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Abstract

Increasingly, psychologists encounter data in which several individuals have been

measured on multiple variables over numerous occasions. Many of the current

methods for this situation combine the data, assuming everyone is a randomly

equivalent to everyone else. The extreme alternative on the other side is to sep-

arately analyze each person’s data, assuming no one is similar to anyone else.

This dissertation proposes a method as a compromise between these two ex-

tremes. The goal of the method is to find people in the data that are undergoing

similar change processes over time. Data were simulated under various condi-

tions to explore what factors influenced the ability of the method to correctly

estimate the change process and accurately find people with the same process.

It was found that sample size had the greatest positive influence on parameter

estimation and the dimension of the change process had the greatest positive

impact on correctly grouping people together, likely due to the distinctiveness

of their patterns of change. With some success in simulation, the method was

applied to an archival data source reflecting cognitive growth in the National

Longitudinal Survey of Youth Children data. This analysis suggested that the

genetic effects operating between people on their cognitive development may be

quite different from their within-person effects, but also revealed a limitation for

the method on large sample sizes. Once software improvements are made to the

xii



method, its applicability to large, real data should be reevaluated. State space

mixture modeling, in its current form, offers one of the best-performing methods

for simultaneously drawing conclusions about individual change processes while

also analyzing multiple people.
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Chapter 1

Introduction

People are different, and yet the same. There is a sense in which all people are the

same; another in which all people are completely unique; and a third, perhaps,

most frequent, in which people are partially both. So far, much of the history of

psychological effort has emphasized the universal similarity and interchangeability

of individuals. Kluckhohn and Murray (1948) echo these sentiments with their

oft-cited quotation.

Every man is in certain respects

a. like all other men,

b. like some other men,

c. like no other man.

Other than the historical use of “man” instead of “human”, the idea is quite

modern and relevant today. There are globally uniform aspects to being hu-

man. These are often the raw, biological facts that distinguish humans from

other species. The attributes that are identical over many species, by deductive

reasoning, are also the same over individual people: every person must be born,

learn to move in the environment, grow, mature, and die. Research that looks
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for universal laws that apply to all individuals equally is often called nomothetic

(e.g. Allport, 1937).

At the same time, there are many ways in which every person is completely

individual, like no one else. No other person has had all the same experiences

as any other person. Even twins raised together have unique environmental

influences. In fact, identical twins do not have completely identical genomes: they

differ in the number of copies of some genes (Bruder et al., 2008). Furthermore,

as Molenaar (2004, p. 211) observed “Even if (counterfactually) all genetically

stored information would be used to specify the intricate wiring of neurons in

a developing brain, this would be far too little.”. Research that emphasizes the

ways in which people are inextricably singular is frequently called idiographic

(e.g. Allport, 1937; Boker, Molenaar, & Nesselroade, 2009).

Nesselroade (2010) describes the idiographic perspective as a a “third disci-

pline” in scientific psychology that extends and perhaps supplants the correla-

tional and experimental disciplines of Cronbach (1957, 1975). The third discipline

that Nesselroade portends considers the individual to be the central unit of anal-

ysis. By contrast, both the individual differences and experimental practices in

psychology are more aligned with the nomothetic tradition and each other. In

fact the statistical methods of Cronbach’s two disciplines, regression for indi-

vidual differences and ANOVA for experimental, are mathematically identical.

Particularly, the underlying assumptions made in differential and experimental

psychology are the same: namely, that individuals are homogeneous, randomly

exchangeable units after controlling for a handful of covariates. This is the default

assumption made by many nomothetic methods from t-tests to structural equa-

tion modeling. Mathematically stated, it says observations are independent and

identically distributed (i.i.d.). The individual-level analyses of the idiographic
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tradition alter this i.i.d. assumption in various ways to allow for intra-individual

conclusions.

Of course, studying individuals has its problems and difficulties. One of the

founding principles in science is repetition. It is difficult and risky to make gneral

conclusions from the single case. Only when something happens repeatedly or

consistently in some lawful way can it become the object of scientific inquiry.

Psychology has often addressed the need for repetition by having multiple people

in a given study. Considering all people to be equivalent provides the necessary

repetition for scientific study. The idiographic tradition finds repetition not across

multiple people, but rather through multiple observations on the same person.

Thus, time series data, repeated observations, and their corresponding analytic

methods are used by the idiographic psychologists.

The shift from between-person analyses to within-person analyses, like time

series, creates at least three challenges. First, observations of the same person

repeatedly can be prohibitively costly in terms of the time required to collect

data. These costs can sometimes be addressed through the use of smart phones,

neurophysiological measures, archival data, and automatic data collecting mech-

anisms. Second, when gathering data on the same person on multiple occasions,

observations are likely to be non-independent. Lord and Novick (1968) face-

tiously suggested brain washing to create independent measurements from the

same person, however methods of analyzing non-independent observations are

preferable. Later we will review several methods for analyzing data when obser-

vations are not independent, for example when the same person is observed at

nearby times. Third, when studying a single individual, many researchers accus-

tomed to studying tens, hundreds, or even thousands of individuals will question

the generalizability of the single-case researcher. This is a valid concern, but,
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as will be discussed later, the concern is equally valid in the opposite direction.

The question of when conclusions drawn from many people at a single occasion

can be applied to the within-person variability of a particular person is of central

importance to the work presented in this dissertation.

The gestalt tradition as exemplified by Lewin (1936) and Allport (1937) sug-

gests that individuals are entirely unique. Hence, it would be fruitless to pur-

sue generalized knowledge gathered from the faulty assumption that people are

the same. However, the supposition that all people are entirely unique leads

to the conclusion that generalizable knowledge does not exist for people. If, as

the gestalt perspective suggests, all people are completely idiosyncratic, then no

knowledge can be gained about people in general because there is no such thing

as people-in-general. Rather than argue philosophically against this claim, sup-

pose in accordance with Kluckhohn and Murray (1948) that it is only partially

true. What then is a researcher to do when people might be different enough that

they are not interchangeable but perhaps not so different that general knowledge

is impossible? As alluded to by Nesselroade (2010), there is a trade-off between

the idiographic and nomothetic traditions in psychology, a dialectic generated by

the dual goals in psychology to understand individuals in all of their uniqueness

while simultaneously seeking generalizable knowledge about people in general.

This dissertation seeks to to partially bridge the gap between people-in-general

and the-completely-unique-individual by developing a data-analytic technique to

find subpopulations undergoing similar processes over time.
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1.1 Motivation

In clinical and developmental psychology, the notion of individual change is

paramount. In clinical psychology, there is the notion that the pattern of change

an individual displays during treatment may influence their long term outcome

(Steinman, Hunter, & Teachman, 2013). Similarly, in developmental psychology

the actual pattern of the acquisition of new skills among infants has recently come

under investigation (Adolph, Robinson, Young, & Gill-Alvarez, 2008). More his-

torically Vygotsky (1978) criticized cognitive developmental researchers for only

examining stable endpoint behaviors, and Baltes, Reese, and Nesselroade (1977)

provided a host of methods of analysis and alternative research design strategies.

One of the hallmarks of the lifespan developmental research methods discussed

by Baltes et al. (1977) is multiple measurements of multiple people on multiple

variables. As a rule of thumb, if the number of measurement occasions is less than

10 then these data are called multivariate longitudinal data; if there are more than

20 measurements per person then they are called multiple multivariate time series.

We are concerned with both types in this dissertation. In either case, data of this

kind are a rich resource for acquiring knowledge. They are so rich, in fact, that

many statistical methods do not adequately handle these data. Transformations

of these data are often used to reduce its complexity and make it analyzable by

some preferred method. The major goal of this dissertation is to establish, test,

and apply a method for analyzing multivariate longitudinal data and multiple

multivariate time series.
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1.1.1 The Problem of Pooling

When analyzing multiple multivariate time series, researchers often take the lead

of mathematicians faced with a new problem: they reduce the new problem

to an old problem that has already been solved. Hence when confronted with

multiple multivariate time series, researchers often take various steps to turn

multiple multivariate time series into one multivariate time series and then apply

standard time series methods to this new constructed series. This reduction of

the number of people from many to one is called “pooling people”. Alternatively,

researchers could ignore the time series nature of the data and reduce the effective

number of time points from many to one: “pooling time points”. For the present

work, only pooling across people will be considered. I will discuss three methods

of constructing a new, single time series from multiple time series: aggregation

in the time domain, aggregation in the frequency domain, and concatenation.

Subsequently, I will evaluate each method and discuss potential problems with

pooling in general. In the next section, I will discuss a method for selective

pooling of time series based on likelihood ratio test, and propose a new method

of selective pooling based on clustering and mixture models.

Perhaps the easiest way to reduce multiple time series into a single time series

is to simply add them up. Say you had 100 individuals with 200 time points each.

Then create an aggregate time series 200 time points long by taking the mean

across individuals at each time point. Now analyze the mean time series like any

other multivariate time series. This obviously loses a lot of information, but if

the different individuals are distinct from one another only in terms of random

error then much of the lost information can be recovered by using the variability

around each time point as an estimate of the error variance at that time. One
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potential problem with time domain aggregation occurs when the individuals are

not phase synchronized: a peak for person 1 at time 20 might coincide with

a valley in person 2 at time 20 and these could have destructive interference

canceling each other out, leading to the mean being an inaccurate description for

time series. However, provided that there is not phase reseting within individuals

across time, the time series can be phase synchronized by various methods (e.g.

Bishop & Thompson, 1986) before pooling. If the length of time series differ, then

sample-size-weighted averages at each time point could be used in aggregation.

The next method of pooling is a simple variation on the previous method.

Now we will be pooling in the frequency domain. Perform a multivariate (spatial)

Fourier transform on each individual time series taking it from the time domain

to the frequency domain. Thus we have a power spectrum for each individual.

Now we can take the mean power spectrum by taking the mean power across

people for each frequency. Once this aggregate power spectrum is obtained,

simply perform the inverse Fourier transform and analyze the new time series by

standard methods. This method circumvents phase differences in the series by

aggregating in a phase independent domain. By doing this, the phase information

will be lost, but it is not often of much interest in time series methods.

Finally, the researcher could concatenate the individual time series into one

very long series. When applying this pooling method with P-technique factor

analysis Cattell (1966b) called this “chain P-technique”. This method pastes the

time series together end to end. A set of 100 individual time series with 200 time

points each could construct a time series of length 100*200 = 20,000 time points.

This method does not need to address issues of phase locking or individual time

series of different lengths or loss of information due to aggregation. It does have

to solve an artifact of the joining. Simple concatenation allows a sequence to pass
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from one person to another. So the time series model would make predictions for

person 2 and time 1 based on the observations of person 1 at time 200 (or whatever

lag model you have). One way to solve this problem is to add missing data

between people. If you have a VARMA(p, q) model then putting k = max(p, q)

missing observations between people prevents the model from making predictions

across people. Another way to solve this problem is to treat individuals as groups.

If you have N = 100 groups (people), each with T = 100 time points then you

can fit a 100 group time series model by constraining the free parameters in each

model to be identical. The log likelihood of the multigroup model is just the

sum of the log likelihoods of the individual models. This concatenation method

of pooling would probably be the best method of pooling if it were absolutely

necessary.

The key issues in pooling multiple time series are homogeneity and ergodicity.

Homogeneity asks: Does every individual time series have the same underlying

dynamics, that is, the same underlying parameters? Ergodicity, on the other

hand, asks: Is the structure of within-person variability the same as the between-

person variability at a single time? Homogeneity is necessary but not sufficient

for ergodicity. Homogeneity is too weak a condition for ergodicity.

Although some analytic tests for ergodicity exist (e.g. Domowitz & El-Gamal,

1993, 1997, 2001), the empirically primary problem is actually homogeneity. This

is to say, examples in psychology fall short on ergodicity because before ergodicity

can be evaluated, multiple time series are shown to heterogeneous.

Peter Molenaar and colleagues have repeatedly put forth theoretical and em-

pirical evidence that people differ from one another in their longitudinal dynamics

and no one’s longitudinal dynamics greatly resembles the cross sectional structure

(Molenaar, 2004; Hamaker, Dolan, & Molenaar, 2005; Molenaar, Boomsma, &
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Dolan, 1993; Molenaar & Campbell, 2009; Molenaar, Huizenga, & Nesselroade,

2003; Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009). This provides a strong

caution against pooling time series on the basis of heterogeneity. All pooling

assumes at minimum homogeneity; moreover if generalizing across between- and

within-person variability, then it also assumes ergodicity. Therefore, when homo-

geneity and/or ergodicity are not tenable, pooling is not advisable.

One rather fascinating consequence of ergodicity is that it works both ways.

In a simple case in statistical mechanics, ergodicity states that the space average

is equal to the time average. In psychological terms this becomes: the average

across people at one time is equal to the average across time of one person.

Typically, Molenaar and colleagues find that psychologists are looking at many

people but at only one occasion and then making conclusions about one person

at many occasions. This works fine if the process is ergodic. However, because

ergodicity works both ways, it would also be fine to repeatedly sample one person

and then make conclusions about many people. Psychology would be a very

different science if this were common practice. I think many psychologists today

would guffaw at a researcher who sampled one person 100 times and then tried

to make conclusions about people in general, yet it is common practice to sample

100 people at one time point and then make conclusions about individual-level

causes of behavior.

It seems that the problem of pooling time series is directly analogous to pool-

ing data from nested designs (e.g. students within classrooms within schools).

We have time points nested within people who are sampled from the population.

The time domain and frequency domain aggregation mentioned early are both

different kinds of aggregated regression analysis (Cohen, Cohen, West, & Aiken,

2003, Ch. 14), whereas the concatenation method is a disaggregated analysis.
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Each method probably bares similar pitfalls to their analog in regression. Aggre-

gated analyses throw away too much information by averaging, and disaggregated

analyses claim more independent information than the really have.

Unfortunately, there are relatively few convenient representations of time se-

ries models that can be put into hierarchical linear model (HLM, also called mixed

effects model, random coefficients model, multilevel model, etc.) form. Latent

growth curve models can be put into HLM form and so can some ordinary dif-

ferential equations (Boker & Ghisletta, 2001), but I do not know of easy ways to

estimate multilevel VARMA(2, 4) models with existing software. Hidden Markov

models (HMMs) are similar in many respects to VARMA models, but the only

mixed effects HMMs that I am aware of take rather extreme amounts of time

to run (Altman, 2007) because of the high dimensional numerical integration

required.

1.1.2 Tests for Pooling

Nesselroade and Molenaar (1999) developed a method for empirically testing

whether two time series can be pooled. The method is refreshingly direct. They

fit two models and perform a likelihood ratio test to evaluate the relative fit of

the two models. One model pools the data from two time series; the other treats

the time series as independent groups. If the models fit about the same, then the

simpler pooled model is preferred. Otherwise the unpooled model is chosen.

The work of Nesselroade and Molenaar (1999) thus changes the assumption

of homogeneity into a test for it. The principle drawback is that with a large

number of people, if all pairs are compared then the number of tests will be

exceedingly large and false-positive (Type I) error rates will certainly be inflated.
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For instance, if there were 10 to 100 each with a time series, and all pairwise

comparisons are made then there would be 45 to 4,950 tests. By chance, 2 to 247

of these test would be statistically significant at the α = 0.05 level.

A related problem with this test for pooling occurs when more than two time

series are pooled. If N time series are pooled and the test yields a negative result,

then no information is given about which time series cannot be pooled. It could

be the case the all people could be pooled except for one; or it could be that no

person could be pooled with any other; the test yields the same result. However,

this is a general issue with multivariate tests (see Raykov & Marcoulides, 2008).

Overall a test for pooling could be an effective strategy, but some method of

reducing the number of tests, or controlling the false positive error rate, should

be employed. It is possible that theory could provide reason to believe that

some people should be pooled and others should not. Genetic relatedness, as an

example, could provide a strong argument for pooling individuals on processes

that are highly heritable: pooling within a genetic category, but not between

categories.

1.1.3 People as Groups

The primary technique here is to consider people as groups. Consequently, sta-

tistical methods often applied to groups will be used on individuals. People can

be treated as groups when the person-level is composed of multiple observations,

for instance multiple occasions of measurement. Instead of calling this situation

multigroup modeling, some authors called this multisubject modeling (e.g. Gu,

Preacher, Wu, & Yung, 2014). The single most important difference between

conceiving of collections of times as groups and collections of people as groups
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is the dynamic structure of the data. If occasions of measurement on a single

person are independent then there is no intrinsic difference between the two situ-

ations. However, sequential observations on a single person often have important

dynamics which can be found by any time series method.

1.2 Modeling: Linear and Nonlinear, Static and

Dynamic

Modeling, as discussed here, can be thought of as a two-way ANOVA design.

The applicable ANOVA is a 2 (static vs. dynamic) × 2 (linear vs. nonlinear)

design. Dynamic models intrinsically involve time, whereas static models do not.

Linear models can always be expressed in terms of matrix multiplication (Leon,

2006), whereas nonlinear models cannot. We will first discuss static and dynamic

models. Data collected at a single time point (R and Q technique in Cattell’s

terminology, Cattell, 1952) can only utilize static models. So a question the

researcher must ask himself or herself is: “Am I interested in processes and causal

mechanisms that occur over time?”. If not, then a static model will completely

suffice. However, a related question may change the answer. “Am I interested

in things that occur within individuals – things that make individuals act, think,

and feel – or am I only concerned with what makes one person different from

another?”. The answers to these two questions must correspond because studying

processes that occur over time is the only way to reliably understand things that

occur within individuals (Molenaar, 2004; Boker et al., 2009; Lindenberger, von

Oertzen, Ghisletta, & Hertzog, 2011; Molenaar & Campbell, 2009; Voelkle, Brose,

Schmiedek, & Lindenberger, 2014; Nesselroade, 2001; Nesselroade & Molenaar,
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2010b).

According to a recent undergraduate introductory psychology text book (Hock-

enbury & Hockenbury, 2010), the goal of psychology as a science is to understand

behavior and mental processes. Behavior unfolds in time and mental processes

are fundamentally time oriented, so dynamic models should be advocated by

the very goals of psychology. Moreover, we know from the ergodic theorems

from statistical mechanics (Birkhoff, 1931) that the structure of cross sectional

data is different from that of longitudinal data unless ergodicity holds (see also

Molenaar, 2004; Molenaar et al., 2003). So, in order to make conclusions about

within-person processes and changes, we must have data and perform analyses

within persons. That is, we must use dynamic models if we are interested in

individual processes.

Now we are presented with the choice between linear and nonlinear models.

There is a rather surprising method of making this decision to model linearly

instead of nonlinearly, and John Tukey might be proud of it: look at the data.

The distributions of the variables a researcher studies can inform decisions about

choosing models. If the variables are distributed normally (i.e. with a Gaussian

distribution), then linear models are completely sufficient. No nonlinear model

will fit normally distributed data better than a linear model. To justify the

previous statement I will need to discuss modeling in its own right.

A model is a compressed, or lower fidelity, description of data. That is, a

model attempts to account for data with fewer pieces of information than the

data already have and hence some of the information in the data is always lost

by the model. Of course, if you allow models with zero degrees of freedom, then

there is no loss of information but there is also no data compression. In this way

a model is like a metaphor. Models simplify data in ways that can lead to insights
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and hypotheses about data. They help us understand complex data by reducing

it to e.g. simple correlations and variances. Just as with metaphors, truth is

relatively orthogonal to the fidelity of a model (i.e. the model’s fit). A poet

and a physicist may have very different metatphors describing the Sun. Both of

these metaphors will be useful for different purposes, but which one is more true?

So it is with models. As George E. P. Box put it: “all models are wrong, but

some are useful and some are importantly wrong” (Box & Draper, 1987, p. 424;

Box, 1976, p. 792). Models are used to describe data and to yield insights that

lead to higher fidelity, better fitting, models. Often, models are mathematical

descriptions of data. Hence a model can usually be expressed in functional form:

g(x1, x2, . . . , xn) ≈ f(x1, x2, . . . , xn), where g(x1, x2, . . . , xn) is taken to be the

data, f(x1, x2, . . . , xn) is taken to be the model, and ≈ indicates the approximate

as opposed to exact equality. For example, simple linear regression would be

g(x1, x2) = x2, and f(x1, x2) = b0 + b1x1 for some constants b0 and b1, so the

model states x2 ≈ b0 + b1x1. Models are often made out of various kinds of

convenient ansatz, but can also be inspired by domain specific knowledge, theory,

and of course, previous models.

Now, to the crux of the matter for linear models. If f(x1, x2, . . . , xn) and

g(x1, x2, . . . , xn) are linear functions, then the model is linear. We then have

f(x1, x2, . . . , xn) = F~x and g(x1, x2, . . . , xn) = G~x for a appropriate matrices F

and G. The statement made earlier that “No nonlinear model will fit normally

distributed data better than a linear model.” is true because only linear relation-

ships exist between Gaussian distributed variables (Bertsekas & Tsitsiklis, 2008).

This is why a lack of linear correlation is sufficient for independence in normally

distributed data. So if a researcher looks at his or her data, and finds all the

variables are normally distributed, then there is no need to try nonlinear models.
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A nonlinear model will not fit the data any better than a linear model because

no nonlinear relationships exist in the data.

If, however, the data are not all normally distributed, then a nonlinear model

may be appropriate. Because we are psychologists, we should probably be using

a dynamic model. Hence, when the data are not normally distributed we will be

using nonlinear dynamic models as opposed to linear ones.

This is a good time to make clear that there are linear dynamic models and

there are nonlinear dynamic models. Without making explicit reference, it is

common practice in some social science circles to not distinguish between lin-

ear dynamics and nonlinear dynamics. This is a grave mistake because various

phenomena of interest exist in nonlinear systems but not in linear ones. For in-

stance, chaos, bifurcations, strange attractors, fractal dimension, and complex or

emergent behavior do not exist in linear dynamical systems. These are purely

nonlinear phenomena. If a research is looking for these, then they will not find

them in linear systems.

In understanding linear dynamics, consider Figure 1.1. This Figure illustrates

two example linear dynamic systems evolving in discrete time in two-dimensional

spaces. The state space is shown at two times: t and t + 1 with time t on the

left. The initial time shows a point in two-dimensional space xt along with a

2-ball (i.e. circle) around that point, highlighting two other points on that 2-

ball. The subsequent time shows how the linear dynamics, A, modify the original

2-ball. Linear dynamics can only stretch, contract, rotate, or leave unchanged

the original space. When linear dynamics alter a space, they can only do so

along a given direction. For instance in two dimensions, imagine picking any

two directions (not necessarily orthogonal) and stretching the space along one

direction while contracting the space in another. Both directions could contract,
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both could expand, one contracts while the other expands, or they could leave

space unaltered. When the total (hyper-)volume of the space is increasing over

time, the dynamics are called non-stationary. When the total (hyper-) volume of

the space is decreasing over time, the dynamics are stationary. That is the effect

of linear dynamics on a space.

By contrast for nonlinear dynamics, examine Figure 1.2. The same initial

point and surrounding 2-ball are plotted for two examples of nonlinear dynamics.

Figure 1.2a shows nonuniform contraction of the state space in both directions.

The right and bottom sides are more heavily contracted than the left or top

sides. Figure 1.2b actually shows twisting or folding of the state space. Broadly

speaking, a combination of stretching, twisting, and folding of the state space is

a recipe for chaotic maps (Smale, 1998, 1967; Strogatz, 2000).

The models considered here are exclusively linear. The state space model to be

described in the next section is a linear model of discrete-time dynamics. With

that being said, slight variations on the same model exist that are nonlinear,

namely the state space model with either the extended or unscented Kalman

filter instead of the the classical Kalman filter (Grewal & Andrews, 2008, 2001;

Hartikainen, Solin, & Särkkä, 2011). Ultimately, nonlinear dynamics may be

more realistic and more applicable to natural situations (e.g. Boker, 1996; Boker,

Schreiber, Pompe, & Bertenthal, 1998; Wang et al., 2014; Molenaar & Newell,

2003). However, new methods need to be tested incrementally, so the restriction

to linear dynamical systems is a permissible simplification, especially considering

the relative ease of later switching to nonlinear dynamic models. Having discussed

in generality static, dynamic, linear and nonlinear modeling, we now consider in

greater detail, the methods used in this work.
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Effect of a Linear t−Advance Map

●

●

xt + ε1

A(xt + ε1)

●

●

xt + ε2

A(xt + ε2)

● ●

xt

Axt = xt+1

(a) Expansion and Contraction with Slight Rotation

Effect of a Linear t−Advance Map

●

●

xt + ε1

A(xt + ε1)

●

●

xt + ε2

A(xt + ε2)
● ●

xt

Axt = xt+1

(b) Expansion and Contraction with Moderate Rotation

Figure 1.1: Two Linear Maps

17



Effect of a Nonlinear t−Advance Map

●
●

xt + ε1 A(xt + ε1)

●

●

xt + ε2

A(xt + ε2)

● ●

xt

Axt = xt+1

(a) Nonuniform Expansion and Contraction

Effect of a Nonlinear t−Advance Map

●
●

xt + ε1 A(xt + ε1)

●

●

xt + ε2

A(xt + ε2)

● ●

xt

Axt = xt+1

(b) Expansion and Contraction with Twisting

Figure 1.2: Two Nonlinear Maps
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1.3 Methods Used

1.3.1 State Space Models

Simply put, state space models are how scientists and engineers (among others)

represent changes over time in variables that are not measured perfectly. State

space models (SSMs) in discrete time form recursive relationships where the latent

variables at one time are related to the same variables later in time. These are

called autoregressive dynamics. The latent variables in turn produce measured

variables contemporaneously, like an ordinary factor analysis model.

Using the notation from engineering, a state space model is written

~xt+1 = A~xt +B~ut + ~qt (1.1)

~yt = C~xt +D~ut + ~rt (1.2)

where

• ~xt is a l × 1 vector of the latent states

• ~ut is a m× 1 vector of observed inputs

• ~qt is a l × 1 vector of dynamic noise with covariance Q

• ~yt is a n× 1 vector of observed outputs

• ~rt is a n× 1 vector of observation noise with covariance R

• A is an l × l matrix of autoregressive dynamics

• B is an l ×m matrix of covariate/input effects on the state

• C is an n× l matrix of factor loadings
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• D is an n×m matrix of covariate/input effects on the observation

Equation 1.1 is called the state equation, and Equation 1.2 is called the out-

put equation. The noise vectors ~qt and ~rt have zero mean, are assumed to be

uncorrelated with each other, uncorrelated with themselves at other times, and

uncorrelated with the observations ~yt.

Although the state space model in Equations 1.1 and 1.2 only represents lag-

one dynamic relationships, higher-order lags can be incorporated through block

matrices. A lag-p process without covariates would have a state equation like the

following (Hamilton, 1994, p. 3043)



~ξt+1

~ξt
...

~ξt−p+2


︸ ︷︷ ︸

~xt+1

=



A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0

0 I . . . 0 0

...
... . . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

A



~ξt

~ξt−1
...

~ξt−p+1


︸ ︷︷ ︸

~xt

+



~ζt

0

...

0


︸ ︷︷ ︸

~qt

(1.3)

where I is a l × l identity matrix. The output equation is similarly defined

~yt =

(
C1 0 . . . 0 0

)
︸ ︷︷ ︸

C



~ξt

~ξt−1
...

~ξt−p+1


︸ ︷︷ ︸

~xt

+~rt (1.4)

With the block matrix specification, the lag-one state space model is completely

general to any arbitrary lag desired.

State space models have been in existence and moderately heavy use since
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their inception in the 1960s. Because of this history, a number of different no-

tations have developed. Similarly, because of the relation of state space models

to structural equation models, some structural equation modeling notation could

also be adapted for state space models.

Table 1.1 shows 5 different notations for state space models. Durbin and

Koopman (2001) provided a popular treatment on time series and state space

models and have companion software that implements their methods. West and

Harrison (1997) gave a more Bayesian perspective on dynamic models. Åström

and Murray (2010) wrote an introductory book on feedback control systems en-

gineering. Kalman (1960) and Kalman and Bucy (1961) put forth the original

papers on state space models in mechanical and electrical engineering. Kalman’s

work, in general, is rather mathematical, and in particular was posed as an ex-

tension of the work of Norbert Wiener and Andrey Kolmogorov.

Of particular note in Table 1.1 is the fact that several of the same symbols

appear as different conceptual units in different notations. For example, Ht is

the factor loadings matrix (measurement model) in Kalman’s notation, but it

is the observation noise covariance (manifest error covariance) in the Durbin &

Koopman model. Similarly, Ft appears in every notation except LISREL, and in

each it represents a different part of the model.

Other formulations emphasize different portions of the models. Table 1.2

shows much of the same information as Table 1.1, but emphasizes the latent

process model which is sometimes called the state equation. Table 1.3 compares

the measurement models with varying notations.

Notice that the notations for state space models are numerous and inconsis-

tent. The general form of the model is always the same, but the letters used vary.

For this reason, the notation that seemed easiest to remember was picked. It is
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Table 1.1: Notations for Matrices and Vectors in State Space Models Without
Inputs

Durbin &
Koopman

LISREL
Endoge-
nous

West &
Harrison
dlm R
Package

Åstrom &
Murray

Kalman

Observed
Outputs

~yt ~yt ~at ~yt ~zt

Latent
States

~αt ~ηt ~θt ~xt ~xt

Observation
Noise

~εt ~εt ~vt ~wt ~vt

Dynamic
Noise

Rt~ηt ζt ~wt ~vt ~wt

Observation
Noise Co-
variance

Ht Θt Vt Rwt Rt

Dynamic
Noise
Covariance

RtQtR
T
t Ψt Wt FtRvtF

T
t Qt

Factor
Loadings

Zt Λt Ft Ct Ht

Auto-
regressive
Dynamics

Tt Bt Gt At Ft, Φt

Prediction
Error
Estimate

~vt ~yt − Λt~̂ηt ~at − Ft~̂θt ~yt − Ct~̂xt ~̃zt

Prediction
Error
Covariance

Ft Gt Ct - St
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Table 1.2: Latent Process Model Under Different Notations

Durbin & Koopman ~αt+1 = Tt~αt + Rt~ηt
LISREL ~ηt+1 = Bt~ηt + Γt~ξt + ~ζt
West & Harrison ~θt+1 = Gt

~θt + ~wt
Åstrom & Murray ~xt+1 = At~xt +Bt~ut + ~vt
Kalman ~xt+1 = Ft~xt +Bt~ut + ~wt

Table 1.3: Measurement Model Under Different Notations

Durbin & Koopman ~yt = Zt~αt + ~εt
LISREL ~yt = Λyt~ηt + ~εt
LISREL ~xt = Λxt

~ξt + ~δt
West & Harrison ~at = Ft~θt + ~vt
Åstrom & Murray ~yt = Ct~xt +Dt~ut + ~wt
Kalman ~zt = Ht~xt + ~vt

generally alphabetic: A, B, C, D, Q, R. In addition to these matrices, the model

also requires the initial latent mean and variance to be specified (~x0 and P0),

and the input/covariate variables (~ut). The notational situation of state space

models is in contrast to structural equation modeling in which different forms of

the model are used that turn out to be equivalent. The unifying aspect of these

state space models is their treatment of time.

The main benefit of state space modeling is the intrinsic special treatment of

time. Modeling dynamics requires some form of treating time differently. State

space models do that, and they can use latent variables. Other forms of mod-

eling dynamics with latent variables (e.g. latent differential equations, dynamic

factor analysis, P -technique factor analysis, N -way factor analysis, latent dif-

ference scores, latent growth curves, etc.) all exploit pre-existing techniques in

various ways to force them to incorporate dynamic or temporal information. The

exploitation works, but often has severe limitations. By contrast, state space

models were designed from the ground up to incorporate latent variables and
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non-stationary dynamics. With state space modeling there is no need to create a

Chimera to allow for dynamic modeling or measurement error, these are native

to the technique.

State space modeling, as implemented here, uses a type of recursive filter

called a Kalman filter. The Kalman filter consists of alternating prediction and

correction steps. The prediction step begins from some latent state vector at

time t called ~xt|t along with its error variance matrix called Pt|t, and creates a

prediction or forecast for the state vector and covariance at the next time t+ 1.

Thus, it uses the current estimates ~xt|t and Pt|t to create forecasts for the next

estimates ~xt+1|t and Pt+1|t.

As a set of equations, the Predict Step is

~xt+1|t = A~xt|t +B~ut (1.5)

Pt+1|t = APt|tA
T +Q (1.6)

The Predict Step consists merely of finding the model-predicted mean and vari-

ance matrix for the latent variables at the next time point conditional on their

current estimates. Thought of in a probability sense, the Predict Step maps the

current multivariate Gaussian probability distribution to a model-implied predic-

tion of the next probability distribution. The Prediction Step depends only on

the latent variable estimates, the model matrices (A, B, Q), and the measured

covariates (~ut).

On the other hand, the Correct Step, or measurement update, depends more

on the measured data and its corresponding measurement model. The Update

Step uses the observed data to correct the forecast from the Predict Step. Thus,

it uses the forecast estimates ~xt+1|t and Pt+1|t along with the data at time t + 1
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to create updated estimates ~xt+1|t+1 and Pt+1|t+1.

As a set of equations, the Update Step is

~̂yt+1 = M̂ean(~yt+1) = C~xt+1|t +D~ut+1 (1.7)

~̃yt+1 = ̂Residual(~yt+1) = ~yt+1 − ~̂yt+1 (1.8)

Ŝt+1 = Ĉov(~yt+1) = CPt+1|tC
T +R (1.9)

K = Pt+1|tC
TŜ−1t+1 (1.10)

~xt+1|t+1 = ~xt+1|t +K ~̃yt+1 (1.11)

Pt+1|t+1 = Pt+1|t −KCPt+1|t (1.12)

The Update Step consists of adjusting the estimates from the Predict Step based

on how well they correspond to the measured data, ~yt+1. The matrix K, called

the Kalman gain, is set so that under certain regularity conditions the updated

latent error variance matrix Pt+1|t+1 is as small as possible; that is, has mini-

mum trace. This achieves the goal of having as precise (i.e. smallest variance)

an estimate of the latent variables as possible with the given information. The

Update Step is critical for preventing prediction errors from accumulating, espe-

cially for non-stationary time series. Thrun et al. (2002) shows the importance

of the measurement update in preventing errors from accumulating in robotic

mapping. One of his figures is reproduced as Figure 1.3 which shows the path

of a robot navigating a maze obtained from its internal state variables without

measurement updates.

The previous discussion of the Predict and Update Steps in the Kalman filter

have illustrated the time-evolving distribution of the latent variables. It may not

then be surprising that the state space model with a Kalman filter reduces to a
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Figure 1.3: A robots path obtained by its odometry, overlaid with the given map.
Uncorrected small errors accumulate here. Reproduced from Thrun (2002).
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model of each data row as a multivariate Normal distribution.

~yt+1 ∼ N
(
µ = C~xt+1|t +D~ut+1, Σ = CPt+1|tC

T +R
)

(1.13)

Hence the minus two log likelihood of row t given the model is

lt =
−1

2

(
Ny log(2π) + log

(
det
(
Ŝt

))
+ ~̃y

T

t Ŝ
−1
t
~̃yt

)
(1.14)

−2LT = −2
T∑
t=1

lt (1.15)

−2LT =
T∑
t=1

(
Ny log(2π) + log

(
det
(
Ŝt

))
+ ~̃y

T

t Ŝ
−1
t
~̃yt

)
(1.16)

−2LT = TNy log(2π) +
T∑
t=1

(
log
(

det
(
Ŝt

))
+ ~̃y

T

t Ŝ
−1
t
~̃yt

)
(1.17)

The likelihood of a state space model given above is called the prediction error

decomposition.

To implement the state space model, OpenMx (Boker et al., 2011; Boker,

Neale, et al., 2014) was used. OpenMx had structures to compute the above log

likelihood in the special case where St = S is the same for every row of data.

Alternatively, OpenMx also allowed for a different covariance matrix for different

rows when definition variables are used. However, the state space model log

likelihood corresponds to a case where every variable is both a definition variable

and a modeled variable. Moreover, S−1t must already be calculated for use within

the state space model to generate the Kalman gain. Therefore, C/C++ code was

written by the author to allow OpenMx to estimate state space models using a

Kalman Filter.
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1.3.2 Independent Mixture Distributions

Suppose there is a data set in which some observations are produced by one

process and others are produced by another process. If the rows of data are in-

dependent, then a model like this is called an independent mixture distribution,

alternatively a finite mixture model or mixture distribution (see McLachlan &

Peel, 2000, for a more complete introduction). There might be c distinct pro-

cesses, or models, producing a set of data. The data can be assigned a probability

based on the model parameters, conditional on the model being true. The prob-

ability of the ith row of data given the jth model is written

P(~xi|C = j) (1.18)

All such combinations of i and j can be arranged into a matrix and then multiplied

by the probability of each model to produce the probability distribution for each

row of data.



P(~x1)

P(~x2)

P(~x3)

P(~x4)

...

P(~xN)


=



P(~x1|C = 1) P(~x1|C = 2) . . . P(~x1|C = c)

P(~x2|C = 1) P(~x2|C = 2) . . . P(~x2|C = c)

P(~x3|C = 1) P(~x3|C = 2) . . . P(~x3|C = c)

P(~x4|C = 1) P(~x4|C = 2) . . . P(~x4|C = c)

...
...

. . .
...

P(~xN |C = 1) P(~xN |C = 2) . . . P(~xN |C = c)





P(C = 1)

P(C = 2)

...

P(C = c)



(1.19)

It should be noted that even though P(~xi) is written, it is frequently the probabil-

ity density and not the actual probability. Also, there is an implicit conditioning
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on the free parameters being estimated: P(~xi) is intended to signify P(~xi|~γ) for

the vector of all estimated parameters ~γ.

In summation notation the ith row becomes

c∑
j=1

P(~xi|C = j)P(C = j) (1.20)

where readers familiar with probability theory will recognize P(~xi|C = j)P(C = j)

as the joint probability of ~xi and C = j, and also that the summation over all

possible values of C marginalizes this joint probability to create the following

identity.

P(~xi) =
c∑
j=1

P(~xi|C = j)P(C = j) (1.21)

This is to say that a mixture distribution model describes the probability density

function of data as a weighted combination of several density functions. The

density functions each correspond to a discrete class and the combination weights

are the marginal probabilities for each of the classes.

Finally, individual rows of data are assumed to be independently and identi-

cally distributed (i.i.d.) so the joint probability of all rows of data is simply the

product of their individual probabilities.

P(~x1, ~x2, . . . , ~xN) = P(~x1)P(~x2) . . .P(~xN) =
N∏
i=1

P(~xi) (1.22)

However, because the product of a large number of values between 0 and 1 quickly

approaches 0 and because computers have finite precision, the logarithm of the

joint probability is often taken. The logarithm of a product is the sum of the

logarithms of the elements of that product, so the following statement of the joint
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probability of the data is possible.

log (P(~x1, ~x2, . . . , ~xN)) = log (P(~x1)P(~x2) . . .P(~xN)) (1.23)

log (P(~x1)) + log (P(~x2)) + . . .+ log (P(~xN)) =
N∑
i=1

log (P(~xi)) (1.24)

Returning to matrix notation yields

log (P(~x1, . . . , ~xN)) = ~1T log





P(~x1|C = 1) . . . P(~x1|C = c)

P(~x2|C = 1) . . . P(~x2|C = c)

...
. . .

...

P(~xN |C = 1) . . . P(~xN |C = c)




P(C = 1)

...

P(C = c)




(1.25)

The incredible versatility of mixture models is that literally any model that

produces a probability can be used for the component classes. A mixture of

several normal distributions is just as possible as a mixture of a binomial, a

Poisson, a logistic, and a Wishart distribution. Moreover each distribution in the

mixture can be generated by its own kind of model. Thus a mixture of three

normal distributions can be composed of a structural equation model, a state

space model, and a mutlilevel model.

1.4 Related and Alternative Methods

1.4.1 Cluster Analysis

Here, only k-means cluster analysis will be considered. The goal of k-means

cluster analysis is to partition the data into k clusters, each of which is as homo-

geneous as possible (Everitt, Landau, Leese, & Stahl, 2011). Because of the large
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number of possible solutions and the discrete solution space, cluster analysis can

be a very time-intensive technique. The Stirling number of the second kind gives

the number of partitions of N items into k groups, and hence the number of possi-

ble k-means solutions for N data rows. These numbers grow factorially and hence

make brute force methods (i.e. try every possible solution) for cluster analysis

computationally impossible. For instance, with 100 items placed into 3 groups,

there are 8.59× 1046 possible arrangements. If 1 trillion arrangements were tried

every second, then trying all possible solutions would still take 2.72× 1027 years.

This is about one third of the way to the proposed heat death of the universe,

and 38 quadrillion times longer than the Earth’s sun is supposed to last before it

burns out and engulfs nearby planets.

1.4.2 Structural Equation Modeling

Structural equations extend the regression/ANOVA modeling framework (e.g.

Cohen, 1968; Cohen et al., 2003) to include latent variables. These latent, hid-

den, or unobserved variables are detected by their impact on the observed vari-

ables. Basic structural equation models (SEMs) assume the observed data and

the latent variables are distributed as a multivariate Gaussian. Therefore, the

mean and covariance completely specifies the distribution of both the observed

and unobserved variables. Similarly, because the distribution is normal, only

linear relationships exist among the variables. Consequently, linear models are

completely sufficient to represent any relationship among the Gaussian variables.

Linear models are isomorphic to linear functions which are in turn isomorphic to

matrices, therefore SEMs involve relationships between matrices. Hence, basic

SEMs contain parameters in various matrices that can be combined in particu-
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lar ways to form the model-implied means vector and covariance matrix of the

observed data. The model-implied moment matrices often depend on the param-

eters of the latent variables. Thus, the observed variables behave as if the latent

variables existed to the extent that the model fits the data.

Over the years, several related sets of matrices have been used to specify

SEMs. We will briefly describe the notations used for LISREL, Mplus/LISCOMP,

and RAM because these will be relevant for the exposition of state space modeling

later.

LISREL

The LISREL notation (LIneal Structural RELations; Jöreskog & Van Thillo,

1972; Jöreskog, 1973) describes SEMs in terms of endogenous and exogenous

latent variables, each of which are measured by a set of observed variables.

Endogenous variables are generated internally from the model; they are out-

come/dependent variables, or y’s. Exogenous variables are generated externally

from the model; they are predictor/independent variables, or x’s. The distinc-

tion between the “measurement” model and the “structural” model in SEMing

originates in LISREL. The structural model in LISREL consists of an intercept

(~α), the regression effects of the endogenous variables on each other (B), the

regression effects of the exogenous variables on the endogenous variables (Γ), and

an additive residual (~ζi) with zero mean and some covariance structure (Ψ).

~ηi = ~α +B~ηi + Γ~ξi + ~ζi ~ζi ∼ N
(
~0,Ψ

)
~ξi ∼ N (~κ,Φ) (1.26)

The measurement model in LISREL is entirely composed of two factor mod-

els. It consists of intercepts (~τx for exogenous variables and ~τy for endogenous
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variables), regressions of the observed variables on the latent variables (Λx for

exogenous variables and Λy for endogenous variables), and additive residuals (~δi

for exogenous variables and ~εi for endogenous variables) each with zero mean and

some structured covariance matrix (Θδ, and Θε, respectively).

~xi = ~τx + Λx
~ξi + ~δi ~δi ∼ N

(
~0,Θδ

)
(1.27)

~yi = ~τy + Λy~ηi + ~εi ~εi ∼ N
(
~0,Θε

)
(1.28)

Together, the structural and measurement models in LISREL imply the fol-

lowing mean and covariance matrices.

E


 ~y

~x


 = mean

 ~y

~x

 =

 τy + Λy(I −B)−1(α + Γκ)

τx + Λxκ

 (1.29)

E


 ~y

~x

( ~y ~x

) = cov

 ~y

~x

 (1.30)

cov

 ~y

~x

 =

 A(ΓΦΓT + Ψ)AT + Θε AΓΦΛT
x

ΛxΦΓTAT ΛxΦΛT
x + Θδ

 (1.31)

where A = Λy(I −B)−1.

It should be noted that LISREL and other SEM notations are models of

normally distributed data. SEMs imply the first and second moments of the

data, the multivariate mean and variance, which completely specifies a Normal

distribution. In a Normal distribution, only linear relationships exist between

variables so the linear regression models are entirely sufficient conditional on
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the multivariate Normality assumption. Moreover, the observations are assumed

to be independently and identically distributed conditional on the model. So

the expected mean and covariance no longer depend on the subscript i defining

different rows of data. There is a single mean and covariance that describes all of

the data rows at once. The highly related Mplus/LISCOMP notation for SEMs

is discussed next.

Mplus/LISCOMP

The LISCOMP notation (LInear Structural COMPonents; Muthén, 1984; Muthén

& Satorra, 1995), used in the Mplus software, is a slight variation on the LIS-

REL model. The primary difference between LISCOMP and LISREL is that

in LISCOMP the exogenous variables are manifest covariates instead of latent

exogenous variables.

~ηi = ~α +B~ηi + Γ~xi + ~ζi ~ζi ∼ N
(
~0,Ψ

)
(1.32)

~yi = ~ν + Λ~ηi +K~xi + ~εi ~εi ∼ N
(
~0,Θ

)
(1.33)

As a consequence of treating exogenous variables as manifest, there is no

measurement model for exogenous variables. Similarly, the expected multivariate

mean and variance are conditional on the observed covariates (~x).

E {~y | ~x} = mean(~y | ~x) = ~ν + Λ(I −B)−1(~α + Γ~xi) (1.34)
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E
{
~y~yT | ~x

}
= cov(~y | ~x) = Λ(I −B)−1Ψ(I −B)−TΛT + Θ (1.35)

The means vector in LISCOMP is identical to the means vector for the y

variables in LISREL, with the exception that there is continued dependence on

the subscript i in the LISCOMP means. Similarly, the covariance matrix in

LISCOMP is equal to the covariance block of the y variables in LISREL when the

exogenous matrices (Γ and Φ) are set to zero. The last SEM notation described

is RAM.

RAM

The RAM specification (Recticular Action Model; McArdle & McDonald, 1984) is

quite distinct from LISREL and LISCOMP. There is no differentiation between

exogenous and endogenous variables; no separate measurement and structural

models. The basic equation looks similar to that used in the structural models

of LISREL and LISCOMP without covariates or exogenous variables.

~vi = A~vi + ~ui ~ui ∼ N
(
~M, S

)
(1.36)

where ~vi and ~ui are vectors of manifest and latent variables. The ~vi vector can

be considered the manifest and latent variables vector, whereas the ~ui vector can

be thought of as the manifest and latent residuals corresponding to each element

of ~vi. Equation 1.36 then implies

~vi = (I − A)−1~ui (1.37)
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By introducing a matrix F = (I; 0), some part of which is the identity matrix

and the other part being a zero matrix, the mix of latent and manifest variables

in ~v can be selected to contain only the manifest variables ~g.

~g = F~v = F (I − A)−1~u (1.38)

So, the observed mean and covariance matrices implied by the RAM specification

are

E {~g} = mean(~g) = F (I − A)−1 ~M (1.39)

and

E {~g~gT} = cov(~g) = F (I − A)−1S(I − A)−TFT (1.40)

The main benefit of the RAM specification is its easy correspondence with

SEM diagrams. McArdle and Boker (1990) and Boker, McArdle, and Neale (2002)

describe the relation between the path tracing rules of Sewall Wright (1934, 1918,

1920) and modern SEM diagrams. All elements of the A matrix correspond to

one-headed arrows from one variable (manifest or latent) to another: asymmet-

ric relationships. All elements of the S matrix form two-headed arrows between

variables: symmetric relationships of variances, covariances, and residual vari-

ances. The elements of the F matrix simply select which variables are manifest

and which are latent: filtering latent (circles) from manifest (squares) variables.

Finally, the M matrix contains all the means and intercepts of all the variables.

The RAM notation is most notable for its economy of specification by using only

four matrices: A, S, F , and M . By contrast LISREL uses 13 matrices and

LISCOMP has 8.

Given the different model specifications, it is a valid question to ask “Can

36



any model in one notation also be specified in another?”. The brief answer to

this question is “yes”. Given the correct block-constructed matrices any LISREL

model can be put into RAM form (Horn & McArdle, 1980). Any model in

RAM form can be put into a subset of the LISREL matrices. The LISREL

and LISCOMP forms are likewise transformable into one another. The choice of

notation is often a consequence of convenience concomitant to the choice of SEM

software. The final item of SEMs examined here is their likelihood.

Likelihood

The distribution in structural equation modeling is multivariate Normal. There-

fore, the model specification results in a vector of implied means and a matrix

of implied covariances. The SEM then suggests that the data are distributed ac-

cording to these implied means and covariances. If ~yi is a vector of observations

on some unit i then SEMs imply

~yi ∼ N
(
~̂µ, Σ̂

)
(1.41)

Hence the log likelihood of row i given the model is

li =
−1

2

(
Ny log(2π) + log

(
det
(

Σ̂
))

+ (~yi − ~̂µ)TΣ̂−1(~yi − ~̂µ)
)

(1.42)

or using | ∗ | for the determinant and ~̃yi = ~yi − ~̂µ

li =
−1

2

(
Ny log(2π) + log |Σ̂|+ ~̃y

T

i Σ̂−1~̃yi

)
(1.43)
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and the total minus two log likelihood is

− 2LN = −2
N∑
i=1

li (1.44)

The likelihood functions for SEMs and State Space Models are the same in

many respects. The primary distinction is whether the distributions across rows

of data are identical. In structural equation modeling, individual rows of data

are assumed to be statistically independent and be governed by the same prob-

ability distribution/density function. Observations are said to be independent

and identically distributed (i.i.d.). Rows of data that are i.i.d. are completely

interchangeable. The joint distribution of i.i.d. observations is simply the prod-

uct of the probabilities of the individual rows, or in log-space the sum of the log

likelihoods as seen above. In state space models, the row residuals are indepen-

dent but they are not identically distributed. Independence greatly reduces the

potential complexity of the joint distribution function. Thus, independence is an

extremely convenient property that is common to both SEMs and SSMs.

Before we elaborate on SSMs, we provide an overview of several other options

that could be explored to investigate the central question of this dissertation:

how do we find people who have similar patterns of change over time?

1.4.3 N-way Factor Analysis

The typical factor analysis contains two types of replicates. For example, Cat-

tell’s R-technique is performed on tests and persons. The factor structure of the

tests is examined by using persons as replicated samples of the tests. Cattell’s Q-

technique seeks to find the factor structure of persons by using tests as replicated

samples of the persons. All six possible two-way combinations of persons, occa-
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sions, and tests form the basic factor analytic designs of Cattell (1952, 1966a),

R/Q, P/O, S/T . These designs are various kinds of two-way factor analyses.

Tucker (1963, 1966) did foundational work that extended the two-way factor

analyses to three “modes”. Thus, 3-way factor analysis could handle multiple

persons measured on several variables at many occasions. An N -way factor anal-

ysis to address the issues confronted by this dissertation would seek the person

structure of multivariate time series. Extending further to N modes (e.g. Snyder,

Law, & Hattie, 1984) directly addresses the issue of analyzing the full data box

that Cattell (1966a) described as 10-dimensional.

Initially, N -way factor analysis seems like an ideal method for analyzing the

kind of data considered here. However, the primary drawback of N -way factor

analysis is that it is highly underdetermined. Snyder et al. (1984) provide not one

N -way factor model, but 12 and each has its own assumptions, and unique, non-

overlapping interpretations. There is not one N -way factor model but many. An

additional difficulty in using N -way factor analysis to find the person structure of

multivariate time series is there is no special treatment of time. Just as Cattell’s

(1947) P -technique was criticized for not handling the autocovariance dynamic

structure of a time series (Anderson, 1963), an N -way factor analysis of persons,

variables, and times would be subject to the same critique. Time in N -way factor

analysis is treated like any dimension: without intrinsic order. Autoregressive,

moving average models could be implemented with the method of time-delay

embedding (Abarbanel, Brown, Sidorowich, & Tsimring, 1993, p. 1342, equation

18), but is not part of the method initially. Because of the underdeterminance and

temporal non-ordering problems, N -way factor analysis will not be investigated

in this dissertation.
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1.4.4 Pooled Cross-Sectional Time Series Approaches

There are methods for analyzing pooled cross-sectional time series. For example,

Dielman (1989) discussed models of multiple entities, each with a multivariate

time series, primarily from the perspective of finance and comparative political

ecology. Intuitively, this seems very relevant. However, in pooled cross-sectional

time series analysis there is little or no consideration of latent variables and

measurement error. It often uses OLS regression and no autoregressive effects

(no dynamics). Repeated measurements of people almost certainly are temporally

related to one another. Because of the limited treatment of latent variables and

dynamics, pooled cross-sectional time series are not further considered here.

1.4.5 Multilevel Models

Multilevel modeling is another possible strategy for representing several multi-

variate time series at once. Level one units would be occasions of measurement

which are nested within persons as level two units. The differences in dynamics

between people would then be modeled as random effects with some mean and

variance. However, several difficulties arise with this approach. First, autore-

gressive effects representing dynamics are possible but difficult to implement in

multilevel models. They are also somewhat limited in the multivariate case. Sec-

ond, multilevel models are usually made of directly observed variables without

consideration of measurement error. Most popular multilevel methods work only

on manifest variables, without latent variables. Most of these methods are mul-

tiple multilevel univariate regression. Multivariate multiple multilevel regression

is possible, but it is difficult to specify a general covariance matrix for the level

1 or level 2 random effects. So the typical multilevel regression approach, having
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only one outcome variable, would not adequately represent multiple multivariate

time series.

However, there exists some software, for instance Mplus (Muthén & Muthén,

1998-2010), that is well-suited to model multivariate multilevel data with latent

variables in a multilevel structural equation modeling framework. Mplus does not

have built-in functionality for time series modeling, yet Song and Zhang (2014)

recently showed that it can fit multilevel full information dynamic factor models

by using lagged data columns. There are still several drawbacks to this strategy.

First, the method of Song and Zhang (2014) does not incorporate a Kalman

filter (Kalman, 1960; Kalman & Bucy, 1961; Grewal & Andrews, 2008). As such,

the modeled time series must be stationary. This limits the applicability of the

method to developmental processes, which are often non-stationary by having at

least a time-varying mean. The second drawback to the Song and Zhang (2014)

strategy regards the random effects. With this technique individual differences

in temporal dynamics are conceived as qualitatively similar. They vary from

one person to the next as random variation in a distribution. By contrast, with

the state space mixture method there is some finite set of possible dynamics

and the task is to select which people are members of each element in that set.

The multilevel conception would have an infinitely large set of such possible

dynamics, but the mixture model has a small finite set. This makes the mixture

dynamics much simpler to understand for many applied researchers. Because

of this ease of understanding and its ability to handle non-stationary dynamics,

state space mixture models are preferred over state space multilevel models in

this dissertation, but the latter are a fruitful avenue for further investigation.
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1.4.6 Latent Differential Equations

Latent differential equations use structural equations models to represent smoothed

derivatives as latent variables and differential equations as regression relations be-

tween latent variables. Boker, Neale, and Rausch (2004) use a modified RAM

notation (McArdle & McDonald, 1984) to derive the model-implied covariance

matrix of a latent differential equation.

R̂ = L(I − A)−1S(I − A)−TLT + U (1.45)

where R̂ is the model-implied covariance matrix, L is the factor loadings matrix

that defines the latent variables as smoothed derivatives, A is the matrix of

regression coefficients between latent variables that define a differential equation,

S is the covariance matrix of the latent variables, and U is the diagonal matrix of

residual variances for the manifest variables. The principle innovation of latent

differential equation modeling is in the setting of the factor loadings matrix so

the latent variables are defined as derivatives. It should be noted that the above

implied covariance matrix is identical to that of an endogenous-only LISREL

model, or an Mplus model without covariates. Using the notation of LISREL

and Mplus, which are identical for endogenous-only models with no covariates

provided the subscripts for the LISREL matrices are dropped, the same implied

covariance matrix is

R̂ = Λ(I −B)−1Ψ(I −B)TΛT + Θ (1.46)

This then suggests that latent differential equation models can be written in
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terms of LISREL/Mplus matrices.

ηi = Bηi + ζi (1.47)

yi = Ληi + εi (1.48)

In theory any differential equation could be represented as an LDE; however,

as far as I know only a second-order linear harmonic oscillator and two coupled

second-order harmonic oscillators have ever been published.

1.4.7 Relations and Combinations of Modeling Techniques

The Relation of Structural Equation Models and Linear Dynamical

Systems

Recall that the Mplus model without means is stated as follows (Muthén, 2002):

~ηi = B~ηi + Γ~xi + ~ζi (1.49)

~yi = Λ~ηi +K~xi + ~εi (1.50)

It is composed of a structural model (Equation 1.49) and a measurement model

(Equation 1.50).

The Linear Dynamical System Model (i.e. state space model from control

theory), at first inspection, might not look very similar.

~xk+1 = A~xk +B~uk + ~qk (1.51)

~yk = C~xk +D~uk + ~rk (1.52)
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But, it is composed of a state equation (1.51) and an output equation (1.52).

The state equation (1.51) is directly analogous to the structural model (1.49).

Furthermore, the output equation (1.52) is identical to the measurement model

(1.50). The relationship becomes evident when the same notation is used for

both models.

~ηi+1 = B~ηi + Γ~xi + ~ζi (State Space State Equation) (1.53)

~ηi = B~ηi + Γ~xi + ~ζi (Mplus Structural Model) (1.54)

~yi = Λ~ηi +K~xi + ~εi (State Space Output Equation) (1.55)

~yi = Λ~ηi +K~xi + ~εi (Mplus Measurement Model) (1.56)

The similarity of Equations 1.53 and 1.54, and the identical status of Equations

1.55 and 1.56 should be clear. There is also a deeper relationship between the

SEM and SSM structural models.

If the dynamic system described by the state space model is at an equilibrium

point (alternatively, a stationary point or a fixed point), then the latent variable

values are unchanged by the increment of time: that is, when ~xk+1 = ~xk, then

~xk is called an equilibrium point. If the state space model is at an equilibrium

point, then its state equation becomes

~ηi = B~ηi + Γ~xi + ~ζi (State Space State Equation at Equilibrium) (1.57)

where it should be noted that the measurement model (output equation) is left

unchanged.

By inspection there is a one-to-one correspondence between every piece of the

state equation for a linear dynamical system at an equilibrium point (Equation
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1.57) and the structural part of the Mplus SEM (Equation 1.54). So, the state

equation at an equilibrium point is identical to the structural part of the Mplus

model.

The identity between the structural part of the Mplus model (Equation 1.49)

and the state equation of the linear dynamical system at an equilibrium point

(Equation 1.57) should be evident; as should the identity between their respective

measurement models (Equations 1.50 and 1.52). In short, a structural equation

model is a a linear dynamical system at an equilibrium point.

Moreover, recall that the LISREL structural equation model (e.g. Jöreskog

& Sörbom, 1982) is stated as follows.

~ηi = B~ηi + Γ~ξi + ~ζi (1.58)

~yi = Λy~ηi + ~εi (1.59)

~xi = Λx
~ξi + ~δi (1.60)

It is composed of a structural model (Equation 1.58) and a measurement model

(Equations 1.59 and 1.60). The structural model is identical in form to that

used in Mplus. So the same relationships hold between the LISREL and state

space structural models as between the Mplus and state space models. It is also

possible to show that the measurement models for LISREL and linear dynamical

systems are identical when certain block matrices are utilized.

Alternatively, MacCallum and Ashby (1986) show that a linear dynamical

system (called linear systems theory therein) can be represented as an SEM by

utilizing block matrices. Furthermore, they argue that because linear systems

theory (LST) was shown to be a special case of SEM, then SEM was more gen-
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eral. However, because SEM is also a special case of LST neither can truly be

considered more general. Rather, both models are extremely flexible and mod-

els of each type can be fit with whichever technique is most convenient at the

time. Similarly, Molenaar (1985) used block matrices in a SEMing framework to

define a white noise dynamic factor model. Later, Nesselroade, McArdle, Aggen,

and Meyers (2002) developed an autoregressive dynamic factor model that is

mathematically identical to a state space model. And then Browne and Zhang

(2004) and Browne and Nesselroade (2005) discussed autoregressive moving av-

erage (ARMA) models at the latent level as new kinds of dynamic factor models.

All of these can be specified as state space models (SSMs) and fit with SSM soft-

ware. In general, when an SEM computer program is used, the model is called

a dynamic factor model; when an SSM computer program is used, it is called a

state space model.

Multilevel Models in State Space Form

In the time series literature, it has been shown that univariate and multivariate

multilevel models (e.g. Raudenbush & Bryk, 2002; Lindstrom & Bates, 1990)

can be written as state space models (Jones, 1993; Icaza & Jones, 1999). More

recently, Gu et al. (2014) showed that several multilevel structural equation mod-

els (e.g. Muthén, 1991, 1994) also have a state space form, and when estimated

as state space models these multilevel SEMs are more computationally efficient

than when estimated by standard SEM methods.

The Combination of Structural Equation Models and Mixture Models

The flexibility of mixture models allows them to easily be combined with struc-

tural equation models. The conditional probability of each row of data given

46



each mixture class is calculated and combined using estimated class probability

weights. A structural equation model (SEM) simply specifies a Gaussian dis-

tribution, so the probability of a data row is merely the probability density of

that data row in Gaussian distribution implied by the model. Different classes

correspond to different SEMs and hence distinct probability density functions.

The likelihood of an entire mixture SEM is the same as that for a mixture model

in which the probability distributions are Gaussian and given by SEMs.

The Combination of State Space Models and Mixture Models

The same malleability that allows mixtures of SEMs also allows mixtures of state

space models. The method is identical, but to the author’s knowledge has not

previously been attempted or published. As evidence, several well-known books

on the subject do not mention the possibility (see Durbin & Koopman, 2001;

Shumway & Stoffer, 2010; Zucchini & MacDonald, 2009; Quenouille, 1957). The

combination of mixture models and state space models is the primary innovation

investigated in this dissertation.

1.5 Review

How should multiple multivariate time series be handled? Cattell’s (1952, 1966a)

data box is typically reduced to two dimensions before analysis. Multimode

factor analysis is one way to actually analyze a multidimensional grid (Snyder et

al., 1984), but the high degree of model indeterminacy and no special treatment

of time makes it hard to justify for this problem. Similarly, multilevel models

(Raudenbush & Bryk, 2002) could address the nesting of time points within

persons, but the inability to efficiently handle autocorrelations and measurement
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error make this strategy less realistic at the present. Because of their extreme

flexibility and ease of implementation, mixture models can be combined with

models of linear dynamical systems.

Two strategies are used to evaluate the combination of state space models

and mixture distributions. The first is a simulation study aimed at finding the

efficacy of the proposed technique for uncovering the correct grouping structure

in a setting where the true answers are known. The second is an empirical

data analysis whose purpose is to show how the method can be applied to real-

world data which always unveils problems and complications that no simulation

study is likely to find. The combination of mathematical derivation, simulation,

and applied problem solution illustrates a threefold evaluation of the proposed

method.
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Chapter 2

Simulation

2.1 Introduction

A new method, or a new combination of methods, requires a mechanism of eval-

uation. Mathematical and theoretical proofs can demonstrate that a method will

work in theory often under several assumptions that are never born out in real

data, but a simulation can address practical factors that influence the success of

a method in the safe environment where the answers are known. To evaluate the

performance of state space mixture modeling as a method to identify individuals

with similar patterns of change, data are simulated with an underlying grouping

structure and state space mixture models are used to uncover the groups. The

model knows that there are groups and how many there are, but has no informa-

tion on group membership, only the data. Hence, the simulation is a test case

in which the true data generation mechanism is known but not to the model as

it is being estimated. Once the model is estimated, the free parameter estimates

and model-selected grouping structure can be compared to their true, known val-

ues. Simulation provides a uniquely safe and efficacious environment to check the
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validity of a method.

The research questions asked and answered by the simulation study are:

1. How well can state space mixture modeling recover the simulated grouping

structure?

2. How well can state space mixture modeling recover the simulated parameter

structure?

3. What model attributes influence the above two questions and how much?

4. What sizes of problems are reasonable to estimate with the current software

in terms of computational time and memory limitations?

All of the above questions are conditional on the assumption that the fac-

tor structure (zero loadings), factor dimensionality, the dynamic structure (zero

entries of the dynamics matrix), and the number of groups are known. These as-

sumptions are made to simplify the estimation problem by addressing problems

that are particular and new to state space mixture modeling while ignoring sev-

eral problems that are common to many methods. Finding the factor structure in

a set of data is not a new problem. Spearman (1904), Thurstone (1934), Tucker,

Koopman, and Linn (1969), and Preacher, Zhang, Kim, and Mels (2013) among

many others have been addressing this problem for over 100 years. It is common

to any problem with a linear measurement model with unknown coefficients. The

number of groups problem is similar to the number of factors problem. Roweis

and Ghahramani (1999) discuss that these two problems are qualitatively similar.

The dynamics matrix may be partially known from theory so its zero entries are

fixed.
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2.2 Methods

With simulation, factors that influence how well a method works can also be

investigated. In this simulation, state space models are generated for multiple

people measured at multiple occasions and some people come from the same

model whereas others come from different models. The broad plan for the simu-

lation was to generate data for a set of individuals according to various instances

of state space models, set-up a state space mixture model matching the data

generation mechanism but with random starting values, estimate the state space

mixture model, store the results of the model estimation, and finally to analyze

the stored model results in comparison to each other and to the known simulation

values.

2.2.1 Factors to be Varied

Five factors were varied in this simulation: the number of groups or mixtures, the

number of people belonging each group, the number of occasions measured for

each person, the number latent factors, and the number of measured indicators

for each factor. The simulation factors and their levels are summarized below,

followed by a discussion of reasons for picking these factor and levels.

Simulation Conditions for data generation were as follows:

• Number of Groups/Clusters (4 levels): 1, 3, 5, 8

• Number of People Per Group (3 levels): 1, 10, 100

• Number of Occasions (4 levels): 5, 12, 50, 200

• Number of Factors (4 levels): 1, 3, 4, 8
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• Number of Variables Per Factor (4 levels): 1, 3, 4, 6

Each of the 4×3×4×4×4 = 768 combinations of varied factors creates a condition.

The goal was to achieve 1000 replications of each of the 768 conditions, yielding

a data set with 768, 000 rows.

The levels of the simulation factors were selected to represent typical exam-

ples of possible research designs for which state space mixture modeling might

be applied. The underlying number of groups in real data are not known, but for

this simulation it was assumed to be known, fixed, and correct. The difficulty of

selecting the correct number of classes in a mixture model is well-known and has

been studied previously (e.g. Tofighi & Enders, 2008). As Roweis and Ghahra-

mani (1999) comment, the number of mixture classes problem is essentially the

same as the number of factors problem or the number of clusters problem, so

methods suggested by Preacher et al. (2013) for selecting the number of factors

or Rousseeuw (1987) for clusters could be applied in the more realistic scenario

of not knowing the true number of mixture classes. The most relevant questions

addressed here concern only the parameter estimation quality and the recovery of

the correct person grouping structure conditional on several aspects of the model

being known.

The number of people belonging to each group was varied to allow for distinct

sample sizes across different conditions. Combinations of the number of groups

and the number of people per group create interesting classes of models. For

example, if there are 8 groups and 1 person in each group then the sample is

composed of 8 distinct individuals. The question addressed by this combination

is “How well can state space mixture models correctly find that each person

is unique?”. At the other end of the spectrum, if there is only 1 group and 100
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people per group then the sample has 100 total people, each of whom is randomly

equivalent to the others. It is important to understand the the total number of

people in the sample is the product of the number of groups and the number of

people per group. Moreover, the sample size per group is fixed by the condition.

It does not randomly vary within a condition.

The number of occasions per person adds another kind of sample size to this

simulation study. In many social science research settings, “sample size” refers

to only to the number of people. It may be the number of people assigned to

a treatment condition, or at a particular research center, but the number of

observations is equivalent the number of people. The number of measurements

per person is generally assumed to be one. In idiographic settings, sample size

would be the number of times an individual was measured. The number of

individuals is assumed to be one. Here we combine both sample sizes. There is

a sample size that refers to the number of people, and another that refers to the

number of times a person was measured. Of course, we could also consider the

number of variables measured on a person at each occasion to be a sample size.

When considering a number of people measured at multiple occasions on several

variables, Cattell’s (1952, 1966a) data box becomes a useful visualization.

The Number of Occasions varies from 5 to 200. The time sample size varies

from what would definitely be called “longitudinal” research at 5 time points, up

to definitely “time series” research using 200 time points, with two points that

have more moderated numbers of occasions. The spread in temporal sample size

is intended to bridge the gap between longitudinal data and time series data by

using the same method in both cases. This can be accomplished by trading off

persons for time points (e.g. Boker, Horn, Meyer, & Turkheimer, 2014), or more

generally trading off sampling units at different levels whether they be spacial
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points and time points or persons and locations. Having multiple identical units

adds statistical information on which models can be based. This trade off allows

multiple homogeneous people measured at only a few times to be used to estimate

a “time series” model, the state space model.

The number of factors was varied to create different kinds of dynamics. The

number of factors could also be called the dimension of the state space. This is

the dimension of the space in which the dynamics exist. The dimensionality of the

state space is important because certain kinds of behavior have minimum require-

ments on their existence based on this dimensionality. For instance in continuous-

time dynamical systems, chaos only exists in dimension three or more (Poincaré-

Bendixson Theorem; Strogatz, 2000; Cvitanović, Artuso, Mainieri, Tanner, &

Vattay, 2012), and when the space is finite-dimensional chaos only exists in non-

linear systems (Hirsch, Smale, & Devaney, 2003). Hence, in the linear system

modeled here, chaos is not possible. Likewise, oscillations require at least two

dimensions in the state space (Arnold, 1973). Thought of intuitively and geo-

metrically, oscillations in the state space consist of spirals, ellipses, and circles

which only exist in two or more dimensions. Thus, by varying the state space

dimension (i.e. the number of factors), the kinds of dynamic behavior possible

are also varied. Similar to the Number of Variables Per Factor, the first level

of the Number of Factors is a limiting case of a single underlying dimension.

Many dynamic models in the literature limit themselves to this case either for

conceptual or computational reasons. For example, Latent Differential Equations

models most frequently occur as a single latent dimension (e.g. Boker et al., 2004;

Boker, Montpetit, Hunter, & Bergeman, 2010; Steele & Ferrer, 2011), and only

rarely occur as two dynamic dimensions. Dynamic factor analysis is the same

(e.g. Browne & Nesselroade, 2005). The higher levels of Number of Factors are
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a sample of what is seen in the state space modeling literature (e.g. Åström &

Murray, 2010).

Lastly, the number of variables loading on each factor was varied from 1 to

6. The first level of Number of Variables Per Factor is a limiting case when each

latent variable is identified with an observed variable. Thus it is a special case

of essentially no latent variables, of using vector autoregressive modeling without

the need for the stationarity assumption. When there is only one indicator for

the factor then the factor is made identical to the indicator. In general the factor

loadings between the latent and observed variables are generated at random from

a uniform distribution between 0.4 and 1.0 to represent a range from modest

factor loadings to very strong ones; however, when there is one variable per

factor, the factor loading is set to 1.0 and is fixed in the model to identify it. The

other levels of Number of Variables Per Factor span a range from a small number

of latent variables to a moderate number. As the Number of Variables Per Factor

increases the factor becomes more easily identified as the common information

among the items. Note that according to Roweis and Ghahramani (1999, p. 309,

footnote 5; Goodwin & Sin, 1984), a state space model can be identified if the

latent state space dimension is less than or equal to the product of the observed

variable dimension and the number of consecutive observations, k ≤ τp, and in

this simulation k ≤ p with additional constraints made to ensure identifiability

of the models.

2.2.2 Data Generation

Aside from the varied simulation parameters, several other data generation de-

cisions were made. First, without loss of generality the generating model was
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always a state space model without covariates, inputs, or exogenous variables.

Without input, we are considering only the free-running dynamics of the system.

Generally, models are more easily estimated when under the influence of time-

varying external variables (Gregson, 1983), so the lack of these actually creates

a slightly more difficult estimation problem.

Individual time series were generated in measurement invariant groups. Peo-

ple within the same group were randomly sampled under identical generating

models. People in distinct groups had the same factor loadings and residuals,

but different autoregressive dynamics. In particular, the factor loadings matri-

ces (C matrices) were generated with simple structure. When there was only

one indicator per factor, the loading was fixed to unity. When there were more

indicators for each factor, the nonzero loadings were randomly sampled from a

uniform distribution between 0.4 and 1.0 (U(0.4, 1.0)). In all cases, the factor

variance was used to identify the scale of the latent variable by fixing its value

to 0.2. As mentioned previously, the factor loadings were generated to be equal

across people and mixtures.

Similar to the factor loadings, the unique variances were generated to be equal

across people and mixtures. The unique variances (R matrices) were generated

with diagonal structure. The nonzero variances were sampled from U(0.0001, 0.3).

Because the factor loadings and uniquenesses were equal across people and groups,

it is apt to describe these as measurement invariant groups. Only the dynamics

differed between groups. This corresponds to a case in which the measurement

process is identical across all individuals, but their patterns of change are distinct.

An interesting alternative formulation is the converse: the dynamics are uniform

across people, but they are measured in idiosyncratic ways. This alternative is

a dynamic analog of Nesselroade and colleagues’ idiographic filter (Nesselroade,
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Gerstorf, Hardy, & Ram, 2007; Z. Zhang, Browne, & Nesselroade, 2011; Molenaar

& Nesselroade, 2012). The idiographic filter design could be the subject of further

simulation and applied investigation.

In the present study, only the dynamics matrices (A matrices) differed across

groups. Because the qualitative behavior of a dynamical system is completely

determined by its eigenvalues (e.g. Hirsch et al., 2003), the dynamics matrix

for each group was generated based on its eigenvalues. First, the number of

complex (as opposed to real) eigenvalues was randomly uniformly sampled from

the maximum range possible for that simulation condition1. Then the remaining

eigenvalues were assigned to be real. The complex eigenvalues were sampled

uniformly from the unit square in the complex plane, whereas the real eigenvalues

came from the unit line, U(−1, 1). Because some of the eigenvalues have modulus

outside of the unit circle, some of the dynamics are non-stationary, but the vast

majority are stationary. The Kalman filter method of estimation used here does

not require stationary dynamics, so this does not violate any assumptions.

Once the real and complex eigenvalues were generated, they were then ar-

ranged into the block-diagonal Jordan canonical form, creating the canonical

dynamics matrix for this randomly generated system. Finally, a unitary (com-

plex orthogonal) rotation matrix, U , was generated by permuting the identity

matrix, and the canonical dynamics were rotated into those used for the data

generation.

1For conditions with one factor the possible number of complex eigenvalues is only zero; for
3 factors, the it is zero or two; for four factors, the it is zero, two, or four; and for eight factors,
it is zero, two, four, six, or eight.
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U = permute(I) (2.1)

Ause = U−1AcanonicalU (2.2)

Thought of in the dynamic sense, the Acanonical matrix gives the canonical

dynamics, the dynamics without regard to the actual directions of flow in the

state space. The U matrix then gives those directions, the eigenvectors for the

dynamics matrix which give the axes of the flow. The columns of the U matrix are

the eigenvectors of the dynamics. Because the U matrix is simply a permutation

of the identity matrix, the directions of flow are restricted to be orthogonal and are

not completely general. With that being said, the qualitative dynamic behavior

considered is completely general to all linear dynamic systems. The restricted

eigenvectors were chosen to allow more zeros in the dynamics matrix than would

exist if a more general rotation were used. The zeros were assumed to be known

and fixed by the model. Hence, the zeros represent hypotheses by the researchers

about which latent variables are not related to one another over time. Although

early simulation results indicated that zero entries in the dynamics matrix could

accurately be estimated when present, it was considered an additional challenge

for state space mixture modeling and was deferred for later work.

To verify that the matrix elements and their eigenvalues had the intended

distributions, a small-scale simulation was conducted on a 3-dimensional example.

The simulation created 10,000 3-dimensional (i.e. 3 × 3) dynamics matrices.

Figure 2.1 depicts the distribution of their eigenvalues. The upper section shows

the eigenvalues in the complex plane along with the unit circle for reference. It

should be clear that the eigenvalues are uniformly distributed bivariate uniformly
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between -1 and +1 with the real line (imaginary part equal to zero) being over

sampled. The lower section shows the frequency distribution of the modulus

(magnitude) of the the same eigenvalues. The reference line at 1.0 coincides

with the location of the unit circle. Figure 2.2 shows the frequency distribution

of the the actual matrix elements of the dynamics matrices generated. Thus

the histogram in the second row and the first column refers to the distribution

of the analogous element of the 3 × 3 matrix. The diagonal elements are all

uniformly distributed as expected. The off-diagonal elements are also uniformly

distributed with the exception that zero is over-sampled, which corresponds to

the real line also being over sampled as shown in the upper panel of Figure 2.1.

Note that the range of the histograms is truncated because of the large spike in

frequency at zero for the off-diagonal elements. An alternative rotation matrix

U would induce a different matrix element distribution, but leave the eigenvalue

distribution unchanged. Based on Figures 2.1 and 2.2, the simulation appears to

be generating eigenvalues and matrix elements as expected.

With the discussion of the dynamics eigenvalues, there is an opportunity for

confusion of the dynamics eigenvalues with the covariance eigenvalues typically

encountered in principal components analysis (e.g. Leon, 2006; Raykov & Mar-

coulides, 2008). We next consider these differing sources of eigenvalues.

2.2.3 Sources of Eigenvalues

There are eigenvalues for different matrices. For example, the dynamics might

be
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Figure 2.1: Eigenvalue Distribution for 10,000 Simulated 3-Dimensional Dynam-
ics Matrices
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Figure 2.2: Matrix Element Distribution for 10,000 Simulated 3 × 3 Dynamics
Matrices
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A =



0.07 −0.07 0.00 0.00

0.07 0.07 0.00 0.00

0.00 0.00 −0.12 0.31

0.00 0.00 −0.31 −0.12


with eigenvalues λk = −0.12 + 0.31i,−0.12− 0.31i, 0.07 + 0.07i, 0.07− 0.07i.

Notice that A is 4× 4 and has 4 eigenvalues. These dynamics when paired with

a scalar dynamic error covariance matrix Q = 0.2I generate a contemporaneous

(i.e. lag zero) covariance matrix as follows2

P ≈



0.20 0.00 0.00 0.00

0.00 0.20 0.00 0.00

0.00 0.00 0.22 0.01

0.00 0.00 0.01 1.22


with eigenvalues λk = 0.24, 0.21, 0.20, 0.20. Note that the eigenvalues of the

dynamics matrix A are not equal to the eigenvalues of the covariance matrix P ,

and all of the covariance eigenvalues are real whereas the dynamics eigenvalues

are sometimes complex. This is because the covariance matrix is necessarily

symmetric and real, and hence Hermitian. All Hermitian matrices have all real

eigenvalues (Magnus & Neudecker, 1988, p. 14; Leon, 2006, p. 347).

Continuing in this vein, generating data for a person with these dynamics

yields a lag zero covariance matrix with eigenvalues

λk = 0.62, 0.55, 0.43, 0.37, 0.22, 0.21, 0.12, 0.10, 0.09, 0.08, 0.05, 0.02

2The formula used is vec(P ) = (I −A⊗A)−1vec(Q), the solution to the discrete Lyapunov
equation from control theory (Kitagawa, 1977)
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Notice that there are 12 eigenvalues, all of them real, not complex. Any real

symmetric or complex Hermitian matrix has only real eigenvalues (Leon, 2006).

The dynamics matrix A need not be symmetric, so its eigenvalues generally are

complex. The lag zero covariance matrix, on the other hand, is always symmetric

and hence has only real eigenvalues. The data in this model have 12 variables

(three indicators per latent factor), thus the 12 eigenvalues. Generating data for

another person with the same dynamics gives similar but not identical eigenvalues

λk = 0.72, 0.53, 0.43, 0.29, 0.21, 0.18, 0.15, 0.12, 0.09, 0.08, 0.05, 0.02

The eigenvalues of the correlation matrix of the data for person 1 are

2.47, 2.32, 1.88, 1.56, 0.87, 0.63, 0.56, 0.50, 0.42, 0.37, 0.25, 0.18

and person 2 with the same dynamics would have eigenvalues:

2.46, 2.36, 1.75, 1.53, 0.87, 0.81, 0.59, 0.54, 0.40, 0.35, 0.23, 0.11

Note that a scree plot of these covariance eigenvalues would select 4 factors.

Finally, the eigenvalues of latent 4-dimensional covariance space are

0.29, 0.22, 0.17, 0.13

for person 1, and

0.20, 0.20, 0.18, 0.17

for person 2. Both of these closely match the theoretically derived eigenvalues

given above as λk = 0.24, 0.21, 0.20, 0.20.
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To summarize, there is some covariance structure in the data but it is mostly

autocovariance structure generated by the dynamics leading from one row to

another rather than from one column to another at the same time. As mentioned

in an earlier chapter, the dynamic error Q is essentially the factor covariance

matrix in factor analysis: the Ψ or Φ matrix from LISREL notation. In this

example, Q is a constant multiple of the identity matrix. More oblique factor

structure in the state space model could be created through making Q non-

diagonal. In addition to several distinct sources of eigenvalues in this simulation,

there are also several source of error which are discussed next.

2.2.4 Sources of Error

There are two sources of error in this simulation. The first is dynamic error.

Below is the state equation (structural model) for a state space model with no

covariates/inputs.

The State Equation: ~xt+1 = A~xt + ~qt (2.3)

The true dynamics are in the A matrix, ~xt is the vector of latent variables at time

t, and qt is a Gaussian-distributed random vector with mean zero and (often) di-

agonal covariance matrix. So the next latent state is not perfectly a function of A

and the current state. Rather, it is a function of the true dynamics, the current

state, and additive error that has a zero-mean and some covariance structure. Dif-

ferent covariance structures are possible: white noise (spherical), diagonal, zero,

or some theory-determined alternative form. The kind of error in the state equa-

tion is sometimes called process noise, random shocks/disturbances, or dynamic

error.
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The second source of error is in measurement. Below is the output equation

(measurement model) for a state space model with no covariates/inputs.

The Output Equation: ~yt = C~xt + ~rt (2.4)

The true output rules are in the C matrix, ~yt is the vector of observed variables

at time t, and ~rt is a Gaussian-distributed random vector with mean zero and

(often) diagonal covariance matrix. This is directly analogous to factor analysis.

In fact, the factor model can be represented as a state space model by setting the

dynamics matrix, A, to a zero matrix. Priestley and Subba Rao (1975) showed

that regression factor scores are identical to Kalman filter state estimates. The

matrix C is isomorphic to a linear measurement function that determines how

the latent variables produce actual observations. This measurement process is

not perfect, but rather is subject to additive noise with zero mean and some

covariance structure.

The relationship between dynamic and measurement noise can be seen in Fig-

ures 2.3 and 2.4. Figure 2.3a shows a three-dimensional latent process without

dynamic error. The process unfolds smoothly over time with clear jump disconti-

nuities in response to the occasional measured shock inputs, shown by the dashed

lines at the bottom of each panel. In Figure 2.3b, the same dynamics are gov-

erning the behavior of the system, but now there is dynamic noise contributing

to process. Importantly, the dynamic noise process is not simply the result of

adding noise to the noise-free process. Rather, the noise influences the dynamics

as they proceed. The noise acts as a random, unmeasured shock or input to

the system at every time point, just as the inputs/covariates act as systematic,

measured shocks at times 30, 70, and 110.
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Figure 2.3: Latent values of a simulated 3-dimensional state space model with
inputs
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Figure 2.4 acts in parallel with Figure 2.3. Where Figure 2.3 shows the latent

variables over time, Figure 2.4 shows the observed variables over time. One

indicator is shown for each factor, rather than all nine indicators. Note that

both observed time series appear noisy. This is due to the measurement error

operating in both conditions. Likewise, notice that the observed processes do not

appear identical when their only difference is the dynamic error. The dynamic

rules are the same across both processes but their observed patterns are distinct.

Thus, applying a dynamic model allows a degree of abstraction away from the

observed values toward the rules that determine the underlying process.

For this simulation study, data are generated according to the state space

model. The simulated data incorporate both process noise and measurement

noise. Because both of these sources of noise are part of the model, the simulated

data represent a random sample from a population in which the generating model

is correct. In contrast to the approach here, Tucker et al. (1969) simulated

data from a factor model by using a factor model with a small number of true

factors with large variance and large number of noise factors with small variance.

The Tucker-Koopman-Linn procedure is intended to create data that have an

underlying factor model, but where the factor model is only approximately true

(MacCallum & Tucker, 1991; MacCallum, 2003). The difference between the

generating model and the estimated model is called model error (MacCallum

& Tucker, 1991). In this simulation, there is no model error. Both sources of

error (process and measurement) are represented by the estimation routine. Put

another way, the model is true in the population; there is no model error.

If the purpose of the simulation study were to fit a single model to each

person’s multivariate time series, then generating time series with model error

would be trivial. However, our purpose is not so simple. The purpose is to
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Figure 2.4: Observed values of a simulated 3-dimensional state space model with
inputs
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take several people, each with their own time series and some of whom share

the same dynamics, and then to fit a model to all of these people and determine

which people are governed by the same dynamics. Each person has a state space

model that is true in the population of time points. The state space model for

each person is not approximately true, but exactly true in this simulation. The

question of interest lies in how well people can be grouped by similar dynamics

when the model is true. Future work should certainly address the more difficult

and applicable question of how well this procedure works when the model is only

partially correct.

2.2.5 Model Fitting

A state space mixture model was fit to each multigroup data set. The number

of mixtures and the number of factors were assumed known and correct. Ad-

ditionally, the zero factor loadings were assumed known. However, the nonzero

loadings, mixing parameters, nonzero dynamics matrix elements, and residual

variances were freely estimated. With the exception of the dynamics matrix,

starting values were randomly generated as another call to the same functions that

randomly generated the true values for the parameters. The dynamics starting

values were generated by taking the true dynamics and adding uniform random

values sampled from U(−.5, .5) to the nonzero values. The different procedure

for the dynamics matrix was used to keep the number and placement of nonzero

entries constant from the true values to the starting values. Because of the ro-

tation used on the dynamics eigenvalues, this procedure also keeps the number

of real and complex eigenvalues consistent between true and starting values by

adjusting only their magnitudes.
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Models were estimated in R (R Development Core Team, 2014) using the

OpenMx package (Neale et al., in press) and the mxExpectationStateSpace

function (Hunter, 2014b) which implements state space models fit with full infor-

mation maximum likelihood and prediction error decomposition via the Kalman

filter. The state space mixture was created in OpenMx by having a submodel for

each person in each class, and making a weighted combination of these submodel

likelihoods following a mixture model. Critically, the mixing parameters apply

to all people. Although it is possible to estimate a mixing parameter for person-

group combination, it creates an inconsistent estimator similar to the problem of

estimating person and item parameters simultaneously in item response theory:

as the number of people increases, the estimation does not improve asymptoti-

cally because for each new person there is another free parameter that must be

estimated. Consequently, the mixing parameters apply to each group identically

across all people. Individual likelihoods of each person within each group can

then be calculated post hoc by weighting their individual model likelihoods for

each model with the mixing parameters via Bayes’ theorem, treating the mixing

parameters as prior probabilities.

Matching the two-fold goals of this simulation study, two data sets were cre-

ated to store the results of the model fitting. In the first data set, the parameter

estimation was recorded. All starting values, true values, and estimated values

were written to this data file. Additionally, the number of iterations used by the

optimizer, the convergence of the optimizer, and the amount of estimation time

were also recorded. In the second data file, the recovered grouping structure was

tracked by keeping the mixing parameters and the likelihood of each person-group

combination. These two files were then analyzed to assess the feasibility of state

space mixture modeling to recover individuals with similar patterns of change
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over time from a sample of multiple people measured at multiple times.

2.2.6 Data Analysis

The data analyzed are the results of the model fitting, not the data generated

and used in the model fitting. Thus the analysis uses the modeling results as

data.

Parameter Estimation

A reasonable stipulation is that the parameters of a state space mixture model can

be accurately estimated, at least when the sample sizes of persons and occasions

per group are sufficiently large. In fact, accurate parameter recovery was shown

by Hunter (2014a) with a single simulated time series of 1000 observations spread

over two mixture classes. However, there remain several interesting questions to

address. First, how well can dynamics parameters be estimated on longitudinal

data (e.g. five observations) when the number of persons is large? That is, what

is the trade-off between additional time points and additional people with regard

to parameter estimation? And second, what other factors influence parameter re-

covery? Put another way, what are sufficient sample sizes to adequately estimate

parameters for these models?

The primary tools used to evaluate parameter recovery are correlation and the

root mean square (RMS) difference. The correlation coefficient provides a relative

measure of agreement, whereas the RMS indicates absolute agreement. Both

are used because of their complementary strengths and weaknesses. Note that

because starting values, true values, and estimated values were all stored there are

actually three comparisons that can be made about the parameters: starting-true,
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starting-estimated, true-estimated. The starting-true comparison is a reasonable

null against which to compare the true-estimated recovery. The starting values

were all randomly generated, so the degree of agreement (as measured by the

correlation or RMS) between the starting and true parameters is only what you

would expect by chance. Similarly, the starting and estimated parameters should

be dissimilar, unless an estimation problem occurred in which the parameters

were not able to move far enough away from their initial values. Finally, the

true-estimated comparison provides the traditional view of parameter recovery.

The estimated parameters should be unbiased estimates of the true parameters

with estimation errors that approach zero as the sample sizes increase. We next

discuss the analysis of the grouping structure.

Grouping Structure

The key goal of this simulation study was to explore how well the underlying

grouping structure could be recovered in state space mixture models under vary-

ing conditions. The only way this goal was achievable was in the simulation

context where the true grouping identities were known. When the true grouping

assignment is known the problem of evaluating state space mixture models’ as-

signments can be considered in several ways, each with their own metrics. First,

grouping recovery can be conceptualized as a multiclass classification problem.

The state space mixture model is treated as a classifier where its job is to assign

each person to one of several distinct classes. Second, because the true and es-

timated grouping can be arranged into a confusion matrix, a two-way frequency

table, the independence of the two categorical variables can be evaluated with

a χ2 test of independence, the G likelihood ratio test, and/or the mutual infor-

mation. Third and finally, the true and estimated groups can be thought of as
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two raters and the measure of rating quality is the inter-rater reliability. The

known groups form one rater and the estimated groups constitute the other. A

coefficient of inter-rater agreement beyond what would be expected by chance,

Cohen’s kappa (κ; Cohen, 1960) is the primary measure in this context. Because

κ uses agreement as its goal, rather than independence, and for other reasons that

will become clear as we proceed, κ was the main tool used to evaluate group-

ing recovery. However, because the other approaches have much to offer, they

were also considered but in a more limited scope. All of the approaches listed

previously will now be discussed in greater detail.

Multiclass Classification

Thought of in one way, the recovery of the person grouping structure is an issue

of multiclass classification. The broad approach used for multiclass classification

is to reduce the problem to a set of binary classifiers: either one-versus-rest,

in which an N -way classification is transformed into N 2-way classifications, or

one-versus-one, in which an N -way classification is turned into the N(N − 1)/2

unique pairs of 2-way classifiers (see Fawcett, 2006, for an introduction). Once the

multiclass problem is reduced to a set of binary classifications, standard binary

classification can be applied. The goal with binary classification evaluation is to

obtain metrics of the true positive (TP), false positive (FP), true negative (TN),

and false negative (FN) rates and to use combinations of these metrics to assess

classifier performance.

As an example of multiclass classification with three classes, one might obtain

the 3×3 confusion matrix below which lists the frequencies of various events. The

number of times class A was chosen when class B was true is given by d, and so

on. The set of equations below shows the transformation of the 3 × 3 confusion
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matrix into 3 2 × 2 confusion matrices using the one-versus-rest approach to

N -way classification.

Picked



True︷ ︸︸ ︷

A B C

A a d g

B b e h

C c f i


Category A vs Not−−−−−−−−−−→

 a d+ g

b+ c e+ f + h+ i

(2.5)

Category B vs Not−−−−−−−−−−→

 e b+ h

d+ f a+ c+ g + i

(2.6)

Category C vs Not−−−−−−−−−−→

 i c+ f

g + h a+ b+ d+ e

(2.7)

In the first matrix (Equation 2.5), the contrast A-versus-Not-A was created.

The number of True Positives is a; the number of False Positives is d + g; False

Negatives b+c; and True Negatives e+f +h+ i. In the second matrix (Equation

2.6), the contrast B-versus-Not-B was used with correspondingly different True

Positives (e), False Positives (b+h), False Negatives (d+ f), and True Negatives

(a + c + g + i). The final matrix (Equation 2.7) is defined similarly as the C-

versus-Not-C contrast. Hence, reduction of the 3× 3 matrix to 3 2× 2 matrices

has created not one, but three True Positive counts. So, The next challenge is to

collapse each 2 × 2 matrix down to one, global confusion matrix that describes

the overall classifier performance.

Two basic methods can be taken to summarize the N 2-way classifications,

micro-averaging and macro-averaging (e.g. Özgür, Özgür, & Gügör, 2005, p.

611). In micro-averaging, the N 2 × 2 tables are summed elementwise to create
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a single 2 × 2 table which then gives the average counts for the True Positives,

False Positives, False Negatives, and True Negatives. These, in turn, are used

to create the various metrics of binary classifier performance. By contrast, in

macro-averaging, one performance metric is computed for each of the N 2 × 2

tables, and then the mean is taken over the N performance metrics.

Micro- and macro-averaging can be illustrated with the 3 × 3 example and

Equations 2.5 through 2.7. The micro-average for Accuracy would proceed as

follows.

TPmicro = sum(a, e, i) = a+ e+ i (2.8)

FPmicro = sum(d+ g, b+ h, c+ f) = b+ c+ d+ f + g + h (2.9)

FNmicro = sum(b+ c, d+ f, g + h) = FPmicro (2.10)

TNmicro = sum(e+ f + h+ i, a+ c+ g + i, a+ b+ d+ e) (2.11)

= 2(a+ e+ i) + b+ c+ d+ f + g + h (2.12)

= 2TPmicro + FPmicro (2.13)

Note that the micro-average False Positives across all classes must equal the

micro-average of the False Negatives, creating a symmetric micro-average confu-

sion matrix. The micro-average Accuracy is

Accuracymicro =
TPmicro + TNmicro

TPmicro + FNmicro + FPmicro + TNmicro

(2.14)

By contrast, the macro-average Accuracy is

Accuracymacro =
1

N

∑
i

Accuracyi =
1

N

∑
i

TPi + TNi

TPi + FNi + FPi + TNi

(2.15)
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In general, the micro-Accuracy and the macro-Accuracy are not equal. The

micro-average performance metrics operate in a highly constrained space be-

cause the micro-average confusion matrix must be symmetric. This limits the

utility of the micro-average metrics. Broadly speaking, the multiclass classifica-

tion approach is somewhat limited by the lack of performance metrics based on

the general N -class case, instead reducing the N -class case to N or N(N − 1)

2-class cases and summarizing. If only a single instance of a classifier were being

evaluated, then the averaging may not be needed and each of the 2-way classi-

fiers could be examined in detail. However, in the simulation study there was

hundreds of thousands of N -way classifications, all of which must be evaluated.

As such, the multiclass classification metrics were examined in general but not

exclusively relied upon. Other approaches will now be discussed.

Contingency Table

Thought of in another way, the N × N contingency table (confusion matrix)

representing the cross tabulation of the true and selected models can be tested

for independence as any other contingency table with the Pearson χ2 test of

independence.

χ2 =
∑
i

(Oi − Ei)2

Ei
(2.16)

where Oi is the observed count for cell i in the contingency table and Ei is the

expected count based on the assumption of independence. Similarly, metrics

with the baseline assumption of independence could also be used. For example,

the mutual information of the “Picked” and “True” categorical random variables
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could be assessed.

MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (2.17)

where the entropy, H(X), of a discrete random variable X is defined as

H(X) =
∑
i

p(xi) ln (p(xi)) (2.18)

in which p(xi) is the probability mass function of X. The related G-test likelihood

ratio could also be computed to assess the independence of the “Picked” and

“True” categorical random variables.

G = 2NMI(X, Y ) = 2
∑
i

Oi ln
Oi

Ei
(2.19)

These are all highly inter-related tests. The original χ2 statistic (Pearson,

1900) is an approximation to the G-test likelihood ratio which, in turn, is re-

lated to the mutual information. The Pearson χ2 formula (Pearson, 1900) can

be derived as a second-order Taylor series approximation to the G test (Hoey,

2012). Because of the inter-relations of the χ2, the mutual information, and the

G-test, they all share the same weakness. In particular, the baseline for statis-

tical comparison is independence. In evaluating classification performance, more

is desired than the classifier that is not completely independent of the true un-

derlying structure. Non-independence is too weak a criteria to evaluate classifier

performance. Thus, although non-independence provides some evidence of good

grouping structure recovery, another classification measure must be considered.
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Inter-rater Reliability

A final, and perhaps most useful, conceptualization of the grouping recovery

is as the inter-rater reliability of the True rater and the model selection rater.

Considering the grouping recovery problem as one of inter-rater reliability would

suggest the use of a metric such as Cohen’s kappa (κ; Cohen, 1960).

κ =
P (a)− P (e)

1− P (e)
(2.20)

where P (a) is the probability of agreement between raters based on the con-

tingency table, and P (e) is the probability of agreement by chance. When the

probability of agreement is equal to the probability of agreement by chance, κ is

equal to zero. When agreement is perfect (and the probability of agreement by

chance is not equal to one), κ is one. Thus, κ reflects a standardized inter-rater

agreement beyond agreement by chance. The binary classification metrics (e.g.

accuracy) are often on a similar scale, but are difficult to generalize to multiple

classes. The χ2, G, and mutual information indices are scaled so that complete

agreement is anchored at one end with statistical significance indicating a depar-

ture from independence on the other end. However, they all have differing scales

depending on the degrees of freedom and other factors, making them somewhat

difficult to reconcile across simulation conditions. Coefficient κ extends nicely to

multiple categories and is anchored by perfect agreement and chance agreement,

thus it was the primary outcome by which group recovery structure was assessed.

Because of its bounded scale between zero and one, logistic regression was used to

predict Cohen’s κ as a function of the simulation condition and their interactions.
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Dealing with Label Switching

The parameters of a mixture model are only uniquely determined up to a per-

mutation of the classes: the estimated classes might be a permutation of the true

classes. For example, if there are three classes (A, B, and C) in a univariate

Gaussian mixture model with true means 10, 15, and 20, respectively, all with

variance 1, then the estimated classes A, B, and C could have means 15.1, 19.4,

and 10.7, respectively. Thus, the estimated classes A, B, and C align with the

true classes B, C, and A. This permute-ability of the classes and parameters of

a mixture model is the problem of label switching. An approach akin to that of

Stephens (2000) was used to resolve the problem of label switching. The Bayesian

posterior likelihood of each person being in each group conditional on each group’s

prior probability was used to determine group membership. Subsequently, group

identity was determined by maximizing the true positive rate (sum of the diago-

nal of the confusion matrix) over the space of all possible permutations of group

labeling.

2.3 Results

The results of the simulation study will now be described. The findings can be

placed into three general categories. First, the findings regarding the simulation

completion, model convergence, and estimation time are discussed. Second, the

parameter estimation quality and some factors that influence it are described.

Finally, the recovery of the underlying grouping structure, the primary outcome

of interest, and influential factors for it are characterized.
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Figure 2.5: Number of Replications Completed for Each Simulation Condition
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2.3.1 Simulation Completion

Figure 2.5 shows the actual number of replications finished for each condition.

The goal number of replications was not achieved for all conditions because of

computational time to estimate certain kinds of models and software limitations

in generating some sufficiently large models. The mean number of replications

completed was 630.7, median was 1000. Ten conditions had zero replications.

Thus the simulation generated 484,394 rows of data instead of 768,000 (61.6%).

As mentioned previously, computational time was a major limiting factor. The

simulation as conducted required 10.9 years of computer time just for model es-

timation, not including data generation or model building. This computer time
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was distributed over a maximum of 256 nodes on the OU OSCER supercom-

puting system for several weeks. A conservative estimate of the amount of time

required to fill in the missing 283,606 replications suggests 388 additional years

of computer time would be needed because the remaining conditions are large

and computationally intensive.

Figure 2.6 depicts the median model run times across all conditions. The

run times are shown in log units. There is a clear effect on the run time around

Condition 200, 400, and 600. This is the effect of number of groups. For the

first 192 conditions, there is only 1 group. For conditions 193 to 384, there are 3

groups; and so on. There is also a relatively clear effect of the number of people

per group (1, 10, or 100). The break points for 1, 10, and 100 people per group

are noted on the graph when the number of groups is 5. The lower bound for

the median runtime among the conditions in this simulation is about .14 seconds

(e−2), and the upper bound was about 48 hours (log(48 ∗ 60 ∗ 60) ≈ 12). The

upper bound was determined by the limitations of the supercomputer which only

allowed a job to be run for at most 48 hours.

The convergence of models across conditions is illustrated by Figure 2.7. A

status code of zero, indicated by a black line in the figure, means that model

estimation finished normally: the optimizer found a flat spot in the parameter

space and sequence of parameter estimates from one iteration to the next steadily

converged on the solution. For almost all conditions, the most frequent status

code was zero, indicating that model estimation was generally successful. The

next most frequent status code was one, indicated by a green line in the figure.

A status code of one means that the optimizer found a flat spot in the likelihood

space, but it happened rather suddenly so the sequence of parameter estimated

from one iteration to the next did not steadily converge on the solution. Sta-
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Figure 2.6: Median wall clock running time of models in each condition. Time
is in log units. Breaks between different numbers of groups in the model and
number of people per group are noted in the figure.
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Figure 2.7: Proportion of convergence status codes given by the optimizer for each
condition. Status Code 1 (Green) = “The final iterate satisfies the optimality
conditions to the accuracy requested, but the sequence of iterates has not yet
converged. NPSOL was terminated because no further improvement could be
made in the merit function”. Status Code 4 (Blue) = “The major iteration limit
was reached”. Status Code 6 (Red) = “The model does not satisfy the first-order
optimality conditions to the required accuracy, and no improved point for the
merit function could be found during the final linesearch”.
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tus code one generally does not indicate an estimation problem. On the other

hand, status code six, shown as a red line in the figure, does indicate a serious

optimization problem. Status code six means that a flat spot could not be found

in the likelihood space and the optimizer could not find a better solution. Most

often, status code six is resolved by picking different and better starting values.

The blue line shows status code 4: the iteration limit was reached. Finally, the

yellow line shows that virtually no models were terminated.

Figure 2.7 has several features that are worth discussing. First, note that
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conditions 1 through 192 contain only one group, and hence are not state space

mixture models at all; they are just state space models. The non-mixture models

are used simply as a comparison for the mixture models. It is relatively evi-

dent that mixture models converge less frequently than non-mixture state space

models. However, the highest proportion of non-convergent models have status

code 1 (Green) which generally speaking does not indicate a problem. Second,

the status code 6’s appear to spike around condition 1, condition 200, condition

400, and condition 600. These conditions correspond to the number of people

per group being one and the number of occasions being five. The status code

4’s (iteration limit reached) spike for the same conditions. Thus, the smaller

sample conditions have more estimation problems. Be that as it may, eighty to

ninety percent of models across all conditions had status zero or one. So, overall

it appears that model estimation and convergence was not terribly problematic.

We now consider the parameter estimation.

2.3.2 Parameter Estimation

As mentioned previously, for each repetition of each condition the starting values,

estimated values, and true values of the parameters were recorded. Moreover, the

true values vary from one repetition to the next because they were randomly gen-

erated. Therefore, the true and estimated values for the parameters are compared

within each repetition, creating one comparison for each row of simulation data.

Hence, there is a distribution of True-Estimated comparisons. Similarly, there is a

distribution of True-Starting comparisons that provides the null relation between

the true parameter values and the randomly generated starting values. Two tools

were used to make comparisons between parameter sets: the correlation and the
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Figure 2.8: Overall comparison of the distributions of True-Start parameter cor-
relations and the True-Estimated parameter correlations. Similarly, the Root
Mean Square (RMS) comparison is made. The True-Start relationship distribu-
tion is in transparent Blue. The True-Estimated relationship distribution is in
transparent Red. The regions of overlap become Purple.
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root mean square (RMS) difference.

Figures 2.8 through 2.12 examine distribution of the True-Estimated correla-

tions and RMS values in different parameter subsets using the True-Start distri-

bution as a null for comparison. Figure 2.8 makes the overall comparison using

all of the parameters (i.e. the dynamics parameters, factor loadings, and residual

variances). The correlation and RMS both indicate that the most frequent True-

Estimated values provide better fit than many of the True-Start values. There

are, however many instances in which the estimated parameters are farther away

from the true values than their starting values. This unfortunate circumstance

might be driven by the smaller sample size conditions, where the sampling er-

ror makes the best estimates of the parameters for the data somewhat far from

their population values because the random sample is not particularly close to

the population.
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Figure 2.9: For only the dynamics parameters, comparison of the distributions
of True-Start parameter correlations and the True-Estimated parameter corre-
lations. Similarly, the Root Mean Square (RMS) comparison is made. The
True-Start relationship distribution is in transparent Blue. The True-Estimated
relationship distribution is in transparent Red. The regions of overlap become
Purple.
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Figure 2.9 makes a similar comparison to Figure 2.8, but restricts the com-

parison to only the dynamics parameters. The dynamics parameters determine

how each person operates over time. In general, the dynamics parameters resem-

ble the overall parameters. Because the dynamics vary from one group to the

next, there are sets of dynamics parameters for each group. Figure 2.9 showed

the first group dynamics parameters that includes the case in which there was

only one group, and hence a non-mixture state space model. By contrast, Figure

2.10 shows the second group dynamics matrix. Only cases of state space mixture

models are included here. The comparisons for groups three through eight are

similar to group two. It appears that the dynamics parameters were easier to

recover when there was no mixture model. This replicates the findings of Figure

2.7 with the optimizer convergence and status codes.
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Figure 2.10: For only the dynamics parameters in the second group, comparison
of the distributions of True-Start parameter correlations and the True-Estimated
parameter correlations. Similarly, the Root Mean Square (RMS) comparison is
made. The True-Start relationship distribution is in transparent Blue. The True-
Estimated relationship distribution is in transparent Red. The regions of overlap
become Purple.
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Figures 2.11 and 2.12 restrict the parameter comparison to the factor load-

ings and residual variances, respectively. These parameters are recovered much

better than the dynamics parameter. Also, the null distributions of the True-

Start correlations for the factor loadings and residual variances look qualitatively

different from those of the dynamics parameters. But the distribution of the True-

Estimated correlations is relatively similar for the factor loading and dynamics

parameters. Recall that the starting values for the dynamics were generated

by taking the true values and adding a uniform random variable distributed as

U(−.5, .5). It is possible that the less favorable True-Start versus True-Estimated

comparison for the dynamics parameters is due to this different procedure for

generating starting values for the dynamics matrices.

None of Figures 2.8 through 2.12 consider the differential estimation quality
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Figure 2.11: For only the factor loadings, comparison of the distributions of
True-Start parameter correlations and the True-Estimated parameter correla-
tions. Similarly, the Root Mean Square (RMS) comparison is made. The True-
Start relationship distribution is in transparent Blue. The True-Estimated re-
lationship distribution is in transparent Red. The regions of overlap become
Purple.
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Figure 2.12: For only the residual variances, comparison of the distributions
of True-Start parameter correlations and the True-Estimated parameter corre-
lations. Similarly, the Root Mean Square (RMS) comparison is made. The
True-Start relationship distribution is in transparent Blue. The True-Estimated
relationship distribution is in transparent Red. The regions of overlap become
Purple.
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for the various simulation conditions. The marginal effect of each simulation

condition is considered in Figures 2.13 through 2.17. From these figures, the

factors that influence parameter estimation can be seen. In Figure 2.13, the

overall parameter estimation quality is shown in terms for root mean square

difference for each level of “Number of Variables Per Factor”: 1, 3, 4, and 6.

There is not an obvious, strong influence of the number of variables per factor

other than for one variable versus more than one. Dissimilarly, Figure 2.14 shows

that as the number of factors increases the overall parameter estimation improves.

This may be due to the added constraints in the higher dimensional dynamics

matrices. All zero entries in the dynamics matrices were assumed fixed and

known, so higher dimensional spaces became easier to estimate because of the

added information about the zero parameters.

Figure 2.15 characterizes the effect of the number of occasions on parameter

recovery. This is the first sample size effect considered. As the number of occa-

sions increases there is a clear and strong improvement in the overall parameter

estimation. The persistent spike around the null distribution RMS (about 0.2 in

the graph) even for cases of 200 occasions of measurement indicates that other

factors are also critical for quality parameter recovery. One of those other factors

is the second sample size considered, the number of people within each group.

The effect of number of people per group is detailed in Figure 2.16. Again, as

the number of homogeneous replicates of the time series increases, the model

estimation improves. Finally, as the number of groups increases the parameter

estimation quality declines (Figure 2.17). The one-group case is a non-mixture

state space model and has the best parameter estimation. Each higher level of

number of groups decrements the parameter estimation.

Broadly speaking, the parameters for state space mixture models can be esti-
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Figure 2.13: Effect of Number of Variables Per Factor on parameter recov-
ery: comparison of the distributions of True-Start parameter Root Mean Square
(RMS) difference and the True-Estimated parameter RMS. The True-Start re-
lationship distribution is in transparent Blue. The True-Estimated relationship
distribution is in transparent Red. The regions of overlap become Purple.

numVarPerFactor = 1

Root Mean Square Difference

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0
30

00
0

numVarPerFactor = 3

Root Mean Square Difference

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0
30

00
0

numVarPerFactor = 4

Root Mean Square Difference

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0
30

00
0

numVarPerFactor = 6

Root Mean Square Difference

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0
30

00
0

90



Figure 2.14: Effect of Number of Factors on parameter recovery: comparison of
the distributions of True-Start parameter Root Mean Square (RMS) difference
and the True-Estimated parameter RMS. The True-Start relationship distribu-
tion is in transparent Blue. The True-Estimated relationship distribution is in
transparent Red. The regions of overlap become Purple.
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Figure 2.15: Effect of Number of Occasions on parameter recovery: comparison
of the distributions of True-Start parameter Root Mean Square (RMS) difference
and the True-Estimated parameter RMS. The True-Start relationship distribu-
tion is in transparent Blue. The True-Estimated relationship distribution is in
transparent Red. The regions of overlap become Purple.
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Figure 2.16: Effect of Number of People Per Group on parameter recovery: com-
parison of the distributions of True-Start parameter Root Mean Square (RMS)
difference and the True-Estimated parameter RMS. The True-Start relationship
distribution is in transparent Blue. The True-Estimated relationship distribution
is in transparent Red. The regions of overlap become Purple.
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Figure 2.17: Effect of Number of Groups on parameter recovery: comparison of
the distributions of True-Start parameter Root Mean Square (RMS) difference
and the True-Estimated parameter RMS. The True-Start relationship distribu-
tion is in transparent Blue. The True-Estimated relationship distribution is in
transparent Red. The regions of overlap become Purple.
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mated reasonably accurately. The measurement model parameters (factor load-

ings and residual variances) seem easier to recover than the dynamics parame-

ters. Based on the simulation findings, a recipe for accurate parameter estima-

tion would include at least three measured variables for each factor, as many

constraints on the dynamics as possible, measuring people as many times as you

can, getting as many homogeneous people as you have available, and using as few

mixture classes as can be justified. With that in mind, we now turn to the issue

of grouping structure recovery: the proper assignment, based on the imperfectly

estimated model, of people to their generating groups.

2.3.3 Grouping Structure Recovery

A key outcome of the simulation study is the proper assignment of people to

their generating model. Given imperfectly estimated parameters and data with

sampling error, it is a non-trivial task to correctly classify individuals into groups.

As discussed previously, the problem can be evaluated as a multiclass classifica-

tion using standard metrics from that area of research. Figure 2.18 shows the

group recovery in terms of the micro-averaged True Positive and False Positive

rates. The space of True Positive and False Positive rates is often called Receiver

Operating Characteristic (ROC) space. Completely chance performance of the

classifier occurs when the true positive rate is equal to the false positive rate: that

is, the chance of making a correct assignment to a generating model is equal to

the chance of making an incorrect assignment. Perfect classification occurs in the

upper left-hand corner where the True Positive rate is 1.0 and the False Positive

rate is 0.0. Figure 2.18 shows the effect of number of groups on classification in

ROC space. Critically, it shows every individual row of the simulation data with
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no averaging. The obvious separation between the number of groups is due to

the micro-averaging that reduces N×N classification into N 2×2 classifications.

The induced pattern is a limitation of these findings.

The micro-accuracy, shown in Figure 2.19, does not have the same limitation

as the ROC space. The overall mean accuracy across all conditions was 0.91.

However, this includes cases of trivially correct classification. When there is only

one group, classification is necessarily correct and accuracy is 1.0. Figure 2.20
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corrects for this by excluding all cases of where the number of groups was one.

There are still over 50,000 cases in which 100 percent accuracy was achieved.

The mean dropped from 0.91 to 0.86. Overall, this implies high accuracy in

classification. A similar picture is painted by Figure 2.21. Importantly, the

scale of kappa differs slightly from that of accuracy. The accuracy metric has

no demarcation of what chance accuracy is for a given classification problem,

whereas kappa does. Chance agreement between raters, in terms of kappa, is

indicated by zero. So, the mean kappa of 0.58 does not mean that agreement was

near chance by this metric. On the contrary, the mean kappa says that although

agreement was not perfect, it was far above chance.

To see the effect that the simulation conditions had on kappa and accuracy,

Table 2.1 shows the marginal means for these variables on each level of the the

simulation factors. All the simulation factors appear to have some effect on kappa

and accuracy, however, these are not always in the same direction. The number

of groups seems to hurt kappa, but improve accuracy. This could be due to

the difference in how kappa and accuracy treat chance agreement. The number

of people per group has little effect on either outcome, but recall this factor

had a large influence on parameter recovery (see Figure 2.16). The number of

occasions and number of variables per factor have influences on classification

that agree across kappa and accuracy. The number of occasions improves both,

whereas the number of variables per factor decreases both. The single largest

simulation parameter that influence grouping structure recovery was the number

of factors. When the number of factors was 1, the mean kappa was only 0.43,

but when the number of factors was 8, the mean kappa was 0.73, the highest

mean kappa across any of the marginal conditions investigated. As discussed in

the section on parameter estimation, the increase in number of factors bears with
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Figure 2.19: Group micro-average accuracy for all numbers of groups including
non-mixture models with perfect accuracy. The blue line indicates the mean
micro-accuracy.
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Histogram of Group Recovery Accuracy
More Than One Group

Accuracy

F
re

qu
en

cy

0.6 0.7 0.8 0.9 1.0

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

mean = 0.86

Figure 2.20: Group micro-average accuracy for numbers of groups greater than
one, that is, excluding non-mixture models with perfect accuracy. The blue line
indicates the mean micro-accuracy
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Figure 2.21: Cohen’s Kapps for numbers of groups greater than one, that is,
excluding non-mixture models with perfect accuracy. The blue line indicates the
mean Kappa
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Table 2.1: Marginal Mean Kappa and Accuracy Values Across Simulation Factors

Simulation Factor Level Kappa Accuracy
Number of Groups 3 0.63 0.84

5 0.57 0.86
8 0.50 0.89

Number of People Per Group 1 0.58 0.86
10 0.57 0.86
100 0.59 0.84

Number of Occasions 5 0.52 0.84
12 0.56 0.86
50 0.61 0.87
200 0.63 0.87

Number of Factors 1 0.43 0.81
3 0.59 0.87
4 0.65 0.88
8 0.73 0.90

Number of Variables Per Factor 1 0.63 0.88
3 0.57 0.86
4 0.56 0.85
6 0.52 0.84

it an increase in the distinctness of the dynamics. In 1-dimensional space, there

are few possibilities for how dynamical systems can behave, but in 8-dimensional

space many patterns are possible that are easily separable. The finding that the

number of factors so greatly influences groups recovery is preliminary evidence

that people are easier to classify correctly when their dynamics are distinct.

To further investigate and quantify how the the simulation factors impacted

group recovery, logistic regressions were conducted with the inter-rater reliability

Cohen’s kappa as the outcome. A summary of the main effects model is presented

in Table 2.2. Similar to the results found in Table 2.1, the logistic regression

suggests that the number of groups negatively impacts classification quality, as

does the number of variables per factor to a lesser extent. The sample size factors,

number of people per group and number of occasions, aid in determining group
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Table 2.2: Logistic Regression with Kappa as Outcome

Estimate Std. Error z value Odds Ratio
(Intercept) -0.58 0.0030 -194.5 0.56
numGroups5 -0.34 0.0016 -208.2 0.71
numGroups8 -0.62 0.0015 -405.9 0.54
numPeoplePerGroup10 0.05 0.0025 20.7 1.05
numPeoplePerGroup100 0.12 0.0025 47.4 1.13
numOccasions12 0.30 0.0016 187.9 1.35
numOccasions50 0.54 0.0017 312.4 1.71
numOccasions200 0.69 0.0019 357.3 2.00
numFactors3 1.05 0.0015 688.5 2.85
numFactors4 1.42 0.0017 845.5 4.14
numFactors8 2.02 0.0024 826.4 7.53
numVarPerFactor3 -0.09 0.0016 -56.8 0.91
numVarPerFactor4 -0.10 0.0017 -58.5 0.91
numVarPerFactor6 -0.17 0.0018 -96.0 0.84

Note: Estimate is in log odds units. Odds ratio is eEstimate. All p-values are less
than 1×10−10. The Intercept term has numGroups=3, numPeoplePerGroup=1,
numOccasions=5, numFactors=1, numVarPerFactor=1. All coefficients are con-
trasted against this Intercept condition. The numGroups=1 condition is omitted
because it always has perfect classification.

membership. Again, the largest influence is found for the number of factors.

Examination of the z values and odds ratios is particularly informative. For

example, when the number of factors is eight and leaving all other simulation

parameters constant, perfect classification is 7.53 times more likely than when the

number of factors is one. The odds ratio for the lowest factor contrast (one factor

versus three factors) is still higher than the next largest effect (5 occasions versus

200 occasions). This implies that if group recovery is the goal, then measuring an

additional latent dimension is far more beneficial than measuring addition time

points, at least when some relations are known between the additional latent

variable and the other latent variables.

Further models were tested that included two-way and three-way interactions

with similar results. Given the sample size and the number of effects tested, sta-
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tistical significant is not the most useful criterion. All of the effects are significant

and there are a large number of them. Consequently, it makes sense to consider

the distribution of effects as compared to a similarly constructed normal distri-

bution of effects. Parameters that diverge from normality can then be found and

considered separately. A plot of the z-values of the two-way interaction model

versus the z-values of a standard normal distribution is shown in Figure 2.22.

Departures from normality can be seen as departures from the diagonal line. It is

evident from this figure that several effects diverge from normality. The departure

is such that the tails of the two-way interaction effects distribution are too heavy.

That is, there are more very large positive and very large negative effects than a

normal distribution implies. The coefficients that involve the number of factors

are highlighted in red. The vast majority of effects that depart from the line

involve the number of factors. The two, large, positive effects in Figure 2.22 that

do not involve number of factors are for the main effects of number of occasions

being 50 or 200 with the effect of 50 being the lower of the two.

A similar figure for three-way interactions was constructed (Figure 2.23) with

similar result. The larger effects tend to involve the number of factors, and to a

lesser extent the number of occasions.

To summarize, the results of the simulation study can be placed into three

categories: model estimation time/convergence, parameter estimation, and group

membership identification. With regard to model estimation, the number of

groups and number of people per group were the largest influences. Models with

more groups and/or more people per group took much longer to estimate. Fur-

thermore, these longer running models had more convergence issues, yet most

models, even in the larger conditions, did not have overly problematic conver-

gence. For the parameter estimation, the measurement model parameters seemed
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Figure 2.22: Quantile-Quantile Plot of the z values of all the main effects and
two-way interactions of the logistic regression with kappa as the outcome and the
simulation factors as the predictors. Effects involving the number of factors are
colored red.
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Figure 2.23: Quantile-Quantile Plot of the z values of all the main effects, two-
way interactions, and three-way interactions of the logistic regression with kappa
as the outcome and the simulation factors as the predictors. Effects involving the
number of factors are colored red.
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easier to recover than the dynamics parameters. This could be due to the starting

value distribution for the dynamics parameters being comparatively closer to the

true values than the starting values for the measurement model parameters. The

dynamics parameters appeared to be estimated adequately, but the estimated

values were not as much of an improvement over the starting values as was the

case for the measurement parameters. The sample size conditions, number of

people per group and the number of occasions generally improved parameter es-

timation. By contrast, the number of groups (i.e. number of mixtures) made

parameter estimation less accurate. Finally for the group membership identifi-

cation, state space mixture modeling was able to correctly classify individuals

with similar measurement processes but different dynamics. Classification had

86 percent accuracy across all conditions and a mean inter-rater reliability of

0.58. Critically, it appeared that the dynamics were the key factor in correctly

classifying individuals. The dimension of the state space (i.e. the number of

factors) had the single largest impact on correctly identifying the correct gener-

ating model for each individual. Inter-rater reliability improved greatly as the

number of factors increased from one to eight. Second to the number of factors,

the number of occasions had the next largest effect. More occasions of measure-

ment provide more temporal examples of the dynamics, allowing them to be more

easily distinguished from dissimilar dynamics patterns. Thus, the dimension of

the space in which dynamics unfold and the number temporal observations made

in that space are the most important factors for correctly classifying individuals

into their generating dynamic models.
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2.4 Discussion

This chapter presented a simulation study of state space mixture modeling. The

purpose of state space mixture modeling is to bridge the gap between the com-

pletely idiographic modeling of each individual separately and the completely

nomothetic modeling of all individuals as a single homogeneous group. The sim-

ulation study generated 384,394 instances of state space models, 303,814 of which

where state space mixture models. The state space mixture models had identi-

cal measurement models across groups, but differed in their dynamics. Thus,

the primary task use-case for the state space mixture models evaluated was the

separation of unknown group who had similar measurement processes but dif-

ferent underlying dynamics. Five factors were varied, creating 768 conditions,

to see how the factors influenced parameter estimation and the recovery of the

underlying grouping structure.

It was found that all simulation factors had some influence, but for parameter

estimation the largest effects where found for the sample size factors: number of

people per group and number of occasions. It may not be surprising, but it is

encouraging that parameter estimation improved as the sample sizes increased.

This was not the case with earlier versions of state space mixture modeling. In an

earlier version of state space mixture modeling, a free parameter was estimated

that determined the individual probability of group membership for each person

in each group. This parameter greatly increased estimation time, and created an

inconsistent estimator: as the sample size increased, the parameter estimates did

not asymptotically approach their true values. A similar inconsistent estimator

is found for non-Rasch item response theory models (Baker & Kim, 2004) using

joint maximum likelihood which simultaneously estimates person-level trait scores
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and item-level parameters. The small modification of estimating the group-level

mixing proportions and as a second step calculating empirical Bayes probabili-

ties of group membership for each individual manifests the consistent estimator

reported here.

Similar to the findings for parameter estimation, all factors had nonzero in-

fluence for the recovery of grouping structure. However, the number of factors

was found to be the single largest effect. At least two mechanisms exist that

could account for the impact of the number of factors. First, the dimensionality

of the state space places limits on the kinds of behavior that can be displayed

in linear systems. For example, oscillations are not possible in one-dimensional

space. All stationary dynamic behavior in one dimension is qualitatively similar.

Hence, the different dynamics generated in one dimension are not often quali-

tatively different. In three dimensions, it is not possible to have two, coupled

oscillators. The entire range of possibilities is either (a) three independent sys-

tems or (b) one oscillator pair and one independent system. As the dimension

of the state space (i.e. number of factors) increases, more kinds of qualitatively

distinguishable behavior are possible. A second mechanism for the influence of

the number of factors is more a product of the simulation design than the nature

of the dynamics. To aid in parameter and group recovery, the zero elements of

the dynamics matrices were assumed fixed and known. More to the point, as

the number of factors increases the number of zero elements in the dynamics

matrices increases. Because of how the dynamics were generated, the number

and placement of zeros in the dynamics matrices are not likely to be the same

for higher-dimensional state spaces. Thus, group membership becomes related to

the test of a parameter being zero or nonzero for that individual because in one

group the parameter is fixed and known to be zero whereas in another candidate
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group the same parameter is far from zero. Deciding to which group a person’s

data belong becomes easier when the groups differ in their pattern of fixed, zero

elements. This makes higher-dimensional state spaces easier to estimate, and eas-

ier to find the correct grouping structure as an artifact of the simulation process.

On the other hand, researchers who wish to use state space mixture modeling

may have hypotheses about particular patterns of parameters being zero among

some individuals and nonzero among others. So, this aspect of the simulation

design directly mimics a viable research situation. One such research application

is considered next with the biometric growth structure of cognitive ability in the

National Longitudinal Survey of Youth.
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Chapter 3

Cognitive Development of Youth

in the NLSY

3.1 Introduction

Many authors have written that the fundamental unit of analysis in behavioral

sciences is rightly the individual. Behaviors are emitted only from individuals,

and thus they should form the centerpiece of any science founded on the study of

behavior. The study of the individual, however, is often found in direct contra-

diction to scientific methods, many of which require observations to be replicated.

Science is conducted on repeated instances of events, not single events. Thus, the

individual is frequently rejected as a possible unit of analysis because of the need

to replicate observations. As an example, Lord and Novick (1968) begin their

famous tome on the measurement of mental abilities with a measurement theory

founded on the individual. They begin to develop a test theory of the individual

and then switch to that concerned exclusively with between-person variability:

“The true and error scores defined above are not those primarily considered in
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test theory . . . . They are, however, those that would be of interest to a theory

that deals with individuals rather than with groups (counseling rather than selec-

tion).” (Lord & Novick, 1968, p. 32). In a similar vein, Bereiter argues that the

study of the individual is the logical emphasis of behavioral sciences, but that the

study of interindividual differences is “an expedient substitute” Bereiter (1963,

p. 15).

More recently Molenaar and colleagues (Molenaar et al., 1993; Nesselroade &

Molenaar, 2010a; Molenaar, 2010, 2004) have strongly argued against the plau-

sibility of substituting the study of interindividual differences for intraindvidual

differences. Perhaps the clearest way to argue against the substitution of many

people at a single time for a single person at many times is to undercut the ar-

gument that the two forms of variability have anything to do with one another.

Figure 3.1 shows within- and between-person variability in a simulated situation.

Each point is the score of a single person at a single time measured on two vari-

ables, income and happiness. The red points are the scores for a single individual

across several occasions of measurement. The between-person structure of Fig-

ure 3.1 is vividly a strong positive relationship. People who are happy tend to

have high income, and people who are unhappy tend to have low income. This

structure might suggest an intervention in which we raise the income of a sample

of people and expect their happiness to correspondingly rise. In this simulated

situation, the opposite effect would occur. The within-person structure of income

and happiness, as highlighted by the red points, is a strong negative relationship.

When any individual receives more income, their happiness decreases. Alterna-

tively, whenever a person become happier, their income decreases. Hence Figure

3.1 shows that the within-person relationship between any pair of variables is

completely independent of the between-person relationship.
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Figure 3.1: A simulated between-person correlation of +0.80, but a within-person
correlation of -0.75.
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Given the independence of the within-person and between-person variabili-

ties just described, the generally accepted validity of between-person models may

be called into question. However, for some purposes between-person models are

precisely the correct models. Between-person models remain valid, but under a

slightly more restrictive set of conditions than may have been previously thought.

Between-person models are valid, but only in describing differences between peo-

ple unless further conditions are satisfied. In particular, for between-person mod-

els to apply within-persons the population must be homogeneous and the process

of interest must be ergodic. Homogeneity is not enough. In the example in

Figure 3.1, every individual has the same population within-person correlation

(-0.75). The within-person correlation is homogeneous, yet the between-person

correlation is completely different (+0.80). This can occur precisely because the

process in not ergodic. A full discussion of ergodicity is beyond the present scope,

but two brief points can be made about it. First, ergodicity, not homogeneity, is

the key property that makes within-person and between-person variability inter-

changeable. When the process is ergodic, a sample of many individuals measured

at just one time will give the same results as a sample of a single individual mea-

sured at many times: the within-person across time process behaves the same

as the between-person single-time process. Second, the concept of ergodicity is

related to the process of mixing. Ergodic processes tend to “forget” their initial

conditions. As in the mixture of rum and cola in a beverage (e.g. Arnold &

Avez, 1968, p. 19-20), the initial distribution of the two liquids is lost once the

mixing has occurred. So, the lack of ergodicity in the example can be seen as

a consequence of the non-mixing nature of the process: because the means do

not drift and mix, the within-person and between-person structures are preserved

separately and independently.
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When ergodicity and homogeneity have been investigated in empirical data

in psychology, it generally has not been found (e.g. Borkenau & Ostendorf, 1998;

Gonzales & Ferrer, 2014; Hamaker et al., 2005). Likewise, standard statisti-

cal techniques do not indicate problems of model fit even when the generating

model for individuals is extremely heterogeneous (Kelderman & Molenaar, 2007).

So, when the goal is to understand individual-level processes the default strategy

should be to measure individuals multiple times and then test whether homogene-

ity and/or ergodicity hold for this particular process. The balance then must be

struck between the idiographic goal of modeling and understanding individuals

on the one hand, and the the nomothetic goal of attaining generalizable knowl-

edge about people on the other hand. Assuming complete heterogeneity forces

an abandonment of the nomothetic goal, and implies modeling each individual

separately and independently. Assuming complete homogeneity forces an aban-

donment of the idiographic goal, but allows modeling all individuals together. A

middle path between these two extremes is taken here. Processes are modeled

somewhat individually and partially homogeneously. A more detailed descrip-

tion of the approach taken will be provided after some further discussion of the

dynamic perspective as it relates to this application.

Individual dynamics are represented by a state space model. The benefits of

the dynamic perspective are described next. Figure 3.2 shows the latent values of

two 3-dimensional time series. Both time series follow the same dynamics; they

have the same rules governing their behavior. However, in Figure 3.2a the series of

external inputs to the system are on/off as if in a set of treatments administered

in a particular order, whereas in Figure 3.2b the series of external inputs to

the system are continuous as if varying in some longitudinal pattern. The key

to the dynamic perspective in this case is that the same rules (i.e. dynamics)
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can produce very different looking behavior when subjected to different external

forces (i.e. inputs). Much of psychology has emphasized the observed patterns

of behavior. According to that perspective, Figures 3.2a and 3.2b are completely

different, and one might hypothesize two distinct patterns of change: one that

makes jumpy transitions and the other that smoothly varies. But both of these

systems are identical. They merely have unequal external forces acting upon

them. This is the primary advantage of the dynamical perspective. Dynamcis

allow us to abstract away from the direct form of the observed data to examine

the rules that govern the generation of that behavior.

The application presented in this chapter is on the cognitive development of

children in the National Longitudinal Survey of Youth Children (NLSYC) data.

A standard inquiry about cognitive development in these data would likely cap-

italize on the genetic relatedness of some of the individuals within it. Behavior

genetics models could readily be applied. One such model is shown in Figure

3.3. In this situation, a single variable is modeled across two genetically related

individuals. Their coefficient of relatedness is given by R. The variance of the

single observed variable is partitioned into three pieces: additive genetics (A),

common environments (C), and unique environments (E). Such a model is usu-

ally referred to as a univariate ACE model (Neale & Maes, 2004). The key to the

interpretation of the latent factors is that their correlation structure is known.

The additive genetics factors should correlate by R across individuals whose ge-

netic relatedness is R. For identical (monozygotic) twins R = 1 because all1

of their genes are the same. For fraternal (dizygotic) twins and other full sib-

lings R = 0.5 on average because these individuals share half of their segregating

1Identical twins are not completely identical (Bruder et al., 2008; Molenaar et al., 1993),
but for the purposes of ACE modeling it is a useful fiction.

115



0 20 40 60 80 100 120
−

20
−

10
0

10
20

Time

x1

0 20 40 60 80 100 120

−
20

−
10

0
10

20

Time

x2

0 20 40 60 80 100 120

−
20

−
10

0
10

20

Time

x3

(a) On/Off Treatment-Style Inputs

0 20 40 60 80 100 120

−
10

0
−

50
0

50
10

0

Time

x1

0 20 40 60 80 100 120

−
10

0
−

50
0

50
10

0

Time

x2

0 20 40 60 80 100 120

−
10

0
−

50
0

50
10

0

Time

x3

(b) Continuous Covariate-Style Inputs

Figure 3.2: Latent values of a simulated 3-dimensional state space model with
different inputs
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Figure 3.3: Univariate ACE model
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genes on average. Other relations can be described similarly. For siblings living

together, their common environments are assumed identical and hence their C

factors are correlated one. This is called the equal environments assumption.

The unique environments are always assumed to be correlated zero across twins

to allow for completely idiosyncratic sources of variability. From a factor model-

ing perspective the multivariate extension of the ACE model is straightforward:

add more indicators to the factors. An example of a multivariate ACE model is

shown in Figure 3.4.

The univariate and multivariate ACE models described above are models of

between-person variability. They elucidate the relative proportions of between-

person variability that can be attributed to additive genetics, common environ-

ments, and unique environments. As described above, these between-person mod-

els generically diverge from within-person processes. Nesselroade and Molenaar
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Figure 3.4: Multivariate ACE model
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(2010a) alluded to several possible approaches to model within-person variabil-

ity in the behavior genetics context. One such method is diagrammed in Figure

3.5. This model will be called the state space ACE model. It consists of a mul-

tivariate ACE model as the measurement model with autoregressive dynamics

from one time to the next. Importantly, the rows of data in the state space

ACE model correspond to different time points, whereas in the multivariate ACE

model the rows of data are different pairs of individuals. Hence, the state space

ACE model is a within-person, dynamic, behavior genetics model. Because this

is a within-person model, the coefficient of relatedness may not be exactly equal

to its population average: full siblings may share more or less than half of their

genes. Consequently, the R coefficient can be estimated for an individual sibling

pair. Similarly, the proportion of variance in the phenotype that is due to additive

genetics may be allowed to differ across members of the sibling pair: one sibling’s
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Figure 3.5: State Space Multivariate ACE model
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mathematical ability may be primarily inherited whereas the other’s may be due

to unique environments. When the coefficient of relatedness is freely estimated

and the heritabilities of the sibling pairs are allowed to differ, the state space

ACE model is called the idiographic filter ACE (iFACE) model (Molenaar, 2010;

Molenaar, Smit, Boomsma, & Nesselroade, 2012) because of how it incorporates

the idiographic filter (Nesselroade et al., 2007; Molenaar & Nesselroade, 2012),

namely a fixed latent variable correlation structure with a measurement structure

that varies across people. The goal of this chapter is to apply state space mixture

modeling to the five of the NLSY cognitive variables where the state space model

used is a state space ACE model.
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3.2 Methods

3.2.1 Participants, Materials, and Procedures

The original NLSY sample (NLSY79 or NLSY79-Gen1) is a nationally represen-

tative household probability sample of 14- to 22-year-olds in the United States in

1979. It consists of 12,686 young men and women. The data analyzed here are

from the NLSY children (NLSYC or NLSY79-Gen2), the children of the NLSY79

females. There are 3,276 different mothers for the NLSYC with 11,075 NLSYC

kinship links. The R package NlsyLinks (Beasley, Bard, Hunter, Meredith, &

Rodgers, 2013) was used for the kinship links. The NlsyLinks package uses re-

sponses by children and parents to many questions about parentage, relatedness,

cohabitation, et cetera to make a deterministic, accurate classification of siblings

(full, half), cousins, aunt/niece, parent/child, and so on. One important result in

the NlsyLinks pacakge is the Links79Pair data set which provides, among other

things, a coefficient of relatedness for sibling pairs in the NLSYC.

Five longitudinally measured cognitive variables were chosen for modeling in

this application. The modeled variables were the Peabody Individual Achieve-

ment Test (PIAT) Reading Recognition, PIAT Reading Comprehension, PIAT

Math, Peabody Picture Vocabulary Test (PPVT), and the Digit Span subscale

from the Wechsler Intelligence Scales for Children-Revised. The PIAT reading

and math were assessed every two years when the child was between ages 5 and

14. PPVT was administered biennially between ages 3 and 14. Digit span was

assessed biennially from ages 7 to 11. The modal number of occasions of mea-

surement for these variables ranged between two and four.
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3.2.2 Data Analysis

The goal of the present analysis was to examine longitudinal variation in cogni-

tive ability using biometrically informed models. As a preliminary step, cross-

sectional ACE models were constructed for each age between 5 and 14. This repli-

cates the between-person finding that cognitive abilities are, in general, highly

heritable with the proportion of additive genetic variance increasing over different

ages. Next, a multisubject state space ACE model was fitted to a random sub-

sample of the NLSYC data, and cross-validated with another random subsample

of the same size. Finally, a mixture multisubject state space ACE model was

fitted to random subsamples of the NLSYC to explore the possible existence of

unknown homogeneous groups.

3.3 Results

Cross-sectional analyses were conducted on the NLSYC for the five cognitive

variables under investigation. Analyses were conducted on each age as a sepa-

rate sample. The proportions of variance attributable to additive genetics (A),

common environments (C), and unique environments (E) at each age are shown

in Figure 3.6 through 3.10. Digit span, mathematical achievement, and PPVT

show the popular cross-sectional finding that heritability (i.e. proportion of addi-

tive genetic variance) increases at higher ages. Reading recognition and reading

comprehension do not shown these same patterns. The interpretation of these

cross-sectional findings can be misleading. Each age represents a snapshot of the

between-person structure (ensemble average). This snapshot may or may not

reflect within-person changes in the heritability of cognitive ability. The simple

addition of an age variable does not make the analyses longitudinal or represen-
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Figure 3.6: Cross-sectional changes in proportion of variance explained by ad-
ditive genetics (A), common environments (C), and unique environments (E).
DIGIT=WISC Digit Span.

tative of within-person changes. Recall the example of income and happiness in

Figure 3.1 in which the between-person structure at every time point was con-

stant but completely different from the within-person structure. This means that

within-person analyses are critical for understanding individual processes.

Therefore, within-person analyses were conducted. The results of a multisub-

ject state space model are shown in Table 3.1. The model was a multisubject

extension of the state space ACE model from Figure 3.5. The model was run

on a randomly selected subsample of the NLSYC with N = 300 kinship pairs.

Heritabilities were constrained to be equal across kinship pairs. Moreover, homo-

geneity was assumed for the entire sample. Thus, the same parameters were fixed

across the whole subsample. It is worth noting that the cross-sectional models

reported previously also assume homogeneity in the sample, and they also rep-

122



6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MATH

Age

P
ro

po
rt

io
n 

of
 V

ar
ia

nc
e

A
C
E

Figure 3.7: Cross-sectional changes in proportion of variance explained by ad-
ditive genetics (A), common environments (C), and unique environments (E).
MATH=PIAT Mathematical Achievement.
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Figure 3.8: Cross-sectional changes in proportion of variance explained by ad-
ditive genetics (A), common environments (C), and unique environments (E).
RECOG=PIAT Reading Recognition.
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Figure 3.9: Cross-sectional changes in proportion of variance explained by ad-
ditive genetics (A), common environments (C), and unique environments (E).
COMP=PIAT Reading Comprehension.

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PPVT

Age

P
ro

po
rt

io
n 

of
 V

ar
ia

nc
e

A
C
E

Figure 3.10: Cross-sectional changes in proportion of variance explained by ad-
ditive genetics (A), common environments (C), and unique environments (E).
PPVT=Peabody Picture Vocabulary Test.
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resent between-person differences instead of within-person differences. The mod-

eling procedure was repeated for cross-validation on a second random sample of

the same size with its results shown in Table 3.2. The picture painted by the

within-person results differs rather drastically from the cross-sectional results.

The A, C, and E factors are found to be autoregressive with large coefficients

between 0.8 and 0.9, indicating a highly correlated process from one time to the

next. The highest contribution of additive genetics is found for PIAT math in

the first sample (0.27), indicating that 27 percent of the within-person variabil-

ity in PIAT math is attributable to additive genetics. In the second subsample,

however, this estimate is somewhat lower (0.15). Broadly speaking, the A com-

ponents are much lower in the multisubject state space model than in the cross

sectional models. For many of the cross sectional models (Figures 3.6 to 3.10),

the A component is between 0.20 and 0.60. By contrast, the within-person model

suggests the A contribution is generally between 0.0 and 0.2. Much more variance

is assigned to the common environments in these state space ACE models.

The next step was to search for underlying subgroups in the NLSYC. A state

space mixture model with two mixture classes was fit to a random sample of 150

kinship pairs in the NLSYC2. Results for the first subsample are shown in Table

3.3. The analyses on this subsample suggest a large subgroup (89 percent) that

behaves very similarly to the homogeneous case. They show moderate within-

person heritability for PIAT math, but the vast majority of variance is portioned

into the common environments (about 70 to 100 percent) with minimal contribu-

tions by additive genetics and unique environments. The smaller subpopulation

found in the first subsample differs in that reading recognition and comprehen-

2More mixture classes and higher sample sizes were planned, but software limitations only
allowed this as the maximum size due to a “protection pointer stack overflow”.
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Table 3.1: Multisubject State Space ACE: Random Subsample 1

A C E
AREG 0.82 0.89 0.85
DIGIT 0.14 0.66 0.19
MATH 0.27 0.71 0.02
RECOG 0.03 0.74 0.24
COMP 0.07 0.79 0.15
PPVT 0.00 1.00 0.00

Note. Sample size is 300.
AREG=autoregressive pa-
rameters. DIGIT=digit span,
MATH=PIAT mathematical
achievement, RECOG=PIAT
reading comprehension,
COMP=PIAT reading com-
prehension, PPVT=Peabody
Picture Vocabulary Test.
PIAT=Peabody Individual
Achievement Test.

Table 3.2: Multisubject State Space ACE: Random Subsample 2

A C E
AREG 0.87 0.88 0.84
DIGIT 0.19 0.57 0.24
MATH 0.15 0.80 0.05
RECOG 0.00 0.68 0.32
COMP 0.05 0.78 0.17
PPVT 0.00 1.00 0.00

Note. Sample size is 300.
AREG=autoregressive pa-
rameters. DIGIT=digit span,
MATH=PIAT mathematical
achievement, RECOG=PIAT
reading comprehension,
COMP=PIAT reading com-
prehension, PPVT=Peabody
Picture Vocabulary Test.
PIAT=Peabody Individual
Achievement Test.
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Table 3.3: Multisubject Mixture State Space ACE: Random Subsample 1

Subgroup 1 Subgroup 2
π = .11 π = .89

A1 C1 E1 A2 C2 E2
AREG 0.80 0.89 0.84 - - -
DIGIT 0.00 0.16 0.84 0.03 0.83 0.14
MATH 0.02 0.98 0.00 0.28 0.69 0.03
RECOG 0.26 0.39 0.35 0.04 0.76 0.14
COMP 0.63 0.37 0.00 0.07 0.79 0.14
PPVT 0.00 1.00 0.00 0.00 1.00 0.00

Note. Sample size is 150. AREG=autoregressive parame-
ters. DIGIT=digit span, MATH=PIAT mathematical achieve-
ment, RECOG=PIAT reading comprehension, COMP=PIAT read-
ing comprehension, PPVT=Peabody Picture Vocabulary Test.
PIAT=Peabody Individual Achievement Test. ‘-’ indicates param-
eter was fixed across models.

sion have heritabilities somewhat similar to those found cross-sectionally, but the

other three cognitive variables (digit span, math, and PPVT) continue to display

little genetic influence.

The same analyses were conducted on a separate subsample of the same size.

Some of the results differ in this subsample. The two mixture classes are similarly

distributed to the first subsample with one being very large (99.9 percent) and

the other very small (0.1 percent). In this subsample, the smaller mixture class

has moderate heritabilities, about 0.30, for all the cognitive variables except

math. The larger mixture class has moderate heritabilities for digit span and

math, but near zero for the reading variables and PPVT. The larger mixture

class in the second subsample resembles the larger mixutre class from the first

subsample. The exception is the heritability for digit span is near zero in the first

subsample, but moderate in the second subsample. The within-person findings

do not parallel the between-person results in either of the larger mixture classes;

but some of them are similar for the smaller mixture classes.
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Table 3.4: Multisubject Mixture State Space ACE: Random Subsample 2

Subgroup 1 Subgroup 2
π = .001 π = .999

A1 C1 E1 A2 C2 E2
AREG 0.84 0.89 0.85 - - -
DIGIT 0.28 0.01 0.71 0.33 0.54 0.13
MATH 0.04 0.25 0.72 0.27 0.71 0.02
RECOG 0.25 0.15 0.60 0.04 0.70 0.26
COMP 0.30 0.21 0.49 0.08 0.77 0.15
PPVT 0.30 0.37 0.33 0.00 1.00 0.00

Note. Sample size is 150. AREG=autoregressive parame-
ters. DIGIT=digit span, MATH=PIAT mathematical achieve-
ment, RECOG=PIAT reading comprehension, COMP=PIAT read-
ing comprehension, PPVT=Peabody Picture Vocabulary Test.
PIAT=Peabody Individual Achievement Test. ‘-’ indicates param-
eter was fixed across models

3.4 Discussion

As a field, behavior genetics has historically emphasized between-person vari-

ability and population-level differences. This is a valid approach when results

are only used to explain between-person differences and no attempt is made to

account for individuals, individual-level process/mechanisms, or within-person

differences. Unless the population is homogeneous and the process is ergodic,

between- and within-person phenomena bare no necessary resemblance.

The standard finding that cognitive ability is highly heritable between indi-

viduals was replicated in several cross-sectional subsets of the NLSY. However,

the within-person model over time showed minimal contribution from additive

genetic variance across the five cognitive variables. The within- and between-

person structure of cognitive development were found to be very different when

homogeneity was assumed in both cases. But, the population might not be ho-

mogeneous. When the homogeneity assumption was relaxed in the within-person
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model, a state space mixture model with two groups found a small subgroup

in which cognitive ability was heritable within persons, but for the majority of

individuals studied the intraindividual variance was dominated by common and

specific environmental factors, principally the former. The structure of intraindi-

vidual heritabilty of cognitive ability thus appears quite different from that found

in standard between-person biometric modeling.
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Chapter 4

Discussion

A trade-off exists between the two goals of psychology. On one hand, psychology

is a science of individuals, seeking to understand mechanisms and processes that

occur within persons. On the other hand, psychology as a science must endeavor

to find knowledge about people in general. These two goals are sometimes at cross

purposes. Case studies, although interesting and potentially illustrative especially

in situations of traumatic brain injury that elucidate cognitive functions, are not

representative of scientific psychology. Indeed clinical psychology, which deals

almost exclusively with individuals, has been found to be rather separate from

the rest of psychology and this observation has been the basis for the formation of

the Association for Psychological Science as a splinter group from the American

Psychological Association (Rodgers, 1988).

This dissertation proposed, evaluated, and applied a method for analyzing

data in a middle ground between between complete heterogeneity and complete

homogeneity. State space mixture modeling uses an individual-level model that

allows for the representation of change over time. Simultaneously, it capitalizes

on the potential for people to share similar change processes, while still allow-
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ing others to be quite different. Instead of assuming homogeneity of all persons

and pursuing a nomothetic purpose of knowledge about people in general, even

though that general knowledge might not apply to any particular individual stud-

ied, that assumption is relaxed to allow for some heterogeneity among people.

Alternatively, instead of assuming complete heterogeneity and pursuing an idio-

graphic purpose of knowledge about a single person, even though that individual

knowledge might not apply to any other individual in the world, that assumption

is relaxed to allow for some homogeneity among people. The goal of this dis-

sertation was to combine idiographic and nomothetic approaches with a method

that finds subpopulations with similar dynamic processes.

The inspiration for this avenue of research was the problem of pooling time

series, more to the point it was the analysis of multivariate time series from

multiple individuals. When multiple observations are made on multiple variables

it creates multiple time series (Hannan, 1970; Quenouille, 1957). In more modern

terms, multiple time series could be called multivariate or vector time series

(Shumway & Stoffer, 2010; and for a historical review see Spanos, 2003). The

problem of pooling regards the analysis of several vector time series. An example

of several vector time series would be 20 individuals, each measured 100 times

on 10 variables. Each of the 20 people has a 10-variate time series of length

100. Analysis of these data present several challenges, but multiple approaches

exist. First, a mean across people could be taken in the time-domain, creating

a single 10-variate mean time series of length 100. Second, the mean across

people could be taken in the frequency domain by Fourier transforming each of

the time series and then taking the mean, creating a 1-variate mean frequency

power spectrum. The mean time-domain series is often found in the studies

using functional magnetic resonance imaging (fMRI), and the mean frequency-

131



domain series is similarly applied in studies using electroencephalography (EEG;

Molenaar & Gates, 2012).

A third option for analyses is concatenating the time series, creating single

10-variate time series of length 20 ∗ 100 = 2, 000. This is sometimes done in

both fMRI and EEG studies. Gates and Molenaar (2012) tried concatenating

multivariate time series, along with their own individual analysis and pooling

method, on simulated fMRI data from connectivity mapping generated by Smith

et al. (2011), but their individual-level analyses worked far better.

A fourth and final method for handling multiple multivariate time series is to

construct a multilevel time series model. Song and Zhang (2014) take this mul-

tilevel approach by specifying a multilevel structural equation model on lagged

variables. It is the raw data version of dynamic factor analysis (Geweke & Single-

ton, 1981; Engle & Watson, 1981; Molenaar, 1985; Nesselroade et al., 2002) with

the addition of multilevel modeling. The analytic problem encountered by Song

and Zhang (2014) was the desired number of random slopes, coefficients allowed

to vary randomly across people, was too large to actually estimate. There is a

difference in perspective between the multilevel method and the mixture method

applied here. In the multilevel method, differences across people are quantita-

tive. Parameters vary according to a unimodal, exponential family distribution,

often a normal distribution with some mean and variance. Opposed to this is the

mixture method in which individuals are qualitatively different. Parameters vary

according to a multimodal distribution, often a mixture of normal distributions.

An example of an alternative to multilevel approach is the GIMME algorithm for

fMRI data by Gates and Molenaar (2012). It regards each individual separately

and as part of the group, allowing for discrete differences without any assumed

distribution. The method is primarily data driven, with free use of modification
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indices (Sörbom, 1989) to automate model selection. Whether the multilevel

or the mixture method is selected is a matter of how the interindividual differ-

ences are conceived by the researcher. Discrete, qualitative differences suggest a

mixture model; continuous, quantitative differences suggest a multilevel model.

When qualitative differences between people are hypothesized, a mixture

method is not the only approach possible. Part of the impetus for the state

space mixture method was work by Nesselroade and Molenaar (1999) in which a

direct likelihood ratio test for pooling time series was suggested. Gonzales and

Ferrer (2014) presented a relatively direct evaluation of the method suggested by

Nesselroade and Molenaar (1999). They used the block-Toeplitz dynamic factor

analysis program DyFa (Browne & Zhang, 2010) to empirically test for the abil-

ity to pool lagged covariances using simulated and real data. Of their simulated

data they said “the test of covariance heterogeneity is not sufficiently sensitive to

differences among multivariate covariance matrices.” and “even when pooling of

an entire sample is reasonably expected, such pooling did not occur.” (Gonzales

& Ferrer, 2014, p. 256). Thus, their results were not particularly encouraging.

Worth mentioning is the fact that state space mixture models are not a direct

test of pooling. Rather, they are a combination of multisubject state space mod-

els with mixture models. Previously, single-subject dynamic models have been

combined with mixture models (Hunter, 2014a) and dependent mixture models

(Chow & Zhang, 2013; Yang & Chow, 2010; Chow, Grimm, Filteau, Dolan, &

McArdle, 2013), but the application to finding subpopulations with matching

dynamics is a novel aspect of the present work.

The novelty is made possible largely by software. The OpenMx (Neale et al.,

in press) implementation of state space models (Hunter, 2014b) allowed for the

the direct combination of multisubject, state space, and mixture modeling. Such
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a combination was simply not possible with other software like MKFM (Dolan,

2005), DyFa (Browne & Zhang, 2010), MATLAB (MATLAB, 2014), or the R

package dlm (Petris, 2010). A burgeoning theme in statistical modeling is the

unity between state space model and structural equation models (SEMs). Song

and Ferrer (2009) and Chow, Ho, Hamaker, and Dolan (2010) both provided

evidence for this unity. Much earlier, MacCallum and Ashby (1986) furnished a

block matrix equivalence across state space models (called linear systems theory

therein) and SEMs. Earlier still, Priestley and Subba Rao (1975) showed the

identity between regression factor scores and Kalman updated state estimates.

The implementation of the Kalman filter state space model in OpenMx made

the unity of SEMs with state space models more tangible and easier to explore.

To the author’s knowledge OpenMx is the first conventional SEM program that

also estimates state space models with a Kalman filter. It is hoped that the

SEM and state space unity will become more clear with the aid of common

software specification of both techniques. We next turn to further discussion of

the simulation study that evaluated state space mixture modeling as a viable

technique to uncover groups with similar dynamics.

4.1 Simulation

The simulation study generated almost 500,000 multigroup, multisubject, multi-

variate, multi-occasion data sets and fitted state space mixture models to those

data sets. Although this represented only about 60 percent of the planned simula-

tion study, the questions about parameter estimation and group membership re-

covery could still be addressed. Parameter estimation appeared adequate overall.

As expected, increasing sample size (number of occasions and number of people
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per group) had strong positive effects on the parameter estimation. Increasing

the number of variables per factor and the number of factors also appeared to aid

in parameter estimation, but less so than the sample size conditions. The only

negative effect observed was for the number of groups, or mixture classes. Per-

haps not surprisingly, increasing the number of mixtures in the model decreased

the quality of parameter estimation.

The second question addressed by the simulation was the ability of state space

mixture models to correctly assign people to their generating dynamic model.

This, too, generally seemed to succeed. The mean accuracy of group assignment

for models with more than one group was 86 percent. Treating the true and

estimated group membership as two raters of a categorical variable, the mean

Cohen’s kappa for inter-rater reliability was 0.58, indicating strong agreement

between raters far above chance but also notably far from perfect. The simula-

tion factors were used to predict Cohen’s kappa in a logistic regression. From

this, it was found that the number of factors had the single largest influence

on kappa with more factors corresponding to higher inter-rater agreement. The

number of occasions had the second largest affect, again with more occasions

leading to better agreement. The number of factors result is likely due to the

increase dynamic dissimilarity at higher dimensions which was an artifact of the

simulation parameters. An interesting question could still be answered with the

simulation data that attempts to separate the similarity of the dynamics from

the dimension in which they exist. In particular, continuous time dynamics are

qualitatively identical (topologically conjugate) based on the number of zero, pos-

itive, and negative real parts of their eigenvalues (Hirsch et al., 2003). Discrete

time dynamics might be distinguishable based on the number of positive, neg-

ative, real, and complex eigenvalues. If the number of factors effect disappears
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after controlling for the effect of the eigenvalues, then the increasing classification

quality would be explained by the actual dynamic properties of the individuals

rather than the dimension of the space in which their dynamics exist.

There were several limitations of this simulation study. First, the planned

simulation study was not completed. Almost 40 percent of the repetitions were

not run. This was due to the unanticipated time some of the conditions took to

run. Many of the larger conditions took almost 48 hours to run a single model.

With that being said, all but 10 conditions had at least some repetitions, and

the total number of simulation repetition was sufficiently large to make statistical

significance virtually irrelevant.

Second, many aspects of the dynamic model were assumed known prior to

fitting the model. The number of factors, the factor structure (i.e. which loadings

were zero), the number of groups, and the dynamic structure (i.e. which dynamics

parameters were zero) were all assumed known. This replicates a confirmatory

modeling procedure. More information about the efficacy of exploratory state

space mixture modeling is needed. Some initial analytic work has been conducted

on exploratory dynamic factor analysis (G. Zhang, 2014; G. Zhang, Browne, Ong,

& Chow, 2014), but little empirical investigation using exploratory methods.

The number of factors and number of mixture components problems can likely

be solved similar to non-dynamic settings. The factor structure and dynamic

structure problems are related to the factor rotation problem and may have a

similar solution (G. Zhang et al., 2014). These assumptions were necessary for

an initial investigation of state space mixture modeling, but should be relaxed in

later studies.

A third limitation of the simulation was the exclusion of model error. The

data generated contain only sampling error; the model was true in the population.
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Because all models to varying extents are wrong (MacCallum, 2003; MacCallum

& Tucker, 1991; Rodgers, 2010), making the model only an approximation to the

data generating mechanism would be a major step toward realism in the simu-

lation study. Analogous to the structural assumptions mentioned previously, the

correct, data-generating model was used in this simulation as an initial simplifi-

cation to give state space mixtures an optimal chance of success. To the extent

that this simulation study has established a degree of success, later work can add

the additional challenge of fitting an imperfect model.

The fourth limitation was an additional structural assumption made, namely

that measurement was assumed to be invariant across the entire sample of both

occasions and people. Measurement invariance (see Meredith, 1964a, 1964b, 1993,

for the classical approach) must be established in empirical investigations to

ensure that the constructs being measured are uniform across the time and person

sampling domains. In modeling longitudinal data, measurement invariance can

be particularly nuanced and difficult (Meredith & Horn, 2001). As a matter of

simplification, no attempt was made in this dissertation to address the potential

issue of measurement invariance. Later studies and applications of state space

mixture modeling should routinely evaluate this simplification.

Software has the capacity to surmount some of the limitations mentioned in

the previous paragraphs. A few relatively simple software improvements could

be made that may greatly increase the ability to estimate these large and compli-

cated models. First, the specification of the state space mixture model involves

making a “model” for each person-group combination. This creates a struc-

ture that scales multiplicatively with the number of people and the number of

groups. A method that scales additively is currently under development. A sec-

ond refinement of the software would utilize multiple processors in parallel. The

137



typical way that OpenMx parallelizes model estimation is by partitioning the

data, conducting calculations on those partitions in parallel, and then gathering

the results (a scatter-gather method of parallelization). The same method cannot

be applied blindly with state space models because of the serial dependence of

the rows of data. However, the same method could be applied on the person

level: partitioning the data for each person as a whole, conducting calculations

for each person, and then gathering the person results. This parallelization would

improve the likelihood estimation time by almost a factor of P , where P is the

number of cores, processors, or threads used. We next turn to a further discus-

sion of intraindividual behavior genetics as an application of state space mixture

modeling.

4.2 Genetics of Cognitive Growth

The empirical study applied state space mixture modeling to cognitive growth in

the National Longitudinal Survey of Youth Children (NLSYC) using biometri-

cally informed data from the NlsyLinks (Beasley et al., 2013). The cross-sectional

findings that cognitive ability is quite heritable between people and tends to in-

crease from childhood to adolescence were replicated in this sample. However,

when examined intraindividually assuming homogeneity, cognitive ability was

found to have very nearly zero heritability with most of the within-person vari-

ance being accounted for by common environments instead of additive genetics.

When the assumption of homogeneity was relaxed slightly to included two ho-

mogeneous groups, one group was found that was very similar to the completely

homogeneous model and a second smaller group was found in which some of the

cognitive variables appeared moderately heritable. These results are preliminary
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are certainly require further investigation.

This application has a number of shortcomings. First, the current implemen-

tation of the software to estimate state space mixture models could not estimate

a homogeneous model on the entire sample, let alone a mixture model. Cross-

validation on an additional random subsample of the data had results that were

widely similar to those on the initial random sample, but a mixture model on

the whole dataset still was not achieved. The software improvements outlined in

the previous section should make the complete data model estimable. Until then,

the subsample findings can be taken at least as preliminary evidence of a within-

person genetic structure that may differ substantially from the between-person

structure more commonly reported.

A second difficulty with the application was the interpretation of intraindi-

vidual heritability. Heritability is generally defined between individuals. The use

of the term “intraindividual heritability” may, in reality, be inaccurate. Time-

varying common and specific environments are uncontroversial, but it is generally

accepted that the DNA sequence itself does not vary over time. Epigenetic influ-

ences may create heritable changes in gene expression, but not directly modify

the genome of an individual (see Barber & Rastegar, 2010, for a review of the

epigenetic control of Hox genes as an example). Thus, the proportion of variance

accounted for by additive genetics in a within-person model is likely to be tapping

into an alternative source of variance from the more typical between-person mod-

els. The additive genetic component in the within-person model might for exam-

ple represent a gene-environment interaction, creating a time-varying element of

variability to model. Hence, the small variability due to the additive genetics fac-

tor might be caused by no differences in additive genetics, but rather the limited

variability due to genetic-environmental interactions. The term “intraindividual
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heritability” is intended to have meaning by reference to its between-person ana-

logue. After further within-person behavior genetic models are fit, an alternative

term might prudently replace “intraindividual heritability”. The nature of the

within-person processes that lead to genetic or common environmental effects is

yet not well-understood (Turkheimer, 2004).

Third, the small number of time points for each child makes the application

of a time series method like state space modeling seem inappropriate. However,

the simulation study suggested that time series parameters could be adequately

estimated even when the number of occasions was 5, provided that the number

of people per group was large. Part of the purpose of the application with such a

small number of measurement times was to bridge the gap between longitudinal

modeling and time series modeling.

Fourth, the model estimated only had autoregressive effects from each latent

variable to itself at a later time. This certainly does not capture the potential

for gene-environment interactions. Beam and Turkheimer (2013) operationalized

gene-environment interactions as autoregressive effects from A at time t to C at

time t+1. Their simulations that suggested a feedback loop between environments

and phenotype that changed the gene-environment correlation within families.

There may be additional feedback between the environment and the phenotype.

Further autoregressive relationships between ACE components could be tested

to look for these feedback processes.

Fifth and finally, it is known that socioeconomic status (SES) often mod-

erates cognitive development. The goal of later applications will be to better

understand the role that SES plays within individuals in their development (e.g.

Bard, Hunter, Beasley, Rodgers, & Meredith, 2013). Incorporation of SES as a

time-varying covariate or a moderator of the genetic effect may be necessary to
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fully explain the within-person process. Next, we discuss plans for future work.

4.3 Future Work

The nature of science seems to be that every answered question leads to at least

three more unanswered questions. And the present work is no exception. Several

extensions have previously been mentioned and will not be recapitulated here.

One that was not previously discussed is to conduct the inverse of the simulation

study already reported. In the simulation performed, the measurement model

was invariant across groups and the dynamics differed. An alternative would

be to simulate invariant dynamics with diverse underlying measurement models,

creating a dynamic idiographic filter (Z. Zhang et al., 2011).

A second line to pursue is the use of an expectation maximization (EM) al-

gorithm for optimization of the mixture model. Because the state space mixture

models used here are just instances of Gaussian mixture models, an EM algo-

rithm exists that might aid in solution quality or speed in finding the solution

(e.g. Roweis & Ghahramani, 1999). Along a related line, Gaussian mixtures can

be described as a “soft” k-means cluster analysis (see section 14.3.7 of Hastie,

Tibshirani, & Friedman, 2009) because class membership is determined proba-

bilistically, without complete and deterministic assignment of records to clusters.

So, the E-step from the EM algorithm for Gaussian mixture models could be used

to overcome the limitations of k-means cluster analysis, namely that a brute force

search of all possible group membership assignments even for a small problem

would take prohibitively long. The E-step would be used to guide the search to

make it far more efficient, into the realm of computational feasibility.

Many small changes to simulation parameters could be explored. Missing

141



data could be added to see if similar rules for missing data apply for state space

models. The current implementation allows for completely and partially missing

observations, and early explorations indicate similar performance to structural

equation models with missing data. The inter-observation lag could be varied.

Time-varying parameters could be allowed (Chow, Zu, Shifren, & Zhang, 2011).

Continuous time models could be implemented using the hybrid Kalman filter

(Kalman & Bucy, 1961). Nonlinear models could likewise be estimated with the

extended Kalman filter. Prototype hybrid and extended Kalman filters exist, but

have not been thoroughly tested.

Along a separate line of work, state space models could and should continue

to be related to other methods. So far, much of this work has focused on struc-

tural equation models. One obvious family of methods that seems to have been

unjustly left out of many investigations are the epidemic models of the onset

of social activities (EMOSA; Rodgers & Rowe, 1993; Rodgers, Rowe, & Buster,

1998b; Stoolmiller, 1998; Rodgers, Rowe, & Buster, 1998a; Rodgers, 2007). These

models bear striking resemblance to nonlinear state space models, often taking

a form not unlike predator-prey models of competing populations (e.g. Gard &

Kannan, 1976).

A final road to probe is provided by some recent work in neuroimaging. Uni-

fied structural equation modeling (uSEM; Kim, Zhu, Chang, Bentler, & Ernst,

2007) was developed to combine time-lagged and contemporaneous covariances

in a single model for the purpose of analyzing fMRI data. Extended unified

SEM (euSEM; Gates, Molenaar, Hillary, & Slobounov, 2011) was designed to

further add the modulating effects found in event-related fMRI, as opposed to

block trial fMRI. The state space modeling implementation in OpenMx (Hunter,

2014b; Neale et al., in press) may also allow uSEM and euSEM. Moreover, a
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persistent issue in neuroimaging has been the heterogeneity of people (Molenaar,

2006, p. 47-55). Therefore, state space mixture modeling could be applied in this

setting with the potential for some positive results. Next, we close with some

brief concluding remarks.

4.4 Conclusion

More and more, the problem of measuring and modeling multiple individuals

at many occasions on several variables is one of the growing fundamental chal-

lenges in the field of psychology. Several recent papers have presented attempts

at a solution (Gonzales & Ferrer, 2014; Voelkle et al., 2014; Q. J. Zhang &

Wang, 2014; Voelkle & Oud, 2014; Steele, Ferrer, & Nesselroade, 2014; Song &

Zhang, 2014; McArdle, Hamagami, Chang, & Hishinuma, 2014). This disserta-

tion presented another solution: state space mixture modeling. In simulation, the

method appeared to be quite successful by showing good convergence, parameter

estimation, and group recovery. From the simulation, it appeared that sample

size was the primary factor determining accurate parameter estimation; whereas

the dynamics were most critical in properly assigning people to groups. This was

essentially an ideal result. State space mixture modeling correctly estimated pa-

rameters, and found people with similar dynamics in simulation. In application,

the method showed the benefit of a within-person dynamic modeling perspective

(see also Butner, Gagnon, Geuss, Lessard, & Story, 2014), but major limitations

with regard to large sample sizes. Software improvements have already begun to

remedy this situation. The method presented here will not be the final solution

to the persistent problem of simultaneously respecting the communality and the

uniqueness of individuals, but it is a good start.
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With that being said, the broader impacts of state space mixture modeling

have the potential to be far-reaching. The method correctly identified individuals

with the same dynamics. The novel combination of state space models with mix-

ture models allowed the discovery of underlying populations that were undergoing

the same change processes. No other method has been published showing this

much success at analyzing multiple multivariate time series. With this tool now

readily available, applied studies that simultaneously allow for individual differ-

ences in change processes and generalizable knowledge across multiple individuals

can begin.
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