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GLOSSARY

ARMA model: Auto Regressive Mbﬁing Average model.

Adaptive segmentation: A technique by which a signal is
broken into like parts. When the characteristics of the
input signal significéntly qhénge the signal is segmented.
BAM: Bidirectional Associative Memory, a generalization of
the Hopfield_Aésociafive Network. A type of network in
which an input serves to retrieve a stored associated

output.

Classifier: A mathematical model which assigns an element
membership in a class according to its characteristics.

Connection weights: The value assigned to a connection

between neurons, analogous to a synapse. The value of the
connection weight detérmineé how much of the incoming signal
is passed to the connectéd neufon.

EEG: Electroencephalogram, electrical brain impulses caused
by neuron firings.

Error back-propagation: A supervised learniﬁg(method in
which the error between the actual output and the target
output is fed back thrﬁugh the network altering connection
weights as iﬁ goes, in order to decrease the network error.
FFT: Discrete Fast Fourier Transform of a time function into

a frequency domain to determine the individual frequency

ix



combonents and relative power of each component.
Fixed-length segmentation: Breaking a signal into arbitrary
fixed length portions. -
Gradient: The maximum rate of change in a variable or a
function.

Hanning: A pre-scaling or windeﬁing’functionyused‘to make a
sampled waveform coherent with the window interval.

Hidden layer: Any of one or more neuron layers between the
input and output neuron layers.

Hopfield network: This is e_Content Addressable Memory
Network capable of taking a partialzinput pattern and
retrieving the‘entire‘assoeiated‘pattern, also described as
an autoassociator. ' -l >

Input layer: The layer of neurons into which the input

signal is initially propagafed into the network.

Mapping continuity: A mathematical transformation in which
similar input have similar outputs.

Motility signal: A sensor signal containing to animal

movement data.

Neural network: A mathematical model of the brain's neurons.

A system of neurons interconnected by synapses.

Neuron Normalized: An input_yalue'sealed fron between the
minimum and maximum possible input values to between 0 and
1, the neuron value range.

Neuron: A basic ﬁrocessing¢element in a Neural Network, also
a nerve cell in a biological syétem; In either case it has a

number of input signals which are summed and compared



against a threshold value. If the threshold is reached, an
output signal is generated which is equal to the neuron's
activation value. —

No Power model: The simplest Neural Network Classifier model
used in this projgct. The input pattern is Neuron
Normalized and there is one input neuron per pattern data
point.

Output layer: The layer of neurons frém which Neural Network
response is presented.

PA: Period Analysis.

Proportional Total Power mpdél: A neural network Classifier
model used in this project. The input pattefn is
‘preprocegsed bf replacing each data points value with its
proportion of total power. ‘This input pattern is then
Neuron Normalized and there is one input neuron per pattern
data point.

R’: The set of all real numbers in n dimensional space.
Sigmoid function: A cohtiﬁUousiy differenfiable transfer
function, known for its S shépé when plotted.

1

S =
(X) (1+e(-Gam*x)) .

Stereotype behavior: Standard repetitive animal béhaviorsf
~Supervised learning: This is a method by which an external
source tells the hetwork the amount of output error present,
so the neura; ngﬁwork weights may be adjusted to reduce the

F

error.
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Time series: A Time Series is a set of numbers that are
assumed to be taken at an equally spaced time interval
measuring some ongoing activity.

Total Power model: A Neural Network Classifier model used in
this project. The input pattern is summed and added as an
additional last‘daté point. This input pattern is then
Neuron Normalized and théfe ié one input neuron per pattern
data point.

Transfer function: A function which determines what neuron

activation value is to be output. Typical transfer
functions are linear, sigmoidal, or threshold.
Window: A finite time slot,whérein a sample group is derived

from a time function.

xii



CHAPTER I
INTRODUCTION

The purpose of this project is to develop a motility
data anaiysig system for usé by sciéntific fesearchers. The
software should run on a personal computer and identify the
different animal motor behaviqrs aqd their occurrence times,

from stored data files.
Background

Central nervous system disorders or drugs used in the
treatment of diseases affect’the motor beﬁaviOr of humans.
Laboratory animals are offen ﬁsed in experiments designed to
understand these effects better. Despite the importance in
experiments of ménitoriﬁg motor behavior, most laboratory .
animgl moti;ity data is gathered and analyzed manually by
either directly observing'the‘animais or*stquing a video
tape. Unfortunately these methods are subjective and very
time consuming. fAﬁ objeqtiVe automated motility data
gathering and analysis system would be of great benefit fo

researchers.
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While animal activity monitors have been developed that
measure one or two behaviors, none exist that can monitor
multiple behaviors simultaneously[9]. I have investigated
the use of a modified Stoelting activity monitor system
which is capable of recording multiple motor behaviors by
using a radio-frequency cépaéitance field transducer that
provides an output signal that varies with the movements,
within the field of the t;ansducgr. The frequency
components of the movemen@s’fﬂaf comprise a behavior and the
ampiitudes of these movemeﬁts go§ern their effect on the
output signal. Répeated head)swings could generate a two
hertz signal with a very léﬁge amplitude, while respiration
generates a two hertz signai with a small amplitude. The
output is a sihgle DC analéé signal composed of the multiple
frequencies generated by thé,animal's different motor
behaviors. This signal is stored as a time series,
digitized at 1281integerfpoiﬁts per second and stored onto a
floppy disk. Thié défa fofmét is referred to as a time
series. B

The analysis method used to date [9,10,11] on the
Stoelting monitor data consisted of a Fast fourier Transform
(FFT). The FFT was used to obﬁéin power spectra for eachﬂl-
second segment of motility data, then the spectra were
averaged across a large sampling period. Finally the log of
the mean of thé péwer spectra“&as‘taken. While this

analysis method has demonstrated certain behaviorally
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correlatable frequency signatures it has not been capable of
producing a method of accurately characterizing different

complex behaviors.
Problem Statement

The problem I am attempting‘to‘solve is to develop the
analysis algorithms necesséry‘to assess quantitatively the
simultaneous occurrence of‘ipdividual motor movements from
the recorded‘motility data.ﬁ For the system to be of
practical use to scieﬁtific‘researchers the analysis
algorithms should be capable of peing executed on é
relatively inexpensive Personal Computer system in a
reasonable amount 6f time. 'Wifh these constraints in mind a
PC-80386/80387 systéﬁ was chosen fof system development.
These analysis algdrithmé Shéuld be capable of cataloging
the animal's motor beha?ipf;at all times into one of the
following defined behavibfal categories: sniffing, licking,
gnawing, groomingIand"réspiration, but should also allow for
another category for undefined behavioral type. The general
approach should élso be applicable to other defined

behaviors.



CHAPTER II

MODEL DEVELOPMENT AND METHODOLOGY

Introduction

A three foldJapéroach to solving the motility analysis:
problem was considered. ‘Eirst dévelop a method to segment
the signal into small porﬁiohs'ofvlike behavior. Next
develop a techﬁique to characterize each segment such that
individual behaviors have a’unique, althoﬁgh Variable,
identifiable signature. This can be viewed as feature
extraction or signal\breprécessing to enhance
distinguishable featureS»between behaviors. Finally develop
a method to correctly classify these signatures into |
behavior categories. |

A set of test data was obtained by recording motility
data and simultaneously‘videotaping the behavior of three
male Sprague-Dawlgy rats, 60 - 90 days old.

Animals were observed for 15 minutes and then received
a subcutaneous injection of apomorphine HCL (0.25 - 0;50
mg/kg). Observations continued for an additional 60
minutes. The drug injectidnnresulted in an increase in the
occurrence of repetitive movements, and the recordings

obtained during this period provided the samples of motility

4



data which were analyzed during the remainder of this
project. During this time the animals were also video
taped. The videotape was recorded using a time code
generator which puts a time stamp on every picture frame, 30
per second. These tapes were viewed by an animal behavior
specialist who scored the tapes annotating the beginning and
ending time of a segment and what behavior was observed.
This manually scored data was used to determine the overall

accuracy of the analysis algorithms.

Development Tools

I developed the graphical display, Fast Fourier
Transform (FFT) and Period Analysis (PA) analysis software
using the scientific software development package ASYST
Version 3.01 scientific system by Macmillan Software
Company. This package uses a very powerful stack-based
fourth generation language, inéluding a very large library
of scientific and graphics functions. Due to certain ASYST
limitations I used Turbo C Version 2.0 for both Neural
Network implementations,‘data conversion utilities, and

certain graphical display software.

Segmentation Methods



ARMA

One potential segﬁentation method involves using an
Autoregressive Moving Average (ARMA) model [1,4,15,19] to
‘'segment the motility signal adaptively at points
corresponding to a change‘in animal behavior. The
autoregression techﬂique involves adaptive:segmentation of
the signal\ﬁsing»an autocorrelation function (ACF). An ACF
is calculated for a fixed window ét the beginning of the
segment and for a window moving forward through the signal
step by step. ufhe Spectral Error Measure (SEM) is combuted
between the fixed window ACF(énd‘the moving window ACF. The
SEM value reflects changes in tﬁé spectral characteristics
of the signal. The ﬁoving window is stepped through the
signal one data pointvatla time. At each’step the moving
window's ACF is gpdated and the SEM recalculated. A segment
boundary is defined when the SEM remains above an arbitrary
threshold for a given ﬁumbe: of steps. At this point the
entire brocedure is repeated. Each oﬁe of the resulting
signal éegments would tﬂen be behaviorally characterized by

énother analysis method.

Fixed ILength

The second analysis method considered involves

segmenting the signal into arbitrary fixed length segments.



The segment length would be determined by the minimum
meaningful duration of the possible animal behaviors being
analyzed. Then each fixed length sigpal segment would be
behaviorally characterized by an analysis method to be
discussed later. Similarly categorized adjacent segments
would be grouped together as one continuous behavior

segment. .

Segmentation Evaluation

Animal motor behavior activity segments of interest to
laboratory resea}ch last anywhere from several seconds to
several minutes at a time. It was judged that the increased
accuracy potential of adaptive segmentation as shown in
TABLE I would providé only a marginal improvement over a
fixed length segmenting technique, using a small fixed
length. The discriminant function analysis of the data was

performed by the statistical software package SAS.



TABLE I

DISCRIMINANT FUNCTION ANALYSIS OF MOTILITY
CHARACTERIZATIONS USING FFT ANALYSIS
PERCENT CORRECT CLASSIFICATIONS

SIGNAL ANALYSIS TECHNIQUE

Behavior 1-Second Segment Adaptive Segment
Respiration 98% 100%
sniffing ’ 83% 100%
Stereotyped Sniffing 73% : 88%

with Head Swing

Stereotyped Paw Lick 80% : 88%

Also an ARMA adaptive segmentation method would require
considerably more computatiénal overhead than fixed length
segmenting. After considerable deliberation the fixed
length signal segmentatiﬁﬁ method was chosen as the
seémentation technique and a fixed segment length of 1-
second was selected forhthis‘project. The l-second segment
length was a compromise\between the greater expected
classification accur;cy from a longer segment length and the
need to be able to identify short duration behaviprs. This
selection allowed ‘maximum concentration on the
characterization technique which is essential to either

segmentation method.

Characterization Methods



Two segment characterization methods were explored,
Fast Fourier Transform (FFT) [2,17] and Period Analysis (PA)
[5,6,17]. Variations on these methods were investigated in
an attempt to find a fechniquedthat would provide a unique’
‘identifiable signature for each oné of the behaviors to be
characterizea. The motility data was read in 30 second
portions; the ﬁean were calculated thén subtracted from the

data to remove the DC component.

g2
3|
L=

In the FFT characteriZation téchnique [2,17] a complex
signal can be analyzed and the contribution of each
frequency component to thertotal signal power can be
determined. Each l-second data ségment was Hanning Windowed
[17] to redﬁce sidelobes,’thén the FFT was calculated. This
magnitude was squared, giving the power, and finally the LOG
of the power was compufgd; tﬁé}LOG of the power was used in
all FFT characterizations.

Upon visual inspection the 1l-second FFT LOG of the
power vector from 1 to 20 hertz appeared to give é
behaviorally correl;table signature, but there was a
considerable amount ofrvariation between samples of the same

behavior.
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In the PA characterization method [5,6,17] the motility
data first were run through a 64 hertz low pass digital
filter. Then, the total number of zero base line crosses of
the signal segment was calculated, subtracted by one, and
divided by two, giving the Major period component of the
segment. Next the first derivative of the segment was taken
and again the number of zero base line crosses of the signal
segment was computed, subtracted by one, and divided by two,
giving the Intermediate period. Last the second derivative
of the segment was taken and again the number of zero base
line crosses of the signal segment was computed, subtracted
by one, and divided by two, giﬁing the Minor period. These
three values reflect the frequencies of the three most
prominent components of the signal segment. This technique
has been used by NASA in elecfroencephalogram (EEG)

telemetry data compression [6].

Characterization Evaluation

Initial motility signal PA values appeared inconsistent
with visual appearance of the signals. In an attempt to
evaluate apparent PA characterization contradictions, two
synthetic signal data files were created and analyzed by
both FFT and PA. Since motility data signal components

often have one or more orders of magnitude difference in
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amplitude the two test files both contained signals with two
hertz and eight hertz frequency components, but different
amplitude ratios. For the purpose of mimicking the motility
data characteristics both test signals had two hertz
components that were the same amplitude. ‘However, file
SIN28.3 had an eight hertz component one third the amplitude
of the two hertz and file SIN28.6 contained an eight hertz
component one sixth the amplitude. TABLE I shows the

results of the Period Analysis on the two test signals.

TABLE II

TEST SIGNAL PERIOD ANALYSIS

PERIOD
Test Signal Major Intermediate Minor
SIN28.3 2.1099 8.0000 8.0000
SIN28.6 2.0645 , 4.4356 4.4356

After some analysis it was determined that the
erroneous PA values for test signal SIN28.6 were caused by
the large amplitude difference between the component
signals. This large amplitude difference caused the eight
hertz component contribution to be erratic in pro@ucing

turning points and points of inflection in the composite
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signal as happened in the SIN28.3 signal. This is an
inherent shortcoming of the Period Analysis method.
Principal EEG component signal amplitudes are similar in
magnitude. Thus, this error did not affect EEG uses of
Period Analysis [5,6]. However, this flaw makes PA
unsuitable for motility signal characterization.

These same two synthetic motility test signals were
used to evaluate the 1-secona FFT capability. Repeéted 1-
second FFTs of the test‘signals all had identical values for
each signal and had no trouble cofrectly identifying the two
frequency comﬁonénts, regardless of the power ratios. While
the Hanning Windbwing reduced sidelébes it caused a certain
amount of spectral péwer 1eakége from the 2 aﬁd 8 hertz bins
into neighboriné ffequency bins. In figures 1 and 2 the
graphical displays of FFT patterns take the LOG of the power
values between 0 and 15 ‘and normalize them between 0 and 1.
In view of the clearly superior accuracy of the FFT method
over PA I chose the—FFTvméthéd for signal characterization.
The results of these two test signals are displayed in

figures 1 and 2.



13

51n3.28

1 to 20 Hertz FFT

Figure 1. Neuron Normalized SIN3.28 FFT Pattern

5in6 .28

1 to 20 Hertz FFT

Figure 2. Neuron Normalized SIN6.28 FFT Pattern
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Classification Methods

For the characterization classification problem the
use of two different types of pattern recognition
classifiers were investigated. The two pattern recognition
classifiers are a Bidiréctional Associative Memofy (BAM)
(12,13,14,16,18] Neural Network and a multi-layer non-linear

Neural Network with error back-propagation [16,18].

The Bidirectional Associati&e Memory examined was a
two-layer nonlineér feedback Neural Network [12]. A BAM is
a genéralization of a Hopfield network. This network is
capable of bidirectional information flow allowing two-way
associative search for stored associations (A,,B,) [12].

The associative informatioh‘is_encoded in a BAM by summing
the correlation matrices of the associated pairs[1l2].
Passing information thfough the correlation matrix M gives
one direction while passing it through its transpose M’
gives the other. A BAM{s maximum storage capacity of m
associated pairs for reliable recall from a matrix of
dimensions n and p is limited to ﬁ<ﬁin(n,p) [12]. Therefore
to classify five twenéy—point patterns,'é twenty by six BAM
matrix is requi;ed. The identification code used was

arbitrarily set in sequence for each pattern pair. Best
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results are obtained when the associated vector pairs are
encoded in a bipolar range {-1,1} [12]. I converted the
integer data patterns and corresponding paired
identifications to a bipolér floating poiht range using the
following vector pair format (pattern(n dimension),
identification(p dimension)). For the continuéus transfer

function a standard sigmoid function was used.

Neural Network with Error Back-Propagation

The other“pattern classifier investigated was a
feedforward nonlinear multilayer neural network using error
back-propagation [18]. This type of network has been used
as é pattern classifier in the past [16,18], with various
types of data. The network architectu:e is made up of three
layers of neurons; input;‘hidden and output. Every neuron
is fully connected oﬁly to aii neurons in the adjacent
layer. Each input vector component value is normalized,
between’zero and oﬁe, and assigned to an input neuron.

There are as many input neurons as input vector dimensions.
Many neural network architecture modifications are possible
and the following archiﬁecture variations were selected as
the most appropriéte'for this pfoject. The hidden layer
contains the same number of neurons as‘tﬁe input layer. The
output layer contains as many neurons as pattern classes.

Although these are analog neurons in the 0 to 1 range,/to
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make classification unambiguous and easy to interpret, only
one output néuron is set to 1 fortany given pattern. The
remainder of the output neurons are set to 0. Of course
these are the ideal class idgﬁtification codes and a
classification criterioﬁ is used to determine if an output
vector is close enough to the ideal che‘fo be included in
that class. A common claSsificationicriterion used is the
output vector's being within\a‘éét tolerance at every neuron
of the ideal class code. For the continuous transfer
function a étandard sigﬁoid function was used.

This neural network uses supervised learning using
error back-propagation, essgntially a gradient descent
procedure. Tﬁe iearning‘or training is accomplished by
varying the connection weights. The training of a neural
network with n weight~coéfficients can be viewed as a search
for a minimum of an efrof;fgnction over some subset of R".

First, the neural hqﬁwork is initialized with random
connection weights [18]. ;Se¢ond, the input pattern is
propagated through the netWofk and the output neuron values
are computed. Next the output error is calculated, this is
the errof Between the output vector o and the target vector
t. The target vector is the correct classification code for
the input pattern. Each connection weight is modified by an
amount proportioﬁal to the product of the error signal.

This weight modification algorithm is known as the

generalized delta rule and for any input/output pattern pair
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p is represented by the following equation [18].

The parameter p is a gaih term that controls the rate
of learning. The error term § for any differentiable
activation function is defined fo; the output and hidden
units as follows. In the different error equations the j
subsript corresponds to the current layer, while the k
subsript corresponds to the brevious layer.

net,, = zk W, o

Output Unit Error:

aopJ

§. = (t

p3 -0

PJ PJ )

anetpJ
Hidden Unit Error:
8 Oy,

6pa = E ‘5pk WkJ
dnet,,

By taking the partial derivative of the sigmoid
transfer function and substituting this result into the

above equations the two error term expressions are derived:

Output Unit Error:

6p; = (Lp; = 0p) 0 (1 = 0y)
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Input Unit Error:

6pg = Opy (1 = Opy) Z 8 Wy,

In this way the error is’pfqpagated backwards through
the network, one layer at a time. To improve network
convergence an additional moméntum term has been added [18].
This term contains a momentum parémeter e which is
multiplied times the previoué‘connection wéight delta. The
complete netWork\connection‘Weighf modification algorithm

implemented in this project,ﬁsesnthe following equation.

+ a4 51 (n)

AW, (n+tl) = u 6,, o

PJ p1

If this\procedure wéfe‘a true gradient descent
procedure it would take infiqitesimal steps. Instead the
size of the steps are determihéd by the learning rate and
momentum rate, which are the consténts of proportionality in
this procedure. The learning ;ate and momentum rate
parameters generally vary f;om 0.05 to 0.9 and are
empirically determined according to the training set
properties. The grééter the values of the parameters the
faster the coefficients change. In favorable circumstances
this leads to network converéence, however if the values

are set too high the network training process will be
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overdriven and will oscillate randomly, never converging.
Generally the neural network continues iterating until the
euclidean distance between the output and target vectors for
all patterns decreases beloﬁ a preset limit, at which poin£
the net&ork is considered converged. Since this network is
a patterﬁ,claséifier, an 6utput vector- that is far off on
one neuron and matches on all other neurons is unacceptable.
Therefore a more stringent vafiation of this convergence
criterion was used. When the residual per neuron between
output and fargét vectors is below 0.1 for all neurons for
all patterns the network stops iterating and has reached

convergence.
Classification Evaluation

In this paper all graphiéal displays of FFT patterns
take the LOG of the poweﬁvvélqes between 0 and 15 and
normalize them between Oqandﬁl, referred to as neuron
normalized. This is the neurgn value range, so the FFT
patterns are displayed in the same scale as they are
presentéd to the Neural Network.

' After the BAM'system was coded: and tested on sample
data used by Kosko [1#], it was tested on a group of five
sample FFT patterns. The first two pattern pairs wefe
stored and retrieved correctly, but after the third pattern

pair was stored the first pair could no longer be recalled.
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When all five test pattern pairs were stored only three
could be recalled correctly. Kosko [13] states that a BAM
can be confused if like inputs are paired with unlike
outputs or vice versa. Accurate BAM decoding [12] is based
on a mapping continuity assumption of the training pairs.
That is, if stored inputs are close their corresponding
outputs are close. The complex natufg of the behavior FFT
patterns makes it unfeasible‘to makera mapping continuity
assumption;‘thus ruling oqt using a BAM as a reliable
pattern classifier.

The neura; network with éfror back-propagation
performed well when a simple classification evaluation was
performed. It had no substantial difficulty in learning the
test FFT pattern tréining se£ or élaSsifying a few test
patterns that were simiiar to the training set. Thus it was
judged as a feasible pattern classifier for this project,
unlike the BAM neuralsnefwork. From this point on, when the
Neural Network Classifier is)discussed it refers to a Neural

Network with error back-propagation.
Final Model Shmmary

After extensive investigation as described above the
following signal ahalysis procedures were selected as a
feasible analysis model for test trials. The analysis

procedure processed one second of motility signal data at a
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time. The data was Hanning Windowed, an FFT was performed
and the LOG of the power was calculated. The first FFT
value was the DC component which was discarded and the next
twenty floating point values corresponding to the signal
power contribution of the 1 to 20 hertz components were
retained. This 20-dimensional floating point vector was
then passed through the trained Neural Network. The segment
was classified according to the output neuron values. Then
the entire process was repeated on the next segment.

For proper evaluation of these analysis procedures the
development of graphical time series and FFT signal display
software was essential. The most crucial part of this
analysis method is the neural network training, which has
the greatest impact on the final signal classification
accuracy. The choice of the training set must be completely
representative of the behavior classes and unambiguous.
Meeting this training set criterion proved quite difficult
due to the large variability between signal samples of the
same behavior from the same animal. Various training
examples of each behavior class can be learned by the neural
network. However, there can be no ambiguity in the overall
training set. That is, there can be no intersection between
different behavior training sets, such as very similar
patterns in different behavior training sets.

When a fifty-second behavior segment that was expertly

scored as sniffing was analyzed for training examples a
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problem arose. The FFTs from this single behavior segment
‘were graphically displayed and superimposed, revealing a
large variation of behavior signals. When this behavior
segment Qidéo was viewed, one second at a time, it was
observed that intersﬁersedwwith the sniffing activity were
random but repeated one éecond iicking'segments. Due to the
subjective nature of motility behavior scbring, even when an
animal was judged to be in a continuous groomihg behavior
stereotype segment, other different shorter behavior
segments may‘actually be intgrtwined. Sihce this extremely
complex interweaving of motor behaviors will cause an
ambiguous training set if simple scored FFT samples are used
for the behaviof‘trainihg sets, an alternative approach was
needed. One possibility was a very difficult and time-
consuming réscofing, at,tﬂe frame level, of the motility
data. Another possibility was that a series of behavior
segment average FFTs, instead of raw FFTs, would provide a
more accurate behayior pattern for training the Neural
Network. The segment average patterns were found to be
quite similar for each behavio; class and no ambiguity was
present.‘ |
| Initially six behaviors were to be included in the
study; however, the turning around behavior had to be
eliminated. The recording instruments had been calibrated
for maximum sensitivity to small motor activity for a

previous experiment. There is a difference of several
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orders of magnitude between sniffing and turning around.
Only after the animals had been run, during examination of
the data, was it discovered that all the turning around
segments were badly clipped. This problem can be remedied
easily in future work. |

I chose to train a total of six different Neural
Network Classifiers. There were three basic classifier
types. For all the network models the number of output
neurons corresponded to the number of classes. The numbef
of classes équaled the number of animal behaviors plus the
unknown category. The FFT patterns had one value per hertz,
which ranged from 0 to 15 of.from 0 to 20. First, the No
Power model which simply takés each normalized FFT hertz
value and assigns it to an input neuron. Second,ithe Total
Power model which is graphicélly displayed in figure 3. 1In
this model an extra inputlneurpn is added to which the
normalized LOG of the totéi power of the signal between 1
and 20 hertz is input. This was done to make the classifier

extra sensitive to the total power of the signal.
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FEEDFORWARD NON-LINEAR NEURAL NETHOFI’Kx CLASSIFIER WITH ERROR BACK-PROPAGATION
Figure 3. Total Power Neural Network

The third classifier model was Proportional Total Power
which involved calculating the percent contribution of each
individual FFT value, compared to the power of the whole

pattern. This model was used to emphasize the shape of the

FFT pattern.

Each of the three classifier models was trained and run
with both 15-hertz and 20-hertz scored FFT pattern data,

thus producing six sets of test data.



CHAPTER III

RESULTS AND DISCUSSION

FFT

The scored motility data were initially processed using
ASYST. A Hanning-Windowed FFT was performed on each second
of the data, the LOG of the power for 1 to 20 hertz was
calculated and written to an intermediate data file. This
initial processing required approximately 56 minutes for
every 1 hour of motility data. This is considered a
reasonable processing timei However, if required it could

be improved by a 'C! or even a hardware implementation.
Neural Network Classification

All six neural networks were trained to recognize the
same five different behaviors, using the same training sets.
Thé Netwérks were trained until they achieved convergence.
This required between 9,000 and 12,000 epochs. These
networks completed training on the 586/387 system in between
3.5 and 5.0 hours. This is an acceptable time, given that
this process would be executed infrequently. The network

training parameters used were a learning rate of 0.6 and a
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momentum rate of 0.3. One epoch consisted of presenting
each training pattern once to the network; Several example
patterns of each behavior were used, these were segment
average FFT patterns. The breakdowns of the nuﬁbers of
examples per behavior in tﬁe total training set are listed

in TABLE III.

TABLE III

NEURAL NETWORK TRAINING SAMPLE
SUBTOTALS PER BEHAVIOR

BEHAVIOR SUBTOTAL

LICKING ) 15
PAW LICKING ' 12
RESPIRATION 8
PRE-SNIFFING 7
POST-SNIFFING 12

TOTAL . 54

The Pre-sniffing and  Post-sniffing classes denote two
observably differént\sniffing behaviors. Pre-sniffing is
fhe normal sniffing behavior prior to d;ug injection, while
Post-sniffing is a drug-induced stereotyped sniffing
behavior. Pre-sniffing FFTs show characteristic 5 to 6
hertz activity, while Post-sniffing FFTs show an activity
shift into the 7 to 8 hertz range.

The scored motility behavior segments were processed by
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behavior using ASYST. This resulted in one file per
behavior which contained all the l-second FFTs that had been
scored for that behavior. These FFT behavior files were
then presented to the six different neural networks for
classification. The’accuracy of the pattern classification
for each behavior was calculated for each Classifier and
listed in Appendix C. The Neural Network Classifier
processed data at the rate of about 1 hour of motility FFTs
per 2 minutes. This figure ié well within the processing
time requirements for a feasible laboratory system. The
accuracy of both absolute and relative classification
criteria methods were calculated. The absolute
classification criterion represents a perfect class: match,
while the relative cléssification criterion represents a
most likely class membersﬁip. Not surprisingly the relative
approach produced the hiéhest accuracy and is used in all
the classification accurécy graphs in this section. The
classification accuracy:pf the three Neural Network models

using 15-hertz FFT patterns is displayed in figure 4.
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The following abbreviations are used in certain graphs:

NP = NO POWER
TP = TOTAL POWER
PTP = PROPORTIONAL TOTAL POWER

Neural Network Pattern Classification
Percentage Correctly Classified 15Hz
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Figure 4. Neural Network Pattern Classification
Percenage Classified Correctly 15Hz
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No single neural network model outperformed the other
models in every behavior using 15-hertz FFT data.
The classification accuracy of the three neural network

models using 20-hertz FFT patterns is displayed in figure 5.

Neural Network Pattern Classification
Percentage Correctly Classified 20Hz
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Figure 5. Neural Network Pattern Classification
Percentage Correctly Classified 20Hz

Just as in the 15-hertz case none of the neural network

models outperformed the other models in every behgvior
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category using 20-hertz FFT data.
The average accuracy, and the standard deviation of
that average, of each of the six models is displayed in

figure 6.

Neural Network Pattern Classification
Average Percentage Correctly Classified
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Figure 6. Neural Network Pattern Classification
Average Percentage Correctly Classified

All the networks performed poorly and the highest

average percent classified correctly was only 48.20%. There
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are several possible contributing factors for this poor
accuracy.

One factor, behavior intertwining, was discussed
earlier in relati6n4to choosing training set examples. This
alsé affects the classification accuracy test. A ninety-
second initiallyxscoréd licking behavior segment was
reinspected. Although when viewed at normal speed it
appeared to be a long duration licking behavior segment,
upon frame level inspéctiénvit‘was discovered that there
were consistenﬁ\and repeaﬁed‘éniffihg‘behavior segments
intertwined Qith the licking;k It appeared that 15% of this
scored licking behavior segmeht was made up of sniffing
subsegments. erwever this still does not account for all
the missed classificatipns.

The other likely explanation for this lack of accuracy
is that the neural network)total‘training set was not
completely repreSenta;ivé of‘#he selected behaviors.
Perhaps the behavior segment»a&erage FFTs do not accuratgly
characterize the individual 1-second behavior FFTs. Each
behavior seems to be made up of a group of distinct FFT
pattern subsets, which apparently~are not accurately
represented by a segment average.

The ideal classifier should have a high average
accuracy with a small standard deviat}on, or the bést
possible combination of the two. With these criteria in

mind the Total Power 15-hertz model and the Proportional
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Total Power zofﬁertz were chosen as having the best overall
performance for each pattern length. In an aétempt to
determine if the behavior segment average FFTs presented a
more uniﬁorm behavior signature than the individual 1-second
FFTs, tﬁese twoftop performing classifier médels were tested
by classifying ail tﬁe scored behavior segment averages.

The results are displayed in figure 7;‘
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These segment average classification results are listed
in TABLE XV. The overall average classification percentage
accuracy was identical for both models at 98.74%, and a
standard deviation of 1.78. While this result is not
conclusive, since of the 114 segment average FFT patterns
classified 54 were initially used for network training, it
supports the view that behavior segment averages are

behaviorally consistent.



CHAPTER IV
CONCLUSIONS AND FUTURE RESEARCH DIRECT;ONS
Conclusions

The FFT‘chéracterizafion of the,motility data signal
was found to be the best'teqhnique to enhance distinguishing
features between the different behaviors. However the 1-
second FFT claséification meﬁhod accuracy level was
unacceptably lqw,;due to an unrepresentative behavior
training set.

A typical behavior seghent seems to be composed of
several distinct 1-second FFT patterns randomly repeated but
with stable propbrtions, which produce a consistent segment
average FFT pattern. However, this behavior data segment
format makes seément average' FFT patterné unrepresentative
of individual 1-second FFT patterns. To properly classify
l-second FFTs the training set must be made up of sample 1-
second FFT patterné and not segment average FFT patterns.

The segment average FFT glassification method performed
very well. However this classification method cannot be
used with fixed segmentation, only adaptive or variable

segmentation.
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The analysis methods used in this project processed
data at a sufficiently rapid rate on the 386/387 system to
be a feasible laboratory tool. Also, these analysis methods
could be'substantially speeded up if a production quality

system were developed.
Future Research Directions

Two future research directions seem very pfomising, and
are the 1ogical‘next steps from this work.

One approach would use the overall analysis methods
used in this préject, but deyelopAa new neural network
training set, based on individual l1-second FFTs. This would
require the frame by frame rescoring of a portion of the
behavior data to imprp?é tﬁe scored behavior accuracy,
eliminating intertwined behavior inaccuracies. From this
recorded data a new Neural Network training set would be
built, comprising aﬂrepresentative sample of 1l-second FFT
patterns for each behaVior, instead of segment average FFT
patterns. In building these new behavior training sets
particular importance must be placed on assuring that they
are truly representative of éll the FFT patterns making up
each behavior and that no ambiguity exists.

The other logical research direction involves utilizing
the high accuracy demonstrated in the behavior segment

average classification method. The capability of‘adaptive
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segmentation using an ARMA model to break a signal into
segments contéining a continuous behavior would be explored.
If the ARMA model proved capable of accurately segmenting
the signal, then the average\l—seqond FFT for the segment
would be calculated. This behavior segment average FFT
could theﬁ be classified usih§ the same neural network

method that achieved 98.74% accuracy in this project.



CHAPTER IV
MERITS OF RESEARCH

Both of these research directions hold the promise of
producing a fast and accurate motility data signal analysis
system. This final analysis system would be of tremendous
benefit to animal research’laporafories by automating the
collection of animal behavioral data. This automated system
could objectively gather enormous amounts of animal
behavioral data, havihg far-feaéhing implications on both

disease and drug animal research.
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APPENDIX A

SYNTHETIC MOTILITY TEST SIGNALS

FFT LOG OF POWER VALUES

TABLE IV contains the l-second FFT LOG of power values
from 1 to 20-hertz of the two synthetic motility test
signals. Both test signals had two hertz components that
were the same amplitude, however file SIN28.3 had an eight
hertz component one third the amplitude of the two hertz and
file SIN28.6 contained an eight hertz component one sixth

the amplitude.
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TABLE IV

TEST SIGNAL 1-second FFT

HERTZ SIN28.3 SIN28.6
1 9.3623 9.3623
2 9.9644 9.9644
3 9.3623 9.3623
4 1.5906 1.2924
5 0.9982 0.6777
6 1.0482 0.7828
7 8.4080 : 7.8059
8 9.0100 | 8.4079
9 8.4080 . 7.8059
10 0.3648 0.9549
11 0.3138 0.4947
12 0.9947 0.7711
13 0.5566 0.6912
14 0.9282 1.2080
15 0.6104 0.7779
16 1.1023 ‘ 1.1025
17 ( 0.6677 0.7202
18 1.0331 1.1196
19 0.6356 0.7687

20 1.0308 1.2066



APPENDIX B

GRAPHICAL DISPLAY OF BEHAVIOR FFT

NEURAL NETWORK TRAINING SETS

The average FFTs of the individual behavior segments
were used as the Neural Network training sets. The
graphical display of the FFT patterns was found to be very
useful in pairing down the size of each individual behavior
training set by removing redundant patterns. Also by color
coding and superimpqsing different behavior training sets,
any erroneous set membership intersection between different
behaviors could be identified and avoided. This behavior
set intersection introduces ambiguity into the training
sets, thus prevenfing Neural Network convergence. The FFT
patterns in the graphical displays are the 1 to 20 hertz
portion of the FFT neuron normalized. This is the same

pattern presented to the Neural Network Classifier.
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APPENDIX C

PRELIMINARY TEST RESULTS ON ORIGINAL FFT DATA
USING ABSOLUTE AND RELATIVE

CLASSIFICATION CRITERIA

Two different methods of interpreting the Neural
Network resulfsfto assign(ciass membership were tried. An
absolute match was achieved if the output pattern was within
0.3 tolerance for évery neuron when compared to a behavior
identification pattern. A relative match consisted of the
largest valued oufput‘neuron being 0.2 above the second
highest neuron. |

Three different types of Neural Network Classifiers
were tested on two different size FFT pattefns. The two
pattern sizes were 15 and 20 hertz. When a pattern value is
assigned to an input neuron its value is normalized to
between zero and one. The No Power network assigné each
hertz value to one input neuron. The Total Power network
assigns each herté value. to one input neuron and the sum of
the hertz values are assigned to an extra input neuron. The
Proportional Power net&ork calculates what percentage of

total power each hertz value represents and assigns this
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percentage to a corresponding neuron. An asterisk preceding
a behavior name in a table denotes the correct behavior

classification for that scored data.
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TABLE V

15-HERTZ NO POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

. 'BEHAVIOR ABSOLUTE | RELATIVE
* LICKING 58.89% 61.96%
PAW LICKING 3.65% 5.06%
RESPIRATION 0.82% 2.24%
PRE-SNIFFING 2.47% 3.42%
POST-SNIFFING 16.37% - 20.49%
UNKNOWN 17.79% 6.83%

PAW LICKING

SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 6.84% 11.11%

* PAW LICKING 34.19% 41.03%
RESPIRATION 7.69% 9.40%
PRE-SNIFFING 6.84% '9.40%
POST-SNIFFING 7.69%. 11.11%
UNKNOWN 36.75% 17.95%

RESPIRATION SCORED DATA 150 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 1.33% 1.33%
PAW LICKING 1.33% 2.00%

* RESPIRATION 36.67% 55.33%
PRE-SNIFFING 0.67% 2.00%
POST-SNIFFING 6.00% 21.33%
UNKNOWN 54.00% 18.00%
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PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 10.47% 11.63%
PAW LICKING 12.79% 15.12%
RESPIRATION 5.81% 11.63%

* PRE-SNIFFING 18.60% 25.58%
POST-SNIFFING 12.79% 19.77%
UNKNOWN ' 39.53% 16.28%

POST-SNIFFING SCORED DATA 371 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 18.06% 19.41%
PAW LICKING 5.39% 8.09%
RESPIRATION 2.16% 4.58%
PRE-SNIFFING - 7.82% 10.51%

* POST-SNIFFING 40.43% 52.83%
UNKNOWN " 26.15% 4.58%
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TABLE VI

15-HERTZ TOTAL POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
* LICKING . 36.98% 44.52%
PAW LICKING 8.36% 10.95%
RESPIRATION 1.53% 2.47%
PRE-SNIFFING 3.30% 5.42%
POST-SNIFFING 17.67% 22.61%
14.02%

UNKNOWN A . 32.15%

PAW LICKING SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 4.27% 5.98%

* PAW LICKING 39.32% 47.86%
RESPIRATION 8.55% 8.55%
PRE-SNIFFING 8.55% 8.55%
POST-~-SNIFFING .6.84% 8.55%
UNKNOWN 32.48% 16.24%

RESPIRATION SQORED DATA 150 SEGMENTS

BEHAVIOR ' ' ABSOLUTE

RELATIVE
LICKING : 3.33% 4.00%
PAW LICKING 4.67% 4.67%
* RESPIRATION 57.33% 66.00%
PRE-SNIFFING 5.33% 10.67%
POST-SNIFFING 0.67% 2.67%
9.33%

UNKNOWN 28.67%
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PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 8.14% 8.14%
PAW LICKING 13.95% - 19.77%
RESPIRATION 6.98% 10.47%

* PRE-SNIFFING 29.07% 43.02%
POST-SNIFFING 5.81% 10.47%
UNKNOWN : 36.05% 8.14%

POST-SNIFFING SCORED DATA 371 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 11.05% 13.48%
PAW LICKING 8.09% 10.51%
RESPIRATION 4.31% 5.93%
PRE-SNIFFING 9.70% 16.44%

* POST-SNIFFING 32.88% 39.62%

UNKNOWN 33.96% 14.02%




TABLE VII

15-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE

* LICKING 55.59% 60.78%
PAW LICKING 5.06% 6.24%
RESPIRATION 0.59% 1.06%
PRE-SNIFFING 2.12% 3.42%
POST-SNIFFING 15.43% 20.73%

UNKNOWN 22.20% 7.77%

PAW LICKING SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING ©9.40% 10.26%

* PAW LICKING 35.04% 45.30%
RESPIRATION 5.98% 7.69%
PRE-SNIFFING - 5.98% 11.11%
POST-SNIFFING . 7.69% 12.82%

UNKNOWN 35.90% 12.82%

RESPIRATION SCORED DATA 150 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 3.33% 3.33%
PAW LICKING 3.33% : 7.33%

* RESPIRATION ‘ 36.00% 53.33%
PRE-SNIFFING 2.00% ‘ 4.00%
POST-SNIFFING 6.00% 16.67%

UNKNOWN 49.33% 15.33%




PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 11.63% ©17.44%
PAW LICKING 8.14% . 16.28%
RESPIRATION 5.81% 9.30%

. * PRE-SNIFFING 18.60% 25.58%
POST-SNIFFING 13.95% 19.77%
UNKNOWN 41.86% 11.63%

POST-SNIFFING SCORED DATA 371 SEGMENTS

BEHAVIOR - ABSOLUTE RELATIVE
LICKING 15.90% 17.79%
PAW LICKING 4.31% 5.66%
RESPIRATION 2.70% 4.04%
PRE-SNIFFING 7.01% 10.78%

* POST-SNIFFING 39.93% 54.18%

UNKNOWN | . 33.15% 6.20%




TABLE VIII

20-HERTZ NO POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

BEHAVIOR " ABSOLUTE RELATIVE

* LICKING 44.52% 49.82%
PAW LICKING 11.19% 13.78%
RESPIRATION 0.35% 0.59%
PRE-SNIFFING 1.18% 2.24%
POST-SNIFFING 18.73% 24.14%
UNKNOWN . 24.03% 9.42%

PAW LICKING

SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 3.42% 3.42%
* PAW LICKING 56.41% 65.81%
RESPIRATION 1.71% 3.42%
PRE-SNIFFING 6.84% 11.97%
POST-SNIFFING 8.55% 10.26%
UNKNOWN 23.08% 5.13%
RESPIRATION SCORED DATA 150 SEGMENTS
BEHAVIOR ABSOLUTE RELATIVE
LICKING 2.00% 2.00%
PAW LICKING 12.00% 14.67%
* RESPIRATION 34.00% 44.00%
PRE-SNIFFING 0.67% 4.00%
POST-SNIFFING 10.00% 21.33%
UNKNOWN 14.00%

41.33%
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PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 6.98% 6.98%
PAW LICKING 17.44% 19.77%
RESPIRATION 3.49% 8.14%

* PRE-SNIFFING 15.12% 25.58%
POST-SNIFFING 13.95% 25.58%
UNKNOWN 43.02% 13.95%

POST-SNIFFING SCCRED DATA 371 SEGMENTS

RELATIVE

BEHAVIOR - ABSOLUTE
LICKING 13.48% 13.75%
PAW LICKING 10.78% 13.21%
RESPIRATION 1.35% 2.16%
PRE-SNIFFING 6.47% 8.36%
* POST-SNIFFING 39.62% 49.60%
UNKNOWN 28.30% 12.94%
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TABLE IX

20-HERTZ TOTAL POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE

* LICKING 55.12% 62.31%
PAW LICKING 3.30% 4.36%
RESPIRATION 0.59% 1.18%
PRE-SNIFFING 1.18% 2.12%
POST-SNIFFING 14.13% 19.43%
UNKNOWN 25.68% 10.60%

PAW LICKING

SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 6.84% 7.69%

* PAW LICKING 47.86% 52.99%
RESPIRATION 7.69% 9.40%
PRE-SNIFFING 5.98% 10.26%
POST~SNIFFING 0.85% 3.42%
UNKNOWN 30.77% 16.22%

RESPIRATION SCORED DATA 150 SEGMENTS

BEHAVIOR . ABSOLUTE RELATIVE
LICKING 2.67% 2.67%
PAW LICKING 1.33% 3.33%

* RESPIRATION ' 44.67% 56.00%
PRE~-SNIFFING 0.00% 1.33%
POST-SNIFFING 3.33% 12.67%
UNKNOWN 48.00% 24.00%

64



PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 11.63% 12.79%
PAW LICKING 11.63% 18.60%
RESPIRATION ‘6.98% 9.30%

* PRE-SNIFFING 15.12% 24.42%
POST-SNIFFING 5.81% 15.12%
UNKNOWN 48.84% 19.77%

POST-SNIFFING SCORED DATA 371 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 14.29% 16.17%
PAW LICKING ) 7.01% 8.36%
RESPIRATION 5.12% 6.20%
PRE-SNIFFING 7.01% 11.05%

* POST-SNIFFING 33.96% 41.51%

UNKNOWN 32.61% 16.71%




TABLE X

20-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK RESULTS

LICKING SCORED DATA 849 SEGMENTS

BEHAVIOR ABSOLUTE ) RELATIVE

* LICKING 50.88% ' 58.30%
PAW LICKING 4.00% 5.42%
"RESPIRATION 0.00% 0.35%
PRE-SNIFFING 2.36% 3.65%
POST-SNIFFING 16.61% 20.38%

UNKNOWN - 26.15% ‘ 11.90%

PAW LICKING SCORED DATA 117 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 5.13% 6.84%

* PAW LICKING 41.03% 47.86%
RESPIRATION 2.56% 5.13%
PRE-SNIFFING 12.82% 17.95%
POST-SNIFFING 1 3.42% 10.26%
UNKNOWN .- 35.04% 11.97%

RESPIRATION SCORED DATA 150 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 2.00% 2.67%
PAW LICKING ~ 4.00% ) 7.33%

* RESPIRATION 28.67% 38.00%
PRE-SNIFFING 7.33% - . 12.67%
POST~SNIFFING 10.67% 19.33%

UNKNOWN 47.33% . 20.00%




PRE-SNIFFING SCORED DATA 86 SEGMENTS

BEHAVIOR ABSOLUTE RELATIVE
LICKING 8.14% 10.47%
PAW LICKING 12.79% 17.44%
RESPIRATION 5.81% 6.98%

* PRE~-SNIFFING 25.58% 34.88%
POST-SNIFFING - 10.47% 17.44%
UNKNOWN 37.21% 12.79%

POST-SNIFFING SCORED DATA 371 SEGMENTS

BEHAVIOR -~ ABSOLUTE RELATIVE
LICKING 13.75% 16.17%
PAW LICKING - '5.93% 8.36%
RESPIRATION 1.35% 1.89%
PRE-SNIFFING C6.74% 11.05%

* POST-SNIFFING 40.97% 53.10%
UNKNOWN - 29.65% 9.43%
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APPENDIX D

PRELIMINARY TEST RESULTS ON SEGMENT AVERAGE FFT
DATA USING ABSOLUTE AND RELATIVE

CLASSIFICATION CRITERIA

Each scored behavior segment had the average FFT
calculated by computing all the 1-second FFTs with in the
segment and taking“the averagé. While only 54 segment
average FFTs were ﬁSed in the Neural Network Classifier
total training ;et, a total of 114 scored behavior segments
existed. Since the behavid} segment aVerége FFTs showed
very little visual variability, they were chosen as an
alternate test set to Be inpﬁt'into two of the Neural
Network Classifiers: Anvastérisk preceding a behavior name
in a table denotes the correct behavior classification for

that scored data.
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TABLE XI

15-HERTZ TOTAL POWER NEURAL NETWORK

SEGMENT AVERAGE RESULTS

LICKING SCORED DATA 57 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE

* LICKING 92.98% 98.25%
PAW LICKING 0.00% 0.00%
RESPIRATION 0.00% 0.00%
PRE-SNIFFING 0.00% 0.00%
POST-SNIFFING 1.75% 1.75%
UNKNOWN 5.26% 0.00@

PAW LICKING SCORED DATA 16 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
* PAW LICKING 100.00% 100.00%
RESPIRATION '0.00% 0.00%
PRE-SNIFFING 0.00% 0.00%
POST-SNIFFING . 0.00% 0.00%
UNKNOWN f . 0.00% 0.00%

RESPIRATION SCORED DATA 11 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
PAW LICKING 0.00% 0.00%
* RESPTRATION 100.00% 100.00%
PRE-SNIFFING 0.00% 0.00%
POST-SNIFFING 0.00% 0.00%
UNKNOWN 0.00% 0.00%
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PRE-SNIFFING SCORED DATA 8 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
PAW LICKING 0.00% 0.00%
RESPIRATION 0.00% 0.00%

-* PRE-SNIFFING 100.00% 100.00%
POST-SNIFFING 0.00% 0.00%
UNKNOWN 0.00% ' 0.00%

POST-SNIFFING SCORED DATA 22 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
PAW LICKING 0.00% B 0.00%
RESPIRATION 0.00% 0.00%
PRE-SNIFFING 4.55% 4.55%

* POST-SNIFFING 90.91% 95.45%

UNKNOWN ~ 4.55% 0.00%



TABLE XII

20-HERTZ PROPORTIONAL TOTAL POWER NEURAL NETWORK

SEGMENT AVERAGE RESULTS

LICKING SCORED DATA 57 SEGMENT AVERAGES

BEHAVIOR  ABSOLUTE 'RELATIVE

* LICKING 92.98% 98.25%
PAW LICKING . 0.00% 0.00% -
RESPIRATION ~ . 0.00% 0.00%
PRE-SNIFFING © 1 0.00% , 0.00%
POST-SNIFFING . 1.75% : 1.75%
UNKNOWN " 5.26% 0.00@

@

PAW LICKING SCORED DATA 16 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING o 0.00% 0.00%
* PAW LICKING .+ 100.00% 4 100.00%
RESPIRATION 0.00% ‘ 0.00%
PRE-SNIFFING 0.00% 0.00%
POST~SNIFFING ~0.00% 0.00%

UNKNOWN -~ 0.00% 0.00%

RESPIRATION SCORED DATA 11 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING : 0.00% ‘ 0.00%
PAW LICKING 0.00% 0.00%
* RESPIRATION 90.91%, 100.00%
PRE-SNIFFING 0.00% 0.00%
POST-SNIFFING 0.00% 0.00%

UNKNOWN ‘ 9.09% 0.00%




PRE-SNIFFING SCORED DATA 8 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
PAW LICKING 0.00% 0.00%
RESPIRATION 0.00% 0.00%

* PRE-SNIFFING 100.00% 100.00%
POST-SNIFFING 0.00% 0.00%
UNKNOWN 0.00% 0.00%

POST-SNIFFING SCORED DATA 22 SEGMENT AVERAGES

BEHAVIOR ABSOLUTE RELATIVE
LICKING 0.00% 0.00%
PAW LICKING 0.00% 0.00%
RESPTIRATION 0.00% 0.00%
PRE-SNIFFING 4.55% 4.55%

* POST-SNIFFING 90.91% 95.45%
UNKNOWN 4.55% 0.00%
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the

are

NP

TP

PTP

APPENDIX E

SUMMARY TEST RESULTS USING
RELATIVE CLASSIFICATION
'CRITERIA
The tables in this appendix are a simplified summary of
data contained in appendix B. The three network types

represented by the follqwing codes:

NO POWER

TOTAL POWER

PROPORTIONAL TOTAL POWER
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TABLE XIII

ONE~-SECOND SEGMENT FFT PATTERNS

15-HERTZ BEHAVIORAL CLASSIFICATION ACCURACY

BEHAVIOR NP TP PTP

LICKING \61}96% 44.52% 60.78%
PAW LICKING 41.03% 47.86% 45.30%
RESPIRATION 55.33% 66.00% 53.33%
PRE-SNIFFING 25.58% 43.02% 25.58%

POST-SNIFFING 52.83% 39.62% 54.18%

20~-HERTZ BEHAVIORAL CLASSIFICATION ACCURACY

BEHAVIOR NP | TP PTP

LICKING 49.82% 62.31% = 58.30%
PAW LICKING 65.81% 52.99% 47.86%
RESPIRATION 44.00% 56.00% 38.00%
PRE-SNIFFING 25.58% 24.42% 34.88%

POST-SNIFFING 49.60% 41.51% 53.10%




TABLE XIV

OVERALL NEURAL NETWORK METHOD ACCURACY

BEHAVIOR NP TP PTP
15Hz AVERAGE 47.35% 48.20% 47.83%
15Hz STD DEV 12.81 9.28 12.16
20Hz AVERAGE 46.96% 47.45% 46.43%
20Hz STD DEV 12.93 13.34 8.85
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TABLE XV

BEHAVIOR SEGMENT AVERAGE FFT PATTERNS

BEHAVIORAL CLASSIFICATION ACCURACY

BEHAVIOR TP/15Hz PTP/20Hz
LICKING 98.25% 98.25%
PAW LICKING 100.00% 100.00%
RESPIRATION 100.00% 100.00%
PRE-SNIFFING 100.00% "100.00%
POST-SNIFFING 95.45% 95.45%
AVERAGE 98.74% 98.74%
STD DEV 1.78 1.78
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