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Abstract

The availability of Graphics Processing Units (GPUs) with multicore architecture

have enabled parallel computations using extensive multi-threading. Recent advance-

ments in computer hardware have led to the usage of graphics processors for solving

general purpose problems. Using GPUs for computation is a highly efficient and

low-cost alternative as compared to currently available multicore Central Processing

Units (CPUs). Also, in the past decade there has been tremendous growth in the

World Wide Web and Online Social Networks. Social networking sites such as Face-

book, Twitter and LinkedIn, with millions of users are a huge source of data. These

data sets can be used for research in the fields of anthropology, social psychology,

economics among others.

Our research focuses on converting real-world problems into graph theoretic prob-

lems and using GPUs to solve them. The graph problems that we focus on in our

research involve counting the number of subgraphs that satisfy a given property. For

example, given a graph G = (V,E) and an integer k <= |V |, we provide algorithms

to count the number of: a) connected subgraphs of size k; b) cliques of size k; and

c) independent sets of size k, and other similar problems. Also, properties that are

affected by the dynamic nature of the graphs i.e., addition or removal of edges or

nodes, for example change in the number of triangles and connected components in

the graph, are also studied.

Sequential access to global memory and contention at the size-limited shared mem-

ory have been main impediments to fully exploiting potential performance in GPUs.

Therefore, we propose novel memory storage and retrieval methods, based on using

search techniques on graphs and converting it into trees, that enable parallel graph

xii



computations to overcome the above issues. We also analyze and utilize primitives

such as memory access coalescing and avoiding partition camping that offset the in-

crease in access latency of using a slower but larger global memory. In addition, we

introduce graph compression techniques that further reduce memory requirements

and overheads. Our experimental results for the GPU implementation show a signif-

icant speedup over the CPU counterpart for the problems described above.

xiii



Chapter 1

Introduction

Majority of real-world data, including those that are being generated online, can be

represented as graphs. Representing data as graphs has two significant advantages: on

one hand visual representation can convey knowledge about the data which otherwise

could have been difficult to interpret, and on the other hand, graph theory being a

mature and well-studied discipline can be leveraged by using its algorithms and results

to study the data being considered. Analyzing this huge amount of information,

gathered from the graphs, leads to potential insights that are of interest to various

disciplines spanning across both academia and industry. The volume of data being

processed pose new challenges in terms of storage and computation time, and utilizing

the latest advancements in hardware architecture can help address the same.

1.1 Overview

The continuous growth and availability of huge graphs for modeling online social net-

works, World Wide Web and biological systems has rekindled interests in their analy-

sis. Social networking sites such as Facebook with 1.3 billion users (Facebook Statis-

tics, 2014), Twitter with 271 million users (Twitter Statistics, 2014) and LinkedIn

with over 300 million users (LinkedIn Press Center, 2014) are a huge source of data

for research in the fields of anthropology, social psychology, economics and others.

Understanding the structure of OSNs help in improving Internet search, advertising,

and even mitigating against spamming and other security issues like Sybil attack (Yu

et al., 2006). Finding subgraphs that satisfy a specific property in such networks,

1



and solving other problems based on locality information is therefore of practical sig-

nificance. Therefore, it is relevant to study these data and perform analysis on the

same. However, due to the huge amount of computation involved, it is impractical

to analyze very large graphs with a single Central Processing Unit (CPU), even if

multi-threading is employed.

Recent advancements in computer hardware have led to the usage of graphics pro-

cessors for solving general purpose problems. Compute Unified Device Architecture

(CUDA) from Nvidia (NVIDIA Corporation, 2010) and Accelerated Parallel Process-

ing (APP) Technology from AMD are interfaces for modern Graphical Processing

Units (GPUs) that enable the use of graphics cards as powerful co-processors. These

systems enable acceleration of various algorithms including those involving graphs

(Harish & Narayanan, 2007).

Solving general-purpose problems on GPUs is a highly efficient and low-cost alter-

native to currently available multicore CPUs. Available hardware and the potential

for massive multi-threading has shifted the focus from using a GPU as a graphics ren-

derer to a powerful co-processor. Among other problems that have achieved speedup

from being solved on the GPU, analysis of graphs, which is an inherent operation in

many real world applications, with combinatorially explosive number of computations

has the potential to exploit the available architecture of GPUs.

1.2 Motivation

The motivation of the research and study of this dissertation comes from two im-

portant aspects. One is the need to develop algorithms and programs that can take

advantage of the multicore architecture and exploit the available hardware in both

CPUs and GPUs. The other is the availability of huge data sets generated from var-

ious resources that contain a plethora of information that needs to be processed and

2



analyzed for valuable insights. A lot of analysis is done on real-world data and most

of it is done sequentially or using a few threads to maximize the use of multicore

CPUs. However, in many cases the data that is being computed on is independent

or has limited dependencies, and there is a lot of potential to do computations in

parallel. Gene Amdahl proposed an estimate on the upper bound to the amount of

parallelization that can be incorporated in an algorithm, known as Amdahl’s law. It

says that, in general, if a fraction α of an application can be run in parallel and the

rest must run serially, the speedup is at most 1
(1−α)

. Therefore, it is important to

identify and convert the parts of an algorithm that can benefit from being transferred

into equivalent parallel counterparts.

1.2.1 Advancements in computer hardware

The processing power of computers have improved steadily over the last few decades.

This was in conjunction with the observation made by Gordon E. Moore, which is

now commonly referred to as Moore’s law. Moore’s law predicts that the number of

transistors in a dense integrated circuit would double every two years. Since the num-

ber of available transistors are a measure of the speed of the computer, the simplified

version of the observation states that processor speeds would double every two years.

However, with the size of transistors reaching the lower end and increasing power

dissipation from the chips, there would be changes to the rate of this development.

To counter this problem, CPUs with dual-cores and quad-cores have already come

into existence. This alleviates the problem of packing transistors into a single chip by

using more than one of the same. It is also common nowadays to have computers with

multiple multi-core CPUs. However, this still does not provide too many compute

cores and is an expensive option.

In recent times, the hardware architecture of the GPUs have also evolved signifi-

cantly. With a collection of a number of streaming multi-processors, each of which can
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contains a few hundred cores, the multicore architecture advancement is now spear-

headed by the GPUs. With the inclusion of multicore GPUs in most desktop and

laptop computers, huge processing power has now become available for widespread

use. Also, the low-cost of these devices as compared to multi-core CPUs make it

an affordable option. Compute Unified Device Architecture (CUDA) from Nvidia

(NVIDIA Corporation, 2010) and Accelerated Parallel Processing (APP) Technol-

ogy from AMD (Advanced Micro Devices, 2013) are interfaces for modern Graphical

Processing Units (GPUs) that enable the use of graphics cards to solve general pur-

pose problems. This has led to referring modern GPUs as General Purpose Graphics

Processing Units or GPGPUs.

1.2.2 Availability of large data sets

Variety of large data sets containing information about different real-world entities

and their interactions are widely available. Data can be either static or dynamic

depending on whether it changes over time. For static data, performing a one-time

analysis is sufficient to study specific characteristics and properties. However, for

dynamic data, performing repeated analysis with the passage of time is required to

incorporate the recent trends.

Data sets can represent various entities such as online social networks, communica-

tion networks, citation networks, collaboration networks, web graphs, road networks,

online reviews, sales, airline routes, protein interactions, weather patterns etc. among

others. Majority of these data form graphs or networks that are huge in size. Also,

the rate at which data is generated and added to the existing sets is enormous.

Data from various sources contain different patterns that of interest and can shed

light into greater understanding of the inner workings of the respective domains they

belong to. Therefore, it is a significant step to be able to perform relevant analysis

on the data and extract information from the same.
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1.2.3 Data Analysis Applications

As discussed in the previous sub-section, data exists in various forms and analyzing it

is relevant for different purposes. This sub-section looks into the different applications

based on analysis of data. Depending on the domain the data is generated from, there

can be various applications and uses for the information extracted from the analyzed

data.

For example, in the case of online social networks, the interaction and activities

among users provide vital information that can be analyzed for use in advertising,

improving user experience, security, etc. Sales data, including both online sales and

those in the stores, can provide information to the merchants and suppliers about

products that are in demand during specific time periods. Weather predictions for a

specific region is dependent on patterns observed in the adjoining areas; with huge vol-

umes of changing values that can be calculated quickly, predictions about inclement

weather patterns improve in accuracy. Analysis on road networks help find the ma-

jor points of intersection and the roads that are important to maintain connectivity

throughout a region. Construction and other maintenance work can change the graph

structure where certain connections or edges become non-existent due to inaccessi-

bility; also expansion work to reduce load on certain roads can be found by studying

the effects of adding potential connectors between junctions. Data from biological

networks including protein interactions can be analyzed to find specific patterns that

are of significant research value.

Therefore, it can be inferred that there are various important applications that

are dependent on the correct and timely analysis of huge amount of data.

5



1.3 General purpose computing using GPUs

CUDA enabled GPUs provide high performance computing on the desktop, which is

a low-cost and low-power alternative to conventional super-computing. GPUs have

several multi-processors, each of which has multiple cores. Therefore, GPUs are

suitable for highly parallel and multi-threaded applications.

GPUs are primarily used to render graphics on the screens. Therefore, the ar-

chitecture is designed to help calculate pixel values in a fast manner. However,

previously GPUs have also been used to solve problems other than those related

to graphics rendering. The approach involved converting the specific problem into a

graphics problem, solving it using the GPU and then converting the results back by

mapping it back to the original problem.

However, as the process of transferring a problem to a different domain and back

required significant effort, it was detrimental to GPUs being used to solve general

purpose problems. With the advent of CUDA programming model, general purpose

problems can be solved using GPUs in their original form, thereby removing the

overhead of converting problems to an equivalent graphics version. Also, since the

learning curve is low and the programming syntax is similar to existing languages, va-

riety of research and academic fields have taken advantage of the computing resources

provided by GPUs.

Some of the domains that benefit from using GPUs are bio-informatics, com-

putational chemistry, computational finance, computational fluid dynamics, compu-

tational structural mechanics, data science, defense, electronic design automation,

imaging & computer vision, machine learning, medical imaging, numerical analytics,

weather prediction.
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1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses about GPU

architecture and CUDA programming & memory model. The memory hierarchy, ac-

cess patterns and optimization methodologies are also discussed here. Techniques for

efficiently storing graphs on GPUs are introduced in Chapter 3; a number of näıve

and advanced data structures are studied and compared. Counting problems related

to graphs are analyzed in Chapter 4; we discuss methods to count the number of

sub-graphs in a given graph that satisfy certain criteria. Chapter 5 discusses about

analysis on large data sets pertaining to real-world data. We study the properties

of graphs representing online social networks and road networks, and introduce algo-

rithms to study the effects of changes in graph data. Data compression algorithms

that are related to and can be used in graph compression are discussed in Chap-

ter 6. This is essential for storing larger graphs on the GPU memory for efficient

computation. Conclusion and future work are given in Chapter 7.
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Chapter 2

GPU Architecture & CUDA

Graphics processing units (GPUs) have traditionally been used as co-processors for

aiding in displaying content. However, with the advent of GPUs with advanced

architecture capable of incorporating multiple cores, often in the hundreds to few

thousand, the focus has shifted towards using it for solving general purpose problems.

Therefore, understanding the architectural design and the programming capabilities

of these devices is relevant. In this chapter we study the GPU architecture and a

parallel computing platform used for programming the same.

2.1 Introduction

Central Processing Units (CPUs) have been the traditional compute-engine for solv-

ing computational problems. Over the last decade, advancements in computer hard-

ware have led to the usage of graphics processors as accelerators for solving general

purpose problems. Using Graphics Processing Units (GPUs) for general purpose com-

puting is referred to as GPGPU computation. Compute Unified Device Architecture

(CUDA) from Nvidia (NVIDIA Corporation, 2010), and Accelerated Parallel Pro-

cessing (APP) Technology from AMD (Advanced Micro Devices, 2013) are interfaces

for modern GPUs, which help to use graphics cards as powerful co-processors. The

advantages of using GPUs are higher compute performance, usage of less power and

lower cost as compared to the corresponding CPU counterparts. Some of the fastest

super-computers in the world, like the Tianhe-IA, are powered by using Nvidia GPUs

(Sulewski et al., 2011).
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Figure 2.1: Architecture of a single core CPU

2.2 GPU Architecture

Computers have traditionally had single core processors cast on a CPU chip. The

core is comprised of a single set of registers with a corresponding Arithmetic Logic

Unit (ALU). Input-output to this unit is done using the bus interface. Other than the

main memory, which is accessible using the memory bus, the CPU chip also makes

use of available on-chip cache apart from the registers for storing temporary data.

This memory hierarchy, consisting of the registers, different levels of cache, and the

main memory determines the performance of the CPU while executing data intensive

applications by reducing the latency introduced due to accessing of data from main

memory or even the external disk drives. The architecture of such a device is shown

in Fig. 2.1.

In case of multicore CPUs, the chip consists of multiple sets of ALUs and registers.

Each set of an ALU and registers is defined as a core for the computer. Fig. 2.2 shows

a chip consisting of 3 cores.

Other than multicore CPUs, GPUs also make use of multicore architecture for
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Figure 2.2: Architecture of a multi-core CPU

computations. CUDA, acronym for Compute Unified Device Architecture, developed

by NVIDIA Corporation, provides a programming and memory model for GPUs to

help those perform as general purpose graphics processing units (GPGPUs). In the

CPU-GPU heterogeneous environment, the GPU is referred to as the “device” and

the CPU to which it is connected is called the “host”. The GPU can be controlled

and accessed by programs executing on the CPU and data can be transferred to the

memory of the device to delegate specific tasks to be performed on it. Earlier, GPUs

were specifically used to solve programs that belonged to the graphics domain. One

way to utilize the computation power of the GPUs is to convert general programs

into equivalent graphics problem, and then solve those problems instead. But this

approach is complicated and there is a lot of conversion overhead involved. CUDA

enabled GPUs on the other hand allows users to directly execute programs and solve

general problems in the original form. The CUDA API (Application Programming

Interface) documents all the details as to how the programs that are executed on the

CPU can transfer or delegate a part of the program to be executed on the GPU.

CUDA provides a large number of threads that can be executed simultaneously

on the cores of the device. To be able to maximize the utilization of the available

hardware, it is necessary to have parallel versions of the problems that are expected
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Figure 2.3: Architecture of a GPU (C1060)

to have performance gain by solving on multicore architecture. Therefore, develop-

ing parallel versions of both basic and advanced algorithms for different domains is

relevant. Significant performance gains can be achieved by executing highly multi-

threaded applications on the CUDA enabled GPUs. But, along with this opportunity

to achieve significant speedup, there is the challenge of minimizing the latency intro-

duced due to simultaneous data access from the memory. As in CPUs, there is a

hierarchy of memory units for the GPUs. Similar to the registers, L1, L2 and other

levels of cache which are used to hide the latency introduced by the memory accesses,

the GPUs have their own registers and shared memory, which are on-chip and can

be used by the GPU for fast execution. The architecture of a GPU is shown in

Fig. 2.3. The GPU consists of a number of Streaming Multiprocessors (SMs, 30 for

C1060), each containing 8 cores, and have access to the on-chip shared memory of

that specific SM. All the cores in all the SMs also have access to the device or global
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memory. The shared memory is further subdivided into banks and the global memory

into partitions. Memory access from different banks and partitions can be done in

parallel.

2.3 CUDA

Compute Unified Device Architecture or CUDA is a programming environment for

using GPUs to solve general purpose problems. The CUDA environment consists of

the CUDA programming model and the CUDA memory model. The programming

model for CUDA extends the C programming language and defines C-like functions,

called kernels, which are executed in parallel by different CUDA threads. In the

following sub-sections we look into the details of CUDA.

2.3.1 CUDA Programming Model

The CUDA programming model provides the basics of how the multi-threaded archi-

tecture is designed and functions. The threads are grouped together in blocks, which

can be either one, two or three dimensional, and each thread within a block is iden-

tified by its unique threadID. All the blocks of threads, identified by blockID, form

a one or two dimensional grid. Threads within a block can co-operate among them-

selves by accessing data through shared memory and synchronizing their execution

to coordinate memory accesses. Blocks of threads are assigned to the multiprocessors

by the CUDA scheduler.

The sequential parts of the code is executed on the “host” i.e., the CPU, and the

parallel parts are executed on the “device” i.e., the GPU. Blocks of threads execute the

kernels. Threads are further divided into execution units called Warps. Each Warp

consists of 32 active threads. But for the execution purpose, the scheduler assigns

half-warps to the streaming multiprocessors. Therefore, at any instant of time, there
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Figure 2.4: CUDA Programming Model (NVIDIA Corporation, 2010)

are 16 active threads on any multiprocessor. So, the total number of threads in a

block are divided and grouped together as Warps, which in turn are further sub-

divided into half-warps. The blocks of threads in turn are grouped together to form

the Grid, which can be either one or two dimensional as shown in Fig. 2.4.

Threads from different blocks synchronize among themselves by using the Global

memory. The maximum number of threads that can reside on a streaming multipro-

cessor is limited by the hardware resources. There are a limited number of registers

with each of the streaming multiprocessors, and with the increase in their usage, the

number of threads decreases. The scheduler assigns more than one block of threads

to the same multiprocessor if the total number of threads in the blocks combined is

less than what can be handled in each of the multiprocessors.

Parallel programming models are classified primarily based on problem decompo-

sition and process interaction. Classification according to problem decomposition can

be categorized with respect to task parallelism or data parallelism. CUDA follows the

SPMD (Single Program Multiple Data) model, which is similar to the SIMD (Single
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Instruction Multiple Data) model. Threads within the same block execute in SIMD

fashion, whereas threads of different blocks can execute different portions of the code

i.e., the instruction can be different while considering all the streaming multiproces-

sors, but the program is the same. This is also referred to as SIMT (Single Instruction

Multiple Thread) in many cases.

Considering the process interaction, parallel programming models are broadly

classified into Shared Memory Model and Distributed Memory Model. In case of

Shared Memory Model, the architecture consists of processors accessing a common

or shared memory; the PRAM (Parallel Random Access Machine) model is one such

example. There are various versions of the PRAM model, the EREW (Exclusive

Read Exclusive Write), CREW (Concurrent Read Exclusive Write) and the CRCW

(Concurrent Read Concurrent Write), based on memory read and write patterns.

In case of the Distributed Memory Model, the architecture consists of a number of

processors each with their own local memory, and interaction among the processors

are performed by sending messages. Message Passing Interface or MPI is one such

example.

The CUDA programming model is actually a combination of both the Shared and

Distributed models. CUDA follows the Shared Memory model if the data is stored

and accessed using only the global memory. In this case it follows the EREW model.

Message Passing Interface is available for GPU clusters using CUDA-Aware MPI thus

making is possible to classify it as Distributed memory model.

2.3.2 CUDA Memory Model

There are different levels in the memory hierarchy of the GPUs. Fig. 2.5 shows the

different levels of the memory hierarchy available on a GPU. Table 2.1 summarizes

some properties of the levels of memory. Data is transferred from the CPU to the

GPU and back using memory copy functions. Global memory is predominantly used
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Figure 2.5: GPU memory hierarchy (NVIDIA Corporation, 2010)

to transfer data from the host to device and vice-versa. In the following section we

discuss about different characteristics and usage of the memory model.

Memory Location Access Scope Lifetime

Register On-chip R/W One thread Thread

Local Off-chip R/W One thread Thread

Shared On-chip R/W All threads in a block Block

Global Off-chip R/W All threads + host Application

Constant Off-chip R All threads + host Application

Texture Off-chip R All threads + host Application

Table 2.1: Properties of levels of memory on GPUs (NVIDIA Corporation, 2010)
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2.4 Memory Hierarchy, Access Patterns and Optimization

Techniques

Memory on the GPU is divided into many different levels. The memory hierarchy

of the GPU consists of device memory, shared memory, constant memory, texture

memory and registers. The size of each of the above mentioned types of memory

varies according to the system, and a comparison of the global and shared memory

size for different GPUs is given in Table 2.2. The shared memory is further divided

into 16 or 32 banks depending on the system. The global memory is the largest and

also has the highest access latency. The on-chip shared memory has significantly

faster access compared to the global memory. But, when data is accessed from the

same bank, either the same element or different elements in the same bank, then there

is a bank conflict leading to a performance loss (the only exception being the case

where all the threads access the same element leading to a broadcast.) The constant

memory and the texture memory are also located off-chip like the the global memory,

but both are read-only memory and data stored in them cannot be modified.

Model CUDA Global Shared # of Memory

# cores Memory Memory Banks

C1060 240 4 GB 16 KB 16

C2050 448 3 GB 48 KB 32

C2070 448 6 GB 48 KB 32

Table 2.2: Architecture Comparison of Different Nvidia GPUs (NVIDIA Corporation,
2010)

Various methods of memory optimization and parallelism management to improve

performance of GPUs have been studied (Yang et al., 2010a). The two main consid-

erations for efficient processing on the GPUs is to effectively distribute the workload

among the threads and also efficiently utilize the memory hierarchy. Identification of
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inefficient workload division or memory accesses in kernels, and reorganizing the code

to optimize the memory accesses and maximizing the parallelism using a compiler has

been proposed (Yang et al., 2010a). Techniques to improve the performance of the

GPUs and performance prediction model has also been studied (Hasan et al., 2014).

The focus of the memory optimization techniques can be divided into the following

four categories:

� To be able to efficiently access data from global memory and utilize the off-chip

memory bandwidth, data item might be vectorized and memory coalescing can

be taken advantage of.

� The shared memory has low access latency, and its optimal usage can be ensured

by avoiding bank conflicts.

� Workload must be divided among threads in a balanced manner, so that threads

scheduled on each of the available multiprocessors does similar amount of work.

� Data accessed from off-chip global memory must avoid partition camping, which

is similar to bank conflicts, but with much higher performance penalty.

The above mentioned performance issues are applicable to many-core architectures

other than the GPUs. These are universal methodologies, and primitives focusing

on high memory bandwidth and balanced workload are relevant to a wide range of

architectures.

2.4.1 Shared Memory Vs. Global Memory

As evident from the CUDA programming guide (NVIDIA Corporation, 2010) and

related work (Boyer et al., 2008), the shared memory is a lot faster than the global

memory. So, for all algorithms, whenever it is possible, the data is stored, accessed

and modified from the shared memory. As the shared memory has a capacity of 16
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KB (C1060), and different streaming multiprocessors can have different data stored

in each of them, the total size of data being processed is limited by that available

on the 30 streaming multiprocessors. Therefore, for the C1060 card, the total shared

memory available is 480 KB. Although, it must be observed that the entire shared

memory might not be available for data storage during the execution of a kernel

because of the storage of the kernel parameters and other intrinsic values in it.

2.4.2 Shared Memory Bank Conflicts

The shared memory is of size 16 KB (or 48 KB), and is divided into 16 banks (or 32

banks). Data is stored in consecutive banks, and the width of each bank is 4 bytes.

Figure 2.6: Shared Memory Bank Access: (a) No Conflicts, (b) 8-Way Conflict,
(c)Broadcast (NVIDIA Corporation, 2010)
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Now, all the active threads scheduled on the same streaming multiprocessor can

access data from any bank on the shared memory. Data access from different banks

take place in parallel. If more than one thread accesses data from the same bank, bank

conflict occurs, and the accesses become sequential and the memory access latency

increases. Fig. 2.6 (a) & (b) shows threads accessing shared memory with no bank

conflicts, and also with 8-way bank conflicts. 8-way bank conflicts means 8 threads

access data from the same bank at the same time.

In the special case, where all the threads access the same data element from

the same bank, the compiler optimizes these memory access operations and issues

a broadcast. Therefore, in this case instead of 16-way bank conflict i.e., maximal

conflict, there is no conflict at all, and the data is available to all the threads in just

a single read operation rather than the required 16 operations. Fig. 2.6 (c) shows

threads accessing the same data element in the same bank in the shared memory

resulting in the broadcast mechanism taking effect.

But, in the case where even though all the threads access the same bank, but

different data elements in the bank, the broadcast mechanism cannot be used. So,

maximal bank conflicts occur. The threads are executed on the multiprocessors in

groups of 32 referred to as Warps. But, only half of the threads in a warp are active

at any instant of time. This can be attributed to the fact that there are 16 banks in

the shared memory, and if all the threads in a warp are active, then it is guaranteed to

cause at least 2-way bank conflicts. Therefore, by using half-warps, there is a chance

that the threads can access the shared memory banks without any conflicts.

2.4.3 Global Memory Access Coalescing

In certain cases, where the size of the data required for computation is larger than that

of the shared memory, even when using the most efficient data structures, storing and

accessing the data from the global memory is required. Due to the increased latency,
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as evident from the experimental results in (Boyer et al., 2008), the time required

to access data from the global memory is much larger than that from the shared

memory. Therefore, to reduce the penalty in execution time while using the global

memory as the storage for the data, there are certain primitives available for the

Nvidia GPUs that can be used. Memory Coalescing is one such mechanism. By

taking advantage of memory coalescing, the effects of slower memory accesses can be

effectively compensated.

Data from the global memory is accessed in the form of transactions. Therefore,

minimizing the number of global memory accesses is equivalent to minimizing the

number of transactions.

Let us consider the case where each of the threads in an active half-warp (total

16, identifier idx 0 - 15) accesses elements from an array stored in the global memory

using a loop. Also, because of the offset, let the elements accessed by the above

mentioned threads are all in separate segments. Therefore, in this case, each step of

the loop would require 16 transactions (one for each thread), as shown in Fig. 2.7.

Segment1 Segment2 Segmenti

Global MemoryE1 E2 Ei

Thread1 Thread2 Threadi

Figure 2.7: Global Memory Access: Maximum Transactions

As mentioned earlier, since transactions are expensive as the time required to

access data from the global memory is significant, the number of transactions required

to get the data for the threads from the global memory can be reduced by using

memory coalescing.
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The global memory access by 16 threads (half-warp) is coalesced into a single

memory transaction if data accessed by all threads lie in the same segment. Consid-

ering the previous example, if the value of offset is modified to a value such that all

the data elements accessed by the threads belong to the same data segment, then the

number of transactions for each step of the loop reduces from 16 to 1, as shown in

Fig. 2.8.

Segment1 Segment2 Segmenti

Global Memory
E1

T1 T2 Ti

E2 Ei

Figure 2.8: Memory Coalescing in Effect: Minimum Transactions

It must be noted that while data elements might be contiguous, they need not be

in the same segment. For example, there might be a single transaction required to

access 64-bytes of data if it is stored entirely in a single segment. But, for another

set of data, accessing a set of 50-bytes might require two transactions if the data is

split over two segments in the global memory.

The number of transactions required to access data from the global memory using

memory coalescing depends on a number of factors like the compute capability of

the system in question and whether the data that is being accessed by the different

threads within the active warp is aligned and sequential or non-sequential (NVIDIA

Corporation, 2010). A comparison for the different available options is shown in Table

2.3.

From the data available in Table 2.3, it is evident that for CUDA compute ca-

pability versions 1.2 and later, accessing non-sequential data is handled in the same
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Compute Access Data Size Memory

Capability Pattern in Bytes Transactions

1.0 Sequential 128 2

1.1 Sequential 128 2

1.2 Sequential 128 2

1.3 Sequential 128 2

2.0 Sequential 128 1

1.0 Non-sequential 128 32

1.1 Non-sequential 128 32

1.2 Non-sequential 128 2

1.3 Non-sequential 128 2

2.0 Non-sequential 128 1

Table 2.3: Number of Memory Transactions on different GPUs (NVIDIA Corporation,
2010)

manner as sequential data.

2.4.4 Partition Camping

Although memory coalescing is an efficient technique that can be used to offset the

slower access to the global memory, there are other factors that can dictate the actual

performance benefit achieved. Partition camping is one such mechanism that dom-

inates the outcome of various measures undertaken to access data from the global

memory efficiently. Although the shared memory has low access latency, the lim-

iting factor is shared memory bank conflicts. Similarly, from the global memory

perspective, memory coalescing is the performance booster while the limiting factor

is partition camping. Memory coalescing and partition camping deal with data trans-

fers between the global and on-chip memories, while bank conflicts deal with on-chip

shared memory.

The shared memory on the Nvidia systems is divided into 16 (or 32) banks of

32-bit width. Similarly, the global memory is divided into 6 (or 8) partitions on 8-
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and 9-series GPUs (or 200- and 10-series GPUs) of 256-byte width, as shown in Fig.

2.9.

Partition1

(256 bytes)

Partition2 Partitioni

(256 bytes) (256 bytes)

Global Memory

Figure 2.9: Global memory divided into partitions

As evident from the previous discussion, for efficient use of the shared memory,

bank conflicts must be avoided. This is ensured by distributing the data accessed by

the threads in a half warp into the maximum possible available banks. Therefore, the

total time to access the data from the shared memory is indirectly proportional to

the number of banks accessed by the threads in the active half-warp, and is given in

the form of the following equation

β∑
i=1

Ti ∝
De∑β
i=1 Bi

(2.1)

where, Ti is the time required for thread i, De is the number of data elements accessed

by the threads, and
∑β

i=1Bi is the total number of distinct banks accessed by all

the threads for computation on the data. Since the Warp-size is 32 and half-warp

is 16, the maximum value of β is 16. In the best-case scenario, when there is no

bank conflict, the threads access distinct banks and
∑β

i=1Bi = 16. In the worst-

case scenario, when all the threads access the same bank but different elements in

it thereby negating the usage of the broadcast primitive available with the compiler,∑β
i=1Bi = 1.

As the shared memory is divided into banks, similarly the global memory is di-
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vided into partitions. For efficient usage of global memory, concurrent accesses by all

active warps should be divided evenly amongst partitions. Partition camping occurs

when global memory accesses are mapped into a subset of partitions, causing requests

to queue up at some partitions while other partitions go unused. While memory coa-

lescing concerns global memory accesses within a half warp, partition camping deals

with global memory accesses amongst active half warps. Therefore, it is analogous

to shared memory bank conflicts, but on a wider scale. As shown in Equation[2.1]

for shared memory bank conflicts, the total time to access the data from the global

memory is indirectly proportional to the number of partitions accessed by the threads

in all the active half-warps, and is given in the form of the following equation

γ∑
i=1

Tiw ∝
∑γ

i=1CMi∑γ
i=1 Parti

(2.2)

where, Tiw is the time required for threads in the active warp Wi, CMi is the to-

tal number of coalesced memory access required to access the data elements to be

processed by the threads in active warp Wi, and
∑γ

i=1 Parti is the total number of

distinct partitions accessed by all the threads in warp Wi for computation on the

data, and γ gives the total number of active warps. The objective of accessing the

data from the global memory efficiently is to Minimize(
∑γ

i=1 Tiw), which is equivalent

to Maximize(
∑γ

i=1 Parti).

In Fig. 2.10, partition camping effect is illustrated with an example. Let the

streaming multi-processors in the Nvidia system be denoted by SMi, where 1 ≤ i ≤

30. The active warps are given by Wi, where i is the streaming multiprocessor on

which it is being executed. Now, if the data in the global memory is distributed in

such a manner, that for a given instance of execution, all the active warps access data

from the same partition, in this case Partition1, then partition camping takes place.

The data access is sequentialized for each of the warps, and all the other partitions
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Figure 2.10: Partition Camping in Effect

are not accessed. The active warps accessing a particular partition are shown in a

table inside the partition.
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Figure 2.11: Avoiding Partition Camping by Distribution of Warps
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In Fig. 2.11, a case where partition camping is avoided is shown. In this case,

all the active warps are distributed evenly amongst the available partitions and the

mapping is given by the following equation

Partitioni%p ⇐ Wi (2.3)

where, p is the total number of partitions available.

2.5 Summary

In this chapter we discuss about GPU architecture and CUDA. The CUDA program-

ming model and memory model are studied and techniques to improve the perfor-

mance of the same are discussed. Many different devices exist that are CUDA enabled

and there have been changes with the availability of newer versions of the architecture.

However, the basic principles of the models remain the same, and the discussions are

valid across all the different architectures.
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Chapter 3

Storing graphs on GPUs

3.1 Introduction

For performing computations on the GPUs storing the graph data on the device is

essential. Using efficient data structures to store the data helps in making use of the

level of memory with the least access latency. In this chapter we study the different

methods to store graphs on the GPUs.

3.2 Related work

Using efficient data structures to store graphs for computation on both CPUs and

GPUs have been studied extensively. Various modifications of the adjacency matrix

and adjacency list data structures are considered.

Katz and Kider (Katz & Kider, 2008) and Buluc et al. (Buluç et al., 2010)

proposed storing graphs on the GPU by dividing the adjacency matrix into smaller

blocks. The required blocks are loaded in the memory, and after computation, are

replaced by the next set of blocks. This representation still uses the adjacency matrix,

and might include data which is not required for computations based on locality

information.

Frishman and Tal (Frishman & Tal, 2007) propose representing multi-level graphs

using 2D arrays of textures. They propose partitioning the graph in a balanced way,

by identifying geometrically close nodes and putting them in the same partition.

Since the partitions are based on locality information and balanced, it makes use
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of the GPUs data parallel architecture. But partitioning the graph itself is a hard

problem.

For sparse matrices, the Compressed Sparse Row (CSR) representation is useful

(Garland, 2008). Also, representing the edge information using arrays to store the

out-vertex and in-vertex numbers saves space for sparse matrices (Itokawa et al.,

2007). This method is better suited for directed graphs.

Bader and Madduri (Bader & Madduri, 2008) proposed a technique where different

representations are used depending on the degree of the vertices. This is relevant for

storing graphs that exhibit the small-world network property, where vertices have an

unbalanced degree distribution, with majority of vertices having small degrees and a

few vertices are of very high degree.

Harish and Narayanan (Harish & Narayanan, 2007) describe the use of a compact

adjacency list, where instead of using several lists, the data is stored in a single list.

Using pointers for each of the vertices’ adjacency information, data for the entire

graph is kept in a single one dimensional array, which can be significantly large to

be stored in the shared memory, and has been implemented in the global memory in

their paper.

In this chapter, in addition to using the breadth-first search (BFS) information

to carefully split the graph for processing, we introduce data structures for storing

nodes and their adjacency information that are in contiguous levels of the BFS-tree.

We propose both simple and modified data structures using least number of bits in

addition to exploiting the symmetric property of undirected graphs. The modified

data structure is similar to the one proposed by Harish and Narayanan (Harish &

Narayanan, 2007), but with improvements, including the use of fewer bits in the

general case and also using more than one array to store the entire adjacency data

for the graph, thereby adhering to stricter memory requirement constraints.
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3.3 Simple data structures for storing the graph information

Various data structures can be chosen to store the adjacency information of graphs

in the GPU memory. Each of the different data structures have different storage

requirements. There are several operations on graphs that need to access the stored

data using one of the available data structures. A memory efficient data structure

might have worse time complexity when it comes to accessing the required data

for computations. Hence, there exists a trade-off between memory requirement and

access time complexity, when choosing the appropriate data structure for storing the

adjacency information of the graphs. In this section, we analyze the space required

by different data structures and also the time complexity for performing common

operations on graphs using the same. It must be noted that throughout the chapter,

for calculations we use boolean data and it consists of a single bit, and does not refer

to the data type available in programming languages.

3.3.1 Adjacency Matrix

For a graph G = (V,E) with |V | = n, the size of adjacency matrix is n2 bits, where

each edge is stored using a single bit. To fit the adjacency matrix in the shared

memory, the space required must be less than or equal to that of the desired level

in the memory hierarchy of the GPU. Considering the architecture available on the

Nvidia 10-series GPUs, for example C1060, the size of the shared memory is 16

KB. Hence, to satisfy the above constraint, n2 ≤ 131, 072 (16 KB = 16 × 1024 × 8

bits = 131, 072 bits), which gives n ≈ 360. Therefore, using the adjacency matrix

representation, the size of the largest graph that can be kept in the shared memory is

360 (assuming all shared memories in the different streaming multiprocessors contain

identical data.)
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3.3.2 Upper Triangular Matrix

The adjacency matrix representation contains redundant information, and those can

be eliminated to reduce the storage requirements. For undirected graphs, values (i, j)

and (j, i) are identical. So, storing only the Upper Triangular Matrix (UTM) of the

adjacency matrix is enough, which requires n×(n+1)
2

bits. So, the largest graph that

can be kept in the shared memory using the UTM representation is 511. As all the

values of (i, i) = 0, using the Strictly UTM representation (S-UTM) (i.e. without

the data on the diagonal), size of the largest graph that can be kept in the shared

memory is 512. Although the shared memory spans across 16 banks, it is preferable

to store data for any specific node within a single bank thereby avoiding potential

memory contention and reduce overall execution time. With the above requirement,

the number of nodes that can fit in the shared memory is reduced to 506, where data

is kept in increasing order of the node numbers. Also, using UTM representation, the

number of nodes’ data in each of the bank (size 8192 bits) varies, as shown in Table

3.1.

In the previous approach due to unbalanced distribution of nodes, threads assigned

to operate on banks with more nodes would have to do significantly more work than

the threads accessing banks with less number of nodes. On the other hand, if threads

access a constant number of nodes it will result in inefficient memory utilization, thus

limiting the overall size of graph that can be stored.

For load balancing the distribution can be done as follows. Using S-UTM rep-

resentation different rows have different amount of data (see Table 3.2). To make

the structure rectangular (see Table 3.3), the space gained by not storing redundant

information in any row in the upper part of the S-UTM can be filled up by a corre-

sponding row from the lower part. When n is even, the space gained in row i is filled

with data values from row n − i (see Table 3.3); when n is odd, the corresponding
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Bank Nodes in the # of Nodes Space Required

# Bank in bits

0 0-15 16 7976

1 16-31 16 7720

2 32-48 17 7922

3 49-66 18 8073

4 67-85 19 8170

5 86-104 19 7809

6 105-124 20 7830

7 125-146 22 8151

8 147-169 23 8004

9 170-194 25 8100

10 195-221 27 8046

11 222-251 30 8085

12 252-285 34 8075

13 286-325 40 8020

14 326-378 53 8162

15 379-505 127 8128

Table 3.1: Distribution of nodes in the banks

space in row i is filled with data from row n − (i+ 1) (see Table 3.5). In general, for

any value of n the number of rows of data is reduced from n to
⌊
n
2

⌋
. This is called

Balanced S-UTM (B-S-UTM), where all rows have the same amount of data, each

corresponding to that of 2 nodes. The above method is similar to “rectangular full

packed” in dense linear algebra (Gustavson et al., 2010). With the desire to store

an entire row of data in a single streaming multiprocessor, this scheme also ensures

all banks have equal number of nodes in them thereby achieving load-balancing. Us-

ing this scheme, the maximum number of rows that can be kept in a single bank is

(1024×8)
511

≈ 16. As there are 2 nodes’ data in each row, the total number of nodes’ data

in each of the banks is 32. Therefore, the total number of nodes that can be kept in
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this manner in the 16 banks is 32× 16 = 512.

– a b c d e f g

– – h i j k l m

– – – n o p q r

– – – – s t u v

– – – – – w x y

– – – – – – z φ

– – – – – – – ψ

– – – – – – – –

Table 3.2: S-UTM for even number of nodes

a b c d e f g

h i j k l m ψ

n o p q r z φ

s t u v w x y

Table 3.3: S-UTM with load balanced approach for even number of nodes

– a b c d e f

– – g h i j k

– – – l m n o

– – – – p q r

– – – – – s t

– – – – – – u

– – – – – – –

Table 3.4: S-UTM for odd number of nodes

a b c d e f u

g h i j k s t

l m n o p q r

Table 3.5: S-UTM with load balanced approach for odd number of nodes
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The number of simultaneous thread executions is limited by the number of GPU

processors in a streaming multiprocessor. Each thread is allocated a set of combina-

tions of nodes (with cardinality k) and a thread is to determine if the desired property

(e.g., do they form a connected subgraph?) holds. In order to use all available GPU

processors in other streaming multiprocessors, we have to duplicate the graph and

place it on all the shared memories on other streaming multiprocessors. Care must

be taken to ensure each thread is given a unique set of combinations to test, to avoid

duplication in work.

The sets of combination of k nodes are allocated to each streaming multiprocessor

as follows. Since the shared memory in each streaming multiprocessor can store up

to 512 nodes, it can be assumed that there are 512 sets of combinations, each start-

ing with a unique node number. We allow the first 29 streaming multiprocessors to

operate on 17 unique sets of combinations each and the last streaming multiprocessor

operates on the remaining 19 sets (17× 29 + 19 = 512). In each streaming multipro-

cessor, depending on the number of threads the unique sets are uniformly divided to

be processed.

3.3.3 Adjacency List Using Array of Linked Lists

Other than the adjacency matrix, adjacency list is also a common data structure used

to store graph information. There can be various modifications in the implementation

of the adjacency list, and each has different memory requirements and data access

complexity. In this sub-section, we study the implementation of the adjacency list

using an array of linked lists, also referred to in here as AL-AL, and is shown in Fig.

3.1.

Let the total number of nodes in the graph be n and total number of edges be m.

Here, all the nodes are stored in an array; the identifiers of the nodes given by the

indices of the array location. Each array element contains a pointer to the starting
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Figure 3.1: Adjacency List Using Array of Linked Lists

node of the linked list representing the neighbors of the corresponding node i.e., the

edge information. In the example graph shown in Fig. 3.1, node 0 is connected to

nodes 1 and 2. Therefore, a pointer to node 1 is stored in the array index corre-

sponding to node 0. The storage for node 1 contains the identifier for the node, and a

pointer to the next neighbor i.e., node 2. Since, there are no more neighbors for node

0, the pointer associated with node 2 contains an invalid marker, denoted in Fig. 3.1

by “X”. Now, each of the edges would be stored two times, once for each end vertex.

Considering a 64-bit machine, each of the pointers require 64 bits. So, the space

needed to store the array containing the nodes is given by n× 64 bits. Now, each of

the edges are represented by the end vertex number, and also contains a pointer to the

next edge information if there exists another edge for the node under consideration.

Since there are n nodes in the graph, representing a node number requires log n bits.

Hence, for storing each of the edges, the space required is (log n + 64) bits, giving a

total of 2m× (log n+ 64) bits for all the edges. Therefore, the total size required for

this representation is given by n× 64 + 2m× (log n+ 64) bits.
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3.3.4 Adjacency List Using Array of Arrays

In the adjacency list representation using array of linked lists, there are too many

pointers involved in the implementation, thereby increasing the size of the data struc-

ture. Using arrays to group data together replacing pointers can reduce the memory

required, and this is referred to as adjacency list using array of arrays, and is shown

in Fig. 3.2.

log n bits
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3 4

6

1

3

0 2

4

Array 

Pointer 

(64 bits) 

0
1

2 2

# of 

neighbors 

(log n bits)

An example graph (left) with the corresponding adjacency list representation 

(right) using Array of Arrays (AL-AA)

6

33

2

Figure 3.2: Adjacency List Using Array of Arrays

Here the edges from each node are stored using arrays instead of linked list. Since

there are no pointers involved between edges, to determine the size of the array,

the number of neighbors for each of the nodes need to be stored. In this case, all

the nodes in the graph are stored in an array, along with the number of neighbors

and in addition there is a pointer for each of the nodes to the array containing its

neighbors. In the example graph shown in Fig. 3.2, node 1 is connected to 3 nodes,

numbered 0, 2 and 3. Therefore, for node 1, a value of 3 is stored corresponding to the

number of neighbors, and also a pointer to the array of its neighbors, which contains
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the identifiers for the nodes 0, 2 and 3. The size of the array with the number of

neighbors and pointers for the n nodes require n × (log n + 64) bits. Additionally,

the total space required for all the arrays containing information about the m edges

is 2m× log n bits. Therefore, the total size required for this representation in bits is

given by n× (log n+ 64) + 2m× log n.

An improved version of this data structure that requires less storage is one which

does not store the number of neighbors for each of the nodes. However, this in-

formation is required to retrieve the adjacency data, and must be available during

computation. This can be achieved by using the sizeof() function on the array con-

taining the neighbors to find the required number at runtime. Hence, the array of

arrays variant with the sizeof() function requires n× 64 + 2m× log n bits.

3.3.5 Adjacency List Using Array Implementation of Linked Lists

In the adjacency list representation using array of arrays, there are still pointers

involved, and that requires significant amount of space. Instead of using pointers, the

information for the edges can be stored using an array and relevant identifiers. So,

the linked list pointers are replaced by using arrays. This representation is referred

to as the adjacency list using array implementation of linked lists, and is shown in

Fig. 3.3.

Here, both the nodes and edges are stored in arrays. Each element for the node

array contains the starting index position in the array containing the edges. Since

there are 2m indices in the edge array, the values stored in the node array each

require log 2m bits, giving a size of n× log 2m bits for the node array. The edges are

represented by a pair of elements in the edge array. The first element contains the

end vertex number of the edge, and the second element contains the index position of

the next edge information in the array, or an identifier value of “-1” which indicates

the end of the linked list. As there are n nodes, the first element requires log n bits,
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An example graph (left) with the corresponding adjacency list representation 

(right) using Array Implementation of Linked List (AL-ALL)
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Figure 3.3: Adjacency List Using Array Implementation of Linked Lists

and for the 2m indices possible, the second element requires log 2m bits. So, the size

of the edge array is 2m× (log n+ log 2m) bits. Therefore, the total size required for

this representation in bits is given by n× log 2m+ 2m× (log n+ log 2m).

Now, the data representing the edges can be stored in any order in the array

implementing the linked list. In the example graph shown in Fig. 3.3, the neighbors

of node 0 are stored starting at position 4 in the array just to illustrate the fact

that data can be stored at any location in the array as the pointers would correctly

determine the location of the next available data. Node 1, which is a neighbor of node

0 is stored at location 4, and contains a pointer to location 2. Location 2 contains

the identifier of the other neighbor of node 0 i.e., node 2 and contains an identifier

“-1” for the pointer indicating the end of the list since there are no more neighbors
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for node 0.

3.3.6 Adjacency List with Edges Grouped
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(right) with edges grouped (AL-EG)
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Figure 3.4: Adjacency List with Edges Grouped

In the array implementation of linked lists, the edges are stored in an array using

arbitrary indices which requires storing the next index position for each of the edges.

This can be improved by storing all the edges next to each other. In this manner,

neither the total number of edges for each of the node nor the next index positions

are required. As before, both the nodes and edges are stored in arrays. The node

array elements point to the starting index position of the edges in the edge array,

and all the edges are stored in consecutive locations. The total number of edges for

each of the nodes can be easily calculated by subtracting the starting index position

of the current node with that of the next node. This representation, similar to the
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one described in (Harish & Narayanan, 2007) as compact adjacency list, is referred

to as the adjacency list with edges grouped, and is shown in Fig. 3.4.

In the example graph shown in Fig. 3.4, node 0 has two neighbors, nodes 1 and 2.

This information is stored in the edge array using consecutive locations starting from

0. Therefore, the node array element corresponding to node 0 contains the value of

location 0. For node 1, the neighbors 0, 2 and 3 are stored in the edge array starting

at location 2, and this value is stored in the node array. Using the information in the

node array for nodes 0 and 1, the number of neighbors for node 0 can be found by

subtracting the corresponding value of node 0 from that of node 1.

As in the case of array implementation of linked lists, the space required for the

node array is n × log 2m bits. For the edge array, there are 2m elements, and each

require log n bits. So, the size of the edge array is 2m × log n bits. Therefore, the

total size required for this representation in bits is given by n× log 2m+ 2m× log n.

3.4 Operations on graphs

For solving various problems on graphs, different operations need to be performed on

the graph data. In this sub-section we consider two types of operations on graphs - a)

Query operations, and b) Update operations. The different types of query operations

can be the following:

� N(v): List the neighbors of node v.

� D(v): Find the number of neighbors of node v.

� Edge(u, v): Determine if there is an edge between vertices u and v.

The different types of update operations can be listed as follows:

� Add(v): Add a vertex v.
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� Add(u, v): Add an edge between the vertices u and v.

� Remove(v): Remove the vertex v and all corresponding edges (u, v).

� Remove(u, v): Remove the edge (u, v).

As mentioned earlier, there is a trade-off between the space required and access

time complexity for different data structures. The various query and update opera-

tions provide a measure for the time complexity. For a given graph G with degree

δ(G) consisting of n nodes and m edges, Table 3.6 provides a summary of the com-

parison of the time complexity for the operations on graphs using the data structures

discussed in this section.

3.5 Advanced data structures

In order to process the reduced combinations described in the previous subsection,

streaming multiprocessors should be responsible for generating only relevant combi-

nations, by knowing the number of nodes in each level and BFS numbering of the

nodes. The entire graph can be stored using any of the efficient data structures dis-

cussed in the previous section. For the purpose of discussion, let the graph be stored

using S-UTM representation along with the information of the number of nodes at

each level. Instead, it may be beneficial in some cases to store adjacent levels of the

BFS-tree. Thus, except for the node in the root level for each set of adjacent levels,

there will be a S-UTM data structure along with the starting node number and the

total number of nodes. This representation is called S-UTM-ADJ. Similarly, such

corresponding representations exists for the other data structures too.

In addition to the S-UTM-ADJ we have devised another data structure called

Parent Array Representation (PAR) wherein each node keeps information of its parent

along with adjacent nodes in both the parent’s and the same level as a list. By keeping

additional information we can further reduce the space requirements as shown below.
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Data N(v) D(v) Edge Add(v) Add Rm. Rm.

Structure (u, v) (u, v) (v) (u, v)

Adjacency n n 1 n2 1 n2 1

matrix

S-UTM n n 1 n2 1 n2 1

Array of δ(G) δ(G) δ(G) n 1 n+m δ(G)

linked lists

Array of arrays δ(G) 1 log δ(G) n δ(G) n+m δ(G)

Array of arrays δ(G) 1 log δ(G) n δ(G) n+m δ(G)

with sizeof()

Array

implementation δ(G) δ(G) δ(G) n 1 n+m δ(G)

of linked lists

Adjacency list

with edges δ(G) 1 log δ(G) n m n+m m

grouped

Table 3.6: Comparison of time complexity for operations on graphs using different
data structures

3.5.1 Parent Array Representation:

In PAR, for each of the nodes contained in k -levels, the following information is

stored: a) The parent node number, b) An identifier (0 or 1) to specify if there are

other neighboring nodes belonging to the same level (siblings) or previous level (i.e.,

parent’s level), c) If the identifier value is 1, then the number of neighbors identified

in the previous step, d) Node numbers for each of the neighbors to identify them.

Fig. 3.5 shows an example of PAR for an arbitrary graph. The node numbers are not

stored explicitly but calculated from a value x, which gives the starting node number.
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As the node numbers are in strictly increasing order, the calculation is simple. Also,

neighboring node numbers are not stored explicitly, but calculated from another value

y, which is the parent number for x.

The space required is therefore reduced by storing only the differences in the

numbering of the parents and neighbors for the nodes, which depends on the value

δ (degree of the graph.) While storing the differences between the numbering, the

worst case graph, shown in Fig. 3.6, would give the difference in the order of n. For

example, if a level has p nodes, there would be p parent nodes, and say there are

other q neighboring nodes. If the node numbers are stored, it would take ((2×p+q+

p′)× log2 n+ p) bits, where the extra p bits are the identifiers. Also p′ ≤ p are nodes

that have other neighbors and need an additional value indicating the total number

of such nodes. Whereas, if the differences in the numbering is used, then it would

take in the worst case, ((p+ q)× log2 δ + (2 + p′)× log2 n+ p) bits.
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Figure 3.5: PAR for an arbitrary graph

Interestingly, more than one type of storage mechanism can be used depending

upon the structure of the BFS-tree. Each of the levels of the BFS-tree would use

either UTM or PAR. The graph is preprocessed in the CPU, and depending on the

size of the representations, the smaller data structure is chosen.
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3.5.2 Directed BFS-tree and AL-EG Storage

Another data structure that uses breadth-first search tree information and is proposed

in this chapter is referred to as the directed BFS-tree with adjacency list and edges

grouped storage. Here, first the breadth-first search tree is constructed and nodes are

provided with BFS numbers. The following links are considered as directed links: a)

Child to parent in the BFS tree, b) all non-tree edges from node at level l to nodes

at level l − 1 and, c) all non-tree edges from nodes numbered i to nodes numbered

j such that i < j and nodes i and j are at the same level in the BFS tree. This

representation is shown with an example in Fig. 3.7.

For the example graph in Fig. 3.7, the breadth-first search is performed starting

with node number 6. The BFS-tree is shown with the original node numbers along

with the BFS numbering in parentheses. Now, only the directed links as defined

above are stored in the data structure. So, for the renumbered node 0, there is no

information to be stored in the edge array. For the renumbered node 1, there are

directed links to nodes 0 and 2, and these are stored in the edge array starting at

location 0. Similarly, for node 2, necessary information is stored in the edge array

starting at location 2.
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Figure 3.7: Directed-BFS tree with Edges Grouped

The combinations of nodes to be tested for the counting problems are generated in

increasing order of node numbers. So, the above information is sufficient to perform

the various required operations on graph data. The main advantage of this data

structure over the adjacency list with edges grouped is the data for the edges are

stored once instead of twice. For this data structure, the total memory requirement
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is given by (n− 1)× logm+m× log n bits.

3.6 Comparison of different data structures

In the above sub-sections, different data structures that can be used to represent the

adjacency information for graphs are discussed. Gradual modifications are made to

reduce the space requirements by eliminating the need for pointers and rearranging

the data. For a graph with n nodes and m edges, space requirements for the different

data structures can be summarized as given in Table 3.7.

Data Structure Total bits

Adjacency matrix n2

S-UTM n× (n− 1)/2

Array of linked lists n× 64 + 2m× (log n+ 64)

Array of arrays n× (log n+ 64) + 2m× log n

Array of arrays with sizeof() n× 64 + 2m× log n

Array implementation of linked lists n× log 2m+ 2m× (log n+ log 2m)

Adjacency list with edges grouped n× log 2m+ 2m× log n

Table 3.7: Comparison of memory requirements for the different data structures

An example graph of size 16 is provided for illustration. The structure of the origi-

nal graph and a BFS-tree is shown in Fig. 3.8. Table 3.8 compares space requirements

for the different data structures.

In case of the S-UTM-ADJ, PAR and the Hybrid data structures, the graph data

is split and stored according to level information. For the rest of the data structures,

the adjacency information of the entire graph is kept together. Although, from the

data in Table 3.8, it seems S-UTM is the best choice when storing the entire graph

together, for larger size sparse graphs other data structures might be more efficient.

For example, if for a given graph n = 300 and m = 900, the corresponding storage

requirements in bits for S-UTM is 44, 850; whereas that for the adjacency list with

45



80

1

4

5

9
14

6

3
13

2

15

7

11
12

10

0

21 3

4 5 6 7 8

9 10 11 12 13

14 15

16 17

18

19

16 17 18 19

Figure 3.8: Sample graph (top) and BFS-tree for comparing data structures (bottom)

edges grouped is 18, 057 bits and for directed-BFS tree and AL-EG storage is 10, 341

bits.

3.7 Summary

Storing data on the GPU efficiently plays an important part in using the device for

computations. In this chapter we study both naive and advanced data structures

as well as propose novel techniques for storing graph data on the GPU. Starting

from adjacency matrix, we move into more complex data structures that exploit the
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Data Structure Space Required

(bits)

Array of linked lists 4287

Array of arrays 1557

Array of arrays with sizeof() 1471

Array implementation of linked lists 540

Adjacency matrix 400

Adjacency list with edges grouped 300

Upper Triangular Matrix 210

Strictly-UTM 190

Directed-BFS and AL-EG 180

S-UTM-ADJ 174

Parent Array Representation 113

S-UTM-ADJ/PAR: Hybrid 110

Table 3.8: Comparison of space requirements

structure of the data being considered too. Using various data structures not only

have different size requirements but also have varying memory access complexities;

and this aspect has also been analyzed here. Certain sections of this chapter are

adapted from our research paper (Chatterjee et al., 2013a).
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Chapter 4

Counting Problems on Graphs

4.1 Introduction

The availability and utility of large numbers of Graphical Processing Units (GPUs)

have enabled parallel computations using extensive multi-threading. Sequential ac-

cess to global memory and contention at the size-limited shared memory have been

main impediments to fully exploiting potential performance in architectures having a

massive number of GPUs. We propose novel memory storage and retrieval techniques

that enable parallel graph computations to overcome the above issues. More specif-

ically, given a graph G = (V,E) and an integer k <= |V |, we provide both storage

techniques and algorithms to count the number of: a) connected subgraphs of size k;

b) k cliques; and c) k independent sets, all of which can be exponential in number.

Our storage technique is based on creating a breadth-first search tree and storing it

along with non-tree edges in a novel way. We also provide an algorithm for counting

triangles in graphs.

The counting problems mentioned above have many uses, including the analysis of

social networks. Counting the number of subgraphs matching given templates is used

in data mining for advertising and fraud detection among others (Zhao et al., 2012).

The counting problems are also relevant for studying molecular networks and finding

molecules with specific substructures. Finding “motifs” i.e., frequent subgraphs in

protein-protein interaction networks also benefit from the problems described above,

and is useful in drug discovery by screening large number of molecules, and also
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chemical synthesis success prediction (Borgelt & Berthold, 2002).

4.2 Related work

Different data structures and modifications, combined with various optimization tech-

niques are considered for efficiently solving problems on graphs. The algorithm de-

scribed in (Katz & Kider, 2008) by Katz and Kider handles graph sizes that are

inherently larger than the DRAM memory available on the GPU by dividing into

smaller blocks. The shared memory cache efficient algorithm to solve transitive clo-

sure and all-pairs shortest path problem on the GPU in (Katz & Kider, 2008) deals

with directed graphs for large data sets. However, it does not explicitly propose

techniques to use the global memory which would be essential to store such data.

Bordino et al. (Bordino et al., 2008) have developed a technique for counting

subgraphs of size 3 and 4 for large streaming graphs. The counting algorithm is

sequential in nature and can be used in many applications.

Vineet et al. (Vineet et al., 2009) study an algorithm for fast minimum spanning

tree for large graphs on the GPU. The authors in (Vineet et al., 2009) focus on

the algorithmic aspect, rather than overcoming the hardware limitations encountered

while using the global memory as the storage.

Buluc et al. (Buluç et al., 2010) look at an alternative way of storing the graphs on

the GPU by dividing the adjacency matrix into smaller blocks. These representations,

although efficient in terms of size of the data structure, might not be ideal for data

stored on the global memory, to be operated by a large number of threads as available

on the GPUs, causing memory accesses to become sequential. Data structures with

redundant information might be more suited to efficiently utilize the larger global

memory by avoiding sequential data accesses.

Harish and Narayanan (Harish & Narayanan, 2007) describe methods to accelerate
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large graph algorithms on the GPU using CUDA. Although the algorithms are imple-

mented in the global memory using compacted adjacency list, there is no discussion

on using available primitives to offset the usage of the slower memory.

Hong et al. (Hong et al., 2011) discuss techniques to improve the work balance

among active threads in the level of warps for maximizing the efficiency for solving

graph algorithms on CUDA. The methods suggested in (Hong et al., 2011) study the

trade-off between achieving load balancing and utilization of the GPU cores. But,

there is a lot of fine-tuning involved and the parameters for the optimum case are

dependent on the structure of the input graph.

Ruetsch and Micikevicius (Ruetsch & Micikevicius, 2009) have proposed tech-

niques to use available primitives in the context of matrix transpose problem. The

results show that tuning the data structures depending on the application can yield

improved bandwidth for the data access from the global memory which is compara-

ble to that of the shared memory. Our partition camping avoidance techniques are

based on similar principles. However, the data structures used in our research and

the computations are entirely different based on the additional information that we

incorporate by studying the breadth-first search tree properties of the input graph.

Yang et al. (Yang et al., 2010b) provide general methods for constructing an

optimization compiler for GPUs. In (Yang et al., 2010b), the authors study and

analyze the basics of identifying the scope for efficient data access from the global

memory in the context of matrix multiplication. The main focus in (Yang et al.,

2010b) is on the automatic transfer of the code by the optimizing compiler using

various other methodologies, including the usage of shared memory and re-organizing

the thread blocks for efficient code generation.

Counting triangles have many applications including the analysis of social net-

works as described in (Tsourakakis et al., 2009) (Becchetti et al., 2008). Simple data

structures, including those storing redundant information are considered to take ad-
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vantage of the available memory access optimizers like using memory coalescing and

avoiding partition camping.

4.3 Counting connected subgraphs

Given a graph G = (V,E) with |V | = n and a value k as input, the problem is to

count the number of connected subgraphs of size k in G. This can be done using

a brute-force approach. The procedure is as follows. The nodes of the graph are

numbered from 0 to n − 1. All possible combinations of size k are generated one

by one from n nodes. For each of the generated combinations, a breadth-first search

(BFS) is performed, and if all the nodes are reachable starting from the first node,

then the subgraph is connected, otherwise it is not. For a complete graph, the total

number of such connected subgraphs is nCk, and this is the number of combinations

that is required to be tested for any graph. The node numbers of the subgraphs are

not stored for space constraints; only the total count for the connected subgraphs is

reported. However, in this approach the total number of combinations to be checked

is huge, and this can be effectively reduced as discussed in the following Section.

4.3.1 Using BFS-tree information

Considering a breadth-first search (BFS) representation of the graph, nodes chosen

in any combination must be in k adjacent levels, otherwise the subgraph containing

the nodes in the combination will not be connected. For example, let k = 3 and a

combination contain the nodes 10, 12, and 14 at levels 4, 5, and 7, respectively in the

BFS-tree. It is possible for nodes 10 and 12 to be connected by an edge since they

are in adjacent levels. For the sake of discussion, assume there is an edge (10, 12) in

the graph. It follows that there cannot be a edge (10, 14), for otherwise the level of

node 14 in the BFS-tree must be 3, 4, or 5. A similar argument can be made for the
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edge (12, 14) and hence the graph induced by those vertices is not connected. From

the above reasoning it is evident that using the graph’s BFS-tree can be an effective

tool in reducing the number of combinations to be tested. We will further examine

this in the following subsections.

4.3.2 BFS-tree node numbering

The nodes in the BFS-tree are numbered in the order they are visited following a

breadth-first search of the graph. Any arbitrary node is chosen as the starting or root

node, and is numbered 0 and belongs to the first level. All nodes that are neighbors

of the first node belong to the second level. Similarly, any unvisited node that is

neighbor of the nodes in the previous level, belong to the next level.

4.3.3 BFS-tree properties and applications

The following are some of the properties of BFS-tree that are useful in the study of

graphs.

1. If two nodes are neighbors in the original graph, their level numbers cannot differ

by more than one. Let vi and vj be adjacent nodes belonging to levels lvi and

lvj respectively in the BFS-tree. So, from this property we have |lvi − lvj | ≤ 1.

2. Any node in a level with a parent numbered α can also be neighbors with nodes

numbered greater than α in the level of α, but not less. Let node vi be the

parent of node vj and ∆j be the set of neighbors of vj. Therefore, for any node

vt where lvi = lvt , vt /∈ ∆j∀t < i.

3. The structure and height of the BFS-tree depends on the choice of the starting

or root node.
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4.3.4 Reducing number of combinations to be tested

In the case of purely random distribution of nodes all possible combinations must be

tested. So, for n nodes and subgraphs of size k, the total number of combinations

to be tested is nCk. If n = 360 and k = 10, for example, the corresponding value is

360C10 ≈ 8.88× 1018.

In the case where a BFS-tree of the graph fits in the shared memory, using its

properties the number of combinations to be tested can be drastically reduced. The

idea here is to test for combinations with nodes in each of the consecutive k levels of

the graph. Let n = 360 and k = 10, and the number of nodes in each level of the

graph be 20. Then the total number of levels L in the graph is 360
20

= 18. Therefore,

the number of consecutive k levels is L − k + 1 = 9. Now, for each of these set of

levels, k nodes are to be chosen. The number of combinations to be tested taking

different number of levels at a time is given as follows:

Considering 1-level i.e., for each of the different levels: 20C10 = 184, 756 ≈ 1.84×

105. Considering 2-levels: (20C1×20C9 + 20C2×20C8 + 20C3×20C7 + 20C4×20C6)×2 +

20C5×20 C5 = 847, 291, 016 ≈ 8.47× 108. Considering for 3-levels: 72, 851, 600, 250 ≈

7.28 × 1010. Similarly, we can calculate the number of combinations taking 4 levels

to 10 levels at a time.

Considering the general case, where there is a total of n nodes divided among L

levels, such that each level consists of n
L

nodes say p. Then, the number of combi-

nations to be checked for k node subgraph is:
∑

pCn1 ×p Cn2 × · · · ×p Cnk
such that

∀ni ≥ 1,∃n1 + n2 + · · ·+ nk = k.

When taking 1-level at a time, the number of combinations to be tested is ≈

1.84×105. But, all available L levels will be tested for these many combinations when

they are considered individually. So, total number of combinations when considering

all the 1-levels is ≈ 1.84× 105×L. Similarly, taking 2-levels at a time, the number of
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combinations to be tested is ≈ 7.28× 1010. But, there are L− 1 such combinations of

consecutive 2-levels. So, the total combinations when considering the contribution of

all the 2-levels is ≈ 8.47×108×(L− 1). There are correspondingly L−2 combinations

for consecutive 3-levels, L − 3 combinations for 4-levels and so on. In general, there

are L−(k−1) such combinations for consecutive k levels. Therefore, the total number

of combinations to be tested is given by: 1.84× 105 × 18 + 8.47× 108 × 17 + 7.28×

1010 × 16 + 1.35× 1012 × 15 + 9.82× 1012 × 14 + 3.5× 1013 × 13 + 6.9× 1013 × 12 +

7.6×1013×11+4.3×1013×10+1.02×1013×9 = 2.8×1015 i.e., about 2, 800 trillion.

The number of combination testing decreases by ≈ 8.87× 1018.

4.3.5 Splitting for larger graphs

In the previous sections, we have seen if the graph fits in the shared memory, we can

use one of the several techniques based on BFS-tree. In this section we show how to

process graphs where the BFS-tree does not fit in the shared memory.

We make the following assumption: Given a graph G, there exists a BFS-tree T ,

such that the graph induced by nodes in any consecutive k levels of T has connected

components of size less than 512 in G. Additionally, we assume the entire graph

can fit in the shared memory of the 30 streaming multiprocessors. It must be noted

that the value 512 corresponds to using S-UTM as the data structure for storing

the graph; using other data structures would give different values. However, the

underlying principles discussed in this section are applicable to splitting for larger

graphs irrespective of the choice of data structures.

In the shared memory of each of the consecutive streaming multiprocessors i, nodes

in level k+i are added and nodes in level i removed. In this case, if the average number

of nodes in each of the levels is lavg, then the total number of nodes that can fit in

the shared memory is 512 + lavg × 29, where lavg ≤ 512. This is an improvement over

the schemes presented in Section 3.3 wherein we could process at most 512 nodes
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Figure 4.1: Worst Case BFS-tree for multiple streaming multiprocessors

even when using the shared memory on all the streaming multiprocessors. In the

worst case, if the first 29 levels of T has single nodes, then only 1 new node can be

brought in while storing the next consecutive k levels, giving a maximum size graph

of 512 + 29 = 541 nodes. An example BFS-tree of the worst case graph is shown in

Fig. 4.1.

Now, let us assume there exists consecutive k levels of T that do not fit in the

shared memory. In this case finding connected components in the graph induced

by the nodes in the given k levels might be helpful. As nodes in separate connected

components cannot be part of connected subgraphs, calculations can be done on them

separately. If there are more than one connected components where each has less than

512 nodes, then calculations can proceed in the following manner; else we have to use

the global memory to store them. If any of the components has less than k nodes,
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then those can be excluded from the calculations. The other components can be

kept in the shared memory of a streaming multiprocessor separately, or with other

connected components provided the total number of nodes in all does not exceed 512.

Now, all possible combinations of size k can be tested from among the nodes of each

of the connected components separately.

Algorithm 1: Counting subgraphs of size k using all streaming multiprocessors
by splitting G horizontally using T

Input: BFS-tree T of graph G
Output: Total count of connected subgraphs of size k
begin
{Lk} ← divIntoKLevelSets(T);
{Lk}, {M} ← resetLevlsModls({Lk}, {M});
TotalCount← 0;
while there are sets of levels marked as new do

if selected set is the last one then
while levels available in the set do

if there are k levels in the memory then
Clear memory, mark streaming multiprocessor available;

else
curLvl← nextAvailableLvl;
TotalCount← TotalCount +
testCon(GenNxtComb((curLvl)));
while there are previous levels do

curLvl← curLvl ∪ prevLvls;
TotalCount← TotalCount

+ testCon(GenNxtComb(curLvl));

end

end

end

else
TotalCount← TotalCount + testCon(GenNxtComb(fstLvl));
TotalCount← TotalCount + testCon(GenNxtComb((allKLvls)));

end

end

end

Algorithm 1 takes T as input, and checks for connected subgraphs. The algorithm

makes use of all available 30 streaming multiprocessors in the GPU by dividing the
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work among them. The number of sets of k consecutive levels if there are L levels in

T is Q = L−k+1. If Q > 30, the remaining sets are brought from the global memory

after the current round of operations are completed. With this approach graphs that

are stored even in external memories can be processed.

Overview of Algorithm 1: T is divided into sets of k consecutive levels and each is

processed by a streaming multiprocessor. The beginning level in the set is processed

first, and if it contains more than k nodes, then subgraphs of size k are checked

for connectedness from among the nodes in that level. Then all the nodes in the

k levels are considered together, and tested for combinations by the function Gen-

NxtComb(Nodes) where each combination contains at least one node from the begin-

ning level and one from the rest of the levels to avoid redundant checking. The above

procedure is done for all but the last set of k levels. For the last set, each new level is

first processed separately and then combined with all previous levels and checked for

combinations provided there is at least one node from both the sets of previous levels

and the new level. The function divIntoKLevelSets(T) divides T into sets of consec-

utive k levels, resetLevlsSMs(Levels, streaming multiprocessors) resets the streaming

multiprocessors marking all of them as available and marks all the k -level sets as

new, and ready to be processed. The function testCon(Comb) checks if the subgraph

induced by the nodes in Comb is connected or not.

4.3.6 Storing Graphs on GPUs

Adjacency data of the input graph required for computation is stored on the GPU.

Memory hierarchy of the GPU consists of global memory, shared memory, constant

memory, texture memory and registers. The size of each of the above mentioned types

of memory varies according to the system, and a comparison is given in Table 4.1.

The global memory is the largest and also has the highest access latency. The on-chip

shared memory, which is further divided into 16 (or 32) banks, has significantly faster
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access compared to the global memory. But, when data is accessed from the same

bank, significant performance loss occurs due to bank conflicts (the only exception

being the case where all the threads access the same element leading to a broadcast.)

Model Cores Global Sh. # of Comp.

# Mem. Mem. Mem. Cap.

(GB) (KB) Banks

C1060 240 4 16 16 1.3

C2050 448 3 48 32 2.0

C2070 448 6 48 32 2.0

Table 4.1: Architecture Comparison of Different Nvidia GPUs

For a graph G = (V,E) with |V | = n, the size of adjacency matrix is n2 bits,

where each edge is stored using a single bit. Now, to fit the graph in memory, the

size required must be less than or equal to the space available. Therefore, for storing

graphs using adjacency matrix data, the following equation must be satisfied

n2 ≤ Smem (4.1)

where, Smem is the size of the memory in bits.

For undirected graphs, values (i, j) and (j, i) are same. So, storing only the Upper

Triangular Matrix (UTM) of the adjacency matrix is enough. Therefore, in this case,

n× (n+ 1)

2
≤ Smem (4.2)

As all the values of (i, j) = 0 when i = j, using the Strictly UTM representation

(S-UTM) (i.e. without the data on the diagonal), size of the largest graph increases

by 1. Using Equation (4.1) and Equation (4.2), the largest graph that can be kept

in the shared memory and global memory for the different systems is given in Table

4.2.
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Model Shared Shared Global Global

# Mem. Mem. Mem. Mem.

Adj Mat S-UTM Adj. Mat S-UTM

C1060 362 512 185, 363 262, 144

C2050 627 887 160, 529 227, 023

C2070 627 887 227, 023 321, 060

Table 4.2: Maximum size of graphs on different GPUs

4.3.7 Handling Larger Graphs

For graphs that fit in the shared memory, algorithms described in (Chatterjee et al.,

2012) can be used to do the computations. In this Section we consider graphs of larger

sizes. The following assumptions can be made for the properties of such graphs:

� For a given graph G = (V,E), the adjacency information for G does not fit in

the shared memory i.e.,

SG ≥ SSM (4.3)

where, SG is the size of G in bits using the most efficient data structure, and

SSM is the size of the shared memory in bits.

� G can be preprocessed on the CPU and split into chunks taking into consider-

ation consecutive levels of BFS-tree T of G i.e.,

G⇒ G1 ∪G2 ∪ · · · ∪Gi (4.4)

� Let G = (V,E), where V = {v1, v2, · · · , vn}. Starting with node vi, G can be

split into subgraphs, where G = Gi1 ∪Gi2 ∪ · · · ∪Gij. Let, S = {s1, s2, · · · , sn},

where

si =

αi∑
m=1

Cim (4.5)
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where, Cim = 1 if SGim
> SSM , else Cim = 0, and αi is the number of splits

possible starting with node vi. Therefore, to ensure the minimum number of

chunks with size greater than the shared memory is chosen si is selected, where

si = Min{S}, and the output of the preprocessing is Gi1, Gi2, · · · , Gim.

� To ensure that the fragmentation is the least i.e., minimum wastage of shared

memory (for the chunks that actually fit in the shared memory), the following

condition must be satisfied

Min{SSM × P −
∑αi

m=1 SGim
, ∀SGim

≤ SSM}

where, P is the number of streaming multiprocessors or modules in the Nvidia

system concerned.

Algorithm 2: Splitting G on the CPU

Input: Graph G
Output: Graphs G1,G2,· · · , Gi,
where G = G1 ∪G2 ∪ · · · ∪Gi

begin
{CCi} ← findConnectedComponents{G};
foreach CCi do

while CCi size ≥ SSM & vi ∈ CCi(V ), where ∃ vi /∈ processed do
{Ti} ← createBFStree {CCi, vi};
{Li} ← divIntoConsLevelSets(Ti);
if Li size ≤ SSM∀Li then

Output ← L1, L2, · · · , Li;
Mark CCi processed;
break;

end
Mark vi processed;

end
if CCi /∈ processed then

Output ← CCi;
end

end

end

Algorithm 2 splits input graphG into sets of consecutive level nodes using Breadth-

first search property and considering each connected component ofG separately. After
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splitting the graph using Algorithm 2, certain sets of nodes or chunks might not fit

in the shared memory. The adjacency information for the nodes in such sets is kept

in the global memory. Therefore, now the threads in the GPU access data from both

shared and global memory.

Due to the difference in access latency of global and shared memory, threads

operating on data stored in the global memory might require significantly more time to

do the computations. Therefore, if the computations on the data stored in the shared

memory and the global memory are performed sequentially, it would take more time

than an intelligent scheduling of the computations on the streaming multiprocessors

so that, at any instant of time during execution, active warps operate on adjacency

data stored in both shared and global memory. However, it might be the case for

specific instances of graphs, where none of the sets of nodes or chunks fit in the shared

memory, and all the sets are in the global memory. In that case, operations on the

data can be performed accessing the global memory efficiently taking advantage of

memory coalescing and avoiding partition camping.

The above idea can be illustrated using the following example. Let the total

number of sets of data to be computed on be ψ. Also, let the number of sets of data

that fit in the shared memory be given by ψs and that in the global memory be ψg,

where ψs + ψg = ψ. Suppose it takes on an average τs units of time to operate on a

set of data stored in shared memory and τg be the corresponding value for data in

global memory. If ψs ≤ 30 and the operations on the data stored in shared memory

and that in the global memory are performed one after the other as mentioned above,

the total time taken for execution, is given by τs + ψg × τg, since the data in the

shared memory is accessed in parallel and that in the global memory is accessed in a

sequential manner. Therefore, for the general case, the total time taken to compute
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on all the sets of data is given by the following equation:

τt = µ× τs + ψg × τg (4.6)

where, τt is the total time and µ =
⌈
ψs

30

⌉
. An efficient scheduling of the active warps

would minimize the value given by Equation (4.6).

4.3.8 Scheduling threads to operate on data chunks

After the given graph G is split into chunks by using Algorithm 2, the data corre-

sponding to these are stored either in the shared or global memory, as required. Now,

blocks of threads executing on the streaming multi-processors are scheduled to oper-

ate on the data. The objective is to minimize the total time of execution as discussed

in the previous Section. This can be done by scheduling the operation on the data

for each of the chunks on the available GPU streaming multiprocessors, so that the

time required is minimum. This problem is equivalent to the Makespan Scheduling

problem, and is NP-hard (Grabowski & Wodecki, 2004).

The Makespan Scheduling problem is defined as follows: Given Θ machines for

scheduling, indexed by the set M = {1, · · · ,Θ}, and η jobs, indexed by the set J =

{1, · · · , η}, where job j takes pi,j units of time if scheduled on machine i, and Ji is

the set of jobs scheduled on machine i. Then li =
∑

j∈Ji pi,j is the load of machine i.

The maximum load lmax = maxi∈M li is called the makespan of the schedule.

In the context of the computations on the GPU, the machines are the modules i.e.,

streaming multiprocessors, and all modules are identical, and the processing time of

the jobs are the size of the chunks. Therefore, the value of pi,j and pk,j are same. But,

the problem is still NP-hard even if there are only two identical machines, which is

much simpler than the problem at hand with 30 identical streaming multiprocessors.

An example of the Makespan Scheduling for the given problem is illustrated us-
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Figure 4.2: Executing chunks on GPU cores: Makespan scheduling

ing the diagram in Fig. 4.2. Here, Mi’s represent the machines i.e., the streaming

multiprocessors (just 4 are shown for simplicity), and the rectangles numbered from

1 through 7 represent the jobs i.e., computations to be performed on the chunks.

Threads in each streaming multiprocessor operates on the chunks and the time re-

quired is proportional to the size of the chunks. In this case, while chunks 1, 5 and 7

are computed sequentially by SM M1, SM M2 operates on chunk 2, SM M3 operates

on chunks 3 and 6 and SM M4 operates on chunk 4, all in parallel. However, as men-

tioned earlier, assigning chunks to the streaming multiprocessors so as to minimize

the maximum makespan is NP-hard.

4.3.9 Results

Experiments are performed using both CPU and GPU. The CPU consists of quad-

core 2.27 GHz Intel Xeon processors, with 12 GB memory. The GPU used for the

experiments is Nvidia C1060 card, with 4 GB device memory and 16 KB shared mem-

ory per multiprocessor . The problem of finding the number of connected subgraphs

of size k from a graph of size n is solved on the GPU for different values of n and

k by storing the adjacency information of the graph in both the shared memory and

the global memory, while using both a single streaming multiprocessor and also all
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available streaming multiprocessors. The number of threads in each of the streaming

multiprocessors considered is limited to 32, which is equal to the Warp-size (NVIDIA

Corporation, 2010). The data set under consideration is relatively small, comprising

of graphs consisting of approximately 300 nodes. Therefore, we do not need too many

threads to work on it. If we use more than 32 threads per block, then the number of

blocks would decrease and many of the streaming multiprocessors out of the available

30 would go unused. Also, since there are 8 processor cores per streaming multipro-

cessor, and threads are executed in warps of size 32, keeping the number of threads

at 32 per thread block also helps minimize the context switching overhead that may

exist.

Figure 4.3: Evaluating all combinations for k = 3 with 32 threads in each streaming
multiprocessor (SM), for data stored on both shared and global memory

Fig. 4.3 plots the timings for evaluating all the combinations for the graph kept on

both the shared and global memory while using both single and all available streaming
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multiprocessors. The plots are as expected, with the timings for the shared memory

better than those compared to the global memory. Also, by using all the streaming

multiprocessors as compared to using just a single streaming multiprocessor, more

threads are available which leads to a better performance.

Figure 4.4: Evaluating reduced number of combinations using BFS-tree information
for k = 3 with 32 threads in each streaming multiprocessor (SM), for data stored on
both shared and global memory

Fig. 4.4 plots the timings for the graph kept on both the shared and global

memory considering the BFS-tree topology information while using both a single

streaming multiprocessor and all the available streaming multiprocessors. The num-

ber of computations and resulting computation times are greatly reduced in this case

as compared to the previous case (Fig. 4.3) where all the combinations of the nodes

are tested.

Fig. 4.5 plots the timings for the graph kept on the shared memory, using all
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available streaming multiprocessors, and evaluating both all and reduced number of

combinations thereby comparing the previous two cases. It is clear from the Figs.

4.3 − 4.5 that the calculations done using the BFS-tree topology information while

keeping the adjacency information on the shared memory and utilizing all available

streaming multiprocessors using a large number of threads is the most efficient ap-

proach.
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Figure 4.5: Evaluating all combinations and reduced combinations for k = 4 with 32
threads in each of the streaming multiprocessors (SMs), for data stored on shared
memory

The connected subgraph counting problem is also solved on the CPU for subgraphs

of size 3. The CPU implementation uses the same data structures and computation

techniques as those employed on the GPU. However, the CPU uses a single thread for

execution of the program compared to a large number of threads on the GPU. One of

the major techniques suggested in the counting problems is to consider the breadth-

first search tree information to exclude unnecessary computations. The graph data
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Figure 4.6: Comparing timings between CPU and GPU for k = 3 using BFS-tree
information

that is finally used for computation is rearranged according to the BFS-tree levels.

Therefore, due to the reordering of the data, the potential for cache line optimization

also increases. Hence, the proposed techniques are not only useful for the GPU but

also help in optimizing execution on the CPU too. Fig. 4.6 provides a comparison of

the timings for the implementation on the CPU and GPU. The plots, using a base

10 logarithmic scale for the y-axis, in Fig. 4.6 show the speedup gained on the GPU

as compared to the CPU while varying the number of threads on the GPU.

Experiments were also performed using the data available on the Stanford Net-

work Analysis Project (Leskovec et al., 2009). Using reasonably larger graphs of size

ranging from 5, 000 to 25, 000 nodes, it can be observed, as shown in Fig. 4.7, that

the computation on the GPU attains a 10 times speedup as compared to that on the

CPU. In this case, the graph data is stored on the global memory and the graphs are

sparse thereby having less number of combinations to be checked. This proves that
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Figure 4.7: Comparing timings for larger graphs

the proposed solution is applicable for large graph instances too, which is essential

for analysis of social networks and other real world datasets.
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Figure 4.8: CPU and GPU timings for larger values of k
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In the previous experiments, only subgraphs of size 3 and 4 are considered. For

larger values of k, the total number of combinations to be checked for specific prop-

erties in the graphs induced by the nodes in consideration would increase, provided

k ≤ nk/2, where nk is the number of nodes in any set of consecutive k-levels. Since

more computation would be required for larger values of k, the speedup is better on

the GPU as compared to that on the CPU, as shown in Fig. 4.8.

4.4 Counting cliques and independent sets

Using similar approaches as adapted in the connectivity testing algorithm, graph

problems like finding total number of cliques of size k and total number of independent

sets of size k can also be solved. For finding the total number of cliques of size k, only

nodes in adjacent levels T needs to be considered, as given in Algorithm 3.

Algorithm 3: Counting number of k–cliques

Input: BFS-tree T of graph G
Output: Total count of cliques of size k
begin
{Li} ← divIntoLevels(T);
{Li} ← markLevelsNew({Li});
TotalCount← 0;
TotalLevels← 0;
while Li.Status ∈ {Li} = New do

curLvl← Li;
TotalCount← TotalCount + testClique(GenNxtComb (curLvl));
TotalLevels+ +;
if TotalLevels > 1 then

curLvl← Li ∪ Li−1;
TotalCount← TotalCount + testClique(GenNxtComb

(curLvl));

end

end

end

For finding total number of independent sets in G, it’s complement say G′ is taken,
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and then a BFS is performed on G′ to get T ′, as given in Algorithm 3. Finding cliques

of size k in T ′ is equivalent to finding independent sets of size k in G, as given in

Algorithm 4.

Algorithm 4: Counting independent sets of size k

Input: Graph G(V,E)
Output: Total count of independent sets of size k
begin
{G′} ← FindComplement(G);
{T ′} ← BFS-TreeGenerate(G′);
TotalCount← Algorithm3(T ′);

end

4.5 Generating combinations for testing in graphs

The problem we are trying to solve is to verify certain properties in subgraphs of

a specific size k for a given graph G = (V,E), where |V | = n. Examples of such

properties include connectivity, formation of cliques and formation of independent

sets. To solve the above mentioned problem, sets of k nodes from n available nodes

are to be chosen, and then verified for the required property. This leads to generation

of combinations of all possible sets of nodes to check for the correct result. Following

are some of the approaches that can be adopted to achieve the desired outcome.

4.5.1 Sequential approach with pre-computed combinations

A basic method to test for all combinations is to generate the same in the pre-

processing stage and store them. During the actual computation, the combinations

can be retrieved and tested for the desired property. The major drawback with

this approach is the amount of memory required just to store the pre-computed

combinations. For a graph with n nodes and for subgraphs of size k, there would be

nCk tests in total. Now, each of the combinations consist of k values, each of which
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required log(n) bits for storage. Therefore, the total storage required for such an

instance is nCk × k × log(n) bits.

4.5.2 Sequential approach with combinations generated on the fly

The previous approach can be improved by not storing the combinations. During the

testing phase, the combinations can be generated one-by-one sequentially according

to the lexicographical order (Mifsud, 1963). This method requires storing the previous

combination to generate the next one. Therefore, the space required for storage is

2 × k × log(n) bits. But this is a sequential approach and dividing work among

multiple available threads cannot be done efficiently using this technique.

4.5.3 Näıve division of combination testing among available threads

A näıve approach that would help divide the work among threads is to generate

combinations based on the starting numbers, and split the work according to thread

id’s matching node numbers. There would be n− k + 1 such starting combinations,

and hence the same number of threads are required. In such a case the number

of threads is in the order of n. If there are more number of threads available, then

combinations can be generated with slight modifications, say considering first 2 nodes

different for each thread thereby utilizing n2 threads. However, this approach leads

to uneven distribution of work among threads, with threads having id numbers in the

beginning doing more work than the ones with lager id numbers.

4.5.4 Equal work division among all available threads

The easiest way to ensure all threads do same amount of work is by calculating the

total number of tests possible and then dividing the work among all available threads.

By taking this approach all threads are now responsible for an equal amount of work

(some threads might have to do a single test more if the number of threads does not
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divide the total work evenly). Now, the naive approach to solving the problem using

the above technique is to generate all the possible combinations to test and store them

in a data structure, and let the threads access the specific combinations for testing.

However, this approach would require a lot of space to store all the combinations in

the first place as discussed before.

Therefore, the ideal approach would be able to generate the combinations during

runtime and perform the testing. Since, threads would require random lexicographical

combinations to work on, generating the same efficiently is important. Generating a

specific combination using the index in the lexicographic order can be done efficiently

(Buckles & Lybanon, 1977). There exists a mapping from natural numbers i.e., indices

in the lexicographic order to combinations, and this methodology is also known as

combinadics (McCaffrey, J., 2004).

Using combinadics, lexicographic ordering for any index can be found from a single

set of elements (which can be node numbers in the case of graph problems.) However,

while using BFS-tree information for testing reduced number of combinations, there

are additional constraints with respect to the number of sets of elements and number

of items chosen from each. Generating combinations for the sets of levels in the

BFS-tree involves restrictions like including at least one node from the first level

in the chosen set to avoid redundant checking, except in the case of the last set of

levels. A näıve method to use combinadics would be to calculate the combination

considering all nodes from the given set of levels without restrictions, and then make

sure at least one node belongs to the first level, else continue generating the next

valid combination.
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4.6 Counting Triangles in graphs

Finding and counting triangles in graphs is a fundamental problem, and can be solved

using GPUs. It is a common graph-mining task, as the number of triangles is closely

connected with estimating the clustering coefficients and the transitivity ratio of the

graph. Counting the number of triangles has other applications too, such as spam

detection (Becchetti et al., 2008). In the context of social networks, triangles have a

natural interpretation: friends of friends tend to be friends, and this can be used in

potential friend suggestion, as shown in Fig. 4.9. Counting triangles in large graphs

is described in (Becchetti et al., 2008).

A

B

C

?

Figure 4.9: Triangles in Online Social Networks

A triangle ∆ = (V∆, E∆) of a graph G = (V,E) is a three node subgraph with V∆

= {u, v, w} ⊆ V and E∆ = {u, v}, {v, w}, {w, u} ⊆ E. Let ϑ(G) denote the number

of triangles in graph G. It can be noted that an n-clique has exactly nC3 triangles

i.e., ϑ(n-clique) = nC3.

Operations on graphs for finding triangles can be of two types: a) counting : finding

the number of triangles, and b) listing : identifying the nodes forming the triangle,

and reporting the same. In this section we discuss the algorithm and implementation
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methodologies for counting triangles in graphs. Optimization techniques that help

in increasing the efficiency are discussed in the later Sections. Algorithm 5 finds

triangles in a given graph G. It can be noted that the function GenNxtComb() finds

combinations of 3 nodes for further testing. When GenNxtComb() is called with

the parameter bothLvls, it returns combinations containing 3 nodes from the set

of consecutive levels, out of which at least 1 is from the firstLvl. This restriction

eliminates duplicate checking for any combination of nodes. Fig. 4.10 shows the

grouping of adjacent levels of a sample BFS-tree required for counting the number of

triangles.

Algorithm 5: Counting number of triangles in G

Input: BFS-tree T of graph G
Output: Total number of triangles in G
begin
{Li} ← divIntoConsecutiveLvlSets(T);
TotalCount← 0;
foreach Li do

TotalCount← TotalCount + testTriangle(GenNxtComb(firstLvl));
TotalCount← TotalCount + testTriangle(GenNxtComb(bothLvls));
if Li is the last set then

TotalCount← TotalCount +
testTriangle(GenNxtComb((SecondLvl)));

end

end
Output ← TotalCount;

end

Apart from counting the number of triangles that exist in a given graph, Algorithm

5 can also check if a graph is triangle-free. A triangle-free graph is an undirected graph

in which no three vertices form a triangle of edges. Triangle-free graphs are equivalent

to graphs with clique number ≤ 2, or graphs with girth ≥ 4.
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Figure 4.10: BFS-tree level grouping for finding triangles

4.6.1 Avoiding Partition Camping While Accessing Data for Graph Prob-

lems

Partition camping takes place due to memory access patterns among different active

warps. For solving the counting problem on triangles as given in Algorithm 5, differ-

ent sets of levels are computed upon by different warps being executed on available

streaming multiprocessors. Due to the pattern of the data being accessed, adjacent

sets of levels have some shared levels (1 in the case of counting triangles, k-cliques,

k-independent sets and k - 1 in the case of connected subgraphs of size k.) There-

fore, during computation, due to the amount of shared data, threads from different

active warps might need to access the same information leading to accessing the same

partition in the global memory, thereby causing partition camping.

The analysis of the issue can be illustrated using the example of the BFS-tree given

in Fig. 4.10. Now, for finding triangles, as given in the Algorithm 5, different warps

would work on different adjacent level sets (ALS) at the same time. Let us assume,

warp Wi operates on a set of levels given by ALSi and is executed on the streaming

multiprocessor SMi. For the graph in Fig. 4.10, let us consider the second and the
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third sets of levels. When threads operating on these sets from different warps access

the data related to the common nodes (numbered 4 to 8) simultaneously, partition

camping occurs. The potential for such partition camping results from using a single

adjacency matrix for the entire graph as the data structure, as shown in Fig. 4.11.

It must be noted that the same problem would arise by using other data structures

too, provided the entire data is stored together.

Keeping relevant data for the adjacent level sets separately in different partitions

solves the above issue. For example, the data in the regions of intersection i.e.,

between data for ALS1 and ALS2, and also between ALS2 and ALS3 would have

to be duplicated. Also, the design would be efficient if the data for a specific set of

levels do not span across partitions. Therefore, the width of the sets of adjacency

information data must be a maximum of 256-bytes. An arrangement of the data using

the above mentioned idea is shown in Fig. 4.12.

Partition1
(256 bytes)

Partition2 Partitioni
(256 bytes) (256 bytes)

Global Memory

Adjacency Matrix 

(Other data structures 

can also be used)

Data for ALS3

Data for ALS2

Data 

for 

ALS1

Figure 4.11: Data structure with potential for partition camping
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Adjacency data split 

for consecutive 

levels

Figure 4.12: Storing redundant information for avoiding partition camping

4.7 Experimental results

The triangle counting problem as described in Algorithm 5 is implemented using both

CPU and GPU. The CPU consists of quad-core 2.27 GHz Intel Xeon processors, with

12 GB of memory. The GPU used for the experiments is Nvidia C1060 card, with

4GB of memory. The CPU implementation is performed using a single thread.

Triangles are counted in graphs of sizes ranging from 200 to 2000 nodes. The

timings for the CPU and GPU implementation are plotted and compared in Fig.

4.13. For implementing triangle counting using Algorithm 5, a BFS-tree for the input

graph is required which is generated using Algorithm 2. Therefore, the timings for

counting triangles include the executing time for both Algorithms 2 and 5.

For smaller size graphs, due to overhead in transferring data from the host i.e.,

the CPU memory to the device i.e., the GPU memory, the timings are almost similar.

But, as can be observed from the plots in Fig. 4.13, the performance of the GPU

increases with the number of nodes in the graph. For 1000 nodes or more, there is

5–6 times improvement in the timings of the GPU as compared to the CPU.

The triangle counting algorithm is then implemented on the GPU using modified

data structures to incorporate the usage of available primitives like memory access
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Figure 4.13: Comparing timings for counting triangles using CPU and GPU

coalescing and avoiding partition camping, as discussed in the earlier Sections. The

timings for the implementation using näıve data structures and modified ones with

redundant data are plotted for comparison in Fig. 4.14. The experiments are done

on input graphs of size ranging from 200 to 2000 nodes.

As can be observed from the plots in Fig. 4.14, the performance of the GPU

increases when making use of the available primitives and approximately 6–8 % per-

formance gain is achieved over the näıve implementation. Therefore, the triangle

counting problem achieves high speed-up from being solved on the GPU as compared

to the CPU, and additionally the efficiency of the näıve implementation is further

improved by using the available memory access primitives for the global memory

effectively.
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Figure 4.14: Counting triangles using global memory with memory access coalescing
and avoiding partition camping

4.8 Summary

In this chapter, algorithms to solve several graph problems on a parallel GPU ar-

chitecture are proposed. The major focus is utilizing faster shared memory of the

GPUs and devising data structures to represent graphs in these small memory mod-

ules. Methods to generate combinations to efficiently divide the work among threads

belonging to both single and multiple streaming multiprocessors are developed. In

addition, techniques to reduce computations by using breadth-first search tree and

exploiting topology information are discussed.

For studying the properties of graphs, generating combinations of nodes is re-

quired. The overhead of combination generation can be significant, both from the

required time and space perspective. Therefore, techniques to efficiently generate

combinations of nodes to be tested on graphs have been discussed in this paper.
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An algorithm for triangle counting in a given graph utilizing all the above men-

tioned primitives is analyzed and implemented, and the results are reported. As

evident from the experimental results, by properly utilizing the above methodologies,

access time for retrieving data from the global memory is effectively reduced and

improves the performance by a significant amount as compared to the näıve imple-

mentation. The triangle counting algorithm is also implemented on the CPU, and

comparative analysis of the results are done with those of the GPU. Certain sec-

tions of this chapter are adapted from our research papers (Chatterjee et al., 2013a)

(Chatterjee et al., 2013b).
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Chapter 5

Analysis on large data sets

Studying the properties of Online Social Networks (OSNs) and other real world graphs

have gained importance due to the large amount of information available from them.

These large graphs contain data that can be analyzed and effectively used in adver-

tising, security and improving the overall experience of the users of these networks.

However, the analysis of these graphs for studying specific properties requires combi-

natorially explosive number of computations. Compute Unified Device Architecture

(CUDA) is a programming model available from Nvidia for solving general-purpose

problems using the massively parallel and highly multi-threaded Graphics Processing

Units (GPUs). Therefore, using GPUs to solve these types of problems is appropriate.

In addition, due to the properties of real-world data, the graphs being considered are

sparse and have irregular data dependencies. Hence, using efficient techniques to store

the graph data for initial preprocessing and final computation by taking advantage

of heterogeneous CPU-GPU systems can address these issues.

In this chapter, we are interested in studying different properties of these real-

world entities that transform into the following graph problems: a) identifying a

missing edge, which when added would result in maximum increase in the number of

triangles, b) identifying an existing edge whose removal would result in the maximum

decrease in the number of triangles, c) identifying an existing edge whose removal

would increase the number of connected components in the graph. In this chapter,

we develop and implement algorithms to solve the above problems using both CPU

and GPU. Specifically, given a graph G = (V,E), we provide algorithms for the
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following: a) find (vi, vj) /∈ E, such that ∆f − ∆c is maximized, where ∆f and ∆c

are the number of triangles in Gm = (V,E ∪ (vi, vj)) and G, respectively, b) find a

(vi, vj) ∈ E, such that ∆c − ∆f is maximized, where ∆f and ∆c are the number of

triangles in Gm = (V,E \ (vi, vj)) and G = (V,E), respectively, c) find a (vi, vj) ∈

E, such that φm > φc, where φm and φc are the number of connected components in

Gm = (V,E \ (vi, vj)) and G = (V,E), respectively. We implement the algorithms

using a GPU and achieve a 10 × speedup as compared to a sequential implementation.

Thereafter, we design a heuristic for finding an edge whose existence would result in

the maximum increase in the number of triangles. The heuristic is implemented and

the results are reported and compared to those of the regular algorithm on the GPU.

5.1 Introduction

The recent growth in Online Social Networks (OSNs) and the existence of other large

graphs have provided a plethora of exciting information (Twitter Statistics, 2014)

(Facebook Statistics, 2014) (LinkedIn Press Center, 2014). Many new questions arise

from psychological and anthropological point of view, where valuable insight can be

gained from analyzing the properties of these graphs. Advertising and security can

also be improved from the study of the same (Yu et al., 2006). Study of the following

characteristics in the graphs representing OSNs can be useful: a) identifying missing

connections whose future existence would result in maximum increase in 3-way mutual

relationships, b) identifying existing connections whose elimination would result in

maximum decrease in 3-way mutual relationships, c) identifying existing connections

whose elimination would increase the number of different groups of people. The above

problems require testing for different combinations of entities and are computationally

expensive. For example, for an OSN with n users, testing for triangles among the users

using a näıve algorithm requires n3 comparisons; for large graphs, this would result

82



in a huge amount of computation. Therefore, in this chapter we use techniques based

on breadth-first search to reduce the solution space and perform faster calculations.

Dividing the data based on the breadth-first search tree properties also addresses

the issue of irregular data dependencies by grouping related data together. Also,

the easy availability of GPUs and programming models like CUDA to solve general

purpose problems using the same has steered research in this direction (NVIDIA

Corporation, 2010). In this chapter, we design algorithms to solve the above problems

and implement them using heterogeneous CPU-GPU systems. Since the problems

discussed above requires huge amount of computation, we also propose a heuristic

to provide an approximate solution to the same. Instead of performing computation

on the entire data, consisting of millions of nodes for real-world graphs, the heuristic

takes into account some basic properties of the graph and reduces the problem space

by a significant amount thereby providing a much faster solution.

5.2 Related work

Previous work has been done on analyzing OSNs and also computing on large data

using GPUs. There has been research done on identifying clusters in social and

information networks. Results show well-connected clusters or communities are small

in size and have few connections to other entities in the network (Leskovec et al.,

2009). In this chapter we have independently shown similar properties in graphs by

processing the breadth-first search tree of the same. The different levels of the BFS

tree follow patterns that are similar to those of the clusters or communities mentioned

above, and are relevant for performing the analysis of the graphs using GPUs.

Advertising and marketing can benefit from recommendations provided by con-

nections in social networks (Leskovec et al., 2007). The problems discussed in this

chapter help identify possible connections between entities that would result in larger
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clusters and a larger target domain and are therefore relevant for analysis of OSNs

and other large graphs.

Counting triangles in massive graphs with the focus on local triangle counting has

been addressed in previous research (Becchetti et al., 2008); the algorithms provide

an estimate of the number of triangles associated with each node in a given graph and

spamming activity in graphs can be detected based on the extracted information. In

this chapter, we discuss techniques to keep count of the number of triangles taking

into account the dynamic nature of graphs where edges can be added or deleted over

time, without performing the entire counting calculations again.

Our previous work deals with counting triangles in graphs (Chatterjee et al.,

2013a). The research focus is on identifying techniques to efficiently store the data

to be computed on and provide algorithms to perform the computations effectively

(Chatterjee et al., 2013b). In this chapter, we introduce algorithms that are suited to

the properties of large real-world data sets; our analysis shows techniques to effectively

leverage the GPUs for computation on such data.

Work has also been done on counting triangles in massive graphs. Techniques to

speed-up the counting has been studied in detail (Tsourakakis et al., 2009). Counting

triangles using the MapReduce framework has also been analyzed (Suri & Vassilvit-

skii, 2011).

Properties of OSNs have been studied, and interesting observations have been

made on real-world data (Mislove et al., 2007) (Viswanath et al., 2009) (Mislove et al.,

2010). However, instead of simply identifying existing properties, in this chapter

we focus on studying the behavior of the network when the graph changes, which

resembles more closely the real-world scenario and behavior of large graphs.
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5.3 Triangle completion problem

The growth of OSNs is usually measured by the number of users i.e., the number of

nodes from the graph perspective. OSNs follow the power-law graph, with a high

probability of a new node forming an edge with a node of large degree (Benevenuto

et al., 2009). Finding triangles in graphs has many applications (Tsourakakis et al.,

2009) (Chu & Cheng, 2011). The näıve approach requires generating all the possible

combinations of nodes, and for each of the combinations test whether the nodes form

a triangle or not. A triangle ∆ = (V∆, E∆) of a graph G = (V,E) is a three node

subgraph with V∆ = {u, v, w} ⊆ V and E∆ = {u, v}, {v, w}, {w, u} ⊆ E. In this

section we study the triangle completion problem i.e., finding (vi, vj) /∈ E, such that

if ∃(vi, vj), ∆f −∆c is maximized, where ∆f and and ∆c are the counts of number of

triangles in Gm = (V,E ∪ (vi, vj)) and G, respectively

Social networks represent interaction among entities; groups can exist where enti-

ties are connected to one another directly or via others. “Close” groups exist where all

the entities involved are connected to each other directly. Identification and creation

of “close” groups have significant bearing in many real life scenarios: improve rela-

tions, expand business, influence political views etc. Therefore, studying the triangle

completion problem is relevant. Let us consider the sample partial OSN graph shown

in Fig. 5.1. In this case, connecting ‘E’ and ‘G’ results in 2 additional triangles,

whereas connection ‘F’ and ‘G’ results in the maximum increase in the number of

triangles by 6. Hence, we need an algorithm to find out the edge e = (F,G) for the

example graph shown in Fig. 5.1.

To solve this problem, we first need to find the number of triangles in the given

graph G. Then we can proceed by choosing different edges that do not belong to G,

and recalculate the total number of triangles in the modified graph Gm. Therefore,

we need an algorithm for counting the number of triangles in the graph. As discussed
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Figure 5.1: Triangle Completion Problem in OSNs

in our previous work (Chatterjee et al., 2013a), there are different techniques to do

this. The brute-force method to do this generates all possible combinations of nodes,

and tests for each of the combinations whether they form a triangle or not. This

however tests for a lot of combinations that have no chance of being part of triangles.

To reduce the search space, a breadth-first search (BFS) tree T of the graph G can be

used. Now, according to the properties of BFS tree, nodes that form triangles must

be in adjacent levels of T . Algorithm 5, described in Chapter 4 counts the number of

triangles in graph G using T (Chatterjee et al., 2013a).

Now, the problem is to find an edge whose addition would increase the number

of triangles by the largest number. This can be done by taking one of the following

approaches:

I. Brute-force method: In this approach combinations are generated using two

nodes that form the edge, and one other node from the remaining nodes. This would

require testing for another nC2 combinations, where n is the total number of nodes

in G.

II. Reconstructing BFS tree and recalculating: Since using BFS tree information

reduces the search space, another approach would be to reconstruct a BFS tree for
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the graph with the added edge. Using Algorithm 5 on the modified graph Gm, the

number of triangles can be found. Now, this needs to be done for all possible edges

that can be added to G.

III. Using previous BFS tree information: The previous approach requires re-

constructing the BFS tree for each possible edge, and is computationally expensive.

Therefore, an algorithm which makes use of the BFS tree that has already been gener-

ated before, would perform better; this leads to the following approach. When using

the BFS tree data for the original graph, and adding a new edge, there can be the

following four cases:

Figure 5.2: Partial BFS tree with edge connecting nodes over 4 levels

i. Edge connecting nodes separated by more than 2 levels: In the first case we

consider all edges that connect nodes that are not within 2 levels adjacent to

the current level in the BFS tree i.e., {vi, vj} /∈ E such that vi ∈ li, vj ∈ lj,

{li, lj} ∈ {L} and |li − lj| > 2, as shown in Fig. 5.2. By the addition of edge

{vi, vj} the graph would be modified, with a single edge connecting the levels li

and lj. However, none of the other nodes in levels li and lj have an existing edge;

if that had been the case, then the nodes would not have been in these levels in

the original BFS tree. Additionally, none of the nodes in levels lk and lp, where

|li − lk| > 1, |lj − lp| > 1, |li − lp| = 1 and |lj − lk| = 1, can have an existing

edge with nodes in both li and lj which is required to form a triangle. Therefore,
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all combinations containing nodes belonging to such levels can be excluded from

calculations.

ii. Edge connecting nodes separated by 2 levels: In the second case we consider all

edges that connect nodes belonging to levels in the BFS tree that are not adjacent

i.e., {vi, vj} /∈ E such that vi ∈ li, vj ∈ lj, {li, lj} ∈ {L} and |li − lj| = 2, as

shown in Fig. 5.3.

Figure 5.3: Partial BFS tree showing addition of an edge connecting nodes over 3
levels

In this case, the third node can belong to either of the levels li, lj or lk. However,

if the third node belongs to levels li or lj, then that combination would not form

a triangle, since there would be only one edge between the levels li and lj. Hence,

the only case that has a potential to increase the number of triangles is when the

third node belongs to the level in between i.e., lk. So, the maximum increase in

the number of triangles for this case is no more than the number of nodes in lk.

iii. Edge connecting nodes in adjacent levels: In this case, the set of adjacent levels

that contains the newly added node is the only one that needs to be recalculated.

One approach would be to generate all possible combinations of nodes from within

the set of levels, and count the number of triangles. The total number of com-

binations that need to be tested can be reduced by using some properties of the

BFS tree. Let {vi, vj} be the edge that is added, and vi ∈ li, vj ∈ lj, and li < lj.

Now, if vi > vk, i.e., the node numbering is greater, where vk is the parent of vj

in the original BFS tree, then any node that has a lower numbering than vk in
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the same level cannot be part of the combination for testing.

Figure 5.4: Partial BFS tree with edge connecting nodes over 2 levels

iv. Edge connecting nodes in same level: In this case, the third node comes from

either the same level, or from the adjacent level in the set of the BFS tree.

Therefore, the maximum number of triangles that can be formed in this case

is equal to the number of nodes in the level of the parent plus the number of

nodes in the level of the nodes forming the edge minus two, for the two nodes.

Algorithm 6, implements the different possibilities as discussed above.

Figure 5.5: Partial BFS tree with edge connecting nodes in same level

5.4 Deleting edges in graphs

The structure of graphs can change by addition as well as deletion of edges. Deletion

of edges can result from the elimination of a specific edge or a node. In the case

of elimination of a specific edge, the nodes remaining as before i.e., G = (V,E) is

modified to Gm = (V,E \ (vi, vj)). Alternatively edges can be deleted by removing

one end node of a specific edge; this might result in deletion of additional edges that

are connected to it. The modified graph Gm = (V \vi, E\Σ(vi, vj)) would contain one

node less along with all edges associated with that node deleted too. Fig. 5.6 shows a

89



Algorithm 6: Identifying edge for maximum increase in number of triangles in
G without recalculating BFS tree

Input: Graph G = (V,E)
Output: Edge {vi, vj} such that {vi, vj} /∈ E
begin

T ← generateBFSTree(G);
{L} ← splitIntoLevels(T);
triangleCount← 0;
foreach {vi, vj} /∈ E do

thisCount← 0;
if vi ∈ li, vj ∈ lj, {li, lj} ∈ {L} && |li − lj| > 2 then

thisCount← 0;
else if vi ∈ li, vj ∈ lj, {li, lj} ∈ {L} && |li − lj| > 1 then

forall the {vk} ∈ lk, where li < lk < lj do
if isTriangle {vi, vk, vj} then

thisCount+ +;
end

end

else if vi ∈ li, vj ∈ lj, {li, lj} ∈ {L} && |li − lj| > 0 then
forall the {vk} ∈ {li ∪ lj \ vi, vj} do

if isTriangle {vi, vk, vj} then
thisCount+ +;

end

end

else
forall the {vk} ∈ {lk ∪ li \ vi, vj}, where li < lj < lk do

if isTriangle {vi, vk, vj} then
thisCount+ +;

end

end

end
if thisCount > triangleCount then

triangleCount← thisCount;
edge← {vi, vj};

end

end
Output ← edge;

end
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sample graph, where the number of components are increased by a maximum number

by the deletion of a single node.

Figure 5.6: Graph depicting nodes with potential of maximum increase in the number
of components with deleting of a single node

In this section, we focus on the effect of deletion of edges and the change in the

number of triangles and connected components in the graph. Studying the effect of

edge deletion has many practical applications. In case of road networks, identifying

edges i.e., road segments whose removal would result in places being inaccessible is

important. Also, creation of new road segments that help reduce the distance between

junctions is of practical significance. Consider the road network as shown in Fig. 5.7.

Figure 5.7: Graph showing sample road network and effect of edge deletion

The road segment r = (4, 5) in Fig. 5.7, if removed would divide the graph into
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two separate components. If this road segment or edge in the graph is removed,

there would be no way to move between the two separate areas that are created.

Similarly, if a new road segment is built to connect nodes 4 and 8, then it would

reduce distance between junctions and also reduce the chance of portions of the graph

becoming inaccessible because of removal of one road segment. Therefore, studying

the problem of edge deletion is relevant.

5.4.1 Decrease in the number of triangles

In this sub-section we study an algorithm to identify an existing edge whose removal

would increase the number of connected components in the graph. Specifically, given

a graph G = (V,E), find an edge (vi, vj) ∈ E, such that ∆c−∆f is maximized, where

∆f and ∆c are the number of triangles in Gm = (V,E \ (vi, vj)) and G = (V,E),

respectively.

The approach to this problem is similar to finding an edge that results in the

maximum increase in the number of triangles. However, since an existing edge is

deleted in this case, considering only the adjacent levels of nodes in the BFS tree is

sufficient as edges can exist only within that set. In Algorithm 7, the above procedure

is described.

5.4.2 Increase in the number of connected components

In this sub-section, we focus on the effect of deletion of edges and the change in the

number of connected components in the graph. It can be noted that the maximum

increase in the number of components by deleting an edge is 1, as an edge can connect

only 2 vertices which might otherwise be part of separate components.

Therefore, we want to find edges whose deletion would increase the number of

components by 1. Finding the maximum increase in the number of components by

the deletion of a node involves lot more calculations. Also, deleting a node might
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increase the number of components by any number, the upper limit being dictated

by the number of nodes. In particular, deleting a node might increase the number of

connected components by α, where 0 ≤ α ≤ n− 2.

Algorithm 7: Identifying edge whose removal results in maximum decrease in
number of triangles in G

Input: Graph G = (V,E)
Output: Edge {vi, vj} such that {vi, vj} /∈ E
begin

T ← generateBFSTree(G);
{L} ← splitIntoLevels(T);
triangleCount← 0;
foreach {vi, vj} ∈ E do

thisCount← 0;
if vi ∈ li, vj ∈ lj, {li, lj} ∈ {L} && |li − lj| > 0 then

forall the {vk} ∈ {li ∪ lj \ vi, vj} do
if isTriangle {vi, vk, vj} then

thisCount+ +;
end

end

else
forall the {vk} ∈ {lk ∪ li \ vi, vj}, where |li − lk| = 1 do

if isTriangle {vi, vk, vj} then
thisCount+ +;

end

end

end
if thisCount > triangleCount then

triangleCount← thisCount;
edge← {vi, vj};

end

end
Output ← edge;

end

In the other case, the problem is to find the edges whose deletion would increase

the number of connected components in the graph. Now, the brute-force approach

would be to choose one edge at a time from the set of edges, delete the edge and

then perform a breadth-first search and count the total number of components. Then
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this number can be compared with the one found by performing the breadth-first

search with all the edges in the original graph. This technique is similar to using

the BFS tree properties for biconnected components decomposition (Eckstein, 1979).

Although, this approach is simple, but it is computationally expensive because of the

need to perform BFS on the graph once for each of the edges. An advanced approach

would be to try to decrease the calculation of the entire BFS if certain criteria are

met. This can be done by taking into account the information of the original BFS

tree. Let an edge (vi, vj) be deleted from the graph, where vi ∈ li and vj ∈ lj. Now,

in the original graph, in addition to the number of components in the entire graph,

counts for the number of components in the subgraphs induced by the nodes in sets

of adjacent levels and also those involving combinations of different sets of contiguous

levels can be calculated and stored. Therefore, the number of components induced

by the nodes and the modified number of edges for any specific set of adjacent levels

are recalculated. If the number of connected components are identical, then it can be

concluded that the deletion of the edge (vi, vj) in question does not change the number

of connected components in the entire graph. However, if the number of connected

components increases, then additional verification is required before any conclusion

can be made about the changes. This can be done by taking into consideration

two more levels, one the previous of the first level, and the other the next level of

the second level. If the number of connected components still differ from the one

calculated for the original graph, the process can be continued till there are no more

previous or next levels left in the BFS tree of the original graph i.e., the entire graph

has been considered and the BFS has been performed on it (we have the number of

components for all combinations of contiguous levels calculated already to compare

with). The above methodology can be improved by adding either the previous or the

next level instead of both in a single step. By taking into account the densities of the

edges within the adjacent levels, the one with the higher value among the previous
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and next can be chosen.

Algorithm 8: Identifying edge {vi, vj} ∈ E whose deletion leads to an increase
in number of components in G = (V,E)

Input: Graph G = (V,E)
Output: Edge {vi, vj} ∈ E
begin

T ← generateBFSTree(G);
{L} ← divIntoConsecutiveLvlSets(T);
{C} ← calComponents(L);
componentCount← 0;
foreach {vi, vj} ∈ E do

Lc ← Li \ (vi, vj), where (vi, vj) ∈ Li);
count← calComponents(Lc);
while (count > Cc && Lbeg&&Lend /∈ Lc do

if Lbeg ∈ Lc then
{Lc} ← {Lc} ∪ {Lj}, where {Lc} < {Lj};
count← calComponents(Lc);

else if Lend ∈ Lc then
{Lc} ← {Lc} ∪ {Lh}, where {Lh} < {Lc};
count← calComponents(Lc);

else
{Lc} ← {Lc} ∪ {Lh} ∪ {Lj}, where {Lh} < {Lc} < {Lj};
count← calComponents(Lc);

end

end
if count > Cc then

edge← {vi, vj};
end

end
Output ← edge;

end

In Algorithm 8, the above procedure is described. First the breadth-first tree T is

generated using the method generateBFSTree. Then T is divided into adjacent level

sets using the method divIntoConsecutiveLvlSets. Thereafter, using calComponents

the counts for the number of components for the various combinations of contiguous

levels can be calculated and stored in C. In Algorithm 8, levels in T consisting the
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edge in consideration are taken into account. Since nodes from previous and next

levels are added to the data being computed on, care must be taken to not add levels

beyond the first and last levels in T. Therefore, variables Lbeg and Lend are used to

store the first and last levels of T respectively. Lc consists of the nodes belonging

to the levels that are part of the current computation. Cc denotes the count of

the number of components that belongs to the current calculation. The while loop

terminates if the count for components is equal to the one calculated before, or when

both the first and the last levels of T are part of the nodes in consideration thereby

indicating there are no more nodes to be added.

5.5 Real-world graph properties

For the purpose of analyzing graphs, we refer to real world data sets (Leskovec et al.,

2009). The Stanford Large Network Dataset Collection framework provides a huge

collection of real-world graphs (Stanford Network Analysis Project, 2011). The fol-

lowing graphs are considered in this chapter:

1. Texas Road Network (TRN): This graph represents the road network of Texas,

where intersections and endpoints are represented by nodes, and the roads con-

necting the same are represented by undirected edges.

2. Pennsylvania Road Network (PRN): This is the graph depicting the road net-

work of Pennsylvania; the representation is similar to that of the TRN.

3. California Road Network (CRN): The road network of California is depicted

using this graph; the representation is similar to both TRN and PRN. All the

road network graphs are undirected.

4. Enron Email Network (EEN): This is an email communication network within

a dataset of size approximately half million. The nodes are email addresses, and
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edges exist between the nodes if there exists a communication between them.

5. Internet Topology Graph (ITG): This graph consists of traceroutes run on Au-

tonomous systems using Skitter. This consist of an undirected graph comprising

of Internet data from various routers depicting a part of the Internet.

6. Facebook Social Circles (FSC): This graph consists of anonymized data repre-

senting ‘circles’ i.e., ‘friend lists’ from Facebook. This undirected graph consists

of data collected from survey participants using a specific Facebook application.

In Table 5.1, the data for the different graphs in the form of total number of nodes

and edges are presented along with the largest connected component. These graphs

Nodes in largest

Graph Nodes Edges connected

component

TRN 1,379,917 3,843,320 1,351,137

PRN 1,088,092 3,083,796 1,087,562

CRN 1,965,206 5,533,214 1,957,027

EEN 36,692 367,662 33,696

ITG 1,696,415 11,095,298 1,694,616

FSC 4,039 176,468 4,039

Table 5.1: Real World Graphs

are required to be processed on the GPUs. Therefore, to make use of the faster shared

memory on the GPUs, the size of the data required for the computations must fit

into the desired level in the memory hierarchy. As discussed in the earlier Sections,

making use of the BFS tree information is useful for reducing the size of the search

space, thereby reducing the space for the required data. Table 5.2 shows the number

of levels in the BFS tree for each of the graphs, along with the maximum number of

nodes in a single level, in any set of 2 and 3 consecutive levels.
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# of Max. # of Max. # of Max. # of

Graph levels nodes in nodes any nodes any

in BFS a single 2 cons. 3 cons.

tree level levels levels

TRN 723 4,426 8,782 13,122

PRN 557 4,057 8,108 12,130

CRN 557 6,115 12,180 18,258

EEN 9 16,114 30,167 32,328

ITG 22 748,276 1,299,877 1,623,942

FSC 7 1,742 2,913 3,432

Table 5.2: Real World Graphs: BFS Tree Level Information

Although the number of nodes in the different sets of levels in the BFS tree reduces

the number of nodes for which adjacency data is required, it might still be more than

what is necessary. It can be noticed that the subgraph induced by the nodes in each

of these sets of levels might form more than a single connected component. Nodes in

separate connected components are not required to be tested for the properties that

are being studied, and hence are not required to be stored together. In Table 5.3

we provide information about the number of connected components and the largest

connected component while considering sets of 2 and 3 levels from the BFS tree.

# of Nodes in # of Nodes in

conn. largest conn. largest

Graph comp. connected comp. connected

2 levels component 3 levels component

2 levels 3 levels

TRN 2,033 73 1,558 247

PRN 1,887 136 1,446 558

CRN 3,147 92 2,545 195

EEN 4,455 24,512 4,454 26,610

ITG 10,539 1,287,183 10,340 1,611,636

FSC 13 2,900 13 3,419

Table 5.3: Real World Graphs: Connected Components in BFS Tree Levels
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For studying the properties of the graphs, preprocessing is done on the graph data

using the CPU. Reading the data from edge lists and storing it in appropriate data

structures is followed by performing and creating the BFS tree of the same. The

overhead incurred in doing so is reported for the real-world graphs being considered

in Table 5.4.

Reading edge

list into Generating

Graph CPU data BFS

Structure tree

(seconds) (seconds)

TRN 1.39 0.15

PRN 1.08 0.12

CRN 1.98 0.23

EEN 0.17 0.01

ITG 6.89 0.29

FSC 0.03 0.01

Table 5.4: Overhead for reading data from edge list and generating BFS tree

The above analysis provide some valuable insight. Considering the structure of

the graph and using breadth-first search tree information, the number of nodes in

components spanning across levels are much smaller compared to the actual size of

the graph. This leads to the next section, where this additional information is taken

into account, and a heuristic is provided for approximate calculations.

5.6 Approximate counting

For large graphs, performing exact calculations is computationally expensive. To find

an edge whose addition increases the count of triangles by the maximum number

requires checking for all the edges that are not part of the original graph in the naive

case. For the graphs considered in this chapter, with over a million nodes, that would

require huge amount of calculations. In the problem of counting triangles and changes
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to the number by addition or deletion of edges, data only from adjacent levels of BFS

tree are required. However, since all the levels would have to be considered, the total

combinations considered is still significant. A better approach would be to test part of

the graph and provide a result within an acceptable percentage of error. We consider

a heuristic, where we choose the edge to be added to be present only within the set

of maximum edge density. The heuristic is given in the form of the Algorithm 9.

Algorithm 9: Heuristic for approximation in identifying edge {vi, vj} /∈ E for
maximum increase in number of triangles in G = (V,E)

Input: Graph G = (V,E)
Output: Edge {vi, vj} such that {vi, vj} /∈ E
begin

T ← generateBFSTree(G);
{L} ← divIntoConsecutiveLvlSets(T);
{Li} ← maximumDensity(L);
triangleCount← 0;
foreach {vi, vj} /∈ E && vi ∈ Li && vj ∈ Li do

Gm = (VLi
, ELi

∪ (vi, vj));
Tm ← generateBFSTree(Gm);
thisCount← Algorithm5(Tm);
if thisCount > triangleCount then

triangleCount← thisCount;
edge← {vi, vj};

end

end
Output ← edge;

end

However, Algorithm 9 still considers all the nodes in the level with the maximum

density. The heuristic can be improved by considering only the largest connected

component within the level of the BFS-tree in consideration. Using a function find-

LargestComponentLevel, the largest connected component Ci in the specific level can

be found out. Then, all edges that do not exist in the original graph which can be

formed using the nodes in Ci are considered one by one by adding to the graph in-

duced by the nodes in Ci and checked for triangles using Algorithm 5. Using this
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technique Algorithm 9 can be improved.

5.7 Experimental results

Various approaches for solving different graph problems have been discussed in this

chapter. The basic target is to reduce the solution space, thereby decreasing the

number of computations and resulting in faster outputs. Table 5.5 shows the number

of computations required for solving the triangle completion problem on the real-

world data sets using naive computation, breadth-first search tree information with

all levels, with adjacent levels containing maximum number of nodes and heuristic

considering the largest connected component within the levels of BFS-tree under

consideration.

Naive Using BFS Using Using

Graph Computation Tree Adj. levels Heuristic

Info. Max. nodes Largest Comp.

TRN 4.37 ×1017 1.30 ×1013 1.12 ×1011 6.21 ×104

PRN 2.14 ×1017 9.20 ×1012 8.88 ×1010 3.74 ×105

CRN 1.26 ×1018 4.97 ×1013 3.01 ×1011 3.42 ×104

EEN 8.23 ×1012 4.96 ×1012 4.57 ×1012 2.45 ×1012

ITG 8.13 ×1017 5.06 ×1017 3.66 ×1017 3.55 ×1017

FSC 1.09 ×1010 5.49 ×109 4.11 ×109 4.06 ×109

Table 5.5: Comparison for number of computations

Fig. 5.8 shows the comparison between the number of computations for the various

approaches as reported in Table 5.5; the different graphs under consideration are

shown along the X-axis and the number of computations are plotted along the Y-

axis using a log-scale with the base 2. It is evident, the number of computations are
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reduced greatly using the advanced approaches. Since the number of computations

required for the naive approach is huge, it is not depicted in the graph. It can be noted

that the data plots representing the Enron Email Network (EEN) and Facebook Social

Circles (FSC) show minor improvement between the different cases due to the large

number of nodes being present in the level of the BFS-tree containing the maximum

number of nodes.

Figure 5.8: Comparing the number of computations performed on the data using the
various approaches

The triangle completion problem described in this chapter is implemented using

both CPU and GPU. The CPU consists of quad-core 2.27 GHz Intel Xeon processors

and the GPU used for the experiments is Nvidia Tesla K20m. The CPU implemen-

tation uses a single thread.

Fig. 5.9 shows the timings for executing the programs on the CPU and GPU;

the different graphs data are shown along the X-axis and the time required for the

computations in seconds are plotted along the Y-axis using a log-scale with the base

2. As evident from the plots, the adjacency level information from the BFS-tree helps

improve the performance of the calculations. With the help of a significant reduction

in the solution space, the heuristic performs better than the other approaches. The

results show a 10 × speedup on the GPU using the adjacency level information of

102



Figure 5.9: Comparing timings for larger graphs

the BFS tree as compared to a sequential implementation for majority of the data

sets considered; the performance is even better for approximate calculations when

considering the proposed heuristic. The error introduced due to the proposed heuristic

is less than 6%. The only cases where the speedup achieved was less were contributed

by the factor of the sizes of the data, that could not be divided to be processed in

parallel, using the level information of the breadth-first search tree.

5.8 Summary

In this chapter we study the properties of large graphs, specifically Online Social

Networks and Road Networks. We analyze the changes in the graphs considering the

dynamic nature of the same by taking into account the effects of adding edges into

and deleting edges from the graph. We provide an algorithm for triangle completion,

where we find an edge in a given graph whose addition would result in the maximum

increase in the number of triangles in the same. Similarly, we provide an algorithm to

study the effect of deleting an edge from a graph resulting in the maximum decrease in

the number of triangles in the graph and also an increase in the number of connected

components in the same. The algorithms take into consideration the structure of the
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graph primarily based on the breadth-first search tree information. These approaches

not only help reduce the number of calculations but also eliminate unnecessary data

thereby helping solve the problems by storing the data in smaller but faster levels

in the memory hierarchy of the GPUs. Since finding exact solutions requires a huge

amount of computation, a heuristic is introduced to find approximate solutions and

the methodology is discussed and compared. This chapter has been adapted from

one of our research papers (Chatterjee et al., 2014).
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Chapter 6

Graph Compression

Graphs can be stored in the memory in many different ways using various data struc-

tures. The memory on the GPU i.e., the device is limited; specifically, the faster

levels of memory in the hierarchy, say the shared memory, have less space than the

ones with higher memory access latency, say the global memory. To perform analysis

on graphs, data required for computation must be stored on the device memory. The

memory transfer overhead can be reduced if more data can be copied and stored in

the device memory. Therefore, studying techniques to store data efficiently is impor-

tant. In this chapter we discuss graph compression techniques which can address the

above mentioned issues.

6.1 Introduction

Graphs can be stored using a variety of data structures. The most common data

structures that are used to represent graphs are adjacency matrix and adjacency list.

The choice of the data structure also depends on the characteristic of the graph data.

If the graph is dense, then it might be useful to store the data in an adjacency matrix.

However, if the graph is sparse, and most of the elements are 0 values, then it wastes

a lot of space by using the adjacency matrix, and in this case using an adjacency

list might be an efficient choice. When the graph data is large or the memory used

to store the graph has limited space, then methods must be employed to reduce

the size required to store the graph in order to perform computations on the same.

Therefore, techniques must be designed to compress the relevant data and store it in
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the provided memory. Some techniques require decompressing the data for it to be

retrieved. However, such techniques would not be suitable if the memory is limited.

Therefore, it is important to be able to perform computations on the compressed data

itself. However, the increased complexity in retrieving the data from the compressed

representation can also be a factor in the choice of the compression technique.

6.2 Graph compression techniques

As with any other compression techniques, graph compression techniques can also

be sub-divided into two broad categories: a) Lossy compression b) Lossless compres-

sion. In the case of lossy compression techniques, the original data cannot be exactly

retrieved after decompressing the compressed data; whereas, in the case of lossless

compression techniques, there is no loss of information, and the original can be re-

trieved in entirety from the compressed data. In this chapter we are interested in

studying only lossless compression techniques.

6.2.1 Overview of techniques

In general, most graph compression techniques can be broadly divided into the fol-

lowing categories (Deshpande, A., 2010).

� Replacing specific structures This approach involves identifying and replac-

ing specific structures like a clique, with a special node and edges to the nodes

in the clique.

� Adjacency information similarity Redundant data in the form of similar

neighbors for nodes can be replaced by storing the data once and using pointers

to the data for the rest.
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� Modify graph layout The basic idea is to linearize the nodes so that average

“stretch” of an edge is minimized. This is also referred to as “minimum-linear-

arrangement” problem.

6.2.2 Related work

Graph compression techniques have been studied for a long time resulting in a number

of methods being developed. Identifying and replacing a specific structure with an

equivalent efficient one is one such technique. The m×n edges in a complete bipartite

graph Km,n can be replaced using a special node and m+n edges (Feder & Motwani,

1991) (Buehrer & Chellapilla, 2008).

The Web can be modeled as a graph where the addresses are the nodes and hy-

perlinks between the same are the edges. Compressing adjacency lists using pointers

to other similar lists and storing data for additions and deletions achieves high com-

pression (Randall et al., 2002).

Using common neighborhoods and exploiting locality information can be used to

compress graphs with power law distribution (Boldi & Vigna, 2004).

Lexicographic ordering along with neighborhood information is effective in com-

pressing graphs (Chierichetti et al., 2009); however, this mechanism does not work

for social network graphs which do not have any natural order.

6.3 Quadtree representation

Quadtree is a data structure which is used to normally represent images using parti-

tioning of the two dimensional space by recursively subdividing into four quadrants

or regions; each internal node of the quadtree has exactly four children (Samet, 1985).

The most common type of quadtree is the Point-Region Quadtree, also referred to as

the PR quadtree. A PR quadtree represents data points in a two dimensional region.
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Figure 6.1: A map of data points for a two dimensional region

The region is subdivided into four quadrants if it contains more than 1 point in it.

If a region contains a single point or no points, it is designated by a leaf node in the

representation. A sample region data is shown in Fig. 6.1 and the corresponding PR

quadtree is shown in Fig. 6.2.

Figure 6.2: The PR Quadtree for the region shown in Fig. 6.1
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6.3.1 Graphs as Quadtree

Quadtree representation can also be used to store graphs efficiently. The quadrants

of an adjacency matrix of a graph can be converted and stored according to the row

major order. The decision to further expand a quadrant into four sub-quadrants

is taken based on the data present in the same. If the data matches with one of

the preselected values, then the quadrant is represented as a leaf node in the tree.

Quadrants matching preselected values can be stored internally using integer values

that map to the specific pattern. Therefore, using the quadtree representation, the

entire graph information can be stored in the form of an array using bits. The contents

of the bit array can be stored as follows:

� 0: all 0’s in quadrant

� 1: all 1’s in quadrant

� 2: 0’s in diagonal, and rest 1’s

� 3: the quadrant needs to be expanded further

Since there are only 4 types of values, using 2 bits to represent each quadrant is

enough when storing in the bit array. Consider the following graph shown in Fig.

6.3.

Figure 6.3: A sample graph

To convert to a quadtree, the adjacency matrix of the graph is considered. The

adjacency matrix for the graph in Fig. 6.3 is given in Fig. 6.4.
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Figure 6.4: Adjacency matrix of graph shown in Fig. 6.3

The quadtree representation of the graph above is shown as follows:

Figure 6.5: Quadtree representation of graph shown in Fig. 6.3

The byte representation of the quadtree is given by Q = {3, 0, 1, 1, 0}. The value

3 corresponds to the quadrant covering the entire adjacency matrix. The following

values of 0, 1, 1 and 0 represents the top-left, top-right, bottom-left and bottom-right

quadrants respectively.

Algorithm 10 describes the method for generating the quadtree from the adjacency

matrix of a graph. The method CheckMatrixUniformity checks whether the adjacency

matrix provided as the parameter is uniform or not. Depending on the data, the

method returns a 0, 1, 2 or 3 for all 0’s, all 1’s, 0’s in diagonal and rest 1’s, and non-

uniform matrix respectively. For the first 3 cases, the returned value is added to the

quadtree representation; for the last case Algorithm 10 is called recursively for all the

quadrants of the matrix generated by using the method DivideMatrixIntoQuadrants.

For a graph G = (V,E), where |V | = n, the algorithm loops over total of n2 elements

in each level of the quadtree. Since in the worst case there are log2 n levels, the time
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Algorithm 10: QuadGen: Quadtree generation from adjacency matrix

Input: Adjacency matrix A[ ][ ] of graph G
Output: Quadtree Q of G
begin

Code← CheckMatrixUniformity(A);
if Code = 0 then

Concatenate(Q, 0);
else if Code = 1 then

Concatenate(Q, 1);
else if Code = 2 then

Concatenate(Q, 2);
else

Quadrants{} ← DivideMatrixIntoQuadrants(A) ;
forall the Quadrantsi ∈ Quadrants{} do

QuadGen (Quadrantsi);
end

end
Output ← Q;

end

complexity of the algorithm for generating the quadtree from the adjacency matrix

is O(n2 log2 n).

6.3.2 Compression using quadtree

The sample graph shown in Fig. 6.3 consists of 8 nodes. Therefore, the space required

to store the graph using the adjacency matrix representation is 8×8 = 64 bits. Now,

the corresponding quadtree representation shown in Fig. 6.5 when stored in the

bit array requires information for 5 elements, each of which requires 2 bits of data.

Therefore, the space required to store the quadtree representation is 5×2 = 10 bits.

Hence, in this case, the graph data is compressed using the quadtree representation,

and requires just 1
6

of the original space.
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6.3.3 Numbering matters

Let us consider the graph shown in Fig. 6.6 and its corresponding adjacency matrix

and quadtree representation. It can be noted that the graph structure is similar to

the one shown in Fig. 6.3.

Figure 6.6: Sample graph with nodes numbered in a specific way

Figure 6.7: Adjacency matrix for the sample graph shown in Fig. 6.6

Figure 6.8: Quadtree representation for the sample graph shown in Fig. 6.6

Since the quadtree has 21 elements, where each element requires 2 bits, the mem-

ory required to store the graph is 42 bits. In this case, while the structure of the graph
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shown is similar to the one before, the numbering of the nodes is changed. In the

case of the renumbered graph, since the adjacency matrix changed, the correspond-

ing quadtree also changed resulting in 21 elements compared to just 5 elements that

required 10 bits for storage. The size required for representing the graphs is directly

proportional to the number of quadrants that are non-uniform. Since the adjacency

matrix varies with the numbering of the nodes, some combinations might be better

than others. Therefore, renumbering nodes to make quadrants of the matrix uniform

is an important step in using quadtrees for compact representation of graphs.

6.3.4 Special graphs

In this sub-section we discuss how graphs with some specific properties can benefit

from being represented using quadtrees. Following are the the special graphs that we

study: a) Complete bipartite graph, b) Complete k-partite graph, c) Block graphs

and d) Chordal graphs. We look into the details of each of the above mentioned types

of graphs below:

1. Complete bipartite graphs: A graph G = (V,E) is called bipartite if its

vertex set can be partitioned into two disjoint subsets V = V1 ∪ V2, such that

every edge has the form e = (a, b) where a ∈ V1 and b ∈ V2. A complete

bipartite graph Km,n is a bipartite graph that has each vertex from one set

adjacent to each vertex of another set.

Figure 6.9: Sample complete bipartite graph
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Figure 6.10: Adjacency matrix for the sample complete bipartite graph

Figure 6.11: Quadtree representation for the sample complete bipartite graph

For the complete bipartite graph shown in Fig. 6.9, the adjacency matrix re-

quires 64 bits while the quadtree representation requires 82 bits. While in this

specific example the space required is more, in other cases it is a good candidate

for representing using quadtrees, as can be seen from the sample graph shown

before in Fig. 6.3. It has already been shown that in the previous example the

quadtree requires just 10 bits instead of 64.

2. Complete k-partite graphs: A graph G = (V,E) is k-partite if the vertices

can be decomposed into k disjoint sets such that no two graph vertices within

the same set are adjacent. A complete k-partite graph is one where every pair of

graph vertices in the k sets are adjacent. If there are p, q, · · · , r graph vertices
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in the k sets, the complete k-partite graph is denoted Kp,q,··· ,r. Fig. 6.12 shows

K3,2,3.

Figure 6.12: Sample complete k-partite graph

The adjacency matrix for the above graph is shown in Fig. 6.13.

Figure 6.13: Sample complete k-partite graph adjacency matrix

The quadtree representation for the above complete k-partite graph shown in

Fig. 6.13 is given in Fig. 6.14.

3. Block graphs: An undirected graph G = (V,E) is block graph or clique tree

if every biconnected component is a clique. A sample block graph is shown in

the following figure:

The block graph may be a good candidate for representation using quadtree. It

can be noted that a clique can be part of more than one quadrant, and therefore
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Figure 6.14: Quadtree representation for the sample complete k-partite graph

Figure 6.15: Sample block graph

can be subdivided into different quadrants. However, since a sub-clique is also

a clique, the representation is still efficient.

The adjacency matrix and quadtree representation of the block graph shown in

Fig. 6.15 is shown in Fig. 6.16 and Fig. 6.17 respectively.

The quadtree representation contains 29 elements and therefore requires 58 bits.

So, in this case, the quadtree is actually efficient compared to the adjacency

matrix representation which still requires 64 bits.

4. Chordal graphs: An undirected graph G = (V,E) is chordal if every cycle

of length greater than three has a chord i.e., an edge connecting two non-

consecutive vertices on the cycle. Equivalently, every induced cycle in the graph

should have at most three nodes. The chordal graphs may also be characterized
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Figure 6.16: Sample block graph adjacency matrix

Figure 6.17: Quadtree representation for the sample block graph

as the graphs that have perfect elimination orderings (Chandran et al., 2003).

In a graph G = (V,E), a vertex v is called simplicial if and only if the subgraph

of G induced by the vertex set {v} ∪N(v) is a complete graph, where N(v) is

the set of neighboring vertices of v. For example, in the graph shown in Fig.

6.18, vertex 3 is simplicial, while vertex 4 is not.

A graph G on n vertices is said to have a perfect elimination ordering if and only

if there is an ordering v1, · · · , vn of G’s vertices, such that each vi is simplicial

in the subgraph induced by the vertices v1, · · · , vi. As an example, the graph

shown in Fig. 6.18 has a perfect elimination ordering, witnessed by the sequence

(3, 1, 2, 4) of its vertices.
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Figure 6.18: Sample graph showing a simplicial vertex

Fig. 6.19 shows a sample chordal graph.

Figure 6.19: Sample chordal graph

Fig. 6.20 represents the adjacency matrix of the chordal graph shown in Fig.

6.19.

Fig. 6.21 depicts the quadtree representation of the chordal graph shown in

Fig. 6.19.

Since there are 61 elements in the quadtree representation, the size required for

the adjacency matrix representation is 64 bits and that of the quadtree is 122.

A Perfect Elimination Ordering (PEO) using the sample graph is given by the

sequence {1, 3, 8, 7, 6, 2, 4, 5}. Renumbering the nodes according to the PEO,

with the old numbers being shown in parentheses, the graph and its correspond-
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Figure 6.20: Sample chordal graph adjacency matrix

Figure 6.21: Quadtree representation for the sample chordal graph

ing quadtree representation is shown in Fig. 6.22 and Fig. 6.23 respectively.

The size of the quadtree for the renumbered graph is 90 bits. So, the size

decreased by 32 bits by renumbering according to PEO, and this is an efficient

technique for renumbering nodes.

6.3.5 Modifying graphs

As discussed before, the size of the quadtree is directly proportional to the number

of non-uniform quadrants. Therefore, one way to compress graphs by representing

using quadtree is to modify the graph by adding and deleting certain edges to make

the adjacency matrix quadrants uniform. However, since the graph is modified, to

retrieve the original data, information about the edges added and deleted must be

stored too.
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Figure 6.22: Sample chordal graph renumbered according to PEO

Figure 6.23: Quadtree representation for the sample renumbered chordal graph

Fig. 6.24 shows a modified version of the chordal graph given in Fig. 6.22. The

corresponding quadtree is shown in Fig. 6.25. The size of the quadtree is 58 bits. Also,

the information for the 3 edges need to be stored (2 removed and 1 added). log2 n

bits are required to store the nodes numbers for a graph with n nodes. Therefore, 6

bits are required to store each edge using an edge list representation; 3 bits for each

of the end nodes for the graph containing 8 nodes. The extra space required to store

this information is 18 bits. So, the total space needed is 76 bits; hence the space is

reduced by another 14 bits compared to the PEO numbering of the chordal graph.

Further modifications can be made to the chordal graph to reduce space required.

In addition to adding (1, 8), (4, 7) and removing (4, 8), the following needs to change:

add edge (2, 5), remove edge (2, 6). These changes reduce the quadtree size to 42 bits;

an additional 30 bits are required to store the modified edge information. The total
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Figure 6.24: Modified chordal graph with edges added and removed

Figure 6.25: Quadtree representation of the modified chordal graph

size for this case is 72 bits, which is significantly reduced from the original size of 122

bits for the chordal graph.

6.3.6 Hybrid approach

It can be observed from the examples in the previous sub-sections that for many cases,

the quadtree representation for graphs of size 8 require more than 64 bits, which is

inefficient compared to the adjacency matrix representation. However, for larger

graphs, the quadtree approach is efficient compared to other data structures. Even

for larger graphs, when the quadrant reduces to 8×8 bits, the quadtree would require

more space for further quadrant expansions. Therefore, a hybrid approach, where the

recursive division of the quadrants stop whenever the quadrant size reaches 8× 8 is a

better technique. So, in the byte representation of the quadtree, an additional bit for
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each element would be required to indicate whether the quadrant is further expanded

or represented using adjacency matrix. Although this would need additional bits,

overall the space required decreases, as verified by the experimental results.

6.3.7 Experimental results

The choice of data structure is influenced by the edge density of the graphs being

considered. Therefore, it is important to analyze the space requirements for the

graphs of different sizes with varying edge densities.

Figure 6.26: Data representation comparison for high densities

For the experiments, graphs of sizes 1024, 2048, 4096 and 8192 are considered.

These sizes are considered because from the analysis of real-world data it can be seen

that sizes of connected components considering level information from the BFS tree

are within this range for most of the cases. The density of the graph is given by

e
p
×100, where e is the number of edges in the graph, and p is the total number of
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edges possible. The densities that are considered in percentage are 5, 10, 25, 50, 65

and 80.

Fig. 6.26 shows the comparison of the size required to store the graphs over varying

sizes and densities using adjacency matrix (AdjMat), quadtree (or Pure Quadtree

denoted by PQT) and hybrid quadtree (HQT). From the plots it can be inferred that

hybrid quadtree is better than the other two representations except when the density

is around 50%. When the density is around 50% the adjacency matrix performs better

for most of the cases.

Figure 6.27: Data representation comparison for low densities

However, in case of real-world data representing online social networks and road

networks, the graphs are sparse. Therefore, it is important to consider graphs with

low densities and check the effectiveness of the proposed data structures. For low

density graphs, the densities considered are 0.10, 0.20, 0.40, 0.80, 1.00 and 1.20. Fig.

6.27 the plots for the graphs of the same sizes and data structures as considered
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before using low densities. From the plots it can be inferred that the quadtree (or

pure quadtree) representation is the most efficient one; this is also partly because of

the extra identifier used in the hybrid quadtree representations. For all the graph

sizes, the adjacency matrix performs worse as expected for low densities.

6.4 Summary

In this chapter we study graph compression techniques and focus on quadtree repre-

sentation of graphs. It is also shown how numbering of the nodes in graphs influence

the space required for the quadtree. Special graphs are considered and analyzed.

Techniques that modify graphs by adding and deleting edges also help in reducing

the overall space requirements. Different size graphs are chosen over varying densi-

ties and sizes are compared by performing empirical analysis on the same. From the

results it can be inferred that quadtree is indeed an effective compression technique

for storing graphs specifically on the GPUs.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, graph algorithms that are related to data analysis on large net-

works are studied using Graphics Processing Units (GPUs). In general, techniques

employed to use GPUs to solve general purpose problems have been introduced and

analyzed. The algorithms are designed and executed on different architectures of

CUDA enabled GPUs using real-world data for analysis.

CUDA enabled GPUs with multiple Streaming Multi-processors (SMs) provide

huge computation potential that can be exploited by applications using extensive

multi-threading. The initial focus of the research has been on using the shared mem-

ory on the GPU because of its low memory access latency. However, since the shared

memory is also limited in size as compared to the other levels in the memory hierarchy

of the GPU, using efficient data structures are essential. With the use of advanced

data structures as compared to the naive ones, larger graphs can be stored on the

shared memory and computed on. Specifically, given a graph G = (V,E) and an

integer k <= |V |, both storage techniques and algorithms are introduced to count

the number of a) connected subgraphs of size k, b) k cliques, and c) k independent

sets, all of which can be exponential in number. Storing the entire graph in memory

for computation is not always necessary. For specific problems, only a portion of

the data is required. It is shown that using the breadth-first search (BFS) tree data

structure, the graph can be separated into levels and only a part of the entire tree
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is required for computations. But, if the graph is dense and has only a few levels

in the BFS-tree, it might not be a good candidate to benefit from such techniques.

However, most real world graphs are sparse and the results hold. Also, since a major

part of the data can be excluded from calculations, test cases are also reduced by a

significant number. It can be inferred from the experimental results that the fastest

computation times are shown for graphs that are stored on the shared memory and

the computations are performed using the BFS-tree information. The counting prob-

lems show a speedup by 5 times for smaller graphs and 10 times for larger graphs for

implementations compared between CPU and GPU.

Transforming an algorithm into its parallel version is essential for achieving im-

provements using GPUs. With the added overhead of data transfer back and forth

between the CPU and the GPU, enough SMs and GPU cores must be used to achieve

significant speedup as compared to using the CPU alone. Also, it must be noted that

in most cases a heterogeneous combination of CPU-GPU system is used to solve the

problem being considered; preprocessing is done on the CPU and the parallel part of

the problem is solved on the GPU. Identifying computations that can be performed

independently is essential for the conversion of the algorithms and implementation

into GPU kernels. Also, since accessing data from the memory can be a bottleneck,

separating computations based on data access patterns is also significant.

The GPU architecture and CUDA programming environment, including the pro-

gramming model and memory model is discussed in detail. Issues arising from shared

memory bank conflicts are studied and methods to avoid the same are discussed.

Also, since the domain of problems focus on real-world data, and it is huge in size,

using the much larger global memory on the device is required. Since memory is at

a premium, various data structures including both naive and advanced versions are

introduced and analyzed. However, since the global memory has a much higher mem-

ory access latency as compared to the shared memory, using it without employing
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any optimization principles reduces the effectiveness of the multicore architecture.

Using primitives like memory access coalescing and avoiding partition camping are

discussed; detailed description on how to exploit the primitives to improve the per-

formance of the global memory is also included in the context of solving the triangle

counting problem. From empirical results for solving the triangle counting problem, it

can be concluded that the performance of the GPU increases by approximately 6-8%

over the naive GPU implementation when making use of the available primitives.

Algorithms for different counting problems have been proposed in this disserta-

tion. The general approach involves generating combinations of nodes for a given

size, and checking if the specific property being studied holds in case of the induced

sub-graph. Therefore, generating combinations to test for a specific property is an

important part of the process. Exploiting the structure and characteristics of a BFS-

tree representation of the graph being considered, a number of combinations can be

excluded from calculations thereby reducing the number of combinations to be gen-

erated by a significant factor. Equal division of work among threads is important to

exploit the potential benefits of multi-threading. Generating all combinations as part

of preprocessing and dividing them equally among threads is not a suitable option

for GPUs since storing the combinations itself would require significant amount of

memory. Combinadics is a technique that can be used to generate combinations on

the fly and out of sequence, and can therefore be executed independent of other data

and in parallel. Therefore, generating combinations using combinadics is useful in

this aspect and is shown in the context of the triangle counting algorithm.

Counting triangles has many important applications and has been studied here

in detail. Real-world graphs are dynamic, and edges and nodes can be added or

deleted over time. To incorporate such dynamic behavior, triangle completion and

edge deletion problems have been considered. Finding exact solutions to problems on

large graphs require a lot of computations. In such cases, approximate counting is a
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viable and fast alternative. A heuristic for triangle completion problem is proposed

and compared with the exact solution.

Online social networks and road networks, among others, are the domains that

have been looked into while studying the graph problems. Since the sizes of the graphs

are huge and computation on the same would be expensive, analyzing the structure

of the data to check for dependency patterns that can partition the data into smaller

sets is relevant. By performing analysis on the real-world graphs valuable insights

are gained that conclude most of the graphs have many levels in the BFS-tree; the

size of sets of adjacent levels can be accommodated in the GPU memory taking into

account the separate components that exist within the data being considered.

Data transfer between the CPU and GPU memory is expensive. Also, with more

data being present on the device memory, computations can be executed efficiently.

Since the data being considered in all the problems belong to large graphs, being able

to use efficient data structures to store as much information as possible is relevant.

Graph compression techniques help address this issue. Quadtree representation of

graphs are introduced and other methodologies discussed that can reduce the memory

requirements for graphs. Empirical results show that using a hybrid data structure,

which is a combination of quadtree and adjacency matrix is an effective compression

technique.

7.2 Future Work

In this dissertation, graphs that fit into the GPU memory using efficient data struc-

tures have been considered. As an extension, graphs that do not fit on the GPU

memory, and require multiple kernel calls and memory transfers to be computed on,

could be addressed. Being able to compute on streaming graphs that are much larger

in size, and need to be handled using external memory would be relevant.
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Various optimization techniques have been studied to achieve better performance

on the GPU based on graph algorithms. Another avenue to extend this work would

be to explore the effects of such techniques on algorithms and data belonging to other

domains.

The CUDA enabled GPU devices provide various hardware and software tech-

niques to improve performance on the same. Data access from the shared memory

can take advantage of a broadcast mechanism if certain criteria are met; also shared

memory is divided into banks to avoid sequential reads and writes. However, broad-

cast mechanism is not available when accessing data from the global memory under

any circumstances; also the number of partitions in the global memory, to facilitate

concurrent access, is much less in number compared to the banks in shared memory.

It would be interesting to study the effects if certain changes can be made to the

model. Therefore, an extension to the current work could involve using a simulator

to redesign specific aspects of the programming and memory model to predict the

gain in performance if certain modifications can be incorporated.
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Appendix

Acronyms

AL-AL Adjacency List Using Array of Linked Lists

AL-AA Adjacency List Using Array of Arrays

AL-ALL Adjacency List Using Array Implementation of Linked Lists

AL-EG Adjacency List with Edges Grouped

AMD Advanced Micro Devices

API Application Programming Interface

BFS Breadth-First Search

B-S-UTM Balanced Strictly Upper Triangular Matrix

CPU Central Processing Unit

CRCW Concurrent Read Concurrent Write

CREW Concurrent Read Exclusive Write

CRN California Road Network

CUDA Compute Unified Device Architecture

EEN Enron Email Network

EREW Exclusive Read Exclusive Write

FSC Facebook Social Circles

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

HQT Hybrid Quadtree

ITG Internet Topology Graph

MPI Message Passing Interface
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OSN Online Social Networks

PAR Parent Array Representation

PEO Perfect Elimination Ordering

PRAM Parallel Random Access Machine

PQT Pure Quadtree

PRN Pennsylvania Road Network

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SNAP Stanford Network Analysis Project

SPMD Single Program Multiple Data

SM Streaming Multi-processor

S-UTM Strictly Upper Triangular Matrix

TRN Texas Road Network

UTM Upper Triangular Matrix
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