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CHAPTER I 

INTRODUCTION 

Bacteria of th~ 'genus Propionibacterium are Gram-positive, pleomorphic rods 

that tend to clump into "Chinese character" arrangements under certain conditions. They 

are anaerobic to aerotolerant and are generally catalase-positive. Members of this genus 

can be divided into tWo groups of organisms that differ in their natural habitats. One 

group, primarily found on human skin, is referred to as the "acnes group" of 

propionibacteria. The second group is often referred to as the "classical 

propionibacteria" or the "dairy propionibacteria". Members ofthis second group of 

bacteria are found in cheese and· d1;1iry products, silage, fermenting olives and other 

natural habitats. Fermentation products of these bacteria include large amounts of 

propionic and acetic acids. 

Due to the commercial importance of products produced by propionibacteria, it is 

desirable to know more about the genetics of these bacteria for future strain 

improvement. Only one group of researchers to date has reported being able to generate 

transformants of a Propionibacterium strain, an important first step to future genetic 

work with these bacteria. Unfortunately, workers in other laboratori~s have not been 

able to generate transformants using the published method or any other method, 

including protoplast transformation. Since the initial transformants were reported to 

have b~en produced by the use of a commercially available electroporation apparatus, we 

decided further work should include this method of molecular transfer. 
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The purpose of this investigation was to develop a method to generate 

transformants of propionibacteria that was repeatable, that used electroporation as the 

means of genetic transfer, and that would increase the transformation efficiency over that 

reported previously. The major components of the electroporation protocol that were to 

be studied in detail were; (1. optimium strain of Propionibacterium to electroporate, (2. 

electroporation buffer, (3. electrical field strength, ( 4. electrical pulse duration. A 

thorough study of plasmids that would replicate efficiently in strains of 

Propionibacterium was intended but was pre-empted by work related to the discovery 

that pC194 can insert into the Propionibacterium genome. 



CHAPTER II 

REVIEW OF LITERATURE 

Gene Transfer in Propionibacteria 

The development of gene transfer methods for genetic analysis and strain 

improvement i~Propionibacterium has.progressed slowly and few positive results have 

been reported. To date, only electroporation has been used successfully to transfer 

plasmid pGK12 into' Pr:opionibacterium jensenii (27). Low transformation efficiencies 

were obtained, about 3.2 x 101 transformants/J.t g of plasmid DNA, by electroporation 

with a field strength of 6.25 kV/cm and a capacitance of 25 J.LFarads (the actual pulse 

duration was not publis~ed, it is assumed to be between 3 and 20 milliseconds (msec) in 

length). Plasmid pGK12,was found to replicate autonomously in transformants. O~er 

gene transfer methods such as nat.urally.~mpetent transformation, competence-induced 
' 

transformation, protoplast transformation, conjugation, transfection, and transduction 

have been examined. Nevertheless, no· reports of successful gene transfer in 

propionibacteria using these other methods have appeared in the literature. 

Transformation occurs when exogenous DNA is taken up by a recipiep.t cell, 
' ' ' 

sphaeroplast, or protoplast and incorporated into either the chromosome or a plasmid by 

homologous recombination. Alternatively, the exogenous DNA may replicate as an 

autonomous plasmid. The ability of cells to take up DNA is called competence. The 

natural competence of certain bacteria is generally transient, occurring only during 

certain growth phases (usually towards the end of log phase) or after shifts in the 

nutritional status of the medium. This type of competence is associated with the 

3 



induction of the synthesis of various competence-specific proteins that may or may not 

be diffusible (communicable to other cells of its kind) ( 49). In some instances 

competence can 'be induced in cells that cannot undergo transformation under natural 

conditions. Whole cells ofEscherichia coli and other Gram-negative bacteria can be 

made competent with high (millimolar) concentrations of CaC12, sometimes accompanied 

by heat shock. Their sphaeroplastS can be made competent by low concentrations of 

divalent cations ( 49). Dimethyl sulfoxide (DMSO), potassium 2-N-morpholinoethane 

sulfonate, RbCl, MnC12, hexamine coba~t (III) chloride, glycerol, and polyethylene glycol 

(PEG) are all ch~micals normally found in competent cell preparation methods for E. coli 

(26). Gram-positive cells, which are often more difficult to transform, can first be 

treated with lysozyme to produce protoplasts and then mixed with polyethylene glycol in 

the presence of the transforming DNA. Transformed protoplasts can then be regenerated 

into viable cells (23, 49). Although a procedure for the production and regeneration of 

protoplasts of Propionibacterium freudenreichii has been developed, thus far, it appears 

that propionibacteria are recalcitrant to transformation by this method (3). 

To date, conjugation has not been reported as a gene transfer mechanism in 

propionibacteria. Bacterial conjugation refers to a donor cell transferring DNA to a 

recipient cell while the cells are in physical-contact. The donor characteristic is usually 

conferred to a recipient by the intracellular presence of a conjugative plasmid, although 

in some cases a transposon may mediate the conjugation ( 49). Conjugal transfer has 

been demonstrated in some group N streptococci in which lactose plasmids are 

transferred between strains (49, and references therein). Steele et al. (53) reported a Lac+ 

plasmid, pKB32, that was conjugally transferred by cointegrate formation with plasmid 

pJS88 inLactococcus lactis subsp. lactis 11007. The pKB32:pJS88 cointegrate 

formation and resolution by rec- independent mechanisms suggested to them the 

involvement of a transposable element. 
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Transformation of a bacteria by viral genomic DNA is termed transfection. 

Transduction, in contrast, occurs when a phage replicates in a donor cell and in the 

process some of its progeny virions encapsidate donor DNA (either chromosomal or 

plasmid). These progeny virions can then adhere to new host cells and transfer the donor 

DNA to the new cells ( 49). Raya et al. ( 44) demonstrated that phage t/J adh mediates 

plasmid transduction in Lactobacillus acidophilus ADH. The highest frequ~ncies of 

plasmid transduction were observed for the small plasmids pC194 and pGK12, which 

were transferred as whole pb1smids wit~ no deletions or rearrangements ( 44). 

Unfortunately, no such system has ever been reported for the dairy propionibacteria. 
~ 

The nearly complete lack of gene transfer systems for propionibacteria, except for 

the one reported case of transformation by electroporation (27), led us to expand on the 

initial success of the electroporation method in this study. 

Electroporation as a Gene Transfer Method 

Electroporation utilizes the fact that the cell membrane can act as an electrical 

capacitor that is unable to pass current, except through ion channels. Membranes 

subjected to high-voltage electrical fields temporarily break down, with the subsequent 

formation of pores in the cell membrane that are large enough to allow macromolecules 

(and smaller molecules such as ATP) to enter or leave the cell. The reclosing of the 

membrane is a natural decay process that can be delayed by keeping the temperature near 

00 C. It is tho"Qght that the physical, rather than the biochemical, nature of 

electroporation is most likely to account for its wide applicability ( 42). 
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Flourescent Dye Studies of Membranes 

During Electroporation 

Sowers and Lieber (52), in a study of the efflux of soluble, flourescent-tagged 

molecules out of erythrocyte ghosts loaded with flouresceinated dextran, found that an 

electrical pulse-induced loss of flourescence labels occurs in intervals. Large, immediate 

losses of the flourescent-tagged dextran molecules were seen ov~r a very short time 

interval, followed by little or no loss in a longer time interval following the first, short 

interval. This was taken as evidence that the electropores created in the membranes of 

the erythrocyte ghosts open to some peak radius for a set amount of time and then 

quickly reseal. In addition, during the electroporation, a cloud of flourescence appeared 

only outside the hemispheres of the erythrocyte ghosts closest to the negative electrode. 

This indicated that more, larger, or longer-lived pores were produced in that hemisphere 

of the ghost. However, in a similar study by Mehrle et al. (35) of the permeability 

properties of the plasmal~mma of oat mesophyll protoplasts, the application of a high 

intensity, short duration DC field pulse (1-2 kV/cm;20 J.ls duration) resulted in an 

immediate, distinct increase in flourescence which always started from that part of the 

protoplast directed towards the anode (positive electrode). It was first thought the 

discrepancy in the polarity may be" due to experimental differences and differences in the 

membrane properties (52). However, a more careful analysis of the problem revealed 

that if the tracer molecule is inside the cell (52) then it can exit only through electropores 

in the hemisphere facing the negative pole; if the tracer molecule is outside the cell (35) 

then it can enter the cell only through pores facing the positive pole (12). The best 

hypothesis to date to explain this phenomenon of molecular motion is electroosmosis (12 

and references therein). 

Electroosmosis (electroendosmosis) is the movement of a charged fluid, relative 

to a fixed medium carrying the opposite charge, under the influence of an electrical 
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gradient. In the case of a negatively charged cell membrane, the charge on the 

membrane surface leads to redistribution of the ions in the solution, forming a layer of 

positive ions near the negatively charged surface of the membrane. The electrical field 

causes motio~ of the positive ions accumulated about the negatively charged cell 

membrane (which can be considered to have a fixed position in relation to the ions in 

solution), creating hydrodynamic flow. For biological membrane surfaces which are 

negatively charged, the hydrodynamic flow is directed towards the negative electrode 

and away from the positive electrode. The net ion movenient causes a hydrodynamic 

flow of all molecules whic~ are nearby in solution, wrth the flow even being strong 

enough to carry negatively charged molecules away from the attraction, of the positively 

charged anode (12, 49). It is this mechanism which is now believed to be responsible for 

the successful movement of charged molecules (such as DNA and RNA) through the 

pores (created by electrically-induced membrane breakdown) and into the cell during an 

electroporation pulse. Diffusion and electrophoresis seem to be ruled out or reduced in 

importance as possible mechanisms for molecular transfer during electroporation due to 

their slow velocities of transfer and other _reasons (12). 

Membrane Permeabilization Relates Mathematically 

to Cell Size and Shape 

The factors involved in permeabilization of a biological membrane can be 

expressed in mathematical terms. A spherical, membrane-bound particle of radius r 

(which can be either a cell or an intracellular organelle) will be exposed to a voltage 

difference V across the membrane at any point P if placed in a plane electric field of 

strength E as given by the following equation: 

Equation 1 V=CrE(cos9) 
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where C is a constant and e is the angle made by point P relative to the direction of the 

field (Figure 1 ): 

Figure 1 

Vmax, the maximum. voltage difference, will develop across the membrane when the 

cosine of e = ( +) 1 or (~) ·1, i.e. the points on the sphere which are closest to the anode 

and the cathode (points A and B in Figure 1 ). This is in good agreement with the 

observation that pores have a tendency to form more readily at these points (12). The 

constant C is determined by the radius of the cell, the thickness of the membrane, and the 

relative electrical conductance of the membrane and the fluids within and outside the 

particle. This equation can be simplified. If the conductance of the membrane is much 

smaller than that of the internal and external fluid, and the thickness of the membrane is 

much less than the radius of the particle, then the value of C approaches a limit of 1.5 

with the following result: 

Equation 2 Vmax = 1.5 r E 

Equation 2 makes it apparent that the value of Vmax for a given electrical field is 

determined by the radius of the particle (24). This illlplies that small bacteria such as 

propionibacteria would require electroporation field strengths greater than those for 

larger bacteria or eukaryotic cells in order to bring Vmax up to the threshhold level 
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necessary for pore formation in the membrane. It also implies that all of the cells in a 

culture need to be of a uniform size and shape to electroporate uniformly and at a high 

frequency (24). 

Rate of Cell Lysis During Electroporation 

Can Be Expressed Empirically 
' 

Several researchers have noted that high yields of transformants are usually 

achieved with electric field strength-pulse duration conditions which result in lysis of 

some of the cells (Q, 13, 21, 43). This knowledge can be helpful in establishing 

successful electrical operating parameters by constructing a lysis/viability curve: 

percentage of cell survival versus field strength. Above a critical field strength, lysis can 

begin quite suddenly. If the intensity of the field during electroporation is excessive, cells 

may lyse due to failure of the membrane pores to reseal or osmotic swelling which leads 

to excess tension in the membrane. The refative rate of lysing can be expressed by the 

following empirical relationship (21): 

Equation 3 L = 1 - (t/tJexp[ - (E - EJ/K] 

where Lis the relative rate of lysing, t is the treatment time (the product of the pulse 

width times the number of pulses, in microseconds), tc is the threshhold value for the 

treatment time in mi~roseconds, E is the applied electric field strength in kilivolts per 

centimeter, Ec is the threshold .value for the field strength in killivolts per centimeter, and 

K is a model constant. The species dependent constants are tc, Ec, and K. Typical values 

for bacteria are: tc =·35 J.lsec, Ec = 6 kV/cm, K = 6.3 cm/kV (21). While constants for 

the above equation are generally not determined for their particular bacteria by most 
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researchers, it does serve to show how the major variables involved in cell lysis by 

electroporation are related to one another. 

Applications of Electroporation to Bacterial Transformation 

Bacteria Successfully Transformed by Electroporation 

Numerous types of bacteria have been transformed by electroporation. Bringel et 

al. (8) compiled a long list of Gram-positive bacteria that have been reported to be 

transformable by electroporation; the list is reproduced below in Table I: 

Species 

TABLE I 

GRAM-POSITIVE BACTERIA TRANSFORMED 
BY ELECTROPORATION 

Reference 

Bacillus amyloliquefaciens Vehmaanpera (1989) FEMS Microbial 
Lett 61:165-170 

B. brevis 

B. cereusa 

B. circulans 

B. sphaericus 

B. thuringiensis 

Takagi et al. (1989) Agric Bioi Chern 
Tokyo 53:3099 
Shivarova et al. (1983) Z Allg Mikrobiol 
23:593-599 
Belliveau and Trevors (1989) Appl 
Environ Microbial 55:1649-1652 
Lian-Ying and Wong (1984) Chin J 
Antibiot 9:450-454 
Taylor and Burke (1990) FEMS Microbial 
Lett 66:125-127 
Mahillon et al. (1989) FEMS Microbial 
Lett 60:205-210 
Masson et al. (1989) FEMS Microbial 
Lett 60:273-278 
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Species 

Brevibacterium lactofermentum 

Enterococcus faecalis• 

Clostridium acetobutylicum , 

C. perfringens 

Corynebacterium glutamicum• 

Lactobacillus acidophilus 

L. casei 

L. fermentum 

L. plantarum 

Leuconostoc dextranicum 

L. lactis 

L. paramesenteroides 

L. innocua 

Listeria monocytogenes 

Pediococcus acidilactici 

Propionibacterium jensenii 

Staphylococcus 

Streptococcus cremoris 

TABLE I (Continued) 

Reference 

Haynes and Britz (1989) FEMS Microbial 
Lett 61:329-333 
Fiedler and Wirth (1988) Anal Biochem 
170:38-44 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
O~ltram et al. (1988) FEMS Microbial 
Lett 56:83-88 
Allen and Blaschek (1988) Appl Environ 
Microbial 54:2322-2324 
Wolf et al. (1989) Appl Microbial 
Biotechnol 30:293-289 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Chassy and Flickinger (1987) FEMS 
Microbial Lett 44:173-177 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Aukrust and Nes (1988) FEMS Microbial 
Lett 52:127-131 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
David et al. (1989) Appl Environ 
Microbial 55:1483-1489 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Luchansky et al. (1988) Mol Mierobiol 
5:637-646 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Luchansky et al. (1988) Mol Microbial 
5:637-646 
Augustin and Gotz (1990) FEMS 
Microbial Lett 66:203-208 
van der Lelie et al. (1988) Appl Environ 
Microbial 54:865-871 
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Species 

S. lactis3 

S.pyogenes 

S. sanguis Challis 

S. thermophilus 

Streptomyces lividansa 

TABLE I (Continued) 

Reference 

Harlander (1987) In: Ferretti and Curtiss 
III, Streptococcal genetics, 229-233, 
American Society for Microbiology, 
Washington, DC 
Powell et al. (1988) Appl Environ 
Microbial 54:655-660 
Suvorov et al. (1988) FEMS Microbial 
Lett 56:95-99 
Somkuti and Steinberg (1989) Curr 
Microbial 19:91-95 
Somkuti and Steinberg (1988) Biochimie 
70:579-585 
MacNeil (1987) FEMS Microbial Lett 
42:239-244 

a When protoplasts or lysozyme-treated cells were electroporated 

While the above list is not entirely complete, it does demonstrate the rapid 

increase in the use of electroporation for the transformation of Gram-positive bacteria 

within the last three to four years. Shivarova et al. ( 47) were the first researchers to use 

electroporation with Gram-positive bacteria. Bacillus cereus protoplasts were given 

three 5 Jls pulses of 14 kV/cm, increasing the transformation frequency over the older 

PEG-induced protoplast transformation method. The earliest report encountered of 

electroporation of intact bacterial cells was by Harlander (18). She was able to transform 

intact cells of Streptococcus lactis to an efficiency of about 104 transformants/fA. g of 

DNA While improving the protocols for the electroporation of Gram-positive bacteria is 

gradually increasing transformation frequencies for these bacteria it will probably be 

some time before a majority of strains will be able to match the high transformation 
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efficiencies, consistently 109 to 101° transformants/ug of DNA, seen for Escherichia coli 

strains (14). Other Gram-negative bacteria reported to have been successfully 

electroporated are Salmonella typhimurium (39), S. typhi (39), Vibrio cholerae (31), 

Pseudomonas aeruginosa (13, 16), P. putida (17), Campylobacter jejuni (37), 

Bacteriodes ruminicola (55), B. uniformis (55), Bordetella pertussis (59) and, B. 

parapertussis (59). 

Factors that Affect Transformation by Electroporation 

Effect of Field Strength 

Many researchers have found that as the field strength (kV/cm) of the 

electroporating pulse was increased the transformants/J.Lg of plasmid DNA and the 

percentage of cells killed also increased (9, 13, 43). On the other hand, an increase in 

field strength may lead to a decrease in transformation efficiency (so long as the pulse 

length is held constant) due to excessive cell death (30, 32, 51). Some researchers 

suggest that a point on the survival curve (variation of viable cells with increasing field 

strength) where a significant amount of kill is noted may be a good point to expect 

efficient electroporation (10, 29). In contrast, separate studies of Bordetella pertussis 

(59) and Campylobacter jejuni (37) showed no statistically significant reduction in cell 

viability even at the highest field strengths applied, which were 25.5 kV/cm and 12 

kV/cm respectively. This suggested that, for these strains at least, lethality is not 

necessarily linked to efficient transformation. It should also be noted that the field 

strength necessary for maximal transformation varies from strain to strain (10). 

Occasionally, an apparent increase will be seen in the numbers of surviving 

colony forming units with increasing field strength. This was observed with 

Lactobacillus casei which grows in chains of 10 to 20 cells, and with Lactobacillus 
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plantarum. It may be that the apparently higher numbers resulted from electroporation­

induced separation of cells rather than a net increase in the number of viable cells (8, 10). 

Effect of Pulse Duration 

Pulse duration is another key element in the efficient electroporation of bacteria. 

Intact cells of Lactococcus lactis subsp. lactis were electroporated at an electric field 

strength of 17'kV/cm and a pulse duration of 5 ms to obtain the highest transformation 

rate with a BTX Transfector 100 electroporation unit (33). Other investigators, using a 

Bio-Rad Gene-Pulser apparatus with a I:Iewlett Packard Co. digitizing oscilloscope to 

measure the pulse duration, found that a puis<:! length of from 3.5 to 5.0 ms worked well 

within a range of field strengths from 3.75 to 6.25 kV/cm (43). Still another group using 

the Gene-Pulser found that the optimal transforming conditions for Bacillus thuringiensis 

was a single pulse of 4.7 ms at a field intensity of between 8.75 and 10 kV/cm (32). 

Intact cells of Corynebacterium glUtamicum were found to transform most efficiently 

with an extremely short pulse duration of 450-500 J.Ls at a high field strength of 35-40 

kV/cm (57). 

In some cases research ha8 revealed a compensatory relationship between the 

optimal pulse duration and the field strength. The relationship between these two factors 

is considered to be inverse (5, 14, 37, 41). This can lead to a region of pulse length-field 

strength settings with similar abilities to transform. 

Effect of Multiple Pulses 

While some researchers report increased transformation efficiency using multiple 

pulses (~, 17) others find no increase in transformation efficiency (59) and some even see 

a decrease in transformation efficiency (54). It was apparent that in some cases the 
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transformation efficiency only dropped with multiple pulses because the sample was not 

cooled between pulses, resulting in temperatures high enough for cell death (17, 43). 

Shape of the Pulse Waveform 

Two types of waveforms are commonly used for electroporation: square and 

exponential decay. Of the two, the exponential decay waveform is used most often. A 

square wave is produced by rapidly increasing the voltage to the desired amplitude, 

holding the specified voltage for a controlled time (pulse width), and quickly dropping 

the voltage to zero, giving the pulse its square shape. Exponential decay waveforms, on 

the other hand, are generated when the charge from a capacitor is directed to a sample 

placed between two electrodes; the voltage across the electrodes is raised rapidly to a 

peak voltage (known as the initial voltage, V 0 ), and declines immediately in a smooth 

curve downwards (exponential decay). The pulse length is defined as the time (in 

seconds) it takes for the voltage to decline to 1/e, or approximately 37% of the peak 

value of the voltage. The voltage gradient between the electrodes, i.e. the electric field 

(E) is described by: 

Equation 4 E=V/d 

where E is measured in kV/cm, Vis the voltage in kV, and dis the distance between the 

electrodes in em. The time constant is defined as: 

Equation 5 -r=RC 

where t is measured in seconds, R is the resistance in the system in ohms (0 ), and C is 

the capacitance in farads (F). Larger capacitors require longer times to discharge through 

a given resistance and any given capacitor will discharge more slowly through a higher 
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resistance. The time constant (or pulse duration) can be adjusted by changing the size of 

the capacitor in the circuit, by changing the resistance across the sample chamber, or (if 

available with the given equipment) by selecting a different size of parallel resistor ( 40). 

Although the bulk of experimentation with electroporation up to this point has 

been performed with exponential decay equipment, there are at least two reports in the 

literature that indicate higher numbers of transforma:Qts were obtained with apparatus 

generating a square pulse (8, 15). 

Electroporation Buffers 

The ionic strength of the buffer used to suspend cells during electroporation 

affects the pulse length an~ the transformation efficiency. Using a BTX Transfector 100 

adjusted for a theoretiGal pulse length of 5 ms, a field strength of 17 kV /em, and a 

Lactobacillus lactis subsp. lactis cell suspension, buffers of different ionic strength were 

compared. The actual pulse length was found to vary from 0.60 msec with a highly 

conductive buffer (0.5 M sucrose, 1 mM MgCl2, 7 mM ~HP04-KH2P04, pH 7.4) to 

5.53 msec with a suspending solution of low electrical conductivity, like double distilled 

H20 (ddH20). Transformation efficiency had a tendency to decrease as the voltage was 

increased with the highly conductive buffers but the low conductivity of ddH20 allowed 

for a large increase in electroporation efficiency (33). In contrast, a study by Brigidi et 

al. (7) showed an increase in transformation efficiency with increasing buffer strength up 

to 1 x concentration using HEB (272 mM sucrose, 1 mM MgC12, 7 mM HEPES (N-2-

hydroxyethylpiperazine-N'-2-ethanesulphonic acid), pH 7.4) and PEB (272 mM sucrose, 

1 mM MgCl2, 7 mM potassium phosphate, pH 7.4) to electroporate Bacillus subtilis 

cells. Past 1 x concentration of PEB and HEB there was a significant decrease in 

transformation efficiency. Oddly, at the 1 x concentration it was the more conductive 

PEB buffer that gave higher transformation efficiencies over HEB (7). Bonamy et al. (5) 
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were able to achieve high transformation efficiencies (more than 107 transformants/~g 

DNA) with corynebacteria strains using 10% glycerol as the electroporation medium. 

Dower et al. (14) were able to transform E. coli up to 1010 transformants/ ~ g DNA with 

the same medium. Liebl et al.(25) found 10% glycerol gave three times the number of 

transformants compared to 10% sucrose when used to wash and electroporate 

Corynebacterium glutamicum cells. Haynes et al. (19) had success with a slightly higher 

level of glycerol, 15%. Chassy and Flickinger (10) used a HEPES buffer (7 mM 

HEPES, 272 mM sucrose, 1 mM MgC12, pH 7.4) to achieve electroporation in the 104 

range of efficiency with cells of Lactobacillus casei. Cells of Rhodococcus fascians 

were transformed to an efficiency of 103-1 Q4 CFU I~ g of DNA using water as the 

electroporation medium but a 3- to 10-fold increase in transformation efficiency was seen 

with the use of a 30% solution of polyethylene glycol with a molecular weight of 1000 

(PEG 1000) (11). An electroporation medium of25% (w/v) PEG (MW 6,000) was 

found to significantly increase the transformation, up to 10-fold, of Lactobacillus casei 

IAM1045 with plasmid pAM~l-1 DNA (38). Mahillon et al. (30) found that omitting 

PEG from the electroporation suspension decreased the transformation frequency of all 

Bacillus thuringiensis strains tested, except strain HD12 which transformed 100 times 

more efficiently in water. In a comparison of PEG having different molecular weights 

(PEG 400, PEG 1000, PEG 6000, and PEG 20,000), PEG 1000 performed best with 

strains of Bacillus thuringiensis (30). Solioz and Waser (50), on the other hand, found 

sucrose, polyethylene glycol, and glycerol had no marked effect on the transformation 

efficiency of Enterococcus hirae electroporated with plasmid DNA. 

Effect of Monovalent and Divalent Cations in the Electroporation Medium. Addition 

of 1 mM MgC12 to the electroporation buffer led to significant improvements in 

transformation efficiencies when electroporating Pseudomonas aeruginosa with plasmid 

DNA (13). Traces (0.1 mM) of MgC12, CaC12, and EDTA lowered the transformation 
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efficiency 10- to 100-fold for Enterococcus hirae. NaCl and K2S04 were only slightly 

inhibitory at those concentrations (50). Decreased transformation frequencies were also 

seen when low levels ofMg+2, Ca+2, and Mn+2 were included in the electroporation 

buffer of Lactobacillus casei (38). 

Effect of Buffer pH. When electroporating cell suspensions of Lactobacillus casei 

IAM1045 (38), changing the pH over a range of 6 to 8 with 8 mM sodium phosphate 

buffer and from pH 8 to 9 with 8 mM Tris-HClbuffer resulted in a moderate increase in 

transformation frequency with increasing pH. Very little attention, if any, has been paid 

to this factor by most researchers. 

Effect of DNA Concentration During Electroporation 

In some cases, as the plasmid DNA concentration during electroporation increases 

the total number of transformants will increase (30, 33), but in other cases the number of 

transformants will level off at high DNA concentrations (33). Interestingly enough, 

some strains of bacteria with certain plasmids show that the number of transformants 

recovered are not directly proportional to the DNA concentration and may even decrease 

as the amount of DNA is increased (LJ-3). 

Effect of Cell Concentration During Electroporation 

It is generally observed that an increase in the density of the cells being 

electroporated results in a subsequent increase in the transformation efficiency (5, 14, 

25). On the other hand, if the concentration of the cells is so great as to increase the 

ionic strength of the suspension, then excessive heating of the cell suspension, a higher 

incidence of arcing, and a decrease in the transformation efficiency can occur (5, 25). It 

is also sometimes observed that the yield of transformants will increase with increasing 
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cell concentration up to a certain point and then level off, suggesting that the DNA level 

may be a limiting factor in some cases (5). 

Type of Plasmid 

The type of plasmid used in an electroporation experiment will affect the ability 

to recover transformants. The plasmid that transformed Lactobacillus plantarum CCM 

1904 the best was pGK12, which is based on a lactococcal replicon, pWVOl. Good 

results were also obtained with plasmids pC194 and pNZ12, but plasmid pULPS based 

on a Lactobacillus plantarum replicon did not transform Lactobacillus plantarum as 

efficiently as the above heterologous plasmids. This may be due to the fact that pULPS 

plasmid DNA used in this experiment was amplified in E. coli JM103, and an unknown 

restriction-modification system may be lowering the transformation efficiency in this 

case. All of the plasmids tested were based on replicons replicating by way of single 

stranded intermediates (S). Silke et al. ( 4S) used the broad host range plasmid vectors 

pNZ12 and apAMf31 to perform their initial electroporation experiments. 

Transformation efficiencies were as high as 4 x 103 for pNZ12 but only 2 x 1()2 for 

apAMf31. It is generally a good idea to electroporate using broad host range vectors 

known to function in species related. to the target strain when conjugation, conjugative 

mobilization, or the existence of a native plasmid with a suitable marker is not available 

as an alternative. Traits prerequisite for a plasmid to be considered a good vector are (1. 

small s~ze, (2. presence in high copy number, (3. suitable restriction sites, and ( 4. a 

proven antibiotic resistance marker (36). pC194 is such a vector and has been widely 

used in electroporation experiments ( 4, 6, 7, S, 27, 2S, 30, 32, 56). Over 5 x 106 

transformants/ Jl g of pC194 DNA were obtained with Bacillus thuringiensis cells (32). 

In a different study, seven strains of Bacillus thuringiensis were transformed by 

electroporation with eight different plasmids. Plasmid pC194 accounted for the greatest 
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number of transformants for four of the strains in the study. The transformation 

efficiency was less than four times lower for pC194 compared to the efficiencies of the 

other seven plasmids when electroporated with the remaining three strains of Bacillus 

thuringiensis (6). Similar results were seen by Mahillon et al. (30) with pC194 

consistently yielding higher transformation efficiencies than three other plasmids 

(including pE194) when tested with 21 strains of Bacillus thuringiensis. 

Plasmid Size May Affect Transformation. The size of the plasmid DNA used in an 

electroporation experiment may or may not affect transformation efficiency. Because of 

its smaller mass, plasmid pVA736 (7.6 kb in size) was taken up more efficiently than 

pAM(31 (26.5 kb) in Streptococcus sanguis Challis (51). However, the transformation 

frequency of lysozyme-treated Streptococcus lactis LM0230 electroporated with 

plasmids pLSl (4.4 kb), pMU1328 (7.4 kb), and pAM(31 (26.5 kb) showed no 

relationship between plasmid size and transformation efficiency (43). Similarly, Bacillus 

cereus 569 UM20-1 cells were electroporated with the chloramphenicol resistance 

plasmid pC194 (2.8 kb) and with a 200 kb mercury-resistant plasmid from Bacillus 

cereus strain 5 with comparable frequencies ( 4). 

Effect of Plasmid Form on Transformation. The effect of the plasmid form on 

transformation efficiency has been studied by several groups of researchers. In one 

study, Staphylococcus epidermidis was electroporated with equal amounts of either 

supercoiled (ccc), Hindlll-digested (linear), or religated (open circular) pC194 DNA. 

The supercoiled pC194 gave the highest transformation efficiency (1.2 x lOS), followed 

by re-ligated pC194 (2.0 x 104). Linear pC194 yielded only 85 transformants/J.tg DNA, 

indicating the circular forms of pC194 greatly increased the transformation ability of the 

DNA (2). Park and Stewart (41) had similar findings with Listeria monocytogenes. 

They incubated pCKl ccc plasmid DNA with various concentrations of DNA 
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topoisomerase I, with a resultant decrease in the transformation efficiency of the most 

relaxed DNA to a level of only 40% that of the native supercoiled form. In addition, 

restricted and religated plasmid DNA gave only 22% of the transformants seen with 

supercoiled pCKl. If~ however, the ligated DNA was given limited treatment with DNA 

gyrase to introduce negative supercoils into the DNA template, a two-fold stimulation in 

transformation efficiency could be obtained over restricted and religated plasmid DNA. 

Plasmid molecules given a superhelicity above that of the native plasmid transformed 

less efficiently, while linearized DNA gave no transformantS. 

Restriction-Modification Systems 

Transformation by electroporation appears most likely to be achieved if attention 

is paid to potential problems ~rising from restriction systems in the bacteria to be 

transformed. Allen and Blaschek (1), in an attempt to transform two strains of 

Clostridium perfringens that would not otherwise transform with pAK201 DNA , 

methylated the adenosine and cytosine bases in the transforming DNA by passage 

through E. coli DHS-alpha. The pAK201 DNA was confirmed to be protected by 

methylation by the inability of Mbo I to digest pAK201. The attempt failed, however, 

because crude lysates from the non-transformable strains were still able to degrade the 

modified pAK201 DNA. Restriction barriers have also been reported between 

Corynebacterium glutamicum, Brevibacterium lactofermentum, and E. coli. Although C. 

glutamicum and B. lactofermentum are related to the extent both of them can use the 

origins of replication of pUL340 and pCSL17, the barrier to transformation is as great 

between these two species as that seen for DNA derived from E. coli (20, 58). One 

approach to overcome restriction-modification systems is to use mutation with 

nitrosoguanidin (NTG) to isolate restriction deficient mutants which could be efficiently 

transformed with foreign DNA (25). The use of restriction minus mutants in the 
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electroporation of Salmonella species resulted in 102 increases in transformants over that 

of restriction positive strains (39). In addition to restriction-modification systems, many 

bacteria produce extracellular nucleases that can degrade the transforming DNA before it 

enters the cell. If foreign DNA should gain access to the inside of the cell it still faces 

the possibility of being degraded before a functional protein can be produced. 

Consequently, decreased numbers of transformants may be recovered. 

Physiological State of the Cells May Affect 

Their Ability to be Transformed 

While many factors are influencial in transforming bacteria during 

electroporation, one,of the most obvious factors is the growth phase of the bacteria. 

Cells in the stationary phase were reported to give a marked increase in transformation 

efficiency at high cell concentrations (5 x 1010) for Lactococcus lactis subsp. lactis (33). 

In contrast, other researchers studying the same organism found cells from the early­

exponential phase to give a higher number of transformants under their experimental 

conditions ( 43). High transformation efficiency was found with cells of E. coli in the­

mid-log phase (14). And, to complete the picture, culture age did not appear to be a 

significant factor in the electroporation of Streptococcus sanguis Challis or Bacillus 

thuringiensis cells (30, 51). 

Dilution. Expression Time. and Recovery 

Medium after Electroporation 

Mcintyre and Harlander found an expression period of 2 hours in nonselective 

media after electroporation gave consistently better results than no expression period 

while studying Lactococcus lactis subsp. lactis. In addition, if the electroporated sample 

was diluted 1:100 after electroporation the number of survivors increased 3 to 4 times the 
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initial value with a comparatively much larger (30 to 50 times) increase in transformant 

numbers over the initial values (33). Haynes and Britz (20) found similar phenomena 

when electroporating Corynebacterium glutamicum cells. Dilution of the C. glutamicum 

cells in distilled water immediately after being electrically pulsed but before decimal 

dilution in buffer resulted 'in substantially fewer transformants compared to immediate 

dilution in buffer after the pulse. This was taken as evidence that transformants arising 

after electroporation 'were osmotically and/or electrochemically fragile. The number of 

transformants increased five-fold after a recovery period, and transfer to a high ionic 

strength, osmotically-protective medium also increased the number of transformants 10-

to 103-fold. The fragility was eliminated after a recovery period of up to one hour (20). 

In contrast, after electr~poration of Bacteroides ruminicola, no significant difference in 

transformant recovery occurred when the cells were incubated 0 to 4 hours in antibiotic 

free medium before plating onto selective medium (55). The best results with Bacillus 

amyloliquefaciens occurred when the cells were immediately transferred into expression 

medium and diluted 1:10, followed by 1 to 1.5 hours incubation to allow phenotypic 

expression of their plasmid DNA (56). 

Sample Temperature Before Electroporation 

Cells of Bacillus amyloliquefaciens held at 0° C for 20 to 30 minutes before 

pulsing were found to give optimal transformation efficiencies (56). ~lis of E. coli 

behaved in a similar manner, yielding 2 to 10 times the number of transfectants when 

precooled to 00 C as opposed to electroporating at room temperature (54). On the other 

hand, cells of Corynebacterium glutamicum demonstrated increased transformant yields 

with increased prepulse temperatures up to 300 C (57). 

23 



Other Miscellaneous Parameters to Investigate 

for Optimum Transformation 

Growth in certain media or treatment of cells with various substances before 

electroporation often results in improved recovery of transformants. Some of the growth 

media additives investigated by various researchers were Tween 80 (19), glycine (19, 20, 

22, 33), isonicotinic acid hydrazide (20), DL-threonine (33), and penicillin (41). Growth 

in defined media has been reported to increase electroporation efficiency also (34). Pre­

treatment of cells with lysostaphin ( 46), lysozyme (57), and freeze-thaw cycles (16, 57) 

also aided in transformation with some strains. 

Future Prospects for Gene Transfer in Propionibacteria 

While there is' one report in the literature of Propionibacteriumjensenii having 

been transformed by electroporation with plasmid pGK12 DNA at low transformation 

efficiencies (27), to date, no other researchers have reported being able to transform any 

species of the genus Propionibacterium using the previously published electroporation 

protocol or by any other method. While this is discouraging at first, it must be realized 

that an extremely large number of variables are able to influence the outcome of an 

electroporation experiment. The first considerations are to determine the best strain of 

propionibacteria to use, the field strength to use and the pulse duration that gives the best 

transformation efficiencies. The type of transforming DNA is, important also, and initial 

experiments should include the same DNA or DNA with characteristics similar to that 

which has already been reported as successful. Screening of cultures should be 

performed to determine whether or not they degrade the transforming DNA with 

nuclease enzymes. These and many other factors were considered in the present study, 

with some success. While electroporation is one approach, another that would be worth 

investigating would be conjugation. 
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It has been reported that E. coli 817-1, which carries a derivative of the RP4 

mobilization plasmid in its chromosome, could successfully transfer pECM1, an E. coli­

Corynebacterium glutamicum shuttle vector to C. glutamicum by conjugation ( 45). The 

pECM1 shuttle vector only worked well with strains of bacteria that were closely related 

physiologically to C. glutamicum .. However, shuttle vectors based specifically on a 

Brevibacterium linens replicon were successfullr mobilized from E. coli 817-1 to B. 

linens using the same protocol. Perhaps a similar system can be developed in the future 

that would allow for the conjugal transfer of genetic material to propionibacteria. 
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ABSTRACT 

A vital step in further studies of the genetics of the genus Propionibacterium is 

the development of a reliable DNA transfer system. Using electroporation, plasmid 

pC194 from Staphylococcus aureus was successfully introduced into several strains of 

Propionibacterium. The plasmid contains a gene coding for chloramphenicol resistance. 

Propionibacterium freudenreichii P1 was chosen to determine the optimal conditions for 

electroporation. Parameters found to influence the electroporation-induced 

transformation frequency were field strength, pulse duration, and electroporation buffer. 

The most efficient transformation of strain P7 was achieved with cells suspended in 

ddH20 given an electric pulse with a field strength of 5.4 kV/cm and a pulse duration of 

5 msec. Use of these conditions yielded 1.5 x 102 transformants per J.Lg of DNA. To 

date, three other strains have been successfully transformed with pC194 using these 

conditions. Isolation of plasmid DNA from putative transformants and subsequent 

agarose gel electrophoresis failed to confirm the presence of an autonomous plasmid. 

Southern hybridizations indicated that pC194 was homologous to the chromosomes of 

the parent strains of Propionibacterium acidipropionici and Propionibacterium 

freudenreichii, which were sensitive to chloramphenicol. Integration of pC194 into the 

Propionibacterium chromosome was verified by comparing hybridization signals 

detected between parental and transformant DNA digested with Hinf I, EcoR I, and Hind 

III. 
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INTRODUCTION 

The genus Propionibacterium includes four species isolated from cheese and 

dairy products. These are often referred to as the "dairy" or "classical" propionibacteria. 

Morphologically, these strains are Gram-positive, nonmotile, nonsporing, pleomorphic 

rods, often diptheroid or club-shaped and may be found as single cells, pairs, or short 

chains. Some species produce extracellular slime (3). Propionibacteria are used 

industrially as starter cultures in Swiss cheese and fermented dairy product-based drinks, 

in the production of vitamin B 12, and in the production of propionic acid (15). High 

yields of B12 have been obtained by Propionibacterium freudenreichii and 

Propionibacterium shermanii; the crude B12 product is used as a feed additive while 
/ 

further purification yields a product suitable for human use (2). 

The development of dependable 'gene transfer systems and cloning vectors for 

propionibacteria will allow for future applications of recombinant DNA techniques in 

strain improvement programs. To date, th~ only published report of successful gene 

transfer in propionibacteria has been by electroporation-mediated transformation of 

Propionibacterium jensenii with the plasmid pGK12 (11 ). In this study we report the 

transformation by electroporation of Propionibacterium freudenreichii, and 

Propionibacterium acidipropionici with pC194, a 2.9 kb, broad host range plasmid from 

Staphylococcus aureus coding for chloramphenicol resistance (8). Response surface 

regression analysis was performed to determine a region of optimum field strengths and 

time constants for electroporation. Restriction endonuclease digestion and Southern 

hybridization analysis were used to demonstrate insertion of pC194 into the genomes of 

the tested strains and the existence of native Propionibacterium homology with pC194. 
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MATERIALS AND METHODS 

Bacterial Strains and Culture Conditions 

All strains of Propionibacterium were obtained from the culture collection 

of the Department of Animal Science and were routinely grown in sodium lactate broth 

(NLB) at 32oc (7). Strains of Propionibacterium grown to mid-log phase in 10 ml of 

NLB at 320C provided a 1% inoculum for cultures from which plasmid or chromosomal 

DNA was to be extracted. Cultures of Propionibacterium for DNA isolation were 

incubated at 320C until they reached late-log phase (generally, 24-48 hours). Solid 

media (NLA) contained 1.5% agar. Transformants were selected on NLA containing 20 

J.Lg of chloramphenicol per ml and were t~ansferred to NLB containing 5 to 20 J.lg/ml of 

chloramphenicol for propagation before harvest and storage. Putative transformants 

were challenged with 25 to 1000 J.lg/ml of chloramphenicol in NLB to examine their 

relative resistance to chloramphenicol. Table 1 lists the strains of Propionibacterium 

used in this study. 

Staphylococcus aureus ISP 1386 containing the plasmid pC194 was propagated 

. at 37oc in trypticase soy broth (TSB) containing 5 J.1 g!ml of chloramphenicol. One 

percent inoculums from 24 hour cultures of S. aureus ISP 1386 grown in TSB containing 

chloramphenicol were used to inoculate brain-heart infusion (BHI) broth cultures 

containing 5 J.1 g!ml of chloramphenicol. Cultures of S. aureus ISP 1386 in BHI broth 

containing 5 J.lg/ml of chloramphenicol were grown at 37oc to an absorbance of 1.5 at 

600 nanometers (~00) before harvest and subsequent plasmid isolation procedures. All 

cultures were stored at -700C in their respective broth medium containing 10% glycerol. 
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Table 1. Propionibacterium strains used in this study 

Genus and species Strain Plasmid Content 

Propionibacterium acidipropionici P3 pRGOl 

Propionibacterium acidipropionici PS-3 Cured derivative of strain PS 

Propionibacterium acidipropionici P9 No plasmid 

Propionibacterium freudenreichii P7 No plasmid 

Propionibacterium freudenreichii P93-37 Cured derivative of strain P93 

Propionibacterium freudenreichii P104 No plasmid 

Propionibacterium jensenii P38 pRGOl, pRGOS 



DNA Isolation and Purification 

Plasmid DNA was isolated from S. aureus using the preparative scale method of 

Jones and Pattee (9). Large-scale isolation of plasmid DNA from E. coli was performed 

by the cleared-lysate method (12). 

Putative Propionibacterium transformants were. screened for plasmid DNA using 

the microscale screening procedure previously described (14). A preparative scale 

plasmid DNA isolation procedure was used to·confirm the absence of plasmids in 

transformant strains (14). Chromosomal DNA from Propionibacterium for hybridization 

analysis was isolated .from parent and transformant strains using a modification of the 

preparative plasmid isolation procedure. Briefly, the proced.ure was as follows; cells 

from 50 ml of a concentrated propionibacteria cell suspension previously adjusted to an 

~00 of 20 (i.e. a 1:100 dilution of the concentrated cells gave an absorbance reading of 

0.2 at 600 nanometers) in NLB were harvested by centrifugation at 12,000 x g for 10 

minutes. Parent and putative transformant cells of strain P7 were an exception and 

required 25 minutes of centrifugation. The cell pellet was resuspended to a final volume 

of 25 ml of a solution containing 15% sucrose, 50 mM Tris-HCl and 50 mM Na2EDTA 

at pH 8.0. Lysozyme solution (100 mg/ml of lysozyme in a solution of 50 mM Tris-HCl, 

10 mM Na2EDTA, pH 8.0) was added to a final concentration of 20 mg/ml. The samples 

were vigorously mixed and then incubated 1 hour at 32° C. Pronase E (10 mg/ml in a 

solution containing 50 mM Tris-HCl, 5 mM Na2EDTA and SQ mM NaCl at pH 8.0, 

preincubated for 1 hour at 37 ° C) was added to a final concentration of 1 mg/ml. The 

mixture was gently mixed and incubated for l hour at 32° C. Following incubation, 11.5 

ml of 0.25 M Na2EDTA at pH 8.0 were added with gentle mixing, and the tube 

containing the mixture was held for 15 minutes, nearly submerged, in a container of 

crushed ice (on ice). This was followed by the addition of 11.5 ml of 20% (w/v) sodium 

dodecyl sulfate (SDS) in 50 mM Tris-HCL, 25 mM Na2EDTA, pH 8.0, with inversion 
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and gentle mixing of the mixture. This mixture was chilled on ice for 15 min. 

Following incubation, 7.5 ml of 5.0 M NaCl was added with gentle mixing. This was 

followed by the addition of 70 ml of phenol saturated with 3% NaCl, 0.1 M Tris-free 

base (pH= 8.0). The mixture was shaken vigorously and held for a period of 5 minutes 

at room temperature. To ensure phase separation, 20 ml of chloroform was added 

followed by vigorous shaking. The phases were separated by centrifugation at 12,000 x 

g for 15 min, the aqueous phase was removed and extracted with 75 ml of 

chloroform:isoamyl alcohol (24:1), followed by centrifugation at 12,000 x g for 15 min. 

Mter centrifugation, the aqueous phase was removed and two volumes of 95% ethanol 

(= 160 ml) were added. The sample was gently mixed and stored overnight at- zoo C. 

The precipitated DNA was harvested by centrifugation at 12,000 x g for 15 min. The 

supernatant was discarded and the DNA pellet was thoroughly dried before the addition 

of 14 ml of a solution of 10 rp.M Tris-HCl, 1 mM Na2EDTA, pH 7.5. 

All preparative scale DNA samples were purified by CsCl-ethidium bromide 

density gradient centrifugation (12). The purified DNA was extracted with isopropanol 

saturated with 5 M NaCl to remove the ethidium bromide. It was desalted and 

concentrated by using a Centricon-30 microconcentrator (Amicon Corp., Danvers, MA.). 

Electroporation Procedure 

Plasmid-free strains of propionibacteria were grown to the appropriate growth 

phase in NLB. The cells.were harvested (12,000 x g for 10 minutes) and washed three 

times in aliquots of electroporation buffer equal to l/20th the volume of the broth culture 

before harvest (the buffers examined are listed in Table 2). An exception to this was 

strain P7 which, due to the production of extracellular slime, required 25 minutes of 

centrifugation to form a pellet firm enough to allow complete recovery. The washed cell 

pellet was resuspended to 1/20th the original volume in the same buffer to be used for 
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Table 2. Electroporation Buffers 

Buffer 
Number 

Composition 

1.) 10% glycerol, 0.2 mM K2HP04, pH 7.5. 

2.) 15% glycerol, 0.2 mM K2HP04, pH 7.5 

3.) 0.2 mM KzHP04, pH 7.5. 

4.) 272 mM sucrose, 1 mM MgC12, 7 mM Hepes, pH 7.3. 

Reference 

Calvin and Hanawalt [10] 

Calvin and Hanawalt [10] 

Calvin and Ha~awalt [10] 

Luchansky et al. [5] 

5.) 272 mM sucrose, 1 mM MgC12, 7 mM KzHP04-KH2P04, Luchansky et al. [5] 
pH 7.4. 

6.) 270 mM sucrose, 1 mM MgC12, 5 mM NazHP04, pH 7.4. Allen and Blaschek [11] 

7.) 0.5 M sucrose, 1 mM MgC12, 7 mM KzHP04-KH2P04, Powell et al. [12] 
pH 7.4. 

8.) Milli-Q(R)deionized H20 (18 MQ·cm at 25° C). Mcintyre et al. [13] 

9.) through 14.): 30% (w/v) Polyethylene glycol (PEG, Mahillon et al. [14] 
Sigma Chemical Co., St. Louis, MO) 
of the following molecular weights 
in Milli-Q(R) H20; 

9.) 600, 10.) 1000, 11.) 1450, 

12.) 3350, 13.) 8000, 14.) 10,000 

15.) T10E1 (10 mM Tris-HCL, 1 mM Na2EDTA, pH 7.5) a 

a This buffer was used on a limited basis. Although it allowed for the recovery of 
transformants at low field strengths it caused excessive arcing at moderate field strengths. 
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electroporation and stored on ice for subsequent use. Cells prepared for electoporation 

were held on ice for no more than one hour. Cells of Propionibacterium strains that were 

to be frozen and thawed for later use in electroporation experiments were harvested and 

then washed five times in 1/10th the original culture volume of ddH20 (Milli-Q(R) 

deionized H20, Millipore Corp., Bedford, MA). The washed pellet was resuspended to 

1/20th the original volume in NLB containing 10% glycerol. One ml aliquots of the cell 

suspension were placed in microcentrifuge tubes, quick-frozen by submersion in liquid 

nitrogen, and stored at -700C. Frozen cultures were thawed on ice, washed three times in 
' 

the same volume of the appropriate, buffer and stored on ice prior to electroporation. One 

Jlg of pC194 plasm"id DNA (in 4 to 10 Jll T1oE1, pH 7.5) and 75 to 81 Jll of 

concentrated cells (for a total volume of 85 Jll) were added to a microcentrifuge tube 

(that previously had been cooled on ice) and were gently mixed. The bacteria-DNA 

mixture was transferred to a BTX Flatpack electroporation chamber (85 Jll capacity) 

(BTX, Inc., San Diego, Calif.) previously cooled by storage in a sterile, custom-made, 

aluminum rack which was kept on ice. The loaded chamber was then inserted into the 

isolation chamber and the cell-DNA mixture was electroporated with a single pulse of the 

desired field strength and duration. The majority of the work was performed with a BTX 

Transfector 100 with a BTX Power Plus unit for theoretical field strengths that varied 

from 0.89 to 43.39 kV/cm and theoretical pulse durations from approximately 100 Jlsec 

to 1 second. Due to the nuclease activity of the strains of propionibacteria studied, the 
I 

BTX Transfector 100 unit was pre-charged (not recommended by the manufacturer) 

before the sample was inserted and electroporated, reducing the amount of time the DNA 

was exposed to the cell suspension and maintaining the sample temperature. Later work 

was performed with the BTX ECM 600 using 1 mm gap,'85 Jll capacity cuvettes. The 

BTX ECM 600 allows for greater control over the pulse duration at extremely high field 

strengths and also charges rapidly, which eliminated the need to pre-charge the 
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electroporation unit before inserting the cuvette. The 1 mm cuvettes allow for more 

convenient and thorough sample chilling prior to electroporation. 

Immediately after the pulse was applied the cells were quickly flushed from the 

Flatpack chamber (or 1 mm cuvette) with 600 JJ.l of cold NLB to a test tube containing 

10 ml of cold NLB (approximately a 133 to 1 dilution of the electroporated cells). The 

cells were then held at least 10 minutes on ice, followed by 13 hours of incubation at 

32oc. The cells were harvested (6,000 x ~for 30 minutes), resuspended to 0.3 ml in 

NLB, and plated on three plates (100 Jll/plate) ofNLA containing 20 Jlg/ml of 

chloramphenicol. Plates were incubated in an anaerobic system (BBL<R> Gas Pack Plus; 

BBL Microbiology Systems, Cockeysville§ MD) for 25 to 35 days at 320C before 

colonies were large enough to count. Controls in which either the electric pulse or the 

plasmid DNA was omitted were included. Numbers of colonies arising on plates for the 

controls were considered to be a representative background level of spontaneous mutants 

and thus were subtracted from the numbers of transformants on the plates from the 

treatments. 

Parameters examined in the course of this study were electrical field strength, 

pulse duration, electroporation buffer, strains of Propionibacterium, and the growth 

phase of the cultures used. In addition, the use of fresh cells compared to frozen cells 

was examined as was the effect of varying the amount of pC194 plasmid DNA added 

during electroporation. Transformation efficiency was defined as the number of Cmr 

transformants (previously adjusted for the occurrence of spontaneous Cmr mutants) 

recovered per 1 Jlg ofpC194 transforming DNA Transformation frequency was 

defined as the number of Cm~ transformants/Jlg of pC194 transforming DNA /109 

colony forming units pulsed during electroporation. 
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Genomic analysis of pC194 transformants 

Chromosomal DNA isolated from parent and transformant strains was digested 

with EcoR I, Hind III, and Hinf I and separated on 0.9% agarose gels (50 volts for 13 

hours; 1.0 x: 0.045 M Tris base, 0.045 M boric acid, 0.001 M EDT A, pH 8.0 
< 

electrophoresis buffer (TBE)). DNA fragments were ~ansferred to nitrocellulose filters 

by the method of Southern (16). The pC194 probe was made by using a nick translation 

kit with biotin-7-dATP according to the manufacturer's instructions (BRL, Gaithersburg, 

MD). Plasmid DNA to be labeled was separated on a preparative agarose gel, excised, 

and electroeluted from the gel slice using an Elutrap chamber according to the 

instructions of the manufacturer (Schleicher & Schuell, Inc., Keene, N.H.). DNA 

fragments with homology to pC194 were detected using the BRL BluGENETM DNA 

detection system. Biotinylated A. DNA digested with Hind III served as a DNA standard 

for molecular weight determinations (BRL, Gaithersburg, MD). 

Sonication of Cells 

Concentrated, mid-log phase cell suspensions of strain P9, either frozen in 

electroporation Buffer 3 at -2ooc or freshly harvested and resuspended in electroporation 

buffer 6, were examined for a variation in numbers of colony forming units after the 

application of increasing amounts of sonication. Three milliliters of the cell suspension 

was added to a sterile, 4.5 mrVanguard CryosTM tube (Vanguard International, Neptune, 

N.J.) and held on ice during the sonication procedure. A Fischer(R) Sonic Dismembrator 

model150 (Artek Systems Corp., Farmingdale, N.Y.) adjusted to a dial setting of 60 and 

fitted with a micro-tip was used to apply 20 second bursts of sonication to the cell 

samples. The sonicator tip was cooled in sterile ddH20 after each 20 second burst. 

Portions of the cell suspension (100 Jll) were removed after each 20 second burst, 
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serially diluted, and plated on NLA. Plates were incubated for one week at 32DC before 

enumeration. 

Nuclease Testin~ 

Samples of DNA were mixed with 450 Jll of concentrated cell suspensions of 

three strains of propionibacteria, PS-3, P7, and P9 to detect the presence of extracellular 

nucleases. Cells from 24 hour cultures were harvested (12,000 x g, 10 minutes), washed 

twice in 1/20th the original culture volume with electroporation buffer,?, and 

resuspended to 1/20th the original volume in electroporation Buffer 7. One Jlg of DNA 

to be tested was added to each concentrated cell suspension and allowed to incubate on 

ice for 0, 5, 10, or 30 minutes depending on the trial. DNA samples included A., pUC19, 

and pRGOl. Following incubation, cells were pelleted by centrifugation ( 4 minutes at 

12,000 x g) and the supernatant containing the DNA was removed. To precipitate the 

DNA left in the supernatant, 1/10th (final) volume of 3M sodium acetate (NaAc) was 

added followed by two volumes of cold ethanol and incubation at -200C overnight. 

Precipitated DNA was harvested by cent~ifugation, dried, and resuspended in 40 Jll of 

T1oE1 before the addition of 10 Jll of tracking dye. DNA was separated in a 0.7% 

agarose gel (50 volts for 8 hours, 1.0 x TBE electrophoresis buffer). The gels were 

stained in ethidium bromide solution (0.5 Jlg/ml in distilled H20) for 45 minutes and 

destained in distilled H20 for the same amount of time before observation on a UV 

transilluminator. Controls consisted of 1 Jl g of test DNA with no exposure to the test 

reagents (except for the T1oE1 and tracking dye used to load the sample) and 1 Jlg of test 

DNA exposed to the test reagents for 5 minutes before agarose gel electrophoresis. 
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Statistical Analysis 

In the analysis of the first comprehensive field strength-time constant study, 

duplicate responses from separate days were collected for each randomized 

electroporation treatment and analyzed using the response surface regression analysis 

(RSREG) procedure of SAS (SAS Institute Inc, Cary, N.C.). The second comprehensive 

study of field strengths and time constants was analyzed using the general linear model 

(GLM) and regression (REG) procedures of SAS . 

The One-Way Analysis of Variance (ANOV A) and Two-Sample Analysis 

(Student's t) procedures of StatGraphics Ver. 2 (STSC Inc., Rockville, MD) were used to 

test for significant differences (95% level) in transformation efficiency between the 

growth phases of P7 and between fresh and frozen P7 cells respectively. Significant 

differences between the 'transformation frequencies of strain P7 growth phases were also 

analyzed by the ANOV A procedure. All ANOV A procedures were followed by LSD, 

Tukey HSD, and Scheffe multiple range analysis (95% level). 

RESULTS 

Preliminary Electroporation Experiments: Effects of Buffer 
Composition. Field Strength and Strain on 
Survival and Transformation Efficiency 

Preliminary transformation experiments were performed with strains P5-3, P7, 

P9, P93-37 and P104 at field strengths of 5.36, 12.5, and 16.07 kV/cm. The BTX T100 

was used with Flatpacks and the time constant was set at 5 msec for all treatments. The 

second set of preliminary transformation experiments was conducted with the same four 

strains by using the BTX T100 with the Power Plus module and Flatpacks. The field 

strengths tested were 24.1, 33.75, and 43.39 kV/cm with pulse lengths controlled by the 

conductivity of the cell suspension in buffer. All preliminary electroporations were 
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performed with 1 J.Lg of pC194 using cells harvested from the mid-log growth phase. 

The buffers examined were numbers 1, 3, 4, 6, 7, 8, and 9 through 15 (Table 2). 

A summary of the highest single-trial transformation efficiencies obtained for the 
-

five strains is presented in Table 3. The use of other electroporation conditions often 

resulted in transformants, but not to the degree noted in Table 3. Transformation results 

varied widely from strain to strain, with strain P7 producing more consistent high 

numbers of transformants under several different sets of electroporation conditions than 

any other strain. Figure 1 illustrates the effect of field strength on survival and 

transformation efficiency of strain P7. The results indicated that transformation 

efficiency decreased with a decrease in survival beyond a field strength of approximately 

4 kV/cm. Transformation efficiencies were much higher for buffer 8 than buffer 6. 

Examination of the effect of high field strengths on transformation efficiency are 
I 

shown in Table 4. Buffer 14, which was 30% (w/v) polyethylene glycol in ddH20, gave 

the best results for the high field strength conditions. Buffer 14 was the most viscous and 

waxy of the PEG buffers examined and aided in reducing arcing events and loss of 

sample from the Flatpack. Once again, buffers of low conductivity such as Buffer 8 and 

Buffer 14 gave higher transformation efficiencies. 

Occasionally, a slight increase in the number of transformants recovered 

appeared at or past the field strength where arcing occurred (approximately 13 to 16 

kV/cm when using a 5 msec theoretical pulse duration, depending on the buffer and 

strain). This increase never approached the optimum levels of transformants recovered at 

lower field strengths. This is felt to have occurred primarily due to the uneven 

application of the eleCtrical field to the cells, which is supported by survival curve data 

showing simultaneous small increases in the numbers of surviving colony forming units 

at field strengths that allow arcing. A small increase in transformants at field strengths 

and time constants that result in arcing should not be construed as meaning these would 

be good settings for future electroporation experiments. In general, buffers with a higher 
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Table 3. Electroporation conditions for transformation of Propionibacterium strains 

Strain Transformation efficiency a,d 

P7 a.) 1.5 x 102 

b.) 1.4 X 1()2 

c.) 1.4 x 102 

PS-3 1.0 X 1Q2 

P104 1.0 X 10° 

P9 0 

P93-37 1.3 X 101 b 

a Transformants per Jig of pC194 plasmid DNA. 

Conditions 

Buffer 8, 5.36 kV/cm, 
5 msec pulse. 

Buffer 14, 3.57 kV/cm, 
50 msec pulse. 

Buffer 14, 43.40 kV/cm, 
40 to 160 J.Lsec pulse c. 

Buffer 10, 24.1 kV/cm, 
40 to 160 J.Lsec pulse c. 

Buffer #4, 24.1 kV/cm, 40 to 
160 J.Lsec pulse c. 

No results. 

Buffer #4, 33.75 kV/cm, 40 
to 160 J.Lsec pulse c. 

b Only phenotypic evidence is available for this strain presently. 

c High field strengths using the BTX Power Plus unit resulted in very short pulse 
durations estimated to be in this range. 

d The single highest efficiency from at least two replications per treatment. 
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Figure 1. Survival compared to transformation efficiency with increasing field s-trength and different buffers using a 

BTX Transfector 100 and Flatpacks. Each electroporation was performed with 1 J.Lg of pC194 plasmid DNA mixed with a 1/20th 

volume concentrated cell suspe~ion of strain P7 mid-log cells, except for treatments establishing the SUrVival curves which did 

not include DNA. Theoretical field strengths examined for the survival curves were 0, 1.79, 3.57, 5.36, 7.14, 8.93, 10.71, 12.50, 

14.28, and 16.07 kV/cm. The theoretical time constant for all treatments was 5-msec. Data was not collected past the point of 

severe arcing. Standard error bars were included for transformation efficiencies except at points where only one trial was 

performed ·or whe~e arcing occurred frequently and only one data poii!t was obtained. The initial population (average of two 

replications) in Buffer 6 was 2.0 x 1010 c.f.u./ml and in Buffer 8 it was 1.1 x 1010 c.f.u./ml. 
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Table 4. Effect of buffer and very high field ~trengths on transformation of 
Propionibacterium freudenreichii strain P7 by electroporation 

Buffers 

Field Strength Milli-Q 30% PEG 10,000 5 mMNa2HP04 

(kV/cm) a H20 in dH20 Buffer 
(Buffer#8) (Buffer #14) (Buffer #6) 

24.10 33 111 0 

33.75 45 80 14.5 

43.40 31 13Bb 5b 

a Concentrated suspensions of mid-log phase cells of strain P7 electroporated with 1 Jl.g 
of pC194. The electroporation equipment used was a BTX T100 with a BTX Power Plus 
unit and 0.56 mm gap Flatpack electrodes. Field strengths above 16.07 kV/cm (achieved 
with the use of a Power Plus module) have a pulse length (controlled by the buffer 
conductivity) of approximately 40 to 160 flsec. 

b These treatments are single reps., due to arcing. All other values in the table are the 
means of two replications. 

48 



ionic strength, such as buffer 6, yielded lower numbers of transformants and arced at 

lower field strengths than buffers of lower ionic strength such as buffer 8. 

Effect of voltage and butTer on survival. Survival curves were determined 

using the first eight buffers listed in Table 2 and Propionibacterium strains PS-3, P7, and 

P9 to observe the effect of electroporation on cell survival. Survival curves of strain P7 

electroporated in buffer 6 and in buffer 8 are shown in Figure 1. In the 1 to 4 kV/cm 

range the number of surviving colony forming units actually increased over the number 

of input colony forming units, most likely the result of disruption of cell clumps. Further 

evidence that this cell clump disruption occurs was provided by the influence of 

sonication on numbers of c.f.u. (Figure 2). An increase in surviving colony forming 

units occurred more frequently and reached higher levels when cells were electroporated 

in the highly resistive buffers (such as Buffer 8) rather than highly conductive buffers 

(such as Buffer 6). The use of high ionic strength buffers resulted in more rapid declines 

in the number of surviving colony forming units past approximately 5 kV/cm field 

strength. 

The survival curve for strain PS-3 in buffer 8 (data not shown) was similar to the 

curve developed for strain P7 in buffer 6. Both of these curves indicated that arcing 

occurred at a lower field strength and that survivors decreased more rapidly than the 

survival curve for strain P7 in buffer 8. One possibility is that the differences in survival 

curves and transformation efficiencies between PS-3 and P7 originate with the 

extracellular slime produced by P7. Survival curves for strain P9were similar to those 

for P7 (data not shown) but no pC194-P9 transformants could be recovered, which 

indicates some factor more important than survival was affecting the ability of strain P9 

to be transformed. 
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Figure 2. Mid-log, concentrated cell suspensions of Propionibacterium strain P9 exposed to 0, 20, 40, and 60 seconds of 

sonication in 20 second bursts. Values represent one replication and trials using different buffers were performed on separate 

days. 
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Nuclease Activity 

Preliminary studies were conducted to determine if strains of propionibacteria 

possessed nuclease activity that would be a barrier to successful transformation. 

Concentrated cell suspensions of strains P5-3, P7, and P9, were mixed with DNA and 

incubated for 0, 5, 10, or 30 minutes to detect the presence of extracellular nucleases. 

All strains exhibited nuclease activity when their whole cells were exposed to pUC19 

DNA isolated from E. coli (Figure 3). When A. DNA was added to the cell suspensions 

downward streaking of the DNA was observed for all strains (Figure 4). This was 

presumably caused by extracellular nucleases. Plasmid pRG01, the c:mly DNA examined 

that was isolated from propionibacteria (14), was also degraded by all strains (Figure 4). 

In addition, incubation of pRGOl with strains P7 and P9 resulted in a steady increase in 

linear pRGOl DNA at the expense of ccc DNA . This may provide initial evidence for 

the existence of an endonuclease enzyme produced by these two strains. Strain P5-3 also 

increased linear pRG01 at the expense of the ccc form of the plasmid when compared to 

the control DNA . However, the presence of other nuclease activity that rapidly 

degraded pRGOl may have masked the endonuclease activity. Strain P5-3 had more 

nuclease activity than strain P9 or P7. Strain P7 appeared to have the least amount of 

nuclease activity of the strains tested. 'The pre,sence of nuclease enzymes in 

propionibacteria strains dictated that steps to control this activity be included in the in the 

electroporation protocol. To minimize the effect of nucleases, cells were chilled at all 

times and the exposure of DNA to the cell suspension was kept to a minimum prior to 

and during electroporation. 

Optimization of Electroporation Conditions 

Preliminary electroporations of strain P7 with pC194 produced over 102 

transformants at a field strength of 5.36 kV/cm and pulse duration of 5 msec. In 
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Figure 3. Agarose gel (0.7%) demonstrating exonuclease, restriction 

endonuclease, and possible ligase enzyme activities of propionibacteria·used.,in this study 

on pUC19 plasmid DNA from E. coli. Concentrated, whole cells in electroporation 

buffer #7 were exposed to 1 Jlg of pUC19 for 0 and 5 minutes. Lanes: A, 1 Jlg pUC19 

control DNA with no exp~ure to the test reagents; B, 1 Jlg pUC19 control DNA with 5 

minutes of exposure to the test reagents; C and D, strain P5-3, 0 and 5 min. exposure; E 
' 

~nd F, strain P7, 0 and 5 min. exposure; G and H, strain P9, 0 and 5 min. exposure. 

Strain P5-3 shows the most streaking indicative of exonuclease activity. All strains 

exhibit what appears to be an extra linear band that indicates the possible existence of an 

endonuclease enzyme, and all exhibit some degree of ability to produce a pUC19 

multimeric ladder. 
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Figure 4. Agarose gel (0. 7%) demonstrating exonucle~se and endonuclease activities of propionibacteria when 

exposed to A and pRG01 DNA. Concentrated, whole cells in electroporation buffer #7 were exposed to 1 J.Lg of A DNA 

for 0 and 5 minutes and to 1 J.Lg of pRG01 plasmid DNA from propionibacteria for 0, 5, and 10 minutes. Lanes: A, 1 J.Lg 

of A control DNA with no exposure to the test reagents; B, 1 J.Lg of A control DNA with 5 minutes of exposure to the test 

reagents; C and D, strain P5-3, 0 and 5 min. exposure to A.; E and F, strain P7, 0 and 5 min. exposure to A.; G and H, 

strain P9, 0 and 5 min. exposure to A.; I, 1 J.Lg ofpRG01 control DNA with no exposure to the test reagents; J, 1 J.Lg of 

pRG01 control DNA with 5 minutes of exposure to the test reagents; K through M, strain P5-3, 0, 5, and 10 min. exposure 

to pRG01; N through P, strain P7, 0, 5, and 10 min. exposure to pRG01; Q through S, strain P9, 0, 5, and 10 min. 

exposure to pRGOl. A different source of pRG01 bad to be used to be able to include the control in lane I. The 

uppermost band in lane I is plasmid pRG05 which was present in that sample of pRG01 DNA All other pRG01lanes 

used DNA from the same source. Also present in the pRG01 samples was some residual chromosomal DNA which 

migrated to about the same level as A in the gel. Strain P5-3 demonstrates a strong ability to degrade bolh A. and pRGOl 

DNA. Strains P7 and P9 demonstrate less degradative downward streaking but also demonstrate a steady increase in linear 

DNA at the expense of ccc DNA over time, likely due to the presence of an endonuclease enzyme. 
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addition to being the strain with the highest observed transformation frequency in 

preliminary studies, strain P7 also was found to have the least nuclease activity of the 

strains examined. Therefore, strain P7 was chosen to determine the effect of field 

strength, pulse duration, growth phase of cells, DNA concentration and frozen storage of 

cells on electroporation efficiency. 

Electrical Parameters. Two comprehensive studies were performed to further 

clarify the field strength-pulse duration combinations for the optimal transformation 

efficiency. In the first comprehensive study, strain P7 was electroporated at low field 

strengths (1.79, 3.S7, S.36, and 7.14 kV/cm) over a range of theoretical time constants 

(100 Jls, SOO Jls, 1 ms, S ms, 10 ms, SO ms, 100 ms, SOO ms, and 1 second) using a 

BTX Transfector 100 with Flatpack chambers. A second comprehensive study was 

performed to determine the effects of high field strengths on transformation efficiency. 

Strain P7 was electroporated at various field strengths (9.0, 13.S, 18.9, and 24.3 kV/cm) 

with a range of timing resistors (13, 48, 186, and 720 ohms) in parallel with the output 

that resulted in pulse durations of approximately 0.61, 2.0, S.2, and 9.1 msec using a 

BTX ECM 600 electroporation unit and BTX 1 mm gap electrodes. The capacitance 

was fixed at SO JlF. Cells of strain P7 from the mid-log growth phase resuspended in 

ddH20 with 1 J.1 g of pC194 were used in both of the studies. Figure S illustrates a 

contour plot of the number of transformants obtained from the results of the low field 

strength study analyzed using a response surface technique. The influences of field 

strength, time constant, and the field strength-time constant interactions were all found to 

be statistically significant. No significant difference was found between replications 

performed on separate days. The plot defined the range of optimum field strengths from 

3.6 to 7.1 kV/cm and optimum time constants from 0.17 to 27.1 msec. The fitted 

equation for the regression model is y =intercept+ f + (f)2 + ln t + (ln t)2 + f(ln t), 

where f is the field strength and t is the time constant in msec (ln refers to the natural 

logarithm, base 2. 71828). Parameter estimates for the equation are; intercept = 
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Figure 5. Surface response oftransformants produced by electroporation of 1 Jlg ofpC194 plasmid DNA in T1oE1 (pH7.5) 

with mid-log, P. freudenreichii strain P7 cells resuspended to 1/20th volume in ddH20. The plot was developed over a range of 

theoretical field strengths from 1.79 to 7.14 kV/cm ·and a range of theoretical time constants from 100 Jls to 1 second. Two 

replications on separate days were analyzed at all combinations of field strengths and time constants. Treatments performed on any 

one day were randomized. The equipment used was a BTX Transfector 100 unit with 0.56 mm Flatpack electrodes. 
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- 34.690261, f = 29.414765, ln t = 5.728464, (f)2 = -2.696210, (ln t)2 = -1.109102, and 

f(ln t) = -0.771716. The approximate center of the region for optimal transformation 

efficiency is a field strength setting of 5.4 kV/cm with a time constant of 2.5 msec. 

The results ofthe second comprehensive transformation study for optimizing the 

field strength and pulse dur~tion are shown in Figure 6. Linear regression was performed 

on the means of two replications to determine the equation of the line for the data sets at 

each resistance setting, 13, 48, 186, and 720 ohms (actual time constants at these 

resistance settings were approximately 0.61, 2.0, 5.2, and 9.1 msec). Significant linearity 

was found only for the resistance settings of 13 and 48 ohms. The data collected at 186 

and 720 ohms showed that, at the field strengths tested, the number of transformants 

dropped to zero so quickly a thorough analysis could not be conducted and significant 

results would not be expected. The regression equations and r values for the means of 

two replications were; 13 ohms, y = (-6.78)(x) + 29.02, r = -0.904 and 48 ohms, y = 

(-24.24)(x) + (45.78), r = -0.999. The actual time constants had a tendency to decrease 

slightly as the field strength was increased and this phenomenon became more 

pronounced as the resistan~ was increased. The theoretical field strengths tested were 9, 

13.5, 18.9, and 24.3 kV/cm. The number of transformants decreased to zero within this 

tested range of field strengths, except when the resistance setting was 13 ohms. By 

examining an extension of the regressi~n line past 24.3 kV/cm, the short pulse duration at 

13 ohms of resistance (only 0.61 msec) theoretically would allow a field strength of 43 

kV/cm to be applied before transformants would cease to be observed. Worth noting is 

that the highest number of transformants, roughly 23 at 9 kV/cm in Figure 6 occurred 

when the pulse duration was 2 msec. The optimal transformation conditions described in 

the surface response of Figure 5 were also near 2 msec. In addition, using the equation 

of the contour plot in Figure 5, roughly 7 transformants would. be predicted for a field 

strength of 9.0 kV /em and a 5 msec pulse duration. Considering the data sets for the two 

comprehensive transformation studies described in Figures 5 and 6 were generated using 
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Figure 6. Linear regression analysis demonstrating the negative effect of increasing field strength on the number of P7 

transformants recovered after electroporation with 1 J.lg of pC194 DNA. The electroporation unit used was a BTX ECM 600 with 1 

mm gap, 85 J.ll capacity, cuvette electrodes. Two resistors in p,arallel with the electrical discharge were used to control the pulse 

length. Resistors of 13 and 48 ohms produced pulse lengths of approximately 0.61 and 2.0 msec. Two replications on separate days 

were analyzed at all combinations of field strengths and resistance settings. Treatments performed on any one day were randomized. 
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different equipment, there appears to be good agreement between them concerning the 

optimum time constant and the fact that the number of transformants recovered will 

decline to zero at some point past a peak field strength near 5 or 6 kV /em. These two 

comprehensive studies also confirmed the ·results of the first preliminary study of strain 

P7 electroporated in ddH20 with a 5 msec time constap.t (Figure 1). 

Growth Phase. Samples were removed at early-log, mid-log, and late-log phases 

of growth (~20 of 0.52, OJ~O, and 1.35 respectively) from a static culture of strain P7 to 
' ' ' 

determine the effect of grpwth phase on ·transformation efficiency. Samples for each 

growth phase were harvested· and electroporated with 1 Jlg ofpC194 at a field strength 

of 3.75 kV/cm and~ pulse duration of 5.9 msec (capacitance setting of 400 JlF and a 

resistance setting of 13 ohms). No statis~ically significant differences were found among 
' ' -

the transformation efficiencies of early-log, mid-log, and late-log phase cells. Although 

not statistically significant, higher transformation efficiencies were noted for cells from 

the early-log growth phase. Table 5 illustrates the transformation frequencies at each 

growth phase. When transformation frequencies for the same experiment were 

compared, which tends to compensate for the lower concentration of cells of strain P7 at 

the earlier growth phases, the analysis of variance of the results still indicated no 

significant differences between the growth, pha~. Further tests with (unprotected) LSD, 
' ' 

Tukey HSD, and Scheffe multiple range analyses all indicated a significant difference 

did exist between the transformation frequencies of the early and late-log growth phase 

cells of strain P7 (P< 0.0~). The transformation frequency of cells from the mid-log 

growth phase was not found to be significantly different than the transformation 

frequencies of early or late-log growth phase cells. This indicates a small advantage may 

be gained by using early-log growth phase cells of strain P7. 

DNA Concentration. The effect of DNA concentration on transformation 

efficiency was examined using cells of strain P7 from the mid-log growth phase 

electroporated with various concentrations (0.000001, 0.001, 0.1, 1.0, 2.0 Jlg) of pCJ.94. 
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Table 5. Transformation frequency at early, mid, and late-log growth phases of strain P7 

electroporated with pC194 plasmid DNA 

Growth Phase 

Early-log 

Mid-log 

Late-log 

Absorbance at 620 nm 

0.52 

0.90 

1.35 

C.F.U./ml 

2.4 X 109 

3.9 X 109 

7.6 X 109 

Transformants/109 C.F.U. 

10.0 

7.3 

4.6 

- Cells were concentrated to )/20th volume in ddH20 and 1 J.l g of pC194 was added 

before pulsing at a theoretical field strength of 3.57 kV/cm (measured field strength of 

3.34 kV/cm) with a measured pulse duration of 5.9 msec (a capacitance setting of 400 

J.LF and a resistance setting of 13 ohms were used to control the pulse length). The 

experiment was performed with a BTX ECM 600 unit using BTX electrode cuvettes (1 

mm gap, part no. 610). Results were calculated from two trials on separate days. 

64 



Cells were electroporated at a field strength of 3.57 kV/cm and a pulse duration of 5.9 

msec. The results indicate as the amount of pC194 DNA added to the cells increased, the 

transformation efficiency decreased by nearly seven orders of magnitude in a nearly 

linear fashion (Figure 7). It appeared that sufficient plasmid DNA was present, when 

just 1 picogram of pC194 was added to the cell suspension, to enter all of the receptive 

cells during the electroporation pulse and produce Cmr colonies. 

Fresh Cells Compared to Frozen Cells. The effect of frozen storage ( -700C) of 

cells on electroporation efficiency was compared by using freshly prepared and thawed 

cells of strain P7 from the mid-log growth phase. No statistically significant difference 

was found between the transformation efficiencies of freshly prepared cells and cells that 

had been frozen (data not shown). The use of frozen cells would eliminate the tedious 

process of growing, harvesti.ng and washing the cells several times before each 

electroporation trial. 

Analysis ofTransformants Obtained With pC194 

Isolation of plasmid DNA from putative transformants and subsequent agarose 

gel electrophoresis failed to confirm the presence of an autonomous plasmid in all strains 

transformed. Preparative scale DNA isolation from putative transformants failed to 

identify plasmid DNA in the CsCl density gradients. DNA samples of putative 

transformants from CsCl gradients were analyzed by DNA hybridization using pC194 as 

the' probe in a slot blot apparatus. Hybridization signals were detected in DNA from all 

transformants. Unexpectedly, DNA from all propionibacteria strains used as recipients 

also produced a hybridization signal. 

In order to confirm the presence of pC194 in the transformants and further 

characterize the regions of pC194 homology in the strains of propionibacteria, restriction 

endonuclease digests of parent and putative transformants were analyzed by Southern 
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Figure 7. Transformation efficiency compared to the amount ofpC194 plasmid DNA added to strain P7 mid-log cells. The 

amounts of transforming DNA used were 1 picogram, 1 nanogram, 0.1 Jlg, 1 Jlg, and 2 Jlg. The theoretical field strength was 3.57 

kV/cm (measured field strength was 3.34 kV). The pulse duration was controlled by a capacitance setting of 400 JlF and a resistance 

setting of 13 ohms for a measured duration of 5.9 msec for the pulse. A BTX ECM 600 unit and 1mm gap, cuvette electrodes were 

used for two replications of each treatment. Duplicates were performed on separate days. 
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hybridization with pC194 as the probe. Chromosomal DNAs were digested with 

Eco R I, which has no restriction site on pC194; Hind III, which has one restriction site 

on pC194; and Hinf I, which has 3 sites on pC194. The results are presented in Figures 

8, 9 and 10. Hybridization bands were detected between pC194 and chromosomal DNA 

of P7 (Fig. 8, lanes C, D, and E), P104 (Fig. 9, lanes C, D, and E), PS-3 (Fig. 9, lanes I, 

J, and K; Fig. 10, lanes C and D), and P9 (Fig. 9, lanes L, M, and N). Transformants 

retained some of the native bands of homology and, in addition, exhibited extra bands of 

homology, suggesting that pC194 had integrated into the chromosome. The sizes, in kb, 

of restriction fragments that hybridized with the pC194 probe DNA are listed in Table 6. 

Also listed in Table 6 are the sizes of the restriction fragments to be expected when the 

transforming pC194 DNA is cut with the same enzymes. 

Two transformants of strain P7 exhibiting extra hybridization bands are shown in 

Figure 8, lanes F through K . A typical colony that proved not to be a transformant can 

be seen in lanes L, M, and N. The EcoR I digests of the P7 transformants Oanes F and I) 

showed hybridization signals identical to the parent (lane C) and the presence of 

additional signals. Both transformants had a band of hybridization nearly corresponding 

to the linear form of pC194. Transformant P3007 /11 had an additional two bands. 

Integration of pC194 into the chmmosome by homolgous recombination should produce 

a single additional band since Eco R I has no site on pC194. 

The Hind III digest of strain P7 transformants are shown in lane G and J of Figure 

8. Both transforlnants produced a band of roughly 2.96 kb in size that could be either 

native homology or linear pC194. Transformant P3007/ll had two additional bands that 

were 4.8 and 2.6 kb. These tWo bands may represent restriction fragments composed of 

pC194:P3007/11 chromosomal DNA. The 10.6 kb fragment in the same lane may be a 

partial digest fragment of the 4.8, 3.0, and 2.6 kb fragments. The absence of 

hybridization bands corresponding to junction fragments may be due to comigration with 
I 

the existing bands or because they were too small to be detected. 
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Figure 8. Hybridization of biotin-labeled pC194 DNA to restriction fragments of parent and transformant 

chromosomal DNA from Propionibacterium strain P7. ( 1.) Agarose gel electrophoresis of restriction digests of chromosomal 

DNA from Propionibacterium. strains. Lanes: A, pC194 plasmid DNA control; B, Hind III digest of biotin-labeled lambda 

DNA; C through E, EcoR I, Hind Ill, and Hinf I digests of P7 parent chromosomal DNA; F through H, EcoR I, Hind III, and 

Hinf I digests of P7 transform ant P3007 /11 DNA; I through K, EcoR I, Hind III, and Hinf I digests of P7 transform ant 

P3007 /15 DNA; L through M, EcoR I, Hind III, and Hinf I digests of a P7 CmR strain (P3007 /28) which is not a 

transformant. (II.) Hybridization of the pC194 probe to a nitrocellulose filter containing restriction fragments of chromosomal 

DNA shown in panel I. 
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Figure 9. Hybridization of biotin-labeled pC194 DNA to restriction fragments of parent and transformant chromosomal 

DNA from Propionibacterium strains. ( 1.) Agarose gel electrophoresis of restriction digests of chromosomal DNA from 

Propionibacterium strains. Lanes: A, pC194 plasmid DNA control; B, Hind III digest of biolin.:labeled lambda DNA; C 

through E, EcoR I, Hind III, and Hinf I digests of P104 paren.t chromosomal DNA; F through H, EcoR I, Hind Ill, and Hinf I 

digests of P104 transformant P3104/l chromosomal DNA; I through K, EcoR I, Hind III, and Hinf I digests of PS-3 parent 

chromosomal DNA; L through N, EcoR l, Hind Ill, and Hinf I digests of P9 parent chromosomal DNA.,(' II.) Hybridization of 

the pC194 probe to a nitrocellulose filter containing restriction fragments of chromosomal DNA shown in panel I. 
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Figure 10. Hybridization of biotin-labeled pC194 DNA to restriction fragments of parent and transformant 
l 

chromosomal DNA from Propionibacterium strain PS-3. ( 1.) Agarose gel electrophoresis of restriction digests of 

chromosomal DNA from Propionibacterium strain PS-3. Lanes; A, pC194 plasmid DNA control; B, Hind III digest of 

biotin'-labeled lambda DNA; C and D, Hind III, and Hinf I digests of PS-3 parent chromosomal DNA; E and F, Hind Ill, and 

Hinf I digests of PS-3 transformant P3005-3/62 chromosomal DNA; G and H, Hind III, and Hinf I digests of PS-3 

transformant P3005-3/63 chromosomal DNA (II.) Hybridiza~ion of the pC194 probe t~ a nitrocellulose filter containing 

restriction fragments of chromosomal DNA shown in panel I. Nl of the lanes shown .are from the same gel and its 

corresponding Southern blot, filter. 
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Table 6. Propionibacterium parent and transformant restriction fragments hybridized 
with pC194 probe DNA 

Species and 
strain 

P. acidipropionici 
P5-3 (Parent) 

P5-3 

P5-3 

P9 (Parent) 

P. freudenreichii 
P7 (Parent) 

P7 

P7 

P104 (Parent) 

Transformant 
Code# 

P3005-3/62 

P3005-3/63 

P3007/ll 

P3007/15 

Size (kb) of restriction fragments 

EcoRI Hind III Hinfl 

3.195 2.908 2.101 

a 3.052 2.114 
0.978 0.414 
0.578 0.133 

a 3.028 2.101 
1.013 0.380 

0.125 

24.062 26.359 2.144 
16.810 20.312 
13.793 3.367 
3.168 2.981 
1.977 1.305 
1.690 

16.916 25.477 1.333 
2.833 

23.056 40.242 1.808 
4.534 10.614 1.565 
3.455 4.760 1.377 
2.998 2.969 1.108 

2.559 0.585 

20.975 37.801 2.178 
3.173 2.969 1.377 

18.080 29.008 2.130 
1.998 3.455 1.432 

3.140 0.333 
2.855 
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Table 6. (Continued from the previous page) 

Species and 
strain 

Transform ant 
Code# 

Size (kb) of restriction fragments 

EcoRI Hind III Hinfi 

P104 . P3104/1 t7.425 24.062 2.144 
3.033 4.101 1.746 

3.367 1.447 
3.086 0.463 
2.855 

pC194 plasmid No sites One site Three sites 
DNA 2.910 2.064 

0.472 
0.374 

a P5-3 transformants were never analyzed using EcoR I for digestion of chromosomal 
DNA samples. 
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The Hinf I digests of strain P7 transformants are shown in lane H and K (Figure 

8). Both transformants had a hybridization signal corresponding to the band in the parent 

strain (lane E). Transformant P3007/11 produced several additional fragments. The 

exact nature of these fragments is unclear. The hybridization bands detected may be 

junction fragments or partial digest fragments or a combination of these two 

possibilities. Transformant P3007/15 (lane K) produced a fragment 2.18 kb in size in 

addition to a 1.377 kb band possibly the same as the native homology band to'pC194. 

No other small bands were present. 

The additional hybridization bands detected in P7 transformants are evidence for 

chromosomal integration of pC914 but do not suggest any simple integration model such 

as Campbell-like integration (10). Integration followed by rearrangements could explain 

the hybridization signals detected. 

Restriction digests of P104 parent and transformant DNA can be_ seen in Figure 9, 

lanes C through H. The EcoR I digests of the P104 transformant (lane F) showed two 

bands of hybridization. The 17.4 kb signal may be identical to the largest band of 

hybridization detected in the parent (lane C). The additional signal (3.0 kb) is nearly 

equivalent to the linear form of pC194 and was larger than the faint hybridization band 

detected in the parent (1.9 kb) in lane C. The Hind III digest of P3104/1 in lane G 

contained one extra band besides the native homology bands seen for the parent strain 

(lane D). This extra band is 4.1 kb which may be a junction fragment ofpC194:P104 

chromosomal DNA. The bands of hybridization detected in the Hinf I digest of P3104/1 

(lane H) differed from the native bands of homology. The transformant had one 

additional band of homology of 1. 75 kb and a band of 0.46 kb which may represent a 

junction fragment. There is a band in both the parent and transformant Hinf I digests 

(lanes E and H) that is about 2.1 kb and is believed to be the 2.064 kb band expected 

from a Hinf I digest of pC194. 
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Two transformants of strain P5-3 are shown in Figure 10, lanes E, F, G, and H. 

Both P5-3 transformants had an intense band of homology of approximately 3.05 kb in 

size when their chromosomal DNA was digested with Hind III (lanes E and G). In 

addition, transformant P3005-3/62 had two additional bands of homology at 0.98 and 

0.58 kb (lane E) and transformant P3005-3/63 had one additional band at 1.0 kb (lane G). 

The absence of a second additional band in lane G may be due to comigration of the band 

with another band, or the band was too small or indistinct to be detected. Chromosomal 

DNA of the P5-3 parent gave a hybridization signal at approximately 2.91 kb when cut 

with Hind III (lane C) which is identical in size to the linear form of pC194. These 

results are consistent with the integration of pC194 into the chromosome by a Campbell­

like mechanism with subsequent amplification of the pC194 fragment. Two (or more) 

linear copies of pC194 separated by a relatively small direct repeat of the homologous 

chromosomal DNA fragment digested with Hind III would account for the presence of 

the intense 3.05 kb band in Ian~ E and G of Fig. 10. 

Lanes F and H of Figure 10 show the results of digesting P3005-3/62 and P3005-

3/63 chromosomal DNA with the restriction enzyme Hinf I. Both transformants had a 

intense band at 2.1 kb, the expected size of the largest Hinf I fragment of pC194, and 

two additional bands of homology. The smaller bands may represent junction fragments 

of pC194 and the native homologous fragment. These results would be consistent with 

integration of pC194 followed by amplification and subsequent rearrangement. 

All transformants were screened for characteristic biochemical and fermentation 

patterns to confirm the identity of each isolate. Transformants obtained from P7 and P5-

3 were identical to their respective parent strains. However, the single transformant of 

strain P104, designated P3104/1, lost its ability to reduce nitrate to nitrite. Restriction 

fragment patterns of chromosomal DNA from strain P104 and P3104/1 were identical. 

This suggests that pC194 inserted into the chromosome of strainP104 at or near the genes 

for nitrate reduction causing these genes to be inactivated. 
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DISCUSSION 

Conditions for successful transformation of propionibacteria using electroporation 

were established. Three of the five strains examined were transformed with pC194. A 

fourth strain, P93-37, is believed to have been transformed due to its alteration in 

phenotype to Cmr, but this has not yet been confirmed by Southern blot analysis. It is 

interesting to note that Propionibacterium freudenreichii P7,, which produces 

extracellular slime, ,had the highest efficiency of transformation (1.49 x 102 

transformants per ug of DNA). 

Several parameters were examined and found to influence the efficiency of 

transformation of strain P7. Field strength, pulse duration, electroporation bUffer and 

DNA concentration all had a significant effect on transformation efficiencies. The 

growth phase of the cells and electroporation with fresh or frozen cells did not 

significantly affect transformation efficiencies~ Both ddH20 and 30% PEG (M.W. 

10,000) in ddH20 work well for transforming P7, even in the two extremes of field 

strength we have found to be successful. 

A number of investigators have 'indicated that field strength and pulse duration 

are the most important parameters in developing and optimizing bacterial transformation 

systems. Optimal electric field parameters have generally been reported as the single 

pulse duration and field strength combination that resulted in the highest transformation 

efficiency. Since pulse duration and field strength were expected to have a significant 

interaction, response ·surface analysis was used to determine the optimum electrical 

parameters for transformation. The results indicated that strain P7 transforms most 

efficiently between field strengths of 3.6 to 7.1 kV/cm and time constants from 0.17 to 

27.1 msec. To our knowledge, no other reports have been published using this statistical 

technique to optimize electrical parameters for transformation efficiency. The advantage 
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of using this technique is that it accurately predicts the optimal conditions for 

transformation without running all combinations of pulse duration and field strength 

settings. Thus, optimal electrical settings can be determined more rapidly with less 

dependence on a single pulse duration-field strength setting for optimal results. In 

addition, since field strength and pulse duration have a compensatory effect, the region of 

optimal electric parameters predicted by the response surface are broader and a more 

realistic view of the optimal pulse duration-field strength settings. Although this 

technique is useful to predict optimal conditions, care must be taken not to rely on 

extrapolations beyond the experimental parameters since these predictions are 

untrustworthy. 

A pulse duration of 5 msec worked well when the field strength was low, near 5 

kV/cm. However, at extremely high field strengths (near 40 kV/cm) it was necessary to 

lower the pulse duration to around 100 J.Lsec to obtain transformation. Transformation at 

field strengths near 40 kV /em may be due to the more square shape of the electrical pulse 

when the Power Plus module was used. A square waveform was reported to have 

produced about one log more transformants per Jl g of pUC18 plasmid DNA in one study 

(13) and from 0.1 to 0.6logs more transformants per Jlg ofpC194 plasmid DNA in a 

second study (1 ). However, Wolf et al. (17) reported efficient transformation of intact 

cells of Corynebacterium glutamicum using a custom-made electroporation apparatus set 

at field strengths of 35-40 kV/cm and time constants of 450-500 flsec which produced 

exponentially decaying pulses. Accurate control of the shape of the electrical pulse and 

its duration might prove useful for increasing the transformation efficiency of pC194 

with propionibacteria. No transformants were noted below a threshold field strength of 

about 1.7 kV/cm when propionibacteria were electroporated in ddH20. This threshold 

phenomenon was also noted by earlier researchers (5). 

The optimum electroporation conditions established for strain P7 have not been 

successful in achieving genetic transformation of all strains of propionibacteria tested. 
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Only one· transformant was recovered from strain Pl 04. No transformants were 

recovered from strain P9. The difficulty in transforming strains P9 and P104 with pC194 

DNA may be due to a number of reasons including the presence of DNA restriction 

systems, extracellular nucleases, structure of the cell wall, cell aggregation and strain 

specific factors affecting integration and plasmid maintenance. All propionibacteria 

strains tested exhibited extracellular nuclease activity that has been shown to degrade the 
- - -

transforming DNA . Strain P9 is also recalcitrant to standard lysis procedures, so it is 

conceivable that transforming DNA entering the cell would h~ve to breach a formidable 

barrier. Cells of strain P9 have also been shown to form aggregates that could reduce the 

availability of the transient pores formed during electroporation. Indications are that 

different strains will require modifications of the electroporation procedure for successful 

transformation. 

Putative transformants were screened for plasmid DNA to confirm the presence 

of pC194 in the electroporation-induced trariSformants. Plasmid DNA was not detected_ 

in any of the transformants using a micro-scale or preparative scale lysis procedure. 

These results indicate that pC194 integrated into the chromosome of propionibacteria 

recipients. This conclusion is based on the following evidence; no autonomous plasmids 
- > 

were detected in any of the transformantS, homology was detected between pC194 and 

the chromosome of all strains of propionibacteria tested, Southern hybridization of 

undigested chromosomal DNA of transformants showed a single band of DNA homology 

that comigrated only with the undigested chromosomal DNA (data not shown), and 

additional bands of homology were detected in digests of transformants. The mechanism 

of integration of pC194 into the propionibacteria recipients remains to be elucidated fully 

but some preliminary assumptions about the mechanism can be made. 

Integration of pC194 into the Propionibacterium chromosome may have occurred 

by a Campbell-like integration using the sequence homology between the plasmid and 

the chromosome. Southern hybridization analysis of restriction digests of chromosomal 
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DNA from transformants identified a fragment in all transformants that was roughly 

equivalent to linear pC194 in Hind III digests. This can be explained by integration into 

the chromosome followed by amplification of pC194. A Campbell-like mechanism of 

integration has been proposed to lead to duplication of the homologous chromosomal 

insert and may create a substrate for amplification and subsequent rearrangements (10, 

18). This type of integration has been well documented in B. subtilus and Lactococcus 

lactis. The hybridization results obtained by integration of pC194 into the chromosome 

of PS-3 appears to be very similar to that of E. coli plasmid pHV60 when inserted into 

the chromosome of L. lactis subsp. lactis MG 1363 as reported by Leenhouts et al. (10). 

Digests of MG1363 transformant DNA cut with restriction enzymes that have unique 

restriction sites in pHV60 showed one intense signal corresponding to the linear form of 

pHV60 and two additional bands. The two additional bands were thought to be junction 

fragments of plasmid:chromosomal DNA. They also detected homology between 

pHV60 and the chromosome of strain MG 1363. Integration of pHV60 was proposed to 

occur by a Campbell-like mechanism and subsequent amplification. We believe this to 

be the most likely mechanism of p~194 integration into the PS-3 chromosome at this 

time. Further work will be necessary to confirm this mechanism of integration. 

Southern hybridization analysis of two transformants from strain P7 does not 

provide a straightforward interpretation of possible mechanisms for the integration of 

pC194 into the chromosome. Digestion of transformant chromosomal DNA with a 

restriction ~nzyme which has no sites in pC194 would produce a single hybridization 

band expected to be larger than the native-homology band. However when Eco R I, 

which has no sites in pC194, was used to digest P7 transformant DNA, hybridization 

signals were detected at the position of linear pC194 in both transformants. In addition, 

transformant P3007 /11 had two additional hybridization bands that were also smaller 

than the bands detected in the parent strain. These hybridization bands could be the 

result of rearrangements in the amplified structure or integration at homolgous regions 
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undetected in the parent strain. Alternatively, integration of pC194 at multiple, 

secondary sites may also explain the presence of additional bands. The Hind III and Hinf 

I digests of transformant P3007 /11 also produced additional bands not predicted by a 

single Campbell integration. Although these bands can be interpreted as amplified 

segments of pC194, junction fragments and partial digestion products, similar results 

could be explained by rearrangements of the amplified structure of pC194. Likewise, the 
' -

absence of additional bands in the Hind III and Hinf [digest of transformant P3007/15 

may also be due to rearrangements. In this case the resulting fragments may have been 

too small to be detected clearly. Hybridization analysis of the P104 transformant also 

produced bands that may reflect rearrangements or other complex mechanisms of 

integration. 

Insertion of pC194 into a short sequence of DNA outside of the native bands of 

homology would be a second way to account for the hybridization bands seen in some of 

the transformants. A recombination model involving a conservative, reciprocal strand 

exchange between a recombination site on pE194 and a short, homologous site in the 

chromosome of Bacillus subtilis has been proposed ( 4). The origin of replication of 

pE194, a Staphylococcus aureus plasmid related to pC194, contains a GC-rich dyad 

symmetry element. Five of seven pE194-integrated strains of B. subtilis analyzed had 

been produced by recombination at different locations within this 70-base-pair interval of 

pE194. Recombination had occurred between regions of short nucleotide homology (6 to 

14 base pairs) and the integrated pE194 molecule was bounded by direct repeats of the 

short homology. It is possible that pC194 may have integrated into a short region of 

homology in the Propionibacterium chromosome that may or may not have been part of 

the hybridization signals detected. This mode of insertion could have occurred even if 

the Propionibacterium strains we used did not have a system of major h~mology­

dependent recombination, such as the RecE recombination system of Bacillus subtilis and 

E. coli (4). Since pC194 replicates by way of a single-stranded DNA intermediate by 
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what is believed to be a rolling circle replication mechanism, the production of ssDNA 

greatly increases the recombination capacity both by homologous and illegitimate 

recombination (6). 

The insertion ofpC194 into the chromosome of strain P104 appears to have 

eliminated the ability of this strain to reduce nitrate to nitrite. If pC194 insertion actually 

caused this loss, this would predict that the nitrate reductase gene must lie somewhere 

near the site of insertion of pC194. This would allow us to clone this gene for further 

analysis and would clearly demonstrate the feasibility of using an integration strategy for 

genetic analysis of propionibacteria chromosomal DNA. 

The native Propionibacterium bands of homology to pC194 seem to migrate a 

distance that would be expected of a nearly full complement of pC194 plasmid DNA. 

However, this may be purely coincidental. If it were the case, however, then a nearly 

complete copy of pC194 already exists in the,chromosome of the Propionibacterium 

strains tested. Since all strains tested are sensitive to chloramphenicol, it would be 

expected that the inserted chloramphenicol acetyl transferase (CAT) gene is defective. 

All strains examined appear to have unique hybridization profiles when probed with 

pC194. However, two hybridization fragments appear to be conserved, a 2.9 kb Hind III 

fragment and a 2.1 kb Hinf I fragment. It is interesting to note that the 2.9 and 2.1 kb 

size for these fragments are equivalent to the linear form of pC194 produced by Hind III 

digestion and the largest fragment produced by Hinf I digestion respectively. This may 

also be a clue as to why one of the Propionibacterium strains examined by Naud et al. 

(13) was capable of gaining resistance to chloramphenicol when placed under various 

environmental stresses. 

The first reported result of successful electroporation in propionibacteria was by 

Luchansky et al. (11 ). They reported the transformation of a single strain of 

Propionibacterium jensenii with plasmid pGK12. This plasmid contains the Cmr gene of 

pC194 but not the origin of replication of pC194. They reported the identification of an 
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autonomous plasmid in the transformants they isolated. It could be that this 

Propionibacterium jensenii strain had no native homology with the portion of pC194 in 

pGK12. Alternatively, this strain may have no homology with pC194. To date, all 

strains of propionibacteria examined in our lab contain native homology with pC194. 

Electroporation is a well established method for transformation of Gram-positive 

and Gram-negative bacteria. Other methods of gene transfer, such as protoplast 

transformation, have not been successful to date in propionibacteria. Electroporation has 

many advantages over other gene transfer methods. The actual procedure takes only a 

few minutes to perform once the cells are prepared. Frozen cells may be used in lieu of­

fresh cells to further simplify the procedure. In the future, as the electroporation protocol 

improves, it is hoped that this technique will be useful for genetic analysis and 

improvement of propionibacteria. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

A repeatable method for the transformation of dairy propionibacteria has been 

developed that uses electroporation as the means of molecular transfer. Three strains of 

propionibacteria have been proven by Southern blot analysis to be transformed by the 

plasmid pC194. A fourth strain has gained resistance to chloramphenicol and is also 

believed to have been transformed by pC194. The pC194 plasmid did not replicate as an 

autonomous plasmid in the strains of Propionibacterium tested. Instead, the 

transforming plasmid integrated into the Propionibacterium genome. This integration 

was most likely into the chromosome, but there is a remote possibility that it may have 

integrated into a large plasmid of similar size to the chromosomal DNA 

Transformation occurred with greater efficiency near a field strength of 5.4 
.. 

kV/cm with a 5 ms pulse duration and at a field strength near 40 kV/cm with about a 100 

to 160 J.lsec pulse duration. The highest transformation efficiency to date was with cells 

of strain P7 from the mid-log phase in ddH20 as the electroporation buffer, a 5.4 kV/cm 

field strength, and a 5 msec pulse duration for a yield of 1.5 x 1()2 transformants/J.lg of 

pC194 plasmid DNA. Early indications are that cells that had been frozen can be used 

instead of fresh cells with no significant decrease in transformation efficiency. Also, 

limited testing indicated a small advantage may be gained by using cells from the early­

log phase of growth instead of mid-log phase cells in the electroporations. The highest 

transformation efficiencies were achieved with picogram levels of pC194 DNA. This 

indicated some sort of limiting factor was involved besides the amount of transforming 
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DNA added during the electroporation experiment. Factors that could limit the number 

of transformants obtained could be the number of electropores produced in the cells that 

would allow the passage of transforming DNA, the number of cells in the population 

competent for pore formation and/or integration of the plasmid, or the number of 

molecules of pC194 plasmid DNA in a fo~ suitable for integration (possibly some 

ssDNA intermediate). Transformation may also have varied in efficiency from strain to 

strain due to variations in 'nuclease enzyme activity and the rate at which cells of a 

particular strain are killed by the transforming pulse, not to mention differences in their 

cell walls or membranes. ,The ability of a strain to produce slime may be another factor 

involved in efficient electroporation of propionibacteria. Propionibacterium 

freudenreichii strain P104 yielded only one transformant, that was highly resistant to 

chloramphenicol. It appears at this time that the entry of the pC194 plasmid molecule 

into the chromosome of this transformant caused insertional inactivation of a gene in the 

metabolic pathway that reduces nitrate to nitrite. 

Future work should include trying to improve the electroporation procedure. 

Data related to the ability of lysozyme to produce protoplasts of the four 

Propionibacterium strains used in this study has already been collected. This data should 

be used to determine if removal of part or all of the cell wall of these bacteria will 

improve their electroporation efficiencies. The location of the integration site of pC194 

into the chromosome of the P104 transformant should also be determined. The DNA 

sequence surrounding this site should be a~alyzed to determine the mechanism of pC194 

integration and to determine the sequence of the gene related to the loss of the ability to 

reduce nitrate to nitrite. The integration sites for strains P7 and PS-3 should also be 

determined. What appears to be amplified pC194 regions in the PS-3 chromosome 

should be further analyzed. This could lead to a method for inserting any desired gene 

into the chromosome at that site and amplifying it for the high level of expression of a 

desired trait. Furthermore, with the use of pulse gel electrophoresis and insertion of 
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pC194 into the chromosomes of these bacteria it is probable that the locations of other 

genes can be mapped. The enzymes responsible for the endonuclease, exonuclease, and 

ligase enzyme activities noted by the Propionibacterium strains used in this study should 

also be isolated for further analysis. 
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Estimated 
Field 

Strength 
(kV/cm) 

0.89 
1.79 
3.57 
5.36 
7.14 

TABLE 7 

FIRST COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STUDY; 
DATA FROM THE FIRST REPLICATION 

Time (msec) 
Voltage 
Setting 

(kV) 0.1 0.5 1 5 10 50 100 500 

0.05 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 0 0 
0.2 46 70 20 59 60 31 22 11 
0.3 28 56 14 59 45 1 13 1 
0.4 21 48 59 41 41 0 0 0 

- P7 mid-log cells electroporated with 1 ug of pC194 plasmid DNA in Milli-Q H20. 
- Values represent transformants recovered from the first of two replications. 

1000 

0 
0 
16 
0 
0 

1-' 
0 
0 



Estimated 
Field 

Strength 
(kV/cm) 

0.89 
1.79· 
3.57 
5.36 
7.14 

TABLE 8 

FIRST COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STUDY; 
DATA FROM THE SECOND REPLICATION 

Time(msec) 
Voltage 
Setting 

(kV) 0.1 0.5 1 5 10 50 100 500 

0.05 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 3 0 
0.2 0 68 60 84 75 0 0 21 
0.3 0 33 32 44 35 15 29 1 
0.4 0 52 49 79 49 6 0 0 

- P7 mid-log cells electroporated with 1 ug ofpC194 plasmid DNA in Milli-Q H20. 
- Values represent transformants recovered from the second of two replications. 

1000 

0 
0 
6 
12 
0 

t-' 
0 
t-' 



Estimated 
Field 

Strength 
(kV/cm) 

0.89 
1.79 
3.57 
5.36 
7.14 

TABLE 9 

FIRST COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STUDY; 
TRANSFORMANT MEANS 

Time (msec) 
·voltage 
Setting 

(kV) 0.1 0.5 1 5 10 50 100 500 

0.05 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 _0 0· 1.5 0 
0.2 23 69 40 71.5 67.5 15.5 11 16 
0.3 14 44.5 23 51.5 40 8 21 1 
0.4 10.5 50 54 60 45 3 0 0 

- P7 mid-log cells electroporated with 1 ug of pC194 plasmid DNA in Milli-Q H20. 
- Values represent the means oftransformants recovered from two replications. 

1000 

0 
0 
11 
6 
0 

I-' 
0 
N 



TABLE 10 

SECOND COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STUDY; 
TRANSFORMANT DATA AND ACTUAL OSCILLOSCOPE READINGS 

13 Ohms Resistance 

Field Average Average Trial1 Trial2 Mean 
Strength Actual kV Actual msec Transformants Transformants Trans formants 
(kV/cm) 

9.0 0.715 0.607 34 16 25 

13.5 1.10 . 0.612 27 7 17 

18.9 1.58 0.611 23 9 16 

24.3 2.05 0.608 17 10 13.5 

48 Ohms Resistance 

Field Average Average Trial1 Trial2 Mean 
Strength Actual kV Actual msec Transform ants Transformants Transformants 
(kV/cm) 

9.0 0.78 2.085 32 16 24 

13.5 1.23 2.035 22 4 13 

18.9 1.76 1.96 0 0 0 

24.3 2.25" 1.91" Ob Ob Ob 
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TABLE 10 (Continued) 

186 Ohms Resistance 

Field Average Average Triall Trial2 Mean 
Strength Actual kV Actual msec Transform ants Transform ants Transformants 
(kV/cm) 

9.0 0.815 5.485 51 13 32 

13.5 1.265 4.82 0 4 2 

18.9 c c 0 0 0 

24.3 c c Ob Qb Qb 

720 Ohms Resistance 

Field Average Average Triall Trial2 Mean 
Strength Actual kV Actual msec Transform ants Transformants Transform ants 
(kV/cm) 

9.0 0.835 9.125 24 4 14 

13.5 1.24a 3.23a 0 0 0 

18.9 c c Qb Ob Ob 

24.3 c c Qb Ob Qb 

a One of the two trials had no oscilloscope reading, due to arcing. 

b These values were excluded from the statistical analysis. 

c No oscilloscope reading could be collected for either trial, due to arcing. 
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TABLE 11 

ANALYSIS OF VARIANCE FOR THE FIRST COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STUDY 

· Ana 1 ys t s of Var t ance Procedure 

Dependent Variable y 

Source OF Sum of Squares Mean Square F Value Pr > F 

Model 36 40040. 50000000 1112.23611111 7. 16 0 0001 

Error 35 5440.37500000 155.43928571 

Corrected Total 71 45480 87500000 

R-Square C.V. Root MSE Y Mean 

0.880381 59 25162 12.46752925 21 04166667 

Source OF Anova SS .Mean Square F Value Pr > F 

REP 1 1.12500000 1. 12500000 0 01 0.9327 
v 3 12230.70833333 4076.90277778 26 23 0 0001 
T 8 19034 50000000 2379.31250000 15 31 0 0001 
V*T 24 8774.16666667 365.59027778 2 35 0.0104 



TABLE 12 

ANALYSIS OF VARIANCE AND PARAMETER ESTIMATES OF THE REGRESSION MODEL FOR THE FIRST 
COMPREHENSIVE FIELD STRENGTH-TIME CONSTANT STIJDY 

Analysts of Vartance 

Sum of Mean 
Source OF Squares Square F Value Prob>F 

Model -5 21807.83272 4361 .56654 12. 160 0.0001 
Error 66 23673.04228 358.68246 
C Total 71 45480.87500 

Root MSE 18 93891 R-square 0.4795 
Oep Mean 21 04167 Adj R-sq 0 4401 
c v 90 00672 

Parameter Esttmates 

Parameter Standard T for HO: 
Vartable OF Estimate Error Parameter"O Prob > I Tl 

INTERCEP -34.690261 13.27927892 -2.612 0 0111 
v 29.414765 6.41887941 4.583 0 0001 
LOGT 5.728464 2.29635602 2 495 0 0151 
V2 -2.696210 0.70001656 -3.852 0 0003 
LOGT2 -1. 109102 0.28434511 -3 901 0 0002 
VLOGT -0.771716 0.37498629 -2 058 0 0435 



TABLE 13 

SAS ANALYSIS AT 13 OHMS OF RESISTANCE FOR THE SECOND COMPREHENSIVE 
FIELD STRENGTH-TIME CONSTANT STUDY 

GLM RUN WITH LINEAR ONLY TERM IN THE MODEL, TRIAL•VOLT_OUT 

------------------------------------------------------------- OHMS•I3 --------------------------------------------------------------

General Ltnear Models Procedure 

Dependent Variable COLONIES 

Source OF Sum of Squares Mean Square F Value Pr > F 

Model 2 556 48156682 278 24078341 18 21 0 0051 

Error 5 76 39343318 15 27868664 

Corrected Total 7 632 87500000 

R-Square c v Root MSE COLONIES Mean 

0 879291 21 86739 3 90879606 17 -87500000 

Source OF Type I SS Mean Square F Value ·Pr > F 

TRIAL 435 12500000 435 12500000 28 48 0 0031 
VOLTAGE 121 35656682 121 35656682 7 94 0 0372 

Source OF Type Ill SS Mean Square F Value Pr > F 

TRIAL 435 12500000 435 12500000 28 48 0 0031 
VOLTAGE 121 35656682 121 35656682 7 94 0 0372 

T for HO Pr > (Tf Std Error of 
Parameter Esttmate Parameter=O Estimate 

INTERCEPT 21 64343318 B 4 91 0 0044 4 41059355 
TRIAL I 14 75000000 B 5 34 0 0031 2 76393620 

2 0 00000000 B 
VOLTAGE -6 78443420 -2 82 0 0372 2 40727112 

NOTE The X'X matriM has been found to be singular and a generalized Inverse was used to solve the normal equattons 
followed by the letter 'B' are btased, and are not untque estimators of the parameters 

Est I mates 

I-' 
0 
00 



TABLE 14 

SAS ANALYSIS AT 48 OHMS OF RESISTANCE FOR THE SECOND COMPREHENSIVE 
FIELD STRENGTH-TIME CONSTANT STUDY 

GLM RUN WITH LINEAR ONLY TERM IN THE MODEL, TRIAL•VOLT OUT 

------------------------------------------------------------- OHMS•48 --------------------------------------------------------------

Dependent Variable COLONIES 

Source OF 

Model 2 

Error 3 

Corrected Total 5 

R-Squ,are 

0 887766 

Source OF 

TRIAL 
VOLTAGE 

Source OF 

TRIAL 
VOLTAGE 

Parameter 

INTERCEPT 
TRIAL 1 

2 
VOLTAGE 

General Linear Models Procedure 

Sum of Squares 

769 98901099 

97 34432234 

867 33333333 

c v 

46 1864 I 

Type I SS 

192 66666667 
577 32234432 

Type Ill SS 

192 66666667 
577 32234432 

Estimate 

40 11355311 8 
II 33333333 B 
0 00000000 B 

-24 23687424 

Mean Sqwore 

384 99450549 

32 44810745 

Root MSE 

5. 69632403 

F Value 

11 86 

Mean Square F Value 

192 66666667 5 94 
577 32234432 17 79 

Mean Square F Value 

192 66666667 5 94 
577 32234432 17 79 

T for HO Pr > lrl 
Paranteter•O 

4 67 0 0185 
2 44 0 0928 

-4 22 0 0244 

Pr > F 

0 0376 

COLONIES Mean 

12 33333333 

Pr > F 

0 0928 
0 0244 

Pr > F 

0 0928 
0 0244 

Std Error of 
Estimate 

8 58438539 
4 65102909 

5 74595356 

NOTE The X'X matrix has been found to be singular and a generalized Inverse was used to solve the normal equations 
followed by the letter '8' are biased, and are not unique estimators of the parameters 

Estimates 



TABLE 15 

SAS ANALYSIS AT 186 OHMS OF RESISTANCE FOR THE SECOND COMPREHENSIVE 
FIELD STRENGTH-TIME CONSTANT STUDY 

GLM RUN WITH LINEAR ONLY TERM IN THE MOOEL, TRIAL*VOLT OUT 

------------------------------------------------------------- OHMS•186 -------------------------------------------------------------

General Linear Models Procedure 

Dependent Variable COLONIES 

Source OF Sum of Squares Mean Square F Value Pr > F 

Model 2 1 160 41758242 580 20879121 2 04 0 2763 

Error 3 854 91575092 284 97191697 

Corrected Total 5 2015 33333333 

R-Squf're c v Root MSE' COLONIES Mean 

0 575794 148 9510 16 88" I 125 " 33333333 

Source OF Type 1 ss Mean Square F Value Pr > F 

TRIAL 192 66666667 192 66666667 0 68 0 4712 
VOLTAGE 967 75091575 967 75091575 3 40 0 1626 

source OF Type 111 SS Mean Square F Value Pr > F 

TRIAL 192 66666667 192 66666667 0 68 0 4712 
VOLTAGE 967 75091575 967 75091575 3 40 0 1626 

T for HO. Pr > (TI Std Error of 
Para,meter Estimate Parameter co Est !mate 

INTERCEPT 48 97069597 B 1 92 0 1499 25 43990898 
TRIAL I 11 33333333 B 0 82 0 4712 13 78336962 

2 0 00000000 B 
VOLTAGE -31 37973138 -1 84 0 1626 t7 0281888!1 

NOTE The X'X matrix has been found to be singular and a generalized Inverse was used to solve the normal equations 
followed by the letter '8' are biased, end ere not unique estimators of the parameters 

Est !mates 



TABLE 16 

SAS ANALYSIS AT 720 OHMS OF RESISTANCE FOR THE SECOND COMPREHENSIVE 
FIELD STRENGTII-TIME CONSTANT STUDY 

GLM RUN WITH LINEAR ONLY TERM IN THE MODEL, TRIAL•VOLT OUT 

------------------------------------------------------------- OHMS•720 ---------------------~------------:--------------------------
General Linear Models Procedure 

Dependent Variable COLONIES 

Source OF sum of Squares Mean Square F Value Pr > F 

Model 2 296 00000000 148 00000000 1 48 0 5025 

Error 100 00000000 100 00000000 

Corrected Total 3 396 00000000 

R-S_quare c v Root MSE COLONIES Mean 

0 747475 142- 857 I 10 00000000 7 00000000 

Source OF Type I SS Mean Square F Value Pr > F 

TRIAL 100 00000000 100 00000000 I 00 05000 
VOLTAGE I 96 00000000 196 00000000 1 96 0 3949 

Source OF Type Ill ss Mean Square F Value Pr > F 

TRIAL 100 00000000 100 00000000 . I 00 05000 
VOLTAGE 196 00000000 t96 ·oooooooo 1 96 0 3949 

T for HO. Pr > ITI Std Error of 
Parameter Estimate Parameter•O Estimate 

INTERCEPT 37 00000000 8 42 0 3897 25 98076211 
TRIAL I 10 00000000 8 00 0 5000 10 00000000 

2 0 00000000 B 
VOLTAGE -31 """" -1 40 0 3949 22 22222222 

NOTE The x•x matrix has been found to be singular and a generalized Inverse was used to solve the normal equations 
followed by the letter 'B' are btased, and are not untque estimators of the parameters 

Estimates 
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