
DETAILED DESIGN AND PARTIAL IMPLEMENTATION -
OF A PRE-PROCESSOR FOR _fROLOG PROGRAMS

WITH EMBEDDED Q STATEMENTS

By

LUKAS B. SANTOSO
/1

Sarjana Teknik Degree

Bandung Institute of Technology

Bandung, Indonesia

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1991

DETAILED DESIGN AND PARTIAL IMPLEMENTATION

OF A PRE-PROCESSOR FOR PROLOG PROGRAMS

WITH EMBEDDED C STATEMENTS

Thesis Approved:

~~
Dean of the Graduate College

ii

1398529

ACKNOWLEDGEMENTS

I extend my appreciations and thanks to many people without

whom this thesis would have never existed.

Drs. Blayne E. Mayfield and Mansur H. Samadzadeh, my thesis

advisers, provided · invaluable guidance, advice, critique, and

support since the early stage of the work. Dr. K.M. George, my

advisory committee member, gave useful advice on compiler

writing. Dr. George Hedrick allocated his valuable time for

reviewing the report.

Dr. Hal Berghel, Director of the CAlES at the University of

Arkansas, contributed some useful related materials.

Brendan Machado and Dr. Chang-Hyun Jo gave me motivations

with some informal discussions over compiler writing.

Most of the references I needed have been provided in time by

the Interlibrary Loan Department of Edmond Low Library, Oklahoma

State University.

I also would like to thank Mr. Francis Sunaryo, M.D., for his

generous support, encouragement and hospitality during my graduate

study. Special thanks are due to my parents, to whom this thesis is

dedicated, for their love, patience, and for letting me choose my

own career.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. . 1

1 .1 Pro log 1
1 .1.1 Background 1
1 .1 .2 Syntax 2
1 .1 .3 Unification 4
1 .1 .4 Execution 5
1.1 .5 Limitations 7

1 . 2 Objectives 11

II. OVERVIEW OF THE SYSTEM .. 12

2.1 Declarative Meaning of Statements in a
Program .. 12

2.2 The Pre-Processor's Components 17
2.3 Input and Output 19
2.4 Predefined Database 23

Ill. TOKENIZER AND CLAUSE GENERATOR 26

3.1 Tokenizer ... 26
3.2 Clause Generator .. 29

IV. EMBEDDED C RECOGNIZER .. 30

4.1 Context Free Grammars and Left Recursion in
Prolog .. 30

4.2 A Subset of C Syntax 32
4.3 Top-Down Parser and Left Recursion 32
4.4 Left-Corner Parsing Method for ECR 33

iv

Chapter Page

4.5. Left-Corner Parsing Implementation in Pro log 38
4.6. Static Semantic Analysis 41
4.7. C-to-Prolog Translation .. 42

V. SUMMARY AND SUGGESTED FUTURE RESEARCH 44

REFERENCES 46

APPENDIXES .. 51

APPENDIX A -GLOSSARY .. 52

APPENDIX B - PREDEFINED DATABASE 54

APPENDIX C -A SUBSET OF QUINTUS PROLOG
GRAMMAR RULES ... 59

APPENDIX D -PARTIAL LISTING OF THE SOURCE CODE
OF ECR ... 64

v

LIST OF FIGURES

Figure Page

1. A Prolog Execution Flow 7

2. Factorial Program Using 'while' Loop 1 0

3. Factorial Program Using 'for' Loop 10

4. Factorial Program in Pro log 10

5. if_then_else/3 ... 10

6. The Pre-Processor Block Diagram 19

7. The Transformation Process .. 21

8. A Pro log Program with Embedded C Code 22

9. The Result of Transforming the Program in Figure 8 22

1 0. Tokenizer .. 28

11 . Clause Generator 29

12. The Parse Tree for the String bbaaab 36

13. The Sequence of Configurations for Parsing
the String btJaaab .. 37

vi

CHAPTER I

INTRODUCTION

1.1 Prolog

1.1.1 Background

Prolog, which stands for Programmation en Logique, was

originally created by Alain Colmerauer and his group at the Faculty

of Sciences at Luminy in Marseilles, France, in the early 1970's. The

original objective of the creators was to integrate Robinson's

resolution principle into a programming language [Colmerauer85].

Its initial design goal was to help natural language processing.

Since then, many versions of Prolog have been written; e.g., CProlog,

Quintus, Arity, Turbo Prolog, Prolog-2, and UNSW Prolog [Malpas87].

More attention was given to this language after the Japanese

Ministry of International Trade and Development officially launched

their fifth generation. project that was to be based on the logic

programming software technology in 1981.

Prolog has shown its usefulness in many applications,

especially in the areas of nonnumeric processing such as: compiler

writing [Warren80], logic circuit simulation [Uehara83], natural

language processing [Maruyama84], and expert systems and

pattern-directed systems [Bratko86]. Applications involving pattern

matching, backtracking, or incomplete information are easily

1

2

handled by the language.

Prolog, unlike many other languages, encourages a

programmer to think declaratively rather than imperatively, despite

the fact that it is possible to use both methods. Declarative ,

thinking refers to 'what' a computer must do to perform a task. On

the other hand, imperative or procedural thinking refers to 'how' a

computer must do the job. The following illustration shows how

Prolog sentence can be read both declaratively and procedurally:

Prolog sentence
Declarative reading
Procedural reading

Prolog sentence
Declarative reading

Procedural reading

1.1.2 Syntax

parent(andy ,amy).
'andy' is a parent of 'amy'.
the goal of finding that 'andy' is a
parent is satisfied by 'amy'.

predecessor(X,Z) :- parent(X,Z).
Any X is a predecessor of Z if X is a
parent of Z.
To find whether X is a predecessor of
Z, find whether X is a parent of Z.

A Prolog program consists of a sequence of sentences. Each

sentence is a Prolog term. Terms are written as sequences of

tokens. Tokens are sequences of characters, which are treated as

separate symbols. For interpretation as a sentence, each list of

tokens must be terminated by a full-stop token (a period followed

by a layout character, such as space or newline).

The syntax of Prolog used in this thesis is Quintus Prolog

syntax [Quintus87]. A subset of the syntax rules is shown in

Appendix B. A rule such as
sentence ~ clause

directive

3

is read as "a Prolog sentence may be of the form either a clause or a

directive". In this rule, sentence, clause, and directive are non-terminals.

A non-terminal symbol is also called a grammar category or a

syntactic category. Terminal symbols in the grammar rules are

printed in the form of bold letters.

Three dots following a non-terminal, such as in digit... (see

Appendix 8), denote a sequence of one or more non-terminals. A

symbol '?' preceding a non-terminal, such as in ?alpha indicates

that the non-terminal is optional. Thus, ?alpha ... denotes zero, or

one, or more non-terminal symbol 'alpha'.

The syntax rules can be divided into three groups: syntax of

sentences as terms, syntax of terms as tokens, and syntax of tokens

as character strings. Depending on the group, a non-terminal may

represent a class of either terms, token lists, or character strings.

Some restrictions on the syntax are:

1. A functor has the form f(l1 ,12, ... , In} where f is the name

of the functor with arguments 11, t2, ... , ln. In a term, a name of a

functor and its following '(' must not be separated by spaces,

newlines, or other characters. For example,

father (X, Y)

is syntactically invalid.

2. "-5" denotes an integer, whereas "-(5)" denotes a compound

term of which the functor is '-'/1.

More discussion on the syntax is given in Section 4.1.

3. The arguments of a compound term must have precedence

numbers less than 1000. A precedence number is used to

disambiguate expressions where the syntax of the terms is not made

explicit through the use of brackets [Ciocksin81]. As an example,

4

since the precedence of the infix operator ':-' is 1200, it is

necessary to write the expression "A :- B" in parentheses as in

retract((A :- B)).

The use of parentheses reduces the precedence of "A :- B" to 0.

1.1.3 Unification

Unification is the important process of matching in Prolog.

The purpose of unification is to find a most general unifier (mgu) of

two or more terms. By definition, a term is constant, a variable, or

a function f(t1, ... , tn) where t1, ... , tn are terms and n > 0. Two

terms are identical if there exists a unifier for those terms. A

unifier is a set of variable-for-term substitutions. Let sigma be a

unifier, then:

sigma = { x1 <-- t1 , ... , Xn <-- tn }

where: x1 , xn are variables

t1, ... , tn are terms and n > 0.

Given two terms P(x) and P(y}, for example, a possible unifier is

sigma = { x <-- a, y <-- a }. Implementing sigma to both terms, we

have:
sigma(P(x)) = P(a)
sigma(P(y)) = P(a)

by substituting a for x
by substituting a for y

A most general unifier or mgu of two terms is a unifier such

that the associated common instance is most general [Sterling86].

In the above example, P(a) is the common instance of P(x) and P(y).

The most general unifier for P(x) and P(y) is sigma.

In Prolog, a goal can be unified with the head of the clause if:

they have the same name and the same number of arguments, and all

arguments can be unified. The rules regulating the unification of

5

arguments are [Malpas87]:

1. Two constants unify with one another if they are identical.

2. A variable unifies with a constant or a structure. As a

result of the unification, the variable is instantiated or

bounded to the constant or structure.

3. A variable unifies with another variable. As a result, they

become the same variable.

4. A structure unifies with another structure if they have the

same name, the same number of arguments, and if all of the

~ arguments can be unified.

1.1.4 Execution

A Prolog program is composed of a set of facts and a set of

rules. The set of facts can be viewed as knowledge about a certain

subject that is unconditionally true. The set of rules is a collection

of statements from which conclusions can be derived whenever

certain patterns of conditions are satisfied. Prolog allows a

programmer to design an algorithm in terms of logic plus control

[Kowalski79]. The logic component, which is represented by both

facts and rules, specifies the meaning of the algorithm. The control

component determines how a particular problem-solving strategy is

imposed. The control component refers to the order of goals in the

body of rules and the order of the rules. The following Prolog

program serves as an example.

parent(andy,amy). % fact 1
parent(amy,calvin). %fact 2
predecessor(X,Z) :- parent(X,Z). % rule -1
predecessor(X,Z) :-

parent(X,Y), predecessor(Y,Z). % rule 2

6

The symbol 'o/o' indicates that characters following it, on the line on

which the symbol appears, are treated as a comment. Comments

will not be processed by a Prolog compiler. The pair of predecessor

rules form a procedure of predecessor. A procedure is a collection

of rules with the same predicate name and the same number of

arguments in the head of the rules [Sterling86].

The facts of the parent relationship and the rules of

predecessor determine the logical component of the algorithm. The

control component is defined by the fact that Prolog uses a
•

top-down and left-to-right approach in examining both rules and

facts. Given a query such as "?- predecessor(X,calvin).", Prolog will

try to answer it by invoking the following steps:

Prolog searches a clause in which its head has 'predecessor' as

the predicate name with two arguments. The search always begins

from the top of the database. The search leads Prolog to use rule 1

first rather than rule 2 because rule 1 is located on top of rule 2 in

the database. The head of rule 1 is then unified with the goal of the

query. The unification of the query and the head of rule 1 gives the

result: X = X and Z = calvin. The symbol '=' indicates that both

literals on its left and right are identical.

- Next, Prolog tries to satisfy parent(X,calvin) as the only goal in

the body of rule 1. If there are more than one goal in the body,

Prolog will try to satisfy all of them beginning from the left-most

goal. Using the same mechanism, searching from top to bottom and

unification, Prolog finds that fact 2 can satisfy the goal

parent(X,calvin). Thus, rule 1 succeeds and so does the goal of the

query. The answer given by Prolog will be:

X=amy

7

yes.

Rule 2 is executed only if rule 1 fails to satisfy a query. As

an example, suppose the query "?- predecessor(andy,calvin)." is

given. Figure 1 shows Prolog execution to answer the query.

?- predecessor(andy ,calvin).

X=andy
Z=calvin

rultl:
predecessor(andy,calvin) :-

X=andy
Z=calvin

AI.

21 : '3

parent(andy ,calvin)

X=andy

parent(andy, Y)

Y=amy

' 71
facU:

parent(andy ,amy)

predecessor(amy ,calvin)

/a 91
rule...1:

predecessor(amy ,calvin)

10 l I
parent(amy ,calvin)

lacl..2: 11 l I
parent(amy ,calvin)

Figure 1. A Prolog execution flow.

The flow of the execution is indicated by the arrow symbols ~

and --->. Backtracking is indicated by .::--->.

1.1.5 Limjtatjons

Although Prolog has shown its strengths in many applications,

it also introduces its limitations. Programmers who are already

familiar with procedural languages will find that Prolog lacks

8

certain data structures such as arrays and pointers which are

common in procedural languages. Traditional control structures such

as while-loops, for-loops, and if-then-else are not explicitly

available. Figure 2 and 3 show a program for calculating factorial

of N is written in a pseudo-procedural language. Figure 4 shows the

program written in Prolog [Sterling86]. This program consists of

three types of clauses: initialization, iterative, and result. An

iterative clause is a clause which has only one recursive call in its

body and zero or more calls to Prolog system predicates before the

recursive call [Sterling86]. A user may define the if-then-else

control structure as the if_then_e/se/3 relationship (Figure 5). '/3'

indicates that the predicate if_then_else has three arguments.

Declaratively, it means that the relation if_then_e/se/3 is true if

P and Q are true, or (not P) and R are true. An imperative

interpretation of this rule is "if P is true then prove Q; otherwise,

prove R". The use of cut, '!', in the first clause of if_then_else is to

prevent backtracking when Prolog fails to prove Q. Thus, the first

clause fails when Q fails and this condition leads Prolog to prove R

in the second clause instead.

The inherent limitations and the different way of thinking

about an algorithm can create a difficult situation even for

experienced programmers when they start learning Prolog.

A common attempt to overcome these problems is to link

Prolog with procedural languages. Some Prolog versions that exist

today have the capability to communicate with one or more

procedural languages. Two examples are Quintus Prolog and Arity

Prolog. This multilingual capability provides users with the

advantage of a combination of features of several languages. One

9

example of the practical application of this kind of mixed language

system is REF (Resource Estimation Facility) which is a bilingual

meta-level inference system [Roach90]. In this system, procedures

of each language process only the tasks that are suitable for them.

For example, 1/0 functions are done by procedures written in C and

Prolog procedures might process the inference mechanism.

A combination of two or more different types of languages

does not always guarantee ease of use. Proper data transfer, type

conversions, and declarations of modules are some of the points

that should be carefully considered. Furthermore, the environment

in which the system would be implemented might not always be

capable to support all of the languages.

Another attempt to eliminate some limitations of Prolog is by

improving it at the unification level [Colmerauer90], i.e., by

integrating:

- a refined manipulation of trees, including infinite trees, together

with a specific treatment of lists;

- a complete treatment of two-valued Boolean algebra;

- a treatment of the operations of addition, substraction, and

multiplication by a constant and of the relation ::F-.

These new features have been incorporated in a new programming

language, Prolog Ill. The advantage of these new features are not

widely known, despite the fact that the prototype of Prolog Ill

interpreter has, been in use since 1987 [Colmerauer90].

f~ctor!al~
1=0 •. ~
T=1, ~
while(i < n) {

i=i+1;.. G)
T=T * i; c @

factorial(n) {

~T=1;
for(~ ; i@ n ; i(j) 1) {

T = T * i;
} }

return T; .-~ ------1@1-------+) return T;
} }

Figure 2. Factorial program
using 'while' loop.

factoriai(N,F) :- factoriai(O,N,1,F).

Figure 3. Factorialprogram
using 'for' loop.

% initialization

factoriai(I,N,T,F) :- %iterative clause

~· ~· I1J@)·J1. lacto'TY£
. '1V ®

factoriai(N,N,F,F). % result clause

cf;J,
nomenclature:

1 , 2: accumulator initialization
3: loop condition

6: return value
7: input value

4, 5: intermediate values

Figure 4. Factorial program in Prolog.

if_then_else(P ,Q,R) :- pI I, a.
if_then_else(P,Q,R) :- R.

Figure 5. if_then_else/3.

1 0

1 1

1.2 Objectives

The main objective of this research is to design and to

implement partially a pre-processor that is capable of transforming

Prolog programs, containing simple C-like code segments, into

equivalent programs that are entirely in Prolog. The pre-processor

is named CIP (.Q. in .E.rolog). It is assumed that CIP should be able to

run in an environment in which only a Prolog compiler is available.

Because of the availability and the author's familiarity with the

Prolog interpreter in the Computer Laboratory at the Oklahoma State

University Computer Science Department, the pre-processor is

written in Quintus Prolog. The input and output of the pre-processor

are in Quintus Prolog syntax.

The main benefit of the proposed pre-processor is to provide

Prolog programmers with a tool that allows them to embed simple

procedural constructs in Prolog programs. Thus, users could avoid

some of the burden of managing data transfer between Prolog and

the procedural language with which it is communicating. If the

Prolog interpreter or compiler used does not have the capability to

communicate with other languages, the user still has the

opportunity to create procedural constructs in his or her Prolog

programs. As a result, the user can rely on a Prolog compiler only.

CHAPTER II

OVERVIEW OF THE SYSTEM

2.1 Declarative Meaning of Statements in a Program

A program is a set of instructions [Struble84]. In general, an

instruction is a statement indicating how the computer must

control and execute its activities. The order of instructions in a

program is important because it shows the order in which the

computer must execute them to get the desired result. By executing

the set of instructions, a computer processes the procedure in the

program.

Consider a typical statement that is common in high-level

languages:

X:= 5;

This instruction is an assignment statement that assigns the value

5 to a variable x. Procedurally, this instruction is interpreted as

"assign 5 to x ". In a similar fashion, the statement

X:= X+ 3;

can be interpreted as "add the value 3 to the current value of

variable x and then assign the result to x ". These two statements

can be combined to form a small program that adds two values,

5 and 3.

A program can be perceived, by its procedural meaning, as a

flow of instructions. The flow of instructions is acknowledged by a

12

13

computer as a flow of statements indicating how to perform its job.

Now, assume that the instructions, which tell a computer how

to perform its job, are not known. Instead, only the details of what

the computer should achieve is available. In other words,

propositions about what the machine should accomplish can be

explicitly asserted. Then, the statement

X."= 5;

may be treated as a proposition and be read declaratively as, "It is

true that 5 is assigned to any variable x ". This proposition has an

inherent truthfulness. Thus, such a proposition may have a logical

value. Although there are systems with multivalued logic or fuzzy

logic [Yager87], propositions used in this thesis are limited to those

whose significant characteristic is their ability to denote a truth

value of either true or false [Malpas87] (i.e., systems that obey the

law of the excluded middle).

If a number of propositions are related to one another and the

order of these propositions indicates which task should be

completed before other tasks can be determined, then this sequence

of propositions is actually a program. Formally, we follow the

approach of interpreting a program as stated by Floyd [Fioyd67]:

" (an interpretation of a program) is an association of a

proposition with each connection in the flow of control

through a program, where the proposition is asserted to

hold whenever that connection is taken. To prevent an

interpretation from being chosen arbitrarily, a condition is

imposed on each command of the program. This condition

guarantees that whenever a command is reached by way

of a connection whose associated proposition is then

1 4

associated proposition will be true at that time."

Looking back to the small program consisting of two

assignment statements, we notice that the two consecutive

instruction statements can be viewed as two consecutive

declarative statements or propositions. The order of the propositons

is important for it will determine what the final value of x will be.

The remainder of this section discusses a method of

transforming the small example program into one possible Prolog

program.

Prolog is a logic programming language that deals with

relations rather than functions [Sethi89]. Prolog's basic notion is

that it will try to prove whether a relation, given as a query, exists

in the database or can be proven using rules and facts available in

the database. The C statement

X= 5;

can be seen as a relation where x and 5 are the components of the

relation, and '=' is the operator of the relation. The operator '=' can

also be viewed as an assignment predicate indicating the

relationship between its arguments, x and 5.

This assignment relation may be- transformed into Prolog

notation without changing its meaning as follows

assign(X,5)

where assign is a predicate showing the relationship of its

arguments or components, X and 5. This assign relation is a binary

relation because it defines a relation between two objects. The

word assign is chosen instead of '=' in representing the assignment

relation in Prolog because '=' is a special symbol used to define a

built-in predicate that tests if its two arguments unify with one

another. The second statement in the small program

X= X+ 3;

1 5

has two relational operators, '=' and '+', which indicate relations of

assignment and addition. This statement can be written as

assign(X, +(X,3))

The relation +(X,3) is nested into the assign relation showing that

the addition~ relation has a lower precedence than the assign

relation. The complete form of the small program in Prolog is

sma/Lprogram :-
assign(X, 5), assign(X, +(X, 3)) .

which is also a Prolog rule. The literals before the symbol ':-' are

called the head and the literals following ':-' are the body of the rule.

The symbol ':-' itself is called the neck of the rule. The body is

composed of two goals, assign(X,5) and assign(X,+(X,3)). The symbol

',' between the two goals indicates a conjunction of the goals. The

conjunction of goals in the body of this clause reflects the

conjunction of the original assertions about what the computer

should do. The first assertion is the one next to the 'neck' (:-) of the

clause. The original procedural program is treated as if it had a

true logical value. Thus, if the two assign relations are true, it

implies that sma/Lprogram is true.

After the small_program is interpreted or compiled to the

Prolog's database, a user may ask Prolog to prove that the

small_program is true, 'which mean the two relations hold. In order

to prove them, at least one fact or rule for. assign/2 is available in

the database. Otherwise, the pre-processor, which transforms a

Prolog program with embedded C code into a Prolog program, should

1 6

provide the facts and rules to guarantee that the relation is true. As

far as this work is concerned, this condition is necessary because,

as mentioned earlier, statements in a procedural language, like C or

Pascal, are treated as if they had a true logical value. More

discussion about a group of predefined rules that is known as a

predefined database is provided in th~ last section of this chapter.

In Prolog, once a variable is instantiated or unified with a

value, the value of this variable remains the same until the

evaluation of the query is completed or fails. The value of the

variable can be altered only when backtracking takes place. For this

reason, the argument X in the predicate assign and '+' needs to be

modified. If X in assign(X,5) is instantiated to a value, then X on

the second assign relation and on the '+' relation will also have the

same value. This condition is not what is desired because X on the

second assign predicate should contain the result of the addition of

3 and 5 . To overcome this problem, the variable X is replaced with

a predicate x/1 whose argument indicates the variable's current

value. x/1 behaves as a global variable and is stored in the

database. Every time x/1 has a new value, its old value must be

eliminated from the database. The elimination can be performed by

using the built-in predicate retract/1. The new value can be put in

the database by using the built-in predicate asserta/1. The modified

version of smal/_program clause is

smal/_program :-
assign(x(_ 1), 5), assign(x(_2), +(x(_3), 3)).

1 7

2.2 The Pre-Processor's Components

In building the pre-processor, the author has been influenced

by [Sterling86] and [Warren80]. There is a significant difference

between the work they mentioned and the work done in this thesis.

They described a simple compiler written in Prolog which translates

a high level language into an assembly language. On the other hand,

the pre-processor built in this thesis employs a programming

language, Quintus Prolog, that is also used by the pre-processor's

input and output. Since the pre-processor itself is a program and

treats other programs as data, it can be called as a meta-program

[Abramson89b].

, The pre-processor consists of three major components (see

Figure 6): Tokenizer, Embedded C Recognizer (ECR), and Clause

Generator. The functions of these components are similar to the

functions of components that can be found in a typical compiler

[Aho86].
The top procedure of the pre-processor is cip/2 :

cip(lnfile, Outfile)
see(lnfile), teii(Outfile),
tokenizer(lnfile, Lexout), % Tokenizer
ecr(ECR_out,Lexout, []), %Embedded C Recognizer
clause_generator(ECR_out), % Clause Generator
told, seen.

lnfile indicates the name of a file containing an input program. The

output of Clause Generator will be available in an output file whose

name is indicated by Outfile . The Tokenizer produces an output that

will be passed to the Embedded C Recognizer through the the

argument Lexout. The Embedded C Recognizer produces an output

that will be given to the Clause Generator through the argument

ECR_out. The Clause Generator produces the final output available

1 8

in the output file. The definition of the Tokenizer and the Clause

Generator are given in chapter Ill. The discussion of the Embedded C

Recognizer is available in chapter IV.

Tokenizer acts as a front-end module for the pre-processor.

It accepts a stream of characters stored in a file . The function of

this module is similar to what is mentioned in [Aho86]: it groups

the input characters into a list of tokens that represent patterns of

the input stream. ASCII codes is used for representing the

Tokenizer's output.

The ECR (Embedded C Recognizer) parses the string of 'tokens

then puts them into a form that represents the structure of the

source program. If syntax errors are found, then error messages

will be produced and the transformation process will not proceed at

this stage. Parsing is accomplished by using a left-corner,

bottom-up method [Aho72,Matsumoto83]. This algorithm has an

advantage over a top-down parsing method because it can deal with

left recursive rules, which appear in the Prolog grammar, without

first transforming the grammar into a right recursive one. Two

conditions still apply, however:, the grammar must be cycle-free and

must have no a-productions. Semantic analysis can be done

simultaneously with syntax analysis.

The Clause Generator is the back-end module for the

pre-processor. It processes the output of ECR and produces the final

output of the transformation that is combined with a database of

predefined clauses:

1 9

Predefined Database

Input

Figure 6. The Pre-Processor Block Diagram.

2.3 Input and OutplrJt

Figure 7 shows an example of a simple Prolog program

containing two C assignment statements that can be recognized by

the pre-processor. The intermediate output of each component is

also shown together with the pre-processor's final output. Special

keywords, export and import, are used to .. distinguish variables that

are local to the embedded C code from variables in the Prolog

part. Variables with the import designation are input variables

for the embedded C code and must be instantiated to integer before

entering the C code. Variables with the export designation contain

return values and must not have been instantiated when they are

used inside the embedded program. At the current stage of the work,

all of these variables are assumed to be of type integer.

Another example is a Fibonacci program that calculates a

value for Result as the Nth Fibonacci number. This program is

written as one rule in which the body consists of six goals. The

first goal of the body is the main part of the program because it is

where the calculations take place. This goal shows a more complex

C code fragment that can be embedded in a Prolog program (Figure

8). The output of transforming the above Fibonacci program consists

20

of two clauses (Figure 9).

A keyword c_prog_n is always used to name the entry point of the

output of the transformation of the embedded procedural program.

In an actual program, the last character of c_prog_n, n, is an integer

showing the n-th embedded C segment appearing in a Prolog rule.

The initial integer value of n in each rule is 1. For example, see

Figure 9. C segments inside a rule are isolated segments, that

means they are not related directly to other C segments available in

the other rules.

The number of arguments for the predicate c_prog_n depends

on the number of variables that are imported and exported. As an

example, the predicate c_prog_1 in the transformed Fibonacci

program (Figure 9) has two arguments representing the variables N

and Result.

addx(X)
{

},

export X;
X= 5;
X= X +3;

write(X), nl.

l

21

[97, 100, 100, 120, 40, 88, 41' 58, 45, 10, 123, 10,
101, 120, 112,111,114, 116,32, 88, 59, 10, 88, 61, 53,

59, 88, 61, 88, 43, 51, 59, 10, 125, 44, 10,119, 114,
1 05, 116, 1 01' 40, 88, 41' 44, 32, 110, 1 08, 46,1 0]

l
clause(head(addx, [X]}, [c_prog_1 (export(X),

assign(X, 5),
assign(X, +(X,3))),

goal(write, [X]),

!
:- [predefined_dtbase].
addx(X) :-

goal(nl, [])
]).

c_prog_1 (x(X)),
write(X), nl.

c_prog_1(x(X)) :-
assign(x(_1), 5),
assign(x(_2), +(x(_3), 3)), !.

Figure 7. The transformation process.

fibonacci(N~Result) :
{

}I

import N;
export Result;

fc = 1;
if (N > 1) {

Fa= 1;
Fb = 1;

}

for (i = 2; i <= N; i=i+ 1) {
fc =Fa+ Fb;
Fa= Fb;
Fb = fc;

}

Result= fc;

write(N)~ nil
write(Result)~ nl.

Figure 8. A Prolog program with embedded C code.

fibonacci(N~Result) :-
c_prog_1 (n(N)~ result(Result))~
write(N)~ nil
write(Result)~ nl.

c_prog_1 (n(N) I result(Result)) :
integer(N)~

asserta(n(N))I
assign(fcL 1)~ const(1))~
if_then(greater_than(nL2)~ const(1))~

[assign(faL3)~ const(1))~
assign(fbL 4)~ const(1))I

)I

for_loop(
assign(iLS)I const(2))~
less_or_equal(iL6)~ nL7))~

assign(iL8)~ +(iL9)~ const(1)))~
[assign(teL 1 0) I +(faL 11) I fbL 12)))~

assign(faL13)~ fbL14))1
assign(fbL1S); fcL16))

assign(result(Result)~ fcL 17)), I.

Figure 9. The result of transforming the program in Figure 8.

22

23

2.4 Predefined Database

The predefined database contains the clauses that are needed

by the output of the pre-processor as a consulted database. These

clauses can be divided into six categories (shown in Appendix A):

assignment clauses, conditional clauses, relational-operator

clauses, Boolean-operator clauses, and clauses that deal with

expressions and values of identifiers and constants. Each of these

categories of clauses corresponds to the C operators (=, ==, !=, <, >,

=<, >=, &&, II. +, -, *, /) and to the C conditional statements ('if',

'while', 'for').

Assignment clauses consist of three procedures: assign/2,

expr_ va/ue/2, and va/ue/2. A procedure is a set of rules with the

same predicate in the head of the rules [Sterling86]. The first

argument of the predicate assign is always matched with a term of

one arity, e.g., y(4). The functor of this term, y, represents a

variable name found in the embedded procedural construct of the

pre-processor's input program. The argument of the term, 4,

represents the current value of the variable. Whenever the current

value of a variable is replaced by a new value, a Prolog fact that

represents the variable and its value (i.e., term) is retracted from

the database. A new Prolog fact is, then, asserted representing the

variable with its new value. The second argument of the predicate

assign represents a constant or an expression. An expression is

represented by Expr whose value is determined by the predicate

expr_ value(Val, Expr) This predicate calculates Val as the value of

the expression Expr . An expression can be in the form of a constant,

identifier, addition, multiplication, subtraction, division, or a

24

combination of them. The combination is necessary because in

Prolog, embedded relations are not evaluated, as they would be in C.

The rule :

expr_ value(Val, +(Expr1, Expr2)) :-

value(A,Expr1), value(B,Expr2), Val is A + B .

is read as:

Val is the value of Expr1 plus Expr2 if A is the value of Expr1

and B is the value of Expr2 and Val .is the sum of A and B.

The next group of clauses to be discussed is the conditional

clauses. The purpose of these clauses is to duplicate the behaviour

of if-then, if-then-else, while-loop, and for-loop statements of

procedural languages. If there is a goal in a target program that

matches the head of one of these clauses, it is guaranteed that the

goal will succeed.

The two predicates, if_then/2 and if_then_e/se/3, are used

to simulate the 'if' statement. Both of these predicates have a

Cond argument and a True_body argument. Cond is used to test

whether the condition of the 'if' statement is logically true or false.

If the condition is logically true, the goal if_true_body/1, in which

its argument [StatementfRest_st] has been unified with

True_body will be the next to be attempted. On the other hand, if

Cond is false, the second clause of if_then/2 or if_then_e/se/3 is

processed. In the case of if_then_e/se/3, its third argument,

False_body will be unified with [StatementfRest_st], the argument

of if_fa/se_body/1. The predicate for_/oop/4 replicates the function

of a 'for-loop' statement. The argument /nit initializes the counter

that is incremented or decremented by Count. After initialization,

the predicate forloop 113 takes care of checking whether the

25

condition is met, call forbody/1 to execute statements inside the

loop, and increment or decrement the counter.

The predicate whi/e_/oop/2 behaves as if it were a

while-loop statement. Cond checks whether the condition is valid.

After the goal wh_body/1 succeeds, whi/e_/oop/2 calls itself in

order to repeat the loop until Cond fails. The second clause of

whi/e_/oop/2 is necessary to guarantee that the predicate is

always true even if Cond fails. whi/e_/oop/2 must be true because

the code corresponding to C code must succeed.

for_/oop/4 and whi/e_/oop/2 are recursive procedures.

Recursive procedures in Prolog may consumes a lot of time and

space for maintaining stack. Fortunately, Quintus Prolog used in

this thesis provides tail recursion optimization. Tail recursion

optimization is a way of economizing on the amount of stack space

needed to evaluate a query to a procedure by utilizing a constant

number of stack units [Malpas87,Quintus87].

Relational-operator clauses are used to check whether the

relational operators (==, !=, <, >, =<, or >=) hold. Each clause in this

group represents one of those relational operators. After both

expressions in a relation are evaluated, the corresponding

relational-operator clause compares them according to its

relational operator. If the comparison does not, hold, the clause

simply fails.

Similar to relational-operator clauses, Boolean-operator

clauses are used to test whether a Boolean expression is true.

There are three rules to examine Boolean expressions: AND, OR, and

NOT. It should be noted that the arguments Relexpr1 and Relexpr2

can be Boolean expressions.

CHAPTER Ill

TOKENIZER AND CLAUSE GENERATOR

3.1 Tokenizer

Tokenizer is the front-end module of CIP, the pre-processor

designed and partially implemented in this thesis. The main

purpose of the module is to provide a sequence of tokens that can be

parsed by the subsequent module, ECR. These tokens represent an

input program.

In general, a token is a string that can be used to represent

the string itself or a set of strings which are described by a rule

called a pattern. Aho et ai.[Aho86] discuss various techniques of

specifying and recognizing tokens. They mention that regular

expressions are an important notation for specifying patterns.

Regular expressions are used for defining sets of strings that match

with certain patterns. In order to recognize tokens, a deterministic

transition diagram may be applied. The diagram is useful in keeping

of information about characters that are read as the pointer scans

the input. The transition diagram, then, can be converted into a

program to find the tokens specified by the diagram.

Since the Tokenizer in this thesis was expected to produce

relatively simple tokens, a discussion of regular expressions and

transition diagrams is not included here. An in-depth discussion

can be found in [Aho86].

26

27

Two things must be considered in order to build the

Tokenizer:

1. The tokens produced must represent the corresponding

input strings correctly.

2. The Tokenizer should be able to do its job efficiently.

The first consideration is necessary to provide the Embedded

C Recognizer (ECR) .with a correct internal 'representation of an

input program. As an example, suppose an input program contains

the following sequence of characters that represents a clause:

n(X) :- X is 5.

The Tokenizer must be able to acknowledge that the last character,

'.', is a fu 11-stop character instead of a decimal-point. Furthermore,

spaces between characters should not be ignored; otherwise the

produced tokens may represent the input strings incorrectly, as the

following example shows:

n (X) :- X is 5.

The rule is syntactically incorrect because there is a space between

the predicate 'n' and ~('. If spaces between the group of strings are

ignored, the generated tokens will be 'n', '(X)', ':-', 'X', 'is', '5', and '.'

which may cause the ECR to interpret these tokens as representing

a syntactically correct clause.

The second consideration concerns the reduction of

unnecessary processing time used by the Tokenizer. We need the

module to do its job without creating output that will not be used

by the ECR. Thus, execution time may be saved and can be allocated

to other modules that require considerably more processing time.

28

needed to produce outputs for debugging purposes. These

mechanisms have been deleted from the final form of the Tokenizer.

Based on the two considerations described above, the author

has decided that every character in an input program will be

represented by a single token. A string that is composed of 5

characters, for example, will be represented by 5 tokens in the

corresponding order. Since each of the input characters is

represented by a distinct token, the Tokenizer is not necessary to

spend time for selecting and grouping them into specific tokens.

The produced tokens are collected into a list.

% +
tokenizer(Filein, Clistout)

see(Filein),
Clist =D.
readfile(Ciist, Clist1),
reverse(Ciist1, Clistout),
seen, !.

o/o +
readfile(Ciist, Clistout)

getO(Char),

o/o open an input file
0/o unify Clist and D
o/o read the input file

(Char== -1, o/o eof = -1 [Quintus87]
(Clistout = Clist ; readfile([ChariCiist], Clistout))

).

o/o List2 is List1 in reversed order
o/o +
reverse(List1, List2) :-

rev(List1, D. List2).
rev(O, L, L).
rev([XIL 1], L2, L3) :

rev(L 1, [XIL2], L3).

Figure 10. Tokenizer.

29

3.2 Clause Generator

- Clause Generator is the back-end module of the preprocessor

and is responsible for producing the final output. It converts a list

of ASCII character codes given by the ECR into a set of printable

characters. Unprinttable ASCII codes, such as 'newline' character,

are treated as such. Before the conversion begins, the Clause

Generator will assert a command for consulting the predefined

rules. Figure 11 shows the program of the Clause Generator.

% +
clause_generator(L)

tell(cg_out),

o/o +

write(':- [predefined_rules]. '), nl,
out(L),
told.

out([XIXs]) ·
name(M,[X]),
(X== 10, nl; write(M)),
out(Xs).

out(_) :- true.

Figure 11. Clause Generator.

CHAPTER IV

EMBEDDED C RECOGNIZER

Embedded C Recognizer (ECR) is a module in CIP that has the

responsibility of recognizing the existence of C constructs in a

Prolog program. In order to accomplish its task, ECR must be able

to distinguish the structure of the embedded C statements from the

structure of the Prolog program in which it is embedded. In other

words, it has to be equipped with a parser mechanism that is

capable of recognizing the different structures of the two

programming languages. By providing the syntax rules of Prolog and

a subset of C for ECR, the first step of building the module is

achieved. The next step is to find a parsing method suitable for the

implementation.

4.1 Context Free Grammars and Left Recursion in Prolog

The syntax of Prolog used in this thesis is the one used in

Quintus Prolog [Quintus87]. The choice was made because the

related information on Quintus needed to support the work was

more accessible than that on other Prolog versions available.

Although this information is still very general, it did save some

amount of searching time and was very useful in guiding the

implementation of ECR.

A Prolog grammar can be described using context-free format

30

31

in which each production has the form:

A --> B

The symbol A represents a non-terminal. The symbol B represents a

string of non-terminals and/or terminals, or an empty string. In a

context-free grammar, only one non-terminal appears at the

left-hand side of the production. Unlike non-terminals in grammars

for many common programming languages, non-terminals in some

Prolog grammar rules have arguments. One example of such a

production is

term(N) --> op(N,fx)

The non-terminals of the production are 'term' and 'op' while N and

fx are arguments. 'op' or 'term' represents any Prolog operator. This

production indicates that a term with precedence N can be of the

form op with precedence N and fx as the specifier for a prefix

operator. The precedence N, usually an integer number between 1

and 1200, is used to disambiguate expressions where the syntax of

the terms is not made explicit through the use of brackets. The

specifier fx is one of the available specifiers in Prolog used to

disambiguate expressions in which there are two Prolog operators

in the expression that have the same precedence [Ciocksin87].

Prolog grammar inherently has left recursion in its

productions as shown by this example:

goals --> goals
I goals
I goal

goals
goals

where 'goals' and 'goal' are non-terminals, ',' and ';' are terminals.

This grammar rule shows that the non-terminal 'goal' on the

left-hand side can be substituted by one of the three forms

32

available on the right-hand side of the rule. The first form is "goals

, goals". The other two forms follows the symbol 'I' which stands

for the boolean 'or'. Left recursion prohibits the use of top-down

parsing because it leads the parser into an infinite loop. The

discussion of the parsing technique used in the implementaion of

CIP is given in Section 4.5.

4.2. A Subset of C Syntax

The subset of C grammar rules (shown in Appendix C) is

obtained by interpreting the syntax chart of ANSI C available in

[Darnell91]. Only the basic C syntax rules were adopted for the

purpose of this thesis. This· choice limits the structures of C that

can be embedded in Prolog programs. The focus of this work is on

the recognition of C constructs, a limited number of C syntax rules

are considered adequate for prototyping. Further expansion is

possible and is proposed as one of the directions of future work.

4.3 Top-Down Parser and Left Recursion

Many commercial Prolog versions, including Quintus Prolog

used in this thesis, have a built-in top-down parser. The parser is

based on the Definite Clause Grammar (DCG) formalism [Pereira80].

A DCG is an extension of executable context-free grammars used in

Prolog. Each non-terminal in a production is a predicate in the

corresponding Prolog clause. By using DCG's, users not only have an

executable context-free grammar, but they also have the possibility

of inserting any Prolog calls within a rule. These facilities are

suitable for integrating parser and semantic-processing procedures.

Because of the natural top-down and left-to-right processing of

33

Prolog however, DCG's have the disadvantage that they cannot deal

with left-recursive rules [Matsumoto83, Stabler83]. Left recursive

rules cause the parser to go into an infinite loop.

A top-down parser may still be used if left-recursive rules

in a grammar are eliminated. Aha and Ullman describe an algorithm

for eliminating left-recursion in a proper (cycle free, e free, and

useless-symbols free) Context-Free Grammar [Aho72]. However,

left-recursion elimination is not a practical approach for a

Context-Free Grammar having a large number of productions. Users

can expect a large number of new productions created by the

elimination procedure (exponentially larger than the initial set).

Fortunately, left recursion can be dealt with by a bottom-up

parser despite the fact that such a parser is generally more

difficult to build and less efficient than a top-down parser. It is

not the purpose of this thesis to examine many bottom-up parsing

techniques available to date. Prolog usage of parsing and compiling

techniques can be found in [Cohen87].

4.4 Left-Corner Parsing Method for ECR

The parsing technique used in ECR is called left-corner

parsing. A previous practical implementation of the technique is

shown in [Matsumoto83,Matsumoto86]. The technique combines

bottom-up recognition and top-down recognition. A formal

definition [Aho72] follows:

The left corner of a non-e-production is the leftmost symbol
(terminal or non-terminal) on the right side. A left-corner
parse of a sentence is the sequence of productions used at
the interior nodes of a parse tree in which all nodes have

been ordered as follows. If a node n has p direct
descendants n1, n2, ... , np, then all nodes in the subtree with
root n 1 precede n. Node n precedes all its other
descendants. The descendants of n2 precede those of n3,
which precede those of n4, and so forth.

34

As an illustration, consider the following context-free

grammar G = (N,L,P,S) with the set of productions, P:

1. s -- > AS
2. s -- > 88
3. A -- > bAA
4. A -- > a
5. 8 -- > b
6. 8 -- > e

the set of non-terminals, N = {S,A,B}, and the set of terminals, L =

{a, b}. The start symbol is S. The symbol 'e' indicates an empty

string. A nondeterministic left-corner parser for G can be defined

using a PDT (Pushdown Transducer) M as follows:

M = ({q}, L, N X N u N u L, Ll, a, q, S, 0), where

{q} is the set of possible states,

L is a finite set of input alphabet,

N is a finite set of non-terminals,

N x N U N U L is a finite alphabet of pushdown list

symbols,

Ll = {1 ,2,3,4,5,6} is the set of output alphabet (showing the

production numbers),

q is the initial state,

S, the start symbol, is the symbol that appears initially on

the pushdown list,

0 indicates an empty set of final states,

35

a , the transition function, iS a mapping from {q} X (}.'. U

{e}) x (N x N U N U I.) to finite subsets of {q} x (N x N U N U

I.)* x ll* and has the form:

i, j, k ~ 0

The transition function shows that there are two or more possible

transitions when the automaton is in state qi scanning the current

input symbol c with C on the top of the pushdown stack. (qj, D, 0 1)

represents the new state qj, the new symbol D on top of the stack,

and the emitted-output symbol 01 . a for the contxt-free grammar G

is defined as follows for all X in N:

1 a. a(q, e, [X,A]) = {(q, S[X,S], 1)}.

b. a(q, e, [X,B]) = {(q, B[X,S], 2)}.

c. a(q, e, X) = {(q, bAA[X,A], 3),

d. (q, a[X,A], 4),

e. (q, b[X,B], 5),

f. (q, [X,B], 6)}.

2. a(q, e, [A,A]) = {(q,e,e)}.

3. a(q, C, c) = {(q,e,e)} for all c in L

Special symbols of the form B[P ,Q], where P and Q are

non-terminals, indicates that P is the current goal to be recognized

and Q is the non-terminal which has just been recognized

* bottom-up. Every B, an element of (N U I.) , is a symbol

representing goals to be recognized top-down. More detailed

description of defining a for a left corner parser appears in [Aho72].

36

The parser can be used now to parse a string, e.g., bbaaab .

The parse tree for this string is shown in Figure 12 Let the initial

configuration for the left-corner parser be: (bbaaab,S,e), where

bbaaab is the portion of input to be parsed, S is the initial contents

of the top of the stack, and e or 'empty' indicates the initial output.

Then, the parser will go into one possible sequence of

configurations, as shown in Figure 13, that successfully parses the

input string.

~
~A

b A A 8 8

~t r r r
a a

Figure 12. The parse tree for the string bbaaab [Aho72].

37

a applied (#) next configuration

1c (bbaaab, bAA[S,A], 3)

3 (baaab, AA[S,A], 3)

1c (baaab, bAA[A,A]A[S,A], 33)

3 (aaab, AA[A,A]A[S,A], 33)

1d (aaab, a[A,A]A[A,A]A[S,A], 334)

3 (aab, [A,A]A[A,A]A[S,A], 334)

2 (aab, A[A,A]A[S,A], 334)

1d (aab, a[A,A][A,A]A[S,A], 3344)

3 (ab, [A,A][A,A]A[S,A], 3344)

2 (ab, [A,A]A[S,A], 3344)

2 (ab, A[S,A], 3344)

1d (ab, a[A,A][S,A], 33444)

3 (b, [A,A][S,A], 33444)

2 (b, [S,A], 33444)

1a (b, S[S,S], 334441)

1f (b, [S,B][S,S], 3344416)

1b (b, B[S,S][S,S], 33444162)

1e (b, b[B,B][S,S][S,S], 334441625)

3 (e, [B,B][S,S][S,S], 334441625)

2 (e, [S,S][S,S], 334441625)

2 (e, [S,S], 334441625)

2 (e, e, 334441625)

Figure 13. The sequence of configurations for parsing
the string bbaaab.

38

4.5 Left-Corner Parsing Implementation in Prolog

This section discusses how context-free production rules can

be transformed into Prolog clauses in order to determine the

behavior of a left-corner parser [Abramson89, Matsumoto83]. The

parser can deal with any context-free grammar having no cycle and

no a-productions.

Suppose context-free productions are represented in the

following forms:

1. 8 ~ c
2. 8 ~ X1, X2, , Xn (n ~ 1).

where 8 and c represent a non-terminal symbol and a terminal

symbol respectively, and Xi, 1 ~i~n. are either non-terminal or

terminal symbols. A production rule with only one terminal symbol

on the right-hand side, such as 8 --> c, is transformed into a unit

clause:

dict(8, [c], [ciX], X).

The unit clause is called a dictionary rule. Its first argument

indicates the left-hand side of the production rule. The second

argument indicates the subtree generated by the rule. The third and

fourth arguments represent the difference-list [Pereira80] of the

input string in which the first item must be a terminal. A

difference-list is a way of representing a sequence of elements.

For example, a sequence of A,8,C can be represented by the

difference of pair of lists L 1 = [A,8,C,D,E] and L2 = [D,E], or, L 1 =

[A,8,C] and L2 = o. 0 means an empty list.

39

The second form of the context-free production is translated

into two forms of Prolog clauses:

x1 (x1 ,T,T,X,X).
x1 (Goai,T1 ,Tout,XO,Xn)

link(b,Goal),
gl(x2, T2,XO,X1),
gl(x3,T3,X1 ,X2),

gl(xn, Tn,Xn2,Xn1),
b(Goai,Tn1 ,Tout,Xn1 ,Xn).

0/o1
%2

Xn2 and Xn1 represent Xn-2 and Xn-1, respectively. The description

of the arguments of the predicate x1 /5 is as follows:

Goal: input, the 'goal' non-terminal to be accomplished during

parsing

Tout: output, the part of the derivation tree created after

successfully using the rule

T1: output, a sub-derivation tree representing the non-terminal

x1

XO and Xn: input, represent the difference list of the input string.

If a 'goal' non-terminal x1 is given and the non-terminal

called is also x1, the call terminates successfully by rule %1;

otherwise, if the 'goal' non-terminal is not x1, rule %2 is used.

The predicate link(A,Goal) determines whether there is a

reflexive and transitive relation between the two non-terminals, A

and Goal. A non-terminal N1 has a 'link' relation with a

non-terminal N2 if there is a grammar rule whose form is

"N2 ~ N1, II If the relation exists, the predicate gl/4 is called

in order to recognize X2, , Xn. The definition of the predicate gl/4

40

is

gi(G,A,X,Z)
dict(C,A1 ,X,Y), P =.. [C,G,A1 ,A,Y,Z], caii(P).

An example of an implementation of the parsing method is in

parsing a natural language, e.g., English [Matsumoto86]. Suppose the

parser is given the simple English grammar:

sentence ~ nounphrase , verbphrase.

nounphrase ~ [calvin].

verbphrase ~ [yawns].

The Prolog clauses which implement the left-corner parsing method

described above are:

% dictionary
dict(nounphrase, [calvin], [calviniX], X).
dict(verbphrase, [yawns], [yawnsiX], X).

%rule
nounphrase(G,[NP,N],A,X,Z)

link(sentence,G),
gl(verbphrase,[VP,N],X,Y),
sentence(G,[s(NP,VP)],A,Y,Z).

% terminate clauses
nou nph rase(nou nphrase, T, T ,X,X).
verbphrase(verbphrase, T, T,X,X).

, sentence(sentence,T,T,X,X).

0/o 'goal' clause
gi(G,A,X,Z)

dict(C,A1 ,X,Y),
P =.. [C,G,A1 ,A,Y,Z], caii(P).

Using the above clauses, Prolog is able to give an answer 'yes' to a

query such as "?- gl(sentence,[calvin,yawns],D).".

41

4.6 Static Semantic Analysis

The tasks of the Embedded C Recognizer (ECR) are syntax

analysis, semantic analysis, and C-to-Prolog translation. Sections

4.4. and 4.5 describe the left-corner method employed by ECR to

perform syntax analysis. This section priefly discusses the design

of the semantic analysis. A discussion of C-to-Prolog translation

is given in the next section.

Similar to the tasks of semantic routines available in a

typical compiler, semantic analysis performed by ECR assures the

validity of the static semantic of each embedded C-like statement.

Examples of static semantic checking are type checking,

flow-of-control checking, uniqueness checking, and name-related

checking [Aho86]. ECR also employs Attribute Grammar, a popular

method for formalizing the specification of static semantics. An

attribute grammar augments ordinary context-free grammars with

values that represent the semantic property of a symbol. The

following context-free grammar rule, written in DCG notation,

shows the attributes attached to· its corresponding non-terminals:

expr(E1val) --> expr(E2val), '+', term(Tval), {E1val is E2val + Tval}.

The literal between curly brackets is called an attribute rule. It

evaluates the attribute value E1 val. In an actual implementation, a

grammar production may have more than one attribute rule.

There are two types of attributes: ·synthesized and inherited.

In the grammar rule above, E1val is a synthesized attribute because

it appears on the left-hand side and it is computed from the values

of attributes on the right-hand side of the production. E2val and

42

Tval are inherited attributes since they appear on the right-hand

side of the production. Their values can be computed from the

values of attributes available on either side of the production.

Synthesized attributes are used to pass information up a syntax

tree, while inherited attributes are used to pass information down a

syntax tree [Fischer91]. Terminal symbols may have only

synthesized attributes. Non-terminal symbols may have both of

them. All inherited attributes of the start symbol are recognized as

initial values.

What follows is the approach used in the design of the

semantic routines for ECR:

- Associating a grammar symbol with a semantic record. Each

different grammar symbol will have a distinct record containing

information appropriate for that symbol. Semantic routines produce

data on which they may operate. The data is named semantic

information. It is possible for a symbol to have no semantic record.

- Defining semantic records. This is done by examining each

symbol in the context-free grammar and deciding what, if any,

semantic information needs to be stored for that symbol. Deciding

the information on semantic records means deciding what

parameters a semantic routine will have.

- Adding semantic rules to the grammar in order to specify when

semantic processing should take place.

4.7. C-to-Prolog Translation

The final task of the Embedded C Recognizer, after

successfully performing syntax and semantic analysis, is

translating the embedded C code into Prolog-like structure. There

43

are two times at which the translation can be performed. First,

translation may be accomplished every time a valid embedded C

statement is recognized. The advantage of this choice is that ECR

does not have to keep the information about the statement after the

translation is completed. The disadvantage is that ECR may redo

the translation because it employs a nondeterministic parsing

method. Second, translation can be performed once, that is, after

all embedded C statements are recognized. This choice gives the

advantage of avoiding possible repeated translation, but ECR must

keep all information until the translation is performed.

A method of translation usin,g Prolog can be found in

[Warren80]. Although the method is used to translate a high-level

language into an assembly language, it can be modified in order to

be incorporated in ECR. The modification proved to be more

substantial than expected, therefore it is relegated as potential

future work.

CHAPTER V

SUMMARY AND SUGGESTED FUTURE RESEARCH

A pre-processor that is capable of transforming simple

Prolog programs, in which basic C statements can be integrated in

the body of clauses, has been presented. The pre-processor, named

CIP, transforms such a program into a program that is entirely in

Prolog. Each embedded C statement is treated as a true assertion.

In order to guarantee that this assertion is always logically true, a

set of supporting rules are defined.

The design of CIP includes the Tokenizer, the Embedded C

Recognizer (ECR), and the Clause Generator. The Tokenizer serves

as the front-end module of CIP and produces tokens that represent

an input Prolog program. The Embedded C Recognizer processes the

tokens to check whether there are embedded C structures that are

syntactically and semantically valid in the input program. If valid

embedded C structures are found, ECR translates the input program

into an intermediate output. Using the intermediate output, the

Clause Generator generates the final output. The final output is then

ready to be compiled by the available Prolog compiler.

The implementation of CIP assumes that a Prolog compiler is

the only compiler available. Thus, the Tokenizer and the Clause

Generator are implemented in Prolog. Partial implementation of

ECR is also carried out in Prolog. The left-corner parsing method is

used to recognize embedded C structures in Prolog programs.

44

45

Multiple embedded C segments in the body of a Prolog clause can be

recognized by ECR. The implementation of semantic analysis and

intermediate output translation are perceived to be beyond the

scope of this thesis and are considered as important future

research.

Three benefits of the pre-processor may be mentioned:

1. It provides Prolog programmers the opportunity to integrate

procedural constructs into logic programs.

2.1n the case of simple procedural programs, the burden of

managing the data transfer and declaring the modules required for

linking multiple languages can be avoided.

3. Because of the fact that CIP is composed of modules which are

built based on their functionalities, this pre-processor can be used

as a practical and educational environment for implementing many

different theoritical algorithms of syntax/semantic analysis, code

generations, and pattern recognition.

The limitation of CIP is that it can only recognize simple C

statements such as while-loop, for-loop and if-then-else

statements. All variables in the embedded C program are assumed

to be of type integer.

Further improvements to CIP are possible. It may be improved

by adding features which allow complex C statements, such as

recursive calls and the use of array, to be embedded in a Prolog

program.

REFERENCES

[Abramson89a]
Abramson, H. and Dahl, V., Logjc Grammars, Springer-Verlag,
New York, 1989.

[Abramson89b]
Abramson, H. and Rogers, M.H. (Eds.), Meta Programming in Logic
Programming, MIT Press, Cambridge, MA, 1989.

[Aho72]
Aho, A.V. and Ullman, J.D., The Theory of Parsing. Translation.
and Compiling. Volume 1: Parsing, Prentice-Hall, Englewood
Cliffs, NJ, 1972.

[Aho86]
Aho, A.V., Sethi, R., and Ullman, J.D., Compilers: Principles.
Technigues. and Tools, Addison-Wesley, Reading, MA, 1986.

[Arity88]
The Arjty/Prolog Language Reference Manual, Arity Corp.,
Concord, MA, 1988.

[Bratko86]
Bratko, 1., Prolog Programming for Artificial Intelligence,
Addison-Wesley, Reading, MA, 1986.

[Ciocksin81]
Clocksin, W. F. and Mellish, C. S. , Programming in Prolog,
Springer-Verlag, Berlin, Heidelberg, New York, 1981.

[Cohen87]
Cohen, J. and Hickey, T.J., "Parsing and Compiling Using Prolog,"
ACM Transactions on Programming Languages and Systems, vol.
9, no. 2, 1987, pp.125-163.

46

[Colmerauer85]
Colmerauer, A., "Prolog in 10 Figures," CACM, vol. 28, no.12,
December 1985, pp. 1296-1310.

[Colmerauer90]
Colmerauer, A., "An Introduction to Prolog Ill," CACM, vol. 33,
no. 7, July 1990, pp. 69-90.

[Darnell91]
Darnell, P.A. and Margolis, P.E., C: A Software Engineering
Approach, Springer-Verlag, New York, 1991.

[Fischer91]
Fischer, C.N. and LeBlanc, R.J., Crafting a Compiler with C,
Benjamin/Cummings, Redwood City, CA, 1991.

[Fioyd67]
Floyd, R. W., "Assigning Meanings to Programs," Proceedings of
the Symposium in Applied Mathematics (J.T. Schwartz, Ed.),
vol.19, American Mathematical Society, Providence, R.I., 1967,
pp.19-32.

[Grishman86]
Grishman, R., Computational Linguistics: An Introduction,
Cambridge University Press, Cambridge, UK, 1986.

[Kernighan78]
Kernighan, B.W. and Ritchie, D.M., "The C Programming
Language," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978.

[Kowalski79]
Kowalski, R., "Algorithm= Logic+ Control," CACM, vol. 22, no. 7,
July 1979.

[Lioyd84]
Lloyd, J.W., Foundations of Logjc Programming, Springer-Verlag,
New York, NY, 1984.

[Malpas87]
Malpas, J., PROLOG: A Relational Language and Its Applications,
Prentice Hall, Englewood Cliffs, NJ, 1987.

47

[Maruyama84]
Maruyama, H. and Yonezawa, A., "A Prolog-Based Natural
Language Front-End System," New Generation Computing 2,
1984, pp. 91-99.

[Matsu moto83]
Matsumoto, Y. et al., "BUP: A Bottom-Up Parser Embedded in
Prolog," Journal of New Generation Computing, OHMSHA, Ltd.,
vol. 1, no.2, 1983, pp. 145-158.

[Matsu moto86]
Matsumoto, Y., Tanaka, H., and Kiyono, M., "BUP: A Bottom-Up
Parsing System for Natural Languages," in Logjc Programming
and Its Applications (Caneghem, Michel van and Warren, D.H.D,
Eds.), ABLEX Publishing Corp., Norwood, NJ, 1986.

[Pereira80]
Pereira, F.C.N. and Warren, D.H.D, "Definite Clause Grammars for
Language Analysis: A Survey of the Formalism and a Comparison
with Augmented Transition Networks," Artificial Intelligence
.13.. 1980, pp. 231-278.

[Quintus87]
Quintus Prolog Reference Manual Version 1 0, Quintus Computer
Systems, Inc., Mountain View, California, 1987.

[Roach90]
Roach, D. and Berghel, H., "A Mixed-Language Expert System,"
PC-AI, Sept./Oct.1990, pp. 46-48.

[Santoso91]
Santoso, L.B., Mayfield, B.E., and Samadzadeh, M.H., "Embedding C
Constructs in Prolog," Proceedings of the First Golden West
Conference on Intelligent Systems, June 3-5, 1991, Reno,
Nevada.

[Sethi89]
Sethi, R., Programming Languages: Concepts and Constructs,
Addison-Wesley, Reading, MA, 1989.

48

[Stabler83]
Stabler, E.P., Jr., "Deterministic and Bottom-up Parsing in
Prolog," Proceedings of the National Conference on Artificial
Intelligence, Washington, DC, AAAI-83, August 22-26, 1983,
pp. 383-386.

[Sterling86]
Sterling, L. and Shapiro, E., The Art of Prolog: Advanced
Programming Technjgues, MIT Press, Cambridge, MA, 1986.

[Struble84]
Struble, G., Assembler Language Programming,
Addison-Wesley, Reading, MA, 1984.

[Thayse88]
Thayse, A., From Standard Logic to Logic Programming, John
Wiley & Sons, New York, 1988.

[Uehara83]
Uehara, T. and Kawato, N., "Logic Circuit Synthesis Using
Prolog," New Generation Computing 1, Ohmsa Ltd, Japan, 1983,
pp. 187-193.

[Waldinger? 4]
Waldinger, R. J. and Levitt, K. N., "Reasoning about Programs,"
Artificial Intelligence 5(3), 1974, pp. 235-316.

[Walker90]
Walker, A., McCord, M., Sowa, J. F., and Wilson, W.G., Knowledge
Systems and Prolog, Addison-Wesley, Reading, MA, 1990.

[Warren80]
Warren, D.H.D., "Logic Programming and Compiler Writing,"
Software Practice and Experience, vol. 10, no.2, 1980, pp.
97-125.

[Warren82]
Warren, D.H.D. and Pereira, F.C.N., "An Efficient Easily Adaptable
System for Interpreting Natural Language Queries," American
Journal of Computational Linguistics 8, 1982, pp. 11 0-122.

49

[Wojciechowski83]
Wojciechowski, W.S. and Wojcik, A.S., "Automated Design of
Multiple-Valued Logic Circuits by Automated Theorem Proving
Techniques," IEEE Transactions on Computers, vol. C-32, no. 9,
Sept. 1983, pp. 785-798.

[Yager87]
Yager, R.R., Ovchinnikov, S., Tong, R.M., and Nguyen, H.T., Fuzzy
Sets and Applications: Selected Papers by L.A. Zadeh, John
Wiley & Sons, Inc., Canada, 1987.

50

APPENDIXES

51

APPENDIX A

GLOSSARY

52

CIP: The name of the pre-processor which is designed
and implemented partially in this thesis.
CIP stands for .Q in .Erolog.

Clause Generator: Sometimes called Code Generator, a component
of the pre-processor that obtains input from
the Embedded C Recognizer and produces a set of
clauses as a target program.

Embedded C Recognizer (ECR):

Tokenizer:

Sometimes called Syntax Analyzer, a
component of the pre-processor that obtains a
string of tokens from the Lexical Analyzer and
verifies that the string represents a Prolog
program with embedded C statements.

Sometimes called Lexical Analyzer or Scanner, a
component of the pre-processor that converts a
stream of input characters into a stream of
tokens.

53

APPENDIX B

PREDEFINED DATABASE

54

PREDEFINED DATABASE

%%--------------
%% Assignment clauses.
%%--------------

% assign/2
assign(X,Expr) :

X,
X= .. [Pred,Arg], integer(Arg),
expr_value(Vai,Expr),
Z = .. [Pred,Val], retract(X), asserta(Z).

assign(X,Expr) :- ,
X= .. [Pred,Arg), var(Arg),
expr_value(Vai,Expr),
Z = .. [Pred,Val], asserta(Z).

% expr_value/2.
expr_value(Vai,+(Expr1 ,Expr2)) :-

value(A,Expr1), value(B,Expr2), Val is A+ B.
expr_value(Vai,-(Expr1 ,Expr2)) :-

value(A,Expr1), value(B,Expr2), Val is A- B.
expr_value(Vai,-(Expr1)) :-

expr_value(A,Expr1), Val is - A.
expr_value(Vai,/(Expr1 ,Expr2)) :-

value(A,Expr1), value(B,Expr2), Val is A I B.
expr_value(Val, *(Expr1 ,Expr2)) :-

value(A,Expr1), value(B,Expr2), Val is A* B.
expr_value(Vai,Expr1) :-

value(Vai,Expr1).

%Val is the value of a constant, an identifier, or an expression.
value(Val,const(X)) :-

integer(X), Val is X.
value(Val,ldentifier) :-

Identifier= .. [Pred,Arg), var(Arg),
Identifier, Val= Arg.

value(Val,ldentifier) :-
Identifier= .. [Pred,Arg), integer(Arg),
ld= .. [Pred,Arg_1), ld, Val= Arg_1.

value(Vai,Expr) :-
expr_value(Vai,Expr).

55

%%-----
%%Conditional clauses.
%%,-------

% if_then/2
if_then(Cond,True_body) :-

Cond, I,
if_true_body(True_body).

if_then(Cond,True_body).

% if_then_else/3
if_then_else(Cond, True_body ,F alse_body) :

Cond, I,
if_true_body(True_body).

if_then_else(Cond,True_body,False_body) :-
if_false_body(False_body).

% if_true_body/1
if_true_body([Statementl Rest_st]) :-

Statement, if_true_body(Rest_st).
if_true_body(O).

% if_false_body/1
if_false_body([Statementl Rest_st]) :-

Statement, if_false_body(Rest_st).
if_false_body(O).

% while_loop/2
while_loop(Cond,[Statementl Rest_st]) :-

Cond,
wh_body([StatementiRest_st]),
while_loop(Cond,[StatementiRest_st]).

while_loop(Cond,[Statementl Rest_st]).

% while_body/1
wh_body([Statementl Rest_st]) :-

Statement, wh_body(Rest_st).
wh_body(O).

% for_loop/4
for_loop(lnit, Cond, Count, Body) :

I nit,
forloop1 (Cond,Count,Body).

% forloop1/3
forloop1 (Cond,Count,Body) :

Cond,
for_body(Body), Count,
forloop1 (Cond,Count,Body).

forloop1 (Cond,Count,Body).

56

% for_body/1
for_body([StatementiRest_st]) :-

Statement, for_body(Rest_st).
for_body(O).

%%------------------
%% Relational-operator clauses.
%%------------------
% Expr1 == Expr2
equai(Expr1 ,Expr2) :-

expr_value(Val1 ,Expr1),
expr_value(Vai2,Expr2), I,
Val1 === Val2.

% Expr1 I= Expr2
not_equai(Expr1 ,Expr2) :-

expr_value(Val1 ,Expr1),
expr_value(Vai2,Expr2), !,
Val1 \== Val2.

% Expr1 < Expr2
less_than(Expr1 ,Expr2) :

expr_value(Val1 ,Expr1),
, expr_value(Vai2,Expr2), I,

Val1 < Val2.

% Expr1 > Expr2
greater_than(Expr1 ,Expr2) :

expr_value(Val1 ,Expr1),
expr_value(Vai2,Expr2), I,
Val1' > Val2.

% Expr1 =< Expr2
less_or_equai(Expr1 ,Expr2) :

expr_value(Val1 ,Expr1),
expr_value(Vai2,Expr2), !,
Val1 =< Val2.

% Expr1 >= Expr2
greater_or_equai(Expr1 ,Expr2) :

expr_value(Val1 ,Expr1),
expr_value(Vai2,Expr2), I,
Val1 >= Val2.

57

%%,------------------
%% Boolean-operator clauses
%%,-----------------

% Relexpr1 AND Relexpr2
and(Relexpr1,Relexpr2) :- Relexpr1, Relexpr2.

% Relexpr1 OR Relexpr2
or(Relexpr1,Relexpr2) :- Relexpr1 ; Relexpr2.

% NOT Relexpr1
-(Relexpr1) :- \+ Relexpr1.

58

APPENDIX C

-A SUBSET OF QUINTUS PROLOG GRAMMAR RULES

59

** A Subset of Quintus Prolog Grammar Rules **

Refer to [Quintus87] for a complete listing of the rules.

Syntax of Sentences as Terms :
sentence --> clause

directive

clause --> non-unit clause
unit-clause

directive --> command
query

non-unit-clause --> head :- goals

unit-clause

command

query

head

goals

--> head {where head is not otherwise a sentence }

--> :- goals

--> ?- goals

--> term

--> goals , goals
goals ; goals
goal

{ where term is not a number or variable }

60

goal --> term {where term is not a number and is not otherwise a
goals }

Syntax of Terms as Tokens :

term-read-in --> subterm(1200) full-stop

subterm(N) --> term(M) {where M is less than or equal to N}

term(N) --> op(N,fx)
op(N,fy)
op(N,fx) subterm(N-1)

{except the case'-' number}
{if subterm starts with a'(', op must be followed
by a space}

subterm(N-1) op(N,xfx) subterm(N-1)
subterm(N-1) op(N,xfy) subterm(N)
subterm(N) op(N ,yfx) subterm(N-1)
subterm(N-1) op(N,xf)
subterm(N) op(N,yf)

term(1000) --> subterm(999) , subterm(1 000)

61

term(O} --> functor(arguments)
{ provided there is no , space between functor and
the '(' }

(subterm(1200} }
{ subterm(1200} }
list
string
constant
variable

op(N,T) --> name { where name has been declared as an operator of
type T and precedence N }

arguments --> subterm(999)
subterm{999) , arguments

list --> []
[listexpr 1

listexpr --> subterm{999)
subterm(999) , listexpr
subterm(999) I subterm(999)

constant --> atom
number

number --> integer
float

atom --> name {where name is not a prefix operator }

integer --> natural-number
• natural-number

float --> unsigned-float
• unsigned-float

functor --> name

Syntax of Tokens as Character Strings :
name --> quoted-name

quoted-name

quoted-item

word
symbQI
solo-char
[layout-char ... 1
{ layout-char ... }

--> 'quoted-item .. .'

--> char {other than ' }
"

62

word --> small-letter ?alpha ...

symbol --> symbol-char ...
{ except in the case of a full-stop or where the first
2 chars are '/*' }

natural-number --> digit. ..

zero

unsigned-float

simple-float

base ' alphanumeric ...

zero ' char

--> digit..

--> 0

--> simple-float

{ where each alphanumeric must be less than base ;
count 'a' as 10, 'b' as 11, etc. }

{This yields the ASCII equivalent of char }

{ must be in the .range 1 .. 36 }

simple-float E exponent

--> digit... decimal-point digit. ..

decimal-point -->

E

exponent

variable

string

string-item

space

comment

rest-of-line

not-end-of-line

newline

--> E
e

--> digit. ..
- digit. ..
+digit. ..

--> underline ?alpha ...
capital-letter ?alpha ...

--> "?string-item ... "

--> char { other than " }
'"'

--> layout-char ...

--> I* ?char ... *I
{ where ?char... must not contain '*/' }

% rest-of-line

--> newline
?not-end-of-line ... newline

--> { any character except newline }

--> {ASCII code 1 0 }

63

full-stop --> . layout-char

char --> layout-char
alpha
symbol-char
solo-char
punctuation-char
quote-char

layout-char --> {any ASCII char code up to 32 - includes space , tab, newline ,
and del}

alpha --> alphanumeric
underline

alphanumeric --> letter
digit

letter --> capital-letter
small-letter

capital-letter --> AIBICIDIEIFIGIHIIIJIKILIMIN I
OIPIQIRISITIUIVIWIXIYIZ

small-letter --> alblcldlelflglhliljlklllmlnl
olplqlrlsltlulvlwlxlylz

digit --> 0111213141516171819

symbol-char --> +1·1*1/l\1"1<1>1=
1'1-1:1.1?1@1$1&

solo-char --> ·I' I •

punctuation-char --> 01[]1{}1,11

quote-char --> , I "

underline -->

APPENDIX D

PARTIAL LISTING OF THE SOURCE CODE OF ECR

64

65

This is a partial listing of the source code of the ECR

% filename : mat4
% Thu Apr 4 23:04:34 CST 1991

:- [flatten].

%%---
%% TOP PROCEDURE
%%---
% ecr(L) --> sentencep(L1), sentence(L2)
% I sentence(L)
sentences(G,[L1],T,A,C) :-

link(cip_program,G),
gl(sentence,[L2],A,B),
flatten([L1,L2],L),
cip_program(G,[~],T,B,C).

sentence(G,[L],T,A,B) :
link(cip program,G),
cip_program(G,[L],T,A,B).

% sentences(L) --> sentences(L1), sentence(L2)
% sentences(L) --> sentence(L)
sentences(G,[L1],T,A,C) :-

link(sentences,G),
gl(sentence,[L2],A,B),
flatten([L1,L2],L),
sentences(G,[L],T,B,C).

sentence(G,.[L] ,T,A,B) :
link(sentences,G),
sentences(G,[L],T,A,B).

%%--
%% GOAL
%%--
gl(G,A,X,Z) :-

(wf goal (G, , X,) ;
fail_goal (G, X)~ ! , fail) , ! ,
wf goal(G,A,X,Z).

gl(G,A,X~Z) :
dict(C,A1,X,Y),
% link(C,G),
P = .. [C,G,A1,A,Y,Z], call(P),
assertz(wf_goal(G,A,X,Z)).

gl(G,A,X,Z) :-
(wf goal (G, , X,) ;

assertz(fail goal(G,X))) , !, fail.

%%--
%% RULES
%%-------------------------------------~------------------%--------------- SYNTAX OF SENTENCES AS TERMS-------------

% sentence(L) --> claus(L)
I directive(L)

%
% gramrnar_rule(L)

claus(G, [L] ,T,X, Y) :
link(sentence,G),
sentence(G,[L],T,X,Y).

directive(G,[L],T,X,Y) :
link(sentence,G),
sentence(G,[L],T,X,Y).

grammar rule(G,[L],T,X,Y) :-
link(sentence,G),
sentence(G, [L],T,X,Y).

% claus(L) --> non unit clause(L)
% I unit ciause(L)
non unit ciause(G~[L],T,X,Y) :

-link(claus,G),
claus(G,[L],T,X,Y).

unit clause(G,[L],T,X,Y) :
Iink(claus,G),
claus(G, [L],T,X,Y).

% directive(L) --> command(L)
% I query(L)
command(G, ~L],T,X,Y) :-

link(dlrective,G),
directive(G,[L],T,X,Y).

query(G,[L],T,X,Y) :
link(directive,G),
directive(G,[L],T,X,Y).

66

% non_unit_clause(L) --> head(Ll), spc(L2), [58,45], spc(L3),
% goals(L4)
head (G, [Ll] , T, A, F) :-

link(non unit clause,G),
(gl (spc, [L2] ,A, B) ; A = B),
B = [58,45ICJ, .
(gl(spc,[L3],C,D) ; C =D),
gl (goals, [L4] , D, E) ,
flatten([L1,32,58,45,10,32,32,32,L4],L),
non_unit_clause(G, [L],T,E,F).

% unit clause(L) --> head(L)
% where head is not otherwise a sentence.
head(G, [L] ,T,X, Y) :-

link(unit clause,G),
unit clause(G, [LJ,T,X,Y).

% head(L) --> term read in(L)
% I term(O,Ll)-
term(G,[O,Ll],T,X,Y) :-

link(head,G),
head(G, [Ll],T,X,Y).

term read in(G, [L],T,X,Y) :
Iink (head, G) ,
head(G, [L] ,T,X, Y).

67

%% goals(L) --> goals(Ll), spc(L2), [44], spc(L3), goals(L4)
goals(G,[Ll],T,A,F) :-

link(goals,G),
(gl (spcr [L2] ,A, B) ; A = B),
B = [44 C],
(gl(spc,[L3],C,D); C =D),
gl(goals,[L4],D,E),
flatten([Ll,44,10,32,32,32,L4],L),
goals(G, [L] ,T,E,F).

% (I i I]

%% goals(L) --> goals(Ll), spc(L2), (59], spc(L3), goals(L4)
goals(G,[Ll],T,A,F) :-

link(goals,G),
(gl (spcr [L2] ,A, B) ; A = B),
B = [59 C],
(gl(spc,[L3],C,D) ; C =D),
gl(goals,[L4],D,E),
flatten([Ll,10,32,32,32,59,10,32,32,32,L4],L),
goals(G, [L] ,T,E,F).

% goals(L) --> goal(L)
goal(G,[L],T,X,Y) :

link(goals,G),
goals(G,[L],T,X,Y).

% goal(L) --> term read in(L)
% I term(O,L) -
%
% I embedded_C (L)
%
% I embedded_C(Ll), full_stop(L2)
embedded C(G,[L],T,A,B) :-

link(goal,G),
goal(G, [L] ,T,A,B).

embedded C(G,[Ll],T,A,C) :
link {goal, G) ,
gl(full_stop,[L2],A,B),
flatten([Ll,L2],L),
goal(G, [L] ,T,B,C).

term(G, [O,L] ,T,X, Y) :
link(goal,G),
goal(G,[L],T,X,Y).

term read in(G,[L],T,X,Y) :
Iink(goal,G),
goal(G,[L],T,X,Y).

% [1-->1]
%% grammar_rule(L) --> gr_head(Ll), spc(L2), [45,45,62],
% spc(L3), gr body(L4)
gr head(G,[Ll],T,A,F) :-

- link(grammar rule,G),
(gl(spc, (L2]-;-A,B) ; A= B),
B = [45,45,62ICJ,
(gl(spc, (L3] ,C,D) ; C =D),
gl(gr_body,[L4],D,E),
flatten([L1,32,45,45,62,10,32,32,32,L4],L),
grammar_rule(G,[L],T,E,F).

% gr head(L) --> non terminal(L)
non terminal(G,[L],T~X,Y) :

-link(gr head,G),
gr_head(G,[L],T,X,Y).

% [I 1 I]

%% gr head(L) -->non terminal(Ll), spc(L2), [44],
% - spc(L3), terminals(L4)
non terminal(G,[Ll],T,A,F) :-

-link(gr_head,G),
(gl(spcf[L2],A,B) ; A= B),
B = [44 1c],
(gl,(spc, [L3] ,C,D) ; C = D),
gl(terminals,[L4],D,E),
flatten([Ll,32,44,32,L4],L),
gr head(G,[L],T,E,F).

%% gr_body(L) --> gr_body(Ll), spc(L2), [44],
% , spc(L3), gr_body(L4)
gr body (G, [Ll] , T , A, F) : -

- link(gr_body,G),
(gl(spcf[L2],A,B) ; A= B),
B = [441C],
(gl(spc, [L3] ,C,D) ; C = D),
gl(gr_body,[L4],D,E),
flatten([L1,44,10,32,32,32,L4],L),
gr_body(G,[L],T,E,F).

%% gr body(L) --> gr body(Ll), spc(L2), [59],
% - spc(L3), gr_body(L4)
gr body(G,[Ll],T,A,F) :-

- link(gr_body,G),
(gl(spcr[L2],A,B) ; A= B),
B = [59 C],
(gl(spc,[L3],C,D) ; C =D),
gl(gr_body,[L4],D,E),
flatten([L1,10,32,32,32,59,10,32,32,32,L4],L),
gr_body(G,[L],T,E,F).

% gr_body(L) --> non_terminal(L)
%
% terminals(L)
%
% I gr condition(L)
non terminai(G,[L],T,X,Y) :-

-link(gr_body,G),
~r_body(G,[L],T,X,Y).

term1.na 1 s (G, [L] , T, X, Y) : -
link(gr_body,G),
gr body(G,[L],T,X,Y).

gr condition(G,[L],T,X,Y) :
- link(gr_body,G),

gr_body(G,[L],T,X,Y).

% non terminal(L) --> term read in(L)
% non-terminal(L) --> term(O,L)
term read in(G,[L],T,X,Y) :-

link(non terminal,G),
non terminal(G,[L],T,X,Y).

68

term(G,[O,L],T,X,Y) :
link(non terminal,G),
non_terminal(G,[L],T,X,Y).

% terminals(L) --> list(L)
% I string(L)
list(G,[L],T,X,Y) :-

link(terminals,G),
terminals(G,[L],T,X,Y).

string(G,[L],T,X,Y) :
link(terminals,G),
terminals(G, [L],T,X,Y).

%% gr condition(L) --> [123], goals(L1), [125]
terminal15(G,[123J,T,A,D) :-

link(gr condition,G),
gl(goalsi[L1J,A,B),
B = [125 C],
flatten([123,L1,125],L),
gr condition(G, [L],T,C,D).

69

%---------------- SYNTAX OF TERMS AS TOKENS --------------1
%term read in(L) --> subterm(1200,L1), full_stop(L2)
subterm(G,[l200,L1J,T,X,Z) :-

link(term_read_in,G),
gl(full_stop,[L2],X,Y),
flatten([L1,L2],L),
term_read_in(G,[L],T,Y,Z).

% subterm(N,L) --> term(M,L), {M=<N}
term(G,[M,L],T,X,Y) :

link(subterm,G),
subterm(G,[N,L],T,X,Y),
integer(M), integer(N),
M =< N.

%['('] [')']
%% term(O,L) --> functor(L1), [40], arguments(L2}, [41]

funct(G,[Ll],T,A,E) :
link(term,G),
A= [40IBJ,
gl(arguments,[L2],B,C),
c = [41IDJ,
flatten([L1,40,L2,41],L),
term(G,[O,L],T,D,E).

%% term(O,L) --> [40], subterm(1200,L1), [41]
terminal14(G, ,T,A,D) :-

link(term~G),
gl(subterm,[1200,L1],A,B),
B = [41ICJ,
flatten([40,L1,41],L),
term(G,[O,L],T,C,D).

% [I { I]

%% term(O,L) --> [123], subterm(1200,L1),
terminal13(G, ,T,A,D) :-

link(term~G),
gl(subterm, [1200,L1],A,B),
B = [125ICJ,
flatten([123,L1,125],L),
term(G, [O,L] ,T,C,D).

% term(O,L) --> list(L)
I string(L) %

%
%
%

I constant(L)

% , I variable (L)
list(G,[L],T,X,Y) :-

link (term, G) ,
term(G,[O,L],T,X,Y).

strin9(G,[L],T,X,Y) :
llnk(term,G),
term (G, [0, L] , T, X, Y) .

constant(G,[L],T,X,Y) :
link(term,G),
term(G, [O,L] ,T,X, Y).

variable(G,[L],T,X,Y) :-
link(term,G),
term(G, [O,L] ,T,X, Y).

% term(N,L) --> op(N,fx,L)
op(G,~N,fx,L],T,X,Y) :

llnk (term, G) ,
term(G,[N,L],T,X,Y).

% term(N,L) --> op(N,fy,L)
op(G,~N,fy,L],T,X,Y) :

llnk(term,G),
term(G,[N,L],T,X,Y).

[I } I]

[125]

% term(N,L) --> op(N,fx;L1), {M is N-1}, subterm(M,L2)
op(G,~N,fx,L1],T,X,Z) :-

llnk(term,G),
integer (N) ,
M is N-1,
gl(subterm,[M,L2],X,Y),
flatten([L1,L2],L),
term (G, [N , L] , T , Y , z) o

% term(N,L) -->
%

op(N,fy,L1), subterm(N,L2)
{flatten([L1,L2],L) }.

%
%
%
op(G,[N,fy,L1],T,X,Z) :

link(term,G),
gl(subterm,[N,L2],X,Y),
flatten([L1,L2J,L),
term (G, [N, L] , T, Y, Z) o

if subterm starts
with a 1 (1 , op must
be followed by a space

70

% term(N,L) --> {M is N-1}, subterm(M,L1), op(N,xfx,L2),
% subterm(M,L3), flatten([L1,L2,L3],L)}

subterm(G, [M,L1] ,T,X,V) :
link(term,G),
gl(op,[N,xfx,L2],X,Y),
9l(subterm,[M,L3J,Y,Z),
1nteger(M),
integer (N) ,
Ml is N-1,
M1 =:= M,
flatten([L1,L2,L3],L),
term(G,[N,L],T,Z,V) o

71

% term(N,L) --> {M is N-1}, subterm(M,L1), op(N,xfy,L2),
% subterm(N,L3)
subterm(G, [M,L1],T,X,V) :-

link (term, G) ,
gl(op,[N,xfy,L2],X,Y),
gl(subterm,[N,L3],Y,Z),
integer (M) ,
integer (N) ,
M1 is N-1,
M1 =:= M,
flatten([L1,L2,L3],L),
term (G , [N , L] , T , Z , V) o

% term(N,L) --> subterm(N,L1), op(N,yfx,L2), {M is N-1},
% subterm(M,L3)
subterm(G, [N,L1] ,T,X,V) :

link(term,G),
9l(op, [N,yfx,L2] ,X,Y),
1nteger(N),
M is N-1,
gl(subterm,[M,L3],Y,Z),
flatten([L1,L2,L3],L),
term(G,[N,L],T,Z,V).

% term(N,L) --> {M is N-1}, subterm(M,L1), op(N,xf,L2)
subterm(G,[M,L1],T,X,Z) :-

link(term,G),
gl(op, [N,xf,L2],X,Y),
integer (M) ,
integer(N),
M1 is N-1,
M1 =:= M,
flatten([L1,L2J,L),
term (G, [N, L] , T, Y, Z) .

% term(N,L) --> subterm(N,L1), op(N,yf,L2)
subterm (G, [N, L1] , T, X, Z) : -

link (term, G) ,
gl (op, [N, yf, L2 J , X, Y) ,
flatten([L1,L2J,L),
term(G,[N,L],T,Y,Z).

% [I 1 I]

%% term(1000,L) --> subterm(999,L1), spc(L2), [44],
% spc(L3), subterm(1000,L4)
subterm(G, [999,L1] ,T,A,F) :-

link(term,G),
(gl (spc, [L2] ,A, B) ; A = B),

B = [44ICJ,
(gl(spc,[L3],C,D) ; C =D),
gl(subterm,[1000,L4],D,E),
flatten([L1,44,L4],L),
term(G,[1000,L],T,E,F).

% arguments(L) --> subterm(999,L)
subterm(G, [999,L] ,T,X, Y) :

link(arguments,G),
arguments(G,[L],T,X,Y).

%[1,1]
% arguments(L) --> subterm(999,L1), spc(L2), [44],
% spc(L3), arguments(L4)
subterm(G, [999,L1] ,T,A,F) :-

link(arguments,G),
(gl(spcr[L2],A,B) ; A= B),
B = [44 C] I

(gl(spc,[L3],C,D) ; C =D),
gl(arguments,[L4],D,E),
flatten([L1,44 1L4] 1L),
arguments(G 1 [L] 1T 1E,F).

%[1[1] [1]1]
% list(L) --> [91] 1 [93]
terminal12(G, ,T 1A,C) :

link(list-;G)1
A= [93IBJ,
flatten([91 193],L),
list(G 1 [L] 1 T 1 B 1 C).

%[1[1] [IJIJ
% list(L) --> [91], listexpr(L1) 1 [93]
terminal12(G, , ,A,D) :-

link(list-;G),
gl(listexpr1 [L1],A,B),
B = [93ICJ,
flatten([91,L1,93],L),
list(G 1 [L], 1 C 1 D).

% listexpr(L) --> subterm(999,L)
subte~m(G, ~999, L] ,T, X1Y) :

l1nk(l1stexpr,G),
listexpr(G,[L],T,X,Y).

% listexpr(L) --> subterm(999,L1), spc(L2), [44],
% spc(L3) 1 listexpr(L4)
subterm(G, ~999,L1],T,A,F) :-

link(llstexpr,G),
(gl(spcl [L2] 1 A 1 B) ; A= B) 1

B = [44 C] 1

(gl(spc 1 [L3],C,D) ; C =D),
gl(listexpr 1 [L4] 1D1E) 1
flatten([L1,44,L4],L),
listexpr(G,[L],T,E 1F).

72

% [I I I]
% listexpr(L) --> subterm(999,L1), [124], subterm(999,L2)
subterm(G,[999,L1],T,A,D) :-

link(listexpr1G),

A= [124IBJ,
gl(subterm,[999,L2],B,C),
flatten([L1,124,L2],L),
listexpr(G,[L],T,C,D).

% constant(L} --> atom(L)
% I number(L)
atom(G,[L],T,X,Y) :-

link(constant,G),
constant(G,[L],T,X,Y).

number (G , [L] , T , X , Y) : -
link(constant,G),
constant(G,[L],T,X,Y).

% number(L} --> integer(L)
% I float(L)
integer(G, [L],T,X,Y) :-

link(number,G),
number(G,[L],T,X,Y).

float(G, [L] ,T,X, Y) :
link(number,G),
number(G,[L],T,X,Y).

% atom(L) --> namel{L)
namel(G, [L] ,T,X,Y) :

link(atom,G),
atom{G, [L] ,T,X, Y).

% functor(L) --> namel(L)
namel(G,[L],T,X,Y) :

link(funct,G),
funct(G, [L],T,X,Y).

% integer(L) --> natural number(L)
natural number(G,[L],T,X~Y) :

link(integer,G),
integer(G,[L],T,X,Y).

% integer(L) --> [45], natural number{Ll),
% {flatten([45,Ll],L)}
terminalll(G,_,T,A,C) :-

link(integer,G),
gl(natural number, [Ll],A,B),
flatten([4S,Ll],L),
integer(G,[L],T,B,C).

% float(L) --> unsigned float(L)
unsigned float(G,[L],T,X,Y) :

link(float,G),
float(G, [L],T,X,Y).

% float(L) --> [45], unsigned_float{Ll),
% {flatten([45,Ll],L)}
terminallO(G, ,T,A,C) :-

link(float,G),
gl(float,[Ll],A,B),
flatten((45,Ll],L),
unsigned_float(G,[L],T,B,C).

73

74

% filename: crecg
% Tue Apr 23 10:51:05 CDT 1991

:- [1 link_rtc_ttl.pl 1].

%%---
%% RULES
%%---
% declaration --> type spec, c_spc, init_decl_list,
% c_spc
type spec(G,[L1],T,A,F) :-

lTnk(declaration,G),
gl(c spc,[L2],A,B),
gl(init decl list,[L3J,B,C),
c = [59TDJ, -
(

gl(c_spc,[L4],D,E) .
' D = E, L4 = []

) I

flatten([L1,L2,L3,59,L4],L),
declaration(G,[L],T,E,F).

% init decl list --> declarator, c_spc
% init-decl-list --> declarator, c_spc,
% init=decl=list, c_spc
declarator(G,[L1],T,A,C) :-

link(init decl list,G),
(- -
gl(c_spc, [L2],A,B)

' A = B, L2 =[]

) '
flatten([L1,L2],L),
init_decl_list(G, [L],T,B,C).

declarator(G,[Ll],T,A,H) :
link(init decl list,G),
(- -
gl(c_spc,[L2],A,B)

' A = B, L2 =[]
) I

B = [441 C] I

(gl(c_spc, [L3],C,D)
;
c = D I L3 = []) '

gl(init_decl_list, [L4],D,E),
(gl(c spc,[L5],E,F)

' E = F I L5 = []) I

flatten([L1,L2,44,L3,L4,L5],L),
init decl list(G,[L],T,F,H). - -

% declarator --> identifier
identifier(G, [L],T,A,B) :

link(declarator,G),
declarator(G,[LJ,T,A,B}.

I I
f I c_spc,

I • I
I I

75

% declarations --> declaration, c spc
% declarations --> declarations, c spc, declaration, c_spc
declaration(G,[Ll],T,A,C) :- -

link(declarations,G),
(gl(c_spc,[L2],A,B) .

I

A= B, L2 =[]),
flatten([Ll,L2],L),
declarations(G,[L],T,B,C).

declarations(G,[Ll],T,A,E) :-
link(declarations,G),
(gl(c_spc,[L2],A,B) .

I

A= B, L2 =[]),
gl(declaration,[LJ],B,C),
(gl(c_spc,[L4],C,D)

;
C = D, L4 =[]),

flatten([Ll,L2,L3,L4],L),
declarations(G,[L],T,D,E).

% c_space --> c_layout_chars
c layout chars(G,[L],T,X,Y) :

- link(c_space,G),
c_space(G,[L],T,X,Y).

% c spc --> c space
% - I TJ
c space(G,[L],T,X,Y) :

- link(c_spc,G),
c_spc(G,[L],T,X,Y).

% c layout chars --> c layout char, c_layout_chars
% - - I c_layout_cfiar
c layout char(G,[Ll],T,X,Z) :-

- link(c_layout_chars,G),
gl(c_layout_chars,[L2],X,Y),
flatten([Ll,L2],L),
c layout chars(G,[L],T,Y,Z).

c layout char(G,[L],T,X,Y) :-
- link(c_layout_chars,G),

c_layout_chars(G,[L],T,X,Y).

% identifier -->
% (c letter; under score char),
% (true; dgts), - -
% (identifier ; true)
c letter(G,[Ll],T,A,D) :-

- link(identifier,G),
(A= B, L2 =[] ;

gl(dgts,[L2],A,B)),
(gl(identifier,[LJ],B,C)

;
(B=C, LJ = [])),

flatten([Ll,L2,L3],L),
identifier(G,[L],T,C,D).

under_score_char(G,[95],T,A,D) :
link(identifier,G),
(A= B, L2 =[]

;
gl(dgts,[L2],A,B)

) ,
(gl(identifier,[L3],B,C) .

I

(B=C, L3 = [])
) ,
flatten([95,L2,L3J,L),
identifier(G, [L],T,C,D).

% dgts --> dgts, c_digit
dgts(G,[L1],T,A,C) :

link(d9ts,G),
gl(c_d1git,[L2],A,B),
flatten([L1,L2],L),
dgts(G,[L],T,B,C).

% d9t~ --> c_digit
c d1g1t(G,[L],T,A,B) :

- link(dgts,G),
dgts(G,[L],T,A,B).

% c constant --> float canst
% I int_const
float const(G,[L],T,A,B) :-

link(c_constant,G),
c constant(G,[L],T,A,B).

int const(G,[L],T,A,B) :
Iink(c_constant,G),
c_constant(G,[L],T,A,B).

% float canst --> float canst 1
float canst 1(G,[L],T,A~B) :-

link(float const,G),
float const(G,[L],T,A,B).

76

% float canst 1 --> fract canst, (true ; exponent_part)
fract const(G~[L1],T,A,C)-:-

link(float canst 1,G),
((A=B, L2 ~ []) ;
(gl(exponent_part,[L2],A,B))

) ,
flatten([Ll,L2J,L),
float_const_l(G,[L],T,B,C).

% float_const_l --> dgts, exponent_part
dgts(G,[L1],T,A,C) :-

link(float canst l,G),
gl(exponent_part~[L2],A,B),
flatten([Ll,L2],L),
float_const_l(G,[L],T,B,C).

% fract_const --> dgts,
% fract canst --> dgts,
dgts(G,(Ll],T,A,D) :-

link(fract_const,G),

I I . , dgts
I I

A= [46jB],
gl(dgts,[L2],B,C),
flatten([L1,46,L2],L),
fract_const(G,[L],T,C,D).

dgts (G, [L1] , T, A, C) : -
link(fract const,G),
A= [46jB]-;
flatten([L1,46],L),
fract_const(G,[L],T,B,C).

% exponent_part -->
% (1 e 1 ; 1 E 1),

% (true j I + I j I - I) 1

% dgts
termnl5(G,[L1],T,A,D) :-

link(exponent_part,G),
(L1 = 101; L1 = 69),
((A=B, L2=[]); (A=[43jB], L2=[43])

(A=[45jB], L2=[45])
) '
gl(dgts,[L3],B,C),
flatten([L1,L2,L3],L),
exponent part(G,[L],T,C,D).

% int_const --> nonzero_dgt, dgts
% int_const --> nonzero_dgt
nonzero dgt(G,[L],T,A,B) :-

link(int const,G),
int_const(G,[L],T,A,B).

nonze~o_d9t(G, [L1],T,A,C) :-
11nk(1nt const,G),
gl(dgts,[L2],A,B),
flatten([L1,L2],L),
int_const(G,[L],T,B,C).

% char_const --> 1111 , c_chars,
termnl6 (G, [9 6] , T, A, D) : - ·

link(char const,G),
gl(c chars,[L1],A,B),
B = [96j C],
flatten([96,L1,96],L),
char_const(G,[L],T,C,D).

I I I I

% expression --> primary expr
% expression --> expression, c spc, assign_opr, c_spc,
% expression -
% expression --> expression, c_spc, bin_opr, c_spc,
% expression
primary expr(G,[L],T,A,B) :-

link(expression,G),
expression(G,[L],T,A,B).

expression(G,[L1],T,A,F) :
link(expression,G),
(g 1 (c s pc , [L2] , A , B)

I

A = B , L2 = []) ,
gl(assign_opr,[L3],B,C),
(gl(c spc,[L4],C,D)

C = D , L4 = []) ,

77

gl(expression,[L5],D,E),
flatten([Ll,L2,L3,L4,L5],L),
expression(G,[L],T,E,F).

expression(G, [Ll] ,T,A,F) :
link(expression,G),
(gl(c_spc,[L2],A,B) .

I

A= B, L2 =[]),
gl(bin_opr,L3,B,C),
(gl(c_spc,[L4],C,D) .

I

c = D I L4 = []) I

gl(expression,[L5],D,E),
flatten([Ll,L2,L3,L4,L5],L),
expression(G,[L],T,E,F).

% primary_expr
%

--> identifier
I c constant

%
%
%

I string_literal

% I 1 (1 , expression,
identifier(G,[L],T,A,B) :-

link(primary expr,G),
primary_expr(G,[L],T,A,B).

c constant(G,[L],T,A,B) :-
- link(primary expr,G),

primary_expr(G,[L],T,A,B).
termnl8(G,[40],T,A,D) :

link(primary expr,G),
gl(expression,[Ll],A,B),
B = [41IC] I

flatten([40,L1,41],L),
primary_expr(G,[L],T,C,D).

% embedded_C(L) --> compound_st(L)
compound st(G,[L],T,X,Y) :

link(embedded C,G),
embedded_C(G,(L],T,X,Y).

% statement -->
% I compound_st
%
% expression_st
%
% selection st
%
% I iteration_st
compound st(G,[L],T,A,B) :-

link(statement,G),
statement(G,[L],T,A,B).

expression st(G,[L],T,A,B) :
link(statement,G),
statement(G,[L],T,A,B).

selection st(G,[L],T,A,B) :-
link(statement,G),
statement(G,[L],T,A,B).

iteration_st(G,[L],T,A,B) :-

78

I) I

%
%
%

link(statement,G),
statement(G,[L],T,A,B).

compound st -->
1 { 1 , (true; c_spc, declarations), c_spc,

% I} I
(true; stmts), c_spc,

termnl9(G, [123] ,T,A,I) :-
link(compound_st,G),
(A=C, Ll=[], L2 = [] .

I

(gl(c spc,[Ll],A,B)

A = B, Ll =[]
) ,
gl(declarations,[L2],B,C)

) , ' '

(gl(c_spc,[L3],C,D) .
I

C = D, L3 =[]
) ,
(D=E, L4= [] ;

gl(stmts,[L4],D,E)
) I

(gl(c_spc,[LS],E,F) .
I

E = F, L5 =[]
) ,
F = [125IHJ,
flatten([123,Ll,L2,L3,L4,L5,125],L),
compound_st(G,[L],T 1H,I).

% stmts --> statement
% stmts --> stmts,c_spc,statement
statement(G, [L] ,T,A,B) :-

link(stmts,G),
stmts(G,[L],T,A,B).

stmts(G,[Ll],T,A,D) :
link(stmts,G),
(gl(c_spc,[L2],A,B)

A = B, L2 =[]
) ,
gl(statement,[L3],B,C),
flatten([Ll,L2,L3],L),
stmts(G,[L],T,C,D).

% expression_st -->(true; expression), c_spc,
termnllO(G, [59] ,T,A,B) :

link(ex~ression_st1G),
express1on_st(G,[59] 1T,A,B).

c spc(G,[Ll],T,A,C) :-
- link(ex~ression_st,G),

A= [591B],
flatten([L1,59],L),
expression st(G,[L],T,B,C).

expression(G,[Ll],T,A,D) :
link(expression_st,G),

I • I
I

79

(gl(c_spc, [L2],A,B) . ,
A = B, L2 =[]

) I

B = (59ICJ,
flatten([Ll,L2,59],L),
expression_st(G,[L],T,C,D).

% selection st -->

80

'if', T(', c_spc, expression, c_spc, ') ', c_spc, %
statement
% selection st -->
% 'if', T(', c_spc, expression, c_spc, ') ',
% c_spc, statement, c_spc, 'else', c_spc, statement
%
%%***eliminating ambiguity for selection st rules:
% -
%% selection st --> matched st
%% I unmatched st
matched_st(G,[L],T,A,B) :-

link(selection st,G),
selection st(G~(L],T,A,B).

unmatched st(G,[L],T,A,B) :
link(selection st,G),
selection_st(G~(L],T,A,B).

% matched st
%

--> 'if', c spc, '(', c spc, expression, c spc,
1) I C SpC matched-St, C SpC, 1 elSe 1 1 C SpC 1 I _ I _ _ _

%
%
%
%
%
%

matched st
compound=st

expression_st

iteration st
% unmatched

I
I

st --> 'if' c spc '(' c spc expression I_ I I_ I I

%
%
%
%
%
%
%
%

c_spc, ') ',c_~pc, unmatched st
'if', c spc, '(', c spc, express1on, c spc,
') ', c_spc, matched=st, c_spc, 'else',-c_spc,
unmatched st

compound=st

expression_st

% I iteration_st
termnlll(G,[l05,102,40],T,A,P) :-

link(matched_st,G),
(gl(c_spc,[Ll],A,B)

A = B, Ll =[]
) I

gl(expression,[L2],B,C),
(gl(c spc,[L3],C,D)

I

C = D, L3 = []
) I

D = [41IEJ,
(gl(c_spc, [L4],E,F) .

I

E = F I L4 =[]

) I

gl(matched_st,[L5],F,H),
(gl(c_spc,[L6],H,I) .

I

H = I, L6 =[]
) I

I= [101,108,115,101IJJ,
(gl(c_spc,[L7],J,K) .

I

J = K, L7 = []
) I

gl(matched_st,[LS],K,M),
(gl(c_spc,[L9],M,N) .

I

M = N I L9 =(]

81

) I

flatten([105,102,40,L1,L2,L3,41,L4,L5,L6,101,108,115,101,
L7 ,L8,L9] ,L) I

matched st(G,[L],T,N,P).

compound st(G,[L],T,A,B) :
link(matched_st,G),
matched_st(G,[L],T,A,B).

expression st(G,[L],T,A,B) :
link(matched_st,G),
matched_st(G,[L],T,A,B).

iteration st(G,[L],T,A,B) :-
link(matched_st,G),
matched_st(G,[L],T,A,B).

termnl11(G, (105,102,40] ,T,A,J) :
link(unmatched st,G),
(gl(c_spc,[L1],A,B) .

I

A = B, L1 =(]
) I

gl(expression,[L2],B,C),
(gl(c_spc,[L3],C,D)

C = D, L3 =(]
) I

D = [41IEJ,
(gl(c spc,[L4],E,F) .

I

E=F, L4=[]
) I

gl(unmatched_st,[L5],F,H),
(gl(c_spc,[L6],H,I)

;
H = I I L6 =[]

) I

flatten([105,102,40,L1,L2,L3,41,L4,L5,L6],L),
unmatched_st(G,[L],T,I,J).

termnl11(G, (105,102,40] ,T,A,P) :
link(unmatched_st,G),
(gl(c_spc,[L1],A,B)

;

A = B, Ll =[]
) '
gl(expression,[L2],B,C),
(gl(c_spc,[L3],C,D) . ,
C = D, L3 =[]

) '
D = [41IEJ,
(gl(c_spc,[L4],E,F) . ,
E=F, L4=[]

) '
gl(matched st,[LS],F,H),
(gl(c spc;[L6],H,I) . ,
H = I, L6 =[]

) ' .
I= [101,108,115,101IJ],
(gl(c_spc,[L7],J,K) . ,
J = K, L7 =[]

) '
gl(unmatched_st,[L8],K,M),
(gl(c_spc,[L9],M,N) . ,
M = N, L9 =[]

82

) '
flatten([105,102,40,Ll,L2,L3,41,L4,L5,L6,101,108,115,101,

L 7, L8, L9] , L) ,
unmatched_st(G,[L],T,N,P).

compound st(G,[L],T,A,B) :-
link(unmatched st,G),
unmatched_st(G;[L],T,A,B).

expression st(G,[L],T,A,B) :-
link(unmatched_st,G),
unmatched st(G,[L],T,A,B).

iteration st(G,[L],T,A,B) :
link(unmatched_st,G),
unmatched_st(G,[L],T,A,B).

% iteration st -->
% 'whileT, '(', c_spc, expression, c_spc,') ',c_spc,
% statement
% iteration st -->
% 'do', c_spc, statement, c_spc, 'while', '(',
% . c_s~c, expression, c_spc, ') ',c_spc,';'
% 1terat1on st -->
% 'for' '(' c spc , ' - ' % (true; expression, c_spc), ';',
% c_spc,
% (true; expression, c_spc), ';',
% c_spc,
% (true; expression, c_spc),
% ') ', c_spc, statement
termnl12(G,[l19,104,105,108,101,40],T,A,I) :-

link(iteration_st,G),

{ gl{c_spc 1 [L1] 1A 1B)

A = B 1 L1 =[]
) I

gl{expression 1 [L2] 1B 1C) 1
{ gl{c spc 1 [L3] 1C1D) .

' C = D 1 L3 = []
) I

D = [41IEJ I

(gl(c_spc 1 [L4] 1E 1F) .
' E = F I L4 =[]

) I

83

gl(statement 1 [L5] 1F 1H) 1
flatten([119 1104 1105 1108 1101 140 1L1 1L2 1L3 141 1L4 1L5] 1L) 1
iteration_st(G 1 [L] 1T 1H1I).

termnl13(G 1 [100 1111] 1T 1A 1M) :
link(iteration st 1G) 1

gl(c spc,[L1] 1A1B) 1
gl(statement 1 [L2] 1B 1C) 1
(gl(c spc 1 [L3] 1C1D) .
' C = D 1 L3 =[]

) I

D = [119 1104 1105 1108 1101 140IEJ 1
(gl(c_spc 1 [L4] 1E 1F)

E = F I L4 = []
) I

gl(expression 1 [L5] 1F 1H) 1
(gl(c spc 1 [L6] 1H1I)

H = I I L6 = []
) I

I= [41159IJJI
{ gl{c_spc 1 [L7] 1J 1K)

J = K 1 L7 =[]
) I

flatten([100 1111 1L1 1L2 1L3 1119 1104 1105 1108 1101 140 1
L41L51L61411591L7]1L) I

iteration_st(G 1 [L] 1T 1K1M).

termnl14(G 1 [102 1111 1114 140],T 1A 1U) :
link{iteration_st1G) 1

{ gl(c spc 1 [L1] 1A 1B)

A=B 1 L1 =[]
) I

(gl(expression 1 [L2] 1B 1C) 1
(gl(c spc 1 [L3] 1C1D) .

' C=D 1 L3 = []
.
' B=D 1 L2=[] 1 L3=[]

) I

D=[59l E] I

(gl(c_spc,[L4],E,F)

E=F, L4 =[]
) ,
(gl(expression,[L5],F,H),

(gl(c_spc,[L6],H,I)

)

.
I

H=I, L6 =[]

F=I L5=[], L6=[]),
I=[59lJ],
(gl(c_spc,[L7],J,K) .

I

J=K, L7 =[]
) ,
(gl(expression,[LS],K,M),

(gl(c_spc,[L9],M,N)

) .
I

.
I

M=N, L9 =[]

K=N, L8=[] 1 L9=[]
) ,
N=[41IPJ,
(gl(c spc,[LlO],P,Q) .

I

P=Q, LlO =[]
) ,
gl(statement,[Lll],Q,R),
(gl(c_spc,[L12],R,S) .

I

R=S, L12 =[]
) ,
flatten([102 1 111,114,40,Ll,L2,L3,59 1 L4 1 L5 1 L6,59,

L7,L8,L9,41,L10,Lll,Ll2],L),
iteration_st(G,[L],T,S,U).

termnl16(G,[102,111,114,40,59,59,41],T,A,C) :
link(iteration st,G),
gl(statement,[Ll],A,B),
flatten([102,111,114,40,Ll,59,59,41,Ll],L),
iteration_st(G,[L],T,B,C).

84

85

%--
% DICTIONARY
%--
% not_end_of_line(A) --> {any character except newline}
dict(not_end_of_line,[A],[AIXJ,X) :- A\== 10.

% zero(A) --> [48]
dict(zero, [48], [48IXJ ,X).

% decimal_point(L) --> [46]
dict(decimal_point,[46],[46IXJ,X).

% e symbol(L) --> [69]
% - 1 [lolJ
dict(e symbol,[69],[69IXJ,X).
dict(e=symbol,[lOl],[lOliXJ,X).

% newline(L) --> [10].
dict(newline,[lO],[lOIXJ,X).

% layout char(A) --> [OJ I [9] I [10] I [27] I [32] I [127]
dict(layout_char,[A],[AIXJ,X) :-

~
0

~ 0

~
0

~ 0

~
0

~ 0

%
~
0

~ 0

(A == 0 ; A == 9 ; A == 10 ;
A== 27 ; A== 32 ; A== 127).

capital letter(A) -->
[65] [66]

[71] [72]

[77] [78]

[83] [84]

[67]

[73]

[79]

[85]

% 1 [89J 1 [90J
dict(capital_letter,[A],[AIXJ,X) :-

A >= 65, A =< 90.

[68] [69] [70]

[74] [75] [76]

[80] [81] [82]

[86] [87] [88]

% small letter(A) -->
% - [97J 1 [98J 1

% I [103J 1 [104J
(99J 1 [looJ 1 [101J 1 c1o2J
1 [105J I [106J 1 [107J 1 [losJ

%
~ 0 1 [109J 1 [lloJ [111]
%
~ 0 1 [115J 1 [116J [117]
%
% 1 [121J 1 c122J
dict(small_letter,[A],[AIXJ,X) :-

A>= 97, A=< 122.

[112]

[118]

[113]

[119]

[114]

[120]

% digit(A) --> [48J 1 [49J 1 [50J I [51J I [52J I [53J I [54J
% l [55J 1 [56J 1 [57J
dict(digit,[A],[AIXJ,X) :-

A>= 48, A=< 57.

% symbol_char(A)I --> (36] I (37] I (38]
% [42J 1 [43J 1 [45J 1 [46J

[60J 1 [61J 1 [62J 1 [63J

[47J 1 [58J

[64]

%
%

1 [92J 1 [94J 1 [96J

% 1 [126J
dict(symbol_char,[A],[AIXJ,X) :-

((A >= 3 6 , A =< 3 8) ;
A == 42 ; A == 43 ;
{A >= 4 5 , A =< 4 7) ;
A == 58 ;
{A >= 60,

A == 92 ;
A == 96 ;

A =< 64) ;
A == 94 ;
A== 126).

% solo char(L) --> [59] I [33]
dict(solo_char,[A],[AIXJ,X) :-

(A == 59 ; A == 3 3 L 0

86

% punctuation_char{A) --> [40] I [41] I [44] I [91] I [93]
% . 1 [123J 1 [1241 1 [125J
dict(punctuation_char,[A],[AIXJ,X) :-

(A == 40 ; A == 41 ; A == 44 ;
A == 91 ; A == 93 ; A == 123 ;
A== 124 ; A== 125).

% quote char(A) --> [39] I [34]
dict(quote_char,[A],[AIXJ,X) :

(A== 39 ; A== 34).

% underline(L) --> [95]
dict(underline,[95],[95IXJ,X).

87

%%---%% TERMINATE CLAUSES
%%---
sentence(sentence,T,T,X,X).
sentences(sentences,T,T,X,X).
claus(claus,T,T,X,X).
directive(directive,T,T,X,X).
non unit clause(non unit clause,T,T,X,X).
unit_clause(unit_clause,T,T,X,X).
command(command,T,T,X,X).
query(query,T,T,X,X).
head(head,T,T,X,X).
goals(goals,T,T,X,X).
goal(goal,T,T,X,X).
grammar rule(grammar rule,T,T,X,X).
gr_headTgr_head,T,T,X,X).
gr_body(9r_body,T,T,X~X).
non term1nal(non term1nal,T,T,X,X).
terminals(terminals,T,T,X,X).
gr condition(gr condition,T,T,X,X).
term_read_in(term_read_in,T,T,X,X).
arguments(arguments,T,T,X,X).
list(list,T,T,X,X).
listexpr(listexpr,T,T,X,X).
constant(constant,T,T,X,X).
number(number,T,T,X,X).
atom(atom,T,T,X,X).
funct(funct,T,T,X,X).
integer(integer,T,T,X,X).
float(float,T,T,X,X).
token(token,T,T,X,X).
namel(namel,T,T,X,X).
quoted name(quoted name,T,T,X,X).
quoted-items(quoted items,T,T,X,X).
quoted=item(quoted_Item,T,T,X,X).
word(word,T,T,X,X).
alphas(alphas,T,T,X,X).
symbol(symbol,T,T,X,X).
symbol_chars(symbol_chars,T,T,X,X).
natural number(natural number,T,T,X,X).
alphanumerics(alphanumerics,T,T,X,X).
base(base,T,T,X,X).
zero(zero,T,T,X,X).
unsigned float(unsigned float,T,T,X,X).
simple fioat(simple float,T,T,X,X).
decimai_point(decimal_point,T,T,X,X).
e_symbol(e_symbol,T,T,X,X).
exponent(exponent,T,T,X,X).
variable(variable,T,T,X,X).
string(string,T,T,X,X).
string items(string items,T,T,X,X).
string=item(string_Item,T,T,X,X).
space(space,T,T,X,X).
spc(spc,T,T,X,X).
comment(comment,T,T,X,X).
rest of line(rest of line,T,T,X,X).
not end-of lines(not-end of lines,T,T,X,X).
not-end-of-line(not end of Iine,T,T,X,X).
newiineTnewline,T,T~X,X). -

full stop(full stop,T,T,X,X)o
chars(chars,T,T,X,X)o
char(char,T,T,X,X)o
layout_chars(layout_chars,T,T,X,X)o
layout_char(layout_char,T,T,X,X)o
alpha(alpha,T,T,X,X)o
alphanumeric(alphanumeric,T,T,X,X)o
letter(letter,T,T,X,X) o
capital_letter(capital_letter,T,T,X,X)o
small letter(small_letter,T,T,X,X) o
digits(di~its,T,T,X,X) o
digit(dig1t,T,T,X,X)o
symbol_char(symbol_char,T,T,X,X)o
solo char(solo char,T,T,X,X)o
punctuation_char(punctuation_char,T,T,X,X)o
quote char(quote char,T,T,X,X)o
underline(underlTne,T,T,X,X)o

88

89

%---
% LINK
%---
link(alpha,alpha).
link(alpha,alphas).
link(alpha,char).
link(alpha,chars).
link(alphanumeric,alpha).
link(alphanumeric,alphanumeric).
link(alphanumeric,alphanumerics).
link(alphanumeric,alphas).
link(alphanumeric,char).
link(alphanumeric,chars).
link(alphanumeric,quoted item).
link(alphanumeric,quoted-items).
link(alphanumeric,string-items).
link(alpha,quoted item).
link(alpha,quoted-items).
link(alphas,alphas).
link(alpha,string item).
link(alpha,string-items).
link(arguments,arguments).
link(assign expr,assign expr).
link(assign-expr,init decl list 3).
link(atom,arguments).- - -
link(atom,atom).
link(atom,cip program).
link(atom,claus).
link(atom,constant).
link(atom,goal).
link(atom,goals).
link(atom,grammar rule).
link(atom,gr body).
link(atom,gr-head).
link(atom,head).
link(atom,listexpr).
link(atom,non_terminal).
link(atom,non unit clause).
link(atom,sentence).
link(atom,sentences).
link(atom,subterm).
link(atom,term).
link(atom,term read in).
link(atom,unit-clause).
link(base,arguments).
link(base,base).
link(base,cip_program).
link(base,claus).
link(base,constant).
link(base,goal).
link(base,goals).
link(base,grammar rule).
link(base,gr body).
link(base,gr-head).
link(base,head).
link(base,integer).
link(base,listexpr).
link(base,natural number).
link(base,non terminal).
link(base,non=unit_clause).

link(base,number).
link(base,sentence).
link(base,sentences).
link(base,subterm).
link(base,term).
link(base,term read in).
link(base,token). -
link(base,unit clause).
link(capital_letter,alpha).
link(capital_letter,alphanumeric).
link(capital letter,alphanumerics).
link(capital-letter,alphas).
link(capital=letter,arguments).
link(capital letter,capital letter).
link(capital-letter,char). -
link(capital-letter,chars).
link(capital-letter,cip program).
link(capital-letter,claus).
link(capital=letter,goal).
link(capital letter,goals).
link(capital-letter,grammar rule).
link(capital-letter,gr body).
link(capital-letter,gr-head).
link(capital-letter,head).
link(capital=letter,letter).
link(capital letter,listexpr).
link(capital=letter,non_terminal).
link(capital letter,non unit clause).
link(capital-letter,quoted item).
link(capital-letter,quoted-items).
link(capital-letter,sentence).
link(capital-letter,sentences).
link(capital-letter,string item).
link(capital-letter,string-items).
link(capital-letter,subterm).
link(capital-letter,term).
link(capital-letter,term read in).
link(capital-letter,token). -
link(capital=letter,unit clause).
link(capital letter,variable).
link(c_char,c_char).
link(c chars,c chars).
link(c-char,str literal 1).
link(c-constant~c constant).
link(c-constant,expression).
link(c=constant,expression_st).
link(c constant,matched st).
l~nk(c=constant,primar¥=expr).
l1nk(c_constant,select1on_st).
link(c constant,statement).
link(c-constant,stmts).
link(c-constant,unmatched st).
link(c-digit,c constant).
link(c-digit,c-digit).
link(c-digit,dgts).
link(c=digit,expression).
link(c digit,expression st).
link(c=digit,float_const).
link(c digit,float_const_l).
link(c=digit,fract_const).

90

link(c_digit,matched st).
l~nk(c_d~g~t,primar¥=expr).
l1nk(c_d1g1t,select1on st).
link(c digit,statement).
link(c=digit,stmts).
l~nk(c_digit,unmatched_st).
llnk(char,char).
link(char,chars).
link(char const,char const).
link(char~quoted item).
link(char,quoted-items).
link(chars,chars).
link(char,string item).
link(char,string-items).
l~nk(cip_pro9ram~cip_program).
l1nk(claus,c1p program).
link(claus,claus).
link(claus,sentence).
link(claus,sentences).
link(c_layout_char,c_layout_char).
link(c layout char,c layout chars).
link(c-layout-char,c-space)~
link(c-layout-char,c-spc).
link(c-layout-chars,c layout chars).
link(c-layout-chars,c-space)~
link(c-layout-chars,c-spc).
link(c-letter~c letter).
link(c-letter,declaration 2).
link(c=letter,declarator)~
link(c letter,expression).
link(c-letter,expression st).
link(c=letter,function def).
link(c_letter,identifier).
link(c letter,init decl list).
link(c-letter,matched st).
link(c-letter,primary-expr).
link(c-letter,selection st).
link(c-letter,statement).
link(c-letter,stmts).
link(c-letter,unmatched st).
link(command,cip_program).
link(command,command).
link(command,directive).
link(command,sentence).
link(command,sentences).
link(comment,comment).
link(comment,token).
link(compound st,compound st).
link(compound-st,embedded-C).
link(compound-st,goal). -
link(compound-st,goals).
link(compound-st,matched st).
link(compound=st,selection_st).
link(compound st,statement).
link(compound-st,stmts).
link(compound-st,unmatched st).
link(constant~arguments).
link(constant,cip program).
link(constant,claus).
link(constant,constant).

91

link(constant,goal).
link(constant,goals}.
link(constant,grammar rule}.
link(constant,gr body).
link(constant,gr-head}.
link(constant,head).
link(constant,listexpr}.
link(constant,non_terminal}.
link(constant,non unit clause).
link(constant,sentence).
link(constant,sentences}.
link(constant,subterm}.
link(constant,term).
link(constant,term read in).
link(constant,unit-clause}.
link(c space,c space).
link(c=space,c=spc}.
link(c spc,c spc).
link(declaration !,declaration).
link(declaration-l,declaration 1}.
link(declaration-l,declarations).
link(declaration-2,declaration 2).
link(declaration~declaration).
link(declaration,declarations}.
link(declarations,declarations}.
link(declarator,declaration 2).
link(declarator,declarator}~
link(declarator,function def).
link(declarator,init decl list).
link(decl spec,decl spec}~
link(decl-spec,decl-specs}.
link(decl-spec,decls specs}.
link(decl~spec,functTon def}.
link(decl-specs,decl specs).
link(decl-specs,decls specs).
link(decl-specs,functTon def}.
link(decls specs,decls specs}.
link(dgts,c constant).
link(dgts,dgts}.
link(dgts,expression}.
link(dgts,expression st}.
link(dgts,float const}.
link(dgts,float-const 1}.
link(dgts,fract-const).
link(dgts,matched st).
link(dgts,primary-expr}.
link(dgts,selection st}.
link(dgts,statement).
link(dgts,stmts}.
l~nk(d9t~,unmatched_st}.
l1nk(d1g1t,alpha}.
link(digit,alphanumeric).
link(digit,alphanumerics).
link(digit,alphas}.
link(digit,arguments).
link(digit,base).
link(digit,char).
link(digit,chars).
link(digit,cip program).
link(digit,claus).

92

link(digit,constant}.
link(digit,digit}.
link(digit,digits).
link(digit,exponent).
link(digit,float).
link(digit,goal).
link(digit,goals).
link(digit,grammar_rule).
link(digit,gr body}.
link(digit,gr=head).
link(digit,head).
link(digit,integer).
link(digit,listexpr).
link(digit,natural number).
link(digit,non_terminal}.
link(digit,non unit clause}.
link(digit,number).
link(digit,quoted item).
link(digit,quoted-items}.
link(digits,arguments}.
link(digits,base}.
link(digits,cip program}.
link(digits,claus}.
link(digits,constant}.
link(digits,digits}.
link(digit,sentence}.
link(digit,sentences).
link(digits,exponent}.
link(digits,float).
link(digits,goal}.
link(digits,goals}.
link(digits,grammar rule).
link(digits,gr body).
link(digits,gr-head).
link(digits,head).
link(digit,simple float).
link(digits,integer}.
link(digits,listexpr}.
link(digits,natural number}.
link(digits,non terminal}.
link(digits,non-unit clause}.
link(digits,number) .
link(digits,sentence).
link(digits,sentences}.
link(digits,simple float).
link(digits,subterm}.
link(digits,term}.
link(digits,term read in}.
link(digits,token}. -
link(digit,string item}.
link(digit,string=items).
link(digit,subterm).
link(digits,unit_clause).
link(digits,unsigned float).
link(digit,term). -
link(digit,term_read_in).
link(digit,token).
link(digit,unit_clause).
link(digit,unsigned float).
link(directive,cip_program}.

93

link(directive,directive).
link(directive,sentence).
link(directive,sentences).
link(embedded C,embedded C).
link(embedded-C,goal). -
link(embedded-C,goals).
link(exponent~exponent).
link(exponent_part,exponent_part).
link(expression,expression).
link(expression,expression st).
link(expression,matched st).
link(expression,selection st).
link(expression,statement).
link(expression st,expression st).
link(expression-st,matched st).
link(expression~stmts). -
link(expression st,selection st).
link(expression-st,statement).
link(expression-st,stmts).
link(expression-st,unmatched st).
link(expression~unmatched st).
link(float,arguments). -
link(float,cip_program).
link(float,claus).
link(float canst l,c constant).
link(float-const-l,expression).
link(float-const-l,expression st).
link(float-const-l,float canst).
link(float-const-l,float-const 1).
link(float-const-l,matched st)~
link(float-const-l,primary-expr).
link(float-const-l,selection st).
link(float-const-l,statement).
link(float-const-l,stmts).
link(float-const-l,unmatched st).
link(float~constant). -
link(float const,c constant).
link(float-const,expression).
link(float-const,expression st).
link(float-const,float canst).
link(float-const,matched st).
l~nk(float=const,primar¥=expr).
l1nk(float const,select1on st).
link(float-const,statement).
link(float-const,stmts).
link(float-const,unmatched st).
link(float~float). -
link(float,goal).
link(float,goals).
link(float,grammar rule).
link(float,gr body).
link(float,gr-head).
link(float,head).
link(float,listexpr).
link(float,non terminal).
link(float,non=unit_clause).
link(float,number).
link(float,sentence).
link(float,sentences).
link(float,subterm).

94

link(float,term).
link(float,term read in).
link(float,unit-clause).
link(fract const,c constant).
link(fract-const,expression).
link(fract-const,expression st).
link(fract-const,float const).
link(fract-const,float-const 1).
link(fract-const,fract-const).
link(fract=const,matched st).
ltnk(fract_const,primar¥=expr).
l1nk(fract const,select1on st).
link(fract-const,statement).
link(fract-const,stmts).
link(fract-const,unmatched st).
link(full stop,full stop).
link(full-stop,token).
link(funct,arguments).
link(funct,cip_program).
link(funct,claus).
link(funct,funct).
link(funct,goal).
link(funct,goals).
link(funct,grammar rule).
link(funct,gr body).
link(funct,gr-head).
link(funct,head).
link(function def,function def).
link(funct,listexpr). -
link(funct,non terminal).
link(funct,non-unit clause).
link(funct,sentence).
link(funct,sentences).
link(funct,subterm).
link(funct,term).
link(funct,term read in).
link(funct,unit-clause).
link(goal,goal)~
link(goal,goals).
link(goals,goals).
link(grammar rule,cip program).
link(grammar-rule,grammar rule).
link(grammar-rule,sentence).
link(grammar-rule,sentences).
link(gr body~gr body).
link(gr-condition,gr_body).
link(gr-condition,gr condition).
link(gr-head,cip program).
link(gr-head,grammar rule).
link(gr-head,gr head).
link(gr-head,sentence).
link(gr-head,sentences).
link(head,cip_program).
link(head,claus).
link(head,head).
link(head,non unit clause).
link(head,sentence).
link(~ead,sentences).
link(head,unit clause).
link(identifier,declaration_2).

95

96

% filename : flatten

% flattening a list (ref: [Sterling86]).
% +
flatten(Xs,Ys) :-

flatten(Xs,[],Ys), !.

flatten ([X I Xs] , S, Ys) :-
list(X), flatten(X,[Xs!SJ,Ys). flatten([X!Xs],S,[X!Ys])

:-
(atom(X); number(X)), X\==[], flatten(Xs,S,Ys).

flatten([],[XISJ,Ys) :-
flatten(X,S,Ys).

flatten([],[],[]).

list([_I_J).
list ([]) .

VITA

Lukas Budianto Santoso

Candidate for the Degree of

Master of Science

Thesis: DETAILED DESIGN AND PARTIAL IMPLEMENTATION OF A PRE-PROCESSOR FOR
PROLOG PROGRAMS WITH EMBEDDED C STATEMENTS

Major Field: Computer Science

Biographical:

Personal Data: Born in Semarang, Indonesia, October 18, 1962, the son of
Mr. Slamet Santoso and Mrs. Sartini Santoso.

Education: Graduated from Loyola High School, Semarang, Indonesia, in April
1980; received Sarjana Teknik degree with a major in Electrical
Engineering from Bandung Institute of Technology, Bandung, Indonesia
in March 1986; completed requirements for the Master of Science
degree at Oklahoma State University in July 1991.

Professional Experience: Junior System Analyst and Programmer,
PT. Pan Systems, Jakarta, Indonesia, 1986 -1987.

