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Abstract 

This dissertation research was undertaken to better understand the optimal 

design of convection-permitting storm-scale ensemble forecast (SSEF) systems that 

resolve features ranging from synoptic to convective scales.  The focus of the research 

is on the data assimilation (DA) and initial condition (IC) perturbation methods, both of 

which are uniquely affected by the multi-scale interactions inherent in an SSEF system.  

There are four components to this research.  First, a GSI-based DA system is 

implemented in the multi-scale scenario with observations ranging from synoptic scale 

rawinsonde to convective scale radar observations.  The GSI-based 3DVar and EnKF 

techniques are also compared to each other in this multi-scale context.  Second, the 

systematic sensitivities of convection forecasts to different simple methods of IC 

perturbation are evaluated.  Third, Observation System Simulation Experiments 

(OSSES) are conducted using ensemble analyses generated with the GSI-based EnKF to 

understand the impacts of different methods of generating more complex flow-

dependent multi-scale IC perturbations.  Fourth, the impacts of inconsistencies between 

the initial and lateral boundary condition (LBC) perturbations are evaluated as well as 

the impacts of model and physics errors in non-OSSE real-data experiments.   

In the first part of this research, the multi-scale GSI-based EnKF and 3DVar 

techniques are systematically compared to each other to better understand the impacts 

of their differences on the analyses at multiple scales and the subsequent convective 

scale probabilistic forecasts.  Averaged over ten diverse cases, 8h forecasts of hourly 

accumulated precipitation initialized using GSI-based EnKF are more skillful than those 

initialized using GSI-based 3DVar, both with and without storm-scale radar DA.  The 
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advantage from radar DA persists for ~5h using EnKF, but only ~1h using 3DVar.  A 

case study of an upscale growing MCS is also examined.  The better EnKF-initialized 

forecast is attributed to more accurate analyses of both the mesoscale environment and 

the storm scale features.  The mesoscale location and structure of a warm front is more 

accurately analyzed using EnKF than 3DVar.  Furthermore, storms in the EnKF multi-

scale analysis are maintained during the subsequent forecast period.  However, storms 

in the 3DVar multi-scale analysis are not maintained and generate excessive cold pools.  

Therefore, while the EnKF forecast with radar DA remains better than the forecast 

without radar DA throughout the forecast period, the 3DVar forecast quality is degraded 

by radar DA after the first hour.  Diagnostics revealed that the inferior analysis at meso- 

and storm-scales for the 3DVar is primarily due to the lack of flow-dependence and 

coherent cross-variable correlation, respectively, in the 3DVar static background error 

covariance.  

In the second part of this research, multi-scale precipitation forecast sensitivities 

are examined for two events and systematically over 34 events out to 30-h lead time 

using Haar Wavelet decomposition of hourly accumulated precipitation.  The impacts of 

two small scale IC perturbation methods are compared to the larger scale IC and physics 

perturbations included in an experimental convection-allowing ensemble.  For an event 

where the forecast precipitation is driven primarily by a synoptic scale baroclinic 

disturbance, small scale IC perturbations result in little precipitation forecast 

perturbation energy on medium and large scales, compared to larger scale IC and 

physics (LGPH) perturbations after the first few forecast hours.  However, for an event 

where forecast convection at the initial time grows upscale into a Mesoscale Convective 
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System (MCS), small scale IC and LGPH perturbations result in similar forecast 

perturbation energy on all scales after about 12 hours.  Averaged over 34 forecasts, the 

small scale IC perturbations have little impact on large forecast scales while LGPH 

accounts for about half of the error energy on such scales.  The impact of small scale IC 

perturbations is also less than, but comparable to, the impact of LGPH perturbations on 

medium scales.  On small scales, the impact of small scale IC perturbations is at least as 

large as the LGPH perturbations.  The spatial structure of small scale IC perturbations 

also affects the evolution of forecast perturbations, especially at medium scales.  For 

these random homogeneous small scale IC perturbations, there is little additional impact 

of the small scale IC perturbations when added to LGPH.  Additional study of more 

realistic flow-dependent IC perturbations, and their impacts on ensemble forecast skill 

in addition to deterministic forecast sensitivity, are therefore motivated. 

In the third part of this research, the impacts of multi-scale flow-dependent IC 

perturbations (MULTI) for SSEFs are investigated using perfect model OSSEs.  The 

MULTI perturbations are compared to downscaled IC perturbations from a larger scale 

ensemble (LARGE).  Forecasts initialized at different stages of the upscale growth of an 

MCS case study are first used to qualitatively understand the impacts of the IC 

perturbation methods.  Scale-dependence of the results is assessed by evaluating two-

hour storm-scale reflectivity forecasts in 0-48km neighborhoods separately from hourly 

accumulated precipitation forecasts in mesoscale neighborhoods with a 48-km radius.  

For the reflectivity forecasts over small neighborhood radii (0-8km), the small scales of 

IC perturbation, resolved in MULTI but not LARGE, are advantageous for about 1h.  

For reflectivity forecasts at larger radii and for mesoscale precipitation forecasts, the 
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differences in IC perturbations on scales resolved by both MULTI and LARGE 

dominate the forecast skill.  The MULTI IC perturbations are more consistent with the 

analysis uncertainty than the LARGE IC perturbations in the vicinity of the developing 

MCS.  However, an area of spurious convection away from the observed MCS contains 

unrealistically large mid-level moisture perturbations for MULTI that can have the 

effect of enhancing the spurious convection. The relative importance of these 

differences between MULTI and LARGE, and their effects on forecast skill, depends on 

when during the MCS upscale growth process the forecasts are initialized.   

The perfect-model OSSE case study is also extended to 11 diverse cases.  The 

mesoscale precipitation forecasts from MULTI are systematically more skillful than 

LARGE at 1h and ~5-9h lead times.  This is due to the smaller magnitude mesoscale IC 

perturbations near analyzed convective systems for MULTI that are more consistent 

with the analysis uncertainty than for LARGE.  This difference also leads to 

systematically more skillful reflectivity forecasts for MULTI than LARGE using radii 

>4km.  The reflectivity forecasts using radii of 0-4km are systematically more skillful 

for MULTI than LARGE during the first hour due to the presence of the small scale IC 

perturbations.  The small scale IC perturbations also systematically contribute to further 

improving the MULTI mesoscale precipitation forecasts after ~5h.   

In the final part of this research, two considerations for operational application 

of the multi-scale IC perturbation methods are investigated.  First, the impact of 

inconsistencies between the multi-scale IC perturbations and mesoscale LBC 

perturbations is evaluated.  Spurious pressure waves originating at the LBCs result from 

this inconsistency.  However, unlike previous studies with a larger resolution difference 
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between then inner and outer domains and with different DA methods on each domain, 

significant impacts on convective scale probabilistic forecast skill are not found with the 

multi-scale GSI-based DA system.  Second, real-data experiments with model error are 

used to further understand the practical implications of the OSSE results.  In real-data 

experiments, LARGE is generally more skillful than MULTI except for reflectivity 

forecasts at short lead times of ~30-90 minutes, depending on spatial scale.  This is 

because the larger magnitude mesoscale IC perturbations in LARGE compensate for 

unrepresented model errors.  The flow-dependent small-scale IC perturbations are even 

more important for storm-scale reflectivity forecasts in the ensemble with unrepresented 

model error than in the perfect-model OSSEs. 
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Chapter 1: Introduction 

 

1.1 Background and motivation 

Convection-permitting (i.e., grid spacing of 1~4 km and no cumulus 

parameterization) forecasts have shown advantages over coarser resolution models for 

many different convective-scale forecasting applications.  Such applications include the 

climatological diurnal cycle of convective precipitation events (Clark et al. 2007), 

mesoscale quantitative precipitation forecasting (Clark et al. 2009, 2012; Johnson and 

Wang 2012; Duc et al. 2013) and short lead time high impact severe weather events 

(Stensrud et al. 2009; Yussouf et al. 2013).  Convection-permitting models have 

therefore been widely used in storm-scale ensemble forecasting (SSEF) systems (e.g., 

Clark et al. 2012).  However, compared to global and mesoscale ensemble systems there 

has been relatively little systematic study of how to optimally design SSEFs (e.g., Clark 

et al. 2010, 2011; Johnson et al. 2011a,b).  A few early studies have investigated the 

impacts of ensemble size (Clark et al. 2011) and the impacts of different sources of 

diversity on the ensemble spread (Clark et al. 2010; Johnson et al. 2011b).  More 

extensive research on the optimal design of SSEF systems is still needed. 

The optimal design of SSEF systems remains largely unknown, although coarser 

resolution ensembles have been relatively well studied.  For example, medium range 

(~1 week) synoptic scale (~100 km grid spacing) ensembles have been studied for about 

two decades (Buizza and Palmer 1995; Toth and Kalnay 1997; Houtekamer et al. 1996; 

Wang and Bishop 2003; Wang et al. 2004).  Short-range (~1-3 days) mesoscale (~10-20 

km) ensembles have also been the focus of many past studies (Du et al. 1997; Stensrud 
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et al. 1999; Marsigli et al. 2001; Xu et al. 2001; Grimit and Mass 2002; Eckel and Mass 

2005; Lu et al 2007; Li et al. 2008; Berner et al. 2011).  However, the optimal design of 

SSEFs may be quite different than that of coarser resolution ensembles (Hohenegger 

and Schär 2007b). 

Convective precipitation forecasting is an inherently multi-scale challenge 

because of the broad range of spatial scales impacting the initiation and evolution of 

convective systems (Lorenz 1969; Perkey and Maddox 1985; Zhang et al. 2007; 

Rotunno and Snyder 2008; Johnson et al. 2015).  Convective systems are not only 

strongly influenced by the larger scale environment within which they occur, but also in 

turn impact the larger scale environment itself (e.g., Perkey and Maddox 1985).  This 

sensitivity to features on multiple scales, and their interactions, has important 

implications for the design of SSEF systems at convection-permitting resolution.  For 

example, since an accurate forecast depends on accurate initial condition (IC) analyses 

for features on all resolvable spatial scales, appropriate multi-scale data assimilation 

(DA) systems are needed.  Furthermore, since some amount of IC error is inevitable, the 

ensemble IC perturbations should accurately sample the effects of the multi-scale IC 

analysis errors on the forecast uncertainty.  There is a natural link between ensemble 

forecasting and ensemble DA.  Ensemble DA provides an analysis ensemble that can 

provide ensemble IC perturbations.  Meanwhile, the ensemble forecasts initialized from 

such perturbations can provide flow dependent background error covariance 

information to an ensemble DA system. 
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 1.1a   Data assimilation methods for SSEFs 

The accuracy of convective scale precipitation forecasts depends not only on 

convective scale processes, but also on the synoptic and mesoscale environment and 

interactions across multiple scales (e.g., Lorenz 1969; Perkey and Maddox 1985; Zhang 

et al. 2007; Rotunno and Snyder 2008).  A unique challenge for storm-scale DA is to 

properly estimate the atmospheric state on such a broad range of spatial scales.  

Observations resolving synoptic-, meso- and convective-scale features are therefore 

needed.  The forecast model must also permit convective scale motions over a large 

enough domain to also resolve synoptic scale features.  

Early studies assimilating convective scale radar data used a homogeneous 

ambient environment derived from a representative atmospheric sounding (e.g., Snyder 

and Zhang 2003; Dowell et al. 2004, 2011; Caya et al. 2005; Aksoy et al. 2009,2010).  

Some studies used coarser resolution model analyses and forecasts as background fields 

for storm scale DA, often adopting different independent DA methods for each (Xiao 

and Sun 2007; Stephan and Schraff 2008; Zhao et al. 2008; Dixon et al. 2009; Snook et 

al. 2011; Caron 2013; Brousseau et al. 2014; Chang et al. 2014; Simonin et al. 2014; 

Wheatley et al. 2014).  A few studies have applied three-dimensional variational 

(3DVar) techniques iteratively with successively smaller length scales of background 

error covariance to generate multi-scale analyses (e.g., Crook and Sun 2002; Dixon et 

al. 2009; Xie et al. 2010, Schenkman et al. 2011).  More recently, some studies have 

used ensemble based DA methods such as the Ensemble Kalman Filter (EnKF; Evensen 

2003; Hamill 2006) to provide multi-scale analyses by assimilating observations 

resolving synoptic to convective scale features (Zhang et al. 2009; Yussouf et al. 2013; 
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Thompson 2014, Sobash and Wicker 2014).  In such studies, the same ensemble based 

DA system is used to analyze both the storm scale features and the meso- to synoptic 

scale environment. 

One advantage of ensemble based DA over 3DVar is the potential for more 

accurate spatial and cross-variable correlations between model state and observed 

variables.  This is made possible by the flow dependent ensemble based background 

error covariance.  There has not yet been a systematic comparison of the variational and 

ensemble based methods in the context of multi-scale DA where scales ranging from 

several km to 1000s of km are resolved by both the model and the observations.  Past 

studies comparing 3DVar with ensemble based DA focus either on large scale (i.e., 

relatively coarse resolution requiring cumulus parameterization) or convective scale 

(e.g., radar observation) DA alone.  For example, mesoscale to global scale (grid 

spacing 10s to 1000s of km) studies have shown EnKF and other ensemble based DA 

techniques to produce both more accurate analyses and forecasts than 3DVar, especially 

in data sparse regions (e.g., Meng and Zhang 2008, 2011; Whitaker et al. 2008, 2009; 

Wang et al. 2008ab, 2011, 2013; Yang et al. 2009; Buehner et al. 2010; Zhang, M. et al. 

2011; Wang, H. et al. 2013; Schwartz and Liu 2014). Convective scale (grid spacing of 

several km) studies comparing 3DVar and ensemble based DA have been more limited 

in terms of the amount of studies, the types of radar observations assimilated and the 

diversity of cases studied.  For example, Potvin et al. (2013) compared 3DVar and 

EnKF supercell analyses from radial wind observations.  Li et al. (2012) compared 

tropical cyclone forecasts initialized from 3DVar and hybrid ensemble-3DVar analyses, 

also using radial wind observations.  Caya et al. (2005) compared 4DVar and EnKF for 
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convective scale radar DA in a perfect model OSSE framework for an isolated supercell 

case.  Carley (2012) showed that forecasts initialized from hybrid ensemble-3DVar 

analyses outperformed those from 3DVar for convective-scale radar DA with a single 

case that featured upscale growth of supercells into a multicellular mode.  Carley (2012) 

used the Nonhydrostatic Multiscale Model on the B grid (NMMB) and the Ensemble 

Transform technique, rather than EnKF, to obtain the ensemble part of the hybrid 

background error covariance.  Different from these early studies, the present study 

compares 3DVar and EnKF in the multi-scale scenario with radar radial velocity and 

reflectivity observations using ten diverse mid-latitude convection cases.   

 

1.1b   Initial condition perturbation methods for SSEFs 

Limited predictability of warm season precipitation forecasts has been 

demonstrated by low deterministic forecast skill (Fritsch and Carbone 2004), theoretical 

arguments (Thompson 1957; Lorenz 1963), sensitivity to small perturbations (e.g., 

Hohenegger et al. 2006, Hohenegger and Schär 2007a, 2007b, Zhang et al. 2003, 2006), 

and sensitivity to model and physics differences (e.g., Zhang and Fritsch 1988; Zhang et 

al. 2006; Johnson et al. 2011a,b; Johnson and Wang 2012, 2013).  The ability to resolve 

small scale features associated with rapid non-linear error growth limits the 

predictability of convection-permitting forecasts even more than that of coarser 

resolution forecasts (Elmore et al. 2002; Walser et al. 2004; Hohenegger et al. 2006; 

Hohenegger and Schär 2007a, 2007b; Zhang et al. 2003, 2006).  Predictability studies at 

convection-permitting resolution have been limited to a small number of forecasts, 

rather than systematic evaluation over a period of many forecasts.  Understanding 



6 

perturbation growth is important for ensemble design because ensemble perturbations 

are intended to approximate the growth of errors and hence the forecast uncertainty 

(Leith 1974; Toth and Kalnay 1997).   

Hohenegger and Schär (2007a) found similar convective precipitation forecast 

sensitivity to different perturbation methods after about 11 hours for a case study.  

However, it is not known if these results are characteristic of other cases with different 

background flow and/or a different role of topography.  Other studies have 

demonstrated large differences in predictability for different events.  For example, 

Zhang et al. (2006) showed reduced sensitivity to small scale IC perturbations for a 

warm season heavy precipitation event compared to a cold season large scale cyclone 

event.  Walser et al. (2004) and Hohenegger et al. (2006) further found that some warm 

season cases in the Alpine region characterized by stratiform precipitation exhibited 

greater predictability than some cases characterized by deep moist convection.  

However, it was also found that deep convective cases can exhibit higher predictability, 

depending on other factors such as the presence of topography and the residence time of 

the perturbations in convectively unstable regions.  Done et al. (2012) have also related 

different aspects of predictability on two case studies to whether convection is in 

statistical equilibrium with large scale forcings.  The characteristics of the evolution of 

different types of perturbations have yet to be systematically studied over an extended 

period of many convection-permitting forecasts.   

While IC errors on multiple scales contribute to the forecast error, it is not clear 

how to optimally design corresponding multi-scale IC perturbations for SSEFs.  Similar 

to regional mesoscale ensembles (e.g., Wang et al. 2014), IC perturbations for SSEFs 
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are typically generated by either downscaling perturbations from a coarser resolution 

ensemble without small scale IC perturbations (e.g., Hohenegger et al. 2008; Xue et al. 

2010a,b; Zhang et al. 2010 ; Peralta et al. 2012 ; Schwartz et al. 2014; Kühnlein et al. 

2014), or generating multi-scale IC perturbations directly on the forecast grid using 

cycled ensemble-based DA (e.g., Vie et al. 2011 ; Snook et al. 2011; Harnisch et al. 

2014).  Multi-scale IC perturbations have been shown to be more effective than 

downscaled global ensemble perturbations for regional mesoscale ensembles (e.g., 

Wang et al. 2014).  However, evaluation of the relative advantages of these IC 

perturbation methods for SSEFs has been very limited (e.g., Harnisch  et al. 2014; 

Kuhnlein et al. 2014).  While it may be computationally expensive to generate an 

ensemble of IC perturbations at convection-permitting resolution, IC perturbation 

methods appropriate for coarser resolution ensembles may be particularly ill-suited for 

SSEFs (Hohenegger and Schar 2007a).  It remains unclear what the advantages of 

generating the IC perturbations at the full model resolution are for SSEFs and how to 

optimally do so in the context of convective precipitation forecasting.  

Small scale IC perturbations can have significant impacts on convection-

permitting ensemble spread as a result of rapid propagation and upscale growth 

(Hohenegger et al. 2006; Hohenegger and Schär 2007a,b; Zhang et al. 2003, 2006; 

Leoncini et al. 2010 ; Chapter 3).  However, initial studies have suggested that the 

added benefit of small scale IC perturbations may be very limited when larger scale 

perturbations are already present (e.g., Kong et al. 2007).  Durran and Gingrich (2014) 

have even suggested that explicitly added small scale IC perturbations have no practical 

importance because of rapid downscale propagation of larger scale perturbation energy.  
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While the predictability study in Chapter 4 and Durran and Gingrich (2014) use random 

homogenous small scale IC perturbations, the forecast sensitivity can depend on the 

spatial structure of the small scale IC perturbations (Hohenegger and Schär 2007a; 

Chapter 3).  Therefore, the impact of more realistic flow-dependent small scale IC 

perturbations that sample the fastest growing errors remains an open question in the 

context of multi-scale IC perturbations for SSEFs.   

While high resolution, multi-scale IC perturbations may have forecast 

advantages, some studies have shown a negative impact of the inconsistency with the 

coarser resolution perturbations at the lateral boundaries (Caron 2013; Wang et al. 

2014).  Such inconsistencies can be alleviated by blending the multi-scale IC 

perturbations with the largest scales of the outer domain IC/LBC perturbations (e.g., 

Caron 2013).  Therefore the impact of IC/LBC perturbation inconsistency is also 

evaluated in the context of the ensemble forecast system used in this study. 

 

1.2 Dissertation overview 

The overall goal of this research is to better understand the optimal design of 

DA and IC perturbation methods for SSEFs, in the context of convective scale 

probabilistic forecasts.  A multi-scale DA system is demonstrated and used to 

systematically compare 3DVar and EnKF techniques in the multi-scale DA context.  

The impacts of different aspects of IC perturbation methods for SSEFs are then 

evaluated in a series of experiments with increasing complexity.   

A GSI-based 3DVar and EnKF DA system is extended to the multi-scale 

assimilation of observations ranging from synoptic scale rawinsonde to convective scale 
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radar observations in Chapter 2.  The EnKF and 3DVar techniques are systematically 

compared to each other to better understand the impacts of differences between the DA 

techniques on the analyses at multiple scales and the subsequent convection forecasts. 

The sensitivity of hourly accumulated precipitation forecasts to large scale IC 

and physics perturbations is systematically compared to the sensitivity to different types 

of simple random homogeneous small scale IC perturbations in Chapter 3. 

Ensemble analyses provided by the multi-scale GSI-based EnKF system are 

used to generate more complex mesoscale and multi-scale flow-dependent IC 

perturbations in a perfect model Observation System Simulation Experiment (OSSE) 

case study in Chapter 4.  Different aspects of the IC perturbation methods are evaluated 

to qualitatively understand the impacts on SSEF skill for different convective 

forecasting applications. 

The OSSE study is extended to 11 diverse convectively active cases to obtain a 

more robust objective understanding of the systematic impacts of the multi-scale IC 

perturbation method in Chapter 5.  

The impacts of inconsistencies between the IC and LBC perturbations are 

investigated in Chapter 6. 

Finally, in Chapter 7 the IC perturbation experiments from the OSSE study are 

repeated using the real data analyses and forecasts from Chapter 2.  The real-data 

experiments show the impacts of model error, which is absent in the OSSEs, on the 

results.  

A summary and discussion of conclusions is presented in Chapter 8. 
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Chapter 2: Multi-scale GSI-based data assimilation: Comparison of 

EnKF and 3DVar.  

 

2.1 Introduction 

In this chapter, a multi-scale Gridpoint Statistical Interpolation (GSI)-based data 

assimilation (DA) system is used to better understand the differences between EnKF 

and 3DVar analyses in the context of multi-scale DA, and the impact of such 

differences on subsequent convective scale precipitation forecasts.  Here, multi-scale 

DA refers to the assimilation of observations from networks that have been designed to 

sample different scales of motion ranging from synoptic-scale rawinsonde observations 

to convective scale radar observations.  The cases selected for systematic evaluation 

represent convective organization on scales ranging from discrete cellular convection to 

supercells to organized Mesoscale Convective Systems (MCS).  The cases also include 

forcing mechanisms on a range of scales such as synoptic scale waves and fronts, 

mesoscale features such as drylines and storm scale features such as cold pools.  A case 

study of an upscale growing MCS is also evaluated in greater detail to further 

understand the systematic differences.   

The GSI-based DA system development and configuration are described in 

section 2.2 while the forecast events and observation data are presented in section 2.3.  

Systematic results over 10 cases are presented in section 2.4 and the results for a case 

study are presented in section 2.5.  Section 2.6 contains a summary and discussion of 

conclusions. 
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2.2 System development and configuration 

2.2a Forecast model configuration 

The Weather Research and Forecast (WRF) Advanced Research WRF (ARW) 

model (Skamarock et al. 2005) is a highly scalable numerical prediction system that is 

widely used in both research and operational forecasting applications.  The WRF-ARW 

version 3.2 (Skamarock and Klemp 2007) is used for the experiments in the present 

chapter and chapters 4-7.  An outer domain is configured with 12 km grid spacing and 

50 vertical terrain-following levels over a 326x259 grid point domain (Fig. 2.1).  The 

physics configuration includes the Mellor-Yamada-Janic boundary layer scheme with 

Eta surface exchange parameterization (Janjic´ 1994; 2001), Noah land surface model 

(Ek et al. 2003), Rapid Radiative Transfer Model for General circulation models 

longwave (Iacono et al. 2008) and Goddard shortwave radiation (Tao et al. 2003), WRF 

Single Moment 6-class (WSM6) microphysics (Hong and Lim 2006), and Grell-3 

cumulus parameterization (Grell and Dévényi 2002).  An inner nested domain is 

configured similarly, except with 4 km grid spacing over a 346x277 grid point domain 

(Fig. 2.1) and no cumulus parameterization. 
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Figure 2.1: Location of (a) outer and (b) inner domains for the 20 May 2010 case 

study.  A representative distribution of assimilated observation types is also shown.  

 

2.2b Extension of GSI-based 3DVar and EnKF for direct radar DA 

A GSI-based hybrid EnKF-3DVar system has been implemented operationally 

as part of the Global Forecast System (GFS) at the National Center for Environmental 

Prediction (NCEP).  The newly implemented hybrid system improved both global 

forecast and hurricane forecast applications (Hamill et al. 2011; Wang et al. 2013; 

Wang and Lei 2014).  The GSI-based hybrid system has also been integrated with other 

regional modeling systems such as the North American Mesoscale (NAM) model using 

the NMMB, the Rapid Refresh (RAP) using the WRF-ARW, and the Hurricane WRF 

(HWRF).  These deterministic regional NCEP operational models currently use the 

ensemble covariance from the GFS ensemble in their hybrid DA systems.  The GSI-

based 3DVar and EnKF systems are here extended by further developing the convective 

scale radar DA capability for the WRF-ARW model to enable multi-scale DA.  Since 
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the processing of observations, quality control and observation forward operators are all 

unified under the GSI framework, the GSI-based system allows a clean and direct 

comparison for understanding the differences between the multi-scale 3DVar and EnKF 

techniques.  The system also provides an opportunity to study the impacts of different 

methods of generating multi-scale SSEF IC perturbations from the EnKF analysis 

ensemble in Chapters 4-7.  In this subsection, the extension for GSI-based 3DVar is first 

described followed by the extension for GSI-based EnKF. 

GSI-based 3DVar combines the first guess background forecast and assimilated 

observations by variational minimization of a cost function (e.g., Wu et al. 2002).  The 

cost function includes penalty terms for the difference between the analysis and the 

observations, relative to the observation error covariance, and for the difference 

between the analysis and the background forecast, relative to the background error 

covariance.  In 3DVar, the background error covariance is predefined and quasi-static.  

3DVar therefore requires specification of a static background error covariance which 

affects how the observation information is spread out into the analysis.  Only the radar 

radial wind can be assimilated during variational minimization in the operational GSI-

based 3DVar.  The GSI-based 3DVar is here extended to directly assimilate radar 

reflectivity observations by implementing additional control variables, forward 

observation operator, and background error statistics.  Consistent with the WSM6 

microphysics scheme, the new control variables added to the GSI variational 

minimization are the mixing ratios of rain, snow and graupel hydrometeors.  The 

logarithm is first applied to these hydrometeor mixing ratio control variables to reduce 

non-Gaussianity of the error statistics and to minimize the errors associated with the 
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linearization and adjoint of the reflectivity observation operator.  Carley (2012) also 

extended the GSI variational minimization with hydrometeor control variables for the 

Ferrier microphysics scheme (Ferrier et al. 2002, 2011) and conducted experiments with 

the NMMB model.  

An observation forward operator consistent with WSM6 is also introduced into 

the GSI-based 3DVar system for reflectivity DA.  The observation operator defines the 

relationship between model control variables (hydrometeors) and the observed quantity 

(reflectivity).  The reflectivity is a function of the rain, snow and graupel hydrometeor 

mixing ratios that also depends on the background temperature.  The observation 

operator follows Dowell et al. (2011) except that, in addition to snow, hail is also 

classified as either wet or dry based on the background temperature as in Tong and Xue 

(2005).  The contribution to reflectivity from rain and snow/graupel is also set to zero if 

the background temperature is less than -5 C and greater than 5C, respectively.  This 

step avoids unrealistic increments that add snow/graupel at very warm levels or rain at 

very cold levels (Gao and Stensrud 2012). 

One of the challenges of 3DVar for radar reflectivity assimilation is the 

specification of an appropriate static background error covariance model.  The 

background errors of hydrometeor variables can be highly correlated with errors in 

other model variables (Michel et al. 2011).  However, including such cross-variable 

correlations in the static background error covariance model in a computationally 

efficient manner during variational minimization remains a challenge.  Therefore, cross-

variable correlations between hydrometeor and other control variable errors have 

typically been neglected in the static covariance in previous variational assimilation of 
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reflectivity observations (e.g., Caya et al. 2005; Carley 2012; Wang, H. et al. 2013).  

This approach is also used in the present study.  Future work will explore the inclusion 

of such cross variable correlations associated with reflectivity assimilation through the 

use of ensemble covariance in the variational framework, following a similar approach 

as the hybrid ensemble-variational DA method (e.g. Wang et al. 2008a). 

Here, the static 3DVar background error covariance for reflectivity observation 

assimilation is defined as follows.  The amplitudes of the background error variances 

for the hydrometeor mixing ratios are defined as a function of height and hydrometeor 

type.  The height dependence of the background error variance for each hydrometeor 

type is the variance of 5 minute ensemble forecasts initialized at 0000 UTC 20 May 

2010, averaged over the convectively active region.  The amplitude is further tuned to 

obtain subjectively reasonable looking increments and analyses when used to assimilate 

reflectivity observations in test cases.  The spatial correlation of the hydrometeor 

background errors is determined by tuning the spatial correlation of the static 

background error covariance that is used by the mesoscale NCEP NAM model to 

assimilate conventional water vapor observations.  The horizontal correlation length 

scale is reduced by a factor of 20 and the vertical length scale is reduced by a factor of 

4.  These values are also chosen to minimize objective and subjective errors during test 

cases.  The static background error covariance for radar radial wind assimilation is also 

tuned so that the spatial scale is reduced using the same factors as for reflectivity.   

The GSI-based EnKF is based on the Ensemble Square Root Filter (EnSRF) of 

Whitaker and Hamill (2002).  Like the GSI-based 3DVar, the GSI software performs 

the observation quality control and applies the observation operators to the model first-
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guess fields.  The GSI-based EnKF has the option to take into account the four-

dimensional ensemble covariance within the assimilation window to assimilate 

asynchronous observations.  This EnKF code has been efficiently parallelized following 

Anderson and Collins (2007) and directly interfaced with the GSI by using the GSI’s 

observation operators, pre-processing and quality control for operationally assimilated 

data.  In the GSI-based EnKF currently implemented operationally for NCEP GFS, it 

does not contain radar data assimilation.   

In this study, the GSI-based EnKF is further extended to include the assimilation 

of radar data through three new developments.  First, the ensemble observation priors 

are extended to include both radar radial wind and reflectivity.  This is accomplished by 

applying the GSI observation operators developed for GSI 3DVar on the first guess 

ensembles and ingesting the resulting observation priors into EnKF.  Second, the option 

to include rain, snow and graupel hydrometeor mixing ratios as state variables is added 

to the EnKF code.  Third, the EnKF WRF interface is extended to read the ensemble 

first guess and update the ensemble analysis of these new state variables. 

   

2.2c 3DVar configuration 

For the 3DVar experiments, specification of a static background error 

covariance is needed.  In this study, the outer domain has comparable resolution to the 

operational NAM.  The background error covariance from the regional NCEP NAM 

(NCAR 2011) is therefore adopted for non-radar observations assimilated on the outer 

domain.  The background error covariance for assimilation of radar observations is 

constructed and tuned as described above in section 2.2b. 
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2.2d EnKF configuration 

For the EnKF experiments, each forecast step contains a 40-member ensemble 

forecast and each analysis step provides a 40-member analysis ensemble.  The 12-km 

grid ensemble at the very beginning of the DA cycles is created by adding random 

perturbations to the operational NCEP GFS analysis.  These perturbations are drawn so 

that their covariance is equal to the static covariance in the WRF 3DVar (Wang et al. 

2008a).  The same method is used to perturb the 12 km outer domain LBCs.  The outer 

domain ensemble provides the initial and lateral boundary conditions for the inner 

domain ensemble.  

The general EnKF/EnSRF theory and equations have been described in many 

papers (e.g., Whitaker and Hamill 2002; Whitaker et al. 2008).  One challenge in 

applying EnKF is the treatment of system errors associated with the sampling errors and 

misrepresentation of model errors.  Covariance localization and inflation are commonly 

used to treat such deficiencies.  Optimal methods and parameters for covariance 

localization and inflation are application dependent.  The details of the methods used for 

the present study are outlined below.   

Two methods of posterior covariance inflation are used starting from the values 

found for Whitaker and Hamill (2012).  The parameters are tuned to minimize the first 

guess errors during the 20 May case study.  The first guess errors for the other cases are 

similar in magnitude to the 20 May case that is used for tuning, suggesting that the 

parameters are also generally appropriate for other cases.  The first inflation method is a 

height-dependent multiplicative inflation that is applied uniformly across the domain to 
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all ensemble perturbations.  This multiplicative inflation is intended to account for 

model errors that are not represented in the ensemble (Whitaker and Hamill 2012), such 

as the errors associated with physical parameterizations.  The amount of multiplicative 

inflation at the surface is 15% every 3 hours on the outer domain or, equivalently, 

~0.4% every 5 minutes on the inner domain.  The multiplicative inflation smoothly 

tapers to ~9% at 200mb and ~3% at the 50mb model top to avoid excessive spread near 

the model top (Fig. 2.2), similar to Zhu et al. (2013).  The second inflation method is 

Relaxation To Prior Spread (RTPS; Whitaker and Hamill 2012) which inflates the 

posterior ensemble spread to a fraction, α, of the prior ensemble spread.  The RTPS 

accounts for excessive spread reduction during the assimilation of observations 

resulting from sampling errors in the ensemble approximation of the Kalman gain.  

Thus the RTPS inflation is greatest where there are many observations and is absent 

where there are no observations.  For our experiments, a value for α of 0.95 is used to 

inflate the posterior ensemble spread to 95% of the prior ensemble spread for both the 

inner domain and outer domain.  On the outer domain, the average consistency ratio of 

observation first-guesses (i.e., ensemble spread divided by ensemble mean error) for 

wind, temperature and water vapor is 0.87 at the end of DA, indicating a reasonably 

well-tuned system.  On the inner domain the consistency ratios are stable and, similar to 

other studies (e.g., Aksoy et al. 2009; Dowell et al. 2011; Sobash and Stensrud 2013), 

indicate some ensemble under-dispersion with values ~0.75 for both radial velocity and 

reflectivity.  However, tuning tests show degradation of accuracy when the inflation is 

further increased (not shown). 
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Covariance localization is used to minimize the impact of sampling errors in the 

ensemble covariance which are greatest where the actual correlation is small, such as at 

large distances (Sobash and Stensrud 2013).  The covariance localization is applied 

using the Gaspari and Cohn (1999) function with a cutoff radius also tuned to minimize 

the first guess errors during the 20 May case study.  For the assimilation of 

synoptic/mesoscale observations on the outer domain, the localization is also height and 

variable dependent (Zhu et al. 2013).  For the synoptic/mesoscale observation 

assimilation, the horizontal localization is set to 700 km at the surface and increases by 

a factor of 1.5 at the model top (Fig. 2.2).  Vertical localization increases from 0.275 to 

0.55 scale height (natural log of pressure) for temperature and moisture and increases 

from 0.55 to 1.1 scale height for wind (Fig. 2.2).  For the inner domain storm-scale DA, 

constant covariance localization length scales are used.  For the inner domain DA, tests 

of horizontal covariance localization showed very little sensitivity of the forecast to the 

cutoff radius.  Among the range of radii tested, a value of 20 km (i.e., 5 grid points) 

showed a slight improvement over other values such as 16 and 12 km.  The chosen 

value of 20 km is comparable to the 18 km radius that was found to work well in 

Sobash and Stensrud (2013) for a similar 50-member ensemble.  However, this value is 

somewhat larger than that used in many early studies of EnKF with radar data.  Such 

early studies focused primarily on isolated supercells whereas Sobash and Stensrud 

(2013) suggest that the larger localization radius is beneficial for other convective 

modes, such as cell mergers and MCS cases.  The grid spacing of 4 km also necessitates 

a larger radius than used in past studies with 1~3km grid spacing.  The vertical 

localization for radar reflectivity and velocity assimilation is 1.1 in scale height units. 
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Figure 2.2: Covariance localization length scales used for EnKF for assimilation of 

synoptic/mesoscale observations on the outer domain in the horizontal (bottom 

axis, black line) and vertical (top axis, blue and green lines for T/Qv and wind 

respectively) directions. Also shown is the vertical profile of the constant 

multiplicative inflation (red line), using the top horizontal axis.. 

 

2.2e DA cycling configuration 

An important consideration for cycled multi-scale DA with observations and 

model that resolve many different scales of motion is the choice of cycling frequency.  

Peña and Kalnay (2004) suggest that the cycling frequency can be consistent with either 

the larger scale baroclinically driven or smaller scale convective instability driven 

modes of error growth, but not both.  This is because the atmosphere contains fast-

growing (i.e., moist convective instability) errors that saturate at a lower amplitude than 

slower-growing (i.e., synoptic scale baroclinic instability) errors.  Here, the storm scale 

and synoptic/mesoscale observations are assimilated with different cycling frequencies, 

chosen to correspond to the approximate error growth rates of features observed by 

each.  A 3-hour cycling interval is used to assimilate the synoptic/mesoscale 
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observations on the outer domain and a 5 minute cycling interval is used to assimilate 

the storm scale radar observations on the inner domain (Fig. 2.3).   

Synoptic/mesoscale observations within the three hour window centered on the 

analysis time are assimilated.  For both 3DVar and EnKF, FGAT (First Guess at 

Appropriate Time) is used by outputting first-guess fields at 30-min increments until 1.5 

hours after the analysis time.  The first guess fields are then compared to the 

observations at the observation time using linear interpolation in time.  In addition, for 

EnKF asynchronous assimilation is adopted, where the ensemble covariance at the 

observation time determines the increment at the analysis time.  

The second to last outer domain analysis at 2100 UTC is used to initialize the 

first inner domain 5 minute forecast for the inner domain DA cycles (Fig. 2.3).  For 

each member, the forecast from the 2100 UTC outer domain analysis also provides the 

inner domain lateral boundary condition.  Radar observations within 5- minute windows 

are assimilated every five minutes (synchronously) until the final analysis time at 0000 

UTC.  Before the final analysis of radar observations at 0000 UTC, the 

synoptic/mesoscale observations are also assimilated on the inner domain.  This final 

step reduces the inconsistency between the outer and inner domain analyses of the 

synoptic/mesoscale environment.  The different cycling intervals for the mesoscale and 

storm-scale DA are chosen based on the different approximate error growth rates on the 

different spatial scales.  This configuration is therefore expected to result in IC 

perturbations that are flow-dependent and fast growing on multiple scales (Peña and 

Kalnay 2004). 
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Figure 2.3: Schematic of data assimilation configuration showing the 3 hour 

cycling of mesoscale outer domain DA, driven by NCEP GFS IC/LBCs, and 5 

minute cycling of storm scale inner domain radar DA, driven by the mesoscale 

analysis cycles. A forecast is then initialized from the 0000 UTC analyses. 

 

2.3 Forecast events and observation data 

2.3a Forecast events 

Ten convectively active events from May 2010 are selected for the evaluation of 

the GSI-based multi-scale DA system (Table 2.1).  Given the computationally intensive 

nature of the experiments, the number of cases (10) is chosen to provide a minimally 

adequate sample size for establishing statistically significant results while keeping the 

computational demands of the project manageable.  In order to ensure robust results, 

diverse cases including examples of both discrete cellular convection and organized 

MCSs are used.  The cases also include diverse forcing and organizing mechanisms 

such as strong upper level shortwaves and surface cold fronts, slow moving or 

stationary frontal zones with relatively weak large-scale ascent, and convective storm 

outflows.  Since the focus of each convective episode was in a slightly different 

geographic location for each case, the center of the model domain is relocated for each 

case (Table 2.1).   
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Table 2.1: Convectively active days from May 2010 that are selected for use in 

Chapters 2 and 4-7. The columns are, from left to right, analysis time, domain 

center latitude (degrees N), and domain center longitude (degrees E). 

Analysis Time Center latitude Center longitude  

00 UTC 11 May 37.5 -98.0 

00 UTC 13 May 35.5 -100.0 

00 UTC 15 May 32.0 -101.5 

00 UTC 17 May 34.0 -95.0 

00 UTC 18 May 29.0 -101.0 

00 UTC 19 May 36.0 -102.2 

00 UTC 20 May 35.5 -100.0 

00 UTC 21 May 34.0 -94.5 

00 UTC 25 May 37.5 -102.5 

00 UTC 26 May 37.5 -102.5 

 

In addition to the systematic results, a case study of the forecasts initialized at 

0000 UTC 20 May 2010 is selected for more in depth analysis.  The 20 May case is 

selected because the convective cells present at 0000 UTC grew upscale into an MCS 

during the forecast period.  This makes the forecast particularly sensitive to both the 

storm scale analysis and larger scale environment because of the multi-scale nature of 

such convective systems (e.g., Perkey and Maddox 1985) and upscale growth of small 

errors on this case (Chapter 3).  At 0000 UTC 20 May there was a broad and slow 

moving trough aloft with an embedded shortwave rounding its base (Fig. 2.4a).  At the 

surface, a weak surface low propagated from central Oklahoma into western Missouri 

between 0000 UTC 20 May and 0000 UTC 21 May without substantial intensification 

(Fig. 2.4b,d,f).  By 0600 UTC 20 May, cellular convection from the previous evening 

(Fig. 2.5a,b) was organizing into an MCS in eastern Oklahoma, Arkansas and Missouri 

that dissipated by 1200 UTC (Fig. 2.5c).  The remnant outflow boundary was the focus 

for additional convection that developed the following afternoon (Fig. 2.5d,e).  
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Stratiform precipitation also developed by 1200 UTC from southeastern Nebraska to 

southeastern Missouri (Fig. 2.5c) and weakened later in the day (Fig. 2.5d,e). 

 

Figure 2.4: Synoptic scale conditions at (a), (b) 0000 UTC 20 May, (c), (d) 1200 

UTC 20 May and (e), (f) 0000 UTC 21 May. In (a), (c) and (e), 500 hPa 

geopotential height of the control member forecast initialized at 0000 UTC 10 May 

is shown. In (b), (d) and (f) the mean sea level pressure, surface fronts and surface 

observations from the Hydrometeorological Prediction Center surface analysis 

archive are shown (http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml). 
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Figure 2.5: Observed hourly accumulated precipitation at (a) 0100 UTC 20 May 

2010, (b) 0600 UTC, (c) 1200 UTC, (d) 1800 UTC and (e) 0000 UTC 21 May 

 

2.3b Observation data 

Since both the 3DVar and EnKF techniques are GSI-based, the same 

observations and quality control methods are used for both techniques.  The 

synoptic/mesoscale observation data are obtained from the Climate Forecast System 

Reanalysis project at the NOAA Operational Model Archive and Distribution System 

(NOMADS).  These observations include rawinsonde, surface station, surface mesonet, 

Aircraft Communications Addressing and Reporting System (ACARS), and NOAA 

wind profiler observations (Fig. 2.1).  

Radar observations of reflectivity and radial velocity are obtained from the 

NEXRAD level 2 data archived at the National Climate Data Center (NCDC) and 
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quality controlled using the Warning Decision Support System – Integrated Information 

(WDSSII; Lakshmanan et al. 2007a) software (www.wdssii.org).  For the reflectivity 

data, the neural network based w2qcnn utility within WDSSII (Lakshmanan et al. 

2007b, 2010) is used to remove non-meteorological echoes.  The reflectivity data are 

then thresholded at 5 dBZ such that all data less than or equal to 5 dBZ are considered 

“no precipitation” observations (Aksoy et al. 2009).  Velocity data are then dealiased 

using a two-dimensional dealiasing algorithm (Jing and Wiener 1993).  Velocity data 

are also thresholded based on the reflectivity data, such that the velocity data are 

omitted where the reflectivity is less than or equal to 5 dBZ (Aksoy et al. 2009).  

Additional gross error checks are also performed within GSI.  Velocity observations are 

rejected if the difference from the background value is greater than 30 ms
-1

 which is 

only likely to occur in cases of extreme aliasing that was missed during pre-processing.  

Reflectivity observations are not rejected based on the observation-background 

difference because very large differences may not indicate bad observation data, 

especially during the early DA cycles.  The observation error of radar velocity and 

reflectivity is assumed to be 2 m s
-1

 and 5 dBZ, respectively. 

The precipitation forecasts are verified against radar-derived quantitative 

precipitation estimates from the National Severe Storms Laboratory Q2 product (Zhang, 

J. et al. 2011). 

 

2.4 Results aggregated over 10 forecasts 

Ten diverse cases are used to provide a robust evaluation of the impact of the 

differences between multi-scale GSI-based EnKF and 3DVar.  The cases include a 
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variety of different forcing mechanisms and convective modes.  In this study, 

“mesoscale analysis” refers to the analysis generated by the outer domain DA which 

assimilates observations that only resolve mesoscale and larger features using the 12-

km grid.  The “multi-scale” analysis refers to the result of the inner domain DA which 

includes further storm scale radar DA using the mesoscale analysis as a background 

field.  In addition to providing a background environment consistent with the storm 

scale features to be assimilated, the mesoscale environment also interacts with the storm 

scale features during the DA and forecast periods to affect the overall forecast evolution 

(e.g., Perkey and Maddox 1985).  Therefore, the mesoscale analyses are first evaluated 

to distinguish the impacts of the synoptic/mesoscale environment differences on the 

subsequent forecasts in section 2.4a, followed by evaluation of the multi-scale analyses 

in section 2.4b. 

 

2.4a Mesoscale analysis evaluation 

Since the true atmospheric state is unknown and approximated by the analyses, 

the quality of such analyses is evaluated based on the similarity of a subsequent forecast 

to independent observations.  For example, the first guess errors of the short-term 

forecasts during the DA period are commonly used to evaluate DA systems.  Here, the 

first guess errors are averaged only over the last 5 cycles to allow the EnKF to spin up 

reasonable estimates of the background error covariance.  This approach also 

emphasizes the end of the DA period which is consistent with the focus on the final 

0000 UTC analysis time.  The first guess errors during the mesoscale DA on the 12-km 

grid are generally smaller for EnKF than for 3DVar (Fig. 2.6), with the exception of 



28 

temperature between 500 and 700 mb, and above 100 mb.  The difference is fairly 

uniform with height for wind (Fig. 2.6b) and is most pronounced at low levels for 

temperature and moisture (Fig. 2.6a,c).  The differences in first guess errors are 

statistically significant at most levels for wind and moisture (Fig. 2.6b,c).  The limited 

advantage of EnKF over 3DVar for temperature at certain levels may be due to 

systematic model biases in temperature at those levels.  A more pronounced warm bias 

for EnKF than 3DVar was noted both between 500 and 700 mb and above 100 mb (not 

shown).  A WRF model temperature bias near the model top (i.e., above 100 mb) was 

also documented by Wee et al. (2012).  EnKF may not correct these systematic biases 

as well as 3DVar because such biases would be common to all members and therefore 

lead to an under-estimate of the background error based on the ensemble variance.  

While further covariance inflation may improve EnKF performance at such levels, there 

is an overall negative effect of additional inflation when all levels and variables are 

considered.  The smaller first-guess errors using GSI-based EnKF suggest that the 

synoptic/mesoscale environment is analyzed more accurately than using GSI-based 

3DVar. 
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Figure 2.6: RMSE of outer domain first guess (i.e., 3 hr forecast) of (a) 

temperature, (b) wind, and (c) water vapor mixing ratio observations averaged 

over the inner domain region, excluding the first 3 DA cycles while the ensemble 

covariance spins up (i.e., last 5 cycles only) and averaged over all 10 cases. 

Markers indicate a significant difference between the two lines at the 90% level 

(crosses) or 95% level (asterisks).  Statistical significance is determined using 

permutation resampling (Hamill 1999). 

 

Free forecasts are also run out to 8 h lead time on the 4 km grid by interpolating 

the mesoscale analyses to the 4 km grid using the WRF ndown utility, without radar 

DA.  The better mesoscale analyses for EnKF than 3DVar are also reflected in the 

Equitable Threat Score (ETS) of such precipitation forecasts (Fig. 2.7; dashed lines).  

The results discussed herein are similar using the Hiedke Skill Score and Neighborhood 

Probability Brier Skill Score (not shown).  The precipitation forecasts initialized from 

the mesoscale analyses show the contribution of the synoptic/mesoscale environment 

analysis to the forecast skill differences.  Although the 3DVar precipitation forecasts are 

more skillful than the EnKF precipitation forecasts for the first couple of hours without 

radar DA (i.e. mesoscale/synoptic DA only), the EnKF forecasts become more skillful 

starting at about forecast hour 3 (Fig. 2.7; dashed lines).  The differences in skill are 

consistent with past studies showing 3DVar to fit to observations better than EnKF at 
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the analysis and very short forecast times but with faster error growth during the 

forecast for 3DVar (e.g., Wang et al. 2008b; Li et al. 2012).  The initially closer fit to 

observations for 3DVar may be important for more quickly spinning up the initial 

storms.  The difference in skill during the first two hours may also be related to a 

smoothing of features in the ensemble mean used for the EnKF background.  A 

smoothing of features associated with focused convergence can slow the spin up of 

convection.  The better performance of the EnKF forecasts at later lead times after the 

short spin-up period suggests that the larger scale environment is more supportive of the 

actual convective evolution in the EnKF analyses than the 3DVar analyses. 

 

 

Figure 2.7: Equitable threat score of hourly accumulated precipitation forecasts 

initialized from the outer domain mesoscale EnKF analysis (blue dashed), inner 

domain multi-scale EnKF analysis (blue solid), outer domain mesoscale 3DVar 

analysis (black dashed) and inner domain multi-scale 3DVar analysis, using a 

threshold of (a) 2.54 mm h
-1

, (b) 6.35 mm h
-1

 and (c) 12.7 mm h
-1

.  Markers along 

the solid (dashed) blue line indicate a significant difference from the solid (dashed) 

black line. Marker types are determined as in Fig. 2.6.  Panel (d) shows the 

observation frequency for all three thresholds. 
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2.4b Multi-scale analysis evaluation 

The mesoscale analyses drive the inner domain radar DA which adds storm-

scale features to provide the final multi-scale analyses.  The short lead time (5 min) first 

guess forecasts during radar DA are used to evaluate the analysis of storm scale 

features.  First guess errors are again averaged over the last part of the DA period (here, 

12 cycles which is 1 h of DA) to avoid the initial spin up period and focus on the final 

analysis time.  The 4 km domain EnKF first guess errors are significantly smaller than 

the 3DVar first guess errors for radial velocity at all levels (Fig. 2.8a) and for 

reflectivity at many levels (Fig. 2.8b).  The exceptions for reflectivity include the near 

surface level and the 500-600 mb level (Fig. 2.8b).  Therefore, on average the storm 

scale details are also better analyzed with GSI-based EnKF than GSI-based 3DVar. 

 

Figure 2.8: As in Fig. 2.6, except for (a) radial velocity and (b) reflectivity during 

inner domain radar DA, averaged over the 10 cases for the last 12 DA cycles to 

emphasize the time period close to the 0000 UTC analysis time. 
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Longer (8 h) forecasts are used to evaluate the combined influence of the multi-

scale analysis of storm-scale and mesoscale features.  The 8 h forecasts initialized from 

the multi-scale analyses are also more skillful using GSI-based EnKF than using GSI-

based 3DVar.  The difference is generally statistically significant except for the highest 

threshold at several times, likely due to the smaller sample size at the higher threshold 

which is a rarer event (Fig. 2.7; solid lines).  The more pronounced difference in skill 

indicates that all scales of motion contributing to the convective evolution, not only the 

mesoscale environment, are better analyzed with GSI-based EnKF than GSI-based 

3DVar.  At the later lead times the skill of forecasts initialized from the multi-scale 

analyses (Fig. 2.7; solid lines) is generally similar to the skill of forecasts initialized 

from the mesoscale analyses (Fig. 2.7; dashed lines).  This shows that at later lead times 

the differences in the mesoscale environment contribute increasingly to the difference in 

forecast skill.  This contrasts with the dominant impact of the storm scale analysis at 

early lead times. 

The impact of storm scale radar DA on the precipitation forecasts, compared to 

the mesoscale analyses without radar DA, is also notably different for EnKF and 

3DVar.  The impact of the better storm scale analyses for EnKF is to increase the skill 

of the precipitation forecast for ~4-5h (Fig. 2.7).  However, for 3DVar the precipitation 

skill is only improved by radar DA during the first hour and is then degraded compared 

to the mesoscale analysis at later times (Fig. 2.7; black dashed vs black solid).  This 

shows that the multi-scale EnKF analyses lead to forecasts that more realistically 

maintain the storm scale features and their interaction with the larger scale environment, 

compared to the multi-scale 3DVar analyses. 
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2.5 20 May 2010 case study 

A case study is used to better understand the systematic differences between the 

GSI-based EnKF and 3DVar multi-scale analyses and subsequent forecasts.  This case 

of an upscale growing MCS is selected for evaluation of multi-scale analyses because of 

strong sensitivity to analysis perturbations on all spatial scales (Chapter 3).  The 

mesoscale analyses are again evaluated first to distinguish the impact of differences in 

the synoptic/mesoscale environment from the impact of the storm scale analyses. 

 

2.5a Mesoscale analysis evaluation 

The mesoscale analyses in this case lead to generally smaller first guess errors 

during the outer domain DA period for GSI-based EnKF than for GSI-based 3DVar 

(Fig. 2.9).  The EnKF advantage is seen for all variables at most levels, with the 

exception of temperature near the model top (Fig. 2.9a).  This exception is likely related 

to the WRF temperature bias, as mentioned in section 2.9a.  This case is thus 

representative of the systematic results in that the GSI-based EnKF provides a better 

analysis of the synoptic/mesoscale environment than the GSI-based 3DVar.   

 

Figure 2.9: As in Fig. 2.6, except only for the 20 May 2010 case study. 
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The impact of the more accurately analyzed synoptic/mesoscale environment for 

EnKF on the precipitation forecasts is seen in the Neighborhood Probability (NP; 

Schwartz et al. 2010) forecasts initialized from the mesoscale analyses (Fig. 2.10).  The 

3DVar and EnKF forecasts both develop an MCS in about the same location as 

observed during the second forecast hour (Fig. 2.10b,j).  However, for both 3DVAR 

(Fig. 2.10i) and EnKF (Fig. 2.10a) the forecast MCS takes more than an hour to “spin 

up”, resulting in under-prediction of precipitation during the 1
st
 hour and a slight 

westward displacement of the NP maximum relative to the observed MCS at later 

forecast times (e.g., Fig. 2.10c,k).  Furthermore, the MCS in the 3DVar forecast starts to 

dissipate several hours too early (Fig. 2.10n,o,p).  During this time spurious convection 

develops in southeastern Oklahoma and becomes dominant as it moves into 

southwestern Arkansas (Fig. 2.10j-p).  The spurious precipitation develops along a 

northwest-to-southeast oriented warm front in southeastern Oklahoma.  The 

development and dominance of this spurious precipitation in the 3DVar forecast is a 

result of the poorer synoptic/mesoscale environment analysis for 3DVar.  In particular, 

the warm front is displaced to the southwest and shows a more pronounced wind shift 

and convergence in the 3DVAR analysis than the EnKF analysis.  The warm front 

including location, wind shift and enhanced surface temperature gradient is much better 

analyzed by the EnKF analysis than the 3DVar analysis.  The difference is still present 

in the final multi-scale analysis after radar DA (Fig. 2.11), showing the importance of 

the mesoscale environment analysis. 
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Figure 2.10: Neighborhood probability forecast of hourly accumulated 

precipitation exceeding 12.7 mm h
-1

 (shaded) and observation contour of 12.7 mm 

h
-1

 (red contour).  Forecasts are initialized from downscaled outer domain (a)-(h) 

EnKF and (i)-(p) 3DVar analyses. 



36 

 

Figure 2.11: Surface temperature and wind at 0000 UTC 20 May 2010 from (a) 

EnKF inner domain analysis, (b) 3DVar inner domain analysis and (c) objective 

analysis of Oklahoma Mesonet observations using “WeatherScope” software 

downloaded from [http://www.mesonet.org/index.php/weather/weatherscope]. The 

color bar for panel (c) is at the far right. 

 

Subjective evaluation of the mesoscale analyses throughout the DA period was 

conducted to better understand how the differences between the 3DVar and EnKF 

methods contributed to the above differences in forecasts initialized from the 0000 UTC 

mesoscale analyses.  The southwestward displacement of the warm front analyzed by 

3DVar, compared to the warm front analyzed by EnKF, first appears in the 1500 UTC 

background forecast (Fig. 2.12a,b; thick black line).  Low level clouds developed north 

of the warm front between 1200 and 1500 UTC in the 3DVAR forecast only (not 

shown).  The clouds prevented surface warming and impeded the northward 

advancement of the warm front during subsequent cycles.  This is evident at 1500 UTC 

by the cooler temperatures north of the warm front wind shift and the more pronounced 

temperature gradient in the 3DVar background field (Fig. 2.12a), compared to the EnKF 

background field (Fig. 2.12b).  The difference is particularly pronounced along the 

Arkansas-Oklahoma border (Fig. 2.12e,f; area in red circle).  The observation 

innovations (observation minus first guess) in this area are generally positive by several 
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degrees K for 3DVar (Fig. 2.12e).  However, the resulting 3DVar increment (analysis 

minus background) is only positive in southern Arkansas and is neutral and even 

negative along the Arkansas-Oklahoma border despite the positive innovations nearby 

(Fig. 2.12c).  This shows that the 3DVar increment did not correct the background 

errors in the warm front location and temperature gradient in this area. 

 

Figure 2.12: 15 UTC 20 May 2010 outer domain analysis, plotted over the region of 

the inner domain, for (a) 3DVar background temperature (shading; F) and wind 

(barbs; knots), (b) as in (a) except for EnKF, (c) 3DVar increment (analysis minus 

background) for temperature (shading; F) with first guess temperature contours 

and wind barbs overlaid, (d) as in (c) except for EnKF, (e) 3DVar surface 

temperature innovations (observation minus background; K), and (f) as in (e) 

except for EnKF. The thick black and purple lines in (a),(b) represent approximate 

locations of the warm front and cold pool boundary, respectively.  The red circle in 

(e),(f) highlights an area where the too-cold 3DVar background forecast was not 

correct by the 3DVar data assimilation. 
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The inconsistency between the observation innovation and analysis increment 

along the Arkansas-Oklahoma border for 3DVar is attributed to the static background 

error covariance.  Although the background error covariance length scales were tuned to 

perform well on average the spatial correlation does not reflect the shape and spatial 

extent of the relevant mesoscale features such as cold pools and warm fronts for this 

particular case.   

Both 3DVar and EnKF are warmer than the observations in northern and central 

Oklahoma (Fig. 2.12e,f).  This background error is a result of inadequate resolution of 

an MCS and associated cold pool (Fig. 2.12a,b; thick purple line) in northern Oklahoma 

on the outer domain.  Both 3DVar and EnKF also have negative innovations in 

southeastern Oklahoma just south of the warm front (Fig. 2.12e,f).  The corresponding 

EnKF increments are focused along the east-west oriented temperature gradient in 

northern Oklahoma, effectively enhancing and shifting southward the cold pool 

boundary (Fig. 2.12d).  The EnKF increments are also elongated along the wind shift 

and temperature gradient in southeastern Oklahoma associated with the warm front 

(Fig. 2.12d).  In contrast to the flow-dependent shape and localized spatial scale of the 

EnKF increments, the 3DVar surface temperature increments are isotropic and too large 

in scale for the mesoscale cold pool and warm front.  As a result, the 3DVar increment 

in Oklahoma does not show spatial structure corresponding to these features (Fig. 

2.12c).  Due to the relatively large number of observations in central Oklahoma the 

impact of the negative 3DVar increment extends to the Arkansas-Oklahoma border 

(Fig. 2.12e).  This limits the ability of the sparse observations along the Arkansas-

Oklahoma border to adequately correct the too cold background forecast in this area.  
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Thus, the 3DVar increments do not sufficiently correct the error in the location of the 

warm front, along which spurious precipitation develops in the subsequent forecast.   

In summary, the EnKF with flow-dependent background error covariance 

provides more physically reasonable analysis increments to correct the mesoscale first 

guess than 3DVar.  As a result, a more accurate synoptic/mesoscale analysis is 

produced by EnKF at the end of the DA period (i.e., 0000 UTC). 

 

2.5b Multi-scale analysis evaluation 

The mesoscale analyses evaluated in the previous sub-section provide the 

background for the inner domain storm scale radar DA.  In this section, the differences 

between GSI-based 3DVar and EnKF for the resulting multi-scale analyses are 

evaluated.  Also representative of the systematic results, the storm scale radar DA for 

this case shows consistently smaller reflectivity and velocity first guess errors for EnKF 

than for 3DVar (Fig. 2.13).  This indicates a better analysis of the storm scale features 

for EnKF than 3DVar, in addition to the synoptic/mesoscale features evaluated above. 

 

Figure 2.13: As in Fig. 2.8, except for the 20 May 2010 case study. 
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Forecasts initialized from the multi-scale analyses (Fig. 2.14) further reveal 

differences in the impact of the storm scale analyses on the subsequent precipitation 

forecasts, compared to the mesoscale analyses (Fig. 2.10).  The storm scale radar DA 

results in an improved forecast during the first hour for both EnKF and 3DVar because 

of the reduced spin up time for the MCS (Fig. 2.14a,i).  The reduced spin up time is a 

result of the convective systems already being present at the initialization time.  For 

EnKF, the subjective improvement resulting from storm scale radar DA persists through 

the 8 hour forecast period (Fig. 2.14a-h).  However, for 3DVar the initial storms are not 

maintained in the forecast and the spurious precipitation in eastern Oklahoma and 

western Arkansas is further enhanced (Fig. 2.14i-p).  Further diagnostics show that the 

enhancement of spurious convection is due primarily to convergence resulting from the 

cold pools emanating from the convection in central Oklahoma (Fig. 2.11).  At later 

lead times the subjective differences between the forecasts initialized with multi-scale 

analyses (Fig. 2.14h,p) are similar to the differences between the forecasts initialized 

with mesoscale analyses (Fig. 2.10h,p).  This shows the increasing impact of the 

mesoscale analysis at later lead times, compared to the impact of the storm scale 

analysis at earlier lead times.  The overall result for 3DVar is that after an initial 

improvement during the first hour, the forecast is similar or even degraded by the radar 

DA, especially at forecast hours 2-6.  This contrasts with EnKF which shows a 

subjectively improved forecast at all lead times resulting from the radar DA.  This result 

is also consistent with the systematic impacts of the storm scale radar DA for 3DVar 

discussed in the previous section (e.g., Fig. 2.7). 
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Figure 2.14: As in Fig. 2.10, except for forecasts initialized from the multi-scale 

analyses with further radar data assimilation. 
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The generation of excessive and unrealistic cold pools in the 3DVar analysis is 

illustrated by the early evolution of the initial supercell in western Oklahoma at ~2100 

UTC.  Both the EnKF and 3DVar techniques are able to increase reflectivity associated 

with this storm at 2105 UTC that is missing in the first guess (Figs. 2.15a,b and 

2.16a,b).  However, only the EnKF analysis also adjusts other fields such as vertical 

velocity, temperature and humidity to create a weak updraft and more saturated 

environment along with the added reflectivity (Fig. 2.15a,b,c,d).  As a result, a buoyant 

updraft develops and maintains the convection during the subsequent cycles for EnKF 

(e.g., Fig. 2.15e,f,g,h).  However, for 3DVar the added reflectivity does not correspond 

to increased humidity in the vicinity of the increased reflectivity (Fig. 2.16b).  

Therefore, a weak downdraft forms during the subsequent cycle as a result of 

precipitation loading and evaporative cooling (Fig. 2.16g).  During subsequent cycles 

the subsidence results in column stabilization with net warming above ~3km due to 

adiabatic descent and net cooling of up to 1-2 K within just 10 minutes at lower levels 

where the evaporation of precipitation dominates (Fig. 2.16c,g,k).   

In summary, the excessive storm scale cold pools in the 3DVar multi-scale 

analyses are a result of the lack of coherent cross-variable correlation in the static 

background error covariance for storm scale reflectivity assimilation.  When 

hydrometeors are added to unsaturated locations, without corresponding increments to 

the dynamic and thermodynamic variables, much of the added hydrometeors may 

evaporate, creating or enhancing evaporative cooling and downdrafts.  The storm scale 

differences between the EnKF and 3DVar analyses dominate the subsequent 

precipitation forecasts for several hours.  At later lead times (e.g., ~5-8h), the mesoscale 
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differences discussed in the previous sub-section have a greater impact on the 

precipitation forecasts than the storm scale differences. 

 

Figure 2.15: Cross section through a supercell in western OK (not shown) as it is 

assimilated during the first 3 radar DA cycles using GSI-EnKF. Panels (a)-(c) 

show the first guess reflectivity (shading) and relative humidity (contours) at 2105, 

2110 and 2115 UTC, panels (d)-(f) are as in (a)-(c), except for the analysis fields, 

panels (g)-(i) are as in (a)-(c), except for vertical component of wind (shading) and 

potential temperature (contours) and panels (j)-(l) are as in (g)-(i), except for the 

analysis fields. 
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Figure 2.16: As in Fig. 2.15, except for GSI-3DVar. 

 

2.6 Summary and conclusions 

The accuracy of storm scale precipitation forecasts depends not only on 

processes at the storm scale but also on the mesoscale and synoptic scale environment 

supporting them.  Therefore, accurate forecasts for convective scales require DA 

systems to properly estimate the atmospheric state on multiple scales.  In order to 

perform multi-scale DA, the GSI-based DA system, including both 3DVar and EnKF, is 

extended to directly assimilate radar observations, in addition to the capability to 

assimilate synoptic/mesoscale observations.  In this Chapter, the newly extended multi-

scale GSI-based DA system is used to compare 3DVar and EnKF in the context of 



45 

multi-scale DA where scales ranging from convective scales to synoptic scales are 

resolved by both the model and the observations.  The purpose of such a comparison is 

to facilitate understanding of how the differences among DA techniques lead to analysis 

differences at different scales and their subsequent impact on storm scale precipitation 

forecasts.  

The comparison of GSI-based EnKF and 3DVar is performed systematically 

over 10 diverse convectively active cases in the central United States.  The goal is a 

robust evaluation of the differences between the EnKF and 3DVar techniques for 

producing analyses at multiple scales.  The mesoscale analyses obtained from 

assimilation of synoptic/mesoscale observations on the outer domain provide estimates 

of the synoptic/mesoscale environment for the storm scale radar DA.  Multi-scale 

analyses result from the further storm scale assimilation of radar observations on the 

inner domain.  Comparison of forecasts initialized from the mesoscale and multi-scale 

analyses differentiates the impacts of the different spatial scales on the subsequent 

precipitation forecasts. 

The convection-permitting precipitation forecasts initialized from the multi-

scale analyses are more skillful with GSI-based EnKF than GSI-based 3DVar for two 

reasons.  First, precipitation forecasts initialized from the mesoscale analyses become 

more skillful with EnKF than 3DVar after about 3h.  This suggests that the 

synoptic/mesoscale environment is more accurately analyzed by EnKF than 3DVar.  

Second, the improved forecast skill at early lead times resulting from the further inner 

domain storm scale radar DA lasts about five hours for EnKF and only one hour for 

3DVar.  This suggests that the analysis of storm-scale features is also more accurate 
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using EnKF than 3DVar.  After the first hour the forecast initialized from the 3DVar 

analysis is actually degraded by the storm scale DA (Fig. 2.7).  The greater benefit of 

the storm scale DA at early lead times for EnKF, together with the forecast degradation 

and inferior synoptic/mesoscale environment at later lead times for 3DVar, explains the 

systematically better forecasts initialized from the GSI-based EnKF multi-scale 

analyses compared to the GSI-based 3DVar multi-scale analyses.   

A case study of upscale growth of cellular convection into an MCS during the 

evening/overnight hours of 19/20 May 2010 is used to qualitatively understand the 

systematic differences.  Convection-permitting forecasts initialized from the EnKF 

mesoscale analyses show a subjectively better MCS forecast than forecasts initialized 

from the 3DVar mesoscale analyses.  The forecast difference is largely due to a 

difference in the warm front analysis including location, temperature gradient and 

convergence.  These differences in the mesoscale analyses occur because of the lack of 

flow-dependence in the static 3DVar background error covariance.  Storm scale radar 

DA on top of the mesoscale DA (i.e., multi-scale DA) alleviates under-forecasting of 

precipitation during the first hour for both 3DVar and EnKF.  However, only the EnKF 

forecast properly maintains the initial storms, leading to a subjective improvement over 

the forecast initialized from the mesoscale analysis throughout the forecast period.  The 

initial 3DVar storms quickly collapse and generate unrealistically strong cold pools as a 

result of the lack of cross-variable correlations in the static background error covariance 

for hydrometeors.  Further diagnostics revealed that the reflectivity observations 

assimilated with 3DVar are successfully able to correct errors in the precipitation 

hydrometeor fields.  However, corresponding increments to vertical velocity, 
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temperature and humidity are not obtained.  This results in substantial evaporation of 

hydrometeors that are added to sub-saturated regions in the background field.  The 

evaporative cooling generates excessive cold pools during both the DA and forecast 

periods for 3DVar.  Both the storm scale and mesoscale analysis differences contribute 

to the better EnKF forecast initialized from the multi-scale analysis.  Consistent with the 

systematic results, the storm scale analyses dominate the precipitation forecasts at early 

lead times while the synoptic/mesoscale environment analyses dominate at later times.  

These results support the hypothesis that skillful convective scale precipitation forecasts 

require effective multi-scale DA methods. 

Further development of the static background error covariance for radar 

reflectivity DA with 3DVar is clearly needed.  This study also suggests that if ensemble 

estimates of the background error covariance are affordable, then using ensemble-based 

covariance in variational radar DA systems provides a straightforward solution.  This 

method is commonly referred to as hybrid DA (Wang et al. 2008a,b, 2013b).  Even the 

static covariance constructed with the simple method in this study has some useful 

aspects for reflectivity DA.  For example, the initial ensemble downscaled from 

mesoscale analyses may have very small or zero variance of hydrometeors, limiting the 

impact of the assimilated reflectivity observations with EnKF.  While studies such as 

Dowell et al. (2011) have alleviated this issue by adding random noise where 

observations indicate precipitation should be occurring, making use of the 3DVar static 

covariance model provides an alternative method (Carley 2012).  Compared to EnKF, 

the static covariance model more quickly and effectively adds reflectivity that is 

completely absent from the first guess field.  This is evident in larger RMS first guess 
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errors for reflectivity during the first few forecast cycles for EnKF than for 3DVar (not 

shown).  Furthermore, EnKF can take several cycles for physically reasonable cross-

variable correlations with the hydrometeors to develop in the flow-dependent 

background error covariance (Tong and Xue 2005).  As also noted in Caya et al. (2005), 

this spin up time motivates additional research on hybrid methods to take advantage of 

both the reduced spin up time of a static background error covariance, and the improved 

forecast performance of the EnKF flow-dependent background error covariance.   
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Chapter 3: Multi-scale characteristics and evolution of perturbations: 

Dependence on background flow and method of perturbation 

 

3.1 Introduction 

The characteristics of the evolution of different types of perturbations have yet 

to be systematically studied over an extended period of many convection-allowing 

forecasts.  The purpose of this chapter is to provide such a systematic evaluation of 

convection-permitting perturbation evolution and characteristics.  Furthermore, two 

case studies are evaluated to expand on the types of flow regimes considered in past 

case studies.  In contrast to the Mesoscale Alpine Program cases studied by Walser et 

al. (2004) and Hohenegger et al. (2006), this study focuses on the Great Plains of the 

United States where topography plays a less dominant direct role, severe convective 

weather is more frequent and intense (Brooks et al. 2003), and the latitude is farther 

south from the main belt of the westerlies.   

Given the range of scales that can be resolved using convection-permitting 

resolution, the growth and interaction of perturbations on different scales is of particular 

interest.  The multi-scale evolution of perturbations in a convection-permitting model 

has been considered in even fewer case studies than convection-permitting forecast 

predictability in general and has also not been considered systematically (Zhang et al. 

2003, 2006; Walser et al. 2004; Luo and Zhang 2011).  Therefore, the present study 

focuses on the multi-scale impacts of the perturbations, using Harr wavelet 

decomposition. 
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A few additional deterministic forecasts were generated by the Center for 

Analysis and Prediction of Storms (CAPS) during the 2010 National Oceanographic 

and Atmospheric Administration Hazardous Weather Testbed (NOAA HWT) Spring 

Experiment (Kong et al. 2010, Xue et al 2010, Clark et al 2012) to complement the 

CAPS Spring Experiment real-time SSEF system.  These additional forecasts were 

designed to study the sensitivity to small scale IC perturbations which were not 

included in the CAPS SSEF design.  This study of the multi-scale sensitivity to small 

scale IC perturbations has three main goals.  The first goal is to determine the sensitivity 

to small scale IC perturbations, relative to the sensitivity to larger scale IC and physics 

perturbations that are already included in the SSEF design.  The second goal is to 

compare two possible methods of generating such small scale IC perturbations.  The 

third goal is to compare the perturbations in the existing ensemble to one method of 

combining small scale IC perturbations with the large scale IC and physics 

perturbations.  These goals are addressed using two case studies with different 

background flows and systematic evaluation of all 34 available cases.  Since the 

existing method of perturbation actually includes multiple perturbation sources (IC and 

physics), additional forecasts were later generated for the two case studies, with physics 

perturbations excluded, to aid interpretation of the results.  

The WRF model configuration and scale decomposition and perturbation 

methods are described in section 3.2.  Results are presented in section 3.3.  Section 3.4 

contains conclusions and a discussion. 
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3.2 Methods 

3.2a WRF model configuration 

The forecasts evaluated in this chapter were generated with 4 km grid spacing at 

0000 UTC on 34 weekdays from 3 May to 18 June 2010 by CAPS for the 2010 NOAA 

HWT Spring Experiment (Xue et al. 2010a,b; Kong et al. 2010).  These forecasts 

provide a readily available data set for an initial evaluation of the sensitivity of the 

precipitation forecasts to various perturbation methods.  The control (i.e., unperturbed) 

forecast used the WRF ARW model (Skamarock et al. 2005).  The control forecast ICs 

were obtained from the operational National Centers for Environmental Prediction’s 

North American Model (NCEP NAM) 0000 UTC NAM Data Assimilation System 

(NDAS; Rogers et al. 2009) analysis at 12 km grid spacing, interpolated to the 4 km 

WRF ARW grid.  Additional radar and mesoscale observations were then assimilated 

using Advanced Regional Prediction System (ARPS) 3DVar and cloud analysis 

package (Xue et al. 2003; Gao et al. 2004; Hu et al. 2006).  Radial velocity from over 

120 radars in the Weather Surveillance Radar (WSR)-88D network, as well as surface 

pressure, horizontal wind, potential temperature, and specific humidity from the 

Oklahoma Mesonet, METAR (Meteorological Aviation Report), and Wind Profiler 

networks were assimilated with ARPS 3DVar.  The ARPS cloud analysis package uses 

radar reflectivity along with surface data, Geostationary Operational Environmental 

Satellite (GOES) visible and 10.5 micron infrared data to estimate hydrometeor species 

and adjust in-cloud temperature and moisture (Hu et al., 2006).  The control forecast 

was configured with the Thompson et al. (2008) microphysics scheme, the Mellor-

Yamada-Janic (Janjic´ 1994) boundary layer scheme, the Rapid Radiative Transfer 



52 

Model longwave radiation scheme (Mlawer et al. 1997), the Goddard shortwave 

radiation (Tao et al. 2003) scheme and the NCEP-Oregon State University-Air Force-

NWS Office of Hydrology (NOAH; Ek et al. 2003) land surface model.  The vertical 

turbulent mixing was represented in the boundary layer scheme and sub-grid scale 

horizontal turbulence mixing was represented by Smagorinsky parameterization.  No 

additional numerical diffusion was applied. 

 

3.2b Forecast perturbation method 

In the general design of the SSEF during the 2010 HWT Spring Experiment, 

perturbations that sample model and physics uncertainty as well as IC and Lateral 

Boundary Condition (LBC) perturbations derived from the Short Range Ensemble 

Forecast system (SREF; Du et al. 2009) are included.  Since the SREF was run at grid 

spacing of 32-45 km (corresponding to a wavelength of 64-90 km; Du et al. 2009), 

SREF perturbations are on scales much larger than the SSEF model resolution.  

Therefore the perturbations from SREF do not include small scales (i.e., order of tens of 

kilometers).  Methods to generate perturbations on multiple scales, ranging from the 

synoptic to the convective scales, have yet to be systematically studied.  During the 

2010 Spring Experiment additional forecasts were generated with small scale IC 

perturbations as a first step to help guide development of practical methods of sampling 

errors across multiple scales in a SSEF system.  For each perturbation method described 

below, one perturbed deterministic forecast was generated and compared to the control 

member forecast.   
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Six methods of perturbation are investigated in this study.  Perturbations RAND 

(random) and RECRS (recursive filter) are designed to simulate random small scale 

errors in the initial state.  Perturbation LGPH (large scale and physics) is designed to 

simulate the medium and large scale (i.e., order of hundreds and thousands of 

kilometers, respectively) IC errors and model physics errors that are currently sampled 

in the CAPS SSEF system.  Perturbation LGPH_RECRS (large scale and physics with 

recursive filter) is a combination of the LGPH and RECRS perturbation methods.  For 

the two case studies, two additional perturbations are evaluated. Perturbations LG and 

LG_RECRS are identical to LGPH and LGPH_RECRS, respectively, except without 

any physics differences from the control member. 

The RAND perturbation is obtained by adding spatially uncorrelated, Gaussian 

random numbers to the IC temperature and relative humidity (standard deviation of 0.5 

K and 5%, respectively).  The RECRS perturbation is obtained similarly, except with a 

recursive filter applied to the random perturbations to create spatially correlated 

perturbations with a 12 (3) km horizontal (vertical) de-correlation scale.  The RAND 

perturbation is conceptually similar to the random perturbations of Hohenegger and 

Schär (2007a).  The RECRS perturbation is conceptually similar to the Gaussian 

perturbation of Hohenegger and Schär (2007a), except RECRS is applied 

homogenously across the domain instead of only at a single location. 

The LGPH IC perturbation is obtained from the difference between a 3 hour 

forecast of a SREF WRF-ARW member (labeled P1 in Du et al. 2009) and the 

corresponding SREF control member forecast.  The SREF perturbations of u and v wind 

components, potential temperature, and specific humidity are rescaled to have a root 
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mean square value of 1 m s
-1

 , 0.5 K, and 0.02 g kg
-1

, respectively.  In addition to the IC 

perturbation, the LGPH forecast uses a different physics configuration than the control 

forecast to approximate physics errors.  Unlike the control forecast (Section 3.2a), the 

LGPH perturbation uses Morrison et al. (2008) microphysics scheme, RUC land surface 

model (Benjamin et al. 2004) and Yonsei University (Noh et al. 2003) boundary layer 

scheme.  The LGPH_RECRS perturbation is identical to LGPH except with additional 

recursive filtered random perturbations added in the same way as for the RECRS 

perturbation.  

Although only temperature and humidity (and wind in the case of LGPH and 

LGPH_RECRS) are directly perturbed, results are evaluated in terms of precipitation 

differences.  Thus, the focus is on the net effect, rather than the processes, of 

perturbation growth and evolution for the purpose of precipitation forecasting at 

convection-allowing resolution.   

 

3.2c Scale decomposition method 

Following Casati et al. (2004), precipitation fields are decomposed into 

components of different spatial scale using 2D Haar Wavelets with the Model 

Evaluation Tools package from the Developmental Testbed Center, available at 

http://www.dtcenter.org/met/users.  The decomposition is defined over a 2
n
 by 2

n
 grid 

point domain for n>1. The original field is decomposed into its component on each of 

n+1 scales, and is equal to the sum of its components.  The i
th

 component can be 

calculated as the difference between the original field averaged in boxes of 2
i-1

 by 2
i-1

 

grid points and the original field averaged in boxes of 2
i
 by 2

i
 grid points for 1 ≤  i ≤ n.  
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The (n+1)
th

 component is the domain average value.  Each component therefore 

represents the variation over a spatial scale of 4 * 2
i-1

 km from a larger scale average.  

Analogous to the more familiar Fourier decomposition, in the rest of the paper, the 

wavelet-decomposed spatial scales are referred to in terms of a corresponding 

wavelength.  Thus, for example, the smallest resolvable scale of 4 km (e.g., Fig. 4.1b) 

corresponds to the smallest resolvable wavelength of 8 km.  A verification domain 

(plotted in Fig. 3.3) of 512 by 512 grid points (2048 by 2048 km) within the larger 

forecast domain (shown in Fig. 3.2) of 1163 by 723 grid points (4652 by 2892 km) is 

used in this chapter.  Further details of the wavelet decomposition are described in 

Casati et al. (2004).  Precipitation forecast energy is defined as the square of the one-

hour accumulated precipitation field, averaged over the verification domain.  The 

energy on a particular scale is defined similarly, using only the component of the 

precipitation field on that scale.  The error (or perturbation) energy is the square of the 

precipitation field difference between a forecast and the observations (or control 

forecast).  The evolution of a perturbation, or difference, energy metric is a common 

method of quantifying sensitivity to forecast perturbations (e.g., Zhang et al. 2006, 

Hohenegger et al. 2006).  
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Figure 3.1: Difference between control forecast and observed 1-h accumulated 

precipitation, at 0600 UTC 20 May 2010 using forecast initialized at 0000 UTC 20 

May 2010, showing (A) the total precipitation forecast and (B)-(K) the anomalies 

on each scale identified by the 2D Haar wavelet decomposition. 

 

Figure 3.1 illustrates the 2D Haar wavelet decomposition of the difference 

between the 6h control forecast and corresponding observation of hourly accumulated 

precipitation on the 20 May case.  The distribution of difference energy across scales is 

also found in Fig 3.8 (dashed cyan line).  Objectively, there is a maximum of difference 

energy at 32-64 km wavelength scales and a smaller secondary maximum at the 256 km 

scale (Fig. 3.8).  The total difference field (Fig. 3.1a) subjectively looks most similar to 

the difference fields on 32-64 km scales (Fig. 3.1d,e), suggesting that the high 
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amplitude, small-scale features on these scales account for most of the total difference.  

The subjectively apparent displacement of the MCS in Oklahoma and Arkansas (Fig. 

3.1a) also corresponds to increased energy on the 256 km scale (Figs. 3.1g and 3.8). 

For presentation of results it is convenient to reduce the number of considered 

scales from 10 to 3 by defining (in this chapter) the large scale as the sum of scales with 

wavelengths of 4096, 2048, and 1024 km, the medium scale as the sum of scales with 

wavelengths of 512, 256, 128 km and 64 km and the small scale as the sum of scales 

with wavelengths of 32, 16, and 8 km. The small scales are those that are too small to 

be represented with the current SREF-derived perturbations.   

 

3.3 Characteristics of perturbation growth 

The characteristics of the precipitation forecast perturbation evolution are 

evaluated using the change in perturbation energy with time in total and on the small, 

medium and large scales as well as the change in perturbation energy with spatial scale 

for selected fixed times. It should be noted that when perturbation characteristics are 

related to the background flow, the background flow refers to the control forecast upon 

which the perturbations were added, which may be different than the observations.   

In theory, an optimal ensemble design would contain members that are equally 

plausible, and therefore equally skillful (Leith 1974).  Although lower skilled members 

can still add value to an ensemble (Eckel and Mass 2005) and this study focuses on 

forecast sensitivity rather than forecast skill, the impact of the perturbations on forecast 

skill should also be considered when designing an ensemble system.  Among the 

forecasts evaluated systematically in this study, only the physics perturbations at some 
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lead times (~2-5 h and ~22-27 h) and the RECRS perturbations during the first hour 

resulted in significant decreases in skill (not shown).  The differences in skill resulting 

from physics perturbations are in large part related to differences in forecast bias.  How 

to optimally sample model and physics error is still an open research question for SSEF 

design.  The inclusion of LG and LG_RECRS perturbations in the case studies below 

helps to account for the impacts of different forecast biases.  The early loss of skill 

resulting from recursive filter perturbations is a result of spurious precipitation that 

formed over large areas on many cases (not shown).  This is clearly not desirable in an 

ensemble and it suggests that the spatial scales and amplitude of such perturbations 

should be more carefully studied before this perturbation method is used for ensemble 

forecasting.   

The following case studies and season-average results address the three goals 

stated in section 3.1: a comparison of LGPH (and LG) with RAND and RECRS, a 

comparison of RAND with RECRS, and a comparison of LGPH_RECRS (and 

LG_RECRS) with LGPH (and LG). 

 

3.3a 10 May 2010 case 

A case study of forecasts initialized at 0000 UTC 10 May 2010 is selected 

because a synoptic scale baroclinic disturbance generated widespread precipitation.  

The convective evolution was determined primarily by large scale influences (e.g., 

fronts, jets and temperature advection).  This event is also of interest because of a 

significant tornado outbreak that occurred in the southern Plains on the afternoon of 10 

May (e.g., Palmer et al. 2011).  At 0000 UTC 10 May there was an embedded 
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shortwave trough aloft over the western US and a broad ridge over the central US (Fig. 

3.2a).  There was southerly flow and a warm front in central Texas at the surface (Fig. 

3.2b).  By 0000 UTC the negatively-tilted shortwave had propagated to the central US, 

inducing surface cyclogenesis and an intersecting dryline, cold front and warm front in 

the southern Plains (Fig. 3.2c,d,e,f).  An initial wave of observed scattered showers 

associated with the low-level warm advection developed in Arkansas and Missouri by 

0600 UTC and moved eastward into Tennessee and northern Alabama by 1800 UTC 

(Fig. 3.3a,b,c).  Convection also developed near the Kansas/Nebraska border by 1200 

UTC, moving eastward into northern Missouri by 1800 UTC (Fig. 3.3b,c). At 0000 

UTC 11 May more intense convection was occurring in the southern Plains (Fig. 3.3d). 
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Figure 3.2: As in Fig. 2.4, except at (a),(b) 0000 UTC 10 May 2010, (c),(d) 1200 

UTC 10 May and (e),(f) 0000 UTC 11 May. 
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Figure 3.3: As in Fig. 2.5, except for (a) 0600 UTC 10 May 2010, (b) 1200 UTC 10 

May, (c) 1800 UTC 10 May and (d) 000 UTC 11 May. 

 

For this case, the control forecast predicted the initial wave of scattered showers, 

although with a southwestward displacement and with greater intensity than observed 

(Fig. 3.4a,b vs. Fig. 3.3a,b), as well as the development of convection along the Kansas-

Nebraska border, although with more linear organization, weaker intensity and a slight 

northward displacement (Fig. 3.4b,c vs. Fig. 3.3b,c).  The most prominent difference 

between the forecast and observation is the absence of the intense convection over the 

southern Plains at 0000 UTC (Fig. 3.4d vs. Fig. 3.3d).  Storms eventually developed in 

the control forecast but they were several hours slower to develop than observed and did 

not extend as far south as observed (not shown). 
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Figure 3.4: As in Fig. 3.3, except for the control forecast, rather than observations. 

 

For the 10 May case, the control forecast error energy shows maxima in forecast 

error energy at lead times of about 10-15h and 24-27h (Fig. 3.5d).  The general trend of 

two error energy maxima superimposed on an overall increasing trend is found on all 

scales (Fig. 3.5a-c).  The magnitude of error energy is an order of magnitude greater on 

the medium and small scales than on the large scales.  The first maximum occurs at a 

later time with decreasing scale ranging from ~9h on the large scale to ~15h on the 

small scale.  The second maximum occurs at ~26h on all scales.  In general, LGPH and 

LGPH_RECRS capture about half of the total error energy and RAND and RECRS 

capture about one quarter of the total error energy, which is dominated by the small and 
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medium scales (Fig. 3.5). Compared to the control forecast error energy, the 

perturbation energy for most lead times and methods is not only too small in magnitude 

(Fig. 3.5), but also too small in the spatial scale of maximum energy at all lead times for 

RAND and RECRS and through the 12h lead time for LGPH and LGPH_RECRS (Fig. 

3.6).  A particularly pronounced absence of medium scale perturbation energy with a 

scale of about 64-256 km at 24h for all perturbation methods, compared to forecast 

error, is consistent with Fig. 3.4.  The medium scale storms in the southern Plains at this 

time (Fig. 3.3d) are absent in the corresponding forecast (Fig. 3.4d), contributing to the 

medium scale forecast error energy.  However, all perturbation methods also missed 

these storms (not shown) so the perturbation energy does not reflect that particular 

forecast error. 

The characteristics of the evolution of perturbation energy on different scales 

depend strongly on the method of perturbation for the 10 May case.  LGPH shows more 

pronounced growth than RAND and RECRS for large and medium scales, but not for 

small scales (Fig. 3.5).  When physics perturbations are excluded, LG perturbation 

energy is less than LGPH on medium and large scales at later lead times (Fig. 3.5).  

However, the qualitative comparison of RAND and RECRS to LGPH is consistent with 

the comparison to LG.  RECRS shows an increase of perturbation energy over RAND 

on the medium scales and after ~20h on the small scales (Fig. 3.5b,c).  When small 

scale perturbations are combined with the large scale IC and physics perturbations, 

LGPH_RECRS and LG_RECRS do not show much increase of perturbation energy 

compared to LGPH and LG, respectively (Fig. 3.5)  
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Figure 3.5: Average squared difference (i.e., energy) between control forecast and 

observed hourly accumulated precipitation (CNerror), and between each 

perturbed forecast and the control forecast, during the 10 May case for (a) large 

scales only, (b) medium scales only, (c) small scales only and (d) without any scale 

decomposition or filtering. 
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Figure 3.6: Perturbation energy as a function of wavelength for the 10 May case at 

lead times of 1, 3, 6, 12 and 24 h for (a) RAND, (b) RECRS, (c) LGPH,  (d) 

LGPH_RECRS, (e) LG and (f) LG_RECRS. The CNerror energy is the dashed 

line in all panels. 
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The characteristics of perturbation growth are also seen in the perturbation 

energy spectra at selected lead times (Fig. 3.6).  None of the perturbation methods 

generates much energy during the first 6h.  The perturbation method affects both the 

spectral width and the wavelength of maximum energy of the resulting precipitation 

forecast perturbation.  For example, at 12h the wavelength of maximum energy of 32 

km for RAND (Fig. 3.6a) is smaller than the 64 km for LGPH (Fig. 3.6c) and is also 

smaller than the 64 km for RECRS (Fig. 3.6b). The LGPH spectrum at later (i.e., 12 and 

24 h) lead times is broader than the spectra for RAND and RECRS (Fig. 3.6a,b,c), 

indicating perturbations across a wider range of scales.  The RECRS spectrum is also 

broader than the RAND spectrum (Fig. 3.6a,b).  The 128 km wavelength of maximum 

energy for LGPH_RECRS at 12 h (Fig. 3.6d) is even larger than the 64 km for LGPH 

(Fig. 3.6c).  However, LG_RECRS also has a 64 km wavelength of maximum energy at 

12 h (Fig. 3.6f).   

The RECRS, LGPH_RECRS and LG_RECRS perturbation energy maxima at 

16-32 km wavelength at 1h corresponds to the spurious small scale precipitation 

mentioned above. This spurious precipitation may be a result of adding unrealistically 

large perturbations on such scales, a lack of realistic coupling between the temperature 

and moisture observations, or some other imbalance resulting from the temperature and 

humidity perturbations in RECRS.  The lack of spurious precipitation in the RAND 

perturbations may be a result of diffusion quickly reducing the amplitudes of the small 

scale perturbations when the perturbations are of grid scale.  

In summary, for the 10 May case, the perturbation methods considered, 

especially small scale IC perturbations, do not reflect the forecast error magnitude or 
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temporal variability.  The shape of the perturbation energy spectrum also does not 

reflect the shape of the forecast error energy spectrum for many lead times and 

perturbation methods.  Compared to RAND and RECRS, LGPH and LG show greater 

medium and large scale perturbation growth, resulting in broader perturbation energy 

spectra with larger wavelength of maximum energy at some lead times.  LG generally 

has less perturbation energy than LGPH at later lead times on medium and large scales.  

The difference between RAND and RECRS is seen mainly on medium scales with an 

increase of perturbation energy for RECRS, resulting in a broader perturbation energy 

spectrum at some lead times.  The differences between LGPH_RECRS/LG_RECRS 

and LGPH/LG are generally small for most scales and lead times.  The relative lack of 

medium and large scale forecast perturbations in RAND and RECRS suggests a relative 

insensitivity of this forecast on such scales to random small scale IC perturbations 

relative to larger scale IC and physics perturbations and, as shown below, relative to 

other cases.   

 

3.3b 20 May 2010 case 

In contrast to the 10 May case, the 20 May case is selected because early in the 

control forecast (i.e., about the first 12h) an MCS developed upscale from smaller scale 

convection present at the forecast initialization time.  The details of this case are 

described in section 2.3.  The control forecast reflects the upscale organization and 

intensification of convection, subsequent dissipation of the MCS, development of 

stratiform precipitation and regeneration of convection the following afternoon (Fig 3.7 

vs. Fig. 2.5).  However, the forecast MCS evolved a different structure than the 
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observed MCS (Fig. 3.7b vs. 2.5b).  The coverage, timing and location of subsequent 

convection along the remnant outflow boundary was also qualitatively different than 

observed (Fig. 3.7d,e vs. 2.5d,e).   

 

Figure 3.7: As in Fig. 2.5, except for the control forecast, rather than observations. 

 

As in the 10 May case, the 20 May case also shows forecast error energy with a 

maximum at early lead times followed by a larger maximum at ~24-27h (Fig. 3.8d).  In 

contrast to the 10 May case, the forecast error energy on 20 May does not clearly show 

a general increasing trend.  This may be due to the already much larger error energy on 

the 20 May case than on the 10 May case at early lead times, especially on small and 

medium scales (Fig. 3.8b,c).  Although the error energy during the first maximum is 

again under-represented by the forecast perturbations, the perturbation energy follows 
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the error energy more closely on this case during the second maximum than on the 10 

May case.  For hours 3 through 12, only RAND and LG (and RECRS at 12h) fail to 

capture the error energy maximum wavelengths of 32, 32-64 and 64 km at 3, 6 and 12h, 

respectively (Fig. 3.9).  This contrasts with the 10 May case where all perturbation 

methods generated maximum error energy on smaller scales than the forecast error 

energy during the first 12 h.  By 24h, all perturbation methods reflect the maximum 

error energy on the 64 km wavelength scale on the 20 May case. 

 

Figure 3.8: As in Fig. 3.5, except for the 20 May case. 
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Figure 3.9: As in Fig. 3.6, except for the 20 May case. 

 

The characteristics of the evolution of perturbation energy on the 20 May case 

are generally less dependent on the method of perturbation than on the 10 May case.  
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There is not a clear separation between LG/LGPH and RAND/RECRS on medium and 

large scales during most of the forecast period (Fig. 3.8).  LGPH even shows less 

perturbation energy than RAND and RECRS on small scales at ~20-27 h.  

LGPH_RECRS is also less than RECRS alone at 1 h for large and small scales.  Since 

LG_RECRS is more similar to RECRS at 1 h and LG is more similar to RAND at 20-27 

h on small scales, these seemingly counter-intuitive results are due to a damping effect 

of the LGPH physics configuration.  The physics configuration of LGPH also showed 

less systematic bias than RAND and RECRS at these lead times (not shown).  It is not 

clear whether this damping effect is related to the differences in microphysics or 

boundary layer parameterization.  The differences between LG and LGPH are most 

pronounced on medium scales at early lead times and small scales at later lead times for 

this case (Fig.  3.8b,c).  LG and LGPH become similar after ~15h on the medium scales, 

suggesting that medium scale forecast sensitivity is dominated by the IC, rather than 

physics, perturbations at later lead times.  LG and RAND have similar perturbation 

energy to each other and less than LGPH during the first 15h on the medium scales 

(Fig. 3.8b).  During the early forecast hours RECRS has more perturbation energy than 

RAND on small and medium scales (Fig. 3.8b,c).  In contrast to the 10 May case, this 

difference diminishes and RAND and RECRS become similar by about 10-12h.  Also in 

contrast to the 10 May case, there are larger differences between LGPH_RECRS and 

LGPH and between LG_RECRS and LG on the 20 May case.  LGPH_RECRS shows 

greater perturbation energy than LGPH at early lead times on small scales (Fig. 3.8c), 

most lead times on medium scales (Fig. 3.8b), and only the 1 h lead time, corresponding 

to regional variation in the spurious precipitation response to RECRS, on large scales 
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(Fig. 3.8a).  These differences are even more pronounced when LG_RECRS is 

compared to LG. 

Differences between the 10 and 20 May cases are further illustrated by the 

perturbation energy spectra which are also less sensitive to the perturbation method on 

20 May than on 10 May (Fig. 3.9).  Unlike the 10 May case, even the small scale 

RAND perturbation energy grows substantially during the first 3h (Fig. 3.9a).  At 6 and 

12 h the wavelength of maximum energy for LGPH and LGPH_RECRS is again larger 

than for RAND and RECRS (Fig., 3.9a,b,c,d).  This difference is largely due to the 

physics perturbations since the LG and LG_RECRS spectra (Fig. 3.9e,f) at these times 

are much more similar to the RAND and RECRS spectra.  The differences between 

RAND and RECRS spectra are generally limited to the first 6 h, when the impact of the 

early spurious precipitation has not yet diminished.  The LGPH_RECRS and 

LG_RECRS spectra (Fig., 3.9e,f) also look very similar to the LGPH and LG spectra 

(Fig., 3.9c,d), respectively, after the first 6 h. 

The different sensitivities of the 10 and 20 May cases to different perturbations 

are illustrated subjectively with representative RAND, LGPH and LG forecast 

perturbations at the 24h lead time (Fig. 3.10).  On 10 May it is primarily the convective 

scale details of an incipient MCS over southeast Kansas, and the small scale features 

within the stratiform precipitation farther north that are substantially affected by the 

RAND perturbation (Fig. 3.10a).  However, the LGPH perturbation alters the mesoscale 

structure of the stratiform precipitation region, and more dramatically changes the 

structure and location of the incipient MCS which is displaced ~100 km to the 

northwest (Fig. 3.10b).  The LG perturbation also shows a displaced MCS but the 
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amount of displacement is much less than for LGPH (Fig., 3.10c).  In contrast, even the 

mesoscale characteristics and location of the MCS forecast over the southern part of the 

domain on 20 May are substantially changed by the RAND perturbation (Fig. 3.10d) at 

least as much as the LG and LGPH perturbation (Fig. 3.10e,f).  

 

Figure 3.10: Forecast perturbations at the 24 h lead time (perturbed forecasts 

minus the control forecasts shown in Figs. 3.4d and 3.7e) for (a) RAND on the 10 

May case, (b) LGPH on the 10 May case, (c) LG on the 10 May case, (d) RAND on 

the 20 May case, (e) LGPH on the 20 May case and (f) LG on the 20 May case. 

 

 

In summary, the perturbation energy is again smaller than the error energy at 

early lead times but, unlike the 10 May case, is similar to the error energy after ~15h.  

Unlike the 10 May case, there is not a clear distinction between LGPH and 
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RAND/RECRS in terms of the magnitude of perturbation energy growth.  Also unlike 

the 10 May case, RAND and RECRS become very similar on all scales after about 12 h.  

The distribution of perturbation energy across spatial scales was also generally more 

similar among the different perturbation methods on this case than on the 10 May case.  

The similar or greater energy of the RAND and RECRS perturbations compared to 

forecast errors and LGPH shows that small scale IC errors on this case contribute to the 

forecast uncertainty at least as much as the larger scale IC and physics errors.  

Differences between LGPH_RECRS and LGPH and between LG_RECRS and LG on 

this case suggest that LGPH_RECRS may be an effective method of combining the 

small scale IC perturbations with the SSEF design in certain situations. 

 

3.3c Season average results 

On average, the forecast error energy grows approximately linearly on the large 

scale with much less magnitude than on smaller scales (Fig. 3.11).  On medium and 

small scales, the forecast error energy follows the diurnal cycle of convection, with 

maxima during the early forecast hours and during the following afternoon (Fig. 

3.11b,c).  The medium scale afternoon maximum of the second day persists into the 

evening while the small scale maximum decreases after ~23h (i.e., ~2300 UTC) (Fig. 

3.11b,c).  The total error energy temporal variability is dominated by the small and 

medium scales which have the largest magnitudes (Fig. 3.11c,d).  All perturbation 

methods result in less total energy than the forecast errors (Fig. 3.11d).  The under-

estimation of forecast errors is most pronounced for medium and large scales and for 

the RAND and RECRS perturbations (Fig. 3.11a,b,c). 
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Figure 3.11: As in Fig. 3.5, except averaged over the entire experiment period. 

 

Differences among the average perturbation energies in Fig. 3.11 are tested for 

statistical significance using one-sided permutation resampling (Hamill 1999) at the 

95% confidence level (Table 3.1).  On medium and large forecast scales, LGPH has 

significantly more perturbation energy than RAND and RECRS, except at early lead 

times due to the spurious precipitation of RECRS and except at 19-24h on the medium 

scale where the difference between LGPH and RECRS is not significant (Table 3.1).  

Only LGPH and LGPH_RECRS account for a substantial fraction of the error energy 

on large scales (Fig. 3.11a).  On small scales LGPH is slightly, but significantly, greater 
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than RAND at 3-9h and is markedly less than RAND and RECRS at 16-30h (Fig. 3.11 

and Table 3.1).  The reduced LGPH perturbation energy compared to RAND and 

RECRS on small scales at 16-30h is a systematic result of the physics-related bias 

difference discussed for the 20 May case.  Besides the first few hours, dominated by 

spurious precipitation for RECRS, significantly greater energy for RECRS than RAND 

is found at most lead times for large and medium scales and at several lead times (e.g., 

20-23 and 25-27h) for small scales (Table 3.1).  This difference is qualitatively most 

pronounced on the medium scales (Fig. 3.11b).  On average, the medium scale 

differences between LGPH and RAND/RECRS are less pronounced than on the 10 May 

case.  The RAND/RECRS medium scale perturbation energy is 50% or more of the 

LGPH perturbation energy on average at most lead times.  This suggests systematic 

upscale growth of the small scale IC errors throughout the 30h forecast period.  

However, the differences between LGPH and LGPH_RECRS on average are generally 

small and/or not significant, again excluding early lead times dominated by spurious 

precipitation (Fig. 3.11 and Table 3.1).   

The total average perturbation energy from all perturbation methods becomes 

similar after ~16h (Fig. 3.11d), 4 h later than the 11h time scale of insensitivity to the 

initial small scale perturbation method suggested by Hohenegger and Schär (2007a).  

The differences between RAND and RECRS perturbation energy, especially on the 

medium scales, throughout the forecast period suggests that the impact of the structure 

of small scale IC perturbations may persist longer into the forecast than expected.   
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Figure 3.12: As in Fig. 3.8, except averaged over the entire experiment period and 

excluding panels (e) and (f) which were only generated for the two case studies. 

 

 

 

 

 

 

 

 

 



78 

Table 3.1: Statistical significance of the season-average differences in average 

perturbation (shown in Fig. 3.11) energy between each pair of perturbation 

methods.  The pair of perturbations being compared is given at the top of columns 

2-7. Each entry contains four results for large scale, medium scale, small scale and 

total, respectively. The Y indicates statistical significance at the 95% level using 

one-sided permutation resampling (Hamill 1999) and the N indicates no statistical 

significance. 
Lead 

time 

Rand vs 

recrs 

Rand vs 

lgph_recrs 

Rand vs 

lgph 

Recrs vs 

lgph_recrs 

Recrs vs 

lgph 

Lgph vs 

lgph_recrs 

1 Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y 

2 Y,Y,Y,Y Y,Y,Y,Y Y,Y,N,Y Y,Y,Y,N N,Y,Y,Y Y,Y,Y,Y 

3 Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,N,Y,N Y,Y,Y,Y 

4 Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y N,Y,Y,Y Y,Y,Y,Y Y,Y,N,N 

5 Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,N,Y Y,Y,Y,Y N,Y,Y,N 

6 Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,N,Y Y,Y,Y,Y N,N,Y,Y 

7 Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,N,Y N,N,Y,Y 

8 Y,Y,Y,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,N,Y N,N,Y,Y 

9 Y,Y,Y,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,N,Y N.N,Y,Y 

10 Y,Y,Y,Y Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,N,Y N,N,Y,N 

11 Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y N,N,Y,N 

12 Y,Y,Y,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y N,N,Y,Y 

13 Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,N,Y N,N,Y,N 

14 Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,Y,Y Y,Y,N,Y Y,N,Y,N 

15 Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,Y,N,Y Y,N,N,N 

16 Y,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N Y,N,N,N 

17 Y,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N N,Y,N,N 

18 Y,Y,N,Y Y,Y,Y,N Y,Y,Y,N Y,Y,Y,N Y,Y,Y,N Y,N,Y,N 

19 Y,Y,N,Y Y,Y,Y,N Y,Y,Y,N Y,Y,Y,Y Y,N,Y,Y Y,N,Y,N 

20 Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N Y,N,Y,Y Y,N,Y,Y N,N,Y,N 

21 Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N Y,N,Y,Y Y,N,Y,Y N,N,N,N 

22 Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,Y Y,N,Y,Y Y,N,Y,Y N,N,N,N 

23 Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N Y,N,Y,Y Y,N,Y,Y N,N,N,N 

24 Y,Y,N,Y Y,Y,Y,N Y,Y,Y,N Y,Y,Y,Y Y,N,Y,Y N,N,N,N 

25 Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,Y Y,Y,Y,Y N,Y,N,Y 

26 Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N N,N,N,N 

27 N,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N Y,N,N,N 

28 N,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N N,N,N,N 

29 N,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,N Y,Y,Y,N N,N,N,N 

30 N,Y,N,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y Y,Y,Y,Y N,N,N,N 

 

The RAND and RECRS perturbations do not reflect the spectral evolution of 

error energy as well as LGPH (Fig. 3.12a,b,c).  Except for the spurious precipitation at 

1h, LGPH already approximately reflects the error energy maximum of ~32-128 km 
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wavelength by 6h (Fig. 3.12c).  However, RAND and RECRS still do not even reflect 

the error energy maximum of 64 km wavelength at 12h (Fig. 3.12a,b).  By 24h, all 

methods reflect the error energy maximum of 32 km wavelength (Fig. 3.12).  At later 

lead times, LGPH generally has a broader spectrum, with more energy on the larger 

scales, than RAND and RECRS (Fig. 3.12a,b,c).  Except for the very early lead times 

where RECRS and LGPH_RECRS are dominated by the spurious precipitation, there 

are not substantial differences in perturbation energy spectra between RAND and 

RECRS or between LGPH and LGPH_RECRS. 

 

3.4 Summary and conclusions 

The purpose of this study is to understand the multi-scale characteristics of the 

evolution of different sources of perturbations on convection-allowing precipitation 

forecasts on two case studies and for 34 forecasts on average, for the purpose of 

understanding the optimal SSEF design.  In particular, three main goals are addressed.  

First, the impact of small scale IC perturbations (RAND and RECRS) is compared to 

the larger scale IC and physics perturbations (LGPH and LG) that are currently used in 

the CAPS Spring Experiment SSEF.  Second, two methods of generating small scale IC 

perturbations (RAND and RECRS) are compared to each other.  Third, LGPH is 

compared to a method of combining the small and large scale IC perturbations 

(LG_RECRS) and combining multi-scale IC and physics perturbations 

(LGPH_RECRS). 

It is found that the relative impacts of the different types of perturbation are 

case-dependent.  On the 10 May case the evolution of the precipitation systems in the 
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background forecast are driven primarily by a synoptic scale disturbance.  After the first 

few hours, the 10 May forecasts containing large scale IC perturbations, with or without 

physics perturbations, have more perturbation energy than the small scale IC-only 

perturbations, RAND and RECRS, on medium and large scales while the small scale 

perturbation energy is similar for all methods.  As a result, the perturbation energy 

spectra are generally broader for LG and LGPH than RAND and RECRS.  On this case 

the RECRS method creates more forecast perturbation energy than RAND at most lead 

times for the medium scales and for many lead times after ~20h for the small scales.  

LGPH_RECRS and LG_RECRS do not increase the perturbation energy relative to 

LGPH and LG, respectively, on this case.  In contrast, the 20 May case has ongoing 

convection in the background forecast at the initial time that grows upscale into an 

MCS.  The 20 May forecasts are generally less sensitive to the scale of IC perturbations, 

with LG and LGPH not showing a clear increase of perturbation energy, relative to 

RAND and RECRS, on any scale.  The perturbation energy spectra are also less 

sensitive to the perturbation method on 20 May than on 10 May.  There is less forecast 

energy for LGPH than for RAND and RECRS on small scales at ~20-27h due to the 

physics scheme differences.  On 20 May, RECRS shows increased perturbation energy, 

relative to RAND, for only the first ~12-15h on small and medium scales.  Unlike the 

10 May case, the 20 May case shows greater perturbation energy at ~20-26h for 

LGPH_RECRS and LG_RECRS than LGPH and LG, respectively.  

One of the main differences in perturbation evolution between the two cases is 

the greater sensitivity to the small scale IC perturbations, relative to the larger scale IC 

and physics perturbations, on the 20 May case.  This is consistent with past case studies 
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suggesting that lower predictability generally results from the release of deep moist 

convective instability (e.g., Hohenegger et al. 2006).  However, Zhang et al. (2006) 

found less sensitivity of the mesoscales to small scale random IC perturbations for a 

warm season heavy precipitation event than a large scale winter cyclone event.  This 

contrasts with the results in the present study.  Reasons for this difference may include 

the direct consideration of precipitation forecasts, instead of wind and temperature 

differences as in Zhang et al. (2006), as well as differences in the forcing mechanisms 

of the precipitation systems.  For example, our 20 May case is characterized by upscale 

growth of convection due to internal storm dynamics rather than the large scale 

moisture transport interacting with topography in Zhang et al. (2006).    

The perturbations are evaluated over a large number of forecasts to better 

understand their systematic behavior, independent of the many factors of individual 

cases that can affect the predictability.  Averaged over 34 forecasts, there is a diurnal 

cycle of forecast error and perturbation energy on the small and medium scales.  

Compared to RAND and RECRS, the forecast sensitivity is dominated by LGPH and 

LGPH_RECRS perturbations on large and medium scales.  However, on medium scales 

RAND and RECRS alone can generate at least half as much forecast perturbation 

energy as LGPH throughout the forecast period.  This sensitivity of the medium forecast 

scales to small scale IC perturbations is more similar to the 20 May case than the 10 

May case.  This similarity is consistent with the expectation that during the late spring 

and early summer season convective episodes are often dominated by localized and/or 

diurnal forcings, such as those on the 20 May case, rather than the dominant large scale 

forcing like the 10 May case (Stensrud and Fritsch 1993).  Perturbation energy for 
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LGPH and LGPH_RECRS is systematically reduced on small scales during the diurnal 

convective maximum due to the different biases of the physics schemes.  The most 

prominent difference between RAND and RECRS is an increase of medium scale 

perturbation energy at all times for RECRS.  RECRS also shows greatly increased 

energy at 1-2h due to spurious precipitation.  Refinement of the RECRS method would 

therefore be necessary before inclusion in an ensemble forecast system.  On average, 

LGPH_RECRS does not create significantly more perturbation energy than LGPH on 

any scale after the first few hours which are dominated by the spurious precipitation.   

The dominant impact of large scale IC and physics perturbations suggests that 

the current CAPS ensemble configuration, sampling only large scale IC and physics 

errors, already samples the primary forecast sensitivity.  The comparable, although 

lesser, impact of only small scale IC perturbations on medium scales also implies a 

process of upscale growth of the initially small errors that can substantially contribute to 

the medium scale forecast sensitivity.  However, the method of generating multi-scale 

IC perturbations represented by LGPH_RECRS does not show a systematic increase in 

medium scale perturbation energy, relative to LGPH.  The three most likely reasons for 

this lack of impact are that (1) better methods of combining multiple scales of IC 

perturbation need to be developed, (2) there is only an advantage of including small 

scales in the IC perturbations under certain conditions such as situations of rapid 

upscale error propagation (e.g., the May 20 Case), or (3) the downscale energy cascade 

of the large scale IC perturbations implicitly accounts for small scale errors that are not 

explicitly sampled.  
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More work is needed to understand how to realistically and efficiently sample, 

and optimally combine, all scales of uncertainty, from synoptic to convective, into 

IC/LBC perturbations, along with physics perturbations, for SSEFs.  The methods of 

defining the small scale IC perturbations in this chapter are not flow-dependent, may 

not reflect the actual analysis errors, and can result in unbalanced initial fields that are 

detrimental to short term forecasts.  For example, the RAND perturbations exhibit no 

initial spatial structure and result in less growth than the RECRS perturbations.  The 

RECRS perturbations are defined to have a fixed, uniform spatial structure and 

amplitude but create spurious precipitation at early lead times.  The differences between 

RAND and RECRS, especially on the medium forecast scales, show the importance of 

the spatial structure of small scale IC perturbations.  Flow-dependent methods should be 

developed to better sample the small scale error structure in the ICs.  The following 

chapters investigate the use of ensemble based data assimilation to provide flow-

dependent multi-scale IC perturbations for SSEFs.  In addition to IC/LBC perturbation 

methods, different physics perturbations may also yield different results.  Investigation 

of physics perturbation methods such as using different physics schemes and different 

parameters within a fixed scheme is left for future study.  While this study focuses 

primarily on the spatial scales of forecast perturbation, the questions of which variables 

should be perturbed and what the covariance should be among the perturbed variables 

for SSEF design remains an open question.  Ensemble-based data assimilation may also 

be useful to address such questions. 
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Chapter 4: OSSE study of multi-scale initial condition perturbation 

methods. Part 1: Case study of MCS upscale growth case 

 

4.1 Introduction 

This part of the study has three main goals aimed at better understanding the 

optimal SSEF IC perturbation design.  The first goal is to better understand the 

advantages of flow-dependent multi-scale IC perturbations for ensemble forecasts of 

mid-latitude convection, compared to IC perturbations downscaled from a coarser 

resolution ensemble.  The different IC perturbation methods include not only 

differences in resolution, but also differences on commonly resolved scales as a result 

of being generated on different model grids with different DA methods.  The second 

goal of this study is therefore to understand the impacts of the mesoscale component 

(i.e., on commonly resolved scales) of the differences between the IC perturbation 

methods.  The third goal is to better understand the impacts of the small scale IC 

perturbations which are only resolved in the multi-scale method.  

Convection-permitting forecasts provide information that is useful for users 

interested in applications ranging from ~1h predictions of individual storms and severe 

weather events (e.g., Stensrud et al. 2009; Yussouf et al. 2013) to mesoscale 

quantitative precipitation forecasting (e.g., Clark et al. 2009, 2012; Duc et al. 2013).  

The impacts of the IC perturbations are therefore evaluated in terms of hourly 

accumulated precipitation forecasts out to 9 h in mesoscale (i.e., 48 km radius) 

neighborhoods as well as short term (2 h) reflectivity forecasts in storm-scale 

neighborhoods ranging from 0-48 km. 
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While model and physics diversity are also an important part of the ensemble 

design (e.g., Clark et al. 2008), this study focuses on the IC perturbation design.  

Therefore, perfect model Observation System Simulation Experiments (OSSEs) are 

used to isolate the IC error from the model and physics errors.  In this chapter, a case 

study of cellular convection growing upscale into a long-lived mesoscale convective 

system (MCS) is used to qualitatively understand the impacts of the IC perturbation 

design.  In the following chapter, systematic evaluation of eleven diverse cases of mid-

latitude convection is used to draw more robust conclusions and relate them to the 

optimal design of SSEF IC perturbations.  Impacts of model error are also considered in 

Chapter 7.  In this chapter, Section 4.2 describes the IC perturbation methods and 

verification methods.  Results are presented in Section 4.3 while Section 4.4 includes a 

summary and conclusions. 

 

4.2 Methods 

4.2a OSSE design 

In an OSSE, a model simulation referred to as the nature run represents the 

“true” atmosphere, the state and dynamics of which are perfectly known.  In this study, 

the nature run is initialized from the NCEP GFS analysis at 00 UTC 19 May and run at 

4 km grid spacing over the outer domain in Fig. 2.1.  Observations of wind, 

temperature, water vapor, sea level pressure, radar radial velocity and radar reflectivity 

are then simulated by sampling the nature run at observation locations representative of 

the actual observation networks (e.g., Fig. 2.1), with representative observation error 

characteristics.  The simulated observations are then assimilated into the experiment 
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forecasts in order to try to recover the “true” state of the Nature run, using the GSI-

based multi-scale DA system.   

An advantage of the OSSE framework is that the truth is perfectly known at the 

model grid points.  For this study of IC perturbations, the OSSE framework has the 

additional advantage of eliminating model and physics uncertainty as a source of 

forecast error by using identical model configurations for the nature run and experiment 

forecasts (i.e., a “perfect model” OSSE).  The outer domain analyses do contain model 

error arising from the coarser resolution and convection parameterization.  However, 

such errors only enter the convection-permitting forecasts through the ICs provided by 

the inner domain DA and the LBCs from the outer domain.  

The actual evolution of the 20 May case study, including upscale growth of 

initially cellular convection into a long-lived MCS in central OK, has been described in 

Chapter 2.  The nature run for this case also shows similar upscale growth of convection 

into a long-lived MCS, as seen in the observation contours in Fig. 4.4.  This case is 

chosen for an initial investigation into multi-scale IC perturbation methods because of 

the multiple scales of motion influencing such upscale growing MCSs (e.g., Perkey and 

Maddox 1985), the sensitivity of this case to IC errors on multiple scales in non-OSSE 

experiments (Chapter 3), and the similarity between the nature run and actual evolution 

for this case.  Experiment forecasts are initialized at both 0000 UTC, about half-way 

through the upscale growth of the MCS, and 2100 UTC, very early in the process of 

upscale growth.  The comparison of experiments initialized at different phases of the 

upscale growth provides an estimate of the case dependence of the results. 
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4.2b IC perturbation methods 

In all experiments, the ensemble forecasts have the same mean analysis, 

provided by the ensemble mean analysis of the multi-scale GSI-based DA system.  The 

only difference among the experiments is the IC perturbations added to the ensemble 

mean to generate the initial ensemble.  The first goal of this part of the study is to 

understand the impact of the multi-scale IC perturbations generated on the inner domain 

(hereinafter, MULTI) in comparison to larger scale IC perturbations downscaled from 

the outer domain (hereinafter, LARGE).  The MULTI IC perturbations are obtained by 

directly using the inner domain multi-scale analyses to initialize the ensemble forecasts.  

The LARGE IC perturbations are obtained by adding the difference between each outer 

domain ensemble member and the outer domain ensemble mean (both interpolated to 

the inner domain using the WRF ndown utility) to the inner domain ensemble mean.  

The second and third goals of this part of the study are to understand the impacts of (a) 

the differences between MULTI and LARGE on commonly resolved scales and (b) the 

smaller scale IC perturbations in MULTI.  A third ensemble, MULTI48, is therefore 

constructed by filtering
1
 wavelengths less than 48 km from each MULTI perturbation 

before adding it back to the inner domain ensemble mean.  Since MULTI48 is the same 

as MULTI except for the absence of perturbations on scales not resolved by LARGE, 

comparison of MULTI48 with LARGE allows (a) to be investigated while comparison 

of MULTI48 with MULTI allows (b) to be investigated.  For simplicity, wavelengths 

less than 48 km are therefore referred to as “small scale” IC perturbations in this study 

while the larger scales are referred to as “mesoscale” IC perturbations in this study.  

                                                 
1
 The filtering consists of truncation of wavelengths below 48km in the two-dimensional Discrete Cosine 

Transform (Denis et al. 2002) of the IC perturbation field. 
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Although there is not such a sharp cut-off in the scales resolved by the LARGE IC 

perturbations, the difference in perturbation energy between MULTI and LARGE is 

particularly pronounced at wavelengths smaller than ~50 km (Fig. 4.1a,f), motivating 

the choice of 48 km to separate small scales and mesoscales in the IC perturbations. 

 

4.2.c Verification methods 

SSEFs have proven useful for users interested in convective precipitation 

forecast applications on space and time scales ranging from very short term warn-on-

forecast applications (e.g., Stensrud et al. 2009; Yussouf et al. 2013) to mesoscale 

quantitative precipitation forecasting (e.g., Clark et al. 2009, 2012; Duc et al. 2013).  

Forecasts on such different scales may show different sensitivities to the multi-scale IC 

perturbation methods.  In order to provide a robust understanding of the impacts of IC 

perturbation methods, the convection forecasts are here evaluated in terms of both 

instantaneous reflectivity during the first two forecast hours and mesoscale hourly 

accumulated precipitation out to nine hours.  Reflectivity results are shown using model 

level 12 (~750mb).  Reflectivity at model level 5 (~900mb) was also evaluated and 

showed very similar results (not shown). 

The forecasts are objectively verified using the Brier Skill Score (BSS; Brier 

1950; Murphy 1973; Wilks 2006) of Neighborhood Ensemble Probability (NEP; Theis 

et al. 2005; Schwartz et al. 2010).  The NEP is the percentage of grid points from all 

ensemble member forecasts within a search radius that exceed the threshold being 

forecast.  The use of the NEP reduces the sensitivity to errors on scales smaller than the 

search radius (Roberts and Lean 2008).  A radius of 48 km is chosen for the mesoscale 
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hourly accumulated precipitation forecasts in order to eliminate the impact of smaller 

scale and less predictable details (Johnson and Wang 2012).  The reflectivity forecasts 

are evaluated across a range of different spatial scales (i.e., radii less than 48 km) and 

verification thresholds (Stratman et al. 2013).  The BSS provides a simple way to verify 

the ensemble probabilistic forecasts that is sensitive to both the reliability and resolution 

of the forecasts (Murphy 1973).  In addition to the objective verification, subjective 

verification is also conducted to qualitatively understand the physical processes behind 

the objective skill metrics for this case study.   

Verification of mesoscale precipitation and the non-precipitation variables is 

conducted over the verification domain plotted in Fig 4.4.  The reflectivity verification 

is conducted in a smaller verification domain focused on the MCS of interest (e.g., Fig. 

4.7). 

 

4.3 Results 

4.3a Non-precipitation variables 

Since the non-precipitation variables are the directly perturbed IC variables, 

results for wind, temperature and water vapor are first considered.  One-dimensional de-

trended Fourier spectra for these variables are calculated along east-west grid lines, and 

averaged over all possible such grid lines (Skamarock 2004).  The spectra of the 

ensemble mean error and the ensemble member perturbations, averaged over the 40 

ensemble members, are compared for the u-component of wind at model level 5 (~900 

mb) in Fig. 4.1.  Results for this variable are similar to wind at model level 12 (~750 

mb) as well as temperature and water vapor (not shown).  The ensemble mean error 
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spectra are very similar for the MULTI and LARGE ensembles at the lead times shown 

in Fig. 4.1, with the green and blue dashed lines nearly on top of each other.  At the 

initial time, the LARGE ensemble perturbations are markedly under-dispersive, 

compared to the ensemble mean error, at scales less than ~50 km for both the 0000 and 

2100 UTC cases (Fig. 4.1a,f).  The lack of small scale spread is a result of the coarser 

resolution of the outer domain ensemble used to generate the LARGE perturbations. 

   

 

Figure 4.1: Fourier spectra decomposition of ensemble perturbations (ensemble 

member minus ensemble mean, averaged over all members; solid) and ensemble 

mean error (dashed) for the u component of wind at model level 5 (~900 mb) for 

the 2100 UTC case at (a) the analysis time, (b) 20-minute forecast time, (c) 40-

minute forecast time, (d) 60-minute forecast time, (e) 180-minute forecast time and 

(f)-(j) as in (a)-(e) except for the 0000 UTC case. 

 

Although the small scales are initially very under-dispersive for LARGE, 

downscale energy propagation results in rapid perturbation growth on such scales, 

consistent with the results of Durran and Gingrich (2014).  The small scale energy for 

LARGE catches up to that for MULTI within about an hour, depending on the case 

(Fig. 4.1).  This confirms that explicitly including small scale IC perturbations has little 
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impact on the ensemble spread of the directly perturbed variables on such scales for 

lead times beyond ~1 h.  However, it is not clear what impacts the small scale IC 

perturbations during the first hour have on the convective precipitation forecasts both 

during and after the first hour and on larger scales. 

The ensemble spread (i.e., standard deviation) of wind, temperature and 

moisture at model levels 5 and 12 (~900 and 750 mb, respectively) are also evaluated 

and compared to the ensemble mean root mean square error (RMSE) in Fig. 4.2 for the 

0000 UTC case.  At early lead times, MULTI has less spread than LARGE for most 

variables (Fig. 4.2), consistent with the largest scales of Fig. 4.1 which dominate the 

total spread.  An exception to this trend at early lead times is level 12 moisture (Fig. 

4.2f), discussed further in Section 4.3b(2)(ii).  MULTI has more spread than LARGE 

for most variables by the end of the 9h forecast period, although all of the ensembles are 

still under-dispersive at this time for most variables.  Since MULTI generally has less 

spread than LARGE initially, this indicates greater perturbation growth during the 

forecast period in the MULTI ensemble than the LARGE ensemble for this case. 
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Figure 4.2: Ensemble spread (i.e., standard deviation) and ensemble mean RMSE 

as a function of forecast lead time for the 0000 UTC case at model level 5 (~900 

mb) for (a) temperature (K), (b) water vapor mixing ratio (g kg
-1

), (c) v wind 

component (m s
-1

), (d) u wind component (m s
-1

), and (e)-(h) as in (a)-(d) except at 

model level 12 (~750mb). 

 

4.3b Convective precipitation forecasts 

A wavelength of 48 km is used to distinguish the impacts of “small scale” and 

“mesoscale” differences in the IC perturbations.  This approximately corresponds to the 

scale below which the LARGE IC perturbations have very little energy compared to the 

MULTI IC perturbations in Fig. 4.1.  The impacts on the convective precipitation 

forecasts on different spatial scales are also distinguished using different forecast 

variables (hourly accumulated precipitation and instantaneous reflectivity) and different 

neighborhood radii (48 km for precipitation and 0-48 km for reflectivity). 

The following sub-sections evaluate the differences between MULTI and 

LARGE, MULTI48 and LARGE, and MULTI and MULTI48, consistent with the three 

goals of this study.  The results in this section emphasize the experiments with forecasts 
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initialized at 0000 UTC in order to minimize redundancy.  Results from the 2100 UTC 

case are also noted where additional information is added by the 2100 UTC case. 

 

4.3b(1) OVERALL IMPACT OF IC PERTURBATION METHOD 

4.3b(1)(i) Mesoscale hourly accumulated precipitation 

The first goal of this part of the study is to understand the differences in forecast 

performance between IC perturbations generated on the inner domain and those 

downscaled from the outer domain (i.e., MULTI vs. LARGE).  The relative 

performance of the MULTI and LARGE ensembles for hourly accumulated 

precipitation depends on the forecast initialization time (0000 or 2100 UTC; Fig. 

4.3a,b,c or Fig. 4.3d,e,f, respectively). The differences are often smaller than the 

sampling uncertainty of the verification statistic
2
 (Fig. 4.3), emphasizing the need for a 

more systematic comparison over many diverse cases in Chapter 5.  At most lead times 

MULTI is more skillful than LARGE for the 0000 UTC case (Fig. 4.3a,b,c) while 

LARGE is more skillful than MULTI for the 2100 UTC case (Fig. 4.3d,e,f).   

                                                 
2
 90% confidence intervals of the LARGE BSS in Fig. 4.3 are calculated using 5000 bootstrap resamples 

with replacement of the 40 ensemble members for each BSS value.  The purpose is to estimate the 

uncertainty in the verification statistic resulting from sampling errors due to the finite ensemble size. 
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Figure 4.3: Brier Skill Score (BSS) of the Neighborhood Ensemble Probability 

(NEP) forecasts initialized at (a)-(c) 0000 UTC and (d)-(f) 2100 UTC for hourly 

accumulated precipitation thresholds of (a),(d) 2.54 mm h
-1

, (b),(e) 6.35 mm h
-1

 and 

(c),(f) 12.7 mm h
-1

. 90% confidence intervals for the LARGE ensemble are 

calculated as described in footnote 2. 

 

Despite the case dependence of the objective metrics, subjective evaluation of 

the two cases provides physical understanding of the causes of such differences in 

forecast skill.  For both cases the LARGE forecast is subjectively reasonable (e.g., Fig. 

4.4 for the 0000 UTC case).  However, there are subtle errors such as a slight westward 

displacement of the axis of maximum NEP, relative to the observed MCS, at the 

southern end of the MCS at later lead times (Fig. 4.4).  The LARGE ensemble also 

predicts some spurious cells in the MCS cold pool resulting in non-zero probability 

northwest of the observed MCS during the first ~2 h (Fig. 4.4a,b).  The figures 
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discussed below are plotted as differences from the LARGE (or MULTI48) NEP in 

order to emphasize subtle forecast differences. 

 

Figure 4.4: Forecast NEP (shaded) and observation contour (red line) for the 

LARGE ensemble forecast of hourly accumulated precipitation exceeding 6.35 mm 

h
-1

, initialized at 0000 UTC 20 May 2010. 

 

The generally greater skill for MULTI than LARGE for the 0000 UTC case 

(Fig. 4.3a,b,c) is consistent with subjective evaluation (Fig. 4.5a-i).  Initially, MULTI 

shows reduced probability, compared to LARGE, in the cold pool region northwest of 

the MCS and increased probability farther east.  The MULTI advantage of reducing the 

NEP in the cold pool region persists for ~3-4 h (Fig. 4.5a-d).  Starting at ~0500 UTC, 

MULTI has higher probability along the eastern edge of the MCS and another area of 

reduced probability west of the southern end of the MCS (Fig. 4.5e-i).  The westward 
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displacement of the maximum NEP at later lead times for LARGE at the southern end 

of the MCS is therefore partly corrected in the MULTI forecast.   

 

Figure 4.5: Difference in NEP between (left column) MULTI and LARGE, (center 

column) MULTI and MULTI48 and (center column) MULTI48 and LARGE, for 

hourly accumulated precipitation forecasts initialized at 0000 UTC 20 May 2010, 

for the 6.35 mm h
-1

 threshold. 
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Although the relative skill of the ensembles between the 0000 and 2100 UTC 

cases is quite different (Fig. 4.3), subjectively there are also common features between 

the two cases.  For example, there is also a reduction of probability for MULTI, 

compared to LARGE, west and north of the incipient MCS during the first couple of 

hours of the 2100 UTC forecast (not shown).  However, the skill is dominated by 

spurious storms to the south of the observed MCS in several members for the 2100 

UTC case.  These storms result in a new MCS to the southeast of the initial MCS that 

dominates and reduces the intensity of the initial MCS in those members (not shown).   

 

4.3b(1)(ii) Storm scale reflectivity 

The impacts of the IC perturbation methods on convective precipitation 

forecasts are also evaluated in terms of the reflectivity forecasts which contain smaller 

scale detail than hourly accumulated precipitation forecasts.  The reflectivity forecasts, 

verified on smaller scales than the accumulated precipitation forecasts, are not 

considered beyond the 2 h forecast range because of the intrinsic lack of predictability 

at longer lead times for storm scale features (Cintineo and Stensrud 2013).  Figure 4.6 

shows the difference in BSS between the MULTI and LARGE reflectivity forecasts at 5 

minute intervals for the 0000 UTC case.  MULTI is generally the more skillful 

ensemble where the BSS difference exceeds a magnitude of 0.01 (Color shading in Fig. 

4.6).  The MULTI advantage is most pronounced at ~30-40 minutes, while slight 

LARGE advantages begin to appear during the last ~20 minutes. 
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Figure 4.6: Difference in BSS for reflectivity at model level 12 between the MULTI 

and LARGE ensemble at five minute intervals during the first 80 minutes and at 

ten minute intervals between 80 and 120 minutes. The vertical axis on each panel is 

the reflectivity threshold (dBZ) and the horizontal axis is the neighborhood radius 

(km). 

 

Subjectively, there are two competing factors that qualitatively explain the 

differences between MULTI and LARGE forecast skill, as illustrated with the 

representative 30 dBZ threshold forecasts for the 0000 UTC case (Fig. 4.7a-h).  First, 

MULTI provides a sharper forecast of the MCS with greater resolution than LARGE, 

since MULTI has lower probability outside of the observed MCS and higher probability 

within the observed MCS.  In particular, there is reduced MULTI probability outside 
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and to the west of the observed MCS and a corresponding increase in MULTI 

probability inside the northern end of the observed MCS contour (Fig. 4.7a-g).  This 

difference is most pronounced at ~35-45 minutes, consistent with the greatest MULTI 

skill advantage in Fig. 4.6.  Second, MULTI enhances the forecast probability outside 

of the observation contour at the southern and eastern edges of the observed MCS, 

negatively impacting the forecast skill.  This difference becomes more pronounced at 

the later lead times, explaining the decreasing MULTI skill advantage and eventual 

slight LARGE skill advantage in Fig. 4.6.  The causes of these qualitative differences 

are discussed further in the following sub-sections. 
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Figure 4.7: As in Fig. 4.5, except for forecasts of reflectivity exceeding 35 dBZ in 

the verification domain focused on the MCS of interest for forecasts initialized at 

0000 UTC. 
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4.3b(2) IMPACT OF MESOSCALE COMPONENT OF IC PERTURBATION 

METHOD 

4.3b(2)(i) Mesoscale hourly accumulated precipitation 

The second goal of this part of the study is to understand the impacts of the 

different methods of generating the mesoscale component of the IC perturbations (i.e., 

MULTI48 vs. LARGE).  For the 0000 UTC case, the mesoscale precipitation forecast 

differences between MULTI and LARGE are primarily determined by the differences 

between MULTI48 and LARGE (i.e., subjective similarity between left and right 

columns of Fig. 4.5 and between blue lines in Fig. 4.3a-c).  In particular, the reduction 

of spurious precipitation behind the MCS for MULTI, and the subsequent differences 

from LARGE in the northern and eastern parts of the MCS at later times are also 

present in the differences between MULTI48 and LARGE (Fig. 4.5s-α).  The 

differences from LARGE in the southern part of the MCS are also more strongly 

impacted by the mesoscale IC perturbation differences than the small scale IC 

perturbations since the left and right columns of Fig. 4.5 are more similar in this area 

than the left and center columns at most lead times.  For the 2100 UTC case, the 

precipitation forecast differences between MULTI and LARGE are also determined 

mainly by the differences between MULTI48 and LARGE (e.g., Fig. 4.3d-f).  Since the 

mesoscale differences in the IC perturbation methods have similar qualitative impacts 

on both precipitation and reflectivity forecasts, the qualitative explanation of these 

forecast differences are explained in the following sub-section. 
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4.3b(2)(ii) Storm scale reflectivity 

For the reflectivity forecasts, the differences in skill are also dominated by the 

differences between MULTI48 and LARGE, with the exception of the 0-4 km radius 

neighborhoods during the first hour (Fig. 4.8).  The difference from LARGE is even 

more pronounced for MULTI48 than MULTI at many times and extends to higher 

thresholds during the first ~75 minutes (Fig. 4.8).  During the first ~75 minutes, the 

MULTI48 advantages are subjectively consistent with a similar (to MULTI) reduction 

in spurious probability in the cold pool and correspondingly sharper MCS forecast (Fig. 

4.7q-x).  The MULTI48 advantages during the first ~75 minutes are generally more 

pronounced than for MULTI because the enhanced probabilities outside of the southern 

and eastern edges of the MCS are less pronounced for MULTI48 than MULTI (Fig. 4.7; 

left and right columns).  Reduced spurious probability for MULTI48 in the cold pool 

area at early lead times, compared to LARGE, is also present in the 2100 UTC case (not 

shown).   
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Figure 4.8: As in Fig. 4.6, except for the difference in BSS between MULTI48 and 

LARGE. 

 

The MULTI48 advantages over LARGE, for both the reflectivity and 

precipitation forecasts, are attributed to greater consistency of the mesoscale IC 

perturbations with the analysis errors in the vicinity of the analyzed MCS for 

MULTI48.  For example, member 6 from the LARGE ensemble (hereinafter 

LARGE_006) shows several spurious cells west of the main MCS in the cold pool 

region at early lead times (Fig. 4.9a).  The corresponding member 6 of the MULTI48 

ensemble (hereinafter MULTI48_006) does not show these spurious cells (Fig. 4.9e).  



104 

The spurious cells result from strong convergence and moisture perturbations in the 

vicinity of the MCS cold pool for LARGE_006 that are not present for MULTI48_006 

(Fig. 4.9b,c,d,f,g,h).  Such perturbations may be consistent with the poorly resolved and 

poorly assimilated cold pools in the outer domain analysis.  However, they are 

inconsistent with the actual errors of the inner domain analysis of this feature after radar 

DA (Fig. 4.9i,j,k).  Therefore the improved consistency between the mesoscale IC 

perturbations and analysis errors near the MCS for MULTI48, compared to LARGE, 

explains the reduction in spurious probability in the cold pool region at early lead times.  

The excessively large magnitude mesoscale perturbations in and near the initial MCS 

for LARGE also result in the less sharp probabilistic forecast of the MCS for LARGE.  

The smaller magnitude mesoscale IC perturbations for MULTI48 are consistent with 

the initially lower ensemble spread of non-precipitation variables for MULTI, compared 

to LARGE (Fig. 4.2).  Subjectively similar results are also seen in the 2100 UTC case 

(not shown), although the objective skill is more strongly impacted by another 

difference between the MULTI48 and LARGE IC perturbations, discussed below. 



105 

 

Figure 4.9: Comparison of 0000 UTC case initial perturbations of member 006 

from the LARGE and MULTI48 ensembles with the corresponding ensemble 

mean error.  Panels (a) and (c) show the 30-minute reflectivity forecast at model 

level 12 for LARGE_006 and MULTI48_006, respectively. Panels (b), (c) and (d) 

show the LARGE_006 perturbation from the ensemble mean for the u component 

of wind, v component of wind and water vapor, respectively, at model level 5.  (f)-

(h) are as in (b)-(d) except for the MULTI48_006 perturbation. Panels (i)-(k) show 

the corresponding ensemble mean error (ensemble mean minus truth).  Black 

contour overlays are the ensemble mean fields with contour interval of 5 m s
-1

 for 

wind (negative values dashed) and 2 g kg
-1

 for water vapor. 

 

Another difference between the MULTI48 and LARGE IC perturbations in both 

cases is that positive mid-level mesoscale moisture perturbations appear in some 

MULTI48 members but not the corresponding LARGE members.  These perturbations 

impact the convective development in such areas, especially for the 2100 UTC case 

(e.g., Fig. 4.10 for the representative member 23).  Although both LARGE_023 and 

MULTI48_023 develop spurious cells in southern Oklahoma, they develop earlier in 

MULTI48_023 (Fig. 4.10d) than LARGE_023 (Fig. 4.10a) and become more intense 
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and numerous in MULTI48_023 (Fig. 4.10e).  The most prominent subjective 

difference between the MULTI48_023 and LARGE_023 ICs is in the level 12 

(~750mb) moisture variable near and immediately upstream (i.e., southwest) of where 

the spurious cells develop (Fig. 4.10c,f).  Although both members initially (i.e., before 

radar DA) have the same perturbation, the cumulative impact of the radar DA, and the 

interaction with the smaller scales of motion that are resolved during the radar DA, is to 

moisten the mid-levels (Fig. 4.10f).  This leads to more robust development of the 

spurious cells since there is less dry air entrainment to impede cell development in 

MULTI48_023.  Similar mid-level moisture perturbations are also subjectively seen for 

the 0000 UTC case (not shown) and objectively evident in the enhanced initial MULTI 

spread for the mid-level moisture variable (Fig. 4.2f). 
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Figure 4.10: Panels (a) and (d) show level 12 reflectivity forecasts at 45 minutes 

from the 2100 UTC case for members LARGE_023 and MULTI48_023, 

respectively. Panels (b) and (e) are as in (a) and (d) except at the 120 minute 

forecast time. Panels (c) and (f) are as in Fig. 4.9d and 4.9h, respectively, except for 

the 2100 UTC case for members LARGE_023 and MULTI48_023 and for model 

level 12, instead of level 5. 

 

The above differences between the MULTI48 and LARGE IC perturbations are 

seen in both the 2100 and 0000 UTC cases.  The greater consistency between the IC 

perturbations and analysis errors near the developing MCS for MULTI48 dominates in 

the 0000 UTC case, leading to more skillful forecasts than for LARGE for both 

mesoscale precipitation and storm-scale reflectivity at many lead times and 

neighborhood radii.  However, enhanced spurious convection resulting from unrealistic 

mesoscale mid-level moisture perturbations in MULTI48 dominates in the 2100 UTC 
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case, leading to generally lower skill for MULTI48 than LARGE, especially for the 

mesoscale precipitation forecasts.  Thus, while the qualitative impacts of the differences 

in IC perturbation methods can be understood from this case study, the evaluation of 

additional cases in Chapter 5 is needed to determine their systematic impact on forecast 

skill. 

 

4.3b(3) IMPACT OF SMALL SCALE COMPONENT OF IC PERTURBATION 

METHOD 

4.3b(3)(i) Mesoscale hourly accumulated precipitation 

The third goal of this part of the study is to understand the impacts of the small 

scale component of the multi-scale IC perturbations (i.e., MULTI vs. MULTI48).  

Although the mesoscale IC perturbations have a dominant impact on the precipitation 

forecast skill, the small scale IC perturbations also contribute to the overall NEP 

difference for some locations and lead times of the 0000 UTC forecast.  For example, 

the small scale IC perturbations increase the probability of precipitation where a storm 

is observed along the Oklahoma-Texas border at ~03-05 UTC (Fig. 4.5l-n).  This leads 

to a corresponding increase in probability along the southeast edge of the MCS at ~06-

08 UTC (Fig. 4.5o-q).  The small scale IC perturbations also contribute to the decrease 

in forecast probability to the west of the southern half of the MCS at later lead times, 

especially at ~04-07 UTC (Fig. 4.5m-p).  The impact of the small scale IC perturbations 

in this area is nearly as large, and at some times and places larger than, the impact of the 

differences in mesoscale IC perturbations.  Therefore, while the mesoscale component 

of the IC perturbations dominates the ensemble forecast skill, the small scale IC 
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perturbations are not entirely unimportant for the mesoscale hourly accumulated 

precipitation forecasts.  The overall impact on skill of the small scale IC perturbations is 

neutral or positive since the MULTI skill is generally similar or slightly higher than the 

MULTI48 skill for the 0000 UTC case (Fig. 4.3a,b,c).  For the 2100 UTC case the 

overall impact on skill of the small scale IC perturbations depends on the forecast lead 

time (Fig. 4.3d,e,f). 

Subjective evaluation of the differences between individual members of the 

MULTI and MULTI48 ensembles shows that the small scale IC perturbations can 

directly affect the development of new convection during the early forecast hours (e.g., 

Fig. 4.11).  Given the smaller spatial scale of newly developing convection, it is not 

surprising that it is particularly sensitive to the small scale IC perturbations.  Such 

convection can then grow upscale during the forecast period, influencing the mesoscale 

precipitation forecast at later lead times.  The continued development of new convection 

during the early forecast period thus provides a plausible mechanism for the small scale 

IC perturbations to impact the mesoscale precipitation forecasts at later lead times.  The 

small scale perturbation energy that rapidly develops through downscale energy 

propagation (i.e., Fig. 4.2) may not have as much impact on such newly developing 

convection.  An example of this mechanism is demonstrated by ensemble member 18 in 

Fig. 4.11.  While the MULTI48 member does not forecast convection along the Texas-

Oklahoma border at 0400 UTC (Fig. 4.11a), the corresponding MULTI member does 

forecast such a convective cell (Fig. 4.11d).  The location of the cell in MULTI is 

slightly west of and weaker than the observed convection at 0400 UTC.  However, the 

upscale growth of the cell results in the southern end of the MCS being farther southeast 
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and closer to the observed MCS by 0800 UTC for MULTI (Fig. 4.11f) than MULTI48 

(Fig. 4.11c).  Whether this leads to systematic forecast advantages will be evaluated in 

Chapter 5. 

 

Figure 4.11: Forecasts of hourly accumulated precipitation initialized at 0000 UTC 

20 May and valid at (a),(d) 0400 UTC, (b),(e) 0600 UTC and (c),(f) 0800 UTC for 

member 18 of the  (a)-(c) MULTI and (d)-(f) MULTI48 ensemble. Truth contour 

at the 6.35 mm h
-1

 level is overlaid in blue. 

 

4.3b(3)(ii) Storm scale reflectivity 

The main impacts of the small scale IC perturbations for the reflectivity 

forecasts are on the smallest forecast scales (i.e., no neighborhood radius) during the 

first hour for the 0000 UTC case (Fig. 4.12).  Subjectively, there are two clear impacts 

of the small scale IC perturbations.  First, the MULTI48 NEP forecasts at short lead 

times show small scale features of the MCS with strong probability gradients that do not 

necessarily line up with the observation contour (e.g., Fig. 4.13b; blue circles).  The 

small scale IC perturbations in MULTI smooth out the NEP gradient in such cases, 

making the probabilistic forecasts more consistent with the uncertainty of such features 

(e.g., Fig. 4.13a; blue circles).  This explains the better BSS for MULTI than MULTI48 
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for zero or small neighborhood radii during the first ~1 h (Fig. 4.12).  Second, the small 

scale IC perturbations increase the probability surrounding the areas of observed 

precipitation (Fig. 4.7i-p).  This is a result of large areas of weak convection resulting 

from the small scale IC perturbations and is most pronounced at lower reflectivity 

thresholds.   

 

Figure 4.12: As in Fig. 4.6, except for the difference in BSS between MULTI and 

MULTI48. 

 

Fig. 4.12 also shows more pronounced skill differences at later lead times and 

high thresholds.  Unlike the skill differences during the first hour, there is not a clear 
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subjective explanation for such differences.  The skill differences at later times and high 

thresholds are likely a result of large sampling variability due to the very small area of 

observed reflectivity exceeding such high thresholds (e.g., 50 dBZ; Fig 4.14).  They are 

also not consistent throughout the forecast period.  For example, at 60 minutes many of 

the locations with lower NEP for MULTI than MULTI48 occur within the observation 

contours (Fig. 4.14a), while at 90 and 120 minutes there are several locations with 

higher NEP for MULTI than MULTI48 within the observation contours (Fig. 4.14b,c).  

There is little continuity in which features are better predicted between the 90 and 120 

minute lead times, even though the difference in skill happens to be of the same sign 

(Fig. 4.14b,c).  Additional cases are particularly necessary for such rare thresholds.   

For the 2100 UTC case the positive impact at early lead times quickly extends 

up to radii of 4-8 km, especially for higher thresholds, instead of remaining at the grid 

scale, and lasts through ~90 minutes (not shown).  This again shows a need for 

additional cases to quantify the impacts of small scale IC perturbations on forecast skill. 
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Figure 4.13: NEP forecast of reflectivity exceeding 30 dBZ at the 15 minute lead 

time (shaded) and observation contour for the 0000 UTC case for (a) MULTI and 

(b) MULTI48. 
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Figure 4.14: Difference in NEP between the MULTI and MULTI48 forecasts of 

reflectivity exceeding 50 dBZ for the 0000 UTC case at (a) 60 minute lead time, (b) 

90 minute lead time and (c) 120 minute lead time. 

 

4.4 Summary and Conclusions 

Given the multi-scale nature of convective precipitation forecasts, optimal SSEF 

design requires an understanding of how flow-dependent multi-scale IC perturbation 

methods impact convective precipitation forecast skill.  This study contributes to such 

understanding by considering the following three questions.  First, what are the impacts 
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on ensemble forecast skill of generating IC perturbations with a multi-scale ensemble 

DA system (MULTI), compared to downscaling larger scale IC perturbations from a 

coarser domain (LARGE)?  Second, what role does the mesoscale component (i.e., 

resolved by both MULTI and LARGE) of the IC perturbation differences have in 

determining the ensemble forecast skill?  Third, what role do the small scale (i.e., only 

resolved with MULTI) IC perturbations have in the differences between MULTI and 

LARGE ensemble forecast skill?  The impacts of the IC perturbations are evaluated in 

terms of 2 h reflectivity forecasts over a range of neighborhood radii less than 48 km 

and in terms of 9 h mesoscale (i.e., 48 km neighborhood radius) hourly accumulated 

precipitation forecasts.  A perfect-model OSSE framework is used to isolate the impacts 

of IC error and the corresponding IC perturbations.  In this chapter, an upscale growing 

MCS case study is used to address the above three questions both objectively and 

qualitatively.   

The impact of the different IC perturbation methods on the spread of the directly 

perturbed non-precipitation variables is first evaluated.  The LARGE IC perturbations 

are much more under-dispersive than MULTI on scales less than ~50 km.   However, as 

expected from the results of Durran and Gingrich (2014), the downscale cascade of 

perturbation energy results in similar perturbation spectra between MULTI and LARGE 

within ~1 h.  The total spread of non-precipitation variables is dominated by the larger 

scales which initially show less spread for MULTI than LARGE for all variables except 

for level 12 (~750 mb) moisture.   

In addition to the spread of the directly perturbed non-precipitation variables, the 

skill of the ensemble forecasts of convective precipitation on different time and space 
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scales is also evaluated.  Comparison of the MULTI and LARGE ensembles addresses 

the question of how the forecast skill is affected by the differences between multi-scale 

IC perturbations generated with multi-scale ensemble DA versus coarser resolution 

downscaled IC perturbations.  For the 0000 UTC case, MULTI is generally more 

skillful than LARGE for both storm-scale reflectivity and mesoscale hourly 

accumulated precipitation forecasts.  For the 2100 UTC case, MULTI is generally less 

skillful than LARGE, especially for the hourly accumulated precipitation forecasts.  The 

case dependence of the results emphasizes the need for systematic evaluation of many 

diverse cases, which is the goal of Chapter 5.  However, the qualitative analysis of the 

case study provides physical understanding of how the differences in forecast skill 

result from the IC perturbation differences, aiding interpretation of the systematic 

results in Chapter 5. 

Comparison of MULTI48 and LARGE addresses the question how the 

differences in the mesoscale component of the IC perturbations affect the forecast skill.  

With the exception of the first hour of reflectivity forecasts using neighborhood radii of 

0-8 km, the differences in ensemble forecast skill are explained mainly by two 

differences in the mesoscale IC perturbations.  First, the MULTI48 perturbations have 

less amplitude and are more consistent with the analysis error in the vicinity of the 

analyzed MCS and corresponding cold pool.  For the 0000 UTC case, this leads to 

subjectively and objectively improved forecasts of both reflectivity and hourly 

accumulated precipitation.  Second, the MULTI48 perturbations contain some 

mesoscale areas of enhanced mid-level moisture away from the main MCS.  For the 

2100 UTC case, this degrades the forecast skill by further enhancing the effects of 
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spurious precipitation in some members.  Evaluation of additional cases in Chapter 5 is 

therefore necessary to systematically determine the relative importance and systematic 

impact on skill of these two main differences between the mesoscale IC perturbations in 

MULTI48 and LARGE. 

The mesoscale increase in mid-level moisture in some members, resulting from 

radar DA, is hypothesized to be due to incomplete suppression of the effect of spurious 

convection during DA.  Although missing or <5dBZ reflectivity is assimilated as a no-

precipitation observation (Aksoy et al. 2009), the effects of the spurious cells that are 

suppressed by such observations may still be accumulating during the DA period.  In 

particular, the presence of non-precipitating clouds and the detrainment of moisture into 

the mid-levels during each forecast step is hypothesized to be insufficiently corrected by 

the assimilation of the no-precipitation observations.  Methods to more effectively 

suppress all effects of spurious convection during radar DA may lead to corresponding 

improvements in the analysis ensemble for the purpose of SSEFs of convective 

precipitation.  Assimilation of satellite-retrieved cloud water path may provide one such 

method (e.g., Jones et al. 2014). 

Comparison of MULTI and MULTI48 addresses the question of how the 

presence of small scale IC perturbations in MULTI affects the forecast skill.  The 

impact of the small scale IC perturbations is most pronounced for reflectivity forecasts 

at neighborhood radii of 0-8 km for about 1 h.  However, the duration, magnitude and 

maximum spatial scale of this advantage varies between the 2100 UTC and 0000 UTC 

cases.  The more pronounced impact of the small scale IC perturbations for the 2100 

UTC case may be due to the forecast being initialized earlier in the upscale growth 
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process, resulting in greater sensitivity to the small scale perturbations and their upscale 

growth.  The hourly accumulated precipitation forecasts also show some impacts of the 

small scale IC perturbations.  While such impacts are generally localized in time and 

space, they show that the flow-dependent small scale IC perturbations are not 

necessarily unimportant, even for mesoscale hourly accumulated precipitation forecasts 

after the first few forecast hours.  The impact of the small scale IC perturbations on the 

mesoscale precipitation forecasts may result mainly from their impact on new 

convection that develops during the early forecast period.  The new cells originate from 

small scale features, explaining their sensitivity to the small scale IC perturbations.  At 

later times, such cells also influence the mesoscale convective systems, explaining the 

upscale growth of this impact onto the mesoscale hourly accumulated precipitation 

forecasts throughout the 9 h forecast period.  Determining whether the small scale IC 

perturbations are systematically advantageous for the hourly accumulated precipitation 

forecasts requires more cases and will be considered in Chapter 5. 
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Chapter 5: OSSE study of multi-scale initial condition perturbation 

methods. Part 2: Systematic results and impact of model error 

 

This chapter provides a systematic investigation of the impact of multi-scale IC 

perturbations generated on the convection-permitting grid using ensemble-based DA, 

compared to mesoscale perturbations downscaled from a coarser grid.  This chapter is a 

continuation of the perfect model OSSE case studies in the previous chapter.  As in the 

previous chapter, there are three main goals of the study.  First, the performance of 

ensembles initialized with coarser resolution downscaled perturbations (LARGE) is 

compared to that of ensembles initialized with multi-scale IC perturbations generated 

using the GSI-based multi-scale ensemble DA system at the full model resolution 

(MULTI).  The IC perturbations generated with these different methods contain both 

different resolvable spatial scales and differences on commonly resolved scales.  The 

second goal is therefore to understand the impact of the differences in the IC 

perturbation method on the commonly-resolved mesoscales.  Third, the impact and 

importance of the small scale (i.e., not resolved by LARGE) IC perturbations is 

evaluated within the perfect-model OSSE framework. 

In Chapter 4, a case study of upscale growth of cellular convection into a long-

lived MCS was used to qualitatively understand the impacts of the IC perturbation 

methods.  Forecasts were evaluated in terms of both hourly accumulated precipitation in 

mesoscale (i.e., 48 km radius) neighborhoods and short term instantaneous reflectivity 

in storm-scale neighborhoods ranging from 0-48 km.  The small scale IC perturbations, 

resolved only in MULTI, contributed to forecast advantages for ~1 h for neighborhood 
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radii of 0-8 km for storm-scale reflectivity.  In some instances, the small scale IC 

perturbations also influenced the longer lead time mesoscale hourly accumulated 

precipitation forecasts.  For reflectivity forecasts at times >1 h and/or radii >8 km, and 

for mesoscale precipitation forecasts, the differences in forecast skill were explained 

mainly by differences in the mesoscale component of the IC perturbations.  Two 

differences between the mesoscale IC perturbations were noted.  First, MULTI IC 

perturbations were more consistent with the analysis uncertainty than LARGE IC 

perturbations near the analyzed MCS.  Second, spurious convection during radar DA 

led to unrealistic mesoscale perturbations in mid-level moisture for MULTI away from 

the observed MCS.  For forecasts initialized at 0000 UTC, the first difference was most 

important, leading to more skillful MULTI forecasts than LARGE.  However, for 

forecasts initialized at 2100 UTC the second difference played a greater role, leading to 

generally less skillful MULTI forecasts than LARGE.  Therefore, it was not clear if the 

advantages of MULTI would lead to systematically more skillful forecasts than LARGE 

when evaluated over many cases.   

This chapter extends the OSSE study to 11 diverse cases of mid-latitude 

convection in the central United States.  The purpose of this chapter is to assess the 

robustness of the results in Chapter 4 using systematic evaluation of forecasts under 

different synoptic scale environments, including many convective systems with 

different levels of mesoscale organization.   

The remainder of this chapter is organized as follows.  Section 5.2 provides a 

brief review of the selected cases and methods of determining statistical significance of 
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the systematic results.  The OSSE results are then presented in Section 5.3.  Section 5.4 

contains a summary and conclusions. 

 

5.2 Methods 

5.2a Review of selected cases 

Eleven diverse cases are selected to determine the robustness of the results in 

Chapter 4.  The same 10 cases used in Chapter 2 are also adopted for this OSSE study, 

with the addition of the 2100 UTC 19 May forecast case from Chapter 4 for a total of 11 

cases.  Like the real data cases (Chapter 2), the nature run simulations include a variety 

of forcing mechanisms and levels of convective organization ranging from disorganized 

cellular convection to supercells to long-lived mesoscale convective systems (MCSs).  

An advantage of the OSSE framework is that the nature run provides the exact truth 

values for verification of all forecast variables on the same grid as the forecast 

variables.  For the hourly accumulated precipitation forecasts, rectangular verification 

domains for each case are chosen to include the areas of active convection at all lead 

times while excluding large areas where convection is neither observed nor forecast.  

For the 2 h lead time reflectivity forecasts, smaller rectangular verification domains are 

used to encompass each subjectively identified mesoscale area of organized convection 

during the first two forecast hours.  Some of the forecast cases contain multiple areas of 

mesoscale organized convection, resulting in a total of 18 unique verification domains 

for the reflectivity verification.  Since different MCSs on the same case occur within the 

same larger scale environment, such MCSs are not treated as independent samples for 

statistical significance testing.   
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5.2b Statistical significance tests 

The statistical significance of differences in Brier Skill Score (BSS) is 

determined using permutation resampling of the 11 (10 for real-data) cases (Hamill 

1999).  For reflectivity forecasts with multiple MCSs on the same day, results are first 

aggregated for that day and treated as a single sample since the different MCSs may not 

be statistically independent.  For the hourly accumulated precipitation forecasts, 

statistical significance is plotted at the 80% confidence level.  The relatively low 

confidence level is chosen because an 11-sample data set is rather small to expect very 

high levels of confidence.  While this choice does leave a 20% chance of a “significant” 

result occurring due to random chance, it allows the more robust results to be 

distinguished from the less robust results.  For the reflectivity forecasts, statistical 

significance is plotted at the 90% confidence level because the impacts of the IC 

perturbation methods on reflectivity forecast skill are more consistent from case to case, 

allowing for greater levels of statistical significance to be established. 

 

5.3 Impact of IC perturbation method on forecast skill 

5.3a Non-precipitation forecasts 

The ensemble average spectra of the ensemble perturbations (i.e., spread) and 

the spectra of ensemble mean error for the directly perturbed non-precipitation variables 

are first evaluated using the u-component of wind at level 5 (~900 mb; Fig. 5.1), which 

is also representative of other levels and other non-precipitation variables.  As in 

Chapter 4, one-dimensional detrended Fourier spectra are calculated along east-west 

grid lines then averaged over all possible such grid lines (Skamarock 2004).  Consistent 
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with Durran and Gingrich (2014) and the case study in Chapter 4, initial under-

dispersion at scales less than ~50 km in LARGE quickly catches up to MULTI as a 

result of downscale energy propagation (Fig. 5.1).  On average, the MULTI and 

LARGE spread at small scales are nearly indistinguishable after ~40-60 minutes (Fig. 

5.1).  The spectra are calculated over the entire convection-permitting forecast domain 

in order to include the full spectrum of spatial scales.  Therefore, it should also be noted 

that more substantial localized differences in small scale ensemble spread may be 

present after 1 h but not obvious in the spectra averaged over the entire domain and 

multiple cases. 

 

 

Figure 5.1: Fourier spectra decomposition of ensemble perturbations (ensemble 

member minus ensemble mean, averaged over all members; solid) and ensemble 

mean error (dashed) for the u component of wind at model level 5 (~900 mb) 

averaged over all 11 cases at (a) the analysis time, (b) 20-minute forecast time, (c) 

40-minute forecast time, (d) 60-minute forecast time, and (e) 180-minute forecast 

time. 
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Figure 5.2: Ensemble spread (i.e., standard deviation) and ensemble mean RMSE 

as a function of forecast lead time averaged over all 11 cases at model level 5 (~900 

mb) for (a) temperature (K), (b) water vapor mixing ratio (g kg
-1

), (c) v wind 

component (m s
-1

), (d) u wind component (m s
-1

), and (e)-(h) as in (a)-(d) except at 

model level 12 (~750mb). 

 

The systematic comparison of total ensemble spread and ensemble mean error 

(Fig. 5.2) also shows similarities to the case study in Chapter 4.  All variables except 

level 12 (~750 mb) water vapor are initially more under-dispersive for MULTI than 

LARGE (Fig. 5.2).  The decreased initial spread for MULTI is mainly due to the 

differences on scales larger than 100 km (Fig. 5.1).  The greater initial MULTI spread, 

compared to LARGE, for level 12 water vapor suggests that the impacts of spurious 

convection during the radar DA period, discussed in Chapter 4, are a systematic feature 

of this DA system.  However, as will be shown in Section 5.3b, the negative impact of 

this feature on forecast skill for the 2100 UTC 20 May case in Chapter 4 is not 

representative of the systematic results. 

Most variables and lead times show much less ensemble spread than ensemble 

mean error for both MULTI and LARGE (Fig. 5.2).  This systematic under-dispersion 
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cannot be attributed to insufficient sampling of model errors in the ensemble design 

because of the perfect-model OSSE framework.  It also likely is not attributable to the 

LBC perturbations, generated on the outer domain which does contain model error, 

since it is present from the beginning of the forecasts.  However, the LBC perturbations 

may contribute to limiting the spread growth after ~5-6 hours (Fig. 5.2). 

 

5.3b Convective precipitation forecasts 

Since 50 km is the approximate scale below which LARGE is particularly 

under-dispersive compared to MULTI (Fig. 5.1), the 48 km wavelength is used to 

distinguish “small scale” and “mesoscale” IC perturbations.  The small scale IC 

perturbations are only resolved in MULTI while MULTI, MULTI48 and LARGE all 

resolve the mesoscale IC perturbations.  The following sub-sections evaluate the 

convective precipitation ensemble forecast differences between MULTI and LARGE, 

MULTI48 and LARGE, and MULTI and MULTI48, consistent with the three goals of 

this study.  As in Chapter 4, the convective precipitation forecasts are evaluated 

separately for mesoscale (48 km neighborhood radius and out to 9 h) hourly 

accumulated precipitation forecasts and storm scale (neighborhood radii between 0 and 

48 km and out to 2 h) instantaneous reflectivity forecasts in order to account for the 

potentially different perspectives of different SSEF users. 
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5.3b(1) OVERALL IMPACT OF IC PERTURBATION METHOD 

5.3b(1)(i) Mesoscale hourly accumulated precipitation 

The first goal of this study is to understand the systematic impacts of the 

different methods of generating IC perturbations (i.e., downscaling vs. multi-scale DA) 

by comparing MULTI and LARGE.  For the mesoscale precipitation forecasts, MULTI 

is more skillful than LARGE during the first hour and, for the 2.54 and 6.35 mm h
-1

 

thresholds, after 4 h (Fig. 5.3).  MULTI is slightly less skillful than LARGE at 8-9 h for 

the 12.7 mm h
-1

 threshold but this difference is not statistically significant (Fig. 5.3).  

The MULTI skill advantages are significant at the 1 h lead time for all thresholds, the 7 

h lead for the 6.35 mm h
-1

 threshold and the 6 and 8 h lead times for the 2.54 mm h
-1

 

threshold.  The 7 and 9 h lead times at the 2.54 mm h
-1

 thresholds are almost significant, 

with p-values of 0.2024 and 0.236, respectively (not shown).  Therefore  the 0000 UTC 

case from Chapter 4 is representative of the systematic results in that the significant 

differences in mesoscale precipitation forecast skill all favor MULTI over LARGE. 
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Figure 5.3: Brier Skill Score (BSS) of the Neighborhood Ensemble Probability 

(NEP) forecasts over all 11 cases of hourly accumulated precipitation for 

thresholds of (a) 2.54 mm h
-1

, (b) 6.35 mm h
-1

 and (c) 12.7 mm h
-1

.  Statistical 

significance is plotted at the 80% confidence level, with significant differences 

between MULTI and LARGE, MULTI48 and LARGE, or MULTI and MULTI48 

indicated by asterisks on the MULTI line, plus signs on the MULTI48 line, or 

asterisks along the horizontal axis, respectively. 

 

5.3b(1)(ii) Storm-scale reflectivity 

The impacts of the different IC perturbation methods are also evaluated on 

forecasts over smaller space and time scales using instantaneous reflectivity at 5 minute 

intervals and neighborhood radii of 0-48 km (Fig. 5.4).  For the storm-scale reflectivity 

forecasts, MULTI is again more skillful than LARGE where there are statistically 

significant differences (Fig. 5.4).  The statistically significant MULTI advantages last 

for about 65 minutes at the lower thresholds (e.g., 20-25 dBZ; Fig. 5.4) and about 45 

minutes at the higher thresholds (e.g., 40 dBZ; Fig. 5.4).  As in Chapter 4, the MULTI 

advantage is most pronounced at ~35 minute lead time.  Therefore the advantages for 

MULTI in the 0000 UTC case of Chapter 4 are also representative of the systematic 

results in terms of storm-scale reflectivity forecasts.  Since the differences between 

MULTI and LARGE include both smaller scale perturbations in MULTI and different 
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methods of generating the mesoscale perturbations, the impacts of these two factors are 

distinguished in the following sub-sections. 

 

Figure 5.4: Difference in BSS between the MULTI and LARGE ensembles, 

averaged over all 18 MCS cases, for reflectivity at model level 12 at five minute 

intervals during the first 80 minutes and at ten minute intervals between 80 and 

120 minutes. The vertical axis on each panel is the reflectivity threshold (dBZ) and 

the horizontal axis is the neighborhood radius (km).  Values that are not 

statistically significant at the 90% level are covered by shading.  The unshaded 

values are statistically significant at the 90% level. 
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5.3b(2) IMPACT OF MESOSCALE COMPONENT OF IC PERTURBATION 

METHOD 

5.3b(2)(i) Mesoscale hourly accumulated precipitation 

The second goal of this study is to understand the systematic impacts of the 

differences between MULTI and LARGE on commonly resolved scales (i.e., 

mesoscales), as opposed to the smaller scales resolved only by MULTI.  MULTI48 is 

therefore compared to LARGE in order to focus only on the mesoscale IC perturbations 

(Fig. 5.3).  The differences in mesoscale precipitation forecast skill between MULTI48 

and LARGE are similar in many ways to the differences between MULTI and LARGE.  

Specifically, MULTI48 is more skillful than LARGE after ~4h, except for the last few 

hours at the 12.7 mm h
-1

 threshold and the last couple of hours at the 6.35 mm h
-1

 

threshold.  The impact of the mesoscale IC perturbations is similar in magnitude to the 

impact of the small scale IC perturbations for the 12.7 mm h
-1

 threshold.  The similarity 

between MULTI and MULTI48 skill at the 2.54 and 6.35 mm h
-1

 thresholds is 

consistent with the dominance of the mesoscale IC perturbations for mesoscale 

precipitation forecasts in the 20 May case study (Chapter 4).  However, unlike the 

differences between MULTI and LARGE, the differences between MULTI48 and 

LARGE are generally not statistically significant, except at the 1h lead time (Fig. 5.3).  

This shows that the small scale IC perturbations, omitted from MULTI48, also play an 

important role as further discussed in section 5.3b(3). 

One of the main qualitative differences between MULTI48 and LARGE in the 

Chapter 4 case study was a sharper MCS forecast at early lead times resulting from 

smaller magnitude mesoscale perturbations near the developing MCS that were more 
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consistent with the analysis uncertainty for MULTI48.  Subjective examination reveals 

a similar impact in the other cases as well (not shown).  The case study also revealed 

unrealistically large mid-level moisture perturbations for MULTI48 away from the 

observed MCS which can negatively impact the precipitation forecast skill in at least 

some cases (e.g., the 2100 UTC case in Chapter 4).  Fig. 5.3 shows that such mid-level 

moisture perturbations do not lead to systematic negative impacts on precipitation 

forecast skill.  Instead the greater consistency between mesoscale IC perturbations and 

IC uncertainty near the analyzed convective systems leads to generally greater 

precipitation forecast skill for MULTI48 and MULTI than LARGE for most times and 

thresholds.  This shows that the method of generating flow dependent mesoscale IC 

perturbations directly on the convection-permitting grid with cycled multi-scale DA is 

more optimal for mesoscale precipitation forecasting than downscaled mesoscale IC 

perturbations from a coarser ensemble. 

The differences in mesoscale IC perturbations result in skill advantages for 

MULTI48 and MULTI, compared to LARGE, at both early (1 h) and later (~5-9 h) lead 

times (Fig. 5.3a,b).  However, the skill is generally statistically indistinguishable among 

the forecasts at ~2-4 h lead times (Fig. 5.3).  One possible explanation is that this is a 

result of the diurnal cycle of convective precipitation.  Many of the cases show more 

convection over larger areas during the evening hours (i.e., first ~4 h) than the overnight 

hours when only the better organized systems tend to be maintained (after ~0300-0400 

UTC; not shown).  It may be that the advantage of MULTI48 is greatest for the more 

organized long-lived MCSs, allowing the advantage to be objectively more pronounced 

after ~4 h when most of the precipitation is associated with such systems.   
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5.3b(2)(ii) Storm-scale reflectivity 

The impact of the mesoscale component of the differences in IC perturbations 

on the reflectivity forecasts is also similar to the 0000 UTC case of Chapter 4.  For 

neighborhood radii greater than ~4 km, the advantage over LARGE is slightly more 

pronounced, and lasts longer, for MULTI48 than MULTI (Fig. 5.5 vs. Fig. 5.4).  

Statistically significant MULTI48 advantages for some radii and thresholds persist 

throughout the 2 h forecast period, although the differences become very small by the 

end of the period (Fig. 5.5).  Like the hourly accumulated precipitation forecasts, the 

advantage of MULTI48 is also due to the mesoscale IC perturbations being 

systematically more consistent with the analysis error near ongoing convective systems.  

This leads to sharper convective scale forecasts as demonstrated in Chapter 4 and 

confirmed with subjective evaluation of the individual cases (not shown).  Generating 

the mesoscale IC perturbations directly on the convection-permitting grid is therefore 

advantageous for storm-scale reflectivity forecasts, in addition to the mesoscale 

precipitation forecasts. 

The impact on ensemble spread and accuracy of the smaller magnitude 

mesoscale perturbations in MULTI48 than LARGE is quantified with the dispersion 

and error Fractions Skill Score (dFFS and eFSS, respectively; Dey et al. 2014).  As 

described in greater detail in Dey et al (2014), the Fractions Score (FS) is the mean 

square difference between the forecast and observed neighborhood probability (NP) 

field.  The observed NP is calculated the same way as the forecast NP, instead of using 

a binary verification field as in the other NEP skill scores presented herein.  The 
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Fractions Skill Score (FSS) is then calculated as 1-FS/FSref where FSref is the FS that 

would be obtained if there were no overlap between the forecast and observed NP fields 

(i.e., the sum of the mean square forecast and observed NP fields).  The dFSS is 

calculated as the average FSS between all possible member-member pairs as a measure 

of ensemble spread.  Smaller values of dFSS indicate greater spread.  The eFSS is 

calculated as the average FSS between all member-observation pairs and is a measure 

of the deterministic forecast accuracy of the ensemble members.  Smaller values of 

eFSS indicate greater error.  An advantage of this method is that it can be calculated 

over a range of radii to understand the scale dependence of the ensemble characteristics. 

Fig. 5.6 shows that after ~20 minutes the dFSS of reflectivity forecasts is 

systematically larger for MULTI48 than LARGE, indicating less ensemble spread for 

MULTI48 (Fig. 5.6c).  This is a result of the smaller magnitude mesoscale IC 

perturbations in MULTI48.  The larger spread for MULTI48 than LARGE during the 

first ~20 minutes is likely due to the fact that hydrometeor IC perturbations are not 

present in the LARGE ensemble.  It therefore takes some time for the directly perturbed 

variables to generate reflectivity spread.  After ~15-30 minutes, depending on spatial 

scale, the smaller spread for MULTI48 also corresponds to larger eFSS values, 

indicating less error for MULTI48 than LARGE (Fig. 5.6f).  Therefore, Fig. 5.6 shows 

that the MULTI48 members are systematically both closer to each other and closer to 

the observations than the LARGE members, consistent with the generally more skillful 

forecasts for MULTI48 (Fig. 5.5). 
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Figure 5.5: As in Fig. 5.4, except for the BSS difference between MULTI48 and 

LARGE. 
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Figure 5.6: Dispersion Fractions Skill Score (dFSS) for the (a) MULTI48 

ensemble, (b) LARGE ensemble, (c) difference between the MULTI48 and 

LARGE ensembles and error Fractions Skill Score (eFSS) for the (d) MULTI48 

ensemble, (e) LARGE ensemble and (f) difference between the MULTI48 and 

LARGE ensembles. 

 

5.3b(3) IMPACT OF SMALL SCALE COMPONENT OF IC PERTURBATION 

METHOD 

5.3b(3)(i) Mesoscale hourly accumulated precipitation 

The third goal of this study is to understand the systematic impacts of the small 

scale IC perturbations which are resolved by MULTI but not LARGE.  MULTI is 

therefore compared to MULTI48 which does not contain such small scale IC 

perturbations.  For the mesoscale precipitation forecasts, localized impacts of the small 

scale IC perturbations were noted in Chapter 4.  The upscale impacts of the small scale 

IC perturbations on mesoscale hourly accumulated precipitation forecasts out to 9 h 

were explained by their impact on the development of new convection from small scale 
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features during the early forecast period.  However, it was not clear from a single case 

study if such impacts would systematically improve the mesoscale precipitation 

forecasts.  The systematic verification reveals that at forecast hours 2-5, MULTI is 

slightly less skillful than MULTI48 at all thresholds, although the difference is only 

significant at the 2 h lead time for the 12.7 mm h
-1

 threshold (Fig. 5.3).  This negative 

impact of the small scale IC perturbations may be related to an initial enhancement of 

disorganized weak convection surrounding the observed convective systems (Chapter 

4).  Starting at ~6 h there is a more pronounced and positive impact of the small scale 

IC perturbations.  MULTI is more skillful than MULTI48 at these later lead times for 

all thresholds, with statistical significance at 8-9 h, 7-8 h and 6-7 h at 2.54, 6.35 and 

12.7 mm h
-1

 thresholds, respectively (Fig. 5.3).  Thus, there are statistically significant 

systematic advantages of the upscale growth of the flow-dependent small scale IC 

perturbations on mesoscale precipitation forecast skill out to 9 h.  This shows that it is 

important to explicitly include such perturbations in the IC perturbation design, rather 

than rely on the downscale propagation of perturbation energy indicated by Fig. 5.1 and 

Durran and Gingrich (2014). 

 

5.3b(3)(ii) Storm-scale reflectivity 

As in the 0000 UTC case study of Chapter 4, the small scale IC perturbations in 

MULTI also systematically improve the reflectivity forecasts on small forecast scales 

(i.e., no neighborhood radius; Fig. 5.7).  The significant advantage of the small scale IC 

perturbations lasts for about 1 h and is most pronounced during the first ~30 minutes 

(Fig. 5.7).  In other words, the advantage of the small scale IC perturbations for storm-
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scale reflectivity forecasts occurs on similar space and time scales as the directly 

perturbed non-precipitation variables (Fig. 5.1).  As shown in Chapter 4, this advantage 

corresponds to subjectively smoother probability gradients where grid scale details of 

the observation contour at a particular threshold are not well forecast.  This contrasts 

with the mesoscale precipitation forecasts which are improved by upscale growth of the 

explicitly added flow-dependent small scale IC perturbations.  For storm-scale 

reflectivity forecasts, the impact of the small scale IC perturbations is limited to the 

very small scales and the time period before downscale propagation generates sufficient 

perturbation energy on such scales (Fig. 5.1). 

The impact on ensemble spread and accuracy of the small scale IC perturbations 

is also quantified with the dFSS and eFSS (Fig. 5.8).  Compared to MULTI48, MULTI 

initially has greater spread at the grid scale which grows to slightly larger scales during 

the first ~45-60 minutes (Fig. 5.8c).  This difference in spread, resulting from the small 

scale IC perturbations in MULTI, remains maximized in neighborhoods of 0-8km, 

consistent with the impact on ensemble forecast skill occurring on such scales (Fig. 

5.7).  Although greater spread for MULTI corresponds to more error of the ensemble 

members (Fig. 5.8f), the NEP skill is greater for MULTI than MULTI48 at similar 

times and scales (Fig. 5.7).  The impact of the small scale IC perturbations on both 

ensemble spread and accuracy begins to diminish after ~60 minutes (Fig. 5.8c,f), also 

consistent with Fig. 5.7. 
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Figure 5.7: As in Fig. 5.4, except for the BSS difference between MULTI and 

MULTI48. 
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Figure 5.8: As in Fig. 5.6, except for the MULTI and MULTI48 ensembles. 

 

5.4 Summary and Conclusions 

In this chapter the systematic impacts of different IC perturbation methods on 

the skill of SSEFs are investigated.  Three aspects of the IC perturbations are 

investigated.  First, the overall impacts on forecast skill of IC perturbations generated 

with a multi-scale data assimilation (DA) system (MULTI) are compared to IC 

perturbations downscaled from a larger scale ensemble (LARGE).  Second, the impacts 

of the differences between the IC perturbation methods on the commonly resolved 

mesoscales are isolated from the impacts of the convective scale IC perturbations that 

are only resolved by MULTI.  This is accomplished by comparing the MULTI 

perturbations with small scales (i.e., <48 km) filtered out (MULTI48) to LARGE.  

Third, the impacts of these convective scale perturbations are investigated by comparing 

MULTI to MULTI48.  Since different users may be interested in different time and 

space scales of the convection forecasts, the forecasts are evaluated in terms of both 
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hourly accumulated precipitation in mesoscale (i.e., 48 km radius) neighborhoods out to 

9 h and storm scale (i.e., neighborhood radii of 0-48 km)  reflectivity forecasts out to 2 

h. 

The MCS upscale growth case study in Chapter 4 showed that the small scale IC 

perturbations in MULTI result in more skillful reflectivity forecasts during the first 

forecast hour for neighborhood radii of ~0-8 km, depending on the forecast initialization 

time.  The small scale IC perturbations were also shown to have the potential to impact 

the mesoscale precipitation forecasts through upscale growth of new convection 

developing from small scale features during the early forecast period.  Two qualitative 

differences between the mesoscale IC perturbations in MULTI and LARGE were also 

identified in Chapter 4.  First, smaller magnitude mesoscale IC perturbations in MULTI 

than LARGE near the analyzed MCS were more consistent with the analysis uncertainty 

and therefore advantageous for forecast skill.  Second, enhanced mesoscale mid-level 

moisture perturbations in MULTI made the environment away from the observed MCS 

more susceptible to spurious convection and were therefore disadvantageous for 

forecast skill.   

Like the Chapter 4 case study, the directly perturbed non-precipitation variables 

are initially very under-dispersive on scales < ~50 km for the LARGE ensemble during 

the first ~40-60 minutes of the forecast.  Also consistent with Chapter 4, there is 

initially less spread of the non-precipitation variables, except for mid-level moisture, for 

MULTI than LARGE.  This is also consistent with the smaller magnitude mesoscale IC 

perturbations near analyzed convective systems for MULTI.  The larger magnitude of 

the initial mid-level moisture perturbations for MULTI suggests that the insufficient 
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suppression of spurious convection during radar DA is a systematic feature of the multi-

scale DA system.  Assimilation of satellite-retrieved cloud water path (Jones et al. 

2014) is a possible way to mitigate this feature in the future.  Considered over all scales, 

both MULTI and LARGE are under-dispersive for the non-precipitation variables 

throughout the 9 h forecast period.  Since the OSSEs contain no model error, this 

suggests that both MULTI and LARGE IC perturbation methods represent sub-optimal 

sampling of the IC and forecast errors.  One possible remedy for the under-dispersion of 

non-precipitation forecast variables is to further inflate the IC perturbations after the DA 

period.  However, it is not clear whether this will also improve the ensemble 

precipitation forecasts.  Experimenting with the details of how to best implement such a 

method is left for future work. 

The perfect-model OSSE comparison of MULTI and LARGE for forecasts of 

mesoscale hourly accumulated precipitation reveals statistically significant skill 

advantages for MULTI at the 1 h lead time for all thresholds and at several lead times 

after 4 h for the 2.54 and 6.35 mm h
-1

 thresholds.  The storm scale reflectivity forecasts 

are more skillful for MULTI than LARGE for about 45 (at higher thresholds) to 65 (at 

lower thresholds) minutes.  These results show that the 0000 UTC case of Chapter 4 is 

more representative of the systematic results than the 2100 UTC case.  On average, 

MULTI therefore represents a more optimal method of generating IC perturbations for 

SSEFs of mid-latitude convection than LARGE.  The comparisons of MULTI48 with 

LARGE and MULTI with MULTI48 provide further understanding of the reasons for 

the MULTI advantages over LARGE. 
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The comparison of MULTI48 with LARGE is generally similar to the 

comparison of MULTI and LARGE for mesoscale precipitation forecasts at 2.54 and 

6.35 mm h
-1

 thresholds and storm-scale reflectivity forecasts with neighborhood radii 

>4 km.  This shows that the smaller magnitude mesoscale IC perturbations in MULTI 

near convective systems, which are more consistent with the multi-scale analysis 

uncertainty, systematically account for most of the skill differences between MULTI 

and LARGE.  However, the advantages of MULTI48 over LARGE for mesoscale 

precipitation at ~5-9 h lead times are less statistically significant than for MULTI.  

Furthermore, at the 12.7 mm h
-1

 threshold, the mesoscale and small scale IC 

perturbations have impacts on skill of similar magnitude, showing that the small scale 

IC perturbations also play an important role.  The small scales (i.e., 0-4 km 

neighborhoods) of the reflectivity forecasts during the first hour are also an exception to 

the dominance of the mesoscale IC perturbations. 

The comparison of MULTI with MULTI48 shows the systematic importance for 

both short lead time (~1 h) reflectivity forecasts on small scales (i.e., 0-4 km radii) and 

mesoscale precipitation forecasts out to 9 h.  Since Fig. 5.1 and Durran and Gingrich 

(2014) both suggest that small scale perturbations rapidly develop as a result of 

downscale energy propagation, the appearance of mesoscale forecast advantages for 

MULTI, compared to MULTI48, at much later lead times is particularly noteworthy.  

The systematic difference is likely explained by the impact of the small scale IC 

perturbations on new convection developing during the early forecast hours and 

growing upscale during the forecast period, as shown qualitatively in Chapter 4.  This 

shows that optimal multi-scale perturbation design for SSEFs requires appropriate flow 
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dependent small scale IC perturbations to be explicit added, rather than relying on 

downscale propagation from the mesoscale IC perturbations.   
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Chapter 6: Importance of consistency between initial and lateral 

boundary condition perturbations 

 

6.1 Introduction 

The previous two chapters evaluated the direct impacts of differences in IC 

perturbation methods on ensemble forecast skill.  However, it is also of interest to 

consider the potential impacts of inconsistencies between the IC and LBC perturbations 

(Caron 2013; Wang et al. 2014). 

Caron (2013) introduced a method to alleviate the mismatch between IC and 

LBC perturbations in limited area models with different perturbation methods for the 

ICs and LBCs.  This was accomplished by blending multi-scale IC perturbations 

generated on an inner domain with the largest scales of the IC perturbations generated 

on an outer domain that correspond to the LBC perturbations.  The resulting IC and 

LBC perturbations are consistent with each other on large scales.  It was shown that this 

blending method reduces spurious sea level pressure (SLP) variance that originates at 

the LBCs and propagates into the interior of the domain.  The reduction of spurious SLP 

variance led to improved forecasts of precipitation and other variables (Caron 2013; 

Wang et al. 2014).  A relatively simple blending method is therefore also applied in this 

chapter to evaluate the importance of maintaining consistency between the IC and LBC 

perturbations in the SSEF system used in this study.   

Section 6.2 introduces the blending method used to enforce consistency between 

the IC and LBC perturbations.  The impacts on ensemble forecast performance for the 
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20 May case study, and systematically over all 11 OSSE cases, are presented in Section 

6.3.  Section 6.4 contains a brief summary of the results. 

 

6.2 Blending method 

The blending method of Caron (2013) consists of retaining the high resolution 

multi-scale IC perturbations at relatively small scales and coarser resolution IC 

perturbations at large scales, with a gradual transition in the blending zone between the 

small and large scales.  The blending zones for this study are 48-96km (BLEND48) and 

192-384km (BLEND192).  BLEND192 retains more of the MULTI perturbations while 

BLEND48 retains more of the LARGE perturbations.  The goal is to determine if the 

advantages of the MULTI IC perturbations can be even further improved by increasing 

the consistency of the larger scales of such perturbations with the LBC perturbations.   

The blending of the LARGE and MULTI IC perturbations is obtained by first 

applying the two-dimensional discrete cosine transform (DCT; Denis et al. 2002) to 

both sets of IC perturbations.  The DCT is used because it avoids problems related to 

the non-periodic domain (Denis et al. 2002).  For MULTI, the transformed field is fully 

retained for wavelengths less than λL and set to zero for wavelengths greater than λU, 

where λL and λU are the lower and upper bounds of the blending zone, respectively.  

The MULTI component at wavelength, λ, between λL and λU is multiplied by a factor of 

1-(λ-λL)/(λU-λL), resulting in a smooth transition between the retained and truncated 

spatial scales.  For LARGE, the components are multiplied by a factor of 1.0, 0.0 and 

(λ-λL)/(λU-λL) for λ>λU, λ<λL, and λL<λ<λU, respectively.  The MULTI and LARGE 

transformed fields are then added together and converted back to spatial (rather than 
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spectral) components using the inverse discrete cosine transform (Denis et al. 2002), 

resulting in the BLEND IC perturbations. The BLEND IC perturbation spectra follow 

the MULTI spectra at small scales and the LARGE spectra at large scales, with a 

gradual transition in the blending zone (not shown). 

 

6.3 Impact of blending on ensemble performance 

In this section, the BLEND48 and BLEND192 ensemble forecasts are compared 

to the MULTI ensemble to determine if further advantages of MULTI can be obtained 

by enforcing consistency between the IC and LBC perturbations on large scales.  

Impacts on the storm-scale reflectivity forecasts are minimal (not shown).  Therefore 

the results presented in this chapter focus on the mesoscale hourly accumulated 

precipitation forecasts.  Results from the 20 May case study of Chapter 4 are presented 

first in Section 6.3a, followed by systematic results in Section 6.3b. 

 

6.3a 20 May 2010 OSSE case study 

For the 20 May case study the impact of the IC/LBC inconsistency in the 

MULTI ensemble is reflected in a temporary increase in SLP variance that lasts for 

about 1 h in both the 0000 and 2100 UTC cases (Fig. 6.1).  While there is little impact 

on the ensemble mean RMSE for SLP (not shown), the average RMSE of individual 

ensemble members does show a temporary increase for the MULTI ensemble (also not 

shown).  There is no apparent impact on the other non-precipitation variables (e.g., Fig. 

4.2). 
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Figure 6.1: Average ensemble standard deviation of sea level pressure, calculated 

in the same verification domain used for other non-precipitation variables, for (a) 

the 0000 UTC 20 May case and (b) the 2100 UTC 20 May case. 

 

When compared to the MULTI forecasts, the BLEND192 forecast skill shows 

very few differences from MULTI for early lead time mesoscale precipitation forecasts 

(Fig. 6.2) and the short-term reflectivity forecasts (not shown).  At later lead times the 

blending ensembles are generally similar or more skillful than MULTI, indicating an 

advantage of the greater consistency between the ICs and LBCs for both the 0000 and 

2100 UTC cases (Fig. 6.2).  While the difference between BLEND192 and BLEND48 

depends on the forecast lead time and threshold for the 2100 UTC case (Fig. 5.16e,f), 

BLEND192 is consistently the most skillful for the 0000 UTC case (Fig. 5.16a,b,c).  A 

blending zone between 384 and 768 km was also evaluated but did not perform quite as 

well as BLEND192, likely due to retaining the inconsistent (with LBCs) IC 

perturbations from MULTI on too large of a scale (not shown). 

In summary, the inconsistencies between the IC and LBC perturbations in 

MULTI have little impact on the non-precipitation variables, except for a temporary 
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increase in ensemble spread of SLP.  This may suggest that the IC/LBC inconsistencies 

are not particularly problematic in this ensemble system.  However, a slight increase in 

mesoscale precipitation forecast skill in BLEND48 and BLEND192 compared to 

MULTI may be a reflection of a negative impact of the IC/LBC inconsistency on the 

convective precipitation forecasts for this case.   

Figure 6.2: As in Fig. 4.3, except for the MULTI, BLEND and BLEND192 

ensembles. 

 

6.3b Systematic results from 11 OSSE cases 

The systematic impacts of the IC/LBC perturbation inconsistency on non-

precipitation variables are very similar to the 20 May case study and therefore not 

shown.  For the mesoscale hourly accumulated precipitation forecasts there is not a 

clear systematic advantage of either BLEND48 or BLEND192, compared to MULTI 

(Fig. 6.3).  After ~5 h, BLEND48 is significantly less skillful than MULTI (Fig. 6.3) 
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due to the similarity between the BLEND48 and LARGE IC perturbations.  BLEND192 

generally shows systematic differences from MULTI that are either very small, 

statistically insignificant, or both (Fig. 6.3).  The inconsistencies between the IC and 

LBC perturbations in the MULTI ensemble thus do not systematically have a 

substantial negative impact on the ensemble forecast skill for either precipitation or 

non-precipitation variables.   

 

Figure 6.3: As in Fig. 5.3, except for the MULTI, BLEND48 and BLEND192 

ensembles.  Significant differences from the MULTI line, at the 80% confidence 

level, are indicated by markers of the same color as the line that is significantly 

different from MULTI. 

 

6.4 Summary 

The importance of the consistency between the IC and LBC perturbations is 

briefly evaluated in this chapter.  Previous studies have demonstrated spurious pressure 

waves originating at the lateral boundaries resulting from the use of independent 

perturbation methods with different resolutions for the IC and LBC perturbations 

(Caron 2013; Wang et al. 2014).  In these initial studies, precipitation forecast skill was 

improved through the use of a blending method to enforce consistency between the IC 
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and LBC perturbations on the largest scales.  A similar method is applied in this chapter 

for the SSEF system used in this study. 

For the 20 May case study, the inconsistency between the IC and LBC 

perturbations in MULTI leads to rapid growth of SLP spread and error for ~30-60 

minutes.  However, there are not corresponding impacts on the other non-precipitation 

variables.  For this case, blending the MULTI perturbations with the largest scales of 

the LARGE IC perturbations (i.e., BLEND192) results in greater IC/LBC consistency 

and more skillful convective precipitation forecasts, consistent with Caron (2013) and 

Wang et al. (2014).  However, considered over all 11 cases there is not a significant 

advantage of applying a blending method to enforce greater consistency between the IC 

and LBC perturbations on large scales for either precipitation or non-precipitation 

variables. 

There are two possible explanations for the difference between this result and 

the results of Caron (2013).  First, in this study the same cycled ensemble DA method is 

used to generate the inner and outer domain analyses used for IC perturbations.  This 

may lead to less inconsistency between the ICs from the inner domain and the LBCs 

from the outer domain than using LBCs from a completely different ensemble system.  

Second, the difference in resolution between the IC and LBC perturbations in MULTI is 

only a factor of 3 in the present study, compared to a factor of 16 in Caron (2013). 

 

  



150 

Chapter 7: Impact of IC perturbation methods in real-data 

experiments 

 

7.1 Introduction 

A perfect-model OSSE framework was used in Chapters 4 and 5 to eliminate 

forecast errors due to model and physics errors and isolate the impacts of sampling the 

forecast errors resulting from analysis errors with different IC perturbation methods.  In 

a more realistic setting there would also be model and physics errors that should be 

sampled in the optimal ensemble design.  Therefore it is also of interest to extend the 

study to corresponding real data cases (i.e., abandoning the perfect-model OSSE 

framework).  This allows the implications for optimal design of SSEF IC perturbations 

in more realistic operational settings to be assessed.  Model and physics errors may play 

a more prominent role relative to IC errors in such settings (e.g., Stensrud et al. 2000; 

Clark et al. 2008; Johnson et al. 2011b). 

The same IC perturbation experiments are repeated for the same ten cases using 

real observations to test the hypothesis that more optimally sampling the IC 

perturbations in a real data (i.e., not OSSE) setting will also lead to improved ensemble 

forecast performance.  The main difference between the real-data and OSSE cases is 

that only the real-data forecasts contain model and physics errors.   

The real-data experiments are conducted by performing the same IC 

perturbation experiments using the analysis ensembles from the real-data cases in 

Chapter 2.  Since real-data analyses were not generated for the 2100 UTC 19 May case, 

only 10 cases are used for the real-data results.  For the real-data cases, the precipitation 
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forecasts are verified against radar derived quantitative precipitation estimates from the 

National Severe Storms Laboratory (NSSL) Q2 product (Zhang, J. et al. 2011).  In 

contrast to the single model level evaluation of reflectivity in the OSSEs, composite 

reflectivity (i.e., maximum reflectivity in the vertical column) is verified against the 

NSSL composite reflectivity mosaic (Zhang, J. et al. 2011).  This provides a direct 

comparison between the forecast and observed variables.  The results are also very 

similar when model level 5 (~900 mb) reflectivity is verified against the NSSL Hybrid 

Scan Reflectivity product (i.e., reflectivity at the lowest available scan level).  The 

NSSL composite reflectivity mosaic on a uniform 0.01° (~1 km) grid is interpolated to 

the WRF grid using bilinear interpolation.  The same verification domains as the OSSEs 

are used for the real-data hourly accumulated precipitation verification.  For the real-

data reflectivity verification, the smaller verification domains are relocated and resized 

to better capture the locations of the actual mesoscale precipitation systems which are 

different than the Nature run locations in many cases.  There are three fewer mesoscale 

precipitation systems in the real-data experiments, resulting in a total of 15 unique 

verification domains for the real-data reflectivity verification.  Multiple verification 

domains on the same case are not considered independent samples for the statistical 

significance tests. 

 

7.2 Results 

7.2a Mesoscale hourly accumulated precipitation 

Unlike the OSSE results for mesoscale precipitation forecasts, MULTI and 

MULTI48 generally result in less skillful forecasts than LARGE in the real data 
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experiments (Fig. 7.1).  The difference between MULTI or MULTI48 (or both) and 

LARGE is statistically significant at many lead times, especially at the 6.35 and 12.7 

mm h
-1

 thresholds (Fig. 7.1).  The contrast with the OSSE results is attributed to the 

presence of model error in the real-data experiments.  Although the real-data forecasts 

contain model error, all ensemble members still use the same model configuration.  

Therefore, even if the IC perturbations perfectly sample the IC uncertainty, the 

ensemble forecasts are expected to be under-dispersive as a result of the un-represented 

model errors.  As demonstrated in Chapters 4 and 5, the LARGE OSSE ensembles have 

larger magnitude mesoscale IC perturbations which degrade the ensemble forecast skill 

compared to MULTI.  Greater precipitation forecast spread for LARGE than MULTI is 

also seen in the real-data experiments, as reflected in the lower correspondence ratio 

(CR) for LARGE for the representative 6.35 mm h
-1

 threshold (Stensrud and Wandishin 

2000) in Fig. 7.2.  The CR is the number of grid points at which N members (N=20 in 

Fig. 7.2) forecast the threshold to be exceeded, divided by the number of grid points 

where any member forecasts the threshold to be exceeded.  Smaller values of CR 

indicate greater spread since a CR of 1.0 indicates no diversity of the forecasts and a CR 

of 0.0 indicates no overlap of the forecasts.  Unlike the OSSEs, the greater LARGE 

spread compensates for un-represented model errors in the real-data experiments, 

leading to better ensemble forecast skill than MULTI.  Optimal IC perturbation methods 

for SSEFs may therefore only show their full advantage as part of a holistic approach to 

ensemble design that also includes model and physics diversity. 

Although LARGE is more skillful than MULTI and MULTI48 for mesoscale 

precipitation forecasts in the real-data experiments, there may still be an advantage of 
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the small scale IC perturbations resolved only by MULTI (Fig. 7.1).  Small but 

statistically significant positive impacts of the small scale IC perturbations (i.e., MULTI 

vs MULTI48; significance markers along bottom axis of Fig. 7.1) are seen at 3 lead 

times each for the 6.35 and 12.7 mm h
-1

 thresholds.  However, like the OSSE results, 

the differences between LARGE and MULTI skill are mostly explained by the 

differences between LARGE and MULTI48. 

 

Figure 7.1: As in Fig. 5.3, except for the 10 real-data cases. 
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Figure 7.2: Correspondence ratio with 20 member agreement (see text for 

explanation) averaged over all 10 real-data cases of hourly accumulated 

precipitation at the 6.35 mm h
-1

 threshold. 

 

7.2b Storm-scale reflectivity 

The storm-scale reflectivity forecasts for the real-data experiments show mixed 

results with MULTI significantly more skillful than LARGE during the first ~20 

minutes.  After this time, a LARGE advantage begins to appear for the smallest 

neighborhood radii (Fig. 7.3).  The MULTI advantage becomes increasingly limited to 

larger radii and smaller thresholds until only the LARGE advantage is present at the end 

of the 2 h forecast period (Fig. 7.3).  Subjective evaluation reveals that, like the OSSE 

cases, the MULTI forecasts of the MCSs are much sharper than the LARGE forecasts.  

For example, the 20 May real-data forecast shows lower NEP for MULTI where the 

LARGE NEP is relatively low and higher NEP for MULTI where the LARGE NEP is 
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relatively high (e.g., Fig. 7.4a-f).  However, the real-data cases show more pronounced 

differences between the forecast and observed MCSs than the OSSE cases, which is 

likely a result of model errors (e.g., Fig. 7.4a-c).  Since such model errors grow faster 

on smaller scales, the sharper MULTI forecast is advantageous only for very short lead 

times on small scales and slightly longer lead times on larger scales (Fig. 7.3).  

Otherwise, the less-sharp LARGE forecast is more skillful (Fig. 7.3).   

The MULTI advantage during the first 20 minutes suggests that the sharper 

MULTI forecast is consistent with the forecast uncertainty associated with the IC errors.  

The rapid loss of this skill advantage during the forecast period suggests that it is the 

growth of spread during the forecast period that is lacking in MULTI.  Since the 

perfect-model OSSEs do not show the same result (Fig. 5.4), the insufficient spread 

growth in MULTI is attributed to the unrepresented model and physics errors.  This 

further emphasizes that effective model and physics perturbations are essential to obtain 

the full advantage of optimal IC perturbation methods. 
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Figure 7.3: As in Fig. 5.4, except for the real-data cases. 
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Figure 7.4: Example of real-data reflectivity forecasts, initialized at 0000 UTC 20 

May 2010, for the 30 dBZ threshold.  The NEP of the LARGE ensemble at 5, 45, 

and 90 minute lead times is plotted in panel (a), (b) and (c), respectively, with the 

observation contour overlaid in red.  Panels (d), (e) and (f) show the difference 

between the MULTI and LARGE NEP at the same times, with the observation 

contour overlaid in black.  Panels (g)-(i) are as in (d)-(f), except for the difference 

between MULTI48 and MULTI NEP. 

 

 Like the mesoscale precipitation forecasts, the storm-scale reflectivity forecasts 

show an advantage of the small scale IC perturbations in the real-data experiments.  In 
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the real-data experiments, the small scale IC perturbations lead to significant skill 

advantages for small neighborhood radii at early lead times, growing upscale into 

significant advantages at even larger radii with increasing lead time (Fig. 7.5).  In 

contrast to the OSSEs, the skill advantages resulting from the small scale IC 

perturbations persist throughout the 2 h forecast period (Fig. 7.5).  This may also be due 

to the more pronounced differences between the forecast and observed MCSs that result 

from model error.  In Chapter 4 it was noted that the main advantage for reflectivity 

forecasts of the small scale IC perturbations in the OSSEs is a smoothing of the NEP 

forecasts where strong NEP gradients do not correspond to the small scale features in 

the observation contour.  Subjective evaluation of the real-data cases reveals even more 

smoothing of the NEP forecasts on even larger scales.  For example, the 20 May real-

data forecast shows higher NEP for MULTI where MULTI48 NEP is relatively low and 

lower NEP for MULTI where MULTI48 NEP is relatively high (e.g., Fig. 7.4g-i).  This 

shows that the flow-dependent small scale IC perturbations are even more important for 

the storm scale reflectivity forecasts in an under-dispersive SSEF system that does not 

adequately sample the model and physics errors. 
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Figure 7.5: As in Fig. 5.7, except for the real-data cases. 

 

7.3 Summary 

Whereas the perfect-model OSSEs of Chapters 4 and 5 allow the impact of IC 

uncertainty and IC perturbations to be isolated, the real-data experiments in the present 

chapter address the importance of model and physics uncertainty.  The impacts of the 

IC perturbation method in the real-data experiments are similar in some ways to the 

OSSE results.  The LARGE IC perturbations generally have larger magnitude near 

ongoing convection than the MULTI IC perturbations.  However, in contrast to the 
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OSSE results the LARGE skill is greater than the MULTI skill in the real-data 

experiments.  The difference is hypothesized to be a result of unrepresented model 

errors in the real-data experiments.  While the LARGE mesoscale IC perturbations are 

too large in magnitude for the actual IC uncertainty they can compensate for the 

unrepresented model errors, improving the forecast skill.  Like the OSSEs, the small 

scale component of the MULTI IC perturbations has a small positive impact on forecast 

skill even for mesoscale hourly accumulated precipitation forecasts beyond the first few 

hours of forecast lead time.  For reflectivity forecasts, the small scale IC perturbations 

are even more important for the real-data experiments with unrepresented model errors 

than for the perfect-model OSSEs. 

The real-data experiments show that the impact on ensemble forecast 

performance of the IC perturbation method should not be considered in isolation from 

other aspects of the ensemble design.  In particular, if model and physics errors are not 

adequately sampled then unrealistic IC perturbations downscaled from a coarser 

ensemble may outperform multi-scale IC perturbations that are more consistent with the 

analysis uncertainty.  This is similar to the concept of compensating biases in numerical 

modeling, whereby improving just one aspect of the model may actually degrade the 

overall performance (e.g., Neggers and Siebesma 2013).  Therefore, model and physics 

diversity in a SSEF system should also be carefully configured and optimized in order 

to obtain the full advantages of optimal IC perturbation methods.  Systematic controlled 

experiments on the optimal sampling of model and physics error in SSEFs for mid-

latitude convection forecasting are suggested for future work. 
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Chapter 8: Summary and Conclusions 

Despite widespread use of storm-scale ensemble forecast (SSEF) systems in 

research settings and limited but increasing interest in operational settings, there has 

been relatively little systematic study of how to optimally design such systems.  The 

design of SSEFs is distinguished from the design of coarser global and mesoscale 

ensembles in that SSEFs resolve a much broader range of spatial scales, including the 

rapid non-linear error growth associated with moist convection.  Initial studies have 

investigated aspects of SSEF design such as the optimal ensemble size (Clark et al. 

2011) and the impacts of different sources of ensemble diversity on forecast spread 

(Clark et al. 2010; Johnson et al. 2011b).  This dissertation builds on such early studies 

by investigating the impacts of different multi-scale data assimilation (DA) and initial 

condition (IC) perturbation methods, with the goal of moving closer to an understanding 

of the optimal design of SSEF systems. 

 

8.1 Data assimilation methods 

An accurate IC analysis is a pre-requisite for an accurate forecast.  Such an 

analysis is typically provided by a DA system.  Since convection-permitting forecasts 

can be strongly influenced by features ranging from synoptic to convective scales, the 

DA system should also be able to accurately analyze features on very different scales.  

In the first part of this study, the GSI-based EnKF and 3DVar DA system is extended to 

assimilate radar reflectivity using the WRF model with WSM6 microphysics for multi-

scale DA where both the model and observations resolve synoptic to convective scale 

features.  The EnKF and 3DVar components of the GSI-based system are then 
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systematically compared to each other in the multi-scale context to understand how the 

differences between the two techniques affect the analysis quality on multiple scales 

and the subsequent precipitation forecast skill.   

The multi-scale analyses from GSI-based EnKF systematically lead to 

significantly more skillful forecasts than the GSI-based 3DVar analyses.  The more 

skillful EnKF-initialized forecasts result from more accurate analyses of both the 

mesoscale environment and the convective scale features.  A case study of an upscale 

growing MCS is used to better understand the causes of such skill differences.  The 

more accurate mesoscale environment with EnKF is attributed to the flow dependent 

shape and spatial scale of the ensemble-based background error covariance. The more 

accurate convective scale analysis for EnKF is attributed to the presence of coherent 

cross-variable correlations in the ensemble-based background error covariance for 

reflectivity DA.  The forecast skill improvement resulting from the radar DA lasts for 

~5h using EnKF but only ~1h using 3DVar, further showing the advantage of the GSI-

based EnKF over 3DVar.  The more skillful forecasts initialized from EnKF analyses 

are primarily due to the more accurate convective scale analysis at early lead times and 

increasingly due to the more accurate mesoscale environment at later lead times.  This 

emphasizes the need for the multi-scale approach to DA for convective precipitation 

forecasting.   

While the GSI-based EnKF generally outperforms the GSI-based 3DVar, 3DVar 

does have some useful features for radar DA such as a more rapid spin up of convective 

features and the ability to add reflectivity where no reflectivity is present in the first 

guess forecast.  These differences occur because realistic flow-dependent error 
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covariance structures take some time to spin up in EnKF and the weight given to 

observation information in EnKF depends on the first guess ensemble variance which is 

zero if no members forecast any reflectivity.  Further study is needed to develop more 

effective methods of defining the static background error covariance for 3DVar and to 

combine the advantages of EnKF and 3DVar using hybrid ensemble-variational 

methods. 

 

8.2 Initial condition perturbation methods 

The GSI-based DA system can provide both the ensemble mean analysis and the 

IC perturbations for a SSEF system.  In the second part of this study, a series of 

experiments with increasing complexity are conducted to better understand the impacts 

on SSEF performance of different methods of generating the IC perturbations.  First, the 

forecast sensitivity to simple random homogeneous IC perturbation methods is 

systematically evaluated on different spatial scales.  Perfect model Observation System 

Simulation Experiments (OSSEs) are then conducted using a case study to qualitatively 

understand the impacts on forecast skill of more realistic flow-dependent multi-scale IC 

perturbations.  Finally, the OSSE case study is extended to 11 diverse cases to obtain 

systematically robust objective results.  The study is also extended to consider the 

IC/LBC perturbation consistency and real-data (non-OSSE) experiments to better 

understand the implications for practical applications which contain model error. 

Convective precipitation forecasts on medium to large scales are more sensitive 

to large scale IC and physics perturbations than to random homogeneous small scale IC 

perturbations.  The forecasts on small scales are similarly sensitive to all of the 
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considered IC perturbation methods.  On medium forecast scales, the small scale IC 

perturbations generate at least half as much perturbation energy as the larger scale IC 

and physics perturbations.  This shows the potential importance of small scale IC 

perturbations for convective precipitation forecasting.  However, the forecasts are not 

significantly more sensitive to small scale IC perturbations together with large scale IC 

and physics perturbations than to the large scale IC and physics perturbations alone.  

This may be a result of the lack of flow dependence in the simple random homogeneous 

small scale IC perturbations. 

The GSI-based EnKF multi-scale analyses provide an opportunity to evaluate 

more complex flow-dependent multi-scale IC perturbations.  A perfect model OSSE 

framework is used to neglect model errors and focus only on sampling the multi-scale 

analysis uncertainty using multi-scale IC perturbations.  The multi-scale IC 

perturbations (i.e., MULTI) contain smaller scale features than are resolved by IC 

perturbations downscaled from a coarser resolution mesoscale ensemble (i.e., LARGE).  

There are also differences between the MULTI and LARGE IC perturbations on the 

commonly resolved mesoscales as a result of the different methods of generating the 

perturbations.   

A case study of an upscale growing MCS provides qualitative understanding of 

how the differences in IC perturbation methods can affect the ensemble forecast skill.  

The small scale IC perturbations, resolved only in MULTI, lead to more skillful 

forecasts of storm-scale reflectivity in 0-4 km neighborhoods at lead times up to about 

one hour.  This is a direct result of the greater ensemble diversity for features on such 

scales.  The small scale IC perturbations are also shown to be capable of upscale 
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impacts on the hourly accumulated precipitation forecasts out to 9 h lead times.  This is 

a result of the impact of the small scale IC perturbations on convection during the early 

forecast period that newly develops from small scale features and grows upscale during 

the forecast period.  However, for the single case study a clear skill advantage resulting 

from such upscale impacts is not seen.  Forecasts of hourly accumulated precipitation in 

mesoscale (48 km) neighborhoods and storm-scale reflectivity in 8-48 km 

neighborhoods have skill dominated by the mesoscale differences between the MULTI 

and LARGE IC perturbations.  The MULTI IC perturbations have a mesoscale 

component that is more consistent with the analysis errors than the LARGE IC 

perturbations near the analyzed MCS, leading to forecast advantages for MULTI.  

However, mesoscale mid-level moisture anomalies appear in the MULTI IC 

perturbations away from the observed MCS, apparently due to insufficient suppression 

of spurious convection during the radar DA period.  For forecasts initialized at 0000 

UTC, the more reasonable mesoscale IC perturbations near the developing MCS 

dominate and lead to an overall skill advantage for MULTI.  For forecasts initialized at 

2100 UTC, the mesoscale mid-level moisture perturbations enhance spurious 

convection in MULTI, leading to an overall forecast disadvantage for MULTI.   

Given the case dependence of some of the OSSE results, the OSSE case study is 

extended to 11 diverse cases to obtain more robust systematic conclusions.  The 0000 

UTC case study is more representative of the systematic results than the 2100 UTC case 

study since MULTI generally shows forecast advantages over LARGE.  Hourly 

accumulated precipitation forecasts are systematically more skillful for MULTI than 

LARGE at the 1 h and ~5-9 h lead times, with the statistically insignificant exception of 
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the 12.7 mm h
-1

 threshold at 8-9 h.  The skill advantage primarily results from the 

greater consistency near analyzed convective systems between the IC uncertainty and 

the mesoscale component of the MULTI IC perturbations, compared to LARGE.  The 

smaller scales of IC perturbation that are resolved by MULTI also grow upscale into 

significant hourly accumulated precipitation forecast advantages after the 5 h lead time.  

Storm scale reflectivity forecasts in neighborhoods larger than 4 km are significantly 

more skillful for MULTI than LARGE during the first ~1 h as a result of the better 

mesoscale IC perturbations for MULTI.  The small scale IC perturbations in MULTI 

also lead to significant skill advantages for the reflectivity forecasts in 0-4 km 

neighborhoods during the first hour.  During this time, sufficient small scale spread has 

not yet been generated by downscale energy propagation from the larger scale 

perturbations.  These results show that the method of generating multi-scale IC 

perturbations directly on the convection-permitting grid using multi-scale ensemble-

based DA is indeed more optimal than downscaling larger scale perturbations for the 

purpose of SSEFs of mid-latitude convection.  While most of the advantage comes from 

the method of generating the mesoscale component of the IC perturbations, which is 

more consistent with the analysis uncertainty, the small scale IC perturbations also 

contribute to statistically significant forecast advantages. 

The OSSE cases are also used to evaluate the importance of the consistency 

between IC and LBC perturbations.  The use of independent perturbations of different 

resolution for the IC and LBC perturbations results in spurious pressure waves at early 

lead times.  Caron (2013) demonstrated a method of improving the consistency between 

IC and LBC perturbations by blending multi-scale IC perturbations with the largest 
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scales of coarser perturbations that are consistent with LBC perturbations.  This method 

can lead to improved precipitation forecast skill (Caron 2013; Wang et al. 2014).  

However, in the SSEF system used in this study the inconsistency between the IC and 

LBC perturbations is not sufficiently problematic that a similar blending method leads 

to systematically improved precipitation forecast skill.  This may be a result of using the 

same multi-scale DA system to generate the mesoscale and multi-scale perturbations 

used for the LBCs and ICs, respectively, and the relatively small difference in 

resolution between the inner and outer domain. 

The OSSE results show that the MULTI IC perturbations more optimally sample 

the forecast uncertainty resulting from IC errors than the LARGE IC perturbations.  

However, in real-data scenarios model and physics errors also contribute to the forecast 

uncertainty.  In real-data experiments it is shown that the LARGE ensemble is 

significantly more skillful than the MULTI ensemble.  Although the mesoscale 

component of the LARGE IC perturbations has too much magnitude for the actual IC 

uncertainty, this extra ensemble spread compensates for the lack of model and physics 

diversity in the experiment design.  Such diversity is not added in these experiments for 

two reasons.  First, it would complicate the clean comparison between the real-data and 

OSSE results.  Second, optimal methods of sampling the model and physics errors are 

also not yet known.  It is concluded from the real-data experiments that additional 

future research on the optimal model and physics perturbation design is worthwhile and 

that such perturbations are needed to realize the advantage of using more optimal IC 

perturbation methods. 
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8.3 Summary and future work 

In summary, the sensitivity of convective precipitation forecasts to the analysis 

of both storm scale features and the mesoscale environment shows the importance of a 

multi-scale approach to data assimilation for convection-permitting forecasts.  The 

newly extended GSI-based EnKF is also shown to be an effective technique for such 

multi-scale DA, in comparison to the GSI-based 3DVar.  The GSI-based EnKF has the 

further advantage of providing flow-dependent multi-scale IC perturbations for SSEFs.  

In comparison to IC perturbations downscaled from a mesoscale ensemble, the 

mesoscale component of the multi-scale IC perturbations is more consistent with the 

analysis uncertainty which leads to significantly improved forecast skill.  Early studies 

(Durran and Gingrich 2014 and Chapter 3) suggested that the further addition of small 

scale IC perturbations in the multi-scale IC perturbation design may not be important.  

This hypothesis is rejected in the present study.  The flow-dependent small scale IC 

perturbations generated by cycled multi-scale ensemble-based DA lead to significant 

forecast advantages for both storm-scale short lead time reflectivity forecasts and 

mesoscale hourly accumulated precipitation forecasts out to 9 h lead time.   

Much future work on the optimal DA and IC perturbation methods for SSEFs of 

mid-latitude convection is still needed.  Assimilation of cloud water path is suggested as 

a potential method of further reducing the negative impacts of spurious convection 

during radar DA.  Application of hybrid ensemble-variational methods may further 

improve the storm-scale component of the multi-scale DA system by including the 

advantages of both the variational and ensemble-based frameworks (e.g., Wang et al. 

2008a,b).  The variational part of such a hybrid system could also be further improved 
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by continued research on methods to define the static background error covariance for 

reflectivity DA.  Systematic research on how to optimally sample the model and physics 

errors in SSEF design is expected to both improve SSEF skill in real-data scenarios and 

reveal the full advantage of optimal IC perturbations. 
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