
~ REUSABLE SOFTWARE CATALOG INTERFACE -

By

JOE E. QWANSON

Bachelor of Music Education

Central State University

Edmond, Oklahoma

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1991

A REUSABLE SOFTWARE CATALOG INTERFACE

Thesis Approved:

= 7 -

~cJ,_JJ£v

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Mansur

H. Samadzadeh for his encouragement and advice throughout my

thesis research. His willingness to give guidance and

direction made this a meaningful learning experience. I

also wish to thank Drs. G.E. Hedrick and John P. Chandler

for serving on my graduate committee.

I also wish to thank Rohinton Mistry and Winai

Wichaipanitch for the use of their Operating Systems II

projects as test data.

A very special thanks to my wife, Terri, for her

patience and understanding during the course work and thesis

preparation; her assistance in preparing the manuscript was

invaluable. To my sons, Jacob and James, thanks for not

giving up when I would say "wait a minute." It's time to

play ball.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

II. LITERATURE REVIEW. 4

Different Approaches to Reusability....... 7
Reusability in Practice................... 13

III. THE PROTOTYPE IMPLEMENTATION................... 16

General Overview. 16
Concept of the Design..................... 16
User Interface. 2 o
sample Queries. 2 5
Query Results, 2 7

IV. SUMMARY AND FUTURE WORK........................ 30

BIBLIOGRAPHY.. 32

APPEND !XES • 3 5

APPENDIX A - SOFTWARE REPOSITORY USER'S
GUIDE. 3 6

APPENDIX B - SOFTWARE REPOSITORY SYSTEM
ADMINISTRATOR'S GUIDE............. 43

APPENDIX C- PROGRAM SOURCE CODE LISTING....... 51

APPENDIX D- FUNCTION FACET THESAURUS.......... 111

APPENDIX E- OBJECT FACET THESAURUS............ 113

APPENDIX F- MEDIUM FACET THESAURUS............ 115

APPENDIX G- SYSTEM TYPE FACET THESAURUS....... 117

APPENDIX H- FUNCTIONAL AREA FACET THESAURUS... 119

APPENDIX I- SETTING FACET THESAURUS........... 121

iv

Page

APPENDIX J- LANGUAGE FACET THESAURUS.......... 123

APPENDIX K- SAMPLE QUERY RESULTS.............. 125

v

LIST OF TABLES

Table Page

I. Facets with File Names........................ 17

II. Sample Thesaurus Entries...................... 18

III. Names of the Data Files with Supporting
File Names. 19

IV. File Extension Definitions.................... 19

V. Sample System Queries. 2 6

VI. summary of Queries. 2 9

VII. Summary of Valid and Invalid Queries.......... 29

vi

-LIST OF FIGURES

Figure Page

1. A Partial Weighted Conceptual Graph for the
lrt111C:1::iC>Il Iretc:~t:.'................................ 8

2. Software Library Program Opening Menu............ 21

3. [)ata Entry Screen................................ 22

4. [)ata Entry Screen with Thesaurus................. 24

vii

CHAPTER I

INTRODUCTION

Software reuse is currently a topic of great interest

in the theory and practice of computer science in both

academia and industrial research. Reducing software

development cost through reuse of previously written and

debugged code is practiced in many forms today and it "is an

effective strategy for developers to reduce implementation

cost" [PA90]; however, it is usually at the individual

programmer level and very informal, based on one person's

stock and his/her concept of what can be reused. By

combining the efforts of a set of programmers at a given

site, reuse libraries can be formed. Each programmer can

then draw on source code from this library to accomplish a

given task.

The next step is to make the use of the library

efficient enough that the programmers would be willing to

use it regularly, both as a customer and a contributor. The

software components in the library must be readily

accessible. A means must be devised to retrieve the closest

match that meets a programmer's need with the least amount

of modification.

1

2

In this thesis, the results of current work is examined

and the most accurate library interface is identified. For

this work, the interface is defined as the set of parameters

that most clearly define a software component thus making

its retrieval possible.

To demonstrate the feasibility of this task, a partial

implementation of a software library is given. The data

manipulated is the set of parameters used to describe each

member of the software library (hereafter referred to as the

repository). Identifying the most efficient method to store

components is a topic for future research.

The concept of this implementation follows the basic

structure proposed by Kazerooni-Zand, Samadzadeh, and George

[KS90]. In their work, they deal with reuse at the object

code level. Their system involves three major subsystems.

The Identification Mechanism (IDM) is designed to select

those components that meet a programmer's need. The

Software Control Mechanism (SCM) is designed to provide

access to different versions of a program or component; it

receives input from the IDM. The Interface is designed to

act as a pre and post compiler; it coordinates the micro­

incremental compilation between their Reuse of Persistent

Code and Object Code system and the compiler [KS90].

This thesis deals only with the action taking place

within the IDM. The interface will be the parametrization

of the detailed description of all components in the

3

software repository. In terms of the system defined by

Kazerooni-Zand et al. [KS90], this is the Software Attribute

Database. The level of reuse in this work is restricted to

source code.

CHAPTER II

LITERATURE REVIEW

"Software reuse" is the taking of any code or code

segment and using it again to meet a specific need.

"Software reusability" involves not only the reuse of

software, but also how that software is designed. In other

words~ it involves designing software components to be

totally self-contained needing no outside code to accomplish

their task, or- if help is needed, knowing where to find it.

Each component should be easily modifiable to meet a

potential user's need.

As stated by Biggerstaff and Perlis, "software reuse is

the reapplication of a variety of kinds of knowledge about

one system to another similar system in order to reduce the

effort of development and maintenance of that other system"

[BP89a). Reusability can mean the reuse of ideas as well as

~he reuse of components. So when an algorithm is used
I

I

repeatedly, the algorithm is being reused 1•
I
I

According to Biggerstaff and Perlis '[BP89a], software
i

reuse has been in use for a number of years to a limited and

informal extent. In many cases, it is limited to the

knowledge of an earlier system that is similar to the

4

current project, or modules from other projects or systems

that lend themselves to accomplishing a specific task.

Reuse figures have been reported as high as 80%, but on

average the figure is considered to be much lower, possibly

as low as 5%. Other items of reuse such as life-cycle

objects (requirements, designs, and test plans) have even

lower rates of reuse [FG89] [FG90].

5

Portability can be considered a subarea of reusability.

Portability is defined in general terms as "running a

program in a host environment that is somehow different from

the one for which it was designed" [JA88].

Portability became popular with the advent of the c

programming language though it was an issue long before the

appearance of c. As early as the late 1950's and early

1960's, COBOL was defined as a standard business language.

Two corporations develo~ed compilers late in 1960 and

exchanged code [JA88]. With a minimum number of

modifications, the code ran on both machines. However, just

because a piece of code is written in COBOL or c (i.e., a

"portable" language), it does not mean the program is

necessarily portable [JA88]. Likewise, because a portion

of a program is reused, it does not mean that the code is

reusable in the sense of software reusability.

Basili approaches software reuse from the viewpoint of

software maintenance [BA90]. He details three models that

can be used during the process of updating an old system

while using the old code as a bank of reusable code to

create the new system. These three models are described

below.

The "quick-fix" model uses the existing system. Modi­

fications are made to the source code and documentation as

necessary.

6

The "iterative-enhancement" model is designed to be

used when all the requirements of the system are not known

or the developer is not capable of building the full system.

This model, which is well-suited to software maintenance,

also starts with the existing system together with its

requirements and documentation. It is an evolutionary

process that allows for updating and redesigning of the

system based on analysis of the system as the work

progresses.

The "full-reuse" model begins with the requirements of

the new system and uses components of the old system as

needed along with other components that may be in the

software repository. This model assumes that the existing

components are well documented or that they are documented

as they are added to the repository [BA90].

Basili does not go into the detail of cataloging the

components for his models. However, in the case of the full

reuse model, a catalog interface describing each member in

the set of components to be used for the reuse project could

enhance the model's usefulness.

7

Different Approaches to Reusability

Various concepts of software reusability have been

presented by researchers. Prieto-Diaz and Freeman present a

software classification scheme used to catalog pieces of

software for future use [PF87]. The scheme enables the user

to give parameters for a search and then the system selects

and recommends software modules that match or closely match

the parameters. The parameters are part of the interface

used for the presented system.

Prieto-Diaz and Freeman's scheme is divided into two

major areas: functionality and environment. Each area is

further subdivided into three parameters. Functionality is

described by function, objects, and medium. Function is

self-explanatory; it describes what the software does, i.e.,

the action. Object describes the objects manipulated by the

function, and medium describes the data structure(s) or

device(s) that the function uses.

The environment is broken down into system type, func­

tional area, and setting. The system type "refers to func­

tionally identifiable, application-independent modules,

usually including more than one component." Functional area

describes "application-dependent activities usually defined

by an established set of procedures." And the setting

describes "where the application is exercised" [PF87].

The facets of this scheme form a sextuple that

describes the respective components in the software reposi-

8

tory. To insure a uniform meaning for the sextuple, vocabu-

lary control is imposed to facilitate comparisons. A

thesaurus is used to convert all of the definitions to

descriptive words of like meaning. This lends consistency

to the comparisons. ·

0

~l)~-
1BB 1BB .1" rron its original

~ place

.S not ion or I '\
IJ' "l rep lacenent ""'

notion or
enuneration,
count, nove
along a scale

\~2
3 2

s .s not ion or "l exchange

I ~ 18

1 ~ 15 \

I 5~ ~\

\
5

~
neasure add nove substitute delete

Figure 1. A Partial Weighted Conceptual Graph for the
Function Facet.

A partially weighted graph (Figure 1) is used to help

identify a closely related term when one of the members of

the sextuple is not found. The graph is a DAG, Directed

Acyclic Graph, with each of the nodes being "supertypes that

denote general concepts relating two or more terms" [PF87].

Weights are assigned to the edges using a software

engineering perspective; the closer the perceived proximity

of the terms, the lower the weight assigned to the edge

connecting the two terms. When a query is made and a term

is not matched, the graph is consulted to find closely

matching terms, and this gives the user a set of closely

related components to choose from.

To define the software components further, Kazerooni­

Zand, Samadzadeh, and George start with Prieto-Diaz and

Freeman's faceted scheme and add the implementation

environment. It is composed of two elements: language and

machine [KS90].

The Reuse of Persistent Code and Object Code (ROPCO),

the system proposed by Kazerooni-Zand, Samadzadeh, and

George, deals with reuse at a very low level. Machine

dependency becomes much more important when attempting the

reuse of object code as compared with source code.

9

The ROPCO system is composed of three major subsystems:

the Identification Mechanism (IDM), the Software Control

Mechanism (SCM), and the Interface. The function of the IDM

is to identify and select the programs or modules that meet

the user or programmer's requirements. Each element in the

system has a record in the Software Attribute Database

(SADB). This record is a unique identifier to its assigned

element and is used throughout the ROPCO system to identify

a particular element. The IDM prompts the user for the

functional and environment attributes as defined by Prieto-

10

Diaz and Freeman [PF87], and the implementation environment

as defined by Kazerooni-Zand et al. [KS90]. Using the

attributes input by the user, the SADB is accessed and one

or more elements are chosen; the selections are based on the

descriptions in the SADB and the proximity distance model

[PF87].

Kernighan uses the UNIX1 system as an example of an

environment that facilitates reusability. By using system

utilities, he proposes that one can build more complicated

programs and utilities using shell scripts or the source

code of the system utilities [KE84].

Caldiera and Basili approach software reusability by

splitting the traditional life cycle models into two parts.

The first part is the project and the second is the factory

[CB91]. The project delivers the software system to the

customer. As a need for a component is developed by the

project, it is sent to the factory. The factory deals with

extracting and packaging reusable components. It also has

to have a detailed knowledge of the project it is

supporting.

In their system, all components, which are selected for

possible addition to the software repository, go through a

two-phase evaluation. Phase one, the identification phase,

consists of three steps: the definition of the reusability

luNIX is a trademark of AT&T.

attributes model, extraction of the component, and

application of the model. Phase two, the component

qualification phase, is composed of six steps: generation

of the functional specification; generation of the test

cases; classification of the component; development of the

reuser•s manual; storage; and feedback.

11

Phase one is automated using software models and

metrics. Components that pass this phase are analyzed by a

domain expert. Any component whose functional specification

is not relevant, or is incorrect, is thrown away. The

reason for eliminating the component is documented; this

aids in the development of future reusable components.

A component is then run through a series of tests that

are based on its functional specification. If the tests are

failed, then once again the component is discarded and the

reason is documented. At this point, any component that has

survived is classified and documented for reuse. Each

component is made an autonomous unit capable of being

compiled without the addition of other files; any

information that may have resided in other files (C include

files for example) would have to be included in the

component [CB91].

Purtilo and Atlee [PA90) introduced a language called

NIMBLE that is used to ease the introduction of reusable

modules into new applications. With NIMBLE, the difference

between parameter orders is removed. NIMBLE provides

12

parameter coercion capabilities without changing the source

code of a module. The actual and formal parameter lists are

referred to as interface patterns. A mapping from the

actual parameter list to a new "parametric" takes place to

meet the needs of the module being called [PA90].

One of the motivations for the design of NIMBLE was the

likelihood that modules that are semantically identical, but

may be structurally different, are likely to become more

prevalent as reusable software systems are developed.

NIMBLE can be used to bridge the module interface gap and

also it can widen the domain to which a module can be

applied [PA90].

Frakes and Gandel [FG89] [FG90] discuss various methods

of representing reusable software components including

library science, knowledge based methods, and hypertext

techniques. They define representation "as a language

(textual, graphical, or other) used to describe a set of

objects" [FG89].

The faceted classification scheme of Prieto-Diaz and

Freeman [PF87] falls under the category of library science.

To compensate for the narrow focus of an enumerated system

such as the Dewey Decimal System, faceted schemes allow a

subject area to be broken down into fundamental parts.

These parts can then be synthesized to develop more

descriptive representations [FG89].

13

Commercial component libraries such as GRACE (Generic

Reusable ADA Components for Engineering) do exist. For

instance, GRACE allows a user to choose from a list of ADA

packages to accomplish common tasks such as managing stacks

and queues. It uses a knowledge engineering approach to

represent the software modules [FG89].

Chatterbox2 , a graphical user interface library

available from Courseware Applications, Inc., is a library

of graphic routines for the c language. It performs the

dirty work to create menu bars with pull-down menus and

dialog boxes with keyboard and mouse support using the

graphics routines of the supported compilers. The user

decides what (s)he wants and then includes the necessary

routines in hisjher code. The routines are described in the

Chatterbox reference manual. There is not an automated

method available to pull routines together; the user must

decide what (s)he wants by looking at the manual or by using

past experience with the library. The user then goes to the

Chatterbox source code and selects the necessary module or

modules [SC90].

Reusability in Practice

Prieto-Diaz [PR91] states that a classification scheme

for reusable software must meet the following criteria:

2chatterbox is a trademark of Courseware Applications,
Inc.

1. It must accommodate continually expanding

collections, a characteristic of most software

organizations,

2. It must support finding components that are

similar, not just exact matches,

3. It must support finding functionally equivalent

components across domains,

4. It must be very precise and have high descriptive

power (both are necessary conditions for

classifying and cataloging software),

14

5. It must be easy to maintain, that is, add, delete,

and update the class structure and vocabulary

without any need to reclassify,

6. It must be easily usable by both the librarian and

end user, and

7. It must be amenable to automation.

Prieto-Diaz [PR91] has worked with large corporations

such as GTE Data Services (GTE DS) and the CONTEL Technology

Center. While working at GTE DS, a 14 percent reuse factor

with a savings of 1.5 million dollars reportedly has been

realized the first year. A library "asset" was defined as

any facility that could be reused in the production of

software with the initial emphasis being reusable software

components. It was found that 38 percent of the 190 assets

in the library the first year were being "actively reused."

The majority of the items in the library were components

15

with greater than 10,000 lines of code; the larger components

provided a greater savings when reused. The faceted scheme

was more effective in "domain specific collections than for

broad, heterogeneous collections."

In his work at CONTEL, domain-specific reusable

software repositories were established. The library system

at CONTEL was developed to enable its easy integration into

existing environments. This is an example of a library

system that would be capable of being instantiated into

multiple environments.

To encourage the use of the repository, monetary

incentives were used to motivate the programmers, referred

to as authors or asset providers, to write their software

with reusability in mind, and to submit the new material for

inclusion in the repository.

CHAPTER III

PROTOTYPE IMPLEMENTATION

General overview

The main focus of this thesis is a prototype

implementation of a software library. The prototype can be

used to: (a) catalog software components using the faceted

cataloging scheme presented by Prieto-Diaz and Freeman

[PF87], and (b) retrieve components from a software

repository. This implementation is used to catalog

components at the source code level (other possibilities

include the specification, design, and object code levels).

The system has three major sub-sections: adding

components, querying the system for candidate components,

and the common vocabulary or thesaurus. This system works

within the confines of the Identification Mechanism (IDM) as

defined by Kazerooni-Zand et al. [KS90].

Concept of the Design

The prototype was implemented using the C programming

16

17

language on an IBM PC/AT3 compatible. Microsoft Quick c

compiler Version 2.5 was used for all coding and compiling.

The prototype requires eight supporting data files.

The common vocabulary (hereafter referred to as the

thesaurus) is contained in seven data files with the eighth

file being the Software Attribute Database (SADB) as defined

by Kazerooni-Zand et al. [KS90]. Each facet has its own

thesaurus data file. The facets used for this prototype and

the associated file names of their respective thesauruses

are shown in TABLE I. The thesaurus file for language is

included for information only; language is not used as a

parameter during queries.

TABLE I

FACETS WITH FILE NAMES

function
object
medium
system type
functional area
setting
language

funct.ths
object.ths
medium.ths
systype.ths
funcarea.ths
setting.ths
lang.ths

Each line of a file is a comma-delimited list of

descriptors with the first word on the line being the

3IBM PC/AT is a trademark of International Business
Machines Corp.

18

primary descriptor of that line. TABLE II shows a subset of

the "function" common vocabulary. The first word of each

line is the primary descriptor that will be used to define a

component for this facet for all components described by one

of the descriptors on that line. Given the set of

descriptors "add, increment, total, sum'~ from the "function"

thesaurus file, the user could enter any of the words as a

legal input. If a user enters the word "sum," the thesaurus

searches the data file of the respective facet. When sum is

found, "add" is substituted for the user's input.

TABLE II

SAMPLE THESAURUS ENTRIES

add,increment,total,sum
close,release,detach,disconnect,free
compare,test,relate,match,check,verify
complement,negate,invert
measure,count,advance,size,enumerate,list

The thesaurus is accessed every time a user enters a

descriptor (i.e., during cataloging and making queries). If

the user enters a word not included in the thesaurus, (s)he

is presented with a list from which to choose.

All of the supporting database functions are provided

by source code reused from an earlier academic project (16

percent of the total lines of code are reused). Each of the

data files are indexed and accessed using inverted lists.

With each data file, there are three supporting files.

TABLE III shows the data files with their respective

supporting files and TABLE IV gives the purpose of each of

the data files.

TABLE III

NAMES OF THE DATA FILES
WITH SUPPORTING

FILE NAMES

19

Data File Word File Inverted List Inverted List Index

ru.dta ru.wrd ru. inv ru.vdx
funct.ths funct.wrd funct.inv funct.vdx
object.ths object.wrd object.inv object.vdx
medium.ths medium.wrd medium.inv medium.vdx
systype.ths systype.wrd systype.inv systype.vdx
funcarea.ths funcarea.wrd funcarea.inv funcarea.vdx
setting.ths setting.wrd setting.inv setting.vdx
lang.ths lang.wrd lang.inv lang.vdx

TABLE IV

FILE EXTENSION DEFINITIONS

File Extension Definition

.wrd

.inv

.vdx

contains all words in the data file
with their line numbers that are used
to create the inverted list

an inverted list for the data file

the index file for the inverted list

The thesaurus was developed with the intended use of

cataloging Operating Systems II class projects and their

components as entries. This is a domain-specific

implementation as was the implementation used at CONTEL by

Prieto-Diaz [PR91]. It is possible to change the domain

orientation by changing the common vocabulary in the

thesaurus data files.

20

For this prototype implementation, the vocabulary

consists of those terms needed to define the set of software

components used as sample input. The list was limited to

those terms needed to give an adequate sampling of the

programs usefulness. Developing a comprehensive vocabulary

for the operating systems domain is beyond the scope of this

thesis.

User Interface

The prototype has three major sub-sections: adding

components, querying the system for candidate components,

and the common vocabulary or thesaurus.

The system is menu driven with the video display

partitioned into multiple text windows. With few

exceptions, pressing one key is all that is required to

maneuver through the program. Figure 2 shows the opening

menu where the user is presented with three choices. Each

of the prompts are self-explanatory.

Software Repositor~.

CAldd a conponent to the s~sten.

(Q)uer~ the s~sten for a conponent,

CElxit to DOS,

Make ~our selection --

Figure 2. Software Library Program Opening Menu.

21

After electing to add a component to the repository,

the user is prompted for the component name; the system must

be able to find the component before it can be added to the

repository. When the system is ready for the user to assign

attributes to the module, the user will see the screen shown

in Figure 3.

Attributes are entered as prompted. After all the

descriptors have been input, the user is given a chance to

make changes. When the descriptors are accepted, the

component will be added to the system. No maintenance is

required for this phase of the system.

When the user chooses Q at the opening menu, the system

updates the Software Attribute Database (SADB) to insure

that additions are included. The entering of attributes for

a query is done exactly as assigning attributes to a new

component.

At each of the following pronpts, enter the attribute that best
describes this nodule or press EHTER to choose fron a list.

cpu.c

1. Function:

Assigning attributes

FUHCTIOH is the action of the conponent.

Figure 3. Data Entry Screen.

22

When the list of desired attributes has been accepted,

SADB is searched for all components that meet one or more of

the desired attributes. After all exact matches are

displayed, the user is presented with a message at the

bottom of the screen containing a component name and the

percentage of the attributes matched. The user can make the

decision to view or bypass a component.

After all the possible candidates have been viewed or

passed by, the user is asked if (s)he wants to keep the list

of candidates. If a negative response is given, the list is

discarded and the program returns to the main menu. If

23

accepted, the user is prompted for a file name and up to two

lines of comments. Then the candidates with their

attributes are dumped into the given file. While viewing

the result of a system query, the user can press D and the

system will display the facet definition at the bottom of

the screen.

During the assigning of attributes and while making

queries of the system, the thesaurus is available by

pressing the ENTER key. When the key is pressed, a list of

possible choices for the current facet is displayed on the

right side of the screen. Also, if the user enters a

descriptor not included in the common vocabulary, a list

will appear on the right side of the screen. By selecting a

letter corresponding to one of the given choices, the

program inserts the selected descriptor. N and P are

pressed to get the next and previous lists (see Figure 4).

The user cannot make any changes to the software

repository from inside the program except for the addition

of modules. To delete components from SADB, any ASCII text

editor can be used. Each new line in the data file named

ru.dta is a set of component descriptors. The line is a

comma-delimited list containing the component name,

function, object, medium, system type, functional area,

setting, and language in that order. A ninth entry may be

present if the user has assigned a custom attribute from a

user-supplied thesaurus file. To delete a component from

SADB, the user must find the line containing its name and

delete it. The next time the system is used to make a

query, the SADB supporting files will be updated

automatically.

At each of the following proMpts. enter the attribute that best
describes this Module or press ENTEH to choose froM a list.

cpu.c

Choose froM the giuen list. A * NOT APPLICABLE
Press N for the next list or P for the preuious list,

1. Function:
2. Object:
3, MediuM:

Assigning attributes

execute
instruction

B
c
D
E
F
G
H
I
J
H
L

array
buffer
cards
character
disk
double
file
float
integer
job
keyboard

MEDIUM refers to entities that serue as locales where the action takes place.

Figure 4. Data Entry Screen with Thesaurus.

24

To update one of the common vocabulary lists, any ASCII

text editor can be used. The thesaurus entries are stored

in a comma-delimited list with the first word of the list

being the primary key for that particular set of

descriptors. Each line of descriptors must be terminated

with a carriage return (new line character, "\n"). The user

can add or delete lines of descriptors. Also the user can

add to or delete from the existing words. After changes are

25

made, at least one of the supporting files for the particular

facet must be deleted. The next time the thesaurus accesses

the list for the updated facet, its supporting files will be

updated.

Sample Queries

The test data for this prototype implementation

consists of components of varying lengths and purposes.

Programs, of three programmers from a graduate level

operating systems course, were broken into code segments of

varying sizes based on each programmer's comments. A total

of forty-three components were cataloged using the

prototype.

Components range in size from three lines (simple

string manipulations) to more than 700 lines. Some of the

larger modules consist of multiple C functions that work in

concert to accomplish an assigned task; in other cases, a

module consists of a single function (some containing more

that 250 lines of code). As expected, it was found that the

smaller, more specialized the component, the easier it was

to classify.

Using the program specification [SA91] that was used to

develop the programs in the data set, a set of queries were

developed to find components to meet the requirements of the

principal routines: loader, memory, cpu, spooler, and

scheduler (shown in order in TABLE V). The queries were

26

performed using four and six facets. Because this is a

domain-specific implementation, the system type and setting

facets were omitted from one set of queries. This was done

to determine if the removal of the aforementioned facets

changed the results of the queries measurably. There is a

small set of components of a generic nature that can be used

in any setting or system type as needed; however, in this

sampling, their presence is insignificant.

TABLE v

SAMPLE SYSTEM QUERIES

Function Object Medium System Type Funct. Area Setting

Load job operating system job io academic

access memory array operating system memory management academic
execute instruction integer operating system processing academic

reads card stack operating system job io academic
schedule jobs operating system scheduling academic

As can be seen in TABLE V, the medium column is not

used in every query. If a dominant medium could not be

identified in a component during the cataloging of the

component or in a component's specification, as in the case

of the queries in TABLE v, it was omitted.

27

Query Results

To accomplish a partial validation of this prototype

implementation, ten sample queries were completed; five

queries using four facets (function, object, medium,

functional area), and five queries using six facets

(function, object, medium, system type, functional area,

setting). The language facet was not used as a descriptor

for queries because all of the components in the system are

written in the same language, so this facet would not

provide any useful information during a query.

Because the prototype finds every component in the

system that meets one or more facets, the queries using six

facets list some candidate components that meet only the

system type and setting, or both. In this domain-specific

implementation with the given data set, these facets do not

provide any useful information. TABLE VI gives a summary of

the number of components found using both four and six

facets.

The left column of TABLE VI shows the number of

attributes matched (i.e., if six attributes are entered as a

query, "Exact" indicates an exact match of all the requested

attributes; -1 indicates that five attributes are matched;

-2 indicates that four attributes are matched; etc.).

Columns s 1 through s 5 give the .number of components found in

samples 1 through 5 for the given number of facets.

28

TABLE VII shows at what point a search should be

considered successful. As previously stated, the prototype

delivers all components that meet one or more of the

requested attributes. At some point, the components

returned are of little or no value because of the particular

facets matched. Because the results are based solely on

attributes matched, an additional or alternate method must

be developed to discriminate between the particular facets

matched. This is a topic for future study. But for the

purposes of this prototype, any component that is returned

that contains two or more mismatched attributes should be

discarded. The components represented in TABLE VII above

the double line should be considered valid candidates, those

below, invalid.

29

TABLE VI

SUMMARY OF QUERIES

Four Facets Six Facets

s1 52 53 54 55 s1 52 53 54 55

Exact 2 3 2 2 2 3 2 2

-1 2 3 2 3

-2 3 2 3 4 2 1 3

-3 3 4 14 3 2 15 16

-4 13 13

-5 1

Total 7 6 9 2 5 22 19 21 18 21

TABLE VII

SUMMARY OF VALID AND INVALID QUERIES

Four Facets six Facets

s1 52 53 54 55 s1 52 53 54 55

Exact 2 3 - 2 2 2 3 - 2 2

-1 2 - 3 - - 2 - 3 - -

-2 3 - 2 - 3 4 - 2 1 3

-3 - 3 4 - - 14 3 2 15 16

-4 - - - - - - 13 13 - -

-5 - - - - - - - 1 - -

Total 7 6 9 2 5 22 19 21 18 21

CHAPTER IV

SUMMARY AND FUTURE WORK

The aim of this thesis was to identify an accurate

software catalog interface capable of correctly identifying

software components and hence enabling their retrieval. The

vehicle used to accomplish this was a partial, prototypical

implementation of a software library.

Using the faceted cataloging scheme of Prieto-Diaz and

Freeman [PF87] in a domain-specific library, it was decided

that two facets (system type and setting) should be

eliminated from the query process. This is due to the

narrowness of the focus of the domain. As was reported in

Chapter III, within the sample domain of this thesis, the

results were the same with or without the use of the system

type and setting for valid queries.

The interface developed as part of this thesis can be

instantiated into different domains by changing the

vocabulary. Also, it can be used at different levels of

reuse other than source code such as design, specification,

or object code levels.

In order to validate the prototype fully, it must be

installed in an industrial setting to verify its performance

30

31

over time. A system librarian would enhance the usefulness

of the library by standardizing component descriptions. The

program itself is easy to use, but the task of defining the

software components is a time-consuming effort; time that a

typical programmer may not care to expend (invest) to

accomplish the task correctly. Programmers would have to be

encouraged to develop their components with reusability in

mind as was done at GTE DS and CONTEL [PR91].

To enhance the usefulness of this prototype

implementation, the maintenance functions need to be

automated. Also, the system needs a method to refine the

results of the queries. The user should be given an

indicator of the complexity required to modify the component

to meet hisjher need.

Future study is needed to determine the method used to

store components ("assets" as defined by Prieto-Diaz [PR91])

most efficiently. Data compression may be one method to

integrate into this prototype in its current form.

For the concept of reusability to become a widespread

reality, it will require dedicated software librarians to

accomplish the task of managing the repositories that will

grow with time. This may open other specialized areas

within the field of computer science.

BIBLIOGRAPHY

[BA90] Basili, Victor R., "Viewing Maintenance as Reuse­
Oriented Software Development," IEEE Software, January
1990, pp. 19-25.

[BP89a] Biggerstaff, Ted and Alan J. Perlis, Software Reus­
ability: Concepts and Models, Addison-Wesley Publish­
ing Co., Vol. 1, 1989.

[BP89b] Biggerstaff, Ted and Alan J. Perlis, Software Reus­
ability: Applications and Experience, Addison-Wesley
Publishing Co., Vol. 2, 1989.

[BP90] Bollinger, T.B. and S.L. Pfleeger, "Economics of
Reuse: Issues and Alternatives," Information and
Software Technology, December 1990, pp. 643-652.

[BR87] Biggerstaff, Ted and Charles Richter, "Reusability:
Framework, Assessment, and Directions," IEEE Software,
March 1987, pp. 41-49.

[CB91] Caldiera, Gianluigi and Victor Basili, "Identifying
and Qualifying Reusable Software Components," IEEE
Computer, February 1991, pp. 61-70.

[CH84] Cheatham, Jr., T.E., "Reusability Through Program
Transformations," IEEE Transactions on Software Engi­
neering, Vol. SE-10, No. 5, September 1984, pp. 589-
594.

[CL84] Cheng, Thomas T., Evan D. Lock, and Noah s. Prywes,
"Use of Very High Level Languages and Program Genera­
tion by Management Professionals," IEEE Transactions on
Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 552-563.

[C090] Cox, Brad J., "Planning the Software Industrial
Revolution," IEEE Software, November 1990, pp. 25-33.

[CU85] Curran, Anne Marie, On Design and Implementation of
an Environment for Reusable Software, Ph.D.
Dissertation, University of Southern California, May
1985.

32

33

[FG89] Frakes, W.B. and P.B. Gandel, "Representation Methods
for Software Reuse," Proceedings of Ada Technology in
Context: Application, Development, and Deployment,
Pittsburgh, Pennsylvania, October 1989, pp. 302-314.

[FG90] Frakes, W.B. and P.B. Gandel, "Representing Reusable
Software," Information and Software Technology,
December 1990, pp. 653-664.

[G086] Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February
1986, pp. 16-28.

[JA88] Jaeschke, Rex, Portability and the c Language, Hayden
Books, Indianapolis, Indiana, 1988.

[KG87] Kaiser, Gail E. and David Garlan, "Melding Software
Systems from Reusable Building Blocks," IEEE Software,
July 1987, pp. 17-24.

[KE84] Kernighan, Brian W., "The UNIX System and Software
Reusability," IEEE Transactions on Software Engineer­
ing, Vol. SE-10, No. 5, September 1984, pp. 513-518.

[KS90] Kazerooni-Zand, M., M. H. Samadzadeh, and K.M.
George, "ROPCO: An Environment for Micro-Incremental
Reuse," Proceedings of the IEEE International Phoenix
Conference on Computers and Communications, Scottsdale,
Arizona, March 1990, pp. 347-354.

[MA84] Matsumoto, Yoshihiro, "Some Experiences in Promoting
Reusable Software: Presentation in Higher Abstract
Levels," IEEE Transactions on Software Engineering,
Vol. SE-10, No. 5, September 1984, pp. 502-513.

[PA90] Purtilo, James M. and Joanne M. Atlee, "Improving
Module Reuse by Interface Adaptation," Proceedings of
the International Conference on Computer Languages, New
Orleans, Louisiana, March 1990, pp. 208-217.

[PF87] Prieto-Diaz, Ruben and Peter Freeman, "Classifying
Software for Reusability," IEEE Software, January 1987,
pp. 6-16.

[PR91] Prieto-Diaz, Ruben, "Implementing Faceted Classifica­
tion for Software Reuse," Communications of the ACM,
May 1990, pp. 88-97.

[SA91] Samadzadeh, Mansur H., "Operating Systems II Course
Project Specification," Oklahoma State University,
Stillwater, Oklahoma, Spring 1991.

[SC90] Schaefges, Thomas M., Chatterbox Reference Manual,
Courseware Applications, Inc., Champaign, Illinois,
1990.

[S089] Sommerville, Ian, Software Engineering, Addison­
Wesley Publishing Co., Third Edition, 1989.

34

[ST84] Standish, Thomas, "An Essay on Software Reuse," IEEE
Transactions on Software Engineering, Vol. SE-10, No.
5, September 1984, pp. 494-497.

APPENDIXES

35

APPENDIX A

SOFTWARE REPOSITORY USER'S GUIDE

36

SOFTWARE REPOSITORY

USER'S GUIDE

1. General Overview

This program is used to catalog software components

using the faceted cataloging scheme presented by Ruben

Prieto-Diaz and Peter Freeman [PF87], and t~ retrieve

components from the software repository. This

implementation is aimed at cataloging components at the

source code level. The system has three major sub-sections:

adding components, querying the system for candidate

components, and the common vocabulary or thesaurus.

2. Adding Components

At the opening menu, you will be presented with three

choices as follows.

The Opening Menu

So£tuare Repository.

(A)dd a coMponent to the systeM.

(Q)uer~ the S~StBM Cor a COMponent,

(E)xit to DOS.

Make your se1ection

37

38

Choose A to add a component to the repository. The prompts

are self-explanatory. Next you will be prompted for the

component name; the system must be able to find the

component before allowing it to be added to the repository.

When the system is ready for you to assign attributes to the

module, you will see the following screen.

Attribute Assignment Screen

At each of the following pro~pts, enter the attribute that best
describes this nodule or press ENTER to choose fron a list.

cpu.c

1. Function:

Assigning attributes

FUNCTION is the action of the co~ponent.

Enter the attributes as prompted. After all the descriptors

have been input, you can make any changes. When you accept

the entered list of descriptors, your component will be

added to the system.

39

3. Making Queries of the System

From the opening menu choose Q. The system will then

update the Software Attribute Database (SADB) to insure that

the additions can be found. When making a query, enter the

desired attributes just as you did when adding a component

to the repository.

When you have accepted the list of desired attributes,

SADB is searched for all components that meet one or more of

the desired attributes. After all exact matches are

displayed, a message will appear at the bottom of the screen

containing a component name and the percentage of the

attributes matched. If you wish to view the components

attributes, press Y. After all the possible candidates have

been view or passed by, you will be asked whether you want

to keep the list of candidates. If you decline, the list is

discarded and you are returned to the main menu. If you

accept, you are prompted for a file name and up to two lines

of comments. Subsequently, the candidates with their

attributes are dumped into the file you have entered. While

viewing the result of a system query, you can press D and

the system will display the facet definition at the bottom

of the screen.

4. Using the Thesaurus

During the assigning of attributes and while making

queries of the system, the thesaurus is available by

pressing the ENTER key. When the key is pressed, a list of

40

possible choices for the current facet is displayed on the

right side of the screen. Also, If you enter a descriptor

not included in the common vocabulary, a list will appear on

the right side of the screen. Select the letter

corresponding to your choice and the program will insert it

for you. You may press N or P to get the next or previous

lists.

Facet Options for the Attributes

At each of the following proMptsJ enter the attribute that best
describes this Module or press ENTEH to choose froM a list,

cpu.c

Choose froM the giuen list,
Press N for the next list or P for the preuious

1, Function:
2. Object:
3, MediuM:

Assigning attributes

execute
instruction

A
list. B

c
D
E
F
G
H
I
J
H
L

* NOT APPLICABLE
array
buffer
cards
character
dis~
double
file
float
integer
job
keyboard

MEDIUM refers to entities that serue as locales where the action ta~es place.

5. Miscellaneous

You cannot make any changes to the software repository

from inside the program except for the addition of modules.

To update the common vocabulary or to delete components from

41

the system, see the System Administrator's Guide (Appendix

B) •

You may develop your own additional facet, if you so

desire, to further define your software component(s). To do

this, you need an ASCII text editor. Give the file whatever

name you desire. In the file, arrange the descriptors so

that each new line contains a new set of descriptors as

shown below.

SAMPLE THESAURUS ENTRIES

add,increment,total,sum
close,release,detach,disconnect,free
compare,test,relate,match,check,verify
complement, negate, invert
measure,count,advance,size,enumerate,list

Each line must be terminated with a carriage return. As the

C programming language is case sensitive, all searches of

the descriptors are done in lowercase. Only the first word

of the line can contain both upper and lowercase letters.

Make sure the first word is the way you want is displayed.

All remaining letters and words on the line should be in

lower case to facilitate the search routines.

During the assigning of attributes or while making a

query, you will be presented with an eighth prompt:

"Other." At this prompt enter the user-defined facet. The

42

program will then prompt you for the file name of the file

containing the common vocabulary for this facet. It is also

possible to assign a second attribute from one of the

program thesaurus files by entering the proper file name at

the prompt.

APPENDIX B

SOFTWARE REPOSITORY SYSTEM ADMINISTRATOR'S GUIDE

43

SOFTWARE REPOSITORY

SYSTEM ADMINISTRATOR'S GUIDE

1. General Overview

This program is used to catalog software components

using the faceted cataloging scheme presented by Ruben

Prieto-Diaz and Peter Freeman [PF87], and to retrieve

components from the software repository. This

implementation is aimed at cataloging components at the

source code level. The system has three major sub-sections:

adding components, querying the system for candidate

components, and the common vocabulary or thesaurus.

2. Adding Components

At the opening menu, the user is presented with three

choices as follows.

The Opening Menu

So£tware Repository,

(A)dd a coMponent to the systeM.

(Qluery the systeM Cor a coMponent.

Make your se1ection

44

45

Choice A is for adding a component to the repository. The

prompts are self-explanatory. Next the user is prompted for

the component name; the system must be able to find the

component before it can be added to the repository. When

the system is ready for the user to assign attributes to the

module, the user will see the following screen.

Attribute Assignment Screen

At each of the following pro~pts, enter the attribute that best
describes this ~odule or press EMTER to choose fro~ a list.

cpu.c

1. Function:

Assigning attributes

FUMCTIOM is the action of the co~ponent.

The user enters the attributes as prompted. After all the

descriptors have been input, the user can make changes.

When the descriptors are accepted, the component will be

added to the system. No maintenance is required for this

phase of the system.

3. Making Queries of the System

46

Once the user chooses Q at the opening menu, the system

updates the Software Attribute Database (SADB) to insure

that the additions are included. The entering of attributes

for a query is done exactly as assigning attributes to a new

component. When the list of desired attributes has been

accepted, SADB is searched for all components that meet one

or more of the desired attributes. All exact matches are

displayed automatically. Subsequently, the user is

presented with a message at the bottom of the screen

containing a component name and the percentage of the

attributes matched. The user can make the decision to view

a component based on the number of attributes matched.

After all the possible candidates have been view or

passed by, the user is asked if (s)he wants to keep the list

of candidates. If a negative response is given, the list is

discarded and the program returns to the main menu. If

accepted, the user is prompted for a file name and up to two

lines of comments. Subsequently, the candidates with their

attributes are dumped into the file. While viewing the

result of a system query, the user can press D and the

system will display the facet definition at the bottom of

the screen.

47

4. Using the Thesaurus

During the assigning of attributes and while making

queries of the system, the thesaurus is available by

pressing the ENTER key. When the key is pressed, a list of

possible choices for the current facet is displayed on the

right side of the screen. Also, if the user enters a

descriptor not included in the common vocabulary, a list

will appear on the right side of the screen. By selecting a

letter corresponding to one of the given choices, the

program inserts the selected attribute. N and P are

presented to get the next and previous lists.

Facet Options for the Attributes

At each of the following proMptsJ enter the attribute that best
describes this Module or press ENTEH to choose froM a list,

cpu,c

Choose froM the giuen list,
Press N for the next list or P for the preuious list.

1, Function:
2, Object:
3, MediuM:

Assigning attributes

execute
instruction

A * NOT APPLICABLE
B arra~
C buffer
D cards
E character
F dis~
G double
H file
I float
J integer
H job
L ~e~board

MEDIUM refers to entities that serue as locales where the action ta~es place,

5. Updating SADB

NOTE: The user cannot make any changes to the software

repository from inside the program except for addition of

modules. It is recommended that the user not make any

deletions from SADB.

48

For deletion of components from SADB, use any ASCII

text editor. Each new line in the data file named ru.dta is

a set of component descriptors. The line is a comma­

delimited list containing the component name, function,

object, medium, system type, functional area, setting, and

language in that order. A ninth entry may be present if the

user has assigned a custom attribute from a user supplied

thesaurus file.

To delete a component from SADB, find the line

containing its name and delete it. The next time the system

is used to make a query, the SADB supporting files will be

updated automatically.

6. Updating the Thesaurus/Common Vocabulary

NOTE: It is recommended that the user not be allowed to

make changes to the thesaurus data files to avoid

compromising the integrity of the supporting thesaurus.

To update one of the common vocabulary lists, use any

ASCII text editor. The thesaurus entries are stored in a

comma-delimited list with the first word of the list being

the primary key for that particular set of descriptors.

Each line of descriptors must be terminated with a carriage

49

return. It is recommended that the System Administrator

perform all additions and deletions. After changes are

made, at least one of the supporting files for the

particular facet must be deleted. The next time the

thesaurus accesses the list for the updated facet, its

supporting files will be updated. The facets used for this

program and the associated file names of their respective

thesauruses are:

function - funct.ths
object - object.ths
medium - medium.ths
system type - systype.ths
functional area - funcarea.ths
setting - setting.ths

A thesaurus file for language (lang.ths) is included for

information only; language is not used as a parameter during

queries.

NAMES OF THE DATA FILES WITH THEIR SUPPORTING FILES

Data File Wrd File Inverted List Inverted List Index

ru.dta ru.wrd ru.inv ru.vdx
funct.ths funct.wrd funct.inv funct.vdx
object.ths object.wrd object.inv object.vdx
medium.ths medium.wrd medium.inv medium.vdx
systype.ths systype.wrd systype.inv systype.vdx
funcarea.ths funcarea.wrd funcarea.inv funcarea.vdx
setting.ths setting.wrd setting.inv setting.vdx
lang.ths lang.wrd lang.inv lang.vdx

50

Below are the purposes and contents of the supporting files .

. wrd - contains all words in the data file with their line
numbers that are used to create the inverted list

.inv - an inverted list for the data file

.vdx - the index file for the inverted list

APPENDIX C

PROGRAM SOURCE CODE LISTING

51

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991
*/

/* ru.h */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>

enum color {
Black,
Blue,
Green,
Cyan,
Red,
Magenta,
Brown,
White,
Dgray,
Light_blue,
Lgreen,
Lcyan,
Lred,
Light_magenta,
Yellow,
Bwhite,
};

enum {
Buf size 257,
FW = 25,
LEN 81,
Required = 1,
Optional 2,
} ;

/* buffer size */
/* field width */

typedef enum { FALSE,TRUE } BOOLEAN;

void screens(int screen);

#define cls
#define clw
#define gotoxy
#define ot

#define windowO

_clearscreen (_GCLEARSCREEN)
_clearscreen (_GWINDOW)
_settextposition
out text

_settextwindow(1,1,25,80); \
_settextcolor(White)

52

#define menuwindow

#define windowmsg

#define window!

#define window2

#define window3

#define windowthes

#define window4

#define windowS

#define window6

#define Read
#define Write
#define Append
#define Hline

screens(9); _settextwindow(7,15,18,65);\
_settextcolor(White)
screens(8); _settextwindow(23,1,25,80);\
_settextcolor(Cyan)

screens(l); _settextwindow(l,1,4,80); \
_settextcolor(White)

_settextwindow(6,1,8,59); \
_settextcolor(Light_magenta)

_settextwindow(l0,10,21,59); \
_settextcolor(Yellow)
screens(?); _settextwindow(6,61,21,80); \
_settextcolor(Bwhite)

_settextwindow(6,1,21,18); \
_settextcolor(Lcyan)

_settextwindow(6,19,21,38); \
_settextcolor(Lred)

_settextwindow(6,39,21,59); \
_settextcolor(White)

"r+"
"w+"
"a+"

----------------------------\

typedef struct invert {
char key [FW];
long offset;
} INVERTNDX;

typedef struct component {
char comp_name[LEN], /*component name*/

function[LEN,
object[LEN],
medium[LEN],
system_type[LEN],
funct_area[LEN],
setting[LEN],
language[LEN],
other [LEN] ;
} COMPONENT;

BOOLEAN chg_attribute(COMPONENT *,char);
BOOLEAN respond(void);

char *sgets(char *string,int length,char *stream);

int check_path(char input[], char varname[], int flag);

void attr_def(int);

53

void get_attr(int row,char attr[],char facet[],char thesdta[]);
void hyper(char [], char []);
void open_file(FILE **, char [], char [], char []);
void query(char ifname[],char invfile[],char vdxfile(]);
void sort(char input(]);
void thesaurus(char code,char key[],char dtafile[]);
void trap(int, char [], char (]);
void unique(char file_name(]);

char otext(LEN]; /* global string for outtext */

54

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991
*/

#include "ru.h"
#include <conio.h>

#define cbuffer 10001

/* FUNCTION PROTOTYPES */
BOOLEAN chg_attribute(COMPONENT *,char);
BOOLEAN does_exist(char []);
BOOLEAN respond(void);

char menu(void);
char *read_attr(char [], char []);

COMPONENT *read_attributes(char *, COMPONENT*);

void add_component(void);
void assign_attributes(char *, char*);
void attr_def(int);
void db_update(void);
void get_attr(int row,char attr[],char facet[],char thesdta[]);
void get_other_filename(char name[LEN]);
void invert(char inputfile[],char invfile[],char vdxfile[]);
void thesaurus(char code,char key[],char dtafile[]);

55

/***
******************************** MAIN ********************************
**

*
* This program prompts the user for an input file. If the file exists,
* then the user is asked if the input file has been assigned attributes.
* If a negative response is given, the user is prompted for the
* attributes, else the module is added to the system.

*
***/
void main(void)
{

BOOLEAN add_flag

cls;

TRUE;

_wrapon (_GWRAPOFF);

check_path("sort.exe","PATH",1);

/* set when component added */

/* truncate at window's edge */
/* look for DOS sort.exe */

/* if no components have been previously added go directly to
* add_component */

if (! check _path ("ru. dta", "",Optional))
{

}

_ot("The reuse database is empty.");
_ot(" Do you wish to add components? [Y/N] ");
gotoxy(l,70);
if(respond()) add_component();
else exit(O);

if (check_path("ru.dta","",Optional));
else
{

}

cls;
exit(O);

/* components have not been added */

while (TRUE)
{

cls;

switch(menu())
{

case 'A':
cls;
add_flag = TRUE;
add_component();
cls;
break;

case 'E':
cls;
window2;
_ot("Do you want to exit to the operating system? [Y/N] ");
gotoxy(1,53);
if (respond())
{

windowO;
cls;
exit(O);

}

break;

case 'Q':
cls;
if (add_flag)
{

}

db_update();
add_flag = FALSE;

/* CREATE/UPDATE supporting files */

/* begin processing the query */
query("ru.dta", "ru.inv", "ru.vdx");
break;

56

default: break;
} /* switch */

} /* while */

57

} /* main

***/

/***
************************ chg_attribute *******************************
**

*
* This function is called if an entered attribute is to be changed.

*
***/
BOOLEAN chg_attribute(COMPONENT *current,char flag)
{

char buffer[LEN];
int x;

windowl;
clw;
windowmsg;
clw;
window3;
gotoxy(9,1);
_ot(11 Are the above attributes correct?
gotoxy(9,42);
if (respond ())

x = FALSE;
else
{

windowl;

[y /N] II);

_ot(11 Enter the attribute that best describes this facet of the 11);

_ot(11 component. 11);

window3;
gotoxy(ll,l);
_ot(11 Enter the number of the attribute to change-- 11);

buffer[O] = (char) getche();
gotoxy(ll,l);
_ot (II II);

x = atoi(buffer);
gotoxy(x,l);
_ot (II II);

switch(x)
{

case 1:
get_attr(l,current->function, 11 Function: 11 , 11 funct.ths 11);

break;

case 2:
get_attr(2,current->object, 11 0bject: 11 , 11 0bject.ths 11);

break;

case 3:
get_attr(3,current->medium,"Medium:","medium.ths");
break;

58

case 4:
get_attr(4,current->system_type,"System Type:","systype.ths");
break;

case 5:
get_attr(S,current->funct_area,"Functional Area:",

"funcarea.ths");
break;

case 6:
get_attr(6,current->setting,"Setting:","setting.ths");
break;

case 7:
if (flag == I a 1)

get_attr(7,current->language,"Language:","lang.ths");
break;

case 8:
buffer[O] = 1 \0 1 ;

get_attr(8,current->other,"Other:",buffer);

default: break;
} /* switch */

x = TRUE;

} /* else */

return x;

} /* change attribute

***/

59

/***
*************************** does exist *******************************
**

*
* This function does a linear search through the software attribute
* database to determine if the inputfile previously existed or if an
* identical file name is found.

*
***/
BOOLEAN does_exist(char fname[])
{

BOOLEAN flag = FALSE;
char *ptr, line[Buf_size];
FILE *fp;

open_file(&fp,Read,"ru.d~a","does_exist");

while (fgets(line,Buf_size,fp) != NULL)
{

}

ptr = strtok(line,",");
if (strcmp(fname,ptr) 0)
{

}

windowl;
clw;
sprintf(otext,"Component %s previously added.

_ot(otext);
sprintf(otext,"press any key to continue ••• ");
_ot(otext);
getch();
flag = TRUE;
break;

fclose(fp);
return flag;

} /* does exist

SKIPPING! \n",
fname);

***/

60

/***
**************************** respond *********************************
**
*
* This function prompts the user for a Y or N response.

*
***/
BOOLEAN respond(void)
{

char x;
struct rccoord oldpos; /* catch current cursor position */

oldpos = _gettextposition();

do
{

}

x = (char) toupper(getche());
gotoxy(oldpos.row,oldpos.col);

while ((x) != 'N' && (x) != 'Y');

return (x == 'Y') ? TRUE: FALSE;

} /* respond

***/

/***
***************************** menu ***********************************
**

*
* This function places a menu on the screen. The users choice is
* returned.

*
***/
char menu(void)
{

menuwindow;

_ot("Software Repository.");
gotoxy(S,l);
_ot("(A)dd a component to the system.");

gotoxy(7,1);
_ot("(Q)uery the system for a component.");

gotoxy(9,1);
_ot("(E)xit to DOS.");

gotoxy(l2,1);
_ ot ("Make your selection -- ") ;
return (char) toupper(getche());

61

} /* menu

***/

/***
*************************** read attr ********************************
**
*
* This function reads one attribute from th~ buffer.
* returned to the calling module.

The attribute is

*
***/
char *read_attr(char buffer[],char sep[])
{

char input[FW],
*pchar,
ch;

if (buffer[O] 1= ',')
{

}

pchar = strstr(buffer,sep);
pchar++;

else
{

}

pchar = strstr(buffer,",");
pchar++;

/* read data */
if (buffer[O] != ',')

strcpy(input,strtok(buffer,sep));
else

strcpy(input," ");

strcpy(buffer,pchar);

return input;

} /* read attr

***/

62

/***
************************* read attributes ****************************
**

*
* This function reads the attributes from the beginning of the input
* file. The attribute data file is checked, if the file is not
* currently in the database, it will be added. The attributes are
* passed back via the formal parameter list.

*
***/
COMPONENT *read_attributes(char *fname,COMPONENT *new)
{

static char buffer[Buf_size],
*pchar,
*temp;

char ch = ' \0 ' ;

/* char pointer */

int x, /* number of bytes read by fread */
i;

FILE *fp;

open_file(&fp,Read,fname,"read_attributes");
x = fread (buffer,l,Buf_size-l,fp);
fclose (fp);

pchar = strstr(buffer," ");
pchar++;
strcpy(buffer,pchar);

/* remove opening comment */

/* read component name */
for (i = 0; i < 30; i++) new->comp_name[i] = buffer(i];

temp= strtok(new->comp_name,",");
/* check to see if exist in module */

pchar = strstr(fname,temp);

if (pchar I= NULL)
{

}

strcpy(new->comp_name,read_attr(buffer,","));
strcpy(new->function,read_attr(buffer,","));
strcpy(new->object,read_attr(buffer,","));
strcpy(new->medium,read_attr(buffer,","));
strcpy(new->system_type,read_attr(buffer,","));
strcpy(new->funct_area,read_attr(buffer,","));
strcpy(new->setting,read_attr(buffer,","));
strcpy(new->language,read_attr(buffer,","));
strcpy(new->other,read_attr(buffer,","));

else
{

windowl;
clw;
_ot("The specified module does not contain parameters.\n");
new = NULL;

63

}

return new;

} /* read attributes

***/

/***
************************* add_component ******************************
**

*
* This function is called when a component is being added to the system.
* It calls the necessary functions for attribute assignment, reading of
* the attributes from the module, and adding the new info to the system
* information.

*
***/
void add_component(void)
{

BOOLEAN exist;
char ifname[LEN],

*pchar,
path[LEN], drive[3], dir[3], fname[9], ext[S],
added[Buf_size] = "";

static char buffer[cbuffer];
COMPONENT current,

*curr = NULL;
FILE *fp;
int x, i = 0;
static int col = 1, row = 1;

while (TRUE)
{

window1;
clw;

gotoxy(1,1);
/* prompt user for file name */

_ ot ("Enter the
fflush(stdin);
gets (path);
strlwr (path);

name of the new component: ");

/* change to lowercase */

/* change \ to I to avoid escape char in path */
while ((pchar = strstr(path,"\\")) 1= NULL)

pchar[O] = '/';

while((fp = fopen(path,Read))
{

windowl;
clw;

NULL)

_ot("New component cannot be found. Enter new component \

name.\n");
_ot("(You may need to include the correct path. (Q)uit)");
gotoxy(1,60);
fflush (stdin);
gets (path);
strlwr(path);

64

/* change \ to / to avoid escape char in path */
while ((pchar = strstr(path,"\\")) !=NULL)

}

pchar[O] = '/';

if (path[O] == 'q')
return;

fcloseall();
_splitpath(path, drive, dir, fname, ext);
strcpy(ifname,fname);
strcat(ifname,ext);

if ((exist= does_exist(ifname))
{

assign_attributes(path, ifname);

FALSE)

curr = read_attributes(ifname,¤t);
}

if (!exist && curr !=NULL)
{

}

open_file(&fp,"a+","ru.dta","read_attributes");
fprintf(fp,"%s,%s,%s,%s,%s,%s,%s,%s,%s\n",current.comp_name,

current.function,current.object,current.medium,
current.system_type,current.funct_area,current.setting,
current.language,current.other);

fclose(fp);
window2;
gotoxy(1,1);
sprintf(otext,"%-14.14s ",ifname);
strcat(added,otext);
_ot(added);
col += 15;
if(col >= 45)
{

}

strcat(added,"\n");
col = 0;

if (strlen(added) > 165)
added[O] = '\0';

window1;
clw;
_ot("Do you wish to add another component? [Y/N] ");

65

gotoxy(l,47);
if (!respond()) break;

}

} /* add component

***/

/***
************************ assign attributes ***************************
**

*
* This function takes a module that has not been assigned attributes and
* prompts the user for the appropriate attribute definitions. The
* attributes are appended to the beginning of the input file.

*
***/
void assign_attributes(char *path, char *inputfile)
{

COMPONENT current;
static char buffer(cbuffer],

*pchar,
newfile[LEN] II II • ,

FILE *fp, *ifp;
int x;

windowl;
clw;
_ot("At each of the following prompts, enter the attribute that \

best\n");
_ot("describes this module or press ENTER to choose from a list.");
gotoxy(4,1);
_ot(inputfile);

window3;
gotoxy(21,1);
_ot ("Assigning attributes");

get_attr(l,current.function,"Function:","funct.ths");
get_attr(2,current.object,"Object:","object.ths");
get_attr(3,current.medium,"Medium:","medium.ths");
get_attr(4,current.system_type,"System Type:","systype.ths");
get_attr(S,current.funct_area,"Functional Area:","funcarea.ths");
get_attr(6,current.setting,"Setting:","setting.ths");
get_attr(7,current.language,"Language:","lang.ths");
get_attr(B,current.other,"Other:",newfile);

windowl;
clw;
while (chg_attribute(¤t,'a'));
clw;

open_file(&fp,Write,"work","assign_attributes");
fprintf(fp,"/* %s,%s,%s,%s,%s,%s,%s,%s,%s, */\n",inputfile,

current.function,current.object,current.medium,
current.system_type,current.funct_area,current.setting,
current.language,current.other);

open_file(&ifp,Read,path,"assign_attributes");

while((x = fread(buffer,1,cbuffer,ifp)) 1= 0)
fwrite(buffer,x,1,fp);

fclose(ifp);
fclose(fp);

if (strcmp(path,inputfile) -- 0)
unlink(inputfile);

rename ("work", inputfile);

} /* assign attributes

66

~************/

/***
*************************** open_file ********************************
**

*
* This procedure opens the input and output files for this program.

*
***/
void open_file(FILE **fp,char type[],char name[],char module[])
{

/* open input and output files */
if ((*fp = fopen(name,type)) -- NULL)
{

windowO;
cls;
trap(1001,name,module);
exit (1001) ;

}

} /* open_file *I

/**/

67

/***
*************************** ERROR TRAPS ******************************
**

*
* This function produces an error message when the input string does
* not match one of those specified in the program specification. This
* function is called by modules listed in the error messages.

*
***/
void trap(int code, char filename[], ch~r module[))
{

fprintf(stderr,"\n==> ERROR\n");

switch(code)
{

case 1001 : fprintf(stderr,"INPUT/OUTPUT FILE NOT \
FOUND(IO 1001).\n");

fprintf(stderr,"File \"%s\" not found in function\
\"%s.\"\n",filename,module);

case 2001 :
\n\n",module);

/* not used yet

break;

fprintf(stderr,"\nFile not properly sorted(%s2001).\

break;

case 3001: fprintf(stderr,"\n (3001).\n\n");
break;

case 3002

case 4001

case 4002

case 5001

*/
default

fprintf(stderr,"\n (3002).\n\n");
break;

fprintf(stderr,"\n (4001).\n\n");
break;

fprintf(stderr,"\n (4002).\n\n");
break;

fprintf(stderr,"\n (5001).\n\n");
break;

fprintf(stderr,"********* FATAL ERROR ********\n\n\n");
exit(999);
break;

} /* switch */

} /* trap */

/**/

68

/***
*********************** attribute definitions ************************
**
*
* This function lists the definitions of the respective attributes.

*
***/
void attr_def(int n)
{

windowmsg;
clw;

switch(n)
{

case 1:
_ ot ("FUNCTION is the action of the component. \n");
break;

case 2:
_ot("OBJECT is the object manipulated by the component.\n");
break;

case 3:
_ot("MEDIUM refers to entities that serve as locales where ");
_ ot ("the action takes place. \n") ;
break;

case 4:
_ot("SYSTEM TYPE refers to functionally identifiable, ");
_ot("application-independent\n");
_ ot ("modules. Usually includes > 1 component. \n") ;
break;

case 5:
_ot("FUNCTIONAL AREA describes application-dependent \

activities. \n");
break;

case 6:
_ot("SETTING describes where the component is exercised.\n");
break;

case 8:
_ot("You may enter a user defined facet now.");
break;

default: break;
} /* switch */
window3;

} /* attr_def

***/

69

/***
*************************** get attr *********************************
**
*
* This function prompts the user and returns the value input. All
* modifications to the input value are completed before it is returned.

*
***/
void get_attr(int row,char attr[],char facet[],char thesdta[])
{

attr_def(row);
window3;
gotoxy(row,l);
sprintf(otext,"%i.
_ot(otext);
fflush(stdin);
gets(attr);
attr[FW] = '\0';
strlwr(attr);

%-18s",row,facet);

if (row== 8 && attr[O] 1= '\0' && attr[O] 1= '*')
get_other_filename(thesdta); /*get other definitions*/

if (thesdta[O] != '\0') /*if file !exist, return*/
thesaurus('s',attr,thesdta);

else attr[O] = '\0';

attr_def(row);
gotoxy(row,l);
_ot("
gotoxy(row,l);
sprintf(otext,"%i.
_ot(otext);

} /* get attr

%-18s%-25s",row,facet,attr);

") ;

***/

/***
***************** software attribute database update *****************
**

*
* This function updates/creates the supporting database file for the
* software attributes.

*
***/
void db_update(void)
{

unlink("ru.wrd");
unlink("ru.inv");
unlink("ru.vdx");
sort ("ru.dta");
hyper("ru.dta","ru.wrd");

70

invert("ru.wrd", 11 ru.inv11 , 11 ru.vdx 11)i

} /* database update

***/

/***
*********************** get other filename ***************************
**

*
* This function is used to get the definition file for a user-defined
* facet. If the file does not exist, NULL is returned.

*
***/
void get_other_filename(char name[LEN])
{

windowmsg;
clw;
_ot(11 Enter the name containing the facet definitions -- \n 11)i

gets (name) ;
if (!check_path(name, 1111 ,optional))

name[O] = '\0';
clw;

} /* get other filename

***/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991

*I

#include "ru.h"
#include <conio.h>

/* FUNCTION PROTOTYPES */
BOOLEAN evaluate targets(char tgtfile[],COMPONENT current);
BOOLEAN find_targets(char ifname[],char invfile[],char vdxfile[],

char tgtfile[],COMPONENT current);
BOOLEAN get_tgts(char ifname[],char invfile[],char vdxfile[],

char tgtfile[],char facet[],BOOLEAN flag);

INVERTNDX bin_search(char inputfile[],char key[],int count);
INVERTNDX find_key(char vdxfile[],char key[]);

void display_component(COMPONENT target);
void display_targets(char tgtfile[],COMPONENT user);
void extract(COMPONENT *target, int *hits, char input[));
void output_facet(int row, char *str);
void output_target(char [], char [], char [], INVERTNDX);
void make_query(COMPONENT *);
void tgttext(char tgtfile[], COMPONENT user);
void query(char ifname[],char invfile[],char vdxfile[]);

71

/*M */
void query(char ifname[],char invfile[],char vdxfile[])
{

char name [FW] ,
tgtfile[FW] = "ru.tgt";

COMPONENT current;

cls;
make_query(¤t);
windowO;
clw;
gotoxy(10,30);
_ot("Searching ••• ");

if (find_targets(ifname,invfile,vdxfile,tgtfile,current))
{

evaluate_targets(tgtfile,current);
display_targets(tgtfile,current);
tgttext(tgtfile,current);

} /* if find */

} /* query */

/*m */

72

/***
************************* evaluate targets ***************************
**

*
* This function reads each of the targets from the tgt file and insures
* that a match exists in the parameter list and the user list. Targets
* that do not match are deleted from the list. If all targets are
* deleted, a False flag is returned and the processing is halted for
* this search. The language attribute is for info only. A component in
* the same language does not constitute a match.

*
***/
BOOLEAN evaluate_targets(char tgtfile[],COMPONENT current)
{

BOOLEAN flag = FALSE;
char input(Buf_size],

*pchar,
seps(FW] = ",\n\r",
str(FW],
*duplicate,
command(LEN] = "sort jr < new$.tgt >out";

FILE *fp,*fpo;
int att matches = 0;

open_file(&fp,Read,tgtfile,"evaluate_targets");
while(((pchar = fgets(input,Buf_size,fp)) !=NULL) && pchar(O] != '\0'

&& pchar(O] != '\n')
{

duplicate= strdup(input); /*create a duplicate of the input */

strtok(input,seps); /*throw away the component name*/

pchar = strtok(NULL,seps); /*read & compare the function*/
if (strcmp(current.function,pchar) == 0)

att_matches++;
/* read & compare the object */

pchar = strtok(NULL,seps);
if (strcmp(current.object,pchar) == 0)

att_matches++;
/* read & compare the medium */

pchar = strtok(NULL,seps);
if (strcmp(current.medium,pchar) == 0)

att_matches++;
/* read & compare the sys type */

pchar = strtok(NULL,seps);
if (strcmp(current.system_type,pch~r) == 0)

att_matches++;
/* read & compare the funct area */

pchar = strtok(NULL,seps);
if (strcmp(current.funct_area,pchar) == 0)

att_matches++;
/* read & compare the setting */

pchar = strtok(NULL,seps);
if (strcmp(current.setting,pchar) -- 0)

att_matches++;

pchar = strtok(NULL,seps); /*discard language*/
pchar = strtok(NULL,seps); /*read & compare other*/
if (pchar != NULL && strcmp(current.other,pchar) == 0)

att_matches++;

if (att_matches)
{

}

flag = TRUE;
open_file(&fpo,Append,"new$.tgt","evaluate targets");
itoa(att_matches,str,lO);
fprintf(fpo,"%s,%s",str,duplicate);
fclose(fpo);

free(duplicate);
att matches = 0;

} /* while */

fclose (fp) ;
system(command);
unlink("new$. tgt");
unlink(tgtfile);
rename("out", tgtfile);
return flag;

} /* evaluate targets

73

***/

/***
************************ find targets ********************************
**

*
* This file takes the current set of component attributes and locates
* all components that match n or more attributes. The target list is
* put in file "ru.tgt."

*
***/
BOOLEAN find_targets(char ifname[],char invfile[],char vdxfile[],

{

char tgtfile[],COMPONENT current)

BOOLEAN flag = FALSE; /* True indicates target found */

flag get_tgts(ifname,invfile,vdxfile,tgtfile,current.function,
flag);

flag get_tgts(ifname,invfile,vdxfile,tgtfile,current.object,flag);

flag= get_tgts(ifname,invfile,vdxfile,tgtfile,current.medium,flag);

74

flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.system_type,
flag);

flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.funct_area,
flag);

flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.setting,
flag);

flag= get_tgts(ifname,invfile,vdxfile,tgtfile,current.other,flag);

if (flag)
{

sort(tgtfile);
unique(tgtfile);

}

else
{

}

clw;
_ot("No targets found.\n\nPress any key to continue ••• ");
getch();

return flag;
} /* find targets

***/

/***
************************* binary search ******************************
**
*
* This function performs a binary search of data stored on secondary
* storage. It returns the index or NULL if not found.

*
***/
INVERTNDX bin_search(char inputfile[],char key[],int count)
{

FILE *fp;
int low = 0, high = count-1,

test;
INVERTNDX index;
long guess, look;

open_file(&fp,"rb",inputfile,"bin_search");
while(low <= high)
{

guess = (long) (low + high)/2; /* find mid_point */
look= guess* sizeof(INVERTNDX);
fseek(fp,look,SEEK_SET);
fread(&index,1,sizeof(INVERTNDX),fp);

if ((test= strcmp(key,index.key)) < 0)
high = (int) guess - 1;

else
if (test > 0)

low = (int) guess + 1;
else
{

}

fclose(fp);
return index;

} /* while low */

fclose(fp);
strcpy(index.key,"");
return index;

} /* bin search

75

/* key not found */

***/

/***
**************************** find_key ********************************
**
*
* This function finds the specified key, if it exists, on secondary
* storage.

*
***/
INVERTNDX find_key(char vdxfile[],char key[))
{

FILE *fp;
int count;
INVERTNDX index;
long pos;

/* number of elements in vdxfile */

/* number of bytes in file */
/* find number of index entries */

open_file(&fp,"rb",vdxfile,"find key");
fseek(fp,OL,SEEK_END);
pos = ftell(fp); /* get file length */
fclose(fp);
count= (int) pos I sizeof(INVERTNDX);
index= bin_search(vdxfile,key,count);
return index;

} /* find key */

/**/

76

/***
************************* display targets ****************************
**

*
* This function displays on the screen all the targets found during the
* search.

*
***/
void display_targets(char tgtfile[],COMPONENT user)
{

char input[Buf_size],
ch;

COMPONENT target;
FILE *fp;
int num,

hits,
wronganswer = TRUE;

float request = 0;

cls;
window4;
gotoxy(l,4);
_ot ("FACETS");

gotoxy(3,4);
_ot("Component:");

gotoxy(4,1);
_ot("l. Function:");

gotoxy(6,1);
_ot("2. Object:");

gotoxy(7,1);
_ot("3. Medium:");

gotoxy(9,1);
_ot("4. System type:");

gotoxy(lO,l);
_ot("5. Funct. area:");

gotoxy(l2,1);
_ot("6. Setting:");

gotoxy(13,1);
_ot("7. Language:");

gotoxy(l5,1);
_ot("8. Other:");

windowS;

/* number of parameter matches */

/* create screen display */

/* display user request */

gotoxy(l,l);
_ot("USER'S REQUEST");

gotoxy(4,1);
sprintf(otext,"%-.*s",18,user.function);
_ot(otext);

gotoxy(6,1);
sprintf(otext,"%-.*s",18,user.object);
_ot(otext);

gotoxy(7,1);
sprintf(otext,"%-.*s",l8,user.medium);
_ot(otext);

gotoxy(9,1);
sprintf(otext,"%-.*s",18,user.system_type);
_ot(otext);

gotoxy(lO,l);
sprintf(otext,"%-.*s",18,user.funct_area);
_ot(otext);

gotoxy(l2,1);
sprintf(otext,"%-.*s",18,user.setting);
_ot(otext);

gotoxy(lS,l);
sprintf(otext,"%-.*s",l8,user.other);
_ot(otext);

77

I* get number of user attributes input *I
if (user.function[O] != '\0') request++;
if (user.object[O] 1= '\0') request++;
if (user.medium[O] != '\0') request++;
if (user.system_type[O] != '\0') request++;
if (user.funct_area[O] != '\0') request++;
if (user.setting[O] != '\0') request++;
if (user.other[O] 1= '\0') request++;

I* display targets *I
open_file(&fp,Read,tgtfile,"display targets");
while(fgets(input,Buf_size,fp) != NULL)
{

extract(&target,&hits,input);
if (hits I request== 1) display_component(target);
else
{

windowmsg;
clw;
sprintf(otext,"Component %s meets %5.2f %%of the request.\n",

target.comp_name,hits I request* 100);
_ot(otext);
_ot("Display -- [Y/N] ");

}

if (respond ())
{

}

clw;
display_component(target);

else continue;

while (wronganswer)
{

windowl;
clw;
if (hits > 1)
{

}

sprintf(otext,"%2i attributes matched.\n",hits);
_ot(otext);

else
{

}

sprintf(otext,"%2i attribute matched.\n",hits);
_ot(otext);

_ot("Press (C)ontinue, Facet (D)efinitions, or (Q)uit ••• ");
ch = (char) tolower(getch());

switch(ch)
{

case 'c':
wrong answer
break;

case 'd':
windowthes;

FALSE;

_ot("Enter the number of\nthe facet or\nO to return\n");
while((num = getche() - 48) != 0)
{

if (num != 8)
attr_def(num);

windowthes;
gotoxy(4,1);

} /* while * /
clw;
break;

case 'q':
wrong answer
break;

default: break;

} /* switch */

FALSE;

78

} /* while wronganswer */

wronganswer = TRUE;
window6;

if (ch == 'q')
break;

} /* while fgets */
fclose(fp);

79

} /* display targets
***/

/***
****************************** extract *******************************
**
*
* This function is used to break down the tokens of the input string and
* put them in their respective structure members.

*
***/
void extract(COMPONENT *current, int *hits, char input(])
{

char str[FW],
seps(FW] = ",\n\r";

strcpy(str,strtok(input,seps)); /*read the hits*/
*hits= atoi(str);

strcpy(current->comp_name,strtok(NULL,seps));
/* read the function */

strcpy(current->function,strtok(NULL,seps));
/* read the object */

strcpy(current->object,strtok(NULL,seps));
/* read the medium */

strcpy(current->medium,strtok(NULL,seps));
/* read the sys type */

strcpy(current->system_type,strtok(NULL,seps));
/* read,the funct_area */

strcpy(current->funct_area,strtok(NULL,seps));
/* read the setting */

strcpy(current->setting,strtok(NULL,seps));

strcpy(current->language,strtok(NULL,seps));

strcpy(current->other,strtok(NULL,seps));

} /* extract

***/

80

/***
************************** make query ********************************
**

*
* This function allows the user to complete the query questionnaire.

*
***/
void make_query(COMPONENT *current)
{

char buffer[LEN] =

windowl;
clw;

"" . I

_ot("At each of the following prompts, enter the attribute that \
best\n");

_ot("describes the desired module or press ENTER to choose from a \
list.");

window3;
gotoxy(21,1);
_ ot ("Making Query");

fflush (stdin);

get_attr(l,current->function,"Function:","funct.ths");
get_attr(2,current->object,"Object:","object.ths");
get_attr(3,current->medium,"Medium:","medium.ths");
get_attr(4,current->system_type,"System Type:","systype.ths");
get_attr(S,current->funct_area,"Functional Area:","funcarea.ths");
get_attr(6,current->setting,"Setting:","setting.ths");
get_attr(8,current->other,"Other:",buffer);

while (chg_attribute(current,'q'));

clw;

} /* make query

***/

81

/***
************************** output target *****************************
**
*
* This function insures that a target is found. It then retrieves the
* target info and outputs it to the tgt file.

*
***/
void output_target(char ifname[],char tgtfile[],char invfile[],

{

char list[Buf_size],
target[Buf_size],
file[FW],
*pchar,
scr[FW];

FILE *fp;
int num, i;

INVERTNDX index)

/* get the inverted list entry */
open_file(&fp,"rb",invfile,"output_target");
fseek(fp,index.offset,SEEK_SET);
fgets(list,Buf_size,fp);
fclose(fp);
strtok(list," ");

while (TRUE)
{

pchar = strtok(NULL," :");
if (pchar == NULL)

break;

/* remove the words from the list */

/* strcpy(file,pchar); save for future refinement */
strcpy(scr,strtok(NULL," :"));

/* retrieve attributes from data file */
num = atoi(scr);
open_file(&fp,"r",ifname,"output_target");

for (i = 1; i <= num; i++)
fgets(target,Buf_size,fp);

fp = freopen(tgtfile,Append,fp);
fputs(target,fp);
fclose(fp);

} /* while */

} /* output target */

/**/

82

/***
************************** target text *******************************
**

*
* This function asks the user whether or not the tgt information is to
* be retained. If so, the user is asked for a file name and the info is
* put in the specified file, otherwise it is deleted.

*
***/
void tgttext(char tgtfile[], COMPONENT user)
{

char name [LEN] ,
data[Buf_size];

COMPONENT curr;
FILE *fp, *fpo;
int hits;

cls;
windowl;

gotoxy(2,1);
_ot ("Do you wish to keep the target file? [Y/N] ");
gotoxy(2,45);
if (!respond()) unlink(tgtfile);
else
{

clw;
puts("\nEnter new target file name.");
gets(name);
clw;

while(check_path(name,"",Optional))
{

sprintf(otext,"The file, %s, already exist. Overwrite? [Y/N] \
",name);

_ot(otext);

}

if (!respond())
{

}

clw;
puts("\nEnter new target file name.");
gets(name);
clw;

else
{

}

clw;
break;

open_file(&fp,Read,tgtfile,"tgtoutput");
open_file(&fpo,Write,name,"tgtoutput");

83

_ ot ("Enter up to two lines of comments. \n") ;

gets(data);
if (data[O] != '\0') fprintf(fpo,"\n%-80s\n",data);

gets(data);
if (data[O] != '\0') fprintf(fpo,"%-80s\n",data);

fprintf(fpo,"\nThe attributes requested are:\n\n");
fprintf(fpo, \t%-20s %-40s\n","Function",user.function);
fprintf(fpo, \t%-20s %-40s\n","Object",user.object);
fprintf(fpo, \t%-20s %-40s\n","Medium",user.medium);
fprintf(fpo, \t~-20s %-40s\n","System Type",user.system_type);
fprintf(fpo, \t%-20s %-40s\n","Functional Area",user.funct_area);
fprintf(fpo, \t%-20s %-40s\n","Setting",user.setting);
fprintf(fpo, \t%-20s %-40s\n\n","Other",user.other);

fprintf(fpo,"%s\n\n","**");

while(fgets(data,Buf_size,fp) != NULL)
{

extract(&curr,&hits,data);
fprintf(fpo,"\nThe attributes of %s are:\n\n",curr.comp_name);
fprintf (fpo, ~·\t%-20s %-40s\n", "Function", curr. function);
fprintf(fpo,"\t%-20s %-40s\n","Object",curr.object);
fprintf(fpo,"\t%-20s %-40s\n","Medium",curr.medium);
fprintf(fpo,"\t%-20s %-40s\n","System Type",curr.system_type);
fprintf(fpo,"\t%-20s %-40s\n","Functional Area",

fprintf(fpo,"\t%-20s
fprintf(fpo,"\t%-20s
fprintf(fpo,"\t%-20s
if (hits == 1)

curr.funct_area);
%-40s\n","Setting",curr.setting);
%-40s\n","Language",curr.language);
%-40s\n\n","Other",curr.other);

fprintf(fpo,"%s matched %i attribute.\n",curr.comp_name,hits);
else

fprintf(fpo,"%s matched %i attributes.\n",curr.comp_name,hits);

fprintf(fpo,"%s\n\n","**");
} /* while */

} /* else */

fcloseall () ;
unlink(tgtfile);

} /* target text

***/
)

84

/***
************************* get targets ********************************
**
*
* This function locates all occurrences of the given facet within the
* software attribute database.

*
***/
BOOLEAN get_tgts(char ifname[],char invfile[],char vdxfile[],

{
char tgtfile[],char facet[],BOOLEAN flag)

INVERTNDX target;
/* find the targets */

target = find_key(vdxfile,facet);
if (target.key[O] != '\0')
{

output_target(ifname,tgtfile,invfile,target);
flag = TRUE; '

}

return flag;

} /* get targets

***/

/***
************************* display component ' **************************
**
*
* This function displays the given component on the screen alongside the
* user's request.

*
***/
void display_component(COMPONENT target)
{

window6;
clw;
gotoxy (1, 1) ;
_ot ("CANDIDATE");

output_facet(J,target.comp_name);
output_facet(4,target.function);
output_facet(6,target.object);
output_facet(7,target.medium);
output_facet(9,target.system_type);
output_facet(10,target.funct_area);
output_facet(12,target.setting);
output_facet(13,target.language);
output_facet(1S,target.other);

} /* display component

85

***/

/***
**************************** output facet ****************************
**

*
* This function prints the attribute.

*
***/
void output_facet(int row, char *str)
{

gotoxy(row,l);
sprintf(otext,"%s",str);
_ot(otext);

} /* output facet

***/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991
*/

#include "ru.h"
#include <conio.h>

#define Maxbuf

typedef struct tbuf {
char data[FW];
} TBUFFER;

15

/* FUNCTION PROTOTYPES */
char *remove_trailing_blanks(char *str);
char *display_choices(char lineno[],char file[));
char *print_keys(TBUFFER *buffer, int count);

int print_choices(char buffer[)[FW], int num);

INVERTNDX find_key(char vdxfile[],char key[]);

void check_thesaurus(char dtafile[],char wrdfile[],char invfile[],
char vdxfile[));

void create_filenames(char *dtafile,char *wrdfile,char *invfile,
char *vdxfile);

void compare key(INVERTNDX *key,char invfile[));
void display_keys(INVERTNDX *key,char dtafile[));
void get_keys(FILE *fp,TBUFFER *buffer);
void invert(char inputfile[],char invfile[],char vdxfile[));
void thesaurus(char code,char key[],char dtafile[]);

86

/***
**************************** Thesaurus *******************************
**

*
* This function is the driver for the common vocabulary of the reuse
* system.

*
***/
void thesaurus(char code,char key[],char dtafile[))
{

char wrdfile[LEN],invfile[LEN],vdxfile[LEN];
INVERTNDX ikey;

create_filenames(dtafile,wrdfile,invfile,vdxfile);

check_thesaurus(dtafile,wrdfile,invfile,vdxfile);
/* search for key in databank */

ikey = find_key(vdxfile,key);

if (ikey.key[O] == '\0')
display_keys(&ikey,dtafile);

else
compare_key(&ikey,invfile);

strcpy(key,ikey.key);

} /* thesaurus

87

***/

/***
************************* check thesaurus ****************************
**
*
* This function insures that the support files for the thesaurus (common
* vocabulary) exist. If the thesaurus data file does not exist, the
* program will terminate. If one of the other supporting files does not
* exist, all other files will be created and updated.

*
***/
void check_thesaurus(char dtafile[],char wrdfile[],char invfile[],

{

char vdxf ile [])

BOOLEAN flag = TRUE;

check_path(dtafile,"",l); /* if dfile !exist, prog will terminate */
if (check_path (wrdfile, "", 2))

if (check_path(invfile, "", 2))
if (check_path(vdxfile,"",2));
else flag = FALSE;

else flag = FALSE;
else flag = FALSE;

if (!flag)
{

}

sort (dtaf ile);
hyper(dtafile,wrdfile);
invert(wrdfile,invfile,vdxfile);

} /* check thesaurus

***/

88

/***
****************************** compare key ***************************
**

*
* This function compares the user's input with the primekeys of the
* thesaurus/common vocabulary. If the user's input != primekey, the
* primekey is substituted in place of the user's input.

*
***/
void compare_key(INVERTNDX *key,char invfile[))
{

char buffer(Buf_size],
file[l3],
lineno[LEN] = "",
pr imekey (LEN] ,
*ptr;

FILE *fp;
int count = 0, i;

open_file(&fp,Read"b",invfile,"compare key");
fseek(fp,key->offset,SEEK_SET);
fgets(buffer,Buf_size,fp);
fclose(fp);

/* get line #(s) of key occurrences in dta if multiple occurrence, */
/* give choices to user */

ptr = strstr(buffer,":") + 1;
strcpy(buffer,ptr);
while(buffer[O] != '\0')

/* discard the key */

{

ptr = strstr(buffer,":") + 1;
strcpy(file,strtok(buffer,": \n\r"));
strcpy(buffer,ptr);

/* get file name */

ptr = strstr(buffer,":") + 1;
strcat(lineno,strtok(buffer,": \n\r")); /*append line#*/
strcat(lineno,","); /* append delimiter */
strcpy(buffer,ptr);

} /* while */

for (i = 0; i < (int) strlen(lineno); i++)
if (lineno[i] == •, ') count++;

if (count> 1) strcpy(key->key,display_choices(lineno,file));
else
{

open_file(&fp,Read,file,"compare key");
count = atoi(strtok(lineno," ,\n\r"));
for (i = 1; i <=count; i++) fgets(buffer,Buf_size,fp);
strcpy(key->key,strtok(buffer,",\n\r"));
if (key->key[O] == '*') /*wildcard= NULL*/

key->key[O] = '\0';

89

fclose(fp);
}

} /* compare key

***/

/***
************************* display choices ****************************
**

*
* When a given descriptor is a valid entry for more than one set of
* descriptors in the same thesaurus file, this function displays the
* key words of the common vocabulary when > 1 choices exist for the
* user's input. The choices are displayed and the user selects the
* closest synonym. The user's choice is returned to the calling
* function.

*
* EXAMPLE: list,enumerate,count
* output,list,write
* list has two possible meanings so list and output would be presented
* to the user for his/her selection.

*
***/
char *display_choices(char lineno[],char file[])
{

char buffer[Maxbuf][FW],
temp[Buf_size],
*ptr;

FILE *fp;
int line, num = 0, i;

open_file(&fp,Read,file,"display choices");
while(lineno(O] != '\0') /*extract choices*/
{

ptr = strstr(lineno,",") + 1;
strcpy(temp,strtok(lineno,",\n\r"));
strcpy(lineno,ptr);
line= atoi(temp);
rewind (fp) ;
for (i = 1; i <=line; i++) fgets(temp,Buf size,fp);
sprintf(buffer[num],"%-3c%-16s",++num + 64,strtok(temp,",\n\r"));

}

fclose(fp);

do
/* print the choices */

line= print choices(buffer,num);
while(line == ~n' I I line == 'N' I I line == 'p' I I line
strtok(buffer[line]," "); /*discard number*/
ptr = strtok(NULL," \n\r");

if (ptr[O] == '*')
ptr[O] = '\0';

/* wildcard NULL */

'p') ;

90

return ptr;

} /* display choices

***/

/***
************************** print choices *****************************
**
*
* This function prints the primekeys that the user has to choose from.
* The user selects and the choice is returned.

*
***/
int print_choices(char buffer[][FW], int num)
{

int i, j;
struct rccoord oldpos;

windowthes;
for (i = 1, j = 1; i <= num; i++)
{

}

gotoxy(i,j);
sprintf(otext,"%-19s",buffer[i]);
_ot(otext);

gotoxy(20,1);
j = getche();

if (j 1 = 'n' && j ! = 'N' && j ! = 'p' && j 1 = 'P')
{

j toupper(j);
j -= 64;

while(j < 1 I I j > num)
{

gotoxy(20,1);
fflush (stdin) ;
j = getche();
if < j == • n • II j
else
{

}

j toupper(j);
j -= 64;

} /* while */
} /* if j 1 *I
clw;
windowthes;
clw;

'N' II j 'p' II j 'P') break;

91

return j;

} /* print choices

***/

/***
************************** display keys ******************************
**
*
* This function displays the primekeys from the common vocabulary when
* the user has made an erroneous entry. The keys are displayed on the
* right side of the screen in groups of 14. By pressing n or p the user
* can traverse the next or the previous list entries.
*
***/
void display_keys(INVERTNDX *key,char dtafile[))
{

char line(Buf_size);
FILE *fp;
long linect = 0,

index;
TBUFFER *buffer;

window2;

/* line count for data file */

_ot("Choose from the given list.\n");
_ot("Press N for the next list or P for the previous list. ");

open_file(&fp,Read,dtafile,"display keys");

while (fgets(line,Buf_size,fp)
linect++;

rewind (fp) ;

!= NULL)
/* count thesaurus entries */

buffer= (TBUFFER *) calloc((int) linect + l,sizeof(TBUFFER));

get_keys(fp,buffer);
strcpy(key->key,print_keys(buffer,(int) linect));

if (key->key(O] == '*') /*wildcard== NULL*/
key->key[O] = '\0';

fclose (fp);
window2;
clw;

} /* display keys

***/

92

/***
**************************** get keys ********************************
**

*
* This function reads the prime keys from the vocabulary data file and
* loads them into the buffer.

*
***/
void get_keys(FILE *fp,TBUFFER *buffer)
{

char line(Buf_size];
int i = 1;

while(fgets(line,Buf_size,fp) !=NULL)
strcpy(buffer[i++].data,strtok(line,",\r\n"));

} /* get keys

***/

/***
*************************** print_keys *******************************
**

*
* This function takes the primekeys of the common vocabulary and
* displays them. The user can traverse the list and make a selection.

*
***/
char *print_keys(TBUFFER *buffer, int count)
{

char sbuffer(Maxbuf][FW],
*dummy;

int i, j, k, m, max = Maxbuf - 3;

if (max < count) j = max; else j = count;
for (i = 1; i <= j; i++)

sprintf(sbuffer(i],"%-3c%-16s",i + 64,buffer(i].data);

k = print_choices(sbuffer,i- 1);
while (TRUE)
{

switch(k)
{

case IN I:
case 'n':

if (i + max
{

j count;
i = count
if (i < 1)

}

else j = i +

> count)

- max;
i = 1;

max;

break;

case 'P':
case 'p':

if (i 2 * max <= 1)
{

i 1;
if (count < max) j = count;
else j = max;

}
else
{

j i - max;
i -= 2 * max;

}

break;

default:
dummy = sbuffer[k] + 3;
return remove_trailing_blanks(dummy);
break;

} /* switch */

for (m = 1; i <= j; m++, i++)
sprintf(sbuffer(m),"%-3c%-16s",m + 64,buffer[i].data);

k = print_choices(sbuffer,m- 1);

} /* while */
} /* print keys

93

***/

/***
*********************** create filenames *****************************
**

*
* This function creates the filenames for the thesaurus supporting
* files.

*
* wrdfile is the file containing the locations for each word in
* the thesaurus.

*
* invfile is the inverted list.

*
* vdxfile is the index for the inverted list.

*
***/
void create_filenames(char *dtafile,char *wrdfile,char *invfile,

char *vdxfile)
{

char drive(3], dir[LEN], fname(9], ext(S];

_splitpath(dtafile,drive,dir,fname,ext);
strcpy(wrdfile,fname);
strcpy(invfile,fname);
strcpy(vdxfile,fname);
strcat(wrdfile,".wrd");
strcat(invfile,".inv");
strcat (vdxfile, ". vdx");

} /* create filenames

94

***/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991

*I

#include "ru.h"

void draw_hline(int row, int col, int length);
void draw_vline(int row, int col, int length);
void screens(int screen);

95

/***
****************************** screens *******************************
**
*
* This function is used to subdivide the screen into different text
* windows. All characters used are in the extended ASCII character set.

*
***/
void screens(int screen)
{

int i;

switch (screen)
{

case 1:
windowO;
draw_hline(5,1,80);
break;

case 2:
break;

case 3:
break;

case 4:
break;

case 5:
break;

case 6:
break;

case 7:
windowO;
draw_vline(6,60,16);
break;

case 8:

/* thesaurus window */

/* msg window */

windowO;
draw_hline(22,1,80);
break;

case 9:
windowO;

/* openning menu box */

cls;
sprintf(otext,"Z%.*s?",59,Hline);
gotoxy(5,10);
_ot(otext);
draw_vline(6,10,14);
draw_vline(6,70,14);
gotoxy(20,10);
sprintf(otext,"@%.*sY",59,Hline);
_ot(otext);
break;

default:
break;

} /* switch */

96

} /* screens

***/

/***
************************ draw horizontal line ************************
**

*
* This function draws a horizontal line based on the given parameters.

*
***/
void draw_hline(int row, int col, int length)
{

sprintf(otext,"%.*s",length,Hline);
gotoxy(row,col);
_ot(otext);

} /* draw horizontal line

***/

97

/***
************************ draw vertical line **************************
**
*
* This function draws a vertical line based on the given parameters.

*
***/
void draw_vline(int row, int col, int length)
{

int i;

for (i = 0; i < length; i++)
{

}

gotoxy(row + i,col);
_ot ("3");

} /* draw vertical line

***/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* revised Summer 1991

*

98

* This program creates the index entries for a hypertext system. It was
* developed on a 12 Mhz 80286 IBM AT compatible using Microsoft
* Quick C 2.0. The program is designed to make use of a hard disk.
* As the DOS sort utility is limited to < 64K, the data is read in
* blocks of 16K; this was the block size that produced the quickest run
* time on the development system. The blocks are sorted and then merged
* in the sort() function.

*
*The hyper() is a road map for the control of this program. Each
* function is passed the name of the file that is to be manipulated.
* All i/o calls are made from within the respective functions.

*I

#include "ru.h"
#include <malloc.h>
#include <ctype.h>

#define Max line 500
#define Scr size 1
#define Word_length 500

/* FUNCTION PROTOTYPES */
void get words(char input[],char output[]);
void hyper(char file[],char outfile[));
void unique(char file_name[));

/*M */

void hyper(char file[],char outfile[))
{

get_words(file,outfile);
sort(outfile);
unique(outfile);

} /* hyper */

/* begin file processing */

/* remove duplicate entries */

/*m */

99

/***
****************************** get words *****************************
**

*
* This function takes an input file and breaks it into tokens. It then
* outputs the tokens along with the file from which it came and the
* appropriate screen number.

*
***/
void get_words(char input[], char output(])
{

int i; /* loop
int line number = 0,

scr_num = 0;
char word[Word_length],

input_line[Max_line],
*temp_wordl,
seps[] = ",\n\r";

FILE *Finput, *Foutput;

control variable */
/* line number of input file */
/* screen number */
/* input word */

/*separators for strtok() */

open_file(&Finput,"r",input,"get_words");
open_file(&Foutput,"w+",output,"get_words");

/* get tokens and arrange output */
while (fgets(input_line,Max_line-l,Finput) != NULL)
{ /* increment scr num if necessary */

if (!(line_number++% Scr_size)) ++scr_num;

temp_wordl = strtok(input_line,seps);
while (temp_wordl !=NULL && temp_wordl[O] != ' ')
{

/* insure all characters are lower case */
for (i = 0; i < (int) strlen(temp_wordl); i++)

temp_wordl[i] = (char) tolower(temp_wordl[i]);

fprintf(Foutput,"%s : ", temp_wordl);
fprintf(Foutput,"%s : ", input);
fprintf(Foutput,"%d\n", scr_num);

temp_wordl = strtok(NULL,seps); /*get next token*/

} /* while temp word */

} /* while fgets */

fclose(Finput);
fclose(Foutput);

} /* get words */

/**/

100

/***
****************************** unique ********************************
**

*
* This function removes all duplicate entries from the given input file.

*
***/
void unique(char file_name(])
{

char templ[Buf_size], temp2(Buf_size];
FILE *Fwork, *Finput;

/* open working file */
open_file(&Fwork,"w+","work","unique");
open_file(&Finput,"r",file_name,"unique");

fgets(templ,Buf_size,Finput);
while(!feof(Finput))
{

fgets(temp2,Buf_size,Finput);
fprintf(Fwork,"%s",templ);
while((strcmp(templ,temp2) == 0) && !feof(Finput))

fgets(temp2,Buf_size,Finput);
strcpy(templ,temp2);

} /* while */

fclose(Fwork);
fclose(Finput);
unlink(file_name);
rename ("work" , file_ name) ;

/* delete the file */

} /* unique */

/**/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* revised Summer 1991

*

101

* This program takes a sorted list of words and screen/line references
* and creates an inverted list and index.
*/

#include "ru.h"
/* FUNCTION PROTOTYPES */

char *remove_trailing_blanks(char *str);

void invert(char inputfile[],char invfile[],char vdxfile[));
void make_inverted_list(char [],char [],char []);

/*M */

void invert(char inputfile[],char invfile[],char vdxfile[])
{

make_inverted_list(inputfile,invfile,vdxfile);
} /* INVERT */

/*m */

/***
************************* make inverted list *************************
**

*
* This function takes the input file and makes the inverted list with
* index.

*
***/
void make_inverted_list(char filename[],char invfile[],char vdxfile(])
{

char line(LEN],
input[Buf_size],
outline[Buf_size],
*word,
*remains;

FILE *ifp, *ofpl, *ofp2;
int count=O;
INVERTNDX index;

/* input word */
/* output line of inverted list */

/* following words */
/* the rest of the line */

/* number of items in index */
I

/* open input and output files */
open_file(&ifp, "r", filename, "mk_inv_lst");
open_file(&ofpl,"wb+",invfile,"mk_inv_lst");
open_file(&ofp2,"wb+",vdxfile,"mk_inv_lst");

/* get first occurrence of word and check for more */
if (fgets(line,LEN,ifp) NULL)

{

fcloseall (); /* file is empty */

return;
}

strcpy(line,strtok(line,"\n\r")); /*remove cr/lf */
strcpy(outline,line);
strcpy(index.key,remove_trailing_blanks(strtok(line,":")));

while (lfeof(ifp))
{

if (fgets(line,LEN,ifp) == NULL)
break;

word= remove_trailing_blanks(strtok(line,":"));

while (strcmp(index.key,word) == 0)
{

102

remains = strtok(NULL,"\n\r"); /* remove newline character */
strcat(outline," :");
strcat(outline,remains);
if (fgets(line,LEN,ifp) == NULL) /* get next word */

break;
word= remove_trailing_blanks(strtok(line,":"));

} /* while strcmp */

index.offset = ftell(ofpl);
fprintf(ofpl,"%s\n",outline);
++count;
fwrite(&index,l,sizeof(INVERTNDX),ofp2);
strcpy(index.key,word);
remains= strtok(NULL,"\n\r");
strcpy(outline,index.key);
strcat(outline," :");
strcat(outline,remains);

} /* while feof */

index.offset = ftell(ofpl);
fprintf(ofpl,"%s\n",outline);

/* write last entry to disk */

++count;
fwrite(&index,l,sizeof(INVERTNDX),ofp2);

fcloseall () ;

} /* make inverted list */

/**/

103

/***
******************** remove trailing blanks **************************
**
*
* This function takes the input string and removes any trailing blanks.
* The modified string is returned.

*
***/
char *remove_trailing_blanks(char *str)
{

while (str[strlen(str)
str[strlen(str) - l]

return str;

1] == ' ')
'\0';

} /* remove trailing blanks

***/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* revised Summer 1991

*

104

* This program was developed on a 12 Mhz 80286 IBM AT compatible using
* Microsoft Quick c 2.5. The program is designed to make use of a hard
* disk. As the DOS sort utility is limited to < 64K, the data is read
* in blocks of 16K; this was the block size that produced the quickest
* run time on the development system. The blocks are sorted and then
*merged in the sort() function.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define buf size
#define Max line
#define ot

16000
500

printf
/* FUNCTION PROTOTYPES */

char *merge_input(FILE *input,char *previous,char last_word[],

void checkpath(char input[], char varname[));
void merge(char file1[],char file2[],char file3[));
void sort(char file_name[));

int *flag);

void openfile(FILE **fp,char type[],char name[],char module[));

/***
********************************* sort *******************************
**

*
* This function makes the necessary calls to the DOS sort utility.
* Data is read in 16k blocks, sorted and then merged. As the DOS sort
*utility does not provide the "-u" option, a unique() function is
* required if duplicates are to be removed. The unique function
* should be called immediately following sort.

*
***/
void sort(char file_name[))
{

unsigned int x; /* bytes read into buffer */
FILE *Fworkin, *Fsorted, *Ftemp, *Ftemp1;
static char file_buffer[buf_size);
int y = 0;

checkpath("sort.exe", "PATH");

openfile(&Ftemp1,"r",file_name,"sort");

while ((x=fread(file_buffer, 1, buf size-Max_line, Ftemp1)) > 0)

{

if (!feof(Ftempl))
{

105

fgets(&file buffer[x],Max_line-l,Ftempl); /* complete the last
* line of buffer */

/* number of bytes read */ x = x + strlen(&file_buffer[x));

} /* if *I

openfile(&Fworkin,"w","workin","sort");
fwrite(file_buffer,x,l,Fworkin);
fclose(Fworkin);
system("sort < workin >workout");
merge("workout", "sorted", "temp");
unlink("sorted"); /*delete the file*/
rename ("temp", "sorted") ;
unlink("workout");

} /* while */

fclose(Ftempl);
unlink(file_name); /* delete the file */
rename("sorted",file_name);
unlink("workin");

} /* sort */

/**/

/***
****************************** merge *********************************
**

*
* This function completes a merge of two data sets putting the output
* into the specified file. This is a cosequential merge that requires
* that both input files be sorted in lexicographical order prior to
* the merge.

*
***/
void merge(char filel[], char file2[], char file3[])
{

int more_words_exist = 1;
char linel[Max_line], line2[Max_line), linelp[Max_line)

line2p[Max_line) = "";
FILE *Fpl, *Fp2, *Fp3;

openfile(&Fpl,"r",filel,"merge");
openfile(&Fp2,"a",file2,"merge");
rewind(Fp2);
openfile(&Fp3,"w",file3,"merge");

/* initial read */
strcpy(linel,merge_input(Fpl,linelp,NULL,&more_words_exist));
strcpy(line2,merge_input(Fp2,line2p,NULL,&more_words_exist));

106

I* while more words exist, if linel < line2, output linel; else if
* linel > line2, output line2 else if == output and get new lines *I

while (more_words_exist)
{

if (strcmp(linel,line2) < 0)
{

fprintf(Fp3,"%s",linel);
strcpy(linel,merge_input(Fpl,linelp,line2,&more_words_exist));

} I* if *I
else if (strcmp(linel,line2) > 0)

{
fprintf(Fp3,"%s",line2);
strcpy(line2,merge_input(Fp2,line2p,linel,&more_words_exist));

} I* if *I
else
{

fprintf(Fp3,"%s",linel);
strcpy(linel,merge_input(Fpl,linelp,line2,&more_words_exist));
strcpy(line2,merge_input(Fp2,line2p,linel,&more_words_exist));

} I* else *I

} I* while *I

fclose(Fpl);
fclose(Fp2);
fclose(Fp3);

} I* merge *I

1**1

I***
************************** merge input *******************************
**
*
* This function returns the new input called for and the flag that
*determines when both input files are exhausted for functions merge().
* Outputbak keeps a copy of output in its original case form. This
* allows all comparisons to be based on lower case letters, but it will
* allow the file to maintain case.

*
***I
char *merge_input(FILE *input,char *previous,char last_word[],int *flag)
{

char high_ value[] = "--------------------·",
output[Max_line] = "",
outputbak[Max_line],
*inp,
templ[Max_line], temp2[Max_line];

inp = fgets(output,Max_line,input);

if (!inp && (strcmp(last_word,high_value) == 0))
flag = 0; / both input files empty */

else
if (! inp)

strcpy(output,high_value);
else

/* input file is empty */

{

}

strcpy(outputbak,output);
strcpy(templ,strlwr(output));
strcpy(temp2,strlwr(previous));

if (strcmp(templ,temp2) < 0)
{

system("cls");
_ot("Input file not sorted. Program terminated.");
exit(lOOl);

}

strcpy(output,outputbak);

strcpy(previous,output);
return output;

107

} /* merge input */

/**/

/***
**************************** checkpath *******************************
**

*
* Function checkpath insures the input file can be found on the current
* PATH. If it fails, the program aborts.

*
***/
void checkpath(char input[], char varname[])
{

char targetfile[l3],
pathname[256] = If It •

'

strcpy(targetfile,input);
_searchenv(targetfile,varname,pathname);

if (pathname[O] == '\0')
{

_ot("This program requires the program/file %s to run.\n",input);
if (strcmp(input,"sort.exe") == 0)
{

_ot("Insure the system PATH contains the directory containing");
_ot(" sort.exe.\n");
_ot("Check your DOS manual for detailed instructions if ");
_ot ("necessary! \n");

108

}

else _ot("Insure the file is in the current directory.\n");

exit(2);

} /* if pathname */

} /* check path */

/***
**************************** open file *******************************
**

*
* This procedure opens the input and output files for this program.

*
***/
void openfile(FILE **fp,char type[],char name[],char module[])
{

/* open input and output files */
if ((*fp = fopen(name,type)) ==NULL)
{

}

fprintf(stderr,"INPUT/OUTPUT FILE NOT FOUND.\n");
fprintf(stderr,"File %s not found in function %s.\n",name,module);
exit(lOOl);

} /* openfile */

/**/

/*
* PROGRAMMER: JOE E. SWANSON
* SSN: 441-68-2360
* COMSC 5000 Thesis and Research
* Summer 1991
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define ot printf

109

/***
**************************** check path ******************************
**

*
* Function check_path insures the input file can be found on the current
* varname. If it fails, it returns a flag.

*
* Passed parameter flag
* not found.

1, input is required. Program terminates if

* Passed parameter flag = 2, input is optional or existence is being
* confirmed.
* Flag is returned.

*
***/
int check_path(char input[], char varname[], int flag)
{

char targetfile[13],
pathname[256] = "" . ,

strcpy(targetfile,input);
_searchenv(targetfile,varname,pathname);

switch(flag)
{

case 1:
if (pathname[O] == '\0')
{

/* required files */

_ot("This program requires the program/file %s to run.\n",
input);

if (strcmp(input,"sort.exe") == 0)
{

_ot("Insure the system PATH contains the directory \
containing") ;

}

_ot(" sort.exe.\n");
_ot("Check your DOS manual for detailed instructions if ");
_ ot ("necessary! \n");

else ot("Insure the file is in the current directory.\n");
exit(2);

} /* if pathname */
break;

case 2: 1* optional or check to see if exist */
if (pathname[O] == '\0') flag= 0;
else flag = 1;
break;

default: flag = 0;

} /* switch */

return flag;

} /* check path */

110

/**/

APPENDIX D

FUNCTION FACET THESAURUS

111

* NOT APPLICABLE,*
access,accesses
add,increment,total,sum
append, attach, increase
assign,designate
close,release,detach,disconnect,free
compare,test,relate,match,check,verify
complement, negate, invert
compress,shrink,condense,compact
control,controls,command,manipulate,direct,handle,operate,operates
convert,converts
coordinate,coordinates
copy
create
decode
delete
divide
evaluate
exchange, swap
execute,executes
expand
extract,extracts
format
initialize,set up,start
initiate, start
input
insert
join
list,count
load, loads
maintain
measure,advance,size,enumerate,list
modify,change,revise
move,transfer
output,produce
process,processes,filter,prepare
read, reads
save
schedule,schedules
terminate, remove, kill

112

APPENDIX E

OBJECT FACET THESAURUS

113

* NOT APPLICABLE,*
address,addresses
arguments,argument
arrays,array
buffers,buffer
card stack,cards
character,characters,char
descriptors
digits
directories,directory
doubles,double
expressions
files
floats, float
functions
hexadecimal
instruction,command,commands,instructions,inst
integers,integer,int,long int,long,short
interrupts
jobs, job
lines
lists
macros
memory
message
node,nodes
page,pages
processes,process
queue
registers,register
schedules, schedule
simulated disk entry
statistics
string,strings
structure, structures
system

114

APPENDIX F

MEDIUM FACET THESAURUS

115

* NOT APPLICABLE,*
array,arrays
buffer
cards
character,characters,char
disk, disks
double
file
float
integer,long int,long integer,short,long,int,short int
job, jobs
keyboard
line
linked list,deque,deques,list
mouse
node,nodes
operating system,operating systems,os
printer
process cntl block,pcb
process,processes
schedule, schedules
screen
sensor
stack
string,strings
structure, structures
table
tape
tree

116

APPENDIX G

SYSTEM TYPE FACET THESAURUS

117

* NOT APPLICABLE,*
extractor,extractors
generic,general,gen,universal
operating system,operating systems,os
processor,processors
scheduler,schedulers
simulated disk
simulation, simulations

118

APPENDIX H

FUNCTIONAL AREA FACET THESAURUS

119

* NOT APPLICABLE,*
base conversions
context switching
error handling
generic,general,gen,universal
initialization,init
io operations,read,write,output,input
job io,read,write,output,input
job tracing
memory management,mem mgmt
paging
processing
scheduling
simulation
statistics,statistic
string conversion
system synchronization

120

APPENDIX I

SETTING FACET THESAURUS

121

* NOT APPLICABLE,*
academic,scholarly,classical,educational,collegiate,school,edu
generic,general,gen,universal

122

APPENDIX J

LANGUAGE FACET THESAURUS

123

Ada, ada
BASIC,basic
c,c
FORTRAN,fortran
Pascal,pascal
PL/I,plfl,pl/i

124

APPENDIX K

SAMPLE QUERY RESULTS
I

125

Sample 1 - six facets
loader

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

load
jobs

operating system
job io
academic

**

The attributes of winldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

winldr.c matched 5 attributes.
**

The attributes of loader.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

loader.c matched 5 attributes.
**

126

The attributes of misspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 4 attributes.
**

The attributes of misldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
queue

operating system
job io
academic
c

misldr.c matched 4 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 3 attributes.
**

127

The attributes of missched.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

missched.c matched 3 attributes.
**

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 3 attributes.
**

The attributes of j-sched.c are:

Function
Object
Medium
System Type
Functional Area
setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

j-sched.c matched 3 attributes.
**

128

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 2 attributes.
**

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 2 attributes.
**

The attributes of winerror.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
message
string
operating system
error handling
academic
c

winerror.c matched 2 attributes.
**

129

The attributes of wincpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 2 attributes.
**

The attributes of winconv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 2 attributes.
**

The attributes of misregs.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 2 attributes.
**

130

The attributes of mispgsv.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

save
page
buffer
operating system
paging
academic
c

mispgsv.c matched 2 attributes.
**

The attributes of mispgflt.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

assign
page
buffer
operating system
paging
academic
c

mispgflt.c matched 2 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 2 attributes.
**

131

The attributes of misio.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 2 attributes.
**

The attributes of misinit.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

initialize
system
operating system
operating system
initialization
academic
c

misinit.c matched 2 attributes.
**

The attributes of misfstat.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
statistics
string
operating system
statistics
academic
c

misfstat.c matched 2 attributes.
**

132

The attributes of disk.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

control
simulated disk entry
structure
operating system
simulation
academic
c

disk.c matched 2 attributes.
**

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 2 attributes.
**

133

Sample la - four facets
loader

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

load
jobs

job io

**

The attributes of winldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

winldr.c matched 3 attributes.
**

The attributes of loader.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

loader.c matched 3 attributes.
**

134

The attributes of misspool.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 2 attributes.
**

The attributes of misldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
queue

operating system
job io
academic
c

misldr.c matched 2 attributes.
**

The attributes of missched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

missched.c matched 1 attribute.
**

135

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 1 attribute.
**

The attributes of j-sched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

j-sched.c matched 1 attribute.
**

136

Sample 2 - six facets
memory

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

access
memory
array
operating system
memory management
academic

**

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 6 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 6 attributes.
**

137

The attributes of memory.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

memory.c matched 6 attributes.
**

The attributes of winconv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 3 attributes.
**

The attributes of misregs.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 3 attributes.
**

138

The attributes of misfrpg.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

close
page
array
operating system
paging
academic
c

misfrpg.c matched 3 attributes.
**

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 2 attributes.
**

The attributes of winerror.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
message
string
operating system
error handling
academic
c

winerror.c matched 2 attributes.
**

139

The attributes of wincpu.c

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

are:

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 2 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 2 attributes.
**

The attributes of misspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 2 attributes.
**

140

The attributes of mispgsv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

save
page
buffer
operating system
paging
academic
c

mispgsv.c matched 2 attributes.
**

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 2 attributes.
**

The attributes of mispgflt.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

assign
page
buffer
operating system
paging
academic
c

mispgflt.c matched 2 attributes.
**

141

The attributes of misio.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 2 attributes.
**

The attributes of misinit.c are:

Function
Object
Medium
System Type
Functional Area
setting
Language
Other

initialize
system
operating system
operating system
initialization
academic
c

misinit.c matched 2 attributes.
**

The attributes of misfstat.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
statistics
string
operating system
statistics
academic
c

misfstat.c matched 2 attributes.
**

142

The attributes of disk.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

control
simulated disk entry
structure
operating system
simulation
academic
c

disk.c matched 2 attributes.
**

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other ,

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 2 attributes.
**

The attributes of misishex.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

compare
hexadecimal
array
generic
generic
generic
c

misishex.c matched 1 attribute.
**

143

Sample 2a - four facets
memory

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

access
memory
array

memory management

**

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 4 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 4 attributes.
**

144

The attributes of memory.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

memory.c matched 4 attributes.
**

The attributes of misregs.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 1 attribute.
**

The attributes of misishex.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

compare
hexadecimal
array
generic
generic
generic
c

misishex.c matched 1 attribute.
**

145

The attributes of misfrpg.c are:

Function
Object
Medium
system Type
Functional Area
setting
Language
Other

close
page
array
operating system
paging
academic
c

misfrpg.c matched 1 attribute.
**

146

Sample 3 - six facets
cpu

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

execute
instruction
integer
operating system
processing
academic

**

The attributes of wincpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 5 attributes.
**

The attributes of miscpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

miscpu.c matched 5 attributes.
**

147

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 5 attributes.
**

The attributes of winterm.c are:

Function
Object

execute
instruction

Medium ..__ string
System Type
Functional Area
Setting
Language
Other

operating system
io operations
academic
c

winterm.c matched 4 attributes.
**

The attributes of misio.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 4 attributes.
**

148

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 3 attributes.
**

The attributes of winconv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 3 attributes.
**

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 2 attributes.
**

149

The attributes of winerror.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
message
string
operating system
error handling
academic
c

winerror.c matched 2 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 2 attributes.
**

The attributes of misspool.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 2 attributes.
**

150

The attributes of misregs.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 2 attributes.
**

The attributes of mispgsv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

save
page
buffer
operating system
pagirig
academic
c

mispgsv.c matched 2 attributes.
**

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 2 attributes.
**

151

The attributes of mispgflt.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

assign
page
buffer
operating system
paging
academic
c

mispgflt.c matched 2 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 2 attributes.
**

The attributes of misitoa.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
integers
integer

string conversion
academic
c

misitoa.c matched 2 attributes.
**

152

The attributes of misinit.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

initialize
system
operating system
operating system
initialization
academic
c

misinit.c matched 2 attributes.
**

The attributes of misfstat.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
statistics
string
operating system
statistics
academic
c

misfstat.c matched 2 attributes.
**

The attributes of disk.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

control
simulated disk entry
structure
operating system
simulation
academic
c

disk.c matched 2 attributes.
**

153

The attributes of mismax.c are:

Function
Object
Medium
System Type
Functional Area
setting
Language
Other

compare
integers
integer
generic
generic
generic
c

mismax.c matched 1 attribute.
**

154

Sample 3a - four facets
cpu

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

execute
instruction
integer

processing

**

The attributes of wincpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 3 attributes.
**

The attributes of miscpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

miscpu.c matched 3 attributes.
**

155

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 3 attributes.
**

The attributes of winterm.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
string
operating system
io operations
academic
c

winterm.c matched 2 attributes.
**

The attributes of misio.c are:

Function
Object
Medium
system Type
Functional Area
setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 2 attributes.
**

156

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 1 attribute.
**

The attributes of winconv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 1 attribute.
**

The attributes of mismax.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

compare
integers
integer
generic
generic
generic
c

mismax.c matched 1 attribute.
**

157

The attributes of misitoa.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
integers
integer

string conversion
academic
c

misitoa.c matched 1 attribute.
**

158

Sample 4 - six facets
spooler

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

read
card stack

operating system
job io
academic

**

The attributes of winspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
process cntl block
operating system
job io
academic
c

winspool.c matched 5 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 5 attributes.
**

159

The attributes of misspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 3 attributes.
**

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 2 attributes.
**

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 2 attributes.
**

160

The attributes of winerror.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
message
string
operating system
error handling
academic
c

winerror.c matched 2 attributes.
**

The attributes of wincpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 2 attributes.
**

The attributes of winconv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 2 attributes.
**

161

The attributes of misregs.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 2 attributes.
**

The attributes of mispgsv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

save
page
buffer
operating system
paging
academic
c

mispgsv.c matched 2 attributes.
**

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 2 attributes.
**

162

The attributes of mispgflt.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

assign
page
buffer
operating system
paging
academic
c

mispgflt.c matched 2 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 2 attributes.
**

The attributes of misio.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 2 attributes.
**

163

The attributes of misinit.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

initialize
system
operating system
operating system
initialization
academic
c

misinit.c matched 2 attributes.
**

The attributes of misfstat.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
statistics
string
operating system
statistics
academic
c

misfstat.c matched 2 attributes.
**

The attributes of disk.c are:

Function
Object
Medium
System Type
Functional Area
setting
Language
Other

control
simulated disk entry
structure
operating system
simulation
academic
c

disk.c matched 2 attributes.
**

164

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 2 attributes.
**

165

Sample 4a - four facets
spooler

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

read
card stack

job io

**

The attributes of winspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
process cntl block
operating system
job io
academic
c

winspool.c matched 3 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 3 attributes.
**

166

Sample 5 - six attributes
scheduler

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

schedule
jobs

operating system
scheduling
academic

**

The attributes of missched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

missched.c matched 5 attributes.
**

The attributes of j-sched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

j-sched.c matched 5 attributes.
**

167

The attributes of winldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

winldr.c matched 3 attributes.
**

The attributes of misspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 3 attributes.
**

The attributes of loader.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

loader.c matched 3 attributes.
**

168

The attributes of winmem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

winmem.c matched 2 attributes.
**

The attributes of winhexc.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

convert
digits
integer
operating system
base conversions
academic
c

winhexc.c matched 2 attributes.
**

The attributes of winerror.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

output
message
string
operating system
error handling
academic
c

winerror.c matched 2 attributes.
**

169

The attributes of wincpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

wincpu.c matched 2 attributes.
**

The attributes of winconv.c are:

Function
Object
Medium
system Type
Functional Area
Setting
Language
Other

convert
address
integer
operating system
memory management
academic
c

winconv.c matched 2 attributes.
**

The attributes of spooler.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

read
card stack
structure
operating system
job io
academic
c

spooler.c matched 2 attributes.
**

170

The attributes of misregs.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

maintain
registers
array
operating system
context switching
academic
c

misregs.c matched 2 attributes.
**

The attributes of mispgsv.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

save
page
buffer
operating system
paging
academic
c

mispgsv.c matched 2 attributes.
**

The attributes of mispgld.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
page
buffer
operating system
paging
academic
c

mispgld.c matched 2 attributes.
**

171

The attributes of mispgflt.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

assign
page
buffer
operating system
paging
academic
c

mispgflt.c matched 2 attributes.
**

The attributes of mismem.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

access
memory
array
operating system
memory management
academic
c

mismem.c matched 2 attributes.
**

The attributes of misio.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
structure
operating system
io operations
academic
c

misio.c matched 2 attributes.
**

172

The attributes of misinit.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

initialize
system
operating system
operating system
initialization
academic
c

misinit.c matched 2 attributes.
**

The attributes of misfstat.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

output
statistics
string
operating system
statistics
academic
c

misfstat.c matched 2 attributes.
**

The attributes of disk.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

control
simulated disk entry
structure
operating system
simulation
academic
c

disk.c matched 2 attributes.
**

173

The attributes of cpu.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

execute
instruction
process cntl block
operating system
processing
academic
c

cpu.c matched 2 attributes.
**

174

Sample 5a - four attributes
scheduler

The attributes requested are:

Function
Object
Medium
System Type
Functional Area
Setting
Other

schedule
jobs

scheduling

**

The attributes of missched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

missched.c matched 3 attributes.
**

The attributes of j-sched.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

schedule
jobs

operating system
scheduling
academic
c

j-sched.c matched 3 attributes.
**

175

The attributes of winldr.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

winldr.c matched 1 attribute.
**

The attributes of misspool.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

terminate
jobs
process cntl block
operating system
job io
academic
c

misspool.c matched 1 attribute.
**

The attributes of loader.c are:

Function
Object
Medium
System Type
Functional Area
Setting
Language
Other

load
jobs

operating system
job io
academic
c

loader.c matched 1 attribute.
**

176

VITA a·
Joe E. Swanson

Candidate for the Degree of

Master of Science

Thesis: A REUSABLE SOFTWARE CATALOG INTERFACE

Major Field: Computer Science

Biographical:

Personal Data: Born in Guthrie, Oklahoma, August 10,
1959, the son of Kenneth N. and Dorothy Fae
Swanson. Married to Terri L. Swanson and father
of Jacob E. and James E. Swanson.

Civilian Education: Graduated from Guthrie High
School, Guthrie, Oklahoma in May 1977; received
Bachelor of Music Degree from Central State
University at Edmond in May 1981; completed
requirements for the Master of Science degree at
Oklahoma State University in December 1991.

Military Education: Graduate of the following courses:
Transportation Officer Basic Course, August 1981;
Initial Entry Rotary Wing Course, May 1982;
Aviation Maintenance Officer Course, August 1983;
Aviation Officer Advanced Course, March 1986;
Combined Arms and Services Staff School, August
1989.

Professional Experience: Currently employed by the
United States Army, has served in the following
positions: Aviation Maintenance Officer, Ft.
Hood, Texas, January 1983 to September 1985.
Commander, Aviation Maintenance Company, Ft.
Rucker, Alabama, April 1986 to May 1988.
Instructor, Aviation Officer Advanced Course, Ft.
Rucker, Alabama, May 1988 to May 1989. Will
assume duties as Chief, Computer Support Division,
Combined Forces Command, Seoul, Korea, September
1991.

