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CHAPTER I 

INTRODUCTION 

Every thing has its surface and volume. They are inseparable but some things are 

useful for their surface while others for their volume. A spherical body is ideal to 

maximize its volume for a given surface area. The opposite of this may be a form of 

membrane or thin stuff. Paper, for example, has a much larger surface area than wood of 

same weight has, though their components are almost the same. Information is recorded 

basically on the surface. Thus paper can record more information than wood can for any 

given weight. So does magnetic tape and wrapping film, the surface areas of which are 

important for recording or covering things. 

From the industrial point view, requirements for this type of thin stuff are that it be 

thinner, stronger, and more uniform, and that it have better quality, especially on its 

surface. If the surface area is the concern, a thinner product saves raw materials and 

reduces transportation and storage costs. Uniformity is also important because 

irregularity in property or thickness, thus in strength, causes problems, especially when 

the product becomes smaller or narrower, where any defect is more critical. Similarly 

there is a requirement for manufacturing and handling systems. Thin stuff is mass­

production oriented because of its uniform nature and its relatively low unit price. This 

fact yields the need for faster and larger scale machines with high enough precision to 

meet the requirements for the products. 

The web is a convenient form for manufacturing thin stuff to meet this requirement. 

After manufacturing, moreover, handling is easy since it runs inside machines by itself 

even at a high speed. Transportation and storage are also convenient since it comes in the 

form of a roll. Then we can use it as a web again or can make cut-sheets from it 
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whenever necessary. Once cut, no stuff with same thickness can be treated the same. 

Studies regarding the web can be classified into two groups, which are web handling 

and web manufacturing or processing. Even after many studies, there remain theoretical 

and practical problems in these fields. New problems, moreover, have been raised with 

these new requirements, and they are becoriling more complicated because of the nature of 

large scale manufacturing. In web handling, problems are classified into longitudinal 

(machine direction), lateral (cross machine direction), and out of plane problems. These 

correspond to each dimension of the web movement. Among them, the longitudinal 

problem has been studied for a long time, partly because web tension is the key factor 

which causes problems such as breaks, wrinkles, and lateral motions. 

This paper discusses longitudinal problems in web handling systems. Since this 

field has varieties in its scope, this paper is designed as follow. First the basic equation 

of the propagation is presented in Chapter IT. This is the principle relation which governs 

all the phenomena shown in this paper. The next two chapters are dedicated to 

discussions of web models. Researchers used to use an elastic model because of its 

simple expression, but extended models are necessary for explaining things which a 

simple model cannot handle. Chapter ill discusses the elastic model and its behavior in 

the handling system. Chapter IV expands this discussion to visco-elastic models and their 

behavior. The next two chapters are designed to show that even phenomena under the 

fundamental equations may cause strange behavior. Chapter V discusses the stick-slip 

phenomenon which generates undesirable periodic changes in web strain. Chapter VI 

shows the problem of slackness through results in the previous chapters. Apart from the 

deterministic treatment, Chapter Vll discusses a statistical approach in order to deal with 

uncertainty in the system and web. The fmal summary and recommended further study is 

contained in Chapter vm to conclude this paper. Since every chapter has a different 

aspect, each has a brief introduction and a chapter summary. 



CHAPTER II 

PROPAGATION OF STRAIN 

Introduction 

Every web handling machine has several devices, commonly rollers, with which it 

transports the web, and they separate the entire web into one or more spans. 

Consequently, it is useful to calculate the strain or the stress of the web inside each span 

and determine how it propagates from one span to another. This chapter discusses the 

basic equation on the strain propagation. This is preparation for the various applications 

which appear later in this paper. 

Researchers [1][2][3] in web handling have already investigated the basic idea, which 

can be classified into two groups. The first gives the relation of strain, or it uses strain 

as the boundary. This is valid if the span has rollers which do not slip with the web. 

The second one gives that of stress, and this is useful when there is slippage on the roller 

in the span, so that the actual speed of the web is not available. It is possible to calculate 

both strain and stress in either way. However the relation of the strain gives easier 

understanding in many cases, especially if the handling system contains both slip and non 

slip condition. The latter case can be treated as two problems then. The first one is to 

determine the web speed through the relation of stress, and the second one to calculate the 

strain using the equations which appear in this chapter. 

This chapter, therefore, puts the emphasis on the relation of the strain and its 

propagation from one span to another. 

3 
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Case 1: Spans Without Slippage Between Rollers and Web 

Figure 2.1 shows the typical picture of a web path in the handling machine. The 

web moves from point A to B through roller 0, 1, and 2. The first span ( span 1 ) is 

defmed with roller 0 and 1, and the web whose length, strain just before roller 1, and 

stress is L1, e1, and s1 respectively. Similarly, the second span (span 2) is given with 

roller 1 and 2, and the web whose length, strain just before roller 2, and stress is L2, e2, 

and s2 respectively. In addition to these, let the strain just before the roller 0 be eO. 

Notice that these values can be either variables or constant at this stage, and that the speed 

of the web just before each roller is given from that of the roller. 

By observing the mass of the web inside span 1 in the time interval between 0 and 

t, the following relations are constructed. 

Incoming mass = f f'J? dt 

= 11 

rl*a1*v0d Outgoing mass 1 +el t 
0 

Change of mass =r1*L1 I -rl*L1 I 
1 +e1 Time= t 1 +e1 Time= 0 

These three equations yield; 

r1*L1 I =r1*L1 I + 1~~t -1
1

r1*a1*v0dt 
1 +e1 Time= t 1 +e1 Time= 0 1 +eO 1 +e1 

0 0 

By differentiating (2.4) with respect tot; 

Jif~] 
dtl1+e1 

= .IO!YQ. I _ r1 *a1 *vO I 
1 +eO Time= t 1 +e1 Time= t 

Same is true to span 2. This is given as; 

_dfr2*L2J 
dU1+e2 

= r1 *a1 *vO I _ r2*a2*v0 I 
1 +e1 Time= t 1 +e2 Time= t 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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Case 2: Spans With Slippage Between Rollers and Web 

Figure 2.2 shows the picture of a web path in the handling machine. The only 

difference between this and the one in Figure 2.1 is the fact that the web slips on roller 2 

around which the web laps with angle e. 
In this case, equation (2.5) and (2.6) are still valid, but the value of a1 is not given 

directly. Consequently another relation is necessary to calculate the strain in the spans, 

and it is common to use the relationship of stress s 1 and s2 through the roller 2. 

6 

Figure 2.3 indicates the value of the friction coefficient with respect to the slipping 

speed, or the speed difference between roller and web.[l] In the actual design, however, 

the range of this slippage is limited so that excess slippage may not degrade the surface of 

the web. Then it is agreeable to assume that the friction coefficient J.1 is constant when 

web is slipping. This yields the relationship between stress s 1 and s2 to be 

s1 = s2 * &B (2.7) 

This relation is depicted in Figure 2.4. 

Equation (2.7) gives the relation with respect to stress, not to strain, but it is possible to 

transform it to the relation of strain by using the appropriate models of the web. For 

example, strain is easily calculated only with the elastic modulus if the elastic web model 

is used. 
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Simplification of the Equation 

In many cases, it is practically desirable and possible to simplify the equation (2.5) 

and (2.6) with some agreeable assumption. Followings are those commonly used: 

(1) Density of the web p is constant in a span though it may change span by span. 

8 

(2) Length of the span, L1 and L2 (m), is constant. This is valid in many actual spans 

unless they have moving devices, such as dancer rollers. 

(3) Strain, eO, e1, e2, are small. This is valid broadly; because the order of 0.1 or 0.3 

% is the value for the normal paper handling. 

(4) Cross sectional area A is constant in a span. This is valid with assumption (3). 

Using assumption (1), (2), (4), and constant density through out spans, equation (2.5) and 

(2.6) yield (2.8) and (2.9) respectively. 

=_yQ_I -~1 
1 +eO Time= t 1 +el Time= t 

-~1 ~1 
1 +e1 Time= t 1 +e2 Time= t 

Using (3) with the Taylor series expansion 1.!e = 1-e + ~- · · · = 1-e, (e<<1); 

-L1 * re1 
dt 

-L2 * dQ 
dt 

=v0*(1-e0) ITime=t - a1*v0*(1-e1) ITime=t 

= a1 *v0*(1-e1) I Time= t - a2*v0*(1-e2) I Time= t 

These equations are convenient for the practical use because of their linearity. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Chapter Summary 

Equations which express propagation of the spans are shown. If there is no slippage 

on the rollers, equation (2.5) and (2.6) give the strain just before the rollers. Equation 

(2.7) should be incorporated with them if there is slippage. Simplified equations (2.8)­

(2.11) are also given with the following assumptions. 

(1) Density of the web pis constant in a span though it may change span by span. 

(2) Length of the span, L1 and L2 (m), is constant. 

(3) Strain, eO, e1, e2, are small. 

(4) Cross sectional area A is constant in a span. 

It should be noted again that these equations give the strain just before each roller. 

Elastic web models give the uniform strain in the span while visco-elastic models give 

distributed strain as is mentioned in a later chapter. 



CHAPTER III 

THE ELASTIC WEB MODEL AND TRANSPORTATION 

Introduction 

The equations shown in Chapter II give the relation of the strain in the span and the 

propagation from one span to another. It is useful itself, but it is necessary to use the 

proper web model to calculate the stress and tension in the span. 

Researchers have commonly used the elastic web model for their study.[1][2] 

The main reasons are as follow. 

(1) The elastic model consists of only one element (spring) for the expression. In this 

case, the elastic modulus of this web is the spring coefficient in the model. 

Conversion from strain to stress is easy because only the spring coefficient is 

needed. It is possible to assume uniform strain inside the span, and this is 

convenient for calculations. 

(2) The elastic model does not contain any delaying element, damper for example. This 

makes dynamic analysis simple. 

(3) In the actual web handling, the typical material of the web is paper or plastic film 

which is observed to be elastic under normal operation. The elastic model, 

therefore, is practically valid. 

This chapter briefly discusses the behavior of the strain both in a steady state and in 

a dynamic condition. In addition, strain distribution of the web, which suffers changes in 

its elastic modulus, is discussed 

10 
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Web Model 

Figure 3.1 shows the schematic drawing of the single span which has two couples 

of rollers at both limits and the web stretching in between them. The elastic model of the 

web is simply given as the spring of which the coefficient is Gg. Stress is given with 

this coefficient Gg and the strain Eg. It should be noted that the spring represents a small 

segment of the entire span of the web and each segment moves to the right in this picture 

as time proceeds. 

If Gg is constant inside the span, it is possible to assume that the strain and stress 

are uniformly distributed inside the span at each time. In this case, equations (2.8) and 

(2.9) can be calculated with respect to time only. 
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Figure 3.1. Elastic Model of the Web 
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Simulation of the Behavior of the Strain 

Figure 3.2 and 3.3 show the results of a simulation with an elastic model. 

Figure 3.2 shows the strain in span 1 and 2 at a steady state. Uniformity in the strain 

distribution inside the span comes from the assumption made here. 

13 

Figure 3.3 shows the dynamic behavior of the strain in span 1 and 2 with respect to time. 

This indicates how strain e1 and e2 approach their steady state values. 

The conditions of these simulations are as follow. 

(1) Speed at roller 0; vO =20.0 

(2) Strain before roller 0; eO = 0.001 

(3) Speed at roller 1; v1 = 1.0001 * vO ( time < 0.05 ) 

= 1.0010 * vO (afterward to steady state) 

(4) Speed at roller 2; v2 =vO 

(5) Length of span 1;L1 = 1.2 

(6) Length of span 2;L2 =2.0 

Program 1 and 2 in Appendix B were used to simulate this behavior. 

Program 1 was originally developed to simulate the steady state strain distribution of 

visco-elastic model.( Chapter IV ) Program 2 is for the dynamic analysis of the stick-slip 

phenomenon with an elastic model.( Chapter V) This program solves equations (2.8) 

and (2.9) simultaneously with the 4th order Runge-Kutta method either in slip or non slip 

operation. 

These simulations are possible because the visco-elastic model includes the elastic 

model in it, and non slip operation is a special case of the stick-slip phenomenon. 

Operation with slippage is covered in Chapter V as a part of this unsteady operation. 
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Changes in Property 

The elastic model does not require that the elastic modulus be constant, and there are 

two practical extensions from the discussion shown earlier. The first one is to allow 

strain before roller 0; eO to be time variant which represents the disturbances outside the 

span. This is inescapable in the actual handling because there is some irregularity in the 

elastic modulus and/or the web tension before roller 0.[4] The second one is to allow 

changes inside the span. This simulates the span with a dryer or moisturizer which 

affects the elastic modulus of the web. 

Disturbance Given Outside the Span 

Equation (2.8) can handle this case with a given disturbance. 

Program 3 in Appendix B simulates the case where strain eO suffers irregular disturbance. 

Figure 3.4 shows the result of this simulation. The condition of the calculation is the 

same as was used previously with exceptions that this has only one span (span 1) and that 

eO is irregular. 

Equation (2.10), which is a simplified version of (2.8), indicates that this 

propagation itself is a first order low pass filter for the strain with a cutoff frequency of 

al ~1v0 (1/s). Actually, the result shows its filtering effect. This is preferable for the 

machines because disturbances of high frequency may not propagate from one span to 

another.[2] 
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Disturbance Given Inside the Span 

Equation (2.8) is valid for the strain just before the roller and it does not guarantee a 

uniform distribution of strain in the span if the property of the web is not uniform. It is, 

however, impossible to determine the distribution only from equation (2.8) and the web 

model. The most agreeable assumption to supplement this is that the tension should be 

uniform in the span. This is based on the idea that the elastic element (spring) acts 

instantaneously. This is valid in almost all cases where the handling speed of the web is 

much slower than the speed of sound in the web. 

Figure 3.5 shows a case where the spring coefficient changes in the span because of 

the drying process. Program 4 is used for this simulation. The purpose of this 

simulation is to demonstrate the idea, and the numbers are fictional. They are as follow. 

(1) Assumption: Uniform tension in the span, in addition to those given in Chapter II. 

This gives the uniform stress sl in the span. 

(2) Equation of distribution: Let strain e1 and spring coefficient Gg be the function of 

the location in the span. The origin is at roller 0 (x=O) and the end point is at roller 

1 (x=Ll). 

The strain at point A is given from (2.8) at its steady state. 

e1(L1)= sl =al * (1 +e0)-1 
Gg(Ll) 

(3.1) 

The strain at point B is given using Gg(x) as 

el(x)= sl 
Gg( x) 

(3.2) 



(3.1) and (3.2) yield 

e1( x) = Gg(L1) * ( a1 * (1 +eO) - 1 ) 
Gg(x) 

(3.3) 

In actual use, the value of ~~~~~ should be gained either from experiments or 

theoretical analysis. In this case, however, it is given as follow. 

( 

1 - ~ * (x2 - x1 ) 0 S: x S: x1 
Gg(L1) 
Gg( x) = 1 - ~ * (x2 - x ) for x1 S: x s; x2 

1 x2S:x 

(3.4) 

where ~ is a changing ratio of Gg for a unit length of the dryer. 

Equations (3.3) and (3.4) give the distribution of strain in the span. 

(3) Condition of calculation: The same condition is used as was used in the previous 

one. 

Values of x1 and x2 are set as 0.5 and 0.8 respectively. ~ is given as 2.0. 
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Chapter Summary 

The elastic web model is convenient and acceptable for many practical applications. 

The main topics in this chapter are as follow. 

(1) The basic behavior of the strain was discussed in both dynamic and steady state 

conditions. This propagation is the first order low pass filtering. 

(2) As an extension of this discussion, two cases were examined. Both of them allow 

changes in the elastic modulus of the web. The first case is to simulate the 

disturbance outside the span which is inescapable in actual operation. The result 

supports this filtering nature. 

(3) The second one is to simulate the steady state drying process where the elastic 

modulus changes inside the span. This shows the distributed strain in the span 

under uniform stress. 



CHAPI'ERIV 

THE VISCO-ELASTIC WEB MODEL AND TRANSPORTATION 

Introduction 

The elastic web model which was discussed in Chapter ill is handy and practically 

useful. It is, however, necessary to expand the model so that it can handle the phenomena 

which elastic models cannot. Among these cases is a handling of wet paper or heated 

plastic film where the web is operated under relatively high strain, the order of 1%, 

causing plastic deformation. 

Another reason to study this visco-elastic web is to investigate the behavior of 

strain itself in the span. Researchers have used an elastic model because it is close to the 

visco-elastic model. No discussion has been made on the behavior of the visco-elastic 

model in the web handling system. It is also important to confirm whether elastic model 

is a good approximation. 

There are two approaches to the problem of visco-elasticity. The first one is a 

micro-scopic approach which tries to explain the phenomena from the actual elements of 

the material. In the case of paper, for example, fibers and their bonding determine how it 

deforms under a given external force. This may give more accurate understanding of the 

material and its behavior, but the equation is very complicated and it is hard to incorporate 

with the web handling.[&] 

The second approach, a macro-scopic approach, observes the behavior of the material 

and gives the model that approximates this behavior. Models from this approach do not 
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necessarily have physical meanings. For example, the spring element in the model may 

not correspond to any structures in actual material. It just represents how this material 

looks in an action. Still this is useful to explain the behavior of the material mainly 

because of its simple mathematical expression. 

The visco-elastic model belongs to the second approach, and models shown in this 

chapter were originally presented in the 19th Century by Maxwell and Voigt. 

Improvement and addition have been made on these models, but they are still the basic 

models which express visco-elastic behavior.[?] 

In this chapter, various models are shown first, followed by the discussion of the 

strain distribution and their simulation.[5][6][7] 

Web Model 

Figure 4.1 shows a schematic drawing of the single span which has two pairs of 

rollers at both ends and the web stretching between them. In this case, each small 

segment of web is represented by the visco-elastic model which includes springs and 

dampers. Details of this model are given in a later portion of this chapter. It should be 

noted that each element may act independently based on its history. Even in this case, 

super-positioning of strain is available, and each segment can be treated independently. 

From here, some pages are dedicated to the discussion of typical models which are shown 

in figures 4.2 through 4.8. 
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One Element Model 

Figure 4.2 shows the one element model. This model is either a spring or a 

damper. The spring element alone is classified as an elastic model which was discussed 

before, but this is redrawn here preparation for explaining the other. 

In the case of a spring, the relation between strain and stress is given as: 

Eg = <Jg 
Gg 

In case of a damper, this is given as: 

as= Es d( es) 
d: 

The strain is given with the initial strain esO as: 

ES = Es0 + <JS * t 
Es 

Two Element Model 

(4.1) 

(4.2) 

(4.3) 

The two element model contains both a spring and a damper. The model in Figure 

4.3 is called a Maxwell model that has one pair, a spring and a damper in series. Thai in 

Figure 4.4 is called a Voigt model with this pair in parallel. In the Maxwell model, total 

strain is a sum of the strain from the spring and the damper. This relation yields 

<f: E) = _L <1: <J) + ..Q.. 
dt Gg dt Fs 

Also (4.1) and (4.2) give 

E = Eg + ES = <J * (-1- + _t_) + Es0 
Gg Fs 

(4.4) 

(4.5) 
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Equation ( 4.5) gives the relation between strain and stress if stress is given as step input. 

In the Voigt model, total stress is a sum of that from the spring and that from the 

damper. This relation yields 

0' = G1 * E + E1 c( E) 
ci 

It is necessary to give some conditions to calculate the strain E from (4.6). 

Let the conditions be as follow. (Step change of the stress) 

cr = crO = G 1 * eO, and d~) = 0 for ~ 

cr = cr1 = G 1 * e + E 1 c( e) 
ci 

for t>O 

Now let a= cr1 - crO, E = E- eO, then equation (4.6) yields 

" "' " c( E) 
0' = G1 * E + E1-

ci 

Taking Laplace transform on both sides of (4.8) yields 

a=<G1 +s E1) *E -E1 *Eit=O =<G1 +s E1) *E 

"' and step input of cr gives 

Equation ( 4. 9) and ( 4.1 0) yields 

e = eO + - 1- ( cr1 - crO )( 1 - exp( -Ql t ) ) 
G1 E1 

Using the relation of eO = ffl-· ( 4.11) can be written as 

e = cr1 ( 1 - exp( -Ql t ) +_QQ_ exp( - Q1_ t) 
G1 E1 G1 E1 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Equation (4.12) gives the relation between strain and stress if stress is given as step 

input. 
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Three Element Model 

The three element model contains two springs and a damper either in series or in 

parallel. figures 4.5 and 4.6 show the models called a three elements Voigt model and a 

three elements Maxwell model respectively. These two models are interchangeable with 

each other, and it is up to the application which model is to be used. 

Conversion is shown here for reference.[5] 

G Gl * Gg Gg2 Elm =El *[ Gl ]2 
gm = G 1 + Gg ' G lm = G 1 + Gg ' G 1 + Gg (4.13) 

Basically, the Maxwell model is suitable for discussing stress under a given strain, 

and the Voigt model is for strain under a given stress. As was mentioned before, the 

assumption of uniform tension in the span is more agreeable than that of uniform strain. 

In addition to this, the basic equation of conservation of mass, equation (2.5), deals with 

strain. Then, it is more convenient to use the Voigt type model in this study. Thus, 

only the Voigt model will appear in this paper from this point. 
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Generalized Voi~ Model 

The Voigt model can be expanded to a generalized one which contains N-pairs of 

springs and dampers, each of which has a different coefficient, a spring element with 

coefficient Gg, and a damper element with coefficient Es. Figure 4.7 shows this picture. 

This can be interpreted as the combination of a Maxwell model and N-Voigt models. 

Thus, a similar relation of the strain is given through arguments shown before. The 

conditions are as follow. 

cr = crO = Gi * £i0, and ~) = 0 (i=l. .. N) for ~ 

1 G. * E. d: £i) cr = cr = 1 E + 1--
dt 

(i=l. .. N) for t>O 

Using the super-positioning of strain and equation (4.5) and (4.12); 

N 

E = Eg + ES + I ei 
i = 1 

N 

= cr1 * ccf- + i;) + eso + .I c~ c 1 - expC -~ t ) +~ expC -~ t ) ) 
g 1 = 1 

= cr1 * J(t) + l(t) 

where 
N . 

J(t) = _1 +-t +I ~ ( 1- exp( -Y!- t)) 
Gg Es i= 1 Gi Ei 

N 

I(t) = esO +.I ~exp(- ~t) 
1 = 1 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Equations (4.15), (4.16), and (4.17) express the behavior of strain for the step change of 

stress (from aO to cr1 ). 
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The simplest model has four elements and this is shown in Figure 4.8. This is 

given by letting N = 1 in the generalized model and the equations are also available in this 

manner. The name "elastic part," "Voigt part," and "plastic part" are used for my 

convenience in this paper. The simulation which appears later in this chapter uses this 

four element model. 
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Figure 4.8. Four Element Voigt Model 



Theoretical Analysis 

As was mentioned in Chapter Ill, strain distribution inside the span is the main 

concern here. It is necessary, however, to add some assumptions to get the results 

because strain is not uniform in the span but it is a function of time. Two cases are 

discussed here. The first one is for a non slip condition, and the second one deals with 

slippage. Both of them are steady state analyses. 

Case 1: Spans Without Slippa&e Between Rollers and Web 

(1) 

(2) 

(3) 

First, some assumptions are necessary. They are: 

Assumptions made in Chapter II. 

Uniform distribution of the stress inside the span 

Uniform mass flow rate which is given as _y_1 +£ 

This one is important because changes of strain must cause changes in the web 

stJeed and there is no relation for this. This assumption is agreeable if there is no 

migration inside the material of the web. 
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With these assumptions and the equations developed before, it is possible to determine the 

strain distribution inside the span in a steady state. The procedure is as follows. 

(1) Calculate the total strain at the end point of the span using equation (2.8) at its 

steady state. ie. e 1 = a1 * (1 +eO) - 1. 

(2) Assume the traveling time between roller 0 and roller 1. Let this be Tl. 

(3) Calculate the function J(t) and I(t) which are defined in equations (4.16) and (4.17). 

Function J(t) gives the compliance of the web, and function l(t) gives the free 

response of initial conditions of strain. Both are time variants. 
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(4) Using J(t) and I(t) at roller 1 yields the stress of the web which is constant through 

out the span. This is CJ1. 

(5) Now it is possible to calculate the stress at each time using equation (4.15), and 

this gives the distribution of the strain and the web speed through the relation of 

mass flow rate _y_1 = constant. 
+E 

(6) Calculate the time which the web needs to travel from roller 0 to 1 using these data 

and correct the value T1 which was assumed at step (2). 

(7) Repeat until both ends meet. 

The initial conditions of strain propagate one span to the next. The elastic part of the 

model has no initial condition. 

Case 2: Spans With Slippage Between Rollers and Web 

The same assumptions are necessary as are used in Case 1. In this case, the actual 

speed of the web is not known due to the slippage on the roller. This is the same 

approach which was given in (2.7). A convenient way to deal with this problem is to use 

two spans. The first span begins with a non slip roller and ends with a slipping roller 

and the second one ends with a non slip roller. Then the problem is reduced to two parts: 

first to determine the actual speed of the web on the slipping roller and second, to 

calculate the strain using the method shown in Case 1. 

It should be noted that the stress is given only from the elastic part of the model 

even though it has other viscous parts in it. N-Voigt parts and the damper Es in Figure 

4.7 do not contribute to the stress though they support the stress internally between the 

damper and the spring. 
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Simulation 

Two programs were developed to calculate the distribution of the strain in the span. 

Both use the four element Voigt model which is depicted in Figure 4.8. Values of Gg, 

G 1, E 1, and Es and initial values of dampers are fictional except in the last part of this 

section. Actual values measured for the news print are used in that part to see how the 

results differ from the approximated results with the elastic model. 

In every picture, the web moves from roller 0 to 2 through roller 1. 

Every result shows the strain with respect to the location of the span which corresponds 

to the picture on the top. Each mark shows the share of strain in the total value, except 

the solid bold line which indicates the result from the elastic model that only has two 

springs, Gg and G 1. This line is the basis of conservation of mass; thus plots of this and 

the total strain of the visco-elastic model have the same values at each end. 

Case 1: Spans Without Slippage Between Rollers and Web 

Figure 4.9 shows the results of the simulation where there is no slippage on the 

rollers. It is observed that the elastic part has a sudden change of strain before and after 

roller 1 while the Voigt part and plastic part cannot act quickly due to their damper 

element. These delaying parts generate the distribution of strain in the span. 

Figure 4.10 shows the same system except that the web is 10 times as fast as that 

in Figure 4.9. As is shown in equations (4.16) and (4.17), the time constant of this 

model is given by the value of Gi and Ei in the Voigt part, both of which are specified for 

a given material. Then the different travelling time causes different aspects. 

It is interesting that the strain of the elastic part is also affected by the difference of 
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the viscous part. This means that the stress or web tension varies according to the 

operational speed in the web handling. Actually, elastic strain changes from 0.0047 to 

0.0065 in span 1, and this occurred without any disturbance in the system nor changes in 

the properties of the web. Elastic model indicated by the bold line in the figure stays the 

same and this cannot explain this change. Program 1 in Appendix B was used for this 

simulation. 

Case 2: Spans With Slippa~:e Between Rollers and Web 

Figure 4.11 shows the results where roller 1 slips with the web. Program 5 in 

Appendix B calculated the slippage ratio so that this ratio satisfies the conservation of 

mass, visco-elastic changes, and the relation of stress simultaneously. After this, 

program 1 calculated the distribution with this slippage ratio. At steady state, there are 

no significant changes in concept between Case 1 and 2. 

Case 3: Spans Without Slippa~:e Between Rollers and Web. (Actual Web) 

Figure 4.12 shows the results from using the actual data of printing paper.[1] 

This is data for a Maxwell model; thus the Voigt part does not contribute to the strain. 

Although the initial strain of the plastic part is fictional, this may not be apart from the 

point and the total strain gives the correct data on strain distribution. Authors in the 

report [1] concluded that the viscous part did not affect the total stain from the stage of 

modeling, and this is valid directly from this result. Likewise it is possible to examine 

another case by comparing results directly. 
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Chapter Summary 

Visco-elastic model and strain distribution were discussed in order to extend the 

theory of web handling. The main topics are as follow. 
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(1) Various visco-elastic models are discussed. Among them is the Maxwell model 

which is suitable for the discussion of stress under a given strain, and the Voigt 

model which is proper for the discussion of strain under a given stress. The Voigt 

model is convenient to discuss problems in web handling. 

(2) Strain responses for a given stress input (step) were examined. This was done for 

models from the simplest one to the complicated one which has spring, damper, and 

N-Voigt elements in it. 

(3) Theoretical analysis was made to incorporate the models to the handling equation 

which was shown in the previous chapter. It is necessary to use an additional 

assumption of a uniform mass flow rate. The analysis gives the strain distribution 

inside the span for both slipping and non slipping cases. 

(4) Simulations and their results are shown to demonstrate the result of analysis. It is 

found that visco-elastic web changes its stress in the span according to the operating 

speed. This is what an elastic model cannot predict. 

(5) Data from an actual web was used for verifying the analysis done with the elastic 

model. The result indicates that no significant difference exists; thus the elastic 

model is good for this application. Now it is possible to examine another case by 

comparing results directly. 



CHAPTER V 

STICK-SLIP PHENOMENON IN THE TRANSPORTATION 

Introduction 

The previous chapters deal with a stable operation. This means that there are two 

cases in the operation, either with or without slippage on the roller, but these two can be 

separated from each other. Under this condition, it is possible to calculate the strain or 

stress in the span with the proper web model and equations (2.7), (2.8), and (2.9). 

There is, however, another case which allows the existence of both in the same 

operation. In this case, each one should be treated with corresponding relations, but there 

is a chance this interchanging will cause an unstable operation if they interact each other. 

This chapter discusses this instability in the operation with a simple friction model 

which has non linearity in its value. The elastic web model without property changes is 

used to simplify the discussion. 

Friction Model 

Figure 5.1 shows the friction model with the actual data. (Also in Figure 2.3) 

This is a simplified non-linear model which has two values of friction coefficients 

according to its condition, whether the web slips or not on the roller. This is based on 

the study for the friction of paper.[9] Practically speaking, acceleration of the web may 

not affect the phenomena because the mass of web on the roller is negligible; thus the 

negative damping part can be substituted for vertical lines which have a threshold level. 
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Behavior of Stress With This Friction Model 

Figure 5.2 shows the diagram of a pair of stresses s1 and s2 in many cases. 

(1) Non slip condition (Point B <->C). Stress s1 is given by equation (2.8) which 

expresses the conservation of mass. The solid line from point B to C shows this 

relationship. Notice that the value of s1 is independent from that of s2. 

L1 *Jif-1-] 
dtl1+e1 =~I -~1 1+e0 Time=t 1+e1 Time=t 

(2.8) 

(2) Slip condition (Point 0 <->A<-> B ). Stress s1 is given from the equation (2.7). 

The solid line from point 0 to B shows this relation. Stress s2 and sl have a linear 

relationship in this case. 

s1 = s2 * &z9 (2.7) 

(3) Transition from slip to non slip (Point A<-> B ->C). If s2 becomes big enough 

to tighten the roller, slippage stops and it turns to the non slip condition. Notice 

that there is no way back from Point C to A through B because the friction model 

has a threshold level and direction for this transition. 

(4) Non slip condition ( Point D <-> B ). This is maintained non slip with a higher 

friction coefficient. Equation is (2.8). 

(5) Transition from non slip to slip ( Point D -> A ). According to the friction model, 

this transition causes the sudden change in the friction coefficient from ~1 to ~· 

Thus, point D moves suddenly to point A. Notice that this change is irreversible. 
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This partly one way diagram generates the stick-slip phenomenon. The reason is 

that the stress of the web, traction of the roller, and the condition ( slipping or not ) are 

related to each other. If one of them changes, it affects the rest of them. Then this causes 

another change in the first one accordingly. Suppose there is no slip condition initially; 

the typical scenario to stick slip is as follows. 

(1) The speed of roller increases due to some disturbance. 

(2) This increases the stress s1 and decreases s2, as was shown in Figure 3.3 

(3) Decreased s2 reduces the traction of the roller. This corresponds to the movement 

from point C toward D in Figure 5.2. 

(4) Once it hit point D, which is also changing due to the increased speed, the web 

slips suddenly. This is movement from point D to A. 

(5) This change carries a certain amount of mass of the web from span 2 to span 1, 

which decreases stress s1 and increases s2. 

(6) The roller attempts to withdraw the mass from span 1 again. 

(J) Return to (2). 
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Simulation 

It is necessary to develop equations which treat the relation with a slipping roller. 

By using the system shown in Figure 2.2, equations (2.1 0) and(2.11) yield the equation 

for span 1 and 2 combined. This is given as 

..d.[ L2* (1-e2) + L1 * (1-e1)] = vO [ _1 __ JL] 
dt 1+e0 1+e2 

(5.1) 

The relation of stress is given from (2. 7) as 

s1 = s2 * eJlB (2.7) 

With the elastic model, this is valid also for strain. This gives the relation as 

e1 =e2 * &9 (5.2) 

(5.1) and (5.2) yield the fmal equation 

de2_vo[~+~] 
dt- L2+L1 ~ 

(5.3) 

Program 6 in Appendix B was used to simulate the behavior. In this program, two 

sets of equations are used to calculate the strain in non slip and slip conditions, and 

algorithm judges which is occurring using the relationship shown in Figure 5.2. Once 

the strain comes to the critical point, shown as the transition point A and D, sudden 

change occurs in the friction coefficient. Then the mass in span 2 backs to span 1 so that 

it returns to the equilibrium point under the slip condition. 



In the simulation, a system with two spans is used like in the previous chapter. 

The picture is shown in figures 5.3 and 5.4. In this system, both ends are in a non slip 

condition while the roller in the middle may or may not slip. Other conditions of this 

simulation are as follow. 

(1) Speed at roller 0; vO 

(2) Strain before roller 0; eO 

(3) Speed at roller 1; v1 

(4) Speed at roller 2; v2 

(5) Length of span 1; L1 

(6) Length of span 2; L2 

(7) Friction coefficient J.11 

(8) Friction coefficient J.12 

(9) Lapping angle 8 

= 10.0 

= 0.001 

= 1.002 * vO ( time < 0.05 ) 

= 1.003 * vO ( afterward to steady state ) 

= 1.001 * vO 

= 1.2 

=2.0 

=0.4 

=0.15 

= 27t I 3 ( for 5.3 ), 1t I 2 ( for 5.4 ) 
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Step change of roller speed were added to the system _as a disturbance. Two similar cases 

in figures 5.3 and 5.4 shows entirely different pictures of this phenomenon. 

Figure 5.4 shows a similar result to that shown in Figure 3.3. The increased speed 

of roller 1 changed e1 permanently and e2 temporarily. Strain e2 does not hit the critical 

strain ecr in this case. Thus there is no stick-slip phenomenon. 

Figure 5.4 shows a different behavior though only the lapping angle is different. In 

this case, there are sudden changes in strain when e2 hits ecr and this instability continues 

unless there is another disturbance or energy loss. If a1, the speed ratio of roller 1, has an 

initial value close to this one, it will end up with this stable limit cycle after it suffers a 

disturbance. 
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Chapter Summary 

The stick- slip phenomenon causes unstable strain and stress problems in the web 

handling. An analysis with simple non-linearity in the friction was made in this chapter. 

The main topics in this chapter are as follow. 

(1) Non-linear friction models are presented which have two levels of friction 

coefficients according to the condition of slippage. 

(2) The behavior of stain was examined in the handling system with two spans. Strain 

changes only one direction when it moves from one condition to another. This 

relation also gives the criteria to determine the condition of slippage in the 

simulation. 

(3) Propagation of strain in the two span model was shown. This corresponds to 

equations shown in Chapter III. 

(4) Simulation demonstrated the theory presented. Even similar configurations of the 

system with the same web may cause the significant differences if this stick-slip 

phenomenon may happen. Once it happens, it ends up with a stable limit cycle 

which does not disappear by itself. 



CHAPTER VI 

SLACKNESS IN THE TRANSPORTATION 

Introduction 

It is necessary to keep the web tension to a certain level through out the operation. 

Otherwise, it causes a lateral motion or breaks in the web in the worse case. To prevent 

this damage in the operation, slackness in the web and its causes should be studied. 

As an application of the theoretical analysis presented in the previous chapters, this 

chapter shows some possible behaviors of the web model which cause slackness. They 

are for the elastic model ( Chapter III ), the visco-elastic model ( Chapter IV ), and the 

elastic model with stick-slip phenomenon on the roller ( Chapter V ). Programs 

developed in each chapter were used for the simulation. Conditions of the simulation are 

shown in the figures; otherwise they are unchanged from those in the original chapter. 
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Case 1: Elastic Model 

Even with this simple model, slackness may happen. 

Steady State 

Equation (2.8) in its steady state yields as follow 

e1 =a1 * (1+e0)-1 
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(6.1) 

And e1 S 0 if a1 * (1+e0) S 1. It is possible to choose a1 that satisfies this relation. 

Although this is theoretically possible, this operation always causes slackness; thus it is 

no longer practical. 

Dynamic Operation 

As was shown in Figure 3.3, stain e2 decreases temporarily when increasing the 

speed of the center roller in a two span model. If this is too radical, strain e2 reaches a 

value low enough to cause the slackness. Figure 6.2 shows this case where e2 reaches 

nearly zero temporarily, but this is crucial in the actual operation because it would lead to 

a web break. 

Program 6 in Appendix B was used for this calculation. This is an extracted one 

from Program 2 which was used for the simulation of the stick-slip phenomenon. 
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Case 2: Visco-Elastic Model 

The visco-elastic model has a more dangerous tendency because of the damper 

element which shares the strain but does not contribute to the stress. This means that 

even if the total strain determined from the conservation of mass is as high as that of 

elastic model, the visco-elastic model gives smaller stress which comes only from the 

elastic part. 
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Figure 6.2 indicates this problem. Total strain is equivalent to that of the elastic 

model, but this model gives nearly zero stress due to the strain in both Voigt and plastic 

parts. 

Consequently, if the web has visco-elasticity, the speed of the roller should be 

increased to maintain the stress on the elastic part. 

Case 3: Stick-Slip Phenomenon 

As was discussed in Chapter V, stick-slip causes unstable behavior in the strain 

even if the web can be treated as a simple elastic model. Figure 6.3 shows an example of 

a case where the stress e2 is higher than el; thus slippage happens in reverse. In this case 

the relation between sl and s2.is given as sl = s2 *e-~ 

Program 6 used in Chapter V deals with this case also. 

(6.2) 

It should be noted that the level of strain is still higher than that calculated from the 

system without stick-slip; this repeated low strain may cause a different problem. 
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Chapter Summary 

Possible causes of web slackness were discussed. 

The main topics in this chapter are as follow. 

(1) The elastic model causes slackness if change in the span is radical. This is a 

temporary low strain, but it can be a crucial one in actual operation. 

(2) The visco-elastic model may cause slackness more easily. This comes from the 

damper element which shares the strain but does not contribute to the stress. 
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A handling system with this kind of web needs to have the speed increased along the 

process line. 

(3) If stick-slip happens, it may cause slackness. Although this level of strain is 

higher than that that was calculated in Case 1, this is troublesome because of its 

repetitive nature while slackness in Case 1 is temporary. 



CHAPTER VII 

UNCERTAINTY AND STATISTIC DISCUSSION 

Introduction 

The previous chapters discussed assuming that parameters of models and/or 

disturbances are deterministic. In these cases, it is possible to calculate the propagation 

of strain using equations such as (2.8). In Chapter ill, for example, strain in span 1 was 

simulated according to the disturbance of the strain in span 0. 

In most cases, however, parameters and disturbances have some deviation or 

uncertainty in their values. An actual web is made from materials which are not perfectly 

uniform, and its properties may be affected through transportation and storage. For 

example, elastic modulus of paper is sensitive to its moisture content which varies from 

one place to another, from one season to another. Practically speaking, it is impossible 

to trace the output, as was done in the simulation in Chapter III, for all possible cases of 

input. Consequently, a statistical approach is necessary to handle this uncertainty. 

If focused on the propagation of strain, this method has two major parts. 

The first is to get the information about input. Some of them are mean and standard 

deviation of the properties of web and disturbance from the machine such as vibration of 

the rollers. 

The second part is to discuss how the system propagates this uncertainty or irregularity 

from one span to another. This is important especially in machine design, because the 

tolerance depends on the ranges of possible output. In this paper, this second part is 
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discussed 

We can get the specific output without any tolerance by assuming a deterministic 

nature, while the ranges of possible occurrence are available if we allow uncertainty. 

These two approaches are both important in observing things and actually designing 

machines. 

In this chapter, the general discussion of propagation is presented first, followed by 

its application to web handling and verification with a Monte Carlo simulation. 

Propagation of Mean and Mean Square 

Mean and mean square are important values for a most of statistical treatments. 

They give a basic understanding of the amplitude of the data series and determine the 

entire distribution if it is Gaussian. As a review of these statistics, propagation of mean 

and mean square are discussed here. Almost all equations in this general discussion are 

from Newland's book.[ll] Though some have been defined or used differently in this 

paper, names of variables are unchanged as used in Newland's book in order to keep 

consistency. ( e, for example) 
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Propagation of Mean 

Response y(t) can be described with input x(t) and the impulse response function of 

the system h(t) as 

y(t) = f h(t-<)x(<~t (7.1) 

Changing the variable converts (7.1) to 

y(t) = r h(8)x(t- e~e where 8=t-'t 

Since there is no response for e < 0 ( or t <t ), this can be expanded as 

y(t)= r h(8)x(t-e~e (7.2) 

By assuming a stationary process, expectation of both sides in (7 .2) is given as 

E[y] = E[x] r h( 8 )l 8 = E[x] f h( 8 )e'w'l-de = E[x]H(O) (7.3) 

where H(w) = f h(8)e<w8d8 (7.4) 

H(w) is the frequency response function which is the Fourier transformation of h(t). 

Equation (7.3) gives the propagation of mean value. 
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Propagation of Mean Sguare 

The auto-correlation function of the response y(t) is given with (7.2) as 

Ry(t) = E[y(t)y(t+t)] = E[J~ h(9,)x(t- 9 ,}I e,f~ h(82)x(t + t- 82}1 82] 

variables 81, 9 2 are used instead of 9 to make relations clear. 

Using the auto-correlation function ofx(t) yields 

(7.5) 

Taking Fourier transformation for both sides, the left hand side of (7 .5) yields 

__LJOO R (t)e-iw't(it = S (w) 
2x Y Y 

-00 

(7.6) 

where Sy(w) is the spectral density function of y. Similarly, the right hand side 

yields 

2~r e-iwTdir d9{ d92h(9t)h(92)R,(t-92 + 9t)} 

= 2~r h(e,}le,f h(92}19+iw(·· -9,) r R,(t- 92-Hlt)e-iw(HO, -9,)d{H9, -•,J} 

= ~~ h(9J)e"'"><I9 1J~ h(92)e-iw9'!192S,(w) 

== H*(w)H(w) Sx(w) =I H(w) fSx(w) (7.7) 

where H*(w) is the complex conjugate ofH(w). Now (7.6) and (7.7) yield 

(7.8) 



63 

Using the inverse Fourier transform, mean square response I{y2] is given as 

(7.9) 

If we can get the spectral density function of the input Sx (w) and the frequency response 

function of the system H(w), the mean square response I{y2] is given with (7 .9) 

Application to Web Handling System 

In order to use (7.3) and (7.9), it is necessary to use the frequency response function 

of the system H(w). This is done by modifying equation (2.10). 

-L1 * ~ = vO* (l-eO) I Time= t - a1 *vO* (1-e1) I Time= t 

Now let eO= eO , e1 = ef at the steady state, then d~1 = 0 and from (2.10), 

- 1 -
e1 = 1 - a}<1 -eO) 

Also let dJ =eO- eO , cl = e1- ef, then (2.10) yields 

-L1 * d(cl; cl) = vq{ 1-(eO +d))}- a1 * { 1-(e1 + e1 )}] 

Using (7 .10) yields 

d(cl) =~eO- a1 * e1] 
dt L1 

Equation (7 .11) gives the relation of changes from the steady state points. 

Now let eO = e iwt , e 1 = H( w) eiwt in order to get H( w ); then (7 .11) yields 

.l 
H(w) = 1 +~Tw where T = ~ 

(2.10) 

(7.10) 

(7.11) 

(7.12) 
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Consequently, the propagation of spectral density is given as 

S 1(w) = SO(w) {ai-Y 
1 +(Tw)2 

(7.13) 

where SO(w) and S1(w) represent the spectral density function of 25 and 

e1 respectively. If eO is white noise, SO(w) is a constant value SO, and (7.14) becomes 

S1(w) = sqa}-Y 
1 +(Tw)2 

Figure 7.1 shows SO and S1(w) for w>O, with a1=1.0005 and T = 0.05997. 

Using (7.3), (7.9), (7.12), and (7.14), propagations of mean and mean square are 

calculated as follow. 

Mean: 

fle1] = H{O}fieO] = ~ E[eO] 

Mean square: 

= ioo(-1 )2 SO(w) dw 
a1 *T {~)2 + w2 

-00 

in case the input is white noise whose spectral density is SO, (7.16) yields 

F{e1 2] =ioo(_1_)2 SO dw = 1tSO 
a1*Tl (~J +w2 T*al2 

-00 

since 100 

dw = 1L 
a2 +w2 2a 

0 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

Equations (7 .15) - (7 .17) give the relation of mean and mean square between span 0 and 1. 
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Simulation and Results 

In order to verify the theoretical analysis given in (7 .15) - (7 .17), the Monte Carlo 

simulation was used. Before this simulation, a pseudo-random data generator was 

examined and was found that it generated the prescribed random data series. Requirements 

set here are uniform distribution in their amplitude with zero mean and unit variance, and 

whiteness in frequency. Details are shown in App~ndix A. 

Figures 7.2, 7.3, and 7.4 show the results of simulation with the elastic model in 

the single span. Infeed strain eO and thus eO are under stochastic disturbance which is 

uniformly distributed in amplitude and has a white nature in frequency. Figure 7.2 shows 

a one. time series which has 100 pieces of data in it. In the Monte Carlo simulation, a 

total of 5000 series are used. Actually, a random data generator creates 500,000 data 

sequentially, and 5000 series, each of which has 100 data, are generated from these series 

of random data. 

The sample number 5000 was determined through trail calculation with various 

sampling numbers. Table 7.1 shows the propagation of mean and mean square of strain 

by comparing results from theoretical analysis and those from simulations. Conditions 

of these simulations are as follow. 

(1) Speed of roller 0; vO 

(2) Speed of roller 1; a1v0 

(3) Length of span; L 1 

(4) Infeed strain; eO 

(5) Time step; dt 

(6) Sampling number 

= 1.0 

= 1.0005 * vO 

= 1.2 

mean = 0, mean square = 21tSO where SO = 3.0E-10 

= 0.005 

= 1000,5000,10000,20000 
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Program 7 in Appendix B was used for this simulation. In this program, equation (7 .11) 

was calculated using the 4th order Runge Kutta method. 

As for the propagation of mean, results of the simulations do not agree with 

theoretically predicted ones. Increasing the sample number from 5000 to 20000 does not 

improve this much. Possible reasons are as follow. 

(1) Error from discretizing white noise: Any digital computer cannot generate real white 

noise by nature. Ideally, the auto-correlation function of input vanishes other than 

the point of 't = 0, but generated data must have the same value in the interval of 

[O,dt] where dt is the time step of the simulation. This is a source of discrepancy. 

(2) Error from the pseudo-random process: As is mentioned in Appendix A, a computer 

cannot generate real random series of numbers; thus generated series has limitations 

in the properties. In this case, a shift from the desired mean, zero, may have affected 

the results. 

(3) Error from the numerical calculation: The program uses huge numbers of iterations 

which causes accumulated error. In the Runge Kutta routine, the global error has 

the order of 0(h4). Thus decreasing time step has a significant advantage in this 

routine. It is however difficult to do this because of its long calculation time. 

As for the propagation of mean square, both results agree within a few percentage points 

of relative error. This validates the theoretical analysis. Different sample numbers gave 

slightly different relative errors in this calculation, but they are not out of the mark. The 

number 5000 was determined for convenience in calculation and this result. 

Table 7.2 shows results similar to those shown in Table 7 .1. Here two cases of 

speed vO were compared and both results show the same tendency of those in Table 7 .1. 

In this case,the error lies within 1%. This result confirms the validation more, because 

speed vO affects the system itself through equation (7 .12). 
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TABLE7.1 

COMPARISON OF RESULTS FOR DIFFERENT 
AMOUNT OF SAMPLING NUMBER 

SamQle Simulation Theory Relative Error 
E[eO] -1.982e-07 0 -
E[e0'2] 1.892e-09 1.885e-09 0.38% 

1000 E[e1] -5.525e-08 0 -
E[e1A2] 7.664e-10 7.850e-10 -2.37% 
E[eO] -1.600e-07 0 -
E[e0'2] 1.887e-09 1.885e-09 0.09% 

5000 E[e1] 3.491e-09 0 -
E[e1A2] 7.797e-10 7.850e-10 -0.67% 
E[eO] 9.795e-10 0 -
E[e0'2] 1.883e-09 1.885e-09 -0.09% 

1()()()() E[el] 3.274e-09 0 -
E[e1A2] 7.733e-10 7.850e-10 -1.50% 
E[eO] 1.860e-08 0 -
E[e0'2] 1.885e-09 1.885e-09 -0.01% 

2()()()() E[e1] -8.379e-10 0 -
E[elA2] 7.658e-10 7.850e-10 -2.44% 

* 1 . simulation - theory 
re at1ve error = th 

_eory 

TABLE7.2 

COMPARISON OF RESULTS 

Web speed Simulation Theory Relative Error 
E[eO] -1.600e-07 0 -

vo= E[e0'2] 1.887e-09 1.885e-09 0.09% 
1 (m/s) E[e1] 3.491e-09 0 -

E[e1A2] 7.797e-10 7.850e-10 -0.67% 
E[eO] -1.600e-07 0 -

vo= E[e0'2] 1.887e-09 1.885e-09 0.09% 
10 (m/s) E[e1] 2.876e-09 0 -

E[e1A2] 7.805e-09 7.850e-09 -0.57% 
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Chapter Summary 

This chapter discussed the statistical approach to handling uncertainty of the web 

properties and/or disturbances. The main topics are as follow. 

(1) The theoretical analysis on propagation of mean and mean square was reviewed. 

This is based on spectral analysis and propagation can be calculated using the 

spectral density function of the input and the frequency response function of the 

system. Final equations are as follow. 
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Mean: E[y] = E[ x ]H(O) (7.3) 

(7.9) 

where H(w) is frequency response function of the system. 

(2) Application of these general results to the web handling system gives the relation 

Mean: 

Mean square: :E{e1 2] = 1tSO (for white noise input with density SO) 
T*al2 

These are based on the equation (7 .11); d:1) = ft-[ eO - a1 * el] 

(3) These relations are verified with the Monte Carlo simulation for mean and mean 

square. Results for mean square agree with those from the theoretical analysis 

within 1% of relative error, while there are some discrepancies in the calculation of 

mean. Possible reasons for this discrepancy are presented. 



CHAPTER VIIT 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In order to expand the present theory of web handling, various topics have been 

discussed in this paper. This chapter summarizes all of them. 

In Chapter IT, fundamental equations of strain propagation are shown. They provide 

an understanding of how strain in one span relates to that in adjacent spans. If there is no 

slippage between roller and web, their principle is the conservation of transferring mass. 

If slippage occurs, and thus the speed of the web is unknown, the relation of force is 

necessary in addition. It should be noted that these equations give strain just before each 

roller and a specific web model is necessary to calculate its distribution in the span and/or 

to observe its behavior. Also a web model is required to calculate stress from the strain. 

In chapters Ill and IV, two types of models are discussed. Both of them are macro­

scopic models which use a spring and/or a damper element(s) to express the behavior of 

the web. However, they are not necessarily related to physical meanings, actual bondage 

of pulp fiber for example. The elastic web model discussed in Chapter Ill has only one 

spring element in it. This model is convenient and acceptable for many practical 

applications, which makes it very popular among researchers. However, the visco-elastic 

model in Chapter IV is necessary if rheological behavior of the web is the concern. This 

model extends the expression using additional damper(s) and spring element(s) and can 

explain relaxations, creep, and so on. 

73 



74 

The main topics in Chapter mare as follow. 

(1) Basic behavior of the strain was discussed in dynamic and steady state condition. 

This propagation process shows the first order low pass filtering. 

(2) As an extension of this discussion, two cases were examined. Both of them allow 

for changes in the elastic modulus of the web. The first case is to simulate the 

disturbance outside the span which is inescapable in actual operation. The result 

show the filtering nature. 

(3) The second one is to simulate the drying process at its steady state where the elastic 

modulus changes inside the span. This indicates the distributed strain of the web 

under uniform stress. 

The main topics in Chapter IV are as follow. 

(1) Various visco-elastic models are discussed. The voigt model is convenient to 

discuss problems of strain under a given stress which is common in web handling 

system. Their strain responses for a given stress input (step) were examined. 

(2) Theoretical analysis was made to apply them to a web handling system with 

additional assumption of uniform mass flow rate. Analysis gives strain distribution 

inside the span for both slipping and non slipping cases. 

(3) Simulations demonstrate the result of analysis. It is found that a visco-elastic web 

changes stress according to the operating speed, which the elastic model cannot 

predict 

(4) The result with an actual web (newspaper) indicates the suitability of the elastic 

model for this application. 

Now it is possible to examine another case by comparing results directly. 



------
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A web handling system can be operated without problems so long as the 

relationships in Chapter II govern it. This shows the first order filtering nature and 

strains propagate in this manner. There is, however, a chance of self-induced oscillation 

even when everything seems to be right Some systems depend on web tension to press 

web to the roller, and this might cause "self reference" which creates the stick-slip 

phenomenon in the operation. Moreover, there are problems of slackness. This is partly 

from gaps between models and actual systems. A certain level of stress is necessary to 

keep stable handling in an actual system, while the model has no problem even if its 

stress is almost zero or negative. 

Chapter V discusses the stick-slip phenomenon and Chapter VI shows various sources of 

slackness. The main topics in Chapter V are as follow. 

(1) Non-linear friction models are presented which have two levels of friction 

coefficients according to the condition of slippage. 

(2) Strain behavior with this model was theoretically examined, and the propagation of 

strain in a two span model was shown. 

(3) According to the simulation, even a similar configuration may cause significant 

differences in their behavior. Once the stick-slip phenomenon happens, it ends up 

with a stable limit cycle which does not disappear by itself. 

The main topics in Chapter VI are as follow. 

(1) The elastic model causes slackness if the change of the span is radical. This is a 

temporary low strain, but it can be crucial in actual operation. 

(2) The visco-elastic model may cause slackness more easily. This comes from the 

damper element which shares the strain but does not contribute to the stress. A 

handling system with this kind of web needs speed increases along the process line. 

(3) If stick-slip happens, it may cause slackness. Although this level of strain is 



higher than that which is calculated for the elastic model, this is troublesome 

because of its repetitive nature while slackness in the elastic model is a temporary 

one. 

It should be noted that they are problems under the fundamental relationships shown in 

Chapter II. 
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Finally in Chapter VII, a statistical approach to uncertainty is shown. Actual webs 

and machines are not ideally made, and they are not free from uncertainty in their nature. 

Thus, it is important to estimate the ranges of possible output for a given uncertain 

input. 

The main topics in Chapter VII are as follow. 

(1) Propagation of mean and mean square was reviewed theoretically, and was applied to 

the web handling system. This is based on the spectral analysis, and propagation 

can be calculated with the spectral density function of the input and the frequency 

response function of the system. 

(2) These relationships are verified using the Monte Carlo simulation. Results for 

mean square agree with those from the theoretical analysis within 1% of relative 

error, while there are some discrepancies in results of mean. Possible reasons for 

this discrepancy are presented. 
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Recommendations for Further Study 

Table 8.1 shows the scope of this paper with respect to items treated. The mark 

(...J...J...J) indicates newly covered items, while (..J) shows a review of previous works and (*) 

shows items which were reported but not reviewed here. 

TABLE 8.1 

SCOPE OF STUDY 

properties ot web 
Classification of the study elastic visco-elastic 

deterministic sto- deterministic sto-
conditior suck sliJ constant varying chastic constant varying chastic 

static no 'V - ffl ffl -
theory dynamic yes ffl ffl 

no 'V 'V ffl 
static no * - -

experi dynamic yes 
ment no * * 

Notes. '\f: covered, 'V'V'V: newly covered in this paper,* :done,--: not available 

As for this scope, filling blanks extends these studies. It is, however, difficult to 

combine everything at once, and my recommendations for the next studies are as follow. 

Study with the elastic model should emphasize practical application. This includes 

development of control strategies and analysis of complicated phenomena such as stick­

slip on the machines. These studies will contribute to actual matters including designing 

machines and trouble shooting. 
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Study with the visco-elastic model should emphasize both theoretical and 

experimental work. At first, it is necessary to identify the parameters of the model 

through experiments. As was mentioned, springs and dampers in the model are fictional, 

and the number of elements and their parameters come from overall behavior through 

experiments. This is done partly for paper and plastic film, but systematic data will be 

useful. Experiments for verifying the theory shown here are also necessary before 

expanding this to a more complicated one. As for the theory concerned, extending it to a 

dynamic system is an important project, but distributed strain and its dependency on time 

will make this work difficult These studies will contribute to a better understanding of 

the behavior of wet papers and hot plastic film. 

Problems like slackness and stick-slip need experimental work also. Since they are 

relatively practical problems, some guide lines for preventing them will be helpful to 

people in this industry. 

The stochastic approach needs input information, such as mean and standard 

deviation of properties of web. This includes how they are affected by certain 

environments. This approach can also be extended to the visco-elastic model. Analysis 

in steady state may be done first, because this is complicated enough to investigate. The 

visco-elastic model makes the frequency response function H(w) complex and its initial 

value makes calculation complicated. These studies will contribute to predicting possible 

occurrence of output, and thus the ability to design machines which have better 

reliability. 

Finally, the author hopes that these studies contribute not only to the extension of 

theory itself but to making our lives better by improving the machines in real life. 
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Introduction 

The Monte Carlo simulation needs a certain amount of random data whose nature 

fits the prescribed distribution and whiteness. Practically, the Chi square test is widely 

used to verify the distribution, and the auto-correlation function is used to check the 

whiteness of the data series. In order to verify the nature of the generator used in Chapter 

VII, both are calculated here and results indicate that this generator satisfies the 

requirements. 

Pseudo-Random Data Generator 

It is impossible for any digital computer to generate a pure random data series 

because all programs are deterministic in their nature. There are, however, several ways 

to create pseudo-random data series which can be used for most of the calculations. [12] 

In Chapter VII, one type of these programs is used to create the random data series of unit 

deviates. ( ranl(), a part of program 7 in Appendix B ) This program uses the linear 

congruential and shuffling method. The data series with these two methods can avoid 

periodic sequences and sequential correlations effectively, both of which the system 

provided routine tends to suffer from.[12] After generating the data, program unit(), also a 

part of program 7, converts them so that the series have zero mean and a variance of 1.0. 



Verification of the Nature of Uniform Distribution 

From the calculation of 500,000 pieces of data, the mean and the variance are 

1.329e-04 and 1.000 respectively. Both are close to values prescribed. (mean= 0.0, 

variance = 1.0 ) 

Figure A.1 shows the results of the Chi square test for 5000 data series, each of 

which has 12 pieces of data in it. According to the calculation, 

X2 = 5.19 <X~. o.so = 5.38 where X2 is defmed as 

Fi : expected amount of data in each interval. 
fi : actual amount of data in each interval. 
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The results indicate that this is uniform distribution at the 0.80 level of significance. [12] 

Program 8 and 10 in Appendix B were used for the calculations shown here. 

Verification of the Nature of Whiteness 

Figure A.2 shows the auto-correlation function for 500 data series each of which has 

11 data in it. The values are normalized so that they become 1.0 when the time lag 't = 0. 

Values other than that of 't = 0 vanish equally, and this fact indicates the nature of 

whiteness. 

Program 9 in Appendix B was used for the calculations shown here. 

Conclusion 

This generator with conversion gives a series of data which is distributed uniformly 

with a mean of zero and a variance of 1.0, and having the nature of whiteness. Thus this 

generator satisfies the requirements of the simulation discussed in Chapter VII. 
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All program listed here are for the system shown below. 

Notice that there is slight difference in the way of writing program from compiler to 

compiler. 

Computer : Macintosh II 

Compiler : Think C (v4.0) 

( Apple Computer ) 

(SYMANTEC) 

: All calculation were done with math coprocessor option ON. 

86 

Some functions necessary for the calculation may not appear in all programs to avoid the 

redundancy. They are attached to the programs appeared beforehand. 



PROGRAM 1 

l******************************************************m*a*s*a*k*a*z*u* 

output 
web 

: strain distribution in the span 
:visco-elastic I generalized Voigt model 
: deterministic 

operation 

slip 

: steady state 
: deterministic 
:none 

*******************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <math.h> 

#defme 
#define 
#defme 
#defme 
#define 

int 
double 
double 
double 
double 
double 
double 
double 
double 

MAX_ITER 
CRITERIA 
NSUBSPAN 
MAX_ELEM 
MAX_ SPAN 

nspan, nelement; 
gg, ep_Og, ep_lg; 

50 
0.0005 
10 
10 
10 

es, ep_Os, ep_1s; 
sg_1; 
vg[MAX_ELEM]; 
ve[MAX_ELEM]; 
lrn[MAX_ELEM]; 
ep_Oe[MAX_ELEM]; 
ep_1e[MAX_ELEM]; 

I* #max of iteration 
I* that of correction 
I* #subspan in a span 
I* #max of element in the model 
I* #max of span in the calculation 

I* # of span & element in model 
!* additional elastic element 
!* additional plastic element 
!* stress in the span 1 
I* ith spring coeff in Voigt model 
I* ith damper coeff in Voigt model 
I* ith delay time: lm = ve I vg 
I* ith strain @ end of span 0 
I* ith strain @ end of span 1 

*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 



mainO 
{ 

int i, j, k; I* counter *I 
int flag, iter, ispan; I* loop controller *I 

double al[MAX_SPAN]; I* alpha of each span 
double ls[MAX_SPAN]; I* length of each span 
double alO, all; I* alpha of span 0 & 1 
double lsl; I* length of span 1 
double vO; I* base speed 
double ep_INg; I* elastic strain @ span IN 
double ep_INs; I* plastic strain @ span IN 
double ep_INe[MAX_ELEM]; /*ith strain @ end of span IN 
double ep_INet; I* total strain @ end of span IN 
double ep_Oet, ep_let; I* total strain @ end of span 0 & 1 
double jt, it; I* J(t) & I(t) @ end of span 1 
double tl, tm, dt; I* total time, temp time, delta time 
double kx; I* mass transfer (constant value) 
double lc; I* calculated length of the span 
double er; I* relative error in the iteration 
double ep[NSUBSP AN+ 1 ]; I* strain in the subspan 
double lx[NSUBSPAN+l]; I* position of subspan in the span 
double fneO, fniO, fnjO; I* functions for the model 
double bs; I* for graphic use 
double ql; I* dummy 

nspan = 2; 
vO = 1.0; 
al[O] = 1.0; 
al[l] = 1.003; ls[l] = 1.2; 
al[2] = 1.0; ls[2] =2.0; 

nelement = 1; 
gg = 2.0e9; ep_INg = 0.003; 
es =4.0e8; ep_INs = 0.0005; 
vg[l] = I.Oe9; ve[l] = 5.0e8; 

ep_INet = ep_INg + ep_INs; 
for ( i=l; i<=nelement; ++i) { 

ep_INe[i] = ep_INg * gg I vg[i]; 
ep_INet += ep_INe[i]; 
lm[i] = ve(i] I vg[i]; 

ep_Og = ep_INg; 
ep_Os = ep_INs; 
ep_Oet= ep_INet; 
for ( i=l; i<=nelement; ++i) { 

ep_Oe[i] = ep_INe[i]; 
} 
kx = vO I ( l.O+ep_INet ); 
bs = 0.0; 

for ( ispan=l; ispan<=nspan; ++ispan) { 
alO = al[ispan-1]; 
all = al[ispan]; 
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*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 



lsi = ls[ispan]; 
ep_Iet =all * (l.O+ep_INet)- 1.0; 
ti = 2.0 * lsi I (all+alO) I vO; 
a- = 999.0; 
iter = 0; 

while ( (er >CRITERIA) && (++iter< MAX_ITER) ) { 
jt = fnj( tl ); 
it = fni( t1 ); 
sg_l = ( ep_let- it) I jt; 
ep_lg= sg_ll gg; 
ck = tliNSUBSPAN; 
ql = 0.0; 
for (j=O;j<=NSUBSPAN; ++j) { 

tm = dt * (double) j; 
ep[j] = fnj( tm ) * sg_l + fni( tm ); 
ql += 2.0 * ( 1.0 + ep[j] ); 

} 
lc = ( qi- ep[O]- ep[NSUBSPAN] -2.0) * kx * dtl2.0; 
t1 = t1 * lsi /lc; 
a- =(double) fabs((lc-lsi)/lsl); 

lx[O] = 0.0; 
for ( j=I;j<=NSUBSPAN; ++j) 

lx[j] = lxfj-1] + kx * ( 1 + {ep[j-l]+epfj])/2.0) * dt; 
printf( "span number %d\n\n", ispan ); 
for (j=O;j<=NSUBSPAN; ++j) { 

ep_ls = sg_I * ( dt * {double) j ) I es + ep_Os; 
printf( "%lf\t%lf\t", lxUJ+bs, ep[j] - ep_Ig- ep_ls ); 
printf( "%lf\t%lf\t%lf\t%lt\n", ep_Is, ep_Ig, ep[j], ep_let ); 

for ( i=O; i<=nelement; ++i ) { 
fne( t1 ); 
ep_Oe[i] = ep_le[i]; 

} 
ep_Os = ep_Is; 
bs += lx[NSUBSPAN]; 
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double fnj( t) 
doublet; 

/* function J(t) *I 

{ 
double vj, flO; 
int i; 
vj = 1.0 I gg + t I es; 
if ( nelement != 0) { 

} 

for (i= 1; i<=nelement; ++i ) 
vj += fl(t, i); 

return( vj ); 

double fni( t ) 
doublet; 

/* function I(t) *I 

{ 
double vi, f20; 
int i; 
vi= ep_Os; 
if ( nelement != 0) { 

for (i=1; i<=nelement; ++i) 
vi += f2(t, i); 

} 
return( vi ); 

double fne( t ) 
doublet; 
{ 

/* strain caused by dampers *I 

double no. f20; 
int i; 
if ( nelement != 0 ) { 

for (i= 1; i<=nelement; ++i ) 

double fl( t, i) 
doublet; 
int i; 
{ 

ep_1e[i] = sg_1 * fl(t, i) + f2(t, i); 

return( ( 1.0- (double) exp( -t/lm[i])) I vg[i] ); 
} 

double f2( t, i ) 
doublet; 
int i; 
{ 

return( (double) exp( -t/lm[i]) * ep_Oe[i] ); 
} 



PROGRAM2 

l******************************************************nt*a*s*a*k*a*z*u* 

output 
web 

operation 

slip 

: strain with respect to tinte 
:elastic 
: deterntinistic 
: dyruunic 
: deterntinistic 
: stick-slip 

*******************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <ntath.h> 

#defme MAX 100 I* #calculation 
#define EVR 5 I* #skip for the display 
#define DT 0.005 I* delta tinte 
#define THE 120 /* lapping angle at roller (deg) 
#defme MYU1 0.4 /* friction coefficient (high) 
#defme MYU2 0.15 !* friction coefficient (slip) 

double epO = 0.001; I* initial strain 
double 11 = 1.2; !* length of span 1 
double 12 = 2.0; I* length of span 2 
double vO = 10.0; I* standard speed of the web 
double t = 0.0; !* tinte 

double ep1, ep2; /* strain at each span 
double epc1,epc2,epc3,epc4; /* critical strain of ep2 
double kf1, kf2; I* friction const = exp(ntyu*the) 
int end; I* O:non slip,1:slip,-1,:reverse 
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*I 
*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 



mainO 
{ 

int 
double 
double 

i. 
' a10, a20; 

slip10, slip20, nslipO; 

/* counter *I 
/* alpha1,2 *I 
I* ep1,ep2 *I 

kf1 =(double) exp( MYU1 *THE* 3.14159265359 I 180.0 ); 
ld'2 =(double) exp( MYU2 *THE * 3.14159265359 I 180.0 ); 
ep1 = ( l.O+epO) * a1(t}- 1.0; 
ep2 = ( 1.0+ep0) * a2(t)- 1.0; 
cnl = 0; 

for ( i=O; i<MAX; ++i ) { 
t = DT *(double) i; 
epc1 = ep1 I kf1; epc2 = ep1 I kf2; 
epc3 = ep 1 * ld'2; epc4 = ep 1 * kf1; 

if (((end= 1) && (ep2<epc2)) II (ep2<=epc1)) 
slip10; 

else if (((end -1) && (epc3<ep2)) II (epc4<=ep2)) 
slip20; 

else 
nslipO; 

printf( "%lt\t%lf\t%lf\t%lt\t%lf\n",t,epl,ep2,epc1,epc4 ); 

doublealO 
{ 

/*alpha 1 *I 

return( (t<10.0*DT)?l.002:1.003 ); 

double a20 
{ 

return( 1.001 ); 

/*alpha 2 *I 

92 



double nslipO 
{ 

double h, kl, k2, k3, k4, ql; 
double no. f20; 

h =DT; 
kl = h * fl( t, epl ); 
k2 = h * fl( t+h/2.0, epl+kl/2.0 ); 
k3 = h * fl( t+h/2.0, epl+k2/2.0 ); 
k4 = h * fl( t+h, epl+k3 ); 

/*calculate epl, ep2 with RK4 *I 

ql = epl + ( kl + k2*2.0 + k3*2.0 + k4) /6.0; 

kl = h * f2( t, ep2 ); 
k2 = h * f2( t+h/2.0, ep2+kl/2.0 ); 
k3 = h * f2( t+h/2.0, ep2+k2/2.0 ); 
k4 = h * f2( t+h, ep2+k3 ); 
ep2 = ep2 + ( kl + k2*2.0 + k3*2.0 + k4 ) /6.0; 
epl = ql; 

em =O: 

double sliplO 
{ 

double h, kl, k2, k3, k4; 
doublef30; 

if(cnd=O) 

I* calculate epl, ep2 in normal slip */ 

ep2 = ( ll*epl + 12*ep2) I ( ll*kf2 + 12 ); 
h =DT; 
kl = h * f3( t, ep2 ); 
k2 = h * f3( t+h/2.0, ep2+kl/2.0 ); 
k3 = h * f3( t+h/2.0, ep2+k2/2.0 ); 
k4 = h * f3( t+h, ep2+k3 ); 
ep2 = ep2 + ( kl + k2*2.0 + k3*2.0 + k4 ) /6.0; 
epl = ep2 * kf2; 

em =I; 
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double slip20 
{ 

double h, kl, k2, k3, k4; 
doublef40; 

if(cnd==O) 

/*calculate epl, ep2 in reverse slip *I 

ep2 = ( ll*epl + l2*ep2) I ( ll/kf2 + l2 ); 
h =DT; 
kl = h * f4( t, ep2 ); 
k2 = h * f4( t+h/2.0, ep2+kl/2.0 ); 
k3 = h * f4( t+h/2.0, ep2+k2/2.0 ); 
k4 = h * f4( t+h, ep2+k3 ); 
ep2 = ep2 + ( kl + k2*2.0 + k3*2.0 + k4 ) I 6.0; 
epl = ep2 I kf2; 

ml = -1; 

double fl( t, x) 
doublet, x; 
( 

doublealO; 
return( ( al(t)l(l.O+x)- l.OI(l+epO)) * vO I II ); 

double f2( t, x ) 
doublet, x; 
{ 

double alO, a20; 
return( ( a2(t)l(l.O+x)- al(t)l(l+epl)) * vO I 12 ); 

double f3( t, x ) 
doublet, x; 
{ 

doublea20; 
return(-( a2(t)l(l.O+x)- l.OI(l+epO)) * vO I (l2+ll*kf2) ); 

double f4( t, x ) 
doublet, x; 
{ 

doublea20; 
return( ( a2(t)l(l.O+x) - 1.0/(l+epO)) * vO I (l2+ll/kf2) ); 
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PROGRAM3 

l******************************************************01*a*s*a*k*a*z*u* 

output 
web 
operation 

: strain with respect to ti01e 
: elastic 01odulus changes 
: dynamic, deter01inistic 

*******************************************************a*k*a*t*s*u*k*a*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <Olath.h> 

#define MAX 
#defme EPIN 
#define DT 
#defme AMP 
#define TAU 
#defme OMEGA 

double 
double 
double 
double 
double 

01ainO 
{ 

11 = 
al = 
vO = 
t = 
ep1, epO; 

100 I* #calculation 
0.001 I* initial strain 
0.005 /* delta tiDle 
0.2 /* amplitude of the disturbance 
0.5 I* tiDle constant for the decaying 
50.0 /* angle velocity for the Sin input 

1.2; /* length of span 1 
1.001; /* speed ratio of span 1 to span 0 
20.0; /* standard speed of the web 
0.0; I* ti01e 

I* strain at each span 

int i; 
double EPSQ, RK40; 

/* counter *I 
/* epO, epl *I 

epl = a1 * ( 1.0 + EPIN)- 1.0; 
for ( i=O; i<MAX; ++i ) { 

t = DT * (double) i; 
epO = EPS( t ); 
ep1 = RK4( t, ep1 ); 
printf( "%lt\t%lt\t%lf\n", t, epO, epl ); 

double EPS( t ) 
doublet; 

I* epO *I 

{ 
double x = EPIN; 
int randO; 

x += AMP*EPIN*( 2.0*(double) randO/RAND_MAX-1.0) + exp(-t/TAU); 
return( x ); 
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PROGRAM4 

/******************************************************m*a*s*a*k*a*z*u* 

output : strain distribution in the span 
web : elastic modulus varies in the middle of the web 
operation : steady state 

: deterministic 
slip :none 

*******************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <math.h> 
#define NSUBSP AN 20 

2.0 #define DLG 

mainO 
( 

int 
double 
double 
double 
double 
double 
double 
double 

j; 
all = 1.001; 
lsl = 1.2; 
xl = 0.5; 
x2 = 0.8; 
ep_INg = 0.001; 
ep, x, dx, ke; 
fngO; 

ke = all * (l.O+ep_INg) - 1.0; 
dx =lsi I NSUBSPAN; 
for (j=O;j<=NSUBSPAN; ++j) ( 

x = dx *(double) j; 
ep = ke I fng( x, lsl, xl, x2 ); 
printf( "%lf\t%20.16lt\n",x, ep ); 

I* #subspan in a span 
I* changing ratio of elastic modulus 

/*counter 
/* alphal of the span 
/* length of the span 
/* start position of the dryer 
I* end position of the dryer 
I* elastic strain at the span IN 

/* elastic modulus at the point 

I* constant 
I* length of subspan 

double fng( p, I, pl, p2) I* strain ratio at x (ep=l at end) *I 
double p, I, pl, p2; 
( 

double g; /*value of Gg *I 

if ( ( O<=p) && (p<pl)) 
g = 1.0- (p2-pl) * DLG; 

else if ( (p 1 <=p) && (p<p2) ) 
g = 1.0- (p2- p) * DLG; 

else 
g = 1.0; 

return( g); 

% 

*I 
*I 

*I 
*I 
*I 
*I 
*I 
*I 

*I 

*I 
*I 



PROGRAMS 

l******************************************************m*a*s*a*k*a*z*u* 

output 
web 

: strain distribution in the span 
: visco-elastic I generalized Voigt model 
: detenninistic 

operation : steady state 
: detenninistic 

slip : at the central roller 

*******************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <rnath.h> 

#defme 
#define 
#define 
#defme 
#defme 

int 
double 
double 
double 
double 
double 
double 
double 
double 

MAX_ITER 
CRITERIA 
NSUBSPAN 
MAX_ELEM 
PI 

50 
0.0005 
10 
10 
3.1415926536 

nelement; 
gg,ep_Og,ep_1g,ep_2g; 
es,ep_Os,ep_ls,ep_2s; 
sg_1, sg_2; 
vg[MAX_ELEM]; 
ve[MAX_ELEM]; 
lrn[MAX_ELEM]; 
ep_Oe[MAX_ELEM]; 
ep_1e[MAX_ELEM]; 

I* #max of iteration* I 
I* that of correction *I 
I* #subspan in a span 
I* #max of element in the model 
I* 1t 

/* # of element in the model 
/* additional elastic element 
/* additional plastic element 
I* stress in the span 1 & 2 
/* ith spring coeffin Voigt model 
I* ith dumping coeff in Voigt model 
I* ith delay time: lm = ve I vg 
/* ith strain @ end of span 0 
/* ith strain @ end of span 1 

*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 
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*I 
*I 
*I 



mainO 
( 

-

int i, j, k,iter,iter_drag; 

double alO, all, al2; /* alpha of span 0, 1 & 2 
double lsi, ls2; /* length of span 1 & 2 
double vO; /* base speed 
double myu; I* friction coefficient/ web roller 
double the; I* wrapping angle (rad) 
double ep_INg; /* elastic strain @ span IN 
double ep_INs; I* plastic strain @ span IN 
double ep_INe[MAX_ELEM]; I* i-th strain@ end of span IN 
double ep_INet; /* total strain @ end of span IN 
double ep_Oet; /* total strain @ end of span 0 
double ep_let, ep_2et; /* those @ end of span 1 & 2 
double jt, it; /* J(t) & I(t) @ end of span 1 
double tl' t2, tm, dt; I* total time, temp time, delta time 
double kx; /*mass transfer (constant value) 
double lc; /* calculated length of the span 
double er, er_drag; /* relative error in the iteration 
double ep[NSUBSPAN+l]; I* strain in the subspan 
double lx[NSUBSPAN+ 1]; /* position of subspan in the span 
double fneO, fniQ, fnjO; I* functions for the model 
double ql; I* dummy 

alO = 1.0; vO = 1.0; 
myu =0.2; the = 0.8 *PI; 
all = 1.005; lsl = 1.2; 
ai2 = 1.001; ls2 = 2.0; 

nelement = 1; 
gg = 2.0e9; ep_INg = 0.003; 
es = 5.0e10; ep_INs = 0.0005; 
vg[l] = l.Oe9; ve[l] = 5.0e8; 

ep_INet = ep_INg; 
for ( i=l; i<=nelement; ++i) ( 

ep_INe[i] = ep_INg * gg I vg[i]; 
ep_INet += ep_INe[i]; 
lm[i] = ve[i] I vg[i]; 

} 
ep_Og = ep_INg; 
ep_Os = ep_INs; 
ep_Oet= ep_INet; 
for ( i=l; i<=nelement; ++i) ( 

ep_Oe[i] = ep_INe[i]; 
} 
kx 
er_drag 

= vO I ( l.O+ep_INet ); 
= 999.0; iter_drag = 0; 
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while ( (er_drag >CRITERIA) && (++iter_drag < MAX_ITER)) { 
ep_let= all * {l.O+ep_INet) - 1.0; 

} 

t1 = 2.0 * lsll (alO+all) I vO; 
ec = 999.0; iter = 0; 
while ( (er >CRITERIA) && (++iter< MAX_ITER)) { 

jt = fnj( t1 ); it = fni( tl ); 
sg_l = ( ep_let- it) I jt; ep_lg= sg_ll gg; 
<k = tll NSUBSPAN;ql = 0.0; 
for ( j=O;j<=NSUBSP AN; ++j) { 

tm = dt * (double) j; 
ep[j] = fnj( tm ) * sg_l + fni( tm ); 
ql += 2.0 * ( 1.0 + ep[j] ); 

} 
lc = ( ql - ep[O]- ep[NSUBSPAN] -2.0) * kx * dt 12.0; 
tl = t1 * lsl /lc; 
ec =(double) fabs((lc-lsl)/lsl); 

} 
for ( i=O; i<=nelement; ++i ) { 

foe( tl ); 
ep_Oe[i] = ep_le[i]; 

} 
ep_Os = ep_ls; 
ep_2et= al2 * (l.O+ep_INet) - 1.0; 
t2 = 2.0 * ls21 (all+al2) I vO; 
ec = 999.0; iter = 0; 
while ( (er >CRITERIA) && (++iter< MAX_I1ER)) { 

} 

jt = fnj( t2 ); 
it = fni( t2 ); 
sg_2 = ( ep_2et - it ) I jt; 
ep_2g= sg_21 gg; 
<k = t21 NSUBSPAN; 
ql = 0.0; 
for (j=O;j<=NSUBSPAN; ++j) { 

tm = dt * (double) j; 
ep[j] = fnj( tm ) * sg_2 + fni( tm ); 
ql += 2.0 * ( 1.0 + ep[j] ); 

} 
lc = ( ql- ep[O]- ep[NSUBSPAN] -2.0) * kx * dt 12.0; 
t2 = t2 * ls2 /lc; 
ec =(double) fabs((lc-ls2)/ls2); 

ql =(double) exp( ((sg_l<sg_2)?-myu:myu) *the)* sg_2; 
er_drag = qll sg_l - 1.0; 
all =all * ( 1.0 + er_drag 1500.0 ); 
printf( "%2d't%lf\t%lf\n", iter_drag, er_drag, all); 
er_drag =(double) fabs{ er_drag ); 

printf( ''\n\nValue of all= %lf\n\n", all); 
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PROGRAM6 

I******************************************************Dl*a*s*a*k*a*z*u* 

output 
web 
operation 
slip 

: strain with respect to tin1e 
: elastic, deterninistic 
: dyna01ic, deterninistic 
:none 

*******************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <Dlath.h> 

#defme MAX 100 
#define EVR 5 
#define DT 0.005 

double epO = 0.0007; 
double II = 1.2; 
double 12 = 0.2; 
double vO = 10.0; 
double t =0.0; 
double ep1, ep2; 

01ainO 
{ 

int i; 
double a10, a20; 
double nslipO; 

epl = ( l.O+epO) * al(t) - 1.0; 
ep2 = ( l.O+epO) * a2(t) - 1.0; 
for ( i=O; i<MAX; ++i ) { 

t = DT * (double) i; 
nslipO; 

/* #calculation 
I* #skip for thedisplay 
I* delta tinle 

I* initial strain 
I* length of span 1 
I* length of span 2 
/* standard speed of the web 
/* tin1e 
/* strain at each span 

/*counter *I 
/* alpha1,2 *I 
I* ep1,ep2 *I 

printf( "%lf\t%lf\t%lf\n", t, epl, ep2 ); 

doublea10 I* alpha 1 *I 
{ 

return( (t<IO.O*DT)?1.0001: 1.001 ); 
} 

doublea20 I* alpha 2 *I 
{ 

return( 1.0 ); 
} 
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PROGRAM? 

/****************************************************m*a*s*a*k*a*z*u* 

output : mean & mean sq. of strain with respect to time 
web : elastic 

:elastic modulus changes (stochastic) 
operation : dynamic 

: detenninistic 
slip : NA 

*****************************************************a*k*a*t*s*u*k*a*l 

#include <stdio.h> 
#include <math.h> 

#define OUfPUT fopen("s/ll.o","w") I* output file name *I 
#define DATAO fopen("sd/l.o" ,"w") /* crude data output file name *I 
#define PICK 3 I* #series to be picked up for display *I 
#defme PI 3.14159265358979 /*1t *I 
#define DT 0.005 I* delta time *I 
#define EN 5000 I* #series in the ensemble *I 
#define NC 20 /* #cross-section to be checked *I 
#define EY 5 !* #skip for output *I 
#defme so 3.0e-10 I* magnitude of the noise *I 

double 11 = 1.2; /* length of span 1 *I 
double a1 = 1.0005; I* speed ratio of span 1 to span 0 *I 
double vO = 1.0; !* standard speed of the web *I 
double eO, e1; I* strain at span 0 & 1 *I 



mainO 
{ 

int i, j, k; 
int idum = -13; 
double unitO, RK40; 
double avO[NC], avl[NC]; 
double sqO[NC], sql[NC]; 
double sig; 
FILE *fp, *fopenO; 

sig = sqrt( SO * 2.0 * PI ); 
el = 0.0; 
for ( j=O; j<NC; j++) 

avO[j] = avl[j] = sqO[j] = sqlUJ = 0.0; 

fp = DATAOUT; 
for ( i=O; i<EN; i++ ) { 

for ( j=O; j<NC; j++) ( 
for(k=O;k<EY;k++){ 

/*counter 
/* seed for unitO 
/*eO, el 
/* E[x] of eO & 1 
/* E[x"2] of eO & 1 
I* magnitude of the generated noise 

eO= sig *(double) unit( &idum ); 
el = RK4( el ); 

} 

if(i=PICK) 
fprintf( fp, "%f\t%le\t%le'n", DT*(float) (j*EY +k), eO, el ); 

} 
avOUJ += eO; sqO[j] += eO * eO; 
avl[j] += el; sqlUJ += el * el; 

for ( j=O; j<NC; j++) { 
avO[j] I= (double) EN; sqO[j] I= (double) EN; 

} 
. avlUJ I= (double) EN; sql[j] I= (double) EN; 

fclose( fp ); 

fp=OUTPUT; 
fprintf( fp, "time\tE[e0]\tE(e0"2]\tE(el]\tE(e1"2]'n" ); 
for ( j=O; j<NC; j++ ) { 

} 

fprintf( fp,"%6.3lf\t", (j+l)*DT*EY ); 
fprintf( fp,"% 10.3le\t% 10.3le\t" , avOUJ, sqO[j] ); 
fprintf( fp,"%10.3le\t%10.3le'n", avlUJ, sql[j]/DT ); 

fclose( fp ); 
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double RK4( x ) 
doublex; 
{ 

double h, kl, k2, k3, k4; 
double flO; 

h =DT; 
kl = h * fl( X ); 

k2 = h * fl( X + kl/2.0 ); 
k3 = h * fl( X + k2/2.0 ); 
k4 = h * fl ( X + k3 ); 

/* 4th order Runge Kutta *I 

X += ( kl + k2*2.0 + k3*2.0 + k4 ) I 6.0; 
return( x ); 

double f1 ( x ) 
double x; 
{ 

return( (eO- al * x) * vO Ill); 
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I* function unitO returns a uniformly distributed deviate with zero mean and unit variance using ranlO 
as the source of uniform deviates. *I 

float unit( idum ) 
int *idum; 
{ 

float x, ranlO; 

x = 2.0 * rani( idum) - 1.0; I* 
x *= sqrt( 3.0 ); /* 

return ( x ); 

[-1,1] *I 
set variance -> 1 
Suppose this distributes uniformely in the 
interval of [-a,a], then 
E[X"2] = a"2{3, E[X] = 0, 
Var[X] = a"2{3 = 1, thus a= sqrt(3) *I 
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I* function randl(idun) (from NUMERICAL RECIPES inC [12]) returns a uniform random deviate 
between 0.0 and 1.0. Argument idum = (any negative number) to initialize or reinitialize the sequence. 

*I 

#defme M1 259200 
#define IA1 7141 
#defme ICl 54773 
#define RMl (1.0/Ml) 
#defme M2 134456 
#define IA2 8121 
#defme IC2 28411 
#define RM2 (1.0/M2) 
#defme M3 243000 
#define IA3 4561 
#defme IC3 51349 

float ran1(idwn) 
int *idum; 
{ 

static long 
static float 
float 
static int 
int 

ix 1 ,ix2,ix3; 
r[98]; 
temp; 
iff::(); 
j; 

if (*idum <0 II iff 0) { 
iff= 1; 
ix1 = (ICl-(*idum))% M1; 
ix1 = (IA1*ix1+IC1)% Ml; 
ix2 = ix1 % M2; 
ix1 = (IA1 *ix1+IC1) % M1; 
ix3 = ixl % M3; 
forO= 1; j<=97; j++) { 

} 

ix1 = (IA1*ix1+IC1)% M1; 
ix2 = (IA2*ix2+IC2) % M2; 
rfj] = (ix1+ix2*RM2) * RMI; 

*idwn=l; 

ixl = (IAI*ix1+1Cl)% Ml; 
ix2 = (IA2*ix2+1C2) % M2; 
ix3 = (IA3*ix3+1C3) % M3; 
j=1 + ((97*ix3)/M3); 
if G > 97 II j< 1) printf(" RANI: This cannot happen."); 
temp= r(j]; 
rfj] = (ixl+ix2*RM2) * RMI; 

return temp; 



PROGRAMS 

l****************************************************rn*a*s*a*k*a*z*u* 

output 
notes 

:chi-square "GOODNESS of FIT" test 
: original author of this program is unknown. 

*****************************************************a*k*a*t*s*u*k*a*l 

#include "stdio.h" 
#include "rnath.h" 

#define POINTS 
#defineN 

5000 
12 
l.Oe6 
0.4 
5.38 
stdout 

#define BIGNUM 
#define SIDZ 
#define CID_TBL 
#define OUIPUT 

rnainO 
{ 

float x[POINTS]; 
float x_upper[N]; 
float p[N]; 
float F[N]; 
float f[N]; 
float chi, diff, durn; 
float mean, vari; 
float convertQ, ranlO; 

int i, j; 
int idurn = -13; 
Fll..E *fp, *fopenO; 

chi = diff = mean = vari = 0.0; 
for( i=O; i<N; ++i ) 

p[i] = F[i] = f[i] = 0.0; 

for( i=O; i<POINTS; ++i) { 
dwn =rani( &idurn ); 
x[i] =durn; 

) 

dwn = convert( durn ); 
mean += durn; 
vari += durn * durn; 

/* maximum number of data points 
I* number of intervals 
/* BIGNUM should be > largest data 
I* width of intervals in fraction of z 
/* chiA2 for 9 dof and alpha = 0.80 
I* Filename for the output 

I* data points 
/* upper bound of the data intervals 
I* probability for the upper boundary 
/*expected freq. in each interval 
/* actual freq. in each interval 

I* mean, variance 
I* ranlO: unit deviates 

mean I= POINTS; 
vari I= POINTS; vari -= mean * mean; 
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statu( x_upper, p ); 

for( i=O; i<POINTS; ++i ) { 
for( j=O; j<N-1; ++j) 

/* Obtain variables for Chi"2 Table 

if( x_upper[j] < x[i] && x[i] <= x_upperU+ 1] ) fU+ 1] += 1.0; 
if( x[i] <= x_upper[O] ) f[O] += 1.0; 

fp=OUTPUT; 
fprintf( fp, "mean= \t%f\n", mean); 
fprintf( fp, "variance= \t%f\n\n", vari ); 
fprintf( fp, "No.\texpect\tactual\tdiff.\n" ); 
for( j=O; j<N; ++j ) { 

} 

FUJ = POINTS * pUJ; 
diff = (FUJ - fU]) * (FUJ - fU]) I FUJ; 
chi+= cliff; 
fprintf( fp, "%2d\t%6.3t\t%6.3t\t%6.4f\n" j, FUJ, fU],diff ); 

fprintf( fp, ''\n\n" ); 

fprintf( fp, "The calculated value ofX"2 is %6.2f\n\n",chi ); 
fprintf( fp, "The chi"2 value from the table is %6.2f\n\n",CID_TBL ); 
fprintf( fp, "The hypothesis of homogeneity is " ); 
if(chi > CID_TBL) fprintf( fp, "not"); 
fprintf( fp, "accepted-n" ); 
fclose{ fp ); 

statu( x_upper, p) 
float x_upper[], p[]; 
{ 

/* for unit deviates *I 

inti; 

for( i=O; i<N; ++i) { 
x_upper[i] = 1.0 I ((float) N) * (float) (i+ 1); 
p[i] = 1.0 I ((float) N); 

return; 

float convert( x ) 
float x; 
{ 

return ( (2.0 * x -1.0) * sqrt(3.0) ); 

I* from unit deviates to zero mean unit variance *I 
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PROGRAM9 

/****************************************************rn*a*s*a*k*a*z*u* 

output : auto-correlation function 
R[i] = Sigma[ d[j][O] * d[j][i] ]/ NO_ENSEMBLE 
for (i=O to MAX_DATA). 

*****************************************************a*k*a*t*s*u*k*a*l 

#include "stdio.h" 
#include "rnath.h" 

#define MAX_DATA 
#defme NO_ENSEMBLE 

mainO 
{ 

int i, j; 

11 
500 

/* #data in each series 
/* #series for an ensemble 

int 
float 
float 

idum = -13; /* seed for the generator ran 10 
unitO; 
d[NO_ENSEMBLE][MAX_DATA], r, rO; 

for ( j=O; j<NO_ENSEMBLE; ++j ) { 
for( i=O; i<MAX_DATA; ++i) 

d[j][i] = unit( &idum ); 

for ( i=O; i<MAX_DATA; ++i) { 
r =0.0; 
for ( j=O; j<NO _ENSEMBLE; ++j ) 

r += d[j][O] * d[j][i]; 
r /= NO_ENSEMBLE; 
if (i=O) rO = r; . 
printf( "%d\t%t\n", i, r/rO ); 
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PROGRAM 10 

/****************************************************rn*a*s*a*k*a*z*u* 

output : mean and variance of the random data series 

*****************************************************a*k*a*t*s*u*k*a*/ 

#include "stdio.h" 

#define PNT 500000 
#defme OUT stdout 

rnainO 
{ 

double mean, vari, durn; 
float unitO; 
long int i; 
int idurn = -13; 
FILE *fp, *fopenO; 

mean = vari = 0.0; 
for( i=O; i<PNT; ++i ) { 

durn =(double) unit( &idurn ); 
mean += durn; 
vari += durn * durn; 

mean /=(double) PNT; 
vari /= (double) PNT; vari -=mean * mean; 

fp=OUT; 
fprintf( fp, "mean= \t%le\n", mean); 
fprintf( fp, "variance= \t%le\n\n", vari ); 
fclose(fp); 
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