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GLOSSARY 

ARMA model:· 'Auto Regressive Moving Average model. 
' ' 

Adaptive segmentation: A technique by which a signal is 

broken into l.ike parts. When the characteristics of the 

input signal significantly qhange the signal is segmented. 
' 

BAM: Bidirectional Associative Memory, a generalization of 
' ' 

the Hopfield Associative Network. A type of network in 

which an input serves to retrieve a stored associated 

output. 

Classifier: A mathematical model which assigns an element 

membership in a class according to its characteristics. 

Conne'ction weights: The '(alue assigned to a connection 

between neurons, analogous to a synapse. The value of the 

connect~on weight determ~nes how much of the incoming signal 

is passed to the connected neuron. 

EEG: Electroencephalogram, electrical brain impulses caused 

by ne~ron firings. 

Error back-propagation: A supervised learning method in 

which the error between the actual output and the target 

output is fed back thro~gh the network altering connection 

weights as it goes, ~n·order to decrease the network error. 
I 

FFT: Discrete Fast Fourier Transform of a time function into 

a frequency domain to determine the individual frequency 

ix 



components and relative power of each component. 

Fixed-length segmentation: Breaking a signal into arbitrary 

fixed length portions. 

Gradient: The maximum rate of change in a variable or a 

function. 

Hanning: A pre-scaling or windowing' function.used to make a 

sampled waveform coherent- .with the window interval. 

Hidden layer: Any of one or more neuron layers between the 

input and output neuron layers. 

Hopfield network: This is a Content Addressable M~mo~y 

Network capable ,of taking a partial ·input pattern and 

retrieving the 'entire associated pattern, also described as 

an autoassociator. 

Input layer: The layer of neurons .into which the input 

signal is initially propagated into the network. 

Mapping continuity: A mathematical transformation -in which 

similar input have s~miia~ outputs. 

Motility signal: A sensor -signal containing to animal 

movement data. 

Neural network: A mathematical model of the brain's neurons. 

A system of neurons interconnected by synapses. 
- > 

Neuron Normalized: An input value'scaled from between the 
1 ' ~ • 

minimum and maximum possible input value~ to between 0 and 

1, the neuron value 'range. 

Neuron: A basic proc~ssing_element in a Neural Network, also 

a nerve cell in a biological system. In eith~r case it has a 

number of input signals which are summed and compared 

X 



against a threshold value. If the threshold is reached, an 

output signal is generated which is equal to the neuron's 

activation value. 

No Power model: The simplest Neural Network Classifier model 

used in this pro.ject. The input pattern is Neuron 

Normalized and there is one input neuron per pattern data 

point. 

Output layer: The layer of neurons from which Neural Network 

response is presented. 

PA: Period Analysis. 

Proportional'Total Power model: A' neural network Classifier 

model used in this project: The input pattern is 

preprocessed by replacing each data points value with its 

proportion of total power. ·This input pattern is then 

Neuron Normalized ·and there is one input neuron per pattern 

data point. 

R0 : The set of all ~eal numbers in n dimensional space. 

Sigmoid function: -A conti~uously differentiable transfer 

function, known for i"t;:s s sha·p~ when plotted. 

1 
s (x) = ------

( 1 +e (-Gal.n*x)) 

Stereotype behavior: standard repetiti~e animal behaviors. 

Supervised learning: This i~ a method by which an external 

source tells the network the amount o'f output error present_, 

so the neural network weights may be. adjusted to reduce the 

error. 

xi 



Time series: A Time Series is a set of numbers that are 

assumed to be taken at an equally spaced time interval 

measuring some ongoing activity. 

Total Power model: A Neural Network Classifier model used in 

this project. The input pattern is summed and added as an 

additional last,data point~ This input pattern is then 

Neuron Normalized and there is one input neuron per pattern 

data point. 

Transfer function: A,function which determines what neuron 

activation valu~ is to be o~tput. Typical transfer 

functions are l~near, sigmoidal, or threshold. 

Window: A finite time slot wherein a sample group is derived 

from a time function. 

xii 



CHAPTER I 

INTRODUCTION 

The purpose of tbis proje~t is to develop a motility 

data analy~is syst~m-for use by scientific researchers. The 

software should .run on a personal ~ompute~ and identify the 

different animal- motor behaviors and their occurrence times, 

from stored data files. 

Ba~kground 

Central ne+Vous system disorders or drugs used in the 

treatment of diseases affect the motor behavior of humans. 

Laboratory animals are often used in experiments designed to 

understand these effects better. Despite the importance in 

experiments of moni toririg motor behavior, most· 'laboratory 

animal motility data is gathered and analyzed manually by 

either directly observing'the.animals or studying a video 

tape. Unfortuna~ely these methods are subjective and very 

time consuming. .'An objective automated motility data 

gathering and analysis system would be of great benefit to 
' . 

researchers. 

1 
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While animal activity monitors have been developed that 

measure one or two behaviors, none exist that can monitor 

multiple behaviors simulta~eously[9]. I have investigated 

the use of a modified Stoelting activity monitor system 

which is capable of recording multiple motor behaviors by 

using a radio-frequency capacitanc·e field transducer that 

provides 'an output-signal that varies with the movements 
l!J I 

within the field of the transducer. The frequency 
. / 

components of th~ movemen~s ·that c?mprise a behavior and the 

amplitudes o'f these movements. govern their effect on the 

output signal~ Repeated head ~wings could generate a two 

hertz signal with a very la~ge amplitude, while respiration 
. 

generates a two hertz signal with a small amplitude. The 

output is a single DC anal~g signal composed of the multiple 

frequencies generated b'y the .animal's different motor 

behaviors. This signal is st·~red as a time series I 

digitized at 128 .integer'poin~s per second and stored onto a 

floppy disk. This data format is referred to as a time 

series. 

The analysis method used to dat~ [9,10,11] on the 

Stoelting monitor data consisted of a Fast Fourier Transform 

(FFT). The FFT was used to obtain power spectra for each 1-

second segment of motility data, then the spectra were 

averaged across a _large samp~ing pe~iod. ~inally the log of 

the mean of the power spectra was taken. While this 

analysis method has demonstrated certain behaviorally 
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correlatable frequency signatures it has not been capable of 

producing a method of accurately characterizing different 

complex behaviors. 

Problem Statement 

The problem I am attempting to solve is to develop the 

analysis algorithms necessary' to assess quantitatively the 

simultaneous occurrence of individual motor'movements from 

the recorded motility data. For the system to be of 

practical use to scientific <researchers the analysis 

algorithms should be capable of being executed on a 

relatively inexpensive Personal Computer system in a 

reasonable amount of time. With these constraints in mind a 

PC-80386/80387 system was chosen for system development. 

These analysis algorithms should be capable of cataloging 

the animal's motor behavior< at all times into one of t<he 

following defined behavioral categories: sniffing, licking, 

gnawing, grooming and< respiration, but should also allow for 

another category for undefined behavioral type. The general 

approach should also be applicable to othe~ defined 

behaviors. 



CHAPTER II 

MODEL DEVELOPMENT AND METHODOLOGY 

Introduction 

A three fold approach to solving the motility analysis· 

problem was considered. · First develop a method to segment . 

the signal into small port.ioris of .like behavior. Next 

develop a technique to charac,terize each segment such that 

individual behaviors have a unique, although variable, 

identifiable signature. This· can be viewed as feature 

extraction or signal preprocessing to enhance 

distinguishable features· between behaviors. Finally develop 

a method to correctly classifi these signatures into 

behavior categories. 

A set of test qata was obtained by recording motility 

data and simultaneously videotaping the behavior of three 

male Sprague-Dawley rats, 60 - 90 days old. 

Animals were opserved for 15 minutes and.then received 

a subcutaneous injeqtion of apomorphine HCL (0.25 - 0.50 

mgjkg). Observations continued for an additional 60 

minutes. The drug injection resulted in an increase in the 

occurrence of repetitive movements,, and the recordings . 

obtained during this period provided the samples of motility 

4 
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data which were analyzed during the remainder of this 

project. During this time the animals were also video 

taped. The videotape was recorded using a time code 

generator which puts a time stamp on every picture frame, 30 

per second. These tapes were viewed by an animal behavior 

specialist who scored the tapes annotating the beginning and 

ending time of a segment and what,behavior was observed. 

This manually scored data was used to determine the overall 

accuracy of the ~nalysis algorithms. 

Development Tools 

I developed the graphical display, Fast Fourier 

Transform (FFT) and Period ,Analysis (PA) analysis software 

using the scientific software development package ASYST 

Version 3.01 scientific system by Macmillan Software 

Company. This package uses q very powerful stack-based 

fourth generation language, including a very large library 

of scientific and graphics functions. Due to certain ASYST 

limitations I used Turbo C Version 2.0 for both Neural 

Network implementations, data conversion utilities, and 

certain graphical display software. 

Segmentation Methods 



One potential segmentation method involves using an 

Autoregressive Moving Avera~e (ARMA) model [1,4,15,19] to 

·segment the motility signal adaptively at points 

corresponding to a chan~e· in animal behavior. The 

autoregression technique involves adaptive,segmentation of 

6 

the signal_ using an autocorrelation function '·(ACF) • An ACF 

is calculated for a fixed window at the beginning of the 

segment and' :for a window moving forward through the signal 

step by step. The Spectral Error Measure (SEM) is computed 

between the fixed window ACF ~nd the moving window ACF. The 

SEM value reflects changes i:p the spectral characteristics 

of the signal. The moving window is stepped through the 

signal one-data po~nt at a time. At each step the moving 
. ' . 

window's ACF is updated and the SEM recalculated. A segment 

boundary is ·defined when th~ SEM remains ~bove an arbitrary 

threshold for a given numbe~ of steps. At this point the 

entire procedure is repeated~ Each one of the resulting 

signal segments would then be behaviorally-characterized by 

another analysis method. 

Fixed Length 

The second analysis method considered involves 

segmenting the 'signal into arbitrary fixed length segments. 



The segment length would be determined by the minimum 

meaningful duration of the possible animal behaviors being 

analyzed. Then each fixed length signal segment would be 

behaviorally characterized by an analysis method to be 

discussed later. Similarly categorized adjacent segments 

would be grouped together as one continuous behavior 

segment .. 

Segmentation Evaluation 

7 

Animal motor behavior activity segments of interest to 

laboratory research last anywhere from several seconds to 

several minutes at a time. 'It was judged that the increased 

accuracy potential of adaptive segmentation as shown in 

TABLE I would provide only a marginal improvement over a 

fixed length segmenting technique, using a small fixed 

length. The discriminant function analysis of the data was 

performed by the statistical software package SAS. 



TABLE I 

DISCRIMINANT FUNCTION ANALYSIS OF MOTILITY 
CHARACTERIZATIONS USING FFT ANALYSIS 

PERCENT CORRECT CLASSIFICATIONS 

SIGNAL ANALYSIS TECHNIQUE 

Behavior 1-Second Segment 

Respiration 98% 
Sniffing 83% 
stereotyped Sniffing 73% 
with Head Swing 
Stereotyped Paw Lick 80% 

Adaptiye Segment 

100% 
100% 

88% 

88% 

8 

Also an ARMA adaptive segmentation method would require 

considerably more computational overhead than fixed length 

segmenting. After considerable deliberation the fixed 

length signal segmentation method was chosen as the 

segmentation technique arid a fixed segment length of 1-

second was selected for this p'roject. The 1-second segment 

length was a compromise between the greater expected 

classification accuracy from a longer segment length and the 

need to be able to identify short duration behaviors. This 

selection allowed maximum concentration on the 

characterization technique which is essential to either 

segmentation method. 

Characterization Methods 
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Two segment characterization methods were explored, 

Fast Fourier Transform (FFT) [2,17] and Period Analysis (PA) 

[5,6,17]. Variations on these methods were investigated in 

an attempt to find a technique"th~t would provide a unique' 

·identifiable signature for each one of the behaviors to be 

characterized. The motility data was !ead in 30 second 

portions; the mean were calculated then subtracted from the 

data to remove·the DC component. 

In the FFT characterization technique [2,17] a complex 

signal can be analyzed and th'e contribution of each 

frequency component to the ·total signal power can be 

determined. Eadh 1-seco~d data segment was Hanning Windowed 

[17] to reduce sidelob~s, then the FFT was calculated. This 

magnitude was squared,' giving the power, and finally the LOG 

of the power was computed; the LOG of the power was'used in 

all FFT characterizations. 

Upon visual inspection th,e, 1-:second FFT LOG of the 

power vector from 1 to 20 hertz appeared to give a 

behaviorally correlatable signature, but there was a 

considerable amount of variation between samples of the same 

behavior. 
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In the PA characterization method [5,6,17] the motility 

data first were run through a 64 hertz low pass digital 

filter. Then, the total number of zero base line crosses of 

the signal segment was calculated, subtracted by one, and 

divided by two, giving the Major period component of the 

segment. Next the first derivative of the segment was taken 

and again the number of zero base line crosses of the signal 

segment was computed, subtracted by one, and divided by two, 

giving the Intermediate period. Last the second derivative 

of the segment was taken and again the number of zero base 

line crosses of the signal segment was computed, subtracted 

by one, and divided by two, giving the Minor period. These 

three values reflect the frequencies of the three most 

prominent components of the signal segment. This technique 

has been used by NASA in electroencephalogram (EEG) 

telemetry data compression [6]. 

Characterization Evaluation 

Initial motility signal PA values appeared inconsistent 

with visual appearance of the signals. In an attempt to 

evaluate apparent PA characterization contradictions, two 

synthetic signal data files were created and analyzed by 

both FFT and PA. Since motility data signal components 

often have one or more orders of magnitude difference in 
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amplitude the two test files both contained signals with two 

hertz and eight hertz frequency components, but different 

amplitude ratios. For the purpose of mimicking the motility 

data characteristics both test signals had two hertz 

components that were the same amplitude. However, file 

SIN28.3 had an eight hertz component one third the amplitude 

of the two hertz and file SIN28.6 contained an eight hertz 

component one sixth the amplitude. TABLE I shows the 

results of the Period Analysis on t~e two test signals. 

Test Signal 

SIN28.3 

SIN28.6 

TABLE II 

TEST SIGNAL PERIOD ANALYSIS 

Major 

2.1099 

2.0645 

PERIOD 

Intermediate 

8.0000 

4.4356 

Minor 

8.0000 

4.4356 

After some analysis it was determined that the 

erroneous PA values for test pignal SIN28.6 were caused by 

the large amplitude difference between the component 

signals. Th~s large amplitude difference caused the eight 

hertz component contribution to be erratic in producing 

turning points and points of inflection in the composite 



signal as happened in the S~N28.3 signal. This is an 

inherent shortcoming of the Period Analysis method. 

Principal EEG component signal amplitudes are similar in 

magnitude. Thus, this error did not affect EEG uses of 

Period Analysis [5,6]'. However, this flaw makes PA 

unsuitable for motility signal c~aracterization. 

12 

These same two synthetic motility test signals were 

used to evaluate the 1-second F~T-capability. Repeated 1-

second FFTs of the test·signals all had identical values for 

each signal and had no trouble correctly identifying the two 

frequency components, rega~dless·of the power ratios. While 

the Hanning Windowing reduced sidelobes it caused 'a certain 

amount of spectral power leakage from the 2 and 8 hertz bins 

into neighboring frequency bins. In figures 1 and 2 the 

graphical displays of FF~ patterns take th~ LOG of the power 

values between 0 and 15 'and 'normalize them between 0 and 1. 

In view of the clearly superior accuracy of the FFT method 

over PA I chose the-FFT method for signal characterization. 

The results of these two-test signals are, displayed in 

figures 1 and 2. 



13 

Sln3,28 

1 to 20 Hertz FFT 

Figure 1. Neuron Normalized SIN3.28 FFT Pattern 

sin6 .28 

1 to 2.0· Hertz FFT 

Figure 2. Neuron Normalized SIN6.28 FFT Pattern 
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Classification Methods 

For the characterization classification problem the 

use of two different types of pattern re~ognition 

classifiers ~ere investigated. The two pattern recognition 

classifiers are a Bidirectional Associative Memory (BAM) 

[12,13,14,16,18] Neural Network and a multi-layer non-linear 

Neural Network with error back-p~opagation [16,18]. 

The Bidirectional Asso9iative Memory examined was a 

two-layer nonlinear feedback Neural Network [12]. A BAM is 

a generalization 9f a Hopfield network. This network is 

capable of bidirectional.information flow allowing two-way 

associative search for stored associations (A1-, B1 ) [ 12]. 

The associative information,is encoded in a BAM by summing 

the correlation matrices of the associated pairs[12]. 

Passing information through the correlation matrix M gives 

one directi9n while passing.it through its transpose MT 

gives the other. A BAM's maximum'storage capacity of m 

associated pairs for reiiabl~ recall from a matrix of 

dimensions nand pis limited to m<min(n,p) [12]. Therefore 

to classify 'five twenty-point patterns,-a twenty by six BAM 

matrix is required. The identification code used was 

arbitrarily set in sequence for each pattern pair. Best 
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results are obtained when the associated vector pairs are 

encoded in a bipolar range {-1,1} [12]. I converted the 

integer data patterns and corresponding paired 

identifications to a bipolar floating point range using the 

following vector pair format (pattern(n dimension), 

identification(p dimension)). For the continuous transfer 

function a standard sigmoid function was used. 

Neural Network with Error Back-Propagation 

The other pa~tern classifier investigated was a 

feedforward nonlinear multilayer neural network using error 

back-propagation [18]. This type of network has been used 

as a pattern classifier in,the past [16,18], with various 

types of data. The network architecture is made up of three 

layers of neurons; input; hidden and output. Every neuron 

is fully connected only to all neurons in the adjacent 

layer. Each input vector component yalue is normalized, 

between zero and one, and assigned to an input neuron. 

There are as many input neurons as input vector-dimensions. 

Many neural network architecture modifications are possible 

and the following architecture variations were selected as 

the most appropriate 'for this project. The hidden layer 

contains the same number of neurons as the input layer. The 

output layer contains as many neurons as pattern classes. 

Although these are analog neurons in the 0 to 1 range, to 
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make classification unambiguous and easy to interpret, only 

one output neuron is set to 1 for any given pattern. The 

remainder of the output neurons are set to o. Of course 

these are the ideal class identification codes and a 

classifi.cation criterion is used to determine if an output 

vector is close enough to the ideal code to be included in 

that class. A common classification criterion used is the 

output vector's being within a· set tolerance at every neuron 

of the ideal 'class code. For the continuous transfer 

function a standard sigmoid function was used. 

This neural network uses supervised learning using 

error back-propagation, ess.entially a gradient descent 

procedure. The learning or training is accomplished by 

varying the connection weights. The training of a neural 

network with n weight coefficients can be viewed as a search 

for a minimum of an error function over some subset of Rn. 

First, the neural network is initialized with random 

connection weights [18]. Second, the input pattern is 

propagated through the network and the output neuron values 

are computed. Next the output error is calculated, this is 

the error between the output vector o and the target vector 

t. The target vector is the correct classification code for 

the input pattern. Each'connection weight is modified by an 

amount proportional to the product of the error signal. 

This weight modification algorithm is known as the 

generalized delta rule and for any inputjoutput pattern pair 



pis represented by the following equation (18]. 

The parameter ~ is a gain term that controls the rate 

of learning. The error term 6 for any differentiable 

activation function is defined for the output and hidden 

units as follows. In the different error equations the j 

subsript corresponds to the current layer, while the k 

subsript corresponds to the previous layer. 

Output Unit Error: 

Hidden Unit Error: 

OPJ = 

By taking the partial derivative of the sigmoid 

transfer function and substituting this result into the 

17 

above equations the two error term expressions are derived: 

Output Unit Error: 
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Input Unit Error: 

In this way the error is propagated backwards througl'l 

the network, one layer at a t1me. To improve network 

convergence an additional momentum term has been added [18]. 

This term contains a momentum parameter a'which is 

multiplied times the previous connection weight delta. The 

complete network connection weight modification algorithm 

implemented in this project uses. the following equation. 

If this procedure were a true gradient descent 

procedure it would take infiryitesimal steps. Instead the 

size of the steps are determined by the learning rate and 
' ' 

momentum rate, which are the constants of proportionality in 

this procedure. The learning rate and momentum rate 

parameters generally vary from 0.05 to 0.9 and are 

empirically determined according to the training set 

properties. The greater the values of the parameters the 

faster the coefficients change. In favorable circumstances 

this leads to network convergence, however if the values 

are set too high the network training process will be 



19 

overdriven and will oscillate randomly, never converging. 

Generally the neurai network continues iterating until the 

euclidean distance between the output and target vectors for 

all patterns decreases below a preset limit, at which point 

the network is considered converged. Since this network is 

a patter~ classifier, an output vector-that is far off on 

one neuron arid matches on all other neurons is unacceptable. 

Therefore a more stringent variation of this convergence, 

criterion was used. Whe~ the re,sid:ual per neuron between 

output and target vectors is below 0.1 for all' neurons for 

all patterns the network stops iterating and has reached 

convergence. 

Classification Evaluation 

In th-is paper all graphical displays of FFT patterns 

take the LOG of the power values between 0 and 15 and 
'' 

normalize them between o and' 1, referred to as neuron 

normalized. This is the neuron value range, so the FFT 

patterns are displayed in the same s.cale as they are 

presented to the Neural Network. 

After the BAM system was coded·and tested on sample 
' ' 

data used by Kosko [12], it was·tested on a group of five 

sample FFT patterns. The first two pattern pairs were 

stored and retrieved correctly, but after the third pattern 

pair was stored the first pair could no longer be recalled. 
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When all five test pattern pairs were stored only three 

could be recalled correctly. Kosko [13] states that a BAM 

can be confused if like inputs,are paired with unlike 

outputs or vice versa. Accurate BAM decoding [12] is based 

on a mapping continuity assumption of the training pairs. 

That is, if stored inputs are close their corresponding 

outputs are close. The complex nature of the behavior FFT 

patterns makes it unfeasible to make a mapping continuity 

assumption, thus ruling out using a BAM as a reliable 

pattern classifier. 

The neural network with error back-propagation 

performed well when a simple classification evaluation was 

performed. It had no substantial difficulty in learning the 

test FFT pattern training set or classifying a few test 

patterns that were similar to the training set. Thus it was 

judged as a feasible:pattern classifier for this project, 

unlike the BAM neural network. From this point on, when the 

Neural Network Classifier is discussed it refers to a Neural 
,, 

Network with error back-propagation. 

Final Model Summary 

After extensive investigationas described above the 

following signal analysis procedures were selected as a 

feasible analysis model for test trials. The analysis 

procedure processed one second of motility signal data at a 
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time. The data was Hanning Windowed, an FFT was performed 

and the LOG of the power was calculated. The first FFT 

value was the DC component which was discarded and the next 

twenty floating point values corresponding to the signal 

power contribution of the 1 to 20 hertz components were 

retained. This 20-dimensional floating point vector was 

then passed through the trained Neural Network. The segment 

was classified according to the output neuron values. Then 

the entire process was repeated on the next segment. 

For proper evaluation of these analysis procedures the 

development of graphical time series and FFT signal display 

software was essential. The most' crucial part of this 

analysis method is the neural network training, which has 

the greatest impact on the final signal classification 

accuracy. The choice of the training set must be completely 

representative of the behavior classes and unambiguous. 

Meeting this training set criterion proved quite difficult 

due to the large variability between signal samples of the 

same behavior from the same animal. Various training 

examples of each behavior class can be learned by the neural 

network. However, there can be no ambiguity in the overall 

training set. That is, there can be no intersection between 

different behavior training sets, such as very similar 

patterns in different behavior training sets. 

When a fifty-second behavior segment that was expertly 

scored as sniffing was analyzed for training examples a 
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problem arose. The FFTs from this single behavior segment 

were graphically displayed and superimposed, revealing a 

large variation of behavior signals. When this behavior 

segment video was viewed, one second'at a time, it was 

observed that interspersed,with the sniffing activity were 

random but repeated one second licking segments. Due to the 

subjective nature of motility behavior scoring, even when an 

animal was judged to be in a continuous grooming behavior 

stereotype s~gment, other different shorter behavior 

segments may actually be intertwined. Since this extremely 

complex interwe~ving of motor beh<:iviors will cause an 

ambiguous training set if s~m~ie scored FFT samples are used 

for the behavio~ training sets, an alternative approach was 

needed. One possibility was' a very difficult and time­

consuming rescor~ng, at ,the frame level, of the motility 

data. Another possibility was that a series of behavior 

segment average FFT~, instead of raw FFTs, would provide a 

more accurate behavior pattern for training the Neural 

Network. The segment· average patterns were found to be 

quite similar for each behavior class and no ambiguity was 

present. 

Initially six behaviors were to be included in the 

study; however, the turning around behavior had to be 

eliminated. The record'ing instruments had been calibrated 

for maximum sensitivity to small motor activity for a 

previous experiment. There is a difference of several 



orders of magnitude between sniffing and turning around. 

Only after the animals had been run, during examination of 

the data, was it discovered that all the turning around 

segments were badly clipped. This problem can be remedied 

easily in future work. 

I chose to train a total of six different Neural 

Network Classifiers. There ,were three basic classifier 

types. For all the network models the number of output 

neurons corresponded to the number of classes. The number 

of classes equaled the number of animal behaviors plus the 
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unknown category. The FFT patterns had one value per hertz~ 

which ranged from o to 15 or ,from 0 to 20. First, the No 

Power model which simply takes each normalized FFT hertz 

value and assigns it to an ii).put neuron. Second, .the Total 

Power model which is graphically displayed in figure 3. In 

this model an extra input neuron is-added to which the 

normalized LOG of the total power of the signal between 1 

and 20 hertz is input. This was done to make the classifier 

extra sensitive to the total power of the signal. 



<Hertz LOG of POWER> 
FFT INPUT 
NEURONS 

HIDDEN NEURONS 

BEHAUIOR OUTPUT 
NEURONS 

FEEDFORWARD NON-LINEAR NEURAL NETWORK CLASSIFIER WITH ERROR BACK-PROPAGATION 
Figure 3. Total. Power Neural Network 
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The third classifier model was Proportional Total Power 

which involved ca~culating the percent contribution of each 

individual FFT value~ compared to the power of the whole 

pattern. This model was used to emphasize the shape of the 

FFT pattern. 

Each of the three classifier models was trained and run 

with both 15-hertz and 20-hertz scored FFT pattern data, 

thus producing six sets of test data. 



CHAPTER III 

RESULTS AND DISCUSSION 

FFT 

The seated motility data were initially processed using 

ASYST. A Hanning-Windowed FFT was performed on each second 

of the data, the LOG of the power for 1 to 20 hertz was 

calculated and written to an intermediate data file. This 

initial processing required- approximately 56 minutes for 

every 1 hour of motl.lity data. This is considered a 

reasonable processing time~ However, if required it could 

be improved by a 'C' or even a hardware implementation. 

Neural Network Classification 

All six neural networks were trained to recognize the 

same five different behaviors, using the same training sets. 

The Networks were trained until they achieved convergence. 

This required between 9,000 and 12,000 epochs. These 

networks completed training on the 386/387 system in between 

3.5 and 5.0 hours. This is an acceptable time, given that 

this process would be executed infrequently. The network 

training parameters used were a learning rate of 0.6 and a 
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momentum rate of 0.3. One epoch cqnsisted of presenting 

each training pattern once to the network. Several example 

patterns of each behavior were used, these were segment 

average FFT patterns. The breakdowns of the numbers of 

examples per behavior in the total training set are listed 

in TABLE III. 

NEURAL NETWORK TRAINING SAMPLE 
SUBTOTALS PER BEHAVIOR 

BEHAVIOR 

LICKING 
PAW LICKING 
RESPIRATION 
PRE-SNIFFING 
,POST-SNIFFING 

TOTAL 

SUBTOTAL 

15 
12 

8 
7 

12 

54 

The Pre-sniffing and'Post-sniffing classes denote two 

observably different sniffing behaviors. Pre-sniffing is 

the normal sniffing behavior prior to drug injection, while 

Post-sniffing is a drug-induced stereotyped sniffing 
I 

behavior. Pre-sniffing FFTs show ,characteristic 5 to 6 

hertz activity, while Post-sniffing FFTs show an activity 

shift into the 7 to 8 hertz range. 

The scored motility behavior segments were processed by 



27 

behavior using ASYST. This resulted in one file per 

behavior which contained all the 1-second FFTs that had been 

scored for that behavior. These FFT behavior files were 

then presented to the six different neural networks for 

classification. The accuracy of .the pattern classification 

for each behavior was calculated for each Classifier and 

listed- in Appendix c. The Neural Network Classifier 

processed data at the rate of about 1 hour of motility FFTs 

per 2 minutes. This figure is well within the processing 

time requirements for a feasible laboratory system. The 

accuracy of both absolute and relative classification 

criteria methods were calculated. The absolute 

classification criterion represents a perfect class·match, 

while the relative classification criterion represents a 

most likely class member~hip. Not surprisingly the relative 

approach produced the highest accuracy and is used in all 

the classification accuracy graphs in this section. The 

classification accuracy of the three Neural Network models 

using 15-hertz FFT patterns is displayed in figure 4. 
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The following abbreviations are used in certain graphs: 

NP = NO POWER 

TP = TOTAL POWER 

PTP = PROPORTIONAL TOTAL POWER 

Neural Network Pattern Classification 
Percentage Correctly Classified 15Hz 

Respiration Licking Paw Licking Pre Sniffing Post Sniffing 

Behavior Categories ( 1 sec FFT) 

I~NP ~TP -PTP I 

Figure 4 . Neural Network Pattern Classification 
Percenage Classified Correctly 15Hz 



No single neural network model outperformed the other 

models in every behavior using 15-hertz FFT data. 
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The classification accuracy of the three neural network 

models using 20-hertz FFT patterns is displayed in figure 5. 

Neural Network Pattern Classification 
Percentage Correctly Classified 20Hz 

Respiration Licking Paw Licking Pre Sniffing Post Sniffing 

Behavior Categories ( 1 sec FFT) 

I~NP ~TP BPTP I 

Figure 5. Neural Network Pattern Classification 
Percentage Correctly Classified 20Hz 

Just as in the 15-hertz case none of the neural network 

models outperformed the other models in every behavior 



category using 20-hertz FFT data. 

The average accuracy, and the standard deviation of 

that average, of each of the six models is displayed in 

figure 6. 

Neural Network Pattern Classification 
Average Percentage Correctly Classified 
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c 25 +------v..~.f?< Q) 
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~ 20+--~~~;?4; 
0.. 

15 +-----vo~¥ 

10+--~~9< 

s+---Y~A. 

0 -+------l.L~O>C 

15Hz Avg 15Hz Sid Dev 20Hz Avg 20Hz Sid Dev 

Network Types (1 sec FFT) 

I ~ NP 1222! TP - PTP I 

Figure 6. Neural Network Pattern Classification 
Average Percentage Correctly Classified 

All the networks performed poorly and the highest 

30 

average percent classified correctly was only 48.20%. There 
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are several possible contributing factors for this poor 

accuracy. 

One factor, behavior intertwining, was discussed 

earlier in relation to choosing training set examples. This 

also affects the classificati~n accuracy test. A ninety­

second initially .scored licking behavior segment was 

reinspect~d., Alth~ugh when ~iewed at normal speed it 

appeared to be a'long duration licking behavior segment, 

upon frame leve·l insp,ection, i~ was dis;covered that there 
' . 

were consis~ent and repeated, sniffing .behavior segments 

intertwined with the licking. It appeared that 15% of this 

scored licking behavior segment was made up of sniffing 

subsegments. However this still does not account 'for all 

the missed classifications. 

The other likely explan~tion for this lack of accuracy 

is that the neural network total training set was.not 

completely representative of' ~he selected behaviors. 
' ' 

,' 

Perhaps the behavior segment·average FFTs do not accurately 

characterize the individual 1-second behavior FFTs. Each 

behavior seems to be made up of a group of distinct FFT 

pattern subsets, which apparently are not accurately 

represented by a segment average. 

The ideal classifier should have a high average 

accuracy with ~ small.standard deviation, or the best 

possible combination of the two. With these criteria in 

mind the Total Power 15-hertz.model and the Proportional 
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Total Power 20-hertz were chosen as having the best overall 

performance for each pattern length. In an attempt to 

determine if the behavior segment average FFTs presented a 

more uniform behavior signature than the individual 1-second 

FFTs, these twa'top performing classifier models were tested­

by classi~ying all the scored be~avior segment averag~s. 

The results are displayed in figure 7. , 

I 

' ' 
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These segment average classification results are listed 

in TABLE XV. The overall average classification percentage 

accuracy was identical fo~ both models at 98.74%, and a 

standard deviation of 1.78. While this result is not 

conclusive, since of the 114 segment average FFT patterns 

classified 54 were initially used for network training, it 

supports the view that behavior segment averages are 

behaviorally consistent. 



CHAPTER IV 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Conclusions 

The FFT. characteriza·tion of the. motility data signal 
' was found to be the best t~9h~ique to enhance distinguishing 

features between the different.behaviors. However the 1-

second FFT classification metQod ~ccuracy level was 

unacceptably 19w, due to ari unrepresentative behavior 

training set. 

A typical behavior segment seems to be composed of 

several distinct 1-·second _FFT patterns randomly repeated but 

with stable proportions, which produce a consistent segment 

avera,ge FFT pattern.. However., this behavior data segment 

format makes segment aver'age' FFT patterns unrepresentative 

of individual 1-second FFT patterns. To properly classify 

1-second FFTs the training set must be .made up of sample 1-

second FFT patterns and n9t segment average FFT patterns. 

The segment average FFT ~lassification method performed 

very well. However this .classification method cannot be 

used with fixed segmentation, only adaptive or variable 

segmentation. 
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The analysis methods used in this project processed 

data at a sufficiently rapid rate on the 386/387 system to 

be a feasible laboratory tool. Also, these analysis methods 

could be substantially speeded up if a production quality 

system were develope~. 

Future Research Directions 

Two future research directipns seem very promising, and 

are the logical next steps from this work~ 

One approach would use the overall analysis methods 

used in this project, but develop,a new neural network 

training set, based on individual 1-second FFTs. This would 

require the frame by frame rescoring of a portion of the 

behavior data to improve the scored behavior accuracy, 

eliminating intertwined behavior inaccuracies. From this 

recorded data a new Neurql Network training set would be 

built, comprising a representative sample of 1-second FFT 

patterns for each behavior, instead of segment average FFT 

patterns. In building these new behavior training sets 

particular importance must be placed on assuring that they 

are truly representative of all the FFT patterns making up 

each behavior and that no ambiguity exists. 

The other logical research direction involves utilizing 

the high accuracy demonstrated in the behavior segment 

average classification method. The capability of adaptive 
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segmentation using an ARMA model to break a signal into 

segments containing a continuous behavior would be,explored. 

If the ARMA model proved capable of accurately segmenting 

the signal, then the average 1-second FFT for the segment 

would be calc~lated. This behavior segment average FFT 

could then be classified using the same neural network 

method that achieved 98.74% accuracy in this proje,ct. 



CHAPTER IV 

-MERITS OF RESEARCH 

Both,qf'these research directions hold the promise of 

producing a fast and accurate motility data signal analysis 

system. This final analysis system would be of tremendous 

bene,fit to an'imal research 'laboratories by automating the 

collection of animal behavioral data. This automated system 

could objectively gather eno~ous amounts of animal 

behavioral data,, having far-reaching implications on both 

disease and drug .animal research. 
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APPENDIX A 

SYNTHETIC MOTILITY TEST SIGNALS 

FFT LOG OF POWER VALUES 

TABLE IV contains the 1-second FFT LOG of power values 
from 1 to 20-hertz' of the two synthetic motility test 
signals. Both test signals had two hertz components that 
were the same amplitude, however file· SIN28.3 had an eight 
hertz component one third,the'amplitude of the two hertz and 
file SIN28.6 contained an eight hertz component one sixth 
the amplitude. 
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TABLE IV 

TEST SIGNAL 1-second FFT 

HERTZ SIN28.3 SIN28.6 

1 9.3623 9.3623 
2 9.9644 9.9644 
3 9.3623 9.3623 
4 1. 5906 1.2924 
5 0.9982 0.6777 
6 1. 0482 0.7828 
7 8.4080' 7.8059 
8 9.0100 8.4079 
9 8.4o8o 7.8059 
10 0.3648 0.9549 
11 0.3138 0.4947 
12 0.9947 0.7711 
13 0.5566 0.6912 
14 0.9282 1. 2080 
15 0.6104 0.7779 
16 1.1023 1.1025 
17 0.6677 0.7202 
18 1. 0331 1.1196 
19 0.6356 0.7687 
20 1. 0308 1.2066 



APPENDIX B 

GRAPHICAL DISPLAY QF BEHAVIOR FFT 

NEURAL NETWORK TRAINING SETS 

The average FFTs of the individual behavior segments 

were used as the Neural Network training sets. The 

graphical display of the FFT patterns was found to be very 

useful in pairing down the size of each individual behavior 

training set by removing redundant patterns. Also by color 

coding and superimposing different behavior training sets, 

any erroneous set membership intersection between different 

behaviors could be ident~fied and avoided. This behavior 
'' 

set intersection int'roduces ambiguity into the training 

sets, thus preventing Neural Network convergence. The FFT 

patterns in the graphical disp~ays are the 1 to 20 hertz 

portion of the FFT neuron normalized. This is the same 

pattern presented to the Neural Network Classifier. 
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Figure a. Behavior Individual Training Examples 
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Figure 9. Set 
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Figure 10. 
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Press ESC to exit or an~ other ke~ to continue 
Paw Licking Behavior Individual Training 

Examples 
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Figure 11. Training 
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Figure 13. Training 
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Figure 15. Training 
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Figure 16. 
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Post-sniffing Behavior Individual Training 

Examples 
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File Total 

Figure 17. ' Behavior Training 



APPENDIX C 

PRELIMINARY TEST RESULTS ON ORIGINAL FFT DATA 

USING ABSOLUTE AND RELATIVE 

CLASSIFICATION CRITERIA 

Two different methods. of interpreting the Neural 

Network results to assign class membership were tried. An 

absolute match was achieved if the output pattern was within 

0.3 tolerance for every neuron when compared to a behavior 

identification pattern. A relative match consisted of the 

largest valued output neuron being 0.2 above the second 

highest neuron. 

Three different types of Neural Network Classifiers 

were tested on two different size FFT patterns. The two 

pattern sizes were 15 and 20 hertz. When a pattern value is 

assigned to an input neuron its value is normalized to 

between zero and one. The No Power network assigns each 

hertz value to one input neuron. The Total Power network 

assigns each hertz value.to one input neuron and the sum of 

the hertz values are assigned to an extra input neuron. The 

Proportional Power network calculates what percentage of 

total power each hertz value represents and assigns this 
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percentage to a corresponding neuron. An asterisk preceding 

a behavior name in a table denotes the correct behavior 

classification for that scored data. 
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TABLE V 

15-HERTZ NO POWER NEURAL NETWORK RESULTS 

LICKING SCORED DATA 849 SEGMENTS 

,BEHAVIOR ABSOLUTE RELATIVE 

* LICKING 58.89% 61.96% 
PAW LICKING 3.65% 5.06% 
RESPIRATION 0.82% 2.24% 
PRE-SNIFFING 2.47% 3.42% 
POST-SNIFFING 16. 37'% . 20.49% 
UNKNOWN 17.79% 6.83% 

PAW LICKING SCORED DATA 117· SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING. 6.84% 11.11% 

* PAW LICKING 34.19% 41.03% 
RESPIRATION 7.69% 9.40% 
PRE-SNIFFING 6.84% 9.40% 
POST-SNIF:FING 7.69% 11.11% 
UNKNOWN 36.75% 17.95% 

RESPIRATION SCORED DATA 150 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 1.33% 1. 33% 
PAW LICKING 1. 33% 2.00% 

* RESPIRATION 36.67% 55.33% 
PRE-SNIFFING 0.67% 2.00% 
POST-SNIFFING 6.00% 21.33% 
UNKNOWN 54.00% 18.00% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 10.47% 11.63% 
PAW LICKING 12.79% 15.12% 
RESPIRATION 5.81% 11.63% 

* PRE-SNIFFING 18.60% 25.58% 
POST-SNIFFING 12.79% 19.77% 
UNKNOWN 39.53% 16.28% 

POST-SNIFFING SCORED DATA 371 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 18.06% 19.41% 
PAW LICKING 5.39% 8.09% 
RESPIRATION 2.16% 4.58% 
PRE-SNIFFING 7.82% 10.51% 

* POST-SNIFFING 40.43% 52.83% 
UNKNOWN 26.15'% 4.58% 



58 

TABLE VI 

15-HERTZ TOTAL POWER NEURAL NETWORK RESULTS 

LICKING SCORED.DATA 849 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

* LICKING ~6.98% 44.52% 
PAW LICKING 8.36% 10.95% 
RESPIRATION 1. 53% 2.47% 
PRE-SNIFFING 3.30% 5.42% 
POST-SNIFFING 17.67% 22.61% 
UNKNOWN 32.15% 14.02% 

PAW LICKING SCORED DATA 117 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 4.27% 5.98% 
* PAW LICKING 39.32% 47.86% 

RESPIRATION 8.55% 8.55% 
PRE-SNIFFING 8.55% 8.55% 
POST-SNIFFING 6.84% 8.55% 
UNKNOWN 32.48% 16.24% 

RESPIRATION SCORED DATA 150 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 3.33% 4.00% 
PAW LICKING 4.67% 4.67% 

* RESPIRATION 57.33% 66.00% 
PRE-SNIFFING 5.33% 10.61% 
POST-SNIFFING 0.67% 2.67% 
UNKNOWN 28.67% 9.33% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 8.14% 8.14% 
PAW LICKING 13.95% 19.77% 
RESPIRATION 6.98% 10.47% 

* PRE-SNIFFING 29.07% 43.02% 
POST-SNIFFING ·5. 81% 10.47% 
UNKNOWN 36.05% 8.14% 

POST-SNIFFING SCORED DATA 371 SEGMENTS 

BEHAVIOR ABSOUJTE RELATIVE 

LICKING 11.05% 13.48% 
PAW LICKING 8.09% 10.51% 
RESPIRATION .4. 31% 5.93% 
PRE-SNIFFING 9.70% 16.44% 

* POST-SNIFFING 32.88% 39.62% 
UNKNOWN 33.96% 14.02% 
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TABLE VII 

15-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK RESULTS 

LICKING SCORED DATA 849 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

* LICKING 55.59% 60.78% 
PAW LICKING 5.06% 6.24% 
RESPIRATION 0.59% 1. 06% 
PRE-SNIFFING 2.12% 3.42% 
POST-SNIFFING 15.43% 20.73% 
UNKNOWN 22.20% 7.77% 

PAW LICKING SCORED DATA 117 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 9.40% 10.26% 
* PAW LICKING 35.04% 45.30% 

RESPIRATION 5.98% 7.69% 
PRE-SNIFFING 5.98% 11.11% 
POST-SNIFFING 7.69% 12.82% 
UNKNOWN 35.90% 12.82% 

RESPIRATION SCORED DATA 150 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 3.33% 3.33% 
PAW LICKING 3.33% 7.33% 

* RESPIRATION 36.00% 53.33% 
PRE-SNIFFING 2.00% 4. 00% ' 
POST-SNIFFING 6.00% 16.67% 
UNKNOWN 49.33% 15.33% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 11.63% 17.44% 
PAW LICKING 8.14% 16.28% 
RESPIRATION 5. 81%, 9.30% 

* PRE-SNIFFING '1'8. 60% 25.58% 
POST-SNIFFING 13.95% 19.77% 
UNKNOWN 41.86% 1'1.63% 

POST-SNIFFING SCORED DATA 371 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 15.90% 17.79% 
PAW LICKING 4.31% 5.'66% 
RESPIRATION 2.70% 4.04% 
PRE-SNIFFING 7.01% 10.78% 

* POST-SNIFFING 49. 93·% 54.18% 
UNKNOWN 33.15% 6.20% 
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TABLE VIII 

20-HERTZ NO POWER NEURAL NETWORK RESULTS 

LICKING SCORED DATA 849 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

* LICKING 44.52% 49.82% 
PAW LICKING 11.19% 13.78% 
RESPIRATION 0.35% 0.59% 
PRE-SNIFFING ·1.18% 2.24% 
POST-SNIFFING 18.73% 24.14% 
UNKNOWN- 24.03% 9.42% 

PAW LICKING SCORED DATA 117 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 3.42% 3.42% 
* PAW LICKING 56.41% 65.81% 

RESPIRATION 1. 71% 3.42% 
PRE-SNIFFING 6.84% 11.97% 
POST-SNIFFING 8.55% 10.26% 
UNKNOWN 23.08% 5.13% 

RESPIRATION SCORED DATA 150 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 2.00% 2.00% 
PAW LICKING 12.00% 14.67% 

* RESPIRATION 34.00% 44.00% 
PRE-SNIFFING 0.67% 4.00% 
POST-SNIFFING 10.00% 21.33% 
UNKNOWN 41.33% 14.00% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 6.98% 6.98% 
PAW LICKING 17.44% 19.77% 
RESPIRATION 3.49% 8.14% 

* PRE-SNIFFING 15.12% 25.58% 
POST-SNIFFING 13.95% 25.58% 
UNKNOWN 43.02% 13.95% 

POST-SNIFFING SCORED DATA 371 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 13.48% 13.75% 
PAW LICKING 10.78% 13.21% 
RESPIRATION 1. 35% 2.16% 
PRE-SNIFFING 6.47% 8.36% 

* POST-SNIFFING 39.62% 49.60% 
UNKNOWN 28.30% 12.94% 
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TABLE IX 

20-HERTZ TOTAL POWER NEURAL NETWORK RESULTS 

LICKING SCORED DATA 849 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

* LICKING 55.12% 62.31% 
PAW LICKING 3.30% 4.36% 
RESPIRATION 0.59% 1.18% 
PRE-SNIFFING 1.18% 2.12% 
POST-SNIFFING 14.13% 19.43% 
UNKNOWN 25.68% 10.60% 

PAW LICKING SCORED DATA 117 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 6.84% 7.69% 
* PAW LICKING 47''.86% 52.99% 

RESPIRATION 7.69% 9.40% 
PRE-SNIFFING 5.98% 10.26% 
POST-SNIFFING 0.85% 3.42% 
UNKNOWN 30.77% 16.22% 

RESPIRATION SCORED DATA 150 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 2.67% 2.67% 
PAW LICKING 1. 33% 3.33% 

* RESPIRATION 44.67% 56.00% 
PRE-SNIFFING 0.00% 1.33% 
POST-SNIFFING 3.33% 12.67% 
UNKNOWN 4,8. 00% 24.00% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 11.63% 12.79% 
PAW LICKING 11.63% 18.60% 
RESPIRATION 6.98% 9.30% 

* PRE-SNIFFING l5.12% 24.42% 
POST-SNIFFING 5.81% 15.12% 
UNKNOWN 48.84% 19.77% 

POST-SNIFFING SCORED DATA 371 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 14.29% 16.17% 
PAW LICKING 7.01% 8.36% 
RESPIRATION 5.12% 6.20% 
PRE-SNIFFING 7.01% 11.05% 

* POST-SNIFFING 33.96% 41.51% 
UNKNOWN 32.61% 16.71% 



TABLE X 

20-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK RESULTS 

LICKING SCORED.DATA 849 SEGMENTS 

BEHAVIOR 

* LICKING 
PAW LICKING 

·RESPIRATION 
PRE-SNIFFING 
POST-SNIFFING 
UNKNOWN 

PAW LICKING 

BEHAVIOR 

LICKING 
* PAW LICKING 

RESPIRATION 
PRE-SNIFFING 
POST-SNIFFING 
UNKNOWN 

RESPIRATION 

BEHAVIOR 

LICKING 
PAW LICKING 

* RESPIRATION 
PRE-SNIFFING 
POST-SNIFFING 
UNKNOWN 

ABSOLUTE 

50.88% 
4.00% 
0.00% 
2.36% 

16.61% 
f6.15% 

SCORED DATA 117 

ABSOI,.UTE 

5.13% 
41.03% 

2.56% 
12.82% 
.3.42% 
35.04% 

SCORED DATA 150 

ABSOLUTE 

2.00% 
4.00% 

28.67% 
7.33% 

10.67% 
47.33% 

RELATIVE 

58.30% 
5.42% 
0.35% 
3.65% 

20.38% 
11.90% 

SEGMENTS 

RELATIVE 

6.84% 
47.86% 

5.13% 
17.95% 
10.26% 
11.97% 

SEGMENTS 

RELATIVE 

2.67% 
7 •. 33% 

38.00% 
12 .• 67% 
19.33% 
20.00% 
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PRE-SNIFFING SCORED DATA 86 SEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 8.14% 10.47% 
PAW LICKING 12.79% 17.44% 
RESPIRATION 5.81% 6.98% 

* PRE-SNIFFING 25.58% 34.88% 
POST-SNIFFING 10.47% 17.44% 
UNKNOWN 37.21% 12.79% 

POST-SNIFFING SCORED DATA 371 BEGMENTS 

BEHAVIOR ABSOLUTE RELATIVE 

LI'CKING 13.75% 16.17% 
PAW LICKING 5.93% 8.36% 
RESPIRATION 1. 35% 1.89% 
PRE-SNIFFING 6.74% 11.05% 

* POST-SNIFFING 40.97% 53.10% 
UNKNOWN 29.65% 9.43% 



APPENDIX D 

PRELIMINARY TEST RESULTS ON SEGMENT AVERAGE FFT 

DATA USING ABSOLUTE AND RELATIVE 

CLASSIFICATION CRITERIA 

Each scored behavior se~ent had the average FFT 

calculated by computing all the 1-second FFTs with in the 

se~ent and taking the average. While only 54 se~ent 

average FFTs w~re u~ed in the Neural Network Classifier 

total training set, a total of 114 scored behavior segments 

existed. Since the behavior se~ent average FFTs showed 

very little visual variability, they were chosen as an 

alternate test set to be input 'into two of the Neural 

Network Classifiers. An asterisk preceding a behavior name 

in a table denotes the correct behavior classification for 

that scored data. 
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TABLE XI 

15-HERTZ TOTAL POWER NEURAL NETWORK 

SEGMENT AVERAGE RESULTS 

LICKING SCORED DATA 57 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

* LICKING 92.98% 98,. 25% 
PAW LICKING 0.00% 0.00% 
RESPIRATION 0.00% 0.00% 
PRE-SNIFFING 0.00% 0.00% 
POST-SNIFFING 1. 75% 1. 75% 
UNKNOWN 5.26% 0.00@ 

PAW LICKING SCORED DATA 16 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 

* PAW LICKING 100.00% 100.00% 
RESPIRATION '0.00% 0.00% 
PRE-SNIFFING 0.00% 0.00% 
POST-SNIFFING 0.00% 0.00% 
UNKNOWN 0.00% 0.00% 

RESPIRATION SCORED DATA 11 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 
PAW LICKING 0.00% 0.00% 

* RESPIRATION 100.00% 100.00% 
PRE-SNIFFING 0.00% 0.00% 
POST-SNIFFING 0.00% 0.00% 
UNKNOWN 0.00% 0.00% 



70 

PRE-SNIFFING SCORED DATA 8 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 
PAW LICKING 0.00% 0.00% 
RESPIRATION 0.00% 0.00% 

'* PRE-SNIFFING 100.00% 100.00% 
POST-SNIFFING 0.00% 0.00% 
UNKNOWN 0.00% 0.00% 

POST:-SNIFFING SCORED DATA 22 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 
PAW LICKING 0.00% 0.00% 
RESPIRATION 0.00% 0.00% 
PRE-SNIFFING 4.55% 4.55% 

* POST-SNIFFING 90.~1% 95.45% 
UNKNOWN 4.55% 0.00% 
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TABLE XII 

20-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK 

SEGMENT AVERAGE RESULTS 

LICKING SCORED DATA 57 SEGMENT AVERAGES 

BEHAVIOR ~BSOLUTE RELATIVE 

* LICKING 92.98% 98.25% 
PAW LICKING ' 0. 00% 0.00% 
RESPIRATION 0.00% 0.00% 
PRE-SNIFFING '0.00% 0.00% 
POST-SNIFFING . 1. 75% 1. 75% 
UNKNOWN 5.26% 0.00@ 

PAW LICKING SCORED DATA 16 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 
* PAW LICKING 100.00% 100.00% 

RESPIRATION 0.00% 0.00% 
PRE-SNIFFING 0.00% 0.00% 
POST-SNIFFING o .. 00% 0.00% 
UNKNOWN o·. oo% 0.00% 

RESPIRATION SCORED DATA 11 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING. 0.00% 0.00% 
PAW LICKING 0.00% 0.00% 

* RESPIRATION 90.91% 100.00% 
PRE-SNIFFING 0.00% 0.00% 
POST-SNIFFING 0.00% 0.00% 
UNKNOWN 9.09% 0.00% 
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PRE-SNIFFING SCORED DATA 8 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0.00% 0.00% 
PAW LICKING 0.00% 0.00% 
RESPIRATION 0.00% 0.00% 

* PRE-SNIFFING 100.00% 100.00% 
POST-SNIFFING 0.00% 0.00% 
UNKNOWN 0.00% 0.00% 

POST-SNIFFING SCORED DATA 22 SEGMENT AVERAGES 

BEHAVIOR ABSOLUTE RELATIVE 

LICKING 0. 00,% 0.00% 
PAW LICKING 0.00% 0.00% 
RESPIRATION 0.00% 0.00% 
PRE-SNIFFING 4. ,55% 4.55% 

* POST-SNIFFING 90.91% 95.45% 
UNKNOWN 4.55% 0.00% 



APPENDIX E 

SUMMARY TEST RESULTS USING 

RELATIVE CLASSIFICATION 

'CRITERIA 

The tables in this appendix are a simplified summary of 

the data contained in appendix B. Th,e three network types 

are represented by the following codes: 

NP = NO POWER 

TP = TOTAL POWER 

PTP = PROPORTIONAL.TOTAL POWER 
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TABLE XIII 

ONE-SECOND SEGMENT FFT PATTERNS 

15-HERTZ BEHAVIORAL CLASSIFICATION ACCURACY 

BEHAVIOR NP TP PTP 

LICKING 61.96% 44.52% 60.78% 
PAW LICKING 41.03% 47.86% 45.30% 
RESPIRATION 55.33% 66.00% 53.33% 
PRE-SNIFFING 25.58% 43.02% 25.58% 
POST-SNIFFING 52.83% 39.62% 5.4.18% 

20-HERTZ BEHAVIORAL CLASSIFICATION ACCURACY 

BEHAVIOR NP TP PTP 

LICKING 49.82% 62.31% 58.30% 
PAW LICKING 65.81% 52.99% 47.86% 
RESPIRATION 44.00% 56.00% 38.00% 
PRE-SNIFFING 25.58% 24.42% 34.88% 
POST-SNIFFING 49.60% 41.51% 53.10% 
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TABLE XIV 

OVERALL NEURAL NETWORK METHOD ACCURACY 

BEHAVIOR NP TP PTP 

15Hz AVERAGE 47.35% 48.20% 47.83% 
15Hz STD DEV 12.81 9.28 12.16 
20Hz AVERAGE 46.96% 47.45% 46.43% 
20Hz STD DEV 12.93 13.34 8.85 
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TABLE XV 

BEHAVIOR SEGMENT AVERAGE FFT PATTERNS 

BEHAVIORAL CLASSIFICATION ACCURACY 

BEHAVIOR TP/15Hz PTP/20Hz 

LICKING 98.25% 98.25% 
PAW LICKING 100.00% 100.00% 
RESPIRATION 100.00% 100.00% 
PRE-SNIFFING 100.00% 100.00% 
POST-SNIFFING 95.45% 95.45% 
AVERAGE 98.,74% 98.74% 
STD DEV 1.78 1. 78 
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