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Abstract 

Motivated by recent high-resolution observations of small-scale 

atmospheric vortices along near-surface boundaries, this study presents a series 

of simulations that attempt to replicate the dynamics of the dryline and 

surrounding boundary layer with special emphasis on misocyclones.  The first 

simulation was a real data case, initialized and forced through time-dependent 

lateral boundary conditions via analyses of temperature, moisture, and 

momentum from the 22 May 2002 IHOP dataset. The second series of 

simulations were barotropic runs, initialized with a north-south oriented constant 

vorticity shear zone and north-south periodic boundary conditions.  The third 

series of simulations were baroclinic, where the shear zone also contained and 

east-west temperature gradient.  The barotropic and baroclinic simulations had 

varying magnitudes of shear and shear zone widths (corresponding to differing 

initial vorticity values) across the runs.  Additionally, several barotropic 

simulations were rerun with moisture included to assess preferred could 

formation regions.  

The real data simulation produced several misocyclones with 

characteristics consistent with those observed along near-surface boundaries in 

the atmosphere.  Several of these misocyclones also had features resembling 

those observed in many laboratory studies and other numerical studies.  Many of 

these features were also found in the barotropic simulations (i.e. instabilities 

developed into elliptical cores that precess, contain pressure perturbations in 

their centers, and evolve with cores connected by vorticity braids).  To assess 
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the instability mechanism, the results were compared to linear theory.  Excellent 

agreement was found between predictions from linear theory in terms of 

wavenumber of maximum growth as a function of shear zone width and growth 

rate as a function of shear zone vorticity, suggesting to a very good first 

approximation, horizontal shearing instability (HSI) is responsible for the 

growth of initial small perturbations.  It was also found that predictions of linear 

theory tend to extend well into the nonlinear regime.  The baroclinic simulations 

were more complicated and allowed for tilting and stretching of vorticity not 

seen in the barotropic simulations.  As the shear zones contract due to 

frontogenesis, vorticity increases, thus increasing the growth rates and the 

wavenumber of maximum growth.  An attempt was made to model the 

contraction and apply a “modified linear theory” to the results, by allowing 

linear theory to have a time-varying shear zone width.  This modified model 

provided excellent agreement with the simulated results in terms of growth rate 

and wavenumber of maximum growth. 

Finally, an attempt was made to assess preferred regions of cumulus 

formation by including moisture in the real data case and in several barotropic 

simulations.  It was found that maximum updrafts and simulated cumuli tend to 

form along the periphery of cores and/or along the braided regions adjacent to 

the cores.  Due to the important modulating effect of misocyclone development 

via HSI and subsequent moisture transport, cumulus spacing and size/depth was 

also dependent on the shear zone width and vorticity. 
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Chapter 1 

Introduction 
1.1. MOTIVATION 

Coherent vortices are commonly observed features of natural fluid flows.  In 

the atmosphere, vortices have been observed across wide-ranging scales.  The 

largest vortices are on the order of 1000 km in horizontal dimension (i.e., extra-

tropical cyclones and hurricanes), while the smallest vortices are on the order of 10 

m (i.e., tornado suction vortices and dust devils). In addition, even smaller fluid 

vortices (on the order of a few mm) have been observed during laboratory 

experiments. There appears to be a relationship between the size of the vortex and 

the duration if its lifecycle (e.g., Fujita 1981).  For example, hurricanes and extra-

tropical cyclones may last from several days to more than a week, whereas dust 

devils may only last a few minutes.  Even smaller scale vortices associated with 

boundary layer (BL) turbulence may last only a few seconds.  This is not too 

surprising, as dissipating effects of viscosity (given essentially the same fluid) 

should be more efficient as the length scale decreases.  Although there have been a 

plethora of observations of atmospheric vortices across the scales, the mechanisms 

by which vortices form and are maintained within a fluid initially void of vortices is 

not well understood on the smaller scales. 

The environment in which vortices initiate, grow, and decay will modulate 

or even dictate the mechanisms by which these processes occur.  For example, the 

environment in which vortices form may be characterized by the presence or 

absence of horizontal virtual temperature gradients (i.e., either baroclinic or 

barotropic) and also may have varying degrees of thermal stratification.  The basic 

flow in which vortices eventually develop may contain differing amounts of pre-
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existing vorticity that is modulated by shear zones possessing differing widths or 

magnitudes of shear. 

 The present study is primarily focused on identifying the hypothesized 

horizontal shearing instability mechanism (HSI) from which small-scale vortices 

form and understanding the dynamics that govern their growth and decay, with 

applications to small-scale atmospheric vortices and their effect on sensible weather.  

Specifically, the present study is focused on vortices that form along a surface-based 

interface (i.e., "boundary") that separates fluids with two different velocities.  This 

interface may take the form of a discontinuity (vortex sheet) or a zone of finite 

width (shear layer).  Both barotropic and baroclinic cases will be examined.  In 

contrast with the case of larger atmospheric vortices, the present study will 

subsequently neglect the Coriolis force since only small-scale (i.e., ~1-4 km 

horizontal scales) vortices will be examined. 

 1.2. MISOCYCLONE OBSERVATIONS 

High-resolution observations of the planetary BL have revealed the presence 

of small-scale misovortices (i.e., ~1-4 km in width) along various surface-based 

boundaries (Crook et al. 1991; Atkins et al. 1995; Pietrycha and Rasmussen 2004; 

Kawashima and Fujiyoshi 2005; Arnott et al. 2006; Murphey et al. 2006; Marquis et 

al. 2007; Buban et al. 2007).  Vortices having a core circulation diameter between 

40 m and 4 km are termed “misocyclones” (Fujita 1981, Wakimoto and Wilson 

1989).  Recent field observations have demonstrated that misocyclones on this scale 

are characteristically coherent structures (e.g., Marquis et al 2007, Buban et al 2007) 

that persist for upwards of 30 minutes or longer and remain attached to the near-

surface boundaries within which they form and evolve. 

Several studies have hypothesized that these misocyclones may assist 

convection initiation (CI) by rearranging the moisture and convergence fields 
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(Pietrycha and Rasmussen 2004; Buban et al. 2007; Lee et al. 2000; Kanak 2008).  

Other studies have suggested that misocyclones may be associated with non-

supercell tornadogenesis by providing a pre-existing source of vertical vorticity that 

convective updrafts can subsequently intensify via stretching (Carbone 1982, 1983; 

Wakimoto and Wilson 1989; Wakimoto and Atkins 1996; Lee and Wilhelmson 

1997a,b; Wakimoto et al. 1998; Ziegler et al. 2001).   

1.3. LABORATORY EXPERIMENTS 

Various laboratory experiments have been conducted to study the instability 

of fluids in the presence of parallel or near-parallel shear.  These studies include 

both stratified and unstratified fluids.  Generally, a device is used to generate and 

bring into juxtaposition two fluid streams with differing velocities.  By injecting 

dyes or by using fluids with differing light-scattering properties, the behavior of the 

resulting flow can be visualized (e.g., typical experimental apparatus design as 

described by Winant and Browand, 1974). The initially laminar flow eventually 

succumbs to instability which subsequently amplifies and moves downstream.   

For example, Sato (1959) obtained measurements from wind tunnel 

experiments approximating a laminar shear layer between two parallel streams.  It 

was found that the wave frequency of the initial (i.e., "natural" or unforced) growth 

in the shear layer coincided with numerical calculations of Lesson and Fox (1955) 

for the wave frequency of maximum amplification.  Wind tunnel measurements of 

Browand (1966) were in good agreement with the wave speed and frequency of the 

maximum amplification and spatial growth rate as calculated by Michalke (1965b) 

for the case of a hyperbolic tangent velocity profile.  Winant and Browand (1974) 

found that unstable waves grow and the fluid is observed to roll up into discrete 

vortices after two streams of fluid of different velocities are brought together.  Scotti 

and Corcos (1972) carried out an experiment on a statically stable free shear layer, 
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where two uniform streams of air were brought together in a wind tunnel.  They 

found unstable modes developing for Richardson number less than 0.25, as 

predicted theoretically by Miles (1961).  Scotti and Corcos (1972) also calculated 

growth rates for various wavenumbers and Richardson numbers, and their results 

compared favorably with the numerical results for both the hyperbolic tangent and 

error function velocity profiles as obtained by Hazel (1972).  Wang (1975) 

expanded upon the study by Scotti and Corcos (1972) to investigate the stability 

boundaries of a free shear layer using two streams of salt water with larger 

Richardson numbers, and found results also consistent with Hazel (1972).  Thorpe 

(1971) used a long thin tube to produce a stratified free shear flow via vertical 

tilting.   His experimentally derived growth rates matched those predicted assuming 

an error function velocity profile.   

1.4. NUMERICAL RESULTS 

Many studies have been conducted to numerically approximate the stability 

characteristics of parallel free shear flows.  A constant vorticity layer can be 

approximated by a vortex sheet in the limiting case of small wavenumbers (i.e., 

large wavelengths).  The Kelvin-Helmholtz instability of an infinite vortex sheet has 

been numerically treated by Rosenhead (1931) with the inclusion of a nonlinear 

component.  His numerical method approximates the vortex sheet with a series of 

discrete point vortices.  Each point vortex then has a velocity potential and the 

position of each point vortex at a subsequent time is governed by the collective 

velocity potential of all other vortices.  The step-by step integration leads to new 

positions of the point vortices, and the new “vortex sheet” position is formed by 

connecting these point vortices by a curve.  It is found that the initial instability 

grows linearly, with subsequent growth due to a second order nonlinear term, 

eventually leading to a roll-up of the vortex sheet into discrete vortices. 
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Pozrikidis and Higdon (1985) have considered finite vortex layers consisting 

of constant vorticity to study the growth of periodic disturbances.  They employ a 

contour dynamics procedure (CD) wherein contours of vortex regions are followed 

in time.  Since there is a velocity potential associated with the rotational fluid, the 

velocity at any point can be evaluated by integrating over the vortex region. Using a 

finite number of marker points, the velocities are calculated and the points marched 

forward in time to give the evolution of the vorticity contours.  Their results show 

that the growth rates are a function of the shear layer width (that in turn is defined as 

a constant times wavenumber) and compare well with predictions based on linear 

theory.  Guha et al. (2013) applied the CD technique and a direct numerical 

simulation (DNS) to a piecewise linear shear layer and found that both the CD and 

DNS procedures agreed with linear theory. 

Drazin and Howard (1962) derived general stability criteria for inviscid 

unbounded parallel flow.  Their method, for fixed phase speed (c), was to seek 

asymptotic solutions to Rayleigh’s equation by expansion into a power series in 

wavenumber (α). The dispersion relations for the piecewise linear shear and 

rectangular jet profiles were calculated, with results consistent with linear theory. 

The approximations were then used to calculate growth rates for the cases of tanh 

and sech2 velocity profiles using the first 2 terms and first 3 terms of their 

expansions. 

Hazel (1972) numerically computed stability characteristics for both the tanh 

and error function velocity profiles for various Richardson numbers, using 2 

different computer algorithms.  Their first method involved fixing α and J 

(Richardson number) and calculating c by integrating inward from the boundaries, 

then applying matching conditions at the origin.  Their second method fixes c = 0, 

then calculates α and J.   In the homogeneous case (Ri = 0), their results compare 
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well with the experimental results of Scotti (1968). 

The numerical calculations for various free shear layers (e.g. Lesson 1950; 

Esch 1957; Betchov and Szweczyk 1963) have shown that the neutral stability curve 

asymptotically approaches the values determined from inviscid linear theory at large 

Reynolds numbers.  Similar results have been obtained by Tatsumi and Kakutani 

(1958) who calculate results for a sech2 plane jet. Experiments have also shown that 

for large Reynolds numbers, the behavior of free shear layers is not appreciably 

affected by viscosity (e.g. Sato 1960; Schade and Michalke 1962; Michalke and 

Wille 1965). 

The experimental results of Sato (1959, hereafter referred to as "S59") 

confirm the theoretical result for the wavelength of maximum amplification.  S59 

also finds differences in the amplitude distribution of the most-unstable wave as 

well as a phase reversal in a region far removed from the critical layer.  In contrast, 

linear theory predicts a phase reversal at the critical layer.  This discrepancy has 

subsequently been traced to a comparison of spatially growing waves, with linear 

theory for temporally growing waves.  S59 transforms the temporal growth rate into 

a spatial growth rate using the wave phase velocity.  It has later been determined 

that this transformation is not valid, and new calculations have been performed for 

the spatial instability case (e.g. Gaster 1965; Michalke 1965b).  In the case of 

temporally growing waves, the wavenumber is real and the phase speed is complex, 

whereas in the spatially growing case the phase speed is real and the wavenumber is 

complex.  In contrast to the latter investigations, the present study will examine the 

temporal instability, as the along-stream boundary conditions are periodic and the 

instabilities grow in time. 
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Chapter 2 

Linear Theory 
2.1.  GOVERNING EQUATIONS   

The present study of horizontal shearing instability in relation to observed 

misovortex development commends an introductory review of the linear theory for 

the initial growth of infinitesimal disturbances in parallel shear flows.  Early 

analysis of this problem is attributed to Rayleigh (1880).  To complement the 

present review of linear theory, a rederivation of the classical Rayleigh problem is 

presented in Appendix A. 

To facilitate analysis of the stability of parallel shear flows, it is typically 

assumed that the flow is inviscid and incompressible (e.g., Drazin and Reid 1981).  

Assuming the Boussinesq approximation and neglecting viscous terms, the 

equations of motion take the form 
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where u, v, and w, are the x-, y-, and z- component velocities, p is the pressure, ρ is 

the density, g is the gravitational acceleration, and ρ0  is a constant reference density. 

 The Boussinesq continuity equation is written as 

,           (2.4) 
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nonhydrostatic momentum and fluid temperature-density conservation) as assumed 

in equations. (2.1)-(2.5). 

2.2. LINEARIZATION OF THE GOVERNING EQUATIONS 

With the additional assumptions that the base state zonal flow, pressure, and 

density are functions of z only, it follows that , , ! = !(z)  and 

𝑉 =𝑊 = 0.  The governing equations are expanded by assuming that a given 

variable is the sum of the base state and a small perturbation value.  For example, u 

and p are expanded as and  
respectively, where base state values are capitalized 

and perturbation quantities are primed (for density, the base state is noted with an 

overbar).  .  Substituting expanded variables into equations (2.1) – (2.5) and 

neglecting terms involving products of perturbation quantities, there follows 

,          (2.6) 

,           (2.7) 

,           (2.8) 
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which express the linearized Boussinesq, inviscid equations of motion, mass 

continuity, and density conservation. 

2.3. NORMAL MODE ANALYSIS OF THE LINEARIZED EQUATIONS 

Since the linearized equations all have coefficients that are only functions of 

z, all variables can be separated into a height-dependent part and independent 

normal modes that are dependent on x, y, and t.  For example we can write: 

, , etc.        (2.11) 
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Here it is assumed that the physical quantity is represented by the real part of each 

variable expression, e.g.,

!u = Re(û)cos(kx + !y " kcrt)" Im(û)sin(kx + !y " kcrt)[ ]ekcit .  Since cr is the real 

part of the complex velocity while ci is the imaginary part of the complex velocity, 

the normal mode solutions thus represent travelling waves with a phase velocity of 

cr that grow in proportion to .  If  kci < 0, the wave decays exponentially and is 

stable. If kci > 0, the wave grows exponentially and is unstable. 

Taking the form of  (2.11) and inserting into (2.6) – (2.10) yields 
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!ikcv̂E +Uikv̂E + i! p̂

"0
E = 0  ,       (2.13) 

!ikcŵE +UikŵE + 1
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Simplifying the above, it follows that  
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Defining the new variables 

  
!k = k

2
+ ! 2( )

1

2 ,  !u = kû + ! v̂( ) / !k,  !p = !kp̂ / k,  !" = !k
2" / k

2 , 

adding k multiplied by (2.17) to β multiplied by (2.18), and dividing the result by k 

yields the expression 

i !k(U ! c) !u+ dU
dz

ŵ+ i !k !p
!0

= 0 .        (2.21) 

Eq. (2.21) is the component of the linearized equations in the direction of the  

wavenumber vector, k = ki +βj.  Equations (2.19) and (2.20) can then be 

transformed as 
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g
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dz
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i !k !u+ dŵ
dz

= 0  .         (2.23) 

This is known as Squire’s transformation (Drazin and Reid 1981). 

2.4. STABILITY ANALYSIS OF TWO-DIMENSIONAL MODES 

It is readily evident that equations (2.21) – (2.23) have exactly the same 

form as equations (2.17) – (2.20) in the special case of two-dimensional wave 

motion with ! = v̂ = 0  and also that the eigenvalues c depend only on the sum of the 

squares of the wavenumber, so that k ! !k .  Therefore, the relative growth rate kci is 

greatest for some total wavenumber  !k  when ! = 0 .  In other words, k cannot 

exceed 𝑘 and 𝑘 = 𝑘 if and only if 𝛽 = 0.  The physical result is that a three-

dimensional wave propagates at some angle to the base flow, and only the 

component of the wave in the direction of the base flow contributes to wave growth.  

Since there exists a most-unstable two-dimensional mode for each three-

dimensional mode, assessing stability only requires the analysis of two-dimensional 

modes. 

The stability analysis of two-dimensional modes is facilitated by introducing 
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a streamfunction such that 

!u =
"!

"z
,   !w = #

"!

"x
,   !v = 0 . 

Inserting the streamfunction in the linearized equations and equating normal modes, 

it follows that ! (x, z, t) = "(z)eik (x!ct )  and hence û = !! and ŵ = !ik! .  Using the 

latter definitions and solving (2.16) for p̂ , there follows 

    p̂ = !
0 !U ! " (U " c) !![ ] . 

Using this result in (2.18) yields, 
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dz
and rearranging, there follows 

     
U ! c( ) ""! ! k2!#$ %& ! ""U ! +

N
2

(U ! c)
! = 0 ,       (2.24) 

which is the  Taylor-Goldstein (TG) equation (Hazel 1972; Drazin and Reid 1981; 

Carpenter et al. 2013).  The TG equation describes an eigen-problem for the 

eigenvalue c and the eigenfunction φ in terms of the arbitrary profile of U and the 

static stability N2.  The eigenvalues and eigenfunctions are generally complex.  For 

the complex phase speed, the real part cr indicates the actual phase speed of the 

disturbance, while the imaginary part ci indicates exponential growth (instability) 

for positive values and exponential decay (stability) for negative values. 

2.5. RAYLEIGH STABILITY ANALYSIS 

If the static stability is neglected (e.g., assuming constant density profiles), 

the TG equation reduces to the Rayleigh stability equation 

(U ! c)( ""! ! k2!)! ""U ! = 0 .          (2.25) 

 

Equation (2.25) together with the boundary conditions 

k! = 0 at ±!          (2.26) 
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define the basic eigenvalue problem for free shear layers. 

Rayleigh’s stability equation (2.25) with the specified boundary conditions 

(2.26) is difficult to solve in general when U is a smoothly varying function.  

However, the approximation of a smoothly varying function with a piecewise-linear 

function facilitates the solution of eqs. (2.25)-(2.26).  The resulting solutions are 

either exponential or hyperbolic functions within each piecewise-linear sub region, 

which in turn must satisfy matching conditions at the interfaces between the regions. 

If we assume that either U or has a discontinuity at some level and 

let represent the jump in f at , then the first matching 

condition can be determined as follows.  First, we rewrite our equation for pressure 

as  

       

and require that the pressure be continuous across the interface at .  Therefore,  

, 

so that the first matching condition is that  
           at  .       (2.27) 

For the second matching condition, we again take the pressure equation and divide 

by to get 

. 

If we integrate across the discontinuity from and take the limit as 

, 

         .                  (2.28) 

The right hand side of (2.28) vanishes provided either that as or if 
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matching condition becomes  

       .        (2.29) 

Given the two matching conditions, Rayleigh’s equation can be solved for a 

variety of piecewise linear profiles of U.  Since in any linear velocity profile, 

, Rayleigh’s equation reduces to .  If we ignore the continuous 

part of the spectrum resulting from the singularity when , then .  

This second order linear differential equation with a constant coefficient has a 

general solution of the form 

     . 

For the case where the piecewise linear profile has the form 

            (2.30) 

it is convenient to take the following general solution form 

 

!(z) =
Ae!k (z!b)

Be!k (z!b) +Cekz

Dekz

"

#
$$

%
$
$

(z > b
(0 < z < b)
(z < 0)

       (2.31) 

after using the boundary conditions that !! 0 at ±" . Here,  A,B,C, and D are 

constants that need to be determined.  From the first matching condition, using 

(2.31) yields 

!U A + (U " c)kA = !U B + !U Ce
kb
+ k(U " c)B " k(U " c)Ce

kb

 at z = b ,  

then using (2.30) gives 
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At z = 0 , 
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The second matching condition (2.29) at z = b gives 

A = B+Cekb          (2.34) 

and at z = 0  gives 

           Be
kb +C = D .         (2.35) 

By eliminating the four constants A, B, C, and D in  (2.32) – (2.35), the  

eigenvalue relationship between the complex phase speed c = cr + ici  and wave 

umber k may be derived.   Equations (2.32)-(2.35)  expressed in matrix form with 

the determinant set to zero, i.e.,  
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0 e
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yields the resulting expression, 

c2 = u
2

b2
(kb!1)2 ! e!2kb"# $% .        (2.36) 

The condition c2 > 0 represents two stable waves that travel in opposite 

directions.  Conversely, the condition c2 < 0  represents two stationary waves where 
one wave is unstable and the other wave is stable.   Setting (kb!1)2 ! e!2kb"# $%= 0 , we 

find that the shear layer with critical wavenumber k = 1.28
b

is only unstable for 

wavenumbers 0 < k < 1.28
b

 and stable otherwise.  Differentiating (2.32) with respect 

to k and setting the expression equal to zero yields the most-unstable wavenumber 

k ! 0.8
b

.  A plot of equation (2.36) is shown in Fig. 2.1. 



 
15 

 

 
Figure 2.1.  Normalized growth rate as a function of wavenumber as defined by eq. 
(2.36). 
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Chapter 3 

Data analysis and model description 
3.1. IHOP DATA 

Radial velocities from multiple Doppler radars were used to synthesize the 

evolving 3-D BL airflow near surface-based mesoscale boundaries observed during 

IHOP (e.g. Buban et al. 2007; Ziegler et al. 2007).  Using these wind fields, a 

Lagrangian analysis was performed to retrieve the evolving 3-D thermodynamic 

structure of the BL (Buban et al. 2007).  The Lagrangian analysis advects in situ 

observations from mobile mesonets, aircraft, and mobile soundings, as well as 

pseudo-sounding grid point data both upstream and downstream along trajectories 

computed from the radar-synthesized wind fields (Ziegler et al. 2007).  The 

Lagrangian data are then temporally and spatially weighted and objectively 

analyzed to the grid using a two-pass Barnes objective analysis scheme (Barnes 

1973).  Both the radar and Lagrangian analyses have a grid spacing of 500 m in the 

horizontal and 250 m in the vertical, with a total horizontal extent of 30 km and a 

vertical extent of 2.5 km (above which there is little or no Doppler velocity data). 

Examples of Lagrangian and multiple-Doppler wind analyses are shown in Fig. 

3.1(c, d). 

3.2. MODEL DESCRIPTION 

3.2.1. Overview 

The dryline-BL simulations in the present study are conducted using the 

Collaborative Model for Multiscale Atmospheric Simulation or COMMAS (Wicker 

and Wilhelmson 1995; Coniglio et al. 2006; Mansell et al. 2010; Buban et al. 2012, 

hereafter referred to as "B12").  COMMAS is a cloud-resolving and nonhydrostatic 

model, and it includes 5th-order advection (Wicker and Skamarock 2002) and a 1.5-  
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Figure 3.1.  Water vapor mixing ratio (color filled), horizontal wind vectors (1 km = 
20 m s-1) and vertical vorticity every 20 x 10-3 starting at ±20 x 10-3 (Left) and 3 x 
10-3 starting at ±3 x 10-3 (right), with positive values solid and negative values 
dashed. a) Simulation at 2327 UTC; b) simulation at 0012 UTC; c) Lagrangian 
analysis at 2327 UTC; d) Lagrangian analysis at 0012 UTC.  The longer dashed line 
in panel (a) locates cross-sections shown in Fig. 4.2, while the shorter dashed lines 
in panel (a) locates cross-sections shown in Fig. 6.7.  The vertical levels are at 20 m 
AGL (left) and ground level (right).  The solid and dashed black curves denote the 
horizontal component of the moist (MT) and dry (DT) trajectories shown in Fig. 6.7.  
The short-dashed and dotted white curves denote the dryline and eastern dryline 
respectively. 
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order subgrid-scale turbulence parameterization.   The lower boundary was treated 

as free-slip and the upper boundary as rigid. Since only shallow cumulus clouds are 

to be simulated, a simple Kessler warm-rain scheme was used to model the cloud 

microphysics.  The dryline-BL modeling case is hereafter referred to as the "real 

data" case or simulation, since radar and Lagrangian analyses were used to initialize 

and provide time-dependent lateral inflow boundary conditions for the simulation as 

described below.  The other two sets of simulations are the barotropic and baroclinic 

runs also described below. 

3.2.1. Model description for real data case 

Several new features were added to COMMAS to study BL circulations and 

misocyclones for the real data case (B12). Time-varying specified inflow boundary 

conditions were incorporated to allow nudging from the Lagrangian analyses. Since 

surface fluxes are important to BL structures in the dryline environment (Sun and 

Wu 1992; Ziegler et al. 1995; Ziegler et al. 1997), the model was also modified to 

include surface fluxes as calculated with a modified version of the Deardorff (1978) 

force-restore land surface/atmosphere exchange model (Peckham et al. 2004).  

Parameters of the surface physics scheme are listed in Table 1, while a comparison 

of modeled and observed surface fluxes for this case study are discussed in 

Appendix B.  A surface shortwave and longwave radiation parameterization 

(Benjamin and Carlson 1986; Peckham et al. 2004) that includes the cloud-

shadowing effect was also added. 

 The type of lateral boundary condition used is critically important to 

the model solution.  Whether in smaller domains, or where the speed of 

meteorological features is such that the advective time-scale across the domain is 

small, the impact of the boundary conditions on the solution may be comparable to 

that of the initial conditions.  As the initial conditions are advected out of the 
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domain, features introduced at the lateral boundaries and acted on by the model 

physics replace them.  It is necessary to apply the lateral inflow boundary conditions 

with a fine enough temporal and spatial resolution to introduce misoscale features of 

interest into the domain, where they may subsequently evolve according to the fully 

nonlinear physics.  For example, preliminary tests using 9-minute-interval multiple-

Doppler wind analyses applied at the boundary proved too coarse, and no 

misocyclones developed in the model interior.  Only when the 3-minute-interval 

analyses were used was the information communicated to the model interior fine 

enough for misocyclones to form.  It is also important that, in conjunction with the 

specified inflow boundary conditions, lateral outflow boundaries (where the normal 

component of the wind is exiting the domain) are wave-radiating to allow for 

features to exit the domain with minimal feedback. 

 
Parameter Value 

Surface temperature (i) 314.6 K 

Soil temperature (i) 305 K 

Soil moisture (upper layer) (i) 15 % 

Soil moisture (lower layer) (i) 25 % 

Canopy soil moisture (i) 0 % 

Albedo (c) 0.20 

Roughness length (c) 0.05 m 

Vegetation coverage (c) 90 % 

Table 1.  Parameters for the surface physics scheme.  The letter "i" corresponds to 
an initial condition ( i.e., these quantities are subsequently predicted), while "c" 
represents a constant. 

 To resolve small-scale features, the model’s horizontal grid spacing was set 

to 150 m.  This resolution was chosen to adequately resolve small-scale forcing 
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mechanisms, yet coarse enough to be compatible with the spatial Lagrangian and 

multiple-Doppler radar analysis morphologies.  In the vertical, the grid had a lowest 

layer thickness of 40 m at 20 m AGL.  The model grid spacing is smaller than the 

Lagrangian analysis grid spacing of 500 m.  Since BL structures were emphasized 

and only rather shallow cumuli were observed on 22 May, the upper boundary had a 

layer thickness of 200 m at 6 km AGL.  The 30 km x 30 km x 6 km simulation 

model grid thus contains 201 x 201 x 61 grid points.  The model was integrated with 

a time step of 2 sec. The model’s base state profiles of pressure, potential 

temperature, vapor mixing ratio, and u- and v- wind components were prescribed 

from a mobile ground-based sounding (i.e., as depicted in Fig. 3c of Buban et al. 

2007). 

The initial conditions for the dryline simulation were provided by spatially 

interpolating the radar wind synthesis and Lagrangian analysis fields corresponding 

to the initial model time onto the model grid from the surface through 2.5 km AGL.  

The horizontally homogeneous initial model fields above 2.5 km were prescribed 

from the base state sounding.  The initial pressure field was calculated by applying a 

hydrostatic balance constraint within each grid column. 

The time-dependent lateral inflow boundary conditions for the dryline-BL 

simulation were obtained by spatially and temporally interpolating the 3-minute 

interval multiple-Doppler wind fields and 9-minute interval Lagrangian analyses via 

nudging to the (fixed, ground-relative) model grid at each time step.  Above the 2.5 

km level within the lateral inflow boundary surfaces, time-invariant and horizontally 

homogeneous fields were specified from the base state.  Thus, observed fine-scale 

BL structures obtained from the radar and Lagrangian analyses were communicated 

into the model domain where they were subsequently forced by the nonlinear 

physics. 
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3.2.3. Model description for idealized simulations 

For the idealized simulations, the base-state flow and the shear zone are 

assumed to be meridionally-oriented and centered within the model domain that 

takes the form of a meridionally extensive channel.  In contrast to the real data 

dryline simulations, the idealized simulations instead assume periodic north-south 

boundary conditions and thus yield an essentially infinite-length channel. 

The idealized simulation domain was configured with a 100 m grid spacing 

in both the horizontal and vertical directions.  The domain size was 29.9 km in the 

meridional (along-stream) direction, 14.9 km in the zonal (cross-stream) direction, 

and 4 km in the vertical (i.e., 300 x 150 x 41 grid points).  As inferred from 

simulation results to be presented, the chosen grid spacing is hypothesized to 

adequately resolve commonly observed features along drylines (e.g., shear zone 

width, vertical vorticity bands and isolated vortices, updrafts) as well as the physical 

instability mechanisms leading to misovortexgenesis.  In addition, the expanded 

along-stream dimension was set up to better resolve the range of wavenumbers 

encountered in various model configurations. 

The initial conditions for the idealized simulations were produced by 

parametrically prescribing model variables.  A random v-component perturbation of 

0.01 m s-1 was also added to the initial wind field.  Additional simulations were run 

with different initial perturbations to test sensitivities to the results (Appendix C).  

The idealized simulations can be grouped into two categories, the barotropic 

simulations and the baroclinic simulations, which were both dry (i.e., no water 

vapor or cloud processes).  For the simpler barotropic simulations, the initial 

potential temperature fields were horizontally homogeneous.  The initial u- and w- 

wind components were assumed zero everywhere, while a horizontal shear in the v- 

wind component was prescribed.  More specifically, the v-component wind was 



 
22 

prescribed with a constant value on the left side of the domain, a constant shear zone 

in the center of the domain, where the v-component increases linearly across the 

zone, followed by a constant value on the right side of the domain.   This initial 

condition for the v-component corresponds to the piecewise-linear shear zone 

employed by Rayleigh (1880) and as reviewed in Chapter 2 and Appendix A.  The 

piecewise-linear shear zone configuration consists of zero vorticity outside the shear 

zone, a constant vorticity inside the shear zone, and a vorticity discontinuity on each 

lateral boundary of the shear zone. 

 

 

 

 

Figure 3.2.  Schematic setups of the barotropic (a) and baroclinic (b) simulations. 
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shear width  6 m s-1 8 m s-1 12 m s-1 16 m s-1 20 m s-1 24 m s-1 

400 m 4m6s 4m8s 4m12s 4m16s 4m20s 4m24s 

500 m 5m6s 5m8s 5m12s 5m16s 5m20s 5m24s 

600 m  6m8s 6m12s 6m16s 6m20s 6m24s 

800 m   8m12s 8m16s 8m20s 8m24s 

1000 m   10m12s 10m16s 10m20s 10m24s 

Table 2.  Acronyms for model run names as functions of shear zone width and shear 
magnitude for the various simulations.  A prefix "bt" or "bc" is added to a given 
name in the text to indicate a barotropic (bt) or baroclinic (bc) run respectively 

 

ζ  ( x 10-3 s-1) 6 m s-1 8 m s-1 12 m s-1 16 m s-1 20 m s-1 24 m s-1 

400 m 15 20 30 40 50 60 

500 m 12 16 24 32 40 48 

600 m  13.3 20 26.7 33.3 40 

800 m   15 20 25 30 

1000 m   12 16 20 24 
 

Table 3.  Magnitude of the constant vertical vorticity within the shear zone for each 
simulation. 

The v- wind component was also assumed to be constant with height.  

Therefore, the shear was purely due to the variation in north-south wind, and the 

initial vector vorticity everywhere was purely vertically oriented.  The initial setup 

is detailed schematically in Fig. 3.2.  To test the “barotropic instability mechanism” 

(Fig. 3.2a), a series of simulations were conducted by varying the width of the shear 

zone and the magnitude of the shear across the shear zone (Table 2) – thus varying 
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strength of the initial vorticity within the shear zone (Table 3). 

For the dry baroclinic simulations (Fig. 3.2b), the v- and w-components were 

prescribed as in the dry barotropic runs.  However, in the baroclinic cases, a 

horizontal potential temperature gradient was imposed within the shear zone. The 

shear parameters for each of the simulations were the same as in the barotropic 

cases. To simulate the dryline environment, a horizontal potential temperature 

difference of 0.5 K was prescribed with temperatures decreasing linearly eastward 

across the shear zone.  The horizontal potential temperature gradient was only 

imposed from the surface up to 1.5 km.  Above 1.5 km, the initial conditions were 

horizontally homogeneous in all variables except for v.  Due to the inclusion of the 

horizontal potential temperature gradient (thus also a density gradient), a non-zero 

u- component was applied between the surface and 1.5 km AGL to the west of the 

dryline to maintain the horizontal position of the density gradient near the center of 

the domain.  To counteract the intrinsic easterly density current phase speed, a 

westerly u-component was prescribed with a maximum value near the surface that 

linearly decreasing to zero at 1.5 km.  The u-component takes the form: 

U(z) =Usfc !Usfc

z

H
, 

where Usfc is the velocity at the surface, z, is the height AGL, and H is the depth of 

the cold layer (1.5 km). The theoretical density current speed of magnitude Usfc 

depends on the magnitude of the horizontal temperature gradient following the 

expression (Ziegler et al. 2010) 

    𝑈!"# = 𝑈!" = 𝑏𝑈!"# − 𝐹
(!"∆!!
!!!

!
!. 

After a short period of initial dynamical adjustment in which the boundary width 

contracts via meridionally-uniform frontogenetic forcing, the basic flow structure 

follows the schematic in Fig. 3.2b. 

The previously mentioned periodic north and south boundary conditions 
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allowed northward moving features to pass through the northern boundary and re-

enter the southern boundary to continue their evolution.  Wave-radiating boundary 

conditions were employed on the eastern and western lateral domain boundaries, 

while a free-slip boundary condition was employed at the surface.  Parameterized 

friction, surface fluxes and radiation schemes were deactivated in the idealized 

simulations, since the goal of this study was to focus attention on horizontal 

shearing instability mechanisms. 

3.3. SPECTRAL DENSITY ESTIMATION 

To compare the idealized simulations to the results of linear theory (e.g., to 

compare the theoretical most-unstable wavenumber against the fastest growing 

wavenumber in the simulations), spectral density estimation was performed on 

spatial series in the meridional (downstream) direction.  The spectral density 

estimation follows procedures described by Jenkins and Watts (1969, hereafter 

referred to as JW69). 

Spatial series of variables (e.g., u, v, ζ) were output from the model at 30 s 

intervals along the entire downstream direction at every grid point residing in the 

initial meridionally-oriented shear zone.  For example, for an initial 1000 m shear 

zone spanning NY spatial points in the y-coordinate direction of the simulation 

domain, 10 spatial series each containing NY = 300 grid points would be output for 

each variable every 30 s.  For each spatial series the following procedure was 

performed.  As verified by inspection, the time series of simulated variables in the 

shear zone were strongly forced by the constant, imposed larger-mesoscale 

background zonally-sheared meridional flow and thus did not require linear 

detrending.  The mean was computed as 

u =
1

N
u

i=1

N

! (y) , 
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which was subsequently subtracted from each data point.  For the remaining 

equations u is used as an example variable.  The variance was then computed from 

!
u

2
= E u(y)

2!" #$ =
1

N
u(y)

2

i=1

N

% . 

Next the autocovariance function was computed, which takes the form 

 

cuu(d) =
1

N
uyuy+d    0 ! d ! N "1

y=1

N"d

# , 

where cuu is the autocovariance function of variable u and d is the lag distance in the 

y-direction.  

To reduce the variance in the final spectral estimate, a lag window was 

calculated and applied to obtain the smoothed spectral estimate.  According to this 

procedure, a Tukey window was used with the weights calculated by (JW69) 

w(d) =
1

2
1+ cos

!d

M

!
"#

$
%& , 

where M is the truncation point.  The truncation point was set to NY/3.  The value 

of M controls the degree of smoothing of the spectral estimate.  Smaller values of M 

produce smoother estimates, however may introduce larger biases in the estimate.  

Larger values of M retain more (possibly spurious) variance in the spectral estimate, 

however with smaller biases. (JW69).  By trying various truncation points, it was 

concluded that the value of M = NY/3 = 100  provided the optimal spectral estimate 

via minimized bias and maximized smoothing to eliminate spurious peaks. 

To demonstrate the effect of smoothing, several lag windows with varying 

truncation points were applied to the bt5m16s case (Table 2, Fig. 3.3).  The larger 

values of M retain more amplitude in the critically-important peak of the spectrum, 

while also retaining more variance including possibly spurious sidelobes that may 

be related to the well-known Gibbs phenomenon (JW69).  The small values of M 

eliminated most of the possibly spurious variance, but also underestimated the peak 
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amplitude and introduced bias by shifting the peak amplitude to smaller 

wavenumbers. 

The smoothed spectral estimates were then computed from (JW69) 

Cuu(k) = 2cuu(0)+ 4 w(d)cuu(d)
d=1

M!1

" cos
2!dk

ny

#
$%

&
'(

   0 ) k )
ny

2
, 

where k is the wavenumber.  The smoothed spectral density estimates were then 

averaged over the shear zone in wavenumber-space. 

C
uu
(k) =

1

N
C
uui
(k)

i=1

N

!  

where N is the number of grid points across the shear zone (i.e. if the shear zone is 1 

km, N=10). The averaged smooth spectral density estimates shows how the variance 

(or amplitude) of the spatial series is distributed over wavenumber.  This variance is 

distributed over a continuous range of wavenumbers, so that on a plot of 

C
uu

(k) vs. k , the area under the curve is equal to the percentage of the variance of 

the series explained by the wavenumbers in the range of 

    C
uu

(k) to C
uu

(k + !k) . 

Note that in all spectral estimate figures, the amplitude (square root of the variance) 

was plotted. 
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Figure 3.3.  Spectral density estimates at 5 different truncation points for the 
idealized simulation case with a shear zone width of 500 m and a shear magnitude 
of 16 m s-1.  The value of the truncation point used in this study (100) corresponds 
to the magenta colored curve. 
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Chapter 4 

Case study of dryline misocyclones on 22 May 2002 
4.1. MESOSCALE DRYLINE ENVIRONMENT 

The dryline and surrounding BL were simulated by B12 within an intensive 

observing region (IOR) where data were collected on 22 May 2002 during the 

International H2O Project (IHOP).  The fixed model domain had the same 

dimensions and location as the IOR, facilitating both data assimilation and model 

validation.  The initial conditions were specified at 2242 UTC from the Lagrangian 

analysis for temperature and moisture and the multiple-Doppler radar analysis of 

horizontal velocity.  The simulations were run for 90 minutes (2242-0012 UTC) 

corresponding to the time of the first and last Lagrangian analyses.   

Both the analysis and the simulation contain a nearly north-south oriented 

dryline that vacillates initially before retrograding to the west later in the period 

(Fig. 3.1).   The modeled and observed drylines are characterized by horizontal 

confluence and a strong moisture gradient (2-3 g kg-1 km-1), as also evidenced by 

the individual mobile mesonet traverses (Buban et al. 2007).  The modeled dryline 

has a tendency to form along vortex sheet segments indicative of concentrated 

across-dryline shear of the dryline-parallel wind component. Variability in the 

moisture fields is manifest as small undulations or ripples that move northward 

along the dryline at nearly the speed of the mean BL flow.  Because the thermally 

forced BL circulations take on order 10 min to develop within the roughly 20 m s-1 

southerly flow downstream from the inflow boundaries, analysis of the fully-formed 

misoscale BL structure is valid only within about the northern two-thirds of the 

domain.  Hence, subsequent discussion of the local airflow perturbations (e.g., 

updrafts cells, misocyclones, etc.) will emphasize the portion of the domain from y 

= 10 km to 30 km. 
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The 2-D horizontal accumulation of a scalar gradient (analogous to the 

frontogenesis function for the rate of change of the potential temperature gradient), 

neglecting source, sink, and mixing terms, can be expressed in the form (Sanders 

1955; Bluestein 1993; Ziegler et al. 1995; Grasso 2000; Buban et al. 2007; B12) 

 
 𝐹 = !

∇!!
!"
!"

− !"
!"

!"
!"
− !"

!"
!"
!"

+ !"
!"

− !"
!"

!"
!"
− !"

!"
!"
!"

 ,         (3.1) 

 

where ∇!= 𝜕 𝜕𝑥 𝐢+ 𝜕 𝜕𝑦 𝐣 and the scalar s is either water vapor mixing ratio 

or virtual potential temperature in the present study.  B12 showed that the simulated 

dryline is dominated by persistent accumulation of water vapor mixing ratio 

gradients and virtual potential temperature gradients at low levels (Fig. 4.1), as also 

shown from the observations and Lagrangian analysis reported by Buban et al. 

(2007, their Fig. 17).  The quantity defined as accumulation (Saucier 1955) in the 

present study has been called frontogenesis in many previous dryline studies.  A 

degree of localized along-dryline variability, however, exists in the structure of the 

accumulation field, especially during the early parts of the simulation.  In the 

vertical, the dryline tends to have strong positive accumulation at low levels and 

negative accumulation at upper levels, consistent with convergence near the surface 

and divergence aloft as parcels exit the dryline updraft.  This vertical structure of 

persisting airflow circulation and horizontal accumulation was also analyzed by 

Buban et al. (2007) and simulated in an earlier dryline case by Ziegler et al. (1995).  

The vacillating dryline location is marked by a persistent, strong localized 

maximum of solenoidal forcing (via the horizontal vorticity equation) that collocates 

with the maximum updraft (Fig. 4.2).  The persistent updraft core located at the 

dryline manifests the upward branch of a persistent secondary circulation that is 

maintained by persistent solenoidal forcing that is evident in the mean flow (B12;  



 
31 

 

Figure 4.1.  Simulated horizontal accumulation (color filled) of water vapor mixing 
ratio (a-d) and virtual potential temperature (e-h) at 250 m AGL and 2309-0003 
UTC.  Also shown are misocyclone-relative wind vectors (1 km = 5 m s-1) 
calculated by subtracting a mean wind of 18 m s-1 at 190° from the total wind, and 
vertical vorticity every 5 x 10-3 starting at 5 x 10-3 (-5 x 10-3), with positive values 
black and negative values white.  The black dashed curves denote dryline locations. 
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see also Fig. 18 of Buban et al. 2007). The solenoidal secondary circulation assists 

in forming and maintaining the dryline by generating convergent, accumulative flow 

and vertical motion along the dryline. The solenoidal generation is a maximum at 

low levels and tilts downshear with height, as also shown in the Lagrangian analysis 

of Buban et al. (2007) and the modeling study of Ziegler et al. (1995). Wakimoto 

and Murphey (2009) analyzed the 22 May dryline on the mesoscale via dropsondes, 

and they documented the existence of a mesoscale virtual potential temperature 

gradient in the BL, which contributed via solenoidal forcing to a mesoscale 

secondary circulation with a maximum at low levels. Miao and Geerts (2007) list 

several other observed drylines that are all collocated with density gradients and 

secondary circulations. Schultz et al. (2007) discuss the relationship between the 

strength of the dryline gradient and the synoptic-scale confluence. From 2242 UTC 

through 0012 UTC, both the analysis and simulation maintain strong horizontal 

convergence and updraft speeds along the dryline, as also shown by Weiss et al. 

(2006). 

Although the strongest vertical motion tends to develop along the dryline, 

comparably intense localized cells or bands of vertical motion are also seen to the 

east and west of the dryline (Figs. 4.2-4.3).  The presence of HCRs, transverse rolls, 

and OCCs are noted to the west of the primary dryline (Fig. 4.3) resulting from 

unstable stratification via surface heating that forces a net upward sensible heat flux 

(B12).   The simulated HCRs, transverse rolls, and OCCs have a similar structure to 

those features in the Lagrangian analyses (Buban et al. 2007, their Fig 5). 

As localized updraft cells evolve, cumuli develop at times within deeper 

updrafts in the northern part of the domain (B12).  Higher-based cumuli develop 

both along a secondary dryline to the west of the primary dryline and along stronger 

plumes  a ssociated   with  HCRs  and   OCC  segments   (Fig. 4.4).      Lower-based 
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Figure 4.2.  Vertical cross-sections of the simulated solenoidal generation (color-
filled) of the along-dryline component of vorticity (x 10-6 s-2).  Also plotted are 
ground-relative wind vectors in the plane (1 km = 5 m s-1) and vertical vorticity 
every 5 x 10-3 starting at 5 x 10-3 (-5 x 10-3), with positive values black and negative 
values white.  Also shown are the locations of the dryline (DL) and a horizontal 
convective roll (HCR).  The cross-section locations are shown in Fig. 3.1. 
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Figure 4.3.  Simulated vertical velocity (color-filled) and misocyclone-relative wind 
at 500 m AGL (vectors) calculated by subtracting a mean wind of 18 m s-1 at 190° 
from the total wind, with a vector length of 1 km = 5 m s-1.  Also shown are 
contours of vertical vorticity at 5 x 10-3 intervals starting at 5 x 10-3 (-5 x 10-3), with 
positive values solid and negative values dashed.  The white dashed lines indicate 
OCCs. The dashed black curves denote the dryline locations. 
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cumuli develop to the east of the primary dryline where BL circulations have 

interacted with and crossed over the surface dryline location.  Cumuli also develop 

along and east of the dryline where updrafts associated with solenoidal forcing 

locally lift a mixture of moist and dry air within a mesoscale updraft.   As the 

simulation progresses toward early evening, the dryline retrogrades westward and 

BL convection west of the dryline weakens owing to the loss of surface heating as 

outgoing longwave radiation exceeds insolation. 

4.2. DRYLINE MISOCYCLONES 

The horizontal scale of the misocyclones on 22 May is generally about 1-3 

km in the simulations (B12), somewhat smaller than in the radar analyses.  This is 

likely a result of the grid spacing differences between the radar analyses (500 m) 

and the model (150 m).  The vortical circulations in the simulations are able to 

contract in scale via persistent convergent forcing owing to the finer grid spacing, 

allowing them to match the scales inferred from the raw single-Doppler data.  

Conversely, the radar analysis of Buban et al. (2007) employed a 1-pass Barnes 

radar data interpolation, which in combination with the relatively coarse grid 

resulted in spatial smoothing of the objectively analyzed misocyclones (e.g., Majcen 

et al. 2008). The maximum vertical vorticity within the simulated misocyclones (~ 

30 x 10-3 s-1) is also stronger than the radar-synthesized misocyclones (~10 x 10-3 s-

1), again likely owing to the difference in grid resolution and radar analysis 

smoothing. 

Observed airflow undulations and bands of concentrated v-component wind 

shear in the x-direction that coincide with the dryline are introduced at the southern 

model domain boundary via the time-dependent lateral inflow boundary conditions 

(B12).  The radar-observed flow perturbations on the southern inflow boundary are 

prescribed  from  the  input  radar  analyses  (e.g., Fig. 4.5).   In  contrast,  the  u- 
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Figure 4.4. Simulated water vapor mixing ratio (color filled) at the lowest model 
level, cloud water mixing ratio > 0.05 g kg-1 (grey shaded) at ~3.5 km AGL, and 
misocyclone-relative wind vectors at the lowest model level calculated by 
subtracting a mean wind of 18 m s-1 at 190° from the total wind, with 1 km length 
equal to 5 m s-1.  Vertical velocity is contoured at 2 m s-1 intervals starting at 1 (-1) 
m s-1 with positive (negative) values black (white) and is shown at ~3.5 km AGL. 
The black dashed curves denote the dryline location.  The black dashed line 
indicates the cross-section shown in Fig. 6.5. 
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Figure 4.5.  Vertical cross-section along the southern boundary with simulated 
vertical vorticity (color-filled x 10-3 s-1), v-component of the wind (contoured), and 
plane-parallel ground-relative wind vectors (every other vector, with 1km length = 
15 m s-1).  The black dashed curve denotes the dryline location.  This vorticity 
perturbation amplifies into misocyclone M1 in Fig. 4.6. 
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component wind shear in the y-direction that is introduced at the southern boundary 

is about half as strong as the v-component shear.  These wavelike perturbations, 

which have a horizontal length scale of about 10 km, subsequently collapse in scale 

and intensify to form misocyclones as they move downstream inside the model 

domain.  The resulting misocyclones move north-northeastward along the dryline at 

18 m s-1 (nearly the speed of the mean BL flow of 19.2 m s-1). This speed estimate 

of a misocyclone was based on the movement of its vertical vorticity core at 

approximately 3-min intervals. The standard deviation of the speeds of all simulated 

misocyclones was 1.4 m s-1, while the standard deviation of the wind speed from the 

mean BL state was 3.3 m s-1.  Although small differences exist in the structure of the 

various misocyclones, the main features common to the misocyclones can be 

presented by focusing on one particularly intense misocyclone (hereafter labeled 

“M1”). 

Growth of misocyclone M1 is illustrated in a Lagrangian, vortex-following 

sub-domain (B12), with the misocyclone-relative horizontal wind in the figures 

obtained by subtracting the misocyclone mean speed from the total wind (Fig. 4.6).  

An undulation introduced at the southern lateral boundary (Fig. 4.5) is initially 

manifest as a concentrated but elongated1 region of enhanced positive vertical 

vorticity near the surface centered on the dryline (Fig. 4.6a). The maximum vertical 

vorticity associated with the initial shear zone introduced at the southern inflow 

boundary that subsequently amplifies into M1 has a magnitude of about 10 x 10-3 s-1 

(Fig. 4.5).   Additionally, an elongated enhanced region of negative vertical vorticity 

is present along a much weaker moisture gradient in the dry air west of the dryline.    

                                                
1 The introduction of persistent, slowly evolving radar-observed shear at the inflow boundary 
coupled with strong horizontal advection produces the elongated shear bands within the model 
domain. 
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Figure 4.6.  Simulated water vapor mixing ratio (color filled), horizontal winds, and 
vertical vorticity at (a) 2312, (b) 2315, (c) 2318, and (d) 2321 on 22 May 2002.  
Horizontal misocyclone-relative wind vectors (1 km = 5 m s-1) are calculated by 
subtracting a mean wind of 18 m s-1 at 190° from the total wind.  Vertical vorticity 
is contoured every 5 x 10-3 s-1 starting at 5 x 10-3 s-1 (-5 x 10-3 s-1), with positive 
values solid and negative values dashed.  All panels and fields are at the lowest 
model level (20 m AGL). 
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Figure 4.6, continued at (e) 2324, (f) 232327, (g) 2330, and (h) 2333 on 22 May 
2002.  The dashed black lines in panel f denote cross-section locations in Figs. 4.8 
and 4.9. 
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Convergence along and north of the developing misocyclone causes the region 

between the dryline and western weak moisture gradient to contract, creating a 

stronger dryline segment (Figs. 4.6a-d).  As this occurs, the region of negative 

vertical vorticity along the western moisture gradient weakens due to a decrease in 

convergence, and the maximum vorticity within the misocyclone increases to 

around its peak value exceeding 30 x 10-3 s-1.  The vorticity within the misocyclone 

at 2321 (Fig. 4.6d) is strongest near the surface and weakens with height (Figs. 4.7g-

i).  South and west of the misocyclone, a secondary moisture gradient associated 

with an HCR extends from the misocyclone center southwest into the dry air (Fig. 

4.6d).    The developing misocyclone takes on an elliptical shape with the major axis 

initially oriented north-south, with vortex tails on the northern and southern ends. 

The misocyclonic axis precesses counterclockwise as the dryline moisture gradient 

is rotated. 

The genesis and roll-up of an elliptical vortex with vortex tails that 

subsequently precesses has been described by many studies (e.g., Goldstein 1931; 

Rosenhead 1931; Drazin and Reid 1981; Corcos and Sherman 1984; Pozrikidis and 

Higdon 1985).  The most common explanation of the roll-up process of a shear band 

lying in a vertical plane is due to nonlinear Kelvin-Helmholtz instability.  In the 

special case where density gradients are absent and the shear is in the horizontal 

plane, the term “horizontal shearing instability” is used (Rayleigh 1880; Miles and 

Howard 1964; Lee and Wilhelmson 1997).  Periodic, small-amplitude disturbances 

along either a vortex sheet or a shear layer within some optimal range of width, 

shear magnitude, and vorticity are predicted to be unstable and subject to 

exponential initial growth according to linear theory.  As nonlinear processes 

emerge, vorticity accumulates into localized elliptical cores, with the shear layer or 

vortex sheet stretched between the cores.  These cores are connected to each other 
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by vorticity “tails” or “braids”, and they rotate or precess with nearly constant 

angular velocity. The misocyclone adjusts the moisture field along the dryline as it 

moves northward, bringing higher moisture westward preceding and drier air 

eastward after vortex passage.  The wrap-up of a gradient in a scalar field by a 

vortex has been demonstrated and theoretically explained in several studies 

(Doswell 1984, 1985; Davies-Jones 1985).  

A distinctive wrapping pattern of the moisture field associates with the real 

data simulated misocyclone (B12).  As the simulated misocyclone approaches its 

mature phase or maximum vorticity, its major axis rotates more than 90° as moisture 

advects southward (i.e., relative to the vortex motion) to the west of the vortex (Fig. 

4.6e).  To the east of the misocyclone, dry air is simultaneously advected northward 

relative to the vortex motion.  This process continues as the misocyclone migrates 

northward into the wrapping moist air (Fig. 4.6f).  Eventually, moisture is wrapped 

completely around a sequestered pocket of dry air to the east of the misocyclone 

core.  As this occurs, the misocyclone develops an “ inverted-U-shaped” asymmetry 

with the highest vorticity values residing on its southwest flank (Figs. 4.6g-h).  As 

moisture wraps completely around the misocyclone center, a small region of 

negative vorticity moves northeast and strengthens just south of the strongest 

positive vorticity values on the south side of the misocyclone in association with a 

strengthening HCR (Fig. 4.6g).  As the misocyclone interacts with the HCR, the 

southern part of the misocyclone reintensifies with vertical vorticity subsequently 

approaching its earlier peak value (Fig. 4.6h). 

 The vertical vorticity of the simulated misocyclone in the real data 

case is strongest near the surface and weakens as the center tilts downshear with 

height (B12).  The strongest updrafts are initially collocated with the misocyclone 

and the dryline moisture gradient at 2321 UTC (i.e., when the vortex is farthest  
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Figure 4.7.  Simulated vertical velocity (color filled), horizontal misocyclone-
relative wind vectors (1 km = 5 m s-1) calculated by subtracting a mean wind of 18 
m s-1 at 190° from the total wind, and vertical vorticity every 5 x 10-3 starting at 5 x 
10-3 (-5 x 10-3), with positive values black and negative values white. Vortex motion 
is from south to north (i.e., bottom to top).  Heights are at 234 m AGL (left column), 
480 m AGL (center column), and 763 AGL (right column). Each row is at the same 
horizontal location. The black dashed line indicates an HCR extending to the 
southwest of the misocyclone. 
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south), with enhanced updrafts along a developing HCR extending southwest into 

the dry air (Figs. 4.7g-i). As the misocyclone reaches a mature phase (2327 UTC), 

the updrafts on both the northern dryline segment and the HCR strengthen as a 

downdraft develops within the misocyclone center (Figs. 4.7d-f).  A separate updraft 

core is located along the eastern edge of the misocyclone at 2327 UTC.  As the 

misocyclone decays by 2333 UTC, the updraft on the eastern edge of the vortex is 

rotated and relocated along the northeast portion of the misocyclone (Figs. 4.7a-c).  

The strongest updraft at 2333 UTC extends to the southwest of the misocyclone 

along the merged dryline and HCR, with only a weak updraft along the northern 

dryline segment.  The central downdraft now resides in an area of weaker vertical 

vorticity at the center of the “inverted-U-shaped” vortex, and the downdraft is 

flanked by regions of stronger vorticity on the northeast and southwest sides (Figs. 

4.7a-c).  

During the mature phase of the misocyclone, deep-layer convergence 

deepens the moist layer to the north of the vortex center (Fig. 4.8a).  The dryline 

tilts eastward with height and remains associated with enhanced vertical vorticity 

due to across-dryline horizontal shears (Fig. 4.8a).   An eastward surge of dry air to 

the south of the vortex effectively shifts the dryline eastward (Fig. 4.8c).  The 

wrapping eastern and western drylines can be seen through the center of the 

misocyclone as dry air enters the misocyclone core during the wrap-up phase (Fig. 

4.8b).  Downdrafts associated with the dryline’s secondary circulation depress the 

top of the moist BL to the northeast and southeast of the misocyclone center (Fig. 

4.8a and Fig. 4.8c). For the most part, the virtual potential temperature fields tend to 

be negatively correlated with the water vapor mixing ratio fields.  Relatively low θv 

values are collocated with higher qv values, while relatively high θv values are 

collocated  with  lower qv values   (Figs. 4.8d-f  versus  Figs. 4.8a-c).    However, 
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Figure 4.8.  Vertical cross-sections of simulated water vapor mixing ratio (left 
column) and virtual potential temperature (right column) north, through the center, 
and to the south of a misocyclone at 2327 UTC.  Also plotted are vortex-relative 
wind vectors (1 km = 15 m s-1) and vertical vorticity every 5 x 10-3 starting at 5 x 
10-3 (-5 x 10-3), with positive values black and negative values white. Cross-section 
locations are shown in Fig. 4.6f. 
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isolated locations near the surface dryline location may have positively correlated 

temperature and moisture fields.  As previously shown by Ziegler et al. (1997), the 

mesoscale BL circulations and updrafts associated with the dryline and HCR tend to 

transport the very warm, unstable lower-BL air into buoyant dry-convective plumes 

that may subsequently strengthen the mesoscale updrafts (Figs. 4.8d-f).  

A pattern of 2-D horizontal qv accumulation at lower levels and negative qv 

accumulation at upper levels is seen to the north of the misocyclone along the 

dryline (Figs. 4.9a-c).  A similar pattern is found in terms of 2-D horizontal θv 

accumulation, although the negative accumulation at upper levels is much weaker 

(Figs. 4.9d-f).  The dryline and HCRs have intense accumulation in the lowest ~ 

200-500 m AGL.  Accumulation occurs along both dryline gradients through the 

center of a mature misocyclone.  The dryline gradients accumulate to the south, 

however the accumulation zone is not as deep as to the north or along the eastern 

moisture gradient through the center of the misocyclone.  It has been shown that 

accumulation (frontogenesis) is favored to the northwest and southeast of a 

cyclonically-rotating vortex as it deforms a scalar field characterized by initially 

north-south oriented isopleths associated with an east-west horizontal gradient 

(Doswell 1984, 1985; Davies-Jones 1985; Schultz et al. 1998).   The updraft 

associated with the HCR contains pronounced θv accumulation due to locally strong 

thermal gradients in the dry BL. 
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Figure 4.9.  Vertical cross-sections of simulated accumulation of water vapor 
mixing ratio (left) and virtual potential temperature (right) north, through the center, 
and south of a misocyclone at 2327 UTC.  Also plotted are vortex-relative wind 
vectors (1 km = 15 m s-1) and vertical vorticity every 5 x 10-3 starting at 5 x 10-3 (-5 
x 10-3), with positive values black and negative values white. Cross-section 
locations are shown in Fig. 4.6f. 
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Chapter 5 

Idealized simulations 
5.1. BAROTROPIC SIMULATIONS 

A series of idealized simulations were performed for the barotropic case 

(i.e., approximating a free shear layer between two infinite fluids of equal density).  

Each simulation is identical in configuration except for the two varied parameters of 

shear zone width and shear magnitude (thus vorticity).  The parameters for the series 

of simulations are shown in Tables (2-3).  The simulations were initialized with a 

random v-component perturbation of 0.01 m s-1 over the entire domain.  All 

simulations have a similar evolution. The initial north-south oriented shear zone 

remains stationary and of constant width equal to the initial width for some time 

before periodic disturbances grow and distort the shear zone in a wave-like manner.  

The resulting waves roll-up into discrete vortices that persist for a brief time before 

nonlinear processes lead to vortex mergers and evolution into turbulence.  Although 

the behavior of the simulations is consistent from one simulation to the next, there 

are differences, for example, in the growth rates and number of vortices, for a given 

simulation, in accordance with linear theory. 

5.1.1. Evolution of shear zones 

Four simulations with various shear zone widths and magnitudes of shear are 

shown in detail to represent typical behavior manifest generally in all simulations.  

Evolution of the v-component wind from the emergence of small-amplitude waves 

into the non-linear regime is shown for the bt4m12s case in Fig. 5.1.  At 1440 s into 

the simulation (Fig. 5.1a), waves are beginning to emerge along the shear zone.  By 

this time, it has been documented using the spectral analysis method described in 

Ch. 3.3 (not shown) that the perturbations along the shear zone have grown by 2-3  
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Figure 5.1.  v-component wind (color filled) and horizontal wind vectors (500 m = 
10 m s-1) through the center of the simulation domain ( z = 2.0 km) for the bt4m12s 
case. 
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Figure 5.2. Vertical vorticity (color filled) and horizontal wind vectors (500 m = 10 
m s-1) for the bt4m12s case through the center of the domain (z = 2.0 km). 
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Figure 5.3. As in Fig. 5.1, except for the bt5m16s case. 
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Figure 5.4.  As in Fig. 5.2, except for the bt5m16s case. 
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orders of magnitude from the initial random perturbation.  As time progresses, a 

periodic series of nearly equally spaced waves continues to grow exponentially as 

quantified by spectral analysis (shown later).  In addition to the dominant 

wavenumber around 10, additional structure around wavenumber 2 is also seen.  As 

the simulation proceeds toward the nonlinear regime from 1440 through 1740 s 

(Figs. 5.1b-f), the perturbations continue to grow and begin to roll up into discrete 

vortices.  This process can be better visualized in the vertical vorticity fields (Fig. 

5.2).  Initially, wavelike vorticity perturbations emerge and grow exponentially in 

time.  The wavelike vorticity perturbations begin to contract into cores and increase 

in magnitude as the discrete vortices start to form.  As in the v-component wind 

fields, the periodicities around wavenumber 10 and wavenumber 2 are evident in the 

vorticity structure. 

Series of v-component wind fields for the bt5m16s case are shown in Fig. 

5.3.  As in the bt4m12s case, the shear zone is characterized by the emergence of 

small-amplitude waves by  ~1500s (Fig. 5.3a).  These waves continue to grow in 

amplitude and eventually roll up into discrete vortices between 1560 and ~ 1800 s 

(Figs. 5.3b-f).  The vorticity fields also behave similarly in the bt5m16s and 

bt4m12s cases, with wavelike perturbations in the shear zone and isolated pockets 

of enhanced vorticity by ~1500s (Fig. 5.4a).  These wavelike perturbations grow 

exponentially as vorticity is concentrated into discrete cores between 1560 and ~ 

1800 s (Figs. 5.4b-f).  Unlike the bt4m12s case, where there was a dominant 

wavenumber in the shear zone structure, with a secondary smaller wavenumber 

component, in the bt5m16s case only one dominant wavenumber (~8) is seen. 

The fields of v-component velocity for the bt8m20s case are shown in Fig. 

5.5.  A similar pattern as in the previous two cases develops.  Early on, small-

amplitude waves emerge within the shear zone, continue to amplify exponentially, 
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Figure 5.5.  As in Fig. 5.1, except for the bt8m20s case. 
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Figure 5.6.  As in Fig. 5.2, except for the bt8m20s case. 
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Figure 5.7.  As in Fig. 5.1, except for the bt10m24s case. 
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Figure 5.8.  As in Fig. 5.2, except for the bt10m24s case. 



 
58 

and with time, roll up into discrete vortices (Figs, 5.5, 5.6).  In this latter case, 

however, the process proceeds more slowly due to the smaller value of initial 

vorticity within the shear zone.  Also, the perturbations emerge with a dominant 

wavenumber around 4, although some variability is seen in the wave spacing 

 For the bt10m24s case, the v-component wind and vorticity fields are shown 

in Figs. 5.7, and 5.8 respectively.  Again, the evolution of the shear zone is as in the 

previous cases.  The dominant wavenumber in the bt10m24s case is around 4, and is 

highly periodic throughout the domain.  Note that as the width of the shear zone 

increases from 400 m – 1000 m, the dominant wavenumber that emerges decreases 

and the resulting vortices that develop increase in size.  In addition, especially in the 

bt8m20s and bt10m24s cases, more variability in the vorticity structure within the 

shear zone is seen. 

5.1.2. Perturbation wavelengths 

Linear theory predicts the most unstable wavenumber (k) to be ~0.8/b or a 

most unstable wavelength (l =2π/k) of ~7.9b, where b is the width of the shear 

zone2. Therefore, with time, an arbitrary exponentially growing initial disturbance 

should become dominated by a wavelength close to that of the most-unstable mode, 

as long as the disturbance amplitudes are small enough for linear theory to be valid. 

Spectral density estimates at successive times show the perturbation amplitude 

evolution as a function of wavenumber for the bt4m12s case (Fig. 5.9). For this 

shear zone width, linear theory predicts the most-unstable wavenumber to be 9.5 

(λ = 3160 m).   

                                                
2 Note that in all subsequent references, we will be discussing a domain-relative wavenumber 

! =
kL

2"
, and wavelength ! =

2"

#
, where L = 29,900 m is the north-south domain length.  For 

example,  a wavenumber of 5 refers to 5 waves of length 5980 m that span the north-south domain. 
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Figure 5.9. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods 1290-1530 s and 
1020-1260 s (inset) after the start of simulation bt4m12s.  The vertical black line 
denotes the most-unstable wavenumber (9.5) and the gray dashed line denotes the 
neutral wavenumber predicted by linear theory (18.2).   
  



 
60 

From the start of the simulation, all wavenumbers begin to grow and there is 

very little difference in the amplitudes among the wavenumbers.  By 1020s into the 

simulation, structure in the spectral density estimate begins to emerge, with a  

maximum amplitude in the 11-12 wavenumber range. This peak in amplitude 

subsequently shifts to around wavenumber 10.1 and strongly amplifies during the 

exponential growth phase.  This peak in amplitude (κ = 10.1, λ = 2970 m) is close to 

the peak in amplitude expected to emerge by growth of the theoretical most-unstable 

mode (κ = 9.5, λ = 3160 m). In addition to the primary peak, a secondary local 

maximum in amplitude occurs around wavenumber 2 (λ = 14950 m).  This 

secondary peak can also be seen in the horizontal fields of v-component velocity 

(Fig. 5.1) and vertical vorticity (Fig. 5.2).  The exponential growth can be inferred 

by noting that the change in amplitude from one period to the next increases as time 

increases.   

 Note that the spectra are only plotted out to wavenumber 30 in Fig. 5.9 and 

all subsequent cases.  This was done to capture the wavenumbers that were 

substantially growing. Growth rates are observed to monotonically decrease with 

increasing wavenumber in all cases so that at large wavenumbers the spectra 

asymptotically approach the spectra of white noise with an amplitude equal to the 

magnitude of the initial perturbation. Thus the wavenumber 0-30 band isolates the 

significant growth across all cases. 

In all simulations transient initial growth is seen across all wavenumbers.  

Later, even at wavenumbers larger than the theoretical neutral wavenumber where 

linear theory predicts stability, some growth is seen.  One limitation of linear theory 

is that it ignores any non-exponential (i.e. algebraic) growth, which is possible in 

real fluids (Pedlosky 1987).  It appears that some non-exponential growth is 

occurring in these simulations.  However, it is the exponential growth that with time 
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Figure 5.10. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods 1320-1560 s and 
1050-1260 s (inset) after the start of simulation bt5m16s.  The vertical black line 
denotes the most-unstable wavenumber (7.6) and the gray dashed line denotes the 
neutral wavenumber predicted by linear theory (12.2).   
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Figure 5.11. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods 1740-1980 s and 
1470-1710 s (inset) after the start of simulation bt8m20s.  The vertical black line 
denotes the most-unstable wavenumber (4.7) and the gray dashed line denotes the 
neutral wavenumber predicted by linear theory (7.6).   
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will dominate the spectrum, thus describing the emerging structure at later times. 

Spectral density estimates as in Fig. 5.9 are shown for the bt5m16s case in 

Fig. 5.10.  It is seen that as in the bt4m12s case, growth occurs at nearly all 

wavenumbers at all times. Initially, a weakly defined triple peak emerges by around 

1050 s around wavenumbers 3,  and 16, transitioning to a single strong peak at 

wavenumber 7.5 (λ = 4000 m) between 1320-1560 s.  This wavenumber is very 

close to the theoretically predicted most unstable wavenumber of 7.6 (λ = 3950 m).  

Unlike the bt4m12s case, a secondary peak at lower wavenumber is not evident. 

Spectral density estimates are shown for the bt8m20s case in Fig. 5.11.  

Again, as in the previous cases, growth occurs at nearly all wavenumbers at all 

times, and like the bt5m16s case, a weakly-defined triple peak occurs initially, 

although later at ~1500 s and around wavenumbers 4 and 15, and 20.  With time, the 

spectral density estimate transitions to having a single strong peak at wavenumber 

4.0 (λ = 4775 m) between 1740-1980 s.  This wavenumber is somewhat smaller 

than the theoretically predicted most unstable wavenumber of 4.7 (λ = 6320 m).   

Fig. 5.12 shows the time evolution of the spectral density estimates for the 

bt10m24s case.  Here, a consistent pattern of growth at nearly all wavenumbers is 

again seen.  By 1560 s into the simulation, a peak in amplitude begins to emerge 

around wavenumber s3-4.  This peak gradually shifts to wavenumber 3.9 (λ = 7670 

m) by 1830-2070 s into the simulation and is very close to the theoretical most- 

unstable wavenumber of 3.8 (λ = 7900 m) predicted by linear theory.  As in the 

bt4m12s case, a secondary peak in amplitude also occurs although at higher 

wavenumbers (~ 9).  Additionally, there is some evidence of a possible tertiary peak 

around wavenumber 12.  However in comparison to the primary peak, the secondary 

peak is about one order of magnitude smaller while the tertiary peak is two orders of 

magnitude  smaller.   The tertiary peak in particular  may not be physical  due to  its 
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Figure 5.12. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods of 1830-2070 s 
and 1560-1800 s (inset) after the start of simulation bt10m24s.  The vertical black 
line denotes the most-unstable wavenumber (3.8) and the gray dashed line denotes 
the neutral wavenumber predicted by linear theory (6.9).   
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possible forcing via a Gibbs oscillation owing to the strong primary peak (e.g., 

JW69). 

The barotropic simulations all behave similarly across the range of shear 

zone widths and shear magnitudes in terms of the peak amplitude in the spectral 

density estimates at the later stages of exponential growth when perturbation 

amplitudes are relatively high and linear theory is still valid (Fig. 5.13).  The actual 

wavenumbers of maximum perturbation amplitude are close to the theoretical most-

unstable wavenumber across the range of simulations.  For a given shear zone 

width, the differences in wavenumber are small across the various shear 

magnitudes, ranging from 0.1 for the 800 m cases, to 0.5 for the 400 m cases 

(although this corresponds to a wavelength of about 150 m in both).  However, there 

is a small high bias in the 400 m and 1000 m simulations, and a small low bias in 

the 800 m runs compared to the theoretical values.  By normalizing the 

wavenumbers according to shear zone width, the simulations can be compared to 

one another and to the theoretical most-unstable wavenumber (Fig. 5.14).  It is seen 

that the actual wavenumbers are close to the theoretical wavenumber (0.8), with the 

biases mentioned above. 

As predicted by linear theory, the most-unstable wavelength is 

approximately 7.9b (i.e., a slope of 7.9 as plotted as wavelength vs. shear zone 

width graph).  Plotting the simulated maximum amplitudes as a function of shear 

zone width yields a best-fit line with a slope of ~8.4, or very close to the theoretical 

slope (Fig. 5.15).  Although the previously discussed biases are again evident, the 

high correlation coefficient (R = .977) shows only a relatively small variance among 

the data relative to the best-fit line.  

Although linear theory predicts the most-unstable wavenumber (i.e., fastest 

growing mode), and transient growth is possible,  given enough time while within 
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Figure 5.13.  Wavenumber  (wavelength) of maximum amplitude of the perturbation 
spectral density estimate for all barotropic simulations (markers) during the later 
phase of exponential growth (i.e., peak in curve at latest time in Figs. 5.9-5.12).  The 
horizontal lines indicate the theoretical most unstable wavelength for a given shear 
zone width (color). 
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Figure 5.14.  As in Figure 5.13, however data values were normalized by the shear 
zone width and domain length via the relation κ = 2πk/L. The horizontal red line is 
the theoretical most-unstable normalized wavenumber.   
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the constraints that linear theory is still valid, it is expected that the fastest growing 

mode will emerge as the dominant mode.  It is therefore valid to compare the 

theoretical fastest growing wavenumber to the maximum amplitude wavenumber in 

the model simulations. Growth rates obtained from the spectral density estimates 

may be computed and compared directly with linear theory.  However, the growth 

rates near the expected wavenumber of maximum growth rate vary across 

wavenumber and magnitude within the exponential growth rate regime predicted by 

linear theory.  It is therefore difficult to determine which wavenumber to compare 

with linear theory.  In fact, no objective way was found that produced consistent 

results.   

The following results for the maximum growth rates were therefore obtained 

subjectively by analyzing the data from each simulation.  Although the subjectivity 

can lead to slight differences in the results and their interpretation, the following are 

presented to supplement the results obtained by analyzing the peak amplitudes 

(which were easily obtained objectively).  It will be shown in the next subsection, 

that any errors in identifying the wavenumber of maximum growth does not 

preclude the comparison of the actual growth rates to that of linear theory, as the 

differences in growth rates between the maximum wavenumber and the theoretical 

maximum wavenumber are negligible.  Results across all barotropic simulations of 

wavenumber of maximum growth rate at the later stages of exponential growth (i.e. 

when perturbation amplitudes are relatively high and linear theory is still valid) are 

shown in Fig. 5.16.  It is seen that the simulated wavenumber of maximum growth 

rate are close to the theoretical wavenumbers of maximum growth rate, although 

with more variance than in the wavenumber of peak amplitude.  There is still a low 

bias at 800 m and a high bias at 1000 m, however, the high bias at 400 m is not 

seen. 
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Figure 5.15.  Wavenumber  (wavelength) of maximum amplitude of the perturbation 
spectral density estimate for all barotropic simulations (red circles) during the later 
phase of exponential growth (i.e., peak in curve at latest time in Figs. 5.9-5.12), and 
the theoretical most-unstable wavelength (green squares).  The best-fit lines are 
shown along with their equations. 

  



 
70 

 

Figure 5.16.  As in Fig. 5.13, except markers denote wavenumber (wavelength) at 
the maximum growth rate. 
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Figure 5.17. As in Fig. 5.14 except red circles represent wavenumber at maximum 
growth rate. 
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Figure 5.18.  As in Fig. 5.15 except red circles represent wavenumber at maximum 
growth rate. 
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If the barotropic runs are compared in terms of the normalized wavenumber 

(as in Fig. 5.14), we see similar results to the wavenumber of maximum amplitude 

(Fig. 5.17).  However, again we see more variance among the simulations as 

compared to the wavenumber of maximum amplitude.  Finally, plotting the 

wavenumber of maximum growth rate as a function of shear zone width (Fig. 5.18), 

we find a slope of the best-fit line to be ~6.5 compared with a slope of ~8.4 for the 

wavelength of maximum amplitude and the theoretical most unstable wavenumber 

slope of 7.9.  Also, more variation among the simulations is seen with a correlation 

coefficient (R = .917), which is slightly less than that for the wavenumber of 

maximum amplitude results (R = .977). 

5.1.3. Perturbation growth rates 

The growth rates are computed from the spectral density estimates as 

follows.  First, by plotting the perturbation amplitude as a function of time on a 

semi-log graph, the times during which the amplitudes were growing exponentially 

can be identified by where the data points form straight lines segments.  From these 

line segments, the (exponential) growth rates were found by the computing the slope 

of the line. 

Figure 5.19 shows the amplitudes as a function of time for 5 different 

wavenumbers for the bt4m12s case.  Note that the largest growth rate is around the 

theoretical maximum (κ = 9.5), and that for all wavenumbers (except wavenumber 

3) the correlation coefficient of the fitted line is greater than 0.99, indicating nearly 

perfect exponential growth. The magnitude of the growth rate (.00572) is also close 

to the value predicted from linear theory (.00604).  An additional example is shown 

in for the bt5m16s case (Fig. 5.20), with similar results to the bt4m12s case, with a 

maximum growth rate at the theoretical maximum (κ = 7.6), and all wavenumbers 

showing excellent fits to an exponential curves.  For case bt5m12s, the magnitude of 
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Figure 5.19.  Amplitudes as a function of time (markers) at different wavenumbers 
(colors) for the bt4m12s case.  Also shown are best-fit lines, their slopes (growth 
rates), and correlation coefficients. 
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Figure 5.20.  As in Fig. 5.19, except for the bt5m16s case. 
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the growth rate (.00552) is somewhat lower than that predicted from linear theory 

(.00643). 

The actual wavenumber where the maximum growth rate occurs for a given 

simulation is not always at the predicted maximum wavenumber, however it is 

always close.  This is due to the shape of the growth rate curve (i.e., growth rate vs. 

wavenumber), which is fairly flat near the peak.  Therefore, we can look at two 

statistics, the wavenumber where the actual maximum growth rate occurs, and the 

growth rate at the theoretical peak wavenumber, and compare these to the predicted 

growth rates.  It is seen that that these two growth rates are nearly identical.  For 

example in the 400 m shear zone case (Fig. 5.16), this would correspond to 

comparing the growth rates calculated at the red circles (actual max) and the growth 

rates calculated at points on the red line (theoretical max) to the predicted values.  

These growth rates are plotted in Fig. 5.21, where each panel corresponds to a given 

shear zone width, and the growth rates are plotted as a function of shear magnitude.  

For the all cases, there is a strong linear relationship between the magnitude of the 

shear and the growth rates, with larger growth rates corresponding to larger shear 

values (Fig. 5.21).  The linear correlation between the growth rate and shear 

magnitude is high for the 800 m shear zone widths (R ~ 0.98), even higher for the 

600 m and 500 m widths (R > 0.99) and is essentially exact for the 400 m case (R = 

1.0) to the degree of precision of the calculations (5 decimal places).  Note that the 

growth rates for any given simulation are nearly identical whether they are 

computed at the actual maximum wavenumber or at the theoretical maximum 

wavenumber. 

The computed growth rates from the simulations are smaller than the growth 

rates predicted by linear theory, however this bias tends to decrease at smaller shear 

zone widths.    In terms of the functional relationship between shear magnitude  and  
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Figure 5.21. Maximum growth rates (blue) and growth rates at the theoretical 
maximum (green) plotted as a function of shear magnitude for four different shear 
zone widths.  Also plotted in red are the theoretical maximum growth rates.  Lines 
indicate linear least squares fits to the data points.  Also shown are the least squares 
line equation and the correlation coefficient of these fitted lines. 
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growth  rate for a given shear zone width, the theoretical and simulated results are in 

excellent agreement (Fig. 5.21).   

Linear theory predicts that the maximum growth rate varies as a function of 

the shear zone vorticity.  Combining the 4 panels in Fig. 5.21, we can plot the 

growth rates as a function of shear zone vorticity (Fig. 5.22).  There is a strong 

linear dependence of growth rate on the shear zone vorticity across all simulations 

as a whole (R = .989).  Note that this linear relationship is essentially the same 

whether we look at the growth rate at the actual maximum or the theoretical 

maximum.  Therefore, we will only discuss the actual maximum growth rate and 

imply that this is the growth rate at the theoretical maximum wavenumber, 

neglecting any extremely small differences.  The actual functional relationship 

between shear zone vorticity and growth rates (i.e., the slope of the curves in Fig. 

5.22) in the simulations agrees with linear theory to better than one percent (i.e., 

simulated slope of 0.1997 vs. theoretical slope of 0.2012).  Therefore, although the 

spatial structure of the evolving shear layer depends only on the shear zone width, 

the dynamics that govern the temporal growth depends only on the vorticity 

magnitude and not on the shear zone width or shear magnitude independently. 

5.1.4. Phase shift and initial length 

Wave interaction theory (WIT) predicts that the growth of instabilities 

occurs once the two vorticity waves propagating along the shear zone vorticity 

discontinuities become phase-locked (i.e. Heifetz et al. 1999; Heifetz and Methven 

2005; Carpenter et al. 2012; Guha et al. 2013).  Phase-locking occurs when the 

phase shift between the two waves promote exponential growth of each wave.  From 
linear theory, this phase shift is predicted to be , where αn 

is the normalized wavenumber of maximum growth.  A series of phase shifts were 

calculated  for  each  case  by examining  the  vorticity  fields  (e.g., Fig. 5.2)  during 

! = cos
!1
1! 2"
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Figure 5.22. Maximum growth rates (blue) and growth rates at the theoretical 
maximum (green) plotted as a function of vorticity for all barotropic simulations.  
Also plotted in red are the theoretical maximum growth rates.  Lines indicate linear 
least squares fits to the data points.  Also shown are the least squares line equation 
and the correlation coefficient of these fitted lines. 
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Phase shift  4m12s  5m16s 8m20s 10m24s 

1 0.37π 0.36π 0.29π 0.34π 

2 0.33π 0.40π 0.27π 0.38π 

3 0.31π 0.32π 0.31π 0.41π 

4 0.36π 0.39π 0.32π 0.39π 

5 0.41π 0.39π 0.29π 0.40π 

6 0.32π 0.30π 0.30π 0.39π 

7 0.38π 0.38π 0.33π 0.34π 

8 0.38π 0.37π 0.31π 0.36π 

Average 0.36π  0.36π  0.30π  0.38π  

Linear theory 0.35π 0.35π 0.35π 0.35π 

Actual Max. wavenumber 0.38π 0.35π 0.28π 0.38π 
 

Table 4.  Calculated phase shifts from four simulations, including eight individual 
developing waves per simulation.  Also shown are the averages for each case, the 
predictions of linear theory, and the phase shifts computed from the actual 
maximum wavenumber. 

the emergence of well-defined vortices.  A total of eight individual waves were 

examined in each case, with results of the following calculations listed in Table 4.  

The most-unstable wavenumber predicted by linear theory corresponds to a 

theoretical phase shift of 0.35π.  The phase shifts calculated from the simulations 

are close to the predicted values (ranging from 0.30π - 0.38π).  We can also 

calculate the theoretical phase shift corresponding to the wavenumber of actual 

maximum growth rate.  The calculated phase shifts are closer to these values, 

indicating that the wavenumber that eventually emerges has an actual phase shift in 

accord with  WIT.  Knowing the phase shift,  we can  calculate  the initial  length  of  
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Initial length (m) 4m12s  5m16s 8m20s 10m24s 

1 1840 2700 4640 4730 

2 1730 2160 4000 5170 

3 1620 2480 4110 4730 

4 1730 2810 3890 4950 

5 1730 2480 3890 5280 

6 1620 2380 3890 4840 

7 1890 2700 4750 4730 

8 1890 2270 4000 4840 

Average 1760 2500 4150 4910 

Linear theory 2130 2660 4300 5320 

Actual Max. wavenumber 2040 2680 4780 5060 

Table 5.  As in Table 4, except for initial lengths. 

 

what will eventually become the resulting vortex core as l
init

= 1+
!
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2
, where λ is 

the normalized wavelength, corresponding to the most-unstable mode.  Table 5 

shows the values of initial length calculated from the simulations.  Again, the values 

are consistent with the initial lengths corresponding to the most-unstable 

wavenumber predicted by linear theory, and with the initial lengths corresponding to 

the actual most-unstable mode.  However, the initial lengths had a low bias in all 

four simulations. 

5.1.5. Nonlinear evolution 

Although it is beyond the scope of this research to study the fully nonlinear 

dynamics of the resulting vortices, some aspects of the roll-up of vortices may be 
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described and compared to observed and other simulated vortices.  Continuation of 

Fig. 5.3 is shown in Fig. 5.23 for the bt5m16s case.  As the shear zone continues to 

roll-up into discrete vortices, the flow saturates (i.e., perturbations reach a 

maximum) around 1920 s into the simulation (Fig. 5.23a-b).  At this time, there is a 

maximum perturbation in the positive (negative) v-component velocity on the east 

(west) sides of the circulation and a positive (negative) u-component velocity on the 

south (north) side corresponding to a velocity couplet and a vortex with a positive 

sign of vertical vorticity (Fig. 5.24).  Nonlinear effects eventually dominate as the 

vortices continue to evolve in the period 1980 - 2160 s (Fig. 5.23c-f, Fig. 5.24c-f). 

In terms of vorticity structure (Fig. 5.24), nearly equally spaced elliptical vortex 

cores develop which are separated by bands or braids of vorticity.  With time, these 

braids become elongated and begin to completely wrap around the central vortex 

core.  The elliptical vortex core itself rotates at constant angular velocity.  The core 

also nutates; that is, the core aspect ratio (the ratio of the major and minor axis of 

the ellipse) undergoes a periodic oscillation.  Once the core reaches saturation, the 

vorticity within the core evolves in a somewhat complicated manner.  In all vortices, 

there is a slight decrease with time of the magnitude of the central vorticity, 

although in some vortices this relative weakness is in the center whereas in others it 

is displaced to one side.  As the vortices evolve, vertical motion fields develop with 

maximum amplitudes of about ~2-3 m s-1. Although the strongest vertical motion 

fields are near the vortex core, weaker vertical motions develop along the braids.  

There appear to be 3 types of vertical motion structures associated with the mature 

vortices.  The first is characterized by a couplet of upward/downward motion with 

centers on either side of the vortex, the second with weak downward motion within 

the vortex and no exterior updraft, and the third with an updraft surrounding the 

vortex and a downdraft in the center. 
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Figure 5.23.  v-component wind (color filled) and horizontal wind vectors (500 m = 
10 m s-1) through the center of the simulation domain ( z = 2.0 km) for the bt5m16s 
case with solid (dashed) contours denoting westerly (easterly) flow at 1 m s-1 
intervals starting at 1 (-1) m s-1. 
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Figure 5.24.  Vertical vorticity at z = 2.0 km for the bt5m16s case, with the solid 
(dashed) black contours denoting positive (negative) vertical velocity at 1 m s-1 
intervals starting at 1 (-1) m s-1. Also shown are the horizontal wind vectors (500 m 
= 10 m s-1). 
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The structures of the pressure fields are consistent among all vortices, with a 

pressure perturbation minimum in the center of each vortex and a local pressure 

perturbation maximum between each vortex in the braid regions (Fig. 5.25).  Away 

from the vortex cores, the pressure perturbation field remains fairly constant with 

both the local maximum and minimum elliptical regions featuring a nearly east-west 

oriented major axis.  In the vortex cores, however, the major axis of the pressure 

minimum rotates with an angular velocity near that of the vortex itself. 

The vertical structure of the vorticity and vertical velocity fields following one 

particular vortex is shown in Figs. 5.26 and 5.27.  By 1860s into the simulation, the 

maximum in vertical vorticity is tilted from south to north with height (the core) 

with the weaker braids tilting from north to south with height (Fig. 5.26a-c).  An 

updraft exists on the western part of the core and also tilts and increases from south 

to north with height.  On the eastern flank of the core, a downdraft is seen which 

also tilts from south to north with height, but decreases in strength.  This pattern of 

“wrapping” updrafts and downdrafts along with the vorticity cores and braids is 

common to many of the simulated vortices. 

As the vortex continues to evolve, the magnitude of the vorticity in the braid 

north of the vortex weakens slightly (Fig. 5.26d,g), whereas the maximum vorticity 

in the southern part of the vortex core deepens (Fig. 5.26f,i).  Through the center of 

the core, the peak vorticity remains nearly constant.  Some variability in the vertical 

structure is noted both in the vortex core and in the braid region.  By about 2040, the 

western updraft and eastern downdraft reach a maximum, which persists (Fig. 5.27).  

The vertical structure of the updraft remains similar throughout the 1860-2160 time 

frame.  By 2040, the braids begin wrapping around the vortex core (Fig. 5.27).  Also 

by this time, a relative weakness in the vertical vorticity develops through the center 

of the vortex in the middle levels associated with the downdraft. 
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Figure 5.25. Perturbation pressure in hPa (color-filled) and the 10 x 10-3 s-1 vertical 
vorticity contour (black) for the bt5m16s case. Also shown are the horizontal wind 
vectors (500 m = 10 m s-1) 
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Figure 5.26.  Vertical vorticity (color filled) and vertical velocity with solid (dashed) 
black contours denoting positive (negative) vertical velocity at 1 m s-1 intervals 
starting at 1 (-1) m s-1 for the bt5m16s case.  The top panels are just north of the 
vortex core, the middle panels through the center of the vortex, and the bottom 
panels just south of the vortex cores.  Each column represents a different times 
increasing to the right. 
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Figure 5.27. As in Fig. 5.26 but at later times. 
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A north-south cross-section through the middle of a series of vortices is shown in 

Fig. 5.28.  There appear to be four “types” of vortices in terms of their vorticity and 

vertical motion fields.  The first type of vortex (the left-most or southern-most) is 

characterized by a nearly vertical column of vertical vorticity that initially contains a 

deep updraft.  With time, a central downdraft develops from top down and is 

associated with a local weakness in the vertical vorticity.  As this occurs, the vortex 

becomes narrower near the surface and wider aloft.   

The next type of vortex slopes slightly downstream with height and flanked 

by a downdraft on the southern side and updraft on the northern side.  These vertical 

motions increase with time, with the updraft increasing with height and downdraft 

decreasing with height.  In addition, a local weakness in the vertical vorticity is seen 

within the central part of the vortex.   

The third vortex type slopes very slightly upstream with height and initially 

contains very weak upward vertical motions that transition to very weak downward 

vertical motions.  Just north of the vortex core, a downdraft updraft couplet 

develops and intensifies along a kink in the braid.  Again, a local weakness in the 

vorticity fields is seen in the vortex center.   

The last type of vortex is characterized by an updraft on the southern side of 

the vortex.  This vortex also tilts upstream with height and contains a local 

minimum in vorticity within the vortex center.  Also, a downdraft develops along 

and north of the vortex core with time. In general, with time, the size of the vortices 

increases and the size and magnitude of the vorticity in the braids between the 

vortices decreases.  Also, every fourth vortex, the vortex type is repeated.  That is, 

there is a wavenumber two component to the series of vortices (i.e., each vortex 

type is repeated twice in the simulation domain).  Note that as the mature vortex 

begins  to  saturate,  the  localized  updraft  maximum also  begin  to  reach  a nearly  
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Figure 5.28.  Vertical cross-sections (y increasing northward) of vertical vorticity 
(color filled) and vertical velocity at (a) 1860, (b) 1920, (c) 1980, (d) 2040, (e) 2100, 
and (f) 2160.  The solid (dashed) black contours denote positive (negative) vertical 
velocity at 1 m s-1 intervals starting at 1 (-1) m s-1 for the bt5m16s case.  Also shown 
are the wind vectors in the plane (500 m = 10 m s-1). 

  



 
91 

constant average value (Figs. 5.24, 5.26-5.28).  Although the detailed evolution of 

the nonlinear stage of evolution has been shown for only one case, we can compute 

the average local maxima in vertical motion as each case reaches vortex saturation 

and compare the results (Fig. 5.29).   

For a given shear zone width, as the magnitude of the shear increases, the 

average local vertical motion maximum also increases.  Across each shear zone 

width series, the correlation between the magnitude of the maximum vertical motion 

and the magnitude of the shear is very high (R  ~ 0.978-.999).  Also, across the 

series of shear zone widths, the slope of the best-fit lines is also similar, but 

generally features a decrease in slope with increasing width.  This decrease is most 

pronounced between the 600m and the 800m cases.  Note that the 1000m cases (not 

shown) also have a slope that is smaller than the 800m cases. 

Since for a given magnitude of shear, as the shear zone increases the shear 

zone vorticity decreases, the decrease in the slope of the lines in Fig. 5.29 as the 

shear zone with increases might be due to the effects of shear zone width on the 

vorticity.  Since the growth rate and subsequent vortex strength is proportional to 

the shear zone vorticity, the relationship between maximum vertical motion and 

shear zone vorticity is shown in Fig. 5.30.  Across all barotropic simulations, as the 

shear zone vorticity increases, the resulting localized updraft maxima also increase, 

with a fairly high degree of correlation (R = 0.89).  This suggests that given a 

known magnitude of the initial shear zone vorticity, the magnitude of the 

subsequent local vertical motion maximum associated with mature vortices can be 

diagnosed. 

5.1.6. Cumulus formation 

An additional four equivalent-barotropic simulations were performed (all 

with different shear zone widths and shear magnitudes)  with  moisture  added while 
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Figure 5.29.  Average maximum upward vertical motion (red squares) and the linear 
least-squares fit (red line) for barotropic simulations with four shear zone widths as 
a function of shear magnitude. 
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Figure 5.30.  Average maximum upward vertical motion for each barotropic 
simulation (red squares) and the linear least-squares fit (red line) as a function of 
shear zone vorticity. 
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maintaining homogeneity in virtual potential temperature to assess preferred 

locations of cumulus formation.  The moist equivalent-barotropic runs are denoted 

by a suffix "mbt" preceding the run name shown in Table 2.  To produce the moist 

equivalent-barotropic simulations, moisture was prescribed throughout the entire 

domain, with higher values east of the shear zone, lower values west of the shear 

zone, and values increasing linearly from west to east across the shear zone.  

Prescribed moisture values also decreased linearly with height everywhere, while 

prescribed potential temperature increased slightly with height.  The resulting 

potential temperatures were adjusted such that the virtual potential temperature was 

horizontally homogeneous (thus preserving the barotropic base state) and increased 

slightly with height (providing a small static stability). 

Evolution of the vorticity and cloud-water mixing ratio at 3 km for the 

mbt5m16s are shown in Fig. 5.31.  Clouds have formed by about 1980 s between 

the wrapping braid region and the core west of several mature vortices.  Also, the 

developing cumuli grow larger with time.  Note again the wavenumber two 

modulation of the vorticity fields and the resulting cloud pattern.  Of the eight 

discrete vortices, two contain the largest developing cumuli of roughly the same size 

and shape, two contain smaller cumuli of roughly the same size and shape, and four 

do not develop cumuli.  

The moisture fields associated with the evolving vortices display the classic Kelvin-

Helmholtz (KH) billow wave pattern (although most previous KH billow examples 

involve waves in a vertical plane), with moist and dry air wrapping around the 

vortex center (Fig. 5.32).  The modeled cumuli are associated with the stronger 

updrafts, with the deepest, strongest updrafts producing the largest cumuli.  Note 

that although the peak in each local updraft is centered on the moisture gradient on 

the west edge of the core, nevertheless the modeled cumuli form to the west of the  
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Figure 5.31.  Vertical vorticity at z = 3.0 km, with the solid gray shading denoting 
cloud water mixing ratio greater than 0.01 g kg-1 for the mbt5m16s case. Also 
shown are the horizontal wind vectors (500 m = 8 m s-1). 
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Figure 5.32.  Water vapor mixing ratio (color filled) at 3.0 km for the mbt5m16s 
case. The solid (dashed) black contours denote positive (negative) vertical velocity 
at 1 m s-1 intervals starting at 1 (-1) m s-1. Also shown are the horizontal wind 
vectors (500 m = 8 m s-1).  The white shaded regions denote cloud water mixing 
ratio greater than 0.01 g kg-1.  
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maximum updraft.  In other words, cumulus formation is forced within weaker (but 

still locally strong) updrafts that are juxtaposed with higher moisture values in the 

region between the vortex core and adjoining braid to the west.  Although only one 

moist simulation is shown, the locations of developing cumuli (in relation to the 

vortex) were identical in all moist simulations. 

5.2. BAROCLINIC SIMULATIONS 

A series of idealized dry simulations were performed for the baroclinic case in 

which a coincident shear layer and a horizontal density gradient were imposed 

between two infinite fluids.  Each simulation is identical in configuration except for 

the two varied parameters of shear zone width and shear magnitude (thus vorticity 

and magnitude of the density gradient).  The magnitude of the temperature 

perturbation in the cold air was set to 0.5 K and was prescribed from the surface up 

to 1.5 km in height.  The parameters for the series of simulations are shown in 

Tables (2-3).   

All simulations have a similar evolution. The initial north-south-oriented 

shear zone begins moving eastward briefly before slowing and becoming quasi-

stationary near the center of the domain.  In addition, the shear zone width for all 

cases collapses to about twice the grid spacing before periodic disturbances grow 

and distort the shear zone in a wave-like manner.  The resulting waves roll-up into 

discrete vortices that persist for a brief time before nonlinear processes lead to 

vortex mergers and evolution into turbulence.  Although the behavior of the 

simulations is consistent from one simulation to the next, there are differences, for 

example, in the growth rates, number of vortices, and how fast the shear zone 

collapses for any given simulation.  Despite the transient behavior of the initial 

shear zones in the baroclinic cases, the results can usefully be generalized in similar 

fashion to the barotropic cases in which the initial shear zone was steady. 
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Figure 5.33.  North-south averaged v-component velocity profiles for the bc5m16s 
case.  Different color curves indicate different times. 
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Figure 5.34.  As in Fig. 5.33, except for the bc8m20s case. 
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5.2.1. Evolution of shear zones 

The initial collapse of the shear layers in the baroclinic simulations may be 

visualized via the evolving v-component velocity profiles at several times prior to 

the emergence of discrete vortices.  The v-component velocity profiles are shown in 

Figs. 5.33 and 5.34 for the bc5m16s and bc8m20s cases, respectively.  The shear 

layer behaves similarly in both cases, with an initial eastward motion before slowing 

and becoming essentially stationary.  As this occurs, the width of the shear zone 

collapses, however the collapse is greater on the western side of the shear zone than 

on the eastern side.  Immediately prior to the emergence of the vortices, 

approximately 75% of the shear is located within 2Δ on the western edge of the 

shear zone.  For the bc8m20s case, the boundary collapse took slightly longer due to 

the wider initial shear zone.  The evolution of the vorticity profile for bc5m16s and 

bc8m20s cases are shown in Figs. 5.35 and 5.36 respectively.  For the bc5m16s 

case, as the shear zone begins to collapse, the peak vorticity values don’t change 

much, however the distance containing the higher vorticity values decreases. 

During shear zone contraction, the distance containing lower vorticity values 

actually increases. As time progresses, the peak vorticity values begin to increase, 

and the distance containing these higher values also decreases  (i.e., evolving from a 

top hat profile to a steep single-peak profile).  The vorticity gradient is also largest 

on the western side of the shear zone, and gradually weakens from west to east.  The 

bc8m20s case follows a similar evolution, however the exponential increase in peak 

vorticity is more readily seen.   In both cases, the vorticity profile just before the 

appearance of discrete vortices is characterized by a rapid increase in vorticity on 

the western shear zone edge, followed by a peak in vorticity and a gradual 

exponential-like decrease in vorticity continuing to the east.  

The evolution of the peak vorticity within the initially contracting shear zone  
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Figure 5.35.  North-south averaged vertical vorticity profiles for the bc5m16s case.  
Different colored curves denote different times. 
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Figure 5.36.  As in Fig. 5.35 except for the bc8m20s case. 
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can usefully be approximated in terms of the predominant vorticity tendencies due 

to stretching and tilting.  Because the shear zone is contracting, one would expect 

the magnitude of the peak vorticity to increase due to stretching.  Neglecting y-

variations of variables, the vertical vorticity equation can be written in the form 

 

             (5.1) 

where ζ is the vertical vorticity and the effects of friction and the earth’s rotation 

have been neglected.  The first term on the right hand side is the vorticity tendency 

stretching term, while the second term is that due to tilting.  From the simulation, we 

can take north-south averages of the vorticity in each column, then pick out the 

maximum average vorticity in the east west direction (i.e. the peak in the curves in 

Fig. 5.35) at each time.  We can then estimate what peak vorticity value we would 

expect, given an initial vorticity value (constant barotropic value) plus a change due 

to the presence of stretching and tilting.  For example for the stretching term, we 

find the peak vorticity value at some time, then using that value of vorticity (ζ) at 

that point and a calculated divergence at that point ( ), compute a vorticity 

tendency. This is also done for the tilting term. 

The evolution of individual tendencies is shown in Fig. 5.37.  Both the 

stretching and tilting terms are very small to begin as the model is adjusting to the 

initial conditions.  Eventually the stretching term begins to increase exponentially, 

with positive values indicating increasing vorticity tendency.  The tilting term 

increases slowly, initially with positive tendency values, then decreases more 

rapidly with negative values ensuing at later times. To see the net effect on the 

resulting vorticity evolution, we take the tendency values and multiply them by the 

time interval between calculations, and add them to the previous estimated vorticity  
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Figure 5.37.  Instantaneous stretching vertical vorticity tendency (red squares) and 
tilting vertical vorticity tendency (blue circles) at various times in the bc8m20s case. 
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Figure 5.38.  Vertical vorticity values at various times for the bc8m20s case.  Actual 
vorticity from the simulation (red squares), initial vorticity (orange line), integrated 
stretching component to the total vorticity (green diamond), integrated tilting 
component  to the total vorticity (black triangle), the sum of the initial and 
stretching integrated vorticity (green triangle), and sum of the initial, stretching, and 
tilting integrated vorticity (blue circles). 
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values.  In this way we are “integrating” the vorticity equation from some initial 

time to some later time.  The results are shown in Fig. 5.38.  We see that the net 

result is exponential increases in the estimated vertical vorticity, with values that are 

close to what was output from the simulations, although the actual simulated values 

are slightly higher at early times and somewhat lower at later times.  If we looked at 

just the initial vorticity and the stretching term (green triangle in Fig. 5.38) we 

would see that the estimated vorticity overestimates the actual vorticity.  The tilting 

term however, compensates for this by redistributing vertical vorticity into 

horizontal vorticity at later times.  The sum of the tilting and stretching terms added 

to the initial vorticity gives a good estimate of the vorticity at early times.  Note that 

at later times, the estimated and actual vorticities begin to diverge with the estimated 

values greater than actual values.  At these later times, the shear zone width is 

nearing 2-3 times the grid spacing, implying that the simulation is unable to increase 

the vorticity as fast as the calculated stretching and tilting terms would suggest. 

Evolution of the v-component wind from the emergence of small-amplitude 

waves into the discrete vortices is shown for the bc5m16s case in Fig. 5.39.  At 840 

s into the simulation (Fig. 5.39a), waves are beginning to emerge along the nearly 

stationary shear zone.  By this time, the perturbations along the shear zone have 

grown by 2-3 orders of magnitude from the initial random perturbation.  As time 

progresses, a series of waves continue to grow exponentially, however unlike in the 

barotropic cases, the waves are not equally spaced and have north-south variation in 

their amplitudes.  As the simulation proceeds into the non-linear regime, the 

perturbations continue to grow and begin to roll up into discrete vortices with 

varying sizes and spacing.  This process can more readily be seen in the vertical 

vorticity fields (Fig. 5.40).  Initially, wavelike vorticity perturbations emerge and 

grow   exponentially   in   time.     The    wavelike    vorticity    perturbations    begin 
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Figure 5.39. Fields of v-component wind (color filled) and horizontal wind vectors 
(500 m = 8 m s-1) at the second model level ( z = 150 m) for the bc5m16s case. 
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Figure 5.40. Vertical vorticity (color filled) and horizontal wind vectors (500 m = 8 
m s-1) for the bc5m16s case at the second model level (z = 150 m). 
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to contract into cores and increase in magnitude as the discrete vortices start to 

form.  As in the v-component wind fields, a complex structure is seen with evidence 

of vortex mergers by 1140 s into the simulation. 

Series of v-component wind fields for the bc8m20s case are shown in Fig. 5.41.  

Like in the bc5m16s case, the shear zone is characterized by the emergence of 

small-amplitude waves by  ~1080 s (Fig. 5.41a) into the simulation.  These waves 

continue to grow in amplitude and eventually roll up into discrete vortices with 

various wavelengths and amplitudes by ~ 1200 s.  The vorticity fields also behave 

similarly in the bc8m20s case as in the bc5m16s case, with wavelike perturbations 

evolving into discrete vortices with varying amplitudes and wavelengths that begin 

merging by ~1320 s (Fig. 5.42). 

5.2.2. Perturbation wavelengths 

For the baroclinic cases, the predictions of linear theory are not valid. Unlike 

the barotropic cases, there is a background u-component wind, horizontal 

convergence and a time-dependent width of the resulting shear zone.  In fact, in all 

baroclinic simulations, the shear zone width collapses to around ~2-3 times the grid 

spacing prior to the emergence of significant wave amplitudes.  Perhaps it could be 

expected that at least some component of the resulting growth rates would reside 

around the wavelength at which linear theory would predict the maximum to occur 

given an initial shear zone width of ~2-3Δ. 

Spectral density estimates at successive times show the perturbation 

amplitude evolution as a function of wavenumber for the bc5m16s case (Fig. 5.43).  

Assuming a shear zone width of 2-3Δ, linear theory predicts the most-unstable 

wavenumbers to be in the range of 12.6 - 19 (λ = 2370 - 1580 m).  From the start of 

the simulation, all wavenumbers begin to grow and there is very little difference in 

the amplitudes among the wavenumbers.  By 600s into the simulation, structure in  



 
110 

 

Figure 5.41. Fields of v-component wind (color filled) and horizontal wind vectors 
(500 m = 8 m s-1) at the second model level ( z = 150 m) for the bc8m20s case. 
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Figure 5.42. Vertical vorticity (color filled) and horizontal wind vectors (500 m = 8 
m s-1) for the bc8m20s case at the second model level (z = 150 m).  



 
112 

the spectral density estimate begins to emerge, with a maximum in amplitude 

around wavenumber 12. This peak in amplitude grows exponentially and remains 

the peak as discrete vortices begin to emerge.  Unlike the barotropic cases that are 

primarily dominated by one main peak in the spectrum, the bc5m16s case features a 

main peak and additional secondary peak in the spectrum.  The main peak in 

amplitude (κ = 12.0, λ = 2490 m) is close to the peak in amplitude expected to 

emerge by growth of the theoretical most unstable mode assuming an initial shear 

zone of ~3Δ (κ = 12.6, λ = 2370 m). In addition to the primary peak, a secondary 

maximum occurs around wavenumbers 6-7 (, λ = 4980-4270 m) and 24-26 (λ = 

1150-1250), The additional peaks occurs at nearly one half and twice the 

wavenumber of the primary peak in amplitude, suggesting that a possible resonant 

interaction is modulating the magnitudes of the secondary peaks. 

For the bc8m20s (Fig. 5.44), the main peak in the spectrum is found around 

wavenumber 16 (λ = 1870).  This peak in amplitude is close to the peak in amplitude  

expected to emerge by growth of the theoretical most unstable mode assuming an 

initial shear zone of ~2.4Δ. Like the bc5m16s case, there is a main peak in 

amplitude as well as two smaller secondary peaks in amplitude around 

wavenumbers 25-26 (λ = 1200- 1150) and wavenumbers 10-11 (λ = 2990-2720). 

5.2.3. Perturbation growth rates 

As in the barotropic cases, the growth rates in the baroclinic cases can also be 

computed from the spectral density estimates.  However, the growth rates are not 

constant in the baroclinic cases, but instead increase with time as the shear zone 

contracts.  By plotting the perturbation amplitude as a function of time on a semi-

log graph, it is seen that unlike in the barotropic cases where the time-series were 

straight lines (i.e., constant exponential growth), the time-series for the baroclinic 

cases curve upward slightly (i.e., increasing exponential growth) with time.  Fig. 
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Figure 5.43. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods 870-1110 s and 
600-840 s (inset) after the start of simulation bc8m80s.  The vertical black lines 
denote the most-unstable wavenumbers predicted by linear theory for a shear zone 
width of 2Δ and 3Δ.   
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Figure 5.44. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber during the periods 930-1170 s and 
660-900 s (inset) after the start of simulation bc8m80s.  The vertical black lines 
denote the most-unstable wavenumbers predicted by linear theory for a shear zone 
width of 2Δ and 3Δ.   
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5.45 shows the amplitudes as a function of time for five different wavenumbers for 

the bc5m16s case.  As time increases, all wavenumbers experience an increase in 

growth rate (slope).  The greatest amplitude and the largest average growth rate 

occur at wavenumber 12 (λ = 2490), corresponding to the peak in amplitude seen in 

Fig. 5.43.  Likewise, the bc8m20s case also features an increase in growth rate with 

time (Fig. 5.46), albeit with a somewhat lesser extent.  The greatest amplitude and 

largest growth rate occurs at wavenumber 16 (λ = 1870), corresponding to the peak 

in amplitude in Fig. 5.44. 

It is useful to determine if linear theory may be applied to the baroclinic 

cases despite the complication imposed by the time-varying initial shear zone width.  

The evolution of the shear zone width may be parametrically approximated by 

computing the maximum shear zone vorticity as proxy for the shear zone width via 

the relationship b = ΔU/ζ (where ΔU is nearly constant). The modeled shear zone 

vorticity evolution closely conforms to a tanh function in time (Fig 5.47).  The tanh 

function is of the form 

, 

where a is the vorticity amplitude, r is the shape parameter, and m and d are 

displacements in the x- and y-dimensions.  An example of a tanh function as derived 

by fitting to the model-output vorticity is shown in Fig. 5.47.  The tanh curve very 

closely follows the model output, thus providing an excellent parametric estimate of 

the vorticity and hence also the shear zone width at any given time.  Fitted tanh 

parameter values for the various idealized baroclinic simulations are listed in Table 

6. 

The growth rate from linear theory is proportional to the vorticity in the 

shear layer, which is typically assumed to be a constant as appropriate for the 

conventional barotropic base state (e.g., Rayleigh 1880; see also Appendix A).   

! = a tanh(rt +m)+ d
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Figure 5.45.  Wave (vortex) amplitudes as a function of time (markers) at different 
wavenumbers for the bc5m16s case.  Colored markers in the key at lower right 
denote the different wavenumbers. 
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Figure 5.46.  Amplitudes as a function of time (markers) at different wavenumbers 
for the bc8m20s case.   
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Substituting a time-varying vorticity function into the expression for the linear 

growth rate (eq. 2.36) allows us to model the total growth rate for the baroclinic 

cases.  The maximum vorticity of each simulation is computed at each output time 

and a hyperbolic-tangent function is then fitted to the maximum vorticity data using 

the Levenberg-Marquardt algorithm as implemented in the SciPy software package.  

Substituting the above analytic tanh functional expression for the vorticity into the 

linear growth rate equation 2.36 yields the complex phase speed 

.  (5.2) 

We can then compute an average growth rate integrated over some time 

interval and compare this to the simulation data.  The theoretical model for the 

average growth rate becomes 

           (5.3) 

where N is the number of output time intervals.  To compute the corresponding 

average growth rate for the simulated shear zones, we first compute the local growth 

rate between two neighboring output intervals (in all simulations, the output interval 

was 30 s),  

.          (5.4) 

where C is the spectral density estimate.  Then the average growth rate is then 

computed as in equation (5.3), where N is the same in the simulation calculations 

and the theoretical model calculations. 

Results from the computed average growth rates for simulations with four 

shear zone widths along with values computed from equations (5.2)-(5.3) are shown 

in Fig. 5.48.  For the 1000 m runs, (Fig. 5.48a), the growth rates are in good 

agreement between the theoretical model and the calculated values from the  
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Figure 5.47. Peak north-south averaged vorticity as a function of time for the 
bc8m16s case (red circles) and tanh function fit (blue curve). 
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Simulation a r m d 

bc5m6s -.00725 -.2038 4.525 .0208 
bc5m8s -.00974 -.2007 4.426 .0275 
bc5m12s .01387 .2257 -4.491 .0407 
bc5m16s .01728 .2578 -5.527 .0533 
bc5m20s -.01747 -.3538 7.228 .06226 
bc5m24s -.02350 -.3137 6.620 .07803 
bc6m8s .01121 .1657 -3.784 .02566 
bc6m12s .01660 .1702 -3.885 .03851 
bc6m16s -.02062 -.1929 4.319 .05016 
bc6m20s .02246 .2412 -5.219 .05985 
bc6m24s -.02713 -.2278 4.927 .07163 
bc8m12s -.01872 -.1243 3.246 .03564 
bc8m16s .02741 .1127 -3.019 .04924 
bc8m20s .03175 .1199 -3.145 .05969 
bc8m24s .03467 .1275 -3.236 .06816 
bc10m12s .02752 .06683 -2.194 .03941 
bc10m16s .03717 .06593 -2.177 .05294 
bc10m20s .03773 .07586 -2.299 .05831 
bc10m24s .03730 .08746 -2.245 .06284 

 

Table 6.  Parameters for the tanh function in the various 
idealized baroclinic simulations. 

 

simulation output.  The results are in even better agreement for the 800 m, 600 m, 

and 500 m runs (Fig. 5.48b-d).  In all cases for a given shear zone width, there is a 

nearly linear increase in average growth rate as the shear (hence vorticity) is 

increased.  The growth rates calculated from the simulations are slightly low-biased 

relative to the theoretical model predictions except in the 500 m runs, with the latter 

characterized by a slight high bias.  With few exceptions, there is very close 

agreement of the magnitude of the average growth rate between the theoretical 

model and the calculations from the simulations. 

The average growth rates across all baroclinic simulations are plotted as a 

! = a tanh(rt +m)+ d
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function of the initial shear zone vorticity to convey the overall rate of growth in an 

aggregate sense (Fig. 5.49).  There is a very good linear relationship between the 

average growth rate and the initial shear zone vorticity, both for the theoretical 

model and for the simulation calculations.  Also, there is a very good agreement 

between the theoretical model and the simulation calculations.  However, there is 

some spread due to the nature of the collapsing shear zone and the increase in 

averaged vorticity with time.  That is, for a given initial vorticity, the average 

growth rates are larger for larger shear zone widths.  Larger shear zone widths can 

collapse to a greater degree than smaller widths, thus allowing for larger vorticity 

values at later times, hence a larger average growth rate.  For example, an initial 

vorticity of 0.02 s-1 experiences growth rates of 0.0057, 0.0060, and 0.0063 for the 

600 m, 800 m, and 1000 m cases respectively. 

5.2.4. Emergence of discrete vortices 

As the baroclinic simulations progress, instability leads to the emergence of 

discrete vortices as also noted in the barotropic cases.  Since the baroclinic shear 

zones collapse and the vorticity within them increases, the growth rates are higher 

and discrete vortices emerge earlier than in the corresponding barotropic cases with 

the same initial shear zone width and shear magnitude (corresponding to the same 

initial vorticity).  By the time the vortices begin to emerge and the shear zone has 

fully collapsed, the shear zone vorticity has achieved its maximum value (e.g., the 

initial shear zone vorticity was 0.032 s-1 and the vorticity within the emerging 

vortices is ~ 0.07 s-1, or more than double the initial value for the bc5m16s case). 

Although the entire shear zone is characterized by upward vertical motions 

due to the pronounced secondary circulation associated with the zonal density 

gradient, localized  regions  of  enhanced  upward vertical velocity  are  nevertheless 

noted  by  900 - 960 s  in  case  bc5m16s  (Fig. 5.50a-b).    As  the  upward   vertical  
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Figure 5.48. Maximum average growth rates (red dots) plotted as a function of shear 
magnitude for four different shear zone widths.  The maximum average growth rates 
as predicted by the parameterized growth rate eq. (5.2) and described in the text 
("theoretical") are denoted by blue dots.  The red and blue lines indicate linear least 
squares fits to the respective data points.  Also shown are the least squares linear 
fitting equations and the correlation coefficients of the fitted lines. 
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Figure 5.49.  Average maximum growth rates as a function of initial shear zone 
vorticity for all baroclinic simulations.  Red squares represent simulation values, 
while blue circles are parameterized growth rate equation values. 
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velocity increases within localized regions, discrete regions of localized vertical 

vorticity maxima also emerge.  By 1020 s (Fig. 5.50c), downdrafts have begun to 

form in the centers of most of the discrete vortices, although significant nonlinear 

evolution has already begun.  The updrafts and downdrafts continue to intensify 

from 1080 s through 1200 s (Fig. 5.50d-f) and achieve saturation after 1200 s (Fig. 

5.50f).  The remaining vortices that eventually begin to pair and coalesce into larger 

vortices (not shown) are generally characterized by central downdrafts flanked by 

updrafts between vortices. 

Compared to the nonlinear evolution of this case’s barotropic counterpart 

(bt5m16s), several commonalities and differences exist.  First, in the baroclinic case 

the vortices are spaced closer together than in the barotropic case.  This is to be 

expected as the wavenumber of maximum growth increases (i.e., wavelength 

decreases) as the shear zone width collapses.  Further, as the collapsing shear zone 

contains increasingly larger vorticity values, the growth rates are larger and the 

vortices emerge earlier and stronger in the baroclinic case.  Also, there is much 

more variability in the spatial structure of the baroclinic vortices compared to the 

barotropic.  Whereas the barotropic vortices are all nearly the same shape and size, 

the baroclinic vortices take on a range of shapes and sizes.  Also, although the 

emerging vortices go through some degree of nutation, it is less in the baroclinic 

case than in the barotropic case, since the vortices tend to be more circular, and are 

perhaps somewhat constrained by the background east-west convergence within the 

shear zone. 

As in the barotropic case, there seems to be a wavenumber 2 modulation of 

the vorticity fields (i.e., as manifest as a structural resemblance in regions spaced 15 

km apart in the periodic domain).    Again as in the  barotropic  case,  at  later  times 

there is generally a downdraft near the vortex center with flanking updrafts although  
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Figure 5.50.  Vertical vorticity (color filled) at z = 550 m for the bc5m16s case. The 
solid (dashed) black contours denoting positive (negative) vertical velocity at 2 m s-1 
intervals starting at 1 (-1) m s-1. 
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Figure 5.51.  North-south cross-sections through the shear zone for the bc5m16s 
case.  Vertical vorticity is color-filled and solid (dashed) curves denote upward 
(downward) vertical motion with an interval of 1 m s-1, starting at 1 (-1) m s-1. Note 
that the vertical axis has been stretched by a factor of 2.  
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the downdrafts seemed to be more centered in the baroclinic case (Figs 5.50, 5.51).  

Although the vertical velocity structure tends to be fairly symmetric in the 

barotropic case, in the baroclinic case there is a greater degree of spatial variability. 
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Chapter 6 

Discussion and synthesis of results 
6.1.  22 MAY 2002 DRYLINE  

6.1.1. Comparison of simulated misocyclones in the real data case with 
observed misocyclones 

Several of the simulated misocyclones in the real data case have a similar 

structure and evolution to M1, which was previously discussed in Chapter 4.2 (see 

also B12).  These simulated misocyclones all intensify within a zone of 

convergence, concentrated shear, updrafts, and vertical vorticity that is located 

along or just east of the dryline moisture gradient (e.g., Fig. 6.1). As misocyclones 

M1, M2, and M4 continue to intensify, their major axes precess counterclockwise to 

form a characteristic “S-shaped” gradient (Fig. 6.2a,b,d).  In contrast, misocyclone 

M3 develops a more circular structure and does not precess significantly as it moves 

downstream (Fig. 6.2c). Misocyclones M1, M2, and M4 reach a maximum intensity 

after precessing about 90°. As each misocyclone reaches the mature phase, an axial 

downdraft develops as updrafts persist in convergent regions to the north and south 

of the circulation centers.  Continued advection around the misocyclone eventually 

leads to a seclusion, wherein moisture wraps completely around the vortex and 

closes off a pocket of dry air. 

Several notable features of the simulated misocyclones (Fig. 4.6, Fig. 6.2) 

are consistent with observed misocyclones (e.g. Pietrycha and Rasmussen 2004; 

Arnott et al. 2006; Marquis et al. 2007).  The misocyclonic structure, which is 

characterized by an absolute maximum in vertical vorticity near the surface and a 

relative maximum, that decreases and slopes downshear with height, is similar in 

both the simulation and the observations (Fig. 4.6; Buban et al. 2007, their Fig 19). 

Both the simulated and observed misocyclones are centered and remain along the  
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Figure 6.1.  Simulated water vapor mixing ratio (color filled) and vertical vorticity 
(contoured every 5 x 10-3 s-1 starting at 5 x 10-3 s-1) at the lowest model level, with 
positive values black and negative values white and cloud water mixing ratio > 0.05 
g kg-1 (grey shaded) at ~3.5 km AGL.  Also shown are the misocyclone-relative 
wind vectors at the lowest model level (1 km = 5 m s-1) calculated by subtracting a 
mean wind of 18 m s-1 at 190° from the total wind, with 1 km length equal to 5 m s-

1.  The letter c in panels b and c indicate the same cumulus cloud.  The black dashed 
lines indicate cross-section locations shown in Fig. 6.7. 
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Figure 6.2.  Evolution of four simulated misocyclones (M1-M4) at a 6-minute 
intervals from the simulation.  Shown are the lowest model level positive vertical 
vorticity values (contoured) every 5 x 10-3 s-1 starting at 5 x 10-3 s-1 and horizontal 
vortex-relative wind vectors.  Also shown is the 7.5 g kg-1 mixing ratio isopleth 
along the dryline (grey curve) at the lowest model level and estimated motion (black 
dashed line). 
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dryline gradient through most of their life cycles.  The simulated and observed 

misocyclones also tend to be elliptically shaped.  The major axes of elliptical 

misocyclones are oriented along the dryline gradient and precess counterclockwise 

with time. The observed and simulated misocyclones are initially collocated with an 

updraft that extends both north and south along the dryline, with the strongest 

updraft cores located north of the misocyclones.  The central updraft subsequently 

weakens in both the simulated and observed misocyclones, and a downdraft 

eventually replaces the weakening updraft in the simulation of M1.  Development of 

pressure minima in the simulated misocyclones (e.g., as in the idealized simulation 

case in Fig. 5.25) with collocated central downdrafts is consistent with a downward-

directed perturbation pressure gradient force owing to the low-level vertical 

vorticity maximum combined with a cyclostrophically-forced central pressure 

minimum ∆𝑝!~− 𝜁! that decreases with height (e.g., by analogy to supercell 

occlusion downdrafts reported by Brandes 1984).  The limited period of radar 

measurements on 22 May has precluded radar observation of a central downdraft by 

Buban et al. (2007).  However, central downdrafts have been observed in other 

dryline misocyclones (Marquis et al. 2007).  At later times, the updraft to the north 

of the misocyclone weakens while the updraft to the south of the misocyclone 

strengthens. 

In both the simulations and the Lagrangian analyses, the misocyclones force 

dryline waves by advecting moist air westward to the north of the vortex (i.e., 

leading the northward-moving vortex) and advecting dry air eastward to the south of 

the vortex.  The resultant wrapping pattern of moist and dry air around the simulated 

misocyclones (e.g., as described in Chapter 4.2, Fig. 4.6) is similar to radar-

analyzed trajectories and Lagrangian analyses perturbed by observed misocyclones 

(Marquis et al. 2007; Buban et al. 2007, their Figs. 19-20).  Although the general 
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effects of the misocyclones on the moisture fields are similar in both the Lagrangian 

analyses and the simulations, much more detail is seen in the simulations owing to 

both the finer grid resolutions and filtering in the radar and Lagrangian analyses 

(Ziegler et al. 2007).  The misocyclones were not observed long enough to visualize 

the decay process, and therefore cannot be compared to the simulations in the latter 

aspect. 

6.1.2. Misocyclone dynamics 

Given the very similar morphology and evolution of several simulated and 

observed misocyclones, it is likely that the simulations are collectively resolving a 

consistent underlying dynamical evolution process.  The formation of observed and 

simulated misocyclones occurs along dryline segments distinguished by 

convergence, shear, updrafts, and bands of vertical vorticity, suggesting that an 

essentially barotropic horizontal shearing instability dominates the initial stages of 

the misocyclogenesis process (see previous discussion in Chapter 5). However, 

documenting all sources of instability from which misocyclones may eventually 

grow to and past maturity is beyond the scope of this study.  Nevertheless, the real 

data simulation provides a high-resolution dataset from which subsequent 

misocyclone evolution and several significant dynamical forcing processes may be 

identified. 

Using the anelastic approximation of the momentum equations, the vertical 

vorticity equation may be written in the form 
  !"

!"
= −𝑉! ∙ ∇!𝜁 − 𝑤

!"
!!
+ !"

!"
!"
!"
− !"

!"
!"
!"

− 𝜁 !!
!!
+ !"

!"
        (6.1) 

where ζ is the vertical vorticity and the effects of friction and the earth’s rotation 

have been neglected (Shapiro et al. 2009).  The baroclinic term has also been 

omitted from eq. (6.1), as it is several orders of magnitude smaller than the 

remaining calculated terms (not shown).    Thus, the local vertical vorticity tendency  
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Figure 6.3. Simulated vertical vorticity at the lowest model level (color-filled) with 
other overlay fields at 2312-2330 UTC for misocyclone M1.  Left: Tilting 
production of vertical vorticity (contoured in black every 50 x 10-6 s-2 starting at 50 
x 10-6 s-2), with positive values solid and negative values dashed, and stretching of 
vertical vorticity contoured in white every 50 x 10-6 s-1 starting at 50 x 10-6 s-1), with 
positive values solid and negative values dashed. Also shown are the misocyclone-
relative wind vectors at the lowest model level (1 km = 5 m s-1) calculated by 
subtracting a mean wind of 18 m s-1 at 190° from the total wind.   Right: Vertical 
velocity contoured in black every 0.5 m s-1 starting at 0.5 m s-1) with positive values 
solid and negative values dashed, and horizontal vorticity vectors with 1 km length 
equal to 15 x 10-3 s-1.  Black dashed lines indicate cross-section locations in Fig. 6.4. 
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Figure 6.3. Continued. 
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is due to the four right-hand-side terms that are respectively the tendencies due to 

the horizontal advection of ζ, the vertical advection of ζ, the tilting of the horizontal 

vorticity into the vertical axis, and the stretching of ζ.  Since we are interested in the 

change in intensity following the vortex, the horizontal wind components in eq. 

(6.1) are misocyclone-relative.  The dynamics of the misocyclone can be described 

in terms of vorticity tendencies as it evolves through three distinct phases. 

 During the initial growth phase (~2306-2312 UTC), the development of the 

misocyclone is primarily due to the stretching of vertical vorticity (B12).  During 

this phase the stretching mainly occurs along and east of the updraft core (Figs. 

6.3a, 6.4a-d, bullet 1). West of the updraft core the vorticity tendency is primarily 

negative (Figs. 6.3a, 6.4a-d, bullets 2-3) and due to the tilting of westward-directed 

horizontal vorticity vectors downward (i.e., !"
!"
> 0, !"

!"
> 0, − !"

!"
!"
!"
< 0).  Weak 

negative advection of vertical vorticity into the misocyclone is present at this stage 

(i.e., the vertical vorticity is a local maximum in the misocyclone and the flow is 

convergent), while positive vertical advection of vertical vorticity is also acting 

through the top of the misocyclone (not shown). 

 During the ensuing rapid growth phase (~2312-2324 UTC; refer to figures at 

2318 UTC), the stretching of vertical vorticity intensifies as convergence and 

vertical motion increase within the misocyclone (B12).  Thus, during the rapid 

growth phase w increases with height more rapidly since w vanishes at the lower 

boundary.  As increasing !"
!"

 becomes located over increasing 𝜁, stretching 𝜁 !"
!"

 

intensifies along the updraft core (Figs. 6.3c-d, 6.4e-f, bullet 4).  The vertical 

vorticity tendency west of the updraft core is negative and remains dominated by the 

tilting of westward-directed horizontal vorticity vectors downward (Figs. 6.3c-d, 

6.4e-f, bullet 5).  Although there is negative horizontal vertical vorticity advection, 

the   strong   stretching   allows   the    misocyclone    to   grow   in   both    intensity 
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Figure 6.4. Vorticity vectors in the plane of the cross-section (150 m length equal to 
15 x 10-3 s-1) with kinematic fields at 2306-2330 UTC. Left: Vertical velocity 
(color-filled), vertical tilting of horizontal vorticity (contoured in black every 200 x 
10-6 s-2 starting at 50 x 10-6 s-2), with positive values solid and negative values 
dashed, and stretching of vertical vorticity contoured in white every 100 x 10-6 s-2 
starting at 50 x 10-6 s-2, with positive values solid and negative values dashed.  
Right: vertical vorticity (color-filled), the sum of tilting plus stretching of vertical 
vorticity tendency (contoured in black every 200 x 10-6 s-2 starting at 50 x 10-6 s-2), 
with positive values solid and negative values dashed.  The black dashed line 
indicates the axis of the updraft core. Numbered white dots locate vorticity forcing 
features described in the text.  Cross-section locations for panels c-j are located in 
Fig. 6.3. 
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and diameter (Figs 6.3c-f, 6.4e-f).  Strong vertical advection of vertical vorticity 

also contributes to the deepening of the misocyclone through 2324 UTC.  The 

misocyclone reaches its maximum intensity during this phase. 

The onset of the decay phase is marked by simultaneous weakening of the 

tilting and stretching tendency terms (B12).  At the onset of misovortex decay, the 

horizontal and vertical advection terms are balanced with the tilting and stretching 

terms.  From the initiation through the growth phase, the pressure within the 

misocyclone center falls as a cyclostrophic balance between the pressure and 

angular momentum is rapidly achieved and subsequently sustained.  That is, the 

simulation rapidly adjusts the pressure in response to the circulation to remain 

dynamically balanced.  In fact, calculations confirm that the pressure perturbation 

near the surface within the misocyclone is almost exactly what would be expected 

for the misocyclone to be in cyclostrophic balance given the misocyclone-relative 

horizontal velocity field (not shown).  As the misocyclone continues to strengthen, 

the pressure continues to fall in the center.  Since the misocyclonic vorticity 

decreases with height, there is a net downward-directed perturbation pressure 

gradient force.  As the perturbation pressure gradient strengthens, the updraft 

weakens and subsequently transitions to a central downdraft (Figs. 6.4g-h, bullet 6). 

As previously discussed in section 6.1.1., the transition process from axial 

updraft to axial downdraft in a misocyclone is similar to the development of an 

occlusion downdraft in the intensifying low-level mesocyclone of a supercell storm 

(e.g., Brandes 1984).  This process limits the extent of misocyclone growth and 

initiates the onset of the decay phase.  With the downdraft continuing to strengthen, 

the misocyclonic vertical vorticity weakens from the center outward.  During this 

phase, compression of vortex tubes (Figs. 6.3g-h, 6.4i-j, bullet 7) along with 

negative tilting of eastward-directed vorticity vectors (Fig. 6.4i-j, bullet 8) lead to 
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negative vertical vorticity tendency in the center of the misocyclone. Along the 

periphery of the central downdraft, areas of updraft and positive vertical vorticity 

stretching persist (Figs. 6.3g-h, 6.4i-j, bullet 9).  Thus, the decaying misocyclone 

takes the form of an (“inverted U-shaped”) arc of enhanced vorticity along the 

western edge of the broader circulation (Figs. 6.3g-h). As the misocyclone continues 

to decay, the remaining vertical vorticity weakens by 2330 UTC except for a 

residual vortex at the southern edge of the broader circulation (Figs. 6.3g-h).  The 

weakening broader misocyclone subsequently moves out of the model domain. 

6.1.3. Cumulus formation 

Shallow cumuli have been observed both visually and by satellite within the 

IOR on 22 May (Buban et al. 2007).  The Lagrangian analyses are unable to 

represent cumuli in the 22 May case, since the cloud base is higher than the top of 

the analysis domain. Cumuli develop in the real data simulation (B12), thus 

providing a high-resolution dataset with which to demonstrate the transportive 

nature of the cumulus formation process. 

Ziegler and Rasmussen (1998) have proposed a “parcel continuity principle” 

which states that a cumulus cloud will form only if air parcels reach their LCL prior 

to exiting the mesoscale updraft that provides the lift needed to achieve water 

saturation.  That is, the time required for an air parcel to cross and eventually exit 

the updraft (defined as w > 0) horizontally must equal or exceed the time required 

for the parcel to rise from its entrainment level to its LCL (Ziegler et al. 2007, 

Ziegler and Rasmussen 1998).  Depending on the saturation point level of the source 

region of air and the time duration and intensity of lifting, only a rather small subset 

of all BL updraft air parcels would normally achieve their LCLs (Ziegler et al. 

2007).  The BL air that eventually formed simulated cumuli was hot and dry (θv 

~315 K and qv~5 g kg-1),  thus requiring strong,  sustained  lifting t hrough  a  rather 
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Figure 6.5.  Real-data-simulated relative humidity (color-filled), water vapor mixing 
ratio (black contours at 0.5 g kg-1 interval), cloud water mixing ratio greater than 
0.01 g kg-1 (gray shading), and plane-parallel wind vectors with 1 km = 5 m s-1 in a 
dryline-normal cross-section at 2305 UTC (denoted by the black dashed line in Fig. 
4.4).  Also shown are dryline (DL) and secondary dryline (SDL).  The numbers 
within each cumulus cloud indicate regions in Fig. 6.6. 
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deep layer that contained potentially inhibitive vertical wind shear to reach the LCL 

height of  ~3.0-3.5 km (B12).  The latter conditions are achieved in several areas 

within the northeastern quadrant of the simulation domain (Fig. 4.4).     

High-based cumuli develop to the west of the dryline within stronger 

updrafts associated with a weak secondary dryline, HCRs, and OCCs (B12, Fig. 

4.4).   Lower-based cumuli also develop within strong updraft bands along the 

dryline as well as where HCR or OCC segments have moved from southwest to 

northeast across the dryline (Fig. 4.4).  Measurement of thirty individual updraft 

cores yielded a mean horizontal updraft speed of 19.0 m s-1 with a standard 

deviation of 1.1 m s-1.  Updraft cores thus tend to move near the mean BL velocity 

(19.2 m s-1), allowing air parcels to spend a sufficient amount of time within the 

updraft to reach their LCLs. 

Simulated cloud-base heights tend to decrease from west to east across the dryline 

as a result of the differing origins and saturation points of rising air (B12), as 

previously inferred from aircraft in situ observations and a photogrammetric 

analysis by Ziegler and Rasmussen (1998). The range of simulated cloud-base 

heights are ~2.9 - 3.2 km AGL along and east of the dryline, ~3.30 - 3.35 km AGL 

just west of the dryline, and  ~3.35 - 3.5 km AGL along the western secondary 

dryline (Figs. 6.5 - 6.6).   These LCL heights are broadly consistent with an LCL 

height of ~3.4 km estimated from mobile soundings launched west of the dryline 

(Buban et al. 2007). The detailed differences in cloud-base height are a 

manifestation of the differing thermodynamic characteristics of the air parcels that 

subsequently reach cloud base as discriminated by their originating BL airmasses.  

The simulated cumuli reported by B12 can be organized into five groups 

according to individual cloud base heights and locations (Fig. 6.6).  Backward air 

trajectories  calculated  from  cumuli in the first group  (not shown)  with the highest 



 
141 

 

Figure 6.6.  Cloud base height (km AGL) as a function of east-west distance relative 
to the dryline (km).  1) Cumuli formed from air lifted along secondary dryline; 2) 
cumuli formed from dry air lifted west of the dryline; 3) cumuli formed from dry air 
lifted over the dryline; 4) cumuli formed from a mixture of dry and moist air within 
the dryline; 5) cumuli formed from a mixture of dry and more moist air lifted just 
east of the dryline. 
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cloud base (~ 3.5 km) reveal that parcels eventually reaching their LCL originate in 

the middle to upper BL, and are lifted gradually while traversing the updraft along 

the secondary dryline.  All air trajectories described in the present study are 

calculated using three iterations of a quadratic Runge-Kutta predictor-corrector 

scheme (McCalla 1967).   In the second group, somewhat lower-based cumuli with 

cloud bases around 3.3 km form within locally stronger updrafts along HCR and 

OCC segments between the secondary and primary drylines. Air that reaches the 

LCL in this latter area has a source region in the lower to middle BL.  Both higher-

based and lower-based cumuli form along and just east of the dryline.  The higher-

based cumuli comprise the third group and form along HCR and OCC segments that 

have crossed over the dryline.  These latter cumuli have similar cloud base heights 

and parcel source regions to the cumuli formed along HCR and OCC segments that 

have not crossed over the dryline.  Air within these higher-based cumuli originates 

at various levels within the lower to middle BL west of the dryline.  In the fourth 

group, lower-based cumuli form within the dryline updraft and consist of a mixture 

of parcels originating within the dryline moisture gradient at very low levels and 

drier air in the middle BL west of the dryline.  These cumuli have bases ~ 3.2 km.  

Those cumuli farthest east with the lowest cloud base comprise the fifth group, 

consisting of a mixture of moist air at low levels within the dryline gradient and dry 

air west of the dryline in the middle BL, however those low level parcels arise from 

the moist side of the dryline gradient. 

Backward air trajectories illustrate parcel source regions (e.g., Fig. 3.1a, Fig. 

6.7b) for a cumulus cloud east of the dryline (B12).  Air parcels that subsequently 

enter the cumulus cloud originate at the southern boundary from both the moist side 

of the dryline gradient and about 4 km west of the dryline (Fig. 3.1a).  As these air 

parcels of  differing  saturation points enter the  dryline updraft and are brought  into   
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Figure 6.7. Panels (a), (c), (d): relative humidity (color-filled), water vapor mixing 
ratio (black contours at 0.5 g kg-1 intervals), virtual potential temperature (white 
contours at 0.25 K interval), cloud water mixing ratio greater than 0.01 g kg-1 (gray 
shading), and plane-parallel wind vectors with 1 km = 15 m s-1.  Panel b (left):  
water vapor mixing ratio (color filled) and vertical velocity (every 1 m s-1 starting at 
±1 m s-1) with positive (negative) values indicated by the solid (dashed) black 
contours.  Also shown are plane-parallel wind vectors with 1 km = 20 m s-1.  Panel b 
(right):  as in (a) but omitting temperature.  Also shown are plane-parallel wind 
vectors with 1 km = 20 m s-1.  In panel b, the thick black solid and dashed curves are 
the plane projections of the trajectories shown in Fig. 3.1. 
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closer proximity by convergence (Fig. 6.7b), they mix as they are accelerated 

upward (not shown).  In fact, due to the helical nature of the flow, these two air 

parcels actually twist around one another as they approach the LCL (Fig. 3.1a, Fig. 

6.7b), with the eastern and lower air parcel eventually becoming farther west and 

higher than the other parcel. It is found that the simulated cumuli all form from a 

mixture of air from differing source regions, that these source regions are spaced 

much farther apart than the scale of the individual clouds, and that air travels a 

considerable horizontal distance (~20 km) within the updraft prior to reaching the 

LCL. 

The simulated cumuli both east and west of the dryline are small in 

horizontal extent (Fig. 6.1) and rather shallow (Fig. 6.5, Fig. 6.7).  These 

characteristics are consistent with photographic images of cumuli on 22 May 

(Buban et al. 2007, their Fig. 5.4c?).  Cumuli formed by a strengthening HCR west 

of the dryline (Fig. 6.1c, Fig. 6.7c) and cumuli formed from HCR segments that 

have moved over the dryline (Figs. 6.1a,d; Figs. 6.7a,d) have nearly the same cloud-

base height, reside within a larger area of higher relative humidity, and are forced by 

a rather erect updraft plume associated with the parent HCR.  A significant 

distinction between these cumuli is that the plumes that develop cumuli to the east 

of the dryline are no longer connected to their near-surface updrafts due to the 

stratification introduced by the virtually cooler moist BL.  Cumuli formed by a 

mixture of dry air from west of the dryline and moist air within the dryline zone 

have a lower cloud base (Fig. 6.1b, Fig. 6.7b) and are forced by the along-dryline 

updraft whose enhanced tilt is a consequence of the solenoidally forced secondary 

circulation that also enhances westerly shear. 

Several cumuli develop near misocyclones in the simulations (Fig. 6.1).  

Although some appear to be a result of previously hypothesized processes (e.g., 
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deepening of the moist layer and enhanced convergence north of the misocyclone 

due to the misocyclone’s interaction with the dryline), the number of cumuli 

associated with misocyclones is small compared to the total number of cumuli.  

Furthermore, cumuli do not develop within the vicinity of several misocyclones.  

Therefore, little inference can be drawn from the real data simulation regarding the 

influence of misocyclones on cumulus formation on 22 May 2002. 

6.2. COMPARISON OF THE IDEALIZED BAROTROPIC AND BAROCLINIC SIMULATIONS 

6.2.1. Evolution of shear zones 

All of the barotropic simulations have a similar evolution.  From the initial 

state, characterized by a region of constant vorticity bordered on the east and west 

by regions of zero vorticity, the simulations progress by maintaining a nearly 

homogeneous, constant vorticity, constant width vorticity layer for a considerable 

time.  As the simulations start, there is a spin-up period (roughly ~ 200 s) where 

small perturbations are damped, followed by exponential growth of preferred 

wavenumbers consistent with predictions of linear theory.  Eventually, as the initial 

perturbations have grown by about 2 orders of magnitude, wavelike features emerge 

along the shear zone.  These wavelike features continue to amplify and eventually 

develop into discrete vortices. 

All of the baroclinic simulations also have a similar evolution to each other, 

but different from the barotropic simulations.  The initial state is characterized by a 

region of constant vorticity bordered on the east and west by regions of zero 

vorticity.  Along the shear zone and below 1.5 km a vertically homogeneous east-to-

west temperature gradient is imposed embedded in a westerly shear. As the 

simulations spin up, the horizontal density gradient induces a secondary circulation.  

Therefore, the shear zone initially moves eastward before slowing and becoming 

nearly stationary.  During this time, the shear zone undergoes collapse and the 
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vorticity within the zone increases.  It has been shown that the increase in vorticity 

is primarily due to stretching of vorticity, opposed slightly by tilting of the vertical 

vorticity by the secondary circulation.  As the simulation spins up, like in the 

barotropic cases, the small random perturbations are initially damped.  Eventually, 

as the initial perturbations have grown by about two orders of magnitude, wavelike 

features emerge along the shear zone.  These wavelike features continue to amplify 

and eventually develop into discrete vortices. 

6.2.2. Linear theory 

Linear theory is only applicable when the magnitude of the perturbations is 

“small” compared to the characteristic velocity of the shear.  Although there is no 

well-defined cutoff for the transition from the linear to the nonlinear regime, one 

metric to assess the degree of linearity (i.e., the extent to which products of 

perturbations can be neglected compared to some measure of the mean flow), is to 

compare the amplitude of the perturbation in the v-component wind to the v-

component shear across the shear zone (i.e., peaks in the curves in Fig. 5.9).  If !v is 

the amplitude, then the ratio L =
2 !v

"V
is a measure of the percentage of the mean 

flow contained in the perturbation.  In all the barotropic simulations, it appears that 

the growth described by linear theory holds well up through rather large values of L. 

Small-amplitude wavelike features first become visible in the momentum fields 

after L achieves order 10%.  The perturbations continue to grow exponentially at the 

same rate and peak wavenumber up through L ~ 50% or more.  Thus it appears that 

the predictions of linear theory may be extended into the nonlinear regime. 

Even before visible waves can be seen in the simulations (about the time 

when the validity of linear theory weakens), spectral density estimates and growth 

rates can be computed.  Therefore even from the beginning, the behavior of the 
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simulations can be compared to linear theory with regard to the growth of random 

perturbations.  Note that even though there isn’t a theoretical analytic result 

applicable for the baroclinic cases, we can still identify a “linear regime” for these 

cases, with the interpretation that this is the period where the initial random 

perturbations are small compared to the initial flow (i.e. L !10% ).  

For the barotropic cases, initially there is a spin-up period, where 

perturbations either do not grow exponentially or else are damped, followed by a 

period of exponential growth.  This behavior is seen across all barotropic 

simulations and was also reported in a simulation of fluctuation growth along a 

frontogenetic oceanic front (McWilliams et al. 2009).  After the spin-up period the 

growth rates are essentially exponential (as evidenced by the high linear correlation 

on the semi-log plots in Figs. 5.19 and 5.20).  Also, the actual growth rates and 

wavenumbers of maximum growth are very close to those predicted by linear 

theory.  As the width of the shear zone increases, the most-unstable wavelength also 

increases, remaining about 7.9 times the width of the shear zone, and this is 

independent of the magnitude of the shear across the zone.  The growth rates of 

these maxima, however, are dependent on the magnitude of the vorticity in the 

layer, thus both the magnitude of the shear and the shear zone width.  The larger the 

vorticity values, the larger the growth rates.  Therefore, simulations with higher 

initial vorticity values have the emergence of wavelike structures and eventually 

discrete vortices sooner than simulations with weaker initial vorticity values, since 

all simulations are initialized with the same random perturbation (= 0.01 m s-1). 

For the baroclinic cases (as in the barotropic cases), initially there is a spin-

up period wherein perturbations either do not grow exponentially or else are 

damped. After, a period of super-exponential growth develops as the growth rates 

are increasing due to shear zone contraction (as evidenced by the slight upward 
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curvature on the semi-log plots in Figs. 5.45 and 5.46).  This behavior is seen across 

all barotropic simulations.  To try to extend the theoretical analytic results of linear 

theory applicable to the barotropic cases to the baroclinic cases, the analytic theory 

was modified to allow for an evolving shear zone width.  The modified linear theory 

equation applied to the baroclinic simulations yields excellent agreement between 

the new theory and “observed” growth rates from the simulations. The resulting 

growth rates are larger in the baroclinic cases than the barotropic cases for the same 

initial shear zone vorticity, since the growth rates are still a function of the vorticity, 

and the vorticity increases due to shear zone collapse.  This result is consistent with 

McWilliams et al. (2009), who found that baroclinic frontogenesis enhanced the 

growth of 3-D fluctuations along a simulated oceanic front.  As in the barotropic 

simulations, there is a high degree of correlation between the growth rates and the 

initial shear zone vorticity, with larger vorticity values leading to larger growth rates 

and earlier emergence of the wavelike structures and resultant discrete vortices. 

Although the linear theory only holds while the growing perturbations are 

small (i.e., on the order of 0.1-1.0 m s-1 in the simulations), the discrete vortices that 

eventually form, albeit well into the nonlinear regime, possess wavelengths and 

spacings consistent with that predicted from linear theory in the barotropic cases.  It 

therefore seems that linear theory can be extended to some degree into the nonlinear 

regime for these cases, or that the initial exponential growth “fixes” the structure of 

the later emerging vortices.  The results suggest in either way a degree of predictive 

value, in the sense that the spacing of discrete vortices can be determined prior to 

their emergence given an initial shear zone width.  Also, if some estimate of the 

magnitude of the shear across the shear zone is known (hence vorticity), some 

estimate of the growth rates of the emerging vortices can also be estimated. 
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For the baroclinic cases, although some estimate of an initial shear zone 

vorticity and some estimate of the nature of the shear zone collapse could allow 

some estimate of the resulting growth rates, it would seem to be more difficult than 

in the barotropic cases.  In addition, once the wavelike structures and discrete 

vortices emerge in the baroclinic cases, they are farther along into the nonlinear 

regime and exhibit a more complicated structure than the barotropic cases.  In the 

baroclinic cases, there is nothing to prevent the shear zone from continuing to 

collapse other than grid resolution.  In all cases, the shear zones collapse to around 

twice the grid spacing before the emergence of the wavelike structures, and the 

resulting structures have wavelengths consistent with what would be predicted by a 

barotropic linear theory with a shear zone width of around 2Δ.  Regardless of the 

actual resolution employed, it seems that the model will always try to collapse the 

gradient to around 2Δ.  This tendency has also been shown in other simulations of 

frontal zones (e.g., Gall et al. 1987; Garner 1989).  In nature, we find that actual 

boundaries (fronts, drylines, etc.) tend not to collapse to arbitrarily small scales.  

Eventually, turbulent diffusion would tend to limit the magnitudes of gradients 

across boundaries; however, there might be other processes that also limit these 

gradients (Hoskins 2003).  For example, McWilliams and Molemaker (2011) 

suggest that growing frontal instabilities can actually have a frontolytic effect.  

Therefore, in nature, although the baroclinic simulations may initially be more 

appropriate, eventually, any collapsing shear zone would tend toward the barotropic 

configurations of a nearly constant shear zone width. 

6.2.3. Evolution of discrete vortices 

Once past the linear growth regime, discrete vortices develop nonlinearly.  A 

common structure is seen across all barotropic simulations and is typified by the 

bt5m16s case shown.  The nearly equally spaced vortices are elliptically shaped, 
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grow in size, and are connected by thinning braid regions.  As the vortices evolve, 

they rotate with a nearly constant angular velocity and eventually the braid regions 

wrap completely around the cores.  This structure and evolution has been seen 

frequently in many observational and numerical studies (e.g. Freymouth 1966; 

Thorpe 1971; Brown and Roshko 1974; Winant and Browand 1974; Cantwell 1981; 

Corcos and Sherman 1984; Pozrikidis and Higdon 1985; Basak and Sarkar 2006; 

Guha et al. 2013).  The evolving vortices also undergo nutation wherein the ratio of 

the major to minor axis length oscillates, another common feature of vortices under 

a variety of conditions (e.g. Kida 1981; Basak and Sarkar 2006; Guha et al 2013).  

Eventually, the nonlinear interaction among the vortices leads to vortex-pairing and 

mergers (e.g., Winant and Browand 1974; Basak and Sakar 2006; Marquis et al. 

2007). 

The behavior of the vortices that develop in the baroclinic simulations is 

similar to those in the barotropic simulations, with a few notable differences.  In the 

baroclinic simulations, the emerging vortices are not as equally spaced, and have 

differing sizes compared to the barotropic cases.  The greater degree of variability is 

likely due to the modulation of the dominant wavenumber by other less dominant 

wavenumbers (i.e., see minor peak in the spectral density estimates in Figs. 5.43 and 

5.44).  The resulting vortices also develop cores and connecting braids but with a 

more complicated structure.  These cores also rotate and nutate, however to a lesser 

degree than in the barotropic simulations, perhaps because the baroclinic vortices 

tend to be more circular than elliptical. As in the barotropic cases, the vortices in the 

baroclinic cases eventually pair and merge at later times. 

6.2.4. Vertical motions in vortices 

 Once the vortices have developed into discrete cores with connecting braids, 

relatively strong vertical motions fields also develop.  To the author’s knowledge, 
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no previous barotropic theoretical or numerical study has analyzed the velocity field 

along the direction of the vorticity within a shear zone (i.e., the vertical velocity 

component in the present study).  Presumably, this is due to the vast majority of the 

studies either being two-dimensional (where no such velocity component exists) or 

that the orientation of the shear layer is such that the shear is in the vertical (i.e., the 

classic Kelvin-Helmholtz instability problem).  In the present study the vertical 

velocity component is important, since simulations are interpreted as replicating real 

atmospheric boundaries and thus since vertical motions can lead to CI and 

subsequent storm development.  In the barotropic simulations, the stronger updrafts 

tend to occur where the braids attach to the cores.  The strongest downdrafts tend to 

occur either along the braid regions, or in the center of vortices. Note that in the 

simulations, there is also a wavenumber 2 modulation of the fields, such that not all 

vortices within a simulation have updrafts or downdrafts in the same location, 

however pairs of vortices spaced one half of a domain apart (15 km) do appear to 

have similar structure.  In the center of all vortices a local pressure perturbation 

minimum develops, and vortices have a tendency to develop central downdrafts.  

Although not all vortices develop central downdrafts, those without central 

downdrafts also contain only weak updrafts. 

 Prior to the emergence of vortices, the baroclinic simulations are 

characterized by strong updrafts along the entire shear zone due to the secondary 

circulation associated with the density gradient within the zone.  As the discrete 

vortices develop, stronger updrafts tend to develop between vortices, with 

downdrafts developing within the vortex cores.  Unlike in the barotropic cases, 

nearly every distinct vortex core in the baroclinic cases develops a central 

downdraft.  These vertical motion characteristics are consistent with those found 

along a baroclinic shear zone in Lee and Wilhelmson (1997).  Subjective analysis of 
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several observational studies broadly conform to the updraft structure in both the 

barotropic and baroclinic simulations, that is, generally strongest updrafts between 

or just north of vortex cores, weaker updrafts just south of vortex cores, and either 

the weakest updrafts or else downdrafts along the vortex axis (e.g. Wilson et al. 

1992; Kawashima and Fujiyoshi 2005; Arnott et al. 2006; Marquis et al. 2007; 

Campbell et al. 2014). 

 It has been shown that for the barotropic simulations, average maximum 

updrafts that develop are highly correlated with the vorticity within the shear zone, 

with the stronger updrafts associated with higher vorticity values.  Several previous 

studies have been reviewed to see if a similar correlation had been seen prior.  Both 

observational and modeling studies were examined, and with the exception of one 

high-resolution modeling study (Lee and Wilhelmson 1997) there was only a small 

range in the strength of simulated or observed misocyclones.  Most had vorticity  

 
Study Description maximum 

vorticity 
(x 10-3 s-1) 

maximum updraft 
(m s-1) 

Kawashima and 
Fujiyoshi 2005 

radar observations 10 3-4 

Lee and 
Wilhelmson 

1997 

100 m resolution 
simulation 

70-80 8-9 

Arnott et al. 
2006 

radar observations 8 2-3 

Wilson et al. 
1992 

1 km resolution 
simulation 

10 3-4 

Campbell et al. 
2014 

1 km resolution 
simulation 

8 2 

Kawashima 
2011 

500 m resolution 
simulation 

10 3-4 

Buban et al. 
2007 

radar observations 8 3 

Table 7.  List of several other studies containing misocyclones, with their 
description, maximum vertical motion and maximum updraft. 
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values around 8-10 x 10-3 s-1 and they were associated with vertical velocities of 2-4 

m s-1 (Table 7).  There is generally an increase in vertical velocity with increasing 

vorticity in these studies.  Note that in the present study, the lowest initial shear 

zone vorticity values were 10 x 10-3 s-1 and the updrafts associated these values were 

around 1-2 m s-1.  However, these were the average maximum vertical velocities in 

the domain, therefore the simulation did have local updrafts greater than the 

average. 

6.3. COMPARISON OF THE 22 MAY 2002 CASE WITH IDEALIZED SIMULATIONS  

6.3.1. Vortex evolution 

Several misocyclones were identified in the real data simulations.  These 

misocyclones were forced by perturbations introduced at the southern lateral 

boundary  and allowed to evolve according to the dry-convective airflow dynamics 

within the domain interior.  These misocyclones have features similar to vortices 

produced by both the barotropic and the baroclinic simulations.  Four simulated 

misocyclones from the real data case show a range in variability (Fig. 6.2).  Initially, 

each misocyclone is oriented in a north-south or northwest-southeast direction along 

the near-surface shear zone and takes on an elliptical shape, similar to the shape of 

the emerging misocyclones in the barotropic and baroclinic simulations, however, 

the variability is more like that seen in the barotropic simulations.  

The misocyclones move downstream and nearly the speed of the mean 

shear-layer wind as do the barotropic and baroclinic simulated vortices.  As they 

move down stream, all simulated vortices rotate counterclockwise, however in both 

the baroclinic and real data simulations, some vortices are more circular and thus the 

rotation is less pronounced.  Although some  misocyclones in the real data case have 

“tails” extending from the vortex core, they don’t have fully connected braids as in 

the barotropic and baroclinic simulations.  Since the misocyclones are spaced farther 
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apart, and there is fully formed mesoscale turbulence and friction, it seems the real 

data simulations would be unable to preserve they very thin features.  Eventually, 

the real data simulated misocyclones begin to weaken as the move out of the 

domain.  In both the barotropic and baroclinic simulations, the vortices eventually 

merge to form complicated, more turbulent structures.  In the real data case, it 

appears that the spacing of the misocyclones is too large to allow for vortex 

mergers, and once they reach a maximum, they begin to decay. 

Another aspect of the several real data simulated misocyclones is the 

presence of a central downdraft, a feature seen in both the barotropic and baroclinic 

simulated misocyclones.  As the central downdraft develops, vertical vorticity in the 

center is weakened, and this eventually leads to the decay of the misocyclones in the 

real data cases.  In both the barotropic and baroclinic simulations, weakening in the 

center occurs, but vortex mergers occur before much weakening of individual 

vortices is seen. 

A detailed analysis of one misocyclone (M1) has been discussed in Chapter 

4.  Since this misocyclone is situated along a dryline that is characterized by a shear 

zone collocated with a moisture gradient, the effect of the misocyclone on the 

moisture gradient may be determined.  It is seen that the misocyclone reorients the 

moisture gradient initially by wrapping moist air west and dry air east.  With time, 

the moisture gradient wraps completely around the misocyclone thus closing off a 

pocket of dry air near the vortex center.  From the mbt5m16s simulation shown 

(Fig. 5.32), there is a similar evolution.  Moist and dry air parcels are wrapped 

around the evolving vortex in a classic “spiral billows” effect conventionally 

associated with the presence of Kelvin-Helmholtz instabilities. 
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6.3.2. Cumulus formation 

The advection of the moisture fields and the vertical motions within these 

types of vortices can have an effect on possible cumulus formation.  Given that 

relatively strong vertical motions develop in the barotropic simulations, several tests 

are run with moisture added to determine preferred regions of cloud development.  

All simulations with moisture produce clouds in preferred regions.  As the vortex 

cores rotate and the braids wrap around the cores, moist and dry air regions are also 

rotated around the vortex center.  Clouds form between the core and the braid region 

to the west of the core, where the strongest updrafts are collocated with the highest 

moisture values.  Not all vortices have clouds and the extent of the clouds varies, 

however vortices one-half of a domain apart do have similar cloud structure.  Within 

each vortex, the moisture structure is very similar, however the vertical motion 

fields are more variable.  The regions with the strongest updrafts produced the 

largest (and deepest) clouds, with small (shallower) clouds in the weaker updrafts, 

and no clouds in the weakest updrafts. Note that in the mbt5m16s case, clouds 

develop even to the southwest of the vortex core (Fig. 5.32) in a region where 

updrafts generally have not been documented in previous studies.  In the mbt5m16s 

case, by the time the clouds have formed the vortex is mature, and the updraft has 

wrapped a considerable way around the core.  Hence in a vortex-relative sense, the 

updraft is in a position consistent with other studies (e.g., starting from the initial 

development of the vortex the updraft remains in the right front quadrant of the 

system). 

 Since the strongest updrafts are associated with the highest values of shear 

zone vorticity, one would expect the largest and deepest developing clouds to also 

be associated with those shear zones with the highest vorticity values.  Therefore, 

assessing the vorticity associated with a given shear zone (dryline, frontal zone, etc.) 
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could yield some information about the potential for parcels to reach their LCLs and 

subsequent LFCs to trigger CI. 

 On 22 May 2002, several shallow high-based cumuli were observed in the 

IOR, and cumuli were simulated in the real data case.  The observed and simulated 

cumuli were associated with various BL structures including HCRs, mesoscale 

dryline updrafts, and misocyclones.  Moist, equivalent-barotropic simulations were 

configured to determine preferred cumulus development with respect to developing 

vortices.  Since the moist equivalent-barotropic simulations do not contain the fully 

3-D, dry-convective BL circulations that are allowed to develop in the real data 

case, only the relationship between cumulus formation and vortices can be 

compared in the real data and equivalent-barotropic simulations. 

 Cumuli develop coincidently with several misocyclones in the real data 

simulation (Fig. 6.1).  Although not all misocyclones in the real data case are 

associated with developing cumuli, those misocyclones that have coincident cumuli 

generally experience cumulus development either in the northern/northeastern 

quadrants  or the southeast quadrant.  Those cumuli that develop to the north of the 

misocyclone are embedded within deep moist convective plumes that tilt 

significantly eastward with height.  Those cumuli that develop to the south of the 

misocyclone are embedded within more erect updrafts and thus remain closer to the 

surface position of the dryline than in the case of northern cumuli.  These preferred 

northern and southern locations for cumulus formation coincide with the locations 

of the strongest vertical motions in the moist barotropic simulations. 
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Chapter 7 

Conclusions 

This study presents a series of simulations that attempt to replicate the 

dynamics of the dryline and surrounding BL with special emphasis on 

misocyclones.  The first simulation is a real data case, initialized and forced through 

time-dependent lateral boundary conditions via analyses of temperature, moisture, 

and momentum from the 22 May 2002 IHOP dataset. The second series of 

simulations are the barotropic runs, initialized with a north-south oriented constant 

vorticity shear zone and north-south periodic boundary conditions.  The third series 

of simulations are baroclinic, wherein the shear zone also contains an east-west 

temperature gradient.  The barotropic and baroclinic simulations have varying 

magnitudes of shear and differing shear zone widths (corresponding to differing 

initial vorticity values) across the runs.  The barotropic and baroclinic runs each 

contain a series of twenty-five different runs, with each baroclinic simulation and a 

corresponding barotropic simulation having the same shear zone width and shear 

magnitude.  Additionally, several equivalent-barotropic simulations are rerun with 

moisture included under the constraint of horizontally homogeneous virtual 

potential temperature to assess preferred cumulus cloud formation areas.  

The real data simulation reproduces the dryline, misocyclones, and 

convective BL features such as HCRs and OCCs, with similar structures to observed 

features of equivalent scale.  However, some differences in the details exist. The 

dryline is simulated as a nearly north-south oriented zone marked by qv and θv 

gradients of about 2-3 g kg-1 km-1 and 1 K km-1 respectively.  The dryline is 

persistently convergent with accumulation in lower levels, and maintains a 

persistent solenoidally-driven secondary circulation.  These characteristics of the 

dryline have also been observed, albeit weaker in the observational analyses than 
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the simulations mainly due to coarser grid spacing and necessary analysis filtering.  

These characteristics are also consistent with both observed and simulated drylines 

in other past studies.  Features on the dry and moist sides of the simulated dryline 

(e.g. moisture plumes, HCRs, OCCs) also have higher amplitudes and more detailed 

structure than in the analyses as a result of the finer model grid resolution. 

Simulated cumuli in the real data case have similar characteristics to 

observed cumuli.  High-based simulated cumuli develop along a weak secondary 

dryline west of the primary dryline and contain a mixture of air originating from the 

middle and upper BL.  Somewhat lower-based cumuli develop along stronger 

plumes associated with HCRs and OCCs between the primary and secondary 

dryline, and consist of a mixture of air with source regions in the lower and middle 

BL.  Cumuli also develop east of the dryline and have similar cloud-base height and 

air source regions as those between the primary and secondary drylines. These 

cumuli arise within updrafts associated with HCR and OCC segments from the west 

that move over the dryline.  Lower-based cumuli also develop within the dryline 

updraft east of the surface dryline position.  These cumuli contain a mixture of dry 

air from the middle BL west of the dryline and varying degrees of moist air from 

very low levels within the dryline gradient.  All simulated cumuli contain at least 

some dry air from west of the dryline. Furthermore, all cumuli form from a mixture 

of air from more than one source region and thus air with a range of water vapor 

mixing ratios and saturation point.  The cumulus source regions are spaced much 

farther apart than the scale of the individual clouds while air travels a considerable 

horizontal distance prior to reaching its LCL.  Orientation of HCR and dryline 

updrafts along the mean wind vector allows lifted parcels to spend a sufficient 

amount of time within the updraft to reach their LCL. 

It has been hypothesized that the misocyclones that are observed along 
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atmosphere boundaries such as drylines or fronts may arise due to a horizontal 

shearing instability (HSI).  To address the development of vortices with 

characteristic scales comparable to observed misocyclones to a purely HSI process, 

the series of barotropic simulations have been performed across a range of shear 

magnitudes and shear zone widths that are comparable to those of observed 

boundaries.  Linear theory provides analytic expressions for the growth rates and 

wavenumbers of maximum growth rate as a function of shear zone magnitude and 

shear zone width for the piecewise linear shear zones in the barotropic series of 

runs.  A comparison between linear theory and the barotropic simulations shows 

excellent agreement between the wavenumber (wavelength) of maximum growth.  

This wavelength is approximately equal to 7.9b.  Additionally, an excellent 

agreement between the predicted growth rates and the simulated growth rates is also 

found.  This growth rate is dependent on the vorticity within the layer, as opposed to 

the shear zone width and magnitude of the shear independently.  From the 

barotropic simulations, linear HSI theory adequately explains the growth of small 

perturbations at observed dryline scales. 

As a way to better understand the physical mechanism by which vortices 

emerge from the initial shear zone, a Wave Interaction Theory (WIT) interpretation 

has been developed.  Within this framework, a shear zone consists of two or more 

density or vorticity discontinuities that can support two or more density or vorticity 

waves.  The interaction of these waves can produce the instability if each interfacial 

wave amplifies the other.   This theoretical interpretation predicts the initial 

wavelength and phase shift of the corresponding most-unstable mode predicted by 

linear theory.  In the series of barotropic simulations, the results of the calculated 

initial phase shifts and wavelengths are consistent with the WIT interpretation of the 

horizontal shearing instability. 
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Although linear HSI theory is only strictly valid for perturbations that are 

small compared to the background flow (i.e., <10% shear magnitude), the structure 

of the unstable perturbations beyond the linear regime nevertheless resemble the 

structure within the linear regime.  As the barotropic shearing instability continues 

into the nonlinear regime, discrete vortices eventually form.  The resulting vortices 

have a spacing very close to the predicted wavenumber  (wavelength) of maximum 

growth (i.e., if linear theory predicts a wavelength of maximum growth of 4 km, the 

resulting discrete vortices will be spaced around 4 km apart).  Also, those shear 

zones with larger growth rates develop discrete vortices faster than those with 

smaller growth rates.  Therefore, linear HSI theory appears to extend into the 

nonlinear regime in the sense that the fastest growing HSI mode will continue to 

grow fastest and eventually emerge as the dominant mode well within the nonlinear 

regime. 

In many observed boundaries such as fronts and drylines, a horizontal 

density gradient exists across the shear zone.  To see what effects a horizontal 

density gradient would have on the otherwise purely barotropic shearing instability 

mechanism, a series of baroclinic simulations have been performed.  The baroclinic 

simulations are similar to the barotropic simulations with several notable 

differences.  First, although the barotropic simulations feature a quasi-steady shear 

zone as the small initial perturbations are growing, the baroclinic simulations 

rapidly develop a secondary circulation due to the imposed horizontal density 

gradient. Convergence along the shear zone associated with the developing 

solenoidally-forced secondary vertical circulation induces an accumulative shear 

zone contraction down to about twice the horizontal grid spacing of the simulation.  

The contracting shear zone width is accompanied by an increase in shear zone 

horizontal circulation and vertical vorticity, owing primarily to stretching though 
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somewhat offset by tilting of the vertical vorticity into the horizontal by the 

secondary circulation.  The vertical vorticity increase due to the contracting shear 

zone leads to a larger growth rate for a given baroclinic run compared to its 

barotropic counterpart with the same initial shear zone width and shear magnitude.  

Additionally, contraction of the shear zone to scales barely resolvable by the grid 

resolutions leads to emerging vortices with much shorter wavelengths than the 

barotropic runs. 

Although it is well understood why the baroclinic simulations tend to 

collapse frontal zones down to minimally resolvable scale (especially in this case 

with a free-slip lower boundary condition and no friction), real atmospheric 

boundaries do not collapse down in scale beyond some point.  Due to turbulence or 

other mechanisms, real boundaries that are collapsing eventually reach a state where 

the across-boundary scale would hypothetically achieve a fairly steady state.  

Therefore, it is hypothesized that aspects of both the barotropic and baroclinic 

simulations may describe various real boundaries at various stages of their 

individual evolutions. 

Although the very early growth of misocyclones has not been simulated in 

the real data case, the emergence of a simulated misocyclone from an elongated area 

of shear has been examined in some detail.  The simulated misocyclone in the real 

data case contains very similar structures to the discrete vortices in the idealized 

simulations.  In the real data and idealized simulations, vortices become elliptically 

shaped, grow in size, and rotate counterclockwise with a nearly constant angular 

velocity.  In the idealized simulations, the vortices are connected by thinning braid 

regions.  These braids are not seen in the real data simulations, but only “tails” 

along the major axis, likely due to the effects of lower spatial resolution combined 

with the simulated vortices in the real data case being relatively more isolated than 
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in the idealized simulations.  The misocyclones in both the real data and idealized 

simulations also develop a pressure minimum in the vortex core and a tendency to 

develop a central downdraft.  The vertical motion fields generally feature the 

weakest updrafts or downdrafts in the vortex core, with stronger updrafts along the 

braids or edges of the vortex core. The common structure and evolution of the 

simulated vortices has been seen frequently in many previous observational and 

numerical studies. 

The moist barotropic simulations have been conducted to determine 

preferred regions of cumulus formation relative to the ambient shear zone and 

misocyclones.  In all moist simulations, cumuli develop in the region where a core 

connects to a braid generally in the front-left vortex-relative quadrant.  The front-

left vortex-relative quadrant contains the strongest updrafts in collocation with 

regions of larger water vapor mixing ratio values in a deeper layer, with the stronger 

updrafts producing the largest and deepest clouds.  It is also found that the average 

local maximum in updraft increases with increasing vorticity in the barotropic runs.  

Thus, shear zones with higher initial vertical vorticity values would be expected to 

develop more and /or larger cumuli.  In the real data case, cumulus formation tends 

to occur either north or south of the vortex core along and east of the dryline.  The 

latter cumulus locations in the real data case are consistent with those in the 

barotropic runs. 

In summary, a barotropic HSI mechanism adequately describes the growth 

of perturbations along shear zones with horizontal and vertical length and velocity 

scales that are characteristic of drylines and fronts.  In the barotropic runs, linear 

theory may be extended into the nonlinear regime to anticipate the characteristic 

spacing, size, and growth rate parameters of discrete vortices with structures similar 

to observed atmospheric vortices.  These characteristic parameters include a spacing 
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of about 7.9 times the shear zone width, a growth rate proportional to the shear zone 

vertical vorticity, and a size proportional to the shear zone width.  The baroclinic 

simulations show that horizontally contracting shear zones feature larger growth 

rates, smaller vortex spacings, and smaller vortex sizes than shear zones that do not 

undergo collapse with the same initial vertical vorticity.  It has been hypothesized 

that some real atmospheric boundaries that may experience an initial frontogenetic 

contraction associated with density gradients (thus behaving like the baroclinic 

simulations) eventually attain a steady state wherein contraction has ceased (thus 

behaving like the barotropic simulations).  It is further speculated that the extent to 

which individual real boundaries behave more like either the barotropic or else the 

baroclinic simulations likely varies both with boundary type and time. 

To summarize these results hypothetically in terms of sensible weather such 

as cumulus formation, CI potential, and storm evolution, it has been found that 

simulated cumuli tend to form in preferred locations that are removed from 

misocyclone cores and are either in between or on the edges of vortex cores.  Since 

boundaries with higher vertical vorticity values are associated with stronger updraft 

cores, and stronger updraft cores are associated with larger and deeper cumuli, those 

boundaries with higher vorticity would tend to offer a higher probability of cumulus 

formation and resultant CI.  Also, since misocyclone spacing (therefore updraft 

spacing) is larger for larger shear zone widths, cumuli development would tend to 

be sparser for boundaries of larger width.  Thus for a given shear magnitude, it is 

hypothesized that increasing shear zone width should increase updraft spacing and 

decrease updraft strength and thus reduce the potential for cumulus formation and 

CI.  In environments supporting severe thunderstorm development, it is further 

hypothesized that relatively wide and weakly sheared boundaries would tend to 

support widely scattered isolated severe storms.  In hypothetical contrast, narrow 
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and strongly sheared boundaries would tend to promote more numerous, closely 

spaced storms and perhaps rapid upscale growth to form quasi-linear mesoscale 

convective systems.  
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Appendix A:  Derivation of Rayleigh shearing instability 

The purpose of this Appendix is to rederive the expression for shearing 

instability as previously obtained by Rayleigh (1880).  The current rederivation 

usefully includes a more detailed explanation of Rayleigh's method via current 

mathematical and meteorological notation as well as an illustration of various 

quantities that are employed in the solution.  Appendix A.1 contains the expression 

for motion of a point vortex, which is employed in the Rayleigh (1880) solution as 

rederived in Appendix A.2.  Appendix A.3 contains additional useful details of the 

derivation of the growth rate of the most-unstable mode. 

A.1. Motion induced by a point vortex 

Assuming 2-D incompressible flow, a streamfunction can be introduced such 

that in cylindrical coordinates,  

    𝑢! =
!
!
!"
!"
,    𝑢! = − !"

!"
  . 

Also assume that the flow is irrotational everywhere except at the origin where the 

vorticity is infinite.  Therefore, ∇ 𝑥 𝑢 = 0 everywhere except at 𝑟 = 0, so that 

   !
!
!
!"

𝑟 − !"
!"

− !
!
!
!"

!
!
!"
!"

= Γ𝛿(𝑟 − 𝑟!), 

which is Laplace’s equation in cylindrical coordinates.  Here δ is the Dirac delta 

function and Γ is the circulation strength. 

A solution is sought for which the induced velocity due to the point vortex is 

axisymmetric and purely tangential, so the above reduces to 
1
𝑟
𝜕
𝜕𝑟 𝑟 −

𝜕𝜓
𝜕𝑟 = Γ𝛿(𝑟 − 𝑟!). 

The circulation Γ = 𝜁𝐴, is finite in any arbitrary area including the singularity and 

its strength is equal to the strength of the point vortex.  Integrating the above and 

using Stoke’s theorem, ∇ 𝑥 𝑢 𝑑𝐴 =   𝑢  ∙ 𝑑𝑙 
!

 
! , where the curve c includes the 

singularity, the above reduces to 
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   – !"
!"

 
!  𝑑𝑙 = – !"

!"
!! 
! 𝑟 𝑑𝜃  = −2𝜋𝑟 !"

!"
= ζA = Γ, 

     𝑢! = − !
!!"

 . 

That is, a source of vorticity at a point will induce tangential velocity everywhere in 

a fluid, with a magnitude proportional to the strength of the vorticity, and inversely 

proportional to the distance from the point.  
 

A.2. Rayleigh (1880) solution 

The Rayleigh (1880) solution assumes constant vorticity 𝜁 = !"
!"
− !"

!"
 in a 

finite shear layer that is bounded by an upper and lower surface, and also assumes 

that the vorticity outside the layer is zero.  Assuming inviscid, 2-D flow, the 

vorticity in the shear layer remains constant in time.  Suppose that upon this base 

state flow perturbations are superimposed that are proportional to 𝑒!"# so that 

everything is periodic in an x-distance of 𝜆 = 2𝜋𝜅!!.  Here λ is the wavelength and 

κ is the wavenumber. 

In this flow there is a velocity potential such that a point vortex will induce a 

tangential velocity a at a point (𝑥,𝑦), whose distance from the point vortex at 

(𝑥′,𝑦′) is 𝑟 = (𝑥 − 𝑥′)! + (𝑦 − 𝑦′)! (Fig. A.2.1).  The magnitude of the induced 

velocity is 

    𝑢! = − !
!!"

= − !"#
!!"

          (R15) 

as derived in Appendix A.1.  For consistency with the original derivation, 

the equation numbers in this Appendix A.2 will correspond to the equation numbers 

for the equivalent expressions as originally obtained by Rayleigh (1880) and will be 

denoted with prefix "R" to designate the equation number's origin.  

In this problem, we will consider the flow to be composed of a base state 

upon which infinitesimal perturbations are superimposed.  Let the equation for the 

position of the perturbed sheet be 
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Figure A.2.1.  Conceptual model of shear layer employed by Rayleigh (1880) to 
perform the Rayleigh stability analysis of plane shear flow. 

 

    𝜂 = 𝐻𝑒!"!!.          (R16) 
     

Then, 𝑑𝐴 = 𝜂𝑑𝑥′ since η  is assumed to be infinitesimal.   Now if Δ𝜁 is the 

difference in vorticity between values in the shear layer and outside the shear layer 

(where ζ=0), then by (R15), 

   𝑢! = − !!"#$!
!!"

 ,         (R17) 

where 𝑟 = (𝑥 − 𝑥′)! + (𝑦 − 𝑦′)! = (𝑥 − 𝑥′)! + 𝑏!.       (R18) 

Here we refer to the induced velocity on one surface by a point on the other surface.  

Therefore since η is infinitesimal compared to the distance between the sheets, or 

thickness of the layer b, it follows that (𝑦 − 𝑦!) ≈ 𝑏.  The induced velocity 𝑢! ⊥ 𝑟.  

Next we resolve the u- and  v-components of the velocity by multiplying (R17) by !
!
 

and !
!!!
!

 respectively so that  

𝑢 = −
𝑏Δ𝜁
2𝜋

𝜂𝑑𝑥!

𝑟!
!

!!
,   𝑣 = −

Δ𝜁
2𝜋

𝜂(𝑥! − 𝑥)𝑑𝑥′
𝑟!

!

!!
 

by (R16),  

 𝑢 = − !"!!
!!

!!"!
!
!!!

!!! !!!! !
!
!!    ,         (R19) 
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 𝑣 = − !!!
!!

!!"!
!
(!!!!)!!!

!!! !!!! !
!
!!  ,         (R20) 

Now make a change of variables such that 𝑋 = 𝑥! − 𝑥, or 𝑥! = 𝑋 + 𝑥.  From (R19), 

    𝑢 = − !"!!
!!

!!" !!! !(!!!)
!!!!!

!
!!        (R19a) 

   = − !"!!
!!

!!"#!!"#(!"!!")
!!!!!

!
!!       (R19b) 

Now the induced velocity at some point (𝑥,𝑦) on a given sheet will be the sum of 

the induced velocities from every point on the other sheet, thus integrating along the 

entire x-axis.  From this viewpoint, 𝑥 = 𝑐𝑜𝑛𝑠𝑡 and 𝑑𝑥 = 0.  Therefore, (R19b) 

becomes 

   𝑢 = − !"!!!!"#

!!
!!"#!"
!!!!!

!
!! ,       (R19c) 

   𝑢 = − !"!!!!"#

!!
!"# !" !! !"# (!") !"

!!!!!
!
!! .     (R19d) 

Taking 𝑅𝑒(𝑅19𝑐), 

        𝑢 = − !"!!!!"#

!!
!"# !" !"
!!!!!

!
!! .        (R19e) 

Using the following identity, 

  !"# !" !"
!!!!!

!
!! = !

!
𝑒!!"      (R19f) 

where 𝑎 = 𝑏,𝑚 = 𝜅, 𝑥 = 𝑋, (R19e) reduces to  

    𝑢 = − !
!
𝐻Δ𝜁𝑒!"#𝑒!!".      (R19g) 

Using the same change of variables, from (R20), 

 𝑣 = − !!!
!!

!!" !!! !"(!!!)
!!!!!

!
!!        (R20a) 

   = − !!!
!!

!!"#!!"#!(!"!!")
!!!!!

!
!!       (R20b) 

        = − !!!!!"#

!!
!!"#!"!
!!!!!

!
!!        (R20c) 

   = − !!!!!"#

!!
!"# !" !! !"# (!") !"!

!!!!!
!
!! .     (R20d) 

Now multiplying by i and taking 𝑅𝑒(𝑅20𝑑), 

 

   𝑖𝑣 = !!!!!"#

!!
!"#$ !" !"
!!!!!

!
!!  .      (R20e) 

Using the following identity, 

   ! !"# (!")!"
!!!!!

!
!! = 𝜋𝑒!!"       (R20f) 
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where 𝑎 = 𝑏,𝑚 = 𝜅, 𝑥 = 𝑋, multiplying again by i , (R20e) reduces to  

    𝑣 = − !
!
𝑖𝐻Δ𝜁𝑒!"#𝑒!!".       (R20g) 

Equations (R19g) and (R20g) correspond to equation (21) in Rayleigh (1880), i.e.,: 

                   𝑢 = − !
!
𝐻Δ𝜁𝑒!"#𝑒!!" ,    

  𝑣 = − !
!
𝐻Δ𝜁𝑒!"#𝑒!!" .         (R21) 

Now to determine the motion of a given sheet, we shall assume that the total motion 

is the sum of the induced velocities from the other sheet plus the induced velocities 

of the sheet itself.  For the upper sheet, the total motion will be due to the induced 

velocity from the lower sheet, plus the self-induced velocity of the upper sheet and   

likewise for the lower sheet.  Looking at the v-component, the self-induced velocity 

can be found by collapsing the shear layer down to a zero width.  Therefore 𝑏 = 0, 

and  

   𝑣 = − !
!
𝐻Δ𝜁𝑒!"#.         (R22) 

Now suppose that on the upper part of the sheet, the base state flow is 𝑢 = 𝑈 and on 

the lower side 𝑢 = −𝑈 so that 
         𝜁 = !"

!"
= !!

!
         (R23) 

inside the shear layer and 𝜁 = 0 outside the layer.  Let the equations of the upper 

and lower surfaces perturbation positions be ∝ 𝑒!"#, so at time t, respectively,  

     𝜂 = 𝐻𝑒!"#𝑒!"#,  

         𝜂′ = 𝐻′𝑒!"#𝑒!"#,         (R24) 

which is equivalent to (R16) with a time dependence added.  From (R21), 

   𝑣! = −𝑖𝐻U𝑏!!𝑒!"#𝑒!"#𝑒!!"     (R21b) 

and from (R22) 

    𝑣! = −𝑖𝐻U𝑏!!𝑒!"#𝑒!"#      (R22b) 

Here (R21b) represents the induced velocity at a point on the sheet due to the other 

sheet, whereas (R22b) represents the self-induced velocity of the sheet (i.e. b has 
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collapsed to zero).  So the total motion for the upper sheet is 

   𝑣! = 𝑣! + 𝑣! = 𝑖𝐻U𝑏!!𝑒!"#𝑒!"# − 𝑖𝐻′U𝑏!!𝑒!"#𝑒!"#𝑒!!", 

   𝑣!""#$ =  𝑖U𝑏!!𝑒!"#𝑒!"#(𝐻 − 𝐻′𝑒!!")      (R24) 

For the lower sheet,  

          𝑣! = 𝑣! + 𝑣! = −𝑖𝐻!U𝑏!!𝑒!"#𝑒!"# + 𝑖𝐻U𝑏!!𝑒!"#𝑒!"#𝑒!!",  

  𝑣!"#$% =  𝑖U𝑏!!𝑒!"#𝑒!"#(𝐻𝑒!!" − 𝐻′)       (R25) 

From these values of v, the position of the surfaces at time 𝑡 + 𝑑𝑡 can be computed. 

At time t the position of the surface is (𝑥, 𝜂), whereas at 𝑡 + 𝑑𝑡 the new position is 

at (𝑥 + 𝑢𝑑𝑡, 𝜂 + 𝑣𝑑𝑡).  Thus, at time 𝑡 + 𝑑𝑡 at position x, the y-component of the 

sheet is  

    𝜂 + 𝑣𝑑𝑡 − 𝑢 !
!"

𝜂 + 𝑣𝑑𝑡 𝑑𝑡, 

𝜂 + 𝑣𝑑𝑡 − 𝑢
𝑑𝜂
𝑑𝑥 𝑑𝑡 − 𝑢

𝑑𝑣
𝑑𝑥 𝑑𝑡

! − 𝑢𝑣
1
2
𝑑
𝑑𝑥 (𝑑𝑡

!) 

Neglecting squares of small quantities,  

    𝜂 𝑡 + 𝑑𝑡 = 𝜂(𝑡)+ (𝑣 − 𝑈 !"
!"
)𝑑𝑡. 

From (R24),  

      !"
!"
= 𝑖𝑛𝜂. 

So that for the upper surface, 

     ! !!!" !!(!)
!"

= 𝑣 − 𝑈 !"
!"

 , 

  𝑖𝑛𝐻𝑒!"#𝑒!"# =  𝑖U𝑏!!𝑒!"#𝑒!"# 𝐻 − 𝐻!𝑒!!" − 𝑈𝑖𝜅𝐻𝑒!"#𝑒!"#, 

    𝑛𝐻 = 𝑈𝑏!! 𝐻 − 𝐻!𝑒!!" − 𝑈𝜅𝐻, 

    !"
!
− 1+ 𝜅𝑏 𝐻 + 𝐻′𝑒!!" = 0.        (R26) 

For the lower surface, 

  𝑖𝑛𝐻𝑒!"#𝑒!"# =  𝑖U𝑏!!𝑒!"#𝑒!"# 𝐻𝑒!!" − 𝐻′ − 𝑈𝑖𝜅𝐻𝑒!"#𝑒!"#, 

    𝑛𝐻 = 𝑈𝑏!! 𝐻𝑒!!" − 𝐻′ − 𝑈𝜅𝐻, 

   − !"
!
− 1+ 𝜅𝑏 𝐻′+ 𝐻𝑒!!" = 0.         (R27) 

Eliminating the variables H and H’ from (R26) and (R27),  
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    𝐻 = − − !"
!
− 1+ 𝜅𝑏 𝐻′𝑒!", 

   !"
!
− 1+ 𝜅𝑏 !"

!
+ 1− 𝜅𝑏 𝐻′𝑒!" + 𝐻′𝑒!!" = 0, 

   !"
!
− 1+ 𝜅𝑏 !"

!
+ 1− 𝜅𝑏 + 𝑒!!!" = 0. 

Expanding the 1st term,  
𝑛!𝑏!

𝑈! +
𝑛𝑏
𝑈 −

𝑛𝜅𝑏!

𝑈 −
𝑛𝑏
𝑈 − 1+ 𝜅𝑏 +

𝑛𝜅𝑏!

𝑈 + 𝜅𝑏 − 𝜅!𝑏! 

=
𝑛!𝑏!

𝑈! − 1+ 2𝜅𝑏 − 𝜅!𝑏! 

So,  

    !!!!

!!
− 1+ 2𝜅𝑏 − 𝜅!𝑏! + 𝑒!!!" = 0, 

    − !!!!

!!
+ 𝜅𝑏 − 1 ! − 𝑒!!!" = 0, 

 𝑛! = !!

!!
𝜅𝑏 − 1 ! − 𝑒!!!" .        (R28) 

When 𝜅𝑏 is small (therefore the wavelength is large compared to b), the case 

approximates that of a sudden transition.  Expanding in a Taylor series,  

 𝑛! = !!

!!
1− 2𝜅𝑏 + 𝜅!𝑏! − 1− 2𝜅𝑏 + 2𝜅!𝑏! +⋯ ≈ −𝜅!𝑈!.       (R29) 

Since 𝑛! < 0, the motion is unstable.  In the other case, when 𝜅𝑏 is large,  

     𝑛! = 𝜅!𝑈!.          (R30) 

In this case, the motion is stable.   

 

A.3.  Growth rate of Rayleigh shearing instability 

The growth rate equation (R28) states that 

     𝑛! = !!

!!
𝜅𝑏 − 1 ! − 𝑒!!!" . 

A plot of equation (R28) is shown in Fig. A3.1.  To determine the most-unstable 

wavenumber (i.e., the peak in the curve in Fig. A.3.1) differentiate the growth rate 

with respect to wavenumber and set the result to zero. 
!n

!!
=
U

2b
!b "1( )

2

" e"2!b#
$

%
&

1

2
2 !b "1( )+ 2e"2!b#$ %& = 0  

2b !b !1( )+ 2be!2!b"# $% = 0  
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e
!2!b

+!b !1= 0 , 

which  has  a  solution  (and  thus  the  most‐unstable  wavenumber  is  when) 

𝜅𝑏 ≈ 0.8 or 𝜆 ≈ 7.9𝑏.  

Note that that the neutral mode occurs when the growth rate is zero (i.e., n = 

0), which corresponds to 𝑘𝑏 ≈ 1.279.  Again since 

     𝑛! = !!

!!
𝜅𝑏 − 1 ! − 𝑒!!!" , 

it follows that 

     0 = !!

!!
𝜅𝑏 − 1 ! − 𝑒!!!" , 

     0 = 𝜅𝑏 − 1 ! − 𝑒!!!" , 

     0 ≈ 1.279− 1 ! − 𝑒!!.!!", 

     0 ≈ 0.279 ! − 0.07745, 
and finally 

     0 ≈ 0.07784− 0.07745  ≈ 0.00039. 

Thus to a few parts in 10,000, 𝑘𝑏 ≈ 1.279 closely approximates where the neutral 

mode occurs (also see Fig. A.3.1).   

  



 
180 

 

Figure A.3.1.  Instability curve as a function of wavenumber.  Positive values 
denote instability.  Note that this is an expanded version of Fig. 2.1. 
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Appendix B:  Simulated surface fluxes 

Having realistic parameterized surface fluxes is important owing to their 

influence on simulated BL structure.  For example, inclusion of surface heating and 

specification of unstable stratification at the lateral boundaries from the Lagrangian 

analyses forces the development of dry-convective plume-like structures in the 

simulated BL (Fig. 4.8d-f). 

Observed surface fluxes obtained from the NCAR Integrated Surface Flux 

Facility (ISFF) located at Elmwood, OK during IHOP (e.g., Conzemius and 

Fedorovich 2008) are compared to fluxes calculated at the closest grid point to the 

ISFF site (Table B1, Fig. B1).  The observed and simulated sensible and latent heat 

fluxes are similar in both magnitude and evolution throughout the 90-minute period. 

The RMS error between the observed and simulated sensible heat fluxes (30.52 W 

m-2) is small relative to the flux values (~125 W m-2).  The RMS error for the latent 

heat flux (17.31 W m-2) is smaller as are the actual values (~50 W m-2); hence the 

normalized RMS error is larger in comparison.  However, the RMSE of latent heat 

flux seems reasonable given the larger range of possible values. 

The RMSEs are similarly small for the observed and modeled skin 

temperatures (0.96 K) compared to the magnitude of temperatures and their ranges.  

Likewise, the observed and modeled surface temperatures also match closely with a 

RMSE of 0.76 K.  However, there is more variance in the observations than in the 

simulations.  The larger observed variance could be a consequence of the sensors 

measuring transient features unresolved by the model, the passage of observed (but 

not modeled) cumuli over the ISFF sensors, or the passage of modeled (but not 

observed) cumuli over the site location in the model domain.  In addition, the 

formulation of the surface flux parameterization is such that the surface fluxes are 

rather smooth in the model.    
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Parameter RMSE Bias 

Sensible heat flux (W m-2) 30.52 -11.72 

Latent heat flux (W m-2) 17.31 -1.47 

Skin temperature (K) 0.96 -0.13 

Surface temperature  (K) 0.76 0.02 

 

Table B1.  Root mean square error (RMSE) and bias between the simulated and 
observed sensible heat flux, latent heat flux, skin temperature, and surface 
temperature.  Observed values are from the Elmwood, OK flux station and 
simulated values are from the grid point nearest to this station in the model. 

 

 

 

 

Figure B.1.  Time-series of simulated and observed sensible and latent heat fluxes 
(right) and surface and skin temperatures (left).  Also shown are the (solid) linear 
trend lines. 

  



 
183 

Appendix C:  Idealized simulations sensitivity tests 

 
A barotropic and a baroclinic simulation have been rerun to test sensitivities 

to the initial perturbation method and grid size. The first barotropic test consists of 

rerunning the bt8m20s simulation with the same grid spacing with one additional 

grid point added in the x-direction (i.e., NX increased from 150 to 151).  Since the 

model employs the Arakawa C-grid (wherein the v-component point is aligned with 

the scalar point in the y-direction), adding an additional grid point effectively tests 

the solution's sensitivity to whether the shear zone is centered on a scalar point or a 

momentum point. After an initial period of transient growth, a single spectral peak 

emerges at nearly the same wavenumber (i.e., close to that predicted by linear 

theory) in both the original and test simulations (Fig. C.1).  The perturbations in the 

test simulation initially grow slightly slower than in the original simulation, then 

accelerate at later times to achieve nearly the same amplitude as the original 

simulation by 1980 s.  In both the original and test simulations, transient growth in 

side-bands slows as the main peak emerges. 

The second barotropic test simulation uses a different initial perturbation 

than the original random 0.01 m s-1 v-component velocity perturbation, and is 

designed to address sensitivities at the later stages of the simulation (i.e., 3-D 

structure) to the nature of the initial perturbation. The v-component wind in the 

second test simulation is initialized with sine waves in the y-direction, where each 

wave is prescribed with a random amplitude and random phase angle.  The random 

amplitude ranges from 0 to 0.01 m s-1, while the random phase angle has the range 

of  -π   to π.  Although the chosen value of constant sine wavenumber is equal to the 
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Figure C.1. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber at from the period of 1740-1980 and 
1470-1710s (inset) seconds after the start of simulation bt8m20s, for the original 
simulation (top) and extended grid test (bottom).  The vertical black line denotes the 
most-unstable wavenumber (4.7) and the gray dashed line denotes the neutral 
wavenumber predicted by linear theory (7.6).   
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Figure C.2. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber at from the period of 1740-1980 and 
1470-1710s (inset) seconds after the start of simulation bt8m20s, for the original 
simulation (top) and sine wave test (bottom).  The vertical black line denotes the 
most-unstable wavenumber (4.7) and the gray dashed line denotes the neutral 
wavenumber predicted by linear theory (7.6).    
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Figure C.3. Spectral density estimates of the v-component perturbation wind 
amplitude (m s-1) as a function of wavenumber at from the period of 930-1170 and 
660-900s (inset) seconds after the start of simulation bt8m20s, for the original 
simulation (top) and temperature perturbation (bottom).  The vertical black lines 
denote the most-unstable wavenumbers predicted by linear theory for a shear zone 
width of 2Δ and 3Δ.   
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theoretical most-unstable wavenumber (k = 4.7), the randomized amplitude and 

phase angle values effectively produce an initial 2-D (horizontal) white noise 

spectral density field. Similar to the first test, a single dominant spectral peak in the 

spectrum emerges in both the original and test simulations after an initial transient 

period of growth. However, the peak in the original was at a slightly lower 

wavenumber and the peak in the test was at a slightly higher wavenumber than the 

theoretical maximum (Fig. C.2). 

The last sensitivity test has been conducted for baroclinic simulation 

bc8m20s.  Instead of directly perturbing the v-component wind, a random potential 

temperature perturbation of 0.007 K was used to initialize the model.  Since the 

baroclinic simulation features a collapsing shear zone and thus variable growth 

rates, this perturbation value has been chosen so that the resulting overall 

amplitudes between the test and original simulations are similar at the same times.  

Both the original and test simulations feature an emerging peak somewhere between 

the theoretical most-unstable modes of a shear zone width in the range of 2Δ − 3Δ 

(Fig. C.3).  Additional growth is also observed at wavenumbers in the side-bands 

adjacent to the peak.  The amplitudes of the peaks are similar between the original 

and test simulations, however the peak amplitude is higher at higher wavenumbers 

in the test simulation. 

These test simulations collectively demonstrate that widely differing initial 

conditions lead to rather small differences in the growth of the initial perturbations. 

Most importantly, the results remain consistent with the conclusions of this study 

that the early growth of small initial perturbations is adequately described by the 
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linear theory governing horizontal shearing instability (HSI).  These sensitivity tests 

also affirm the corollary conclusion that linear theory may be extended into the 

nonlinear regime as larger structures emerge from the shear zone. 

 
 


