
~ALYSIS AND DESIGN OF ~ONTROLLER

AREA NETWORKS
.... -- -

BY

ZHENGOU WANG
l!

Bachelor of Engineering

Chongqing University

Chongqing, P.R. China

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1991

·~\\~~

\(~C\\

'~ '\ '~ "'"l

ANALYSIS AND DESIGN OF CONTROLLER

AREA NETWORKS

Thesis Approved

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major

advisor Dr. H. Lu for her warm encouragement and helpful

advisement throughout my graduate study and writing of this

thesis.

I am specially grateful to Dr. M., Stone for serving on my

committee. He patiently guided me throughout my project,

always helping me and giving me exemplary advice when I

needed. Without his knowledge and guidance I couldn't have

completed my thesis successfully.

My special thanks go to Dr. G. E. Hedrick and Dr. J P.

Chandler for their constant encouragement and help. Their

suggestions and support were very helpful throughout my

masters program.

I would be failing in my duty if I didn't express

heartfelt thank to Mr. G. Couger and Dr. M. Kamath for their

generous help without which I wouldn't have progressed so

well.

My deepest appreciation is extended to my wife, Xinyuan

Zhu and my daughter, Zhifeng Wang for their patience and

love.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. AN OVERVIEW OF PAST WORK.

CSMA/CD.
Token Bus
Token Ring.
Controller Area Network

III. ANALYSIS OF CONTROLLER AREA NETWORK

4

5
7
8
9

13

Structure of the Communication Controller 13
The CAN Protocol. 17
Assumptions and Conditions 21
Some Conclusions from Queuing Theory 22
Throughput of the Network. 24
Delay of Different Priority Messages . 29

Maximum Delay . 29
Expected Delay 33

Communication Channel Utilization 39

IV. MESSAGE PRIORITY ASSIGNMENT ALGORITHM

The Need for the Algorithm
Two Examples .
The Algorithm.
Proof of the Algorithm.

V. SIMULATION OF CAN

Description of the Simulation Program
Simulation Results

iv

40

40
44
53
55

58

58
60

Chapter

VI. SUMMARY AND CONCLUSIONS .

BIBLIOGRAPHY .

APPENDIXES ' .
APPENDIX A - NOTATIONS

APPENDIX B - SIMULATION PROGRAM. ,

v

Page

69

71

. 74

75

78

Table

I.

II.

LIST OF TABLE

A Sample Message Transfer Arrangement

Ten Message of a Control System .

vi

Page

. 43

45

LIST OF FIGURES

Figure Page

1. Structure of CAN. 14

2. CAN Network Controller Structure 15

3. CAN Data Frame Format . . 18

4. Example of Bit Arbitration 18

5. Theoretical Relationship between Throughput
and Offered Load . . 27

6. Theoretical Relationship between Maximum Delay
and Message Priorities . . 32

7. Theoretical Relationship between Maximum Delay
and Offered Load . . 32

8. Theoretical Relationship between Expected Delay
and Message Priorities . . 38

9. _Theoretical Relationship between Expected Delay
and Offered Load . 38

10. Example 1 of Priority Assignment Algorithm . 47

11. Example 2 of Priority Assignment Algorithm. 52

12. Throughput of the Network vs. Offered Load . . 61

13. Throughput of a Lowest Priority Message
vs. Offered Load . 61

14. Maximum Delay vs. Message Priorities . 63

vii

Figure Page

15. Maximum Delay vs. Offered Load . 63

16. Expected Delay vs. Message Priorities . 65

17. Expected Delay vs. Offered Load. . 65

18. Maximum Queue Length vs. Offered Load. 68

19. Number of Collisions vs. Offered Load
in a CAN Network . 68

viii

CHAPTER I

INTRODUCTION

With the continuing decline in the cost of computing, the

number of computers and microprocessors used for various

process controls, device controls and control systems has

increased dramatically. These computers and microprocessors

usually do not work in isolation, and with their

proliferation comes the demand for suitable communication

networks--mainly local area networks, that can interconnect

locally distributed computers and/or microprocessors to form

rather complex control· .systems.

Examples of such a demand are: networks in advanced robots

which can provide fast communication among arm, vision

sensor, proximity sensor control units and other control

units so that different parts of the robots can cooperate

accurately to carry out. more complex tasks; networks in cars

which can connect different electrical control units together

to reduce the manufacture and maintenance complexities and

improve total performances of the cars; networks in tactical

airplanes, construction, military vehicles, harvest

machines such as combines and chemical reactors which will

provide fast communication between various control units and

allow various parts of the system to work in a cooperative

and optimal manner.

1

To date, many local area networks have been developed or

proposed, but very few can satisfy the above demand.

Specifically, the most popular standard local area networks

are inadequate for real-time control systems. Their medium

2

access control protocols have certain defects when used for

real-time purpose. CSMA/CD (Carrier Sense Multiple Access

with Collision Detection) [IEEE85a] type networks are non

deterministic [Hamm86] . Token bus [IEEE85b] and token ring

[IEEE85c] type networks are too complex, too expensive and

inefficient [Tane89, Stal90].

A controller Area Network (CAN) is a small local area

network which is suitable especially for use in real-time

distributed control systems. In real-time control systems

communication networks play a critical role. Data

transmission must be in time. Late delivery of data is a

fault that can result in instability or catastrophe.

Data transmission in the network is influenced

significantly by the intensity and distribution of traffic in

the network. It is subject to time-varying delays due to the

latency of messages in the network. In addition, messages

may be corrupted by noise in the network medium or lost due

to buffer saturation in the receiving stations and,

there+ore, have to be retransmitted. These problems will

increase the message transmission delay further and aggravate

the performance of the real-time control systems. For a

network such as CAN, which may be shared by processors, each

with a different nature, an appropriate traffic load

distribution is critical.

In addition to delay considerations, other performance

characteristics such as throughput and channel utilization

must be taken into consideration in making any design

decision. In fact, performance analysis is very essential

for any kind of network design.

3

The main purpose of this t.hesis is to analyze the CAN

protocol and find out the basic performance characteristics

of the CAN. These performance characteristics are the

relationships among the message delays, network loads,

message priorities and channel utilizations. A simulation

program was developed to simulate the network and to verify

the analytical results. This simulation program also can be

used as a tool to help the network designer to design actual

network. Furthermore, the thesis presents a message priority

assignment algorithm to help the network designer to

determine the optimum message priority assignment. A proof

of the correctness of the algorithm is also included in the

thesis.

This thesis contain~ six chapters. The second chapter

briefly reviews the most popular local area networks and

gives a simple introduction to the CAN. The third chapter

provides a more detail description of the communication

controller and protocol of the CAN and gives a formal

analysis for the CAN protocol. Chapter four presents the

message priority assignment algorithm. Chapter five

discusses the simulation program and the simulation results.

Summary of the thesis and possible future work are presented

in the last chapter of this thesis.

CHAPTER II

AN OVERVIEW OF PAST WORK

Local area networks provide communication capabilities

among terminals, computers, and other devices within a

limited geographical area such as an establishment, a single

building, a machine, or a robot. The principal elements that

determine the nature of a local area network are: its

topology, the transmission medium, and the communication

channel access control protocol. These elements are related

to each other. They determine the type of data that may be

transmitted, the speed and efficiency of communication as

well as what kind of applications that a local area network

may support [Stal90] .

A local area network may have any kind of topology such as

ring, star, bus, tree, or an arbitrarily connected graph. A

constrained topology such as ring or bus or tree eliminates

the need for complex routing switches and store-and-forward

buffers, and requires only simple host interfaces. Bus,

tree, and ring topologies are therefore generally preferred

for local area networks.

A local computer network may connect tens or hundreds of

computers, terminals, and other devices. A large number of

unrestricted accesses to a shared channel may result in an

overlap in time during message transmissions over a single

4

5

channel. The occurrence of these garbled message is called a

collision. To eliminate collisions or reduce their frequency

of occurrence, an access control protocol must regulate the

availability of the communication channel to the station

interface.

The choice of an appropriate access control mechanism is

important in any local area network from~the viewpoint of the

communication channel's throughput and delay characteristics.

There is a broad spectrum of access control protocols which

have been proposed for local networks. Among all these

protocols, the CSMA/CD, token bus, and token ring which are

specified by the IEEE 802 standard, are used widely in

various applications.

CSMA/CD

The topology of the CSMA/CD type network is bus or tree.

Stations are attached to the bus or tree through interface

devices. A station,wishing to transmit listens to the bus to

determine whether another transmission is in progress. If

the bus is idle, the station transmits its message.

Otherwise, the station continues to listen to the medium

until it is idle, then transmits and checks for a collision.

If two or more stations begin their transmission at the same

time a collision will occur. After a collision is detected

during the transmission, stations will cease their

transmission immediately and wait for either 0 or 1 time slot

and try again. Here a time slot is a short fixed length of

time defined by the communication protocol. If two stations

wait the same number of time slots, there will be second

collision. After the second collision each station picks 0,

1, 2, or 3 at random and waits that number of time slots and

try to transmits again. In general, after the i-th

collision, a random number between 0 and 2i-1 is chosen and

the station waits that number of time slots then try to

transmit again. However, after 10 collisions have been

reached the waiting interval is fixed at 1023 time slots.

After 16 collisions the station will give up [IEEE85a].

According to Hammord and O'Reilly [Hamm86], the main

advantage of CSMA/CD is that the entire bandwidth of the

channel can be used by a station once it successfully gains

access. Under lighter load condition, a station can, on the

average, successfully access the channel after a short

waiting period.

6

The disadvantage of CSMA/CD is that, under a given set of

conditions, the delay of a message and throughput varies with

time. That is, the system is non-deterministic. With a

little "bad luck", a message may wait for a very long time

before it is transmitted. Further, for a given number of

stations, the delay increases and throughput decreases at

higher loads because the. frequent collisions waste a large

portion of the bandwidth.

CMSA/CD is not suitable for use in real-time systems. A

real-time system must be deterministic. That is, for a given

condition the worst case delay and throughput must be known.

Another problem associated with CSMA/CD is that there is no

message priority. Important messages may be held up waiting

for unimportant messages.

Token Bus

The topology o~ token bus networks is also a bus or tree.

Logically, the stations are organized into a ring, with each

station knowing the address of stations preceding and

following it. A special control frame, a token, circulates

around the logical ring. Only the station holding the token

is permitted to transmit frames. Since only one station

holds the token at a time, collisions do not occur.

7

The token bus also defines four priorities classed 0, 2, 4,

and 6 for traffic, with 0 the lowest and 6 the highest. When

the token comes into a station, the station transfers class 6

messages for certain amount of time. After transmitting the

class 6 messages, if the time for the token to stay in that

station does not expire the station can transmit class 4

messages. This process is similarly repeated until either

all the class 0 messages are transmitted or the time for the

token to stay in that station has expired in which case the

token will be passed to the next station [IEEE85b].

Unlike the CSMA/CD protocol, the token bus protocol is very

complex and requires considerable overhead. The logical

ring must be initialized when the networ~ is started. The

ring should be able to add or delete stations dynamically.

It also must deal with token loss and multiple tokens

problems, and it should be able to recover from various

failures. The priority scheme guarantees the class 6

messages of every station a known fraction of the network

bandwidth, but does not distinguish message importance among

stations. All messages in the priority 6 queue in every

station are equally important and must wait for the token to

8

reach the station before getting transmitted [Tane88]

Token Ring

The communication channel of the token ring is a physical

ring formed by a collection of individual point to point

links. Access to the transmission channel is controlled by

passing a permission token around the ring. When the system

is initialized, a designated station generates a free token

which travels around the ring. When a station needs to

transmit frames, it seizes the token, removes it from the

ring, and then begins to transmit. At the end of the

transmission, the station passes the access permission to the

next station by generating a new free token. Because there

is only one token, only one station can transmit at a given

instant. Thus the token ring solves the channel access

problem the same way the token bus solves it.

The token ring has an elaborate scheme for handling

multiple priority frames. The token contains a field which

holds the priority of the token. When a station needs to

transmit a priority n frame, it must wait until it can

capture a token whose priority is less than or equal to n.

Furthermore when a data frame goes by, a station can try to

reserve the next token by writing the priority of the frame

the station wants to send into the frame's reservation bits.

However, if a higher priority already has been reserved

there, the station may not be able to make a reservation.

When the current frame is finished, the next token is

generated at the priority that has been reserved [IEEE85c].

9

Tokep ring networks are simpler than token bus networks,

but are still complex and expensive, and have all the

overhead problems token bus networks have. In practice a

token ring is a star shaped ring with cables coming and going

to every station from a wiring center. If the purpose of the

network is to reduce the wiring complexity token ring clearly

is not a solution [Tane88, Stal90] .

Controller Area Network(CAN)

Recently, the number of electronically controlled systems

introduced into automobiles has increased significantly .

Originally these systems were operated mostly on a stand

alone basis. Control units in an automobile measure and

process sensor signals redundantly. The wiring, control

units, sensors and other components require more and more

space. As a result, the complexity of vehicle electronic

systems has increased dramatically for manufacturing and

maintenance. These prdblems lead to the development of the

so called "in-vehicle networking" [Jurg86] .

In 1985, Robert Bosch GmbH (a German company) and Intel

Corporation agreed to develop an in-vehicle network device

and named the network and the protocol "Controller Area

Network" or "CAN" for short. By mid-1987 the first sample

product (Intel 82526) was produced [Phai88]. Motorola

Corporation has also done some research on this subject.

Both Motorola and Intel are designing single chip

microcontrollers with a subset of full CAN implementation on

the same chip called BasicCAN. Some of these products are

available.

10

CAN is similar to the CSMA/CD type networks except it is

much smaller. The communication channel of CAN is a bus.

Stations are connected to the bus through communication

controller. A station wishing to transmitting message

listens to the bus' first. If there is no message on the bus

then the station transmits its message immediately. If there

is a message on the bus, the station does not transmit its

message, and continuously listens to the bus. Once the

current message on the bus is finished and the bus becomes

idle, the station transmits its message immediately. Every

message in the system has a pre-assigned message priority.

If two or more messages start transmission at the same time

the lower priority message loses arbitration and stops. The

message with higher priority can be transmitted continuously

until it is completed. After the higher priority message is

finished, the lower priority message can be transmitted. The

above process proceeds repeatedly [Jord88].

CAN has many outstanding features. It is inexpensive,

simple, easy to implement, and has a high message rate, short

message latency, and no message trashing effect as in

standard CSMA/CD based protocols etc. . It is especially

suitable for use in robots, planes, cars, construction

vehicles, military vehicles, and some industrial real-time

control systems. It fills the gap between very low

performance UART-type serial links and expensive

communication products and protocols such as Ethernet or MAP.

According to Intel Corporation's report, the International

Standard Organization (ISO) has adopted the CAN as the

standard for high speed communication, and it has a good

chance of being the standard for the Society of Automotive

Engineers (SAE) [Gupt88]. This means the CAN may have the

potential of been world widely used in various vehicles and

machines·

11

Research activities related to the CAN have been reported

in recent literature [Inte88, Jord88, Iver88] . Kiencke

[Kien86] and Arnett [Arne87] have introduced the CAN to the

"Society of Automotive Engineers(SAE)". Phail [Phai88] has

also introduced CAN to the "American Society of Agricultural

Engineers(ASAE)". Intel Corporation provides a PC based demo

board to assist the automotive engineers in understanding and

implementing the CAN. This board can be connected to a PC

through a RS-232 port that allows programs to be downloaded

to or uploaded from the board's RAM. Through the PC,

contents of the RAM may be displayed or altered. A

microprocessor is included in the board to simulate the host

microcontroller [Phai88]. Three sample programs are

provided. The user can obtain experience in using the CAN by

running the example programs [Manu88].

In 1989 Bickerton and Chauhau [Bick89] in Lucas Automotive

Ltd. developed a data bus simulator for use by the

automotive designer. This simulator is fully integrated into

a LISP software environment. It can simulate CAN protocol.

It has an automotive component library and a graphic

interface. It supports automotive system level design and

assists in the assignment of message priority by simulation

and allows a proposed automotive design to be rapidly

assessed.

To date, the research activities related to CAN are

concentrated on its application in automobiles, mainly in

cars. No other applications or formal analysis have been

reported in the literature.

12

•

CHAPTER III

ANALYSIS OF THE CONTROLLER AREA NETWORK

In this chapter the most important aspects of the CAN

communication controller and the CAN protocol are described

more detail. The basic performance characteristics of the

CAN are studied. In the following discussion the time unit

1 used to express transmission delay is the time needed to

transmit one bit which is the inverse of the bandwidth. When

discuss message transmission, both the term "message" and

"frame" are used, because when transmitted messages must be

organized into frames. A message generation can also be

viewed as a message arrival to the communication system, so

in the following discussion the term "message generation" and

"message arrival" are equal.

Structure of Communication Controller

CAN is a single bus, multi-master architecture network.

Stations are connected to the bus through a communication

controller. Figure 1 shows the structure of the network and

figure 2 shows the structure of the communication controller.

The most important components of the controller are the on

chip Dual Port RAM(DPRAM), the Interface Management

Processor(IMP) and the Processor Interface Logic(PIU). The

DPRAM includes global status and a control register and

13

14

bus~

"'-communication / ,........._,

~controller /

m1 croprocessor

F1 gure 1. Structure of CAN

~u
p

I

u
.____

~

0

l PORT 0 I I PORT 1

I

BTL
DP RAM

I TCL I
IMP

I
EML

C G BSP

I

PIU :, ,Processor Interface Un1t.
CG : Clock Generator.

I

t--

J=----

--

IMP : Interface Management Processor
BTL : Bus T1 me Log1 c.
TCL : Transce1 ve Log1 c.
EML : Error Management Log1 c.
BSP : B1 t Stream Processor.
DP RAM : Dual Port RAM.

F1gure 2. CAN Network Controller Structure

c
A
N

B
u
s

15

16

serves as the communication buffer between the station CPU

and the IMP. The station CPU treats the DPRAM like its own

memory. When the station is powered up, the host CPU

initializes the global status and control registers and

creates data structures called communication objects in the

DPRAM for reception and transmission of defined messages.

Later the station CPU will transmit and receive messages by

writing and reading the communication objects in the DPRAM.

The IMP controls the transmission and reception of data

between the serial bus and proper communication object in the

DPRAM. The PIU links the DPRAM to the station CPU and it can

interface directly with all ·Intel microcontrollers and

microprocessors.

One special future about CAN is that there is no data

encoding. Data bits are sent to the bus directly. A binary

1 is represented by a high voltage level and a binary 0 is

represented by a 0 voltage level. Unlike the most popular

differential encoding scheme there is no clock imbedded in

the transmitted data. Each station uses its own clock to

receive incoming signals. To obtain correct bit timing, the

Bus Timing Logic(BTL) compares the transitions (voltage level

changes) in the received signals with the station clock and

synchronizes its receiving clock constantly during the

reception of frames. The bit stuffing method used in the

transmission logic can guarantee enough transitions in the

transmitted bit streams. These techniques make the collision

detection mechanism of this network very simple.

17

The CAN Protocol

The data frame structure is shown in figure 3. Each frame

starts,with a start of frame bit, signaling the start of a

data frame. The arbitration field follows the start bit and

contains the message identifier and one additional control

bit for other purposes. The CAN protocol is a contention

based protocol with a prioritized message scheme. Each type

of message has a unique message' identifier ranging from 0 to

2032 which serves as the name of the message as well as the

priority code of the message with 0 the highest priority and

2032 the lowest. When a node wants to transmit a message it

checks the bus to see if there is a message on the bus. Here

node means the communication controller. If there is no

message on the bus the node will begin its transmission

immediately. If there is a message on the bus, then the node

will wait until the current transmission completed. Once the

node finds the bus is idle it will begin its transmission

immediately. Transmitted messages are broadcasted to the bus

and all nodes on the network are constantly listening to the

bus. When a message appears on the bus every node checks the

message identifier. If this message identifier matches a

receiving object header in a node, then the node will copy

this message from the bus to the proper communication object

in the DPRAM and sends an interrupt to the station. Later

the station CPU will take this message. If this message

identifier does not match a receiving object header in this

node then the,node just simply ignores the message. When two

or more nodes begin their transmission at the same time a

INTER

BUS I DATA FRAME I FRAME
IDLE 1--------------~- SPACE

1 1 112 I 6 0 TO 64 1 6 I 2 7 3

I 1END OF FRAME
ACK-FIELD

CRC-FIELD
DATA-FIELD

CONTROL- Fl ELD
ARBITRATION- Fl ELD

START OF FRAME

F1gure 3. CAN Data Frame Format

message 1

olololllllo)olololololol I'§:------.~

message 2

ololol1l1l11 f

result on the bus

olololllllololololololol I'§;...__-----~

Figure 4. Example of B1tw1se Arb1tr1t1on

18

19

collision will occur. As two message identifiers are sent to

the bus bit by bit, the dominant 0 bit will overwrite the

recessive bit so the identifier with the smaller binary value

will ove'rwrite the identifier with larger value. While a

node is transmitting, it listens to see if the bit on the bus

is the same as it is sending to the bus. If what it hears is

different from what it sent, the node knows a collision has

occurred and it will stop its transmission immediately. The

higher priority message will continue until it is finished.

After the higher priority message is finished, the lower

priority message will try to transmit again. If there are

other higher priority messages waiting to be transmitted, the

lower priority message will lose arbitration again and again

until all higher priority messages are finished. Figure 4

shows an example of the bit arbitration process. With this

priority scheme, the delay of higher priority messages is

reduced, and contention does not waste any bandwidth.

Theoretically, it is possible for the channel utilization to

reach 100%, if enough load is present.

The control field and data field follow the arbitration

field. The control field consists of 6 bits, 2 reserved

bits, and 4 data field length bits. The length of the data

field is coded in bytes, and the control field identifies the

number of bytes of data presented in the data field. The

length of the data field varies from 0 to 8 bytes. The frame

with a data field 0 is a special frame called a remote frame,

which requests certain message to be sent to the bus. The

contents of the arbitration field, control field, and data

field of the frame corresponds to the contents of the

communication object to be transmitted or received in the

DPRAM.

20

The CRC field contains a 15 bit cyclic redundancy check sum

and a 1 bit delimiter. The check sum checks the star bit,

arbitration field, control field, data field, and CRC field

itself. After a message is completed the CRC field is

checked. If any error is detected in the frame, the whole

frame will be retransmitted.

The acknowledge field consists of two bits, the ACK_SLOT

bit and the ACK DELIMITER bit. The transmitting node ~ends

the ACK SLOT bit as 1. Any receiving node which has received

a frame correctly will send a 0 to the bus at the same time.

This 0 will overwrite the 1 sent by the transmitting node.

Because the transmitting node listens to the bus, it will

find the change and know that at least one station has

received the message completely and correctly. The end of

frame field consists of 7 bits, all of them 1. It marks the

end of the frame.

Besides data frame and remote frame there are 2 more

frames: The error frame, which indicates error conditions,

and overload frame, which signifies receiving station not

ready condition or wrong interframe space bit condition.

Data frames and remote frames are preceded by at least 3

interframe spaces which allow the network interface to get

ready to transmit or receive the next frame.

21

Assumptions and Conditions

Performance measure of local area network usually includes

three parameters: throughput of the network, transmission

delay, and communication channel utilization [stal90]. This

chapter analyzes these parameters for the CAN.

In the following discussion it is assumed that the message

generation occurs in a fashion which is characterized by the

Poisson distribution, which is expressed as:

e-A. * A.) n

p(n) =
n !

In the above expression A. is the expected number of messages

generated per second and p(n) is the probability of n message

generations per second in the network. For certain

applications the messages may be generated according to a

certain pattern on some stations, but for right now we are

not concerned with any particular application. In real

situations message generation tends to approximate a Poisson

distribution, and this is true especially when the number of

stations and messages is large. In the same way the message

length is also assumed to follow a Poisson distribution or

exponential distribution.

With the above assumptions, the CAN is modeled as a single

channel queuing system with Poisson arrival and negative

exponential service time with the bus being the server and

all waiting messages forming a single queue. There is no

waste of bandwidth caused by collision like in CSMA/CD type

networks, and no token passing time between data

transmissions like in token bus and token ring networks.

22

The message transmission process is well described by the

model. The priority scheme of CAN only influences the

message order inside the queue. In the viewpoint of bus and

the whole system the basic characteristics of the queue, such

as expected number of messages in the system and probability

of certain number of messages in the queue, are not

influenced .

It is also assumed that all frames are data frames and

remote frames because data frames and remote frames will

dominate the network in normal situations and this assumption

will simplify the analysis.

The possibility of.message retransmission resulting from

noise garbled frames is also ignored. This problem is

related to the reliability problem which is usually analyzed

in hardware design stage.

Some Conclusions from Queuing Theory

In order to do the following analysis, some conclusions

from the queuing theory [Klei75, Mcmi73] need to be employed.

These conclusions are summaried below. Let A· be the J.

average message generation rate of i-th priority message, A

be the message generation rate of the whole system, and that

there be totally n types of messages in the system. Then the

message generation rate of the whole system is 'given by:

In most distributed control systems, the length of each

type of message is a constant. In CAN, each type of message

23

corresponds to a communication object in the DPRAM which is

created at the system initiation stage. Thus, the length of

each type of message is fixed. Let Li be the length of i-th

priority message and L be the expected message length of the

whole system. Then L is given by:

or

Let ~ be the average number of messages the bus can

transfer per second, B the bus bandwidth, OHF the overhead

bits for each message, IFS the minimum interframe spaces

between two consecutive frames, and F the expected message

frame length. Then ~ is given by:

and

B
~=--~-

F + IFS

F = L + OHF

The traffic intensity of the network, P, is given by

A.
p=-

~

When P < 1 the queuing system is in stable state and the

following conclusions exist. Let P(n) represent the

probability of n messages in the system, that is messages in

the queue and on the bus, then P(n) is given by:
n

P (n) = (1 - p) * p

The probability of 0 message in the system is:

24

P(O) == 1 - p .
The expected numb~r of messages in the system is given by

A.
ns=

~-A.

The expected number of me~ sages on the bus is given by

A.
nb=-= p

~

The expected number of message in the queue is given by

2
A. A. A.

q= -=
~-A. ~ (~-A.)*~

Throughput of the Network

In this section the throughput characteristics of the CAN

are studied. There are two kinds of throughput in the

network: The effective throughput and thr~ughput. Effective

thro~~hput, ES, is defined as the total number of data bits

received at the destination stations correctly per second.

Throughput of the network, S, is defined as the effective

throughput plus overhead bits of each frame received at the

destination stations correctly per second. Both the

effective throughput and the throughput are a fraction of the

bandwidth B. The load of the network is also divided into

two kinds, the input load and offered load. The input load,

IG, is defined as the total number of data bits generated per

second by all stations in the network. The offered load, G,

is the input load plus all overhead for sending these data.

In some networks, the frames are very long, and the overhead

25

bits occupy just a very small portion of the total frame

length. In that situation the overhead of each frame is

ignored and the throughput and effective throughput are

thought as the same. Input load and offered load are also

thought as one. In CAN the maximum frame length is 108 bits

and the overhead for each frame is 47 bits. The overhead of

the network is not negligible. Let L be the expected length

of the message, F the expected length of frames in the

network, then the relationship among these parameters can be

expressed as the following:

G = IG * F
L

S = ES * F
L

~et Gi and IGi be the portion of the offered load and input

load provided by i-th priority message, n the total number of

messages in the network, then the offered load, G, and the

input load of the system can be expressed as:

n-1

G = L Gi
i=O

n-1

IG = L IGi
i=O

This network is in stable state when the offered load is

smaller than the bandwidth, that is

G < B

In stable state there may be a waiting queue in the network

and the number of messages waiting in the queue may change,

but it is finite. All the message bits generated by all the

stations in the network, plus necessary overhead bits, will

be sent and received .. The throughput of the network is:

26

S = G

and

ES = IG.

If the offered load is larger than the bandwidth, that is:

G > B

The throughput of the system can reach its maximum value:

S = B

and the effective throughput of the network will be:

and

ES = B * L
F

ES <> IG

Figure 5 shows the relationship between the throughput and

the offered load given by the above formulae. Both the

throughput and the offered load are expressed as a fraction

of the bandwidth.

According to the CAN protocol, when the offered load is

larger than the bandwidth, the higher priority messages can

still be fully transmitted, but lower priority messages may

have no chance to be transmitted or can only be partly

transmitted depending on how much bandwidth has been left for

this type of message. The bandwidth used by higher priority

messages is:
i-1

L Gk
k=O

In the above expression, the highest priority message is

defined to have priority 0. This is the way message priority

is defined in CAN. The remaining portion of the bandwidth,

which can be used by the i-th priority message and lower

1.2

1.0

.j.)
;:I 0.8 p..

.<::
0'1
;:I 0.6
0
k

.<::
0.4 E-i

0.2 -a-- throughput

0.0
0.0 0.2 0.4 0. 6 0. 8 1. 0 1. 2

Offered Load

Figure 5. Theoritical Relationship of Offered
Load and Throughput

27

28

priority messages, is:

i-1

B - L Gl<

l<=O

If the remaining portion of the bandwidth is larger than the

offered load of the i-th priority message, then the

throughput of i-th priority message is equal to its offered

load. Otherwise throughput of the i-th priority message can

only be the remaining part of the bandwidth. It is possible

that the above expression gives a negative value, but

throughput of any message can never be negative. Let Si be

the throughput of i-th priority message, which is the portion

of data bits and overhead bits received by the destination

station(s), and belong to i-th priority message. Then the

throughput of the i-th priority message is given by

i-1

S i = max (min (G i , B - L G)<) 0)
l<=O

Let Lmax be the maximum length of the data field(64 bits),

Fmax the maximum frame ~ength(108 bits), and IFS the minimum

number of interframe spaces required between frames(3 bits).

When there are enough loads present and the data field of all

messages is maximum length, the effective throughput of the

network can reach its maximum value, which is:

ES = Lmax
max F max + IFS * B

If the offered load is equal to the bandwidth then this is

also the maximum input load.

29

Delay of Different Priority Messages

In CAN each type of message has a unique identifier that

represents a unique priority and each type of message

corresponds to a unique communication object in a certain CAN

node, so at any time there couldn't be more than one certain

type of message waiting for transmission. In most

distributed control systems all messages are pre-defined and

the length of each type of message is a constant. In CAN,

when a station is powered up the station CPU runs a program

to initiate the dual port RAM(DPRAM) on the node and creates

data structures for communication objects, thus defining the

length of each type of message

The delay of a message is defined as the time interval

between the time a message is generated and the time this

message is received by the destination station(s). According

to the CAN protocol, delay of certain type of messages is

influenced only by higher priority messages. Lower priority

messages have no influence on higher priority messages.

Maximum Delay

Basically, all other messages have no influence on the

delay of the highest priority messages because whether there

are other messages waiting for transmitting or not once the

bus becomes available, these messages will begin to transmit

until the transmission finished. The maximum delay of the

highest priority message appears when this message generates

just after the longest message has transferred its first bit

and seized the bus. This highest priority message has to

30

wait until the current message finishes its transmission. So

the delay of this highest priority message is the time the

current message needs to finish its transmission plus the

time for interframe spaces and the time needed to transmit

this message itself. The longest message is 108 bits(1 bit

of start of frame, 12 bits of arbitration field, 6 bits of

control field, 64 bits of data field, 16 bits of CRC field, 2

bits of acknowledge field and 7 bits of end of frame field)

and there are at least 3 interframe spaces between data

frames. Let D0 be the maximum delay of the highest priority

message, F0 be the frame length for the highest priority

message, Fmax the length of the longest frame(108 bits), IFS

the minimum number of interframe spaces between frames(3

bits), and let the time unit be the time needed to transfer 1

bit (1/B second), then the maximum delay of the highest

priority message is:

D0 == Fmax + IFS + F0 - 1

The maximum delay of i-th priority message appears when

this message is generated with all higher priority messages

at the same time, and at that moment a longest message has

just transferred one bit and seized the bus; in the waiting

time, higher priority messages continue to generate at their

maximum rate. Let the maximum delay of i-th priority message

be the maximum waiting time of this message plus the time

needed to transfer this i-th priority message itself. The

maximum waiting time is the time needed to finish the current

message on the bus plus the time needed to transfer all

higher priority message waiting in the queue and arriving

during the waiting time. Let Di be the maximum delay of

31

i-th priority message, Wi the maximum waiting time for i-th

priority message, Fk the length of the frame for k-th

priority message, and Mk the maximum message generate rate of

k-th priority message, then the maximum waiting time is given

by the following equation:
' i-1 i-1

W1= (F max+IFS-1) + L (Fk+IFS) + L (Fk+IFS) *Mk*:i
k=O k=O

Solving the equation for Wi gives:

i-1
(F max+ IFS - 1) + L (F k + IFS)

k=O
wi = ----------------------------------

1

i-1

L (Fk + IFS) * Mk
k=O

B

Maximum delay of the k-th priority message is equal to the

maximum waiting time plus the time needed to transfer the

message itself. That is:

D·=W·+F· 1 1 1,

or
i-1

(Fmax+ IFS - 1) + L (Fk + IFS)

1

k=O

i-1 L (Fk + IFS) * Mk
k=O

B

Figure 6 shows the relationship between maximum delay and

message priorities and figure 7 shows the relationship

between maximum delay and offered load. Under light or

medium load, message priorities do not have much influence on

the maximum delay, but when the offered load reaches about 80

300000

>. 200000 Ill
.-l
(])
0

Ill light load
. • med. load >C

Ill
:i: 100000 • heavy load

0~~~--~~--BN~~----~
0 1 0 20 30

Priorities

Figure 6. Theoretical Relationship between
Max. Delay and Message
Priorities

300000
~ highest priority msg.

• low priority msg.

200000

100000

o+-4-~~~~~~~~~~
0.0 0.2 0.4 0.6 0.8 1.0

Offered Load

Figure 7. Theoretical Relationship between
Max. Delay and Offered Load

32

33

percent of the bandwidth the maximum delay of lower priority

messages begin to increase sharply. Maximum delay of higher

priority messages is not influenced by the offered load.

Expected Delay

In the following analysis it is assumed that the network is

in stable state, that is P < 1, so that all conclusion from

the queuing theory can be employed for the analysis. In

general a highest priority message may be generated at any

time, that is, when it is generated there may or may not be a

message on the bus. If there is no message on the bus then

the generated message will be transmitted immediately. If

there is a message on the bus then it may be any type of

message belonging to this system. To find out the average

delay of the highest priority message we can use the expected

value of message frame length, F, to represent the length of

different type of message frames. It is also reasonable to

assume that the probability of 1 bit, 2 bits, . . . , up to F

bits of the current message or any one of the 3 interframe

spaces has been transmitted are equal, that is the

probability is:

1
F + IFS

The expected number of bits already transmitted is:

F+IFS
~ 1 *i 1 *F+IFS+1*(F+IFS) F+IFS+1
i~l F+IFS F+IFS 2 2

thus the number of bits including the interframe spaces

remaining to be transmitted is:

(F + IFS) _ F + IFS + 1 =
2

F + IFS - 1
2

So the expected waiting time of the highest priority

F + IFS - 1

or

w0 = O*P (0) + (1-P (0)) *

Wo = p * F + IFS - 1
2

2

34

is:

which is the product of the probability of one or more

messages in the communication system and the expected number

of bits remaining to be transmitted. In the above two

formulas P(O) is the probability of no message in the

network, 1- P(O) is the probability of one or more

messages in the network. From queuing theory we know that

1 - P(O) = p

and the first formula for w0 is just standard expression for

expected value of something. The expected delay of the

highest priority message is the sum of the expected waiting

time and the time needed for transmitting the highest

priority message itself, that is:

or:

do = Wo + Fo

do = p * F + IFS - 1 + Fa
2

The expected delay of the i-th priority message should be

the sum of the expected waiting time of the i-th priority

message and the time needed for this message to be

transmitted.

The expected waiting time for the i-th priority message

consists of three parts: the expected time for current

message on the bus to finish; the expected time for

transferring higher priority message waiting in the queue,

and t.he expected time for transferring the higher priority

messages generated during the wai.ting time.

35

Th~ waiting time needed for the current message on the bus

to finish should be the product of the expected number of

messages on the bus and the expected number of bits

remaining to be transmitted in the current message. From

queuing theory, the expected number of messages on the bus is

equal to p and the expected number of bits is the same as in

the case of the highest priority message, that is:

F + IFS - 1
2

So the expected waiting time needed for the current message

to finish is:

F + IFS - 1
p * 2

The second part of the waiting time is the time needed to

transmit the higher priority messages waiting in the queue.

According to the queuing theory the expected number of

message waiting in the queue is:
2

A.
q=----

J.L(J.L-A.)

Among these messages, only those messages with higher

priority will cause the i-th priority message to wait. The

number of these higher priority messages should be

proportional to the number of messages they generate per

second, so the expected number of higher priority messages

is given by:

or

qh=q*---
A

qh=----
J.L*(J.L-A)

36

and the expected time needed to transfer the higher priority

messages waiting in the queue is:

i-1

A* L Ak
le:O

qh * F = * F
J.L*(J.L-A)

The third part of the waiting time is the time needed to

transmit higher priority messages generated during the

waiting time. Let wi be the expected time the i-th priority

message has to wait, Fk the length of the frame for the k-th

priority message which is (Lk+OHF), then the time needed for

i-th priority message to wait for the incoming higher message

to be transmitted during the waiting time is:

i-1

I,
k=O

The total expected waiting time for the i-th priority message

is given by the following equation:

i-1

A* L Ak
k=O i-1 W ·

Wi=P*F+IFS-1 +-----*F + L (Fk+IFS) *Ak*~
2 Jl (J.L- A) k=O B

Solving the equation for wi gives:

p * F+IFS-1 +
2

i-1

i-1

A * L Ak
k=O

J.L(J.L - A)

L (Fk+IFS) * A.k
k=O

1 -
B

37

* F

The expected delay of i-th priority message is equal to the

expected waiting time plus the time needed to transmit this

message itself, that is:

or

d·=W·+F· 1 1 1

p * F+IFS-1 +
2

i-1

A * L Ak
k=O

* F
J.L(J.L- A)

---------------------------------- + Fi

1 -

i-1

L (Fk+IFS) * Ak
k=O

B

In the above analysis, the expected number of messages in the

system is not used to find the waiting time. Instead, the

expected number of messages in the queue and the expected

number of messages on the bus were used. This is because the

current message on the bus may be a message with lower

priority.

Figure 8 shows the relationship between expected delay and

message priorities and figure 9 shows the relationship

between expected delay and offered load. When offered load

is increased to about 60 percent of the bandwidth the

expected delay of lower priority message begins to increase,

12000

10000
>t
C\1
.-I

8000 Q)
0

'tj
6000 Q)

+I
0

~ light load(0.26B)

• med. load(0.61B)
Q)

~ 4000
llil • heavy load(0.96B)

2000

0
0 1 0 20 30

Priorities

Figure 9. Theoretical Relationship between
Expected Delay and Offered
Load

12000
~ highest priority msg.

>t 10000
C\1 • low priority msg.
.-I
Q) 8000 0

'tj
Q)

6000 +I
0
Q)

~ 4000
llil

2000

0
0.0 0.2 0.4 0.6 0.8 1.0

Offered Load

Figure 8. Theoretical relationship between
Expected Delay and Message
Priorities.

38

39

but not as sharply as the maximum delay increases.

Communication Channel Utilization

Communication channel utilization is defined as the

fraction of the total channel capacity being used. In the

above analysis if throughput of the network is normalized and

expressed as a fraction of channel capacity rather than

number of messages or number of data bits and overhead bits

been transferred then it can be interpreted as channel

utilization. Let S be the throughput of the system, U the

channel utilization and B bandwidth of the network, then the

channel utilization of the network is:

u =
s
B

CHAPTER IV

MESSAGE PRIORITY ASSIGNMENT ALGORITHM

The Need for the Algorithm

All messages in CAN have to be assigned a priority at the

network design stage. In real-time distributed control

systems message transmission must be in time. For every

message there is an allowed maximum delay within which this

message must be transmitted and received by the destination

station after it is generated. Even in the worst case

situation this limitation should not be exceeded. There are

many different types of messages and some of them are much

more important than others and must be transmitted and

received within much shorter time. The purpose of the

priority scheme in CAN is to guarantee that important

messages are transmitted earlier than less important ones.

To guarantee that the allowed maximum delay requirement of

every message in the real-time system is satisfied, the

priority assignment has to be based on the worst case

situation. Let Di be the maximum possible delay of i-th

priority message, and ADi be the allowed maximum delay of

that message, then the condition

Di <= ADi

must be satisfied for all messages in the system.

The most straightforward way of assigning priorities to

40

messages is according to the importance of each type of

message, which is expressed as the allowed maximum delay of

each type of message. This method of assigning priorities

does not generate an optimum assignment and may give an

incorrect assignment when the given set of requirements are

conflicting. Now let's define the term "optimum" for the

message priority assignment. From the whole system's

viewpoint, an optimum assignment scheme should make the

average delay of all messages minimal. This problem is

similar to the job scheduling problem in operating system

design in which the "shortest job first" is the solution

[Deit90] . For the CAN there are extra constraints, that is

the allowed maximum delay constraints, so the optimum is a

kind of conditional optimum or optimum with certain

constraints. The idea of the "short job first" can be

illustrated by the following example.

41

Three messages, with transmission times of 10, 100, and

1000 units respectively, arrive at the transmission channel

at the same time. The channel can transmit just one message

at a time. There are several ways to arrange the

transmission and different arrangements yield different

average delay or total delay of these three messages. Let ti

represent the transmission time of number i transmitted

message, di represent the delay of this number i transmitted

message, D represent the total delay of these three messages,

and AVD represent the average delay of these three messages

then

i
d·= ~ t·

1 ~ 1
j=l

For these three messages there are six different

42

transmission arrangements totally. Table I lists three

transmission arrangements and the resulting delay of each

message, total delay and average delay of all three messages.

Arrangement t1 transmits the shortest message first and the

longest message last and the resulted average delay is 410

time units. Arrangement t3 transmits the longest message

first and the shortest message last, with an average delay of

1070 time units. From the example it can be seen that

transmitting shorter messages earlier or, "short job first",

makes the total delay' and average delay of all the messages

minimal.

According to this principle, higher priorities should be

assigned to messages which are transmitted less frequently

and have shorter message length. In other words, higher

priorities should be given to messages that use the

transmission channel less.

So the solution for CAN should be one which can satisfy the

allowed delay requirement of all messages and make the

average delay of all messages reach the lowest possible

value. The following priority assignment algorithm is based

on the above idea. First the priorities are assigned to the

43

messages according to the "short job first" principle, then

adjustments are made to make priorities of all messages

satisfy the allowed delay requirement. Because the algorithm

is based on the worst case and the probability of the worst

case happening is very low, the adjustment makes the allowed

delay of each message merely satisfied to make the assignment

scheme as optimum as possible. It can be proved that such a

solution is unique if it does exist.

TABLE I

COMPARISON OF DIFFERENT MESSAGE
TRANSMISSION ARRANGEMENTS

#1 10 100 1000 10 110 1110 1230 410

#2 10 1000 100 10 1010 1110 2130 710

#3 1000 100 10 1000 1100 1110 3210 1070

Another function of this algorithm is that through the

systematic search a set of incompatible requirements can be

detected in which the control system designer should

reconsider his or her design and the requirement on the

network. For example, consider a system that has two

44

messages, each having a transmission time of 100 units and an

allowed maximum delay .of 150 units. There is no way to

satisfy the requirements of these two messages, because if

both of them arrive at the transmission channel at the same

time one of them has to wait 100 units; its delay would be

200 units, which is larger than its allowed maximum delay.

For a given set of requirements, determining whether they are

compatible and all can be satisfied is not an easy question,

especially when the message set is big. Only a systematic

search can give an accurate answer. Simulation can hardly

work. Also, this problem must be considered in the CAN

design process. If one works on a set of incompatible

requirements blindly he or she will certainly waste time and

will fail in the end.

Two Examples

The algorithm can be illustrated best by the following

simplified examples. Table II gives ten types of messages in

a control system. For each type of message there is a

message name, a transmission time which is the time need for

transferring this message, and an allowed maximum delay. To

simplify the example, the arrival of higher priority messages

during the waiting time is omitted. Priorities are assigned

to each of these messages so that when two or more messages

arrive at the transmission channel at the same time, the

higher priority message is transmitted before the lower

priority messages. For every message the priority assignment

should make the maximum possible delay of that message less

than or equal to its allowed maximum delay. The maximum

Message

Name

A

B

c

D

E

F

G

H

I

J

TABLE II

TEN MESSAGES OF A CONTROL SYSTEM

Transmission

Time

100

500

50

600

700

50

200

400

300

50

Allowed Maximum

Delay

500

2400

850

3100

1900

300

800

1200

3500

350

45

46

delay appears in the worst case of a message transmission, in

which a message arrives at the communication channel with all

higher priority messages at the same time and must wait for

all higher priority messages to finish. Besides, the

assignment should make the average of the maximum delay of

all messages or the sum of the maximum delay of all messages

as small as possible. Let ti be the transmission time of i

th priority message, Di the maximum delay of i-th priority

message in the worst case, TD the sum of the maximum delay of

all messages, and ADi the allowed delay of i-th priority

message the above condition can be expressed as

i

Di = L tj
j=l

10

TD = L Di
i=l

(5 . 1)

The algorithm first sorts the messages and then puts them

in a list according to their transmission time. The message

with the smallest transmission time is put on the leftmost

side of the list and named message number 1. The following

messages are named number 2, number 3, through number 10.

This is illustrated on the first row of figure 10. Each type

of message is represented by a rectangle with the message

number on the top of the rectangle, the transmission time in

the middle, ·and the allowed maximum delay on the bottom of

the rectangle. The position of each message in the row

represents the priority of each message with the leftmost

position representing the highest priority. Changing

bl1~ 50 50

350 850

~H~~
ii~~ 300 400 500 600

3500 1200 2400 3100
750

~~i]~~ 200 300 400 500 600

800 3500 1200 2400 31 00
550

~~~ii~ 50 400 50 200 400 500 

350 500 850 800 1200 2400 

~~~i[i 50 400 50 200 400 

350 500 850 800 1200

10
700

1900

10
700

1900

10
700

1900

bl1i~~i~o ~~i 50 400 50 200 400 700 500 600 300

350 500 850 800 1200 1900 2400 31 00 3500

Figure 1 o. Example 1 of Prioroty Assignment Algorithm

47

48

position of a message means changing the priority of that

message, so the list represents a priority assignment scheme.

The first row of figure ·10 represents the priority assignment

using the short job first method. It has the minimal total

delay TD, but whether the worst case delay of each message

exceeds its allowed maximum delay or not is unknown. That

is, the condition

Di <= ADi

for every message is unknown. So the next step is to check

this condition for every message. The check begins from

message number 1 to number 10, one at a time. The position

of a message may be changed but its number will never be

changed. This way it can be sure that no message will be

ignored.

On the first row of figure 10, message number 1, 2. 3, 5,

and 6 are checked. For message 1 the maximum possible delay

or worst case delay and the allowed maximum delay are

D1 = 50 ,

AD1 = 300 ,

0 1 < ADl'

condition (5. 1) is satisfied. For message 2, The worst case

delay and allowed maximum delay are

0 2 = 100,

AD2 = 350,

condition (5. 1) also satisfied. For message 3, 4, and 5,

condition (5. 1) are all satisfied. For message 6,

0 6 = 50 + 50 + 50 + 200 + 300 + 400

= 1050,

49

AD 6 = 500,

D6 > AD6,

condition (5. 1) is not satisfied. In this situation the

algorithm makes some adjustments on the priority assignment.

It tries to reduce the worst case delay of the current

message by selecting and moving messages from the left of the

current message to the right of the current message.

Messages on the left side of the current message have all

been checked and all satisfy condition (5. 1). The movement

should not disturb the existing satisfaction of condition(5.

1). Now the algorithm tries to shift message 6 left one

position and move message 5 after message 6. The priorities

of message 5 and 6 are exchanged. In the new scheme

D6 = 50 + 50 + 50 + 200 + 300 + 400

= 1050

AD 6 = 3200

condition (5. 1) is satisfied, and this adjustment can be

made. So the algorithm made this adjustment and the new

priority assignment scheme is the second row of figure 10.

In the new position message 6 still cannot satisfy condition

(5. 1), so the above process repeats again until message 4

and 3 have been moved to the right of message 6. The result

is the 4th row of figure 10. Now the algorithm finishes

checking message 6, the next message checked is message 7.

It is shifted left one position and message 5 is moved to its

right. The result is the 5th row of figure 10. Message

number 8 and 9 satisfy condition (5. 1) in their original

position and adjustment is not needed. For message 10

50

0 1o -50 + 50 + 400 + 50 + 200 + 400 + 300 + 500

+ 600 + 700

- 3250

AD1o - 1900

condition (5. 1) is not satisfied, so some adjustments have

to be made. First the algorithm tries to move message 9

after message 10. If this adjustment is made, in the new

scheme

0 10 - 50 + 50 + 400 + 50 + 200 + 400 + 300 + 500

+ 700

= 3250

AD1o -3100

condition (5. 1) is not satisfied and this adjustment cannot

be made. In this situation the algorithm attempts to shift

messages 9 and 10 one position to the left and move message 8

after message 10. If this movement were made then in the new

scheme

o10 = 50 + 50 + 400 + 50 + 200 + 400 + 300 + 600

+ 700 + 500

='3250

AD 10 = 2400

condition (5. 1) is. still not satisfied, and this adjustment

cannot be made. Again the algorithm shifts left one position

to select message 5 and try to shift messages 8, 9, and 10

left one position and put message number 5 after message 10.

This time the condition is satisfied, and the result is row 6

of figure 10. The algorithm still needs to check to

ascertain that the priority of message 10 can satisfy

condition (5. 1) in the new position. If the condition

51

cannot be satisfied the above process has to be repeated

again and again until message 10 has been moved to a position

in which condition (5. 1) could be satisfied. So the process

has to repeat two more times, and message 10 is moved two

positions left and messages 9 and 8 are moved after message

10 again. The result is row 7 and row 8 of figure 10, and

row 8 is the final result.

In general, when a message cannot satisfy condition (5. 1)

the algorithm tries to move some messages from the left of

this message to the right of this message, one at a time.

The algorithm selects messages from right to left, beginning

with the left neighbor of the current message. If the

message on the leftmost position has been selected and

failed, there is no answer to this set of requirements. No

message priority arrangement can satisfy the allowed maximum

delay requirement for this set of messages in the worst case

situation.

Figure 11 shows another example in which message 7 was

shifted one position left and message 6 was moved to position

7 to make message 7 satisfy condition (5. 1). This is shown

on row 3 of figure 11. Later messages 5, 7, 6, 8, and 9

were shifted left one position and message 2 on position 4

was moved to position 9 to make message 9 satisfy condition

(5. 1). Because message 2 was moved from the left of

messages 5, 7, 6, and 8, their worst case delays are all

decreased, and previous adjustment of message priorities

inside this sublist becomes unnecessary, thus making the

assignment less optimum. To keep the priority assignment

~~ii 150 200 100 250

250 400 3100 750

~ ~ ~ 3100
~~~~~0 

--~----~--~--~----

~~iii~i~ 150 200 250 350 300 400 450 1 00 

250 400 750 1350 1400 1900 2150 3100 

Apply algorithm to subllst 

ii~ 350 300 400 

1350 1400 1900 

~~~~~~~~~ ;~0 
~~~~~~~~~ 3000 

Figure 11. Example 2 of Pr1orHy Assignment Algorithm 

52 



53 

scheme as optimum as possible the algorithm should be applied 

to the sublist again. In the example, message 7 was moved 

back to right of message 6 again. 

The Algorithm 

The following is the formal description of the priority 

assignment algorithm. Suppose there are N messages in the 

system and for each message there is a, transmission time t 

and an allowed maximum delay AD associated with it. In the 

description, subscripts i, p, and q identify the position or 

priority of a message, not the message number. For example, 

ti means tran'smission time, of the message on position i, not 

the transmission time of message i. Message numbers are used 

to make sure that every message is checked. Variable k is 

used to store the message number. 

1. Sort all the messages according to their transmission 

time t and put them in a list in ascending order. If 2 
' 

or more messages have the same transmission time t, 

then arrange them according to their allowed maximum 

delay AD. 

2. Number all messages from 1 toN in the above order. 

These numbers is permanent names for these messages. 

3. Assign priority to all messages according to their 

position in the above list with 1 as the highest 

priority. Later the positions of these messages may be 

changed. Changing position of a message means to 

change the priority of that message. 



54 

4. k <- 0. 

5. k <- k + 1 

If k N +,1 then a solution has been found, stop. 

6. Assign position of message k to variable p and q. 

7. If the allowed maximum delay of the message on position 

p is satisfied, that is, 

~ 
(FLmax+IFS-1) + L 

1 -

p-1 

~ (Fj + IFS) * Mj 
j=O 

B 

then go to step 5. 

8. q <- ( q-1) 

If q=O then no solution exists. stop. 

( 5 . 1) 

9. If the message on position q cannot be moved right 

after the message on position p, that is, after 

shifting messages on position q+1,q+2 , p one 

position left and moving the message on position 

q to position p, condition (5. 1) cannot be satisfied, 

then go to step 8. 

10. Shift messages on position q+1, q+2, . . . , p one 

position left and move the message on position q to 

position p. 

11. If ( p - q ) >= 3 then apply the algorithm to sublist 

form position q to position ( p - 2 ) . All messages on 

the left of position q is treated as one big message. 

12. p,q <-( p- 1 ); go to step 7. 



Proof of the Algorithm 

This section proves that the above algorithm generates an 

optimum message priority assignment scheme. That is, the 

resulting assignment is one which can satisfy the delay 

requirement of all messages and make the average of total 

delay of all messages reach the lowest possible value. 

Here an assignment is still represented by a list of 

messages. The position of a message in the list still 

55 

represents the priority of a message and "message i" means i-

th priority message. For an assignment generated by the 

above algorithm, suppose the position of message u and v has 

been exchanged and u < v . There are three situations: 

1. tu < tv 

Originally the waiting time of message u+1 is 

After the exchange the new tu has increased, so the 

waiting time of message u+1, wu+ 1 is increased. Similarly, 

the waiting time of message u+2, u+3, 

. ,wv is also increased. The waiting time of message 1, 

2, . ,u and message v, v+1, , n is not influenced 

by the exchange, so the total waiting time of all messages 

increased. The total delay is given by 



56 

~In the above formula the summation of message transmission 

time is a constant; it is not influenced by any arrangement. 

When total waiting time increased the total delay is 

increased. Thus the average delay increased. 

2 tu > tv 

According to the algorithm a message with larger t is moved 

left over messages with small t only for satisfying the 

allowed maximum delay requirement of that message, and it is 

moved to a position which can barely satisfy the allowed 

delay requirement of that message. This is done in step 7, 

8, 9, 10 and 11 of the algorithm. Because tu > tv, message u 

must be moved by the algorithm to satisfy the delay 

requirement. In the original list, message u is in a 

position which can barely satisfy the allowed maximum delay 

requirement. Exchanging the positions of message u and 

message v moves message u right; then the priority 

assignment of message u is no longer satisfy the delay 

requirement. So such exchange cannot be made. 

3. tu = tv 

In this situation, the exchange of the position of message 

u and message v may or may not violate the allowed maximum 

delay requirement of message u, but it has no influence on 

the total delay D or average delay of all messages in the 

system. 

From 1, 2, and 3, it can be said that any other arrangement 

of the priority cannot be better than the one generated by 



57 

the above algorithm. Any change to the assignment generated 

by the algorithm are either violate the allowed maximum delay 

requirement of some message or increase the total delay of 

all messages in the system or has no effect on the total 

delay of all the messages in the system. So the priority 

assignment generated by the above algorithm is the only one 

which can satisfy the allowed maximum delay requirement of 

all messages and make the total delay of all messages 

minimal, thus is an optimum one. 



CHAPTER V 

SIMULATION OF THE CAN 

Description of the Simulation Program 

Both to verify the analytical model and to provide a tool 

for the network design a simulation program was developed. 

This simulation program is written in Turbo C and runs on IBM 

PC and compatible computers; hence it is very easy to find a 

computer to run it. 

In the simulation program the bus is represented by an 

integer variable and each station is represented by a 

structure. Communication processes are simulated by the 

simulation program as ·a series of message cycles which, in 

turn, consists of a series of bit cycles. A message cycle 

corresponds to the transmission of one message and a bit 

cycle corresponds to the transmission of one bit .. There are 

a set of flags to signify various status, for example whether 

a station has messages to transfer, or what field the 

current bit on the bus comes from. Message arbitration is 

performed in the transmission and receiving of message ID. 

The function 

F(x) =- (B * ln x) 
A 

is used to generate exponential message inter-arrival time, 

so the message generation will follow Poisson distribution. 

58 



59 

In the above formula F(x) is the exponential message inter

arrival time. X is the uniform distributed random number 

between 0 and 1. B is the bandwidth of the communication 

channel and l is the expected message arrival rate of the 

communication system. CRC is not simulated because there is 

no any errors in the simulated_message transmission. Also, 

in the previous analysis the possibility of transmission 

error is ignored. 

To run the simulation program the user needs to specify the 

whole network to the simulation program: what is the 

bandwidth of the bus, how many stations are on the bus, how 

many types of messages are transmitted for each station, the 

message ID , message length, and message transmission rate 

for each type of transmitting message, how many types of 

messages a station receives and the message ID of each type 

of receiving message. 

The simulation program is capable of producing the 

following performance results: the bus busy time measured in 

bit time, the bus idle time, bus utilization, total collision 

experienced in the whole process, total number of messages 

generated, total number of message transmissions started, 

total number of message transmissions completed, maximum 

queue length, number of messages transmitted for each type of 

message, average delay and maximum delay of each type of 

message. The user can watch the whole simulation process and 

stop it at any time to check the correctness. If there is 

enough disc space the whole simulation process can be 

recorded to a file for output. The only limitation for the 

simulation program is that the system clock cannot go beyond 



60 

the maximum real value the machine can express. 

The simulation program may be used as a design tool. A 

network design can be quickly evaluated by running the 

simulation program using the design parameters. The 

simulation program also checks possible design problems for 

the users. For example two stations may use the same message 

ID for their transmitting messages, a station may transmit a 

type of message without a station receiving it or a station 

may be specified to receive a type of message without a 

station sending it. 

Simulation Results 

This section presents the performance characteristics of 

the CAN obtained via the simulation. Twelve sets of data are 

used to run the simulation program. In order to be 

compatible, every set of data includes five stations, every 

station transmits and receives four types of messages, every 

message is five bytes long, and only the message 

transmission rate of each message changes to make the offered 

load of the system change from approximately 10% of the 

bandwidth to 100% of.the bandwidth. Twenty priorities are 

assigned to this twenty types of messages randomly. In fact 

the same sets of data have been used to produce the figures 

in chapter four using the derived formulae. 

Figure 12 shows the throughput vs. offered load 

characteristics. The throughput is expressed as a fraction 

of the bandwidth. From figure 12 it can be seen that the 

relationship between the offered load and the throughput is 



1.0 

0.8 

0.6 

0.4 

0.2 ~ throughput 

0.0 +--...---.--...---.--...---.--...---. 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Offered Load 

Figure 12. Throughput of the System vs. 
Offered Load 

o- 1.2 
<II 
~ 

·rl 1.0 .... 
Po< 

+.1 
<II 

0.8 Ql 
31 
0 
..:I 

""' 0.6 0 

+.1 
;::1 
0. 

0.4 ..c: 
Iii throughput o-

;::1 
0 .... 

..c: 0.2 E-t 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Offered Load of the System 

Figure 13. Throughput of the Lowest Priority 
Message vs. Offered Load 
of the System 

61 



62 

almost linear, that is the throughput increases with the 

offered load in a constant ratio, and it agrees with the 

relationship derived in chapter four. Figure 13 shows the 

throughput of the lowest priority message vs. the offered 

load of the network. When the offered load of the network is 

not very heavy the throughput of the lowest priority message 

is not influenced by the increase of the offered load of the 

network. All messages of this type are transmitted by the 

network. When the load reaches 80% of the bandwidth, the 

throughput of the lowest priority message begins to drop 

sharply. But when the offered load exceeds the bandwidth the 

throughput of the lowest priority message did not drop to 

zero as the formula in chapter four expressed. This is 

because at the beginning of the simulation the system is in 

an unstable state. Message queue is not built up. and lower 

priority messages still have some chance to be transmitted. 

Figures 14 through 17 show the relationship between delay and 

priorities or delay and offered load. To show the 

relationship between the delay and priorities two or three 

loads are chosen to draw the curves. To show the 

relationship between the delay and load the highest and 

lowest priority messages in the given set of messages are 

chosen to draw the curves. 

Figure 14 shows the maximum delay vs. message priorities 

and figure 15 shows the maximum delay vs. offered load. The 

trend is similar to the trend shown in figure 6 and figure 7 

but the quantities are very different. The reason is that 

for the analytical result the maximum delay of each message 



63 

30000 

>< 20000 ., 
....; 

light load(0.26 B) QJ 
Q 

X 
med. load(0.60 B) ., 

:i: 10000 ~ heavy load(0.96 B) 

0~~~~~~~~------~ 
0 1 0 20 30 

Message Priorities 

Figure 14. Maximum Delay vs. Message Priorities 

20 
max. queue length 

0~-r~~~~~--~~-r~--~~-, 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Offered Load 

Figure 15. Maximum.Delay vs. Offered Load 



64 

is obtained using the formula derived from the worst case 

situation, in which a message arrives at the communication 

channel with all higher priority messages at the same time 

and one of the longest messages just seized the communication 

channel. Besides, higher priority messages continue to 

arrive in their maximum arrival rate during the waiting time. 

The maximum delay of each type of message is deterministic. 

In the simulation program, the message arrivals are assumed 

to follow Poisson distribution. The program uses the 

function 

B 
F(x} = - (- * ln x} 

A 
to generate exponential message inter-arrival time. Here x 

is the uniformly distributed random number between 0 and 1 

generated by the C library function. In order to simulate 

the worst case situation the random number generator must 

generate several 1s continuously to get several messages 

generated almost at the same time. This is impossible for 

the random number generator. It is known that the random 

number generator does not generate truly random numbers; 

instead it uses some algorithm to generate pseudo-random 

numbers. These algorithms insure that the same numbers will 

not be generated repeatedly. In this sense it can be said 

that the program is unable to simulate the worst case 

situation. 

Figures 16 and 17 compare the simulation result with the 

result obtained by using the formulae in chapter four. 

Figure 16 shows the relationship between the expected delay 

and message priorities and figure 17 shows the relationship 



65 

12000 
---[}-- simulation 0.61B 

10000 ~ simulation 0.95B 
>. 
m 

'""" 8000 Q) formula 0.61B 
0 

'0 
6000 Q) 

.j..l 

• formula 0.95B 

() 
Q) 
p. 

4000 >< 
f,.l 

2000 

0 
0 1 0 20 30 

Message Priorities 

Figure 16. Expected Delay vs. Message Priorities 

12000 

10000 
>t 
Ill 

~ simulation highest 

.--1 
8000 (]) 

Q • simulation lowest 

"0 
(]) 6000 
~ 

D formula highest 

0 
(]) 

~ 4000 
~ formula lowest 

rz1 

2000 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Offered Load 

Figure 17. Expected Delay vs. Offered Load 



66 

between expected delay and the offered load. On figure 16 

two different load are chosen to draw the curves. The words 

"simulation 0.61B" means the load is 61% of the bandwidth. 

The trend of the curves are the same but they do not 

completely agree. In figure 17 it can be seen that when the 

offered load reaches 70 percent of the bandwidth the two 

curves which represent the expected delay of the two lowest 

priority messages begin to separate. When the load reaches 

100% of the bandwidth the difference increases to about five 

times. This is because on heavy load the lower priority 

messages have to wait a very long time before they get 

transmitted. While waiting the next message may be 

generated. The dual port RAM of the communication controller 

has only one communication object for each type of message. 

The newly generated message will either overwrite the old 

message or be discarded. The simulation program adopts the 

latter policy. In either situation the actual offered load 

drops and the traffic becomes less heavy. From figure 17 it 

can be seen that the delay of lower priority message is very 

sensitive to the load when the load exceeds 70% of the 

bandwidth. A small change in the load will cause a big 

change in the delay. Because the actual load drops, the 

expected delay drops by a relatively big amount. The 

difference between offered load and actual load is also shown 

in figure 12 where when the offered load exceeds the 

bandwidth the throughput is still less than the bandwidth. 

Another reason for this difference is that, the formulae are 

built according to queuing model. For the queuing model to 



be correct, the traffic intensity p should be much smaller 

than 1. When the value of P is close to 1, the model is no 

longer accurate and the formulae are no longer realistic. 

67 

Figure 18 shows the maximum queue length vs. offered load. 

The relationship of the two is almost linear. Figure 19 

shows the relationship between the number of collisions and 

offered load for the above particular data sets. Collisions 

have little influence on the throughput of the network 

because it wastes no bandwidth. The number of collisions 

depends not only on the offered load but depends on the 

distribution of messages. For example, there are three 

different priority messages waiting to be transmitted. If 

all of them are from one station then there will be no 

collision, because the station will send them one by one 

according to their priorities. If they come from three 

different stations then there will be three collisions. If 

they come from two different stations then there will be one 

or two collisions. 



20 
max. queue length 

Q) 

~ 10 
;:1 
0 

o;--T~~,_~-,--~~~~~,--r~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Offered Load 

Figure 18. Max. Queue Length vs. Offered Load 

Ul 
<= 
0 

·.-i 
Ul 

8000 

6000 

::: 4000 
.-t 
0 
u 

2000 

~ collision 

o+-~~~~~~~~~~~--~ 
0.0 0.2 0.4 0.6 0.8 1.0 1. 2 

Offered Load 

Figure 19. Number of Collisions vs. Offered 
Load in a CAN Network 

68 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The Controller Area Network is a type of small local area 

network suitable for real-time ~istributed control systems. 

It has many special features. It is simple, inexpensive, 

deterministic, and easy to implement·. It has short message 

latency for higher priority messages and flexible 

configuration and uses nondestructive message arbitration. 

The most popular local area networks like CSMA/CD type 

networks, token bus networks and token ring type networks are 

not suitable for real-time control systems. Compared with 

CAN these networks are too expensive, too complex, lack 

flexibility and have no adequate priority scheme to 

distinguish more importa~t messages from less important ones. 

These networks are suitable fpr transferring big files, not 

suitable for transferring short and frequently transmitted 

control messages. When used in real-time control systems 

like in robots, cars, and airplanes, CAN is superior to these 

popular standard networks. 

In this thesis the performance analysis of CAN has been 

made. Messages are assumed to be generated according to a 

Poisson distribution. Message transmission errors are 

ignored and the transmitted frames are assumed to be data 

frames and remote frames only. The analysis result may give 

the network designer a little more accurate description of 

69 



the behavior of the network and help him or her to select 

optimum design parameters. 

Simulation of CAN has also been made to verify the 

analytical result. This program can also be used as a tool 

to help the CAN designer to evaluate his or her design. 

70 

Message priorities have great influence on the delay of 

message transmission when the n~twork is heavily loaded. The 

priority assignment algorithm makes sure that there are 

solutions to given design requirements and helps to find the 

optimum priority assignment scheme. 

For right now there are the performance models, the 

simulation program, and the message priority assignment 

algorithm to help the network designer to design the network. 

It would be better if there is one more tool which will allow 

the control system designer to monitor several control points 

simultaneously and to debug the control programs through the 

network. It is possible to attach a PC to the network and 

use Microsoft Windows software development kit or some other 

software to construct such programs and this would complete 

the basic design tool set for the CAN design. 



BIBLIOGRAPHY 

[Arne87] Arnett, J. D .. , A High Performance Solution for In
Vehicle Networking-'Controller Area Network(CAN) •, 
Earthmoving Industry Conference, Peoria, IL, April 7 
1987. SAE paper t870823. 

[Bick89] Bickerton,J. M. , & Chanham, R. , Simulation for 
Automotive System, International Congress and 
Exposition, Detroit, Michigan, Feb. 25 - March 3 
1989. 

[Deit90] Deitel, Harvey M. , An Introduction to Operating 
Systems, 2nd Edition, Addison Wesley Publishing 
company, Massachusetts, p. 295. 

[Eyho89] Ey, Horst, Controller Area Network(CAN) Components, 
Electronic Component & Applications, vol. 9, no. 3, 
1989 pp. 155-158. 

[Gupt88] Gupta, Asnjay, CAN Facilitates In-Vehicle Serial 
Communications,. On Board Communications for 
Machinery & Control, American Society of 
Agricultural Engineers paper t88-1649. 

[Haye84] Hayes, j. F. , Modeling and Analysis of Computer 
Communication. Networks, Plemum Press, New York, 
1984. 

[Hamm86] Hammond, J. L. , & O'Reilly, P. J. P. , Performance 
analysis of Local Computer Networks, Addision-Wesley 
Publishing Company, Reading Massachusetts, 1986. 

[IEEE85a] IEEE Standard 802. 3 - 1985. Carrier Sense Multiple 
Access with Collision Detection, CSMA/CD 1985. 

71 



[IEEE85b] IEEE Standard 803. 4 - 1985. Token-Passing Bus 

Access Method and Physical Layer Specification, 
1985. 

[IEEE85c] IEEE Standard 802. 5 - 1985. Token-Passing Ri~g 

Access Method and Physical layer Specification, 
1985. 

[Inte88] Inter Corp. Auto-Communication Chip Replace Bulky 
Wires, Design News vol. 44, Aug. 88, p120. 

[Iver88] Iversen, Wesley R. , Inter Gets a jump on the Auto 
Multiplex Market, Electronics, vol. 61, March 88, 

pp. 31-32. 

72 

[Jord88] Jordan, Pat, Controller Area Network, Electronics & 
Wireless World, vol. 94, Aug. 88, pp. 816-819. 

[Jurg86] Jurgen Ronald K. ·, Coming from Detroit: Network on 

Wheels, IEEE Spectrum June 1986, pp. 53-59. 

[Kien86] Kiencke, U. , Dais, S. , & Litschel, M. , Automotive 
Serial Controller Area Network, International 

Congress and Exposition, Detroit, Michigan, Feb. 24-
28, 1986. SAE paper #860391. 

[Klei75] Kleinrock, L. , Queuing Systems Volume I: Theory, 

John Wiley & Sun, Inc. , New York, 1975. 

[Manu88] CAN 8025 Demo Board Manual, March 15, 1988. 

[Mcmi75] McMillan, C. & Gonzalez, R. F. , System Analysis: A 
Computer Approach to Decision Models, 3rd Edition, 
Richard D. Irwin, Inc. ,Homewood, Illinois, 1973. 

[Phai88] Phail, F. H. , Controller Area Network - An In
Vehicle Network Solution, 1988 International Summer 

Meeting of the American Society of Agricultural 
Engineers, Paper #88-3021. 

[Stal90] Stallings, W. , Local Network, 3rd Edition, 
Macmillan Publishing Company, New York, 1990. 



[Tane89] Tanenbaum A. S. , Computer Network, 2nd Edition, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1989. 

73 



APPENDIXES 



APPENDIX A 

NOTATIONS 

75 



76 

:Average message generate rate of the whole system. 

:Average message generate rate of i-th priority message. 

:Service rate, message/sec = B/1 

B 

D 

D· 
~ 

AW 

F 

:Traffic intensity P = A;~. 
:Bandwidth of the network. 

:Total delay of all message in the network. 

:Maximum delay of i-th priority message. 

:Expected delay of i-th priority message. 

:Allowed maximum delay of i-th priority message. 

:Average maximum delay of all messages. 

:expected frame length of the system. 

:Frame length of i-th priority message. 

Fmax .Maximum frame length in the system which is 108 bits. 

G :Offered load of the network. 

Gi :Offered load of i-th priority message. 

IG :Input load of the network. 

IGi :Input load of i~th priority message. 

IFS :Minimum number of interframe spaces between two frames 

which is 3 bits .. 

L :Expected length of message in the system. 

Li :Length of i-th priority message. 

Lmax :Maximum message or data field length which is 64 bits. 

Mi :Maximum message generate rate of i-th priority message. 

ns :Expected number of message in the system. 

nb :Expected number of message on the bus. 



OHF :Overhead bits in each frame which is 47 bits 

P(n) :Probability of n messages in the system. 

Q :Maximum length of the queue. 

q :Expected number of messages in the queue. 

qt :Expected time of messages in the queue. 

S :Throughput of the network. 

Si :Throughput of i-th priority message. 

ES :Effective throughput of the network. 

ESi :Effective throughput of i-th priority. 

ti :Transmission time of i-th priority message. It is the 

time need 

to transmit that message. 

U :Channel utilization of the network. 

Wi :Maximum waiting time of i-th priority message. 

wi :Expected waiting time of i-th priority message. 

77 



APPENDIX B 

SIMULATION PROGRAM 

78 



79 

I* Global.c *I 
I* global variable definition *I 

I* some flag value *I 
#define YES 1 
#define NO 0 
#define BUSY 1 
#define IDLE 0 

I* constant value *I 
#define FM L 13 
#define OBJ L 11 

#define IDCON 3 

#define M MSGS 10 

I* segment flag value *I 
#define NUL 0 

#define STR 1 
#define ID 2 
#define CON 3 
#define DAT 4 
#define CRC 5 
#define ACK 6 
#define END 7 
#define SPA 8 

I* network node *I 
typedef struct markadd{ 

I* maximum fram length *I 
I* maximum object length, include id 

2 bytes *I 
I* control 1 byte, data segment at 

most 8 bytes *I 
I* length of message ID and control 

field *I 
I* maximum number of message a node 

can *I 
I* transmit or receive *I 

I* not transfer or receive, point to 
no segment *I 

I* for star bit *I 
I* message ID field *I 
I* control field *I 
I* data field *I 
I* CRC field *I 
I* acknoledge field *I 
I* end of fram field *I 
I* inter fram space *I 

char tra obj[M MSGS](OBJ L], 
- - 1* store at most 10 objects for 

transmiting *I 
I* for each object : ID-2 bytes, 

control field- *I 
I* 1 byte, data-at most 8 bytes *I 

tra_fram[FM_L]; I* before trasfered the star bit, 
CRC field, *I 

I* acknowledge field, end mark are 
added to *I 

I* the message thus makes a complete 
fram then *I 

I* put into this buffer for 
transmiting *I 

I* a node can transfer at most 10 



int tra_id[M_MSGS], 
tra_num[M_MSGS], 

tra_len[M_MSGS], 
tra_don[M_MSGS], 
tra_mdl[M_MSGSJ, 
tra_yes[M_MSGSJ; 

long float 
tra_cdl[M_MSGS], 

gen_tim[M_MSGSJ; 

types of msg. */ 
/* 10 message IDs */ 

80 

/* average number will be transfered 
per second. */ 

/* length of each message in byte*/ 
/* total number already done now */ 
/* maximum delay recored */ 
/* tra_yes[i] : 0-no ith type of 

message */ 
/* to transfer, 1-have message to 

transfer */ 

/* cumulated tra. delay. for compute 
average */ 

/* message generation time moment */ 

char rec_buf[FM_L]; /*buffer for receiving messages. 
after a */ 

/* message be received the receive 
count */ 

/* will increment and the message is 
thought */ 

/* to be consumed */ 
int rec_id[M_MSGSJ, /* 10 IDs for messages this node 

will receive */ 
rec_don[M_MSGSJ; /*total number received*/ 

char prv bus, 

int 

/* 

prv_bus_flag; 

tra_types, 

tra_want, 

transfer, 
tra_seg, 

tra_seg_bit, 

tra_dt_bits, 

tra_cur_id, 

rec_types, 

rec_want, */ 
receive, 
rec_seg, 

/* private bus. logical prodct of 
all go to bus */ 

/* private bus flag. 0-idle, 
1-busy */ 

/* logical sum is the system 
bus flag */ 

/* how many types of message will be 
transfered */ 

/* this node has message to transfer 
*I 

/* this node is transfering */ 
/* which segment a node is 

transfering */ 
/* which bit of a segment a node is 

transfering */ 
/* data field length in bit of 

current message */ 
/* id of current transfering message 

*I 

/* how many types of message need to 
be received */ 

/* this node want receive message */ 
/* this node is receiving message */ 
/* which segment a node is 



rec_seg_bit, 

rec_dt_bits; 

/* statistics variables 
int tra_count, 

rec_count; 
} node_type 

81 

tr1:msfering */ 
/* which bit of a segment a node is 

transfering */ 
/* data field length in bit of 

current message */ 

*I 
/* total message transfered */ 
/* total message received */ 

/* the following is the globle variables for the CAN */ 
/* simulation program. */ 

/* network architecture 
long float 

bandwidth, 
finish, 
s_clock, 

queue_l, 

ave_arrival; 

char bus, 
bus_flag; 

int total nodes, 
run_ time; 

and parameters */ 

/* bus bandwidth */ 
/* run time expressed as bit time */ 
/* system clock start from 0 to 

finish */ 
/* length of the queue, include 

transmiting msg. */ 
/* average number of messages arrive 

to */ 
/* to the bus per second */ 

/* the system bus */ 
/*'system bus flag*/ 

/* total nodes on the network */ 
/* run time of a simulation in 

second */ 

/* statistics variables and accounters */ 
unsigned long int 

m_queue, 
tra_count, 

rec_count, 

str_count, 
gene count, 
coll_count; 

long float 
idle_count, 

busy_count; 

/* maximum queue length */ 
/* total finished msg. transmission 

of all nodes */ 
/* total messages received by all 

nodes */ 
/* total msg. transfer started */ 
/* total message generated */ 
/* collision counter */ 

/* system bus idle time in bit time 
*I 

!* system bus busy time in bit time 
*I 



I 

82 

I* globle file pointer *I 
FILE *ipr, I* input file pointer *I 

*apr; I* output file pointer *I 

I* Program Main.c *I 
#include <stdio.h> 
#include <fcntl.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <alloc.h> 
#include "global.c" 
#include "get_parm.c" 
#include "sys_init.c" 
#include "what.c" 
#include "node tra.c" 
#include "node rec~c" 
#include "msg gene.c" 
#include "bit-tra.c" 
#include "bit-rec.c" 
#include "msg_cycl.c" 
#include "final ou.c" 
#include "check_pm.c" 

void main(void) 

I* for dynamic memory allocation *I 
I* globle variable and data type *I 

I* This program simulate Control Area Network *I 

{ 
node type 
long-int 
char 

*head ; 
i, j 

infile[20] , I* input file *I 
outfile[20] I* output file name *I 

I* clearn screen *I 
for{i=O; i<24; i++) printf("\n") 

I* input network parameters *I 
printf("\n\%s\n\n%s\n%s\n", 
" CONTROL AREA NETWORK SIMULATOR", 
" This program simulate the Control Area 

Network", 
" 

simulate."); 
Please specify the network you want to 

I* get input and output file names *I 
printf("\nPlease give the input file name ") 
scanf ( "%s", infile) ; 
printf("\nPlease give the output file name ") 



scanf("%s", outfile) 

I* open the input and o~tput file *I 
if ( ( ipr=fopen ( infile, "r") ) == NULL) 

{ 
printf("\ninput file open fail") 
return 
} 

if ( (opr=fopen(outfile, "w")) ==NULL 
{ 
printf("\nOutput file open fail") 
return 
} 

fprintf(opr,"\n%s", "How many second do you want to 
simulste the network : ") ; 

fscanf(ipr, "%d", &run_time ) ; 
fprintf(opr, " %d", run time ) ; 

83 

fprintf(opr,"\n%s", " How many bit per second is the 
bus bandwidth : ") ; 

fscanf(ipr, "%d", &i 
bandwidth = i ; 
fprintf(opr, " %f", bandwidth 

fprintf(opr,"\n%s", " The number of nodes on 
the network are : ") ; 

fscanf(ipr, "%d", &total_nodes ) ; 
fprintf(opr, " %d", total nodes ) 

head = (node type *) calloc(total nodes, 
sizeof(node_type)) ; 

get_parm(total_nodes, head); 

I* check if there are logical error on the parameters *I 
if (check_pm(total_nodes, head) == 0) 

{ 
free (head) ; 
fclose(ipr) 
fclose(opr) 
return 
} 

I* initiate system variables *I 
sys_init(total_nodes, head) 

I* run the network till the s clock expired *I 
while(s_clock < finish ) 

msg cycl(head) ; 

I* output final result *I 



final_out(head) 

free(head) : 

fclose ( ipr) : 
fclose(opr) : 

84 

printf("\n\n SIMULATION FINISHED ") 

return 
} 

void sys_init(int total_nodes, node_type 
I* this program initiate globle variables 
*I 

{ 
int i, j, k, temp 
node_type *P 

I* statistics variable *I 
m_queue = 0 
tra count = 0 
rec count = 0 -
str count = 0 
gene count = 0 
idle count = 0 
busy_count = 0 
cell count = 0 

I* initiate globle variables *I 
s clock = o : 
finish = bandwidth * run time 
bus = 1 : 
bus_flag = IDLE 
queue_l = 0 : 

*head) 
and node variables 

I* calculate average number of messages arrival to the *I 
I* bus every second *I 
p = head : 
ave arrival = o : 
for(i=O: i<total nodes: i++, p++) 

for(j=O: j<M_MSGS: j++) 
ave_arrival += p->tra_num[j] 

I* initiate network nodes *I 
p = head 

for(i=O: i<total_nodes: i++, p++) 
{ 



ox1 

I* for every node sort transfering message according 
their IDs *I 

for(j=O; j<p->tra types-1; j++) 
for(k=O; k<p->tra types-j-1; k++) 

if (p->tra_id[k] >-p->tra_id[k+1]) 
{ 
temp = p->tra id[k] ; 
p->tra_id[k] ~ p->tra_id[k+1] 
p->tra_id[k+1] = temp ; 

temp = p->tra_num[k] ; 
p->tra_num[k] = p->tra_num[k+1] 
p->tra_num[k+1] = temp 

temp = p->tra_len[k] ; 
p->tra_len[k] = p->tra_len[k+1] 
p->tra_len[k+1] = temp ; 
} 

I* form communication object *I 
for(j=O; j<p->tra_types; j++) 

{ 
I* message ID *I 

85 

I* 11 bits ID followed by 1 bit RTR, value 1, total 12 
bits *I 

I* stored in the first 2 bytes, right aligned *I 
p->tra_obj[j][O] = ( p->tra id[j] & Ox780) >> 7 ; 
p->tra_obj[jJ [1] = ( (p->tra_id[jJ & Ox7f) << 1 ) 1 

I* contrlo field, total 6 bits. 2 reserve bits, value 
0, followed *I 

I* by 4 hits to represent data fied length in byte. *I 
p->tra_obj[j][2] = p->tra_len[j] & Oxf 

I* put ID in the data field *I 
p->tra obj[j][3] ='I' 
p->tra-obj[j][4] = 'D' 
p->tra=obj[j][5] =' ' 
p->tra obj[j][6] = ':' 
p->tra-obj[j][7] =' ' ; 
p->tra-obj[j][8] = (p->tra id[j] & OxffOO) >> 8 
p->tra=obj[j][9] = p->tra_id[j] & Oxff ; 
p->tra_obj[j][10] = '\0' ; 
} 
I* end of communication object */ 

I* other node variables */ 
for(j=O; j<M_MSGS; j++) 

{ 
p->tra_don[j] = o 
p->tra_mdl[j] = o ; 
p->tra_yes[j] = 0 



} 

p->tra_cdl[j] = 0 
p->gen_tim[j] = 0 

p->rec_don[j] = 0 
} 

p->prv_bus = 1 . , 
p->prv_ bus _flag = IDLE 

p->tra want = NO ; 
p->transfer = NO ; 
p->tra seg = NUL ; 
p->tra=seg_bit = o 

p->receive = NO ; 
p->rec_seg = NUL ; 
p->rec_seg_bit = 0 

p->tra dt bits = o 
p->rec=dt=bits = o ; 

I* node statistics *I 
p->tra count = o ; 
p->rec_count = 0 ; 

} I* end of one node *I 

. , 

void get_parm(int total_nodes, node_type *head) 
I* this program accept parameters about node message *I 
I* total_nodes : number of nodes on the bus *I 
I* head pointer pointing to node array *I 

{ 
int 
node_type 

i, 
*P ; 

j ' total_type ; 

I* clear arrays for accept parameters *I 
p = head ; 
for(i=O; i<total nodes; i++, p++) 

for(j=O; j<M MSGS; j++) 
{ 
p->tra id[j] = 2047 
p->tra=num[j] = o 
p->tra_len[j] = o ; 

p->rec_id[j] = o ; 
} 

86 



I* f0r every node *I 
I* the message to be transfered and to be received *I 
p = head ; 
for(i=O; i<total_nodes; i++, p++) 

{ 
fprintf(opr, 11 \n\n\n\n\n") 
fprintf(opr, 11 \n ========Network 

87 

Node %d ======== ", i ) ; 

fprintf(opr, 11 \n\n%s 11 , 
II Transfering Messages 

II ) ; 

fprintf(opr, 11 \n\nTypes of message this node will 
transfer : "); 

II) 

fscanf(ipr,"%d", &total_type ) 
fprintf(opr, 11 %d 11 , total_type 
p->tra_types = total_type ; 

I* for every message to be transfered *I 
I* their id, average number per second, length *I 
for(j= O; j<total_type; j++) 

{ 
fprintf(opr, 11 \nnode %d transfering message number %d

", i, j) ; 
fprintf(opr, 11 \n message ID : 11 ) ; 

fscanf(ipr,"%d 11 , &p->tra id[j]) 
fprintf(opr, " %d 11 , p->tra id[j] ) 

fprintf(opr, 11 \naverage #of message per second ") 
fscanf ( ipr, 11 %d 11 , &p->tra_num [ j ] ) ; 

fprintf(opr, 11 %d 11 , p->tra num[j] ) ; 

fprintf(opr, 11 \n length of this message 

} 

fscanf ( ipr, 11 %d 11 , &p->tra len [ j ] ) ; 
fprintf(opr, 11 %d 11 , p->tra_len[j] ) 

fprintf(opr, 11 \n\n%s 11 , 
II ---- Receiving Messages 

I* for every message to be received by this node *I 

II) 

I* message id, average number to be received *I 
fprintf(opr,"\n\nTypes of message this node will receive 

II ) i 
fscanf(ipr,"%d 11 , &total_type) 

fprintf(opr, " %d 11 , total_type 
p->rec_types = total_type ; 

for(j= 0; j< total type; j++) 
{ 



88 

- II 

fprintf(opr,"\nnode %d receiving message number %d --
i 1 j) i 
fprintf(opr,"\n message ID : ") ; 

fscanf(ipr,"%d", &p->rec_id[j]); 
fprintf(opr, " %d", p->rec_id[j] ) 

} 
} I* end for all nodes *I 

return ; 

} 

int check_pm(int total_nodes, node_type *head) 
I* this function check if there are errors in input 
parameters *I , 
I* and stop the program or give warnings to the user *I 

{ 
node type 
int -

*P i 
tt send, i, j, k, 1, give 
*send_id, *send_ck; int 

I* find out how many types of transfer messages *I 
p = head ; 
tt send = 0 
for(i=O; i<total_nodes; i++, p++) 

tt_send += p->tra_types ; 

I* allocate array to store message IDs *I 
send id = (int *) calloc(tt send, sizeof(int)) 
send-ck = (int *) calloc(tt=send, sizeof(int)) 

I* initiate two arrays *I 
for(i=O; i<tt_send; i++) 

{ 
send_id[i] = -1 
send_ck[i] = o ; 
} 

I* check for duplicate message ID *I 
1 = 0 i 
p = head ; 
for(i=O; i<total_nodes; i++, p++) 

for(j=O; j<p->tra_types; j++) 
{ 
for(k=O; k<l; k++) _ 

if ( p->tra_id[j] == *(send_id + k) ) 
{ 
printf("\n\nFATAL INPUT ERROR : ") i 
printf("\nTwo types of message have the same ID 

%d",p->tra_id[j] ) ; 



printf("\n---- Program Terminated ----\n\n") 
free(send_id) 
free(send ck) 
return(O) 
} 

send_id[l] = p->tra id[j] 
1 += 1 ; 
} 

I* check if a node receive messages send by itself *I 
p = head 
for(i=O; i<total nodes; i++, p++) 

for(j=O; j<p->rec types; j++) 
for(k=O; k<p->tra types; k++) 

if (p->rec_id[j] =~ p->tra_id[k]) 
{ 
printf("\n\niNPUT ERROR : ") ; 
printf("\nNode %d receive msg. %d send by itself 

", i,p->rec_id[j]): 
printf("\n---- Program Terminated ----\n\n") ; 
free(send id) 
free(send ck) 
return(O) 
} 

89 

I* check if every message transfered has node to receive 
it *I 

p = head : 
for(i=O; i<total nodes; i++, p++) 

for(j=O; j<p->rec types; j++) 
for(k=O; k<tt send; k++) 

if( p->rec_id[J] == send_id[k] 
send_ck[k] += 1 ; 

for(i=O; i<tt send; i++) 
if( send ck[iJ == o ) 

printf("\nWANRING : no node receive message %d\n", 
send id[i] ) ; 

I* check if every message to be received by some nodes has 
node to *I 

I* send it *I 
p = head ; 
for(i=O; i<total_nodes; i++, p++) 

for(j=O; j<p->rec_types; j++) 
{ 
give = 0 ; 
for(k=O; k<tt_send; k++) 

if (p->rec_id[j] == send_id[k] 
give = 1 ; 

if (give == 0 ) 



90 

printf("\nWARNING : no node send message %d for node %d 
to receive\n", 

p->rec_id[j], i) 
} 

_free(send_id) ; 
free(send ck) ; 

return(!) 

} 

void msg_cycl(node_type *head) 
I* this program simulate one message transmition *I 
I* system bus_flag become IDLE is the end of a message cycle 
*I -
I* p->transfer YES a node is speaking, NO stop *I 
I* p->receive YES a node is listening, NO stop *I 

{ 
int cyc_end, i, j ; 
node_type *P ; 
static unsigned long int 

next arrival = 0 ; I* next message arrival time 
*I 

I* set some initial condition for a message cycle *I 
I* at begining of a message cycle every node listen till 

*I 
I* finish ID, some node stop listening. every node having 

messages *I 
I* to transfer can speak till arbitrition loss *I 
bus_flag = IDLE ; 
p = head 
for(i=O; i<total_nodes; i++, p++) 

{ . 
p->transfer = YES ; 
p->receive = YES ; 
p->tra_seg = NUL ; 
p->rec_seg = NUL 
} 

I* check and mark which node want to transfer message *I 

queue_l = 0 ; 

p = head 
for(i=O; i<total_nodes; i++, p++) 

{ 
p->tra_want = NO ; 
for(j=O; j<M_MSGS; j++) 



} 

if (p->tra_yes[j] ==YES) 
{ 
p->tra_want = YES 
queue 1 += 1 ; 
} 

I* record maximum queue length *I 
if (queue_l > m_queue) 

m_queue = queue_l ; 

91 

I* if a node has nothing to ,say right now then it cannot 
speak *I 

I* after the message cycle begin ~1 
p = head ; 
for(i=O; i<total_nodes; i++, p++) 

if (p->tra_want -- NO) 
p->transfer = NO ; 

I* at this point all node begin to listen--receive==YES *I 
I* all node having message to transfer begin to speak-

transfer==YES *I 
cyc_end = NO ; 
while(cyc end == NO) 

{ 
s clock += 1 ; 
if (s_clock >= finish 

return ; 

I* if clock reach the next arrival time generate a 
message *I 

I* and get new arrival time *I 
if (s_clock >= next_arrival) 

{ 
p = head ; 
next arrival = s clock + msg_gene(p) 

I* 
printf("\nnext message arrival time : %d ", 

next_arrival ) ; 
*I 

} 

I* transfer a bit to the bus *I 
p = head ; 
bit tra(p) ; 

I* receive a bit from bus *I 
if (bus flag == BUSY) 

{ 
p = head ; 



} 

bit_rec(head) 
cyc_end = NO ; 

I* statistics *I 
busy_count += 1 ; 
} 

else 

} 

· I* the system bus_flag is IDLE no message on bus *I 
{ 
cyc_end = YES 

I* statistics *I 
idle count += 1 ; 
} 

92 

int msg gene(node type *head) 
I* this-function generate message for nodes to transfer *I 
I* it returns time interval for next message arrival if a 
message *I 
I* is generated; 0 if no message generated *I 

*I 

{ 
int 
node type 
time-t 
double 
static int 

i, k, interval ; 
*P 
t ; 
u_random, rate, second 
node_no=O, msg_no=O 

I* randomly choose a node *I 
I* reduce the probability of choosing the same node twise 

k = rand() % total nodes ; 
if (k == node_no) -

k = rand() % total_nodes 
node_no = k ; 
p = head , 
for(i=O; i<k; i++) 

p++ 

I* if this node does not transfer any message then return 
*I 

if (p->tra types == 0) 
return (0) ; 

I* randomly choose a type of message *I 
I* try to find one which is not already waiting to 

transfer *I 
msg_no = 0 ; 



for(i=O; i< p->tra_types; i++) 
{ 
k = rand() % p->tra_types 
if(p->tra_yes[k] == NO) 

msg_no = k 
} 
k = msg_no 
msg_no = p->tra_id[k] ; 

93 

I* if did not find message 
I* transfered then return 
if (p->tra_yes[k] == YES) 

which is not waiting to be *I 
*I 

return(O) ; 

I* if this type of message has transfered more than 110% 
of *I 

I* its average number per second then not generate more *I 
I* p->tra_num[k]--average per second *I 
I* p->tra don[k]--number of alredy transferd kth type of 

message *I 
I* in the begining run time is 0, add 1.1 to avoid 

denominate o. *I 
second= (s_clock + 1.1) I (bandwidth * 1.0) 
rate = p->tra_don[k] 1 second ; 
if (p->tra num[k] * 1.1 >= rate) 

{ 
p->tra yes[k] = YES ; 
p->gen=tim[k] = s_clock 

I* generate interval for next message arrival *I 
I* u random is the uniform distributed random number 

between 0 & 1 *I 
I* interval is in bit time *I 
u random = rand() % 1000 ; 
if (u random < 5.0) 

u_random = 5.0 ; 
u random = u randomllOOO 
interval = -(log(u_random)* bandwidthlave_arrival) 

printf("\nnode %3d message %4d geneted at time %f ", 
node_no, msg_no, s_clock) ; 

I* statistics *I 
gene_count += 1 ; 

return(interval) 
} 

else 
return(O) 

} 



void bit_tra(node_type *head) 
I* transfer a bit to the bus. this will involve all nodes 
which *I 
I* wants to transfer. 0 will overwrite 1. the result is 
correct *I 
I* system bus content and bus_flag content. *I 

{ 
int i 
node_type *P 

I* initiate private bus and its flag *I 
p = head 
for(i=O; i < total_nodes; i++, p++) 

{ 
p->prv_bus = 1 ; 
p->prv_bus_flag = IDLE 
} 

I* all node transfer *I 
p = head ; 
for(i=O; i<total nodes; i++, p++) 

if (p->transfer-== YES) 
node tra ( i , p) . ; 

I* get transmit res~lt by collect each node's result *I 
I* on bus 0 is the dominent bit, 0 overwrite 1 *I 
I* on bus flag 1 is dominent bit, 1 overwrite 0 *I 
bus = 1 ; 
bus_flag = IDLE ; · 
p = head 
for(i=O; i<total_nodes; i++, p++) 

{ 
bus = bus & p->prv bus ; 
bus_flag = bus_flag I p->prv_bus_flag ; 
} 

} 

void node tra(int node no, node type *P) 
I* transfer a bit to private bus *I 

{ 
int i, 

j, 
transfering *I 

k , 
delay 

I* pointer to which message this node is 

I* current byte *I 
I* message transfer delay *I 

94 

I* at begining of a message bus i~ idle : bus_flag 
*I 

IDLE 

if (bus flag == IDLE) 
{ 



I* find the highest priority message which need to be 
transfered *I 

for(i=M_MSGS-1; i>=O; i--) 
if ( p->tra_yes[i] == YES 

j = i ; 

I* record current message id *I 
p->tra_cur_id = p->tra_id[j] ; 

I* 

printf("\nnode %3d message %4d started at time %f", 
node_no, p->tra_id[j], s clock) ; 

for(i=O; i<OBJ L; i++) 
printf("%3d-~, p->tra obj[j][i] 

*I 

I* assemble the fram in the fram buffer tra_fram *I 

95 

I* put ID, control file and data segment to tra fram *I 
k = p->tra len[j] + IDCON ; 
for(i=O; i<k; i++) 

p->tra_fram[i] = p->tra_obj[j][i] 

I* align effective bits to left end of a byte *I 
p->tra_fram[O] = p->tra_fram[O] << 4 
p->tra_fram[2] = p->tra_fram[2] << 2 ; 

I* add CRC, 2 byte, to tra_fram *I 
p->tra_fram[k] = Oxff 
k += 1 ; 
p->tra_fram[k] = Oxff ; 

I* get data field length in bit *I 
p->tra_dt_bits = p->tra_len[j] * 8 

I* set flags, pointer, counter *I 
p->transfer = YES 
p->tra seg = STR 
p->tra=seg_bit = 1 

I* transfer star bit *I 
p->prv_bus = o ; 
p->prv_bus_flag = BUSY ; 

I* statistics *I 
str count += 1 ; 

return 
r 



I* this node already begin to transfer message, so just 
continue *I 

I* when transfering a bit always take the left most bit 
then shift *I 

I* lower bit left *I 

96 

I* tra_seg and tra_seg_bit.indicaes where the current bit 
comes:from *I 

p->prv bus flag = BUSY ; 
switch-(p->tra_seg) 

{ 
I* start bit *I 
case 
STR : p->prv_bus = p->tra_fram[O] & Ox80 

p->prv_bus = p->prv_bus >> 7 ; 
p->tra_fram[O] *= 2 ; 
p->tra_seg = ID ; 
p->tra_seg_bit = 1 
break ; 

case 
ID : I* ID field has finished. next is the control 

field *I 
if (p->tra_seg_bit -- 12) 

{ -
p->tra_seg = CON ; 
p->tra_seg_bit = o 
k = 2 ; 
} 

else if (p->tra_seg_bit >= 4) 
k = 1 

else 
k = 0 ; 

p->prv_bus = p->tra_fram[k] & oxao ; 
p->prv_bus = p->prv_bus >> 7 ; 
p->tra_fram[k] = p->tra_fram[k] << 1 
p->tra_seg_bit += 1 ; 
break ; 

case 
CON : I* cont·rol field is 6 bits long. see if it is 

finished *I 
if (p->tra_seg_bit -- 6) 

{ 
p->tra_seg = DAT 
p->tra_seg_bit = 0 
k = 3 ; 
} 

else 
k = 2 ; 

p->prv_bus = p->tra_fram[k] & Ox80 
p->prv_bus = p->prv_bus >> 7 ; 
p->tra_fram[k] *= 2 ; 
p->tra_seg_bit += 1 ; 



break 
case 
DAT : I* length of data field in bit is stored in 

tra_dt_bits *I 
if (p->tra_seg_bit -- p->tra_dt_bits) 

{ 
p->tra seg = CRC ; 
p->tra-seg bit = 0 ; 
k = p->tra-dt bitsl8 + IDCON 
} 

else 
k = p->tra_seg_bitl8 + IDCON 

p->prv_bus = p->tra_fram[k] & Ox80 
p->prv_bus = p->prv_bus >> 7 ; , 
p->tra fram[k] *= 2 
p->tra=seg_bit += 1 ; 
break ; 

case 
CRC : I* CRC field is 16 bits long */ 

if (p->tra_seg_bit -- 16) 
{ 
p->tra_seg = ACK 
p->tra_seg_bit = 1 
p->prv _bus = 1 ; 
break ; 
} 

else 
k = IDCON + p->tra_dt_bitsl8 + p->tra_seg_bit/8 

p->prv_bus = p->tra_fram(k] & Ox80 
p->prv_bus = p->prv_bus >> 7 ; 
p->tra fram[k] *= 2 ; 
p->tra=seg_bit += 1 ; 
break 

case 
ACK : I* ack field consist of two 1s *I 

if (p->tra_seg_bit -- 2 ) 
{ 
p->tra_seg = END 
p->tra_seg_bit = 1 
p->prv_bus = 1 ; 
break ; 
} 

p->prv bus = BUSY 
p->tra=seg_bit += 1 
break 

case 
END : /* end mark consists of 7 1s */ 

if (p->tra_seg_bit -- 7) 
{ 
p->tra_seg = SPA 
p->tra_seg_bit = 1 
p->prv_bus = 1 ; 

97 



break ; 
} 

p->prv bus = 1 
p->tra=seg_bit += 1 
break 

case 
SPA : I* inter-fram space is 3 '1's *I 

if (p->tra_seg_bit < 3) 
{ 
p->prv bus = 1 

, p->tra=seg_bit += 1 ; 
} 

else 

status *I 

return 

{ 
I* one message transmission is finished, change 

p->prv_bus_flag = IDLE 
p->tra want = NO ; 
p->tra_seg = NUL ; 
p->tra_seg_bit = 0 
p->transfer = NO 

I* find message type *I 
for(i=M MSGS-1;" i >=0; i--) 

if (p=>tra_id[i] == p->tra_cur_id) 
j = i ; 

I* calculate delay & cumulated delay *I 
delay= s clock- p->gen tim[j] 
p->tra cdl[j] +=delay ;-

I* record max. delay *I 
if (delay> p->tra mdl[j]) 

p->tra_mdl[j] =delay 

I* calcel tra. req. and msg. gen. time *I 
p->tra yes[j] =NO ; 
p->gen=tim[j] = 0 

I* record one more msg. has transmited *I 
p->tra_don[j] += 1 
tra count += 1 ; 

printf("\nmessage transfer ended") 

} 
I* end of if *I 
I* end of switch *I 

98 



99 

} I* end of function *I 

void bit rec(node type *head) 
I* nodes-which need to receive message from the bus receive 
*I 
I* a bit from the bus *I 

{ 
int i 
node_type *P 

p = head ; 
for(i=O; i<total nodes; i++, p++) 

if ( p->receive == YES ) 
node rec(i, p) 

return 
} 

void node rec(int node no, 
I* This function receive a 

{ 
int i, 

node type *P) 
bit form the bus *I 

k ' 
cur id 

I* receiving buffer byte index *I 
I* current message ID *I 

switch (p->rec seg) 
I* before receive the current bit on 
I* the rec_seg and rec_seg_bit point 

the bus *I 
to the bit received 

last time *I 
{ 

*I 

case 
NUL : I* begin to receive a new message *I 

I* this bit is start bit *I 
p->rec_seg = STR 
p->rec_seg_bit = 1 ; 

I* clearn the receive buffer *I 
for(i=O; i<FM L; i++) 

p->rec buf[l] = 0 ; 

break 
case 
STR : I* the coming message bit is the first bit of ID 

p->rec seg = ID ; 
p->rec=seg_bit = 1 ; 
p->rec_buf[O] = bus ; 



100 

I* message arbitrition *I 
I* if this node is transfering message and what 

received *I 

*I 
I* is different from transfered then stop transfering 

I* but still need to listen *I 
if ( (p->transfer== YES) && (p->prv bus != bus) ) 

p->transfer = NO ; 
break 

case 
ID : I* finish receiving ID field *I 

*I 

bit *I 

ID *I 

if (p->rec_seg_bit -- 12) 
{ 
p->rec seg = CON 
p->rec=seg_bit = 1 
p->rec_buf[2] = bus ; 
break 
} 

I* message transmition arbitrition *I 
I* if a node loss arbitrition it still need to listen 

I* the current message may for him *I 
if ( (p->transfer==YES) && (p->prv_bus != bus) ) 

{ 
p->transfer = NO ; 
printf("\nnode %3d loss arbitrition at time %f", 

node_no, s_clock ) 

I* statistics *I 
call count +~ 1 ; 
} 

I* receive a message bit into the buffer *I 
I* ID is in byte 0 and byte 1, decide which byte *I 
if (p->rec_seg_bit >= 4) 

k = 1 ; 
else 

k = 0 
I* first shift current byte left then put the coming 

p->rec_buf[k] = p->rec_buf[k] * 2 + bus 
p->rec_seg_bit += 1 

I* first 11 bits of ID field constitute the message 

I* check if this node receive this message or *I 
I* it is transfering *I 
if ((p->rec_seg_bit == 11) && (p->transfer --NO)) 

{ 
p->receive = NO ; 
cur id = p->rec buf(O] * 128 + p->rec_buf(1] 
for(i=O; i<p->rec_types; i++) 



} 

if (cur_id == p->rec_id[i]) 
p->receive = YES ; 

break 
case 
CON : I* control field 6 bits *I 

if (p->rec_seg_bit =~ 6) 
{ 
I* find out data field length in bit *I 
p->rec_dt_bits = (p->rec_buf(2] & Oxf) * 8 

I* data field may be o byte logn *I 
if (p->rec_dt_bits > 0) 

p->rec_seg·= DAT 
else 

p->rec_seg = CRC 

p->rec_seg_bit = o ; 
k = 3 ; 
} 

else 
k = 2 ; 

p->rec_buf[k] = p->rec_buf[k] * 2 + bus ; 
p->rec_seg_bit += 1 ; 

break 
case 
DAT : I* leng of data field in bit stored in 

rec dt bits *I 
-if ( p->rec~seg_bit == p->rec_dt_bits ) 

{ 
p->rec_seg = CRC ; 
p->rec seg bit = o ; 
k = IDCON + p->rec_dt_bitsl8 
} 

else 
k = IDCON + p->rec_seg_bitl8 ; 

p->rec_buf[k] = p->rec_buf[k] * 2 + bus 
p->rec_seg_bit.+= 1 ; 

break 
case 
CRC : I* CRC field 16 bits *I 

if ( p->rec_seg_bit == 16 ) 
{ -
p->rec_seg = ACK ; 
p->rec_seg_bit = 1 ; 

I* sent ACKNOWLEDGE back *I 
bus = o ; 

101 



break 
} 

k = IDCON + p->rec_dt_bitsl8 + p->rec_seg_bitl8 
p->rec_buf[k] = p->rec_buf[k] * 2 + bus : 
p->rec_seg_bit += 1 : 

break 
case 
ACK : I* acknowledge field 2 bits long *I 

if ( p->rec_seg_bit == 2 ) 
{ 
p->rec seg = END 
p->rec=seg_bit = 0 
} 

p->rec_seg_bit += 1 

break 
case 
END : I* end mark 7 '1's *I 

if ( p->rec_seg_bit == 7 
{ 
p->rec seg = SPA 
p->rec=seg_bit = 0 
} 

p->rec_seg_bit += 1 : 

break : 
case 

102 

SPA : I* interfram space 3 bits, last bit will not 
received *I 

*I 
I* because in the 3th space bus_flag already set IDLE 

if ( p->rec seg bit < 2 ) 
p->rec_seg_bit += 1 

else 
I* this is last bit of this cycle. a cycle is 

finished *I 

%f", 

I* increment count, signal end of a message cycle *I 
{ 
cur_id = p->rec_buf[OJ * 128 + ( p->rec_buf[1] >> 1 

for(i=O: i<p->rec types: i++) 
if (cur_id == p=>rec_id[i]) 

p->rec_don[i] += 1 

I* globle statistics *I 
if (p->transfer == NO) 

rec count += 1 

printf("\nnode %3d message %4d received at time 



103 

node_no 1 cur_id 1 s clock 

return 
} 

} I* end of switch *I 

return 

} I* end of the function *I 

void final out(node type *head) 
I* output simulation result *I 

{ 
int i, 

iidl 
ittra 1 

iadel 1 

imdel 
node_type 

j I 

*P ; 

I* 
/* 
/* 
I* 

message ID */ 
total transfered 
average delay of 
maximum delay of 

I* clear screen and output title */ 
for(i=O; i<l4; i++) 

fprintf ( opr, "\n") 

of one type */ 
a type */ 

a type */ 

fprintf(opr,"\n 
RESULT\n \n \n" ) 

OUTPUT OF THE SIMULATION 

I* general information */ 
fprintf(opr,"\nTotal time in second 
fprintf(opr,"\nTotal time in bit 
fprintf(opr,"\nBus busy time 
fprintf(opr,"\nBus idle time 
fprintf(opr,"\nBus utilization 

busy count*l.Oifinish) ; 
fprintf(opr,"\nTotal collision 
fprintf(opr,"\nTotal msg. generated 
fprintf(opr,"\nTotal tra. started 
fprintf(opr,"\nTotal tra. completed 
fprintf(opr,"\nTotal msg. received 
fprintf(opr,"\nMaximum queue length 

I* output message information *I 
p = head ; 
fprintf(opr 1 "\n\n%s" 1 

%d" 1 run time) 
%f" 1 finish ) 
%f" 1 busy count ) ; 
%f", idle-count ) ; 
%f", 

%d 11 1 coll_count ) 
%d 11 1 gene_count ) 
%d" 1 str_count ) ; 
%d", tra count) 
%d", rec_count) 
%d" 1 m_queue ) 

" Message ID From Node Total Transfered Ave. Delay 
Max. Delay"); 

for(i=O; i<total nodes; i++, p++) 
for(j=O; j<p->tra_types; j++) 



{ 
iid = p->tra_id[j] ; 
ittra = p->tra_don[j] ; 
iadel = p->tra_cdl[j] 1 ittra ; 
imdel = p->tra mdl[j] ; 
fprintf(opr,"\n%10d%15d%15d%15d%15d", iid, i, ittra, 

iadel, imdel) · 
} 

return ; 
} 

104 



-

"''\ VITA C"-

Zhengou Wang 

Candidate for the Degree of 

Master of Science 

Thesis: ANALYSIS AND DESIGN OF CONTROLLER AREA NETWORKS 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Guiyang, Guizhou province, 
China, September 28, 1950, the son of Zhizan 
Wang and Daoxiang Xing. 

Education: Graduated from Guiyang No 6 High School, 
,Guiyang, Guizhou province, China, in August 1968; 
received Bachelor of Engineering Degree in Computer 
Science from Chongqing University in March, 1982; 
completed requirements for the Master of Science 
Degree at Oklahoma State University in December, 
1991. 

Professional Experience: Teaching Assistant, 
Department of Computer Science, Oklahoma State 
University, August, 1989 to May, 1991. Engineer, 
Computer Center of Tongji University, Shanghai, 
China, January, 1982 to August, 1988; 


	Blank Page

