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PREFACE 

The road and trail detection algorithms are part of ongoing work by 

Texas Instruments, Inc. in the area of intelligent weapon systems. The author 

is employed by the Defense Systems Electronics Group of Texas Instruments in 

the Multi-Sensor Autonomous Target Recognition Branch of the Image 

Processing Laboratory. The Image Processing Laboratory is currently 

addressing a variety of programs with the need for road and trail detection. 

One of these programs is a demonstration of the technologies involved 

m using an autonomous air vehicle to locate camouflaged targets. This 

program successfully integrated the trail detection algorithm. 

I wish to thank Texas Instruments for their cooperation and 

encouragement in completing my graduate studies, and especially my co

workers in the Image Processing Laboratory who contributed their ideas and 

time to this effort. I also wish to thank Dr. Charles Bacon, not only for his 

guidance, but for all the little things he did in helping me to complete my long 

distance graduate work. 
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CHAPTER I 

INTRODUCTION 

The identification of battlefield vehicles in real time is a difficult 

problem. An automatic target recognition (ATR) system must search large 

areas for relatively small targets. A target vehicle's appearance may be 

affected by sensor degradation, atmospheric effects, occlusion, and varying 

aspect angles. Furthermore, the inclusion of natural camouflage and 

camouflage nets has become commonplace in ATR scenarios. A knowledge 

base containing all relevant models could easily become unmanageable. Such 

diverse considerations place great demands on an ATR system. 

Scene context information improves image understanding and helps to 

reduce processing requirements. In particular, road and trail detection can be 

useful. Many vehicles require roads to traverse difficult terrain. Others may 

leave tracks as an indication of their presence. Scene context processing as a 

top-down approach provides a means of reducing the target search area by 

focusing on and around roads. Scene context clues could also be used in a 

bottom-up fashion to increase the confidence of a nearby target candidate. 

A general approach to road or trail detection consists of two stages, each 

of which may utilize feature knowledge. Segmentation is the first. If the road 

or trail boundaries are not correctly delineated, it is much more difficult to 

recognize their features. Knowledge of road and trail features can guide the 

segmentation process. The second stage is for the algorithm to identify the 

roads and trails by their features. Once an algorithm has obtained the optimal 
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segmentation of the roads or trails, features can be used to evaluate each scene 

object for road or trail-likeness. 

This second stage process of identification is more complex for trails than 

roads. In this discussion, "road" refers to a vehicle path which appears in map 

data, while "trail" will refer to one that does not. In trail detection, the 

identification process must be substantially more powerful than in road 

detection. The area to be processed when searching for trails is very large, 

while road locations are restricted to within the error bounds of the map. Also, 

the availability of map data will allow road detection to restrict its 

consideration to a subset of all possible features. For example, the map can 

guide the algorithm to a section of the road that is known to be straight. In 

road detection, the features select the most road-like object, while in trail 

detection the feature evidence must be substantial enough to determine if a 

trail exists at all. 

It is clear that when map data is available, the problem of detecting roads 

is greatly simplified. The availability of map data reduces the computational 

burden since the processing would not involve the entire image, but only the 

most likely areas. Being able to focus the search also helps to control false 

alarms. The digital map provides information about the location and size of 

many of the road features. Unfortunately, trails, tracks, and many secondary 

roads do not appear in map data. 

In the area of road detection, much of what has already been 

accomplished applies to imagery viewed from an autonomous land vehicle. 

New algorithms are needed for aerial imagery at various ranges and 

resolutions. 

Existing algorithms for trail detection were not discovered. Therefore, 

this research combines the general ideas of several knowledge-based 



3 

computer vision researchers and applies them specifically to trail detection. 

Many details of their approaches have been changed to make them applicable 

to real time systems. The majority of previous work lies in the area of 

applying knowledge to segmentation. This work goes beyond segmentation to 

address the recognition problem. 

This research addresses the problems of finding both roads and trails for 

application in automatic target recognition scenarios. Chapter 2 provides a 

summary of existing road detection algorithms. It also discusses research in 

knowledge-based segmentation which contributed to this work. Chapters 3 

and 4 describe the details of the road and trail detection algorithms, 

respectively. Considerable time was devoted to evaluting the trail detection 

performance and those results are presented in Chapter 5. Conclusions and 

suggestions for continued work are given in Chapter 6. 



CHAPTER II 

SURVEY OF ROAD AND TRAIL 

DEfECTION 1ECHNIQUES 

Road Detection Algorithms 

Previous road finding algorithms have investigated related scenarios. 

McKeown and Denlinger (19 8 8) have made significant progress on road 

tracking by combining two independent approaches. Their algorithm 

currently requires inputs of road starting location, width, and direction. 

Kuan, Phipps, and Hsueh (1988) have developed a road following algorithm for 

an autonomous land vehicle. The Duda road operator used by SRI (Fischler, 

1981) applies only to low resolution imagery and is sensitive to road 

orientation. 

For use in automatic target recognition, the road detection algorithm must 

be insensitive to orientation, and applicable to aerial imagery at a variety of 

ranges ~nd resolutions. This eliminates the direct application of the Duda road 

operator and autonomous land vehicle approaches. This new approach to road 

detection differs from all of the above approaces by emphasizing the real time 

processing requirements. Processing time is reduced by focusing the search 

on straight road segments only. 
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Knowledge-Based Segmentation 

Some researchers have investigated the application of knowledge to 

improve the segmentation process without addressing the recognition 

problem. The purpose of the generic geometric models proposed by Fua and 

Hanson (1987) is to provide an intermediate level of image representation. 

This intermediate level contains only semantically meaningful combinations 

of low-level features for input to a high-level reasoning system. There are 

three key elements to this approach. First, the generic model describes 

characteristics that belong to a wide class of objects. These characteristics 

include parallelism, collinearity, and surface uniformity. Second, the model 

5 

utilizes both edge and area features. More than one object feature may contain 

information relevant to its identification. Therefore, it is important to have a 

technique for integrating features. A third aspect is that the model must 

suggest a means of predicting and verifying missing components. These 

components may be missing due to thresholds or occlusions. Fua and Hanson 

show examples of using these models to detect buildings, roads, and trees. The 

output of their algorithm identifies regions that exhibit the characteristics 

desired by the models. 

The use of multiple features is also a primary theme in the work of 

Reynolds, Irwin, Hanson, and Riseman (1984 ). They describe a system in 

which feature extraction begins at a very course resolution. Next, the 

algorithm evaluates these features using models appropriate for that level of 

resolution. This process repeats at a finer level of resolution, but only for 

those areas with a high confidence of containing a goal object. Since the 

search area is reduced, the algorithm can apply more expensive evaluation 

procedures. The evaluation process employs the integration of line and region 
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features. This type of integration is similar to that suggested by Fua and 

Hanson. However, Reynolds is more specific about his approach. He makes use 

of the common pixel based representation of both regions and lines. For 

example, a set of lines can be superimposed on the boundary of a region. Thus, 

these lines form a group. A line could also group regions. Reynolds applies 

this approach to the detection of buildings. Rectangularity characterizes 

buildings. To detect this property, the orientation of lines are histogrammed. 

Two groups of lines 90 degrees apart indicate potential buildings. As described 

above, lines are combined with regions, which provide intensity and size 

information. 

Fua and Reynolds each use knowledge about the goal object to improve 

segmentation. More general knowledge about vision is stated in the Gestalt 

laws. Nazif and Levine (1984) use rules to apply Gestalt laws. These laws state 

that proximity, continuity, closure, and other related factors play a role in 

vision. For example, regions that are in close proximity are more likely to 

have a relationship than those that are far apart. Nazif and Levine form a rule 

that combines proximity with statistical information to merge similar adjacent 

regions. They also use rules to integrate multiple features. Another of their 

rules inhibits the merging of two regions due to the presence of a line at the 

common boundary. The importance of the rule-based approach is that 

knowledge is applied only when appropriate conditions exist. 

Application to Trail Detection 

This new algorithm utilizes Fua's three basic premises: generic models, 

multiple features, and predicting missing components. However, only the 

generic model relating to roads, parallelism, was fully developed. The 
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technique for combining multiple features came from Reynolds (1984). 

Finally, a rule-based approach using Gestalt laws described by Nazif (1984) was 

used to fill in missing components. This research goes beyond Fua's 

intermediate level of representation and completes the recognition process for 

the detection of trails. 



CHAPTER III 

ROAD DETECTION ALGORITHM 

Introduction 

The first step in road detection is to prepare a subimage based on the 

information from a digital map. Next, the subimage is processed to enhance 

the road's characteristics. The two most important concepts behind this 

approach to road detection are the modified median filter and the Hough 

transform. The modified median filter is applicable because of its !

dimensional size filtering capability. In the case of road detection, the width 

may be known within some degree of certainty while the length may be too 

great to be of practical use. In fact, when detecting straight road segments, it 

will be assumed that the longer the segment the more likely it is to be a road. 

The Hough transform will be used to provide information about large groups 

of pixels that fall in a straight line. 

Digital Map 

The digital map provides longitude and latitude of end points of straight 

line segments that define the median strip of roads. Even though the map 

provides information about the location and size of the features, there are 

inaccuracies in the data. In addition, there are also errors in the position of 

the aircraft relative to earth coordinates and errors in the gimbal angles that 

define the sensor line-of-sight. All of these errors result in the map features 
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being miss-registered with the image. This miss-registration must be 

accounted for in the search for the features. However, we can transform the 

map features from object space to image space and define an uncertainty 

region in the neighborhood of the projected points in which to conduct the 

search. 

Figure 1 shows how the map errors combine to determine the size of the 

uncertainty region. The length of the required subimage is based on the 

road's predicted length, the tolerance on the predicted length (tol_length), 

and the tolerance on the location (tol_loc). Since the worst case must be 

accounted for, the length of the uncertainty subimage is the sum of these 3 

values. 

9 

The subimage width is more difficult to calculate because of the worst case 

effect of orientation errors. The tolerance in orientation (tol_omt) must be 

accounted for in both directions of rotation. Therefore, the amount that 

orientation errors contribute to the width of the subimage is 

length*sin(tol_omt). The width of the road also contributes to the subimage 

width. Again accounting for both directions, (width+tol_width)/cos(tol_ornt) 

is added to the subimage width. Since the modified median filter requires a 

substantial number of neighbor pixels for its calculations, an additional 

border is added to the subimage. The filter requires half its size on each side. 

Therefore, the vertical filter width is added to the subimage width, and the 

horizontal filter width is added to the subimage length. 

The subimage is extracted from the original image as indicated by Figure 

2. As the pixels are selected from the original image, they are rotated by the 

predicted orientation. The centerpoint of the subimage is at the predicted 

location of the road. 



tol_loc 

length* sin(tol_ornt) 

(width+tol_ width) 
/cos(tol_omt) 
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subimage length = length + tol_length + tol_loc 

~-----------
predicted road ---.------------

worst case actual road 

Figure 1. Calculating Subimage Size 

Figure 2. Subimage Location 
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Modified Median Filter 

Modified median filtering is a background suppression technique which 

eliminates regions of improper size. It is actually a variation of the median 

filter, which finds the median value of the pixels that fall within a specified 

window as that window slides across the enti~e input image. The modified 

median filter can be thought of as an alternative to the contrast box screener. 

Rather than using only pixel :values from the input image, the modified 

median filter uses the results of previous calculations to determine its next 

value. These differences are illustrated for a window of size three in Figure 3. 

The result of using a !-dimensional filter of size 2N+l is that everything 

smaller than N is eliminated from the scene. 

The modified median filter can also be used to eliminate regions that are 

larger than a given size. The output of using a filter of size 2N+ 1 can be 

subtracted from the original input image to retain only objects that are 

smaller than N. The process~s for rejecting small and large clutter can be 

combined as in Figure 4 such that only objects of a specified size are left. By 

applying the absolute value to the results of the subtraction, both targets of 

hot and cold contrast can be detected. The entire process is shown step by step 

in Figure 5. 

Hough Transform 

The Hough transform (Gonzalez, 1987) is a technique for mapping shapes 

in images into an associated parameter space. In its generalized form, which 

is difficult to implement and quite time consuming, the Hough transform is 

capable of detecting any shape whose characteristics are known. The Hough 
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Figure 5. Multiple Filter Results 
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transform can be used to extract lines by replacing the problem of detecting 

collinear sets of points in an image with the problem of finding intersecting 

lines in the parameter space. 

The slope-intercept form , y = mx + b, where m is the slope and b is the 

intercept of the line with the y-axis, can be used to describe a line in image 

space. All points (x,y) on a line will have the same values for m and b. A point 

can be transformed to parameter space using the equation 

b = -xm + y. Each point in image space produces a single line in parameter 

space. The intersection of lines in parameter space indicate values of m and b 

for collinear sets of points. 

The problem with the above approach is that the parameter space for m,b 

is unbounded. This makes the implementation impractical. This is resolved 

using the normalized parameters p and 9, where 9 is the angle of a line relative 

to a reference axis, and p is the distance from the origin normal to that line. 

The equation of a line becomes p = y cos(9) + x sin(9). The value of 9 is now 

restricted to 180 degrees, and p to twice the length of the diagonal of the image. 

The slope-intercept form gives a straight line in parameter space, while the 

normalized parameters result in a sinusoidal curve. 

The computational implementation of the Hough transform space is an 

array whose dimensions are the quantized levels of p by the quantized levels of 

9. The transform is applied to each point of interest in an image. The 

procedure involves varying e through its quantized range, calculating a value 

for p with each e, and then assigning the value for p to its nearest quantized 

level. The array element which corresponds to this p and 9 is incremented. 

Peaks in this transform space indicate line equations that encompass the 

maximum number of points. A row of points in image space and their 

corresponding mutual location is Hough space is shown in Figure 6. 
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Figure 6. Hough Transform 
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Road Detection Implementation 

The digital map can provide an estimate of the road orientation and size. 

The greatest possible error from the map data must be incorporated in 

determining the median filter size. In order to get the maximum effectiveness 

from the filter in the least amount of time, the filter will be run once in the 

horizontal direction and once in the vertical direction. In the direction 

parallel to the length of the road, everything shorter than the expected size of 

the road will be eliminated. This will include a significant amount of clutter 

since the road is expected to be long. Everything larger than the width of the 

road will be eliminated in the direction perpendicular to the road. The filter 

could be run again in each direction to eliminate clutter thinner than the road 

in the direction perpendicular to the road, and anything known to be longer 

than the road in the direction parallel to the road. However, this is avoided 

because of the increase in computation time and the minimal improvement in 

the performance. 

After the image is filtered, it is thresholded to reduce the total number of 

pixels, leaving only those of relatively high contrast. This threshold value is 

determined from the average contrast of the filtered image multiplied by some 

constant. The constant being used is 2. The resulting output is a binary image. 

Another step to reduce the number of pixels, as well as improve the 

accuracy of the Hough transform, is to thin the regions remaining in the 

image. This is done by checking each non-zero pixel in the image, and if the 

one above it is 0 and the one below it is non-zero, then change that pixel to 

zero. If this process goes from top to bottom, the result is that the region is 

thinned to one pixel along the bottom edge of the region. This process can also 

be executed in either the horizontal or vertical direction, depending on the 
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expected orientation of the road. If a pixel meets the above conditions and is 

changed to zero, its contents are added to the one below it. The remaining 

pixel will represent the width of the region at that point. Figure 7 shows how 

a region is thinned down to one pixel along the lower boundary representing 

the width of the road. 

The next step is to create the Hough transform space as in 

Figure 6. In the transform space, e is quantized by whole degrees, and the 

distance is quantized by whole pixels. Since the expected road orientation is 

known, only e values that are within a certain tolerance of that orientation 

need be included. 

The expected width of the road is also known. The p and e location in the 

transform space will be incremented to reflect how close the width at that 

pixel is to the expected width. From the thinning algorithm, a pixel location 

contains the width of the. region at that point. The value of the increment to 

the transform space should be at a maximum when the pixel value is equal to 

the expected width. The amount that the current pixel value differs from the 

expected width is subtracted from the expected width and added to the 

appropriate transform space location. 

Once the Hough transform is completed, appropriate peaks must be 

selected from the transform space. The top peaks ( currently 3 of them) must 

be local maxima and separated by a p distance greater than the expected width 

of the road. The p and e values of these top peaks are used to determine exactly 

which pixels are part of that candidate road. A pixel is considered to be part of 

the road if its p value at the peak e is within some t?lerance of the peak p. 

The lowest and highest row and column values for each pixel within the 

tolerance are kept for determining the length of the road. The difference in 
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the 2 row values is squared, the difference in the 2 column values is squared, 

and the square root of the sum of the squares is taken. This length is 

necessary for determining the road-likeness of a set of points. 

Certainty Measurements 

Two measures of certainty are used to evaluate the remaining sets of 

points. The first is based on the length and is calculated from the equation: 

( 1 - Expected width I Detected length ) ** 2 

The ratio of width to length is essentially a measure of elongation. The smaller 

this value is, the more road-like the set of points and therefore it is subtracted 

from 1, which is the maximum possible score. This result is squared to spread 

the values for better comparison. The expected width is used rather than the 

detected width since the detected width varies along the length of the segment. 

These variations in the detected width form the basis of an alternative 

certainty measurement. 

The second measure of certainty counts the total number of pixels in the 

set forming a Hough peak that are above some percentage of the predicted 

width and divides it by the total number of pixels in the length. 

( # pixels > % predicted width ) I ( total # pixels in Hough set ) 

This can be thought of as a density check on the road surface. This forces 

errors· in width and length to be weighted more equally. 

Road Detection Results 

The road detection algorithm was tested on a set of 40 images. The 

algorithm requires as input the width, length, orientation and position of each 

road. For an error bound of 15% on position and no error in width, the 



probability of detection was 85%. An example of a detected road and its 

corresponding elongation certainty value is shown in Figure 8. 
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Since road detection can use the map to reduce the search area, and less 

evidence in the form of features is required to verify the position, one of the 

most important considerations in the development of road detection algorithm 

was processing time. A careful evaluation was done to isolate the most time 

consuming steps in the algorithm and the code was optimized. It must be kept 

in mind that the input width and tolerance on the orientation both affect the 

required processing time. Therefore, the evaluation was performed with these 

values fixed. The worst case for road width in the image database was 19 pixels, 

and the worst case error in orientation, based on current map data, is 15 

degrees. 

The tests were performed on a VAX 785 which completes 1 operation per 

microsecond. The results for subimages of 2 different sizes are shown in 

Figure 9. The timing achieved both in terms of seconds and operations per 

pixel are well within the requirements of present ATR systems. 



a) Original Image of Road 

b) Extracted Subimage 
with rotation 

Figure 8. Road Detection Results 

c) Detected Road 
Certainty = 0.7476 
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Image Size 87x99 181x145 

MMF (horizon tal) 0.16 sec 0.50 sec 

MMF (vertical) 0.10 sec 0.42 sec 

Average/Threshold 0.10 sec 0.27 sec 

Thinning 0.07 sec 0.21 sec 

Hough Transform 0.18 sec 0.52 sec 

Peak Detect 0.46 sec 1.04 sec 

Confidence (3 peaks) 0.15 sec 0.46 sec 

Total 1.22 sec 3.42 sec 

VAX (1 OP /micro sec) 141 op/pixel· 130 op/pixel 

Figure 9. Road Detection Timing Analysis 



CHAPTER IV 

TRAIL DETECTION ALGORITHM 

Introduction 

Since no map data is available, trails must be identified by their features. 

A trail can be broken into segments which are characterized by parallel lines. 

Linear features are useful for identifying parallel relationships and easy to 

parameterize. Parallelism can be represented by a generic geometric model. 

Curves more accurately describe the trail, but are difficult to parameterize. 

Therefore, the approach involves both features. Reynolds (1984) has 

described how features with a common pixel-based representation can be 

combined in a straight-forward manner. 

Figure 10 depicts the general organization of the trail detection 

algorithm. The first step is to extract features from an input image. There are 

three features which combine to provide the necessary information for trail 

detection; they are lines, edges, and regions. The feature extraction 

subfunctions pass their results to the rule-based reasoning. The reasoning 

analyzes and combines features. The output from the reasoning is the precise 

location of edges that the algorithm has determined to be trails. 

24 
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Figure 10. Trail Detection Method 
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Line Extraction 

The purpose of line extraction is to detect linear features and identify 

relationships between them. The procedure used in trail detection for 

extracting lines is based on the Bums' line detection algorithm (Bums, 1988). 

The most distinctive characteristic of a trail is the anti-parallel nature of 

its two sides. Anti-parallel lines are lines whose gradient phases are 180 

degrees different; that is, a transition in an image from light to dark pixels is 

180 degrees different from a transition from dark to light pixels. The 

information from the Bums algorithm makes it possible to identify anti

parallel lines. 

The first step in the Bums' line detection algorithm generates gradient 

magnitude and gradient phase maps using a Prewitt edge operator. The 

gradient phase of a pixel computed by the edge operator has a value between 0 

and 360 degrees. To group pixels into line support regions, the algorithm 

partitions gradient phase into 16 intervals of 22.5 degrees each. A second 

phase map is also generated; it is offset from the previous phase map by 11.25 

degrees. One phase map is insufficient because lines become fragmented 

when their orientation is close to the partition boundary. The phase maps are 

then relabeled such that each group of similar phase is given a unique label. 

The algorithm has also been tested using 8 phase intervals for each of the two 

maps for a total of 16 phase values. When this smaller value is used, the effect 

is to create longer lines, but subtle changes and shorter lines are less 

detectable. 

The algorithm combines the two resulting connectivity maps using a 

voting procedure. Each pixel in the image gets one vote, and it casts its vote 

for the larger of the two phase regions that overlaps it. After all votes have 
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been cast, each pixel location is labelled with the highest scoring region that 

overlaps it. 

Lines are then fitted to the remaining regions. This is done using 

moments, with the gradient magnitude as the weighting. A line's orientation, 

equation, and endpoints are calculated. These parameters determine which 

lines are anti-parallel. The maximum and minimum distance between lines, 

and the maximum angular deviation are inputs to the parallel line detection 

portion of the algorithm. The output is an array flagging line pairs which are 

anti-parallel. 

The algorithm used in this study deviates from the Bums approach by 

applying a filtering process to the phase regions before voting and again 

before lines are fitted. The purpose of this filtering is to eliminate small 

regions and gaps caused by the voting procedure. This helps to reduce the 

amount of information that must be stored. Filtering is important in the trail 

detection because it is the phase regions that are overlayed with edges. Phase 

regions are used as opposed to the fitted lines because they are wider and thus 

allow for a larger tolerance in the overlap. Information about the 

correspondence between lines and edges is improved if the phase regions are 

smooth. The filtering process works as follows: if the majority of a region's 

neighboring pixels are of one phase interval which differs from the initial 

region's phase by not more than two intervals, then the region's phase is 

changed to reflect that majority. 

For the input scene in Figure 11a, the resulting fitted lines are shown in 

Figure 11 b. The lines corresponding to the straight · segments of the trail are 

the most prominent in the output image. This is the strength of the line 

extraction algorithm. However, there is no straight-forward method for 
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Figure 11. Trail Features 



identifying a relationship between the two pieces of the trail using lines 

alone. 

Edge Extraction 

Edge extraction detects and highlights boundaries in an image. Unlike 
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lines, edges are capable of accurately representing object boundaries which 

are curved. Lines can always be described by a first order equation and their 

parameters are derived primarily from the gradient phase map. Edges are 

typically represented by higher order equations and edge extraction focuses 

on manipulating the gradient magnitude map using local phase. 

The edge extraction algorithm is based on the work of John Canny (1988). 

He describes three performance criteria which apply to a general purpose 

edge detection problem. The first of these is good detection. There should be a 

high probability of marking a pixel that is part of an edge, and a low 

probability of marking something that is not an edge. The second criteria is 

localization. That is, the pixel that is marked should be as close as possible to 

the center of the edge. The third criteria involves eliminating multiple 

responses. Multiple responses are really a subset of good detection. However, 

the mathematical form for good detection corresponds to maximizing the 

signal-to-noise ratio. Therefore, the multiple response criteria must be made 

explicit. Canny shows there is a direct tradeoff between good detection and 

localization of step edges based on operator width. 

These criteria are used to derive optimal operators for step edges. When a 

Gaussian operator, which is much less computationally intensive, is used to 

estimate the optimal operators, there is a 20% reduction in performance. We 

have found the Prewitt filter to be the easiest to implement and suitable for 



both edge and line extraction. Thus, the edge extraction uses the same 

magnitude and phase maps generated for use in the line extraction. 
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Canny (1988) also combines the concepts of adaptive thresholding and 

hysteresis to reduce the effects of noise. The present algorithm selects an 

upper and lower threshold from a histogram of the gradient magnitude map 

for the given input image. Hysteresis reduces streaking in the following way. 

The threshold selected from the lowest percentage of pixels in the histogram is 

applied to the entire image. After the lower threshold is applied, local minima 

in the magnitude map are suppressed. This results in a thinned magnitude 

map. The upper threshold selects the strongest peaks to be used as starting 

points for the edge tracing routine. 

Tracing begins with a peak that is above the upper threshold, and 

subsequent pixels for that edge are found by looking 90 degrees from the 

phase for a pixel that is still on. All pixels which belong to the same edge are 

given the same label in the output image. 

Edge extraction results for the. input scene of Figure lla are shown in 

Figure llc. The edge extraction algorithm is capable of accurately 

representing curvature as well as straight segments. In fact, both 

characteristics may belong to the same edge. This is the key to joining the 

piecewise linear features. 

Region Extraction 

Although the reasoning process does not currently include regions, they 

are potentially useful for trail detection. However, the use of regions was 

considered, and several strengths and weaknesses were found. 



Region extraction segments the image into homogeneous regions. The 

SCENESEG algorithm developed at Texas Instruments oversegments an input 

image and iteratively merges regions with similar statistics. Because of the 

statistical nature of the scene segmenter, it is capable of describing trail 

surface uniformity. Although a trail may contain some discontinuities, the 

algorithm can use this uniformity measurement to increase or decrease the 

confidence that an area actually contains a trail. 

3 1 

The image in Figure lid shows the results of SCENESEG applied to the 

image in Figure lla. This result illustrates that the scene segmenter handles 

curvature. The region that corresponds to a trail has a consistently narrow 

width compared with a much greater length. However, this elongation is 

difficult to parameterize. A common procedure for calculating elongation 

involving moments fails because it cannot be guaranteed that the pixels on a 

trail will be a unique function of x with respect to y or vice versa. It is also 

very difficult to describe the relationship between two regions for the purpose 

of reasoning. As shown in Figure lid, it is not clear whether region 1 is above 

or below region 2. This becomes important when a decision is being made 

about merging regions. 

Reasoning 

Rule-based reasoning utilizes scene features synergistically to identify 

trail-like areas in a scene. Each rule consists of a condition/action pair. When 

the features meet the conditions of a Gestalt law or the generic geometric 

model, then the rule updates those features. There are three steps in the 

reasoning process; they are edge enhancement, feature evaluation, and trail 

candidate enhancement. 
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The purpose of the edge enhancement is to obtain the best representation 

of edges before any feature evaluation occurs. The feature evaluation forms a 

ranked list which is used to focus attention on trail-like objects in the trail 

candidate enhancement stage. The three parts of the generic geometric model 

defined by Fua (1987) are general goal object characteristics, integration of 

multiple features, and prediction of missing components. Feature evaluation 

involves the goal object characteristic of parallelism and integration of 

features. The third aspect, prediction of missing components, is addressed in 

trail candidate enhancement. 

Ed&e Enhancement 

A preliminary part of the reasoning process is edge enhancement. The 

edge enhancement rules either link or break edges and employ the Gestalt 

laws (Nazif, 1984) of proximity and continuity. Since Gestalt laws are a general 

principle of vision, these rules apply to all edges in an image. 

The results of the edge extraction algorithm often contain edges which 

are broken. The purpose of the edge linking routine is to fill those 

discontinuites according to the Gestalt law of continuity. The tracing method 

used for linking differs from the tracing method used to generate the initial 

edges in that it refers to the original magnitude and . phase maps, rather than 

the ones which were thresholded and thinned. Tr~cing begins at the endpoint 

of an edge and continues until another edge is encountered, as shown in 

Figure 12a. If the edge that is encountered links to the edge that linked to it, 

then the rule will join these two edges. It does this by extending the edge 

which required the fewest pixels to reach the other edge. The rule erases any 

extraneous pixels from the second edge, and relabels the remaining pixels. 
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Figure 12a shows disconnected edges and the course from their endpoints 

through the magnitude map. In this example, edge 2 links to edge 3, but edge 3 

does not link to edge2. Therefore, they cannot be connected. Edge 1 and edge 2 

link to each other. Figure 12b shows the resulting edge connected by the 

shortest link. 

In certain cases, a rule is needed to split edges. The purpose of this rule is 

primarily to simplify the reasoning task. Occasionally, an 'edge is connected to 

both sides of a trail due to image anomalies or obscuration. Figure 12b 

illustrates this condition. The algorithm can avoid additional complications by 

breaking such an edge at an appropriate point. The rule must break any edge 

that overlaps two or more line support regions which are parallel. An edge 

that meets this condition is traced, keeping track of the line support regions 

that it passes through. The rule starts a new label when an edge enters a line 

support region that is parallel to one which has already been encountered. 

The results are shown in Figure 12c. 

Feature Evaluation 

The purpose of the evaluation process is to form a ranked list of edge 

pairs which are the most trail-like in the image. This list then functions as a 

focus of attention mechanism to give processing priority to trail-like objects. 

Feature evaluation forms the list by calculating a score which IS based on 

the amount of parallelism between edge pairs. The first step is to determine 

line phase regions which correspond with edges. This is similar to Reynolds' 

common pixel-based superimposing technique (Reynolds, 1984), but uses edges 

and lines instead of edges and regions. Line phase regions work well for this 

process since they are usually greater than one pixel thick, and thus an exact 
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match is not necessary. The algorithm stores the number of overlaps between 

each edge and line in an array. 

Next, the information in the overlap array is combined with the parallel 

array output by the line extraction. If edge 1 overlaps line 1, and edge 2 

overlaps line 2, and line 1 is parallel to line 2, then there is some parallelism 

between edge 1 and edge 2. The amount of parallelism, indicated by the 

overlap array, is accumulated in a score array. This process essentially 

connects together multiple parallel line sets overlapped by the same edge pair. 

At this point, the feature evaluation could form the ranked list based on 

the accumulated score array. However, single long edges tend to dominate 

those scores. Instead, the score is the product of the minimum accumulated 

edge/line overlap and the average accumulated edge/line overlap. This tends 

to emphasize edges that are close to the same length rather than long edges 

paired with several very short edges. Figure 13 illustrates several example 

score calculations. 

Trail Candidate Enhancement 

Using the ranked list of edge pairs, the algorithm can now make a 

hypothesis about the location of a trail and try to find more evidence to 

substantiate that hypothesis. If the hypothesized trail is truly a trail, and one 

of its edges appears in the ranked list more than once, then it logically follows 

that there is a relationship between the other two edges with which it is 

paired. Figure 12c illustrates an example. If edge 1 and edge 2 form a pair, and 

edge 1 and edge 3 form a pair, then there may be a relationship between edge 2 

and edge 3. If a relationship can be established, then the score of the 

resulting trail should be even higher than either of the two separate trails. 
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The initial trail hypothesis is the top-scoring pair; the algorithm then 

searches the ranked list to find other pairs which contain one of its edges. 
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Only a certain number of the highest scoring pairs become the hypothesis, but 

the search list contains every pair of edges whose score is greater than zero. 

Once the algorithm finds a match, it must determine if there is a relationship 

between the two edges that are parallel to the same edge. The desired 

relationship is collinearity, although this description is used somewhat loosely 

since the trail can be curved. However, if the two edges already exist on the 

list as a pair, their relationship is known to be parallel rather than collinear, 

and the algorithm need not investigate further. 

When two edges are found that are parallel to the same edge, two 

additional conditions must exist before the rule executes. First of all, the rule 

must establish a link between the two edges. The geometric model of 

parallelism suggests the location of this missing component. The rule 

searches the appropriate area in the magnitude map in a manner similar to 

that used in the edge linking routine. The difference is that only one of the 

edges has to link to the other. The second condition is that the score of the 

new trail must be greater than the score of any previous trail which included 

either of the new trail's edges. In order to find the necessary score, entries in 

the ranked list that are higher than the current hypothesis are searched for 

relevant edges. If a match is found, the corresponding score is used as the 

score that the new pair must beat. In the case of Figure 12c, the score of the 

new connected edge is sufficient. The new pair replaces the old as shown in 

Figure 12d. 

After all changes are made for a particular hypothesis, the feature 

evaluation process repeats. The result is a new ranked list. A new hypothesis 
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is selected, and the process begins again. This continues until the algorithm 

has investigated the desired number of hypotheses. 

A final application of the feature evaluation process results in a score for 

each of the remaining edge pairs which indicates their trail-likeness. The 

algorithm applies a threshold to these results; edge pairs above the threshold 

are output as trails, while those below the threshold are discarded. As a final 

step in the processing, a special subfunction removes from the ends of the 

edges all pixels which do not contribute to the score. 

Summary of Trail Detection 

Algorithm 

The first step in the trail detection algorithm is to generate the edge and 

line features from an input image. The line features form the basis of the 

generic model used: parallelism. Rules are used in the feature enhancement 

stage to combine edges based on proximity and closure. Feature evaluation 

combines edges and lines by measuring edge pairs against the parallel line 

model to select trail candidates. The trail candidate enhancement predicts and 

verifies missing trail components. 

Once all of the desired feature enhancements have been completed, a 

final score is assigned to the trail candidate edge pairs. The calculations 

involved in this score, based on parallelism and length, are the criteria for 

identification. The final step is to apply a threshold to this score. The 

experimental results, discussed in the following section, are helpful in 

determining the threshold value. 



CHAPTERV 

TRAIL DETECTION EXPERIMENTAL RESULTS 

Test Database 

The test database for the trail detection performance evaluation contained 

93 images. All trails were ground-truthed for their average width and length 

in pixels and for percent occlusion. Some images contain multiple trails. 

Figures 14 and 15 show width and length distributions for the test images. The 

width distribution indicates that trails with a width of less than 10 pixels may 

be over-represented in this test set. The length distribution has a more 

uniform population. This is relevant since the scoring mechanism is based on 

length. In the case of a very short trail, the algorithm may select the trail as 

its top candidate, but its length may not be large enough to put it above the 

score threshold. 

The database consisted primarily of FUR images, but includes some TV 

images, also. Natural terrain features are more apparent in the high spatial 

frequency information from TV, but that does not appear to be the case for the 

line or edge features used to detect trails. Therefore, no parameter adjustments 

are made based on the type of input imagery. 

Test Parameters 

Trail detection performance is affected by inputs and thresholds used 

within the algorithm. The program requires inputs of median filter and 
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Prewitt operator sizes, minimum and maximum separation between parallel 

lines, and a score threshold. 

Input Parameters 
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Median filtering is used for preprocessing. Generally, this improves the 

quality of the features and smoothes out noise. However, if the filter size used 

is too large, it may remove trails with a small width. The trail detection 

algorithm usually responds well when a filter size of 5 is used, unless the trail 

width is 3 or less. In these cases, a filter size of 3 must be used. 

The same filter size that was used for median filtering is used in the 

Prewitt filter. In edge extraction, a larger Prewitt filter size will result in a 

better signal-to-noise ratio while a smaller filter size gives better localization 

and more detail. The Prewitt filter size used may also affect the grouping of 

pixels into regions in the line extraction. The same restriction on filter size 

compared with trail width applies to the Prewitt filtering. In particular, if the 

filter size is larger than the width of the trail, both sides of the trail cannot be 

detected in either of the feature extraction algorithms. 

The primary input to the line extraction function is the minimum and 

maximum separation between parallel lines. If these values are precisely 

known, the performance of the trail detection algorithm will be better. 

However, they can be entered with whatever degree of accuracy they are 

known. For our experiments, the values used were plus or minus 25% of the 

ground-truthed width. 

The score threshold is the most critical input in determining if a trail will 

be detected. The tests were conducted using a very low score threshold of 100. 

This provides the data to compare false alarms per image with performance 



based on detection percentages. In this way, an application could select a 

score threshold according to its own performance requirements. 

Fixed Parameters 
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Image independent parameters are fixed within the trail detection 

algorithm. Edge extraction determines the upper threshold for selecting seed 

pixels from the top 20 percent of magnitude values. The lower threshold is set 

at 100 percent. This upper threshold was selected by experimentation. The 

lower threshold is used because the reasoning subfunction is going to allow 

tracing to any pixel regardless of its magnitude value. 

A threshold on minimum line length is used to discard short lines and 

thus reduce the amount of data that must be stored. This threshold is set at 5 

pixels. This value can be increased to reduce processing time, but will also 

have an affect on performance. If a curved trail is represented by several 

short lines, it is possible that those lines may be too short to be retained. 

Another threshold that affects all trails, but particularly those that are 

curved, is the angle tolerance on anti-parallel lines. Lines may be broken into 

small pieces to fit the edge of a curving trail. However, the lines on the other 

side of the trail may be fit in such a way that no anti-parallel lines are 

detected. This angle tolerance may also affect relatively straight trails whose 

edges are vague or not straight. These are the reasons the angle tolerance has 

been set to a very liberal 10 degrees. 

In the reasoning subfunction, a specified number of top scoring 

candidates are used as seeds for linking. . The algorithm attempts to link each 

of these to some second, larger number of trail candidates. These values are set 
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at 10 and 50. This will affect the output of trail detection if the features break 

the trail into several short pieces none of which are in the top 10 scores. 

Performance Measures 

There are several difficulties in defining performance measurements 

because of the problems inherent in ground-truthing image features. It is not 

always clear whether a particular pixel is part of the trail or not. Sometimes 

the output contains extraneous edges while in other cases parts of the trail are 

missed. Decisions involving these situations were left to the operator. 

However, in most cases where any part of the trail was correctly detected, it 

was counted as a detection. 

Another phenomena occurred frequently enough to address it directly. 

In many cases, only one of the output edges matched the edge of the trail. Two 

reasons for this became apparent. The first is that the features from one side 

of the trail may be strong enough to force an incorrect pairing into the output 

list even when the features from the other side of the true trail are weak. The 

second reason is that most trails have a visible shoulder. Keeping in mind the 

goals of scene context processing, it is just as useful to know the boundaries of 

the trail shoulder as it is the boundaries of the trail itself. Therefore, detection 

of the trail shoulder was counted as a correct detection. 

Performance Analysis 

Figure 16 shows the probability of detection versus trail width in pixels 

for a score threshold of 1000. The trail width axis was broken into intervals 

that contain roughly equal number of images. The graph shows poor 

performance for trails thinner than 4 pixels. The most obvious explanation 
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for this is that small widths are sensitive to median filtering. Another possible 

explanation is not related to width at all. Most of the trails with small widths 

have small widths because they are at a long range. This could cause the 

features to be degraded for the same reasons that it is difficult to identify 

anything at long range. The graph also shows a slight drop in performance 

for large widths. Again, range probably has a role. At close range, features 

may have a different appearance, and many new features have become 

visible. 

Figure 17 shows false alarms per image versus trail width. This graph 

indicates that as the trail width increases, there is also an increase in false 

alarms. This is probably due to omitting the surface features. Also, the 

concept of proximity in the Gestalt laws has been violated. 

The receiver operating characteristic for the entire data base is 

illustrated in Figure 18. It shows the relationship between probability of 

detection and false alarms per image for decreasing score thresholds. As 

expected, lowering the score threshold increases the probability of detection, 

but has a corresponding increase in false alarms. This plot is useful for 

determining a score threshold given the requirements of a particular ATR 

system. 

Parameter Sensitivity and 

Detection Limitations 

The image of Figure 19a pushes the limitations of the trail detection 

algorithm. Figure 19b shows the results for inputs of 2 to 15 for minimum and 

maximum separation between anti-parallel lines, and a score threshold of 

2000. The distance of 2 to 15 will liberally cover the widths of all the trails in 
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this image. The score threshold of 2000 is relatively high, but was found to be 

reasonable for reducing the false alarm rate over a larger data base of trail 

images. The result for a score threshold of 100 is shown in Figure 19c. The 

desired trails for the image of Figure 19a are labelled in Figure 19d. 

Trails A and B are easily detected even with the higher score threshold of 

2000. Trails C through G illustrate one situation where the algorithm is limited. 

The difficulty with these trails is that many of them overlap one another. 

When the Prewitt filter passes over this area, multiple trails may fall within its 

window. The result of this is that either one trail dominates and the other is 

ignored or the output is random. A good example for this case is trail C. It 

intersects in several locations with tracks that are of higher contrast. Not 

only is trail C of low contrast, but its width is relatively smaller and therefore 

sensitive to filter size. When the filter size is small enough to detect trail C and 

D, it loses its smoothing effect on all trails, thus causing many of the edges to 

be broken. The threshold on seed trails comes into play here for a number of 

reasons. The edges are broken up which makes it difficult for a small piece to 

get into the top ten seed trails, especially when there are so many trails in the 

image and only ten are selected. Added to that is the condition that each trail 

consists of two tracks, and thus it is possible to form several different 

combinations of trail candidates for each one. A more critical factor affecting 

trails D through G is that they are curved. In this image, trails D through G are 

curved, and the lines are affected in the ways described above for curved 

trails. 

Example Results 

The final results for the infrared image of Figure lla are shown in Figure 

lle. One trail was selected for output. The algorithm used a median and 
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Prewitt filter size of 5. The range for parallel lines was 1 to 10. The results 

indicate that the reasoning process was successful in reconnecting several of 

the broken edges. 

Figure 20 contains a sharply curving trail, partially obscured by trees. 

The parallel line separation input was 3 to 10. One trail exceeded the score 

threshold. Although its edges end abruptly due to obscuration by trees, the 

result is still a correct detection. 

The image of Figure 21 appears to contain a plowed field. In this case, 

there is more than 1 trail to be detected. The input for parallel line separation 

was 6 to 10. The algorithm selected 5 trails. Of these, 4 are correct trails while 

the fifth is a single vehicle track or shoulder. Because of their trail-like 

characteristics and proximity to the actual trail, it is common for the 

algorithm to detect a road shoulder. 

Figure 22a is a TV image of vehicle tracks. For a parallel line separation 

input of 3 to 7, the results are shown in Figure 22b. The algorithm detected the 

tracks in 3 separate pieces. When the parallel line separation input is 

changed to 10 to 20, only 1 trail is output which consists of the outer edges of 

the tracks. Its result is shown in Figure 22c. 

Timing Analysis 

The trail detection algorithm was implemented in FORTRAN on a VAX 6220 

computer. Figure 23 contains information about 3 images which were among 

the most CPU intensive in our database. Because of the reasoning functions, 
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a) Input image of field 
with multiple trails 

b) Five detected trails 

Figure 21. Plowed Field 
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processing time is effected by the image contents as much as input parameters 

and image size. In general, it would seem that a smaller range of separation 

between parallel lines would reduce the number of features passed to 

reasoning, and thus reduce the processing time. This is not directly supported 

by the data in Figure 23 since a larger separation (image 2) took less time than 

a smaller separation (image 1). However, tests which varied that parameter 

would probably support that concept. With respect to image size, a 5% 

reduction in size (between 2 and 3) corresponds to a 14% reduction in 

processing size. Again, this reduced processing time may not be directly 

related to image size. What actually proved to be the case throughout the 

database is that the algorithm processing requirements are so dominated by 

image features that any rule relating processing time to anything else would 

always have exceptions. 

The critical issue in this evaluation was maximum processing time. The 

images included in Figure 23 were not selected based on their size or trail 

widths ( and thus input parameters), but because they indicate the worst cases 

for processing time from among the database. The goal was to keep processing 

time for a 256x256 image within 5 minutes. This was accomplished. 
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IMAGE IMAGE SIZE FILTER SIZE MIN/MAX TIME 
SEPARATION MIN:SEC 

1 256x256 5 1 , 10 4:34 

2 256x256 5 3 , 15 4:18 

3 256x242 5 1 , 10 3:41 

Figure 23. Trail Detection Processing Requirements 
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CHAPTER VI 

CONCLUSIONS 

We have shown that map information is helpful for detecting roads. Not 

only does it improve the probability of detection, but it also significantly 

reduces processing time. Map information allows our algorithm to be 

restricted to a subset of all possible features. By selecting only linear 

segments, the Hough transform can be applied in a straight-forward manner. 

The modified median filter enhances regions of the proper size. This results in 

an algorithm that is suitable for a variety of imagery containing roads at 

various ranges, and is substantially faster than existing road detection 

algorithms. 

The trail detection algorithm is unique m its effort to recognize trails 

without the aid of map cues. This algorithm succeeds by combining several 

techniques from existing computer vision research. The rule-based approach 

and combination of multiple features are essential elements of this algorithm, 

and the content of the rules and choice of features were determined in this 

study. The trail detection algorithm goes beyond applying knowledge in the 

segmentation phase and addresses the identification phase. 

The trail detection algorithm demonstrates effective performance for 

both TV and IR imagery. This characteristic can be particularly advantageous 

in an ATR system employing multiple sensors. Another strength of the 

algorithm is its ability to recognize trails despite occlusions and curvature. 



These strengths result in a trail detection algorithm that is applicable in a 

variety of scenarios. 

Future Work 

58 

The framework of the rule-based reasoning allows for knowledge 

expansion. There are several areas in which additional knowledge would 

improve trail detection performance. The algorithm needs a better 

understanding of how to deal with occlusions. Other scene regions 

characterized by anti-parallel lines could be mistaken for trails. A rule could 

incorporate knowledge about the subtle differences between vehicle tracks 

and trails. 

For a scenario in which scene context processing is applicable, it is 

expected that the images would be highly cluttered with natural camouflage. 

Therefore, it is likely that the trails will be obscured in such a way that no 

actual link can be detected. The image of Figure 20 illustrates this case. The 

detected trail ends abruptly due to a tree, even though several pieces of the 

trail extend past that tree. At present, the algorithm makes changes in the 

edge image only when a link can be established in the magnitude map. A new 

rule could handle this case. In this rule, proximity would have to be a 

consideration as well as a strict collinearity requirement for both sides of the 

trail. The rule could use line parameters calculated in the line extraction to 

determine collinearity. 

The trail detection algorithm could use knowledge to discriminate 

between trails and other scene regions with linear features. For example, 

rivers and plowed fields both have parallel edges. The ability to identify these 

areas would be useful not only for trail detection, but for the scene context 
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processing problem as a whole. Differences between rivers and trails would 

be difficult to detect without the use of lasar radar, but a rule could incorporate 

knowledge that multiple lines indicate a texture pattern rather than a trail. 

This type of knowledge would give the trail detection algorithm a better 

understanding of the image in Figure 21. 

By utilizing range information, rules could expand the trail detection 

algorithm to detect vehicle tracks. Range information allows the algorithm to 

predict the width of the trail and also the width of vehicles of interest. As a 

result, the line extraction could restrict tolerances on the distance between 

anti-parallel lines. Two closely spaced pairs of anti-parallel lines at a distance 

equal to the width of the vehicle would characterize tracks. These 

characteristics are somewhat more complex than those of a trail; therefore, 

false alarms would be uncommon. Even the detection of a short section with 

these characteristics would be a strong indication of the presence of a vehicle. 
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