf c 11 Dependent Rules : 11 ); 

for ( j = 1 ; j <= Rule[i].chains_out; j++ 
printf ( 11 %d 11 , Rule[i].dependent[j] ); 

printf C 11\n11 ); 

print_group C i ) 
int i; 

begin 
int j; 

printf C 11 \n11 ) ; 

printf ( 11********** GROUP %d **********\n11 , i ); 
printf ( 11 Base Rule : %d \n11 , Group[i].control_rule ); 
printf ( 11 Nunber of Rules : %d \n11 , Group[i].no_rules ); 
printf (, " Rules : 11 >; 
for C j = 1 ; j <= Group[i].no_rules; j++ 

printf ( 11 %d 11 , Group[il.rule[j] >; 
printf C 11\n11 ); 

end 
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APPENDIX B 

SAMPLE INPUT FOR THE COMPUTER PROGRAM 
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0 1 1 
1 2 2 
1 3 3 
1 4 4 
1 5 4 
1 6 4 
1 7 5 
1 16 5 
1 17 5 
1 81 5 
1 33 5 
1 106 5 
1 113 5 
1 114 5 
1 115 5 
2 9 6 
7 8 80 
8 96 7 
8 10 8 
8 11 9 
8 12 10 
8 13 11 
8 14 11 
8 15 11 
9 10 8 
16 18 6 
16 19 7 
16 20 8 
16 37 9 
17 93 10 
17 19 7 
18 21 11 
19 22 12 
19 23 13 
19 24 14 
19 25 15 
19 26 16 
19 27 17 
19 28 18 
19 29 19 
19 30 20 
21 31 21 
25 47 22 
25 121 23 
27 34 24 
27 36 25 
30 32 26 
31 92 27 
33 34 24 
33 28 18 
33 29 19 
33 30 20 
33 35 28 
33 25 15 
33 36 25 
33 37 9 
33 20 8 
34 38 29 
34 39 30 
34 40 31 
34 41 32 
34 37 9' 
39 42 33 
39 43 34 
39 44 34 
40 42 33 
40 43 34 
40 44 34 
41 42 33 
41 43 34 
41 44 34 
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43 45 35 
45 46 36 
47 48 37 
47 49 38 
47 50 39 
47 51 40 
47 52 41 
47 53 41 
47 54 41 
47 55 41 
47 56 41 
47 57 41 
47 58 42 
47 59 42 
47 60 42 
47 61 42 
47 62 42 
47 63 42 
47 64 42 
47 65 42 
47 66 42 
47 67 42 
47 68 42 
47 69 42 
47 70 42 
47 71 42 
47 72 42 
47 73 43 
47 74 44 
47 75 45 
49 76 46 
51 77 47 
51 78 48 
72 79 49 
73 80 50 
81 82 51 
81 83 52 
81 92 27 
81 93 10 
81 84 53 
83 85 57 
84 86 54 
84 87 55 
84 88 56 
86 89 58 
86 90 59 
89 91 60 
92 94 61 
92 95 62 
93, 94 61 
93 95 62 
94 96 7 
94 97 63 
94 98 64 
95 96 7 
95 97 63 
95 100 65 
95 101 66 
95 102 67 
95 103 68 
95 104 68 
95 105 68 
97 99 69 
106 107 70 
107 108 71 
107 109 72 
108 110 73 
109 111 74 
110 111 74 
111 112 75 
113 117 76 
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113 118 76 
113 116 77 
117 119 78 
117 120 79 
118 119 78 
118 120 79 



APPENDIX C 

SAMPLE OUTPUT FROM THE COMPUTER PROGRAM 
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Enter the tuple file name==> tuples.dat 

***** MAIN MENU ***** 
1. Statistics 
2. See Rule 
3. See All Rules 
4. See Group 
5. See All Groups 
6. Exit 

Choice ==> 

Number of Tuples 148 
Number of Rules 121 

Number of Groups 21 
Average Chaining Flux 135 
Maximum Chaining Flux 7840 

***** MAIN MENU ***** 
1. Statistics 
2. See Rule 
3. See All Rules 
4. See Group 
5. See All Groups 
6. Exit 

Choice ==> 3 

********** RULE 1 ********** 
Variables 1 2 3 4 5 

Number of Vars 5 
Chains In 1 

Chains Out 14 
Chaining Flux 980 

Rule Group 1 
Dependent Rules 2 3 4 5 6 7 16 17 81 33 106 113 114 115 

********** RULE 2 ********** 
Variables 2 6 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 9 

~********* RULE 3 ********** 
Variables 3 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 4 ********** 
Variables 4 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 5 ********** 
Variables 4 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
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Dependent Rules : 

********** RULE 6 ********** 
Variables 4 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining ·Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 7 ********** 
Variables 5 80 

Number of Vars 2 
Chains In 1 

Chains out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 8 

********** RULE 8 ********** 
Variables 80 7 8 9 10 11 

Number of Vars 6 
Chains In 1 

Chains Out 7 
Chaining Flux 294 

Rule Group 2 
Dependent Rules 96 10 11 12 13 14 15 

********** RULE 9 ********** 
Variables 6 8 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 10 

********** RULE 10 ********** 
Variables 8 

Number of Vars 1 
Chains In 2 

Chains OUt 0 
Chaining Flux 0 

Rule Group 10 
Dependent Rules 

********** RULE 11 ********** 
Variables : 9 

Number of Vars ': 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 2 
Dependent Rules 

********** RULE 12 ********** 
Variables 10 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 2 
Dependent Rules 

********** RULE 13 ********** 
Variables 11 

Number of Vars 1 
Chains In 1 

Chains OUt 0 
Chaining Flux 0 
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Rule Group : 2 
Dependent Rules : 

********** RULE 14 ********** 
Variables 11 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 2 
Dependent Rules 

********** RULE 15 ********** 
Variables 11 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 2 
Dependent Rules 

********** RULE 16 ********** 
Variables 5 6 7 8 9 

Number of Vars 5 
Chains In 1 

Chains Out 4 
Chaining Flux 80 

Rule Group 1 
Dependent Rules 18 19 20 37 

********** RULE 17 ********** 
Variables 5 10 7 

Number of Vars 3 
Chains In 1 

Chains Out 2 
Chaining Flux 12 

Rule Group 1 
Dependent Rules 93 19 

********** RULE 18 ********** 
Variables 6 11 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 21 

********** RULE 19 ********** 
Variables 7 12 13 14 15 16 17 18 19 20 

Number of Vars 10 
Chains In 2 

Chains Out 9 
Chaining Flux 3240 

Rule Group 3 
Dependent Rules 22 23 24 25 26 27 28 29 30 

********** RULE 20 ********** 
Variables 8 

Number of Vars 1 
Chains In 2 

Chains Out 0 
Chaining Flux 0 

Rule Group 17 
Dependent Rules 

********** RULE 21 ********** 
Variables 11 21 

Number of Vars 2 
Chains In 1 

Chains Out 1 
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Chaining Flux 2 
Rule Group 1 

Dependent Rules 31 

********** RULE 22 ********** 
Variables 12 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 3 
Dependent Rules 

********** RULE 23 ********** 
Variables 13 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 3 
Dependent Rules 

********** RULE 24 ********** 
Variables 14 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 3 
Dependent Rules 

********** RULE 25 ********** 
Variables 15 22 23 

Number of Vars 3 
Chains In 2 

Chains OUt 2 
Chaining Flux 48 

Rule Group 14 
Dependent Rules 47 121 

********** RULE 26 ********** 
Variables 16 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 3 
Dependent Rules 

********** RULE 27 ********** 
Variables 17 24 25 

Number of Vars 3 
Chains In 1 

Chains Out 2 
Chaining Flux 12 

Rule Group 3 
Dependent Rules 34 36 

********** RULE 28 ********** 
Variables 18 

Number of Vars 1 
Chains In 2 

Chains Out 0 
Chaining Flux 0 

Rule Group 11 
Dependent Rules 

********** RULE 29 ********** 
Variables 19 

Number of Vars 1 
Chains In 2 
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Chains Out 0 
Chaining Flux 0 

Rule Group 12 
Dependent Rules 

********** RULE 30 ********** 
Variables 20 26 

Number.of Vars 2 
Chains In 2 

Chains Out 1 
Chaining Flux 8 

Rule Group 13 
Dependent Rules 32 

********** RULE 31 ********** 
Variables 21 27 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 92 

********** RULE 32 ********** 
Variables 26 

Number of Vars 1 
Chains In 1 

Chains out 0 
Chaining Flux 0 

Rule Group 13 
Dependent Rules 

********** RULE 33 ********** 
Variables 5 24 18 19 20 28 15 25 9 8 

Number of Vars 10 
Chains In 1 

Chains Out 9 
Chaining Flux 810 

Rule Group 4 
Dependent Rules 34 28 29 30 35 25 36 37 20 

********** RULE 34 ********** 
Variables 24 29 30 31 32 9 

Number of Vars 6 
Chains In 2 

Chains Out 5 
Chaining Flux 600 

Rule Group : 5 
Dependent Rules : 38 39 40 41 37 

********** RULE 35 ********** 
Variables 28 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 4 
Dependent Rules 

********** RULE 36 ********** 
Variables 25 

Number of Vars 1 
Chains In 2 

Chains Out 0 
Chaining Flux 0 

Rule Group 15 
Dependent Rules 

********** RULE 37 ********** 
Var·iables 9 

Number of Vars : 1 
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Chains In 3 
Chains Out 0 

Chaining Flux 0' 
Rule Group 16 

Dependent Rules 

********** RULE 38 ********** 
Variables 29 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 5 
Dependent Rules 

********** RULE 39 ********** 
Variables 30 33 34 

Number of Vars 3 
Chains In 1 

Chains Out 3 
Chaining Flux 27 

Rule Group 5 
Dependent Rules 42 43 44 

********** RULE 40 ********** 
Variables 31 33 34 

Number of Vars 3 
Chains In 1 

Chains Out 3 
Chaining Flux 27 

Rule Group 5 
Dependent Rules 42 43 44 

********** RULE 41 ********** 
Variables 32 33 34 

Number of Vars 3 
Chains In 1 

Chains Out 3 
Chaining Flux 27 

Rule Group 5 
Dependent Rules 42 43 44 

********** RULE 42 ********** 
Variables 33 

Number of Vars 1 
Chains In 3 

Chains OUt 0 
Chaining Flux 0 

Rule Group 5 
Dependent Rules 

********** RULE 43 ********** 
Variables 34 35 

Number of Vars 2 
Chains In 3 

Chains Out 1 
Chaining Flux 18 

Rule Group 5 
Dependent Rules 45 

********** RULE 44 ********** 
Variables 34 

Number of Vars 1 
Chains In 3 

Chains Out 0 
Chaining Flux 0 

Rule Group 5 
Dependent Rules 

********** RULE 45 ********** 
Variables : 35 36 
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Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 5 
Dependent Rules 46 

********** RULE 46 ********** 
Variables 36 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 5 
Dependent Rules 

********** RULE 47 ********** 
Variables 22 37 38 39 40 41 42 43 44 45 

Number of Vars 10 
Chains In 1 

Chains OUt 28 
Chaining Flux 7840 

Rule Group 6 
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Dependent Rules 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 

********** RULE 48 ********** 
Variables 37 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 49 ********** 
Variables 38 46 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 6 
Dependent Rules 76 

********** RULE 50 ********** 
Variables 39 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 51 ********** 
Variables 40 47 48 

Number of Vars 3 
Chains In 1 

Chains Out 2 
Chaining Flux 12 

Rule Group 6 
Dependent Rules 77 78 

********** RULE 52 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 



********** RULE 53 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 54 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 55 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 56 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 57 ********** 
Variables 41 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Depenc;lent Rules 

********** RULE 58 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 59 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 60 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 
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********** RULE 61 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 62 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 63 ********** 
Variables 42 

Number of Vars 1 
Chains In ,1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 64 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 65 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 66 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 67 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 68 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
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Dependent Rules : 

********** RULE 69 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 70 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 71 ********** 
Variables 42 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 72 ********** 
Variables 42 49 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 6 
Dependent Rules 79 

********** RULE 73 ********** 
Variables 43 50 

Number of Vars 2 
Chains In 1 

Chains OUt 1 
Chaining Flux 2 

Rule Group 6 
Dependent Rules 80 

********** RULE 74 ********** 
Variables 44 

Number of Vars 1 
Chains In 1 

Chains OUt 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 75 ********** 
Variables 45 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 76 ********** 
Variables 46 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 
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Rule Group : 6 
Dependent Rules : 

********** RULE 77 ********** 
Variables 47 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 78 ********** 
Variables 48 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 79 ********** 
Variables 49 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 80 ********** 
Variables 50 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 6 
Dependent Rules 

********** RULE 81 ********** 
Variables 5 51 52 27 10 53 

Number of Vars 6 
Chains In 1 

Chains Out 5 
Chaining Flux 150 

Rule Group 7 
Dependent Rules 82 83 92 93 84 

********** RULE 82 ********** 
Variables 51 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 83 ********** 
Variables 52 57 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 7 
Dependent Rules 85 

********** RULE 84 ********** 
Variables 53 54 55 56 

Number of Vars 4 
Chains In 1 

Chains Out 3 
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Chaining Flux 
Rule Group 

Dependent Rules 

36 
7 
86 87 88 

********** RULE 85 ********** 
Variables 57 

Number of Vars 1 
Chains In 1 

Chains out 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 86 ********** 
Variables 54 58 59, 

Number of Vars 3 
Chains In 1 

Chains Out 2 
Chaining Flux 12 

Rule Group : 7 
Dependent Rules : 89 90 

********** RULE 87 ********** 
Variables 55 

Number of Vars 1 
Chains In 1 

Chains OUt 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 88 ********** 
Variables 56 

Number of Vars 1 
Chains In 1 

Chains OUt 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 89 ********** 
Variables 58 60 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group : 7 
Dependent Rules : 91 

********** RULE 90 ********** 
Variables 59 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 91 ********** 
Variables 60 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 7 
Dependent Rules 

********** RULE 92 ********** 
Variables 27 61 62 

Number of Vars 3 
Chains In 2 

69 



Chains Out 
Chaining Flux 

Rule Group 
Dependent Rules 

2 
48 
18 
94 95 

********** RULE 93 ********** 
Variables 10 61 62 

Number of Vars 3 
Chains In 2 

Chains Out 2 
Chaining Flux 48 

Rule Group 19 
Dependent Rules 94 95 

********** RULE 94 ********** 
Variables 61 7 63 64 

Number of Vars 4 
Chains In 2 

Chains Out 3 
Chaining Flux 144 

Rule Group 8 
Dependent Rules 96 97 98 

********** RULE 95 ********** 
Variables 62 7 63 65 66 67 68 

Number of Vars 7 
Chains In 2 

Chains Out 8 
Chaining Flux 1792 

Rule Group 9 
Dependent Rules 96 97 100 101 102 103 104 105 

********** RULE 96 ********** 
Variables 7 

Number of Vars 1 
Chains In 3 

Chains Out 0 
Chaining Flux 0 

Rule Group 20 
Dependent Rules 

********** RULE 97 ********** 
Variables 63 69 

Number of Vars 2 
Chains In 2 

Chains Out 1 
Chaining Flux 8 

Rule Group 21 
Dependent Rules 99 

********** RULE 98 ********** 
Variables 64 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 8 
Dependent Rules 

********** RULE 99 ********** 
Variables 69 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 21 
Dependent Rules 

********** RULE 100 ********** 
Variables 65 

Number of Vars : 1 
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Chains In 1 
Chains Out 0 

Chaining Flux 0 
Rule Group 9 

Dependent Rules 

********** RULE 101 ********** 
Variables 66 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 9 
Dependent Rules 

********** RULE 102 ********** 
Variables 67 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 9 
Dependent Rules 

********** RULE 103 ********** 
Variables 68 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 9 
Dependent Rules 

********** RULE 104 ********** 
Variables 68 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 9 
Dependent Rules 

********** RULE 105 ********** 
Variables 68 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 9 
Dependent Rules 

********** RULE 106 ********** 
Variables 5 70 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 107 

********** RULE 107 ********** 
Variables 70 71 72 

Number of Vars 3 
Chains In 1 

Chains Out 2 
Chaining Flux 12 

Rule Group 1 
Dependent Rules 108 109 

********** RULE 108 ********** 
Variables : 71 73 

71 



Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 110 

********** RULE 109 ********** 
Variables 72 74 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 111 

********** RULE 110 ********** 
Variables 73 74 

Number of Vars 2 
Chains In 1 

Chains Out 1 
Chaining Flux 2 

Rule Group 1 
Dependent Rules 111 

********** RULE 111 
Variables 

Number of Vars 
Chains In 

Chains Out 
Chaining Flux 

Rule Group 
Dependent Rules 

********** 
74 75 
2 
2 
1 
8 
1 
112 

********** RULE 112 ********** 
Variables 75 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

**********RULE 113 **********' 
Variables 5 76 77 

Number of Vars 3 
Chains In 1 

Chains Out 3 
Chaining Flux 27 

Rule Group 1 
Dependent Rules 117 118 116 

********** RULE 114 ********** 
Variables 5 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 115 ********** 
Variables 5 

Number of Vars 1 
Chains In 1 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 116 ********** 
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Variables 77 
Number of Vars 1 

Chains In 1 
Chains Out 0 

Chaining Flux 0 
Rule Group 1 

Dependent Rules 

********** RULE 117 ********** 
Variables 76 78 79 

Number of Vars 3 
Chains In 1 

Chains out 2 ' 
Chaining Flux 12 

Rule Group 1 
Dependent Rules 119 120 

********** RULE 118 ********** 
Variables 76 78 79 

Number of Vars 3 
Chains In 1 

'Chains Out 2 
Chaining Flux 12 

Rule Group 1 
Dependent Rules 119 120 

********** RULE 119 ********** 
Variables 78 

Number of Vars 1 
Chains In 2 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 120 ********** 
Variables 79 

Number of Vars 1 
Chains In 2 

Chains Out 0 
Chaining Flux 0 

Rule Group 1 
Dependent Rules 

********** RULE 121 ********** 
Variables 23 

Number of Vars 1 
Chains In 1 

Chains OUt 0 
Chaining Flux 0 

Rule Group 14 
Dependent Rules 

***** MAIN MENU ***** 
1. Statistics 
2. See Rule 
3. See All Rules 
4. See Group 
5. See All Groups 
6. Exit 

Choice ==> 5 

********** GROUP 1 ********** 
Control Rule 1 

Number of Rules : 28 
Rules : 1 2 9 3 4 5 6 7 16 18 21 31 17 106 107 108 110 111 112 109 

113 117 119 120 118 116 114 115 

********** GROUP 2 ********** 
Control Rule : 8 
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Nl.lllber of Rules 6 
Rules 8 11 12 

********** GROUP 3 ********** 
Control Rule 19 

Number of Rules 6 
Rules 19 22 23 

********** GROUP 4 ********** 
Control Rule 33 

Number of Rules 2 
Rules 33 35 

********** GROUP 5 ********** 
Control Rule 34 

Number of Rules 10 

13 14 15 

24 26 27 

Rules 34 38 39 42 43 45 46 44 40 41 

********** GROUP 6 ********** 
Control Rule 47 

Number of Rules : 34 
Rules : 47 48 49 

64 65 66 67 68 69 70 71 

********** GROUP 7 ********** 
Control Rule 81 

Number of Rules 11 

76 50 51 77 78 52 53 54 55 
72 79 73 80 74 75 

Rules 81 82 83 85 84 86 89 91 90 87 88 

********** GROUP 8 ********** 
Control Rule 94 

Number of Rules 2 
Rules 94 98 

********** GROUP 9 ********** 
Control Rule 95 

Number of Rules 7 
Rules 95 100 101 102 103 104 105 

********** GROUP 
Control Rule 

Number of Rules 
Rules 

********** GROUP 
Control Rule 

Number of Rules 
Rules 

********** GROUP 
Control Rule 

Number of Rules 
Rules 

********** GROUP 
Control Rule 

Nllllber of Rules 
Rules 

********** GROUP 
Control Rule 

Number of Rules 
Rules 

********** GROUP 
Control Rule 

Number of Rules 
Rules 

10 ********** 
10 
1 
10 

11 ********** 
28 
1 
28 

12 ********** 
29 
1 
29 

13 ********** 
30 
2 
30 32 

14 ********** 
25 
2 
25 121 

15 ********** 
36 
1 
36 

********** GROUP 16 ********** 
Control Rule : 37 
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56 57 58 59 60 61 62 63 



Number of Rules 1 
Rules 37 

********** GROUP 17 ********** 
Control Rule 20 

Number of Rules 1 
Rules 20 

********** GROUP 18 ********** 
Control Rule 92 

Number of Rules 1 
Rules 92 

********** GROUP 19 ********** 
Control Rule 93 

Number of Rules 1 
Rules 93 

********** GROUP 20 ********** 
Control Rule 96 

Number of Rules 1 
Rules 96 

********** GROUP 21 ********** 
Control Rule 97 

Number of Rules 2 
Rules 97 99 

***** MAIN MENU ***** 
1. Statistics 
2. See Rule 
3. See All Rules 
4. See Group 
5. See All Groups 
6. Exit 

Choice ==> 6 
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APPENDIX D 

USERS' GUIDE FOR THE COMPUTER PROGRAM 
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Users' Guide for the Program 

To start the program, enter the command 'flow' at the unix prompt. The program will first ask 

you name of the input file. The input file contains the intermediate knowledge representation tu-

ples describing the knowledge bas~. An intermediate knowledge representation tuple for this program 

is the form 

< Source Rule Number, Target Rule Number, Variable Number>. 

Once the correct file name is entered, the program will calculate the chaining flux of each 

rule, determine the control rules of the knowledge base, and then partition the knowledge base into 

knowledge modules based upon the control rules. 

After the knowledge base is partitioned, the program will then display the main menu and a 

prompt for your selection. 

***** MAIN MENU ***** 

1. Statistics 

2. Show Rule 

3. Show All Rules 

4. Show Knowledge Module 

5. Show All Knowledge Modules 

6. Exit, 

Choice ==> 

The first choice, statistics, shows the statistics of the entire knowledge system. These in-

elude the number of tuples read from the input file, the number of rules in the knowledge base, the 

number of partitions, the average chaining flux of the knowledge base, and the maximum chain1ng flux 

of the knowledge base. 
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I 
Thetsecond choice, show a rule, displays information about a selected rule. The information 

printed includes the variables referenced in the rule, the fan-in of the rule, the fan-out of the 

rule, the chaining flux of the rule, the knowledge module to which the rule belongs, and the rules 

which are directly dependent upon the selected rule. 

The third option, show all rules, displays the above information for each rule in the knowledge 

base. 

The fourth choice, show a knowledge module, displays information about a partition of the 

knowledge base. The information displayed includes the base rule of the knowledge modules, the 

number of rules in the knowledge modules, and the rules assigned to the knowledge module. 

The fifth choice, show all knowledge modules, displays the above information for each partition 

of the knowledge system. 

The sixth and final choice, exit, halts execution of the program and returns you back to the 

unix prompt. 



Thesis: 

VITA - ' 
' ' 

Steven Bruce Cudd 

Candidate for the Degree of 

Master of Science 

ADAPTING SOFTWARE ENGINEERING PRINCIPLES TO 
DIAGRAM, MODULARIZE, AND ANALYZE RULE-BASED 
EXPERT SYSTEMS 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Warrensberg, Missouri, August 
5, 1965, son of George S. and Barabara J. Cudd. 

Education: Graduated from Minco High School, Minco, 
Oklahoma, in May 1983; received Bachelor of Science 
Degree with a double major in Mathematics and Com
puter Science from Oklahoma State University in May 
1987; completed requirements for the Master of Sci
ence degree at Oklahoma State University in May 
1990. 

Professional Experience: Senior Programmer Analyst, 
MPSI Systems Inc., June 1987 to July 1989; Senior 
Systems Analyst, MPSI Software, July 1989 to pres
ent. 




