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Abstract

Richly interactive visualization tools are increasingly popular for data exploration

and analysis in a wide variety of domains. Recent advancements in data collection

and storage call for more complex analytical tasks to make sense of readily avail-

able datasets. More complicated and sophisticated tools are needed to complete

those tasks. However, as these visualization tools get more complicated, it becomes

increasingly difficult to learn interaction sequences, recall past queries asked from

a visualization, and correctly interpret visual states to forage the data. Moreover,

the high interactivity of such tools increases the challenge of connecting low-level

acquired information to higher-level analytical questions and hypotheses to support,

reason, and eventually present insights. This makes studying the usability of complex

interactive visualizations, both in the process of foraging and making sense of data,

an essential part of visual analytic research. This research can be approached in at

least two major ways. One can focus on studying new techniques and guidelines for

designing interactive complex visualizations that are easy to use and understand.

One can also focus on keeping the capabilities of existing complex visualizations,

yet provide supporting capabilities that increases their usability. The latter is an

emerging area of research in visual analytics, and is the focus of this dissertation.

This dissertation describes six contributions to the field of visual analytics. The

first contribution is an architecture of a query-to-question supporting system that

automatically records user interactions and presents them contextually using natu-

ral written language. The architecture takes into account the domain knowledge of

experts/designers and uses natural language generation (NLG) techniques to trans-

late and transcribe a progression of interactive visualization states into a log of text

that can be visualized.

xiii



The second contribution is query-to-question (Q2Q), an implemented system

that translates low-level user interactions into high-level analytical questions and

presents them as a log of styled text that complements and effectively extends the

functionality of visualization tools.

The third contribution is a demonstration of the beneficial effects of accompa-

nying a visualization with a textual translation of user interaction on the usability

of visualizations. The presence of the translation interface produces considerable

improvements in learnability, efficiency, and memorability of visualization in terms

of speed and the length of interaction sequences that users perform, along with a

modest decrease in error ratio.

The fourth contribution is a set of design guidelines for translating user inter-

actions into natural language, taking into account variation in user knowledge and

roles, the types of data being visualized, and the types of interaction supported.

The fifth contribution is a history organizer interface that enables users to orga-

nize their analytical process. The structured textual translations output from Q2Q

are input into a history organizer tool (HOT) that imposes reordering, sequencing,

and grouping of the translated interactions. HOT provides a reasoning framework for

users to organize and present hypotheses and insight acquired from a visualization.

The sixth contribution is a demonstration of the efficiency of a suite of arrange-

ment options for organizing questions asked in a visualization. Integration of query

translation and history organization improves users’ speed, error ratio, and num-

ber of reordering actions performed during organization of translated interactions.

Overall, this dissertation contributes to the analysis and discovery of user story-

telling patterns and behaviours, thereby paving the way to the creation of more

intelligent, effective, and user-oriented visual analysis presentation tools.
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Chapter 1

Introduction

1.1 Overview

Visual analysis tools are increasingly used to make sense of large amounts of mul-

tidimensional information in a wide variety of knowledge domains. Users of these

tools analyze and progressively make sense of a dataset by traversing a set of cogni-

tive stages that comprise the sensemaking loop [1]. In analytic research, Pirolli and

Card [1] define the main two cognitive stages in the information seeking loop to be

foraging and sensemaking. This categorization can effectively be extended to data

analysis using visualizations as well. In a visualization context, foraging refers to

the process of searching, filtering, and extracting information from a visualization.

Sensemaking refers to the process of transforming the foraged data into knowledge

for constructing and testing hypotheses and eventually presenting gained insights.

The high dimensionality of many data sets calls for complex visualization designs

composed of multiple views. In such visualizations, views are often coordinated to

determine how the appearance and behavior of data dimensions in each view depend

on navigation and selection in other views. Coordinated views are often equipped

with interaction techniques to enable users to forage data sets by brushing, drilling

down, using overview+detail, semantic zooming, and synchronized scrolling [?, 2].

1



Coordination supports making sense of the data by revealing patterns and complex

relationships across and within data dimensions.

Despite the powerful capabilities that coordinated multiple view visualization

techniques provide for analyzing data, they introduce usability issues. As visualiza-

tion tools become more structurally sophisticated, it becomes increasingly difficult

for users to interpret visualization states, remember past queries, and grasp the full

analysis potential of composed interactions to forage the data. Moreover, the high

interactivity of such tools increases the challenge of connecting low-level acquired

information to higher-level analytical questions and hypotheses in order to support,

reason, and present acquired insight. These usability issues suggest the need for

supplementary visual tools to communicate information about current and past vi-

sualization states and the interactions that bridge them. Such tools could help make

rich visual query interfaces accessible to a much wider and more diverse community

of users.

Capturing the history of user interactions is one step toward expanding acces-

sibility. The history of user interactions, which is constructed through analytical

steps users take sequentially by interacting with a visualization, can also be referred

to as provenance. In studying provenance, the highly interactive nature of complex

visualization tools warrants attention to how users utilize interactions to accomplish

exploration and analysis tasks. Research has focused primarily on recording a history

of interactions for later use, such as to provide a means to recreate past visualization

states (e.g., [3]), share the analytical process (e.g., [4]), or analyze users’ reasoning

and rationale (e.g., [5]). Little attention has been paid to taking advantage of ongo-

ing interaction during an analysis session for learning a new visualization, recalling

past states, or improving the reliability of insight acquired.

Approaches that focus on recording a user’s visual activities are generally clas-

sified into two categories: manual or automatic [6]. Manual recording of prove-

nance is done by users themselves and is effective for capturing their high-level
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insight (e.g., [7–10]). However, it is distracting, time-consuming, and might result

in inconsistent and sometimes inaccurate records of provenance. Conversely, auto-

matic approaches capture a comprehensive and consistent record of user activities

(e.g., [4, 5, 11–13]). Such systems generally capture only low-level user interactions

such as mouse movements or clicks. Exhaustive recording of such events often results

in enormous datasets that must be understood and managed to be most useful. A

more effective approach needs to be developed to automatically record user inter-

actions, yet capture the corresponding semantics of those interactions and present

them in a way that is understandable and reusable. This would broaden the usage of

provenance data from reconstructing visualization states to augmenting the foraging

and sensemaking processes of data analysis.

1.2 Motivation

Consider a visualization of migrant boat interdictions (shown in Figure 1.1) which

was presented in VAST Challenge 2008 [14] and created using Improvise [15]. The

visualization shows data related to illegal migration to the United States from an

imaginary island off the coast of Florida.

This visualization is a good example of complicated coordinated multiple view

design used to evaluate geographical and temporal migration patterns. It has sev-

eral types of views: table view, map, calendar view, scatter plot, and time series. It

incorporates many interaction techniques, such as cross-filtering, selection, dynamic

sliding, and panning and zooming. It visualizes a variety of data types including

nominal, categorical, temporal, geospatial, and numerical. The comprehensiveness

of the visualization, in displayed data dimensions and supported interactions, gives

users the ability to effectively drill down into the data and analyze complex rela-

tionships between the dimensions.

The views in Figure 1.1 are labeled to further illustrate some of the capabilities

of the visualization. As shown in Figure 1.1, users can:
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Figure 1.1: Migrant boat interdictions visualization

(A) dynamically filter Vessels, coast guard Ships, Resolutions, and Passenger

views on Time;

(B) interact with the map to get the spatial characteristics of the target vessel

and nearby vessels within a given radius;

(C) extract detailed information about individual vessels such as when, where,

and what type of vessel was involved with an event, and how many passengers the

vessels were carrying;

(D) filter range of fatalities on different dimensions such as Time, coast guard

Ship, type of Vessels, type of Resolutions, and Passengers;

(E) select and filter multiple dimensions on one anther and extract the complex

relationships among them;

(F) navigate the calendar view to get detailed information about events in certain

dates; and

(G) express their preferences for data representation.
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Despite the richness and high utility of visualizations like the one in Figure 1.1,

it is easy to imagine users having trouble utilizing them due to the visualizations’

complexity; it might take several interactions until they realize how the visualization

can be helpful in their analysis process and how it can reveal the relationships

between data attributes. People also tend to forget their sequence of interactions

after few visualization states [16]. If users are not able to remember what they are

looking for or how they have achieved certain results, they might have difficulty

continuing their analytical process.

Consider an example of a sequence of queries performed on the visualization

in Figure 1.1, shown in Figure 1.2 and 1.3. This example illustrates the challenge

of keeping track and understanding the meaning of each visualization state after a

series of interactions:

(A) Selecting Anthony K from the Ship table (Figure 1.2, label A)

(B) Filtering the Calendar view on the Ship table (Figure 1.2, label B)

(C) Selecting April 14th, 2005 from the Calendar view (Figure 1.3, label C)

(D) Filtering Vessel table on the Calendar view (Figure 1.3, label D)

(E) Filtering the Vessel table on the Ship table (Figure 1.3, label E)

Looking at the steps, it might not be clear what information is requested from

the visualization. This sequence of interactions results in a state showing the vessels

caught by Anthony K on April 14th, 2005. Even though selection of data items

and toggling of checkboxes to apply filtering are the only interactions required to

compose the queries presented in the example, it can be difficult to comprehend the

meaning of the interactions in the context of the domain being visualized. Moreover,

users might have trouble remembering primary interactions and visualization states

after performing several interactions (e.g., by the fifth interaction (labeled as E),

the first interaction (labeled as A) might be forgotten). The memorability and

interpretability of visualization states can be even more challenging in visual analysis

tools that are structurally more complicated than the boat visualization.
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Figure 1.2: Sequence of interactions performed on the migrant boat visualization:

(A) Selecting Anthony K from the Ship table, (B) Filtering the Calendar view on

the Ship table.

The visualization presented in the earlier example can be accompanied by a

visual log of text, as illustrated in Figure 1.4. The log dynamically grows as the user

performs interactions. Explicit textual representation of user interactions can assist

users in making sense of how the interactions they perform correspond to changes

in visualization state. These individual inquiries can be combined to form a bigger

analytical picture, which promotes pattern discovery and reasoning.
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Figure 1.3: Sequence of interactions performed on the migrant boat visualization:

(C) Selecting April 14th 2005 from the Calendar view, (D) Filtering Vessel table on

the Calendar view, (E) Filtering the Vessel table on the Ship table.
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Figure 1.4: Logged interactions

1.3 Translation of User Interaction

This dissertation addresses the problem of enhancing usability and utility of com-

plex coordinated visualizations throughout the sensemaking process. The general

approach is to utilize users’ visual interactions and transform them in a way so as

to (1) express the meaning of individual visualization states and their relationships

in a bigger analytical context, and (2) construct semantically rich and atomic pieces

of information from the interactions that can be used in presentation and story-

telling. A textual history of translated interactions can be an easy-to-read reflection

of salient observations and low and high-level decisions made throughout the ana-

lytical process. It can also expand the usage of visual analysis tools beyond just

acquiring certain information, by providing a facility for remembering, reasoning,

recreating, sharing, analyzing, and presenting the process of developing hypotheses

and reaching conclusions.

In contrast with existing approaches—manual and automatic— used to capture

history of user interactions, this dissertation introduces a hybrid approach that auto-

matically record lower-level interactions, then translate the captured intentions into

a written language such as English [17]. This approach is able to comprehensively

record user interactions as in existing automatic approaches, and capture users’

high-level query intentions as in manual approaches, but with little or no end-user

involvement.
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Following this approach, a user interaction translation architecture is designed

and a Query-to-Question (Q2Q) system is implemented to capture and translate user

interactions into natural language questions. Q2Q uses natural language generation

(NLG) techniques to record and display the provenance of interactions and intentions

as a visual log of formatted text. The choice of translating user interactions into

questions rather than sentences is a means to engage inquisitiveness. The questions

work as a way to motivate users to learn more about provided visual representations

and interactions and to utilize them for analysis in a more cognizant and effective

manner.

Developing a general system for visualization interaction translation is extraor-

dinarily challenging. The design space of visual representations and interaction

techniques is large and growing. One direction of generalization is support across

knowledge domains. For the system to be widely applicable, one must carefully

choose how to interpret interactions and construct language to produce appropri-

ate text that works well both within and across domains. Subtle differences in

translation of domain-specific data relationships to an understandable log, even for

common visualization techniques, make this path of generalizability both compli-

cated and deeply interesting. Another direction is support for more of the widely

varying types of visualization interactions and queries. New language constructions

are needed to express the structure of these interactions. There is an enormous space

of translation design to explore.

The design of an architecture for Q2Q focuses on supporting generalizability to

many knowledge domains for a set of selected interaction techniques. In focusing

on generalizability across applications, the family of visualization techniques that

deals with nominal/categorical data types are studied and Q2Q is developed in the

domain-independent cross-filtering views technique [18]. In cross-filtering, users can

brush items within data dimensions and filter between data dimensions to dissect
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multidimensional relationships. However, its usability suffers from a selection occlu-

sion effect—in which selected items both cross-filter other views and are themselves

cross-filtered out—as well as an out of sight, out of mind effect—in which the mean-

ing of visualization states are forgotten after a few subsequent interactions. This

mix of benefits and drawbacks make cross-filtering well-suited to examine how Q2Q

supports question-centric reasoning, action, verification, and presentation of inten-

tion.

The translations that this architecture provides are independent of, yet customiz-

able to, various domains. Though full generalizability of the system to support the

large space of all common interaction techniques is beyond the scope of this dis-

sertation, the design of the system is done in a way that is expandable to support

new interaction techniques. This approach allows formation of a structured set of

text fragments that can be handed to a storytelling tool for rearranging and pre-

senting a history of user activities. This dissertation also describes the design and

implementation of an initial storytelling application called the History Organizer

Tool (HOT). HOT provides an environment for users to manipulate the questions

they ask in visualizations and organize those questions to present and share their

analytical process. The question-centric approach to user interaction translation in

Q2Q, and to rearrangement and presentation in HOT, aims to increase the usability

of visualization by having questions rather than interaction serve as the focus of

analytical reasoning and action throughout the sensemaking process.

1.4 Thesis Statement and Research Contribution

My thesis statement is as follows: A domain-independent natural language genera-

tion system can be built to translate user interactions in visualizations into struc-

tured, contextual questions. Augmenting coordinated multiple view visualizations
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with a user interaction translation interface improves learnability, efficiency, mem-

orability, and user satisfaction of visualizations. Structured user interaction trans-

lations can be used to construct a history organizer tool, which imposes ordering,

sequencing, and grouping of the translations. Integration of translation and the

history organization improves users’ speed, error ratio, and number of reordering

actions during rearrangement of their visual activities. Overall, accompanying multi-

ple coordinated view visualizations with user interaction translation and organization

systems enhances data foraging and sensemaking during and after visual analysis.

This dissertation describes six contributions to the field of visual analytics. The

first contribution is an architecture of a query-to-question supporting system that

automatically records user interactions and presents them contextually using natu-

ral written language. The architecture takes into account the domain knowledge of

experts/designers and uses natural language generation (NLG) techniques to trans-

late and transcribe a progression of interactive visualization states into a log of text

that can be visualized.

The second contribution is query-to-question (Q2Q), an implemented system

that translates low-level user interactions into high-level analytical questions and

presents them as a log of styled text that complements and effectively extends the

functionality of visualization tools.

The third contribution is a demonstration of the beneficial effects of accompa-

nying a visualization with a textual translation of user interaction on the usability

of visualizations. The presence of the translation interface produces considerable

improvements in learnability, efficiency, and memorability of visualization in terms

of speed and the length of interaction sequences that users perform, along with a

modest decrease in error ratio.

The fourth contribution is a set of design guidelines for translating user inter-

actions into natural language, taking into account variation in user knowledge and

roles, the types of data being visualized, and the types of interaction supported.
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The fifth contribution is a history organizer interface that enables users to orga-

nize their analytical process. The structured textual translations output from Q2Q

are input into a history organizer tool (HOT) that imposes reordering, sequencing,

and grouping of the translated interactions. HOT provides a reasoning framework for

users to organize and present hypotheses and insight acquired from a visualization.

The sixth contribution is a demonstration of the efficiency of the suite of arrange-

ment options for organizing questions asked in a visualization. Integration of query

translation and history organization improves users’ speed, error ratio, and num-

ber of reordering actions performed during organization of translated interactions.

Overall, this dissertation contributes to the analysis and discovery of user story-

telling patterns and behaviours, thereby paving the way to the creation of more

intelligent, effective, and user-oriented visual analysis presentation tools.

1.5 Research Questions and Scope

The research presented in this dissertation must answer several questions raised by

the thesis.

First, the issue of usability of complex coordinated visualizations has been over-

looked in past studies of visual analytics tools. To increase the utility of visualiza-

tions, user interaction provenance has been used to recreate visualization states and

analyze users’ rationale. Can user interaction provenance be used to increase the

usability of visualizations during analytical sessions? How can user interactions be

presented to be easy to follow and comprehend? Can natural language generation

be used to translate user interactions? Can a natural language generation architec-

ture be designed that is domain-independent, yet customizable to particular data

domains?

Second, how can a supporting translation tool be built for user visual interac-

tions? What are the requirements for the translation system? What is a useful

design of its user interface? What are the expected capabilities of the interface?
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Third, how does the textual translation of user interaction affect usability of

visualizations? What aspects of usability can be affected and to what extent? Does

visualization or familiarity with a domain affect the usefulness of textual translation?

Fourth, what are the considerations in designing a user interaction translation

system? In what ways do types of data, types of interactions, and individual dif-

ferences between end-users affect the translation process? What are the challenges

and limitations in designing a user interaction translation system?

Fifth, how can users organize their thoughts and analytical process after inter-

acting with a visualization? Can they present the steps they took to gain certain

insight using textual translations of their interactions? How can automatic reorder-

ing and grouping be applied to rearrange the textual translations? What are the

possible reordering options?

Sixth, which types of reordering options, such as temporal, causal, or free, are

more useful? Can a relationship graph representing interaction contextual associa-

tions be useful in ordering and finding relevant information? What are the users’

preferences while arranging the questions for presentation? What are the other

rearrangement behaviors to be considered?

1.6 Organization of the Dissertation

The remaining chapters in the dissertation are organized as follows.

Chapter 2 provides an overview of previous studies in user interaction provenance,

natural language techniques, and applications of NLG in visual analytic re-

search, and states the contributions of this dissertation within the existing

literature.

Chapter 3 describes the architecture of a user interaction translation system, its

modules, and the implemented translation system, Q2Q.
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Chapter 4 describes a study of the effects of pairing a visualization with a Q2Q

interface on several aspects of usability.

Chapter 5 discusses opportunities and challenges in automatically translating a

progression of interactive visualization states into a “visual logbook” of gen-

erated text that complements and extends the functionality of visualization

tools; focusing on its support for cross-examination and query validation. This

chapter also elucidates the challenges by identifying several key factors that

strongly influence the generation procedure and the final text, including dif-

ferences in user intention and usage of text, user level of knowledge, forms of

interaction, and data types.

Chapter 6 describes a history organizer tool that enables users to organize their

thoughts and steps taken during their analysis using a visualization. It presents

several graph models of the relationships between analytical questions asked

from a visualization and, describes how the graph models are implemented for

automatic reordering and grouping.

Chapter 7 describes a user study of different ordering and rearranging options

for organizing users’ questions and demonstrates their usefulness in telling a

short story about data dimensions in a visualization. Further, it describes the

discovery of other rearrangement patterns that users follow during storytelling

tasks.

Chapter 8 concludes with a discussion of the benefits and limitations of user inter-

action translation for increasing the usability of visualizations, and provides

an outline of possible future work and extensions.
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Chapter 2

Background and Related Work

2.1 Visual Analytics

As Thomas and Cook stated in [19], visual analytics is the science of utilizing inter-

active visual interfaces for analytical reasoning. In recent years, the data available

is rapidly growing due to advancement in data collection and storage technologies.

However, the extensive amount of data challenges the ability of effective analysis of

these valuable source of information. In response to increasing analytical require-

ments, interactive visualization tools are becoming indispensable for making sense

of complex data. The sophisticated and intuitive visual interfaces accompanied with

various interaction techniques enable analysts to directly manipulate and interact

with data to make well-informed decisions. In the next two subsections, background

and knowledge about visualizations and commonly used interactions are provided.

Then, related work in capturing and presenting user interactions are discussed. Fi-

nally, existing applications of natural language generation (NLG) in visualization

research are presented and contributions of this dissertation are stated.
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2.2 Visualization

Visualization research is about designing effective ways to graphically display data.

The main goal of visual representation of data is to meaningfully communicate the

information carried by large datasets—often containing multiple and diverse data

attributes—to users.

Visualization techniques can be classified as static or interactive. Static visualiza-

tions are an informative image of data. A well-known example of an effective static

visualization showing multiple dimensions is Minard’s map of Napolean’s March on

Moscow [20]. Even though static visualizations are often useful in representing re-

lationships between a few data attributes, their effectiveness dramatically decreases

as the number of attributes and amount of data grows. Interactive visualization can

overcome limitations in representation to some extent by giving control to the user

over what information is shown at any given time.

Visualizations can also be categorized as scientific visualizations or information

visualizations based on the kind of data they display. Scientific visualizations mostly

focus on quantitative data in fields such as medicine [21], meteorology [22], geogra-

phy [23], and biomedical engineering [24]. These data generally have spatial charac-

teristics and consist of a large number of records. The immenseness of the scientific

data records limits the interactivity of these types of visualizations.

Information visualization deals with representing abstract data using graphical

encoding. One difference between scientific visualization and information visualiza-

tion is that scientific visualization are spatially oriented whereas information visu-

alization may incorporate spatial representation if it suits the data. Information

visualizations typically display heterogeneous multidimensional data using various

views and graphical representations. High interactivity of some of the visualizations

allows natural and effective data exploration and view manipulation to study the

data from various perspectives. A few examples of interactive multiple view visu-

alizations are VisTrails [4], Improvise [15], and WireVis [5], and ComVis [25]. The
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views in these tools are often coordinated for ready exploration of multiple data

attributes and their interdependencies.

Coordinated multiple views often involve several displays such as tables, his-

tograms, timeline, or maps that are linked by brushing, selection, and filtering.

Users can explore the data by viewing it through different representations. How-

ever, the learning time required to use a new visualization, the load on users memory,

the context switching time between the representations, and ongoing changes on the

linked views due to interaction with another views, introduce major usability is-

sues [16, 26,27].

This dissertation introduces an approach to improve the usability of coordinated

multiple view visualizations while keeping their sophisticated features intact. Im-

provise [15] is the chosen platform for conducting the research and implementing

the supporting system. Improvise users are able to interactively build and browse

multiple view visualizations. The rich coordination provided in Improvise and fine

grained control given to users in interacting and modifying visualizations make the

tool suitable for studying how to increase usability of highly interactive multiple

coordinated views in general.

2.3 Interaction

Interactive visualization is an effective way to engage users in exploring and analyzing

data. Interaction enables users to focus on a point of interest, manipulate views to

show data differently, change content, and navigate to explore.

There are a variety of well-known taxonomies of visualization interactions (e.g., [28–

32]). Some of the taxonomies that present interactions at different levels of gran-

ularity are summarized next. These taxonomies provide a better understanding

of various perspectives towards visualization interactions: from focusing on system-

centric to user goals. A taxonomy which is more aligned with the level of interactions

considered in this dissertation is described later in detail in this chapter.
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Several taxonomies focus on low-level characteristics of interactions. Shneider-

man [28] categorizes interactions as seven tasks for single and multi-dimensional data

visualization: overview, zoom, filter, details-on-demand, relate, history and extract.

Dix and Ellis [29] take a more system-centric approach, classifying interactions as

highlighting and focus, accessing extra information, and temporal fusion. Wilkin-

son [30] categorizes interactions into filtering, navigation, manipulating, brushing,

animating, rotating, and transforming. Spence [31] looks at interactions in terms

of interaction modes—continuous, stepped, passive, and composite—and data di-

mensionality. Amar, et al. [32] considers user goals, categorizing interactions as

retrieve value, filter, compute derived value, find extremum, sort, determine range,

characterize distribution, find anomalies, cluster, and correlate.

Unlike the above taxonomies, Yi, et al. [33] presents a taxonomy that takes into

account both user goals and interaction techniques. They categorize visualization

interactions into seven general techniques: selection, exploration, reconfiguration,

encoding, abstraction/elaboration, filtering, connection, and other.

• Selection is marking an item of interest by ways such as highlighting [14], label-

ing [34], and placemarking for instance pins placed in Google Earth. Selection

can sometimes be seen as a preceding action followed by an operation. For

instance, filtering operation generally is proceeded after a selection action.

• Exploration is examining different subsets of the data over time. Panning [34],

searching [35], and hyperlinking [36] are examples of exploration interactions.

• Reconfiguration is rearrangement to show different representations of the data.

Sorting [37], clustering [38], re-plotting [39], and rotating [40] are examples of

reconfiguration to look at data from different perspectives.

• Encoding is changing the visual representation such as its color, size, shape, or

format, to reveal patterns in data that may not be easy to see otherwise.
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• Abstraction/elaboration is changing the visual representation to provide an

overview or, conversely, show more details about the data, using techniques

such as zooming [14] or detail-on-demands [37], respectively.

• Filtering is requesting a subset of data based on a condition; for example, using

sliders [14], checkboxes [14], or keyword search [35] to filter the data.

• Connection is showing related items. Brushing techniques in multiple coordi-

nated view visualizations are examples of connection interaction [39]. Use of

connection in visual representations is also common, for instance in network

graphs.

• The Other category of interaction refers to all other interactions that do not

clearly fit into any of the mentioned categories, such as undo/redo.

Note that the above list of interactions identified by Yi, et al. can overlap. For

instance, filtering interactions can be viewed as a subcategory of exploration actions.

Considering the interactions listed above, this dissertation focuses on an impor-

tant subset of interactions: selection, filtering, and connection. This combination of

interactions is commonly used in research and commercial visualization tools, mak-

ing them interesting and challenging to consider with an eye toward increasing the

usability of visualizations that employ these techniques.

2.4 User Interaction Provenance

Visual interaction can be seen as a dialog between the user and a visual represen-

tation while the user explores data to gain insight. The rich variety of types of

interactions offers an opportunity to study the exploratory behaviours and visual

activities of users during their interactions with visualizations. In this disserta-

tion, the term user interaction provenance is used to refer to a historical record of
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process, rationale, and visual activities by which an insight is acquired during an-

alytical sessions. Also, the term visualization state is used to refer to the current

set of parameter settings (determined by interactions) as reflected in the views of a

visualization.

There is a lot of interest in studying provenance of users’ visual activities, whether

to share and recreate visualization states and pipelines (e.g., [11, 41]), revisit past

states by providing history (e.g., [3, 42, 43]), analyze user reasoning processes and

visual analysis behavior (e.g., [5,44,45]), or support analytical reasoning (e.g., [7,46]).

Although these studies follow different procedures, they capture histories of visual

activities as sequences of visualization interface states, user interactions, or the state

transitions triggered by user interactions.

Many tools provide a history of recorded visualization states in a linear or branch-

ing fashion. For instance, Adobe Photoshop and Illustrator record document states

as a linear stream that can be revisited using undo/redo operations or random access

in a history panel. Another example of linear representation of interaction history

is a continuous timeline that shows the duration between actions with sliders for

navigation [47]. Branching models, on the other hand, use a tree structure to store

history states and enable users to navigate the current branch of actions [3] or across

branches of actions [12,48,49].

Rather than simply presenting history states for user revisitation, the focus of

this dissertation is on capturing and representing the analytic connotation of inter-

actions and state transitions, to help users comprehend the sequence of decisions

made during the analysis process. In keeping with like Jankun-Kelly’s conceptual

framework for recording visualization states and the transition functions applied to

them [11], Q2Q automatically records both, at the level of visualization parameter

changes. Q2Q then reflects those intentions through designer-guided translation of

changes into a written language such as English [17]. This approach promises to
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facilitate the visual sensemaking activities of a wider group of users having different

levels of visualization expertise [50].

Approaches to capture provenance of user interactions can further be categorized

loosely as either manual or automatic [6]. The manual capturing of user’s visual ac-

tivities requires users to manually record and annotate their rationale and acquired

insight (e.g., [7–10, 46]) as they are performing their analytical tasks. Manually

capturing users’ high-level goals is effective in analyzing their reasoning and ratio-

nale. However, it is time-consuming and not practical considering the rapid-fire

nature of interactivity in many visual analysis applications [51]. Moreover, as Gotz

and Zhou [6] point out, users generally record their high-level logic and approach

and not the detailed information about the steps that lead to their conclusions. As

a result, making sense of their manually annotated approach can be difficult, and

consequently retrieving and sharing from manual provenance is limited.

Conversely, automatic capture of interactions can produce comprehensive records

of provenance (e.g., [11,12,41]). Most automatic capture systems are event-based and

record low-level activities such as mouse movements and clicks. Extensive recording

of low-level events, however, often produces data sets much larger than the original

data itself. Moreover, due to the limited amount of data analysis context that low-

level event data conveys, making sense of these interactions and extracting intention

from them can be extraordinarily difficult.

Most similar to Q2Q approach is the HARVEST system [6]. HARVEST auto-

matically captures a set of defined actions and presents them as a trail of icons.

Although the system is able to abstract a set of meaningful user actions common

across various visualization tools, the meanings conveyed by the icons and their

action labels are limited. In contrast, in this dissertation, the meanings of interac-

tions relative to the domain application are expressed to better capture the intended

connotation of individual recorded interactions, and also sequences of them, in the
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context of the actually visualized data values and dimensions of the domain. High-

level abstract representation of interaction provenance allows recorded interaction to

be used to recreate and share visualization states, which can be useful for tutoring

novice users and facilitating use of visual data analysis by experts [50].

2.5 Natural Language Generation

Natural language generation (NLG) is a well-established sub-field of computational

linguistics. It has broad applications in information processing, such as descrip-

tion of data structures and relationships [52], narration for medical records [53],

summarization of weather forecasts [54], and letter generation [55, 56]. Generally,

NLG starts from some non-linguistic representation of information as input, and us-

ing knowledge about language and the application domain, automatically produces

documents, reports, explanations, and other kinds of texts [57].

The approach presented in this dissertation centers on using NLG to translate

the meaning of visualization interactions in a generalizable way. This NLG applica-

tion is unique and challenging for two reasons. First, generation must work for an

open-ended set of diverse analysis domains. It is a practical impossibility to realize

both sufficient comprehensiveness and specificity in a pre-built corpus or example

repository. Second, generation should produce consistent results, readily associa-

ble with visualization states. In particular, generation should respond to ongoing

visualization state changes at interactive rates.

NLG techniques are maintainable, scalable, and can generate high quality text.

NLG applications typically follow a rule-based, statistics-based, or instance-based ap-

proach. Many practical applications use rule-based approaches, e.g., [54], [53]. They

require linguistic knowledge, manual development, and are tied to the domain of

application. For example, a commercially used NLG system (SumTime) generates

marine weather forecasts for offshore oil rigs [54]. In SumTime, the authors analyzed

the existing forecast corpus to map forecasters’ choices of words to the numerical
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forecast data, and designed a set of domain specific rules to cover existing scenarios.

Though this approach produces high quality texts, its strong dependency on a par-

ticular domain makes it inapplicable to user interaction translation of visualizations

of data from an open-ended set of possible domains. In [53], which documents a

NLG system for electronic medical records, Harris further describes the challenges

of commercially used NLG systems that necessitate a rule-based approach. Besides

the general challenges such as manual construction of exhaustive domain depen-

dent templates, required linguistic knowledge, and modularization of the system for

further modifications, Harris indicates that building a system that is expected to

generate accurate and reliable output cannot completely be automated. Q2Q takes

this into consideration by using two stage generation that monitors possible outputs

and semi-automatically generates meaningful text that is accurate and reliable.

Conversely, statistics-based approaches need less linguistic knowledge and man-

ual development, but require large training corpora to produce high quality text.

They also require long computation to perform over-generation and ranking. These

approaches are largely based on Langkilde and Knight’s well-known work [58] in ap-

plying statistics to NLG in the design of general-purpose machine translators. Even

though various systems implemented the idea, it lacks practicality for real world

application due to the low quality of output, as well as the cost of full generation

and ranking output based on appropriateness.

Approaches that combine statistical and rule-based methods have produced more

promising results. Belz [59] focuses on design of a reusable grammar that is applied

based on probability. This approach has the advantages of variety in the generated

text and better computation time compared to purely statistical methods, such

as [58]. Yet, the computation time is not on the order of 100 milliseconds expected

for responsive interaction with visualization user interfaces. Like other statistical

approaches, combined approaches require a comprehensive corpus to base grammar

rules upon and thereby allow probability approaches work. Such corpus repositories
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are not practical to populate when dealing with applications spanning an open-

ended set of domains. Also, the accuracy and quality of outputs expected from a

user interaction translation system are not guaranteed using the approach in [59],

due to its probabilistic nature.

Instance-based approaches manually construct a repository (smaller than those

in statistical-based approaches) of annotated examples that are often particular to

the application domain, and use machine learning techniques to generate new text.

Since a smaller sample size would result in lower quality output in machine learn-

ing methods, some approaches combine rule-based and instance-based methods to

increase the accuracy and grammatical correctness of the text [60, 61]. Also, some

work has been done to design more time-efficient generation engines compared to

statistical-based methods, by incorporating search optimization techniques to find

the best output suggestions [61,62]. However, as in rule-based approaches, instance

repositories are generally designed to cover a particular domain, which limits their

applicability to user interaction translation.

Work on NLG for visualization use looks at summarizing non-interactive visual-

izations into accompanying captions [63], describing special patterns in time series

data [64,65], and capturing the decision-making process by summarizing interactive

parameter changes [66]. These applications generally follow a rule-based approach.

In the approach presented in this research, syntactical grammar rules are combined

with a very few domain-specific sentence fragments as examples. This hybrid ap-

proach provides the meaning of new data dimensions and relationships without an

existing domain specific corpus or example repository, confirms the consistency and

quality of generation outputs, and translates domain-specific interactions into high

quality text without a perceptible delay. Q2Q implements the first semi-automatic

NLG technique that builds a structured ontology on the fly and uses it to generate

text across a variety of domains without relying on an existing corpus.
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Chapter 3

Query to Question Architecture and

Implementation

This chapter provides a detailed description of the architecture of the user interaction

translation system. It then presents the considerations that go into the application of

the architecture of Q2Q to cross-filtered views. To provide context, the chapter starts

with an example of how Q2Q works in conjunction with a cross-filtering visualization

and what kind of questions it generates in response to user interactions.

3.1 Q2Q Example

Figure 3.1 shows an intermediate state of a cross-filtered visualization, alongside the

Q2Q interface. The visualization displays data from the Retrosheet database1 of

schedules and play-by-play information for both historical and modern major league

baseball games. A larger image of the visualization without the Q2Q interface

is provided in Figure 3.2 for better readability. This visualization shows games,

stadiums, home teams, and away teams in table views; game schedules in a calendar

view; stadium locations in a geographic map; and a scatterplot matrix of game dates,

game time, and two quantitative dimensions selected from dropdown lists.

1http://www.retrosheet.org
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Figure 3.1: Visualization of baseball games in the Retrosheet database (left), ac-
companied by a Q2Q interface (right).

The Retrosheet visualization is built around cross-filtered views technique. The

cross-filtering views support high-dimensional brushing between the views and allow

users to filter any of the displayed views (tables, calendar, map, and scatterplot) on

one or more other views. For instance, the Home Teams table in Figure 3.2 is filtered

by the data values selected in the Dates and Away Teams tables. It shows only the

home teams that played on May 4th, 1999 and against away teams ARI (Arizona

Diamondbacks), KCA (Kansas City Athletics), and SLN (St. Louis Cardinals).

The Q2Q interface shown on the righthand side of Figure 3.1, and enlarged in

Figure 3.3, appends rows of questions and automatically scrolls as the user interacts

with the visualization. The left column lists interactions. For instance, toggling the

Away checkbox in the Home Teams table in Figure 3.1 results in the text Filtering

Home team on Away team, which is shown as the second row in Figure 3.3. The

right column displays the corresponding translations of interactions into questions.

Users can scroll to revisit interactions performed and review queries as questions.

The interaction types and data attributes involved in the interactions are highlighted

to increase the readability of the translations. For instance, the data value Tue May

04 appears in blue in the second row of Figure 3.3.
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Figure 3.2: Visualization of baseball games in the Retrosheet database

Possibly confusing interactive conditions are color-coded in orange. Consider the

filtering interaction shown in the second row of the Q2Q interface in Figure 3.3.

The interaction filters Home Team on Away Team. However, no data value from

the Away Team table is selected at this point in time, Home Team is filtered on an

empty set. This results in the question Which home teams did play against the away

team {}? with no item listed as the Away Team data value. To avoid confusion,

Q2Q generates a warning message—No home team appears because no away team is

selected—to inform users about what might be the issue and why the visualization

responded in a certain way, in this case that this interaction results in disappearance

of all the items in Home Team table. Chapter 5 provides more examples of this type

of interaction.

Q2Q uses strikeout to copyedit rather than replace defunct questions. For in-

stance, unfiltering Stadium on Date in Figure 3.3, sixth row, results in striking

out the previously generated question Which Stadiums did host a game on the date

{Tue May 04 00:00:00 CDT 1999}? and generating the questions that are still valid
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Figure 3.3: Q2Q interface that accompanies the Retrosheet visualization.

after the unfiltering interaction. Similarly, deselecting a set of stadiums from the

Stadium table in Figure 3.1, seventh row, is reflected by striking out the deselected

items and updating the previously generated questions (Figure 3.3, row seven, shows

the questions in a larger figure).

Arbitrarily long lists of attribute values are displayed using an ellipsis as a graph-

ical placeholder. Users can also customize the interface by changing the color of the

interaction names and the data values of each type.
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This example illustrates several types of question—where, when, what/which—

that can be generated as users interact with a visualization. For example, the

interaction to filter the geographical map is translated (ninth row) into Where are

the stadiums MON02, . . . , or SJU01? A deselection interaction affects the

Calendar view and results in a query translated (eighth row) as On what dates

have the stadium MON02, . . . , or SJU01 hosted a game? An example of a

what/which question (second row) is Which home teams did play on the date Tue

May 04 1999? Translation of a selection interaction generates a phrase using the

keyword Considering to reflect brushing of attribute values within a dimension (third

row). If the selection occurs with filters on, the phrase acts as a qualifier in questions.

If not, it serves as a sentence fragment to indicate activity in progress.

To accommodate variation in user preferences, needs, and analytical roles, Q2Q

provides options to aggregate items within questions, and separately to aggregate

the questions themselves, resulting in four different question formats. The Aggre-

gate Items checkbox toggles item aggregation. If an interaction involves three or

more data values, Q2Q aggregates them and presents them using an ellipsis: Which

stadiums did the away teams ARI, . . . , or SLN visit? Item aggregation is on by

default. The full list of attribute values can be presented on demand by unchecking

the checkbox: On what dates have the stadium MON02, PHI13, SAN02, or SJU01

hosted a game?

The upper left corner of the interface provides a check-box to Aggregate Ques-

tions. Non-aggregated questions are concatenated with and, which is easy to read

but somewhat clumsy: Which stadiums did host a game on the date Tue May 04

1999? and In which stadiums did the home team MON, . . . , or CHN host a game?

and Which stadiums did the away team ARI, . . . , or SLN visit? Conversely, aggre-

gated questions present meanings of interactions more colloquially: Which stadiums

did host a game on the date Tue May 04 1999, the home team MON, . . . , or CHN

host a game in, and the away team ARI, . . . , or SLN visit?
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The formatted text can also be saved—currently in HTML format—for later use,

such as to recreate past sessions and share sessions with others. Saved translations

are also provided as an input to the History Organizer Tool developed in this dis-

sertation and described in Chapter 6. The tool takes advantage of the structured

format of the questions to suggest a set of reordering and grouping options and let

users build a story of their own.

Users can also clear the log; this option is provided as an initial crude way to edit a

record of interactions, such as to forget an unfruitful exploration path. More flexible

editing and filtering of generated questions can be done after analytical sessions for

the purpose of sensemaking and presentation, using the History Organizer Tool.

Throughout this dissertation, various examples show Q2Q applied to different

data domains and dimensionalities to suggest its generalizability. The Retrosheet

example which appears in Figure 3.1, is exemplary of cross-filtering visualizations,

and is thus used to describe the architecture of the translation system in detail

throughout this chapter.

3.2 Overall Architecture

The high-level architecture of the Q2Q translation system is shown in Figure 3.4.

The translation process consists of two main components: offline generation and

online generation. Offline generation is the process of linguistic specification for

a new data domain and data set. Online generation is the dynamic generation of

questions as a user interacts with a visualization. A relationship table populated by

offline generation is given as input to online generation.

To set up Q2Q for a new visualization, a visualization designer or domain expert

inputs a set of data relationship sentences into the interface of the offline generation

engine. The sentences exemplify relationships between pairs of data dimensions in

the visualization. The offline generation engine processes the sentences and outputs

a set of possible queries in the form of questions. Once the designer confirms the
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Figure 3.4: The Q2Q interaction translation architecture

correctness of the queries, the linguistic specification of the questions is stored in

the relationship table. The finalized relationship table is used to generate questions

as the user interacts with the visualization.

Interaction in the visualization sends events to the online generation engine,

which uses the relationship table to generate question(s) that represent the user’s

supposed query corresponding to that event. The queries are expressed as what,

who, when, and where questions. The online engine generates multiple formats of

questions, at different levels of aggregation. Based on the current format setting,

the question representation module fetches and visually encodes the corresponding

question in the Q2Q interface. The user can rapidly switch between formats.

The design of the overall translation architecture is based on the well-known

NLG Pipeline Method. In the Pipeline Method, text generation follows a sequential

procedure that starts with knowledge acquisition, proceeds with document planning

and microplanning, and ends with realization. Each stage of the generation intro-

duces different levels of abstraction. Certain decisions need to be made in each level,

which makes the generation process highly application dependent. Thus, common

31



implementations of the Pipeline Method are constructed around a set of domain

specific rules [53,54].

To diminish the domain dependency of the generation process, a syntactical

context-free grammar (CFG) is used to design domain-independent grammar rules

for the generation engines. This way, the designed translation system is applicable to

various visualization domains, as well as expandable to different visual interactions.

This approach suggest a two stage generation process to acquire domain specific

information about the data being displayed in offline generation, and use the domain-

independent syntactical grammar to generate the questions in online generation.

This approach substantially reduces the considerable amount of time and linguistic

knowledge required to design a domain-specific translation engine for any given

visualization, yet produces translations of user interaction approximate to the given

data domain. The generation process and its components are described in detail in

the following subsections.

3.2.1 Offline Generation

The heart of the system is the offline generation engine, which accepts data rela-

tion sentences as input and outputs possible questions for each target dimension in

every directed pair. Once the designer/expert confirms the questions, the specifica-

tions of the relations are stored in a relationship table to be retrieved during online

generation. Figure 3.5 shows the architecture of the offline generation system.

3.2.1.1 Input

In Figure 3.5, the box labeled as the user interface gets information about the data

dimensions displayed in the visualization and outputs sets of example questions

for the user (a visualization designer or domain expert) to confirm. The input to

the offline generation engine is a set of descriptions of relationships between data

dimensions. It is supplied by the visualization designer or domain expert as a set
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Figure 3.5: The Q2Q offline generation architecture

of simple sentences. Prior to acquiring relation sentences, the designer or domain

expert has the option to characterize data dimensions. For example, they can specify

the type of data as number, person, place, time, concept, or object (see Figure 3.6).

If the user skips this step, the specifications are either set to default values (e.g.,

Number is set to Singular) or is automatically identified by the system (e.g., Type

is set using the Stanford Named Entity Recognizer [67]). After this step, an input

interface (shown in Figure 3.7) is presented to the user to enter relation sentences.

For instance, the relationship between dimensions Stadiums and Home Teams in

Figure 3.1 can be described as “home team hosts a game in stadium” and given to

the system as textual input. Rather than allowing free text input, a pair of combo

boxes is used to guide and constrain the choice of pairs of dimensions. This semi-

structured input mechanism is much like when school kids are asked to use words

in a sentence, and is designed to encourage users to compose simple sentences with

phrasing based on binary relationships.
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Figure 3.6: User interface to enter data dimension specifications.

3.2.1.2 Preprocessing

Preprocessing consists of four steps to transform the input data into an structured

format that can be used in Question Generation. The steps are parsing the rela-

tionships, converting the parse tree to a generation tree, assigning role tags, and

identifying the question words.

Parsing Given the data relationship sentences as input, the process starts by

parsing the input sentences. This sub-module outputs a parse tree of the grammati-

cal structure of each sentence. The tree has detailed information about the sentence

constituents (the definition of tags in parse trees are provided in Appendix B).

For instance, “stadium” and “home team” are tagged as a singular noun (NN) and

“hosts” is tagged as a third-person singular present verb (VBZ), in parsing the input

sentence “home team hosts a game in stadium” into the following parse tree:

(ROOT

(S

(NP (NN home) (NN team))

(VP (VBZ hosts)

(NP (DT a) (NN game))

(PP (IN in)

(NP (NN stadium))))))
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Figure 3.7: User interface to enter descriptions of relationships between dimensions.

Converting to Generation Tree The parse tree is then converted into an abstract

tree called a generation tree. The generation tree is more general than the parse

tree, and constituents are not tagged with detailed labels. For instance, “stadium”,

“Home” and “team” are tagged as noun(N), and “hosts” is tagged as verb (V):

(ROOT

(S

(NP (N home) (N team))

(VP (V hosts)

(NP (DT a) (N game))

(PP (IN in)

(NP (N stadium))))))
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This conversion is performed because the detailed information captured during

parsing is subject to change during the generation, while the general grammatical

structure stays the same. For instance, a singular noun “stadium” can turn into a

plural noun “stadiums” during online generation if the user selects more than one

stadium from the Stadiums table view in Figure 3.1. For this reason, the grammar

used to generate the questions is designed to be more abstract (details about the

grammar are discussed in Section 3.2.1.3.) In converting a parse tree to a gener-

ation tree, the detailed information provided by the parsing step is carried over.

This information is considered a default specification of the constituent if it is not

overwritten during generation.

Assigning Role Tags Given the generalized constituency structure and part of

speech (POS) tags from the previous step, Role tags such as Subject, Object, and

Verb are assigned. These tags determine which grammar rule should be used to

generate questions. For instance, the role tags shown in parenthesis for “home

team hosts a game in stadium” are: (pre-modifier)home (subject)team (verb)hosts

(Determiner)a (object)game (preposition)in (indirect object)stadium.

Identifying Question Words The appropriate question words are identified based

on the semantic types of the data dimensions involved. The semantic types consid-

ered are PERSON, TIME, LOCATION, ORGANIZATION, NUMBER, and NO EN-

TITY. These semantic types correspond to the question words Who, When, Where,

How many/How much, and What/Which, respectively. The information about the

semantic type of a data dimension is either given as an input or recognized using an

entity recognizer tool [67]. In some cases, alternate question words can be linguisti-

cally appropriate; for instance, a data dimension Date can have When or What (e.g.,

“On what date ...”) as the question word. The system lets the designer specify a

preference for each data dimension, falling back on a default question word for its

semantic type when none is given.

36



3.2.1.3 Question Generation

The question generation stage in offline generation is the same as in online genera-

tion. Offline generation is done separately to ensure that the questions presented to

users are confirmed by designers or domain experts. To generate example questions,

after each sentence is preprocessed, question generation is performed on each rela-

tion sentence. Since each of the sentences involves two visualized data dimensions, at

least two example questions can be produced, each with one dimension as the target

(for example, the output questions in Figure 3.7). If the generated questions are not

satisfactory to the designer or domain expert, they can edit the sentence relation

so the system generates another set of questions. As the designer or domain expert

confirms questions, the specifications of relationships between data dimensions are

stored for later use as input to online question generation.

Q2Q applies a set of syntactical context-free grammar rules to realize sentences

that reflect query interactions. To develop these rules, nearly one hundred question

structures were studied from four application domains, and classified by hand based

on the part of speech tags of the targets of the questions. The grammar is represented

by G = (W,N, S,R), in which W is a set of terminals, N is a set of nonterminals,

S ∈ N is the start symbol, and R is a set of production rules. Each rule has the form

n→ α, n ∈ N , α ∈ (W ∪N)∗ in which W and N are disjoint. To capture the context

sensitivity of English grammar, the nonterminals are n–ary relations f(o1, ..., on) in

which n ≥ 0 and o1, ..., on are either constituent objects or relation objects that

define relationships between constituents. For example, stadium is considered as the

head of a constituent with all its specifications such as singular, definite, and so forth

constructing the constituent. Accordingly, a relation object for stadium and home

team would have information about the verb host that connects them. Constituent

and relation objects are both outputs of the preprocessing step.

This design of text generation has the advantages of reusability and expansion.

The previously added syntactic rules can be reused and new rules can be added to
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generate new types of questions [59]. This will be particularly important for future

extension of Q2Q to include types of interactions other than filtering and selection.

Higher-level syntactical rules can be added based on the expected structure of the

translation, and lower-level rules can be reused in the definition of higher-level rules.

Grammar rules in Q2Q are designed at a general syntactic level, rather than at

a fully specified level. A fully specified level would construct generation rules based

on lower level syntactical specifications (several of this are discussed in examples

below). Two reasons for this choice are grammar size and missing information.

Another reason, mentioned in Section 3.2.1.1, is that specifications in the parsing

stage are subject to change during online generation.

Full specification of grammar rules would increase the size of the grammar dras-

tically. A general rule like S → NP VP can expand to numerous specific grammar

rules, such as S→ NN VBD, S→ NNS VBG, S→ NNP VBP, or S→ NNPS VB2.

To keep the grammar small, general grammar rules are combined with a set of n-

ary production rules, such as S(x, y, z, r) → NP(x, y, r)VP(z, r), in which x, y, z

are constituent objects and r is a relation object that specifies relations among

the constituents. Full specifications involving NP and VP are expanded using the

constituent and relation object variables and applied in the later stages when non-

terminals are substituted by terminals (lexicalization).

Occasionally, detailed information about constituents and relations can only be

retrieved at later stages of generation; for instance, to determine whether “Stadium”

needs to appear as plural or singular. Moreover, sometimes certain specifications

cannot be acquired at all due to missing information, yet questions can be con-

structed without concern for all details. For example, if a given input sentence is

not complete and does not have a verb, an abstract grammar based on a generation

2S: sentence, NP: noun phrase, VP: verb phrase, NN: singular noun, NNS: plural noun, NNP:
singular proper noun, NNPS: plural proper noun, VBD: past tense verb, VBG: present participle
verb, VBP: singular present non-3rd verb, VB: base form verb. More tags definitions are provided
in Appendix B.
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tree can still be used to generate questions. A partial question is generated in which

the nonterminal VERB is not substituted by a terminal and is left to be specified by

the designer. By using a placeholder for missing information, designers or domain

experts can better spot the issue and possibly edit the input descriptive sentences

accordingly.

Below is an example of a set of grammar rules applied to construct a question

for the input “home team hosts games in stadium.” The NP → DET N rule is an

example of how similar rules can be reused with different variables. H refers to Home

Team, S refers to Stadium, ARI refers to Arizona Diamondbacks stadium. C and R

are constituents and relation objects, respectively.

S(cH , cS, cARI , rH,S)→ NP(cH)VP(cS, cARI , rH,S)

VP(cS, cARI , rH,S)→ AUXV(rH,S)NP(rH,S.Object)PP(cS, cARI , rH,S)

AUXV(rH,S)→ AUX(rH,S)V(rH,S)

PP(cS, cARI , rH,S)→ P(rH,S)NP(cS, cARI)

NP(rH,S.Object)→ DET(rH,S.Object)N(rH,S.Object)

NP(cARI , cS)→ DET(cS)N(cS)NPM(cARI)

NP(cH)→ DET(cH)N(cH)

NP(cS)→ DET(cS)N(cS)

NPM(cARI)→ N(cARI)

DET(x)→ a

DET(x)→ the

DET(x)→WDT(x)

Using the described grammar, an abstract representation of the text is con-

structed in the next step.

Deep structure generation builds an abstract representation of a sentence

that contains its core semantic relations. This representation will be mapped on to
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the surface structure (outward form) of a sentence via transformations. The pre-

processing stage outputs constituency structures with the POS and role tags in the

form of constituent and relation objects. Based on the role tags of the data dimen-

sions, appropriate grammar rules are applied to generate questions. The questions

correspond to the given role tags, such as subject questions and object questions.

The target of the question is tagged as the WHPhrase. One of the data dimensions

will be the target of the question. The grammar above outputs the following deep

structure:

WDT(cHomeTeam)N(cHomeTeam)AUX(rHomeTeam,Stadium)V(rHomeTeam,Stadium)

DET(rHomeTeam,Stadium.Object)N(rHomeTeam,Stadium.Object)

P(rHomeTeam,Stadium)DET(cStadium)N(cStadium)NPM(cARI)

This structure will be later replaced by specific words to construct the first ques-

tion shown in Figure 3.7.

Next a transformation is needed to map the deep structure into a surface struc-

ture. This transformation is called WH-Movement and consists of three steps:

1. Auxiliary verb insertion. If the sentence has no auxiliary verb, insert an ap-

propriate form of ‘to do’ (‘do’, ‘does’, ‘did’).

2. Verb form adaptation. If the main verb of the sentence is not the auxiliary

verb, reduce it to its base form.

3. WHPhrase movement. Move the auxiliary verb to the start of the sentence

(Inversion), then place the WHPhrase in front of it. Sometimes, more than

one WH-question can be formed from the same deep structure. For instance,

when a prepositional phrase is the target of the question, WH-movement can

be performed either on the prepositional phrase that contains the WHPhrase

or on the WHPhrase itself.

Finally, realization converts the output of WH-Movement to actual text. In

this stage, the system takes care of grammar, constituent numbers, verb tense, and
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punctuation. It takes into account the context of the interaction and the data dimen-

sions involved. For instance, it makes sure that cardinalities (plural or singular) of

constituents are aligned with the visual interaction, that the verb tense conveys the

correct contextual relationship (e.g., using past tense in the home team and stadium

question), that the first word in the question is capitalized, and that appropriate

punctuation is used (such as the question mark at the end of question sentences).

3.2.1.4 Populating the Relationship Table

Once a question is output from the realization and confirmed by the designer, the

lexical and structural specification of the relationships between data dimensions

leading to the question is stored in a database for retrieval during online generation.

Relationship specifications are often applicable across domains. The relation objects

stored for pairs of dimensions can incrementally populate a database for use with

future visualizations with involving known data dimensions and similar contextual

relationships. Over time, the database can grow into a repository for rapid reuse in

offline design or direct use in online generation [68].
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Figure 3.8: The Q2Q online generation architecture.
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3.2.2 Online Generation

As users interact with a visualization, their interactions are translated into questions

expressing their queries. The interaction information and questions are visually en-

coded and presented in the Q2Q online interface. The online generation architecture

is illustrated in Figure 3.8.

The online generation engine takes input in the form of interaction events cap-

tured at the level of visualization parameter changes. This is similar to the level

of action exploration [6], in which the user accesses and explores data to search for

insights. Supplied with an interaction event and the relationship table populated in

offline generation, the online generation engine looks up the linguistic specification

of the relationship between data dimensions involved in the interaction.

Online question generation follows the three stages of the Pipeline Method [57]:

document planning, microplanning, and realization. Document planning determines

the content of the text and the information that needs to be communicated. Mi-

croplanning determines how the selected information can be communicated linguis-

tically. Realization is responsible for generating grammatically correct text.

In document planning, information is determined about an interaction event to

be included in the text. For instance, if all but one item are selected in a table

view, the text can describe the selected items, only the non-selected item, or do

both. The ordering of items in text is also determined. Given the interaction event,

the document planner detects all affected dimensions and tells the microplanner to

generate questions for all queries triggered by the recent interaction. For example,

in the Q2Q interface in Figure 3.1, the fourth full row reflects an interaction to filter

Stadium on Away Team. The corresponding changes in visualization state depend

on three dimensions: Date, Home Team, and now Away Team. Therefore, three

questions are presented for this interaction.

Microplanning uses the same question generation module as offline generation

(the green areas labeled as “Question Generation” at bottom right in Figures 3.5
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and 3.8), except that additional input data is provided by document planning. Sup-

plied with details of the interaction to be communicated in the text, the generation

system looks up information about constituent and relation objects from the rela-

tionship table, chooses appropriate grammar rules, and generates the abstract form

(deep structure) of questions. Finally, lexicalization replaces non-terminals with

terminals.

Realization accepts an abstract representation of the question and turns it into

grammatically correct text. Offline and online generation use the same realization

module.

The grammar rules might output multiple deep structures of questions. Based

on the current settings in the Q2Q interface, Question Representation chooses from

the list of questions output by the online generation engine, applies visual encoding

to the text, and displays it in the Q2Q interface. Users can request a different choice

and format of questions at any time during their interaction with the visualization.

3.3 Implementation

Q2Q is implemented, including offline and online generation, in Java. The Impro-

vise visualization builder and browser environment [15] was extended to dynamically

output visualization parameter changes to the Q2Q online generation engine and to

input result sentences for visualization into a window alongside the primary visual-

ization.

The implementation of Q2Q focuses on translation of user interactions in cross-

filtered views [18]. By covering an important subset of information visualization

interaction types—brushing and filtering—Q2Q builds a foundation and works as a

stepping stone for applying natural language generation to other types of interactions

in the future.

The key parameters of selection and filtering interactions are the filterer at-

tributes, the filteree attributes, and the selected set of data values of the filterer
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attributes. Interaction translation in the Q2Q implementation focuses on these pa-

rameters.

3.3.1 Input

Cross-filtering interactions involve at least two data attributes: filterer and filteree.

Filterer is the dimension that filters other dimensions based on its one or more

selected data values. Filteree is the dimension being filtered by the filterer.

The input interface for offline generation is designed in a way to effectively get

information about the pairwise relationships between the dimensions. These dimen-

sions can play either or both roles—filterees and filterers—during live translation in

online generation. The drop-down comboboxes shown in Figure 3.9 contain all the

dimensions that are part of the cross-filtering matrix in the corresponding visualiza-

tion. The radio buttons under the comboboxes are designed to further guide users

to enter descriptive text fragments that capture the meaning of the data attributes,

taking into account each dimension as the source of action or as a filterer. Even

though a change in roles often does not require different input descriptive sentences,

as is the case in the example in Figure 3.9, it occasionally might suggest alternative

input sentences when the relationship is expressed differently based on the subject

of the sentence. For instance, in a visualization of email metadata, with senders

and receivers as two data dimensions, these two dimensions can be related using the

verbs “send” and “receive”: senders send emails to receivers and receivers receive

emails from senders. Two input descriptive sentences cover both directions of this

asymmetric pairwise relationship.

The Generate button in Figure 3.9 is particularly helpful to allow users exper-

iment with the descriptive text fragments and see the questions that result. Users

can then decide if they want to provide different input before they save the resulting

specification.
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Figure 3.9: The Q2Q offline input interface for cross-filtering interactions.

3.3.2 Preprocessing

As described in Section 3.2.1.2, preprocessing consists of parsing input, converting a

parse tree to a generation tree, assigning role tags, and identifying questions words.

To build an ontology based on the given input, descriptive sentences are parsed

to get their part of speech tags. These tags are used for assigning role tags. The

role tags are used to identify the grammar rules for generating the questions. The

parsing sub-module of the user interaction translation architecture is implemented

in Q2Q using the Stanford Parser [69]. The Stanford Parser is a probabilistic natural

language parser which uses knowledge of language based on a large set of hand-parsed

sentences to produce the most likely structure of new sentences. Q2Q uses a Java

implementation of Stanford Parser to extract the part of speech tags of the input

sentences. Other natural language processing tools include the Berkeley Parser [70]

and the Charniak Parser [71]. The compatibility, precision, and adaptability of

Stanford Parser make it particularly suitable for the purpose of Q2Q.

Given the part of speech tags, a tree abstraction module converts the parse tree,

which has detailed information about sentence components and structure, to a more

general generation tree (see Section 3.2.1.2).

A role tag assignment module is implemented based on the expected structure

of basic active and passive sentences, e.g., “subject verb object”. The current Q2Q

implementation also covers role tags for questions that involve indirect objects or

noun phrase modifier. For example, in the text fragments “Co-PIs receive award

from program managers” and “vessels carrying passengers are interdicted by ships”,
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“program managers” and “carrying passengers” are the indirect object and noun

phrase modifier, respectively.

Question word identification is done once role tags are determined and the sub-

ject of the potential question is set. Given the relationship between filterer and

filteree in cross-filtering interactions, the subject of generated questions is the fil-

teree dimension. For instance, consider a visualization of movies with two data

dimensions, genre and movie. A possible translation resulting from filtering genre

on Movie with selected value Avatar is, “What is the genre of the movie Avatar?” In

this question, genre is both the filteree dimension and the subject of the question.

Given a pairwise relationship sentence, Q2Q generates at least two questions, each

taking one of the specified dimensions as the filteree and to be the subject of the

question.

The type of the question-word corresponds to the entity type of the subject

of the question (filteree). If the entity type of the filteree is not specified by the

visualization designer or domain expert as a part of offline input, the Named Entity

Recognizer [67] is used to determine if the data dimension is PERSON, TIME,

LOCATION, ORGANIZATION, NUMBER, or NO ENTITY. Q2Q generates Who,

When, Where, What, and Which questions. It does not currently generate How or

Why questions. How and Why questions are mainly related to higher-level analysis

and pattern discovery, which may be impossible to capture through action level

interactions alone; e.g., “How does the date affect the score of a baseball game?”

3.3.3 Question Generation

The implementation of Q2Q defines and applies a set of syntactical context free gram-

mar (CFG) rules. Figure 3.10 shows a subset of rules defined to generate questions

for cross-filtering interactions. In the n-arry relations of the (non)terminals, the con-

stituents object given to the (non)terminals are generally the filteree data dimension,

filterer data dimension, and the selected items within the filterer data dimension (e.g,
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x, y, z variables in Figure 3.10). Based on the role tags determined in preprocessing

stage, one of the main top level sentence rules (e.g. S(x, y, z, r)→ NP (x, y)V P (z, r)

in Figure 3.10) is selected. Then, following the grammar rules, a set of abstract

questions are output. WH-movement described in Section 3.2.1.3 turns the abstract

representation of the questions (deep structure) into a surface representation. Q2Q

uses WordNet [72] to find base forms of the verbs and SimpleNLG [73] to later adjust

numbers for noun phrases and verbs, verb tenses, and punctuation, to realize the

questions.

Implementing the question generation engine of Q2Q based on syntactical con-

text free grammar makes it practical to extend the current grammar to cover other

interaction techniques using additional sentence structures. This can be done by

adding sentence-level and phrase-level rules to the grammar and reusing existing

lower-level rules.

3.3.4 Populating the Relation Database

Once the questions are realized and confirmed by the users, the specification of the

questions are stored in a XML file to be used in online generation. The relationships

specified between pairs of dimensions are parsed, tagged, characterized, and stored

in a relation object. The relation object contains information about the constituents

of the relation and syntactical role tags such as verb, indirect object, or prepositions.

The relation object also includes information about the contextual role (filteree or

filterer) of the input relationship. This is particularly important when constituents

with different role tags require different relation objects (i.e., different descriptive

sentences as input). Once the example questions are confirmed, the constructed

relation object—which is also used to form the example questions—is converted to

a XML format to be readily used by online generation. This conversion is done

for all pairwise relationships given as input and stored in an aggregated XML file.
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Figure 3.10: A subset of syntactical context free grammar rules defined to translate
user interactions into questions in Q2Q.

Figure 3.11 shows a portion of the XML format of the relation between Home Team

and Stadium displayed in the visualization in Figure 3.1.

48



Figure 3.11: Part of the XML file showing the relation between Home Team and

Stadium in the Retrosheet Visualization.
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3.3.5 Online generation

The online generation engine takes interaction events as inputs. The interactions

that are considered in the current implementation of Q2Q are brushing and filter-

ing. Brushing can be done through mouse clicks, lassoing, and keyboard shortcuts.

Filtering is done through toggling checkboxes. An example of a set of interaction

events, captured in Improvise is shown in Figure 3.12. The table lists selection (e.g.

“Selection.Stadium”) and filtering settings (represented collectively as “BitPermuta-

tion” objects) user interactions in the Retrosheet visualization. Each row shows the

event type, the relative time it occurred, and the affected parameter value. Given

this record of low-level interactions, online generation uses the Pipeline Method to

transform them into a sequence of questions. The implementation of online genera-

tion consists of three modular pipeline stages: document planning, microplanning,

and realization. Changes to one stage have minimal effect on other stages, making

it possible to extend the system to cover other interaction techniques.

In the application of Q2Q to cross-filtered views, the document planning stage

primarily identifies the filterees, filterers, and selected items involved in a given inter-

action. Later, it decides how much information about filteree, filterer, and selected

items needs to be communicated. For instance, it determines if a generated ques-

tion should explicitly refer to a filterer data dimension, or, on the other hand, it

should implicitly include the filterer by only listing the data values selected within

the dimension, for example,“In which movies the actor Naomi Watts played a role?”

versus “In which movie Naomi Watts played a role?” The level of abstraction of

selected items is also specified in the document planning stage. For instance, the

full names rather than the abbreviated names of stadiums can be used in the ques-

tions in the Retrosheet visualization, e.g. Saint John’s University rather than SJU.

Other decisions, such as inclusion of certain selected items in questions, inclusion of

particular sets of questions in the translation, and the structure and order of those

questions, are made in the document planning stage.
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Figure 3.12: An example of low-level user interactions in the Retrosheet visualization

in Figure 3.1 captured and displayed in Improvise

Microplanning mainly focuses on generating the abstract form of questions and

lexicalizes them using the relationship table populated in offline generation. Given

the structure of the questions and what needs to be included, the microplanning
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module looks up the required information in the relations XML file, forms the ques-

tions, and assign words to the abstract representation.

Microplanning also performs aggregation on the questions. Aggregation is the

process of removing redundant information in text. Aggregated questions are more

natural and resemble human authored text. Dalianis and Hovy described five types

of aggregation: Syntactic, Elision, Lexical, Unbound Lexical, and Referential [74].

Syntactic aggregation keeps at least one of the repeated items in the text to explicitly

carry the meaning, and removes all other redundant information. Any part of speech,

such as subjects, objects, and predicates, can be aggregated. For example, “Sara is

sick. John is sick.” can be syntactically aggregated to “Sara and John are sick.”

Elision aggregation removes information that can be implicitly inferred and keeps

no items in the text that carries that information. For instance, the sentence “My

daughter visit me before school.” is an aggregated version of “My daughter visit me

before she goes to school.”

Lexical aggregation transforms information into an aggregated but recoverable

form. For instance, “Sara goes to work on Wednesdays, Saturdays, and Sundays” can

be transformed into “Sara goes to work on Wednesdays and weekends.” In this type

of aggregation there is no information loss, unlike Unbound Lexical Aggregation.

Unbound Lexical aggregation is similar to Lexical aggregation, except that the

aggregated information is not precise and hence not recoverable. For instance, “Sara

has a part time job in Walmart and Target department stores.” can be aggregated

into “Sara has a part time job in department stores.”

Finally, referential aggregation removes redundant information, but refers to

them using references, such as pronouns. For example, “John and Sara are in grad-

uate school. John and Sara study Computer Science.” can be aggregated to “John

and Sara are in graduate school. They study Computer Science.”

In implementing aggregation for Q2Q, mainly syntactical aggregation is used.

For example, “Who are involved with Avatar movie? and Who are involved with
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the action genre?” is aggregated to “Who are involved with the Avatar movie and

the Action genre?”. In a few situations, lexical aggregation is also applied. For

example, if all the items are selected in the genre table and movies are filtered on

genre, rather than listing them all in the question, the qualifier “all” is used in the

translation: “What movies are in all genres?”.

Translations in Q2Q are generated to satisfy reliability, precision, and straightfor-

ward recovery of information. Thus, Elision and Unbound aggregations are generally

unsuitable for meeting Q2Q translation requirements. The current implementation

of Q2Q does not use even unambiguous Referential aggregation due to its complexity.

However, it may be considered in future work.

The grammar rules in the current implementation of Q2Q support four types of

aggregation within and across questions, which results in four different deep struc-

tures of questions. Based on the current setting in the Q2Q user interface (the

checkboxes labeled Aggregate Questions? and Aggregate Items? in Figure 3.3),

Question Representation chooses one of the four questions output from the online

generation engine, applies visual encoding, and displays it in the Q2Q interface.

Users can request a different format and type for the questions at any time during

their interaction with the visualization.

3.3.6 Time Complexity

In the implementation of Q2Q for cross-filtered views, the average time for offline

generation to output a question is less than a second. For n data dimensions, the

designer must specify
(
n
2

)
data relationships. Given that most visualizations display

fewer than 10 dimensions, the average time to set up Q2Q for a new visualization

is reasonable: approximately two minutes plus the time needed for the designer to

decide on the descriptions and input them to the system. Offline generation proper is

spent primarily in parsing. Online generation is effectively interactively immediate,
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taking on the order of 50 milliseconds, which is often much faster than the queries

themselves.

3.4 Summary

This chapter describes the architecture of a translation system, a hybrid automatic-

manual system to capture and represent the meaning of visual query interactions

as natural language. It also describes the implementation of Q2Q with consider-

ations that are taken into account for the cross-filtered views case. Q2Q provides

comprehensive recording of user activities at a level of abstraction suitable for visual

analysis of multidimensional data. It is shown in this chapter that building off of

existing NLG techniques makes it practical to design a system that is generalizable

to various data domains and can be expanded to translation of different interaction

techniques.

The content of this chapter is accepted and will be published in IEEE Transaction

on Visualization and Computer Graphics Journal [87].
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Chapter 4

Evaluation of Q2Q

4.1 Evaluation

The primary goal of the design of Q2Q is to increase the usability of multiple co-

ordinated view visualizations created in systems like Improvise [15], and thereby

to make them more accessible to a wider community of visualization stakeholders.

To gain understanding of how successfully Q2Q enhances usability, we study and

analyze differences in user performance when a visualization includes and does not

include Q2Q. (For the remainder of this chapter, a visualization that includes Q2Q

is referred to as vis+Q2Q. One that does not is refer to as vis-Q2Q.) We have de-

signed a task-based experiment to assess user performance on three metrics: speed,

error ratio, and number of interactions. We calculate these metrics in four different

use scenarios. The scenarios are designed to expose how differences in visualization

complexity and user familiarity affect the usefulness of Q2Q. An analysis of the data

collected shows that Q2Q becomes more beneficial as complexity and visualization

experience increase.

We also analyze the effects of translation on learnability, efficiency, and memora-

bility. These aspects of usability are considered from the perspective of visualization

interaction as a visual language for expressing data queries. The evaluation results
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suggest that Q2Q as a visual language translator plays an effective role in increas-

ing the learnability and efficiency of visualization tools. Even though Q2Q also has

a positive effect on memorability, user errors and feedback suggest that additional

training on Q2Q would increase its effectiveness.

This chapter starts by describing the usability aspects considered. It then presents

the metrics used to measure the usability attributes mentioned above, following a

detailed description of the experiment design and observations. Finally, based on

the observed quantitative and qualitative results, it presents an analysis of the trans-

lation system from a visual language perspective.

4.1.1 Usability Perspectives

The evaluation of the effectiveness of Q2Q on usability of visualization is based on

a set of well-known attributes described independently, yet similarly, by Nielsen [75]

and by Shneiderman [76]. The attributes, adapted to visualization user interfaces,

are:

• Learnability is the ease of learning when a user encounters a visualization for

the first time.

• Efficiency is the speed of performance after a user has learned the visualization.

• Memorability is the ease of remembering past queries when a user wants to

interpret the current state of the visualization.

• Satisfaction encompasses the opinions of the user about the visualization.

In the original definitions of attributes given by Nielsen [75] and by Shneider-

man [76], memorability refers to the amount of effort needed to retain knowledge

about operation between sessions when users return to the interface after a time.

This perspective on memorability focuses on long-term recall of past interactions
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across analysis sessions. This evaluation, however, consider the short-term memo-

rability of a visualization within a session and the study of long-term memorability

left as future work.

Both Nielsen and Shneiderman identified user errors as a characteristic of the

individual. In this study, it is instead considered as a metric to assess the four

usability attributes. The evaluation studies the attributes in an integrated way with

the goal of achieving deeper insight about when and how Q2Q is beneficial and how

its effectiveness can be improved.

4.1.2 Metrics

This study uses three metrics—speed, error ratio, and number of interactions—to

assess the chosen usability attributes.

Speed is the time it takes a user to complete a visualization query task. To

perform a task, users need to know which interactions must be performed and what

the consequences of their interactions will be. If a user has insufficient understanding

of a tool’s functionality, they spend more time to comprehend the tool, particularly

to make sense of their actions and the corresponding visualization reactions.

Error ratio is the total number of unsuccessful task performances divided by the

total number of tasks. A successful task is one performed correctly and completely.

It assumed that a user’s ultimate goal is to gain information from the visualization.

If due to errors in task performance the displayed results are not what the user seeks,

it implies the visualization does not effectively serve their needs. A tool with high

usability can avoid potential errors by providing easy to use and straightforward

data representations and interactions.

Number of interactions is the number of discrete interaction steps users take to

complete a task. The interactions—selecting items in a table and toggling checkboxes

to apply filtering—are recorded at the level of data exploration actions, as defined

in [6], rather than at a lower level such as mouse events. While it is hard to fully
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categorize the time spent by a user during task performance, (particularly if they

do not talk aloud), the number of interactions allows calculation of how much time

is spent on each interaction, and the total time spent on interaction sequences to

accomplish a task. Since different tasks require different minimum numbers of steps,

tasks are normalized by subtracting the known minimum number of steps from the

actual number of steps performed. This calculation produces the extra, presumably

unnecessary steps performed to complete a task.

Both speed and error ratio relate to the user’s ability to extract information from

a visual display. The study seeks to determine whether Q2Q can help overcome

issues that either cause the user to slow down or that lead to errors. Even though

number of interactions has a strong correlation with speed, number of interactions

provides greater insight into users’ decision making processes, such as whether their

interaction decisions are based on trial and error, or are planned. Using this metric,

the aim is to find out if a visualization with Q2Q helps users avoid unnecessary steps

to accomplish their tasks, which if so suggests that Q2Q helps them make more sense

of their interactions.

All three metrics are used to assess a visualization’s learnability and efficiency

(with and without Q2Q). Memorability is examined using only speed and error ratio,

since the tasks that were defined for this aspect do not involve direct interaction with

the visualization. The qualitative data from a questionnaire is used to assess user

satisfaction with the visualization’s usability (with and without Q2Q).

4.1.3 Design

Twelve participants, nine males and three females, were recruited, including under-

graduate and graduate students from five different majors: seven from Computer

Science, two from Industrial Engineering, one from Civil Engineering, one from

Mathematics, and one from Electrical Engineering. They all had basic experience

interacting with user interfaces, but not with Improvise visualizations.
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Figure 4.1: Visualization of movies in the Internet Movie Database. Three tables
list genres, movies, and people.

Prior to the study, each participant watched a 10 minutes training video on

cross-filtering and a 5 minutes video on Q2Q. Each experiment began immediately

after training and lasted from 25 to 60 minutes. Two factors were considered: (1)

participants’ previous experience with the visualization and (2) their familiarity with

the data attributes displayed. We used two Improvise visualizations from different

domains to measure the effectiveness of Q2Q in terms of these factors.

The first visualization (vis1, see Figure 4.1) displays a data set about movies, a

domain familiar to most participants. This visualization is a simplified version of the

Cinegraph visualization presented in the InfoVis 2007 Contest [77]. The visualization

in includes three table views—of Genres, Movies, and People— and a cross-filtering

matrix (checkboxes to toggle filtering between each pair of dimensions).

The second visualization (vis2, see Figure 4.2) visualizes a data set about NSF

awards, a domain unknown to most participants. The NSF visualization includes

nine table views: of Directorates, Organizations, States, Program Managers, Pro-

grams, Application Fields, Institutions, Principle Investigators, and Co-PIs. It also
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Figure 4.2: Visualization of NSF awards, accompanied by a Q2Q interface (the
frontmost window on the right).

has a drill-down table of detailed awards information, a time-line showing variation

in award amounts over time, and a cross-filtering matrix.

Vis2 is structurally more complicated in that it displays more data dimensions

(nine) than vis1 (three). We asked participants to perform tasks on table views only;

we instructed them to ignore other views. We added Q2Q to each visualization, for

a total of four user interfaces: vis1+Q2Q, vis1-Q2Q, vis2+Q2Q, and vis2-Q2Q. We

divided the participants into two groups of six, each group presented with one of

two sequences of interfaces, A or B:

S1 S2 S3 S4
A: vis1+Q2Q vis1-Q2Q vis2-Q2Q vis2+Q2Q
B: vis1-Q2Q vis1+Q2Q vis2+Q2Q vis2-Q2Q

In both sequences vis1 is shown before vis2. The difference between the sequences

is the ordering in which Q2Q is included with the visualization or not. This variation
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reduces learning effects and allows comparison of the usability of vis+Q2Q and vis-

Q2Q across the two sequences. These orderings enables the comparison of user

performance in four scenarios:

S1: A participant interacts with vis1 for the first time.

S2: A participant interacts with vis1 for the second time.

S3: A participant interacts with vis2 for the first time.

S4: A participant interacts with vis2 for the second time.

These scenarios are studied for each participant in the order (S1–S4) presented

above. As the experiment proceeded, each participant’s experience and knowledge of

the cross-filtering technique used in the visualizations increased. The purpose of S1

is to observe the effects of Q2Q on novice users’ ability to learn a new visualization.

S2 is designed to examine the efficiency of user performance in the presence of Q2Q

when they have prior experience using the visualization. Once participants reach

the more complex visualization in S3, they are familiar with how to work with

visualization, but have no background knowledge about the domain displayed by

vis2. The S3 scenario is designed to examine the effects of Q2Q on user ability to

learn and understand a new visualized domain. S3 allows us to examine the effects

of the complexity of domain, independent of familiarity with allowed interactions.

Finally, S4 is designed to analyze the case in which participants know how to use the

supported interactions and have at least basic understanding of the domain. The S4

also provides insight into whether participants use Q2Q in this scenario, determine

how helpful it is, and observe whether they use it for other purposes, such as to

review past interactions and corresponding visualization states.

In each scenario, participants performed several tasks on a combination of vis

and Q2Q. Each task is to answer an interactive or descriptive question about the

visualized data. Interactive questions ask participants to identify a set of data values
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using selection and filtering interactions. The questions progressed from simple

to complex. Simple questions required only one selection and filtering step, e.g.,

questions 1 and 2 in Table 4.1. Complex questions required multiple steps, e.g.,

questions 3 and 5 in Table 4.1.

Descriptive questions ask participants to describe a portion of query results in

terms of other data dimensions. For such questions, some data values that affect

visual state are hidden after selection and filtering actions, e.g., question 7 in Ta-

ble 4.1. This task requires remembering past states if Q2Q is not present. For both

vis+Q2Q and vis-Q2Q, participants answered six questions for vis1 and seven for

vis2, for a total of twenty six questions. Also, each participant filled out a ques-

tionnaire to express their opinions of Q2Q, whether they prefer to interact with the

visualization with or without Q2Q and how helpful they found Q2Q to be.

The complete sets of tasks performed in this study are listed in Appendix C.

1. Identify the organization(s) that is in the GEO directorate.

2. Identify the program manager(s) working in GEO directorate.

3. Identify the organization(s) that the programs Aeronomy or
Climate & Large-scale Dynamic fall into, and program manager
Jay S. Fein works under, and it is in GEO directorate.

4. Identify the organization(s) that the Application Fields
Chemical Reaction Systems or System Theory are in.

5. Identify the Application Field(s) that the program managers
from Muriel G. Poston to Wendell Talbot Hill work under.

6. Identify the Program manager(s) who work under the selected
application field(s).

7. Characterize the resulting program manager(s) in terms of
other data dimensions.

Table 4.1: Interactive (1–6) and descriptive (7) questions asked of participants about
the interface in Figure 4.2.
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4.1.4 Quantitative Results

For each scenario, the usability measurements are averaged over all performed tasks

and over all participants involved in the scenario. Considering the extracted differ-

ences between averaged results of the group of participants interacting with vis-Q2Q

and the other group interacting with vis+Q2Q, a Student’s unpaired t-test is per-

formed to assess their significance. Table 4.2 shows the scenario-based results. Three

quantitative hypotheses are tested:

• Users are faster on average with Q2Q than without.

• Users perform fewer errors on average with Q2Q than without.

• Users perform fewer interactions on average with Q2Q than without.

Table 4.2 shows user performance on the usability measurements in each of the

four scenarios. The results show improvements (shown in bold in Table 4.2) in

both speed and number of interactions in all scenarios for vis+Q2Q. Even though

the error ratios for vis+Q2Q do not improve over vis-Q2Q in S1 and S3, they do

improve for S2 and S4.

S1 S2
vis1+Q2Q vis1-Q2Q p vis1+Q2Q vis1-Q2Q p

AVG. SD. AVG. SD. value AVG. SD. AVG. SD. value
Speed (sec) 47.67 23.75 67.39 45.42 0.19 44.67 21.86 56.75 26.63 0.21
Error ratio 0.16 0.11 0.14 0.19 0.39 0.14 0.09 0.33 0.21 0.04

#Interactions 2.44 2.69 5.78 6.38 0.14 2.53 1.3 4.94 3.75 0.09

S3 S4
vis2+Q2Q vis2-Q2Q p vis2+Q2Q vis2-Q2Q p

AVG. SD. AVG. SD. value AVG. SD. AVG. SD. value
Speed (sec) 52.98 25.53 67.35 45.09 0.26 44.69 16.98 58.02 19.48 0.12
Error ratio 0.21 0.22 0.12 0.14 0.2 0.14 0.18 0.28 0.24 0.14

#Interactions 1.22 1.25 2.0 1.85 0.21 0.78 0.41 1.44 0.62 0.03

Table 4.2: Averages and standard deviations of usability metrics. Improvements for
visualizations with Q2Q are shown in bold.
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To test the significance of the improvements, a relatively large threshold, p ≤

0.15, is used due to the small sample size and large standard deviations. The thresh-

old allows us to analyze the results of differences in usability metrics for vis+Q2Q

and vis-Q2Q. The results can still be meaningful even if they are not significant based

on smaller thresholds. In S1, in which participants interact for the first time with

a visualization of a familiar dataset, they performed statistically significantly fewer

interactions when they had access to the Q2Q interface. There was also considerable

improvement in the amount of time spent on average per task (30% improvement

in vis+Q2Q; see Table 4.2). The time difference was not statistically significant,

however. In S2, in which participants had gained some experience with the inter-

action techniques from S1, a statistically significant fewer number of interactions

and a lower error ratio occurred. As in S1, even though participants perform a

task approximately 20% on average faster when the visualization includes Q2Q, the

difference was not statistically significant.

S3 had no statistically significant differences between vis2+Q2Q and vis2-Q2Q.

However, the actual difference in speed was considerable. Not being familiar with the

domain, and interacting with larger number of data dimensions compared to S1 and

S2, might be two reasons why participants had difficulty performing the tasks even

in the presence of Q2Q. Performing tasks in S3 helped participants achieve a basic

understanding of the new domain, leading to significant performance improvements

in speed, error ratio, and number of interactions in S4 when they had access to Q2Q.

The differences between vis2-Q2Q and vis2+Q2Q for all metrics were statistically

significant. S4 suggests that Q2Q is particularly useful for cases in which the domain

is complex—in terms of relationships among data attributes—and is not familiar,

but that participants have at least some experience with the visualized data. Note

that by the time they encounter S4, participants had more experience using Q2Q

during their analytical tasks.
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When participants encounter a new visualization, in S1 and S3, it takes them

time to make sense of the relationship between the visualization and Q2Q. As long

as the relationship is not clear to them, they cannot fully utilize Q2Q to perform

their tasks. However, once they understand this relationship, in S2 and S4, they are

able to take advantage of the capabilities of Q2Q to perform tasks more efficiently.

This observation suggests a future follow-up experiment to evaluate the effects of

Q2Q when users are fully trained on the functionality of the translation system,

specifically to see if results for scenarios S1 and S3 improve.

Further data analysis studies the overall performance of participants over entire

analytical sessions. For each participant, the study measures the number of interac-

tions, time to perform the tasks, and error rate in each session, both with (vis+Q2Q)

and without (vis-Q2Q) the Q2Q display. It calculates the differences between vis-

Q2Q and vis+Q2Q for each metric, then averages the differences in measurements

over all participants to calculate an average difference for each metric.

A Student’s paired t-test is performed to assess the three hypotheses (users are

faster, perform fewer errors, and perform fewer extra interactions on average when

the visualization includes Q2Q). The results for these hypotheses are considered as

statistically significant if p ≤ 0.05. The increase in sample size due to studying

the performance over all the scenarios, allows for using standard 0.05 p-value over

0.15. Table 4.3 shows the average and standard deviation of each defined metric

(including both visualizations) for both vis+Q2Q and vis-Q2Q. The results show that

participants’ performances in terms of time to perform tasks, number of errors, and

number of interactions improve when they interact with vis+Q2Q. The improvement

in the time it takes them and the number of extra interactions they perform to

complete the experiment are statistically significant.
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vis+Q2Q vis-Q2Q p
AVG. SD. AVG. SD.

Time (min) 95 39.14 124.76 61.40 0.002 < (0.05)
Error ratio 0.33 0.25 0.44 0.3 0.08 > (0.05)

#Interactions 3.48 2.41 7.08 5.69 0.006 < (0.05)

Table 4.3: Averages and standard deviations of usability metrics.

4.1.5 Qualitative Results

At the end of the experiment, a follow-up survey asked participants to express their

opinions about Q2Q and whether they preferred to use the visualization with Q2Q

or without. If they preferred to use Q2Q, the survey provides a set of reasons Q2Q

could be preferred and asked participants to select reasons that applied to them. If

they did not preferred to use Q2Q, the survey asked participants to provide their

reasons. Also it asked participants whether they found different types of generated

languages (aggregated/not aggregated) to be beneficial during task performance.

The survey also encouraged Free form commentary.

Of the twelve participants, eleven (91%) preferred to use Q2Q. The reasons they

chose are listed in Table 4.4. Some participants provided more than one reason. The

only participant (9%) who did not prefer to use Q2Q declared that “...the cross-

filtering technique is very complicated and I do not prefer to use this visualization

with or without Q2Q.” It is worth mentioning that this participant’s results with

Q2Q showed better performances than without Q2Q.

For language configuration, five participants (41%) used the Aggregate Items? op-

tion provided by Q2Q to toggle aggregation/non-aggregation of selected data items

in the text. The main reason they mentioned for using it was “It is easier to see the

results.” Four (57%) participants did not manipulate the type of text using aggre-

gation options. All four admitted that they forgot this option existed. Two others

(29%) stated “...different types of text did not seem useful in their case.”

In the comments received, three participants (27%) mentioned that Q2Q helps

them to verify which queries they asked. A few comments were received about
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Reasons Rates
I can see the result of my interaction easier. 73%

Q2Q makes the visualization more understandable. 54%

Q2Q makes the visualization easier to use. 45%

Q2Q helps me remember how to perform a task
if I have to perform a task more than once. 36%

I can find what I am looking for faster. 36%

Table 4.4: Satisfaction rates for the eleven participants.

the need for more training at the outset. One participant expressed a preference

about the order of the text in the translation log. In the current system, beside

the outer temporal ordering of the interactions, there is an inner ordering “within”

each interaction to present a set of dependent queries in a consistent manner. The

participant expressed a preference for the existing choice of inner ordering. She

suggested allowing the user to adjust the interaction order for the inner ordering as

well, rather than keeping the inner ordering constant.

4.2 Discussion

The main role of Q2Q in the communication cycle between a user and a visualization

is to transform the visual representation language into a semi-textual language that

is close to human written language. Rather than users relying solely on perception

and comprehension to translate the visual language directly into their mental lan-

guage, they can also access an accurate and consistent written language for easier,

indirect translation. The quantitative and qualitative experimental results verify

the effectiveness of such indirect translation through text. This section analyzes the

reasons behind how Q2Q improves learnability, efficiency, and memorability, from

the perspective of a visual language model.
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From a computational perspective, a visual language is a system of communi-

cation used to facilitate interactions between computer and human. This study

assumes that the system consists of three components: a computational system, a

cognitive system, and a visual language [78]. Interaction can be viewed as a cycle

of transformations between languages used by the cognitive and computational sys-

tems, as described by Abowd and Dix [79]. To perform an interaction, users translate

their cognitive steps into a mechanical language that is expressed through interaction

techniques. The computer system parses and interprets the language and responds

to the user query in the same form of language. Users perceive, comprehend, and

reason about the computed response by translating the visual language into the

mental language in which they form their mental models. Successful interaction de-

pends on the ability to formulate, understand, and quickly translate between these

different languages. The analysis in this section is based on this visual language

model as it applies to visual querying in particular (see Figure 4.3).

Learnability

The learnability of a visualization depends on how easily users can express their

queries in the interaction language and comprehend the corresponding result when

they see the visualization for the first time. Scenario S1, described in Section 4.1.3

was designed to study the usability effects of Q2Q, particularly on learnability. The

results in Table 4.2 show promising improvements in performance in terms of speed

and number of interactions when a visualization is accompanied by Q2Q.

While performing tasks, users spent a significant amount of time translating the

language of coordinated visualization and the corresponding interaction sequences

into their cognitive language. Users not only need to translate the visual language

into their mental language, but also make sense of the textual translation provided

by Q2Q. It may seem having an external translation system such as Q2Q would

lengthen performance time. However, the quantitative observations and statistical
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Figure 4.3: Visual language model, specialized for visual querying.

results suggest that users spend less time relying on their cognitive interpretation;

instead, they accept the textual translation as a means to understand the language

of visualization interactions. As a result, a user’s time spent on translation between

languages is considerably reduced.

In terms of error ratio, Q2Q does not produce any improvement when learning

interactions (see S1 in Table 4.2). One major reason can be the learnability of the

Q2Q interface. The observations revealed that most errors in vis1+Q2Q under S1

were due to user misinterpretation of Q2Q translations. These misunderstandings

resolve as users progress to later scenarios and become familiar with Q2Q.

There was a considerable reduction in the number of superfluous interactions

when participants had access to Q2Q in S1 (see Table 4.2). Participants tried to
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learn and understand the interaction language by performing many trial and error

interactions. However, they had difficulty comprehending the computed responses,

and thus the consequence of their interactions (in the visual language) when the

visualization did not include Q2Q. They also repeated a large portion of their in-

teractions. When Q2Q translations are available, they did not perform as many

repeated interactions. These results (Table 4.2) show that the translation system

facilitates understanding of the visual language while users perform analysis tasks.

Efficiency

In this study, efficiency is defined in two ways: (1) the speed of performing individual

interaction tasks, and (2) the overall speed of performing a sequence of tasks as a

function of the percentage correct. The second definition is highly correlated with

effectiveness of performing individual tasks. For any given large number of tasks, if

users make fewer errors, they are accomplishing more in a given amount of time.

Complex visualizations with coordinated multiple views suffer from low efficiency

since it is more difficult for users to maintain a mental model of interactive depen-

dencies between views [16,26,27]. In particular, exploration or analysis often requires

switching between tasks that involve different views or different kinds of interactions.

Switching from a set of views to another set imposes a heavy cognitive overhead.

Errors can be made because users are managing evolving mental models of overlap-

ping subsets of visualization components. Consequently, there is potential for a large

number of errors to be made over a long period of time, affecting the efficiency of

successful operation overall. Q2Q is able to speed up this process by simultaneously

reflecting the set of all queries that led to the current state of the visualization. Users

have correspondingly less difficulty constructing their mental model since they have

access to interaction events of current and recent states in semi-textual form.

Scenarios S2 and (especially) S4 are designed specifically to support analysis of

the efficiency of visualization using Q2Q. The results show considerable improvement
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in usability metrics in both scenarios in which Q2Q is available. Without Q2Q, the

visual language translation in the cognitive system would take time due to the com-

plexity of the visualizations. With Q2Q, the response of the computer system to

the interaction is expressed in user language and describes all of the cross-filtering

relationships that exist between views. This not only accelerates the language trans-

formation process and therefore increases the efficiency of the users in interacting

with the visualization, but also mitigates inaccurate and misleading analysis by

bringing all affected dimensions into visual display—in the limit of available screen

space—and thus brings them to the user’s attention.

In this experiment, we observed a few outstanding situations in which the pres-

ence of Q2Q helped users have less trouble understanding the visual language. We

categorized these situations into three cases based on the character of the responses

of the computer system after a single interaction or sequence of them.

• No response. Users generally expect each action to have a response in visual

form. When there is no visual feedback, users interpret this as if they did not

express their query correctly in the interaction language. Consequently, they

try further interactions, especially if they are unfamiliar with the domain and

they do not know what to expect as the result of their interactions. However,

it is observed that with Q2Q, users have better understanding of the visual

responses—in this case, no response—despite the fact that the feedback is in

textual rather than visual form. They can make better sense of the current

visual state and the reasons why the most recent interaction did not change

the visual display.

• Misleading response. In the case of selection occlusion in cross-filtering (de-

scribed in Chapter 1.3), the visualization obscures the relationships between

views. Generally, if the views in a visualization show incongruous results in

response to an interaction, the user’s understanding of the visual language
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expressed by these views would be incorrect and would result in misunder-

standing of the computer responses. In such cases, the Q2Q text does not

match what the visualization shows. Users need to learn to trust the textual

response over the visual one.

• Abnormal response. Comprehension of the visual language is difficult for users

when they perform an interaction that is an “error”. For instance, filtering a

table on nothing results in the disappearance of all the items in the filtered

table, which often confuses users. With the warning messages provided by

Q2Q such as the warning in orange in the second row of the Q2Q interface

in Figure 4.2, users can make sense of the visual responses and modify their

interaction to interpret this situation.

In the abnormal and no response cases, the presence of Q2Q results in substantial

improvements in the usability metrics (i.e., better performance on interactive tasks).

In the case of misleading response, however, Q2Q provides less benefit (i.e., limited

improvements on descriptive tasks). There is a need for more training on Q2Q to

make it more effective in misleading response cases. In Chapter 5, these situations

are discussed further using examples in Immigrant Boats Visualization.

Memorability

In this study, a visualization is considered memorable if users are able to recall past

states as a part of making sense of the current visualization state. To see the effect

of Q2Q on memorability, we measured how quickly and correctly participants can

answer descriptive questions.

Table 4.5 shows the results of measurements of memorability tasks in the four

scenarios. The task performances with Q2Q in scenarios S2, S3, and S4 (shown

in bold in Table 4.5) are promising. The outcome for S1 is poor. The improve-

ment in speed is statistically significant in all scenarios except S1. The error ratio
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S1 S2
vis1+Q2Q vis1-Q2Q p vis1+Q2Q vis1-Q2Q p

AVG. SD. AVG. SD. value AVG. SD. AVG. SD. value
Speed (sec) 36.08 39.31 26.67 14.61 0.3 16.42 9.61 43.75 18.19 0.008
Error ratio 0.42 0.37 0.25 0.41 0.24 0.42 0.37 0.75 0.41 0.09

S3 S4
vis2+Q2Q vis2-Q2Q p vis2+Q2Q vis2-Q2Q p

AVG. SD. AVG. SD. value AVG. SD. AVG. SD. value
Speed (sec) 16.83 16.20 33.33 17.78 0.07 24.33 10.63 37.5 22.68 0.12
Error ratio 0.33 0.51 0.5 0.54 0.3 0.5 0.54 0.67 0.51 0.3

Table 4.5: Averages and standard deviations of speed and error ratio for memora-
bility tasks. Improvements are shown in bold.

significantly improved only in S2. These observations suggest that the main factor

of poor performance in S1 in vis1+Q2Q is the lack of sufficient training on Q2Q.

The considerable performance improvements in the later scenarios, in which users

have more experience with Q2Q, affirm that conclusion. A significant drop in error

ratio is anticipated if users are trained to use Q2Q properly (e.g., more training or

one-on-one training) to perform memorability tasks, in particular by trusting that

translated questions correctly reveal the data values hidden in the visualization.

Based on our observations, the difficulty of performing memorability tasks when

Q2Q is not present mainly occurs: (1) when the sequence of previous interactions

involves several cross-filterings (the out of sight, out of mind problem described

in Chapter 1.3); and (2) when, as a result of several cross-filterings, some items

of interest are no longer visible, i.e., there is a misleading response. These effects

decrease memorability and degrade efficiency. In these cases, the memorability tasks

require users not only to comprehend the recent visual responses of the visualization,

but also to recall previous “conversations” between the cognitive and computational

system that led to the current state. Q2Q displays the history of interactions in

more human-familiar textual language. Users can recall their conversations with

the visualization and review their prior queries to make sense of the most recent

visualization state.
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4.3 Summary

This chapter describes an evaluation of the effects of a translation system, Q2Q, on

certain aspects of usability—learnability, efficiency, memorability, and satisfaction—

of multiple coordinated view visualizations. The evaluation revealed considerable

improvements in learnability, efficiency, and memorability of the speed and length

of interaction paths followed. It also showed modest improvements in error ratio.

Using scenario-based analysis, the study revealed that as users’ experience with

a visualization increases, the more that Q2Q helps to improve their performance.

Questionnaires further revealed improvement in user satisfaction. By analyzing these

observations from a visual language perspective, we conclude that Q2Q, as an inter-

face component that translates visual language to a semi-textual human language,

helps users to better comprehend and operate visualization interfaces, particularly

when visual representations of data hide items or relationships due to filtering.

The content of this chapter was published in different form in Computer Graphics

Forum, the International Journal of Eurographics Association [50].
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Chapter 5

Opportunities and Limitations

Translation of user interactions provides substantial improvements in usability of

coordinated multiple view visualizations, as described in Chapter 4. This chapter

provides more examples and presents Q2Q as a tool extension to support cross-

examination of visualization interaction. The chapter then describes key visualiza-

tion design factors, corresponding guidelines, and challenges for effective translation

of interactions.

5.1 Cross-Examination Using Q2Q

Throughout an analytical session, users express questions by performing interactions

that trigger queries. They interpret visual responses to their actions based on the

questions they intended to express and the queries they think they have performed.

A potentially large gulf of evaluation [80] can arise between what is requested from

the visualization and what is discerned in changes to visualization state. Users of

sophisticated tools with multiple visual representations and many interactive inter-

dependencies have difficulty making sense of the interaction sequences and conse-

quent visualization responses. They might also have difficulty remembering their

past queries in order to correctly interpret the current state of the visualization [17].
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Figure 5.1: Migrant interdiction visualization in an intermediate state (left), along-
side the corresponding Q2Q interface (right).

This results in misinterpretation of visual responses relative to the intention of inter-

action and consequently unreliable analysis and insight. Capturing and representing

user interactions explicitly can assist users in making sense of how the interactions

they perform correspond to changes in visualization state. Thus, translation can

support a visual cross-examination process in which users can cross-check the valid-

ity of their questions as an integral part of reasoning.

Providing an accurate record of the questions users have asked helps them val-

idate their queries and continue their analyses. The term “cross-examination” is

used by way of loose analogy to legal questioning of witnesses on the stand, and

similar forms of interrogation. Much like an attorney asks questions to elicit accu-

rate testimony from a witness, a visualization user interactively constructs queries

to elicit accurate depictions of relationships from the data. However, visualization

is much like a (potentially) unreliable witness, in that visual states (the witness’

answers) do not necessarily convey the queries (questions) that the user intended to

ask. Careful attention to queries/questions as they seem to be interpreted by the

visualization/witness can help to address this gulf of evaluation [80].
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Figure 5.2: Sequence of visualization states resulting from interactions with the

visualization in Figure 5.1: (A) initial state; (B) a state showing a no response

situation; (C) a state showing an anomalous response situation.
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Figure 5.3: Sequence of visualization states resulting from interactions with the

visualization in Figure 5.1: (D) a state showing a misleading response situation;

(E-F) a pair of consecutive states showing the out of sight, out of mind effect.
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This chapter describes four situations to show how translation of user interactions

can help users better interpret visualization states.

Three of the situations in which users have difficulty interpreting visualization

states were discovered in relation to the evaluation of Q2Q described in Chapter 4:

when the visualization gives no response, a misleading response, or an anomalous

response to an interaction [50]. The forth situation is when the out of sight, out of

mind problem affect recall [18]. These situations are described further below.

Consider a visualization of a migrant boat interdiction and landing scenario [14]

(Figure 5.1) and a sequence of visualization states in it (Figures 5.2 and 5.3). The

sequence starts from an intermediate state in which three passengers (Alejandro Isi,

Alcala Carmela, and Alcaraz Saul) are selected in the passengers table view and

dimension Ship is filtered on those passengers (Figure 5.2A). (In each subfigure in

Figure 5.2 and 5.3, the question(s) generated by Q2Q in response to the most recent

interaction is enlarged and shown in an inset box for greater readability.)

No response refers to a situation in which an interaction has no apparent effect

on query outputs. Figure 5.2B shows a state in which the user selects another

passenger, Barela Gaspar. The Ship table does not show any visual change as a

result of the selection interaction, meaning the ship that interdicted the recently

selected passenger is the same as the one that interdicted the previously selected

passengers. As was observed in the study in Chapter 4, in this case, if users are not

familiar with the domain and do not know what to expect from their interactions,

they often think they have performed the query incorrectly and try to formulate

it in a different way. However, the last question generated by Q2Q (the inset in

Figure 5.2B) reflects the query asked. Users are able to confirm their queries and

alleviate their potential confusion about whether a query happened.

Misleading response refers to a situation in which an interaction obscures query

inputs, e.g., selection occlusion in cross-filtering, which can lead to incorrect insights.

In the third row of the Q2Q view in Figure 5.3D, the Passenger table is filtered on
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Rustic vessel. This results in a state in which only two of four selected passengers—

Alejandro Isi and Alcaraz Saul—are visible in the table, even if one scrolls it. Later,

the user filters Encounter on the previously selected passengers; encounters are shown

both in a table and on the map. The two passengers hidden in the Passenger table

might imply that the resulting encounters on the map are the ones that just the

two visible passengers were involved in. However, textual representation of queries

reveals that the query that is taking place also involves two other passengers, Alcala

Carmela and Barela Gaspar. Q2Q explicitly presents query inputs that cannot be

or are not made apparent in the visualization itself due to filtering.

Anomalous response refers to a situation in which an interaction has an unex-

pected effect on query outputs. For instance, filtering a table on nothing (an empty

set) causes all of its items to disappear, which often confuses users. In Figure 5.2C,

the user filters Passenger on Ship to see which of the passengers were interdicted

by the ship shown in the Ship table. Since no ship is selected in the Ship table,

no passenger is shown in the Passenger table. To relieve confusion, Q2Q shows a

warning message with the query that corresponds to the interaction. Later, the user

selects Anthony K from the Ship table, resolving the anomaly (Figure 5.3D). This

interaction is revealed in the questions in Figure 5.3D.

Out of sight, out of mind occurs when a user has difficulty remembering visual-

ization states after only a few subsequent interactions. Figure 5.3E shows a state

in which a user filters Ship on Date. Q2Q not only reflects recent interactions, but

also reminds the user of prior filters that affect the current query (e.g., that a filter

on Ship occurred in Figure 5.2A). Q2Q does that by presenting all the questions

about previous filters that affect the current query. In Figure 5.3F, the user selects

another passenger for exploration. Q2Q translates all queries that are triggered by

this interaction. Such queries may be forgotten after subsequent interactions, but

still affect the visualization’s current state. Based on the observations in evaluation

study described in Chapter 4, by providing a history as a means to quickly see and
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recall interactions beyond the horizon of memory, the memorability and reliability

of actions and of the analysis process overall are increased.

These situations call attention to the importance of support for query verification,

particularly in visual analysis tools that support sophisticated interaction techniques

to compose complex visual queries. Q2Q can serve as a general means to support a

more reliable analysis process.

In addition to the benefits provided by Q2Q, the user experiment in Chapter 4 as

well as the process of designing and implementing a translation system in Chapter 3

led us to identify a set of key factors that influence the design of the translation.

The next section identifies and discusses these key factors.

5.2 Design Factors

Successful design of NLG techniques depends on having examples of human-written

text. There exist neither corpora of translations of user interactions in information

visualizations nor guidelines for how translated text should be designed and struc-

tured. Developing an architecture for natural language translation of visualization

interaction involves a variety of design factors. Three design factors that we explic-

itly take into account in the design of Q2Q are: users of the text, data involved in

interaction, and types of interaction.

5.2.1 User Knowledge and Roles

The design of Q2Q—as it is expected of any interaction translation system—depends

on the knowledge and roles of users. We further classify user knowledge as: domain

knowledge, technical knowledge, and linguistic knowledge.
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Figure 5.4: Visualization of events in newswire stories.

5.2.1.1 User Knowledge

Domain knowledge refers to the knowledge specific to a domain of application, in

particular the domain of application that provides the data being visualized. Domain

knowledge directly affects linguistic decisions such as lexicalization and aggregation.

If users have limited knowledge of an application, translations can help to learn

relationships between data attributes and acquire basic knowledge of the domain.

In that case, a generator should prefer not to describe relationships in abstract

language or using domain-specific vocabularies. Consider political events in newswire

stories recorded in the Kansas Event Data System (KEDS) [81]. The visualization in

Figure 5.4, shown with its Q2Q interface in Figure 5.5, can answer questions related

to geographical and temporal patterns of international political activities reported

by major news services. The visualization supports cross-filtering on event codes and

abbreviated source and target states and actors. Although trained political scientists

may prefer to interact directly with codes and abbreviations, new users are likely

to struggle to map codes to defined meanings. For example, to translate filtering
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Figure 5.5: Visualization of events in newswire stories (left), accompanied by the
corresponding Q2Q interface (right).

of Source Country on Events By Code, two possible questions are “Which source

countries were involved with codes of types MAKE AGREEMENT, TURN DOWN,

or CRITICIZE?” and “Which source states are involved with codes of types 81, 111,

or 121?” The former question expands event types, shown as numerical codes in

the latter, to descriptive phrases. The choice of domain information representation

is adjusted in the content planning stage of online generation and reflected in the

output questions, as shown in the example above (see Figure 5.6, row four).

Similarly, relationships between data dimensions often can be expressed more ab-

stractly by using general-purpose, abstract phrasing such as “involved with”. Word-

ing that explicitly defines relationships between dimensions, such as the translation

of filtering of Resolution on Passenger in Figure 5.1, can be customized (in the offline

stage) to cover users of all knowledge levels.

Technical knowledge refers to theoretical and computational skills in the field

of visualization. Technical knowledge can be exploited using more formal and/or

precise words and phrasings to describe the structure and behavior of interactions.

However, doing so can decrease the naturalness of text and its accessibility to users

unfamiliar with visualization concepts. Some interactions may make more sense if
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Figure 5.6: The Q2Q interface that accompanies the visualization of events in
newswire stories shown in Figure 5.5.

described in technical words. For example, when a user applies a jitter interaction in

Spotfire [82], two (of many) possible translations are “apply jitter” and “shift each

displayed item randomly by a small spatial increment.” The former is more expres-

sive and straightforward for visualization designers, whereas the latter is likely to

be more understandable to non-visualization experts. Q2Q provides both technical

words for interactions (Figure 5.5, left column) and also presents meanings of their

queries as natural language questions (right column).
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Linguistic knowledge refers to the abilities enabling speakers or writers of a lan-

guage to communicate with each other. Linguistic knowledge varies from user to

user and suggests how much sophistication they will accept. A visualization tool

for educational purposes might have users of many ages. The text generator should

be able to provide simple text with short sentences and fewer referring expressions

for younger students, and coherent, more natural text for older students. The same

condition applies to non-native speakers and people at low reading level. Long, ag-

gregated sentences with rich vocabulary and compound phrasing are less likely to be

readable by these groups. Q2Q offers two levels of abstraction, in the form of two

options for aggregating within and across generated questions, to support different

linguistic preferences. For example, Figure 5.5, eighth row, the queries containing

more than one question are aggregated and in Figure 5.7, sets of more than three

items are aggregated within questions.

The customized translations in Q2Q can also serve the needs of users in their

various role(s). User roles are described in the next section.

5.2.1.2 User Roles

In the context of information visualization, users have three main roles: developer,

operator, and/or consumer.

Developers are visualization system developers and tool designers. System de-

velopers implement algorithms, languages, and architectures, and write system li-

braries. Interaction translation provides a way to analyze the query semantics and

expressiveness of new interaction approaches. Designers build tools using existing

interaction techniques and libraries. They can use translation to choose interaction

approaches.

Both system developers and tool designers can use translations to evaluate ap-

plications of interaction, such as to determine which visualization parameters users

manipulate frequently or rarely. Harder to understand interactions are also likely to
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be more difficult to translate. Translations generated for the Migrant Boats visual-

ization hint that the cross-filtering technique might be less usable when not all the

data dimensions involve in the filtering have total participation in the relationship.

For instance, Ship and Resolution in Figure 5.1 are partially associated with one an-

other; if a vessel landed, it means that it did not get interdicted. Thus the question

“Which ship interdicted a vessel with resolution of type Landing?” does not make

sense. This suggests a modification to the design of the cross-filtering technique in

the visualization, such as to deactivate the checkbox leading to this question.

Operators are people who browse, interact with, and otherwise run the visual-

ization. They perform interactions and are the ones who most directly consume

the results of the translation, interleaved with interaction itself. They also organize

translations for dissemination to other operators and consumers.

The benefits of translation differ for experienced users and trainees. Experienced

users perform tasks such as overview, zoom, filter, and extract [28] to gather in-

formation and acquire insight. Text can help them remember their past actions,

plan future actions, understand details of interactions, and collaborate with other

analysts in different locations. Trainees can use text to help learn the capabilities

of a visualization and its interaction techniques, so that they can perform the same

tasks as analysts in the future. For instance, Figure 5.2A-C and 5.3D-F show how

Q2Q helps trainees perform tasks when they are not acquainted with the domain or

the visualization. Designers can specify evocative details, tailored to particular op-

erators, in the offline stage. In Figure 5.2A, the phrase “a vessel carrying” clarifies

what “interdiction” means in translations of queries about Passengers and Ships.

Corresponding phrasing in Figures 5.2B-C and 5.3D-F serves the same purpose for

other combinations of dimensions. Additional text generated to highlight poten-

tially misleading interaction responses (e.g., the orange text in Figure 5.2C) and

overt punctuation around enumerated data values in question translations (e.g., the
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curly brackets around blue text in Figure 5.3D-F) help operators verify that their

filtering and selection actions are triggering intended, correct queries.

Consumers are the people who use the results of visualization without necessarily

being involved directly in live interaction. For instance, stakeholders who perform

sensemaking on the results of analysts’ foraging are consumers. They may peruse

the question log from alternate perspectives, assess precise questions that have been

asked, and interpret visualization snapshots in terms of questions (and vice versa).

To them, textual output is a representation of fine-grained analysis activities. They

use the text to reason about foraging and understand what happened, and how, in

the broader analysis process, and integrate translations for use in results dissemina-

tion and reporting. Offline generation lets designers capture nuanced yet consistent

domain relationships for easier reading and comparison, such as time in the past

tense and spatial context for Ships-Passengers (Figure 5.2B, “did interdict a vessel

carrying”), Passengers-Ships (Figure 5.3D, “were on a vessel interdicted by”), and

Encounter-Passengers (Figure 5.3F, “Where were the vessels carrying...”).

NLG can employ user modeling to improve the understandability and effective-

ness of generated text [83]. User models can be based on either customized rule

sets [84] or training corpora of examples for particular groups of users [85,86]. Given

the goal of broad application of NLG for translation of interactions in a variety of

visualization tools, translation designers must characterize the interaction activities

of a broad spectrum of users, yet customize the text generation process based on

specific analysis needs. They can delegate customization to visualization designers,

who are likely to be more familiar with user needs. The system may also provide

users with a variety of text representations to choose ones most fitting their needs.

Q2Q incorporates user modeling by following a two stage offline-online approach.

This maintains the generalizability of the translation system while supporting the

flexible text representation needs of different users. Offline generation lets the vi-

sualization designer (or domain expert) not only express the relationships between
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data dimensions, but also decide on the representation of relationships as text. It

also lets them adjust relation sentences to output desired questions for targeted

users. This diminishes the need for constructing a comprehensive user model prior

to generation.

Currently, the output from Q2Q is static HTML, using fixed CSS-like markup to

embed data dimension and value references and format them for display in generated

text. Chapter 6 describes an integration of an interactive web interface into the

translation system for presentation, storytelling, and report generation, with search

on embedded references, general text matching, and reordering and grouping options.

5.2.2 Data

Translation of data into written natural language depends on the characteristics of

information conveyed. Translation in Q2Q takes into account the dimensional type,

informational complexity, dimensional cardinality, and linguistic ordinality of the

visualized data values and parameters of interaction. In this dissertation, the focus

is on how specific aspects of data influenced the design of the current Q2Q system

for initial application to cross-filtering visualizations. A comprehensive treatment

of these concepts to information visualizations in general is left as a large body of

future research.

Dimensional type is the classification of data values into well-defined categories,

whether syntactically (integers, strings), statistically (nominal/categorical, ordinal,

ratio, interval), semantically (name, date, watershed region), or structurally (tree,

graph). In text, information about dimensional type can be conveyed lexically (as

a word, token, or self-contained phrase) or grammatically (spread out across one or

more sentences). For instance, length, area, or volume can be presented lexically

using various forms of numbers, or a residential location can be described gram-

matically using its address representation. Translation should convey syntactic and

semantic information about data types as well as the data values themselves. Data
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types may be implicit in translated data values, or can be translated explicitly. Both

data values and data types can also be conveyed via formatting, markup, or embed-

ded graphics. For instance, including an image of a geometrical shape in the text

provides information about the type of the data and possibly its value (as approx-

imate area). The challenge here is to reduce the structure of data values into the

primarily linear structure of text. Exploiting common conventions of text struc-

ture, such as parentheticals, may allow more data structure to be conveyed. More

exotic ways of structuring text, such as indentation used in poetry, may provide

additional meaning to convey information about data type. To support the various

user roles, however, the goal is to generate recognizably natural language, rather

than descriptive code.

Informational complexity is the amount of information carried by data. It is gen-

erally straightforward to translate “atomic” data values, including spatial, temporal,

and N-dimensional data points. General translation of structure involving compo-

sition, association, topology, and geometry is a deep and potentially open-ended

research challenge.

Translation of visualization interactions focuses on the information complexity

of data structures that are actually represented and manipulated in a visualization,

for instance the polygon shape of a lasso or the correspondences between data points

duplicated in brushed views. Generated translations can enumerate data structure

details exhaustively, potentially allowing users to scan for patterns in sentences di-

rectly (see the last row of the Q2Q interface in Figure 5.1). However, it is a challenge

to stay within reasonable limits of sentence length for sake of understandability and

readability. For instance, if the number of Encounters listed in the question “Which

Ships did interdict vessels during the Encounter 494, 569, 579, or, 580?” increases,

not only would the question not sound natural, but also making sense of the list and

discovering patterns in it could become more challenging.
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Generated sentences may alternatively summarize data structures, reducing the

length and complexity of text while preserving the abstract character needed for user

scanning. For example, unbound lexical aggregation (described in Chapter 3.3.5) can

be used to aggregate selected Encounters (Figure 5.1, last row of the Q2Q interface)

to describe them as “boats in the highlighted circle off the west coast”.

Dimensional cardinality is the number of data dimensions involved in visual

queries. Queries in coordinated multiple views can arbitrarily combine locally en-

coded and remotely filtered dimensions. Flexible query dimensionality is a hallmark

of recent tools [4,15]. Readability and comprehension of compound phrasing in sen-

tences generally limits the number of dimensions that can be effectively translated.

Moreover, the semi-linear nature of text means that one must chain small subsets of

dimensions in the clause and phrase structure of sentences, or in the progression of

a set of sentences. Q2Q generates alternative sequences of question sentences with

a variety of aggregated clauses, and lets the end-user choose from them.

Linguistic ordinality is the expected ordering of both dimensions and data values

in text. In English, time phrases typically follow space phrases. Names typically

appear alphabetically and dates from past to future. Such “natural” ordering of

data values can inform effective ordering in text. However, many data types, such

as geographical coordinates, have no single natural ordering. Translation can rely

on designer specification of contextual ordering conventions—such as on the order

of item selection, interaction, or domain specific criteria—to avoid arbitrary textual

ordering of data values.

Q2Q focuses on data values that are—or like calendar dates and geographic

locations can be treated as—nominal or categorical, since the cross-filtering tech-

nique targets these types. Nominal or categorical data values are low complexity,

one-dimensional, and are often inherently lexical, making them straightforward to

translate. Dates are converted into a standard text format and geographic locations

can be “nominalized” as (latitude, longitude) or as a place identifier. For example,
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Figure 5.7: Visualization of baseball games in the Retrosheet database (left), ac-
companied by a Q2Q interface (right).

in the last two rows in the Q2Q interface in Figure 5.1, encounters are named by nu-

meric identifier rather than coordinate. Identifiers are easy to aggregate in sentences

(e.g., “494, . . . , or 580”) but are hard to spot in most views.

The dimensional cardinality of cross-filtering queries can vary. To assist compre-

hension of how complex questions correspond to multidimensional queries, a non-

aggregation option translates a query with n + 1 dimensions into n independent

questions. The fourth full row in the Q2Q interface in Figure 5.7 shows an example

of a four-dimensional query translated into a set of three non-aggregated questions.

Q2Q follows convention for linguistic ordinality: names of people are alphabet-

ical; dates are past-to-future; one-dimensional quantities are in numerically sorted

order. Conventional orderings work in favor of aggregation by allowing understand-

able presentation of long lists of data values through elision. For instance, several

of the rows in the Q2Q interface in Figure 5.7 use an ellipsis to elide long lists of

teams and stadiums.

5.2.3 Interaction

This section looks at translation of interaction in terms of two interrelated di-

chotomies: selection versus navigation and discrete versus continuous.
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Selection lets users keep track of data items of interest by marking them, gener-

ally as a preceding action to subsequent operations to query on the selected set [33].

Navigation is a process of exploring different areas of data [28], such as zooming a

map. In general, selection manipulates data objects and navigation manipulates vi-

sualized space. Queries involving selection and navigation can be described in terms

of data values and visualization parameters, respectively. Selection entails one bit of

information per data item, with each item associated with a label value. (In cross-

filtering, the label is the group-by key value of each item in the corresponding data

dimension.) Navigation typically sets a 1-D or 2-D point (by mouseover or click), a

rectangular region (by rubberband), or a polygonal region (by lasso). Linguistically,

navigation is also associated with meaningful spatial references, typically a location

or a region in a domain-specific coordinate system.

For cross-filtering, Q2Q reflects selection by enumerating and highlighting the

types of interaction (green text for Selection and brown for Filtering in Figure 5.5)

and the data values involved (blue text within the ellipsis). It also linguistically

identifies the selected dimensions and connects them to selected items. For instance,

“Filtering source country on code” identifies two selected dimensions “country” and

“code” and “...source country {Israel}...” identifies Israel as one of the selected

countries.

Navigation interactions are implied by the progression of discrete questions rather

than directly reflected in individual questions. In general, navigation is hard to de-

scribe within questions directly; it often involves parameters with higher informa-

tional complexity and dimensional cardinality, and lower linguistic ordinality, than

the data values involved in selection. For instance, describing the details of a lassoed

region as text would be verbose. Although precise, a list of polygon coordinates is

likely to be hard for a reader to interpret as a meaningful nugget of information,

either in relation to visualized spaces or to steps in analytical reasoning.
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Selection and navigation can be either discrete or continuous. We define Continu-

ous as interactions involving a sequence of intermediate visualization states between

an initial state and a goal state. Selection by lassoing and navigation by panning

(both through mouse drags) are examples. Examples of discrete interactions include

brushing a single item, clicking a checkbox to toggle filtering, and pressing the right

arrow key to advance a time series.

Intermediate states make effective translation of continuous interactions much

more difficult than for discrete interactions. Rapid accumulation and modification

of text for every change would be hard to read. Sampling or “punctuating” the

translation can preserve sufficient differences between key interactions while reducing

the total amount of generated output. Punctuated representation of translations

of key changes as text would require knowledge (or specification) of the analytic

relevance of intermediate states, which is highly unpredictable in general. Consider

a continuous selection by lasso of encounters in the map in Figure 5.1, ending when

the user releases the mouse. Q2Q generates two questions, one to reflect the selection

state when lassoing starts and one to reflect when it ends. Both questions list

selected encounters—optionally aggregated with an ellipsis when lassoing in a dense

region makes the list long—rather than, for instance, describe the geometry of the

lasso itself. Reflecting the selection state at intermediate points during lassoing can

also be a valuable indication of analysis steps. However, translation might require

knowledge about the end point, which would not be yet known.

For Q2Q of cross-filtering, the natural granularity of the analysis actions sup-

ported by a visualization’s interactions is reflected largely one-for-one in the pro-

gression of interactions and questions recorded and displayed. Ways to generate

readable summaries of navigation and continuous selection interactions, including

aggregation across and abstraction within questions, are left to future exploration.
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5.3 Summary

This chapter presents Q2Q as a means to support a cross-examination process in

which questions rather than interactions are the focus of analytical reasoning and

action. The chapter describes four particular situations in which users have difficulty

interpreting visualization states. Then, through a set of examples, it shows how Q2Q

can benefit users by helping them to validate their queries and correctly interpret

visualization states. In addition, the chapter presents a set of design factors identi-

fied throughout the design, implementation, and evaluation of the Q2Q translation

system. These design factors—user knowledge and roles, user interaction, and types

of data—introduce a set of challenges and open ended issues which were discussed

in this chapter.

The content of this chapter is accepted and will be published in IEEE Transaction

on Visualization and Computer Graphics Journal [87].
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Chapter 6

History Organizer Tool

6.1 Storytelling

6.1.1 Introduction

The primary focus of most visual analytic research has been on providing a platform

for users to perform data analysis and exploration. Less attention has been paid to

presentation and communication of the steps users take during analytical sessions.

The analytical process is particularly important to communicate since people who

analyze the data are often not the people who make decisions. The insight gained

from visualizations and the reasoning leading to those insights need to be commu-

nicated and presented to decision makers to support well-thought-out decisions.

In the iterative sensemaking process of intelligence analysis [1], visualization users

start with selection and navigation to filter and search data sets, and bring subsets

of information to their attention. They use visualizations to view their data, explore

it, and form hypotheses. They then present a hypothesis, reasoning, and possible

conclusions to an audience. The feedback from the audience might suggest more

analysis of the data and iteration of the process.

Presentation of a process in the form of a story is a popular way to engage an

audience and communicate insights [88,89]. There is a need for presentation tools for
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construction of stories that communicate information achieved during data analysis,

and the steps taken to get to that information.

In this dissertation, we developed a storytelling tool that enables users to take the

questions they have asked by interacting with a visualization, and interactively orga-

nize them into a coherent and meaningful representation. The questions generated

by Q2Q suggest certain orderings and groupings. The tool uses these dependencies

between questions to assist users in making understandable and reasonable organi-

zation choices. The tool also provides an environment to conduct studies of user

storytelling behavior, which are presented in Chapter 7. The rest of this chapter

provides background and related work about storytelling. It then describes a moti-

vation scenario to further define the problem space. Finally, it presents the history

organizer tool (HOT) and the algorithms used by the tool.

6.1.2 Background

This document defines storytelling as the presentation of a series of events in a certain

order with clear relationships between them [88,89]. Stories generally start with an

introduction, followed by main content, and ending with a conclusion. Storytelling

presentation can use various visual elements such as text, graphics image, and videos.

Regardless of their content, stories can be told in wide variety of forms. Segel

and Heer [88] define seven styles of storytelling: magazine style, annotated chart,

partitioned poster, flow chart, comic strip, slide show, and animation. These styles

are different in terms of the visual elements they use, the number of frames they

contain (for instance, multiple visual elements showing different periods of time),

and the order of the visual elements. The top level structure and order of the visual

elements forms the core of the story. Elements can appear in chronological order

or in a non-linear order, such as to include flashbacks in time. Events in a story

might not even be tied to particular time, and instead appear as a function of their

importance or interestingness.
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Figure 6.1: Minard’s visualization of Napolean’s march on Moscow, 1812–1813

Static data visualizations are often used to provide supporting evidence or ad-

ditional details to a story that is conveyed primarily through text, particularly in

the magazine style [88]. However, static visualizations have also been used as a

standalone storytellers. For instance, Charles Minard’s visualization of Napolean’s

1812–1813 Russian campaign is an example of a single, coherent graphic that de-

scribes an event over time. This visualization, shown in Figure 6.1, illustrates the

tremendous losses of Napolean’s army, along with other factors such as geographical

locations, temperatures, and travel directions over time [20].

Increasingly, online newspapers such as the New York Times, the Washington

Post, the Economist, and Guardian accompany the textual description of events

with interactive visualizations that provide an engaging experience for the audience.

Interaction with a visualization also invites the audience to be part of the story-

telling process and construct a story of their own. In visual analytics, storytelling

components are starting to be incorporated into visualization systems. For instance,

GeoTime [7] has adapted elements of storytelling by allowing users to manually an-

notate and bookmark key states of a visualization. In Tableau [3], users can review
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a history of visualization states and organize selected ones for later use. Online vi-

sualization applications, such as Many Eyes, have also been used to tell stories with

visualizations in collaborative settings [90]. Heer, Viegas, and Wattenberg designed

a web-based system called sense.us for asynchronous collaboration of information

visualization [8]. Sense.us allows users to bookmark, annotate, and share views.

These elements let the user construct trails of visualization states for the purpose

of storytelling. DecisionSite Posters1 allows distribution of interactive visualizations

and viewing of a selected set of interesting states for further analysis. Collaborative

discussion of analysis is also possible using CommentSpace [91]. In CommentSpace,

the visualizations are overlaid with tagging and commenting features that can be

linked, filtered, and searched to construct a view of the analytical process and facil-

itate collaboration.

Segel and Heer [88] further studied various visualizations and their capabilities

for storytelling. They identified three common approaches in telling stories in the

visual analytic sense: Martini Glass, in which the story starts with a broad intro-

duction, then focuses on key points, and finishes with the big picture; Interactive

Slideshow, in which users explore the domain in sequential form, focusing on a few

aspects one at the time; and Drill-Down Story, in which users are presented with

general information and can drill down into aspects that are interesting to them.

These three approaches are categorized based on the balance between author-driven

narrative and reader-driven narrative. Hullman and Diakopoulos [92] analyzed dif-

ferent rhetorical strategies used in narrative visualizations, including selective in-

formation representation, explicit notation of data source and uncertainty, usage of

visual metaphor and intended obscuration of data values, intentional presentation of

contradicting of redundant information, usage of visual encoding for emphasis, and

enforced particular ordering.

1http://spotfire.tibco.com
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Hullman, et al. [93] surveyed sequences of visualization states as they appeared

in linear presentations. They considered various types of transition between visual-

ization in sequence: Dialogue transitions, in which the state answering an analytical

question appears after the state reflecting the question; Temporal transitions, in

which visualizations are arranged based on a time data attribute of the underlying

data set; Causal transitions, in which a sequence of visualizations reflects causal re-

lationships, with each the consequence of previous; Granularity transitions, in which

visualization states appear in order of general to specific or specific to general, in

terms of the level of information they reveal; and Comparison transitions, in which

visualization states are placed to compare values of a data attribute with respect

to changes in other attributes. The study showed that users’ preferences of visual-

ization order are: temporal, comparative, and finally on granularity. They did not

include causal and dialog transitions in their study. They also found that users prefer

a high level of consistency between consecutive visualizations over low consistency.

They defined consistency as the number of changes in data dimensions between two

visualization states.

Even though studies in visualization storytelling are recently emerging, there

is a large space of research to be explored on various approaches toward creating,

organizing, reordering, and sequencing snippets and pieces of stories as a part of

visual analysis. In this dissertation, the focus is on providing a platform for users to

organize and present their general data exploration and analysis process, specifically

for the questions they have asked by interacting with data visualization tools. The

study conducted by Hullman, et al. [93] focuses on sequencing of visualization states.

The research in this dissertation takes advantage of their approach to study the

sequencing of questions asked in visualizations through interaction sequences. The

goal is not only to provide an effective presentation tool, but also to gain a better

understanding of the strategies that people use to organize the questions asked in a

visualization throughout an analysis session.
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6.2 Motivation Scenario

Users perform analytical tasks to form hypotheses and find solutions to analytical

problems. To do this, they can ask various questions of data using visualizations.

The questions they can ask are limited by the interaction and representation tech-

niques provided by the visualization tool. However, these questions are not always

asked in a deliberate fashion. Users often branch off to explore various dimensions

and attributes. They also often come back to previously visited points and regions

in the visualization space. Thus, simply providing questions in the order that they

have been asked might not form a comprehensible story of their exploration process.

Such a list would most probably include a set of states that are important and inter-

esting, as well as a set of states that are less useful and or even distracting in a story

of analysis. Even if all states are worth including in a story, the order of exploration

is not necessarily the desired presentation order. For instance, users might prefer to

present their conclusion first, and then go into detail of how they reached them. A

tool that provides questions to users, and incorporates capabilities to search, filter,

group, and reorder those questions, can facilitate the process of designing an easy-

to-follow story of the analysis process. Such a tool can also provide a platform to

identify user strategies for organizing, reordering, and grouping questions for later

reference or presentation. Insights about users’ storytelling habits can be reflected

in the design of presentation tools to improve their storytelling capabilities.

6.3 History Organizer Tool (HOT)

In this dissertation, we present the design and implementation of a history organizer

tool (HOT). HOT inputs automatically generated questions from Q2Q and provides

features to search them on keywords, reorder them based on various ordering options,

filter them based on their internal relations, and group them based on relevancy.

The HOT web application is designed in a way that can be used after each analysis
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session (in a visualization + Q2Q setting). Thus, it enables users to import questions

generated by Q2Q and edit, share, and present them.

HOT provides two ordering options, temporal and causal, which impose a set

of ordering constraints when users are reorganizing the questions. A relationship

suggestion option is also provided by HOT for effective search of related questions to

a given question. HOT can also be set to Group mode to apply grouping constraints

to the questions. These features are further explained in this chapter.

6.3.1 Architecture

The overall architecture of HOT and its relation with Q2Q is shown in Figure 6.2.

During an analytical session, user interacts with a visualization. The interactions

are translated into questions and shown in Q2Q interface. The structured questions

are also passed into a graph formation module for constructing a graph of questions

and their relationships for usage in HOT. When the user exists the visualization, the

relationships between the questions calculated based on the graph representation are

passed to the HOT web application which follows the general model view controller

architecture.

The raw, internal representation of HOT’s data (the model) is separated from

the user through a presentation layer (the view). The user interacts with the view to

organize questions asked in the visualization. This sends events to the controller for

manipulating or getting data from the model. The controller looks up the ordering,

grouping, and relationship constraints and imposers, which are pre-calculated from

the graph and are stored in the model, to update the view. This architecture is

common among web applications. The primary benefit of this architecture is that

the model, view, and controller are modular and reusable. The web-based design of

HOT has the advantage of being platform-independent. It can be run on any machine

with a modern browser, meaning its content can easily be shared for presentation

purposes.
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The model is constructed after a preprocessing stage which transforms the ques-

tions generated by Q2Q into a graph representation. The graph representation of the

questions informs the ordering and grouping procedures that can be applied during

user question reorganization. The preprocessing performed to calculate orderings,

relationship connections, and groupings are described in Sections 6.3.3.1, 6.3.3.2,

and 6.3.4.

The view presents information from the model, and gives users a platform for in-

teracting with, rearranging, organizing, and preparing their previously asked queries

for presentation. The interface of HOT is described in detail in Section 6.3.2.

The controller is responsible for handling the user’s interactions in the view,

and responding appropriately, either enforcing ordering on the model, filtering, or

highlighting questions, based on the features chosen by the user. Section 6.3.3

describes how the controller responds when a violation of ordering occurs.

Figure 6.2: The overall architecture of HOT.
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6.3.2 Interface

The user interface for HOT is implemented in HTML and JavaScript. Figure 6.3

shows the HOT interface being used to organize the questions asked in the Migrant

Boats Visualization (Figure 1.1).

HOT presents the questions generated by Q2Q on the righthand side of the

interface, in the same order as they were asked in the visualization. Users scroll a

list to find questions of interest. They can also search questions on keywords using

a search bar located at the top of the question view, thereby filtering the questions

based on what is interesting to them. HOT uses filtering the questions identified by

keyword search—over other means of showing related items, such as highlighting.

The list of questions can be arbitrarily long. Filtering results by showing a subset

of the questions reduces the amount of displayed data and is thus more effective for

search and scanning tasks.

The questions are presented with a numeric identifier (ID), which is associated

with the order in which the questions were generated by Q2Q, and thus also when

in the analysis process they arose. IDs are given a fractional-part greater than zero.

The fractional part means that the corresponding row (question/sentence) belongs to

a larger set of questions/sentences generated as a result of a single interaction. (For

instance, question 10.1 on the righthand side of the interface—shown in Figure 6.3.

Identifiers 10.0 and 10.1 are generated to mark a short sequence of related selection

interactions.)

Several key features are provided by HOT interface to support storytelling:

• Freely movable panels,

• Reordering options,

• A Relationship Suggestion option,

• Group mode, and
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• Saving and loading question organizations.

To better organize the questions, users can add questions to panels. An add

panel option is provided (see the plus sign on the top left corner of the interface).

This feature allows users to build a hierarchy of panels and add/remove questions

to/from those panels. One panel is active at a time. Users add questions to the

active panel. Users can also title the panels to summarize their contents. Panels can

move freely in a history organizer board to construct an infographic of the questions.

Panels can also be deleted at anytime, which will result in removal of the questions

within the panel but not deletion from the main list.

Questions in a panel can be reordered. HOT provides three ordering options:

• Temporal Order forces questions to follow the order that they were asked during

visualization interaction.

• Causal Order makes sure that text generated in response to selection inter-

actions comes before the corresponding questions that result from filtering

interactions.

• Free Order allows users to reorder the questions without any constraints.

To facilitate the storytelling process, HOT provides a relationship suggestion

option, which helps users to find all questions related to a given question, and add

them to a panel. Users turn on the relationship suggestion option and click on

a question in a panel to find related questions, which appear highlighted. Darker

highlighting color represents stronger relationships. The strength of the relationships

is based on the similarity of the dimensions involved in the questions (described in

Section 6.3.4).

Users can enable a Group mode while they are adding questions. This mode

restricts questions that can be added to a panel. If a question is unrelated to all the

other questions in a panel, the application does not allow the question to be added

to that panel.
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Figure 6.3: Intermediate state of the History Organizer Tool, showing a set of panels populated by questions. Relationship
suggestion option is turned on, highlighting all questions related to the question that is selected in the bottom left panel
(1.0).105



Figure 6.4: The question with identifier 18.0 is highlighted to indicate a violation of

the imposed temporal ordering.

Users can also save and load the state of the HTML at any time for ongoing

use. In the following sections, the algorithms behind the ordering and relationship

suggestion options are described.

6.3.3 Reordering

HOT provides two imposed ordering options: temporal and causal. If either of

these options is turned on, a set of restrictions is applied while the user reorders

the questions. If users try to reorder against an imposed ordering, the HOT UI

highlights the questions that are in violation. For example, Figure 6.4 shows a panel

from the HOT interface. This panel contains questions about the Immigrant Boats

Visualization shown in Chapter 5.1. The user has tried to move question 17.1 after

question 18.0. Based on the temporal ordering, question 17.1 should always appear

before 18.0. The system snaps 17.1 back to its original place and highlights question

18.1—the source of the “error”—in red.
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Figure 6.5: Ordering experiment, with printed interaction translations.

To acquire a better understanding of the process of constructing a coherent story

of the data analysis sessions and particularly ordering options, we performed an

experiment. In the experiment, we placed a set of printed interaction translations

on a board. The interactions were generated using Improvise and translated into

questions using Q2Q (see Figure 6.5). The questions were generated over several

simulated analysis sessions, including exploration of various dimensions and data

attributes. We reorganized those questions by moving them around, grouping them,

ordering them, highlighting the data dimensions within each group, and labeling

the groups on a free board. This required omitting unimportant questions and

organizing the important ones into orders that were easy to follow.

The experiment suggested a graph-driven structure that identifies possible tran-

sitions in a question set, represented as nodes in a graph. A set of ordering options,

which are connections between graph nodes, can be automatically applied while

users are organizing the questions in the HOT interface. This results in a directed

graph that specifies allowed presentation orderings of questions based on possible
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paths and directions from one node to another. The next few sections provide detail

about the ordering algorithms.

6.3.3.1 Temporal Ordering

User interactions with visualizations are often exploratory. They might include var-

ious analysis branches and intermediate steps. A sequence of interactions reflects a

set of steps taken, consciously or unconsciously, in an order that is desirable to pre-

serve for presentation. Temporal ordering preserves the overall order of interactions

as they occurred, while giving the users an ability to skip and not present particular

interaction steps.

In temporal ordering, the focus is on preserving the order followed by the primary

analysts who used the visualization, but only for the questions asked about shared de-

pendent variables. To better understand the concept of temporal ordering, consider

the following example. In Figure 6.4, both 17.1 and 18.0 are questions about the

location of vessels, but with different levels of constraints. That is, 17.1 is looking

for the vessels that were only interdicted, whereas 18.0 is looking for a vessel that

both interdicted and was also carrying passenger Heredia. The IDs indicate that

17.1 was asked before 18.0 during data analysis. Temporal ordering preserves this

order since both questions are about the location of vessels. Accordingly, the graph

representing the temporal order (Figure 6.6) has a directed edge from node 17.1 to

18.0, reflecting the order they were originally asked in the visualization. On the

other hand, in Figure 6.4, even though 1.0 occurred before both 17.1 and 18.0, it

can be located after those questions since it examines a disjoint set of dependent

variables (here is the variable, Passengers) and is conceptually independent from the

other questions in the panel. Thus, there is no edge connecting 1.0 to 17.1 or 18.0

in the graph.

Algorithm The algorithm to apply temporal ordering to a set of interaction ques-

tions generated by Q2Q follows a graph-driven approach. As users interact with a
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Figure 6.6: A graph of the temporal ordering dependencies of questions asked in the
Migrant Boats visualization, as shown in the HOT panel in Figure 6.4.

visualization, the system constructs a dependency graph of the questions generated

from queries.

The algorithm accepts translated queries as input and constructs a graph. The

individual questions form the nodes of the graph. The dependency relationship

between the nodes form the edges of the graph.

Figure 6.7 shows the flow of information through the algorithm and its com-

ponents. Q2Q receives each interaction event as an input from the underlying vi-

sualization system. Q2Q outputs questions corresponding to the interaction. A

single interaction might result in generation of more than one question/sentence.

For instance, if a filtering or selection interaction results in changes in more than

one view, a single question—which can be a combination of several questions con-

catenated with “and”, or aggregated into a single question/sentence—is generated

for each affected visualization view. Given a group of questions/sentences, the al-

gorithm ignores any warning sentences generated during user visual interaction and

constructs nodes for each remaining question/sentence. This approach allows users

to freely organize the questions that result from individual interactions. The ex-

periment performed using printed interactions on a board suggest associating nodes
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with individual questions rather than interactions. During the experiment, organiz-

ing questions as a group (associated with a single interaction) provided less flexibility

than rearranging individual questions within a group.

Figure 6.7: The flow of information through the components of the temporal ordering

algorithm.
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New nodes form as interactions occur. Each node in the dependency graph con-

tains information about the ID of the interaction, interaction type, and the parse tree

constructing the question/sentence. It also has detailed information about the inter-

action including the filteree dimension, the filterer dimensions, and the selected data

values in each dimension. This information is extracted from the question/sentence

parse tree and is used later to determine the edges of the graph.

An edge exists between two nodes if there is a dependency between the ques-

tion/sentence attributes of the nodes. The direction of the edge defines the order

they need to appear in a storytelling UI. If a new node (constructed by the most

recent interaction) is determined to be connected to an existing node, an edge from

the existing node to the new node is defined, preserving the interaction order. In

temporal ordering, the questions are considered related if the subject of the question

is the same, meaning they ask a question about the same data dimension.

To determine if two nodes are related, each node listens for certain interaction

events related to the question the node is representing. Once a related event to

the node occurs, the system creates an edge from the existing node to the new

node. This way, the direction of the edge represents the order of a set of related

questions/sentences as they actually occur in an analysis session.

In a question generated by a filtering or a selection interaction, the dependent

variable is called the filteree, and the independent variable is called filterer. For in-

stance, in the question “Which passengers were involved with an event on the date

June 03, 2006?”, the dependent variable is “passengers”, the independent variable

is “date”, and the value of the independent variable is “June 03, 2006”. Similarly,

the data dimension “date” in a qualifier sentence “Considering Date June 03 2006”

is the independent variable and “June 03 2006” is its value. Determining whether a

new node is related to an existing node is based on the value of the filteree (depen-

dent variable) and filterers (independent variable) in the questions/sentences being

represented.
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A node can contain a question, qualifier sentence, invalid question, or invalid

qualifier sentence. For these four types of nodes, the following list describes which

types of node relate to one another and which variables (dependent and independent)

in any given pair of nodes should match to form a relation:

Question and Invalid Question nodes connect to

• a question node with the same dependent variable, and

• a qualifier sentence node that has the same independent variable.

Qualifier Sentence nodes connect to

• a question node with the same independent variable, and

• a qualifier sentence node that is invalid and has the same independent

variable.

Invalid Qualifier Sentence nodes connect to

• a question node with the same independent variable, and

• a qualifier sentence node that is valid and has the same independent

variable.

For grouping purposes, the algorithm calculates partitions as it adds new nodes

to the graph. Three cases can occur while adding a new node to the graph:

(1) If there is no edge between the new node and the existing nodes, the new

node constructs its own partition.

(2) If there is at least one edge between the new node and the existing nodes,

and all the related existing nodes belong to the same partition, the new node joins

that partition.

(3) If the related nodes belong to different partitions, adding the new node results

in merging the existing partitions into one.
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Once the graph is constructed, the dependency specification of each node is

extracted by looking at incoming and outgoing edges from the node. The dependency

specification is stored in the form of lists of nodes that comes before and after each

node and the partition the node belongs to. This information is converted into

a JavaScript object for applying ordering and grouping constraints in the HOT

interface.

6.3.3.2 Causal Ordering

Causal ordering is motivated by the logic behind performing interactions. Some

forms of interaction are naturally performed in certain orders. For instance, in se-

lection and filtering interactions, the interactions are designed in such a way that it

makes more sense to perform selection first, and then filtering. Thus, causal ordering

causes selection interactions to appear before the corresponding filter interactions.

More generally, causal ordering puts qualifier sentences before the questions affected

by those qualifiers. This type of ordering gives users freedom to organize questions

while adhering to constraints that facilitate construction of easy-to-understand sto-

ries of the analytical process.

Algorithm Similar to temporal ordering, causal ordering follows a graph-driven

approach. The graph contains the same four types of nodes: question, invalid ques-

tion, qualifier sentence, and invalid qualifier sentence. The question/sentence nodes

are added to the graph as users interact with the visualization. However, the rules

for connecting two nodes with an edge are different from those used for temporal

ordering. Three main rules determine the existence of edges and their directions:

(1) There is an edge from a qualifier sentence to a question if both have the same

independent variable and the values of the independent variable overlap (i.e., they

share at least one value).
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(2) There is an edge from a qualifier sentence to an invalid qualifier sentence if

they both have the same independent variable and the values of the independent

variable overlap.

(3) There is an edge from a question to an invalid question if they both have the

same dependent and independent variables.

The evaluation of HOT (Chapter 7) revealed that presenting invalid qualifier sen-

tences and invalid questions result in increased user confusion during organization.

An updated version of the HOT interface does not display both invalid qualifier

sentences and invalid questions in the list of interactions. This makes rules (2) and

(3) above inapplicable in causal ordering.

6.3.4 Sequencing

Imposed orderings help user arrange questions to convey sequences of analysis steps.

They also suggest related questions/sentences to ease the search and extraction of

questions from a long list of possibilities.

HOT provides a relationship suggestion that allows users to see all the related

questions/sentences to a selected question/sentence with the degree of their related-

ness (described below). That is, HOT displays not only which questions/sentences

are related, but also the strength of the relationship. For instance, in Figure 6.3, a

user can select question 1.0 (“Which passengers were involved with an event on the

Date June 03 2006?”) in the panel in the bottom left corner of the board, causing

all the related questions/sentences to be highlighted. HOT uses different shades of

green to represent the strength of relationships. Darker colors represent stronger

relationships. In this example, question 2.0 (“Where were the vessel on the Date

June 03 2006?”) is more related to the original question, 1.0, than to question 6.0

(“Which passenger were involved with the Encounters 240, 366, or 369? and which

passengers were involved with an event on the Date June 03 2006?”).
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The identification of relationships between questions/sentences and calculation

of their strength is inspired by the research of Hullman, et al. [93]. They performed

a survey to discover individual preferences in sequencing visualization states for

different state transitions and transition costs. They defined the cost of a transition

as the number of mismatching attribute values of successive visualization states.

They concluded that users prefer low cost transitions to high cost transitions when

switching between visualization states. Even though their focus is on visualization

states and not the textual translation of queries triggered in each state, a similar

idea can be used to calculate the transition cost between two query translations. The

algorithm for relationship suggestion in HOT calculates the cost transition between

each node of the graph based on the number of mismatches in data attribute values

that appear in questions/sentences. Then, it assigns edges if the cost of the transition

is smaller than a specific threshold defined by the system. The constructed graph is

an undirected weighted graph.

The transition cost between question/sentence nodes in filtering and selection in-

teractions is calculated by looking at differences in dependent variables, independent

variables, and the value of independent variables. After counting the non-matching

attributes, the cost is normalized over the maximum total number of attributes that

appear in the new node and existing node. The value of the cost transition is be-

tween 0.0 and 1.0, inclusive. A value 0.0 indicates that the two questions/sentences

are exactly the same, while 1.0 indicates that they have no attributes in common.

For example, in Figure 6.8, the questions related to question 78.1 (“Where were the

vessels interdicted by the ship Bonefish?”) are highlighted on the left hand side of

the interface. Since question 71.0 is exactly the same question as 78.1, but occurred

at a different time in the analytical process, the cost is 0.0 and consequently shown

in dark green. Question 69.1 (“Which types of vessels were interdicted by the ship

Bonefish?”) has a strong relationship with 78.1, since it shares two attributes out

of three—independent variable Ship and the value Bonefish—resulting in a cost of
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Figure 6.8: The relationship suggestion feature highlights related ques-
tions/sentences on how strongly they are realted using different shades of green.
Here, the relationship suggestion option is activated. Selecting question 78.1 high-
lights all the other related questions in the list as shown.

0.33. On the other hand, question 74.0 (“On what dates did the ship Bonefish in-

terdict a vessel? and on what dates were the vessel of type Raft involved with an

event? and on what dates do the vessels have the resolution of type Interdiction?”)

is not highly related to question 78.1, since only two attributes out of nine attributes

match, resulting in a cost of 0.78.

Questions/sentences that are not highlighted have a cost of 1.0, which means

no matching attributes. The effectiveness of this approach decreases as the number

of involved attributes increases. A larger number of attributes results in lower cost
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values during normalization, since the number of mismatches is divided by the total

number of attributes. This problem can be disregarded in practice since the number

of the data attributes in most visualizations is small (generally fewer than ten).

6.4 Summary

This chapter describes a history organizer tool (HOT) that is integrated with Q2Q

user interaction translation system. It accepts questions generated by Q2Q and

provides a user interface to organize them. Users are able to search, filter, use

automatically ordering and grouping to organize the questions into panels. Rear-

rangement options such as temporal and causal reordering, relationship suggestion,

and grouping, are provided to facilitate the reorganization of questions into a co-

herent presentation of the steps taken during analysis sessions. Such facilities for

grouping and sequencing the questions asked during visualization interaction has

not been studied in visual analytic research. Deeper study is needed to understand

the possible benefits that automatic reordering and relationship configuration can

provide to support storytelling. The next chapter describes a user study of facilities

for organizing questions translated from visual queries. Focusing on the benefits and

drawbacks of the features in the HOT user interface, it further analyzes observed

behaviors of users while organizing translations of their queries to form stories.
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Chapter 7

Evaluation of User History Organization

7.1 Introduction

During data analysis and sensemaking using highly interactive visualizations, the

organization of analytical steps and presentation of the process is nearly as impor-

tant as the data foraging and sensemaking. Arranging the steps taken to acquire

knowledge is essential to convey reasoning and conclusions, to make sense of the

process, to better present and receive feedback about the analysis strategies, and

eventually accept or reject hypotheses. With tools like Q2Q that capture and trans-

late user interactions in visualizations into natural language, analysts have access to

the questions they have asked and can arrange them in a presentation format to de-

scribe the whole analytical process. The HOT interface is an initial design of a tool

that enables users to flexibly rearrange, reorder, and group their query intentions

to construct a story about the analysis process. HOT is also a suitable platform for

studying users’ rearranging and grouping behaviors since various users have different

preferences in organizing the analytical process.

This chapter describes an evaluation of user behavior in selection and ordering

of their translated queries from visualizations in general, and the effectiveness of the

automatic ordering and selection features provided by HOT in particular.
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7.2 User Experiment

The goal of the history organizer tool (HOT) is to ease the process of rearranging

users’ analytical thoughts captured in the form of their translated queries, so that

users are able to present the questions asked from the visualization to others, or

record them for themselves. This process can be done by removing redundant,

irrelevant, and distractive questions, and by grouping and ordering the relevant

questions together. In order to gain understanding of how successful HOT is at

facilitating the organization of translated queries, we conducted an experiment to

study and analyze differences in user performances when users use different features

of HOT. Beyond the evaluation of the features provided by HOT, this study can

inform the design of other ordering and rearranging options that can be incorporated

into HOT in the future.

7.2.1 Design

Twenty undergraduate and graduate students (12 females and 8 males) were re-

cruited from various different majors including Computer Science, Electrical Engi-

neering, Civil Engineering, Human Resources, Petroleum Engineering, Mechanical

Engineering, Physics, Mathematics, and Industrial Engineering. They all reported

basic experience interacting with user interfaces and visualization of some sort.

Prior to the study, we showed an Improvise visualization to the participants to

give them a sense of the types of interactions that can be performed, focusing on

selection and filtering only, and how those interactions are translated into questions

using Q2Q. Participants worked through an example task to learn the software’s

mechanics and terminology. This practice also familiarized the participants with

the data domain encountered in the experiment. Then, we explained the history

organizer tool and its capabilities. In particular, we explained how the tool accepts
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Figure 7.1: Migrant boats visualization accompanied with Q2Q and used for con-
ducting the user study on HOT interface

translation of interactions as an input and how participants can use the provided

features for organizing those interaction translations.

One Improvise visualization—Migrant Boats Visualization shown in Figure 7.1—

was used to simulate an analytical session involving various queries on several data

dimensions. The questions generated from simulated interactions with the visualiza-

tion were displayed in HOT to conduct the experiment. We gave participants a set

of questions. We asked them to use the HOT interface to organize the interaction

translations to answer those questions. In each organization task, we asked them

to use a specific feature provided by the application, resulting in four scenarios to

study:

• a participant only uses the temporal ordering option to organize the questions

• a participant only uses the causal ordering option to organize the questions

• a participant only uses the relationship suggestion option to organize the ques-

tions

• a participant only uses the free ordering option to organize the questions
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We asked each participant to perform one task in each of the four scenarios. The

order of the scenarios in the experiment was assigned randomly to reduce learning

effects.

In each scenario, we asked participants to organize queries that might be of

interest in intelligence analysis of coast guards interdictions, as supported by the

Migrant Boat visualization. The organization tasks involve two main sub-tasks:

grouping related questions and reordering questions in groups. We instructed the

participants to use HOT to first group and then reorder (if necessary) the translated

interactions to provide answers to the evaluation questions given to them. Example

of the questions asked in each scenario are shown in Table 7.1. After each task, we

asked participants to express how difficult the task was and how confident they were

about their answers.

We also asked participants to express their opinion about the quality of questions

generated by Q2Q.

7.2.2 Data Collection

In this experiment, two types of data were collected: performance data and be-

havioral data. Performance data was gathered to compare the effectiveness of the

various ordering and selection features of HOT. Behavioral data was gathered to

acquire a better understanding of how people organize their questions to form a

story.

7.2.2.1 Performance Data

The measurements collected in this user study are: number of errors, time taken to

group, time taken to reorder, and number of reordering actions.

• Error indicates whether the participants correctly and successfully completed

a task. A task is completed correctly if the questions that are grouped by
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Temporal Ordering
Where were vessels of type Raft interdicted by Bonefish,
and during what time they were interdicted,
who was traveling on those boats?
Who were the passengers that Bonefish interdicted?
(Any vessel type)

Causal Ordering
Ship “A” interdicted Passenger Abreu Pancho
(in the event “B”):
What other boats did “A” interdict?
Who else was on the boat that Abreu Pancho was on?
Hint: First ask the questions to get the answer
Bonefish for “A”.
Then get the answer 224 for event “B”.

Relationship Suggestion
Adamant interdicted different types of vessels.
Most commonly, Adamant interdicted vessels
of the type “A”.
Discover the dates vessels of this
type were interdicted.
Discover the passengers who traveled with
this type of vessel.
Discover the passengers who were interdicted
by Adamant.
Hint: First ask questions to get the answer
Rustic for “A”.

Free Ordering
Passenger Heredia Roberto was interdicted on the
date “A”, June 3, 2006.
Which passengers were interdicted on the same date
as Heredia, Roberto?
More specifically, who were on the boats
(240, 366, or 369) on that date?
Hint: First ask the questions to get the date
(June 3, 2006) for “A”, and then answer the questions.

Table 7.1: Questions posed to participants in each of the four scenarios. To complete
each scenario, we asked participants to group and reorder translated interactions to
answer each of the questions.
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the participants answer the questions that are handed to them. The level of

abstraction and the order they appear are not the concern in this measurement.

Error has a binary value, meaning the participants can either perform a task

correctly or incorrectly. This measurement is particularly useful in studying

the effects of having the relationship suggestion option for selecting relevant

questions. Ordering options can have indirect effects on choosing the right set

of questions as well. This requires a more fine-grained study and is an avenue

for future research.

• Time Taken to Group indicates the time spent to select the relevant questions

and add them to a panel in the HOT interface. This is collected from the time

participants start to look for the first question to the time they add the last

question. The amount of time spent to reorder the selected questions is not

part of this measurement. This measurement is collected to see the effects of

relationship suggestion directly, and ordering options indirectly, on the user’s

speed in finding relevant pieces of information.

• Time Taken to Reorder indicates the amount of time it takes to reorder the

questions after they are grouped in a panel. The time is recorded from when the

participants are done grouping the questions and starting the reordering action

to the time they finalize the order. The time is recorded even if the participant

does not perform any ordering actions. This measurement is beneficial in

studying the effects of automatic ordering options—temporal and causal—on

constructing a coherent story from the translation of user queries.

• Number of Ordering Actions indicates the number of ordering actions per-

formed by the participants during their organization of the interaction trans-

lations. This measurement is collected to study the effects of temporal and

causal ordering on the performance of storytelling tasks. Recording only the
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time taken for reordering might not be sufficient to determine whether partic-

ipants are satisfied with the automatic ordering options. Even if they spend

considerable amount of time during the reordering tasks, they might spend the

time reading and examining the suggested orders, but eventually agree with

the suggestion with a few or no changes in the order of the textual translations.

7.2.2.2 Behavioral Data

The behavioral data that is collected in this user study are presented below.

Number of generalized questions versus number of specific questions. During se-

lection and grouping of translated queries, participants can pursue different strate-

gies in forming their story and completing their task. From the list of possible

questions to choose from, they have the option to choose a general question or a

specific question, both of which would answer the question that is presented to

them. This behavioral data is valuable input for creating design guidelines of a

history organizer board like HOT, in that it gives a better understanding of how

users express their thoughts; either they present an overview, a detailed view, or a

mixture of both. Thus, it can be helpful to determine whether a storytelling tool

should provide/suggest more general questions, more specific questions, or both.

Order from general to specific questions versus order from specific to general

questions. Once participants have selected their questions, if they have chosen both

specific and general questions, how do they order them? This information is partic-

ularly valuable for designing an automatic ordering tool to assist the organization

of user stories.

Questions and Variables. Another set of behavioral data collected focuses on how

participants order the translations corresponding to the underlying interactions. In

this dissertation, the focused interactions are filtering and selection. Filtering in-

teractions are associated with questions, and selection interactions are associated

with qualifier sentences. An example of a question and a qualifier sentence are
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(a) Presenting all the variables first (b) Presenting all the variables last

Figure 7.2: Two panels showing all the variables appear (a) first and (b) last.

“Which types of vessels were interdicted by the ship Bonefish?” and “Considering

ship Bonefish”, respectively. In this study, we categorized the participants’ arrange-

ments of questions and the variables into four ways listed as below (also see Fig-

ures 7.2a, 7.2b, 7.3a, and 7.3b):

• presenting all the variables first,

• presenting all the variables last,

• presenting variables before the associated questions, and

• Presenting variables after the associated questions.

Order of WH questions. We collected behavioral data about how participants

order questions as a function of WH-question words. In this study, we examined

four types of WH questions: What, When, Where, and Who. This covers questions

about categorical, temporal, spatial, and nominal types of data. It is interesting
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(a) Presenting variables before the associated
questions

(b) Presenting variables after the associated
questions

Figure 7.3: Two panels showing variables (a) before and (b) after questions.

to see how participants order their questions based on the types of data that are

queried. This information can be useful in designing the automatic ordering features

in the history organizer tool. In this experiment, since the given tasks might suggest

particular orderings for the WH-questions, only the orderings that do not follow the

task ordering are considered.

Order of independent variables. In addition to studying the order of interaction

translations based on the WH-questions, we also examined the order based on the

independent variables. We gathered this information to see whether participants

organize the translated queries with similar values of independent variables close

to each other in a group. Similarly, this information would guide an automatic

reordering tool.

Keyword searched. We studied the keyword that participants used to find the

relevant questions/text. This information is useful in providing a more advanced
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search feature for an organizer tool. Keywords fall into seven categories:action,

dependent variable, independent variable, value of independent variable, WH-question

word, other data dimension, and other. To have a better understanding of what each

of these categories covers, consider the example question: “Which ship did interdict a

vessel carrying a passenger John Smith?”. The keywords for searching this question

can be in one or more of the seven categories:

The action category refers to what describes the action, state, or occurrence. It

is generally some form of the verb that is used in the question, here “interdict” and

“carry”.

The dependent variable category refers to the subject of the question. In the

example above, “Ship” is a dependent variable.

The independent variable category refers to a data dimension that a dependent

variable is questioned about. “Passenger” is an independent variable in the example

above.

The value of independent variable category refers to the data values of an indepen-

dent variable. “John Smith” is the value for the independent variable “Passenger”

in the example question.

The WH-question word category refers to question words such as what, which,

when, where, and who that can be used as a keyword to search a question. In the

example, “which” is the WH-question word.

The other data dimension category refers to other data dimensions that are

displayed in the visualization, but are not directly part of the query. For instance,

“vessel” in the question above is a dimension that is not directly part of this query,

but is semantically related to the query.

The other category refers to any other words that can be searched and do not

fall into the other six categories. For instance, “did” belongs to the other category

in example question.
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7.2.3 Performance Results

For each performance aspect measured, we perform a F-test to assess the differences

in performance between four features: temporal ordering, causal ordering, relation-

ship suggestion, and free ordering in the HOT interface. If a significant difference is

observed, we perform a Student’s paired t-test between pairs of features to identify

the feature that reveals significant difference in performance measurements. We test

four hypotheses:

1 Participants perform tasks with fewer errors using relationship suggestions.

2 Participants perform grouping tasks faster using relationship suggestions.

3 Participants perform reordering tasks faster using temporal or causal Ordering.

4 Participants perform fewer reordering actions using temporal or causal Order-

ing.

Table 7.2 shows participants’ performance data for the measurements described

in Section 7.2.2.1. Differences in data performance for the four features are consid-

ered significant with p ≤ 0.05. Even if the differences are not statistically significant,

the considerable differences are shown in bold and reviewed for analysis.

The first hypothesis tests the effect of relationship suggestion on the number

of errors users make while organizing a question/sentence. When participants use

the relationship suggestion option to find related questions or sentences, they per-

form considerably fewer errors compared to other features (see Table 7.2, first row).

However, this difference is not considered statistically significant. Based on the ob-

servations, participants are less distracted by other, low relevance questions when

they use the relationship suggestion option. Color coding of related questions, not

only accentuates relevant questions based on shared keywords, but also points out

textual translations related to corresponding visualization states.
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Temporal Ordering Causal Ordering
Relationship

Suggestion
Free Ordering

AVG. STD. AVG. STD. AVG. STD. AVG. STD. P-value

Error 0.19 0.33 0.1 0.31 0.03 0.17 0.2 0.41 0.33 > 0.05

Time to Group 226.125 89.35 267.9 111.7 206.4 64.97 236.05 98.34 0.21 > 0.05

Time to Reorder 58.91 47.25 58.95 61.20 59.35 30.59 62.9 64.01 0.99 > 0.05

Number of Reorderings 1.57 1.39 1.5 1.67 2.36 1.86 5.95 4.35 5.593E − 07 < 0.05

Table 7.2: Averages and standard deviations of performance measurements for each of the four features, along side the

p-value for all features over all participants.
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The second hypothesis tests the effects of the relationship suggestion option on

the speed of users while performing a grouping task. Similar to the number of errors,

participants’ performances improve, 37 seconds on average faster compared to other

features, when they use relationships suggestion (see Table 7.2, second row). Even

though the difference in time is considerable, it is not statistically significant. The

observations indicate that participants are able to find related questions that require

several searches (using the keyword search box) in fewer steps. (For instance, one

can click on one of the questions that is already in the group to find the rest of the

related questions.)

The third hypothesis tests the effect of automatic ordering on the time it takes

users to reorder a group of questions or sentences. As shown in Table 7.2, third row,

there is no considerable difference between the ordering features and other features

in terms of participants’ speed in reordering. The differences in standard deviations

for the four features result in inconsiderable difference in speed. (Note that the time

is recorded even if the participants do not perform any reordering actions and only

spend their time examining the suggested or existing orders.)

The forth hypothesis tests the effects of automatic ordering on the number of

reordering actions users perform while organizing the textual translations. As shown

in Table 7.2, fourth row, there is a considerable and statistically significant difference

between the number of reordering actions performed. A Student’s paired t-test is

performed to identify the features that are significantly different. The t-test reveals

that temporal and causal ordering are significantly different from free ordering, with

p-values of 0.0002 and 0.00004, respectively. Despite the considerable difference be-

tween temporal/causal ordering and relationship suggestions, the difference is not

statistically significant. The difference between temporal and causal ordering them-

selves are also not considerable. The observations support the fact that even though

users might still spend time on examining the suggested orders (third hypothesis),

they end up agreeing with the current order and do not perform a considerable
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amount of reordering actions when they use temporal and causal ordering. This

suggests that the effect of automatic ordering might become significant with the

continuous use of the tool.

7.2.4 Behavioral Results

We collected behavioral data to study the grouping and ordering strategies of users

while organizing their question/sentence. Thus, we collected this data across all four

main tasks (performing grouping and reordering using the four available features in

HOT).

Generalized Questions versus Specific Questions

The first set of behavioral data focuses on users’ rearrangement activities based on

the level of details that questions/sentences convey. The two corresponding hypothe-

ses that have been tested are as follows:

1 Participants use both general questions and specific questions with no signifi-

cant difference.

2 Participants order questions from general to specific, or from specific to general,

without significant difference.

Table 7.3 shows the results for the number of general and specific questions

used in the experiment. The collected data have been normalized, thus the average

values presented in Table 7.3 indicate the percentage of time that questions having

two levels of details were considered by the participants. A Student’s paired t-test

General Questions Specific Questions
AVG. STD. AVG. STD. P-value
0.52 0.445 0.48 0.445 0.38 > 0.05

Table 7.3: Averages and standard deviations of the number of general questions
and specific questions that users used in the experiment, with p-values
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reveals that there is no significant difference in usage of general and specific questions

in this experiment, with p ≤ 0.05. These observations support the fact that some

participants use both general and specific questions to cover a more comprehensive

story of the steps needed to answer analysis questions. On the other hand, some

participants preferred only general questions while others preferred only specific

questions.

Table 7.4 shows the preferences in ordering the questions for the participants who

included both types of questions in their stories. A Student’s paired t-test shows no

significant difference in users’ preferences for these two types of ordering. However,

there is a statistically significant difference in participants’ preference in using one

of the above mentioned ordering over no particular order (see Table 7.5). Partici-

pants generally order their pieces of information based on the levels of abstractions

presented by that information.

General to Specific Order Specific to General Order

AVG. STD. AVG. STD. P-value

0.38 0.494 0.31 0.471 0.32 > 0.05

Table 7.4: Averages and standard deviations of occurrence of general to specific

and specific to general questions ordering in the experiment, with p-values.

Order based on

level of details

No particular Order

based on

levels of details

AVG. STD. AVG. STD. P-value

0.66 0.494 0.484 0.484 0.04 < 0.05

Table 7.5: Averages and standard deviations of occurrence of ordering based on

the level of details in the text, versus no particular ordering based on the

level of details, with p-values.
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Variables
First

Variables
Last

Variables
Before

Questions

Variables
After

Questions
AVG. STD. AVG. STD. AVG. STD. AVG. STD. P-value
0.343 0.464 0.018 0.101 0.572 0.478 0.067 0.206 5.77E − 23 < 0.05

Table 7.6: Averages and standard deviations of occurrence of arrangement based
on variables and questions, with p-values.

Questions and Variables

The order that the textual translations are organized in a group can be also viewed

in terms of variables and questions. We tested a hypothesis:

Participants order variables before the associated questions.

We collected four different types of ordering data with respect to the arrange-

ment of variables and questions: all variables presented first, all variables presented

last, variables presented before associated questions, and variables presented after

associated questions. Table 7.6 shows the average number of times that each of the

four above arrangements occurred in the experiment. An F-test reveals that there is

a significant difference between occurrences of the four arrangements. A Students’

paired t-test further narrows down the differences and reveals that the pattern of

variables before associated questions occurred much more significantly (statistically,

with p-value 0.01 < 0.05) than the other three patterns. Occurrence of all vari-

ables presented first is also statistically significant compared to the remaining two

patterns. This shows that participants generally tend to arrange variables before

questions and, if not, mostly arrange them at the beginning.

Order of the WH-questions

Another ordering aspect explored is how participants order the questions with re-

spect to WH-question words. Since the given tasks might suggest particular order-

ings of WH-words, we only study the orderings that do not match the task order.

This results in 40 sub-tasks, with 38 Who questions, 29 When questions, 25 What
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Probability of occurrence in the text % of time occurrence
what before when 0.325 72%
when before what 0.125 28%
what before where 0.150 55%
where before what 0.125 45%
who before what 0.20 27%
what before who 0.55 73%
where before who 0.35 64%
who before where 0.20 36%

where before when 0.225 64%
when before where 0.125 36%
when before who 0.55 63%
who before when 0.325 37%

Table 7.7: The probability of occurrence of pairs of WH-questions in certain
order, along with the percentage of time that the order occurred compared to the
reverse order.

questions, and 17 Where questions. We perform two types of analysis regarding the

occurrence of WH patterns. The first analysis looks at the order of occurrence for

pairs of WH-questions regardless of their exact position in the story. This analy-

sis focuses on discovering the probability of occurrence of one WH-question type

before or after another, not necessarily directly before or after. The second analy-

sis is done by looking at the occurrence of the exact pattern of different subsets of

WH-questions.

Table 7.7 shows the results of occurrence of pairs of WH-questions. The proba-

bility values in Table 7.7 indicate the probability of occurrence of two WH-questions

in a certain order. The percentage indicates the percentage of the time that the

WH-questions occurred in order, if ever. The ordered pairs shown in bold occurred

more than 60% of the time compared to the reverse order of the pair. For instance,

What questions occurred before When questions 72% of the time, compared to 28%

for occurrence of When questions before What questions. Based on the results shown

in Table 7.7, the most frequent pattern is:

What/Where When Who
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Average number of times occurred

when who 0.2033

who when 0.1685

who what 0.1225

when who what 0.1220

what who when 0.1008

what who 0.1008

when who where 0.0813

who when where 0.0674

where who when 0.0632

where who 0.0632

Table 7.8: The top highest patterns of WH-question words across all tasks, listed

in order of highest probability of occurrence.

We perform further analysis to discover the probabilities of certain WH-patterns.

The analysis studies the probability of occurrence of all permutations of four types

of WH-questions across the entire experiment. We construct a joined probability

model to calculate the joined probability distribution over the values of the four

variables (when, who, where, and when). The chain rule of probabilities is used to

decompose the joined probability expression:

P (X1 = x1, X2 = x2, . . . , Xn = xn) =

P (X1 = x1)
n∏

i=2

P (Xi = xi|X1 = x1, . . . , Xi−1 = xi1)

The joined probabilities are calculated for all combinations of subsets of size two,

three, and four for the set {When, Where, Who, What}. Table 7.8 shows top ten

highest probability of occurrence of WH patterns across all tasks. The patterns are
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Probability of occurrence
when who 0.2146
who when 0.1626

when who where 0.1430
where when 0.1393

where when who 0.1045
who where 0.0813

when who what 0.0715
where who when 0.0696

where what 0.0696
where who 0.0696

Table 7.9: The top ten patterns of WH-questions words for temporal task, listed
in order of highest probability of occurrence.

sorted based on the probability values. A comprehensive table, including all the

observed patterns with their probabilities, is provided in Appendix D, Table D.3.

The results show that participants generally use Who questions in between two

other types of questions. Direct observations suggest that users tend to filter down

into specific data dimensions, ask about people involved in events, then possibly

focus on those people to ask more questions about other data dimensions. The

conflict of these results with those of the first analysis is discussed in Section 7.3.2.

The occurrences of the patterns are also broken down by task. Table 7.9 shows

the probability of occurrence of the patterns when users perform temporal ordering

tasks (Table 7.1). The tasks consist of Where, When, and Who questions. However,

some participants included other types of questions as well (e.g., What/Which).

Eleven out of twenty participants ordered their questions differently from the order

that the tasks are given. We considered these eleven orders for the analysis. Similar

to the overall results, Who questions are asked generally in between two other types

of questions. Also, the probability of a Where question occurring before a When

question (either directly before or having some other type of question in between)

is higher than the probability of a When question appearing before a Where.
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Probability of occurrence
who what where 0.2578

who what 0.2578
what who 0.1562

what where 0.125
where who 0.1124
who when 0.0859

who when where 0.0859
where what who 0.0750

where what 0.0750
what where who 0.0416

Table 7.10: The top ten patterns of WH-questions words for causal tasks, listed in
order of highest probability of occurrence.

Table 7.10 shows the probability of occurrence of WH-question patterns for the

casual ordering tasks listed in Table 7.1. The tasks consist of What, Who, and Where

questions. However, When questions are also used when participants performed this

task. Similar to the temporal ordering task, we consider eleven out of twenty partic-

ipants’ orders that do not match the task order. In this sub-task, unlike the overall

occurrence of patterns in Table 7.8, Who questions appeared before other types of

questions. Also, What questions appeared mostly before Where questions. The com-

plete set of observed patterns with their probabilities are provided in Appendix D,

Table D.2.

Table 7.11 shows the probabilities of occurrence of the tasks listed as relationship

suggestion tasks in Table 7.1. These tasks involve What, When and Who questions.

Twelve orders out of twenty are considered for this analysis. Based on the results

shown in Table 7.11, Who questions mostly appear before When questions. The

occurrence of Who questions in between two other types of questions is frequent.

Table 7.12 lists the probability of occurrence of WH patterns in the free ordering

tasks in Table 7.1. The tasks involve When, Who, and Where questions. Participants

also used Where questions to perform these subtasks. Only five orders are considered

in this subtask, since the rest matched the task order. As shown in the Table 7.12,
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the occurrence of Who after When is the most probable. Who questions appeared

also often in between two other types of questions.

Probability of occurrence

when who 0.3

when who what 0.3

who when 0.1875

what who when 0.15

what who 0.15

what when 0.125

what when who 0.125

who what 0.1124

who what when 0.0749

when what 0.0375

Table 7.11: The top ten patterns of WH-questions words for relationship sugges-

tion tasks, listed in order of highest probability of occurrence.

Probability of occurrence

when who 0.3636

when who what 0.3636

who when 0.2272

who what 0.2272

where who when 0.0909

where who 0.0909

Table 7.12: The top ten patterns of WH-questions words for free tasks, listed in

order of highest probability of occurrence.
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Order of Independent Variables

In this experiment, we have also analyzed the orders that text translations appeared

in the stories based on the position of independent variables in the questions. Similar

to the study of WH-question orders, in this sub-study we only consider the orders

that do not match the task order, which consists of 40 tasks involving 109 questions.

In each task, we examine the order of the questions to see if the questions are

arranged in a way that similar independent variables are set close to each other.

In 21 out of 40 tasks, questions were reordered on independent variables (52%).

Moreover, during the experiment, 10 participants mentioned that they prefer to

order questions based on the independent variables.

Avg. STD.
Action 0.06 0.13

Dependent Variable 0.10 0.16
Independent Variable 0.004 0.037

Value of Independent Variable 0.80 0.27
WH-question Word 0.01 0.042

Other Data Dimension 0.005 0.039
Other 0.006 0.067

Table 7.13: Average and standard deviations for the number of times a keyword
category is used to search.

Keyword Search

We have also studied the keywords that participants used to search for relevant ques-

tions. The keywords are categorized into seven categories listed in Section 7.2.2.2.

Table 7.13 shows the results for the average number of times a keyword category

is used to search during the experiment. Performing an F-test on data from all the

keywords categories reveals that there is statistically significant difference (p-value:

1.4536E − 194 < 0.05) between the average number of keywords searched in each

category. Based on the results from Students’ paired t-test, value of independent

variables was predominantly searched to find related questions (80%).
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7.2.4.1 Quality of Q2Q Generated Questions

In addition to the data collected to evaluate features in HOT and study users’

rearrangement behaviors, we also asked participants to express their opinion about

the quality of the questions generated by Q2Q on a Likert-type scale. Participants

declared how difficult it is to understand the meaning of questions on the scale in

which 1 is very difficult, 2 is difficult, 3 is neutral, 4 is easy, and 5 is very easy.

The results show that participants considered the automatic generated questions

almost easy to understand (average 3.71 with 0.93 standard deviation), which is

highly promising for a semi-automatic natural language generation system.

7.3 Discussion

7.3.1 Evaluation Preparation

We performed this user study to both evaluate features of the HOT interface and

also to gain understanding of how users perform grouping and ordering tasks while

arranging their translated interactions. This information is essential for designing

an effective history organizer tool to facilitate the process of story telling and pre-

sentation.

We prepared four main tasks to study three features of the HOT interface. These

tasks are designed carefully to have the same level of complexity. At the end of each

task, we collected data about how difficult the tasks are and how confident partic-

ipants are about their answers. To answer the questions, participants chose from a

five-point Likert-type scale in which 1 means “very difficult or not at all confident”

and 5 means “very easy or extremely confident”. The results show no significant

difference between each task in terms of difficulty or confidence (see Table 7.14).

This provides assurance that the tasks are at the same level of difficulty, which in

turn simplifies analysis and comparison of various features.
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Temporal Ordering Causal Ordering
Relationship

Suggestion
Free Ordering

AVG. STD. AVG. STD. AVG. STD. AVG. STD. P-value

Difficulty 3.3 0.75 3.6 1.18 3.6 1.2 3.5 0.77 0.69 > 0.05

Confidence 3.4 0.88 3.6 1.51 3.8 0.90 3.65 1.08 0.68 > 0.05

Table 7.14: Averages and standard deviations of task difficulty and confidence in performance, with corresponding p-value

over all features and participants
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7.3.2 Observations

In addition to collecting the performance data, we recorded general comments from

participants.

Relationship Suggestion

The tasks are given to participants in a random order to decrease the learning effect.

Excluding the data from participant who performed relationship suggestion task at

the end, thus considering only 16 participants, we observed that 65% of participants

either explicitly (by verbally asking) or implicitly (by clicking on relationship sug-

gestion option) requested this feature to aid in their task. This indicates that users

found the relationship suggestion feature effective. The other 35% who did not re-

quest relationship suggestion were either strictly following the experiment protocol

or did not see the need.

Automatic Ordering

During the experiment, on a few occasions, we observed that participants do not

agree with the order that is automatically applied to the textual translations. To

have a better understanding, we further examined temporal ordering and causal

ordering by recording the times that participants preferred an order that is not

logically consistent with the chosen kind of ordering. We averaged this data over

all participants. The results in Figure 7.15 show that participants prefer an order

that is inconsistent with temporal ordering on average 0.525 times per task and with

causal ordering on average 0.2 times per task. Performing a Student’s paired t-test,

the difference between temporal and causal ordering is not statistically significant,

but is considerable. This reveals that participants tend to agree more with the order

of arranging questions and sentences based on the concept of variables and questions

about those variables than with the order that questions were originally asked in the

visualization. These observations also suggest that automatic ordering should be
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Temporal Ordering Causal Ordering
AVG. STD. AVG. STD. P-value

Num. of orderings
preferred but not allowed

0.525 0.73 0.2 0.61 0.07 > 0.05

Table 7.15: Averages and standard deviations of the number of orderings preferred
by participants but not allowed under temporal and causal ordering logic, with p-
values

provided to users as suggestions, and that the user should have the ability to apply

their own ordering even if it does not match the logic of automatic ordering.

WH-Questions Ordering Results

We have performed two types of analysis to study the user preference in ordering

the questions based on WH-question words. The first analysis looks at the order of

pairs of WH-words regardless of their position, while the second analysis looks at

the exact occurrence of patterns of WH-words. The results from the first analysis

suggest that the predominant order is What/Where, When, then Who. In contrast,

the second analysis suggest that Who questions generally appear between two other

types of WH-questions. This might be due to the differences in viewpoints in the

analyses. The first analysis only looked at the occurrence of the order of pairs of WH-

questions regardless of their position. For instance, to study the number of times a

When question word occurs before a Who question word, the When, What, Where,

Who pattern and When, Who, Where patterns are both considered. The second

analysis looked for occurrence of fixed series of WH-questions. In addition to the

fundamental differences in the analysis approaches, the second analysis would require

a larger sample size to construct a more reliable probability model for predicting

exact patterns. This also explains why the patterns that involve Who questions are

in the top ten over all tasks. This is due to the larger number of Who questions

that are involved in the tasks compared to the other types of WH-questions. It also

allows more analysis on Who questions than on other WH-questions.
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Input to History Organizer Tool

The output from Q2Q contains questions and qualifier sentences. It also contains

questions and qualifier sentences that are crossed out. These types of text trans-

lations are generated to resemble undo-like actions, e.g., unfiltering to turn off an

earlier filtering. As part of our observations, we noted that participants did not use

the crossed out text in their stories. Not only is this type of text not used, it also

resulted in confusion for the participants. To avoid confusion and have a shorter list

of questions/sentences, input to a history organizer tool might include only regular

questions/sentences and not the crossed out ones.

Other Ordering Options

In this experiment, we not only explored and evaluated the current ordering features

(temporal and causal ordering), we also observed and discovered other ordering pos-

sibilities. These include ordering based on WH-questions, on independent variables,

and on the level of detail that questions/sentences convey.

In the experiment presented in the previous section, ordering based on WH-

questions and independent variables are two of the interesting ordering behaviors

that we observed. Similar to temporal and causal ordering, these ordering patterns

could be incorporated into the history organizer tool. For WH-question word pat-

terns, a more comprehensive corpus of questions is required for constructing a more

reliable model and discovering a general pattern for incorporating WH-question or-

dering suggestion.

In terms of ordering based on the level of details questions/sentences convey, we

observed both general to specific and specific to general question ordering with no

considerable difference. This suggest that both options could be provided to users

to satisfy different user preferences.

The ordering patterns are not limited to the ones mentioned above. More com-

plex interaction techniques can result in more compound and descriptive translations
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that accordingly affect the pieces of information used in the storytelling. This sug-

gests that there are many types of ordering that can be studied in the future.

7.4 Summary

This chapter describes a user study for evaluating the history organizer tool described

in Chapter 6. We studied three different ordering and grouping options provided

by HOT. The evaluation results indicate that the relationship suggestion option in

HOT provide considerable improvements in user speed and number of errors during

question rearrangement. Temporal and causal ordering also considerably reduce the

number of reordering actions that users need to perform. However, the automatically

reordering options does not show considerable effects on their reordering speed.

In addition to the evaluation study, we also performed a behavioral analysis

to study the grouping and ordering strategies of users while organizing their ques-

tion/sentence fragments. The analysis suggests the viability of various other order-

ings and groupings, such as ordering based on levels of abstraction, the data values

that appear in questions, and on WH-question words themselves. Specific insight was

also acquired about users’ searching behaviors. The user study contributes insights

into the design of more effective and flexible information rearrangement capabilities

for use in visual analytics research or presentation and storytelling tools.
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Chapter 8

Conclusion

Query-to-Question (Q2Q) is a designer-guided translation system that captures user

interactions with visualization, and transforms the interactions into natural language

questions. Q2Q enhances foraging of data by increasing learnability, efficiency, and

memorability in cross-filtering visualizations. Combined with the History Orga-

nizer Tool (HOT), Q2Q facilitates the sensemaking process with more reliable and

presentable analytical steps. Integrating visualizations with Q2Q+HOT, users can

understand the meaning of user interactions, recall their past queries, validate the

questions they ask from the visualizations, reorganize the analysis steps taken, and

present and share them with others in collaborative settings. Q2Q+HOT is a sup-

porting system for bridging the analysis, foraging and sensemaking loops by merging

data exploration, analytical reasoning and presentation into one coherent platform.

8.1 Contribution

The thesis statement of this dissertation is: accompanying multiple coordinated view

visualizations with user interaction translation and organization systems enhances

data foraging and sensemaking during and after visual analysis. This dissertation

supports and validates six contributions:
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• Query-to-Question Architecture. An architecture for automatically translating

user interactions into natural language questions.

• Q2Q Implementation. An implemented system that realized the architecture

to transform low-level user interactions into higher level English descriptions.

• Evaluation. An evaluation and analysis of the effects of accompanying visual-

izations with textual translation of user interactions.

• Design Guidelines. A set of guidelines for applying the design space of user

interaction translation to visualizations.

• History Organizer Tool (HOT) Implementation. An implementation of a his-

tory organizer board for sequencing, rearranging, and grouping the steps in an

analysis process as represented by questions asked.

• Rearrangement Evaluation and Analysis. Increased understanding of users’

strategies for rearranging analytical questions, grounded in user experiment.

These contributions in visual analytics illustrate the effectiveness of the support-

ing tools (Q2Q + HOT) that are implemented and incorporated to improve the

usability of existing visualizations without sacrificing the benefits of sophistication

and richness offered by complex and highly interactive visual representations. The

Query-to-Question system is generalizable yet customizable to various data domains.

It has been integrated into visualizations of data from diverse sets of knowledge do-

mains, spanning popular entertainment, sports, journalism, politics, and intelligence.

The architecture of Q2Q is designed so that the current system can readily be ex-

panded to cover new interaction techniques. Combined with the History Organizer

Tool (HOT), the output of Q2Q can be utilized in reasoning, supporting, and pre-

sentation of the analytical process, hypotheses, and conclusions. This provides a

platform for studying user strategies in reformatting the questions they pose to data
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through visual queries, and how different automatic sequencing can assist them in

that process.

8.2 Benefits

Accompanying visualizations with Q2Q + HOT provides many benefits to Visual

analytic researchers, visualization designers and developers, and visualization users.

The benefits provided to Visual Analytic Researchers are:

• introducing a new perspective toward capturing and meaningfully transforming

user interaction provenance;

• providing a working translation system for studying combinations of textual

descriptions and visualizations;

• providing capabilities to integrate and extend the current translation system to

a new set of visualization and interaction techniques, for studying the nuances

they introduce; and

• providing an initial platform for studying and implementing storytelling tools.

The benefits provided to Visualization Designers and Developers are:

• increasing the accessibility of the visualizations they design and the techniques

they develop;

• providing guidelines for appropriateness and understandability of the tech-

niques they develop and combine into tools (assuming that understandable

translations correlate with the user comprehension of the techniques); and

• limiting the need to provide descriptions of unfamiliar visualization domains

or interaction techniques by using the translation as a proxy explanation tool.

The benefits provided to Visualization Users are:
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• learning a new visualization by having access to an understandable summary

of the meaning of its interactions, visual representations, data domain, and

interdependencies of data attributes;

• augmenting the usability of interactions for experts by validating the questions

they ask from a visualization and providing a history of interactions that can

be reviewed and shared;

• facilitating reasoning through support for hypothesis formation, analysis, and

validation, by providing an interactive board to reorganize and present ana-

lytical steps; and

• enabling effective accessibility of sophisticated visualizations to end-users.

8.3 Future Work

8.3.1 Language Quality

Q2Q aims to be a general-purpose interaction translation system that accurately

reproduces the detailed domain semantics of queries performed in a visualization.

Toward this goal, visualization designers/domain experts guide the process of gen-

erating reasonable translations in the offline generation stage by specifying relation-

ships between data dimensions in the form of sentences. Generation of high-quality

text depends heavily on the quality of this input. Translations can better con-

vey the meaning of interactions when the description of involved data values and

relationships accurately and precisely reflects type semantics. From a grammatical

perspective, given a descriptive sentence as an input, the system currently gives back

an error in the case of grammatical incorrectness. The system does this naively by

checking parts of speech and their arrangement in a sentence. This can be improved

by adapting more advanced rules to check grammar.
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8.3.2 Language Complexity

Q2Q currently accepts embedded reduced relative clauses to encourage designers

to express relationships between data dimensions effectively. For instance, the re-

lationship between Passenger and Resolution in Figure 5.1 is expressed as “vessels

carrying passengers have resolution” rather than “vessels that were carrying passen-

gers have resolution”. Consequently, Q2Q is able to output complex relationships

without dealing with overly complex forms of sentence structure. This, however,

limits the formats of the descriptive sentences that Q2Q can process. In the future,

the system can be modified to also accept subordinate clauses, allowing for more

detailed description of inter- and intra-dimensional relationships.

Moreover, pairs of dimensions are sometimes unclearly or ambiguously related,

making it hard for the designer to express dimension relationships in a clear lan-

guage. Consider the two dimensions Source Actors and Source States in Figure 5.5.

Source States are the “home” countries, if any, of Source Actors that include national

and international organizations, groups, and ethnicities, as well as the Source States

as acting entities themselves. The multiple subtle relationships between different

data values of the two dimensions are hard to unify into language to describe a sin-

gle, more abstract, common relationship between all potential pairwise data values.

Specialization of question generation to capture such nuances is another avenue of

future exploration.

8.3.3 Relationships Database

Including an offline generation stage has several benefits. It allows application of

Q2Q to new domains and data sets without the substantial cost of constructing either

a centralized corpus or individual example repositories. It allows designers/experts

to make sure that generated text conveys the necessary, sufficient, and precise mean-

ing desired. It caches partially evaluated linguistic specifications of dimensions and
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relationships, with rapid completion through simple substitution during later inter-

action. Offline generation also consumes considerably less design time compared to

corpus construction in example-based and statistics-based methods. It introduces

less variation in generated text compared to these methods, which may decrease

perceived quality and naturalness, but may increase efficiency and effectiveness of

scanning and reading many interactions that have been translated along complex

paths of inquiry over time.

Relation specifications given as input in offline generation are often applicable

across domains. Over time, the database populated by these specifications can grow

into a repository for rapid reuse in offline design. In the future, with enough domain-

spanning examples, example-based generation [68] could be integrated into the cur-

rent system to augment (or perhaps even substitute for) Sentence Specification in

the offline architecture. This future addition would take advantage of the dimen-

sional scalability of example-based approaches, yet through Question Confirmation

continue to meet the special requirements of interaction translation.

8.3.4 Interaction Techniques

Gotz and Zhou [6] characterize interaction activities during visual analysis, includ-

ing actions: intermediate sets of steps that connect low level interaction events

(e.g., mouse clicks) to high-level analytical processes (e.g., goals and hypotheses).

By recording the visualization parameter changes that trigger dynamic queries, we

“capture” analytic intention at the action level of abstraction and in a way that

generalizes across visualization applications. Gotz and Zhou further categorize ac-

tions as data exploration actions, visual exploration actions, insight actions, and

meta actions. The Q2Q implementation currently focuses on selection and filtering

interactions as used in cross-filtering. Although capturing and presenting these data

exploration actions is the current focus of Q2Q, ongoing generalization of translation
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system capabilities can consider other types of actions. The current syntactic gram-

mar can be extended to translate queries triggered by other types of interactions,

such as the visual exploration action of sorting or the insight actions of bookmarking

and annotating. New grammar rules can be added for types of relationships and new

interaction techniques not covered by existing grammar rules.

8.3.5 Story Telling

The questions generated by the Q2Q architecture are coherent, modular units of

provenance. They are represented internally as first class data for visual analysis of

individual and collaborative analytical process, storytelling, and collection into re-

ports. HOT takes this data as input and enables users to reorganize and regroup the

questions either freely or using the algorithmic suggestions from the system. This

initial form of telling the story with questions paves the way for a fully interactive

environment in which live streams and recorded logs of questions can be formatted,

ordered, edited, and annotated like any other data. This makes it possible to vi-

sualize and interact with analytic provenance at a more natural level of cognitive

abstraction in the future.

Moreover, the user study presented in Chapter 7 informs a set of user preferences

and behaviors in arranging the analytical process. These insights can be incorpo-

rated and applied in the history organizer tool to enhance the current ordering and

grouping features. An effective set of suggestions combined with user preferences

can lay out a basic narrative of the analytical process, and then allow the users to

build the story of their own upon that foundation. Studying the practicality of an

intelligent storytelling tool is an interesting and relatively new area of research in

visual analytics to be explored moving forward.
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8.3.6 Evaluation

In this dissertation, we conducted an evaluation to see the effects of a translation

system on certain aspects of usability: learnability, efficiency, memorability, and

satisfaction in individual use. As part of a longitudinal study in the future, we

could analyze the effects of Q2Q’s presence on the usability of visualizations in

collaborative applications, focusing on different-time-different-space cases in which

the time difference is substantial.

Similarly, in the evaluation performed to study user strategies for reorganizing

the questions asked from visualizations, the focus was on individual usage. In a more

comprehensive study, the effectiveness of reorganization could be studied when it is

shown to a third person. This could inform the algorithmic rearrangement system

how to sequence and group questions in a way more understandable to collaborators.

In designing the architecture of Q2Q, we identified a set of design factors that af-

fect translation, including user knowledge, user roles, visualized data characteristics,

and types of interaction involved. These factors serve to define a set of guidelines

for other researchers to explore and expand the design space of user interaction

for translation. Generated language has many design aspects, such as the overall

quality, formality, and formatting (e.g., HTML-like markup). How these and other

design aspects affect the utility and usability of Q2Q is a promising avenue for future

exploration.

8.4 Conclusion

My main goal in designing the translation and reorganization systems is to make

sophisticated, interactive visualization tools more accessible to wider groups of users

with diverse knowledge levels and backgrounds. I believe that Q2Q + HOT achieves

this goal for an important subset of coordinated multiple view visualization tech-

niques. This opens a new path for visual analytics researchers to pursue a new area of
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research, expand it to a wide variety of visualization techniques, and thereby explore

user interaction provenance from a new perspective to reach greater understanding

of how it can be utilized throughout the analysis process.
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Appendix B

Tags

B.1 Clause level

CP complement

ROOT root

S sentence

SBAR clause introduced by a subordinating conjunction

SBARQ Direct questions by wh-word or wh-phrase

SINV Inverted declarative sentence

SQ Inverted yes/no question, or main clause of a wh-question

B.2 Phrase Level

ADJP Adjective phrase

ADVP Adverb phrase

CONJP Conjunction phrase

C Auxiliary for questions

FRAG Fragment
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INTJ Interjection

LST List marker. Includes surrounding punctuation

NAC Show scope of certain prenominal modifiers within a NP

NP Noun phrase

NPM Noun phrase modifier

NX Used within certain complex NPs to mark the head of the NP

PP Prepositional phrase

PRN Parenthetical

PRT Particle

QP Quantifier phrase

RRC Reduced relative clause

UCP Unlike coordinated phrase

VP Verb phrase

WHADJP Wh-adjective phrase. e.g. “how hot”

WHAVP Wh-adverb phrase

WHNP Wh-noun phrase, e.g. “which people”

WHPP Wh-prepositional phrase. e.g. “of which”

X Unknown tag

B.3 Word level

AUX Auxilliary verb

CC Coordinating conjunction

CD Cardinal number
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DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item maker

MD Modal

N Noun

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

DQ Quantifiers

RB Adverb

RBT Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol
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TO To

UH Interjection

V Verb

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

PCC Punctuation comma

PCE Punctuation exclamation point

PCS Punctuation fullstops

PCQ Punctuation question mark
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Appendix C

Tasks

1. Identify the people who either played or directed the movie 21 Grams.

2. Identify the people who played or directed the movie 21 Grams and
also they play or direct in the movies with Crime genre.

3. Identify the movies that Naomi Watts has played in besides 21 grams.

4. Identify the Genres of the movie The Ring.

5. Describe what the movie table means.

6. Describe what the people table means.

Table C.1: Interactive (1–4) and descriptive (5–6) questions asked of participants
about the interface in Figure 4.1.
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1. Identify the genres of the movies The Prestige.

2. Identify the people who played or somehow associated with The Prestige

3. Identify the genres that Christian Bale have a movie in and
also the genres that the movie The Prestige is.

4. Identify the movies that are in Drama genres.

5. Describe what the genre table means.

6. Identify the people who are in the movies 25 hour to 50 First Date.

7. Identify the movies which are in Crime genre.

8. Identify the genres which the selected movies are in.

9. Identify the movies that genres got filtered on.

Table C.2: Interactive (1–4, 6, and 7) and descriptive (5, 8, and 9) questions asked
of participants about the interface in Figure 4.1 accompanied with Q2Q interface.

1. Identify the programs which are managed by
Anne Maglia or Brian M. Patten.

2. Identify the Application fields that Anne Maglia or Brian M. Patten
work under.

3. Identify the programs that are in the organization AST and are managed by
Anne Maglia or Brian M. Patten and also the Application field
other applications is in it.

4. Identify the program that are managed by
Aixa Alfanso...,Alexander Warzkopf.

5. Identify the program managers that work under the organization CBET.

6. Identify the directorates under which selected program managers work.

7. Explain the resulted directorate.

Table C.3: Interactive (1–5) and descriptive (6 and 7) questions asked of participants
about the interface in Figure 4.2.
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Appendix D

Comprehensive Tables

Probability of occurrence
when who 0.2146
who when 0.1626

when who where 0.1430
where when 0.1393

where when who 0.1045
who where 0.0813

when who what 0.0715
where who when 0.0696

where what 0.0696
where who 0.0696

who when where 0.0542
when where what 0.0536

when where 0.05365
what where when 0.0487

what where when who 0.0487
what where 0.0487
who what 0.0406

where what when 0.0348
where what when who 0.0348

what when 0.0243
what who 0.0243

what when who 0.0243

Table D.1: Probability of occurrence of patterns of WH-question words for temporal
tasks, listed in order.

171



Probability of occurrence

who what where 0.2578

who what 0.2578

what who 0.1562

what where 0.125

where who 0.1124

who when 0.0859

who when where 0.0859

where what who 0.0750

where what 0.0750

what where who 0.0416

when where who 0.0312

what when 0.0312

what when who 0.0312

when where 0.0312

when who 0.0312

Table D.2: Probability of occurrence of patterns of WH-question-words for causal

tasks, listed in order.
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Average number of times occurred
when who 0.2033
who when 0.1685
who what 0.1225

when who what 0.1220
what who when 0.1008

what who 0.1008
when who where 0.0813
who when where 0.0674
where who when 0.0632

where who 0.0632
what when who 0.0588

what when 0.0588
who what where 0.0525

what where 0.0504
where when 0.0421
where what 0.0421

who what when 0.0350
where when who 0.0316

who where 0.0306
when where 0.0305

when where who 0.0152
when where what 0.0152
where what when 0.0140
where what who 0.0140

where what when who 0.0140
what where when 0.0126
what where who 0.0126

what where when who 0.0126
when what 0.0101

Table D.3: The probability of occurrence for WH patterns across all tasks, sorted
based on probability values.
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