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Abstract 

Graphene sheets belong to an interesting class of materials. Their exceptional 

properties, including high thermal and electrical conductivity, mechanical strength etc., 

could play an important role in multiple applications, suggesting the possible use of 

graphene sheets in, e.g., electronic devices, nanocomposites, energy storage, and 

membranes for water desalination, to name just a few. Understanding the properties of 

graphene is essential to secure progress in all these areas. Molecular dynamics 

simulations were performed to provide molecular level insights of the equilibrium and 

transport properties of several systems containing graphene sheets. 

 

In the first part of the thesis graphene-oil nanocomposites are considered. Results show 

that it is possible to obtain stable dispersions of graphene sheets in oils such as n-

hexane, n-octane and n-dodecane by appropriately functionalizing the edges of the 

graphene sheets with short branched alkanes. Excluded-volume effects, generated by 

the branched architecture of the functional groups grafted on the graphene sheets, are 

responsible for the stabilization of small graphene sheets in the organic systems 

considered here. Using non-equilibrium molecular dynamics, the Kapitza resistance at 

the graphene-octane and graphene-graphene interfaces was calculated. Our results 

demonstrate that it is possible to reduce the Kapitza resistance at the graphene sheet-

octane interface by using the functionalized graphene sheets, but the functional groups 

must show vibrational modes compatible with those of the organic matrix. A higher 

value of Kapitza resistance for graphene sheets in vacuum compared to that in octane 

was found because the graphene-graphene interface has larger Kapitza resistance than 
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the graphene-octane interface, which is consistent with observations for carbon 

nanotube – carbon nanotube contacts. More importantly, the Kapitza resistance for the 

graphene-graphene contact can be 30% lower than values reported for the carbon 

nanotube – carbon nanotube contact. Equilibrium and non-equilibrium molecular 

dynamics simulations to assess the effective interactions between dispersed graphene 

sheets, the self-assembly of graphene, and the heat transfer through the graphene-octane 

nanocomposite. Evidence is provided for the formation of nematic phases when the 

graphene sheets volume fraction increases within octane. The atomic-level results are 

input for a coarse-grained Monte Carlo simulation that predicts anisotropic thermal 

conductivity for graphene-based composites when the graphene sheets show nematic 

phases. Overall, these results suggest that it might be possible to produce 

nanocomposites containing graphene sheets. Such materials could show exceptional 

mechanical and thermal-transport properties (due to the inclusion of graphene sheets), 

while maintaining the lightweight typical of polymeric materials. 

 

In the second part of the thesis umbrella sampling simulations were employed to study 

the transport of water molecules and ions through the membranes incorporating bare 

and functionalized graphene pores. By calculating the potential of mean force for ion 

and water translocation through the bare graphene pores, we show that ions face a large 

energy barrier and will not pass through the narrower pore studied (Ø ~ 7.5 Å) but can 

pass through the wider pores (Ø ~ 10.5 and 14.5). Water, however, faces no such 

impediment and passes through all the pores studied with little energy barrier. When 

charged groups are grafted to the pore rim, the results show that the charges can help to 
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prevent the passage of ions. Comparison of results for graphene pore to that of carbon 

nanotube pore reveals that COO- groups are more effective when grafted to the rim of 

GS pore in preventing Cl- ions from passing through the membrane compared to that of 

carbon nanotube pore. The results presented could be useful for the design of water 

desalination membranes. 
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1. Introduction 

Most part of the material presented below is taken directly from the journal articles that 

I co-authored. 

 

Graphene is an allotrope of carbon comprised of one atom thick layer of sp2 bonded 

carbon atoms.1-5 arranged in a regular hexagonal pattern.5 The carbon-carbon bond 

length in graphene is about 1.42 Å.6 Graphene forms the basic building block of various 

carbon allotropes including graphite, charcoal, carbon nanotubes and fullerenes as 

shown in Figure 1-1. Graphene sheets (GS) stack to form graphite with an interlayer 

spacing of 3.35 Å. In this introductory chapter I summarize briefly the discovery, 

production, properties, and possible applications of graphene. I then summarize some of 

the current limitations that hinder the deployment of such applications. Particular 

attention is given to those limitations that are addressed with our research (i.e., 

stabilization of GS in organic oils, thermal boundary resistance at the GS-octane and 

GS-GS interfaces, thermal conductivity of GS-oil nanocomposites, and possible use of 

GS as desalination membranes). 

 

Graphene was discovered in 2004 by physicists at the University of Manchester and the 

Institute for Microelectronics Technology, Chernogolovka, Russia.1 In this discovery, 

Novoselov et al.1 isolated individual graphene planes from graphite by using adhesive 

tape. They then transferred these individual GS onto silicon wafer. This process is 

called the Scotch tape technique.  Being able to isolate individual GS allowed many 
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scientists to measure the properties of the GS, which led to an explosion of interest in 

graphene, and granted Geim and Novoselov the Nobel Prize in Physics in 2010. 

 

Figure 1-1. Schematic representation showing that graphene forms the basic building 

block of various carbon allotropes. Figure adapted from “The Rise of Graphene”, by 

Geim, A.K and Novoselov, K.S., Nature Materials 2007 (6) 183-191. 

There are a number of methods devised for the production of GS like exfoliation,1, 7-9 

epitaxial growth,7 chemical vapor deposition (CVD),7, 10-18 pyrolysis,19-20 chemical 

synthesis,21-29 arc discharge,22, 29-34 carbon nanotube (CNT) slicing,35-36 solvothermal,10, 

22, 37-39 electrically-assisted synthesis,40-42 etc., each with advantages and dis-advantages. 

For example, mechanical exfoliation of graphite yields GS with high electron mobility 
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and lowest number of defects, but it has the disadvantage of low GS production. On the 

other hand graphite oxide reduction25 yields high production rates of GS, but has the 

disadvantage of being a slow process and producing GS with low bulk density. High 

quality defect free graphene can be produced via sonication, functionalization, 

electrochemical exfoliation, super acid dissolution of graphite, alkylation of graphene 

derivatives, thermal exfoliation, and chemical reduction of graphene oxide.27, 43 A 

review article by Potts et al.44 discusses the utilization of exfoliation, functionalization 

and reduction methods for synthesizing nanocomposites.  Other techniques that use a 

bottom up approach such as epitaxial growth on metal substrates using CVD,11, 45-51 

organic synthesis,24, 50, 52-53 arc discharge,30, 54 chemical conversion,24, 28-29, 54 carbon 

monoxide (CO) reduction,55 and CNT slicing36, 56-59 have also been tried to synthesize 

graphene. Overall the production method depends on the final application of GS. 

Ab initio DFT calculations60 indicate that GS are stable up to 1500 K. They show 

Young’s modulus of 1.00.1 TPa and intrinsic strength of 13010 GPa.61 Balandin et 

al.62 measured the intrinsic thermal conductivity of individual GS, ~ 

5.10.7×103W/mK, in agreement with the simulations reported by Hu et al.63 Other 

measurements for thermal conductivity of GS have been reported, for example by Cai et 

al.64 and Faugeras et al.65 who observed that the thermal conductivity of supported GS is 

smaller than suspended GS. Due to their excellent properties such as high thermal and 

electrical conductivity, high mechanical and fracture strength, high surface area, high 

aspect ratio, etc., GS have been recognized as interesting candidates for applications 

such as the fabrication of, e.g., integrated circuits,66-67 ultra-high-frequency 

transistors,68,69 transparent conducting electrodes,70-73 solar cells, quantum dots,74-75 
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optical modulators,76 thermal interface materials,77 ultra-capacitors,78 sensors,79 

electromechanical resonators,80 biomedical devices,81 and GS-based nanocomposites. 

Among recent propositions is the ‘graphene paper’,82 with tensile modulus of up to 35 

GPa and electrical conductivity of ~ 7200 S/m.  The applications that we are interested 

in are the use of GS as fillers in nanocomposites and as membranes for water 

desalination.  These applications are discussed in detail in Sections 1.1 and 1.2. Since 

these two applications are not interrelated, the thesis is divided into two parts. The first 

part of the thesis discusses about GS-based nanocomposites in Chapters 2, 3, 4 and 5. 

Our progress in modeling GS membranes for desalination applications is discussed in 

Chapter 6.  

1.1 Graphene-based Nanocomposites 

Structured composites attract enormous attention for several reasons, including the 

promise to enhance the properties of the parent polymers (mechanical properties, 

permeability, thermal and electrical conductivity, etc.),83-88 while maintaining the 

typical polymer light weight. The composites superior mechanical properties have been 

exploited, e.g., by Honda Jet, whose fuselage is a carbon composite, and by Boeing’s 

787 Dreamliner, in which composites promise 20% fuel savings compared to other 

planes of similar size. Carbon-based nanocomposites (materials with fillers with at least 

one dimension less than 100 nm) promise multi-functional properties, e.g., electrical 

and thermal conductivities in addition to enhanced mechanical strength.89-97 For 

example, carbon nanotubes (CNT), because of their exceptional intrinsic thermal 

transport properties98-99 coupled to their percolation thresholds even below 1% by 
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volume, stimulated a wealth of enthusiasm.100 Unfortunately, experimental 

measurements showed only modest increases in the composite thermal conductivity 

with respect to the thermal conductivity of the pure matrix material.100-101 Both 

theoretical102 and experimental103 investigations agree that the worse-than-expected 

composites performance is due to poor coupling between the CNT  fillers and the 

polymer matrix. More specifically, molecular simulations showed that when heat flows 

from the CNT to the surrounding polymer matrix ‘the heat energy first flows from the 

high frequency modes to the low frequency transverse modes’, and then transfers to the 

surrounding matrix.102 This latter step is controlled by the poor coupling between the 

vibrational modes in the CNT and the surrounding matrix.104 The resistance to heat flow 

at the interface, the thermal boundary resistance (also known as Kapitza resistance),105 

is associated with differences in the phonon spectra, and weak contacts, between filler 

and matrix.102, 106 Thus the interfacial resistance strongly depends on the presence of 

low frequency vibration modes in the CNTs and decreases as the length of the CNT 

increases. These results suggest that when the CNTs become more flexible (eg. longer 

and larger), the Kapitza resistance decreases. GS might be promising candidates to 

reduce Kapitza resistance. 

GS and graphene ribbons4, 107-108 are attracting enormous research attention because of 

their exceptional properties such as quantum Hall109,110,111 and ambipolar electric field 

effects,1 plus extraordinary mechanical stiffness and fracture strength.5, 45, 68, 112  They 

are also relatively inexpensive to manufacture.1-3, 113-114 GS could be used as fillers to 

enhance the mechanical and thermal transport properties of polymer composites.  To 
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optimize the properties of the composites, it is necessary to produce large quantities of 

individual GS and to control the dispersion of nanoparticles within the polymer.  

To address the first challenge, several techniques have been recently developed, 

including mechanical exfoliation,87 the reduction of graphite oxide layers previously 

obtained by thermal expansion89 with subsequent stabilization by amphiphilic 

polymers,114 and chemical treatment of expandable graphite.115 The latter process yields 

‘nanoribbons’, elongated structures with width below 10 nm. A review article116 

discusses a number of synthetic routes available for the production of GS. Chemical 

routes yield GS of as few as 42 carbon atoms,24 and also graphene ‘nanodots’ of 130-

170 carbon atoms.117,118 Cai et al. recently reported a bottom-up method, based on the 

surface-assisted coupling of molecular precursors, that reliably yields graphene 

nanoribbons of less than 10 nm in width.75 Larger and less uniform GS can be obtained 

by exfoliation.1, 119 Schniepp et al.108 proposed a thermal exfoliation process, 

Stankovitch et al.120 proposed a functionalization-reduction process of graphene oxide 

sheets, and Shen et al.121 produced GS platelets by first exfoliating oxidized graphite, 

and subsequently reducing it in situ. Similar processes have been used by Fang et al.122 

who, in addition, took advantage of the oxygenated groups present in partially reduced 

graphene oxide sheets to graft short polystyrene chains onto graphene planes and edges. 

GS are found as crumpled sheets ~1m in diameter. According to ab initio calculations, 

the wrinkles in GS are due to the presence of defects (e.g., rings of 5, or 7, carbon 

atoms), epoxy, hydroxyl, and other oxygenated groups.108, 123 The carbon atoms at the 

GS edges are carbene-like, with the triplet ground state being the most common, or 

carbyne-like, with the singlet ground state being the most common.124 GS also contain 
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some epoxy, carboxyl and hydroxyl groups on their surface and edges82 enabling 

reactions with other functional groups.125-127 Thus it is conceivable128,129-130 to 

functionalize the GS edges with a number of chemical groups, and to incorporate GS in 

a variety of polymers.108,120  

GS can be dispersed within polymers by sonicating expanded graphite in 

tetrahydrofuran (THF), shear mixing the sheets within a polymeric solution [i.e., of 

poly(methyl methacrylate), PMMA], followed by THF removal.97 Using this procedure, 

Ramanathan et al.97 obtained GS-PMMA nanocomposites with electrical conductivity 

far superior than that of graphite-PMMA composites at similar filler loadings, and with 

enhanced storage modulus. In another study, Ramanathan et al.131 obtained significant 

glass transition temperature (Tg) increases for poly(acrylonitrile) and PMMA using a 

solution mixing process upon modest loadings of functionalized GS.  Wakabayashi et 

al.,88 employed solid-state shear pulverization to disperse GS within polypropylene. The 

resultant nanocomposite showed improved mechanical properties (measured in terms of 

the Young’s modulus and yield strength). Yu et al. also reported good GS dispersions in 

an epoxy.132 

Several alternative approaches have been attempted to improve the stability of 

dispersions containing GS. The fact that GS contain epoxy, carboxyl and hydroxyl 

groups on their surface and edges82 may enable chemical alteration routes.125-126 This 

possibility was demonstrated by Li et al.,82 who produced stable GS aqueous 

dispersions taking advantage of electrostatic stabilization. Along the same lines, the 

synthetic production route proposed by Yang et al.24 yields GS whose edges can be 

functionalized by, e.g., alkane chains. This is the stabilization route pursued in this 
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thesis. Alternatively, GS dispersions can be stabilized by polymeric additives. For 

example, stable aqueous dispersions of GS were prepared using a water-soluble pyrene 

derivative as a stabilizer,133 and electrically conductive graphene-polymer 

nanocomposites were prepared by mixing exfoliated functionalized graphite oxide 

sheets with polystyrene, acrylonitrile-butadiene-styrene and styrene-butadiene 

copolymers.120 

We are interested in composites in which GS are dispersed within organic oils. Our goal 

is to control the thermal transport properties of composites by manipulating the 

assembly of GS. Simulation studies by Striolo et al.134-135 have shown that it is possible 

to control the aggregation of colloidal nanoparticles by tuning the effective pair 

interactions. By exploiting short side chains of various chemical functionalities it is 

possible to obtain short colloidal nanowires, spherulites, or uniform dispersions. By 

making use of these basic principles, it might be possible to functionalize GS with 

chemical functionalities. 

According to ab initio calculations, the GS wrinkles are due to the presence of defects 

(e.g., rings of 5, or 7, carbon atoms), epoxy, hydroxyl, and other oxygenated groups.108, 

123 The carbon atoms at the GS edges are carbene-like, with the triplet ground state 

being the most common, or carbyne-like, with the singlet ground state being the most 

common.124 Thus it is possible129-130 to functionalize the GS edges with a number of 

chemical groups. Such functionalized materials could be incorporated in a variety of 

polymers, including polystyrene120 and PMMA.108 
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Because single GS are less rigid than CNTs, the Kapitza resistance in GS-oil 

composites should be significantly lower than that in CNT-oil ones. The goal of this 

thesis is to verify this hypothesis by conducting equilibrium and non- equilibrium 

molecular dynamics simulations. Furthermore, because it is possible to decorate GS 

with chemical functionalities compatible with polymer matrixes, it will be possible to 

efficiently disperse GS within organic materials. If both our hypotheses hold true then 

GS-based nanocomposites will have tremendous thermal properties for a fraction of the 

cost of CNT-based nanocomposites.136  

We conducted molecular dynamics (MD) simulations to assess the Kapitza resistance in 

systems composed by GS and oils. We employed non-equilibrium molecular dynamics 

(NEMD) simulations to study how heat flows from GS to the surrounding organic 

matrix. It is necessary to describe with atomistic precision both GS and the matrix, thus 

we conducted extensive equilibrium MD simulations137 to determine the structure of GS 

in oils and the packing of oils near GS. In Chapter 2, we report equilibrium MD 

simulations for pristine and functionalized graphene nanosheets dispersed in liquid 

organic linear alkanes (oils). The simulations are conducted at room conditions in the 

NPT and NVT ensembles. The parameters of interest are GS size, size of functional 

groups, and the oils molecular weight. Due to computing limitations, we considered GS 

containing 54, 96, and 216 carbon atoms. The organic oils considered are n-hexane, n-

octane and n-dodecane and the functionalities considered are linear and branched 

alkanes. These simulations will allow us to understand how the oil molecules pack at 

the oil-GS interface. The packing depends on the molecular weight of oils as well as on 

the size of GS. We identified those oils that pack better (e.g., higher densities) close to 
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the GS interface because we expect that higher interfacial densities will present lower 

resistances to heat flow. The simulations will also help us identify if it is possible to 

obtain stable dispersions of GS in organic oils by functionalizing the GS with alkane 

chains; and the minimum number of functional groups (alkane chains) necessary for a 

particular GS size to obtain stable dispersions of GS in organic oils.  

NEMD simulations are then performed on the GS-oil systems identified during the 

equilibrium simulations (those with higher densities at the GS-oil interface, and systems 

with stable dispersions of GS in oils). Two protocols are available. In the first the 

system is initially equilibrated within the NPT ensemble at room conditions. Then only 

the GS is heated to 500 K (by rescaling the atomic velocities) and NVE simulations are 

conducted to monitor the GS temperature decay. By fitting the temperature decay with 

an exponential function it is possible to estimate the Kapitza resistance.102 In the second 

approach the GS particle is continuously heated and the same amount of heat is 

simultaneously subtracted from the boundaries of the simulation box. This protocol 

yields temperature profiles across the simulation box from which it is possible to extract 

estimates for the Kapitza resistance.102, 138 Due to the irregular structure of GS in oil, we 

used the first protocol.  In Chapter 3 we assess the Kapitza resistance in GS – oil 

nanocomposites and compare it to results available for CNT and GS – based 

composites. The successful completion of these simulations will allow us to understand 

the molecular mechanism of heat flow from GS to oil, which is necessary to design the 

molecular components for a thermally conductive oil-GS composite material. These 

simulations will help us determine if the alkane chains grafted to the GS increase or 

decrease the Kapitza resistance at GS-oil interface compared to pristine GS. 
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Because when dispersed in a matrix GS tend to agglomerate and because GS 

agglomeration increases with GS volume fraction, it is important to estimate the 

Kapitza resistance at the GS-GS interface. Both experiments and simulations have 

investigated the Kapitza resistance between CNT contacts and found that the resistance 

at the CNT-CNT interface139-144 is larger compared to that of the CNT-matrix interface 

when the matrix is octane,102-103 epoxy,145 an aqueous suspension,146 etc.147 If, as was 

observed for CNTs, the thermal boundary resistance at GS-GS junctions is larger than 

that at GS-matrix interfaces, it might be beneficial to minimize GS-GS contacts in 

designing thermally conductive composites. In Chapter 4 we assessed the Kapitza 

resistance at the GS – GS interface in octane and in vacuum and compared it to results 

available for CNT – CNT interface. 

We not only studied how heat flows from one GS to the matrix and one GS to another 

GS, but also how heat flows from one GS to the matrix, and then back to another GS. 

These simulations will help us to understand if there is a preferential organization of GS 

within the polymer matrix that maximizes heat transfer within nanocomposite materials.  

Because one GS could be described as a discoid particle, it should be possible to control 

the morphology of GS-based nanocomposites. In other words, by varying the GS 

loading, and possibly by controlling the manufacture procedure (e.g., via the application 

of shear stresses) it could be possible to promote the formation of nematic vs. isotropic 

phases. The overall performance of the resultant material will then depend significantly 

on the GS relative arrangement at the microscopic scale.148 Exploiting the high thermal 

conductivity of individual GS and the possible appearance of nematic phases might lead 

to nanocomposites with anisotropic heat-transfer characteristics (high heat transfer in 
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the direction parallel to the GS planes, low in that perpendicular). To explore this 

possibility, we conducted equilibrium MD simulations to provide evidence for the 

appearance of nematic phases at sufficient GS volume fraction, and then calculated the 

thermal conductivity of the resulting GS-oil nanocomposite using NEMD simulations. 

We also estimated the macroscopic thermal conductivity in GS-oil nanocomposites 

using Monte Carlo simulations. The simulation methodologies and the results obtained 

are discussed in Chapter 5. 

1.2 Graphene-based Desalination Membranes 

Water scarcity for agricultural use and human consumption is one of the major resource 

crises149 worldwide. Although 71% of the earth’s surface is covered with water in the 

oceans, seas, and ice at the poles,150 only 3% of earth’s water is fresh and suitable for 

human consumption. Given the abundance of salty water from seas and oceans, there is 

a need for purifying such water using economic and environmentally friendly processes.  

Seawater desalination has long been practiced; ion concentration in seawater is ~ 0.6 

M.151 The most widely used commercial desalination techniques are reverse osmosis 

(RO),152 electro dialysis,153 and nanofiltration.154 Although RO, which uses high 

pressure to force water (but not salt ions) through a porous membrane, is believed to 

have the greatest practical potential, all desalination techniques are energy and capital 

intensive. Nanoporous membranes, which promise to be more efficient than existing 

membranes, could yield savings in the energy consumption during RO operations. 

Recent experimental155-156 and simulation studies157-159 have shown fast transport of 

water through carbon nanotube (CNT) membranes, especially at the critical pore 
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diameter (Ø) of ~ 7 Å, when water passes through the pore but ions do not.160 Such fast 

water flow is attributed to the frictionless and smooth inner walls of the CNT.159  

Nasrabadi et al.161 demonstrated that charged CNTs can be used as nano-electrodes to 

separate Na+ and Cl- ions from NaCl solution. In addition, the ends of CNT pores can be 

functionalized with various chemical groups that could provide gating properties.162-164  

The design of RO membranes can be improved utilizing the results obtained from 

molecular dynamics (MD) simulations. For example, both Hughes et al.162 and Corry et 

al.163 showed that charged functional groups can help block the ions, but at the cost of 

reduced water diffusion (mostly because of steric effects). Tofighy et al.165 showed that 

oxidized CNT membranes can be very effective for water desalination. They also 

reported that increasing the feed concentration, temperature and flow rate, or decreasing 

the pressure, can enhance the performance of oxidized CNT membranes. Suk et al.166 

compared the transport of water through a GS and a CNT membrane. For smaller pores, 

they found that CNT membranes provide a higher flow rate of water than GS 

membranes. For larger pores, the flow rate of water is higher through GS membranes, 

due to the reduced energy barrier at the entrance of the GS pore. The authors also 

discussed how water-water hydrogen bonds affect the translocation process across the 

membrane.  Sint et al. predicted that functionalized GS nanopores could serve as ionic 

sieves of high selectivity and transparency.167 Cohen-Tanugi and Grossman168 found 

that both the size and chemical functionalization of GS pores play an important role in 

blocking the salt ions while allowing the water flow through the GS membranes. The 

observed water flux in both membranes (they considered pristine and OH-

functionalized pores) was predicted to be 2-3 times faster than the current state-of-the-
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art desalination technology at equal pressure drop. Should these predictions be verified 

experimentally, GS membranes, likely cheaper than CNT ones, could provide 

significant advantages in RO applications. 

The properties of GS such as high aspect ratio,169 high mechanical stiffness,61 and small 

thickness170 make them attractive for manufacturing membranes, as water flux scales 

inversely with membrane thickness.171 Pores have been fabricated on GS by controlled 

electron-beam exposure in a transmission electron microscope.172 The resultant porous 

GS have been used in DNA translocation173-174 and biosensing.175 Other techniques, 

including diblock copolymer templating,176 helium ion beam drilling,177 and chemical 

etching,178 have also been used to generate pores on GS. O’Hern et al.179 transferred a 

single layer graphene onto a porous polycarbonate substrate, obtaining membranes in 

which pores of 1-15 nm diameter were observed. Various research groups have 

synthesized GS functionalized with carboxylate,180 hydroxyl,180 and amine-terminated 

polystyrene.181 Mishra et al.182 synthesized GS membranes by first exfoliating graphitic 

oxide and then functionalizing it with carboxylic (-COOH), carbonyl (-CO), and 

hydroxyl (-OH) groups. These functionalized GS have been used for simultaneous 

removal of high concentrations of arsenic and sodium from seawater. Sun et al.183 

investigated the penetration of sodium salts, heavy-metal salts, organic contaminants, 

and a mixture of their aqueous solutions through graphene oxide (GO) membranes. The 

results show that sodium salts pass more quickly through the GO membranes than the 

heavy-metal salts. Copper salts and organic contaminants like rhodamide B are 

completely blocked because of their strong interactions with the GO membranes. 
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To further the design of effective GS-based membranes for water desalination, we 

quantify the effect of functionalizing pores with COO-, NH3
+ and OH groups on the 

pores ability of rejecting NaCl. The potential of mean force (PMF) along the vertical 

distance from the pore center into bulk aqueous solutions is calculated for both water 

and Na+ and Cl- ions. The pores considered have diameter 14.5, 10.5, and 7.5 Å. The 

results are presented in Chapter 6 and indicate that effective ion exclusion can only be 

achieved using non-functionalized (pristine) pores of diameter ~ 7.5 Å, while the ions 

can easily penetrate pristine pores of diameter ~ 10.5 and 14.5 Å. Carboxyl functional 

groups can enhance ion exclusion for all pores considered, but the effect becomes less 

pronounced as both the ion concentration and the pore diameter increase. When 

compared to a carbon nanotube (CNT) of similar pore diameter, our results suggest that 

GS pores functionalized with COO- groups are more effective in excluding Cl- ions 

from passing through the membrane. Our results suggest that narrow graphene pores 

functionalized with hydroxyl groups remain effective at excluding Cl- ions even at 

moderate solution ionic strength. The results presented could be useful for the design of 

water desalination membranes.   

Chapter 7 has a discussion on the recent trends in graphene related to my research; in 

Chapter 8 we summarize our main conclusions and highlight some questions that 

require further research; in Chapter 9 (Appendix) we provide the details of the umbrella 

sampling technique used in Chapter 6 and provide some additional details regarding the 

selection of simulation timestep and how we optimized the number of processors used 

to run the simulations; and in Chapter 10 we provide a list of all the references used in 

this thesis. 



16 

2. Molecular Design of Stable Graphene Nano-Sheets 

Dispersions 

The material presented below was published in 2008 in volume 8, issue 12, and page 

4630 of the ACS journal Nano Letters. 

2.1 Introduction 

GS are receiving enormous scientific attention because of extraordinary thermal, 

electronic and mechanical properties. These intrinsic properties will lead to innovative 

nano-composite materials that could be used to produce novel transistors and thermally-

conductive polymeric materials. Such applications are currently hindered by the 

difficulty of producing large quantities of individual GS and by the propensity of these 

nanoparticles to agglomerate when dispersed in aqueous and/or organic matrixes. 

Our group is interested in dispersing GS in aqueous and/or organic systems by taking 

advantage of steric stabilization. The availability of reactive groups on the GS edges 

will be exploited to graft chemical functionalities on the GS, as demonstrated by Yang 

et al.24 Based on theoretical results obtained for spherical colloids,134, 184 we expect that 

by employing functionalities such as polymer brushes to the GS edges we will induce 

effective GS-GS repulsions that will stabilize GS-containing dispersions. However, 

some fundamental questions need to be addressed, including ‘what type of 

functionalities provides the desired stabilization?’ And ‘what is the minimum number of 

such functionalities for a given graphene sheet?’ To address these questions we employ 

molecular dynamics simulation techniques. Simulations will prove advantageous in the 

search for GS stabilization methods, as well for understanding the effect that 
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functionalizing GS will have on the intrinsic properties of pristine GS. The advantage of 

theoretical contributions stems from the fact that no chemical synthesis is required for 

assessing various stabilization routes (although experimental verification will be 

necessary for practical applications), thus various possibilities can be studied and pros 

and cons carefully evaluated. As a first example, Barnard et al.,60 using ab initio 

techniques, showed that small GS do not transform into carbon nanotubes even at 

elevated temperatures, although they undergo extensive vibrational motion.60 Another 

advantage inherent to simulation studies is that the detailed analysis of the simulation 

results allows us to understand the molecular mechanisms responsible for the GS 

aggregation, as well as those that can be exploited to stabilize GS dispersions. One 

drawback is that, because of computational power limitations, only small systems can 

be simulated at the all-atom level. The simulation results reported in this Letter were 

obtained for GS of 54 and 96 carbon atoms each. Thus the work presented is applicable 

to GS obtained by the synthetic route proposed by Yang et al.24 Despite the existing 

limitation on the GS size that can be simulated, the fundamental lessons that we learn 

from our model system can be appropriately extended to larger GS, for example using 

coarse-grained models that could be implemented based on the results presented here.185 

Our molecular dynamics simulations are performed on systems that contain low-

molecular-weight oils (n-hexane, n-octane, and n-dodecane). These oils are frequently 

used in the industry and therefore studying the properties of GS-oil systems may lead to 

the design of enhanced lubricants for extreme applications (e.g., heat-conductive 

lubricants). All the simulations were conducted at room conditions. The densities of 
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liquid n-hexane, n-octane and n-dodecane at 300K are 0.649 gm/cm3, 0.6964 gm/cm3, 

and 0.7493 gm/cm3, respectively. 

The simulations are conducted at the limit of low GS concentration within the organic 

oils. Under these conditions, by calculating the radial distribution functions between the 

GS centers of mass (center-to-center RDFs in what follows), it is possible to obtain 

effective pair potentials of mean force (W), from which a number of thermodynamic 

properties can be calculated.186 It is also possible to exploit this information to develop 

coarse-grained potentials that will allow us to simulate larger systems at higher GS 

concentrations.185 Examples of similar applications are detailed in our previous 

publications.187-192  

To provide good compatibility between the GS fillers and the low-molecular-weight 

oils, the GS functionalities are either linear or branched alkanes. We found that: (1) it is 

possible to maintain individually dispersed GS within low-molecular-weight oils by 

functionalizing the GS edges; (2) branched functionalities are far more effective than 

linear ones for GS stabilization; (3) the effectiveness of the stabilization is a 

consequence of the excluded volume of the branched functional groups; and (4) the 

functionalities affect, albeit slightly, the packing of oil molecules around the GS. In the 

remainder of this Chapter we discuss our main results.   

2.1 Simulation Details 

To conduct our simulations we employed the package LAMMPS.193-194 All results were 

obtained using equilibrium molecular dynamics (MD) simulations within the NVT and 

NPT ensembles. In the NVT ensemble the number of particles (N), the simulation box 
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volume (V), and the temperature (T) are maintained constant. In the NPT ensemble the 

system volume is allowed to fluctuate to maintain the pressure (P) constant. Periodic 

boundary conditions were applied in all the three dimensions. The size of the simulation 

box was approximately 90 90 90 Å in all the systems considered. In all cases the time 

step was of 1 fs. 
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Figure 2-1 Schematic representation of the pristine graphene sheets (GS) considered in 

this work, composed of 54 carbon atoms (panel a), as well as of the functionalized GS. 

The functional groups are always alkanes, grafted to GS edge atoms. Five 

functionalized GS types are considered: those obtained by grafting 6 alkanes of 6 

carbon atoms each to one GS (panel b); those obtained by grafting 6 branched alkanes 

of 11carbon atoms each (panel c); those obtained by grafting 3 branched alkanes of 11 

carbon atoms each (panel d); those obtained by grafting 6 branched alkanes of 7carbon 

atoms each (panel e); and those obtained by grafting 6 branched alkanes of 11 carbon 

atoms each to GS of 96 carbon atoms (panel f) . Green spheres represent carbon atoms 

in GS; red, blue, and purple spheres represent CH, CH2, and CH3 groups in the alkane 

functionalities, respectively. 
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Each GS was composed of 54 carbon atoms. The Tersoff force field195-197 was employed 

to describe the interactions among these atoms. In the Tersoff force field, the potential 

energy is modeled as a sum of pair like interactions, where, however, the coefficient of 

the attractive term in the pair like potential depends on the local environment, yielding 

an effective many-body potential. Interactions between carbon atoms belonging to 

different GS were described using Lennard-Jones potentials. To describe alkanes we 

implemented a united atom approach and the parameters were taken from the NERD 

force field.198-199 The alkanes considered were n-octane, n-hexane and n-dodecane. 

Within the united-atom description, an n-alkane molecule is described as a flexible 

linear chain of methylene (CH2) pseudo atoms terminating at both ends with methyl 

(CH3) pseudo atoms. In the NERD force field, the non-bonded potential between 

interaction sites, which are separated by more than three bonds or belong to different 

molecules, is described by the Lennard-Jones 12-6 potential. The interactions between 

GS and alkanes were described by the 12-6 Lennard-Jones (LJ) potential. The 

parameters were obtained by Lorentz-Berthelot rules137 from those of the pure 

compounds. 

Parameters and more details necessary to implement both Tersoff and NERD force 

fields are given in Table 2.1. 

In each simulation box the number of linear alkane (organic oil) molecules was 2576 

and that of GS was 5. In the initial configuration all these molecules were disposed in a 

lattice within the simulation box. To prevent excessive forces, the MD simulations, 

carried out in the NVT ensemble, where initially conducted at very low temperatures 
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(50K). The system was then heated from 50K to 300K at the heating rate of 100K every 

600ps of simulation. The system was then equilibrated in the NPT ensemble at 300K 

and 1 bar to stabilize the system volume. Once the simulation box volume fluctuated 

around a constant value, simulations were conducted in the NVT ensemble at 300 K. 

During the production phase, which lasted up to 120 ns, the system configurations were 

stored every 100 ps and used for subsequent analysis. The system densities during the 

production phase were comparable to the experimental densities of the pure liquid 

organic oils at 300K. 

Table 2-1 Potential Energy functions. 
 
 

 

NERD force field for alkanes 
 

Bond stretching potential 

 
 

Kr=96 500 K/A2                     beq=1.54A 

 

Bond bending potential 

 
 

Kθ=62 500 K/rad2                θeq=114.0o 

 

Torsional potential 

 

 
 

=0                        =355.04K 

=-68.19K             =701.32K 
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Nonbonded interactions potential 

rij, ij, and σij denote the distance between the interaction sites, Lennard-Jones well depth and 

size parameter respectively, for the pairs of atoms i and j. 

 

 
 
 
 

 

 

TB force field for graphene sheets 

 
The potential energy E, as a function of the atomic coordinates, is calculated as 

 

  

  

 

 

 

 
 

Indexes i, j, and k label the atoms of the system, rij is the length of the ij bond, and θijk is the 

bond angle between bonds ij and ik. Singly subscripted parameters, such as λi and ni, depend 

only on the type of atom (in our case, carbon). 
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TB parameters for Carbon 
 

                       A (eV)                                                           1.3936  103 

                       B (eV)                                                           3.467  102 

                       λ (Å -1)                                                           3.4879 

                       μ (Å -1)                                                           2.2119 

                          β                                                                 1.5724  10-7 

                          n                                                                 7.2751  10-1 

                          c                                                                 3.8049  104   

                          d                                                                 4.384  100 

                          h                                                                -5.7058  10-1  

                       R (Å)                                                             1.95 

                       S (Å)                                                              0.15       
 
 
 

 

 

Lennard Jones intermolecular potential energy parameters 
 

 

Pseudo atom                                     σ (Å)       ε/kB (K) 

 

 

CH3                                                   3.91          104.0 

CH2                                                  3.93                  45.8   

CH                                                   3.85             39.7 

C                                                      3.91             17.0 
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2.2 Results and Discussion 

2.2.1 Mean Square Displacement 
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Figure 2-2 Mean square displacement (MSD) as a function of time obtained for GS of 

54 carbon atoms functionalized with six branched alkanes (see Fig 2.1c) in n-hexane 

(blue line), n-octane (red line), and n-dodecane (green line). All simulations were 

conducted at 300K. 

We considered pristine GS (Fig. 2.1a), as well as functionalized GS (Fig 2.1b, 2.1c, 

2.1d, 2.1e, 2.1f). In one case 6 linear hexanes were grafted to edge GS atoms as shown 

in Fig 2.1b. Alternatively, the GS were functionalized with 6 (Fig 2.1c), or 3 branched 

alkanes with 11 carbon atoms each (Fig 2.1d). Five such GS were immersed, together 

with 2576 alkane molecules, in cubic simulation boxes of lateral dimension ~9.0 nm. 

After equilibration (details can be found in the Appendix), the simulations were 

conducted for up to 120 ns for each system considered. To verify that the simulations 

were sufficiently long we evaluated the mean square displacement (MSD) of the GS 

center of mass as a function of time. The results are shown in Fig 2.2 for functionalized 
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GS of 54 carbon atoms in n-hexane, n-octane, and n-dodecane at 300K. From the slope 

of the MSD at long time it is possible to extract the self-diffusion coefficient using the 

Einstein relation. Our calculations yield diffusion coefficients of 6.8710-5 cm2/s, 

6.4710-5 cm2/s, and 5.1310-5 cm2/s for functionalized GS in n-hexane, n-octane, and n-

dodecane, respectively. Further, from the results in Fig 2.2 we can assess how far each 

GS travels during the 120 ns of a typical simulation run (i.e., a distance equivalent to 

approximately 2 simulation box sizes). Although longer simulations are always 

desirable, this result guarantees that our simulations sampled properly equilibrated 

configurations. 
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Figure 2-3 Representative simulation snapshots for GS of 54 carbon atoms in n-octane 

at 300K. GS are shown with the color code of Fig 2.1. Red and yellow spheres represent 

CH2 and CH3 groups of n-octane, respectively. Visual inspection suggests that pristine 

GS aggregate yielding ‘pancake stacks’ (top), as well as GS functionalized with linear 

chains of six carbon atoms (center). When the GS are functionalized with 6 branched 

alkanes of 11 carbon atoms each they remain well dispersed in n-octane after 120 ns of 

simulation (bottom). 
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2.2.2 Graphene – Graphene Radial Distribution Function 

When pristine GS of 54 carbon atoms (Fig 2.1a) were simulated, they aggregated after a 

few nanoseconds yielding ‘pancake stacks’ in n-octane at 300 K. A representative 

simulation snapshot is shown in Fig 2.3 (top panel). The distance between the GS in the 

stacks is ~0.4 nm. When the GS were functionalized with 6 linear alkanes of 6 carbon 

atoms each (Fig 2.1b) they still agglomerated in n-octane as shown in Fig 2.3 (center 

panel), but when six branched alkanes of 11 carbon atoms were grafted to the edges of 

GS (Fig 2.1c) the GS did not agglomerate after 120 ns of simulation (Fig 2.3, bottom 

panel). Thus our simulations demonstrate that by functionalizing the GS edges it is 

possible to induce sufficient entropic repulsion between GS in oils to guarantee the 

stability of the dispersions, provided that branched functionalities are employed. The 

mechanism by which stabilization occurs will be discussed later. 
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Figure 2-4 Center to center radial distribution functions (RDFs) computed between 5 

pristine GS of 54 carbon atoms (see Fig 2.1a) in oils. Results were obtained in n-hexane 

(blue line), in n-octane (red line), and in  n-dodecane (green line). All simulations were 

conducted at 300K.  

To understand the effect of solvent on the self-aggregation of GS, simulations were 

carried out for GS in n-hexane, n-octane and n-dodecane. To characterize the systems 

simulated we computed the radial distribution functions (RDFs) between the GS center 

of mass (center-to-center RDFs). Typical results obtained for pristine GS of 54 carbon 

atoms are shown in Fig 2.4. Pristine GS agglomerate in the three oils at 300K. The 

RDFs (Fig 2.4) correspond to the data obtained during 5 ns after the GS agglomerate. 

The intense peak at short separation and the vanishing RDF at large separation are 

representative of the strong association between GS. During the simulations the 5 GS 

formed two agglomerates of 2 GS each in n-dodecane and n-octane, while they formed 

one agglomerate of 3 GS and one of 2 GS in n-hexane. The agglomerate of 3 GS is 

responsible for the second intense peak at ~7.5 Å found in the RDF computed in n-

hexane. None of the aggregated GS redispersed in the oil during our simulations, which, 
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in this case, lasted 15 ns. If the simulations were conducted for longer times, all the 5 

GS would have likely formed one big pancake-stack aggregate in all three solvents 

considered.  

 

Figure 2-5 Center-to-center radial distribution functions (RDFs) and pair potentials of 

mean force W (inset) computed for 5 GS of 54 carbon atoms functionalized with 6 

branched alkanes of 11 carbon atoms each (see Fig 2.1c). Results were obtained in n-

hexane (blue lines), n-octane (red lines), and n-dodecane (green lines). All simulations 

were conducted at 300K. 

The center-to-center RDFs computed for five GS of 54 carbon atoms functionalized 

with 6 branched alkanes of 11 carbon atoms each dispersed in n-hexane, n-octane and 

n-dodecane at 300K are shown in Fig 2.5. From the RDFs we obtained effective pair 

potentials of mean force, which are shown as inset in Fig 2.5. When the RDF is larger 

than unity the corresponding effective pair potential W is attractive (negative), while 

when the RDF is less than unity W is repulsive (positive). The RDFs in Fig 2.5 do not 

show any intense peaks, but instead grow gradually from zero at close separations, 
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becomes larger than unity at distances between ~1.4 nm to ~ 3.5 nm, depending on the 

solvent, and then decrease smoothly to unity at larger separations. These features are 

typically observed between spherical colloids covered by brushes in solution, in which 

case the brushes provide entropic repulsion at close separations and mid-range 

attraction that can arise because of depletion forces, or because of other long-range 

interactions. The fact that RDFs obtained for functionalized GS in oils are similar to 

those obtained between colloidal brushes may sound surprising because the ‘brushes’ 

are grafted only at the GS edges rather than uniformly on the entire nanoparticles. 

Indeed, non-uniform brush coverage may result in anisotropic attraction between 

nanoparticles.135, 200 Quantification of the simulation results is required to clarify these 

observations. 
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Figure 2-6 Top left: contour plot for the GS of 54 carbon atoms functionalized with 6 

branched alkanes of 11 carbon atoms each, top view.  

Top right: contour plot for the GS functionalized with 6 branched alkanes, side view. 

Bottom left: contour plot for the GS functionalized with 3 branched alkanes, top view. 

Bottom right: contour plot for the GS functionalized with 3 branched alkanes, side 

view. 

2.2.3 Contour Density Profiles 

To rationalize the molecular mechanism responsible for the stabilization of the GS 

functionalized with branched alkanes we conducted additional simulation studies in 

which only one functionalized GS was present within a simulation box containing the 

alkanes of interest (n-hexane, n-octane, and n-dodecane). The simulations were 

conducted at 300K and room pressure within the NPT ensemble, and after equilibration 



33 

the lateral dimension of the cubic simulation box was ~ 6.5 nm. Then NVT simulations 

were conducted at 300K for the only purpose of studying the preferential configuration 

of the functional groups. The results are qualitatively independent on the solvent. We 

report in Fig 2.6, top panels, the top and side views of the density profiles of the 

functional groups composed by branched alkanes of 11 carbon atoms grafted to one GS 

of 54 carbon atoms. The results from the top view (top left panel) clearly indicate the 

localization of the grafting points for the six branched functional groups. More 

important are the results shown on the side view (top right panel), which indicate how 

the functionalities protrude towards both sides of the GS, and effectively render the flat 

GS a discoid nanoparticle whose width depends on the length of one branch in the 

functional groups. The symmetric extension of the excluded volume is due to the 

branched architecture of the functional groups (each linear functional groups of Fig 2.1b 

preferentially extends towards only one side of the GS). Because of the symmetric 

excluded volume, it is not possible for the GS considered in Fig 2.5 to aggregate 

yielding ‘pancakes stacks’ structures, and consequently the GS dispersions are stable. 

This mechanism is expected to work even for wider GS, provided that a sufficient 

number of functionalities is employed, and that the GS diameter is not too large 

compared to the length of the functional groups. In fact there are two competing 

interactions that determine the stabilization/aggregation of the GS dispersed in oils. 

Functionality-functionality excluded-volume effects yield an effective repulsion of 

entropic origin, while excluded-volume effects due to the discoid GS shape, augmented 

by GS-GS Van der Waals attractions, yield strong GS-GS attraction. 
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Since functionalizing the GS with 6 branched alkanes served the purpose of dispersing 

the GS in oil, simulations were conducted to determine the minimum number of 

branched alkanes required for obtaining stable dispersions. When 3 branched alkanes 

were grafted to each GS (Fig 2.1d), the GS aggregated in n-hexane (after 31 ns of 

simulation) and in n-octane (after 50.7 ns of simulation). In n-dodecane the GS 

remained dispersed even after 120 ns of simulation. This result was unexpected because 

longer-ranged depletion attractions are predicted when longer linear solvent molecules 

are present,201 but it may simply be due to the fact that the mobility of the 

functionalized GS is lower in n-dodecane than it is in the other solvents considered 

here, as shown in Fig 2.1. Thus longer simulations will likely show aggregation of GS 

functionalized with 3 branched alkanes in n-dodecane. We conclude that 6 branched 

functionalities are necessary to prevent GS agglomeration in all the three oils 

considered. To understand why 3 branched functional groups are not effective in 

stabilizing the GS we again consider the contour plots shown in Fig 2.6. In the bottom 

panel we report top and side view of the density profiles of the functional groups in one 

GS of 54 carbon atoms functionalized with 3 branched alkanes. Qualitatively, the 

density profile for each functional group is very similar to that discussed in the case of 

GS functionalized with 6 branched alkanes. However, one difference exists when the 

whole nanoparticle is considered, and it is clearly responsible for GS aggregation. When 

two GS functionalized with 3 branched alkanes approach each other in a face-to-face 

relative orientation it is possible to obtain the pancakes stack configuration without 

encountering significant excluded-volume repulsions by simply rotating one GS by 30 

with respect to the other. This rotation allows sufficient room for each functional group 
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not to experience entropic penalties upon the GS association and therefore the GS-GS 

attraction prevails leading to the GS association. 

In the simulations discussed so far each of the branched alkanes used to functionalize 

the GS consisted of 11 carbon atoms. Additional simulations were conducted to 

determine the minimum length of the functional groups required to prevent GS 

agglomeration. Simulations were conducted for GS functionalized with 6 branched 

alkanes of 7 carbon atoms each dispersed in n-hexane at 300K. Our results show that 

even the shorter functional groups are successful in preventing GS agglomeration for up 

to 120 ns of simulation time. The center-to-center RDF’s computed for five GS 

functionalized with 6 branched alkanes with either 7 or 11 carbon atoms each dispersed 

in n-hexane at 300K are shown in Fig 2.7. Within statistical uncertainty, we observe 

that the two data sets are essentially equivalent.  

 

Figure 2-7 Center-to-center RDF between GS of 54 carbon atoms functionalized with 6 

branched alkanes. The functional groups contain either 7 (blue line) or 11 carbon atoms 

each (red line). Simulations are conducted in n-hexane at 300K. 
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Having established that six branched alkanes are effective in stabilizing GS of 54 

carbon atoms in n-hexane, n-octane, and n-dodecane, and having illustrated the 

mechanism responsible for stabilization, we conducted additional simulations to assess 

whether the same strategy is successful even for GS of 96 carbon atoms. Equilibrium 

MD simulations were conducted for these nanoparticles dispersed in n-octane at 300K. 

The results for the center-to-center RDF are shown in Fig 2.8, where they are compared 

to those obtained for the GS of 54 carbon atoms. Both nanoparticles are functionalized 

with 6 branched alkanes of 11 carbon atoms. The results for RDFs and PMFs (inset) 

indicate that both GS are stable in n-octane at 300K. However, some differences are 

evident. In particular, the effective mid-range GS-GS attraction becomes slightly 

stronger when larger GS are considered, and also the RDF becomes larger than zero at 

center-to-center distances lower than those at which the RDF between GS of 54 carbon 

atoms does. Both of these results are due to the fact that the GS of 96 carbon atoms 

attract each other more strongly than those of 54 carbon atoms do. This attraction is 

expected because of GS-GS excluded volume effects, which become more pronounced 

as the GS size increases. However, the GS-GS repulsion due to the presence of the 

functional groups prevents the GS aggregation into pancake staks. 
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Figure 2-8 Center-to-center RDF between GS with 96 atoms (blue line) and GS with 54 

atoms (red line) functionalized by 6 branched alkanes in n-octane at 300K. All the 

branched alkanes used as functional groups contain 11 carbon atoms. 

 

From the simulation results discussed above, we concluded that functionalizing the GS 

with 6 branched alkanes successfully prevents GS aggregation in the three solvents 

considered. The RDFs shown in Figs 2.5, 2.7, and 2.8 are averaged over all possible 

orientations, but for practical applications it may be interesting to understand how the 

GS approach each other within the dispersions. Thus radial distribution functions were 

computed between selected carbon atoms within the GS. We considered edge atoms, as 

well as those atoms that belong to a hexagonal ring at the center of the GS. The 

corresponding RDFs, indicated as edge-edge, ring-ring, and ring-edge, are shown in Fig 

2.9 for GS of 54 carbon atoms dispersed in n-hexane, n-octane and n-dodecane. In the 

case of GS dispersed in n-hexane (blue lines) and n-octane (red lines), there are no 

strong peaks and the RDFs increase smoothly from zero at small distances to unity at 
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large ones. In the case of GS dispersed in n-dodecane (green lines), a peak is observed 

at 24 Å in all the RDFs, in agreement with the results obtained for the orientationally 

averaged RDFs shown in Fig 2.5. 
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Figure 2-9 Edge-edge (top), ring-ring (center), and ring-edge (bottom) RDFs calculated 

for GS of 54 carbon atoms functionalized with 6 branched alkanes of 11 carbon atoms 

each dispersed in n-hexane (blue line), n-octane (red line) and n-dodecane (green line). 

The insets are representative snapshots observed at the minimum distance at which the 

RDFs are nonzero. All simulations were conducted at 300K. 
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The snapshots shown as inset in Fig 2.9 are representative of the configurations 

observed at the minimum distance d at which the corresponding RDFs are larger than 

zero. The edge-edge RDFs (top panel) is nonzero at d ~ 4Å. Correspondingly, two 

approaching GS are parallel and belong, approximately, to the same plane, as shown by 

the snapshot. The ring-ring RDFs (center panel) is nonzero at d ~ 10Å, at which 

separation the interacting GS are parallel, but belong to different planes. It is clear, from 

visual inspection of simulation snapshots and from the contour plots shown in Fig 2.6, 

how the branched functionalities provide the effective GS-GS repulsion when two GS 

adopt this configuration. Linear functionalities are not effective, and therefore the GS 

agglomerate as discussed in Fig 2.2. The ring-edge RDFs (bottom panel) are nonzero at 

d ~ 6Å, in correspondence of which separation one GS is perpendicular to the second 

one, as shown in the inset. 

2.2.4 Graphene – Octane Radial Distribution Function 

So far we demonstrated how it is possible to prepare stable dispersions of small GS in 

n-hexane, n-octane and n-dodecane. For many applications (e.g., to produce thermally-

conductive lubricants), it is of interest to understand how the organic oils couple with 

the GS fillers. To evaluate this property, we calculated RDFs between the carbon atoms 

at the GS edges as well as those within the central GS ring, and methyl or methylene 

groups of the oils. The results are shown in Fig 2.10 where we consider GS of 54 

carbon atoms functionalized with 6 branched alkanes of 11 carbon atoms each in n-

hexane (blue lines), n-octane (red lines), and n-dodecane (green lines) at 300K.  
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Figure 2-10 Radial distribution functions computed between the edge carbon atoms 

(top) and central ring carbon atoms (bottom) of GS of 54 carbon atoms functionalized 

with 6 branched alkanes of 11 carbon atoms each (see Fig 2.1c) and methyl (left panel) 

or methylene (right panel) groups of n-hexane (blue lines), n-octane (red lines) and n-

dodecane (green lines). The insets are schematics that highlight the atoms considered 

for each RDF calculation. All simulations were conducted at 300K. 

 

The results in Fig 2.10 suggest that, limited to the linear solvents considered here, oil 

packing on the GS does not depend on the oil molecular weight. The position of the first 

peak (~ 5Å) is due to excluded-volume effects and corresponds to ~1/2 the sum of 

carbon atoms and methyl or methylene groups’ diameters. In all cases the first peak 

intensity is less than unity, suggesting that, because of excluded-volume effects, the 

solvent molecules are not preferentially at contact with the GS. We found it interesting 
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that both the CH3 and the CH2 groups of the oils are more likely to be in contact with 

the central GS carbon ring than with the GS edge atoms. These data suggest that the oil 

molecules are more likely to lay flat on the GS, because of entropic reasons. It is 

possible that the functional groups at the GS edges affect this preferential orientation. 

  

  

Figure 2-11 Radial distribution functions computed between the edge carbon atoms 

(top) and central ring carbon atoms (bottom) of  five GS of 54 carbon atoms 

functionalized with six branched alkanes of 11 carbon atoms each (blue lines) and three 

branched alkanes (red lines) each and methyl (left) or methylene (right) groups of n-

dodecane. The insets are schematics that highlight the atoms considered for each RDF 

calculation. All simulations were conducted at 300K. 

 

To test this possibility, in Fig 2.11 we report oil-GS RDFs for GS of 54 carbon atoms 

functionalized with either six or three branched alkanes of 11 carbon atoms each in n-
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dodecane at 300K. The results suggest that, although oil packing around the 

functionalized GS is similar in the two cases (i.e., the peaks positions do not depend on 

the number of functional groups grafted to the GS), the RDFs at close separation are 

always more intense when the GS are functionalized with fewer branched alkanes. 

Clearly, increasing the number of functional groups on the GS edges decreases the 

likelihood of oil packing. Thus when enhanced coupling between the organic matrix 

and the GS fillers is required (e.g., to produce thermally-conductive composites), it is 

important to minimize the number of functional groups per graphene sheet. 

2.3 Conclusions 

In conclusion, in this Chapter we reported equilibrium molecular dynamics simulations 

for pristine and functionalized graphene nanosheets of either 54 or 96 carbon atoms 

each dispersed in liquid n-hexane, n-octane, and n-dodecane at 300K. We demonstrated 

that by functionalizing six equally spaced edge carbon atoms in each graphene sheet 

with branched alkanes it is possible to prevent the graphene sheets agglomeration. 

Careful analysis of the simulation results demonstrates that the stabilization is provided 

by excluded-volume effects. Linear functional groups grafted to the GS edges are not 

effective because the excluded-volume that they generate is not symmetric with respect 

to the plane identified by one GS. In addition, we characterized the preferential 

orientation of approaching graphene sheets in the three organic solvents. We also 

studied the packing of the organic oils on the graphene sheets by computing appropriate 

site-site radial distribution functions. The results suggest that the organic oils tend to lay 

flat on the graphene sheets. Consequently, the branched functionalities that are effective 
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in preventing the graphene sheets aggregation also repel, to some extent, the organic 

oils. Our results imply that in those applications that require strong coupling between 

the organic matrix and the graphene sheets used as fillers (e.g., thermally-conductive 

lubricants) it is desirable to minimize the number of branched functional groups used 

per graphene sheet, unless the functional groups themselves aid the coupling between 

the GS and the surrounding matrix, as was observed, for example, in the case of carbon 

nanotubes in n-octane.102 
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3. Thermal Boundary Resistance at the Graphene – Oil 

Interface 

The material presented below was published in 2009 in volume 95, issue 16, and page 

163105 of the AIP journal Applied Physics Letters. 

3.1 Introduction 

Producing nanocomposite materials that take advantage of the mechanical properties of 

an organic matrix (e.g., a polymer) and the exceptional heat-transfer properties of 

nanoparticles (e.g., carbon nanotubes or graphene sheets (GS)) has been elusive so far 

because of the large resistance that heat encounters upon transferring from the 

nanoparticle to the organic matrix (i.e., the Kapitza resistance). For example, carbon 

nanotubes (CNT), because of their exceptional intrinsic thermal transport properties98-99 

coupled to their percolation thresholds even below 1% by volume, stimulated a wealth 

of enthusiasm.100 Unfortunately, experimental measurements showed only modest 

increases in the composite thermal conductivity with respect to the thermal conductivity 

of the pure matrix material.100-101 This is because of the poor coupling between the 

vibrational modes in the CNT and the surrounding matrix.104 The resistance to heat flow 

at the interface, the Kapitza resistance,105 is associated with differences in the phonon 

spectra, and weak contacts, between filler and matrix.102, 106 

The latest carbon-based nanomaterials that are attracting wide interest are GS.4,5 For the 

purposes of manufacturing composites with high thermal-transport properties it is 

important to point out that recent experimental results show GS thermal conductivities 

50% in excess of those reported for CNT.62,202 Hu et al.,63 conducting all-atom 
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molecular dynamics simulations, predicted thermal conductivity for graphene 

nanoribbons comparable to that found experimentally, and showed that it strongly 

depends on the structure of the GS edges, as well as on the presence of defects. 

Although these results are very encouraging for the manufacture of GS – based 

composites, it is necessary that the Kapitza resistance does not compromise the 

macroscopic composite properties. The scope of this Chapter is to assess the Kapitza 

resistance in GS – oil nanocomposites and to compare it to results available for CNT – 

based composites. Our all atom molecular dynamics simulation results show that 

pristine GS have lower Kapitza resistance compared to CNT, but that the Kapitza 

resistance increases as the GS size increases. More importantly, we prove that by 

functionalizing the GS with short branched alkanes the Kapitza resistance decreases 

significantly because the vibrational modes of the functional groups couple with those 

of the surrounding oils.  

3.2 Simulation Details 

The implemented simulation protocol is described by Shenogin et al.,102 and details 

about the force fields employed can be found in our earlier report.203 In short, we place 

one GS at the center of a cubic simulation box filled with liquid octane. We conduct 

MD simulations to equilibrate the system 300K. At this point we instantaneously 

increase the GS temperature to 500K. As the simulation progresses at constant system 

energy the GS temperature decreases and the oil temperature increases. We monitor the 

difference in temperature between the GS and the surrounding oil over time. Fitting the 

observed decay in the temperature difference with an exponential function 
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(     
t

etTtT


 0 ) we extract the time constant τ, which is related to the Kapitza 

resistance Κ via:102 



K 
A  

C
               (3.1) 

In Equation (3.1) A is the interfacial area across which heat transfers from the GS to 

the surrounding liquid octane and C is the GS heat capacity. 

 

 

Figure 3-1 Schematic for one pristine GS of 54 atoms (left), one GS of 54 atoms 

functionalized with 6 short branched alkanes (middle), and one GS of 54 atoms 

functionalized with 6 long branched alkanes (right). 

Several GS were considered, some of which are shown in Fig 3.1. From left to right 

these are one ‘pristine’ (i.e., not functionalized) GS, one GS functionalized with ‘short’ 

functional groups, and one GS functionalized with ‘long’ functional groups. Short and 
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long functional groups are alkanes with 11 and 21 carbon atoms, respectively. In Fig. 

3.2 we show on the left one representative simulation snapshot for the system 

containing one pristine GS (with 54 carbon atoms) and 240 octane molecules, and on 

the right one representative simulation snapshot for one functionalized GS in octane. 

The GS shape is approximately hexagonal to mimic experimental systems.24 The 

number of functional groups is the minimum required to stabilize the GS-oil dispersions 

based on our previous simulations.203 As in our previous work,203 the functional groups 

are equally spaced along the GS edges. 

 

Figure 3-2 Representative simulation snapshot of GS of 54 atoms dispersed in octane 

when it is pristine (left) and functionalized with 6 short branched alkanes (right). 

 

To conduct our simulations we employed the package LAMMPS.193-194 All results were 

obtained using equilibrium molecular dynamics (MD) simulations within the NVT and 

NPT ensembles and non-equilibrium molecular dynamics (NEMD) simulations in the 

NVE ensemble. In the NVT ensemble the number of particles (N), the simulation box 

volume (V), and the temperature (T) are maintained constant. In the NPT ensemble the 
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system volume is allowed to fluctuate to maintain the pressure (P) constant. In the NVE 

ensemble, the simulation box volume (V), and the energy of the system (E) are 

maintained constant. Periodic boundary conditions were applied in all the three 

dimensions. The size of the simulation box was approximately 45 45 45 Å in all the 

systems considered. In all cases the time step was of 0.05 fs. 

Each GS was composed of either 54, 96 or 216 carbon atoms. The Tersoff force field195-

197 was employed to describe the interactions among these atoms. In the Tersoff force 

field, the potential energy is modeled as a sum of pair like interactions, where, however, 

the coefficient of the attractive term in the pair like potential depends on the local 

environment, yielding an effective many-body potential. Interactions between carbon 

atoms belonging to different GS were described using Lennard-Jones potentials. To 

describe octane we implemented the all atom approach and the parameters were taken 

from the OPLS-AA force field.204 In the OPLS-AA force field, the non-bonded 

potential between interaction sites, which are separated by more than three bonds or 

belong to different molecules, is described by the Lennard-Jones 12-6 potential. The 

interactions between GS and octane were described by the 12-6 Lennard-Jones (LJ) 

potential. The parameters were obtained by Lorentz-Berthelot rules137 from those of the 

pure compounds. In case of functionalized GS, the short branched alkane consisted of 

11 atoms and long branched alkane consisted of 21 atoms. 

In each simulation box the number of octane molecules ranged from 240 to 900 

depending on the size of the GS and that of GS was 1. In the initial configuration all 

these molecules were disposed in a lattice within the simulation box. To prevent 

excessive forces, the MD simulations, carried out in the NVT ensemble, where initially 
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conducted at very low temperatures (50K). The system was then heated from 50K to 

300K at the heating rate of 100K every 300ps of simulation. The system was then 

equilibrated in the NPT ensemble at 300K and 1 bar to stabilize the system volume. 

Once the simulation box volume fluctuated around a constant value, simulations were 

conducted in the NVE ensemble at 300 K. Then the configurations were collected every 

50 ps, and the temperature of the GS was instantaneously increased to 500K. Then the 

simulations were conducted in the NVE ensemble for 100 ps for each system. 

The heat capacity of the nanoparticle was calculated using the formula 

 

Where u is the total energy of the system, KB is the Boltzmann constant, and T is the 

temperature of the system.  

The nanoparticle was simulated in the NVT ensemble at 500K for 20 ns and the total 

energy was used to calculate the heat capacity.                  

In order to calculate the fourier transform of the velocity autocorrelation function, we 

simulated the system of GS and octane in the NVT ensemble. From the velocities of 

carbon atoms in the GS and octane, we calculated the velocity autocorrelation function 

which was then used to calculate the fourier transform. 
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3.3 Results and Discussion 

3.3.1 Comparison of Kapitza Resistance between Graphene Sheets and 

Carbon Nanotubes 

The first comparison necessary for the production of GS – based composites with high 

thermal transport properties consists in evaluating the Kapitza resistance for pristine GS 

vs. that for CNT. In Fig. 3.3 we compare the decay in temperature difference between 

one nanoparticle and the surrounding octane as a function of time when the nanoparticle 

is one (5,5) single walled CNT, or one pristine GS with 54 or 216 carbon atoms. We 

point out that the temperature decay obtained for the (5,5) CNT is equivalent to that 

reported by Shenogin et al.102 Visual observation reveals that the difference in 

temperature between the nanoparticle and the surrounding oil decays faster for the GS 

than for the CNT. Using Eq. (1), we found that the Kapitza resistance is the smallest for 

the GS with 54 carbon atoms, and the largest (by a factor of ~4) for the CNT. However, 

the results, reported in Table 3.1, show that the Kapitza resistance for GS increases as 

the size of the GS increases. This result, clearly not encouraging for practical 

applications, is due to the fact that as the GS size decreases, the GS becomes more and 

more similar to the oil molecules, and therefore the thermal vibration modes of the 

small GS become compatible with those of the solvent. 
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Table 3-1 Simulated Kapitza resistances Κ for the systems considered in this work. FG 

stands for functional groups. We also report the average decay constant τ (see Eq. (1)) 

and other simulation details such as the dimension of the cubic simulation box and the 

number of octane molecules considered for each system. 
 

Nanoparticle 

Simulation box 

size (Å3) 

Octane 

molecules 

τ 

(ps) 

K 

(×10-8 Km2W-1) 

CNT 560 40×40×60 346 60.7±7.6 4.2±0.6 

GS 54 40×40×40 240 30.3±7.8 1.3±0.3 

GS 54 

(6 short FG) 
40×40×40 240 10.0±4.0 0.42±0.16 

GS 54 

(6 long FG) 
40×40×40 240 8.8±3.6 0.37±0.15 

GS 96 55×55×55 600 29.3±7.5 3.17±0.72 

GS 96 

(12 short FG) 
55×55×55 600 14.1±3.9 1.54±0.38 

GS 96 

(12 long FG) 
55×55×55 600 14.0±3.3 1.5±0.3 

GS 216 65×65×65 900 30.6±8.2 4.0±1.0 

GS 216 

(18 short FG) 
65×65×65 900 15.6±4.1 2.0±0.5 

GS 216 

(18 long FG) 
65×65×65 900 15.5±3.4 2.0±0.4 
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Figure 3-3 Difference in temperature (ΔT) between one nanoparticle and the 

surrounding liquid octane as a function of time. Results are shown for three independent 

systems, in which the nanoparticle is either one (5,5) single walled CNT (green line), or 

one pristine GS with 54 (blue line) or 216 carbon atoms (red line). 

3.3.2 Temperature Profile 

In Fig. 3.4, we compare the decay in temperature difference between GS and liquid 

octane when the GS are either pristine or functionalized with branched alkanes. We 

only consider branched alkanes because our previous results indicate that these are the 

most effective in stabilizing GS dispersions in oils.203 Visual observation reveals that 

heat transfers more easily across the GS-oil interface when the functional groups are 

present than when they are not. The Kapitza resistance, see Table 3.1, indeed decreases 

by a factor of ~3 in the presence of the functional groups. Unexpectedly, the length of 

the functional groups does not seem to affect the Kapitza resistance. Similar results 

have been obtained for GS of different sizes, suggesting that the observed behavior is 

general for the nanocomposites considered herein. Qualitatively, our results suggest that 

the vibrational modes of the nanoparticle couple well with those of the solvent once the 
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GS are functionalized. When the GS is functionalized with branched alkanes, the heat 

transfers parallel to the plane identified by the GS, i.e., the GS temperature drop is due 

to the functionalities attached on the edges. As soon as the GS thermal energy reaches 

the functional groups, it dissipates into the surrounding oil. Since the branched 

functionalities are of the same chemical nature as the surrounding oil, the length of the 

functional groups does not affect the results. 

 
Figure 3-4 Difference in temperature (ΔT) between one nanoparticle and the 

surrounding liquid octane as a function of time. Results are shown for three independent 

systems, in which the nanoparticle is either one pristine GS of 96 atoms (pristine, red), 

one GS of 96 atoms functionalized with 12 short branched alkanes (12 short branches, 

blue), or one GS of 96 atoms functionalized with 12 long branched alkanes (12 long 

branches, purple). 

3.3.3 Fourier Transform  

To assess the likelihood of the latter interpretation, we computed the Fourier transform 

of the velocity autocorrelation function for carbon atoms in the octane solvent, for the 

carbon atoms in CNT, and those in pristine and functionalized GS. The results are 

shown in Fig 3.5. When we compare the data obtained for CNT and octane (top panel), 
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it is clear that the phonon spectra do not overlap, which is the reason for the poor 

thermal coupling between CNT and organic materials.102-103 When we compare the data 

for pristine GS and octane (middle panel), our results are qualitatively similar to those 

obtained for CNT-oil systems. Namely, the phonon spectra of the two materials do not 

couple. However, when we compare the results obtained for functionalized GS to those 

obtained for octane (bottom panel) our data reveal that the phonon spectra overlap quite 

nicely on a few frequencies. In the figure we highlight the corresponding overlap 

frequencies with arrows. These overlaps are responsible for the decreased Kapitza 

resistance predicted by our simulations in the case of functionalized GS dispersed in 

octane compared to all the other systems tested. For completeness, it should be pointed 

out that even in the case of CNT – oil dispersions it has been predicted that by 

functionalizing the CNT reduces the Kapitza resistance.147 However, when CNT are 

functionalized they tend to lose their exceptional intrinsic properties. On the contrary, 

by functionalizing the GS on their edges it is unlikely that the exceptional intrinsic 

thermal conductive properties reported are going to be significantly affected, at least for 

sufficiently large GS. The recent simulation results reported by Hu et al.63 could be used 

to design GS with functional groups grafted in the most convenient sites to improve 

macroscopic heat-transfer properties. 
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Figure 3-5 Fourier transform of the velocity autocorrelation function for carbon atoms 

in octane (red in all panels) and three representative nanoparticles. Nanoparticles 

considered are (5,5) single walled carbon nanotubes (blue, top panel), pristine GS of 

216 atoms (blue, middle panel), and GS of 216 atoms functionalized with 18 short 

branched alkanes (blue, bottom panel). The arrows in the bottom panel highlight those 

GS vibrational frequencies that overlap with those of octane, lowering the Kapitza 

resistance. 
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3.4  Comparison to Other Interfaces 

It is of interest to compare the values for the Kapitza resistance at GS-octane interface 

to those reported in the literature for other GS-matrix interfaces. Table 3.2 summarizes 

the Kapitza resistance (K) values obtained at various GS-matrix interfaces. It is of 

particular interest to compare our values of Kapitza resistance to those obtained by 

Shangchao et al.205, who calculated the thermal boundary conductance at the GS-octane 

and functionalized GS (alkyl pyrene linkers)-octane interfaces using the Muller-Plathe 

method.206 The inverse of the thermal boundary conductance i.e., the Kapitza resistance 

was calculated to compare to our calculated Kapitza resistance values at the GS-octane 

interface. Unlike the method we used to calculate the Kapitza resistance (equilibrating 

the system of GS and octane at 300K, then heating the GS to 500K and using the 

temperature decay of the GS to calculate the Kapitza resistance), Shangchao et al.205 

equilibrated the system of GS and octane at 300K, then heated the octane to 500K and 

used the temperature decay of the octane to calculate the thermal boundary 

conductance. The results indicate that the Kapitza resistance at the GS-octane interface 

obtained by Shangchao et al,205 1.09 × 10-8 Km2W-1 is slightly lower than our calculated 

value, 1.3 – 4.0 × 10-8 Km2W-1. Shangchao et al.207 also calculated the Kapitza 

resistance between GS functionalized with alkyl pyrene linkers and octane. This value 

(0.83 – 1.09 × 10-8 Km2W-1) compares well with that of our value of Kapitza resistance 

between GS functionalized with branched alkanes and octane (0.37 – 2.00 × 10-8 

Km2W-1). Also, our values of Kapitza resistance at the GS-octane interface are in good 

agreement with those calculated at GS-polyethylene,208 GS-phenolic resin,209 GS-

paraffin wax,210 and GS-epoxy211 interfaces. Wang et al. predicted the thermal boundary 
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conductance at the GS-polyethylene interface by functionalizing the surface of the GS 

with two linear hydrocarbon chains (CnH2n+1, n=15). They observed that as the number 

of hydrocarbon chains grafted to the GS was increased from 0 to 9, the thermal 

boundary conductance increased from 76.5 MW/m2K to 250 MW/m2K. They attribute 

this increase to the enhanced coupling between GS and polyethylene when the GS is 

functionalized with hydrocarbon chains, which is consistent with what we observed 

when the GS is functionalized with alkane chains. The calculated Kapitza resistance 

value (inverse of the thermal boundary conductance), 0.40 – 1.00 × 10-8 Km2W-1  

compares well with that we obtained at alkane chain functionalized GS-octane interface, 

0.37 – 2.00 × 10-8 Km2W-1.            

Table 3-2 Comparison of Kapitza resistance (Κ) between various interfaces. FGS 

stands for functionalized GS. 

Interface K (× 10-8 Km2W-1) Authors 

GS – octane  1.3 – 4.0 (heating GS) Our work 

GS – octane  1.09 (heating matrix) Shangchao et al.205  

FGS – octane (branched 

alkanes) 
0.37 – 2.00 (heating GS) Our work 

FGS – octane (alkyl 

pyrene linkers) 
0.83 – 1.09 (heating matrix) Shangchao et al.205  

GS – polyethylene  1.30 (heating matrix) Wang et al.212  

FGS – polyethylene 

(hydrocarbon chains) 

0.40 – 1.00  (heating 

matrix) 
Wang et al.212  

GS – phenolic resin 
5.0 (heating GS) 

1.25 (heating matrix) 
Hu et al.213  

GS – paraffin wax 1.40 – 1.63 Luo et al.214  

GS – epoxy   3.12 – 10.00 (heating GS) Mortazavi et al.215  
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3.5 Conclusions 

Concluding, our simulations predict that the heat transfer between small GS and octane 

is not affected by large Kapitza resistances. However, limited to the GS considered 

herein, the resistance increases as the GS size increases, and approaches the values 

reported for (5,5) CNT-octane systems when GS of 216 atoms are considered. More 

interestingly, we found that functionalizing the GS edges with branched alkanes not 

only stabilizes GS dispersions in oils,203 but also reduces the Kapitza resistance in 

general by a factor of 3, which renders these nanoparticles optimal candidates for the 

production of composite materials with enhanced thermal transport properties. Our 

results indicate that for these materials to be effective it is necessary that the vibrational 

modes of the functionalized GS couple with those of the organic matrix. This 

observation is useful for designing appropriate functional groups to improve the 

macroscopic heat transfer properties.216 Furthermore, because functionalized GS 

resemble discoid molecules, it is likely that nematic phases appear as the GS 

concentration increases in nanocomposites.217,218 Thus, by combining the exceptional 

heat transfer properties of individual GS, the reduced Kapitza resistance predicted by 

the present work, and the appearance of nematic phases, it will be possible to produce 

nanocomposite materials with anisotropic heat transfer properties. 
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4 Thermal Boundary Resistance at the Graphene-Graphene 

Interface Estimated by Molecular Dynamics Simulations 

The material presented below was published in 2012 in volume 527, issue 6, and page 47 of 

the Elsevier journal Chemical Physics Letters. 

4.1 Introduction 

The enormous amount of research attention toward GS has raised expectations for new 

microscale and nanoscale applications. In Chapter 2, we have shown a mechanism to 

obtain stable dispersions of GS in oils by functionalizing the GS edges with branched 

alkanes. For practical thermal management applications, it is of great importance to 

completely characterize the thermal properties of systems containing GS. Balandin et 

al.62 measured the intrinsic thermal conductivity of individual GS, ~ 

5.10.7×103W/mK, in agreement with the simulations reported by Hu et al.63 Other 

measurements for thermal conductivity of GS have been reported, for example by Cai et 

al.64 and Faugeras et al.65 who observed that the thermal conductivity of supported GS is 

smaller than suspended GS. To ensure effective heat transfer, future GS-based systems 

will require good thermal transfer between GS and polymeric matrix materials. Both 

experiments and simulations have investigated the Kapitza resistance between CNT 

contacts and found that the resistance at the CNT-CNT interface139-144 is larger 

compared to that of the CNT-matrix interface when the matrix is octane,102-103 epoxy,145 

an aqueous suspension,146 etc.147 For GS-based nanocomposites, Chen et al219 

demonstrated through experiments that the Kapitza resistance at GS-SiO2 interface is 

0.5 - 1.2 × 10-8 Km2W-1. From our earlier simulations of small GS in octane (Chapter 
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3),220 we suggested that by functionalizing the GS edges it might be possible to reduce 

the Kapitza resistance because of the coupling of the vibrational modes of the functional 

groups with those of the organic matrix. Because when dispersed in a matrix GS tend to 

agglomerate, and because GS agglomeration increases with GS volume fraction, it is 

important to estimate the Kapitza resistance at the GS-GS interface. If, as was observed 

for CNTs, the thermal boundary resistance at GS-GS junctions is larger than that at GS-

matrix interfaces, it might be beneficial to minimize GS-GS contacts in designing 

thermally conductive composites. Clarifying this possibility is the scope of this Chapter. 

4.2 Simulation Method 

To conduct our all-atom molecular dynamics (MD) simulations we employed the 

simulation package LAMMPS.193-194 The method implemented has been described in 

details in section 3.1 and it is based on non-equilibrium MD. We employed the protocol 

proposed by Shenogin et al.102 We place the GS at the center of a cubic simulation box, 

either filled with liquid n-octane or empty. For GS in octane, the system is initially 

equilibrated within NVT and NPT ensembles. The system of GS in vacuum is 

equilibrated in the NVT ensemble. All results are then obtained using non-equilibrium 

MD within the NVE ensemble and 0.05 fs timestep. Periodic boundary conditions are 

applied in all three directions. The parameters to describe force fields and interactions 

between different groups/atoms are reported in Table 1.1. Each GS considered here 

contains 432 carbon atoms and 865 octane molecules are simulated as solvent.  
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Figure 4-1 Representative simulation snapshots for the systems containing one GS in 

octane (left), three GS in octane (middle), three GS in vacuum (right). 

We performed simulations of three GS in octane and in vacuum to calculate the Kapitza 

resistance at the GS-GS interface. At equilibrium the inter-layer distance between the 

GS was found to be 3.6 Å, larger than that observed in graphite.  To compare the GS-

GS Kapitza resistance to that of the GS-octane interface, we conducted simulations of 

one GS in octane. In Fig. 4.1 we show representative simulation snapshots for the 

systems containing one GS in octane (left), three GS in octane (middle), and three GS in 

vacuum (right). The initial configuration for the system with three GS in vacuum was 

prepared with an inter-layer distance of 10 Å. The temperature was increased slowly 

from 50 K to 300K in steps of 50K every 200 ps to avoid the appearance of defects or 

the breakage of GS. We then conducted MD simulations for approximately 2 ns to 

equilibrate the system at 300K. When three GS are considered (middle and right panels 

in Fig. 4.1), after equilibration we suddenly increased the central GS (CGS) temperature 

to 500K by rescaling the atomic velocities. The central GS was maintained at 500K for 

0.5 ns while the rest of the system was not allowed to move. The system (CGS at 500K, 

surroundings at 300K) was then allowed to relax at constant energy without any heat 

sources, heat sinks, or thermostats (NVE ensemble). In the case of one GS in octane 

(left panel of Fig. 4.1), the GS is heated to 500K, kept at that temperature for 0.5 ns, and 
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then allowed to relax in the NVE ensemble. The results reported here are the averages 

of 50 independent simulations for each case. 

During the NVE simulations the CGS/GS temperature decreases and the temperature of 

the surrounding GS (SGS), as well as that of octane, increase. We monitor the 

difference in temperature between the CGS/GS and the SGS/octane over time. The 

difference in temperature typically follows an exponential decay. Following prior 

works, we extract the time constant τ by fitting the observed decay with an exponential 

function (     
t

etTtT


 0 ). In a lumped capacitance model, the time constant is 

related to the Kapitza resistance Rk via:  

.T
k

T

A
R

C


                (4.1) 

In Eq. (4.1), AT is the interfacial area across which heat transfers from the CGS/GS to 

the SGS/octane and CT is the GS heat capacity, calculated via independent simulations 

for one GS in vacuum (~ 1.65 × 10-20 J/K at 500K). 

Note that by applying Eq. (4.1) we reduce the simulated system to a two-body problem 

in which the heat transfer from the hot GS to the surrounding is assumed to be 

homogenous. The fact that the temperature difference between the hot GS and the 

surrounding follows an exponential decay qualitatively corroborates the validity of the 

model assumptions. However, Eq. (4.1) is expected to hold when the temperature of the 

surrounding system does not increase significantly during the NVE portion of the 

simulation. Although this might not be the case when three GS are simulated in 

vacuum, an estimate of the ratio between heat transfer resistances inside of and at the 



64 

surface of the system, i.e., the Biot number, provides a criterion for determining the 

applicability of lumped capacitance models. For those macroscopic systems in which 

the internal resistance to heat transfer is negligible, it has been determined that the error 

inherent in a lumped-parameter mathematical formulation is less than 5% when the Biot 

number is lower than 0.1.221 Maruyama et al.141 applied the Biot number criterion and 

calculated the Kapitza resistance at the CNT-CNT interface with the lumped 

capacitance model. Implementing the formulation proposed by Maruyama et al.,141 the 

Biot number can be estimated at the GS-GS and at the GS-octane interface for the 

systems of interest here. Employing experimental data for the thermal conductivities of 

octane222 and graphene63 at 300 K, a characteristic length of 1.7 Å (half the LJ thickness 

of one grapheme sheet), and the inverse of the Kapitza resistances obtained herein, the 

two Biot numbers are estimated to be ~ 1 × 10-6 and 0.024, in both cases confirming 

that the lumped capacitance model still remains applicable. 

4.3 Results and Discussion 

4.3.1 Temperature Profile 

In Fig 4.2, we compare the decay in temperature between one GS and the surrounding 

octane (blue line), between the CGS and the two SGS in octane (red line), between the 

CGS and the two SGS in vacuum (green line). Visual inspection reveals that the 

temperature difference decays faster for one GS in octane than for all other systems.  
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Figure 4-2 Logarithmic temperature difference between the heated graphene sheet and 

the surrounding system. The systems considered are one GS in octane (blue line), three 

GS in octane (red line) and three GS in vacuum (green line). 

4.3.2 Kapitza Resistance 

The values of τ and Rk for the different systems are summarized in Table 4.1. For the 

GS in octane the difference in temperature is between the GS and the surrounding 

alkanes. In the other two cases the difference is between the central GS (CGS) and the 

surrounding GS (SGS). 

The Kapitza resistance calculated for the GS-GS interface is larger than that for the GS-

octane interface, despite the fact that average GS-GS distances are lower than average 

GS-octane distances. This is because the separation distance between the CGS and SGS 

increases from 3.6 Å to 4.1 Å during the relaxation process, which indicates that there is 

an expansion of CGS due to heating. In the case of one GS in octane, the separation 

distance between GS and octane remained constant at 5.0 Å during the relaxation 
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process. So the observed expansion of CGS in the case of three GS in vacuum which is 

absent in the case of one GS in octane resulted in a higher value of Kapitza resistance 

observed at GS-GS interface compared to that at GS-octane interface. This result is 

consistent with that observed in the case of CNTs, i.e., the Kapitza resistance at the 

CNT-CNT interface is larger than that of CNT-octane interface. In the case of one GS 

in octane we found that functionalizing the GS could lead to lower Kapitza 

resistances,220 but practical methods to reduce GS-GS, or CNT-CNT resistances remain 

elusive. We also find that the calculated GS-GS Kapitza resistance is higher than that of 

bulk graphite along the cross plane direction. This is consistent with prior observations, 

according to which the Kapitza resistance decreases as the number of layers in a 

graphene stack increases, reaching a value close to that characteristic of bulk graphite 

when the number of layers is 38 or greater.223 It is possible that as the number of GS 

increases, the distance between them decreases, enabling more efficient thermal 

transport. 

Table 4-1 Simulated Kapitza resistances for the systems considered in this work. 

Nanoparticle τ (ps) Rk (× 10
-8

 Km
2
W

-1
) 

GS-octane 30.0±4.2 5.5±0.2 

CGS-SGS (octane) 35.3±7.3 6.5±0.6 

CGS-SGS 

(vacuum) 
41.8±7.6 7.7±0.9 
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Figure 4-3 Logarithmic temperature difference between the central GS (CGS) and the 

surrounding GS (SGS) when the CGS was heated to 500K when SGS is frozen during 

thermal equilibration (green line) and not frozen (red line). In both cases the three GS 

are in vacuum. 

As it is possible that freezing part of the system during equilibration might affect heat 

transfer between GS, additional simulations were conducted where three GS are 

simulated in vacuum. After equilibrating the GS at 300K, the CGS temperature was 

increased to 500K while the SGS was maintained at 300K during equilibration for 0.5 

ns. The decay time constant obtained as a result of 30 additional simulations (42 ps) was 

found to be similar to that obtained when CGS was maintained at 500K while SGS was 

frozen during equilibration for 0.5 ns (43 ps) (The CGS-SGS temperature difference for 

the two cases during the NVE simulation phase is shown in Fig 4.3). As a result, the 

estimated Kapitza resistances are comparable. This provides evidence that there was no 

significant effect of freezing part of the system during equilibration on the heat transfer 

between GS. 
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Figure 4-4 Temperature of CGS and SGS when three GS are in octane (blue and red 

lines) and when three GS are in vacuum (green and pink lines). CGS – central graphene 

sheet, SGS – surrounding graphene sheets. 

We observe that the GS-GS Kapitza resistance is slightly larger when the GS are in 

vacuum compared to when the GS are in octane. When the GS are in octane, the two 

SGS can transfer heat to the surrounding octane. This phenomenon is evident from the 

temperature profile in Fig 4.4, where we plot the temperature of CGS and SGS over 

time. The temperature decay of the heated GS, the central one (CGS) is faster when the 

three GS are in octane (blue line) than when they are in vacuum (green line). The SGS 

temperature remains almost constant at ~305K when the three GS are in octane (red 

line) while it increases to 350K when the three GS are in vacuum (pink line). In the case 

of three GS in octane, both CGS-SGS and SGS-octane Kapitza resistances are present. 

However, no significant temperature difference is observed between SGS and octane 

during the NVE phase (both remain at ~ 300-305K), corroborating the validity of the 

lumped capacitance model of Eq. (4.1). Since the SGS-octane interface has a lower 
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Kapitza resistance than the CGS-SGS interface, heat dissipates quickly from the SGS to 

the surrounding octane.  

 

 
 

Figure 4-5 Representative simulation snapshot of three GS considered where SGS 

(cyan and orange spheres) size was increased to a size sufficient to prevent direct 

contacts between CGS (purple spheres) and octane. Octane is not shown for clarity. 

As it is possible that heat transfers from the hot CGS to the surrounding octane via the 

graphene edges, rendering the heat-transfer problem more complex than assumed in Eq. 

(4.1), additional simulations were conducted in which the SGS size was increased in an 

amount sufficient to prevent direct contacts between CGS and octane. In these 

additional simulations the two SGS were rectangular of dimensions ~4.8 X 5.0 nm, 

while the CGS, also rectangular, had dimensions 2.8 X 3.0 nm. Representative 

simulation snapshot of the three GS is shown in Fig. 4.5. The increased size of the SGS 

prevented octane from being in direct contact with the heated CGS. The decay time 
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constant obtained as average of 25 additional simulations (37.0 ps) was found to be 

similar to that obtained when both SGS and CGS were of the same size (35.3 ps). As a 

consequence, the estimated Kapitza resistances are comparable (6.7 × 10-8 Km2W-1 

when the size of SGS was increased vs. 6.5 × 10-8 Km2W-1 shown in Table 4.1). This 

precludes the possibility that heat transfers in a significant amount from the CGS 

directly to the surrounding octane via the GS edges. It is possible that small differences 

in the estimated values for the Kapitza resistances (6.7 × 10-8 vs. 6.5 × 10-8 Km2W-1) are 

due to differences in packing between the GS when the size of the SGS is increased 

compared to that of CGS.  

 

Figure 4-6 Logarithmic temperature difference between the central GS (CGS) and the 

surrounding GS (SGS) when the CGS was heated to 500K (blue line) or 400K (red 

line). In both cases the three GS are in vacuum. 

To test the validity of the lumped capacitance model when three GS are in vacuum, 

additional simulations were conducted in which the CGS was heated from 300 to 400K, 
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instead of 500K. The CGS-SGS temperature difference for the two cases during the 

NVE simulation phase is shown in Fig. 4.6. Although the decay time constant is lower 

when CGS is heated to 400K (τ ~ 36.4 ps) than when it is heated to 500 K (τ ~ 41.8 ps), 

the calculated Kapitza resistances are similar (8.0 × 10-8 Km2W-1 when CGS is heated 

to 400K vs. 7.9 × 10-8 Km2W-1) because the GS heat capacity is  slightly lower at 400K 

(~ 1.37 × 10-20 J/K) than at 500K (~ 1.65 × 10-20 J/K). 

 

Figure 4-7 Logarithmic temperature difference between CGS and SGS in octane when 

the CGS is rotated by 0o with respect to SGS (red line) and CGS is rotated by 90o with 

respect to SGS (blue line). 

 

We conducted additional simulations of three GS in vacuum and in octane where the 

CGS is rotated 90° with respect to the SGS, maintaining constant the interfacial area 

across which heat transfer occurs, AT in Eq. (4.1). The CGS-SGS temperature 

difference for the two cases during the NVE simulation phase is shown in Fig 4.7. We 

observed that the Kapitza resistance is ~15% higher when the CGS is rotated 90° with 

respect to the SGS compared to when the GS are oriented parallel to each other. To 
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speculate on the increased Kapitza resistance, we calculated the separation distance 

between the GS in both the cases. During the initial steps of relaxation, we observed 

that the CGS-SGS distance increased by 0.7 Å when the CGS is rotated 90° with respect 

to the SGS and 0.5 Å when the GS are oriented parallel to each other. Although the heat 

transfer area is the same in both the cases, the CGS expands more due to heating when 

it is oriented 90° with respect to the SGS which lead to the increased Kapitza resistance 

in this case.  

In summary, our calculations suggest that the GS-GS contact has larger Kapitza 

resistance than GS-matrix contacts when the matrix is octane,220 which is in agreement 

with what has been observed for CNTs. 

4.3.3 Comparison to Carbon Nanotubes 

It is of interest to compare the values for the Kapitza resistance at GS-GS contacts to 

those reported in the literature for CNT-CNT. Zhong et al.,143 who calculated the 

Kapitza resistance at CNT-CNT contacts by fitting the transient temperature profiles 

obtained by molecular dynamics to a finite different solution of the one-dimensional 

heat equation, reported a value of 8-11 × 10-8 Km2W-1 for CNT-CNT Kapitza 

resistance. The nanotubes considered were (10,10), with diameter ~1.356 nm. 

Maruyama et al.141 used the simulation protocol implemented in the present work, 

applied to a bundle of 7 (5,5) CNTs equilibrated at 300K in vacuum. The nanotube 

diameter was of ~ 0.693 nm. The central CNT was suddenly heated to 400K for 10 ps, 

after which the system was allowed to relax in the NVE ensemble. The CNT-CNT 

Kapitza resistance was found to be 24.8 × 10-8 Km2W-1. Bui et al.,140 by fitting Monte 
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Carlo simulation results to experimental data, estimated the CNT-CNT Kapitza 

resistance to be ~12.15 × 10-8 Km2W-1.  Our estimations for the GS-GS Kapitza 

resistance are ~30% lower than the minimum ones reported in the literature for CNT-

CNT contacts, and ~70% lower than those estimated for CNT-CNT contacts employing 

methods similar to those employed herein. It is however expected that as the CNT 

diameter increases the Kapitza resistance observed at CNT-CNT contacts will become 

comparable to that observed at GS-GS interfaces. 

4.4 Conclusions 

In summary, using classical MD simulations we have studied the Kapitza resistance 

between GS in vacuum and in octane. We estimate that the GS-GS Kapitza resistance is 

~ 6.5×10-8 Km2W-1 when three GS are in octane and ~ 7.7×10-8 Km2W-1 when the GS 

are in vacuum. These values are slightly larger than those observed at the GS-octane 

interface, ~ 5.5×10-8 Km2W-1. Our results suggest significantly lower Kapitza 

resistances for the GS-GS interface than those reported at the CNT-CNT interface. 
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5 Simulation Insights on Thermally Conductive Graphene-

Based Nanocomposites 

The material presented below was published in 2011 in volume 109, issue 1, and page 97 of 

the Taylor & Francis journal Molecular Physics. 

5.1 Introduction 

Dispersing nanoparticles in a polymer can enhance both mechanical and transport 

properties. Nanocomposites with high thermal conductivity could be obtained by using 

thermally conductive nanoparticles. Carbon-based nanoparticles are extremely 

promising, although high resistances to heat transfer from the nanoparticles to the 

polymer matrix could cause significant limitations. 

We focus here on GS dispersed within n-octane. Although pristine GS agglomerate, our 

equilibrium MD simulations suggest that when the GS are functionalized with short 

branched hydrocarbons along the GS edges, they remain well dispersed. We report 

results from equilibrium and non-equilibrium molecular dynamics simulations to assess 

the effective interactions between dispersed GS, the self-assembly of GS, and the heat 

transfer through the GS-octane nanocomposite. Our tools are designed to understand the 

effect of GS size, solvent molecular weight and molecular architecture on the GS 

dispersability and GS-octane thermal conductivity. We provide evidence for the 

formation of nematic phases when the GS volume fraction increases within octane. The 

atomic-level results are input for a coarse-grained Monte Carlo simulation that predicts 

anisotropic thermal conductivity for GS-based composites when the GS show nematic 
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phases. The remainder of the Chapter is organized as follows: in Section 5.2 we discuss 

our simulation methods, which range from all-atom equilibrium simulations to coarse-

grained Monte Carlo methods; in Section 5.3 we discuss some recently obtained results 

and compare them to other GS-based nanocomposites; in Section 5.4 we summarize our 

main conclusions and highlight some questions that require further research. 

5.2 Simulation Methodology 

To conduct our all-atom molecular dynamics (MD) simulations for the stability of GS 

we employed the simulation package LAMMPS.193-194 All results were obtained using 

equilibrium MD within the NVT and NPT ensembles and 1 fs timestep. Periodic 

boundary conditions were applied in all three directions. Parameters and other details 

necessary to implement all force fields implemented are given in Table 1.1. In our 

previous work we considered n-octane, n-hexane and n-dodecane.203 Here we only 

consider n-octane, which is described as a flexible linear chain of CH2 pseudo atoms 

terminating at both ends with CH3 groups. In each simulation box 5 or more GS of 216 

carbon atoms (~ 2.5 nm in diameter) were diluted in up to 2500 molecules of n-octane. 

Details about the simulation protocol are described in section 2.1. Suffice it to say that 

after a NPT equilibration phase conducted at ambient conditions, the simulations were 

conducted in the NVT ensemble at 300 K for up to 250 ns. The system density during 

the production phase was comparable to the experimental densities of liquid n-octane at 

300K. The size of the simulation box was ~ 100×100×100 Å. 

To assess, via non-equilibrium all-atom molecular dynamics simulations, macroscopic 

thermal conductivities we implemented the method proposed by Muller-Plathe.206 
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Further details about this algorithm are discussed in Section 5.4. These calculations are 

performed using the force fields of Table 1.1. 

Details of the Monte Carlo algorithm implemented to estimate macroscopic thermal 

conductivity for GS-based composites have been described in previous works.224-226 The 

heat transport is considered to depend on the behavior of discrete heat walkers that 

travel through the composite by Brownian motion.227 At each time step, the walkers 

move in each one of the three Cartesian directions via random jumps of length 

randomly sampled from a normal distribution with zero mean and standard deviation , 

given as 

tDm 2  .     (5.1) 

In Eq. (5.1), Dm is the thermal diffusivity of the matrix material and t is the time 

increment characteristic of the Monte Carlo simulation. Once a thermal walker arrives 

at a matrix-GS interface, it can either enter the GS or remain within the matrix. The 

probability fm−i determines whether the heat walker can move into the GS; (1− fm−i) is 

the probability for the random walker to remain within the matrix. Once a walker moves 

inside a GS, because the thermal conductivity of the GS is about four orders of 

magnitude larger than that of typical polymeric matrixes, it is assumed that the walker 

distributes randomly and uniformly inside the GS. In every subsequent time step, the 

heat walker can exit the GS or remain inside it, depending on the probability fi-m. If the 

walker remains inside a GS, it is randomly assigned a different position inside the GS. 

Based on thermal equilibrium, and assuming that the Kapitza resistance is the same 
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when entering and when exiting the inclusion, the probabilities fm−i and fi-m are related 

as follows:   

imifmii fACfV   
 

 .   (5.2) 

In Eq. (5.2), Ai and Vi are the surface area and the volume of the GS, respectively, and 

Cf is a thermal equilibrium factor, which depends on the nanoinclusions geometry and 

needs to be determined empirically.216  

In the present work, instead of placing the walkers at the interface before moving out of 

the GS as done in our prior work for simulating CNT composites,225-226 the exiting 

walkers are placed randomly inside the GS. This scheme results in a uniform and 

continuous distribution of walkers inside and outside the GS, even across the interface, 

at conditions of thermal equilibrium. 

The numerical methodology for calculating the thermal equilibrium factor Cf in Eq. 

(5.2) has been described by Duong et al.225-226 for systems containing CNT. For GS, Cf 

is obtained as follows: First, one parallelepiped (because Cf only depends on the 

nanoinclusion geometry, this parallelepiped represents one GS even though the 

dimensions may not correspond to actual GS used as fillers in subsequent simulations) 

with dimensions of 5.67nm x 20.35nm x 1.27 nm is placed randomly inside a cubic 

computational cell of size 64nm (64 x 64 x 64 grid points). Second, heat walkers are 

released at every grid unit and are allowed to perform a random walk. The fraction of 

heat walkers inside the GS is calculated after increments of 500 time steps and the 

simulation is stopped once this value does not change any longer (equilibrium state). 

The correct value of the equilibrium factor (Cf = 0.33) is considered to have been 
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reached when the volume fraction of the parallelepiped in the simulation box is equal to 

the fraction of heat walkers inside the parallelepiped. Lastly, the Cf just obtained is 

checked for consistency by inserting 55 GS (each of size 5.67nm x 20.35nm x 1.27 nm) 

inside a cubic computational domain of size 100nm (96 x 96 x 96 grid points) and 

examining the fraction of heat walkers inside each GS as compared to the GS volume 

fraction. 

 

Figure 5-1 Schematic representation of a GS-based material in which the GS are 

considered as rectangular inclusions parallel to the X direction. 88 GS are considered in 

the simulation box of size 100X100X100 nm. The GS has length ~30 times the width 

and ~190 times the thickness, 0.34 nm. 

 

In order to estimate the effective thermal conductivity of a GS nanocomposite, a cubic 

computational domain of size 100 nm and with 300x300x300 grid points was used. The 

GS are considered as rectangular sheets with thickness equal to the distance between 
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two graphite layers, 0.34nm.228 The GS are placed randomly inside the domain, but 

controlling their relative orientation and preventing overlaps or contacts with each other 

(see Fig 5.1). A large number of hot thermal walkers (90,000) are released from one 

side of the computational domain, at x = 0, representing a heated surface. An equal 

number of cold walkers were released from the opposite side of the computational 

domain, a cooled surface. The time step is set at 10-4 sec. The simulation is conducted 

under the periodic-image convention along the y and z directions. This scenario 

corresponds to the case of imposing a constant heat flux throughout the domain. The 

local temperature is obtained by counting the number of heat walkers in each grid unit. 

At steady states the temperature profile along the x direction yields a straight line with 

slope inversely proportional to the macroscopic, effective thermal conductivity. 

Because the GS distribution within the composite is not uniform, the thermal 

conductivity was estimated from the slope of the temperature profile at the center of the 

simulation box. The reliability of the method just described has been demonstrated 

earlier via comparison to available experimental data.225 Results are shown herein as the 

ratio between the effective thermal conductivity of the nanocomposite and that of the 

organic matrix without the GS (Keff/Km). The intrinsic thermal conductivity of the GS is 

assumed to be 4 orders of magnitude larger than that of the organic matrix, in 

qualitative agreement with experimental data for GS and polymeric materials. Six 

different simulations with different random placements of the GS in the computational 

domain are conducted for each simulated case. The error in our calculations was 

estimated using the variance of the results calculated using Student’s t-test with 95% 

level of confidence. 
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The Kapitza resistance is an input parameter to our Monte Carlo simulations. Our MD 

simulation results for the Kapitza resistance220 were used to estimate values of the 

probability fm−i shown in Eq. (3). According to the simplified acoustic mismatch 

theory,106 fm−i is calculated from the Kapitza resistance as follows: 

bdmmm

im
RC

f


4
      (5.3) 

In Eq. (5.3) subscript m designates the organic matrix and subscript i designates the GS 

inclusion,  ρ is the density of the matrix material; C is the specific heat; ν is the velocity 

of sound in the matrix, and Rbd is the Kapitza resistance. When simulation data for Rbd 

are not available from direct simulations, alternative approaches are possible for 

estimating fm-i, as will be discussed in our upcoming manuscript.229 

5.3 Results and Discussion 

Based on common knowledge in the field of colloidal sciences,134-135, 184, 200 our goal is 

to provide stabilization in GS-based organic dispersions by functionalizing the edges of 

the GS. Such functionalization is experimentally possible by taking advantage of a 

number of oxygenated sites that are typically present in partially oxidized GS, or by 

following synthetic chemistry procedures, as demonstrated for example by Yang et al.24 

In Chapter 2 we demonstrated, using equilibrium molecular dynamics simulations, that 

functionalizing the edges of small GS with an appropriate number of branched organic 

groups it is possible to secure the stability of dispersions formed by GS and various 

organic solvents, including n-octane. Geometric considerations can help us determine 

the minimum number of functional groups, equally spaced along the GS edges, 
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necessary to stabilize GS of various sizes. We found that for short functional groups to 

be effective it is necessary that they are branched because only in this way it is possible 

for each functional group to protrude towards both directions perpendicular to the GS 

plane.203 According to this mechanism, stabilization is achieved via steric effects. Such 

ideas are discussed at length in our previous manuscript.203  

It is important to report that experimental results recently reported by the group of 

Liang-shi Li117-118 corroborate our predictions. Li and coworkers functionalized small 

GS of 130-170 carbon atoms (comparable in size to those simulated203), produced via 

chemical synthesis, using multiple 2’,4’,6’-triakyl phenyl groups covalently attached to 

the GS edges. The graphene quantum dots obtained resulted soluble in common organic 

solvents such as chloroform and toluene. It should be pointed out that the 2’,4’,6’-

triakyl phenyl groups contain three branches, and therefore are likely to provide the 

steric stabilization discussed above. As the GS size increases, the steric stabilization 

provided by functional groups on the GS edges will eventually not be sufficient to 

prevent agglomeration. As shown by Fang et al.,122 under such circumstances it is 

possible to take advantage of the presence of oxygenated sites on partially oxidized GS 

to graft short polymer chains (e.g., polystyrene). This strategy yields GS of considerable 

size (in the range 0.5 to 1.5 μm) with stable dispersions in various organic solvents, e.g. 

toluene, and have been used to prepare polystyrene-GS composites. 

5.3.1 Stable Dispersions of GS in Oils 

Pushing the limits of modern computational resources, our recent results suggest that 

appropriately functionalizing the edges of GS with branched groups it is possible to 
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stabilize dispersions containing GS of 216 carbon atoms (with diameter of ~ 2.5 nm). In 

Fig 5.2 we report representative simulation snapshots (top), center-to-center radial 

distribution functions (middle), and effective potentials of mean force (bottom) for 

systems composed by 216-carbon-atoms functionalized GS in n-octane as obtained after 

250 ns of MD simulations. To provide steric stabilization, each GS was functionalized 

by 18 alkanes, each with two branches of 11 united-atom groups. The results are shown 

at increasing GS volume fraction (from left to right, results are obtained at 6, 23 and 45 

% GS volume fraction), and demonstrate that, within the length of our simulations, the 

functionalized GS remain stable in the various dispersions (note that the RDF equals 

zero at close GS-GS separations) despite the rather large concentrations used. 
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Figure 5-2 Representative simulation snapshots (top), center-to-center radial 

distribution functions (middle), and effective potentials of mean force (bottom) for 

systems composed by GS of 216 carbon atoms functionalized with 18 branched 

functional groups in n-octane. All simulations were conducted at 300K. In the top panel, 

the functional groups of GS and surrounding octane were not shown for clarity. From 

left to right, results are for systems at increasing GS volume fraction. 

 

The results obtained at low GS volume fraction appear to depict isotropic systems, 

while those obtained at large volume fractions (i.e., 23% or larger) suggest the 

formation of domains within which the GS are parallel to each other. Because 

functionalized GS could be described as ‘soft discs’, it is likely that they could behave 

as liquid crystals and show a number of phase transitions such as those described for 
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systems of cut spheres by Duncan et al.230 Unfortunately, equilibrium molecular 

dynamics simulations at the all-atom level are not adequate for exploring the complete 

phase diagram of such a complex system because of its tendency to be trapped in local 

minima of the free-energy landscape. 

 

Figure 5-3 Snapshot of the column of GS formed in the system with 45.0 vol% of GS 

in which n-octane molecules can be seen sandwiched in between neighboring GS. The 

carbon atoms in GS are shown in dark gray, functional groups in light gray and octane 

in between the GS in black. Surrounding octane is not shown for clarity. 

Nematic order-parameter calculations231 yield values of ~ 0.45 and ~ 0.3 when the GS 

volume fraction is 6 and 23%, respectively. These results suggest that the system is 

isotropic at low GS volume fraction, as indicated by visual inspection. At larger GS 

volume fractions we do not attempt to quantify the order parameter because it is likely 

that the system shown in the right panel of Fig. 5.2 is kinetically locked and therefore 

may not be representative of equilibrium conditions. However, we highlight the 

formation of one column of GS that spans the entire length of the cubic simulation box 

shown in the right panel of Fig. 5.2 (see rectangle on top right panel). We reproduce this 

column in Fig. 5.3, where n- octane molecules can be seen sandwiched in between 

neighboring GS. As the size of the GS increases we expect that structures such as the 
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one represented in Fig. 5.3 become more frequent within a GS-based nanocomposite. 

The spacing between neighboring GS will certainly depend on the organic medium (in 

the present case n-octane), and also on the GS functionalization. Specifically, when the 

GS planes are functionalized with short polymer chains, as done experimentally by 

Fang et al.,122 it will be possible to increase the distance between neighboring GS, and 

obtain nematic phases at lower GS loadings. It might also be possible to promote the 

formation of nematic phases in which the GS are parallel to each other by shearing a 

composite material containing functionalized GS. Such materials could present 

anisotropic properties. 

5.3.2 Microscopic Thermal Conductivity 

Towards the production of composite materials with anisotropic thermal conductivity it 

is of interest to assess whether the thermal conductivity is anisotropic in a structure such 

as that of Fig. 5.3. As mentioned in Section 5.2, to manufacture thermally conductive 

GS-based nanocomposites it is necessary to reduce the Kapitza resistance.105 In Chapter 

3, we demonstrated using non-equilibrium MD simulations, that the Kapitza resistance 

is important also in GS-based nanocomposites.220 Our results, not reported here for 

brevity, show that the Kapitza resistance at the GS-octane interface for small GS is 

comparable to, but smaller than that observed for CNT. Unfortunately, our results also 

suggest that the Kapitza resistance increases as the GS size increases. More important, 

however, is that we found that it is possible to reduce the Kapitza resistance 

significantly by functionalizing the GS.220 Because, based on our predictions203 and on 

experimental evidence,82, 122, 180-181 the GS functionalization is necessary to stabilize 

organic dispersion of GS, and because the functionalization of the GS edges is likely 
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not to significantly deteriorate the intrinsic thermal transport properties of individual 

GS, our previous results suggest that GS-based nanocomposites could show enhanced 

thermal conductivity. Recent experimental data seem to support this expectation.  

 

Figure 5-4 Representative snapshot of the system simulated to calculate the 

macroscopic thermal conductivity in a GS-octane nanocomposite. The region in the first 

bin from the left is maintained cold and the region in the fourth bin from the left is 

maintained hot. 

To assess the likelihood of anisotropic thermal conductivity properties in a 

nanocomposite with atomic texture such as that represented in Fig. 5.3, we implemented 

the algorithm proposed by Muller-Plathe.206 We studied the thermal conductivity in the 

directions parallel and perpendicular to the GS. The simulated system is shown in Fig. 

5.4. The columnar structure is surrounded by n-octane. We first equilibrate the system, 

while imposing geometric constrains on the GS centers of mass, at T=350K and P=1 

atm. The simulation box is divided into 6 bins in the direction of heat flow. Then kinetic 

energy is exchanged at fixed intervals between the five hottest n-octane molecules 

found on the first bin from the left (the cold region of the simulation) and the five 

coldest molecules found on the fourth bin from the left (the hot region of the simulation 

box). As a consequence of the imposed energy flux a temperature profile establishes 

throughout the simulation box, with the temperature in the first bin from the left lower 

than that on the fourth bin from the left. The simulation continues until a stable 

temperature profile is obtained. From the slope of the temperature profile at the center 
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of the simulation box (correspondent to GS-rich nanocomposite) it is possible to extract 

the thermal conductivity: 

2 2( )
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In Eq. (5.5), Keff is the thermal conductivity of the composite, t is the simulation time, 

L
x 
and L

y 
are the box dimensions in x and y direction, and m is the mass of the molecule 

whose velocities in the hot (vh) and cold (vc) regions are interchanged. 

In Fig. 5.6 we report a schematic of the simulation box (top) and the temperature profile 

obtained at steady-states (bottom) when the heat flows in the direction perpendicular to 

the GS. In Fig. 5.8 we report a schematic of the simulation box (top) and the 

temperature profile obtained at steady-states (bottom) when the heat flows in the 

direction parallel to the GS. Additional simulations were conducted to assess the 

thermal conductivity in liquid n-octane. In Fig. 5.5 we report a schematic of the 

simulation box (top) and the temperature profile obtained at steady-states (bottom) 

when the algorithm proposed by Muller-Plathe is implemented to calculate the thermal 

conductivity of liquid n-octane. From the slope of the temperature profile shown by the 

two lines in the figure (bottom) we obtained a thermal conductivity of ~ 0.11±0.02 

W/mK, in reasonable agreement with experimental data (0.128 W/mK222).  
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Figure 5-5 Schematic of the simulation box (top) and temperature profile obtained at 

steady-states (bottom) when the heat flows through octane. The lines in the bottom 

panel are schematics for calculating the thermal conductivity using Eq. (5.5). 

 

From the results in Fig. 5.6 we extract a macroscopic thermal conductivity of 0.24±0.02 

W/mK in the direction perpendicular to the GS, approximately twice the value obtained 

for n-octane. This result is surprising for two reasons. Firstly, because it was expected 

that GS-based nanocomposites show large thermal conductivity in the direction parallel 

to their plane, and not on the one perpendicular to it. Secondly, because heat should 

flow in and out of many GS when the nanocomposite is organized as shown in Fig. 5.6, 

and therefore several barriers to heat flow should become evident from the simulation 
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results. Instead the temperature profile appears rather linear, with no clear indication of 

barriers to the heat flow at the various GS-octane interfaces. It is likely that instead of 

flowing through the carbon atoms present within each GS plane, the thermal energy 

transfers along the functional groups grafted at the GS edges. Because such groups are 

branched, they extend along both directions perpendicular to each GS, and therefore the 

functional groups of one GS are intertwined with those of the neighboring ones, 

facilitating heat transfer. Indeed, when the temperature profile of the GS carbon atoms 

is analyzed, a sequence of steps is observed along the direction of heat flow, while a 

continuous profile is obtained for the temperature of the functional groups. Also, the 

temperature of the functional groups is always larger than that of the GS carbon atoms. 

These results are reported in Fig. 5.7. 
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Figure 5-6 Schematic of the simulation box (top) and the temperature profile obtained 

at steady-states (bottom) when the heat flows in the direction perpendicular to the GS. 

The lines in the bottom panel are schematics for calculating the thermal conductivity 

using Eq. (5.5). 

 

In Figure 5.7 we report the temperature profile of the GS carbon atoms (gray line) and 

the functional groups of GS (black line) when the heat flows in the direction 

perpendicular to the GS (see Fig. 5.6). From the results it is evident that the temperature 

of the functional groups is always larger than that of the GS carbon atoms. The former 

temperature profile shows a smooth linear profile, while a sequence of steps is observed 

for the temperature profile of GS carbon atoms. These results suggest that the heat 

flows through the functional groups grafted to the GS instead of flowing through the GS 

z 
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carbon atoms. Because the branched functional groups extend along both directions 

perpendicular to each GS, and because the distance between two adjacent GS is smaller 

than the length of the grafted functional groups, the functional groups of one GS are 

intertwined with those of the neighboring ones, facilitating heat transfer.  
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Figure 5-7 Temperature profile of the carbon atoms in GS (gray line), and the 

functional groups of GS (black line) in the direction of flow (perpendicular to GS). See 

Figure 5.6 for details. 

The results presented in Fig. 5.8 show evidence of two Kapitza resistances: one 

encountered by the thermal energy as it enters the GS from the hot region, and one 

encountered as the thermal energy leaves the GS to warm the cold octane. At the center 

of the simulation box, roughly correspondent to the position in which heat flows 

predominantly through the GS planes, we observe a thermal conductivity of 0.345±0.02 

W/mK, approximately three times that observed for liquid n-octane. Although this 

thermal conductivity is not near that observed both experimentally and via 

simulations62-63 for large GS, this value corresponds to a significant enhancement 

compared to the thermal conductivity of liquid n-octane (0.11±0.02 W/mK). It is likely 
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that for small GS such as those considered in our simulations the thermal conductivity is 

not as high as it is for macroscopic GS, and it is also possible that in small GS the edge 

functionalization necessary to prevent agglomeration actually deteriorates the intrinsic 

thermal transport properties of individual GS. Detailed analysis (see Fig. 5.9) of the 

temperature profile for GS and for n-octane, sandwiched in between neighboring GS as 

shown in Fig. 5.3, shows that heat transfers more effectively through the GS inclusions 

than through the organic matrix. 
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Figure 5-8 Schematic of the simulation box (top) and the temperature profile obtained 

at steady-states (bottom) when the heat flows in the direction parallel to the GS. The 
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lines in the bottom panel are schematics for calculating the thermal conductivity using 

Eq. (5.5). 

In Fig. 5.9, we report the temperature profile for functionalized GS (gray line) and n-

octane (black line) when the heat flows in the direction parallel to the GS (see Fig. 5.8). 

As the slope of the temperature profile is inversely proportional to the thermal 

conductivity of the nanocomposite (see Eq. 5.5), our results show that heat transfers 

more effectively through the GS inclusions than through n-octane molecules 

sandwiched between neighboring GS. 
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Figure 5-9 Temperature profile of GS (gray line) and octane (black line) in the 

direction of heat flow (parallel to the GS, see Fig. 5.8 for details). 

Combining the results shown in Fig. 5.6 and those shown in Fig. 5.8 we conclude that 

our simulations, although conducted for one system composed by rather small and 

densely packed GS, show evidence of anisotropic thermal conductivity, with thermal 

conductivity in the direction parallel to the GS approximately 50% larger than that 

observed in the direction perpendicular to the GS. For the reasons discussed above, this 

anisotropic property is expected to become more accentuated as the GS size increases 
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(because the number of GS-organic matrix barriers in the direction parallel to the GS 

should decrease and because the GS functionalization should have less of an impact on 

the intrinsic thermal transport properties of individual GS). More coarse grained 

methods are necessary for exploring such systems from a theoretical perspective. 

 

Figure 5-10 Reduced thermal conductivity along the direction parallel to the GS (left 

panel) and that perpendicular to the GS plane (right panel) for a GS-based 

nanocomposite schematically represented in Fig. 5.1. The results are shown as a 

function of the GS volume fraction. While the thermal conductivity in the direction 

perpendicular to the GS does not change significantly as the GS loading increases, GS 

yield large increases in the thermal conductivity along the direction parallel to the GS 

even at modest loading (GS size: 64nm x 2.52nm x 0.34nm). 

5.3.3 Macroscopic Thermal Conductivity 

Along those lines, following the methods developed earlier to study the thermal 

conductivity of nanocomposites containing CNT (described in Section 5.3),216, 225 we 

assessed the effective thermal conductivity (the ratio between the calculated thermal 

conductivity of the GS composite to that of the polymer matrix) of a GS composite as a 

function of the GS volume fraction up to 5% GS loading. It should be pointed out that 

within our coarse-grained model, the chemical nature of both GS and organic matrix is 

only rendered via their respective thermal conductivities, the Kapitza resistance 
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encountered by heat as it flows from the GS to the organic matrix, and by the size and 

shape of the GS inclusion. As a consequence, systems much larger than those simulated 

at the all-atom level can be considered. To assess the possibility of observing 

anisotropic thermal conductivity, the GS are distributed randomly within the organic 

matrix, but are parallel to each other, as shown schematically in Fig. 5.1. The thermal 

conductivity is evaluated in the directions parallel and perpendicular to the GS. The 

results are shown in Fig. 5.10 for GS of size 64 nm in length and 2.52 nm in width, thus 

much larger than those considered in our all-atom simulations. Several simulations were 

considered at varying aspect ratio (L/D) for the GS. The effective thermal conductivity 

was found to be almost constant when L/D was changed in the range between 80 and 

120. For computational economy reasons, we chose L/D=80. Such a high aspect ratio is 

expected to enhance anisotropic thermal conductivity. Note also that such large GS 

cannot be simulated using the all-atom approach discussed above. The GS thermal 

conductivity is assumed to be several orders of magnitude larger than that of the organic 

matrix, in accordance with experimental observations, allowing the simulation of the 

large GS in the model as having infinite thermal conductivity relative to the matrix. The 

results indicate that the thermal conductivity in the direction parallel to the GS plane, 

along the longest dimension of the GS, increases as the GS loading increases (left panel 

in Fig. 5.10), while the thermal conductivity perpendicular to the GS remains 

comparable to that of the organic matrix at all GS loadings (right panel in Fig. 5.10). 

The latter observation is due to the high GS-matrix Kapitza resistance and to the small 

thickness of the GS. Quantitative comparison between the results in Fig. 5.10 to those in 

Figs. 5.6 and 5.8 is not possible because of different GS dimensions considered, 
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because of different GS loadings simulated, and also because the mechanism for 

thermal conductivity observed in Fig. 5.6 is dictated by heat flowing through the GS 

functional groups, which is not considered in the coarse-grained system where the GS 

are separated from each other. The main difference between the two sets of calculation, 

however, is to be found on the size of the GS. Because the length of the GS is 64nm 

(those in Figs. 5.6 and 5.8 are of about 2 nm in size), enhancements on the macroscopic 

thermal conductivity up to 400% are predicted in the direction parallel to the GS. The 

results of Fig. 5.10 are dependent on the input parameters. Specifically, the GS thermal 

conductivity is assumed to be four orders of magnitude larger than that of the organic 

matrix (this is consistent with experimental data for macroscopic GS, but may not hold 

for small GS such as those considered in Fig. 5.10), and the Kapitza resistance is taken 

from MD simulations of small functionalized GS (0.42x10-8 m2K/W)220 and assumed to 

remain constant anywhere on the GS-octane interface. Because our MD simulations 

showed that the Kapitza resistance depends on the GS size, the Kapitza resistance used 

in the calculations of Fig. 5.10 may be lower than it should, but our MD simulations 

also show that appropriate functionalization reduces the Kapitza resistance. Despite the 

large difference in the effective thermal conductivities predicted at the all-atom and at 

the coarse-grained levels, it is encouraging to observe that both calculations consistently 

predict the possibility of attaining anisotropic thermal conductivity for GS-based 

nanocomposites. 
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5.3.4 Comparison of Effective Thermal Conductivity between various GS-

based Nanocomposites 

In Table 5-1 we compare the effective thermal conductivities of various GS-based 

nanocomposites in the literature with those in our study. The symbols ⊥ and ∥ indicate 

whether the direction of the measurement is perpendicular or parallel to the surface of 

the GS, respectively. The experimental techniques used in the literature studies to 

measure the thermal conductivity are transient plane source method, laser flash method, 

hot-wire method, and steady-state method. Non-equilibrium MD, Monte Carlo and 

finite element method were used to estimate the thermal conductivity in simulation 

studies. The types of fillers used are graphene, functionalized graphene, single layer 

graphene (SLG), exfoliated graphene, graphene oxide (GO), functionalized graphene 

oxide (FGO), graphene nanoplatelets (GNP), multilayer graphene (MLG), etc. The 

various types of matrix used are epoxy, polystyrene, silicone polymer, polyurethane, 

octadecanol, deionized water, poly (vinylidene fluoride), polypropylene, 

aluminum/Teflon, high density polyethylene, polyimide, paraffin, polyaniline, 

bromobutyl rubber, stearic acid, polyamide-6, 6, and phenolic resin. From the table, we 

can observe that the addition of GS as fillers enhances the thermal conductivity of the 

resulting nanocomposites. The effective thermal conductivity of the various GS-based 

nanocomposites ranges between 1.10 – 400.0 depending on the type of the filler, the 

type of matrix, synthesis method of filler, the composition and alignment of the filler in 

the matrix. Our results for the direction dependent thermal conductivity of the GS-

octane nanocomposites are consistent with the results of Alghemandi et al.232 and 

Eslami et al.,233 who observed that the thermal conductivity of GS-polyamide-6,6 
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nanocomposite in the direction parallel to the plane of the GS is higher than the thermal 

conductivity in the direction perpendicular to the plane of the GS.   

Table 5-1. Summary of Effective Thermal Conductivity (Keff/Km) of GS-based 

Nanocomposites. The symbols ⊥ and ∥ indicate whether the direction of the 

measurement is perpendicular or parallel to the surface of the GS, respectively. 

Filler – 

Matrix  

Filler 

Synthesis 

Method 

Matrix 

Measure

ment 

Method 

Loadi

ng of 

Filler 

(Keff/

Km) 
Authors 

Graphene 

oxide (GO) 

Hummers 

Method 
Epoxy 

Laser 

Flash  

3.0 

wt% 
2.00 

Kim et 

al.234  

Graphene – 

multilayer 

graphene 

Liquid-

phase-

exfoliation 

Epoxy 
Laser 

Flash 

10.0 

vol% 
23.00 

Shahil et 

al.210, 235 

1-

pyrenebutyr

ic acid 

functionaliz

ed graphene 

flakes 

Exfoliation 

from 

graphite 

and non-

covalent 

functionaliz

ation 

Epoxy 
Laser 

Flash  

10 

wt% 
7.65 

Song et 

al.207  

Silica 

coated 

functionaliz

ed graphene 

Graphene 

oxide 

reduction 

and 

funtionaliza

tion  

Epoxy 

Modified 

Transient 

Plane 

Source 

8.0 

wt% 
1.72 

Pu et 

al.236  

Graphene – 

metal  

Density 

gradient 

ultra-

centrifugati

on 

Epoxy 

Transient 

Plane 

Source 

5.0 

vol% 
5.00 

Goyal et 

al.208  

MLG -- Epoxy ASTM 
11.8 

wt% 

166.7

0 ∥ 
Li et 

al.237  

CNTs + 

GNPs 

Thermal 

exfoliation 

and 

graphite 

oxide 

reduction 

Epoxy 
Laser 

Flash  

20.0 

vol% 

CNTs 

20.0 

vol% 

GNPs 

38.00 
Huang et 

al.211  
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Filler – 

Matrix  

Filler 

Synthesis 

Method 

Matrix 

Measure

ment 

Method 

Loadi

ng of 

Filler 

(Keff/

Km) 
Authors 

GS -- Epoxy 

Finite 

Element 

Method 

10.00 

vol% 
24.00 

Mortazav

i et al.215  

Single-layer 

graphene 

nanosheets 

Exfoliated 

graphite 

oxide 

reduction 

aided by a 

surfactant 

Polystyrene 
Laser 

Flash  

2.0 

wt% 
2.60 

Fang et 

al.122 

Functionaliz

ed graphene 

oxide 

(FGO) 

Reaction of 

GO with 

vinyl 

trimethoxy 

silane 

Silicone 

polymer 

Transient 

Plane 

Source  

0.5 

wt% 
1.78 

Ma et 

al.238  

Ionic liquid 

modified 

graphene  

Reduction 

of GO and 

non-

covalent 

functionaliz

ation 

Polyurethan

e 

Transient 

Plane 

Source  

0.6 

wt% 
1.34 

Ma et 

al.239  

Graphene 

Thermal 

exfoliation 

of graphite 

1-

octadecanol 

Heat 

Conducti

on  

4.0 

wt% 
2.50 

Yavari et 

al.240  

Copper 

oxide 

decorated 

hydrogen 

induced 

exfoliated 

graphene 

-- 
Deionized 

water 

Transient 

Line 

Source  

0.05 

wt% 
1.28 

Baby et 

al.241  

Graphene 

Graphene 

oxide 

reduction 

Poly 

(vinylidene 

fluoride) 

Laser 

Flash  

0.5 

wt% 
2.00 

Jinhong 

et al.242  

Exfoliated 

graphene  

Exfoliation 

of graphite 

oxide 

Polypropyle

ne 

Laser 

Flash  

2.2 

vol% 
2.00 

Song et 

al.232  

Graphene -- 
Aluminum/

Teflon 

Laser 

Flash  

10.0 

wt% 
1.98 

Kappaga

ntula et 

al.233  
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Filler – 

Matrix  

Filler 

Synthesis 

Method 

Matrix 

Measure

ment 

Method 

Loadi

ng of 

Filler 

(Keff/

Km) 
Authors 

Exfoliated 

GNP 

Exfoliation 

of acid 

intercalated 

graphite 

High 

density 

polyethylen

e 

Heat 

Flow 

Meter  

15.0 

vol% 
3.00 

Jiang et 

al.243  

Functionaliz

ed GO  

Exfoliation 

of graphite 

and 

functionaliz

ation 

Polyimide  
10.0 

wt% 
6.23 

Tseng et 

al.244  

Graphene 

Exfoliation 

of graphite 

and thermal 

expansion 

Polyimide  
2.4 

wt% 
1.17 

Koo et 

al.245  

GNP -- Paraffin 
Transient 

Hot-wire  

5.0 

wt% 
2.64 

Fan et 

al.246  

MLG -- Paraffin 

Transient 

Plane 

Source 

20.0 

vol% 
28.00 

Warzoha 

et al.247  

GNP  -- Polyaniline 
Steady-

state  

50.0 

wt% 
6.60 

Abad et 

al.248  

Ionic liquid 

modified 

graphene 

oxide 

Graphite 

oxide 

oxidation 

Bromobutyl 

rubber 

Quickline

-10 Test  

4.0 

wt% 
1.30 

Xiong et 

al.249  

4-

phenylbutyl

amine 

functionaliz

ed GS  

Hummers 

method and 

functionaliz

ation 

Polyimide 
Laser 

Flash  

3.0 

wt% 
3.34 

Heo et 

al.250  

Graphene -- Stearic acid 

Hot Disk 

Thermal 

Analyzer 

5.0 

wt% 
2.07 

Li et 

al.251  

Thermally 

reduced GO 

Modified 

Hummers 

method 

n-

eicosane/sili

ca 

Hot-wire 
1.0 

wt% 
2.93 

Wang et 

al.252  

GS 

functionaliz

ed with 

-- Octane 

Non-

equilibriu

m MD 

-- 

3.13 ∥ 
2.18 

⊥ 

Our work 



101 

Filler – 

Matrix  

Filler 

Synthesis 

Method 

Matrix 

Measure

ment 

Method 

Loadi

ng of 

Filler 

(Keff/

Km) 
Authors 

alkane 

chains 

GS -- 
Polyamide-

6,6 

Non-

equilibriu

m MD 

-- 
1.6 – 

9.0 ∥ 

Alaghem

andi et 

al.253  

GS -- 
Polyamide-

6,6 

Non-

equilibriu

m MD 

-- 

3.70 ∥ 
1.85 

⊥ 

Eslami et 

al.254  

GS -- 
Phenolic 

resin 

Non-

equilibriu

m MD 

-- 
11.66 

∥ 
Hu et 

al.209  

Functionaliz

ed GS 
-- Octane 

Monte 

Carlo 

Simulatio

n 

10.00 

vol% 

400 ∥ 
1.00 

⊥ 

Our work 

 

5.4 Conclusions 

Graphene sheets (GS) belong to an interesting class of new materials that could be used 

to enhance the properties of polymeric nanocomposites. Recent technological advances 

are promising towards the production of large quantities of GS. Our simulation results, 

in some cases supported by experimental observations, suggest that it is possible to 

prevent the agglomeration of GS within organic matrixes by appropriately 

functionalizing the GS. We also found that this functionalization may be useful in 

abating the barriers typically encountered by heat when it flows from one inclusion to 

the surrounding organic matrix. Thus, based on our calculations, it is possible that, by 

inducing the appearance of nematic phases within GS – based nanocomposites, 

materials with anisotropic properties such as thermal conductivity are obtained. 
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Because it is possible that functionalizing the GS has a detrimental effect on their 

exceptional intrinsic properties, i.e. exceptional thermal conductivity, future theoretical 

studies should determine what is the optimum degree of functionalization that contains 

the resistances to heat flow from the GS to surrounding organic matrixes while leaving 

unaffected the thermal conductivity within the GS. 

Our calculations are so far restricted to rather small GS, short oils, and small systems. 

To better understand GS – based nanocomposites it is necessary to develop coarse-

grained simulation models to explore larger, more relevant GS, and their phase 

diagrams within organic matrixes of technologically important polymers such as 

PMMA. One such model, used herein, uses as input values for the Kapitza resistance 

obtained from atomistic simulations to predict macroscopic thermal conductivities. The 

reliability of our model depends on the accuracy of the parameters obtained at the all-

atom level. This model is also limited by the size of the computational domain that can 

be studied, and therefore by the size of the GS that can be considered within the 

material. When more complex models will become available, direct comparison 

between simulation predictions and experimental data will be possible, and it will also 

be feasible to use theoretical models to propose compositions for graphene – based 

nanocomposites in which both mechanical and transport properties are optimized. 
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6 Simulation Insights for Graphene-based Water 

Desalination Membranes 

The material presented below was published in 2013 in volume 29, issue 38, and page 

11884 of the ACS journal Langmuir. 

6.1 Introduction 

Molecular dynamics simulations were employed to study the transport of water and ions 

through pores created on the basal plane of one graphene sheet (GS). Graphene pore 

diameters ranged from 7.5 to 14.5 Å. Different pore functionalities (COO-, NH3
+ and 

OH) were considered, obtained by tethering various functional groups to the terminal 

carbon atoms. The ease of ion and water translocation across the pores was monitored 

by calculating the potential of mean force along the direction perpendicular to the GS 

pore. The results are explained in terms of hydration structure for the ions across the 

membrane, as well as of appropriate density profiles. Comparison with available data 

for the PMFs across similar CNT pores is also discussed.  

6.2 Simulation Method 

In Fig. 6.1 (top panel) we show a schematic representation of the simulation box used in 

this study. The model GS membrane (56.58 Å X 55.38 Å), with a pore in its center, was 

placed parallel to the XY plane at the center of the simulation box. The pore diameter 

(Ø) was of ~ 14.5, 10.5, or 7.5 Å, obtained by removing carbon atoms, as necessary. 

The membrane was surrounded by 20 Å of water along the Z direction on both sides. 
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Periodic boundary conditions were employed to maintain a continuous two-dimensional 

membrane. 

In the middle panel of Fig. 6.1 the three pore sizes (14.5, 10.5, and 7.5 Å) are shown. 

Three types of functional groups (carboxyl anion COO-, amine cation NH3
+, and 

hydroxyl OH) were grafted to the pore rim (bottom panel of Fig. 6.1). Note that, 

because of steric constraints, the functional groups in our GS pores point towards the 

center of the pore. The diameter of the pore changes depending on the size of the 

functional groups grafted to it. The diameter of the functionalized pore is calculated as 

the distance between the ends of two opposite functional groups. The COO- and NH3
+ 

groups are grafted to the 14.5 Å diameter pore, yielding pores of diameter ~ 10.0 and 

11.0 Å, respectively. The OH group is grafted to the 10.5 Å pore, yielding a pore of 

diameter ~ 7.5 Å. In each functionalized pore six functional groups were spread 

uniformly around the rim of the GS pore. When charged functional groups were used, 

six counter-ions were added to maintain the electro neutrality of the system. These 

counter ions were placed far from the pore, and maintained fixed during the course of 

the simulations. This prevented the ions from accumulating near the functional groups, 

affecting the results. Care was taken so that these ions did not introduce artificial dipole 

moments. Although these ions were not allowed to move, additional ions included in 

the system to control the ionic strength were allowed to move according to the 

equations of motion. 

Sodium ions (Na+) and chloride ions (Cl-) were randomly placed within the simulation 

box to yield a concentration of either 0.025 or 0.25 M. At 0.025 M, there were only one 

Na+
 and one Cl- in the system (infinite dilution, within the limits of our simulation box). 
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At 0.25 M, 18 Na+ and Cl- ion pairs were present. Additional simulation results obtained 

at 0.6 M are also presented. These ions were allowed to freely move within the 

simulation box. The number of water molecules was maintained constant at 4100. 

Carbon atoms in the GS were held stationary and modeled as LJ spheres using the 

parameters proposed by Cheng and Steele.255 As a first approximation, the carbon atoms 

on the GS pore rims were modeled as the other carbon atoms on a GS, although they are 

intended to be terminated by hydrogen atoms, unless they are functionalized. The 

functional groups on the GS pores were not rigid. Instead they were modeled using the 

flexible Optimized Potentials for Liquid Simulations (OPLS) force field parameters 

proposed by Jorgensen et al.204 Water molecules were modeled using the non-

polarizable, rigid point charge extended (SPC/E) model256 because of its simplicity, 

reliability in reproducing water structure and dynamics, and because of the availability 

of ion-water potentials specifically parameterized for SPC/E water.257 Recent work258 

suggests that polarization effects are not significant in monovalent salt solutions since 

the field associated with monovalent ions does not significantly perturbs the water 

molecules within the hydration shell. However, considering the polarizability of 

graphene might affect the structure of aqueous ionic systems at the solid-liquid 

interface.259 In Table 6.1 we report the force field parameters implemented in our 

simulations. 

Bond lengths and angles in water molecules were fixed using the SHAKE algorithm.260-

261 Non-bonded interactions were modeled by means of dispersive and electrostatic 

forces. Van der Waals interactions were treated according to the 12-6 Lennard-Jones 

(LJ) potential.262 The LJ parameters for unlike interactions were obtained using the 
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Lorentz-Berthelot mixing rules from pure component ones. The cutoff for Van der 

Waals interactions was set to 10 Å; that for electrostatic interactions to 9 Å. Corrections 

to long-range electrostatic interactions were calculated using the particle mesh Ewald 

(PME) summation technique. 

All the simulations were carried out at 300K with a timestep of 2 fs, using the 

simulation package GROMACS 4.5.5.263-266 All the systems were first equilibrated for 2 

ns in the NPT ensemble to replicate ambient conditions. For simulation results obtained 

at high pressure, we refer the interested reader to the recent contribution by Cohen-

Tanugi and Grossman.168 

After equilibration, to determine the free energy barrier for ion/water permeation 

through the pore, the umbrella-sampling algorithm267-268 was implemented (detailed 

description of the method is given in section 8.1 of Appendix). In short, a harmonic 

biasing potential Kz(z-zi)
2/2, where z is the axial coordinate of the ion defined from the 

center of the pore, zi is the target position, and Kz is the force constant (ranging from 30 

to 100 kcal/mol nm2), was applied to the target species (Na+, Cl-, or water). The target 

positions varied from z = 20 to z = -20 Å in increments of 1 Å. This resulted in 41 

simulations yielding overlapping windows of density probability. Each window was 

sampled for 4 ns. The last 3 ns of data were analyzed using the weighted histogram 

analysis method (WHAM).267, 269-270   
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Table 6-1 The Lennard Jones and force field parameters considered in this work. 

The Lennard Jones parameters and partial charges for the ions, water molecules, carbon 

atoms in GS, and functional groups. 

Atom   σ/Å   ε/kJmol-1  q/e 

Ions 

Na+   2.583   0.4184   1.000 

Cl-   4.401   0.4184   -1.000 

Water 

OW   3.166   0.6502   -0.8476 

HW   0.000   0.0000   0.4238 

GS 

C   3.400   0.2330   0.000 

COO- 

C (GS)   3.400   0.2330   0.100 

C (FG)   3.750   0.4600   0.700 

O (C=O)  2.960   0.8792   -0.800 

O (C – O-)  2.960   0.8792   -1.000 

NH3
+ 

C (GS)   3.400   0.2330   0.300 

N   3.250   0.7117   -0.300 

H   0.000   0.0000   0.330 

OH 

C (GS)   3.400   0.2330   0.265 

                   O                     3.070         0.7117        -0.700 

H   0.000   0.0000   0.435 
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Force field parameters for the functional groups of GS 

Bond stretching potential 

 

Bond type   Kr/kJmol-1Å-2  beq/Å 

COO- 

C (GS) – C (FG)  3927.20   1.41 

C (FG) – O (C=O)  4772.93   1.22 

C (FG) – O (C – O-)  5493.05   1.25 

NH3
+ 

C (GS) – N   4027.70   1.34 

N – H    3634.14   1.01 

OH 

C (GS) – O   3767.76   1.36 

O – H    4625.28   0.96 

 

Bond bending potential 

 

Angle type   Kθ/kJmol-1rad-2  θeq/o 

COO- 

C (GS) – C (GS) – C (FG)  586.15   120.0 

C (GS) – C (FG) – O (C=O)  669.88   120.4 

C (GS) – C (FG) – O (C – O-)  544.28   117.0 

O (C=O) – C (FG) – O (C – O-)  669.88   126.0 

NH3
+ 

C (GS) – C (GS) – N   586.15   120.1 

C (GS) – N – H    293.07   111.0 

H – N – H    365.09   106.4 

OH 
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C (GS) – C (GS) – O   585.48   120.0 

C (GS) – O – H    292.74   113.0 

 

Torsional potential 

 

  Torsion type  V1/kJmol-1 V2/kJmol-1 V3/kJmol-1

 V4/kJmol 

COO- 

C (GS) – C (GS) – C (FG) – O (C=O)    -3.4330    1.7165      0.0     0.0 

C (GS) – C (GS) – C (FG) – O (C – O-)    -3.4330    1.7165    0.0     0.0 

NH3
+ 

C (GS) – C (GS) – N – H      0.00     8.4990    0.0     0.0 

OH 

C (GS) – C (GS) – O – H     -28.1364    14.0682    0.0     0.0 
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Figure 6-1 Top panel: Lateral view of the system simulated herein, showing the GS 

membrane at the box center and an aqueous 0.25 M NaCl solution that extends for 20 Å 

on both sides of the GS. Middle panels: top view of the three pristine GS pores 

considered, with pore diameter (from left to right) 14.5, 10.5, and 7.5 Å. Bottom panels: 

Top view of three GS pores functionalized with, from left to right, 6 COO- (Ø = 10.0 

Å), 6 NH3
+(Ø = 11.0 Å), and 6 OH (Ø = 7.5 Å) groups. In these figures GS carbon 

atoms are shown as cyan spheres, oxygen in red, hydrogen in white, and nitrogen in 

blue. Yellow and green spheres represent sodium and chloride ions, respectively. Water 

is shown in the wireframe representation. 
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6.3 Results and Discussion 

6.3.1 Pristine GS Pores 

To monitor the likelihood of ion and water exclusion through the GS membrane, the 

potential of mean force (PMF) was calculated in the direction perpendicular to the 

membrane, as described in the methods section. The PMF was calculated when a 

molecule (one Na+ or Cl- ions, or one water molecule) was forced to move from the 

bulk region (z = 20 Å), through the center of each pore (z = 0 Å), to the bulk region (z = 

-20 Å) (from right to left in the schematic of Fig. 6.1). The resultant PMF is one-

dimensional. The values obtained at each position are referred to that obtained in the 

bulk. A positive PMF is indicative of a free-energy barrier that needs to be overcome by 

the molecule of interest traveling across the pore. The higher the barrier, the more 

difficult it will be for a molecule to overcome it. PMF minima identify preferential 

positions assumed by the molecule of interest at equilibrium. The more negative the 

PMF, the more likely it will be to observe the molecule of interest at that location. 

In Fig. 6.2 we report PMF results for Na+ (left) and Cl- (right) ions in 0.025 (top) and 

0.25 M (bottom) NaCl solutions across the non-functionalized (pristine) GS pores. Data 

are reported for ions across the 14.5 (black continuous line), 10.5 (red dashed line), and 

7.5 Å (black dashed line) pores. From Fig. 6.2, we can observe that the ionic 

concentration has little effect on the PMF of ions across the pristine GS pores. PMF 

profiles suggest that both Na+ and Cl- ions can diffuse through the pristine 14.5 Å pore 

(black line) without the need of overcoming significant free-energy barriers, indicating 

that this pore will not be efficient in water desalination. As the pore diameter decreases, 
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the PMF profiles show more pronounced maxima, which depend on the ion type. 

Explicitly, the maximum PMF values encountered by Na+ and Cl- ions as they diffuse 

through the pristine 10.5 Å pore are ~ 4.0 and ~ 5.0 kcal/mol, respectively. The energy 

barrier is higher for the Cl- ion probably because of its bigger size compared to Na+. 

When the pore diameter is further reduced to 7.5 Å (black dashed line), the PMF 

maxima obtained for Na+ and Cl- ions increase to ~14 and ~10 kcal/mol, respectively. 

The fact that the larger PMF barrier is not encountered for the larger ion suggests that 

not only the ion size (the diameters of Na+ and Cl- are 2.58 and 4.40 Å, respectively), 

but also the ions hydration structure (discussed later) might affect the free energy 

profile. Structural changes within the hydration shell as the ions approach the pores 

might also be responsible for the fact that the PMF profiles (especially the ones 

obtained in the 10.5 and 7.5 Å pores) in general do not show a monotonic increase as 

the distance from the pore center decreases. It should at this point be mentioned that the 

PMF barriers shown in Fig. 6.2 are consistent with those reported by Corry et al.,160 

who calculated the PMF for ions diffusing through CNTs of diameter ranging from 6.6 

to 10.9 Å. Using the transition state theory we can estimate the diffusion coefficients for 

the ions across the pores from the PMF profile.271 Such estimates suggest that the 14.5 

Å pores do not hinder ionic diffusion compared to ions in bulk aqueous solutions, while 

the 7.5 Å pores reduce the ions mobility by several orders of magnitude. Qualitatively, 

these results suggest that GS membranes with pristine pores can be effectively used in 

water desalination only when the pores are rather narrow (7.5 Å out of the three pores 

considered here).  
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Figure 6-2 One-dimensional potential of mean force profiles obtained along the 

direction perpendicular to the GS pores for Na+ (left) and Cl- (right) ions in 0.025 (top) 

and 0.25 M (bottom) NaCl solutions. Pristine GS pores of diameter 14.5 (black 

continuous line), 10.5 (red dashed line), and 7.5 Å (black dashed line) are considered. 

 

In Fig. 6.3 we show plots of atomic density profiles of oxygen (red line) and hydrogen 

(blue line) atoms of water molecules obtained along the direction perpendicular to the 

pristine GS pores at 0.025 M NaCl. The density profiles were calculated within a 

cylinder centered on the pore center with axis perpendicular to the GS. The diameter of 

the cylinder was equal to the diameter of the pore. Results are reported for pores of 

diameter 14.5, 10.5, and 7.5 Å (from top to bottom). The results are compared to the 

PMF profiles (dashed gray line) of Na+ (left) and Cl- (right) ions. The density profiles 
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for oxygen and hydrogen atoms show the formation of two atomic layers on either side 

of the pores, with peak positions varying with the diameter of the pores. Our results 

suggest that the structure of water near the pores is related to the PMF profiles (e.g., in 

some cases the minima and maxima in the atomic density profiles of oxygen match the 

positions of maxima and minima in the PMF profiles). These qualitative observations 

suggest that Na+ and Cl- ions preferentially partition within or in between water, 

perhaps to maintain their hydration shell. 

Although it is important for a RO membrane to reject salt ions, it is equally important 

that water molecules can diffuse through the membranes. In Fig. 6.4 we report the PMF 

profiles as experienced by one water molecule as it diffuses through the pristine pores 

of Fig. 6.1 in an aqueous solution of 0.025 (left) and 0.25 M NaCl (right). There is no 

significant difference in the PMF profiles of water molecule obtained in 0.025 and 0.25 

M solutions, except at the center of the pore, where the PMF minima are a little more 

pronounced at 0.25 M. The PMF for the 14.5 Å pore (black continuous line) indicates 

that water passes through the pore without any significant energy barrier (PMF 

maximum ~ 0.5 kcal/mol). For the 10.5 Å pore, water faces an energy barrier of ~ 6.5 

kcal/mol to pass through the center of the pore (red dashed line), which is larger than 

the energy barrier encountered by Na+ and Cl- ions (discussed in Fig. 6.2). These results 

suggest that the 10.5 Å pore will not be effective in desalinating water.  For the 7.5 Å 

pore (black dashed line), the energy barrier for water passage is ~ 5.0 kcal/mol at 3 Å 

away from the pore, although the PMF is ~ -9.0 kcal/mol at the center of the pore. The 

maximum PMF of water is much lower than the PMF maxima of Na+ and Cl- ions 
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(discussed in Fig. 6.2), indicating that the 7.5 Å pore will be effective for water 

desalination.  

 

Figure 6-3 Atomic density profiles of oxygen (red) and hydrogen (blue) atoms of water 

within a cylinder centered on the pore center whose diameter equals the pore diameter. 

Three pores are considered with diameter (from top to bottom) 14.5, 10.5, and 7.5 Å. 

For comparison, traces of the PMF obtained for Na+ (left) and Cl- (right) ions are also 

reported (dashed lines). Results obtained at 0.025 M are shown here. 
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Figure 6-4 Potential of mean force for one water molecule as a function of its axial 

distance from the center of the pristine GS pores. The water-pore distance is measured 

from the center of the water molecule. The aqueous solution is maintained at 0.025 

(left) and 0.25 M (right) NaCl concentration. Three pores are considered, with diameter 

14.5 (black continuous line), 10.5 (red dashed line), and 7.5 Å (black dashed line) 

respectively. 

As in the case of ions, the PMF profiles of water in general do not show a monotonic 

increase as the distance from the pore center decreases. This is because the structure of 

water molecules near the pore is significantly different from that of water molecules in 

the bulk region. The atomic density profiles of oxygen atoms of water with the PMF of 

water obtained along the direction perpendicular to the pristine GS pores at 0.025 M 

NaCl are plotted in the left panels of Fig. 6.5. Results are reported for pores of diameter 

(from top to bottom) 14.5, 10.5, and 7.5 Å, respectively. The oscillations in the PMF are 

consistent with the peaks in the density profile for the 14.5 Å pore. Whenever there is a 

minimum in the density profile, we observe a maximum in the PMF. In the right panels 

of Fig. 6.5, we show the planar density distribution for the oxygen atoms of water 

molecules inside these pores. In this calculation we only consider the water molecules 

whose oxygen atoms belong to a slab of thickness ΔZ = 3.4 Å centered on the GS 

membrane. From the planar density distribution of oxygen, we can observe that the 
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water molecules yield hexagonal chains inside the pore, and that water is present at the 

center of the 14.5 Å pore. These density distributions explain, qualitatively, the lack of 

PMF barrier as one water molecule translocates across this pore (black line in Fig. 6.4). 
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Figure 6-5 Left: Atomic density profiles of oxygen (red) and hydrogen (blue) atoms of 

water obtained within a cylinder of diameter equal to the pore diameter and 

perpendicular to the GS, together with the trace of the PMF experienced by water 

molecules across the pore (dashed lines). Right: Planar oxygen density distribution 

inside the GS pores. The units of the atomic density are Å-3.  The aqueous solution is 

maintained at 0.025 M NaCl concentration. Three pores are considered, with diameter 

(from top to bottom) 14.5, 10.5, and 7.5 Å. 

When the pore diameter is reduced to 10.5 Å, the water density profile is not consistent 

with the PMF profile. The planar oxygen density distribution within the pore (right 
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panel) shows that water molecules form a circular chain inside the pore, and that no 

water molecule is present at the center of the pore. These results suggest that water 

molecules cannot readily occupy the center of the pore, explaining the large PMF 

barrier of ~ 6.5 kcal/mol shown in Fig. 6.4. When the Cl- ion passes through the center 

of this pore we observed no water inside the pore because of the bigger size of the Cl- 

ion. This explains the mismatch between the density profiles and the PMF of Cl- ion 

(discussed in Fig. 6.3). 

When the pore diameter is further reduced to 7.5 Å, the oxygen density profile shows 

the formation of two atomic layers on either side of the pore, consistent with the 

oscillations in the PMF profile. The maxima and minima in the PMF are observed when 

the water molecule is 3 Å away from the pore and at the center of the pore respectively. 

When the water molecule is 3 Å away from the pore, the density profile shows a 

minimum i.e., it is not a preferential equilibrium position. The water molecule 

experiences an energy barrier of ~ 5.0 kcal/mol at this distance. The planar oxygen 

density profile suggests that a single file movement can be established for water 

molecules inside this pore, and that water molecules preferentially reside at the center of 

the pore, where we observed a minimum in the PMF profile.  It should be mentioned 

that the structure of water inside the pristine 10.5 and 7.5 Å GS pores agrees well with 

that predicted inside pristine 10.9 and 8.1 Å CNT.160 
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Figure 6-6 Potential of mean force for one water molecule as a function of its axial 

distance from the center of the pristine GS pores at 0.25 M NaCl concentration. Two 

pores are considered, with diameter 10.5 (red dashed line) and 7.5 Å (black dashed line) 

respectively. As opposed to results shown in figure 6.4, the results presented here are 

obtained when the reference water molecule was allowed to move in the directions X 

and Y parallel to the GS, while being constrained at fixed distances from the GS pore. 

The simulations just discussed were conducted by constraining the reference water 

molecule within an axis perpendicular to the membrane through the center of the pore. 

We conducted additional simulations for water through the 10.5 and 7.5 Å pores in 

which the constraints imposed along the X and Y directions (parallel to the GS) were 

removed. The correspondent PMF results are reported in Fig. 6.6. As expected, the PMF 

profiles obtained when the water molecule is allowed to move along X and Y directions 

show less pronounced repulsive peaks, because water molecules will find preferential 

positions within the pores if allowed to. The main evidence for this occurs for the 10.5 

Å pore, in which case the PMF is negative in the center of the pore when water can 

move along the X and Y directions, and positive when it is not (as shown in Fig. 6.4). 

When water is forced to stay at the center of the pore, it has to stay within a region of 
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low water density (see Fig. 6.5), while when it can move water will stay closer to the 

pore rim, where it can favorably interact with other water molecules.   

6.3.2 Functionalized GS Pores 

Based on both experimental and theoretical reports, summarized in the introduction, it is 

expected that more effective ions rejection can be achieved when carbon-based 

membranes are appropriately functionalized. The functionalized GS pores shown in the 

bottom panel of Fig. 6.1 are used for our calculations along this line of thought. Three 

functional groups were considered: carboxyl anion COO-, amine cation NH3
+, and 

hydroxyl OH. As mentioned above, each functionalized pore contains 6 functional 

groups. Because of geometric constraints, the effective pore diameter decreases upon 

functionalization. The effective pore diameter for the three functionalized pores differs, 

but not too much (see details in Fig. 6.1). 

 

 

Figure 6-7 Potential of mean force for one water molecule as a function of its axial 

distance from the center of the functionalized GS pores. Results are shown for 0.025 

(left) and 0.25 M (right) NaCl concentration at ambient conditions. Three pores are 

considered, functionalized with COO- (black continuous line), NH3
+ (red dashed line), 

and OH groups (black dashed line), respectively. 
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Figure 6-8 Atomic density profiles of oxygen (red) and hydrogen (blue) atoms of water 

within a cylinder of diameter equal to the pore diameter and perpendicular to the 

functionalized GS pores, together with the trace of PMF experienced by water 

molecules across the pore (dashed lines). Three pores are considered, functionalized 

with, from top to bottom, COO-, NH3
+, and OH groups. Data obtained at 0.025 (left) 

and 0.25 M (right) NaCl concentration are both shown. 

 

In Fig. 6.7 we report the PMF profiles as experienced by one water molecule across the 

functionalized pores in a 0.025 (left) and 0.25 M (right) NaCl solutions. The results are 

shown for GS pores functionalized with COO- (Ø = 10.0 Å), NH3
+ (Ø = 11.0 Å), and 
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OH (Ø = 7.5 Å) groups. The PMF peaks depend on the functional group, and they do 

not always appear at the center of the pore. The results shown in Fig. 6.7 suggest that at 

infinite dilution (left panel) the water molecule is strongly repelled by the center of the 

COO- pore (PMF ~ 14 kcal/mol), while it is attracted to the NH3
+ pore (PMF ~ -3 

kcal/mol). The PMF profiles obtained for OH functionalized pore show oscillations 

between 0 and 3 kcal/mol. As the ions concentration increases, the strong repulsion due 

to the COO- groups and the pronounced attraction due to the NH3
+ groups both 

disappear. These observations suggest that the features of the PMF profiles are due, to a 

large extent, to electrostatic effects, which are shielded at high salt concentration. 

However, the features of the PMF profiles also depend on the structure of water near the 

pore. In Fig. 6.8 we report the density of water within a cylinder centered in the pore 

center and perpendicular to the membrane in an aqueous solution of 0.025 (left) and 

0.25 M (right) NaCl. Three pores are considered, functionalized with, from top to 

bottom, COO-, NH3
+, and OH groups. From the figure we observe that the 

maxima/minima in the PMF profile sometimes correspond to minima/maxima in the 

density profile. 
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Figure 6-9 Planar density distribution of oxygen atoms of water inside the GS pores at 

0.025 (left) and 0.25 M NaCl concentration (right).  Results are reported for pores 

functionalized with, from top to bottom, COO- (Ø = 10.0 Å), NH3
+ (Ø = 11.0 Å), and 

OH groups (Ø = 7.5 Å). The units of the atomic density are Å-3. 

 

In Figure 6.9 we report the density maps for the oxygen atoms of water inside the 

functionalized GS pores at 0.025 (left) and 0.25 M (right) NaCl concentration. From top 

to bottom, the results are for COO-, NH3
+, and OH functional groups, respectively. At 
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0.025 M concentration, our results suggest that water molecules are not present at the 

center of the pores functionalized with either COO- or NH3
+ groups. Strong electrostatic 

interactions seem to dictate association between water and the functional groups. The 

situation is different when OH functional groups are considered. Within this pore water 

is found to accumulate near the pore center. It is likely that these structural differences 

are related to the differences observed in the PMF profiles when the results obtained for 

different functional groups are compared (Fig. 6.7). Our results suggest that increasing 

the ionic concentration causes changes in the structure of water within the pores (right 

panels of Fig. 6.9). The effects are more pronounced for the COO- functional groups, 

but are still evident for the other functional groups considered. Inside the COO- pore, 

the position of the water molecules changes due to the accumulation of Na+ ions near 

the pore. Inside the NH3
+ and OH pores, the accumulation of Cl- and Na+ ions causes a 

change in the intensity of the density distribution. The number of water molecules 

decreased inside the NH3
+ pore while they increased inside the OH pore compared to 

that at 0.025 M. To visualize these effects we resort to visualization of representative 

simulation snapshots, reported in Fig. 6.10. We show ions and water near the pores 

functionalized with COO- (left), NH3
+ (middle) and OH (right) groups at 0.25 M salt 

concentration. From the snapshots, we can observe the accumulation of ions around the 

COO-, NH3
+, and OH groups, which screens electrostatic interactions.  
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Figure 6-10 Top (top panel) and side view (bottom panel) of representative simulation 

snapshots showing the location of ions and water near the pore when a single water 

molecule (purple) is present at the center of the functionalized GS pores. Three pores 

are considered, functionalized with, from left to right, COO-, NH3
+, and OH groups, 

respectively. The color code is the same as that used in Figure 6.1. 

 

Concluding the analysis of Fig. 6.7, our results suggest that water molecules do not 

experience a prohibitive free energy penalty as they diffuse across the functionalized 

pores at moderate ionic strength. In analyzing the PMF profiles experienced by ions 

across the functionalized pores we consider separately the pores functionalized with 

COO-, NH3
+, and OH groups; we compare the results to those obtained in the parent 

non-functionalized pores; we compare results obtained at infinite dilution (0.025 M) vs. 

moderate NaCl concentration (0.25 M); and we separately investigate the PMF profiles 

experienced by Na+ and Cl- ions. 
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In Fig. 6.11 we show the PMF results obtained for the pores functionalized with COO- 

groups. At infinite dilution Na+ ions are strongly attracted to the pore center (PMF ~ -18 

kcal/mol) while Cl- ones are strongly repelled (PMF ~ 46 kcal/mol). These values are 

particularly significant when compared to those obtained in the non-functionalized 

parent pores (gray lines), confirming that the functional groups are responsible. As the 

ionic strength increases, however, both minima and maxima in the PMF profiles (for 

Na+ and Cl- ions, respectively) decrease in intensity. This suggests that increasing the 

ionic strength screens the electrostatic forces responsible in large part for the results just 

discussed. In addition to electrostatic interactions, steric effects due to the packing of 

water molecules are responsible for the oscillations observed in the PMF profiles. 

Despite the screening of electrostatic interactions, our results suggest that 

functionalizing the GS pores with COO- groups induces an effective free energy barrier 

of ~ 11 kcal/mol for Cl- ions as they attempt to diffuse across the pore. In Fig. 6.12 we 

report the planar density distribution of Na+ ions near the COO- pore showing the 

accumulation of Na+ ions within the COO- functionalized pores at 0.25 M salt 

concentration. In Fig. 6.13 we show the results for the density distribution of water 

molecules within a cylinder centered in the pore center and perpendicular to the GS 

membrane. The results are shown together with the PMF of Na+ (left) and Cl- (right) 

ions across the COO- functionalized pore in an aqueous solution of 0.025 (top) and 0.25 

M (bottom) NaCl.  The results from Fig. 6.12 and 6.13 show that multiple ions are 

attracted near the pore, which causes screening of electrostatic effects, and that the 

water structure is in some cases responsible for the non-monotonic behavior of the PMF 

profiles shown in Fig. 6.11.  
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Figure 6-11 One-dimensional PMF along the direction perpendicular to the COO- 

functionalized GS pores for Na+ (left) and Cl- (right) ions at 0.025 (red) and 0.25 M 

NaCl concentration (black). For comparison, the results obtained on the non-

functionalized pore of diameter 14.5 Å at 0.25 M NaCl concentration are also shown in 

gray. 

 

 

Figure 6-12 Planar density distribution for Na+ ions near the COO- functionalized pore 

at 0.25 M NaCl. The units of the atomic density distribution are Å-3. 
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Figure 6-13 Atomic density profiles for oxygen and hydrogen atoms of water within a 

cylinder centered in the GS pore and perpendicular to the GS membrane. The results are 

shown together with the PMF results for Na+ (left) and Cl- (right) ions across the COO- 

functionalized pore. Data obtained at 0.025 (top) and 0.25 M (bottom) NaCl 

concentration are both shown. 

 

In Fig. 6.14 we report the PMF profiles obtained for Na+ and Cl- ions across the pores 

functionalized with NH3
+. Because these groups are positively charged while COO- are 

negatively charged, the PMF results are qualitatively opposite compared to those in Fig. 

6.11. At infinite dilution Na+ are repelled by the pores (PMF ~ 12 kcal/mol), while Cl- 

ions are attracted to it (PMF ~ -20 kcal/mol). The structure of water near the pores is 

responsible for oscillations in the PMF profiles. Increasing the ionic strength has the 

effect of decreasing the intensity of the free energy peaks. For the scopes of the present 

Chapter (designing membranes for water desalination) it is important to point out that 

the PMF obtained for Na+ and Cl- ions are significantly reduced at moderate ionic 
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strength (less than 4 kcal/mol), suggesting that functionalizing GS pores with NH3
+ 

groups may not be as effective as desired for repelling Na+ and Cl- ions. The 

accumulation of Cl- ions near the pore entrance is responsible for these effects, as 

expected. In Fig. 6.15 and 6.16 we report results to quantify the density distribution of 

Cl- ions near the functionalized pores at 0.25 M NaCl concentration, and the density 

profiles for water in the direction perpendicular to the surface. To confirm that 

electrostatic interactions are for the most part responsible for the results shown in Fig. 

6.11 and 6.14, we decoupled dispersive and electrostatic pore-ion interactions as a 

function of ion-GS distance. The results are summarized in Fig. 6.17. In Fig. 6.17 we 

report the ion-pore potential energy as a function of the vertical distance from the center 

of the pore. We only consider pores functionalized with COO- and NH3
+ groups. In 

these calculations only the interactions between the ions and the functionalized GS 

membranes are considered. The dispersive interactions are considered from the LJ 

potentials. The electrostatic ones are obtained from Coulombic GS-ion interactions, 

neglecting long-range corrections. The results are obtained at 0.25 NaCl concentration, 

but are not dependent on salt concentration. From the figure we can observe that the 

electrostatic interactions dominate the dispersive interactions when the pores are 

functionalized with COO- and NH3
+ groups.  
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Figure 6-14 Same as Figure 6.11, but for pores functionalized with NH3
+ groups. 

 

 

Figure 6-15 Planar density distribution for Cl- ions near the NH3
+ functionalized pore at 

0.25 M NaCl. The units of the atomic density distribution are Å-3. 
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Figure 6-16 Atomic density profiles for oxygen and hydrogen atoms of water within a 

cylinder centered in the GS pore and perpendicular to the GS membrane. The results are 

shown together with the PMF results for Na+ (left) and Cl- (right) ions across the NH3
+ 

functionalized pore. Data obtained at 0.025 (top) and 0.25 M (bottom) NaCl 

concentration are both shown. 

In Fig. 6.18 we report the PMF profiles for Na+ and Cl- ions through the OH 

functionalized pore at 0.025 and 0.25 M NaCl. The results are compared to those 

obtained across the non-functionalized pore of diameter 10.5 Å. In the PMF for Na+ 

(left) at infinite dilution, a repulsion is observed at 4 Å (~ 2.0 kcal/mol), and attraction 

at 2 Å (~ -7.0 kcal/mol), and repulsion at 0 Å (~ 2.0 kcal/mol). These effective 

repulsion peaks appear weak for desalination applications. The PMF profiles are 

qualitatively similar to those obtained for the non-functionalized pore, suggesting that 

the structure of water is in large part responsible for these results. 
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The PMF results for Cl- (right), on the other hand, show a mild attraction at 3 Å (PMF ~ 

-4 kcal/mol) followed by a strong repulsion at the center of the pore (PMF ~ 19 

kcal/mol). This repulsion is much stronger than that experienced across the pristine 

pore, suggesting that the functional groups are responsible for the results, possibly 

because of steric effects. When the concentration of NaCl is increased to 0.25 M, there 

is no significant change in the PMF profile of Na+ ion, which is consistent with the 

absence of strong electrostatic interactions between the functional groups and the ions 

in solution. The PMF maximum for Cl- decreases (to ~ 10.5 kcal/mol) as the NaCl 

concentration increases. This was unexpected because steric effects are considered for 

the most part responsible for the results in Fig. 6.18, not electrostatic interactions. These 

results are due to the accumulation of Na+ ions near the OH-functionalized pores. As 

shown in the density distribution results of Fig. 6.19, Na+ ions accumulate in 

correspondence to the minima in the PMF profile shown in Fig. 6.18, and near the OH 

groups. Electrostatic attractions between these Na+ ions and Cl- are likely responsible 

for the decreased PMF barrier experienced by Cl- ions as they diffuse across the OH-

functionalized pore. Despite this, the PMF barrier remains significant for Cl- ions even 

at moderate ionic strength. 
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Figure 6-17 Average dispersive (E_LJ) and electrostatic (E_elec) interaction energies 

between Na+ (left) and Cl- (right) ions and functionalized GS pores as a function of the 

vertical distance from the pore center. Results are reported for pores functionalized with 

COO- (top) and NH3
+ (bottom) groups. The simulations were conducted at 0.25 M NaCl 

concentration. 

 

In the case of the OH-functionalized pores we conducted additional simulations in 

which the NaCl concentration was increased further to 0.60 M, representative of 

seawater. The PMF results for both Na+ (left) and Cl- (right) ions across OH 

functionalized pores at 0.025 (black), 0.25 (red dashed) and 0.6 M (black dashed) NaCl 

are shown in Fig. 6.20. The results show no significant difference compared to those 

obtained at 0.25 M, except that the PMF maximum for Cl- ion decreases to ~8 kcal/mol. 

This supports our speculation that electrostatic effects are not the most important ones 

in determining the data shown in Fig. 6.18. 
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Figure 6-18 Same as Figure 6.11, but for pores functionalized with OH groups. Note 

that the non-functionalized pore considered for comparison is the one of diameter 10.5 

Å. 

 

 

Figure 6-19 Planar density distribution for Na+ ions near the OH functionalized pore (Ø 

= 7.5 Å) at 0.25 M NaCl. The units of the atomic density distribution are Å-3. 
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Figure 6-20 One-dimensional PMF along the direction perpendicular to the OH 

functionalized GS pores for Na+ (left) and Cl- (right) ions at 0.025 (black), 0.25 (red 

dashed), and 0.60 M NaCl concentration (black dashed).  

 

To further support our speculation that steric effects are for the most part responsible for 

the features of the PMF data across OH-functionalized pores (Fig. 6.18), in Fig. 6.21 we 

report the density distribution for water within a cylinder of radius equal to the pore 

radius, centered in the pore center, and perpendicular to the membrane. The density 

profiles are compared to the PMF data. Visual inspection confirms that, for example, 

Na+ ions preferentially reside within the layer formed by oxygen atoms of water at ~ 2 

Å from the pore center (left panels in Fig. 6.21). 

Concluding the remarks regarding data shown in Fig. 6.18, our results suggest that 

functionalizing narrow GS pores with OH groups may provide significant free energy 

barriers for the translocation of Cl- ions at both low and moderate bulk salt 

concentration. These unexpected results appear to be due, for the most part, to steric 

effects. Also water molecules experience a free-energy penalty as they diffuse across 

these pores, but of significantly less intensity compared to that experienced by Cl- ions. 

 



137 

 

Figure 6-21 Atomic density profiles for oxygen (red) and hydrogen (blue) atoms of 

water within a cylinder centered in the GS pore and perpendicular to the GS membrane. 

The results are shown together with the PMF results for Na+ (left) and Cl- (right) ions 

across the OH functionalized pore (dashed lines) of diameter 7.5 Å. Data obtained at 

0.025 (top) and 0.25 M (bottom) NaCl concentration are both shown. 

 

6.3.3 Molecular Mechanism and Comparison to Carbon Nanotube 

Membranes 

To gain molecular-level insights regarding the mechanism of ion transport through the 

various pores considered in this work, we calculated the hydration number of Na+ and 

Cl- ions as a function of their distance from the pore center. This analysis is prompted 

by recent simulation studies, which highlighted the role of molecular hydration on the 

adsorption of DNA bases on charged CNT,272 on the hydration of solutes at 

interfaces,273 on the hydrophobic hydration of small and large solutes,274 and on the 



138 

interfacial-organized monolayer water film (MWF) induced aggregation of 

nanographene.275 In our simulations the hydration number of an ion is calculated by 

counting the number of water molecules in the first solvation shell every 2 ps. The data 

are averaged over 4 ns. The diameters of the first solvation shell for Na+ and Cl- ions are 

6.4 and 7.6 Å respectively. The coordination number is calculated for those ions that are 

pulled using umbrella sampling. Detailed results for the coordination number of Na+ 

and Cl- in all the systems considered are summarized in Table 6.2 and Table 6.3, 

respectively. In the bulk solution, Na+ was found to be surrounded by ~ 6.0 and Cl- by ~ 

7.0 water molecules, consistent with the values reported in literature.276 For non-

functionalized GS pores, we observed that there was no significant difference in the 

coordination number for both ions as a function of ionic strength. The coordination 

number for Na+ remained constant at ~ 6.0 (bulk value) as it passed through the 14.5 Å 

and 10.5 Å pores but reduced to ~ 4.0 at the center of the 7.5 Å pore. For the Cl- ion, the 

coordination number was ~ 6.8, 6.3, and 5.4 at the center of the 14.5 Å, 10.5 Å, and 7.5 

Å pores, respectively.  Thus both ions had to lose part of their hydration shell to pass 

through the 7.5 Å pore, explaining the large energy penalty observed in the PMF profile 

of Fig. 6.2. The fact that the Na+ ion had to lose more water molecules than the Cl- ion 

explains the larger energy barrier encountered by the Na+ ion.  
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Table 6-2 Hydration number for one Na+ ion in the bulk and at the pore center in all the 

systems considered. Results obtained at 0.025 M and 0.25 M concentrations are 

compared. 

 0.025 M 0.25 M 

bulk 5.8 ± 0.6 6.0 ± 0.5 

Non functionalized 

–  = 14.5 Å 
5.9 ± 0.5 5.7 ± 0.6 

Non functionalized 

–  =  10.5 Å 
6.0 ± 0.6 6.0 ± 0.6 

Non functionalized 

–  =  7.5 Å 
3.9 ± 0.4 3.9 ± 0.4 

6 COO- 6.3 ± 0.7 7.0 ± 0.8 

6 NH3
+ 6.0 ± 0.5 5.9 ± 0.5 

6 OH 5.6 ± 0.5  5.6 ± 0.5  

 

Table 6-3 Hydration number for one Cl- ion in the bulk and at the pore center in all the 

systems considered. Results obtained at 0.025 M and 0.25 M concentrations are 

compared. 

 0.025 M 0.25 M 

bulk 7.2 ± 0.9 6.9 ± 0.6 

Non functionalized 

–  =  14.5 Å 
6.9 ± 0.8 6.8 ± 0.9 

Non functionalized 

–  =  10.5 Å 
6.5 ± 0.8 6.3 ± 0.8 

Non functionalized 

–  =  7.5 Å 
5.4 ± 0.6 5.4 ± 0.7 

6 COO- 6.4 ± 0.6  4.9 ± 0.9  

6 NH3
+ 6.8 ± 0.7  7.0 ± 0.7  

6 OH 4.9 ± 0.8  4.8 ± 0.9  
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Figure 6-22 Coordination number for Na+ (left) and Cl- (right) as a function of the 

vertical distance from functionalized pores. Results are shown at infinite dilution (0.025 

M, top panels), and at 0.25 M (bottom) NaCl concentration. Pores functionalized with 

COO- (red), NH3
+ (black), and OH groups (green) of diameters 10.0, 11.0, and 7.5 Å 

respectively are considered. Lines are guides to the eye. 

 

When the pores are functionalized, we observe that the coordination number varies as a 

function of ion-pore distance and ionic concentration. The results are shown in Fig. 6.22 

for Na+ (left) and Cl- (right) ions. The results for Na+ ions show that the hydration 

number does not change substantially as the ions approach the pores, although we found 

that when the ion is at the center of the pore functionalized with COO- groups it can be 

surrounded by ~7 water molecules (due to the overlap of the hydration shells of the Na+ 

ion at the center and that of the accumulated Na+ ions near the pore). The results for Cl- 
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ions (right panels) show more pronounced changes as a function of the type of 

functional group. The Cl- ion is surrounded by fewer water molecules as it enters the 

COO- functionalized pore (~ 5.0 on an average at the center of the pore). However, this 

result holds at moderate NaCl concentration (bottom right panel), but not at low NaCl 

concentration (top right panel). This is because at moderate concentration, we observed 

that some Na+ accumulate near the pore functionalized with COO- groups as shown in 

Fig. 6.12. This suggests that ion-ion correlations near the pore center are responsible for 

the lower coordination number of Cl- ion at the pore center at moderate NaCl 

concentration, rather than steric effects between the ion and the pore. When Cl- ions 

approach the pore functionalized with NH3
+ groups, the coordination number does not 

change substantially. Even though Cl- ions accumulate near this pore, they are far away 

from the center of the pore. So they do not affect the coordination number of Cl- ion at 

the center. When we consider the pores functionalized with OH groups, our results 

show a pronounced decrease in the coordination number as the ion approaches the pore 

center, with only ~ 5.0 water molecules hydrating the ion when it is at the pore center.  

This is because of the smaller size of the OH pore (7.5 Å). It is likely that this 

pronounced dehydration, which occurs to similar extents both at low and moderate 

NaCl concentration, is responsible for the effectiveness of pores functionalized with OH 

groups at repelling Cl- ions. 
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Figure 6-23 Top panel: top (left) and lateral (right) views of the nanotube membrane 

comprised of 12 nanotubes. One of the nanotube ends is functionalized with 6 COO- 

groups. Middle panel: top view of the nanotube pores functionalized with 6 COO- (Ø = 

10.5 Å) (left) and 6 NH3
+ (Ø = 11.5 Å) (right). Bottom panel: top view of the GS pores 

functionalized with 6 COO- (Ø = 10.0 Å) (left) and 6 NH3
+ (Ø = 11.0 Å) (right). The 

color code is the same as that used in Figure 6.1.   
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Figure 6-24 One-dimensional PMF for ion translocation through carbon nanotube 

(black) and GS (red) pores. Results are shown for Na+ (left) and Cl- (right) ions passage 

through pores functionalized with COO- and NH3
+ groups. The ions are pulled from the 

bulk (right) across the membrane (left). The GS pore is centered at z = 0 Å. The 

nanotube stretches from z = 0 to z = -13 Å. The functional groups are grafted at z = 0 Å 

on the nanotube. 

 

We compared the results presented here to those obtained for CNT,163 functionalized 

with the same type of group. We modeled functionalized CNT implementing the model 

proposed by Zhu and Schulten.277 We considered 12 armchair type nanotubes, each 12.2 

Å in diameter (measured between carbon centers) and 13 Å long. These tubes were 

packed hexagonally to yield a 2-D membrane. In Fig. 6.23 we show a schematic 

representation of the nanotube membrane used in this study. Periodic boundary 

conditions were employed and the membrane was solvated by ~ 20 Å of aqueous 0.25 

M NaCl solution on either side. The entrance of one nanotube was functionalized with 

six COO- and NH3
+ groups, evenly distributed along the pore rim. We then calculated 

the PMF for both Na+ and Cl- ions, following the procedures described in the Methods 

section. In Fig. 6.24 we report the PMF results for Na+ (left) and Cl- (right) ions across 

functionalized GS and CNT pores. In the case of CNT the functional groups are grafted 

at the pore entrance located at z = 0 Å (the nanotubes extend along the z direction, from 
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z = 0 to z = -13 Å). The comparison suggests that when the pores are functionalized 

with NH3
+ groups CNT provide a steeper PMF barrier to Na+ diffusion than GS 

membranes do. On the contrary, when the pores are functionalized with COO- groups, 

GS membranes provide higher PMF barriers to Cl- passage than CNT do. These results 

suggest that not only pore size and functional groups are important, but also the 

geometry by which the functional groups are exposed to the aqueous solution. 

6.4 Conclusions 

In this study, the free energy barrier experienced by water and NaCl ions as they diffuse 

through pores carved out of a graphene sheet has been quantified by means of molecular 

dynamics simulations. For the case of pristine, non-functionalized pores, we observed 

that the diameter of the pore has the largest impact on determining the free energy 

profiles (in general, the narrower the pores, the higher the free energy barrier, although 

deviations from this general rule have been observed). When the narrow pores were 

functionalized with charged groups (-COO- or NH3
+), the co-ions (Cl- and Na+, 

respectively) encountered large free energy barriers, because of electrostatic but also of 

steric effects. However, as the bulk ion concentration increases from 0.025 to 0.25 M, 

screening effects reduce the free energy barriers. Our results suggest that 

functionalizing the pores with –OH groups might be a promising strategy, as these pores 

yield rather strong free energy barriers for Cl- at both low and moderate ionic strengths. 

Detailed analysis of the simulation results suggests that a combination of electrostatic, 

steric, and hydration effects determines the performance of membranes for water 
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desalination. Better understanding and controlling such effects may lead to 

technological advancements. 
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7 Recent Trends in Graphene Research 

This section has a discussion on the recent trends in the field of graphene related to my 

research. 

 

Graphene-based Nanocomposites 

Several studies have been conducted in the past year to estimate the thermal 

conductivity of nanocomposites using graphene as a filler material. For instance Liu et 

al.278 investigated the thermal boundary conductance of graphene-octane interface in the 

direction parallel and perpendicular to the graphene using non-equilibrium MD 

simulations. For a single-layer graphene immersed in liquid octane, they found that the 

thermal boundary conductance in the direction parallel to the graphene is 150 

MW/m2K, while in the direction perpendicular to the graphene is 5 MW/m2K. Similarly 

for multilayer graphene/epoxy nanocomposites, Li et al.237 observed that the ratio of 

effective thermal conductivity of the nanocomposite to the thermal conductivity of 

epoxy in the direction parallel to the graphene sheets (166.7) is greater than that in the 

direction perpendicular to the graphene sheets (37.52). These results are consistent with 

our results of thermal conductivity in graphene-octane nanocomposite where the ratio of 

effective thermal conductivity of the nanocomposite to the thermal conductivity of 

octane in the direction parallel to the graphene (400) is greater than that in the direction 

perpendicular to the graphene (1.0). Ding et al.279 conducted experiments to calculate 

the thermal conductivity of polyamide-6 (PA6)/graphene nanocomposites when the 

graphene sheets are functionalized with PA6 and found that as the length of the PA6 

chains grafted to graphene increases the thermal conductivity of the PA6/graphene 
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nanocomposite decreases. This result is in good agreement with a previous simulation 

study by Alghemandi et al.253 which demonstrates that shorter PA6 chains are more 

effective in reducing the interfacial thermal resistance and improving the thermal 

conductivity of PA6/graphene nanocomposites. 

The effective thermal conductivities of various graphene-based nanocomposites are 

summarized in Table 7-1. From the Table, it is evident that the addition of graphene 

enhances the thermal conductivity of the matrix material tremendously. For example, 

Choi et al.280 prepared adhesive nanocomposites using graphene-encapsulated poly 

(methyl methacrylate) micro particles and found that the thermal conductivity of the 

resulting nanocomposites is 200% higher than that of simple blend of poly (methyl 

methacrylate) and graphene. Pu et al.236 measured the thermal conductivity of silica-

coated graphene (S-graphene)/epoxy nanocomposites and found that the addition of 8.0 

wt% S-graphene enhances the thermal conductivity by 78% compared to that of neat 

epoxy. Tsai et al.281 demonstrated that the addition of 1.0 wt% of glycidyl methacrylate-

grafted graphene (g-TrG) and 50% functionalized boron nitride (f-BN) to polyimide 

(PI) increased the thermal conductivity of the resulting PI/f-BN-50/g-TrG-1 

nanocomposite as high as 16 times compared to that of pure polyimide. Inuwa et al.282 

demonstrated that addition of 5.98 wt% of graphite nanoplatelets (GNP) to polyethylene 

terephthalate (PET)/polypropylene (PP) blend resulted in 80% increase in thermal 

conductivity of the reinforced PET/PP/GNP nanocomposites. Overall these results will 

be helpful for the preparation of strong, lightweight nanocomposites for thermal 

management applications. 
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 Table 7-1. Effective Thermal Conductivity of Graphene-based Nanocomposites 

Filler – Matrix  Method 
Composition 

of Filler 
Keff/Km Authors 

Silica coated 

functionalized 

graphene – epoxy  

Modified 

Transient 

Plane Source 

8.0 wt% 1.72 Pu et al.236  

Multilayer graphene 

(MLG) – epoxy  

DRL-III 

Thermal 

Conductivity 

Tester 

11.8 wt% 

Parallel – 

166.70 

Perpendicular 

– 37.52 

Li et al.237  

Graphene oxide 

(GO)/functionalized 

boron nitride – 

polyimide 

CL-TIM 

Thermal 

Conductivity 

Tester 

1.0 wt% 16.00 Tsai et al.281 

Ionic liquid modified 

graphene – 

polyurethane  

Transient 

Plane Source  
0.6 wt% 1.34 Ma et al.239  

Graphene – stearic 

acid 

Hot Disk 

Thermal 

Analyzer 

5.0 wt% 2.07 Li et al.251  

Thermally reduced 

GO – n-

eicosane/silica 

Hot-wire 1.0 wt% 2.93 Wang et al.252  

MLG – paraffin  
Transient 

Plane Source 
20.0 vol% 28.00 

Warzoha et 

al.247  

 

 

Graphene-based Desalination Membranes 

In the last one year, several studies have been performed on the possible use of 

graphene as separation membranes. For example, a review article by Huang et al.283 

discusses various applications of GO membranes in gas separation, ion-selectivity and 

small molecules sieving. Choi et al.284 demonstrated that the resistance to fouling and 

chlorine-induced degradation of polyamide (PA) thin-film composite (TFC) membranes 

can be improved by coating the surface of PA-TFC membranes with oppositely charged 



149 

graphene oxide (GO) nanosheets via layer-by-layer deposition. They also found that the 

coated GO layer acts as a chlorine barrier for the underlying PA structure, thus 

enhancing the salt rejection. Cohen-Tanugi et al.285 have shown that the water 

permeability of nanoporous graphene membranes is high even at low pressures (< 100 

bars) using MD simulations. The water flux through these membranes is found to be 6.0 

l/h-bar per pore assuming a nanopore density of 1.7 × 1013 cm-2. Gahlot et al.286 

prepared nanocomposite ion-exchange membranes comprising of graphene oxide (GO) 

and sulfonated polyethersulfone (SPES) and evaluated the desalination performance of 

the membranes by calculating ionic flux, power consumption and current efficiency 

during salt removal. They found that the addition of 10% GO to the nanocomposite 

membranes enhances the ionic flux and current efficiency by 19% and 12% compared 

to SPES membrane, while the power consumption decreases by 20%. Gai et al.287 used 

MD simulations to study the transport properties across functionalized single layer 

graphene nanopores as forward osmosis membranes. The graphene pores considered in 

this work were fluorinated porous graphene (GF) and nitriding porous graphene (GN). 

They found that the pore size affects the water-flux and salt rejection through these 

membranes i.e, when the pore diameters of the GF and GN membranes were less than 

11.7 Å and 13.3 Å, no salt ions passed through these membranes. Using the GF 

membrane with a pore diameter of 11.7 Å, Gai et al.287 observed that the water flux is 

28.1 L/cm2-h, which is about 1.8 × 104 times higher than that of the commercial CTA 

membrane. Liu et al.288 studied the influence of size, shape and density of the nanopore 

on the mechanical properties of nanoporous graphene membrane. The results indicate 

that the strength of the nanopore decreases as the size and porosity of the nanopore 
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increases. However the nanopore with a blunt tip perpendicular to the load direction has 

the highest strength. Nicolai et al.289 studied the water desalination performance of 

graphene oxide framework (GOF) membranes using MD simulations. They have shown 

that GOF membranes offer 100% salt rejection and the water permeability is two orders 

of magnitude higher than exiting reverse osmosis membranes under the same conditions 

of applied pressure (ΔP ~ 10 MPa) and thickness of membrane (~ 100 nm). O’Hern et 

al.290 reported selective ion transport through nanoporous single-layer graphene 

membranes obtained through ion bombardment and subsequent oxidative etching into 

graphene pores. Transport measurements through these pores indicated that the pores 

were cation-selective at short oxidation times due to electrostatic repulsion from the 

negatively charged functional groups grafted to the pore edges. Overall these results 

suggest that highly selective nanopores can be prepared from graphene making use of 

its high mechanical strength, high aspect ratio, and its ability to be functionalized.  
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8 Conclusions and Future Work 

Graphene sheets belong to an interesting class of new materials that could be used to 

enhance the properties of polymer nanocomposites. Recent technological advances are 

promising towards the production of large quantities of graphene sheets. Our simulation 

results, in some cases supported by experimental observations, suggest that the 

agglomeration of graphene sheets within organic matrixes can possibly be prevented by 

appropriately functionalizing the graphene sheets. This functionalization may be useful 

in abating the barriers typically encountered by heat when it flows from one inclusion to 

the surrounding organic matrix. We have also studied the Kapitza resistance between 

GS in vacuum and in octane and estimate that the GS-GS Kapitza resistance is ~ 

6.5×10-8 Km2W-1 when three GS are in octane and ~ 7.7×10-8 Km2W-1 when the GS are 

in vacuum. These results suggest significantly lower Kapitza resistances for the GS-GS 

interface than those reported at the CNT-CNT interface. Thus, based on our 

calculations, it is possible that, by inducing the appearance of nematic phases within 

graphene sheets – based nanocomposites, materials with anisotropic properties such as 

thermal conductivity are obtained. 

 

For desalination application the potential barrier for water and ions to pass through the 

GS membranes is studied by means of molecular dynamics simulations. The results 

indicate that effective ion exclusion can only be achieved using non-functionalized 

(pristine) pores of diameter ~ 7.5 Å, while the ions can easily penetrate pristine pores of 

diameter ~ 10.5 and 14.5 Å. Carboxyl functional groups can enhance ion exclusion for 

all pores considered, but the effect becomes less pronounced as both the ion 
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concentration and the pore diameter increase. When compared to a carbon nanotube 

(CNT) of similar pore diameter, our results suggest that GS pores functionalized with 

COO- groups are more effective in excluding Cl- ions from passing through the 

membrane. Our results suggest that narrow graphene pores functionalized with 

hydroxyl groups remain effective at excluding Cl- ions even at moderate solution ionic 

strength. 

 

Graphene is currently not used in any commercial applications. For graphene to become 

commercially viable, it is important to assess the impacts of GS-based materials on 

human health and environment. A review article by Arvidsson et al.238 discusses the 

potential environmental and health risks of graphene. The results from this study 

indicate that graphene is toxic to human cells. So emissions of graphene should be 

studied for its application in nanocomposites. Also, graphene research should be 

focused on developing greener ways to produce GS-based composites such as ceramic 

reinforced composites that are highly stable and recyclable.  
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10 Appendix  

10.1 Umbrella Sampling Simulations 

Umbrella sampling technique uses a constraining potential, usually a harmonic 

potential, to constrain the system along dimension of interest, especially around the high 

energy barrier. Constraining potential allows enhanced sampling along the dimension of 

interest and specifically around the region of high energy barrier. Number of such 

biased sampling windows is obtained from multiple simulations. In each simulation the 

molecule of interest (in this study the ion) is constrained at a particular position, and this 

position is changed from simulation to simulation to sample all phase space. The 

resulting biased probability density function is solved self-consistently using WHAM 

analysis method for free energy and unbiased probability density function. The results 

shown here are calculated from 40 simulations of 4 ns each resulting in total simulation 

time of 160 ns. In each simulation the ion (Na+ or Cl-) has been constrained at different 

distance from the GS membrane using a harmonic potential. Value of spring constant 

employed to constrain the ion in different simulations was 3.4 kcal/(mol Å2).  

In this method a small biasing potential is added to the total potential energy function. 

 

)()()( ** UrVrV 


        (7.1) 

 

where )(


rV is the total potential energy function and )(*


rV  is the modified potential 

energy function. )(* U  is constraining potential usually a harmonic potential.   is the 

dimension along which we are interested in finding the free energy profile.  
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where k is the force constant, and i is changed in every simulation to cover the region 

of phase space we are interested in. 

 

With the biasing potential the biased probability distribution is given by 
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and the unbiased probability distribution is given by 
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We can extract unbiased distribution from the biased probability distribution using  
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However, the ensemble average appearing in the denominator is not easy to obtain. 

The free energies and the unbiased probability distribution functions can be extracted 

from the simulations using the WHAM method. WHAM method involves solving the 
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equations for unbiased distribution functions and free energies consistently. The 

equations are described below. 
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where ni is the number of occurrences in that particular region in the ith  simulation, n is 

the total number of bins in each histogram. Solving the above two equations iteratively 

gives the free energy profile and unbiased probability distribution function for the 

system. 

10.2 Additional Simulation Details 

10.2.1 Selection of Timestep 

In MD simulations, the timestep used should be smaller than the fastest vibrational 

frequency of the system. Since the typical frequencies of molecular vibrations range 

from less than 1012 to approximately 1014 Hz, timesteps in the order of 1 femtosecond 

(fs) are typically chosen in MD simulations. For equilibrium MD simulations in 

Chapters 2 and 5, a timestep of 1 fs was used. A timestep of 0.005 fs was used in 

NEMD simulations reported in Chapters 3 and 4. 
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10.2.2 Selection of Number of Processors 

To optimize the number of processors used to run each simulation, a test simulation run 

was initially performed using variable number of processors ranging from 4 to 100 for 

10,000 timesteps. Then by looking at the time required to complete 10,000 timesteps as 

a function of number of processors used, the optimum number of processors is chosen. 

An example of one such simulation from Chapter 6 is provided below.      

System description: The system consists of a graphene membrane surrounded by 20 Å 

of SPC/E water on both sides with Na+ and Cl- randomly placed only on one side to 

both neutralize the system and yield a net concentration of 0.25M. The modeled 

graphene has a chemically modified pore in its center with an effective diameter of ~10 

Å. The carbon atoms of the graphene were modeled as LJ spheres and are kept rigid 

during the simulation. The rim of the pore is functionalized with 6 amine (NH3
+) cations 

using the OPLS all atom force field.  

Simulation details: The simulation was carried out at 300K in the NVT ensemble with 

a timestep of 1 fs. The system consists of 15000 atoms.  

Performance Analysis: In the graph below we report the GFLOPS (Giga Floating-

point Operations Per Second) to complete 10,000 timesteps as a function of number of 

processing cores. From the figure, we can see that 32 cores provides the optimal 

performance. 
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