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Abstract

From a geometric point of view, we use coordinates as the main tool to define the
holomorphic gradient V7 f, the antiholomorphic gradient V™ f, and the complex
gradient V¢f of a complex-valued function f on Ké&hler manifolds. Then we
define the holomorphic Laplacian A* f, the antiholomorphic Laplacian A~ f,
and the complex Laplacian A¢f of a real-valued function f. For a C? function f,

the holomorphic Laplacian AT f actually coincides with the well-known complex

n o of __
1=1 9z% 9zt ~

Laplacian [Jf since under holomorphic normal coordinates A™ f = 3
%A f=0f. For the first time, we introduce the holomorphic p-Laplacian A} f,
the antiholomorphic p-Laplacian A f, and the complex p-Laplacian A7 f, and
we find the relationship among them. We also find a relationship between A7 f
and A, f. Finally, based on this relationship, we make global integral estimates

on complete noncompact Kéhler manifolds as an application of A7f, A;; f, and

AJf.
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Chapter 1

Introduction

In this paper, we will find a reasonable way to define and then calculate the
complex p-Laplacian on Kéahler manifolds.
An almost complex structure on a differentiable manifold M is a real differ-

entiable tensor field J of rank (1,1) with the property

for any differentiable vector field ; that is, a real tensor J whose (real) compon-
ents j 0 satisfy

Jads = =0,
A manifold M with an almost complex structure J is even-dimensional. A
manifold which admits an almost complex structure is called an almost complex
manzifold.

If M is a complex manifold, then the holomorphic charts identify each tangent
space T, M with C", so we can define J(v) = v/ —1v for every v € T,M, which
gives an almost complex structure J. The fact that the transition functions are
holomorphic means precisely that multiplication by /—1 is compatible under
the different identifications of T}, M with C" using different charts. Since the
transition maps between charts are biholomorphic, complex manifolds are, in
particular, smooth.

If 2%, ..., 2" are holomorphic coordinates and z* = 2°++/—1y for real functions



x',y", then we can also write

0 0 0 0
J(&Ei) Oyt J(ayi) T ot

An almost complex structure is called integrable, if it arises from holomorphic
charts as in the previous way.

An alternative and equivalent definition of an integrable almost complex
structure is as follows (see [10]):
Let M be an almost complex manifold with almost complex structure J. We

define the torsion of J to be the tensor field N of type (1,2) given by

N(X,Y)=2{[JX,JY] - [X,Y] — J[X,JY] — J[JX,Y]} for X,V € X(M).

An almost complex structure is said to be integrable if it has not torsion.

Theorem 1.1. (Theorem 2.5, Chapter IX, [10]). An almost complex structure

is a complex structure if and only if it has no torsion.

A Hermitian metric on an almost complex manifold M is a Riemannian

metric g invariant by the almost complex structure J, i.e.,

g(JX,JY)=g¢g(X,Y) for any vector fields X and Y.

An almost complex manifold (resp. a complex manifold) with a Hermitian

metric is called an almost Hermitian manifold (resp. a Hermitian manifold).

Theorem 1.2. (Proposition 4.1, Chapter IX, [10]). Every almost complex

manifold admaits a Hermitian metric provided it is paracompact.



The fundamental 2-form ® of an almost Hermitian manifold M with almost

complex structure J and metric g is defined by
O(X,Y) = g(X,JY) for all vector fields X and Y.

A Hermitian metric on an almost complex manifold is called a Kdhler metric
if the fundamental 2-form is closed.
An almost complex manifold (resp. a complex manifold) with a Kéhler metric
is called an almost Kdhler manifold (resp. a Kdhler manifold).
On complex manifolds it is convenient to work with the complexified tangent
bundle
T°M =TM @ C.

In terms of local holomorphic coordinates it is convenient to use the basis

R
0zY7 77 9z 9zY T 9z

where in terms of the real and imaginary parts z* = 2 + v/—1y’ we have

o 1,0 =0 o 1 — 0
o7~ 2taw Vg M o = alaa TV T g

The endomorphism .J extends to a complex linear endomorphism of 7¢ M, and
induces a decomposition of this bundle pointwise into the /—1 and —/—1
eigenspaces

TM = TO N @ 7O,

(2]

5.7 while

In terms of local holomorphic coordinates T M is spanned by the

TODM is spanned by the 2.

In local coordinates z', ..., 2" a Hermitian metric is determined by the com-



ponents

o 0
9k :g($7@>7

and we are extending ¢ to complex tangent vectors by complex linearity in both

entries. The Hermitian condition implies that for any j, k we have

0o 0 0o 0

15008 =gz ) =

Theorem 1.3. (Proposition 1.14, [15]). (Normal coordinates). If (M,gq) is
a Kdahler manifold, then around any point p € M we can choose holomorphic

coordinates z', ..., 2" such that the components of g at the point p satisfy

0 0
ng(p) = 0;), and @%‘E(p) = ﬁgj/}(p) =0,

where d;i, 1s the identity matriz, i.e. 0;, =0 if j #k, and d;, =1 if j = k.

The following formulas (1)-(12) are from [10].
Let M be an n-dimensional complex manifold and z!, ..., 2" a complex local
coordinate system in M. Unless otherwise stated, Greek indices «, 3,7,... run

from 1 to n, while Latin capitals A, B, C',... run through 1, ..., n, 1,..., n. We set

0 _ 0
(1) Za:@» Z&:Za:@-

Given a Hermitian metric g on M, we extend the Hermitian inner product in
each tangent space T, (M) defined by ¢ to a unique complex symmetric bilinear

form in the complex tangent space T(M) (cf. Proposition 1.10 in [10]) and set

(2) gaB =9(Za, Zp).



Then, by Proposition 1.10 in [10],

(3) Gap=9a5 =0

and (g,p3) is an n x n Hermitian matrix. It is then customary to write

(4) ds* =23 g,5dz"dz"
o.f

for the metric g. By Proposition 1.12 in [10], the fundamental 2-form is given by

(5) ®=-2iY g.pdz* NdZ".
a“B

A necessary and sufficient condition for g to be a Kéhler metric is given by

99,3 09,3  09gag  Ogay
0) 5 =% o 9uh

Given any affine connection with covariant differentiation V on M, we set
(7) Vz,2c =3 TpcZa.
A

The covariant differentiation, which is originally defined for real vector fields, is

extended by complex linearity to act on complex vector fields. Then

(8) fgc = P%é



with the convention that & = . From the fact that JZ, = iZ, and JZ5 = —iZ4

it follows that the connection is almost complex (see [10]) if and only if

(9) g =T% =0.

By direct calculation we see that an almost complex connection has no torsion

if and only if
(10) T§, =T, I§ =15
and

(11)  other I's, = 0.

In particular, (8), (9), (10), and (11) hold for every Ké&hler manifold. For a

Kihler manifold, the I'4.’s are determined by the metric as follows:

a agéﬁ a agaﬁ

Theorem 1.4. If (M, g) is a Kdhler manifold, then under holomorphic normal

coordinates around a point p € M,

Fgc(p) =0,

where A, B,C,... run through 1, ..., n, 1,..., fi.

Proof. From (8), (9), (10), (11), (12), and Theorem 1.3., we can obtain the

result in this theorem.



On a complex manifold M, in local holomorphic coordinates, we have the

1-forms

dz? = da? + idy dzF = da* — idy*.

Decompose the space Q¥ of k-forms into subspaces QP9 with p + ¢ = k. Namely,

QP4 is locally spanned by forms of the type

w(z) = n(2)dz" A .. AdZ' Ad2 A A d2

Thus

QF (M) = Zk QPI(M).

We can then let the differential operators

1, 0 0 , .
= (— — 79— J vdy?
0 2(8a:j zayj)(dx + idy’)
and
- 1,0 0 , .
= (— 4+ I — ady?
0 2(0$j + Zayj)(dx idy’)

operate on such a form by

0 ) ) - -
—Zdzl ANdz"™ Ao Nd2Z NN d2e

Ow = o

and

~ 8 = - = -
ow = —nfdzj Adz" Ao NdZTVN LN dRPe
027



Lemma 1.5. The exterior derivative d, 0, and O satisfies

(1) d=0+0,

(2) 90 =0, 90 =0,

(3) 00 = —00.
Proof. We have
- 1 0 0 , 1,0 0 , ; a . 0
R S N Jide N (2 s Y J_idd\ — Y g0 Y g9
0+0 2(8xf zayj)(d:v +idy >+2(3xﬂ' +Zayj)(dx idy’) B dx +8yj dy’ = d.
Therefore,

0=d*=(0+0)(0+09)=0*+00+ 00 + 0

and decomposing into types yields (2) and (3).



Chapter 2

Coordinates

Theorem 2.1. On an n-dim Hermitian manifold M, we have % = J(5%),

azj = %(aij —V _1321')7 ,32]- = %(aif +v _1627')' Then
o 0
g(axJJ 8yk) 07 g(al‘]? 8xk> Ik

iof and only of

I P

W50 0:5) =95 ozt 9217 ) =

Proof.  According to [10], we can choose {521, J(52r), 52, J (525 ), -+ 5 J (52) }

such that g(5%, J(5%)) =0, 9(3%, 52 ) = 20;5. Then

oxk

g(@? (9zk)
1,0 0.1, 0 0
29(5(%—\/—_1@)75(8# —\/—_18—yk)) (2.1)
— G ) VT8 ) ~ VT o) + (VDR o)
(2.2)
= iy VT 0 VT 0 g 0 2.3
1
= {1265 — 20 (2.4
= 0.



0o 0 0o 0

Wz ) =9 ) =0 =0
9k

o 0

_g(ﬁaﬁ)
~ 00550~ VT 5 + ¢——18‘Z>> 2.5)
— L o) + VT ) Vol o) = (VT g )
(2.6)

o 0

[25k+\/_ 0—+v/—1- 0+9(5 5 57)] (2.7)
= Zpajk + 205] (2.8)

= Jk'

With the properties g(JX,JY) = ¢g(X,Y) and J?> = —1I, it is not hard to

show the other direction of the conclusion of this theorem.

Theorem 2.2. On an n-dim Hermitian manifold M, we have -2 = J(:2),

oy
=35 — v _1%)7 o5 = 3(a0 + v~ L3, ay7)- Then

0948 ( )

0x¢ =0

iof and only of

0 0
%gjfs(p) = %gjlé(p) =0.

Proof. Here gap = g(&%\, B%B), A,B,C=1,..2n, and




95k

S
~ N9z oz
1 o 0 0 0 o 0
= 00 a8) + 505 Y W0 ) VT )
(2.9)
s T 55 = gers 50 if 55055 (p) = 55 g;(p) = 0, then
0 0 0
0 10 o 0 0 0 ~— , 0 0
Ik = Z@[Q(@’@H (8 7 Dy k)+V (a i By o) _19(@’@)] -
0 o 0 g 0
Or [9(@>@) +g(87yj’87y’“)]
0 o 0 o 0
Oz [9(@» Ty’“) - g(aiyj’ @)] =
Also, since g(JX,JY) = g(X,Y), J> = —I, and 6%]- = J(5%), we get
0 o 0 o 0
Dp [9(@a @) "‘ﬁ@: W)]
0 g 0 g 0
= O [9(@7 @) "‘9(@7 @)] (2.10)
0 o 0
= 2509 907" ) (2.11)

SO

0 o 0
5% 5w oar) =

11



R
92\ oxi’ oy’ — I\ oyi’ axk

0 o 0 o 0
= g =—, =—= —_— = 2.12
o [g(aﬂ, ayk) +a(5 5 8yk)] (2.12)
0 o 0
=2—qg(—, — 2.1
axlg(axﬂ’ 8yk) (2.13)
o Lol ) =0
Similarly, since a-z azl =+ /12 5,7 e can obtain agig(%, a%k) =0, and

8ylg(8x3 » Yk ) = 0.
Since g(JX, JY) = g(X,Y) and g(X,Y) = g(¥, X), we get G242 = 0.
It is a little similar and easier to show the other direction of the conclusion

of this theorem.

Theorem 2.3. For n-dim Kdhler manifold (M, g), the Riemannian B =0 iff
the complezified T©) = 0.

1

Proof. In terms of a local coordinate system z!, ..., 22", the components

'], of the Riemannian connection are given by

1 agKI 09k 091
ZgLKF 2 oz’ ox! amK>

(see [9]).

For a Kihler manifold, the complexified I'4,’s are determined by the metric

« 9 5 Q €
as fOHOWS Za gaerﬁy aixfa Zoz ga5F37 = agz—fa «, 6 77 7' (See [10})

By Theorem 4.2., for a Kihler manifold, ') = 0 iff I(©) = 0.

12



Chapter 3

Complex gradient

Let M be an n-dim Kahler manifold with Kahler metric g and f: M — C be
some complex-valued function. We define the holomorphic gradient vector field

V+f with respect to metric g as follows:
0f(X)=g(V"f, X) for every complexified vector field X.

Remark 3.1. The holomorphic gradient V' f can also be defined on a complex
manifold with a metric g since 0 is defined on complex manifolds. Here we define
the holomorphic gradient on a Kéhler manifold in order to use holomorphic

normal coordinates to simplify the calculation.

g(V f,X) = 0f(X) = 2L.d= (X) for any complexified vector field X, so

8fd

9(v*/, 821) 0z (821) =0,

)=y = Ly =
0z 821 0z 0zl " 0zt

g(V*f,

Let V¥ f = /-2 + f7.2 then

0
J _
q( ’az') Fgs+ Fg =0,

of ; _ 9of
] = — j =
) f jl + f g]’t 82‘7 51 821 :

9l

13



Cfror
=(0 0
SO

(frof?

g11 912
g21  G22
_ _ B gn1 Gn2
fn fl f2 fn)
911 912
921 922
gr1  9n2
af  of af
0 2 2 2L),
fn fi fi fﬁ):(o 0
=(0 0 .. 0 2 9

9gin

9on
9nn
9in

9on

Gan

9"

911

g
0

since Hermitian condition implies that for any 7, k, we have

(i i)_ (i 9
Nozi o0~ 9oz oz

0

=0,

912

that is, g;; = g;; = 0. The symmetry of g implies that g,z = g1 = gi;j-

Gij

Jij

i

9i

0 9ij

Gij  Gij _
gi;  Gij Gij
-1 -1
gij 0 (9:7)7"

14

9on

9on

nn




-1 gij _ gﬁ.

since (g7%) := (9:5)", and (¢7") = (9:5)

Thus, ( f1 2 .. f f1 2 . )= (247)0),

fi= ﬂzgi, fi=0,i=1, ..n.

So

a - Of 0
+ ) 3 — 40t 2
V=T +f — 9 9zi gL

Similarly, for f: M — C, M a Kéahler manifold with Kahler metric g, define
the antiholomorphic gradient V™ f as:

of

9(V~1,X) = 0f(X) = 52

5d2 (X)),

for any complex vector field X. Then we can get

=0f 0
—f il Y
v 027 07%
ij  Yig 0 I ij  Yij
Under holomorphic normal coordinates, % 9 = = i i
9ij 9ij L 0 i 97
" O0f 0
Jr f— —_—
v f—j:1 0727 0277
and
_ " Jf 0
ViI=Xghas

The exterior derivative on a complex manifold is d = & + 0, so df = df + Of.

For f: M — C, M a Kahler manifold with Kahler metric g, define the complex

15



gradient of f, V°f, as follows:
g(Vf, X) = df (X)

for any complex vector field X. Then we can get

§OL 0 08 0 _

cp YJ _ ot _
VI=0 5071 guga — vV IV T

The usual Riemannian gradient of f is

af o
:gJIi

VI=9" 50 00

I,J=1,..2n.

Remark 3.2. V* f is the projection of complex gradient V°f onto 7% M, which

is a holomorphic vector field.
Remark 3.3. f: M — C is holomorphic if and only if V* f = 0.

So we call V* f the holomorphic gradient of f.

16



Chapter 4

Complex Laplacian

Let M be an n-dim Kahler manifold with Kéhler metric g, and f : M — R be a
real-valued function.
For any real vector field X on M, we define the usual Riemannian divergence

of X, denoted by div.X, to be the function such that at each point x of M

(divX), = trace of the endomorphism V' — VX of T, M,

where V is the connection in the Riemannian manifold. In terms of local
coordinates (!, ...,z",y"', ...,y"), let 2' denote 3 where i = i + n, and let Latin

capitals A, B,C,....H, I, J, K,... run through 1, ..., 2n. Then we have

2n af
df = ;lfld:cl, where f; = E]
and
2n ; 8 ; 2n ;
gradf = 3 f'=—, where f1 = 3" g
=1 J=1

where (¢!7) = (gr) 71, ie. Sygr59"8 =65 If X = Z%Zlfla%,, then
2n
divX =3¢l
=1

where ¢1; = % + Y D5 (see [9] and [10]).

For any complexified vector field X on M, we define the complex divergence

17



of X, denoted also by divX, to be the function such that at each point x of M

(div.X), = trace of the endomorphism V' — Vy X of TS M,

where V is the complex linear extension of the connection in the Riemannian

manifold. If X = X2 + X?.2 then

Ozt ozt
0 ox4 0
VX = X?BazA ® dZB = <8273 +XCFéB)a? ®dZB,

where 4,5,k =1,2,...n,i=i+n,and A, B,C =1,2,...,2n. Thus,

0XA
024

divX = + X°T4,.

Since on a Kahler manifold, Ffj =TIk F% = F% =Tk

i ¥, other I'gy = 0, thus, on

a Kéhler manifold,

o axA R
divX = =~ +XFTh + X,
SO
: 0 50f . #0f
AT f = div(VHf) = (g Ly 4 g i
fr=div(Vif) = o= (0" 55) + 97 55Tk

We call AT f the holomorphic Laplacian of f.
Similarly, for Kdhler manifold (M, g) and f : M — R, we can define the

antiholomorphic Laplacian of f as:

0 ( ﬁﬁ
97 9

_ ) _ 2 Of =
A7 f=div(Vf) = )+9]kﬁrkz,

and the complex Laplacian of f as:
A°f :=div(Vef) =div(VTf+V f) = ATf+ A f.

18



The usual Riemannian Laplacian of f is

. o . of of
Af =div(V[) = @(9‘”@) + gJKa Tkr

For a Kahler manifold (M, g) and a C? function f on M, under holomorphic

normal coordinates,

0 of "1, 9*f 82f 12
+ — Z Z
ATS= z:(()zZ 0zt 2224 oz ot 8yiay 4;::

The usual Riemannian gradient of f is: Vf = ¢’/ a‘if -2, The usual Riemannian

Laplacian of f is Af:

9

0 0
AF = (V) = o (7 20 + g™ T,

or J

Under the real coordinates corresponding to the holomorphic normal coordinates

2n 2 n
A=Y Gt H0 = 53 o

Thus,
1
ATf= iAf'

Similarly, A~ f = 1Af. So ATf = A~ f.

A°f = div(VHf + V7 f) = div(V f) + div(Vf) = AT f + A f = Af.

Now let us take a look at the well-known complex Laplacian of f on M. Let

— %00 ox*. Then the well-known complex

* be the Hodge *-operator, and 0* :=

Laplacian of f is
Of = (00 + 0°0) f.

19



On Kéhler manifold (M, g), Of = $Af (see [6], [4], and [19]).
We have A* f = %A f =0f. Thus, our holomorphic Laplacian A% f coincides

with the well-known complex Laplacian [f on Kéahler manifolds.

20



Chapter 5

Complex p-Laplacian

On an n-dim Kahler manifold (M, g), for f : M — R and p > 1, the usual

Riemannian p-Laplacian of f is A, f:

Apf = div([VFIP2Vf),

where

IVf]

=[g(Vf, V)]
af o of 0 .1
= lolg” Ox’ Oz’ g OxL OxK )I?

of 0o 1
[QUQKL o fJ o fLQIK]

N|=

PQSTaf a

p—2 1k OF Of
V=V f = (9:1x9"g =) 2 50T 55

Oz’ OxL

Under the real coordinates corresponding to the holomorphic normal coordinates,

1
1J
)
g 9 I1J,

21



A, f
= div(|Vf"*V f)
0 of 0 | p=2 0
:ZW[( 1J KLifi)7 HTi]
H

gixg 9 oz’ OxL oxT
_ 0 s 0f 9 p=2 HTﬁ
N EH: ozt g oz’ 8xL) 81:T]
b2 ;. 0f Of p=2_1 HT af 9 , ;, 0f Of
N Z 2 ( ox’ &I;L) g oxT OxH (9 oz’ 8xL)

H
Of 0 .p—2 0O of
JL = HT
+ ;(g ox’ &EL) oxH (g 0xT)
p

_ _2( L 9f af)%gHTangL 9 (af 8f)
= 2 oz’ Ozt 0xT”7  OxH 0z’ OxL
of Of  p—2 0% f
gL 9] 9J \ex2 mr
+EH:(9 ox’ &'L‘L) oxH ozT
B p—2(15 of 0f)%1 of o (1 of af)
- = 2 2 TL 957 OxL 2 HT 92T 9xH 2" 97 9L

L. 0f 0f w21 &
2G5 g0) T 30T T
P2 e OF ooy 9T 9 Of 2

J
1 P 8 p—2 82
GG

For X € T¢M, X = X'.2 + X722 define

0z

1X] = /g(X, X).

22

(5.4)

(5.5)

(5.6)



:g(xiaazi + J;,Xk£€+Xh£l) (5.7)

SV S (LU CH (5.8)

= X X)X Ty g0 L ) (0 K
(5.9)

= X'Xkgz + X"ﬁg(@7 @) + X7 XFgir + X7 Xhgy, (5.10)

= X'XFgz + X Xhgs,. (5.11)

Under holomorphic normal coordinates, g,z = d;x, so

n n o 2n 7
(X, X) =Y X'Xi+Y XXi=Y X*'XA>0,
i=1 j=1 A=1

o 90~ 0f <~ 9fp

Z i=1 i—1

for f: M — R, 2L — 28

Y 9z1 T 023

For p > 1, similar to how we define the usual Riemannian p-Laplacian of f,

we can define the holomorphic p-Laplacian of f as:
Ay f = div([VEfPEVES),
define the antiholomorphic p-Laplacian of f as:
A, fi=div(V P2V f),
and define the complex p-Laplacian of f as:

AL f = div(|[VEfIP2Vef).

23



Remark 5.1.

of of 1.0 o 1. 0 o . 1.9f., . of
SoF ok — olgE T m@)f S5~V _137?/@)18 = 1[(@)2 + (0?)2],
If fis C?,

P10 9.1 0 o . 1, Pf  &f
o205~ 2w~V oy 2w TV oy = 1 Guiw oy

Theorem 5.2. For a C* function f on n-dim Kdhler manifold (M, g), under

holomorphic normal coordinates,

fp P=2,~0f Of pos 1~ Of O°f Of
Redy | = 5= 55 5.0 XSkZ;(axk@wﬂ'axkaxﬂ'
of #y o of o of of o of
Oxd QxIoyk Oyk ~ Oxk Oyidxk Oyi — Oyk Oyidyk Oyl
Of Of [ p-2 0 f
g T 2 01

Proof. Under holomorphic normal coordinates,

of of

2 _ V+f) = < <
VP = oV LT =Y

24



AFf
= div([VfP2VTS)
_Z |v+f|p 26zJ)

o (5.13)
V*HFP=2) 0 0?
—Z(’ (%Jj ) f+Z| VP Qazjgzj (5.14)
(w2 5) = ]3f Of Of \e2 >’ f
N Z 88238 07 + (zk: ozk 82’“) z]: 029077 (5.15)
0 Of ozt~ 0 (OF OF \OF |~ OF OF joca s 0

2 Z ozk 82’“ Z 0z 82’“ 82’“ 0z Z 0zk azk Z 029071

(5.16)

25



o of of of
9.7\ 9% 0.5 95

Pr of of

T 02907% 02% 0%
1 0

2(%_‘/_
1

5(74‘\/_

0

1

81)2(

0%f  Of of

of _*f of
ozFk 6zj 0zk 077
1

1

LRy
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You can see that A;j f is not necessarily real-valued.

Theorem 5.3. If M is a Kdhler manifold, p > 1, and f : M — R is C?, then

IV =V 1,

A f=A%,
and

ASf =27 (ASf+ A f) =22ReA f.
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Proof. Under holomorphic normal coordinates,

_ v =y 2L 9T
VIR = o T =5 5
=g =S O
VIR =V LD =5 55 g
S0
IV =V
Aff = (v ey — 30 2V E) (5.20)
J
oV (9f - 0*f
- zj: 0z + |V+f‘ 2 Z 029077’ (5.25)
AL f=div([V fP?Vf) = > oV gz ') (5.26)
o(v—fIr=?) of pax~ OPf
B Z 0z 97 " V-7 Z 0z1021 (5.27)
Since |V*f[P=2, f and ;2L are real-valued, 8225;] = ;2L for the fact that f
is C?, and |[VT f| = [V~ f|, thus Aj f = At f.
[Verf?
=g(V°f,Vef)
=gV f+V L VHf+V) (5.28)
=gV f+V L,V + V) (5.29)
= |V P +IV P+ 9V ) +9(V LV (5.30)

Since Vtf e TOOM V- f € TOVM, TOVM = TAOM, and 9it = ik = 0,
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thus

g(VT V=) =0,9(V f,VTf) =0,

and

[VEfI? = VI + VTP =2V £

AL

— div(|V* /" 2V )

= div([2"2[V* fPVe ) (5.31)
= (22 2div(|V T fP2Vef) (5.32)
— 2" (A f 4+ A ) (5.33)
= 2" (AT + AT ) (5.34)
— 2"7 2ReA[ f (5.35)
= 2:ReA} f, (5.36)

since Vf =V*Tf+ V™ fand |[VTf|=|Vf].

Question to think about: What difference can the imaginary part of A;{ f

make?

Theorem 5.4. If M is a Kdhler manifold, and f: M — R is C?, then AVf =

Ayf.
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Lo, OF 2f
+(3) [XJ:(@ ZaxHa’BH) (5.44)
=A,f.
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Chapter 6

Applications

There can be many applications of the holomorphic p-Laplacian A;; f, the
antiholomorphic p-Laplacian A f, and the complex p-Laplacian A7 f. Here, we
give one example of their applications.

Throughout this chapter, we let p > 1, {r;} be an unbounded sequence
of strictly increasing positive numbers, M be a complete noncompact Kéahler
manifold, and f be a real-valued function on M.

Theorems 6.1-6.5 are from [18].

Theorem 6.1. (Theorem 2.1, [18]). Let f be a nonconstant C* function.
Suppose that ¢ >p—1 and fA,f > 0. Then f has p-infinite growth. That is,

for every xy € M,

1
lim —/ |f|%dv = 0.
B(xzo;r)

Theorem 6.2. (Theorem 2.2, [18]). Let f be a nonconstant C* function.
Suppose that ¢ > p —1 and fA,f > 0. Then f has p-severe growth. That is,
for every xqg € M, there exists a constant a > 0 such that for every unbounded

strictly increasing sequence {r;}5°, and every r, > a,

S . — . \P
( (T]+1 rj) )ﬁ < 00.

ji=lo fB(ZO;Tj+1)\B(zo;rj) |f|qdv

Theorem 6.3. (Theorem 2.3, [18]). Let f be a nonconstant C* function.

Suppose that ¢ > p —1 and fA,f > 0. Then f has p-acute growth. That is, for
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every xo € M, there exists a constant a > 0 such that

0 1 1
(——  Hdr < .
/a faB(zo;r) |f|qu

Theorem 6.4. (Theorem 2.4, [18]). Let f be a nonconstant C* function.
Suppose that ¢ > p—1 and fA,f > 0. Then f has p-immoderate growth.

That is, for every xo € M, and every F(r) € F where F = {F : [a,00) —

(0,00)[ [3* T}lf,,) = oo for some a > 0},

|f|%dv = 0.

1
lim su 7/
r—>oop Tpr_l(T) B(zo;r)

Theorem 6.5. (Theorem 2.5, [18]). Let f be a nonconstant C* function.
Suppose that ¢ > p —1 and fA,f > 0. Then f has p-large growth. That s, for

every xo € M, there exists a constant a > 0, such that

[e.e] r 1
(—————— ) 1dr < oc.
~/a fB(xo;r) ‘flqd?)

Theorems 6.1-6.5 can be condensed into one theorem because of the following

two theorems:

Theorem 6.6. (Proposition 2.1, [18]). f is p-immoderate if and only if [ is

p-large. Therefore, Theorems 6.4 and 6.5 are equivalent.

Theorem 6.7. (Proposition 2.2. (i), [18]). If f is p-acute, then f is p-severe.

If [ is p-severe, then f is p-immoderate and p-large.
So Theorems 6.1-6.5 can be condensed into the following theorem:

Theorem 6.8. Let f be a nonconstant C? function. Suppose that ¢ > p—1 and

fALf > 0. Then f has p-infinite growth and p-acute growth.
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Theorem 6.9 is an application of the complex p-Laplacian of f.

Theorem 6.9. Let f be a nonconstant C? function. Suppose that ¢ > p—1 and

JASf > 0. Then f has p-infinite growth and p-acute growth.
Theorem 6.10 is an application of the holomorphic p-Laplacian of f.

Theorem 6.10. Let f be a nonconstant C? function. Suppose that ¢ > p — 1

and fReAf f>0. Then f has p-infinite growth and p-acute growth.
Theorem 6.11 is an application of the antiholomorphic p-Laplacian of f.

Theorem 6.11. Let f be a nonconstant C? function. Suppose that ¢ > p — 1

and fReA] f > 0. Then f has p-infinite growth and p-acute growth.

Proof of Theorems 6.9-6.11. By Theorem 5.4 in Chapter 5, we get A7 f =
A, f. By Theorem 5.3 in Chapter 5, we get A7 f = 2%R6A;f = 2%R6A;f. By

Theorems 6.8, immediately we can get Theorems 6.9-6.11.
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