AN EXPERT SYSTEM TO MANAGE
 SELECTION OF TRACTOR
 IMPLEMENT SYSTEMS

By
ABDULRAHMAN A. AL-JANOBI Bachelor of Agriculture Science

King Saud University
Riyadh, Saudi Arabia
1986

```
Submitted to the Faculty of the
    Graduate College of the
    Oklahoma State University
    in Partial fulfillment of
        the requirements for
        the Degree of
        MASTER OF SCIENCE
            December, 1990
```

Thesiw
1990
A3lbe
cop 2

Oklahoma State Univ. Library

AN EXPERT SYSTEM TO MANAGE
 SELECTION OF TRACTOR
 IMPLEMENT SYSTEMS

Thesis Approval:

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. Downs for his encouragement and advice throughout my graduate program. Many thanks also go to Dr. Kranzler, and Dr. Elliot for serving on my graduate committee. Their suggestions and support were very helpful throughout the study.

Thanks go to my parents, encouraged and supported me all the way and helped me keep the end goal constantly in sight. Many thanks to my brothers, sisters, wife, friends, and professors who help me in any stage of my life.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 5
Introduction 5
Ballasting 5
Tires 7
Tire Pressure 9
Expert Systems. 10
III. KNOWLEDGE BASE SYSTEM 12
Ballasting Program 12
Matching Program 24
Tire Pressure Program 29
Tire Selection Program 34
The Expert Knowledge 38
IV. DISCUSSION 42
VI. VALIDATION 47
VII. SUMMARY \& CONCLUSION AND RECOMMENDATIONS 53
REFERENCES 56
APPENDIXES 60
APPENDIX A - SYSTEM KNOWLEDGE BASE 61
APPENDIX B - BALLAST1 KNOWLEDGE BASE 62
APPENDIX C - BALLAST2 KNOWLEDGE BASE 69
APPENDIX D - MATCHING KNOWLEDGE BASE 74
APPENDIX E - TIRE PRESSURE KNOWLEDGE BASE 88
APPENDIX F - TIRE1 KNOWLEDGE BASE 93
APPENDIX G - TIRE2 KNOWLEDGE BASE 98
APPENDIX H - EXAMPLE 107

LIST OF TABLES

Table Page
I. Tractor Data 15
II. Front Tire Data 16
III. Rear Tire Data 18
IV. Cone Index Estimation 23
V. Estimation of Slippage 24
VI. Oklahoma Implement Draft 28
VII. Implement Draft 29
VIII. Agricultural Tractor Bias Tire Loadings and Inflation Pressures 32
IX. Agricultural Tractor Radial Tire Loadings and Inflation Pressures 33
X. Ballasting Tests for 2WD Tractors 50
XI. Ballasting Tests for 4WD Tractors 51
XII. Matching Program Tests 52

LIST OF FIGURES

Figure Page

1. Main System Knowledge Base 13
2. Ballastl Knowledge Base 21
3. Ballast2 Knowledge Base 22
4. Matching Knowledge Base 25
5. Tire Pressure Knowledge Base 30
6. Tirel Knowledge Base 35
7. Tire2 Knowledge Base 36

NOMENCLATURE

\%FWD	ratio of dynamic weight on front axle to total tractor weight
\%FWS	ratio of static weight on front axle to total tractor weight
2WD	two-wheel-drive tractor
4WD	four-wheel-drive tractor
Ballast1	the first part of the Ballasting Program that receives all tractor and tire information
Ballast2	the second part of the Ballasting Program that recommends the right decision
BNF	mobility number for front tire
BNR	mobility number for rear tire
BPRESSURE	DBase III Plus file which contains bias tire sizes and loads at various inflation pressures
cacl2	calcium chloride
DBHP	tractor drawbar horsepower (HP)
DBHT	drawbar height above ground (in)
DRAFT	implement draft (lb)
EDRAFT	estimated soil draft (lb/ft)
EFWS	estimated static front axle weight(lb)
ERWS	estimated static rear axle weight (lb)
Fcacl2	the weight of cacl2 inside front tire (lb)
FOD	overall diameter of front tire (in)
Fsecw	front tire section width (in)
FSW	maximum weight that front tire can carry (lb)

FTIRE	DBase III Plus file which contains required front tire information
FWA	front wheel assist tractor
Fwater	the weight of water inside front tire (lb)
FWD	dynamic front axle weight (lb)
FWS	static front axle weight (lb)
HP	horsepower
lb	pound
LP	linear programing
Main Expert	an expert program for controlling the Expert System
Matching	an expert program for matching implement with tractor
MWF	front motion resistance ratio
MWR	rear motion resistance ratio
OS	operating speed (miles per hour)
P	drawbar pull (lb)
psi	pounds per square inch
PTOHP	tractor PTO horsepower (HP)
QRWF	front torque ratio
QRWR	rear torque ratio
Rcacl2	the weight of cacl2 inside rear tire (lb)
ROD	overall diameter of rear tire (in)
RPRESSURE	DBase III Plus file which contains radial tire sizes and loads at various inflation pressures
Rsecw	rear tire section width (in)
RSW	maximum weight that rear tire can carry (lb)
RTIRE	DBase III Plus file which contains required rear tire information
Rwater	the weight of water inside rear tire (lb)

RWD	dynamic rear axle weight (lb)
RWS	static rear axle weight (lb)
SLIP	wheel slip (\% of travel speed)
SOIL-DRAFT	DBase III Plus file which contains estimated draft per unit width for some typical soil conditions and implements
SYSTEM	tractor type (2WD, 4WD, FWA)
TE	tractive efficiency (\% [DBHP/PTOHP]) Tirel
finds the optimum tire type	

CHAPTER I

INTRODUCTION

The tractor is perhaps the most important tool in agriculture. Though tractors are both expensive and difficult to manage, farmers in the U.S. are often not trained to use tractors efficiently. The problem is even more acute in other countries, especially third world countries.

To help farmers overcome their difficulties in using tractors, many technical papers and much software dealing with tractor management have been produced. Usually, each of these systems is designed to help farmers with one or two tractor management problems such as ballasting, selecting tires, implement matching, selecting tractor size, operation and maintenance, and estimating purchase and operating costs.

Currently, technical specialists are developing "expert systems" which will be more comprehensive in dealing with problems in agriculture. An expert system is a computer program that solves problems in the same way that an expert would do in his field of expertise. Expert systems allow users to become more knowledgeable about a problem as they interact with the program. Expert system development
employs backward and forward chaining, while only forward chaining is used in conventional computer programs. In backward chaining, the expert system starts with goals, and works backward via rules to determine what initial data are required for the goals to be satisfied. Initial data must be provided before rules can be tested in forward chaining. Expert systems can deal with uncertainty. Expert knowledge is coded into a "knowledge base" which provides the "intelligence" on which decisions are made. Though expert systems can deal with problems that have particular solutions, typically they deal with problems that have many possible solutions. Conventional computer programs usually deal only with problems that have definite solutions. The expert system interacts with the user, gathering information necessary to determine which element of the knowledge base applies.

Statement of Problem

Though there are many technical papers and computer programs (software packages) available to farmers for managing tractors, it is often difficult to make a comprehensive management decision based on any single source of information. Conventional computer programs tend to be generic in providing information. Also, if several problems are included, computer programs become more complex in structure. Tractor management software is difficult for farmers to use, because it often requires information they
may not know. While the software requires technical information from the user, it may not provide enough details for him to understand the problem. Finally, there is no specific tire selection program to help select the right tire type for a particular application.

Objectives

To solve the above problems, an Expert System and knowledge base was developed to provide all the information that a farmer would need in making a typical management decision for tractor-implement systems.

The main objective of the project was to consolidate several tractor management functions into one package.

Specific management areas included in the Expert System were:
A) Ballasting the tractor
B) Matching the tractor with the implement
C) Selecting drive tires
D) Finding the correct tire pressure.

A related objective for the Expert System was education. Besides helping the farmer make the right decision, the system can educate the user through explanatory features. The Expert System uses simple sentences to explain complex knowledge base details in a manner the farmer can understand.

Scope and Limitation

This project is comprehensive enough to help farmers make prudent choices on tire selection, ballasting, and implement matching. The project was specifically confined to John Deere tractors of 100 HP and above, because of the time limitations.

Software Packages

VP-Expert and DBase III Plus were used to develop the Expert System. VP-Expert is a software package developed to build an expert knowledge base on IBM personal or compatible computers. It has many features that allow development of an expert system. DBase III Plus was used to build data files for the Expert System.

CHAPTER II

LITERATURE REVIEW

Introduction

There is much information available on making recommendations for tire selection, ballasting, implement matching, and tire pressure.: However, researchers continue efforts to increase tractor efficiency and performance.

Ballasting

Zoz (1972) developed a graphical method to predict travel speed, drawbar pull, drawbar horsepower, slippage, and tractive efficiency for various soil conditions. The graph is useful to estimate ballast requirements, but applies only to two-wheel-drive (2WD) tractors.

Wismer and Luth (1974) developed a set of prediction equations for single tires under different soil conditions and tire characteristics. Macnab, et al. (1977) used Wismer and Luth's equations to develop a FORTRAN computer program to model tractive performance of both two and four wheeldrive tractors.

Brixius (1987) improved prediction of tractor performance and extended the range of application to bias ply tires. He revised Wismer and Luth's equations. Zoz
(1987) used Brixius' equations to develop Lotus 1-2-3
templates that can predict tractor performance for both two and four wheel-drive tractors (including front wheel assist tractors). These templates have two modes: "performance" mode, to calculate drawbar performance and slippage given static axle weights and tire parameters, and "weight" mode, to calculate the required tractor axle weights for a given slippage and desired front axle dynamic weight.

Evans, et al. (1989), using Brixius' equations (1987), developed a traction prediction and ballast model using TK Solver (software package to solve equations). The slippage parameter in Brixius' equations was changed from -7.5 to -3.78 to more accurately predict the pull on a grass surface.

Bashford (1975) estimated total tractor weight requirements for typical Nebraska firm and tilled soils. He showed that 67 to $79 \mathrm{~kg} / \mathrm{kw}$ (110 to $130 \mathrm{lbs} / \mathrm{hp}$) were needed for light draft operations, 79 to $94 \mathrm{~kg} / \mathrm{kw}$ (130 to 155 lbs/hp) for average draft, and 94 to $122 \mathrm{~kg} / \mathrm{kw}$ (155 to 200 lbs/hp) for heavy draft operations. Shell and Batey (1987) reported that the axle weight ratio should be varied depending on the size of tractors. They found the optimum axle weight ratio for heavy tractors (100 kg/rated PTO-kw ($165 \mathrm{lb} /$ PTO hp)) to be 55% on the rear axle, for medium tractors (94 kg/rated PTO-kw (155 lb/PTO hp)) to be 60% on the rear axle, and for light tractors ($88 \mathrm{~kg} /$ rated PTO-kw ($145 \mathrm{lb} /$ РTO hp)) to be 65% on the rear axle.

Pacey and Shrock (1981) showed that the front axle weight ratio of a four-wheel-drive (4WD) tractor should be between 55\% and 60\%. Kraving (1986) reported that 65% of the tractor weight should be on the front axle.

Bashford, et al. (1985) found the best tractive efficiencies for a front-wheel-assist (FWA) tractor occurred when 60% to 55% of the total weight was on the rear axle. They also found that tractive efficiency was most sensitive to axle weight distribution for operation on loose soil rather than firm soil or concrete.

Bashford (1975) and Pacey and Shrock (1981) found that optimum axle weight ratio for 2 WD tractors was 25% of total weight on the front axle for towed implements. The optimum ballast was a function of soil type, speed, and tractor power.

Tires

Much research has been done on the radial tractor tire since it was introduced. Kraving (1986) reported some of advantages for radial tires over bias ply tires:

1) Increased tire footprint
2) Higher tractive efficiency
3) Reduced wheel slippage
4) Smoother ride in the field
5) Reduced fuel consumption
6) Increased productivity

The main disadvantage identified for radial tires was cost. However, reduced fuel consumption and increased field productivity frequently offset higher initial cost. Pacey (1984) presented an example cost analysis to calculate hours required for simple payback on the cost difference. Coates (1984) found no significant advantage in using radial tires on a soft soil.

Bashford, et al. (1987) tested the performance of a FWA tractor in plowed wheat stubble, disked wheat stubble, and disked sandy soil conditions. They found no significant difference in the performance of a FWA tractor with dual tires and a FWA tractor with single tires. Jurek and Newendrop (1983) found only a 2\% to 3\% improvement in fuel economy when using dual tires over single tires on a 2WD tractor in tilled soil, and 4% to 8% improvement in untilled soil. They concluded that dual tires provide more benefit when they are used with $2 W D$ tractors than with FWA tractors. Kucera, et al. (1985) tested 2WD and FWA tractors both with dual and single tires under varying soil and load conditions. They concluded that a FWA tractor with dual tires used 3% to 11% more fuel than a FWA tractor with single tires. According to Bashford, et al. (1987) the major advantages of dual tires are handling tractor load and floatation to reduce compaction.

Tire Pressure

Researchers have recognized the effects of inflation pressure and dynamic load for many years. Mckibben and Davidson (1940) reported that inflation pressure is one of the most important factors affecting motion resistance of unpowered pneumatic tires. Kliehefoth (1966) and Zombori (1967) studied the effects of inflation pressure on the performance of bias-ply tractor tires. They showed that a decrease in inflation pressure resulted in an increase in drawbar pull at constant slip. Burt and Bailey (1982) experimentally optimized the tractive efficiency for a radial-ply tractor tire. Results show that tractive efficiency can be significantly improved by selecting appropriate levels of inflation pressure and dynamic load for a particular soil condition.

Pacey and Shrock (1981) stated that the maximum load of the tire must decrease when inflation pressures decrease. Tire manufacturers set guidelines for tire inflation pressures and loads. The user should not exceed load recommendations.

Esch and Bashford (1987) tested the tractive performance of a tractor operating on different soil conditions with changing tire pressures. They did not find a significant difference in tractive performance. The air pressure in the inside dual was held at 110 KPa (16 psi) and in the outside dual was varied from $83 \mathrm{KPa}(12 \mathrm{psi})$ to 138 KPa (20 psi). Kraving (1986) reported that the outer dual
mostly provides stability and flotation and the inner dual is the primary drive tire. He suggested that the outer dual should be inflated 13 KPa (2 psi) lower than the inside dual as long as the maximum load for that pressure is not exceeded.

Expert Systems

Kline, et al. (1986) used Texas Instruments PCplus to develop FINDS (Farm-Level Intelligent Decision Support System), a program for machinery selection that expanded LP methods (McCarl, 1982). FINDS helps users select the right machine and size to increase farm profit. The authors structured FINDS into three environments: Lisp, which contains two frames (Model running and Model interpreter), DBase III Plus, and REPFRAM (1982) (five main FORTRAN modules) environments. PCplus provides good communication between the LISP functions and the DBase III Plus environments.

Clarke, et al. (1989) developed an expert system, "IRRIGATOR" for scheduling supplemental irrigation in Ontario (a sub-humid region). The authors used PCplus to develop "IRRIGATOR".

Gauthier and Guay (1989) developed an expert system to diagnose disorders of greenhouse tomatoes. The expert system can handle both biotic and abiotic disorders, determine the cause of disorders, and recommend solutions. The project was limited to six diseases. The authors used

Common LISP with 20 rules and 160 instances, in an objectoriented environment. The expert system can be expanded and easily maintained.

Gaultney, et al. (1989) developed an expanded expert system for trouble shooting tractor hydraulic systems. The authors provided the knowledge base from the hydraulic diagnosis manual for the John Deere 50 Series tractor, and limited the knowledge base to the hydraulic diagnosis manual with a quad-range transmission. The researchers followed the 56 steps in the manual to develop the expert system. Rules were grouped into 19 frames using PCplus.

CHAPTER III

KNOWLEDGE BASED SYSTEM

Introduction

A block diagram of the knowledge base system (KBS) is shown in figure 3.1. The knowledge base is composed of five rule groups: Main Expert; Ballasting, Implement Matching, Rear Tire Selection, and Tire Pressure.

Main Expert

This section of the Expert System provides control of the other Expert System files by guiding the user in selecting the specific program (file) desired.

Ballasting Program

The ballasting rule group estimates the static front and rear axle weights, then calculates the dynamic front and rear axle weights at an indicated speed. To minimize processing time , the ballasting rule group has been divided into two parts (programs): Ballastl and Ballast2.

Ballasting uses Zoz's (1970) and Brixius' (1987) equations. All the required tractor and tire information was stored in DBase III Plus files called TRACTOR and TIRE, respectively.

Figure 3.1 Main System Knowled Base

TRACTOR file contains the following required tractor information: wheel base, estimated front and rear axle weight, drawbar height, tractor PTO-horsepower, and tractor type. All the above information was taken from Nebraska Tractor Tests (N.T.T 1982). However, this file was limited to John Deere tractors with 100 PTO-horsepower or higher because of time limitations (Table I).

TIRE File

TIRE file contains required tire information: tire section width, overall diameter, maximum load, and the weights of water and cacl2 that the tire can carry. All the information was taken from the tire selection table for Agricultural Machines of Future Design (ASAE S220.4). TIRE file has been divided into two files: FTIRE (Front Tire) and RTIRE (Rear Tire) files because VP-Expert can not read the same data from one file two times (Table II and III).

TABLE I
TRACTOR DATA

MAKE	MODEL	WB 1	PTOHP 2	RWS 3	FWS 4	DBHT 5	SYSTEM 6
JOHN-	4050	106.7	105	9170	3550	22.5	2WD
DEERE	4250	106.7	120	10065	3790	24.5	2WD
	4450	106.7	140	11165	3790	22.0	2WD
	4650	118.5	165	13650	4935	24.5	2WD
	8450	125.0	186	14230	14920	17.5	4WD
	8650	125.0	238	14310	15960	17.5	4WD
	8850	133.0	304	15340	22360	17.0	4WD

[^0]
TABLE II

FRONT TIRE DATA

SIZE	FSW ${ }^{1}$	FSECW ${ }^{2}$	FOD ${ }^{3}$	FWATER ${ }^{4}$	FCACL2 ${ }^{5}$
6.0-16	1260	6.26	29.02	0.0	0.0
7.5-15	1590	8.19	29.49	0.0	0.0
7.5-16	1650	8.15	31.5	0.0	0.0
7.5-18	1790	7.91	33.82	0.0	0.0
7.5-20	1930	7.91	. 35.83	0.0	0.0
9.5L-15	1700	9.80	30.12	0.0	0.0
9.5-20	2770	9.61	38.58	0.0	0.0
10.0-16	2130	10.59	34.80	0.0	0.0
11.0L-15	1910	11.5	$\therefore 31.89$	0.0	0.0
11.0-16	3780	12.40	38.11	0.0	0.0
11.2-24	2310	11.2	43.39	200	237
12.4-24	3120	12.4	45.79	250	308
12.4-42	3440	11.54	63.82	400	486
13.6-28	4210	13.86	51.42	359	439
13.6-38	3660	13.82	61.10	475	581
14.9-24	3880	14.41	49.80	392	474
14.9-26	4530	14.80	51.89	400	486
14.9-28	4680	14.69	54.02	442	545
14.9-30	4830	14.88	55.51	475	568
15.5-38	5110	15.51	61.61	550	663
16.9-24	4920	17.20	52.09	509	616
16.9-26	5080	17.20	54.09	542	663

TABLE II (Continued)

SIZE	FSW				
		FSECW			
		FOD 3	FWATER 4	FCACL2 5	
$16.9-28$	5250	16.81	55.59	575	699
$16.9-30$	5410	16.42	58.50	609	746
$16.9-34$	5250	17.60	62.52	684	829
$16.9-38$	5560	17.20	66.81	751	912
$18.4-26$	5830	18.31	56.89	659	805
$18.4-28$	4530	17.91	59.41	701	852
$18.4-30$	5330	18.40	61.42	742	912
$18.4-34$	5650	18.74	65.20	834	1007
$18.4-38$	7880	18.9	69.09	917	1113
$18.4-42$	7360	18.39	73.39	959	1160
$20.8-34$	6440	21.30	68.58	1068	1291
$20.8-38$	7670	20.98	72.60	1168	1421
$20.8-42$	8090	20.79	76.42	1234	1503
$23.1-26$	6280	23.03	63.31	1068	1291
$23.1-30$	6690	23.66	66.81	1193	1457
$23.1-34$	7110	23.58	71.18	1326	1610
$24.5-32$	8700	24.88	71.30	1418	1729
$30.51-32$	9120	30.51	71.60	1809	2202

1. maximum weight that front tire can carry (b)
2. front tire section width (in)
3. overall diameter of front tire (in)
4. the weight of water inside front tire (lb)
5. the weight of calcium chtoride inside front tire (lb)

TABLE III
REAR TIRE DATA

SIZE	RSW ${ }^{1}$	RSECW ${ }^{2}$	ROD ${ }^{3}$	RWATER ${ }^{4}$	RCACL2 ${ }^{5}$
12.4-24	3120	12.4	45.79	250	308
12.4-42	3440	11.54	63.82	400	486
13.6-28	4210	13.86	51.42	359	439
13.6-38	3660	13.82	61.10	475	581
14.9-24	3880	14.41	49.80	392	474
14.9-26	4530	14.80	51.89	400	486
14.9-28	4680	14.69	54.02	442	545
14.9-30	4830	14.88	, 55.51	475	568
15.5-38	5110	15.51	61.61	550	663
16.9-24	4920	17.20	52.09	509	616
16.9-26	5080	17.20	54.09	542	663
16.9-28	5250	16.81	55.59	575	699
16.9-30	5410	16.42	58.50	609	746
16.9-34	5250	17.60	62.52	684	829
16.9-38	5560	17.20	66.81	751	912
18.4-26	5830	18.31	56.89	659	805
18.4-28	4530	17.91	59.41	701	852
18.4-30	5330	18.40	61.42	742	912
18.4-34	5650	18.74	65.20	834	1007
18.4-38	7880	18.9	69.09	917	1113
18.4-42	7360	18.39	73.39	959	1160

TABLE III (Continued)

| SIZE | RSW | RSECW | R | ROD 3 | RWATER 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | RCACL2 5

1. maximum weight that rear tire can carry (lb)
2. rear tire section width (in)
3. overall diameter of rear tire (in)
4. the weight of water inside rear tire (lb)
5. the weight of calcium chloride inside rear tire (lb)

Ballast1 Program

A block diagram of Ballastl knowledge base, which calculates static front and rear axles weight, is shown in Figure 3.2. Ballast1 begins by calling TRACTOR, FTIRE, and RTIRE files, and receiving all tractor and tire information. Information from the TRACTOR file is obtained after the make and model of the tractor are input by the user. FTIRE and RTIRE files are accessed by the size of front and rear tires, respectively. Ballastl then continues to check for situation information such as:

1. Is there additional iron weight on front and rear axles?
2. Does the tractor have dual or single tires?
3. Is there water or cacl2 inside the tire?

Ballastl can estimate the static front and rear axle weights, if the user does not know them, and the ratio of static weight on the front axle (\%FWS) based on the above information. However, the user can change the ratio of static weight on the front axle (\%FWS), thus changing the estimation of static front and rear axle weights. Ballastl saves the results, and then calls Ballast2 program.

Ballast2 Program

A block diagram of Ballast2 knowledge base, which estimates the tractor drawbar pull and the tractor weight at a given operating (indicated) speed and slippage, is shown in Figure 3.3.

Figure 3.2. Ballast1 Knowledge Base

Figure 3.3. Ballast2 Knowledge Base

Ballast2 program starts by loading TWS data from
Ballastl. The user is asked about operating speed, slip, and soil cone index for the field. Information is shown to assist in estimating the cone index and slip if they are not known (Table IV and V).

TABLE IV
CONE INDEX ESTIMATION

Cone Index	Soil condition
250	Hard, packed
200	Hard, packed with stubble
150	Firm
80	Tilled
60	Soft, wet

Ballast2 can make several recommendations depending on the following points:

1. Reduce rear or front axle weight if it is over the maximum tire load, or change size.
2. Reduce ballasting weight if the tractor is 2WD and total tractor weight is over $150 \mathrm{lb} /$ РТОНР.
3. Reduce ballasting weight if the tractor is 4 WD or FWA and the total tractor weight is over 140 lb /PTOHP.

TABLE V
ESTIMATION OF SLIPPAGE

Soil	Tractor Type		
	2WD	FWA	4 WD
	$10-12$	$8-10$	$8-10$
Tilled	$12-14$	$10-11.5$	$10-11.5$
Sandy	$14-16$	$11.5-13$	$11.5-13$

Finally, Ballast2 saves facts, then quits or accesses Tire Selection, Tire Pressure; or Matching program.

Matching Program

A block diagram of Implement Matching program knowledge base is shown in Figure 3.4. This section of the Expert System estimates tractor speed and slip at a given drawbar pull, tractor speed and drawbar pull at a given slip, and drawbar pull and slip at a given indicated speed. Matching program estimates the above twice. The first estimate is based on the current tractor weight, and the second is based on the optimum tractor weight. The optimum tractor weight is defined as 125 lb/PTOHP for 4WD tractors and $140 \mathrm{lb} / \mathrm{PTOHP}$ for $2 W D$ tractors.

Matching program starts by obtaining implement draft from the user or SOIL-DRAFT file (Table VI, p28).

```
        DRAFT = EDRAFT * WIDTH
```


Figure 3.4 Matching Knowledge Base
where
DRAFT Implement draft (lb)
EDRAFT Estimated draft per unit (lb/ft)
WIDTH Implement width (ft).
However, if the user does not know the implement draft and is not sure about the data in SOIL-DRAFT file, an estimated implement draft will be used (Table VII, p29).

Matching program uses the implement draft to calculate RWD (dynamic rear axle weight) and FWD (dynamic front axle weight) and estimates the tire slippage based on the P (tractor drawbar pull). The tractor has been assumed to be loaded at 75\% of full load.

```
P = DRAFT / 0.752
```

FWD = FWS - (P*DBHT/WB) 3
RWD $=$ RWS $+(\mathrm{P} *$ DBHT $/ \mathrm{WB})$ 4BNR $=(C I * R S E C W * R O D * *(A) /(R W D / 2)) *$((1+5*.18)/(1+3*RSECW/ROD)))5SLIP $=($ LN $[1-(375 * P T O H P * P O E F F /(O S * R W D)-0.04) / 0.88 /$

$$
(1-\operatorname{EXP}(-0.1 * B N R))] /-7.5) * 100
$$6

Matching program uses Zoz!s (1972) equations $(3,4)$ to calculate FWD and RWD, where the draft angle was estimated to be zero for towed implements connected to the drawbar. Zoz's equations then take the form of equations 3 and 4. To calculate BNR and SLIP, Matching uses Brixius' (1987) equations 5 and 6.

At this point, Matching program may access the Tire Pressure program after saving the DRAFT data, or check the

```
implement matching based on the user's choice in Main
Expert. The tractor drawbar pull will be matched with the
required implement draft based on the following Brixius'
(1987) equations:
    QRWR = 0.88*(1-EXP(-0.1*BNR))*
        (1-EXP(-7.5*(SLIP/100)))+0.04 7
MWR = ((1/BNR)+0.04+0.5*(SLIP/100)/SQRT (BNR)8
QRWF = 0.88*(1-EXP(-0.1*BNF))*
    (1-EXP(-7.5*(SLIP/100)))+0.04 9
    MWF = ((1/BNF)+0.04+0.5*(SLIP/100)/SQRT (BNF) 10
    TRACTOR_PULL = (((QRWR-MWR)*RWD)-(((1/BNF)+0.04)*FWD)) 11
    for 2WD tractors, OR
    TRACTOR_PULL = ((QRWR-MWR)*RWD) + ((QRWF-MWF)*FWD) 12
    for 4WD and FWA tractors.
```


SOIL-DRAFT File

SOIL-DRAFT file is a DBase III Plus file containing estimated draft per unit width for some typical soil conditions and implements for areas of Western Oklahoma (Table VI) (Downs). SOIL-DRAFT data can be easily expanded or changed.

TABLE VI

OKLAHOMA IMPLEMENT DRAFT

Soil Condition	Implement of	$\begin{aligned} & \text { Draft(lb/ft) } \\ & \text { implement width } \end{aligned}$
Tuttle silt loam	Moldboard plow	618
	Chisel	345
	Chisel with sweeps	S 253
	Tandem disk	289
Pulaski fine sandy loam	Chisel	262
	Offset disk	262
	V-blade	203
Meno loamy fine sand	Chisel	227
	Offset disk	246
	Tandem disk	251
	v-blade	367
Port silt loam	Moldboard plow	475
	Chisel	236
	V-blade	358
	Offset disk	246
	Tandem disk	291

TABLE VII

IMPLEMENT DRAFT

Implement Draft(lb/ft)of implement width
Moldbard plow 547
Chisel 268
Chisel with sweeps 253
Tandem disk 277
Offset disk 251
V-blade 309
Tire Pressure Program
A block diagram of the Tire Pressure knowledge base is shown in Figure 3.5. This section of the Expert System was developed to recommend a tire pressure for specific operating conditions.
Tire Pressure starts by determining dynamic load, tractor type, and tire conditions (dual or single, and bias or radial) from Ballasting and Matching. The tire pressure then will be read from TIRE PRESSURE files.

Figure 3.5. Tire Pressure knowledge base

TIRE PRESSURE File

TIRE PRESSURE files are two DBase III Plus files that contain tire loads at various inflation pressures, one for bias tires and the other for radial tires (Tables VIII and IX) (ASAE S430).

TABLE VIII
AGRICULTURAL TRACTOR BIAS TIRE LOADINGS AND INFLATION PRESSURE

Tire size	psi								
Designation	12	14	16	18	20	22	24	26	28

TABLE IX

AGRICULTURAL TRACTOR RADIAL TIRE LOADINGS AND INFLATION PRESSURES

Tire size designation	$\begin{aligned} & \text { psi } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { psi } \\ & 16 \end{aligned}$	$\begin{aligned} & \hline \text { psi } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { psi } \\ & 20 \end{aligned}$	$\begin{aligned} & \text { psi } \\ & 22 \end{aligned}$	$\begin{aligned} & \text { psi } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { psi } \\ & 26 \end{aligned}$	$\begin{aligned} & \hline \text { psi } \\ & 28 \end{aligned}$	$\begin{aligned} & \hline \text { psi } \\ & 30 \end{aligned}$
13.6 R28	2590	2800	3030	3190	3380	3660	3720	3890	4000
14.9 R26	2990	3230	3420	3680	3890	4130	4300	4490	4710
14.9 R28	3090	3340	3530	3810	4020	4240	4430	4620	4860
14.9 R 30	3190	3450	3660	3920	4150	4370	4580	4770	5010
16.9R24		3790	4000	4320	4580	5010	5050	5260	5440
16.9R26		3920	4240	4470	4730	5140	5200	5440	5740
16.9R28		4040	4370	4620	4880	5290	5370	5610	5910
16.9 R38		4690	5010	5350	5650	6080	6230	6530	6850
18.4 R 26		4690	5010	5350	5650	5910	6230	6530	6850
18.4R34		5310	5740	6060	6400	6580	7060	7380	7650
18.4 R 38		5630	6080	6400	6790	7060	7490	7810	8130
18.4 R 42		5930	6420	6740	7120	7440	7860	8240	8610
20.8 R34		6420	6850	7330	7760	8130	8560	8930	9420
20.8 R38		6790	7280	7760	8190	8610	9040	9470	9740
20.8 R 42		7170	7650	8190	8670	9150	9520	9950	10330
23.1234		7600	8130	8670	9150	9740	10110	10540	10910
24.5R32			8830	9310	9840	10330	10810	11340	11770
30.5LR32			10330	11130	11770	12520	12950	13590	14120

Tire Selection Program

Tire Selection knowledge base was developed to recommend a tire type for the user under specific field conditions. To minimize the processing time, Tire Selection program has been divided into two sections: Tirel and Tire2.

Tirel Program

A block diagram of Tirel knowledge base is shown in Figure 3.6. Tirel program was developed to find the optimum tire type (general, high-cleat, industrial) depending on soil conditions.

Tirel program begins by registering information about current tires and problems from the user. Tirel then recommends reweighing the tractor by calling the Ballasting program, or tests existing tire conditions by calling Tire2 program. Finally, Tirel program saves the results and quits.

Tire2 Program

A block diagram of the Tire2 knowledge base is shown in Figure 3.7. Tire2 assists the user in finding the optimum tire configuration (single or dual, radial or bias) and tire size.

Tire2 loads data from Tirel, then evaluates the status of tires to make recommendations to the user.

Tire recommendations depend on the following points:

Figure 3.6 Tirel Knowledge Base

Figure 3.7 Tire2 Knowledge Base

1. Radial tires are not recommended in sandy and wet soils (Coates 1984).
2. Dual tires are recommended for 2 WD tractors of 140 РTOHP and above (Jurek and Newendrop 1983, Downs 1990).
3. Radial tires perform better than bias tires on tilled and firm soil (Kraving 1986, Coates 1984).
4. Dual tires are recommended for FWA and 4WD tractors primarily to carry tractor weight and reduce compaction (Bashford, et al. 1987).
5. High-cleat tires are recommended if the tractor is used 40% or more of the time in muddy (tight or sticky soils) areas and 20% or less in hard (roads or any other hard soils) areas, because using high-cleat tires in hard areas causes undesirable distortion that shortens tire life (Downs 1990).
6. Industrial tires are recommended if the tractor is used 60% or more of the time in hard areas and 20% or less in muddy areas, because industrial tires causes high slip in muddy areas (Downs 1990).
7. General tires are recommended if the above do not apply (Downs 1990).
8. Dual radial tires are not recommended for most conditions because of cost and limited performance improvement in most cases (Downs 1990).
9. Compaction problems will be reduced by reducing the ballasting weight or using dual tires (Bashford, et al. 1987) •
10. Changing tire configurations is based on the rear axle load.
11. The drawbar load is assumed in maximum to be 45% of the rear axle load (Downs 1990).
12. The drawbar horsepower will be estimated based on tractor PTO horsepower and soil.

The Expert Knowledge

Expert knowledge in the knowledge base of an expert system is used to elicit a conclusion. The knowledge base of an expert system consists of numerous facts, rules, and heuristics (rules of thumb). Determining expert knowledge is one of the most challenging tasks for the expert systems developers, because relevant knowledge is not always immediately apparent. "Expert knowledge consists of concepts, relations, features, chunks, plans, heuristics, theories, mental models, etc." (Cooke, 1986). Mismatch is the discrepancy between the representation of knowledge in the program and what the expert actually means. In order to avoid such a mismatch, the knowledge should be represented in the expert system in the same way as the actual expert knowledge.

ASAE standards, żoz's (1972) equations, Brixius' (1987) equations, and rules of thumb are the main sources of expert knowledge of the Expert System.

Ballasting

Expert knowledge contained in this section provides for:

1. Selecting the right tractor and tire information from TRACTOR and TIRE files. Information from the TRACTOR file is obtained after the make and model of the tractor are input by the user. The TIRE file is used to access tire size.
2. Estimating tractor weight. There are two ways to estimate tractor weight. First, it may be obtained directly from the user. If unknown, it is estimated by adding estimated tractor shipping weight to user supplied estimates of additional iron weight and water or cacl2 inside the tire. Tractor shipping weight is stored in the TRACTOR file. Water or cacl2 weight is stored in the TIRE file.
3. Warning the user if the tractor weight is over or under the recommended tractor weight by displaying a warning massage.
4. Guiding the user in choosing the ratio of static weight on the front axle (\%FWS), soil cone index, and desired slip by displaying expert recommendations (Tables IV and v).
5. Changing tire configuration or reducing ballasting weight if the tractor weight is over the maximum tire load. Maximum tire load is stored in the TIRE file.
6. Calculating front and rear axles weight based on

Brixius' (1987) equations (Appendix C).

Matching

Expert knowledge in this section is used for the following:

1. Estimating tractor speed and slip at a given implement width. Estimations of tractor speed and slip are based on Brixius' (1987) equations. Brixius' equations are organized to change tractor speed in 0.05 mile per hour increments. Changing tractor speed changes tractor slip until the implement width equals the given width (Appendix D).
2. Estimating tractor slip and implement width at a given speed. The estimations are based on simultaneous solution of Brixius' equations (Appendix D).
3. Estimating tractor speed and implement width at a given slip. The estimations are based on simultaneous solution of Brixius' equations (Appendix D).
4. Estimating the above based on current tractor weight and optimum tractor weight. Optimum tractor weight is defined to be 125 lb/PTOHP for 4WD tractors, 130 lb/PTOHP for FWA tractors, and $140 \mathrm{lb} / \mathrm{PTOHP}$ for $2 W D$ tractors (Downs 1990).
5. Obtaining implement draft from the user, SOIL-DRAFT file or by eliciting the average of SOIL-DRAFT file data.

Tire Pressure

Expert knowledge in this section is used to:

1. Select tire pressure from BPRESSURE or RPRESSURE files given the size of tire.
2. Estimate unknown tire pressure. For example, for a 20.8-38 tire:

The acceptable load under 18 psi is 6820 lbs (Table VIII).

The acceptable load under 16 psi is 6360 lbs (Table VIII) -

The load under 14 psi is UNKNOWN (Table VIII),
Therefore:
The estimated load under $14 \mathrm{psi}=$

$$
2 * 6360-6820=5900 \text { lbs. }
$$

Tire Selection

The expert knowledge in this section helps to:

1. Select tire type (general, high-cleat, industrial). This selection is based on soil conditions.
2. Select tire configuration (single or dual, radial or bias) based on rear axle load and soil conditions.
3. Select tire size based on rear axle load.
4. Predict tractor weight (overballast or underballast) based on the footprint of tires. For example, tractor weight is underballasted if the tire print is sheared away.

CHAPTER IV

DISCUSSION

Introduction

Appendix H is an example of the Expert System and its capabilities with DBase files. Below is an arbitrary application example.

TRACTOR: JOHN DEERE 4650 (2WD)
TIRE:
Front
size - 14.9-24
ply - 6
psi - 44
system - single
Rear
size - 20.8-38
ply - 10
psi - 14
system - dual
Type - Bias
IMPLEMENT - Chisel
SOIL - Tuttle silt loam
"System Program" is the first loaded program that shows the file selections (question 1). Since the selection is BALLASTING, Expert System loads "Ballastl Program". Then, Ballastl starts to collect information about the tractor (question 2-15). Ballastl program has interfaced with TRACTOR and TIRE files and reserves all the information. However, a warning message may appear if the tractor weight is not recommended.

Ballast2 loads the static load vectors and starts to calculate the required tractor weight based on the indicated speed, soil cone index, and slippage from the user (questions 16-18). The recommended tractor weight is then displayed. A warning message may appear if the front or rear dynamic weight (FWD or RWD) is over the maximum tire load and if the tractor weight is over the recommended weight.

The Expert System allows the user to look at other situations by using Matching, Tire pressure, or Tire selection programs (question 19).

Matching

Matching Program is selected (question 20) from a System file. Then, Ballastl is loaded. The answer from question 21 is YES, because Ballastl has been used and the tractor information has been stored. The matching file is then loaded, because the answer to question 22 is NO.

Matching program estimates the current implement draft and matches it with tractor pull at the estimated speed and slippage. Questions (23-29) are necessary to make the matching recommendations. Matching recommendation shows the implement matching situations, but does not emphasize one in particular. Finally, the Expert System allows the user to use another file (question 30).

Tire pressure

Since dynamic rear axle weight is necessary to find the tire pressure, the Tire Pressure program must use Ballast1 and Matching programs to calculate the dynamic rear axle weight (question 31-35).

The Tire Pressure program starts by loading dynamic rear axle weight. Due to the difference in load pressures for bias and radial tires, the user is asked to identify the tire type. The Expert System then shows the correct recommendation.

In this example the dynamic rear axle weight is 16937 lbs, resulting in 4812 lbs on each single $20.8-38$ bias tire, because each single tire of dual tires uses 88% of the loads (ASAE S430). The tire pressure from diagonal (bias) ply agricultural drive wheel tractor tires (Table VI) is 16 psi under 6360 lbs , and the load under 14 psi is not included. Therefore, the Expert System estimates the load under 14 psi by knowing the load under 16 psi and 18 psi.

$$
\text { LOAD (14 psi) }=2 * \text { LOAD (16 psi) - LOAD(18 psi) }
$$

LOAD (14 psi) $=5900$
as the load under 14 psi
LOAD (12 psi) $=5440$
Then, the recommended tire pressure will be 12 psi , because it is the lowest recommended tire pressure for dual tires (ASAE S430).

Tire Selection

The tire selection file starts by loading "Tirel Program" determining the current tire conditions. Questions 42 and 43 test the ballasting and implement matching situation, respectively. Question 46 checks for replacement causes. Another branch will be used if the selection was "ONE TIRE BAD" which discuses the condition of other tires (NEW, GOOD, POOR, WORN). If the height of the current tire's lug is more than 20% of original tire, the user will be advised to not replace them, if the tires generally are in good condition (Downs, 1990). Question 50 and 51 suggest a tread design based on the following:

HIGH-CLEAT: MUDDY AREA $<=20$ AND HARD AREA $\Rightarrow 60$
INDUSTRIAL: MUDDY AREA $=>40$ AND HARD AREA $<=20$
GENERAL : NONE OF THE ABOVE.
Question 52 was developed to test the ballasting and implement matching conditions. "SHARP" and "NOT CLEAR" conditions probably mean the tractor is improperly ballasted or matched.

Since the user did not want to test the tractor weight (question 53), "Tire2 Program" was loaded. The final recommendation is based on tractor drawbar horsepower (question 54). Since the user does not know the drawbar horsepower, questions 55-58 were asked to estimate the tractor drawbar horsepower. The user should select the tire size, because the Expert System selects the section width. The diameter of the rim, however, does not change.

CHAPTER V

VALIDATION

Introduction

Abstract

Validation is one of the most important steps in completing an expert system. The accuracy of the system must be established by a thorough validation. There is a difference between validation and verification. Verification means building the system in the right way; the expert knowledge is correctly organized to achieve the appropriate conclusion given the facts stored in its knowledge base. However, errors in the relationships stored in the knowledge base could result in an incorrect conclusion. In contrast, validation can be defined as building the system so that it elicits the correct conclusion for the actual conditions (Newton, et al. 1987). The validity of an expert system is most important when the expert system is used by non-experts or is used as part of a control system.

Validation of an expert system can be accomplished by carefully comparing its recommendations with those actually provided by experts in the knowledge area. Previously verified examples can also be processed through the expert system to verify that it produces an equivalent result.

Furthermore, expert system can be validated against known results.

Ballasting

Validation of the Ballasting program is performed by comparing it with Zoz's templates (1987). Tables X and XI (pp 50 and 51) show that the tractive efficiency indicated by the Expert System is almost equal to Zoz's templates. The ratio of static weight on the front axle is constant in the Expert System, while it is changeable in Zoz's templates. The Expert System controls the ratio of static weight on the front axle, but zoz's templates control the ratio of dynamic weight on the front axle. The tractor weight per PTO horsepower is lighter using the Expert System for 2 WD tractors and almost equal in 4 WD tractors. The difference in tractor weights between the Expert System and Zoz's templates is caused by truncation errors, round-off errors, and mostly by the difference in the ratio of static weight on the front axle.

Matching

Table XII (p52) shows the comparison of one option of Matching program of the Expert System with Zoz's templates. The results are almost equal.

Validation of Tire Pressure program is performed by comparing it with the recommended tire pressure that is solved manually under the same conditions. After testing many conditions, the tire pressure from the Expert System was found to be accurate (Chapter 5).

Tire Selection

The recommendations on tire selection are accurate based on the knowledge bases in Chapter 3. Some experts might disagree with the assumptions based in the Tire Selection program, and would change recommendations to obtain their own opinions.

Overall, Dr. Downs ${ }^{1}$, Mr. Taylor ${ }^{2}$ and Mr. Barnes ${ }^{3}$ have gone through the Expert System and are satisfied with the Expert System recommendations for use in their areas. Finally, there has been no mismatch in the expert knowledge known after running the Expert System more than 100 times and testing every single situation.

[^1]TABLE X
BALLASTING TESTS FOR 2WD TRACTORS

Expert System			Zoz's templates		
W/PTO ${ }^{1}$	RATIO ${ }^{2}$	$T \mathrm{E}^{3}$	W/PTO ${ }^{1}$	RATIO ${ }^{2}$	TE ${ }^{3}$
184.7	27.9	. 723	188.3	25.1	. 715
162	27.9	. 728	165.4	26.4	. 722
146.6	27.9	. 725	149.9	27.4	. 720
186.6	27.9	. 711	190.9	24.8	. 701
163.1	27.9	. 720	166.9	26.2	. 712
147.2	27.9	. 718	150.8	27.3	. 712
196.4	27.3	. 669	203.8	23.8	. 649
169	27.3	. 691	175.0	25.4	. 677
151.1	27.3	. 697	156.2	26.6	. 685
153	27.3	. 733	155.7	25.2	. 726
134.6	27.3	. 736	137.2	26.5	. 731
121.9	27.3	. 732	124.5	27.5	. 727
153.8	27.3	. 724	156.8	25.1	. 716
135	27.3	. 729	137.8	26.4	. 723
122.1	27.3	. 726	124.8	27.4	. 721
158.3	27.3	. 695	162.9	23.6	. 681
137.5	27.3	. 708	141.4	25.9	. 698
123.7	27.3	. 710	127.1	27.0	. 701

1. Tractor weight (lb) per PTO horsepower
2. Ratio of static weight on front axle to total tractor weight
3. Tractive efficiency

TABLE XI

BALLASTING TESTS FOR 4WD TRACTORS

Expert System			Zoz's templates		
W/PTO ${ }^{1}$	RATIO ${ }^{2}$	TE ${ }^{3}$	W/PTO ${ }^{1}$	RATIO ${ }^{2}$	TE ${ }^{3}$
155.3	59.3	. 736	156.3	54.5	. 723
136.2	59.3	. 740	136.6	55.1	. 737
123.2	59.3	. 735	123.5	55.8	. 733
157.9	59.3	. 723	159.6	54.1	. 718
137.7	59.3	. 731	138.5	54.9	. 726
124.2	59.3	. 728	124.7	55.7	. 725
170.7	59.3	. 674	175.4	53.2	. 660
145.6	59.3	. 697	148.0	54.3	. 688
129.6	59.3	. 703	131.2	55.1	. 696
128.1	59.3	. 747	128.6	54.4	. 745
112.7	59.3	. 748	112.9	55.2	. 746
102.2	59.3	. 742	102.4	55.9	. 740
129.2	59.3	. 738	130.0	54.3	. 734
113.3	59.3	. 741	113.7	55.0	. 738
102.6	59.3	. 736	102.9	55.8	. 734
135.3	59.3	. 705	137.7	53.8	. 696
117.0	59.3	. 718	118.1	54.7	. 711
105.0	59.3	. 718	105.8	55.5	. 714

1. Tractor weight (lb) per PTO horsepower
2. Ratio of static weight on front axle to total tractor weight
3. Tractive efficiency

TABLE XII
MATCHING PROGRAM TESTS

Expert System			Zoz's templates		
SPEED ${ }^{1}$	SLIP ${ }^{2}$	$\mathrm{TE}{ }^{3}$	SPEED ${ }^{1}$	SLIP ${ }^{2}$	TE ${ }^{3}$
4.6	15.9	. 742	4.61	16.2	. 710
4.0	19.1	. 715	4.03	19.4	. 688
3.4	24.3	. 669	3.39	24.7	. 648
3.3	24.5	. 664	3.38	25.0	. 641
4.0	19.2	. 711	4.02	19.6	. 682
4.6	16.0	. 738	4.60	16.3	. 704
4.5	16.4	. 726	4.57	16.9	. 685
4.0	19.8	. 697	3.98	20.5	. 661
3.3	25.6	. 646	3.3	26.6	. 615
4.9	10.9	. 745	4.90	11.0	. 741
4.3	12.8	. 736	4.35	12.9	. 732
3.7	15.7	. 719	3.79	15.8	. 715
3.7	15.9	. 711	3.77	16.2	. 706
4.3	13.0	. 728	4.34	13.2	. 723
4.8	11.0	. 736	4.89	11.2	. 732
4.8	11.7	. 711	4.8	12.0	. 703
4.3	13.9	. 703	4.28	14.3	. 694
3.7	17.2	. 684	3.7	17.8	. 674

1. Tractor speed (mile per hour)
2. Wheel slip
3. Tractive efficiency

SUMMARY \& CONCLUSIONS AND RECOMMENDATIONS

Summary and conclusions

An Expert System has been developed using VP-Expert to present all the information that a farmer would need in making a typical management decision for tractor-implement systems. The Expert System assists in selecting drive tires and pressure, matching the implement to the tractor and application, and in ballasting the tractor. The Expert System is interfaced with DBase files that contain tractor and tire information. If the user is unable to supply an input, another line is used to determine the appropriate values. Tractor information is limited to current John Deere tractors of 100 HP and above.

The Expert System recommendations have been validated. Recommendations of Ballasting and Matching programs were compared with Zoz's templates, and they are accurate. Tire Selection and Tire Pressure programs were tested manually. Overall, several experts have reviewed the Expert System and are satisfied with the recommendations.

The Ballasting and Matching programs of the Expert System are limited to bias tires and variables in the range of Brixius' equations (1987). Tire Selection and Tire

Pressure programs are limited to specific tire sizes.
Several problems may occur if the users do not have accurate information about the tractor, tires, and soils. The Expert System is sensitive to soil cone index, wheel slip, operating speed, and the ratio of static weight on the front axle.

Recommendations

1. Expand the tractor DBase file to include most current tractors.
2. Modify the Matching program to estimate the highest tractive efficiency by changing the optimum tractor weight and tractor slip.
3. Develop an expert connection between Matching program and Ballasting program. This connection would determine optimum tractor weight for any soil and implement combination.
4. Add explanation statements to educate the users by using the BECAUSE statement. This feature allows the user to follow each step in the decision making process. For example, the BECAUSE statement for question 38 (Appendix H) may be written as, " The acceptable load of BIAS tires is different from that for RADIAL tires of the same size."
5. Combine the Expert System with other expert systems that deal with tractor management such as FINDS (Farm-Level Intelligent Decision Support System)
(Kline, et al., 1986) and Farm machinery selection and management expert system (Kotzabassis, et al., 1990).

REFERENCES

ASAE Standard S430. 1989. Agricultural equipment tire loading and inflation pressures. ASAE Standards. American Society of Agricultural Engineers, St. Joseph, MI.

ASAE Standard S220.4. 1987. Tire selection tables for agricultural machines of future design. ASAE standards. American Society of Agricultural Engineers, St. Joseph, MI.

ASAE Standard S346.1. 1987. Liquid ballast table for drive tires of agricultural machines. ASAE Standards. American Society of Agricultural Engineers, St. Joseph, MI.

Bashford, L.L. 1975. Wheel weights: How much? Nebguide G75-234. Institute of Agriculture and Natural Resources. University of Nebraska Lincoln.

Bashford, L.L., G.R, Woerman, and G.J. Shropshire. 1985. Front wheel-assist tractor performance in two and four-wheel drive modes. TRANSACTIONS of the ASAE, 28(1):23-29.

Bashford, L. L., K. Von Bargen, T. Way and Ling Xiaoxian. 1987. Performance comparisons between duals and singles on the rear axle of a front wheel assist tractor. TRANSACTIONS of the ASAE, 30(3):641-645.

Brixius, W.W. 1987. Traction prediction equations for bias ply tires. ASAE Paper No. 87-1622. American Society of Agricultural Engineers, St. Joseph, MI.

Burt, E. C. and A. C. Bailey. 1982. Load and inflation pressure effects on tires. TRANSACTIONS of the ASAE, 25(4):881-884.

Clarke, N.D., C.S. Tan, and J.A. Stone. 1989. Expert systems for scheduling supplemental irrigation in Ontario. ASAE Paper No. 89-7572. American Society of Agricultural Engineers, St. Joseph, MI.

Coates, W. 1984. Comparison of bias and radial tractor tires on a soft soil. TRANSACTIONS of the ASAE, 28(4):1090-1093.

Cooke, N. M. and J. E. McDonald. 1986. A formal methodology for acquiring and representing expert knowledge. PROCEEDINGS of the IEEE, 74(10):14221430.

Downs, H. W. 1990. "Personal communication". Oklahoma State University. Stillwater, OK.

Downs, H. W. Power, fuel and labor requirements for various tillage operations. No. 1220. Cooperative Extension Service. Oklahoma State University. Stillwater, OK.

Esch, J.H. and L.L. Bashford. 1987. Contribution to drawbar pull from the inside and outside duals. ASAE Paper No. 87-1626. American Society of Agricultural Engineers, St. Joseph, MI.

Evans, M.D., R.L. Clark, and G. Manor. 1989. A traction prediction and ballast selection model. ASAE Paper No. 89-1054. American Society of Agricultural Engineers, St. Joseph, MI.

Gaultney, L. D., S.D. Harlow, and W. Ooms. 1989. An expert system for trouble shooting tractor hydraulic system. Computers and Electronics in Agriculture, vol. 3:177-187.

Gauthier, L. and R. Guay. 1989. A prototype expert system to diagnose tomato crop disorders. ASAE Paper No. 89-7587. American Society of Agricultural Engineers, St. Joseph, MI.

Jurek, R. J. and B. C. Newendorp. 1983. In-field fuel efficiency comparisons of various John Deere tractors. ASAE Paper No. 83-1563. American Society of Agricultural Engineers, St. Joseph, MI.

Kliefoth, F. 1966. The determinations of tractioncoefficient curves for synthetic farm tractor field tests. J. Terramechanics 3(2):71-84.

Kline, D.E, D.H. Bender, C.E. Van Douge, B.A. Mc Carl, and J.K. Schueller. 1986. Machinery selection using farm-level intelligent decision support systems. ASAE Paper No. 86-4519. American Society of Agricultural Engineers, St. Joseph, MI.

Kotzabassis, C., B. A. Stout, and H. T. Wiedemann. 1990. Farm machinery selection and management expert system. ASAE Paper No. 90-7018. American Society of Agricultural Engineers, St. Joseph, MI.

Kraving, K. 1986. Factors that affect the performance and efficiency of 4WD tractors. ASAE Paper No. 86-1547. American Society of Agricultural Engineers, St. Joseph, MI.

Kucera, H. L., K. L. Larson, and V. L. Hofman. 1985. Field performance tests of front wheel assist tractors. ASAE Paper No. 85-1047. American Society of Agricultural Engineers, St. Joseph, MI.

McCarl, B. A. 1982. REPFARM: Design, calculation and interpretation of the linear programing model. Station Bulletin No. 385, Department of Agricultural Economics, Purdue University, w. Lafayette, IN.

Macnab, J.E., R.B. Wensink, and D.E. Booster. 1977. Modeling wheel tractor energy requirements and tractive performances. TRANSACTIONS of the ASAE 20(4):602-605,609.

Mckibben, E. G. and J. B. Davidson. 1940. Transport wheels for agricultural machines III. Effect of inflation pressure on the rolling resistance of pneumatic implement tires. Agricultural Engineering, 58(2):15-18.

Nebraska Tractor Tests No. 1434-1436 and 1457-1460. 1982. Nebraska Tractor Tests, University of Nebraska. Lincoln, NE.

Newton, K. A., H. W. Downs, and D. Weeks. 1987. Validation of an expert system for combine shoe control. ASAE Paper No. 87-3536. American Society of Agricultural Engineers, St. Joseph, MI.

Pacey, D. A. 1984. Radial tractor tires. Ag Facts AF130. Cooperative Extension Service. Kansas State University. Manhattan, KS.

Pacey, D.A. and M.D. Shrock. 1981. Getting the most from your tractor. MF-588 Revised. Cooperative Extension Service. Kansas States University. Manhattan, KS.

Shell, L.R. and A. Batey. 1987. Front wheel-assist tractor ballasting analysis. ASAE Paper No. 871628. American Society of Agricultural Engineers, St. Joseph, MI.

Wismer, R.D., and H.J. Luth, 1974. Off-road traction prediction for wheeled vehicles. TRANSACTIONS of the ASAE, $17(1): 8-10,14$.

Zombori, J. 1967. Drawbar pull tests of various traction devices on sandy soils. J. Terramechanics 4(1):9-17.

Zoz, F.M. 1972. Predicting tractor field performance. TRANSACTIONS of the ASAE, 15(2):249-255.

Zoz, F.M. 1987. Predicting tractor field performance (updated). ASAE Paper No. 87-1623. American Society of Agricultural Engineers, St. Joseph, MI.

APPENDIXES

APPENDIX A

SYSTEM KNOWLEDGE BASE

```
EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
    FIND PROGRAM;
```

RULE 1
IF OPERATION = BALLASTING
THEN PROGRAM = OK
SAVEFACTS B:OPERATION
CHAIN B:BALLASTI;
RULE 2
IF OPERATION = TIRE_SELECTION
THEN PROGRAM = OK
SAVEFACTS B:OPERATION
CHAIN B:TIRE1;
RULE 3
IF OPERATION = MATCHING
THEN PROGRAM $=$ OK
SAVEFACTS B:OPERATION
CHAIN B:BALLAST1;
RULE 4
IF OPERATION = TIRE_PRESSURE
THEN PROGRAM = OK
SAVEFACTS B:OPERATION
CHAIN B:BALLASTI;

ASK OPERATION: "What kind of operation would you like to use?";
CHOICES OPERATION: BALLASTING , TIRE_SELECTION,
MATCHING,TIRE_PRESSURE ;

APPENDIX B

BALLAST1 KNOWLEDGE BASE

EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
LOADFACTS B:OPERATION
FIND DATA_CHANGING;
RULE 1
IF OPERATION = MATCHING OR
OPERATION $=$ TIRE_PRESSURE AND
USE $=$ YES , AND
DATA CHANGE $=$ NO
THEN DATA CHANGING $=O K$
CHAIN B:MATCHING;
RULE 2
IF OPERATION = BALLASTING AND
USE $=$ YES AND

DATA_CHANGE $=$ NO
THEN DATA CHANGING $=$ OK
CHAIN B:BALLAST2;
RULE 3
IF USE = YES AND
DATA_CHANGE = YES
THEN DATA CHANGING $=$ OK
LOADFACTS B:OPERATION
MENU the make, ALL; B:TRACTOR, make
FIND the make
MENU the_model, the_make=make, B:TRACTOR, model
FIND the model
WHILEKNO $\bar{W} N$ make
GET the make=make AND the model = model,
B: TRACTOR , ALL
RESET the make
CLOSE B:TRACTOR
MENU Ftire_size, ALL, B:FTIRE, SIZE
FIND FTIRE SIZE
WHILEKNOWN SIZE
GET Ftire_size=size, B:FTIRE, ALL
RESET Ftire_size
CLOSE B:FTIRE
MENU Rtire_size, ALL, B:RTIRE, SIZE
FIND RTIRE SIZE
WHILEKNOWN SIZE
GET Rtire size=size, B:RTIRE, ALL

```
    RESET Rtire size
    CLOSE B:RTIRE
    FIND WEIGHT
    END;
RULE 4
IF USE = NO
THEN DATA_CHANGING =OK
LOADFACTS B:OPERATION
MENU the marke, ALL,B:TRACTOR, marke
FIND the_marke
MENU the_model, the_marke=marke,B:TRACTOR, model
FIND the_model
WHILEKNOWN marke
    GET the_marke=marke AND the_model = model,
B:TRACTOR,ALL
    MENU Ftire_size, ALL,B:FTIRE, SIZE
    FIND FTIRE_SIZE
    WHILEKNOWN SIZE
            GET Ftire_size=size,B:FTIRE, ALL
    MENU Rtire_size, ALI, B:RTIRE, SIZE
    FIND RTIRE_SIZE
    WHILEKNOWN-SIZE
            GET Rtire_size=size,B:RTIRE, ALL
    FIND WEIGHT
    END;
RULE 5
IF
THEN WEIGHT
KNOWING_WEIGHT
= YES
AND
    FRONT_A\overline{XLE_WEIGH}
    FRONT_AXLE_WEIGHT 
    REAR_AXLE_WEIGHT >0.0 AND
    RSYSTEM
    FWS1
    RWS1
    %FWS
    TWSPTO = ((FWS1+RWS1)/PTOPW)
        >0.0 AND
    GH
    <> NOT_DUAL
    = OK
    = (FRONT_AXLE_WEIGHT)
    = (REAR_\overline{A}XLE_\overline{WEIGHT)}
    =(100*\overline{FWS1/(FWS1+RWS1))}
    FIND LOAD3
    FIND TOTAL
    FIND FWEIGHT
    FIND RWEIGHT
    FIND FWEIGHT SHOW
    FIND RWEIGHT_SHOW
    FIND TWS;
RULE 6
IF KNOWING_WEIGHT = NO
THEN WEIGHT = OK
FIND FWSI
FIND RWSI
FIND %FWS
FORMAT %FWS, 5.1
FIND LOAD3
FIND TOTAL
FIND FWEIGHT
FIND RWEIGHT
```


THEN FWS 1 = (EFWS + ($2 *$ FWATER) + FEXTRA_WEIGHT);
RULE 16
IF FEXTRA $=$ YES AND FEXTRA_WEIGHT >= 0.0 AND FADD $=$ CACL2 AND FSYSTEM $=$ DUAL
THEN FWS1 $=(E F W S+(2 * F C A C L 2)+$ FEXTRA_WEIGHT);

RULE 17
IF REXTRA = NO AND
RADD $=$ AIR AND
RSYSTEM $=$ SINGLE OR
RSYSTEM = DUAL
THEN RWS1 $=$ (ERWS)
TWSPTO $=((F W S 1+$ RWS1 $) /$ PTOPW $)$
$\%$ FWS $=(100 * F W S 1 /($ FWS1+RWS1) $) ;$
RULE 18
IF REXTRA $=$ YES AND
REXTRA WEIGHT $>=0.0$ AND
RADD $=$ AIR AND
RSYSTEM $\quad=$ SINGLE OR
RSYSTEM = DUAL
THEN RWS 1 (ERWS + REXTRA_WEIGHT)
TWSPTO $=((F W S 1+$ RWS1 $) /$ PTOPW $)$
$\%$ FWS $\quad=(100 *$ FWS1/(FWS1+RWS1));
RULE 19
IF REXTRA $=$ NO AND
RADD = WATER AND
RSYSTEM $=$ SINGLE
THEN RWS $1=($ ERWS $+(2 *$ RWATER $))$
TWSPTO $=(($ FWS1 + RWS1)/PTOPW $)$
$\%$ FWS $\quad=(100 * F W S 1 /($ FWS1+RWS1) $) ;$
RULE 20
IF REXTRA $=$ NO
RADD $=$ CACL2 AND

RSYSTEM $\quad=$ SINGLE
THEN RWS $1=($ ERWS $+(2 * R C A C L 2))$ TWSPTO $=(($ FWS1 + RWS1)/PTOPW) $\%$ FWS $=(100 * F W S 1 /(F W S 1+R W S 1)) ;$
RULE 21
IF EEXTRA $=$ YES AND
REXTRA_WEIGHT >= 0.0 AND
RADD $=$ WATER AND
RSYSTEM $=$ SINGLE
THEN RWS1 $=$ (ERWS $+(2 * R W A T E R)+$ REXTRA_WEIGHT)
TWSPTO $=((F W S 1+$ RWS1 $) /$ PTOPW $)$
$\%$ FWS $\quad=(100 *$ FWS1/(FWS1+RWS1));
RULE 22
IF REXTRA = YES AND REXTRA_WEIGHT $>=0.0$ AND RADD $=$ CACL2 AND RSYSTEM $=$ SINGLE
THEN RWS 1 = (ERWS $+(2 * R C A C L 2)+$ REXTRA_WEIGHT) TWSPTO $=((F W S 1+$ RWS1 $) /$ PTOPW $)$


```
RULE 29
IF CHANGE %FWS = NO AND
    NEW_%FW}S <> 0.
THEN TOTAL = (RWSI + FWS1)
    FWS = (NEW_%FWS * TOTAL/100)
    RWS = (TOTAL - RWS)
    FWS_FORMATED = (FWS)
    RWS_FORMATED = (RWS)
    FORMAT FWS_FORMATED, 7.0
    FORMAT RWS_FORMATED, 7.0
CLS
DISPLAY"The front axle weight should be {FWS_FORMATED} lbs
and {RWS_FORMATED} lbs on the rear axle.
                                    <Press any key>""
CLS;
RULE }3
IF CHANGE_%FWS = YES
THEN TOTAL = (FWS1 + RWS1)
    FWS = (FWS1)
    RWS = (RWS1);
RULE 31
IF FSYSTEM = SINGLE
THEN FWEIGHT = (FWS/2);
RULE }3
IF FSYSTEM = DUAL
THEN FWEIGHT = (FWS/(4*.88));
RULE 33
IF RSYSTEM = SINGLE
THEN RWEIGHT = (RWS/2);
RULE 34
IF RSYSTEM = DUAL
THEN RWEIGHT = (RWS/(4*.88));
RULE }3
IF FWEIGHT > (FSW)
THEN FWEIGHT_SHOW = OK
CLS
DISPLAY"The front axle weight is over the maximum load that
tires can carry. You should reduce the front axle weight or
change the tires situation by using TIRE SELECTION program.
                                    <Press any key to continue> ""
CLS;
RULE 36
IF RWEIGHT > (RSW)
THEN RWEIGHT_SHOW = OK
CLS
DISPLAY"The rear axle weight is over the maximum load that
tires can carry. You should reduce the rear axle weight or
change the tires situation by using TIRE SELECTION program.
                                    <Press any key to continue> "";
RULE 37
\begin{tabular}{llll} 
IF & OPERATION & \(=\) BALLASTING & AND \\
& FWS & \(>0.0\) & AND \\
& RWS & \(>0.0\) & \\
THEN & TWS & \(=(\) FWS + RWS \()\) &
\end{tabular}
```

SAVEFACTS B:TWS
CHAIN B:BALIAST2;
RULE 38
IF OPERATION $=$ MATCHING OR
OPERATION $=$ TIRE_PRESSURE AND
RTIRE_SIZE <> UNKNOWN AND
FWS >0.0 AND
RWS >0.0
THEN TWS =(FWS + RWS $)$
SAVEFACTS B:TWS
CHAIN B:MATCHING;
ASK USE: "Have you used this program before?"; CHOICES USE:YES,NO;
ASK DATA_CHANGE: "Would you like to change the tractor
information that you
have used?";
CHOICES DATA_CHANGE:YES,NO;
ASK the make: "What is the tractor make?";
ASK FTIRE_SIZE: "What size are the current front tires?";
ASK the model: "What is the tractor model?";
ASK RTI解_SIZE: "What size are the current rear tires?";
ASK RSYSTEM: "Does the tractor have SINGLE or DUAL tires on
the rear axle?";
CHOICES RSYSTEM: SINGLE, DUAL;
ASK FSYSTEM: "Does the tractor have SINGLE or DUAL tires on the front axle?";
CHOICES FSYSTEM: SINGLE, DUAL;
ASK CHANGE_\%FWS: "The front to total tractor weight ratio is $\{\%$ FWS $\} \%$
Is this acceptable?
Refer to the following table for guidance.

APPENDIX C

BALLAST2 KNOWLEDGE BASE

```
EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
    LOADFACTS B:TWS
    FIND FSTSTIC_LOAD
    FIND RSTSTIC_LOAD
    FIND LOAD1
    FIND LOAD2
    FIND LOAD3
    FIND LOAD4
    FIND AF
    FIND AR
    FIND BALLASTING TEST
    FIND CHANGE_FILE;
RULE 1
IF FSYSTEM = SINGLE
THEN FSTSTIC_LOAD = (2*FSW);
RULE 2
IF FSYSTEM = DUAL
THEN FSTSTIC_LOAD = (4*0.88*FSW);
RULE 3
IF RSYSTEM = SINGLE
THEN RSTSTIC LOAD = (2*RSW);
RULE 4
IF RSYSTEM = DUAL
THEN RSTSTIC_LOAD = (4*0.88*RSW);
RULE 5
IF FSTSTIC_LOAD <= FWD
THEN LOAD1 = OK
DISPLAY" The weight of the front axle is over the maximum
limit of the tire load. You should reduce the ballasting
weight of the tractor or change the tire situation.
                                    <Press any key to continue> " ;
RULE }
IF LOAD1 = OK AND
    TIRE CHANGE = YES AND
    OPERĀTION = BALLASTING
THEN LOAD2 = OK
    OPERATION = TIRE_SELECTION
    CHAIN B:TIREI;
RULE }
IF LOAD1 = OK AND
```

```
    TIRE CHANGE = NO
THEN LOAD\overline{2}
DISPLAY"
= OK
    << WARNING >>
    Overload will cause problems
    <Press any key to continue>"";
RULE 8
IF RSTSTIC_LOAD < RWD
THEN LOAD3 = DONE
DISPLAY " The weight of the rear axle is over the maximum limit of the tire load. You should reduce the ballasting weight of the tractor or change the tire situation. <Press any key to continue>"";
RULE 9
IF LOAD3 = DONE AND
TIRE CHANGE = YES AND
OPERĀTION = BALLASTING
THEN LOAD4 \(=\mathrm{OK}\)
OPERATION = TIRE_SELECTION
```

CHAIN B:TIREI;
RULE 10

IF LOAD3	$=$ DONE	
TIRE_CHANGE	$=$ NO	
THEN LOAD4	$=0 K$	<< WARNING >>
DISPLAY"		

Overload will cause problems <Press any key to continue> " ";
RULE 11
IF \quad FSYSTEM $=$ SINGLE
THEN AF $=$ (1)
ELSE AF $=(2)$;
RULE 12
IF RSYSTEM = SINGLE
THEN AR $=$ (1)
ELSE AR = (2);
RULE 13
IF SYSTEM $=4 \mathrm{WD}$ AND
SO > 0.0 AND
CI >0.0 AND
NSLIP > 0.0 AND
AR <> 0.0
THEN BALLASTING_TEST = WORKING \%FWS $=(100 *(F W S /(R W S+F W S)))$
RWD $=$ (RWS)
FOR I =1 TO 15
BNR $=((C I * R S E C W * R O D *(A R) /(R W D / 2)) *$ ((1+5*.18)/(1+3*RSECW*(AR)/ROD)))
$\mathrm{BNF}=((\mathrm{CI} * \mathrm{FSECW} * \mathrm{FOD} *(\mathrm{AF}) /(\mathrm{FWD} / 2)) *$
((1+5*.18)/(1+3*FSECW*(AF)/FOD)))
QRWR $=(0.88 *(1-@ E X P(-0.1 * B N R))$
(1-@EXP(-7.5*(NSLIP/100)))+0.04)
MWR $=((1 / B N R)+0.04+0.5 *($ NSLIP $/ 100) / @ S Q R T(B N R))$
QRWF $=(0.88 *(1-@ E X P(-0.1 * B N F))$ *
(1-@EXP(-7.5*(NSLIP/100)))+0.04)

```
MWF = ((1/BNF) +0.04+0.5*(NSLIP/100)/@SQRT (BNF))
PULL = (((QRWR - MWR)*RWD) + ((QRWF - MWF)*FWD))
AHP = ((PTOPW*0.96)/(1 + 1/(RWD*QRWR/FWD/QRWF)))
RWD = (AHP*375/SO/QRWR)
RWS = (RWD - (PULL*DBHT/WB))
FWS = (%FWS*RWS/(100 - %FWS))
FWD = (FWS - (PULL*DBHT/WB))
ACS = (SO*(1 - NSLIP/100))
TE = ((PULL*ACS/375)/PTOPW)
TWSPTO = ((RWS + FWS)/PTOPW)
END
    FIND TEST1;
RULE 14
IF SYSTEM = 2WD AND
    SO > 0.0 AND
    CI > 0.0 AND
    NSLIP > 0.0 AND
    AR <> 0.0
THEN BALLASTING_TEST = WORKING
    %FWS = (1000*FWS/(FWS+RWS))
    RWD = (RWS)
FOR I =1 TO 15
BNR = ((CI*RSECW*ROD* (AR)/(RWD/2)) *
((1+5*.18)/(1+3*RSECW*(AR)/ROD)))
BNF = ((CI*FSECW*FOD* (AF)/(FWD/2)) *
((1+5*.18)/(1+3*FSECW*(AF)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR)) *
(1-@EXP(-7.5*(NSLIP/100)))+0.04)
MWR = ((1/BNR)+0.04+0.5*(NSLIP/100)/@SQRT (BNR))
QRWF = (0.88*(1-@EXP(-0.1*BNF)) *
(1-@EXP(-7.5*(NSLIP/100)))+0.04)
MWF = ((1/BNF) +0.04+0.5*(NSLIP/100)/@SQRT (BNF))
PULL = (((QRWR - MWR)*RWD) - ((0.04 + 1/BNF)*FWD))
AHP = (PTOPW*0.96)
RWD = (AHP*375/SO/QRWR)
RWS = (RWD - (PULL*DBHT/WB))
FWS = (%FWS*RWS/(100 - %FWS))
FWD = (FWS - (PULL*DBHT/WB))
ACS = (SO*(1 - NSLIP/100))
TE = ((PULL*ACS/375)/PTOPW)
TWSPTO = ((RWS + FWS)/PTOPW)
END
    FIND TEST1;
RULE 15
IF TWSPTO <> 0.0
THEN TEST1 = OVER
    ETWSPTO = (TWSPTO)
    FORMAT ETWSPTO, 5.1
    FORMAT PULL,7.0
    FORMAT FWS, 7.0
    FORMAT RWS, 7.0
    FORMAT ACS,4.2
    FORMAT TE,5.3
CLS
```

DISPLAY"To operate the tractor at \{ACS \} MPH with \{NSLIP\}\% slippage, the front axle weight should be \{FWS\} lbs. and the rear axle weight is \{RWS\} lbs. The drawbar pull is \{PULL\} lbs. with $\{T E\}$ tractive efficiency.
The tractor weight per one PTO horsepower is \{ETWSPTO\}." DISPLAY"
<Press any key>""
FIND TEST;
RULE 16
IF
SYSTEM $=$ FWD AND TWSPTO >140 OR TWSPTO < 100
THEN TEST = DONE
CLS
DISPLAY"The tractor weight should not be over 140 lbs/PTO and not less than 100 lbs/PTO.
<Press any key>~";

RULE 17

IF	SYSTEM	$=2 W D$	AND
	TWSPTO	>150	OR
	TWSPTO	<120	
THEN	TEST	$=$ DONE	

CLS

DISPLAY"The tractor weight should not be over 150 lbs/PTO and not less than 120 lbs/PTO. <Press any key>~";
RULE 18
IF OPERATION $=$ BALLASTING AND
THEN CHANGE FILE $=O K$ CHAIN B:SYSTEM;

RULE 19
$\begin{array}{ll}\text { IF OPERATION } & =\text { BALLASTING AND } \\ & =\text { NO }\end{array}$
THEN CHANGE_FILE $=O K$
DISPLAY"Thank you for using this program.
<Press any key>"";
ASK CHICK:"Would you like to use another file?";
CHOICES CHICK:YES,NO;
ASK NSLIP: "What is the percentage of tire slip at which you would like the tractor to operate?
Refer to the following table for guidance.

Soil	Tractor Type		
	2 WD	FWD	4WD
Firm	$10-12$	$8-10$	$8-10$
Tilled	$12-14$	$10-11.5$	$10-11.5$
Sandy	$14-16$	$11.5-13$	$11.5-13$
ASK TIRE_CHANGE: situations?";			

CHOICES TIRE_CHANGE:YES,NO;
ASK CI: "What is the estimated Cone Index (psi)?
Refer to the following table for guidance.

CI	SOIL CONDITION
250	HARD, PACKED
200	HARD, PACKED WITH STUBBLE
150	FIRM
80	TILIED
60	SOFT, WET

ASK SO:"What is the indicated field speed you would like to achieve with your tractor? (mph)";

APPENDIX D

MATCHING KNOWLEDGE BASE

```
EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
    LOADFACTS B:TWS
    LOADFACTS B:OPERATION
    FIND IMPLEMENT_DRAFT;
RULE 1
IF DRAFT_OF_IMPLEMENT =YES AND
    DRAFT_PER_UNIT < 999999999
THEN IMPLEMENT_DRAFT = YES
    IMPLDRAFT = (DRAFT_PER_UNIT)
    SYSTEM1 = 1
    FIND SYSTEM2;
RULE 2
IF DRAFT OF IMPLEMENT = NO
THEN IMPLEMEN\overline{T DRAFT = NO}
    SYSTEMI - = 1
    MENU THE SOIL,ALL,B:IMPL-DRA,SOIL
    FIND THE SOIL
    MENU THE_IMPLEMENT,THE_SOIL=SOIL,B:IMPL-DRA,IMPLEMENT
    FIND THE IMPLEMENT
    WHILEKNOWNN SOIL
                GET THE_SOIL=SOIL AND THE_IMPLEMENT=IMPLEMENT ,
B:IMPL-DRA , ALL
    RESET THE_SOIL
    CLOSE B:IMPL-DRA
    FIND SYSTEM2;
RULE 3
IF SYSTEMI = 1
THEN SYSTEM2 = OK
    FIND DRAFT
    FIND FS
    FIND RS
    FIND FINAL
    FIND CHANGE_FILE;
RULE 4
IF WIDTH <> 0.0
THEN DRAFT = (WIDTH *IMPLDRAFT)
    PULL = (DRAFT * 1.33)
    RWD = (RWS + (PULL * DBHT/WB))
    FWD = (FWS - (PULL * DBHT/WB));
```

RULE 5			
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEMENT1	= MOLDBOARD_PLOW	AND
	WIDTH	<> 0.0	
THEN	DRAFT	= (WIDTH*547)	
	PULL	= (DRAFT*1.33)	
	RWD	$=$ (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB)) ;
RULE 6			
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEMENT1	= CHISEL	AND
	WIDTH	<> 0.0	
THEN	DRAFT	= (WIDTH*268)	
	PULL	= (DRAFT*1.33)	
	RWD	$=$ (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB)) ;
RULE 7 (7			
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEMENT1	= OFFSET_DISK	AND
	WIDTH	<> 0.0	
THEN	DRAFT	$=$ (WIDTH*251)	
	PULL	= (DRAFT*1.33)	
	RWD	$=$ (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB)) ;
RULE 8			
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEMENT1	= V_BLADE	AND
	WIDTH	<> 0.0	
THEN	DRAFT	$=($ WIDTH*309)	
	PULL	= (DRAFT*1.33)	
	RWD	$=$ (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB)) ;
RULE 9 (
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEMENT1	= TANDEM_DISK	AND
	WIDTH	<> 0.0	
THEN	DRAFT	$=$ (WIDTH*277)	
	PULL	= (DRAFT*1.33)	
	RWD	= (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB)) ;
RULE 10			
IF	THE_SOIL	= UNKNOWN	AND
	IMPLEEMENT1	= CHISEL_WITH_SW	EPS AND
	WIDTH	<> 0.0	
THEN	DRAFT	$=$ (WIDTH*253)	
	PULL	= (DRAFT*1.33)	
	RWD	$=$ (RWS + (PULL *	DBHT/WB))
	FWD	= (FWS - (PULL *	DBHT/WB));
RULE 11 (1)			
IF	THE_SOIL	= UNKNOWN	
RULE $12{ }^{\text {- }}$			
IF	SPEED = UN	KNOWN	
THEN	SO = 5 .		


```
TE1 = (PULL1*ACS1/375/PTOPW)
WIDTH1 = (PULLL/1.33/IMPLDRAFT)
APH1 = (ACS1*WIDTH1/8)
END
    S2 = (S1)
    SO1 = (SO)
    SO2 = (SO)
    SO3 = (SO)
    WIDTH2 = (WIDTH1)
WHILETRUE WIDTH <= (WIDTH2) THEN
BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S2/100)))+0.04)
MWR = ((1/BNR)+0.04+0.5*(S2/100)/@SQRT (BNR))
QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S2/100)))+0.04)
MWF = ((1/BNF)+0.04+0.5*(S2/100)/@SQRT (BNF))
APR = ((PTOPW*.96)/(1+1/(RWD*QRWR/FWD/QRWF)))
S2 = ((@LOG(1-(APR*375/(SO2*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
TESTPULL = ((QRWR - MWR)*RWD + (QRWF - MWF)*FWD)
RWD = (RWS + (TESTPULL*DBHT/WB))
FWD = (FWS - (TESTPULL*DBHT/WB))
ACS2 = (SO2*(1 - S2/100))
TE2 = (TESTPULL*ACS2/375/PTOPW)
WIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
APH2 = (ACS2*WIDTH2/8)
SO2 = (SO2 +.05)
END
WHILETRUE WIDTH > (WIDTH2) THEN
BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S2/100)))+0.04)
MWR = ((1/BNR) +0.04+0.5*(S2/100)/@SQRT (BNR))
QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S2/100)))+0.04)
MWF = ((1/BNF)+0.04+0.5*(S2/100)/@SQRT(BNF))
APR = ((PTOPW*.96)/(1+1/(RWD*QRWR/FWD/QRWF)))
S2 = ((@LOG(1-(APR*375/(SO2*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
TESTPULL = ((QRWR - MWR)*RWD + (QRWF - MWF)*FWD)
RWD = (RWS + (TESTPULL*DBHT/WB))
FWD = (FWS - (TESTPULL*DBHT/WB))
ACS2 = (SO2*(1 - S2/100))
TE2 = (TESTPULL*ACS2/375/PTOPW)
WIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
APH2 = (ACS2*WIDTH2/8)
SO2 = (SO2 - 0.05)
```

```
END
            S3 = (SLIPPAGE)
FOR T = 1 TO 5
BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
(1+5*.18)/(1+3*FSECW*(FS)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S3/100)))+0.04)
MWR = ((1/BNR)+0.04+0.5*(S3/100)/@SQRT (BNR))
QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S3/100)))+0.04)
MWF = ((1/BNF)+0.04+0.5*(S3/100)/@SQRT(BNF))
APR = ((PTOPW*.96)/(1+1/(RWD*QRWR/FWD/QRWF)))
SO3 = (375*APR/RWD/(0.88*(1-@EXP (-0.1*BNR))*
(1-@EXP(-7.5*S3/100))+0.04))
PULL3 = ((QRWR - MWR)*RWD + (QRWF - MWF)*FWD)
RWD = (RWS + (PULL3*DBHT/WB))
FWD = (FWS - (PULL3*DBHT/WB))
ACS3 = (SO3*(1 - S3/100))
TE3 = (PULL3*ACS3/375/PTOPW)
WIDTH3 = (PULL3/1.33/IMPLDRAFT)
APH3 = (ACS3*WIDTH3/8)
END
FIND ESFWS;
RULE 18
IF OPERATION = MATCHING AND
    PULL > 0.0 AND
    RWD > 0.0 AND
    SO > 0.0 AND
    SLIPPAGE > 0.0 AND
    CI > 0.0 AND
    SYSTEM = 4WD
THEN RATIO = (60)
    ESFWS = (125*PTOPW*RATIO/100)
    ESRWS = (125*PTOPW - ESFWS)
    ESPULL = (WIDTH*IMPLDRAFT)
    ESRWD = (ESRWS + (ESPULL * DBHT/WB))
        ESFWD = (ESFWS - (PULL * DBHT/WB))
        ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
CLS
DISPLAY" ... PLEASE WAIT..."
ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(SLIPPAGE/100)))+0.04)
ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(SLIPPAGE/100)))+0.04)
APR = ((PTOPW*.96)/(1+1/(ESRWD*ESQRWR/ESFWD/ESQRWF)))
ESS1 = ((@LOG(1-(APR*375/(SO*ESRWD)-.04)/
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
FOR I = 1 TO 5
ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
```

```
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
ESQRWR = (0..88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS1/100)))+0.04)
ESMWR = ((1/ESBNR)+0.04+0.5* (ESS1/100)/@SQRT (ESBNR))
ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS1/100)))+0.04)
ESMWF = ((1/ESBNF)+0.04+0.5*(ESS1/100)/@SQRT(ESBNF))
APR = ((PTOPW*.96)/(1+1/(ESRWD*ESQRWR/ESFWD/ESQRWF)))
ESS1 = ((@LOG(1-(APR*375/(SO*ESRWD)-.04)/
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
ESPULL1 = ((ESQRWR - ESMWR)*ESRWD + (ESQRWF - ESMWF)*ESFWD)
ESRWD = (ESRWS + (ESPULL1*DBHT/WB))
ESFWD = (ESFWS - (ESPULLI*DBHT/WB))
ESACS1 = (SO*(1 - ESS1/100))
ESTE1 = (ESPULL1*ESACS1/375/PTOPW)
ESWIDTH1 = (ESPULL1/1.33/IMPLDRAFT)
ESAPH1 = (ESACS1*ESWIDTH1/8)
END
    ESS2 = (S1)
    ESSO1 = (SO)
    ESSO2 = (SO)
    ESSO3 = (SO)
    ESWIDTH2 = (WIDTH1)
WHILETRUE WIDTH <= (ESWIDTH2) THEN
ESBNR = ((CI*RSECW*ROD* (RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW* (RS)/ROD)))
ESBNF = ((CI*FSECW*FOD* (FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
ESMWR = ((1/ESBNR) +0.04+0.5*(ESS2/100)/@SQRT(ESBNR))
ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
ESMWF = ((1/ESBNF)+0.04+0.5* (ESS2/100)/@SQRT (ESBNF))
APR = ((PTOPW*.96)/(1+1/(ESRWD*ESQRWR/ESFWD/ESQRWF)))
ESS2 = ((@LOG(1-(APR*375/(ESSO2*ESRWD)-.04)/
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
TESTPULL = ((ESQRWR - ESMWR)*ESRWD + (ESQRWF -
ESMWF) *ESFWD)
    ESRWD = (ESRWS + (TESTPUUL*DBHT/WB))
    ESFWD = (ESFWS - (TESTPULL*DBHT/WB))
    ESACS2 = (ESSO2*(1 - ESS2/100))
    ESTE2 = (TESTPULL*ESACS2/375/PTOPW)
    ESWIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
    ESAPH2 = (ESACS2*ESWIDTH2/8)
    ESSO2 = (ESSO2 +.05)
    END
WHILETRUE WIDTH >= (ESWIDTH2) THEN
ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*. 18)/(1+3*RSECW* (RS)/ROD)))
ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
```

```
ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5* (ESS2/100)))+0.04)
ESMWR = ((1/ESBNR) +0.04+0.5*(ESS2/100)/@SQRT (ESBNR))
ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
ESMWF = ((1/ESBNF)+0.04+0.5*(ESS2/100)/@SQRT (ESBNF))
APR = ((PTOPW*.96)/(1+1/(ESRWD*ESQRWR/ESFWD/ESQRWF)))
ESS2 = ((@LOG(1-(APR*375/(ESSO2*ESRWD) -.04)/
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
TESTPULL = ((ESQRWR - ESMWR)*ESRWD + (ESQRWF -
ESMWF) *ESFWD)
ESRWD = (ESRWS + (TESTPULL*DBHT/WB))
ESFWD = (ESFWS - (TESTPULL*DBHT/WB))
ESACS2 = (ESSO2*(1 - ESS2/100))
ESTE2 = (TESTPULL*ESACS2/375/PTOPW)
ESWIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
ESAPH2 = (ESACS2*ESWIDTH2/8)
ESSO2 = (ESSO2 -.05)
END
    ESS3 = (SLIPPAGE)
FOR T = 1 TO 5
ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW* (FS)/FOD)))
ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS3/100)))+0.04)
ESMWR = ((1/ESBNR)+0.04+0.5*(ESS3/100)/@SQRT(ESBNR))
ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS3/100)))+0.04)
ESMWF = ((1/ESBNF)+0.04+0.5*(ESS3/100)/@SQRT(ESBNF))
APR = ((PTOPW*.96)/(1+1/(ESRWD*ESQRWR/ESFWD/ESQRWF)))
ESSO3 = (375*APR/ESRWD/(0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*ESS3/100))+0.04))
ESPULL3 = ((ESQRWR - ESMWR)*ESRWD + (ESQRWF - ESMWF)*ESFWD)
ESRWD = (ESRWS + (ESPULL3*DBHT/WB))
ESFWD = (ESFWS - (ESPULL3*DBHT/WB))
ESACS3 = (ESSO3*(1 - ESS3/100))
ESTE3 = (ESPULL3*ESACS3/375/PTOPW)
ESWIDTH3 = (ESPULL3/1.33/IMPLDRAFT)
ESAPH3 = (ESACS3*ESWIDTH3/8)
END
FIND ACS;
RULE 19
IF OPERATION = MATCHING AND
    PULL > 0.0 AND
    RWD > 0.0 AND
    SO > 0.0 AND
    SLIPPAGE > 0.0 AND
    CI > 0.0 AND
    SYSTEM = 2WD
THEN BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
CLS
```

```
DISPLAY" ... PLEASE WAIT..."
BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(SLIPPPAGE/100)))+0.04)
QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(SLIPPAGE/100)))+0.04)
APR = (PTOPW*.96)
S1 = ((@LOG(1-(APR*375/(SO*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
FOR I = 1 TO 5
BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S1/100)))+0.04)
MWR = ((1/BNR)+0.04+0.5*(S1/100)/@SQRT(BNR))
QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S1/100)))+0.04)
MWF = ((1/BNF)+0.04+0.5*(S1/100)/@SQRT(BNF))
APR = (PTOPW*.96)
S1 = ((@LOG(1-(APR*375/(SO*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
PULL1 = ((QRWR - MWR)*RWD + (0.04 + 1/BNF)*FWD)
RWD = (RWS + (PULLL*DBHT/WB))
FWD = (FWS - (PULLL*DBHT/WB))
ACS1 = (SO*(1 - Sl/100))
TE1 = (PULL1*ACS1/375/PTOPW)
WIDTH1 = (PULLI/1.33/IMPLDRAFT)
APH1 = (ACS1*WIDTH1/8)
END
    S2 = (S1)
    SO1 = (SO)
    SO2 = (SO)
    SO3 = (SO)
    WIDTH2 = (WIDTH1)
WHILETRUE WIDTH <= (WIDTH2) THEN
    BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW* (RS)/ROD)))
    BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
    QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S2/100)))+0.04)
    MWR = ((1/BNR) +0.04+0.5*(S2/100)/@SQRT (BNR))
    QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S2/100)))+0.04)
    MWF = ((1/BNF) +0.04+0.5*(S2/100)/@SQRT (BNF))
    APR = (PTOPW*.96)
    S2 = ((@LOG(1-(APR*375/(SO2*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
    TESTPULL = ((QRWR - MWR)*RWD + (0.04 + 1/BNF)*FWD)
    RWD = (RWS + (TESTPULL*DBHT/WB))
    FWD = (FWS - (TESTPULL*DBHT/WB))
```

```
    ACS2 = (SO2*(1 - S2/100))
    TE2 = (TESTPULL*ACS2/375/PTOPW)
    WIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
    APH2 = (ACS 2*WIDTH2/8)
    SO2 = (SO2 +.1)
END
WHILETRUE WIDTH > (WIDTH2) THEN
    BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
    BNF = ((CI*FSECW*FOD*(FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
    QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S2/100)))+0.04)
    MWR = ((1/BNR) +0.04+0.5*(S2/100)/@SQRT (BNR))
    QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S2/100)))+0.04)
    MWF= ((1/BNF)+0.04+0.5*(S2/100)/@SQRT(BNF))
    APR = (PTOPW*.96)
    S2 = ((@LOG(1-(APR*375/(SO2*RWD)-.04)/
(.88*(1-@EXP(-.1*BNR)))))*(-100/7.5))
    TESTPULL = ((QRWR - MWR)*RWD + (0.04 + 1/BNF)*FWD)
    RWD = (RWS + (TESTPULL*DBHT/WB))
    FWD = (FWS - (TESTPULL*DBHT/WB))
    ACS2 = (SO2*(1 - S2/100))
    TE2 = (TESTPULL*ACS2/375/PTOPW)
    WIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
    APH2 = (ACS2*WIDTH2/8)
    SO2 = (SO2 - 0.1)
END
    S3 = (SLIPPAGE)
FOR T = 1 TO 5
    BNR = ((CI*RSECW*ROD*(RS)/(RWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
    BNF = ((CI*FSECW*FOD* (FS)/(FWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
    QRWR = (0.88*(1-@EXP(-0.1*BNR))*
(1-@EXP(-7.5*(S3/100)))+0.04)
    MWR = ((1/BNR)+0.04+0.5*(S3/100)/@SQRT (BNR))
    QRWF = (0.88*(1-@EXP(-0.1*BNF))*
(1-@EXP(-7.5*(S3/100)))+0.04)
    MWF = ((1/BNF)+0.04+0.5*(S3/100)/@SQRT (BNF))
    APR = (PTOPW*.96)
    SO3 = (375*APR/RWD/(0.88*(1-@EXP (-0.1*BNR))*
(1-@EXP(-7.5*S3/100))+0.04))
    PULL3 = ((QRWR - MWR)*RWD + (0.04 +1/BNF)*FWD)
    RWD = (RWS + (PULL 3*DBHT/WB))
    FWD = (FWS - (PULL3*DBHT/WB))
    ACS3 = (SO3*(1 - S3/100))
    TE3 = (PULL3*ACS3/375/PTOPW)
    WIDTH3 = (PULL3/1.33/IMPLDRAFT)
    APH3 = (ACS3*WIDTH3/8)
END
FIND ESFWS;
```

RULE 20

IF	OPERATION	$=$ MATCHING	AND
	PULL	> 0.0	AND
	RWD	> 0.0	AND
	SO	> 0.0	AND
	SLIPPAGE	>0.0	AND
	CI	> 0.0	AND
	SYSTEM	$=2 \mathrm{WD}$	
THEN	RATIO	$=(25)$	
	ESFWS	$=(140 *$ PTO	
	ESRWS	$=(140 *$ PTO	
	ESPULL	= (WIDTH*I	
	ESRWD	$=$ (ESRWS +	BHT/
	ESFWD	$=$ (ESFWS -	T/WB
	ESBNR $=((\mathrm{CI} *$ RSECW*ROD* $(\mathrm{RS}) /($ ESRWD $/ 2)) *$		
((1+5*.18)/(1+3*RSECW* (RS)/ROD)))			

DISPLAY" ... PLEASE WAIT..."
ESBNF $=((C I * F S E C W * F O D *(F S) /(E S F W D / 2)) *$
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
ESQRWR $=(0.88 *(1-@ E X P(-0.1 * E S B N R)) *$
(1-@EXP (-7.5*(SLIPPAGE/100))) +0.04)
ESQRWF $=(0.88 *(1-@ E X P(-0.1 * E S B N F)) *$
(1-@EXP(-7.5*(SLIPPAGE/100)))+0.04)
APR = (PTOPW*.96)
ESS1 $=(($ @LOG (1-(APR*375/(SO*ESRWD)-.04)/
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
FOR I = 1 TO 5
ESBNR $=((C I * R S E C W * R O D *(R S) /(E S R W D / 2)) *$
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
ESBNF $=((C I * F S E C W * F O D *(F S) /(E S F W D / 2)) *$
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
ESQRWR $=(0.88 *(1-@ E X P(-0.1 * E S B N R)) *$
(1-@EXP (-7.5*(ESS1/100)))+0.04)
ESMWR $=((1 / E S B N R)+0.04+0.5 *(E S S 1 / 100) / @ S Q R T(E S B N R))$
ESQRWF $=(0.88 *(1-@ E X P(-0.1 * E S B N F)) *$
(1-@EXP (-7.5*(ESS1/100)))+0.04)
ESMWF $=((1 / E S B N F)+0.04+0.5 *(E S S 1 / 100) / @ S Q R T(E S B N F))$
$\mathrm{APR}=$ (PTOPW*.96)
ESS1 $=(($ @LOG (1-(APR*375/(SO*ESRWD)-.04) $/$
(.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
ESPULL1=((ESQRWR-ESMWR) *ESRWD+(0.04+1/ESBNF) *ESFWD)
ESRWD $=(E S R W S+(E S P U L L 1 * D B H T / W B))$
ESFWD = (ESFWS - (ESPULL1*DBHT/WB))
ESACS1 = (SO* (1 - ESS1/100))
ESTE1 = (ESPULLI*ESACS1/375/PTOPW)
ESWIDTH1 $=($ ESPULLI/1.33/IMPLDRAFT)
ESAPH1 $=(E S A C S 1 * E S W I D T H 1 / 8)$

END
ESS2 = (S1)
ESSOI = (SO)
ESSO2 = (SO)
ESSO3 = (SO)
ESWIDTH2 = (WIDTH1)

```
WHILETRUE WIDTH <= (ESWIDTH2) THEN
    ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
        ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
        ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
        ESMWR = ((1/ESBNR)+0.04+0.5*(ESS2/100)/@SQRT(ESBNR))
        ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
        ESMWF = ((1/ESBNF)+0.04+0.5*(ESS2/100)/@SQRT (ESBNF))
        APR = (PTOPW*.96)
        ESS2 = ((@LOG(1-(APR*375/(ESSO2*ESRWD)-.04)/
    (.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
        TESTPULL=((ESQRWR-ESMWR)*ESRWD+(0.04 + 1/ESBNF)*ESFWD)
        ESRWD = (ESRWS + (TESTPULL*DBHT/WB))
        ESFWD = (ESFWS - (TESTPULL*DBHT/WB))
        ESACS2 = (ESSO2*(1 - ESS2/100))
        ESTE2 = (TESTPULL*ESACS2/375/PTOPW)
        ESWIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
        ESAPH2 = (ESACS2*ESWIDTH2/8)
        ESSO2 = (ESSO2 +.1)
END
WHILETRUE ESWIDTH > (ESWIDTH2) THEN
        ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
        ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
        ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
        ESMWR = ((1/ESBNR)+0.04+0.5*(ESS2/100)/@SQRT(ESBNR))
        ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS2/100)))+0.04)
        ESMWF = ((1/ESBNF)+0.04+0.5*(ESS2/100)/@SQRT(ESBNF))
        APR = (PTOPW*.96)
        ESS2 = ((@LOG(1-(APR*375/(ESSO2*ESRWD)-.04)/
    (.88*(1-@EXP(-.1*ESBNR)))))*(-100/7.5))
        TESTPULL=((ESQRWR-ESMWR)*ESRWD+(0.04 + 1/ESBNF)*ESFWD)
        ESRWD = (ESRWS + (TESTPULL*DBHT/WB))
        ESFWD = (ESFWS - (TESTPULL*DBHT/WB))
        ESACS2 = (ESSO2*(1 - ESS2/100))
        ESTE2 = (TESTPULL*ESACS2/375/PTOPW)
        ESWIDTH2 = (TESTPULL/1.33/IMPLDRAFT)
        ESAPH2 = (ESACS2*ESWIDTH2/8)
        ESSO2 = (ESSO2 -. 1)
END
        ESS3 = (SLIPPAGE)
FOR T = 1 TO 5
    ESBNR = ((CI*RSECW*ROD*(RS)/(ESRWD/2))*
((1+5*.18)/(1+3*RSECW*(RS)/ROD)))
    ESBNF = ((CI*FSECW*FOD*(FS)/(ESFWD/2))*
((1+5*.18)/(1+3*FSECW*(FS)/FOD)))
    ESQRWR = (0.88*(1-@EXP(-0.1*ESBNR))*
(1-@EXP(-7.5*(ESS3/100)))+0.04)
```

```
    ESMWR = ((1/ESBNR) +0.04+0.5*(ESS3/100)/@SQRT(ESBNR))
    ESQRWF = (0.88*(1-@EXP(-0.1*ESBNF))*
(1-@EXP(-7.5*(ESS3/100)))+0.04)
    ESMWF = ((1/ESBNF)+0.04+0.5*(ESS3/100)/@SQRT(ESBNF))
    APR = (PTOPW*.96)
    ESSO3 = (375*APR/ESRWD/(0.88*(1-@EXP(-0.1*ESBNR))*
        (1-@EXP(-7.5*ESS3/100))+0.04))
    ESPULL3=((ESQRWR-ESMWR)*ESRWD + (0.04 + 1/ESBNF)*ESFWD)
    ESRWD = (ESRWS + (ESPULL3*DBHT/WB))
    ESFWD = (ESFWS - (ESPULL3*DBHT/WB))
    ESACS3 = (ESSO3*(1 - ESS3/100))
    ESTE3 = (ESPULLL3*ESACS3/375/PTOPW)
    ESWIDTH3 = (ESPULL3/1.33/IMPLDRAFT)
    ESAPH3 = (ESACS3*ESWIDTH3/8)
END
FIND ACS;
RULE 21
IF OPERATION = TIRE_PRESSURE AND
        RWD > 0.0
THEN FINAL = OK
        SAVEFACTS B:RWD
        CHAIN B:PRESSURE;
RULE 22
IF OPERATION = MATCHING AND
        PULL > 0.0 AND
        SLIPPAGE > 0.0
THEN
ACS = (SO*(1-SLIPPAGE/100))
APH = (WIDTH*ACS/8)
DBHPOWER = (WIDTH*1.33*IMPLDRAFT*ACS/375)
TE = (DBHPOWER/PTOPW)
DBHPOWER1 = (WIDTH*1.33*IMPLDRAFT*ACS2/375)
TRACTOR_WEIGHT = ((RWS + FWS)/PTOPW)
ESTRACTŌR WEIGHT = ((ESRWS + ESFWS)/PTOPW)
FORMAT TRA}CTOR_WEIGHT,5.
FORMAT ESTRACTOR_WEIGHT,5.1
FORMAT DBHPOWER, 6.1
FORMAT DBHPOWER1,6.1
FORMAT WIDTH1,5.2
FORMAT S1,4.1
FORMAT SO1,4.1
FORMAT TE1,5.3
FORMAT APH1,6.3
FORMAT ACS1,4.1
FORMAT WIDTH2,5.2
FORMAT S2,4.1
FORMAT SO2,4.1
FORMAT TE2,5.3
FORMAT APH2,6.3
FORMAT ACS2,4.1
FORMAT WIDTH3,5.2
FORMAT S3,4.1
FORMAT SO3,4.1
FORMAT TE3,5.3
```


<Press any key> ~"
FINAL $=$ OK;
RULE 23
OPERATION $=$ MATCHING

AND
FINAL $=$ OK AND

CHICK $\quad=$ YES
THEN CHANGE_FILE $=$ OK
CHAIN B:SYSTEM;
RULE 24
IF OPERATION = MATCHING AND
FINAL $=$ OK AND
CHICK $=$ NO
THEN CHANGE FILE $=O K$
DISPLAY" Thank you for using this program.
<Press any key>~";
ASK CHICK:"Would you like to use another file?";
CHOICES CHICK:YES,NO;
ASK SPEED: "What is the indicated field speed you would like to achieve with your tractor during most operations?";
ASK THE SOIL: "How would you describe the SOIL conditions of the fields where your tractor is most frequently operated?"; ASK THE_IMPLEMENT:"What type of implement will be frequently used with this tractor?"; ASK IMPLEMENT: "What type of implement will be frequently used with this tractor?";
CHOICES IMPLEMENT1: MOLDBOARD_PLOW, CHISEL,OFFSET_DISK, V_BLADE, TANDEM_DISK, CHISEL_WITH_SWEEPS;
Ā̄K WIDTH: "What is the width of the implement (FEET)?"; ASK SLIPPAGE: "What is the percentage of tire slip at which you would like the tractor to operate?
Refer to the following table for guidance.

Soil	Tractor Type		
	2 WD	FWD	4 WD
Firm	$10-12$	$8-10$	$8-10$
Tilled	$12-14$	$10-11.5$	$10-11.5$
Sandy	$14-16$	$11.5-13$	$11.5-13$

ASK CI:"What is the estimated Cone Index (psi)?
Refer to the following table for guidance.

CI	SOIL CONDITION
250	HARD, PACKED
200	HARD, PACKED WITH STUBBLE
150	FIRM
80	TILLED
60	SOFT, WET

";
ASK DRAFT_OF_IMPLEMENT:"Do you know the implement draft?"; CHOICES DRAFT_OF_IMPLEMENT:YES,NO;
ASK DRAFT_PER_UNIT: "How much is it (lbs/ft)?";

APPENDIX E

PRESSURE KNOWLEDGE BASE

```
EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
    LOADFACTS B:RWD
    FIND TIRE3
    FIND TIRE_LOAD
    FIND PRESSURE TEST
    FIND PRESSURE
    FIND PRESSURE RECOMMENDED
    FIND CHANGE FILE;
RULE 1
IF PRESSURE = 999
THEN PRESSURE_RECOMMENDED = OK
DISPLAY "The weight of the tractor is over the load
limitation. Try to reduce the tractor weight."
DISPLAY" <Press any key>"";
RULE 2
IF PRESSURE = 888
THEN PRESSURE_RECOMMENDED = OK
DISPLAY"It is recommended to look at the tire manual "
DISPLAY" <Press any key> "";
RULE 3
IF PRESSURE <> 999 OR
    PRESSURE <> 888 AND
    TIRES , = SINGLE
THEN PRESSURE RECOMMENDED = OK
DISPLAY"The estimated tire pressure is {PRESSURE} PSI."
DISPLAY" <Press any key>"";
RULE 4
IF PRESSURE <> 999 OR
    PRESSURE <> 888 AND
    TIRES = DUAL
THEN PRESSURE_RECOMMENDED = OK
    INSIDE = (PRESSURE + 2)
DISPLAY"The recommended tire pressure is {PRESSURE} psi for
outside dual and {INSIDE} psi for inside dual."
DISPLAY" <Press any key>"";
RULE 5
IF TIRE = BIAS
THEN TIRE3 = OK
    WHILEKNOWN SIZE
    GET RTIRE_SIZE=SIZE, B:BPRESSUR,ALL
```

RESET RTIRE_SIZE
CLOSE B:BPRESSUR;
RULE 6
IF TIRE = RADIAL

THEN TIRE3 $=$ OK
MENU THE_SIZE,ALL,B:RPRESSUR,SIZE
FIND THE_SIZE
WHILEKNOWN SIZE
GET THE_SIZE=SIZE, B:RPRESSUR,ALL
RESET THE_SIZE
CLOSE B:RPRESSUR;
RULE 7
IF TIRES = SINGLE AND
RWD > 0.0
THEN TIRE_LOAD = (RWD/2);
RULE 8
IF TIRES = DUAL AND
RWD > 0.0
THEN TIRE_LOAD = (RWD/(4*.88));
RULE 9
IF TIRE_LOAD <> 0.0
THEN PRESSURE_TEST = DONE
PSI12A $=$ (PSI12)
PSI14A $=($ PSI14)
PSI16A $=$ (PSI16)
PSI18A $=($ PSI18)
PSI20A $=($ PSI20 $)$
PSI22A $=$ (PSI22)
PSI24A $=($ PSI24)
PSI26A $=($ PSI26)
PSI28A $=($ PSI28)
PSI30A $=($ PSI30)
FIND PSII6A_TEST;
RULE 10
IF PSI16A $=(0.0)$ AND
PSI18A > 0.0 AND

TIRE_LOAD < (PSI18A)
THEN PSI16A_TEST = DONE
PSI16A $=(2 * P S I 18 A-P S I 20 A)$
FIND PSI14A_TEST;
RULE 11
IF PSI14A $=0 \quad$ AND
PSI16A > 0 AND
TIRE_LOAD < (PSI16A)
THEN PSI14A_TEST = DONE2
PSI14A $=(2 * P S I 16 A-$ PSI18A $)$
FIND PSI12A_TEST;
RULE 12

IF	PSI12A	$=0$	AND
	PSI14A	>0	AND
	TIRE LOAD $<($ PSI14A $)$		
THEN	PSI12A_TEST $=$ DONE2		
	PSI12A $=(2 *(P S I 14 A)-(P S I 16 A)) ;$		

RULE 13
IF TIRE_LOAD $<=($ PSI12A +25)
THEN PRESS̄URE = 12;
RULE 14
IF TIRE_LOAD $>$ (PSI12A + 25) AND
TIRE_LOAD $<(P S I 14 A-25)$
THEN PRESSURE $=13$;
RULE 15
IF TIRE_LOAD $>=$ (PSI14A - 25) AND
TIRE_LOAD $<=($ PSII4A +25$)$
THEN PRESSURE $=14$;
RULE 16
IF TIRE_LOAD $>$ (PSI14A + 25) AND
TIRE_LOAD $<(P S I 16 A-25)$
THEN PRESSURE $=15$;
RULE 17
IF TIRE_LOAD $>=(P S I 16 A-25)$ AND
TIRE_LOAD $<=($ PSII6A +25$)$
THEN PRESSURE * = 16;
RULE 18
IF TIRE_LOAD $>$ (PSI16A + 25) ȦND
TIRE_LOAD $<(P S I 18 A-25)$
THEN PRESSURE $=17$;
RULE 19
IF TIRE_LOAD $>=(P S I 18 A-25)$ AND
TIRE_LOAD $<=($ PSII8A +25$)$
THEN PRESS̄URE = 18;
RULE 20
IF TIRE_LOAD $>(P S I 18 A+25)$ TIRE_LOAD $<$ (PSI2OA - 25)
THEN PRESSURE $=19$;
RULE 21
IF TIRE_LOAD $>=$ (PSI20A - 25) AND
TIRE_LOAD $<=($ PSI2OA + 25)
THEN PRESSUURE $=20$;
RULE 22
IF TIRE_LOAD $>$ (PSI2OA + 25)
TIRE_LOAD $<(P S I 22 A-25)$
THEN PRESSUURE $\quad=21$;
RULE 23
IF TIRE_LOAD $>=$ (PSI22A - 25) AND
TIRE_LOAD $<=($ PSI22A +25$)$
THEN PRESS̄URE $=22$;
RULE 24
IF TIRE_LOAD $>($ PSI22A +25$)$ AND
THEN PRESSURE $=23$;
RULE 25
IF TIRE_LOAD $>=$ (PSI24A - 25) AND
TIRE_LOAD $<=($ PSI24A +25$)$
THEN PRESSURE $=24$;
RULE 26
IF TIRE_LOAD $>$ (PSI24A + 25) AND

THEN PRESSURE $=25$;
RULE 27
IF TIRE_LOAD $>=($ PSI26A - 25) AND
TIRE_LOAD $<=($ PSI26A +25$)$
THEN PRESSURE $=26$;

RULE 28
IF TIRE_LOAD $>($ PSI26A +25$)$ AND TIRE_LOAD $<(P S I 28 A-25)$
THEN PRESSUURE $=27$;
RULE 29
IF TIRE_LOAD $>=$ (PSI28A - 25) AND
TIRE_LOAD $<=($ PSI28A +25$)$
THEN PRESSURE $=28$;
RULE 30
$\begin{array}{ll}\text { IF } & \text { TIRE_LOAD }\end{array} \quad>($ PSI28A +25$)$
THEN PRESSURE $=29$;
RULE 31
IF TIRE_LOAD $>=$ (PSI30A - 25) AND
TIRE_LOAD $<=($ PSI30A +25$)$
THEN PRESSURE $=30$;
RULE 32
IF PSI20A $=0$
AND
THEN PRESSUURE $=888$;
RULE 33
IF PSI22A $=0$
TIRE_LOAD > (PSI20A)
THEN PRESSURE $=888$;
RULE 34
IF TIRE_LOAD $>$ (PSI22A)
PSI24A $=0$
THEN PRESSURE $=888$;
RULE 35
IF TIRE LOAD $>$ (PSI24A) AND
THEN PRESSURE $=888$;
RULE 36
IF TIRE_LOAD $>$ (PSI30)
THEN PRESS̄URE $=999$;
RULE 37
IF CHICK = YES
THEN CHANGE_FILE $=$ OK
CHAIN B:SYSTEM;
RULE 38
IF CHICK $=\mathrm{NO}$
THEN CHANGE_FILE $=O K$
DISPLAY "Thank you for using this program.
<Press any key>~";
ASK TIRE:"Have you been using BIAS or RADIAL tires?";
CHOICES TIRE:BIAS,RADIAL;
ASK TIRES: "Have you been using SINGLE or DUAL tires?";
CHOICES TIRES:SINGLE,DUAL;

ASK THE_SIZE:"What size are the current tires?"; ASK CHICK: "Would you like to use another file?"; CHOICES CHICK:YES,NO;

APPENDIX F

TIRE1 KNOWLEDGE BASE

```
EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
            FIND RECOMMEND3A
            FIND RECOMMEND3B
            FIND BALLASTING
            FIND RECOMMEND1
            FIND RECOMMEND2
            FIND RECOMMEND3
            FIND RECOMMEND4
            FIND RECOMMEND5;
RULE 1
IF BALLAST = NO
THEN RECOMMEND3A = DISPLAY1
DISPLAY "Recommendation: test the tractor weight by running
the BALLASTING program first.
                                    <Press any key>"";
RULE 2
IF BALLAST = YES OR
    BALLAST = NO AND
    MATCH = NO
THEN RECOMMEND3B = DISPLAY2
DISPLAY "Recommendation: test the implement matching by
running the MATCHING program first.
                                    <Press any key>"";
RULE 3
IF BALLAST = YES OR
    BALLAST = NO AND
    MATCH = YES OR
    MATCH = NO
THEN BALLASTING = OK;
RULE 4
TIRE = BIAS OR
TIRE = RADIAL AND
TIRES = DUAL OR
TIRES = SINGLE AND
PROBLEMS = TREAD_WEAR AND
LUG > 20
THEN RECOMMEND3 = FINAL1
DISPLAY "There is no reason to change the tires at this
time.
```


THEN	RECOMMEND1	= R8;	
RULE 10			
IF	RECOMMEND1	= R8	AND
	TIRES_TYPE	= GENERAL	OR
	TIRES_TYPE	= INDUSTRIAL	OR
	TIRES_TYPE	= HIGH_CLEAT	AND
	TILIAGE	$=$ YES	OR
	TILLAGE	$=\mathrm{NO}$	AND
	PER_MUDDY_AREA	$>=40$	AND
	PER_HARD_AREA	$<=10$	
THEN	RECOMMEND2	= HIGH_CLEAT;	
RULE 11			
IF	RECOMMEND1	= R8	AND
	TIRES_TYPE	= GENERAL	OR
	TIRES_TYPE	= HIGH_CLEAT	OR
	TIRES_TYPE	$=$ INDUSTRIAL	AND
	TILLA ${ }^{\text {G }}$ E	$=$ YES	OR
	TILLAGE	$=\mathrm{NO}$	AND
	PER_MUDDY_AREA	$<=10$	AND
	PER_HARD_AREA	$>=60$	
THEN	RECOMMEND 2	$=$ INDUSTRIAL	
ELSE	RECOMMEND2	= GENERAL;	
RULE 12			
IF	RECOMMEND2	$=\mathrm{HIGH}$ CLEAT	OR
	RECOMMEND2	$=$ GENERAL	OR
	RECOMMEND2	= INDUSTRIAL	AND
	FOOT_PRINT	= NOT_CLEAR	
THEN	RECOMMEND4	$=F I N \bar{A} L$	

CLS
DISPLAY"The foot print of tires is NOT CLEAR print, which means your tractor is UNDERBALLASTED and it is recommended to reweigh your tractor.
< Press any key to continue >~";
RULE 13

IF	RECOMMEND2	$=$ HIGH CLEAT	OR
	RECOMMEND2	$=$ GENERAL	OR
	RECOMMEND2	$=$ INDUSTRIAL	AND
	FOOT_PRINT	$=$ SHARP	
THEN	RECOMMEND4	$=$ FINAL	

CLS
DISPLAY"The foot print of the tires is SHARP print, which means your tractor is OVERBALLASTED and it is recommended to reweigh your tractor.
< Press any key to continue >~";
RULE 14

IF	RECOMMEND2	$=$ HIGH CLEAT		OR OR AND	
	RECOMMEND2	$=$ GENERAL			
	RECOMMEND2	= INDUSTRIAL			
	FOOT PRINT	= CLEAR			
THEN	RECOMMEND3	$=$ FINAL;			
RULE 15					
IF	RECOMMEND3	$=$ FINALI	AND		
	CHICK	$=\mathrm{YES}$			
THEN	RECOMMEND5	$=$ FINAL			

CHAIN B:SYSTEM;

RULE 16
IF RECOMMEND3 = FINAL1 AND
CHICK $=\mathrm{NO}$
THEN RECOMMEND5 $=$ FINAL
DISPLAY"Thank you for using this program.
<Press any key>~";
RULE 17
IF RECOMMEND3 = FINAL
THEN RECOMMEND5 = FINAL
SAVEFACTS B:TIRE
CHAIN B:TIRE2;
RULE 18
IF RECOMMEND4 $=$ FINAL AND
REWIEGHT $=$ YES

THEN RECOMMEND5 = FINAL
SAVEFACTS B:TIRE
CHAIN B:BALLAST1
ELSE SAVEFACTS B:TIRE
CHAIN B:TIRE2;
ASK CHICK:"Would you like to use another file?";
CHOICES CHICK: YES,NO;
ASK BALLAST: "Has weight been added to your tractor to improve performance?";
CHOICES BALLAST: YES,NO;
ASK MATCH: "Do you think the slippage of the tractor is OK?";
CHOICES MATCH: YES,NO;
ASK TIRES: "Have you been using SINGLE or DUAL tires?"; CHOICES TIRES: SINGLE,DUAL;
ASK TIRE: "Have you been using BIAS or RADIAL tires?";
CHOICES TIRE: BIAS,RADIAL;
ASK PROBLEMS: "Why do the current tire(s) need replacement?";
CHOICES PROBLEMS: ONE_TIRE_BAD,NOT_RELIABLE,TREAD_WEAR;
ASK LUG: "Comparing the height of the current tire's lug to a new tire, how much percentage tread is left?";
ASK TILLAGE: "Will this particular tractor be used for tillage or other heavy drawbar loads?";
CHOICES TILLAGE: YES,NO;
ASK TIRES_TYPE: "What was the tread design of the tires you had been using?";
CHOICES TIRES_TYPE: GENERAL,HIGH_CLEAT,INDUSTRIAL;
ASK STATUS: "W̄hat are the conditions of the other tires?"; CHOICES STATUS: NEW, GOOD,POOR,WORN;
ASK FIND: "Would it be possible to locate a used tire having the same conditions and manufacturer as other tires?"; CHOICES FIND: YES,NO;
ASK FOOT_PRINT: "When you look at the tire track just behind the tire during operation under normal load, what does it look like?

SHARP: Sharp distinct tire print.
CLEAR: Print somewhat broken up, BUT recognizable. NOT_CLEAR: The tire print is sheared away. No clear tire

```
print is remaining.";
CHOICES FOOT_PRINT: SHARP,CLEAR,NOT_CLEAR;
ASK PER_HARD_AREA: "What percentage of field area on your
farm has roads or any other hard areas?";
ASK PER_MUDDY_AREA: "What percentage of field area on your
farm contains tight or sticky soils which are frequently
difficult to work?";
ASK REWIEGHT:"Would you like to check the tractor weight?";
CHOICES REWIEGHT:YES,NO;
```


APPENDIX G

TIRE2 KNOWLEDGE BASE

EXECUTE;
RUNTIME;
ENDOFF;
ACTIONS
LOADFACTS B:TIRE
FIND SRAF
FIND RECOMMEND SIZE
FIND RECOMMENDATION4
FIND CHANGE_FILE;
RULE 1
IF

DRAWBAR	$=$ UNKNOWN	AND
SPEED	$<>0.0$	AND
PTOHP	$<>0.0$	AND
TRACTOR	$=4 W D$	AND
SOIL	$=$ SANDY	
SRAF	$=($ PTOHP*0.7*375	(SPEED*0.45))

LOAD ; \quad (SRAF/2);
RULE 2
IF
DRAWBAR
= UNKNOWN AND
SPEED
PTOHP
<> 0.0 AND
<> 0.0 AND
TRACTOR = MED AND

SOIL
SRAF
LOAD
RULE 3
IF
DRAWBAR
SPEED
PTOHP
TRACTOR
SOIL
SRAF
LOAD
RULE 4
IF

THEN
DRAWBAR
SPEED
PTOHP
TRACTOR
SOIL
SRAF
LOAD
RULE 5
IF

	TIRE_SIZE	$=\mathrm{T} 20.8-34[6]$	OR
	TIRE_SIZE	$=$ T23.1-34[8]	AND
	LOAD	$>=4440$	AND
	LOAD	<= 5650	
THEN	RECOMMEND_SIZE	= T18.4-34[8]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	13		
IF	TIRE_SIZE	$=$ T16.9-34[6]	OR
	TIRE SIZE	= T18.4-34[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-34[6]$	OR
	TIRE_SIZE	= T23.1-34[8]	AND
	LOAD	$>=5650$	AND
	LOAD	<= 6360	
THEN	RECOMMEND_SIZE	= T20.8-34[6]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	14		
IF	TIRE_SIZE	= T16.9-34[6]	OR
	TIRE_SIZE	$=$ T18.4-34[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-34[6]$	OR
	TIRE_SIZE	= T23.1-34[8]	AND
	LOAD	>= 6360	AND
	LOAD	<= 7110	
THEN	RECOMMEND_SIZE	= T23.1-34[8]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	15		
IF	TIRE_SIZE	= T16.9-34[6]	OR
	TIRE_SIZE	$=\mathrm{T} 18.4-34[8]$	OR
	TIRE_SIZE	= T20.8-34[6]	OR
	TIRE_SIZE	$=\mathrm{T} 23.1-34[8]$	AND
	LOAD	>= 7110	AND
	LOAD	$<=7814$	
THEN	RECOMMEND_SIZE	= T16.9-34[6]	
	RECOMMEND_TIRE	= DUAL;	
RULE	16		
IF	TIRE_SIZE	$=$ T16.9-34[6]	OR
	TIRE_SIZE	$=$ T18.4-34[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-34[6]$	OR
	TIRE_SIZE	= T23.1-34[8]	AND
	LOAD	>= 7814	AND
	LOAD	<= 9944	
THEN	RECOMMEND_SIZE	= T18.4-34[8]	
	RECOMMEND_TIRE	$=$ DUAL;	
RULE	17		
IF	TIRE_SIZE	= T16.9-34[6]	OR
	TIRE_SIZE	= T18.4-34[8]	OR
	TIRE_SIZE	$=$ T20.8-34[6]	OR
	TIRE_SIZE	$=\mathrm{T} 23.1-34[8]$	AND
	LOAD	>= 9944	AND
	LOAD	<= 11194	
THEN	RECOMMEND_SIZE	= T20.8-34[6]	
	RECOMMEND_TIRE	= DUAL;	
RULE	18		
IF	TIRE_SIZE	$=\mathrm{T} 16.9-34[6]$	OR
	TIRE_SIZE	= T18.4-34[8]	OR

	TIRE_SIZE	$=\mathrm{T} 20.8-34[6]$	OR
	TIRE_SIZE	$=\mathrm{T} 23.1-34[8]$	AND
	LOAD	>= 11194	AND
	LOAD	<= 12514	
THEN	RECOMMEND_SIZE	= T23.1-34[8]	
	RECOMMEND TIRE	= DUAL;	
RULE	19		
IF	TIRE_SIZE	$=$ T16.9-38[6]	OR
	TIRE_SIZE	= T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=$ T20.8-38[10]	AND
	LOAD	$<=5250$	
THEN	RECOMMEND_SIZE	= T16.9-38[6]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	20		
IF	TIRE_SIZE	= T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=\mathrm{T} 18.4-38[8]$	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	= T20.8-38[10]	AND
	LOAD	$>=5250$	AND
	LOAD	$<=5560$	
THEN	RECOMMEND_SIZE	= T18.4-38[6]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	21		
IF	TIRE_SIZE	$=$ T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[10]$	AND
	LOAD	$>=5560$	AND
	LOAD	<= 6660	
THEN	RECOMMEND_SIZE	= T18,4-38[8]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	22		
IF	TIRE_SIZE	$=(T 16.9-38[6])$	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[10]$	AND
	LOAD	>= 6660	AND
	LOAD	$<=7250$	
THEN	RECOMMEND_SIZE'	= T20.8-38[8]	
	RECOMMEND_TIRE	= SINGLE;	
RULE	23		
IF	TIRE_SIZE	$=$ T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[10]$	AND
	LOAD	$>=7250$	AND
	LOAD	$<=7670$	
THEN	RECOMMEND_SIZE	$=\mathrm{T} 20.8-38[10]$	

	RECOMMEND_TIRE	$=$ SINGLE;	
RULE	24		
IF	TIRE_SIZE	$=\mathrm{T} 16.9-38[6]$	OR
	TIRE_SIZE	= T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[10]$	AND
	LOAD	>= 7670	AND
	LOAD	<= 9240	
THEN	RECOMMEND_SIZE	= T16.9-38[6]	
	RECOMMEND_TIRE	= DUAL;	
RULE	25		
IF	TIRE_SIZE	= T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=\mathrm{T} 18.4-38[8]$	OR
	TIRESIZE	= T20.8-38[8]	OR
	TIRE_SIZE	= T20.8-38[10]	AND
	LOAD	>= 9240	AND
	LOAD	<9786	
THEN	RECOMMEND_SIZE	= T18.4-38[6]	
	RECOMMEND_TIRE	= DUAL;	
RULE	26		
IF	TIRE_SIZE	= T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	= T20.8-38[10]	AND
	LOAD	>= 9786	AND
	LOAD	<= 11722	
THEN	RECOMMEND_SIZE	= T18.4-38[8]	
	RECOMMEND_TIRE	= DUAL;	
RULE	27		
IF	TIRE_SIZE	= T16.9-38[6]	OR
	TIRE_SIZE	$=\mathrm{T} 18.4-38[6]$	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	$=\mathrm{T} 20.8-38[8]$	OR
	TIRE_SIZE	$=$ T20.8-38[10]	AND
	LOAD	>= 11722	AND
	LOAD	<= 12760	
THEN	RECOMMEND_SIZE	= T20.8-38[8]	
	RECOMMEND_TIRE	= DUAL;	
RULE	28		
IF	TIRE_SIZE	= T16.9-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[6]	OR
	TIRE_SIZE	$=$ T18.4-38[8]	OR
	TIRE_SIZE	= T20.8-38[8]	OR
	TIRE_SIZE	= T20.8-38[10]	AND
	LOAD	$>=12760$	AND
	LOAD	<= 13499	
THEN	RECOMMEND_SIZE	= T20.8-38[10]	
	RECOMMEND_TIRE	= DUAL;	
RULE	29		
IF	TIRE_SIZE	$=T 24.5-32[10]$	OR

THEN	LOAD	<= 15312	
	RECOMMEND_SIZE	= T24.5-32[10]	
	RECOMMEND TIRE	= DUAL;	
RULE 35			
IF	TIRE_SIZE	$=$ T24.5-32[10]	OR
	TIRE_SIZE	= T24.5-32[12]	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[10]$	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[12]$	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[16]$	AND
	LOAD	$>=15312$	AND
	LOAD	<= 16051	
THEN	RECOMMEND_SIZE	= T30.5L-32[10]	
	RECOMMEND_TIRE	= DUAL;	
RULE 36			
IF	TIRE_SIZE	= T24.5-32[10]	OR
	TIRE_SIZE	= T24.5-32[12]	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[10]$	OR
	TIRE_SIZE	= T30.5L-32[12]	OR
	TIRE_SIZE	$=$ T30.5L-32[16]	AND
	LOAD	$>=16051$	AND
	LOAD	<= 17036	
THEN	RECOMMEND_SIZE	= T24.5-32[12]	
	RECOMMEND_TIRE	= DUAL;	
RULE 37			
IF	TIRE_SIZE	= T24.5-32[10]	OR
	TIRE_SIZE	= T24.5-32[12]	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[10]$	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[12]$	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[16]$	AND
	LOAD	>= 17036	AND
	LOAD	<= 18286	
THEN	RECOMMEND_SIZE	= T30.5L-32[12]	
	RECOMMEND_TIRE	= DUAL;	
RULE 38			
IF	TIRE_SIZE	$=$ T24.5-32[10]	OR
	TIRE_SIZE	= T24.5-32[12]	OR
	TIRE_SIZE	$=\mathrm{T} 30.5 \mathrm{~L}-32[10]$	OR
	TIRE_SIZE	= T30.5L-32[12]	OR
	TIRE_SIZE	$=$ T30.5L-32[16]	AND
	LOAD	>= 18286	AND
	LOAD	<= 25978	
THEN	RECOMMEND_SIZE	= T30.5L-32[16]	
	RECOMMEND_TIRE	= DUAL;	
RULE 39			
IF	RECOMMEND2	= HIGH_CLEAT	OR
	RECOMMEND2	= INDUSTRIAL	AND
	FOOT_PRINT	= CLEAR	OR
	FOOT_PRINT	= SHARP	OR
	FOOT_PRINT	= NOT_CLEAR	
THEN	RECOMMENDATION4	$4=F I N \bar{A} L$	
DISPLAY"It is recommended to use \{RECOMMEND2\}			
\{RECOMMEND_TIRE\} tires with a size and ply rating of			
\{RECOMMEND_SIZE\}.			
DISPLAY" <Press any key> "";			

```
RULE 40
\begin{tabular}{llll} 
IF & RECOMMEND2 & \(=\) GENERAL & AND \\
FOOT_PRINT & \(=\) SHARP & OR \\
& FOOT_PRINT & \(=\) CLEAR & OR \\
& FOOT_PRINT & \(=\) NOT_CLEAR & AND \\
& SOIL & \(=\) SANDY &
\end{tabular}
THEN RECOMMENDATION4 = FINAL
CLS
DISPLAY"It is recommended to use {RECOMMEND2}
{RECOMMEND_TIRE} BIAS tires with a size and ply rating of
{RECOMMEND_SIZE}. "
DISPLAY" - <Press any key> "";
RULE 41
IF RECOMMEND2 = GENERAL AND
    FOOT PRINT = SHARP OR
    FOOT_PRINT = CLEAR OR
    FOOT_PRINT = NOT CLEAR AND
    SOIL = CLAY OR
    SOIL = MED AND
    RECOMMEND TIRE = SINGLE
THEN RECOMMENDATION4 = FINAL
CLS
DISPLAY"It is recommended to use {RECOMMEND2}
{RECOMMEND_TIRE} RADIAL tires with a size and ply rating of
{RECOMMEND_SIZE}.
DISPLAY" <Press any key >"";
RULE 42
IF RECOMMEND2 = GENERAL AND
    FOOT_PRINT = SHARP OR
    FOOT PRINT = CLEAR OR
    FOOT PRINT = NOT CLEAR AND
    SOIL = CLAY OR
    SOIL = MED AND
    RECOMMEND_TIRE = DUAL
THEN RECOMMENDATION4 = FINAL
CLS
DISPLAY"It is recommended to use {RECOMMEND2}
{RECOMMEND_TIRE} BIAS tires with a size and ply rating of
{RECOMMEND_SIZE}.
DISPLAY" <Press any key>"";
RULE 43
IF RECOMMENDATION4 = FINAL AND
THEN CHANGE_FILE = OK
    CHAIN \overline{B}:\SYSTEM;
RULE 44
IF RECOMMENDATION4 = FINAL
                                    AND
    CHICK = NO
THEN CHANGE_FILE = OK
DISPLAY"Thank you for using this program.
                                    <Press any key>"";
ASK SOIL:"How would you describe the soil conditions of
fields where your tractor is frequently operated?";
CHOICES SOIL:SANDY,MED,CLAY;
```

ASK TIRE_SIZE: "What is the size of rear tires with ply rating?";
CHOICES
TIRE_SIZE:T16.9-34[6],T16.9-38[6],T18.4-38[6],T18.4-34[8],T1 8.4-38[8],T20.8-38[8],T23.1-34[8],T20.8-38[10],T24.5-32[10],

T24.5-32[12],T30.5L-32[10], T30.5L-32[12],T30.5L-32[16];
ASK DRAWBAR: "What is the maximum drawbar horsepower that you
use during most operations ?";
ASK PTOHP: "What is the tractor PTO horsepower ?";
ASK SPEED: "What is the minimum field speed you like to
achieve with your tractor during most operations (MPH)?";
CHOICES SPEED:4,5,6;
ASK CHICK: "Would you like to use another file?";
CHOICES CHICK:YES,NO;
ASK TRACTOR:"What is the tractor type?";
CHOICES TRACTOR:2WD,FWA,4WD;

APPENDIX H

EXAMPLE

1. What kind of operation would you like to use?
[BALLASTING] TIRE SELECTION MATCHING TIRE PRESSURE
2. Have you used this program before ?

YES
[NO]
3. What is the tractor make ? [JOHN-DEERE]
4. What is the tractor model ?
405042504450 [4650] 8450 8650 8850
5. What size are the current front tires ?
6.0-16
7.5-15
7.5-16
7.5-18 7.5-20 9.5L-15
9.5-20 10.0-16 11.0L-15
11.0-16 11.2-24 12.4-24
12.4-42 13.6-28 13.6-38
14.9-24
14.9-26 14.9-28
[14.9-30]
15.5-38 16.9-24
16.9-26
16.9-28
16.9-30
16.9-34
16.9-38
18.4-26
18.4-28
18.4-30
18.4-34
18.4-38
18.4-42
20.8-34
20.8-38
20.8-42
23.1-26
23.1-30
23.1-34
24.5-32
6. What size are the current rear tires ?
6.0-16
7.5-15
7.5-16
7.5-18
7.5-20
9.5L-15
9.5-20
10.0-16
11. OL-15
11.0-16
11.2-24
12.4-24
12.4-42
13.6-28
13.6-38
14.9-24
14.9-26
14.9-28
14.9-30
15.5-38 16.9-24
16.9-26
16.9-28 16.9-30
16.9-34
16.9-38
18.4-26
18.4-28
18.4-30
18.4-34
18.4-38
[20.8-38]
18.4-42
20.8-34
23.1-30
20.8-42
23.1-26
30.5-32
7. Do you know the weight of the tractor both the front and rear axle?
YES
[NO]
8. Is there extra iron weight on the FRONT axle ?
[YES] NO
9. How much is it ?
110
10. What is inside front tires ?
[AIR] WATER CACL2
11. Does the tractor have SINGLE or DUAL tires on the frontaxle ?
[SINGLE] DUAL
12. Is there extra iron weight on the REAR axle ?
YES [NO]
13. What is inside rear tires ?
AIR [WATER] CACL2
14. Does the tractor have SINGLE or DUAL tires on the rearaxle ?
SINGLE [DUAL]
15. The front to total tractor weight ratio is 23.9%
Is this acceptable ?
Refer to the following table for guidance.
Tractor Type 2WD FWA 4WD
Front Ratio 25\%
35\% 60\%
[YES] NO
16. What field speed would you like to achieve with your
tractor during most operations (mph)?
5.5
17. What is the estimated Cone Index (PSI)?
Refer to the following table for guidance.
CI SOIL CONDITION
250 HARD, PACKED
200 HARD, PACKED WITH STUBBLE150 FIRM
80 TILLED
60 SOFT, WET
175
18. What is the percentage of tire slip at which you would like the tractor to operate?
Refer to the following table for guidance. Tractor Type
Soil

	2WD	FWD	4WD
FIRM	$10-12$	$8-10$	$8-10$
TILLED	$12-14$	$10-11.5$	$10-11.5$
SANDY	$14-16$	$11.5-13$	$11.5-13$

10
"To operate the tractor at 4.95 MPH with 10% slippage the front axle weight should be 6342 lbs. The rear axle weight is 20098 lbs. The drawbar pull is 8883 lbs, with 0.71 tractive efficiency.
The weight of the tractor per PTO horsepower is 160.3. <Press any key>"
"The tractor weight should not be over 150 lbs/PTO and not less than 120 lbs/PTO.
<Press any key> "
19. Would you like to use another file?NO20. What kind of operation would you like to use?
BALLASTING TIRE SELECTION
[MATCHING] TIRE_PRESSURE
21. Have you used this program before?[YES]NO22. Would you like to change the tractor information thatyou have used?
YES[NO]
23. Do you know the implement draft?
YES [NO]
24. How would you describe the SOIL conditions of the fieldswhere your tractor is most frequently operated?[TUTTLE SILT LOAM] PULASKI FINE SANDY L
MENO LOAMY FINE SAND PORT SILT LOAM
25. What type of implement will be most frequently used withthis tractor?
MOLDBOARD PLOW [CHISEL] CHISEL W/ SWEEPS
TANDEM DISK
26. What is the width of the implement (feet)?
1327. What field speed would you like to achieve with yourtractor during most operations (mph)?
5.5
28. What is the estimated Cone Index (psi)?
Refer to the following table for guidance.
CI SOIL CONDITION 250 HARD, PACKED
200 HARD, PACKED WITH STUBBLE
150 FIRM
80
TILLED
60 SOFT;WET
175
29. What is the percentage of tire slip at which you would like the tractor to operate?
Refer to the following table for guidance. Tractor Type
Soil

	2WD	FWD	4WD
FIRM	$10-12$	$8-10$	$8-10$
TILLED	$12-14$	$10-11.5$	$10-11.5$
SANDY	$14-16$	$11.5-13$	$11.5-13$

10
"For the specified conditions of width $=13$ foot, speed = 4.9 MPH , and 10% slip.
The drawbar horsepower of tractor is estimated to be 78.7 HP
with 0.477 tractive efficiency.
This tractor should be capable of pulling 13 foot implement at 7.8 MPH and 7.2% slip for a drawbar horsepower of 125.4 and tractive efficiency of 0.762 .
<Press any key to continue>"
Options Width(Ft) Speed Slip TE Acre/Hr
The tractor weight is 127.4 lbs/PTO
$\begin{array}{llllll}1 . & 21.0 & 4.7 & 13.8 & 0.738 & 12.454\end{array}$

2.	13.02	7.8	7.2	0.761	12.832
3.	16.88	6.0	10	0.762	12.846
The tractor weight	is 140	lbs/PTO			
4.	20.87	4.8	12.2	0.747	12.601
5.	12.85	8.1	6.3	0.777	13.099
6.	18.17	5.6	10	0.760	12.818

30. Would you like to use another file? [YES] NO
31. What kind of operation would you like to use?

BALLASTING
TIRE SELECTION
MATCHING
[TIRE_PRESSURE]
32. Have you used this program before?
[YES]
NO
33. Would you like to change the tractor information that
you have used?
YES
[NO]
34. Do you know the implement draft?

YES
[NO]
35. How would you describe the SOIL conditions of the fields where your tractor is most frequently operated?
[TUTTLE SILT LOAM] PULASKI FINE SANDY L
MENO LOAMY FINE SAND PORT SILT LOAM
36. What type of implement will be most frequently used with this tractor?
MOLDBOARD PLOW [CHISEL] CHISEL W/ SWEEPS
TANDEM DISK
37. What is the width of the implement (feet)?

13
38. Have you been using BIAS or RADIAL tires?
[BIAS] RADIAL
39. Have you been using SINGLE or DUAL tires?

SINGLE [DUAL]
"The estimated tire pressure is 12 PSI for outside dual
and 14 PSI for inside dual.
<Press any key>"
40. Would you like to use another file?
[YES] NO
41. What kind of operation would you like to use?

BALLASTING [TIRE SELECTION]
MATCHING TIRE_PRESSURE
42. Has weight been added to your tractor to improve performance?
[YES] NO
43. Do you think the slippage of the tractor is OK?
[YES]
NO
44. Have you been using BIAS or RADIAL tires?
[BIAS]
RADIAL
45. Have you been using SINGLE or DUAL tires?

SINGLE [DUAL]
46. Why do the current tire(s) need replacement?

ONE TIRE BAD NOT RELIABLE [TREAD WEAR]
47. Comparing the lug height of the current tire with new tire, how much tread is left?
10
48. What was the tread design of tires you have been using? [GENERAL] HIGH CLEAT INDUSTRIAL
49. Will this particular tractor be used mainly for tillage or other heavy drawbar loads?
[YES] NO
50. What percentage of field area on your farm contains tight or sticky soils which are frequently difficult to use? 5
51. What percentage of field area on you farm has roads or any other hard areas?
15
52. When you look at the tire track just behind the tire during operation under normal load, what does it look like?

SHARP: Sharp distinct tire print.
CLEAR: Print somewhat broken up, BUT recognizable.
NOT CLEAR: Tire print sheared away, no clear tire print remaining.
[SHARP] CLEAR NOT CLEAR
"The foot print of the tires is SHARP print, which means your tractor is OVERBALLASTED and it is recommended to reweigh your tractor.
<Press any key to continue>"
53. Would you like to check the tractor weight?

YES [NO]
54. What is the size of rear tires with ply rating?
$16.934[6] \quad 16.938[6]$ 18.4 38[6]
$18.434[8] \quad 18.438[8] \quad[20.838[8]]$
$23.134[8] \quad 20.838[10] \quad 24.532[10]$
$24.532[12] \quad 30.5 \mathrm{~L} 32[10] \quad 30.5 \mathrm{~L} 32[12]$
30.5L 32[16]
54. What is the maximum drawbar horsepower that you use during most operations?
?
55. What field speed would you like to achieve with your tractor during most operations (MPH)?
4 [5] 6
56. What is the tractor PTO horsepower?

165
57. What is the tractor type?
[2WD] FWA 4WD
58. How would you describe the soil conditions of fields where your tractor is most frequently operated?
SANDY [MED] CLAY
"It is recommended to use GENERAL DUAL BIAS tires with a
size and ply rating of 16.9 38[8].
<Press any key>"
59. Would you like to use another file?

YES
[NO]
"Thank you for using this program.
<Press any key>"
VITA ${ }^{\prime}$
Abdulrahman A. AL-Janobi
Candidate for the Degree of
Master of Science
Thesis: AN EXPERT SYSTEM TO MANAGE SELECTION OF TRACTOR IMPLEMENT SYSTEMS
Major Field: Agricultural Engineering
Biographical:
Personal data: Born in S. Alalaya, Saudi Arabia, Jan1, 1963, the son of Abdulaziz AL-Janobi
Education: Graduated from Almajmah High School, Almajmah, Saudi Arabia, in 1981; received Bachelor of Agriculture Science Degree from King Saud University at Riyadh, Saudi Arabia, in Jan, 1986; completed requirements for the Master of Science degree at Oklahoma State University in December, 1990.
Professional Experience: Teaching Assistant, Department of Agricultural Engineering, King Saud University, Jan, 1986, to December, 1986.

[^0]: 1. tractor wheelbase (in)
 2. tractor PTO horsepower (hp)
 3. static rear axle weight (lb)
 4. static front axle weight (lb)
 5. drawbar height above ground (in)
 6. tractor type ($2 \mathrm{WD}, 4 \mathrm{WD}, \mathrm{FWA}$)
[^1]: 1. Professor and Extension Agricultural Engineering, Oklahoma State University
 2. Extension Agricultural Engineering, Kansas State University
 3. Extension Agricultural Engineering, Oklahoma State University
