
~OWLEDGE REPRESENTATION USING~ETRI

NETS AND KNOWLEDGE TABLES

By

RAFAEL ,f>RTIZ

Ingeniero Electricista

Universidad Nacional de Colombia

Bogota, Colombia_

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1991

KNOWLEDGE REPRESENTATION USING PETRI

NETS AND KNOWLEDGE TABLES

Thesis Approved:

ii

ACKNOWLEDGMENTS
' '

I want to thank to Dr. Blayne Mayfield, my principal

advisor, for his advice, assistance and confidence. I also

want to thank to the other members of my committee, Dr.

Huizhu Lu and Dr. Robert Westerman for their suggestions and

support during the development of this project.

I want to express my sincere thanks to the "Institute

Colombiano Agropecuario" for giving ~e the opportunity to

further my education and professional qualities. I extend

special thanks to Dr. Orland~ Martinez, the head of the

Department of Statistics, tbe understanding and support that

I have received from him has been outstanding.

Sincere and special gratitude is extended to my wife,

Maria Teresa, and my children, Natalia and Mariana for their

patience,' cares and encouragem~nt during my studies; I could
. '

not have accomplished this important step without their

support.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. • 1

Objectives ~ 2
Features of Using Petri Nets and Knowledge

Tables as Knowledge Representations~...... 3
outline of the Program's Development........ 5
Tests for the Program....................... 5

II. OVERVIEW OF KNOWLEDGE REPRESENTATION TECHNIQUES.. 7

Procedural Representation................... 8
Rule-based Representation................... 9
Frames .. ·-·. v................................ 17
Semantic Networks........................... 21
Functions and Boolean Arrays................ 24
Petri Nets.................................. 26
Neural Networks............................. 30
Blackboard Representation................... 36
Knowledge ~Table. 4 0

III. KNOWLEDGE REPRESENTATION AND REASONING USING
PETRI NET AND KNOWLEDGE TABLE.................... 41

Introduction................................ 41
Knowledge Table and Petri Net Model......... 45

Knowledge Table. • 45
Petri Net and G-net.................... 46
Formal Specification of D-net Model

and Knowledge Table ~············· 50
Features and Advantages of D-net Model. 53

Reasoning for Dynamic Nets.................. 54
Complex D-nets and Control Table............ 55

IV. IMPLEMENTATION ISSUES............................ 59

Data Structures............................. 59
Places. 60
Transitions............................ 61
Current Alerter........................ 62
Active Transition Vector............... 62
Enabled Transition Vector.............. 62
Execution Queue. 62

iv

Chapter Page

Files ·'·.......................... 63
Input File. 63
output File of Transitions and Places.. 66
Trace File............................. 67

Results of Event-driven Reasoning........... 67
Special Considerations and Limitations...... 68

V. ANALYSIS OF RESULTS ••••••• ,........................ 70

Example 1: A Prototype of an Expert System
for Lime Recommendations for Acid Soils... 70

Description of the .System.............. 71
Petri Net and Knowledge Table Model

.... of the System. 7 6
Activities or External Programs... 76
Input File for Reasoning Process.. 79

Results of Lime Recommendation
System Prototype..................... 79

Example 2: Arithmetic Computations as
Concurrent and Asynchronous Activities.... 82

Petri Net and Knowledge
Table of the System.................. 82

Results of the Concurrent
Computations Prototype............... 85

Analysis of Algorithm for Complex Nets...... 88

VI. CONCLUSIONS AND FU~RE WORK...................... 90

BIBLIOGRAPHY. • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • . • • . • • • 93

' APPENDIXES • • • • • • • • • • . • • • • • • • • . . . • • • • • • • • • • • • . • • • . • 9 6

APPENDIX A- TRACE FOR EXAMPLE 1................ 98

APPENDIX B- TRACE FOR EXAMPLE 2••..•••• 102

v

LIST OF FIGURES

Figure Page

1. General Structure of a Rule-based System.......... 10

2. Frame Based Representation with Slots,
Values and Restrictions......................... 19

3. Semantic Network for Representing a Car........... 23

4. A Graph Representation of a Petri Net............. 27

5. Neural Network with a Hidden Layer................ 32

6. General Schematic of a Blackboard System.......... 38

7. A Complex D-net. 56

8. Design of the Input File.......................... 65

9. Structure of Output File of Transitions........... 66

10. Structure-of Output File of Places................ 67

11. General Description of the System Prototype for
Lime Recommendations. • • • • • • • . • • . . • • . 7 4

12. Petri Net of Lime Recommendation Prototype....... 78

13. Input File for Lime Recommendation Prototype...... 80

14. Petri Net of Concurrent Computations.............. 83

15. Input File of Concurrent Computations............. 86

vi

CHAPTER I

INTRODUCTION

During the last few years, the development of

sufficiently precise notations for knowledge representation

has been one of the main research topics of Artificial

Intelligence and Computer Science [5]. One of the principal

problems for computer scientists is to represent the real

world for processing in computers, in other words, to make

real-world knowledge suitable for processing by a machine

[4], [5].

Knowledge representations are the methods used to

encode and store facts, rules and relationships among

objects or activities in a knowledge base [11], [24], [28].
-

Knowledge can be represented and structured in a

variety of ways; the form of representation can signifi­

cantly affect the efficiency with which knowledge can be

stored and updated as well as the efficiency of inferencing.

The purpose of knowledge representation is to organize

required information into such a form that people or

computer programs can readily access it for making

decisions, planning, recognizing objects, perform processes,

drawing conclusions and performing other cognitive

functions; thus, knowledge representation is an important

1

2

topic for expert systems, machine vision, natural language

processing, planning and control systems, and other systems.

Objectives

The aims of this project are:

a) to present a knowledge representation and reasoning

method that combines Petri nets and a knowledge table [7]

into a well-defined structure to support inference and

reasoning for dynamic systems with concurrent activities;

b) to develop programs in c language that implement

dynamic knowledge (event-driven r~asoning), test them and

evaluate their performance. With this software a user can

analyze the behavior of a system and refine the model

according to the results observed;

c) to analyze whether this model for knowledge

representation can be used as a practical tool in the

development of expert systems for asynchronous events or

processes. The software will be tested with sequential as

well as concurrent events or activities;

d) to analyze the algorithm for reasoning with complex or

nested nets and give guidelines for its implementation.

Features of Using Petri Nets and

Knowledge Tables as Knowledge

Representations

3

Deng and Chang [7] 'introduce a new model for knowledge

representation and reasoning based on Petri nets and a

knowledge table; this model is called "G-net". Petri nets

are introduced and extensiv~ly described by Peterson [19],

and knowledge tables are presented by Chang and Ho [3].

The purpose of combining Petri nets and a knowledge

table is to implement a new technique that facilitates the

graph representation and the,reasoning process of a system.

A graph representation of a system is a model that e~presses

the constraints and relationships among activities or

processes as a graph, so that reasoning algorithms can be

implemented efficiently [5],[19].

This new model can be used to represent "static" and

"dynamic" knowledge as described below. In this project,

dynamic representation is implemented and it~ applicability

to the desig of systems in which the activities are

asynchronous and concurrent is analyzed.

Static representations are used to support reasoning

about aspects of a system that are relatively constant, such

as the interconnections between components. Dynamic

representation can be used to investigate the time-varying

characteristics of a system; dynamic representation may be

viewed as a collection of procedures that, taken together,

reflect the behavior of a system over time [16],[19],[28).

4

Dynamic representation is especially useful in

situations where hypotheses about system behavior cannot be

tested or verified using·an actual system because that

system is not available for test purposes.or does not exist.

When a real system has failed or instrumentation is not

available, an inability to reason might occur. In these

cases, use of the system in an experimental mode to test the

consequences of the hypothetical situations would be very

useful [28].

The main features of G-net model are summarized as

follows:

The reasoning-algorithms are based upon Petri net theory

and rules that have been studied from the birth of Petri

nets.

The G-net model can be implemented using the knowledge

table representation, which is a convenient way of

representing objects, activities and its relationships.

The G-net model can support different types of activities

throughout the.net. Those activities-can be simple or

complex; the complexity of the activities might increase the

time complexity of the reasoning process, but it does not

affect the logic of the reasoning process.

The G-net is a unified model that can represent dynamic

knowledge and reasoning to carry out the subsequent logical

activities in a process.

The G-net model in combination with a knowledge table

is a flexible and modular technique because the

5

representation is independent of the reasoning strategies;

elementary G-nets can be combined to build complex nets, and

G-nets can be applied to the specification of information
' '

systems and the simulation of asynchronous activities.

outline of the Program's Development

In order to analyze the results of the algorithm for

the reasoning process and to test it under different

situations, a program was developed according to the

following outline:

a) Define the data structures that will contain the data
about places, transitions, and relationships (arcs) of the
Petri net model. In addition, a data structure should be
considered for the distribution of tokens in the Petri net.

b) Define the file$ to store the description of the system
and the results of the reasoning process.

c) Write the code to read the input data that represents
the system as Petri net and convert it to internal ·
representation.

d) Write the code for checking the correctness of the model
based on Petri net theory and the knowle~ge table.

e) Write the dode for reasoning with dynamic net,s (D-nets).

f) Write the code of the activities or external programs to
test the model.

Tests for the Programs

This new techn~que will be tested with two kind of

systems: one is a sequential reasoning system to determine a

specific goal. The analysis for lime recommendations in acid

soils was chosen for this purpose. The other test uses a

6

system in which there are several concurrent activities. For

this purpose a set of mathematical computations was selected

to show concurrency with asynchronous activities.

To test the programs it was necessary to write some

procedures and functions to simulate the actiyities and

processes executed by the system during the reasoning

process. In this stage, the results obtained with the tests

are analyzed, and problems found during the development of

the prototype of the model are identified.

'
CHAPTER II

OVERVIE~ OF KNOWLEDGE REPRESENTATION

TE,CHNIQUES

I

Representation of knowledge can be viewed as a

technique in which knowledge' is s~ored in a way that allows

people or automatic systems to interpret or "understand" the

relationships among elements of knowledge and to manipulate

those relationships [28].

In the search for a precise and flexible knowledge

representation many techniques have been developed; some

commonly used techniques, ar~ procedural representation,

rule-based systems, semantic networks, frames, Petri nets,

blackboard and neural networks [24], [28]. In this study,

the basics of these important techniques will be described.

The technique used in a specific knowledge

representation should be selected carefully because each

knowledge representation has relevance to particular types

of knowledge; as stated by Walters and Nielsen [28] "none is

applicable to all forms of knowl,edge". There is no set of

rules or procedures that the'designer of a system should

follow; the designer should consider the advantages,

disadvantages and limitations of every representation before

7

8

selecting the technique to be used. For example, in

selection, categorization o~ diagnostics, backward chaining

may be the only mechanism needed [4]. In other cases, a

straightforward procedural.approach may be all that is

needed for the reasoning processc [11], [28].

A multiple-environment. representation may be required

in some cases, especially when the possible solutions can be

enumerated [2·8] •

Hunt [11] establishes that a blackboard representation

can be effective in those situations where the reasoning

process is complex and is to be controlled in a dynamic

manner depending" on partial re.sul ts.
' .

A D-net (dynamic Petri net, see Chapter III) is

suitable to represent kn·owledge about concurrent activities

[7]. It is modeled graphically and mathematically and

presents several features for reasoning process.

Procedural Representation

Procedural representation is a method that represents

knowledge about the.world by a set of procedures, functions

or programs that perform specific tasks [11], [28].

A procedure is.a finite set· of instructions for

performing a task. It also can be defined as a program that

executes an algorithm [11]; however, not all procedures

embody algorithms; the reason is that an algorithm is a

procedure that stops on all its inputs because the

9

instructions are exhausted or a "stop" instruction is

executed. In a procedural programming language, a procedure

is a syntactic unit that can be parameteri~ed in such a way

that the same segment can be called from different places in

the program, using differept data or arguments each time.

Procedural representation of knowledge Combines a

number of items to form a solution. For example, XCON, which

is a procedural system, configures DEC computer systems.

From a customers order it decides what components must be

added to produce a complete operational system and

determines the spatial relationships·among all of the

components. XCON presents a set of diagrams about these

spatial relationships to technicians who assemble the

computer system [11].

Rule-based Representation

Many knowledge-based software development tools are

designed on rule-based representation technology. Examples

of rule-based systems are EMYCIN and OPS5, which are among

the more comprehensive systems in which rules are

conceptually represented as IF/THEN Statements [11], [28].

EMYCIN is a knowledge engineering language suitable for

diagnosis and consultation type problems. It has user­

querying facilities and is implemented in INTERLISP. OPS5

is a knowledge engineering language that supports generality

in data representation and control structures; OPS5 has been

10

implemented in MACLISP and FRANZLISP and is one of most

widely used knowledge engineering languages.

Using IF/THEN statements or condition/action rules,

knowledge can be accumulated into sets of rules. Figure 1

presents the structure of a typical rule-based system; the

system is divided into a general-reasoning program (rule

interpreter) and a file of rules, called the rule base,

obtained from an expert [6], [11]. The reasoning program

loads the rule base and use it to guide an interactive

consultation with the user.

Rule Base Input
Data

v \

RULE INTERPRETER
(Reasoning Program or

Inference Engine)

\It

Results or
Conclusions

Figure 1. General Structure of a
Rule-based System

11

The inference engine is the component of a rule-based

system that controls its operation by selecting rules to use

and determining when a solution has been found. An inference

engine is also known as a cont~ol structure or rule

interpreter [28]. The inference engine can process the

rules in one of two'ways: backward-chaining or forward­

chaining.

In order to explain how backward and forward-chaining

work it is convenient to define the terms predicate,

antecedent, consequent and hypothesis. A predicate is a

function that returns a true or false value, in other words,

it is a statement about individuals in relation to

themselves or other individuals; a predicate can be true or

false when applied to an specific individual, so predicates

are used to select among conditional alternatives [11],

[26]. An antecedent is the left side of a production rule or

the condition necessary to apply a procedure or a

consequent. A consequent is the right side of a production

rule or the result of applying a procedure. A hypothesis is

a supposition or an unproved theory, also it is a consequent

that do not appear as an antecedent in any other rule in a

rule-set [11], [26].

The following example, taken from Walters and Nielsen

[28], constitutes a rule base to illustrate how a rule-based

system works.

Rule 1: !E IT IS A WORKDAY

AND I AM IN THE OFFICE
THEN I EAT IN THE CAFETERIA

Rule 2: !E I EAT IN THE CAFETERIA

THEN I EAT SOUP AND SANDWICH

Rule 3: !E 11: IS A WORKDAY

AND I AM OUT OF THE OFFICE
THEN I EAT OUT

Rule 4: !E I EAT OUT

THEN I EAT CHINESE FOOD

Rule 5: !E IT IS A WEEKEND DAY

AND I AM AT HOME
THEN I EAT AT HOME

Rule 6: !E I EAT AT HOME

THEN I EAT PUMPKIN PIE

Rule 7: !E IT IS A WEEKEND DAY

AND I AM OUT SHOPPING
THEN I EAT OUT

In this example the set of predicates is

{IT IS A WORKDAY, I AM IN THE OFFICE, I EAT IN THE

CAFETERIA, I AM OUT OF THE OFFICE, I EAT OUT, IT IS A

WEEKEND DAY, I AM AT HOME, I EAT AT HOME, I AM OUT

SHOPPING};

the set of hypotheses is

{I EAT SOUP AND SANDWICH, I EAT CHINESE FOOD, I EAT

PUMPKIN PIE}

and the set of consequents is

{I EAT IN THE CAFETERIA, I EAT SOUP AND SANDWICH, I EAT

OUT, I EAT CHINESE FOOD, I EAT AT HOME, I EAT PUMPKIN

PIE}.

12

The terminal predicates, which are the predicates that

13

do not appear as consequents on any other rule in the rule

base, are {IT IS A WORKDAY, IT IS A WEEKEND DAY, I AM IN

THE OFFICE, I AM OUT OF THE OFFICE, I AM AT HOME, I AM

OUT SHOPPING} •

In backward chaining, the inference engine identifies

a set of one or more hypotheses an4 works backwards to

locate known predicates that would provide support. The

reasoning process begins with the inference engine taking

the first hypothesis and locating all rules that have the

hypothesis as a consequent. It then moves backwards from the

consequent or goal to the premise of the selected rules and

tests the truth of each predicate. If no predicate is

determined to be true, then each unknown predicate is

established as a new hypothesis and the process continues

iteratively. This process forms a chain backward to the

consequents of other rules, this is the reason for the term

backward-chaining [11], [28].

If a hypothesis is selected from the above example, the

inference engine operates as follows:

a. Select a hypothesis; for instance "I EAT SOUP AND
SANDWICH"

b. Locate the hypothesis in the rule-set. Rule 2 contains
the hypothesis as a consequent.

c. Examine the predicates of Rule 2 and determine whether
they have been evaluated; if not, evaluate them. In the
example, there is only one predicate to be evaluated
(I EAT IN THE CAFETERIA); it evaluates to unknown. Now,
the inference engine searches for another rule having
the predicate of Rule 2 as consequent.

d. Locate a rule whose consequents contain the
predicate "I EAT IN THE CAFETERIA"; Rule 1 contains

that consequent.

e. Evaluate the predicates of this rule (Rule 1); the
predicates (IT IS A WORKDAY, I AM IN THE OFFICE) are
unknown.

f. Determine whether these are terminal predicates. In
this case they are terminal predicates because they do
not appear in any other rule.

g. Finally, ask the user for the values~of unknown
predicates; if they disprove the rule, select another
path to the hypothesis. If no other path exists, try
another hypothesis.

In backward-chaining the system keeps track of the

values of the predicates and only asks that a value be

supplied by the user when the predicate applies to a

hypothesis being investigated and when the value of that

predicate cannot otherwise be determined [4]. Backward-
~

chaining is often used for selection applications, for

instance, in diagnosing a particular problem.

14

Forward chaining is a problem solving technique which

is characterized by working forward from known facts toward

conclusions or goals. This technique starts with initial

facts or knowledge, supplied by the user, and applies

inference rules to generate new knowledge until one of the

inferences satisfies a goal or no further inferences can be

made [4], [11], [28].

Forward-chaining allows the user to infer implicit

information from the existing information in a knowledge

base; it is also useful to analyze changes when a new data

item is added. A system that uses forward-chaining technique

is called a data-driven system because it follows the

conclusions obtained from the data or facts given [11],[28].

15

In forward-chaining no hypotheses are provided beca~se

the rules are not used to try to derive the truth of any

particular consequent. Instead, they are used to derive all

possible consequents from a set of predicates or facts th,at

cause one or more predicates to evaluate to true.

Using the same set of rules in the above example, if

the user provides the knowledge base with values such that

the predicates "IT IS A WEEKEND DAY" and "I AM AT HOME"

evaluate to true, then the forward-chaining inference engine

operates as follows:

a. Locate the rules containing either of the provided
predicates. Rule 5 and 7 are selected.

b. Select one of those rules. Rule 5 is selected, for
instance.

c. Interpret (fire) the selected rule.
The predicates of Rule 5 are true, so the consequent is
given the value true.

d. Now, a search is made for a rule containing "I EAT
AT HOME" as a predicate. Rule 6 is found.

e. The rule (Rule 6) is interpreted and "I EAT PUMPKIN PIE"
is given the value true.

f. Again, a search is made for a rule containing
"I EAT PUMPKIN PIE" as a predicate. No such rule exists.

g. Rule 7 is evaluated to false because "I AM OUT SHOPPING"
is false (or unknown).

h. The process terminates and the information obtained from
the rule-based system is:

I EAT AT HOME and
I EAT PUMPKIN PIE.

This type of reasoning is appropriate for monitoring

situations in which it is desirable to learn as much as

possible about the state of the monitored system based upon

16

the available data (4], (28).

Conceptually, the reasoning process must evaluate the

predicate of each rule whenever a new fact is inserted into

the knowledge base (28); this is inefficient; therefore,

many inference engines maintain an elaborated set of

pointers, requiring only those rules containing new facts to

be reevaluated.

In general, backward chaining goes from a conclusion to

a set of premises to be evaluated, and forward chaining goes

from a set of premises to a conclusion.

Rule-based representations have some disadvantages

which can be summarized as follows:

a) Multiple evaluation of predicates. The inference engine

often permits or requires the reevaluation of predicates

more than one time, although a predicate is assumed to be

evaluated only once (28). If the inference engine being

used permits or requires multiple evaluation of a predicate,

then the designer must be very careful not to include terms

within a predicate whose evaluation would have side effects

such as contradictions, repetitive arithmetic operations or

perhaps an infinite loop in the worst case.

b) Large sets of rules. The development of large sets of

rules can pose two types of problems: inefficient execution

and unmaintainable applications of expert systems (11],

(28]. If the knowledge engineer does not find a way to

decompose the problem into small independent rule-sets, then

hejshe should consider different representations of the

17

problem or different organizations of the knowledge base.

c) Uncertainty. Hunt [11] defines certainty as "the degree

of confidence one has in a fact or relationship". It is very

difficult to ensure that the desired relationships hold over

a large set of rules to combine certainty factors. A

certainty factor is a value or weight assigned to a

relationship o~ event to specify the confidence level of

that relationship or event. Although some tools assist the

programmer in establishing certainties, the proper operation

of a numeric certainty system across a large rule-set is a

significant problem [28].

Frames

A frame can be defined as a collection of related

information about a topic; this information can be factual

or procedural (i.e., data or functions). A frame is

basically a structure for holding various types of

knowledge. Conceptually, a frame represents an item such as

a physical object or a concept such as an idea; the contents

of the frame then describe that item (e.g. characteristics,

properties, behavior~). A frame can be viewed as a data

record as used in programming languages as COBOL or PL/1;

however, in this case the frame does not include functions,

only data; in this sense, a frame consists of a set of named

fields containing data that are in some way related; the

relation depends on the particular problem or application

[11], [28].

Frames may be arbitrarily complex, and can have

procedures and functions (pieces of code) attached to the

slots to add or remove values from them. A slot is a

feature, a componen~ or an attribute associated with an

object (or node) in a frame. A node is associated with an

object, a concept or an event. The slots of a frame can

contain default values which are helpful when frames are

analyzed in the absence of full instantiation data (see

figure 2) [26].

18

Rule-based and procedural representations can operate

efficiently on frame-based representations. The object­

oriented programming technique that is becoming popular has

been developed on the frame foundation [26], [28].

Marvin Minsky conceived "frames" as complex data

structures for representing-stereotyped objects, events or

situations. The idea was originated because many daily

activities are instances of stereotyped situations such as

going to work, shopping, driving a car, etc. A frame has

slots for objects and relations that would be appropriate to

these situations.

Figure 2 shows a frame-base representation of knowledge

about the general configuration of a microcomputer. The

features are associated with nodes representing concepts or

19

Frame: COMPUTER

Slots Values

Base Unit 16 MHZ.
Restriction: (value.:...type text)
Restriction: (content-one-of:

16MHz, , 20MHz, 25MHz)

Expansion 3
Slots Restriction: (value-type Integer)

Drive Bays 2
Restriction: (value-type Integer)

Video Adapter CGA
Restriction: (value~type Symbol)
Restricti0n: (content-one-of None,

CGA, EGA, VGA)

Monitor Green Monochrome
Restriction: (Procedure to select

monitor depending on Video Adapter
Restriction: (content-one-of None,

Green Monochrome, Amber Monochrome
Color, VGA bjw, VGA color)

Communication None
Board Restriction: (content-one-of None,

3270 Communications Adapter,
Token Ring LAN Adapter)

'•

Floppy Drive 1.2 Mb
Restriction: (maximum-2-of .1.2 Mb,

1.44 Mb, 360 Kb, 740Kb)

Hard Drive 40 Mb
Restriction: (content-one-of 40 Mb,

80 Mb, 100Mb, 200 Mb)

Keyboard 84.-key
~ Restriction: (content-one-of: None,

84-key,,lOl/102-key)

Figure 2. Frame Based Representation with Slots,
Values and Restrictions

20

objects and they are described in terms of attributes (or

slots) and their values. Each node'.s slots can be filled

with values, according to the attributes of the object, to

help describe .the·concept that the node represents.

Walters and Nielsen [28J, and Charniak and McDermott

[4] present complete introductions to frames with some

examples.

An interesting characteristic of frames is the concept

of "inheritance"; inheritance is a mechanism for passing

knowledge or attributes from frame to frame down through a

taxonomy of frames from general to specific.

The principal advantage of frame-based representation

is that it provides a means for structuring a variety of

types of data in the knowledge base. Other advantages are:

it provides many characteristics of an object., through the

concept of inheritance, once the type of that object has

been identified, eliminating the need to derive these

properties individually; it enables rules and procedures to

be more generic; it enhances the maintainability of the

knowledge bases.

Frames are useful in categorizing knowledge when that
I ' knowledge has some underly1ng structure. If the knowledge

can be related to a set of objects or concepts, then at

least a portion of the facts contained in the knowledge base

can be clustered around those objects or concepts.

The main disadvantages are: as in object-oriented

programming, the frame approach takes time and patience to

21

master and use properly; one of the major dissatisfactions

with frame reasoning is related with efficiency. The

structures and capabilities of frames-offer a variety of

benefits, but they are achieved at a pri,ce: increased time

complexity.

Semantic Networks

A semantic network describes the properties and

relationships of objects, events, concepts, situations and

actions by a directed graph consisting of nodes and labeled

edges. Semantic networks formalize objects and values as

nodes and connect nodes with arcs that indicate the

relationships between them. Semantic networks are popular

in artificial intelligence because of their naturalness to

represent objects (4], (11].

Smith (26] defines Semantics as "the study of the

meaning, intention or significance of a symbolic expression,

as opposed to its form". Semantics is a constraint on a

language understander because not all grammatically legal

sentences have a meaning, for instance, "the stone was

loud".

In semantic networks, concept types are organized in a

hierarchy according to levels of generality, _for instance

(entity, animal, carnivore, lion) or (entity, thing,

building, house). The relationships that hold for all

concepts of a given type are inherited through the hierarchy

22

by all subtypes (23]. For example, lion is a carnivore and

also is an animal and an entity and inherits .the

characteristics of carnivore,'apimal and entity. In figure

3 the basics of a semantic network representing a car are

shown; from this network it can be concluded that a "tire"

is a "cylind~r", a "car" has "tires", and an "engine" has

"cylinders"; however, the cylinders for t:j.res are different

from the cylinders for engine, the differences are basically

in type of material, dimensions and purposes.

For semantic networks it is necessary to define an

associated vocabulary called "semantic primitives". This

vocabulary is made up of "basic conceptual units in which

concepts, ideas or events can be represented" (11]. Several

attempts have been made to describe all primitives that are

unique representations of entities or their attributes. A

semantic primitive is defined by Smith (26] as "a primitive

attribute of a domain that is used to build up facts in the

data base".

I
I

I

' ' ' '

Figure 3. Semantic Network for Representing a Car

23

24

Functions and Boolean Arrays

Fordyce et al. [10] from IBM present.an interesting

model for representing knowledge using functions and Boolean

arrays. The best" known application of this technique is LMS

- Logistics Management System - which is an advanced

decision support system to dispatch, monitor and control the

manufacturing flow of the IBM Burlington semiconductor

facility.

The use of. functions as a basic organizational unit of

knowledge was originated in.functional programming languages

such as APL2 and LISP and their mathematical concept of

functions.

In the technique presented by Fordyce et al. [10] there

are two basic aspects: 1) knowledge is viewed as a

functional mapping between input and output variables, where

the functions are expressed as fact tables or bases and

procedural modules; 2) the function network can be

represented with boolean arrays. The use of tables to store

and represent knowledge has its origins in general array
.

theory, relational data bases, A~L2 and PROLOG; the use of

Boolean arrays and operations to efficiently handle logical

processing is also well established.

Tables can represent a functional relationship between

input and output variables; small procedures can be defined

to describe functional relationships that can carry o~t

computations on the input variabies to generate the output

variables; the linkages between tables and functions

represent composite functions, for instance,

W = f (X, Y) = X2 + 4Y
Z = g(W,V) = 3W + ~V

is a system of 2 equations; this -system 'is expressing a

25

functional mapping of the input variables v, X and Y to the

output variables W and z. Z has a dependency on X and Y

through the variable W, this is.called a composite function,

which is represented as foll.ows:

Z = h(X~Y,V) = g[f(X,Y),V]

Using Boolean arrays and Boolean operations tt is

possible to determine automatically how the functions of a

system are related to one another and generate the network

of functions or tables that represents the system. In the

Boolean matrix a cell is assigned a 1 if the variable is in

the "input portion" of a function; if the variable is not in

the input of a function, the .. corresponding cell is assigned

a zero.

All the concepts on this technique.have been applied

using APL2 programs because this language is based on matrix

operations [10]; this technique has been effective in real-

time applications, transaction-based and knowledge-based

systems.

26

Petri Nets

A Petri net is an abstract and formal model to

represent and,analyze information fl~w [19].

The Petri ne~ has increased· in acceptance as a flexible . '

and powerful model of systems of asynchronous and concurrent

computation. Actually, the properties, concepts and

techniques on Petri nets have been developed in a search for

more natural, simple and convenient methods for representing

and analyzing the flow of ·information and control in

systems, especially when the systems may exhibit

asynchronous and concurrent activities [16]. So far, the

most important use of Petri nets has been the modeling of

systems of events that can occur concurrently.

A generalized Pet~i net is a five-tuple defined by:

Petri net = (P, T, I, o, ~)
where:

P = {P1,P2,····Pn} is a finite set of places.
A place can be an static object or a dynamic
activity.

T = {t1,t2,·····tm} is a finite set of transitions.
A transition represents the functional
relationship between dynamic objects or.the
semantic relationship between static objects.

POT=<~)

I: P~ -> T is an input function, a mapping from
places to transitions:

0: T -> PCP is an output function, a mapping from
transitions to places.

~: P -> N is a marking, a mapping from places to
non-negative integers N.

A Petri net is represented by a bipartite directed

27

multigraph containing two types of nodes: places and

transitions. Figure 4 shows a graph representation of a

simple Petri net; the places are represented by circles and

the transitions are represented by bars.

p7

Figure 4. A Graph Representation of a
Petri Net

These nodes, places and transitions are connected by

directed arcs from places to transitions and from

transitions to places. The formal definition of the Petri-

net of figure 4 is:

where

Petri net = (P, T, I, o, ~)

P = {Pl,P2tP3,P4tP5,P6,P7}

T = {t1,t2,t3,t4,t5,t6}

28

I (t1) = {P2} O(t1) = {P1}

I(t2) = {P1} O(t2) = {P2rP3}

I(t3) = {P3rPS} O(t3), = {P4}

I(t4) = {P4} ' 0 (t4) = {Ps}

I(ts) = {P3tP7} o(ts) =' {~6 }'

I (t6) = {P6} O(t6) = {P7}

The marking vector, which represents the humber of tokens
in every place, is ~ = (1,0,0,0,1,0,1)

"Token" is a primitive concept for Petri nets; a token

is a "message" that can be transmitted.between places [16],

[19]. This message can contain simple or complex information

about the net; on ·a. Petri net graph, tokens are represented

by dots inside places as is shown in figure 4. A Petri net
-with tokens is called a marked Petri net; tokens are moved

by the execution (firing) of the transitions of the net, so

that the marking may change as a result of the firing of any

transition.

In many sciences a phenomenon is studied py examining

not the actual phenomenon itself but rather a model based on

mathematical terms. By the mani~ulation of the

representation, it is hoped that new knowledge about the

phenomenon, and the model it~elf,'will be obtained without

the cost and inconvenience of manipulating the real

phenomenon. Petri nets are a modeling tool. They can model

systems and especially events, conditions, and the

relationships among them; the occurrence of events may

change the state of the system, causing some of the previous

29

conditions to cease holding, and causing other conditions to

begin to hold [16].

In the Petri net model, events or .activities of places

and transitions can occur independently [7], [19]. Thus,

there is no need to synchronize the actions of events;

however, when synchronization is required, the situation is

also easily modeled [16]. Therefore ~etri nets are ideal for

modeling systems of distributed control with multiple

activities occurring concurrently [13], [19], [20].

One of the most important features of Petri nets is

their asynchronous nature. There is no inherent measure of

time; the only important property of time, from a logical

point of view, is in defining a particular ordering of the

occurrence of events. A Petri net must contain all necessary

information to define the possible ·sequences of events of a

modeled system.

A Petri net is non-deterministic. If at any time more

than one transition is enabled, then any of the several

enabled transitions may fire; this feature of Petri nets

reflects the fact that in real life situations several

activities may happen concurrently. The order of occurrence

of events is not unique (perhaps random)·,. so that any of a

set of sequences may occur.

Nondeterminism is advantageous from the modeling point

of view, but it introduces more complexity in the analysis

of Petri nets. This complexity can be reduced if the firing

of a transition (execution of an event) is considered to be

30

instantaneous (zero time).

Another important feature of Petri nets is their

ability to model systems hierarchically. This means that a

net may be replaced by a single place or transition for

modeling in a higher level of,abstra:ction. On the other

hand, a place or transition may be replaced by subnets to

provide more details in themodel refinement [7], [8].

Neural Networks

The goal of neural networks research is to understand

complex human performance, such as how people learn to play

the piano. Even the simplest models provide insights into

how the learning process occurs [17], [21]~

When human beings learn something, tnere are several

activities involved such as remembering, understanding,

storing and retrieving; but brain surgeons say that there is

more: firing neurons, making new connections and retraining

behavior patterns.

There has been a need for a way to solve problems that

cannot be handled efficiently by digital means. Neural

networks technology is an attempt to simulate the behavior

of the brain from a physiological view, especially in that

kind of problems that cannot be efficiently handled by

digital means [17], [21].

A biological neuron consist of a cell body, axons and

dendrites; the cell body is the nucleus or "main processor"

31

of a neuron, which processes the information it receives; an

axon is that part of a nerve cell through which impulses

travel away from the cell body, a dendrite is the branched

part of the cell that carri~s impulses toward the cell body.

The points of contact between adjacent neurons where nerve

impulses are transmitted from one to the other are called

synapses. ~n artificial neuron or "unit" emulates the axons

and dendrites with connections or arcs and the synapses by

simulating electric resistors with .weighted values.

Neural nets are computer-models inspired by the brain.

A neural net consists of processors or units that simulate

the behavior and properties of neurons. Each of these units

or "neurons" receives inputs that can be excitatory and

inhibitory, from other units; if the. strength of the signal

exceeds a given bound, the unit sends signals to other

units. Each of the many connections or synapses among units

has its own strength, or-weight (like a multiplier) that can

be adjusted as the net performs new t.asks or operations (see

figure 5).

Perhaps the most interesting aspect of neural nets is

its capability of "learning". Instead of programming a

neural net, you "teach" it to give acceptable answers. As

stated by Caudill [2], the knowledge in a neural net is

stored "in the pattern of weights and connections in the

network"; this means a user can input known information,

assign initial weights to the connections within the

Backward
Error
Flow

Output
Layer

Figure 5. Neural Network with a Hidden Layer.

architecture, and run the network over and over ··until the

output is satisfactorily accurate, th~ net can adjust the

weights by using several criteria. The net contains a

32

weighted matrix of interconnections that allows to learn and

remember [2] , [17] , [21] .

When they work correctly, neural nets provide some

important benefits, such as the ability to take incomplete

data and produce approximate results. They are fault-

tolerant because of their parallelism, speed and

33

trainability [27].

However, because neural. ne~s simulate the brain, they

do not handle numbers well, especially ·for accurate answers.

Accuracy, computationiil power and l·ogic are not strong

aspects of neural nets [2]; another weqk aspect is that they

cannot explain how they solve a problem. The difficulty with

this aspect is that in this stage of technology the man does

not know completely how the brain wor~s. What is available

now are artificial neural networks that run on digital

machines to develop general principles to explain human

information processing [21].

Artificial neural nets are being used for a variety of

applications like financial analysis, database management,

medical diagnosis, fuzzy or incomplete information and some

kind of process control [2].

Neural network models consist of processing elements,

interconnection topologies, and learning schemes [27].

Processing elements interact each othe·r depending on how

they are interconnected; when a neural net is setting up, a

variety of criteria is used to de~ine specific interconnec­

tions and determine its architecture.

Obermeir and ~arron [17] say.that neural network

"memory" is measured by the number of interconnections as

the memory in a digital computer is measured in bytes; in

the same way the neural net's speed is measured in

interconnections per second.

Each processing element or neuron has a number of

34

inputs, a small set of possible states, and an output that

is a function of the inputs; each input to the neuron has a

weight value that usually is between -1 and 1.

Training a neural net~ork is a matter of adjusting

weights, either manually or automatically. Obermeir [17]

establishes that the learning process of a neural net is

possible in one of three ways: supervised, unsupervised or

self-supervised.

Supervised learning occurs when trial-and-error inputs

are provided that teach the network correct and incorrect

responses. Unsupervised learning consists of entering and

adjusting data without human intervention. Self-supervised

learning occurs when the net monitors itself and corrects

errors in the interpretation of data. This can be done by

feedback through the network.

One important characteristic of neural nets is

"stability"; after the initial weights are set, the user

enter data into the network. This process causes the net to

pass through state changes and finally reach stability. A

net achieves stability when the weight values associated

with the "units" stop changing [2], [27].

A neural network layer is a set of units or "neurons"

that are at the same level in the network (see figure 5).

Initially, neural nets consisted of only one or two layers

to represent knowledge, but adding more layers allows the

system to form a better representation of the problem [17],

[27]. Today neural nets are composed of several layers such

35

as the model presented in figure 5, this hierarchical

approach is more powerful because neural networks can

generate their own internal .representation in the so-called

hidden layers.

Touretzky and Pomerleau (27] present the characteris­

tics and features of the layers in a hierarchical net. A

hierarchical network consists of an input layer, an output

layer and one or more hidden layers. A hidden layer is a set

of units that are not directly connected to the input or

output layers. Reducing the size of a hidden layer not only

increases the rate of the simulation but also improves the

network's performance. A network with too many hidden layers

can simply memorize the correct response to each pattern in

its training set instead of learning a general solution.

Neural networks can learn using an algorithm called

back-propagation (27]. With back-propagation an expert

provides the network with samples of inputs and desired

outputs, over and over, until the network learns by

adjusting its weights. If the net solves the problem, it

will have found a set of weights that produces the correct

output for the given input. Whatever knowledge the network

acquires is encoded in its numerical weights. Unlike expert

systems, neural networks do not automatically explain their

reasoning.

Back-propagation consists of two passes. In the forward

pass, inputs proceed through the network and produce a

certain output; then, in the backward pass, the difference

' 36

between the desired output and the actual output generates

an error signal which is propagated back through the network

to teach it to come closer to ~reducing the desired output

(see figure 5).,

Obermier and Barron [17] say: "Neur~l nets won't

replace data~base and knowledge-based processing because

they do not work well with numbers or cut-and-dried

information". Maybe in the n~xt few years the first

practical neuron-like circuit will appear; in this event a

neural network could be used as a coprocessor controlled by

a host digital computer.

Blackboard Representation

The blackboard approach is a system architecture that

uses a data base or records that are accessible to several

processes called knowledge sources [28]; each process can

"write" on the blackboard, and all the other processes can

"read" what has been written, and respond in a similar

manner. This approach took that name because the system

organizes and processes knowledge in a fashion analogous to

a group of people working around a blackboard; each person

represents a specialized source of knowledge about some

aspect of the problem. A leader provides the control

function, guiding and coordinating the activities of the

knowledge sources as well as sequencing their access to the

blackboard [11] .

37

Actually, a blackboard system is not a particular form

of knowledge representation as it is a way of organizing and

processing knowledge represented in other forms. A

blackboard system can be seen as a framework in which

knowledge can be arranged in such a way that it can be

distributed and shared among a number of cooperating

processes; the knowledge about a particular problem can be

distributed to a set of specialists or knowledge sources,

each of which has a particular area of expertise. The

shared portion of knowledge is encoded on the blackboard

through which the specialists communicate; the distributed

part resides with the individual specialists who operate

independently of each other. The communication among them is

through the blackboard [28].

A blackboard structure, provides room for many different

solution approaches, so'it can be viewed more as a

philosophy or a set of guidelines than as a very detailed

process for knowledge representation and reasoning.

The project HEARSAY II for speech recognition was

developed with the blackboard concept at Carnegie-Melon

University [28]. The blackboard approach has been applied in

a variety of fields such as real-time data processing,

speech recognition and signal processing, and scheduling and

planning. A blackboard representation might be considered

for problems that naturally decompose into a number of

smaller and independent structures.

In figure 6 a schematic of the blackboard system is

38

presented; there are 3 basic components: knowledge sources

or expertise (KS1, •• KSn), blackboard (knowledge storage and

communication) , and control;·. which is the problem solving

strategy.

CONTROL

KS3 ••••.

Figure 6. General Schematic of a
Blackboard System

KSn-1

The blackboard represents the communication medium

through which the speciqlists or.knowledge sources

communicate their conclusions, findings, or-requests for

data to each other; thus, the blackboard is the source of

all data on which a knowledge source operates and the

destination for all conclusions from a knowledge source

[11], (28].

The blackboard contains two kinds of knowledge: static

and dynamic. Static knowledge consists of factual data that

refer to initial conditions, parameters, and relationships;

39

dynamic knowledge is the knowledge that is generated during

the execution of the application. New facts, communications,

hypothesis, goals artd suggestions are considered dynamic

knowledge.

The blackboard structure probably offers the best means

of representing procedural knowledge [28); thus, if there

exists difficulty in converting domain expertise to a non­

procedural form, that knowledge might be represented

procedurally in a set of knowledge sources as is shown in

figure 6.

The major advantage of a blackboard system (viewed as

the application of procedural knowledge in a much more

structured way) is also, however, its principal weakness. By

training and by experience many knowledge engineers or

applications developers have computing backgrounds that

emphasize procedural programming, and they tend to think in

procedural terms. This' aspect causes a common problem in

rule-based applications: the incursion of procedural

knowledge in what should be a non-procedural representation.

A developer without prior experience in non-procedural

thinking and non-procedural knowledge representations can

slip easily back into using procedural terms, because the

blackboard model easily accommodates such thinking. In

conclusion, the blackboard entices the novice to think in

procedural terms rather than representing aspects of the

domain knowledge in some non-procedural form.

40

Knowledge Table

The knowledge table representation is a structure

proposed by Chang and Ho [3]. A knowledge table is composed

of knowledge objects that can be values, activities,

expressions, concepts, or other knowledge tables. The

knowledge objects can be static or dynamic, and different

semantic or functional relationships among those objects can

be defined.

A va~ue can be a symbol or number, an activity can be a

single action or a compound action, an expression is an

arithmetic or Boolean expression, and a concept or entity

refers to anything that contains various aspects or

properties. The use of tables to store and represent

knowledge has origins in general array theory, relational

data bases, APL2 and Prolog [iO].

A detailed descr-iption of the knowledge table

representation is given in Chapter 3, in combination with

Petri nets.

'CHAPTER III

KNOWLEDGE REPRESENTATION AND REASONING

USING PETRI NET AND KNOWLEDGE TABLE

Introduction

Knowledge can be classified into two basic types: fact

knowledge (F-type knowledge),, which refers to what has been

explicitly specified to be true, and inference knowledge (I­

type knowledge), which specifies the cause-effect

relationship among the objects, from which new fact

knowledge can be derived [7].

F-type knowledge is represented by objects or facts and

I-type knowledge is denoted by inference rules for

sequential events. The real world can be modeled by a

collection of knowledge objects or facts and the cause­

effect relationship among them; however, F-type knowledge

and I-type knowledge are sometimes insufficient to

efficiently support inference and reasoning, especially in

concurrent or parallel activities like those presented in

the industry or in a computer system.

Knowledge can be represented in static and dynamic

models. A static representation can be viewed as a

collection of initial conditions, parameters, facts and

41

42

relationships: examples of such representation are a

semantic network, an electronics diagram and a hydraulic

diagram. A dynamic representation of a system may be viewed

as a collection of nodes and arc,s. In this case the

analyst's concern is about the effects of changing inputs

over time and the propagation or effects of those changes in

the system ,[28].

Walter arid Nielsen [28] say "A static model is

analogous to a set of production rules". A set of data is

provided as input to the model or,rule-set and, as a result,

another set of data is returned. This mode of model usage is

analogous to forward chaining or backward chaining with a

set of production rules.

Static representations can be used to support reasoning

about aspects of a system that are relatively constant, such

as the interconnections between components. Static

representations are used with diagnostic or failure

isolation applications for example in hydraulic and electric

systems: the benefits of static representations are clarity,

familiarity, easy maintenance, simplification, efficiency

and easy application.

The dynamic representation of a system can be used to

investigate the time-varying characteristics of a system;

the analyst's concern is about the system's dynamic

behavior. The dynamic representation may be viewed, in

contrast to the static one, more like a collection of

procedures that, taken together reflect the behavior of the

43 c

system through time. One of the main disadvantages of

dynamic models for knowledge representation is that the

development and representation of the appropriate set of

basic principles is a nontrivial task and sometimes might be

of unexpected dimensions [16], [19].

The new model based on·Petri nets and knowledge table

representation can have static and dynamic objects. It is

static when the objects are grouped according to their

semantic relationships such as semantic networks and frame

structures. The model is dynamic when it groups dynamic

objects according to their functional relationships such

as Petri nets [19], [5].

Usually these two models are not compatible; that is, a

semantic network is ·not capable of modeling the functional

relationships among dynamic objects, and a Petri net is not

suitable for representing semantic relationships among

objects.

The G-net is a unified model that can represent both

static and dynamic knowledge imd also support inference and

reasoning. There are four basic reasoning algorithms in the

G-net model [7]:

1. Inheritance Reasoning. Inheritance reasoning is the
form of reasoning to infer properties of an object based on
the properties of its ancestors. Inheritance also may be
defined as the process of determining properties of an
object by looking up properties attached to objects that are
above it in the conceptual hierarchy. The results of this
process are all the properties of an object.

2. Recognition Reasoning. The recognition reasoning is in
the opposite of inheritance; recognition is the process of
finding an object or concept that best matches a given

44

description consisting of a set of properties. The results
of recognition are all the objects which exhibit the given
properties.

3. Event-driven Reasoning. This"reasoning process is called
event-driven because it is based on the occurrences of
events. The goal of event-driven reasoning (reasoning for
dynamic net.s) is to' determine the subsequent activities
based on current events.

4. Complex Dynamic Reasoning. This algorithm. is a higher
level reasoning based on.the G-net model in order to control
the flow of the reasoning process when every object in the
model is another G-net.

The first two algorithms are the bases for some

Artificial Intelligence procedures, and they have been

studied extensively in different ways using techniques such

as semantic networks, predicate calculus, rule-based

systems, breadth-first search, depth-first search, etc. (4],

[24].

The algorithms for dynamic knowledge are useful for

analyzing concurrent and sequential activities. The major

use of Petri nets has been the modeling of systems of events

that occur concurrently; this model is based on the concepts

of asynchronous and concurrent operations by the parts of a

system (19].

According to Deng [9], the Department of Computer

Science of the University of Pittsburgh is developing an

editor for the knowledge table .representation, and they plan

to develop programs in Prolog for reasoning.

Knowledge Table and Petri Net Model

G-type knowledge model is a combination of knowledge

tables and Petri nets [7], {3], [19].

Knowledge Table

A knowledge table is a non-empty set of knowledge

slices. A knowledge slice of a knowledge table is a

45

nonempty set of knowledge objects. A knowledge object can be

a value, an activity, an expression, a concept or a

structure composed of other knowledge objects. The slice may

contain knowledge objects of different types; however the

basic types of slices are:

a. F-type, for objects of any type (except expressions)

b. !-type, which consists of at least two objects
(exp,cons); exp is of type expression and cons is any
type of object except expression. cons is evaluated if
the expression exp is evaluated "true".

c. G-type, which is used to represent a set of static
knowledge objects or a set of interrelated concurrent
andjor sequential activities.

The type of knowledge table depends on the relationship

among the slices; therefore the knowledge table can be !­

type when all the slices are of !-type, F-type when all the

slices are of F-type, G-type when all the slices are G-type.

There is another type of knowledge table, the control table,

which is used in the analysis of complex G-nets. A complex

G-net represents a mixed type of knowledge hierarchy. A

control table is used when a G-net contains a mix of

46

knowledge types.

The knowledge table has several features [3] :

a. A knowledge table can contain,other knowledge tables.
This-facilitates the construction of complex knowledge
structures.

b. A knowledge table can be partially 'defined at first and
incrementally r~fined later on.

c. A knowledge table system can represent other commonly
used knowledge representation models, such as rule­
based, semantic nets and frame structures.

The main idea behind the knowledge table is to group

together in one structure knowledge slices to make

processing more efficient.

Petri Net and G-net

Deng and Chang [7] introduce the G-Net model, which is
'

based on Petri Nets. In the'G-net representation the

knowledge objects (static or dynamic) are modeled by the

places of a Petri net and the relationships among the

objects are represented by the transitions of the Petri net.

The G-net model is a combination of F-type ~nd !-type

representations to facilitate the representation of a set of

well structured activities and for concurrent activities,

or to represent control knowledge. For concurrent activities

F-type and !-type represented independently are not

adequate. A G-net can be used to represent a set of static

knowledge objects and their semantic relationships, as well

as a set of concurrent andjor sequential activities. In the

present work the attention is concentrated on the latter

47

representation in which the functional relationships among a

set of dynamic activities can be specified.

Formally, a G-net is'defined as a seven-tuple that is

an extension of the definition of a Petri net:

G-net = (k, P, T, u, i 1 0 1 D)

where: k represents "static" or "dynamic";
if k="static", the net is used to represent
static knowledge and semantic relationships;
if k="dynamic" the net is used to represent
dynamic knowledge and their functional rela­
tionships.

D indicates properties of the semantic relation­
ships when k="static",

P, T, u, I and o have the same meaning as in
Petri nets;

however, this definition takes in account static and dynamic

knowledge (k parameter), and the interest of this project is

only in dynamic and concurrent activities; in order to

simplify the terminology the model can be reduced to:

G-net = (P, T, u, i, O) = D-net = Dynamic net

This reduction can be done without loss of generality

because the parameter k is used to indicate whether the G-

net is "static" or "dynamic", and the parameter D is used to

indicate the properties of the semantic relationships in the

G-net [7], and it is defined only when k="static".

Now, the net is called a D-net (Dynamic net) which

basically is a Petri net. A D-net is a five-tuple as

established above, where:

P = {Pl, P2, • • • ,pn}

48

P is a set of places which is finite and is used to represent a "dynamic" set of objects.

T = { t 1 , t 2 , ; • . , tm}

u

T is a set of transitions which is finite and is ~sed to represent the functional .relationships among dynamic knowledge objects. .A logical predicate 'Wi I is associiated.with each, ti to define the functional relationship among a subset of places connected by ti. The predicate constitutes a necessary condition for ti to be firable.

p -> 2Nx{b,w}
u is a marking function which determines the initial token distribution; N is the set of natural numbers. The "tokens" is a primitive concept for Petri nets; they reside in the places of the net and the number and position of tokens can change during execution. The tokens in a D-net can have the colors: black(b) and white(w). Black and white tokens are used in dynamic reasoning; the use of this tokens (b,w) will be described later in this chapter.

I: T-> 2PxNx{b,w}
I is an input function, where N is the set of natural numbers. I is an input function mapping from transitions to the power set of {PxNx{b,w}}. The input function and the output function together define the relationship among places and transitions.

O: T -> 2PxNX{b,W}
0 is an output function. In Chapter V there is an example on how to define the input and output set of functions for every transition in the D-net representation.

As in Petri-nets, the graphic .representation of D-net
denotes places as circles and transitions as bars and the
input and output functions as.directed links (arrows)
connecting the places and transitions.

Associated w'ith each transition Ti there is a logical
predicate Wi which constitutes a necessary condition to make
a transition firable or executable. A transition is active

49

if the logical predicate is true; otherwise it is passive.

In Petri nets, information can be attached to each

token as a "token color" and each transition can be enabled

in several ways depending on the conventions established by

the execution algorithm about the occurrence of different

"token colors" [13).

For the reasoning process on a D-net it is necessary to

include two token colors: white(w) and black(b). A

transition is enabled if there is at least one white token

on each of its input places. A transition is firable if and

only if the transition is active and enabled. After firing a

transition, one or more black or white tokens will be added

to every output place of Ti according to the output function

for that transition.

A place is active if it is allowed to perform its

activity, i.e., if it holds at least one white token. A

place is passive if it is prohibited to carry out the

activity in the place, i.e., if it does not have any white

token or receives one or more black tokens. Therefore, a

white token in a place Pi means that the activity in Pi is

enabled; a black token in a place Pi means the activity in

Pi is forbidden. If a black token is added to a place the

effect is to reset the number of white tokens to zero in

that specific place, so that black tokens are not stored.

The marking ~ represents the current state of the D­

net; therefore, the combination of marking ~ and transitions

T will determine the invocation of subsequent activities in

50

the reasoning process of the system represented by a D-net.

Formal Specification of D-net Model

and Knowledge Table

Since the D-net model is basically a graph model [19],

the knowledge table can be used to implement the D-net model

according to the following assertions: the knowledge table

used to store D-type knowledge is called a D-type knowledge

table, and the knowledge slices in a D-type table are D-type

knowledge slices (the places or objects are "dynamic"

activities), which are used to represent places and

transitions in D-riet.

The knowledge slices in a knowledge table can be

divided in four subgroups according to the definition of

Petri nets:

Place-type: It is used to store the information about a
place in the D-net.

Trans-type: It is used to store the information about a
transition in the D-net.

In-type:

out-type:

Describes the input function of a transition in
a D-net.

Describes the output function of a transition in
a D-net.

Place-type is defined as:

(p, altpl(ti1,ti2····,tip), altp2(tol,to2···toq))

where:
p is an activity or process.
altpl, altp2 are two flags or alerters whose
function is to monitor the event which occured and
the movement of tokens in the corresponding place p.

(til ... tip) are the transitions which have place p
as one of the input places.
(tol•••toq) are the transitions which have place p
as one of the output places.

Trans-type is defined as:

(t, altt, (pi1,Pi2 .••• ,pim), (po1,po2 .•• pol)),

where:

51

tis a transition; this transition·holds the logical
predicate of 'the transition.
altt is an alerter to monitor the condition at
transition t; altt will be 'triggered ·Whenever the
transition is fired (active and enabled).
(Pil···Pim) are the input places for the transition.
(pol···Pol) are the, output places for the transition.

In-type has the following form:

(t,{[pll, .ni1, coloril], [pij, nij, colorij]})

where:
t is a transition.
[Pik, nik, colorik] indicates, when transition t is
fired, nik tokens with color colorik will be removed
from its input place pik·
j is the number of input places of transition t.

out-type has the following form:

(t, {[po1,no1, colorol], •.• ,[poj,nOj 1 Coloroj]})

where:
t is a transition.
[Pok' n0 k, color0 k] indicates when transition t is
fired, nok tokens with color color0 k will be added
to its output place Pok.

' Finally, associated with each D-type knowledge table

there is a marking vector that determines the distribution

of the tokens in the net. This vector has the form (u1 ,

u2,··· un) where n is the number of places, each u is a pair

(w, nw), w indicates a "white" token, and nw the number of

white tokens in the place. As the only function of a black

52

token is to reset the number of white tokens at a place to

zero, information about black tokens is not included in the

marking vector [7].

Active and enabled transition vectors are needed also

to control execution of the transitions. The active

transition vector is (V1,V2,····Vm), where Viis a predicate

that indicates if transition ti is active, and m is the

number of transitions in the net. An enabled transition

vector is used to indicate which transitions are enabled. It

has the form (e1,e2,e3···em), where ei is a boolean value

indicating whether transition ti is enabled (ti is enabled

if there is at least one white token in each of its input

places). This vector has a different interpretation for

static knowledge representation.

In the simple Petri net presented in figure 4 the

tokens (dots in the circles) in places p1, p5 and p7 can be

considered white; so that the marking vector is:

u = { (w,1), (w,O), (w,O), (w,O), (w,1), (w,O), (w,1)};

the active transition vector, for the specific state of the

net, could be:

V = (0, 1, 1, 0, 1, 0) 1

this vector cannot be inferenced from figure 4 because Vi is

a predicate that indicates whether transition ti is active;

the enabled transition vector for the same net is:

e = (0, 1, o, o, o, O).

This means that, in the current state of the system,

only trans~tion t2 can be fired, because v2=1 and e2=1.

More details about the knowledge slices (i.e. Place~

type, Trans-type, In-type, Out-type), alerters, active

transition vector, etc. are presented in Chapter IV

(Implementation Issues).

In summary, for representing a D-net as a knowledge

table it is necessary to consider at least the following

data structures:

Knowledge table name

Marking vector U = (ul,u2·····un)

Active transition vector V = (vl, v2····vm)

Enabled transition vector e = (el, e2···em)

53

Place-type slice: One place related with all its input
and output transitions.

Trans-type slice: One transition related with all its
input and output places.

In-type slice:

Out-type slice:

One transition related with all its
input places and the number of white
or black'tokens associated with it.

One transition related with all its
output places and the number of white
or black tokens associated with it.

Features and Advantages of D-net Model

The D-net model which is derived from the G-net model,

combines the features of Petri nets and knowledge tables;

those features and advantages are presented in Chapter I,

where the model is introduced.

54

Reasoning for Dynamic Nets

The occurrences of events are the bases for the

reasoning strategies and algorithms for dynamic knowledge

represented by a D-net. As in any reasoning process, the

objective is to establish subsequent activities or processes

based on the current state of the system (i.e. the current

state of the D-net). The initial marking of the D-net is

determined by the initial state of the system being

represented.

The general guideline of the reasoning process is as

follows: when a transition t is fired, the number of tokens

in the input places Pij will be decreased by I(t) (the

input function for that transition), and the number of

tokens in the output places Poj will be increased by O(t)

(the output function for that transition). When a black

token is added to a place Pir the number of white tokens is

set to zero and the white token is removed. In this way the

activities in those output places are disabled. When a token

is added to or removed from a place p, the alerter altp2 is

triggered to take corresponding action. When a token is

removed, the alerter altp2 invokes a procedure to check if

it has to disable transitions t 0 1, t 0 2, ... t 0 qi this can be

done by updating the enabled transition vector. When a token

is added to a place p, the alerter altp2 invokes a procedure

to check if any of the transitions tilr ti2r tip becomes

enabled, according to the information of the marking vector.

55

Complex D-nets and Control Table

A knowledge object may be an atomic object or a complex

structure. A complex D-net is a D-net in which one or more
''

places or transitions are . D-nets the~sel,ves. To construct a

complex D-net it is necessary.to provide a mechanism to

connect el~mentary D-nets together.

Deng and Chang [7] introduce a special place called a

"switch place" to connect elemen~ary D-nets. A switch place

is defined by the quintuple (SID, K, u, ETV, ATV), where:

SID is a unique name for tpe net that the switch
represents,
k is the same k of the D-net, which can be "static" or
"dynamic",
u is the marking vector of the net,
ETV is the enabled transition vector, and
ATV is the active transition vector of the net.

The connections among D-nets are through the switch

places. To connect two nets Dl and D2 we can attach one or

more transitions in Dl to the switch place of D2, and so on.

Once tokens from one D-net enter the switch place of

another D-net, they enter another D-net level. Figure 7

shows an example of a Complex D-net.·In a complex D-net,

when the reasoning process jumps'from one level to another,

the control should come back to the point where the jumping

took place when the reasoning at that current level is done;

the SID field of the switch is used to know where the jump

should be done.

Formally a complex D-net is a D-net composed of a set

of elementary or complex D-nets connected to each other

through switch places. Theoretically, any place can be

56

connected to a switch through a transition, and any ·

connection can be broken by setting the condition on the

transition to false; therefore the composition of a complex

D-net can be modified dynamically.

S NDl

SCOND2

Figure 7. A Complex D-net

For an elementary D-net the knowledge table

representation is used to perform the reasoning. The

"control table" is used to perform reasoning on a complex D­

net. The most important function of the control table is to

specify how the reasoning process should start.

57

A control table is composed of a set of control records

with one record per switch place in the D-net. Each control

record is defined by a set of quintuples:

where:
SID =
!SET =

SCONN

SCOND
SPEC

<SID, !SET, SCONN, SCOND, SPEC>

Unique identification for a switch place.
Initial setting for the switch place.
Includes: marking vector, enabled and
active vectors.

= Connections of the switch place with another
elementary D-net.

= Condition to enter to switch place.
= Specifies the termination states(s) of the

D-net.

The contents of the control table can be updated in' a

manner similar to updating a knowledge table. The tasks of

the control table reasoning is to start a reasoning process,

coordinate and select the appropriate subsequent places or

subnets at different stages of a reasoning process and

dynamically change the structure of the complex D-net when

necessary.

Reasoning on a complex D-net must start from one of its

elementary nets, called the current part. This current part

is actually the net in which the reasoning process is being

done. During the process of reasoning one of the following

three events can occur to transfer control back to the

control table:

a) if during reasoning the contents of the control table are

updated, the control table algorithm should be invoked to

adjust the initial default settings, conditions and

connections.

b) if a token reaches a switch place, control will pass

back to perform the reasoning in the current part.

58

c) when the reasoning in a particular'part is done, the

control table algorithm must pass the results and control

back to the place from which the current part was entered.

The complex D-net is designed to model complicated

asynchronous activities because a big set of tasks can be

subdivided in smaller subsets or modules and then each

subset modeled independently; after doing so the modules or

abstract entities can be integrated to construct the complex

D-net.

CHAPTER IV

IMPLEMENTATION ISSUES

Details about the implementation of the algorithms for

reasoning with Petri nets and Knowledge Table are presen~ed

in this chapter. Some specific rules that should be

considered during the design of a dynamic system also are

presented.

The prototype for reasoning was developed in c language

using the Turbo c compiler version 2.0 in an IBM-compatible

microcomputer [22]. During the testing and debugging stages

some subroutines were written to show partial results of

reasoning. The final program occupies about 80 kbytes and

contains 35 procedures.

Data Structures

The data structures chosen to represent the places,

transitions, tokens and connections of a net are some of the

most important factors for successful implementation. The

information stored in the data structures should give

complete information about the places, transitions and

tokens in order to obtain accurate and fast results [14].

59

60

Places

Each place has fields for:

- Place name. A unique name or number for the place.

- Place Type. A place can be a value, an activity or a
switch. If the place is a value, it can store several
values; an activity is an external program that performs
certain calculations and returns the results to the net
using a file. A switch is used to connect different subnets,
so that a switch cannot contain activities.

- Activity name. Name of the external program that is
invoked when the reasoning process reaches the place.

- Initial Tokens. Number of tokens that the place contains '
at the beginning of the process. The user should specify the
initial tokens as the initial setting of the system.

- Number of Tokens. Number of current 'white' tokens in the
place. This number changes according to the reasoning
process.

- Transitions Input. This is a vector that contains the
names of the transitions that have current place as an input
place.

- Transitions output. This is a vector that contains the
names of the transitions that have current place as an
output place.

- Alerter. This field is to indicate that the activity of
the place can be executed by the system, so the place is put
into the execution queue.

- Executed Flag. This flag indicates that the activity of
the place was executed.

- Event. The event can be 'adding tokens' or 'removing
tokens' from the place. The type of event is used to control
the reasoning process.

- Results. Vector that contains the results of the place.
This is an array of strings where each string can contain an
integer, a float or a string of characters. For the
reasoning algorithm all the variables are strings because
the program does not have to do any calculations with the
data of the system being analyzed.

61

Transitions

Each transition has fields for:

- Transition Name. A unique name, or number for the
transition in the net. ·

- Condition. Initial condition of the transition. If
condition is equal to 'O' the transition is ,an activity that
should be executed by an external program. If it is equal to
'1' the transition is 'static', so no external program is
called. When the transition is an activity the reasoning
process calls the corresponding program taking as arguments
the results of the input places of the transition. When the
transition is static the results af every input place are
passed to the result vector of the transition, the order is
the same as specified in the list of input places of that
specific transition.

- Activity Name. Name of the activity or external program
that is invoked when the transition is enabled.

- Alerter. The alerter indicates that the activity of the
transition can be executed by the system, so the transition
is put in the execution queue.

- Input Places. Array that contains the names of the input
places of the transition.

- Input Tokens. Array that contains the number of tokens
that must be removed from the input places when the
transition is fired.

- Color of Input Tokens. Array that contains the color of
every input token. This implementation uses only 'white' and
'black' tokens as is specified in the description of the D­
net, chapter III.

- output Places. Array that contains the names of the
output places of the transition.

- output Tokens. Integer array that contains the number of
tokens that must be added to the output places when the
transition is fired.

- Color of output Tokens. Integer array that contains the
color of every output token. This implementation uses only
'white' and 'black' tokens.

- Results. Vector that contains the results of the
transition. As in the results of the places, this is an
array of strings that can store integers, reals or
characters strings.

current Alerter

The current alerter is a place or a transition that

is taken from the execution queue. This data structure,

contains the following fields:

- Alerter Name. Name of a place or transition.

- Type. Indicates whether the alerter is, a place or a
transition

Active Transition Vector

This is a single vector of integers that indicates

whether the transition has been executed.

Enabled Transition Vector

The enabled transition vector is used to indicate
'

that a transition can.be fired according to the Petri net

rules.

Execution Queue

This is a circular queue that contains the names of

the places and transitions to be executed. The sequence

stored in this queue is not necessarily the execution

sequence of the system being analyzed, it is only the

62

sequence given by the algorithms in order to check if those

nodes can be executed, according to the rules of Petri nets.

63

Files

Four different files are used during the reasoning

process: the input file, two files to store temporarily the

results of activities performed by places and transitions,

and on~ output file. that .contains the trace of the execution

of the reasoning pr~cess ..

Input File

The design of the in~ut file is presented in figure 8,

and in chapter V there are examples of the input file. The

conventions used in figure 8 are as follows:

- The keywords can be in upper or row~r case letters and
they are preceded by one or two starts '*'· The keywords are
'**PLACES', '*TI', '*TO', '**TRANSITIONS', '*PI' and '*PO'.

- The names used by the user are in lower-case letters; for
instance 'nplaces' and 'type-of-place' indicate the number
of p!'aces of the system and.the type of place respectively.

- The optional parameters are indicated between square
parenthesis"[]", for example '[name of activity]' is an
optional parameter that· depends on the type of place.

- The name of places an~ transitions can contain a maximum
of 8 characters.

Now, a brief description of every parameter specified in

figure 8 is·given, starting with the keywords.

- **PLACES: Indicates the beginning.of the place
descriptions. · ·

- *TI: Transition Input; indicates the transitions that
have the current place as one of thei~ input places.

- *TO: Transition Output; indicates the transitions that
have the current place as one of their output places.

- **TRANSITIONS: Indicates the beginning of transitions

64

descriptions.

- *PI: Places Input; places that are input to a transition.

- *PO: Places Output; places that are output from a
transition.

*PO and *PI constitute >the set of transition functions

of the system.

- name-of-the-system: Name of the system that is being
represented as a Petri net; maximum length is 80 characters.

- n-places: Number of places in the Petri net.

- place-1 ... place-n: Name of places 'of the system.

- place-type:
'a'=activity,

Type of place that can be 'v'=value,
's'=switch.

- init-ntokens: Initial number of tokens of the place,
usually is zero(O).

- [activity-name]: This parameter is optional; it is
specified only when place~type is 'a' or init-cond is 'O';
it should be the name of an executaJ:>1e program that is
called when the place,.is,activated.

- trans-i1 ..• trans-ip: Name of transitions that have the
current place as one 'of the input places.

- trans-o1 •.• trans-oq: ,Name of transitions that have the
current place as one'of the output places.

- n-trans: Number of transitions of the Petri net.

- trans-1 ... trans-t: Name of transitions of the system.

- init-cond: Initial state of the transition. The possible
values are 'O' and '1'. init-cond='O' means that the
transition is not active and should be executed by an
external program specified in' [activity-name]. init-cond='1'
means that the transition is active and is only a connection
among places, so that the result of the transition is the
set of results of its input places.

- (p-i1 ntok-i1 color-i1) ... (p-im ntok-im color-im): This
set of parameters specifies the input function of a
transition. The interpretation of this function is: when a
transition is fired ntok-ik tokens of color-ik are removed

65

from the input place p-ik.

- (p-ol ntok-ol color-ol) ... (p-om ntok-om color-om): This
set of parameters specify the output function of a
transition. When a transition is fired ntok~ok tokens of
color color-ok are added to the output place p-ok.

name-of-the-system

**PLACES n-places
place-1 place-type init-n-tokens [activity-name]
*TI trans-i1 trans-i2
*TI trans-ip
*TO _ trans-o1 trans-o2 ...

*TO trans-oq

place-2 place-type init-ntokens [activity-name]·
*TI ..
*TO

place-n ...

**TRANSITIONS n-trans
trans-1 init-cond [activity-name]
*PI · (p-•1 ntok-i1 color-i1) (p-i2 ntol<-i2color-i2) ..
*PI (p-im ntok-im color-im)
*PO (p-o1 ntok-o1 oolor-o1) (p-o~ ntok-o2 cqlor-o2) ..
*PO (p-ol ntok-ol color-ol) ·

trans-2 init-cond [activity-name]

*PI
*PO

trans-t ...

Figure 8. Design of the Input File

66

Output File of Transitions and Places

The results of transition·and place execution are stored

in a file that is used as an interface between transitions

and places. When an activity is executed, its results are

put in the file. Later the reasoning process takes those

results to stores them in the vector of results for the

corresponding transition or place. In this ~ay the activity

of a node of the system is independent of the reasoning

process, and its results are handled by the reasoning

process without interpretation.

Figure 9 presents the design of the output file of a

transition, and figure 10 shows the structure of the

corresponding file for a place. In the figures, 'npar' is

the number of parameters or results produced by an activity;

'vall', 'val2' ... 'valn' are results that can contain

integers, reals or strings. Finally, 'cond' is a parameter

for transitions that indicates if the activity was

successful.

npar

cond val1 val2 val3 vain

Figure 9. Structure of Output File of
Transitions

npar
val1 val2 val3 vain

Figure 10. Structure of Output File of
Places

Trace File

67

The details of the reasoning process are stored in the

trace file. This file was desigped to help the user to

follow and analyze the results obtained during the execution

of the system.

The trace file contains the specifications given in the

input file (whose design is given in figure 8), the results

of every place -and transition execution, snapshots of the

execution queue·and the actual execution sequence of

activities. The order and meanings of the partial results or

"messages" of places and tr~nsitions are the responsibility

of the designer of the system.

Results of Event-driven Reasoning

The goal of the reasoning process is to determine

subsequent events or activities based on the current events

of the_ system [7); therefore, the result of reasoning is the

logical execution of the activities represented in places

and transitions. In chapter V, the execution sequences of

68

the systems, used as examples, are presented. These

sequences show the partial results of every place and

transition; in this way the user can follow and analyze the

different execution sequ~nces and results of the system

being studied.

Special Considerations and Limitations

The program for event-driven reasoning was developed as

a prototype to study the behavior of the algorithms in

different situations; however, this software can be used for

designing information systems and for studying their

behavior under different conditions or situations.

The software considers the rules of Petri net theory

and also includes some specific rules that should be taken

in account during the design of 'a net., Those special

considerations are:

- The name of places and transitions should be unique in the
whole system. In other words, the name of a node in a subnet
should not be repeated in another subnet.

- A switch place is used to connect subnets, pass the'
results from one set of subnets to another and to reset the
conditions of subnets. The switch place cannot be used as an
activity in the system. The transitions associated with a
switch place can contain activities.

- There is a file for communication between places and
transitions. Although this is adequate for the prototype,
for some applicatio~s or expert systems it could be
necessary to use more files when the number of results is
high and should not be stored in main memory (vector of
results in the program).

- The input arguments for the activity of a transition is
the ordered set of results of every input place of the

69

transition. In the same way, the input arguments for the
activity of a place is the ordered set of results of every
input transition to the place. Special care should be taken
when a result is missing during the execution of an
activity, because the reasoning calls the external
activities using all the results that are available in the
precedent nodes.

- To start the reasoning the first alerter should be one
which is active. The first alerter can. be a place, a
transition or a switch. Sometimes is convenient to"use a
special place or transition dedicated as the starting
alerter.

-The system to be·analyzed can.be designed as a cycle (a
closed net) if the user wants to see its.behavior with
different values or conditions. Before starting a new cycle
the reason·ing process ask t_he u·ser if he ,wants to run
another cycle_of the system. ·

-The names.of places, transitions and keywords, in the
input file, can be written in upper or lower case.

- To connect different subnets the user should indicate the
specific connec.tions between the switch place and the
transitions of the subnets.

CHAPTER V

ANALYSIS OF RESULTS

Example 1: A Prototype of'an Ex~ert

System for Lime Recommendations

for Acid Soils

In order to test how the reasoning process can be

applied to a sequential system, the procedure to dQ lime

recommendations for acid soils was chosen.

The soil is constantly changing its chemical

characteristics; it is like a big chemistry laboratory. As a

consequence of _nitrogen fertilization,· removal of Calcium,

Magnesium, Potassium, Sodium and other basic cations, and

the decomposition of organic,residues, the soil can be acid

(pH: 3.0-7.0), and this acidity severely.affects crop

production, especially for certain crops that are less
' ' resistant to acidity [1], (i9]. To neutralize-acidity in

soils it is necessary to apply lime (Calcium Carbonate) to

it; the lime induces chemical transformations that modify

the soil pH, from acid to basic, and then the crops can

absorb nutrients more effectively.

This expert system is a prototype to estimate.lime

recommendations. There are 2 general situations: in the

70

71

first situation there is sufficient historical information

on the regio~ to obtain statistical models of pH based on

other variables that are also chemical determinations; in

the second situation there is no information. In the second

case the lime recommendation can,be made theoretically using

other statistical models,based only on the type ~r texture

of soil~ With th~ historical' data base, ·which contains soil

analysis data, the models for region.and texture can be

obtained to feed the knowledge base; the data base is

updated constantly because new soil analyses are added to

it, and periodically new, more ·accurate models can be

obtained.

The prototype was developed according to the structure

shown in figure 11. The st~tistical mode~s for this

prototype were not obtained with real data from the regions;

they were obtai~ed according to. the general model of acidity

(pH) in the regions and textures ,utilized [30].

Description of the System_

A general description of the, syst~m is presented in

figure 11. A soil can be basic, neutral, or acidic; a soil

is basic when it~ pH is greater than 7.0, and it is acidic

when its pH is below 7.0. pH is a chemical determination

defined as the negative log of concentration of ions of

hydrogen (H) :

72

The acidity of soils affects crop production

considerably, and it is necessary to apply lime in order to

obtain an appropriate soil near neutral to cultivate

different crops [29].

The acidity of soil affects crops in-different ways

dependi~g on the type 'of soil and type of crop; therefore,

obtaining the correct amount of lime to.be applied is not an

easy task; agronomists must take into account many variables

to calculate the necessity of lime. The results obtained

from chemical calculations and soil tests are not always

accurate because the soil is constantly changing its

characteristics and is not uniform; there are· so many types

of soil, textures, chemical ·elements and different

environments that is difficult to get the ideal recommen­

dation of lime. Another problem is that the samples of soil

analyzed in laboratories are only small amounts.

Lime requirements and recommendations, as determined by

soil tests, are made in te~s of effective calcium carbonate

equivalent(ECCE) which is a quality standard based on the

percent purity and fineness of material; as a result, lime

recommendation~ and applications should be based on this

parameter. Other important factors that should be considered

in lime recommendations are desired pH for crop species,

depth of soil to be tested, rate of reaction of lime

according to type of soil with different characteristics,

and environmental conditions. The efficiency of other

fertilizer nutrients is improved as the limed soil

73

approaches neutral pH [30].

The main idea behind this expert system prototype is to

combine the. statistical analysis provided by a historical

data base on soil analysis and chemical calculations to

obtain a good lime recommendation; in addition, the
' '

experience of a human expert, such as an agronomist, should

be considered for the final recommendation. [.30].

The knowledge for developing this prototype was

provided by Dr. Westerman, a professor of Agronomy at o.s.u.
[30], and some books related with soils that are listed in

the bibliography [1], [29].

The expert system, when fully developed, will be useful

for agronomists, farmers, producers and researchers of soil

sciences because it can help to improve yield in several

crops. This prototype was developed for doing lime

recommendations in one.crop, a few regions and a few soil

textures; however, it can.be extended to different crops

regions and textures; ob¥io~sly, the system will be more

complicated, and more data will be needed to obtain the

statistical models, by- region and texture or any· other

variable that might be important in the models.

The data used to obtain the stati~tical models for this

prototype was not taken·from·real soil analyses, therefore

the lime recommendations are probably not accurate and the

user should not use the results of this prototype as a

precise lime recommendation.

Historical
Data Base:
(Soil Analysis)

Statistical Analysis·

Correlation, Variance
Regression, etc.

statistical Models
by Region and t~xture
Y = a + bx + ex

l

EXPERT SYSTEM
SHELL

Reasoning Process

\I

RE;SULTS
- Flow of reasoning

' '

- Lime'Recommendation
- Messages.

PETRI NET and
KNOWLEDGE TABLE

MODEL

\~

,

.User's Data:
(pH,region,CEC,
· texture, ...)

Activities: Programs
- Read input data.

Search Region and
Texture
Calculate Base
Saturation

74

Lime Recommendation
Print Results

Figure 11. General Description of the System Prototype
for Lime Recommendations

75

The prototype has two basic inputs: a historical data

base and the data issued by the producer or researcher about

soil and crop.

The historical data base contains soil analyses

classified by region and texture; based on this data the

statistical models used by the exp~rt system are obtained .•

In the real application'this data base is very important for

the system.because it contains detailed information about

the soil.

The producer or user should enter data related to soil

and crop in order to choose the appropriate model for the

specific soil. The user should enter the following

information requested by the Expert System:

REGION : Name of the region in which the crop is located.
The system presents the available regions and
then .the user selects one.

TEXTURE: Type of soil texture. The system p'resents the
available textures and the user selects the
appropriate OJ1e.

BASE SATURATION DESIRED: Percentage of Base saturation
that the user'wants for the soil. Base saturation
is a chemical'determination.

pH : Acidity or basicity· of soil. Typical values can be
in the range. (~.0 - 8.0).

CEC: Cation Exchange Capacity [meqjlOOg]. This is a
chemical determination whose units of measure
are miliequivalents per lOOg.of soil. Usually
the range is {0.0- 40.0). ·

ECCE: Effective Calcium Carbonate Equivalent. This is an
index of purity and fineness of lime and its
value is usually in·the range (0.5- 1.0).

If the region and texture given by the user are in the

data base, the expert system takes the corresponding model

and the recommendation is done with that model. If the

region is not in the data base, the expert system does a

76

theoretical recommendation based on texture and other input

data.

According to region and texture there are three

possibilities to obtain the'statistical model:

1. The region and texture are in the models; so the
expert system can obtain a reai model.
' '

2. The region given by .the user does not contain the
desired texture; SOj ~btain a theoretical ~odel.

' ' 3. When the user selects region = "other" ,and any
te~ture, the system calculate~ lime with a
model based only on texture.

Petri Net and Knowledge Table

Model of the System

The Petri net developed for this prototype is presented

in figure 12; th~ net is a closed. net, so that the system

loops requesting mo're input .data for different cases until

the user stops it.

Activities or External' Programs. The activities for

this prototype are externaLprograms or functions that

perform the corresponding activities established 'in the

Petri net of the system. Every activity performs specific

tasks; below there is a description of each activity.

LRREAD is a· function that allows the user to enter the

input data requested for the prototype.

LRIF1 is a program whose function is to define if there

is a model for region and texture.

LRIF2 has the same function as LRIF1, but LRIF1 returns

77

'1' as a token when the activity is successful while LRIF2

returns '1' when the activity is unsuccessful.

LRBSREAL is a program to calculate 'base saturation'

according to the statistical model found (determined by

region and texture).

LRBSTH calculates ''base saturat~ori' , ba·sed only on

texture •. This activity, is called only ,whEm transition LRIF2

is true.·

LRBSNEC is a function to calculate the 'base saturation

necessity' of the soil.

LRIF3 establishes if 'base saturation necessity' is

greater than zero; if it is, then that transition is true.

LRIF4 has the same function as LRIF3, but LRIF4 is true

if 'base saturation necessity' is less that zero.

LRLIME is the pro~ram that calculates the final lime

recommendation according to the information sent by LRIF3.

LPRINT is in charge of printing the results of the

prototype.

T1, T2, T3 and T4 are transitions whose only function

is to connect places and pass information(tokens) from the

input places to the output place~. ~tiese piaces are always

active because they do not need external procedures to

execute their function.

The final advice given by the expe~t system is the

amount of lime that should be applied to the soil; this

valpe is given in pounds per acre [lbjacre].

LRIFl
LRBSREAL

Figure 12.

LRIF3 LRLIME

If4
T2

T3

Petri Net of Lime Recommendation Prototype]

CP

79

Input·· File for the Reasoning Process. Figure 13

presents the contents of the input file used for this

prototype. This file contains the specification of the Petri

net in combination with the knowledge table representation,

and it can be created followiQg the specifications given in

chapter IV.

Results of Lime Recommendation

System Prototype

The results of the reasoning process combined with the

results of lime recommendations are presented in Appendix A;

the specific screens create~ by the activities are not

included. The log of reasoning shows.the partial results

obtained in every place or transition; the partial results

and the order of those results in every node are determined

by the designer of the Petri net representation of the

system.

It should be emphasized· that the input used to generate

the statistical models were not from real data. Therefore,

the procedures outlined and results obtained are for

illustrative purposes only.

The design of ~his sequ~ntial system is flexible, and

the user can modify the activitie's in a node without

changing the original design.

Sometimes it is necessary to include nodes (especially

transitions) that are not clearly defined in the system to

Ume Recommendation for Acid Soils.

**PLACES 6
Read a 0 LRREAD

*TI · if1,if2

*TO t3

bsreal a 0 lrbsreal

*TI t1

*TO if1

bsth a 0 lrbsth

*TI t2

*to if2

bsnec a 0 lrbsnec
*TI .ita· if4

*to t1 t2

lime aOirlime
*TI -t4

*TO if3

print a 0 lrprint

*TI t3
*to t4 if4

**TRANSITIONS 8
if1 0 lrif1

*PI (read 1 1)

*PO (bsreal 1 1)
if2 0 lrif2

*PI (read 1 1)

*PO (bsth 1 1)
t1 1

*PI (bsreal1 1)

*PO (bsnec 1 1)

t21

*PI (bsth 1 1)

*PO (bsnec 1 1)
if3 0 lrif3

*PI (bsnec 11)
*PO (lime 1 1)
if4 0 lrif4

*PI (bsnec 1 1)
*PO (print 11)

t4 1

*PI (lime 1 1)

*PO (print 1 1)

t3 1

*PI (print 1 1)

*PO (read 1 1)

Figure 13. Input File for Lime Recommendation
Prototype

80

81

establish connections; this happens with transitions t1, t2,

t3 and t4 (see figure 12), for instance, t3 is used to

restart the ,system after every lime recommendation.

The user or designer can fqllow the execution sequence

of the system and check all the details in order to debug

the design; this prototype shows the 'sequence of, execution
I

of plac~s and transitions.

In this system the data passed from node to node is not

much; however, when the amount of data is high it would be

better to establish another strategy for the tokens, for

example utilizing several·files or one dynamic file to store

the partial results without passing data from,node to node.

Using the Petri net representation one can observe the

different paths of the execution sequence according to the

results of every node; in this system there are four
'' possible paths that can be distinguished in figure 12.

This is an important point for-the desigt:ter because hejshe

can test the system by forcing it to take different paths

using special conditions or data.

An important feature of this technique is that the

designer can isolate the activity of every node like a

function in a programming language with input parameters

(messages) and output or results; usually these results are,

used as input data by the consequent nodes.

To include or delete a place in the net, normal'ly it is

also necessary to modify a transition because the places and

transitions are mutually dependent. This aspect is observed

82

more often in sequential systems like the present prototype.

Example 2: Arithmetic .Computations as

Concurrent and A9ynchronous Activities

A set of arithmetic. computations that can be executed

concurrently., (in parallel) was selected to test the

prototype with a system that exhibit~ concurrency and whose

activities can be perfor~ed in an asynchronous form.

The main objective of this example is to show how the

activities of the places depend only on their precedent

transitions, and the activities of the transitions depend

only on their precedent places. A set of ·activities can be

executed concurrently and asynchronously with another set of

activities of thesystem when they are independent (executed

in different branches of the Petri net).

Petri Net and Knowledge ··Table of the System

Figure 14 presents th~ ·Petri net used for representing

the concurrent arithmetic calculations. The objective of
.

this net is to obtain the result of the·expression

x = (a+b) 1 (a-b);

once the system reads the values of 'a' and 'b' the

expressions (a+b) and (a-b) can be evaluated concurrently

because they are independent; for instance, the set of nodes

{pl, copya, p3, p4} can be executed in parallel with the set

Add

b

Figure 14. Petri Net of Concurrent Computations

If2
(a-b 0)

Divide

True2

Truel

())
w

84

of nodes {p2, copyb, pS, p6}, the node 'Add' can be executed

concurrently with 'p6', 'Subtr.', 'p8' andso on.

The place 'start' is used to initi~te the system. It

also could be used as a switch place; during the tests this

place . was used as initial alerter and. sw.i tch place obtaining

the sa~e results •. The Petri net of this system is closed (a

loop) in order'to facilitate cqntinuous·calculations with

different values entered by the user.

In this example most of the activities of places and

transitions are small exter,nal programs that are called by

the reasoning process according to the logical flow of the

system; the a·cti vi ties are:

READ: This is a function (transition) that asks the user to

enter two values 'a' and t·b'; these values can be integer or

real;

PlA: The function of.this place is to store the value of

'a' that was read in the previous transition.

P2B: This function is in' charge of storing the value of 'b'

that was read in the t'ransition 'READ'.

ADD: This transition adds. the values of 'a' and 'b' which

are taken from the places 'p3'' and ~ps'.

SUBTR: This transition finds the difference between 'a' ,and

'b', which are taken from places 'p4' and 'p6'.

IFl: This function checks if (a~b) is different from zero;

if (a-b) is different from zero a token is sent to place

'p9' and the process continues~

IF2: This program checks if (a-b) is equal to zero; if (a-

85

b) is equal to zero a token is sent to place 1 pll 1 and the

process continues in that branch. Therefore the places 1 p9 1

and 1 pll 1 are mutually exclusive.

DIVIDE: This program divides the result of place 1 p7 1 by

the result of place , · 1 p9 1 •

The rest of the nodes {copya, copyb,, p3, p4, p5, p6,

p7, p8, p9, pll,, plO, truel, tru2, start} -do not need an

external program to execute their activity,,which is

basically to transmit tokens.

Figure l5 presents the contents of the input file of

the system that was used for this example. This file is the

representation of the Petri net as knowledge table in order

to execute the reasoning process.

Results of the concurrent Computations Prototype

The results of the reasoning process are presented in

Appendix B together with ~he results and messages of the

programs or activities of every node. In this trace all the

results produced by every place and transition are presented

in order to· allow the u~er to follow· the· different.execution

sequences of' the system as well as to observe the activities

that can be performed concurrently.

The basic execution sequence of this prototype is:

start, read, pl, copya, p2, copyb, p3, p4, p5, add, p6,

subtr, p7, pa, ifl, if2, p9, divide, plO, truel, ... ; in this

basic sequence the nodes pll and true2 are not included

Mathematic Computations

**PLACES 12
p1 a 0 p1a

*TI copya

*TO Read
p2app2b

*TI Copyb
*TO Read
p3v0

*TI Add

*TO Co pya

p4v0

*TI Subtr

*TO Co pya
p5v0

*TI add .

*TO Copyb

p6v0

*TI Subtr

*TO Copyb
p7v0

*TI Divide

*TO Add

p8v0

*TI lf11f2

*TO subtr
p9v0

*TI Divide

*TO lf1

p10v0

*TI true1

*TO Divide
pll vO

*TI true2

*TO lf2
starts 1

*TI read

*TO true1 true2

**TRANSITIONS 10
Read 0 read

*PO (p1 1 1) (p2 1 1)
Copya 1

:*PI
~:PO

(p1 1 1)

(p311) (p4 1 1)

Copyb 1 '
*PI . (p211)

*PO (p5 11) (p6 1 1)
Add Oadd

*PI (p3 11) (p5 11) ·
*PO (p711)·
· Subtr 0 subtr

*PI (p4 11) (p61 1)
*PO (p8,11)

Divide 0 divide

*PI (p'7, 11) (p9 1 1)

. *PO (p10 11)
lf1 0 if1

·*PI
*PO
lf20if2

*PI
*PO

True1 1

*PI
*PO

Truf:!2 1

*PI
*PO

(p8 1 1)

(p9 11)

(p8 1 1)

(p1111)

(p10 1 1) '

(start 1 1)

(p1111)

(start 1 1)

Figure 15. Input File of ·concurrent Comput~tions

because if2 does· not send a token to pll when (a-b) is

positive.

The activity of a place is executed as soon as the

86

87

precedent transition is fired and sends a token to it; for

instance, pl is executed immediately after the execution of

transition read, p3 and p4 are executed immediately after

the execution of transition.copya. The.activity of a

transition is executed as ~oon as all its precedent places

are executed; for example, transition ~dd is fired

immediately after places p3. and p5 are done.

In this example the reasonipg attempts to execute

places p3, p4, p5 and p6 .in order; however, when place p5 is

executed all the precedent conditions to Add are satisfied,

so transition Add is fired before·executing the activity of

place p6.

This prototype shows that activities can be executed
'>

concurrently and in an asynchronous way; in other words the

timing of the activities is not considered. For example, to

fire the transition divide it is necessary'that all the

activities of the two precedent paths had been executed. In

this case the reasoning prc;>ce.ss does not consider the

duration of the activities.

The order of the.execution sequence can easily be,
' ' ' modified. This.can be'done changing the order of the

parameters in the input file.so that the original design

does not have to be mod,ified. The reasoning process is very

sensitive. Any chang,e in the knowledge. table or in the Petri

net model is detected and the sequence of the system could

be altered. This aspect is important, especially for the

designer of a system, because hejsbe can observe the

behavior of the system being simulated under different

situations by changing certain parameters or conditions.

Analysis of-Algorithm for Complex Nets

88

Using swit~h place to connect elementary nets is useful

when there 'are different kinds of 'reasoning for the subnets

that constitute a_ system. The function of the switch is to

reset the conditions of the subnet and activate the

corresponding reasoning process. The_prototype developed in

the present work deals only with dynamic activities (event­

driven reasoning), therefore the switch place can be treated

as a common place whose function is to reset the conditions

of one specific subnet •.

The prototype developed can do reasoning in complex

nets, but there is only one level of nesting. A program can

be developed to do reasoning with several levels of nested

nets. The programmer should copsider different aspects such

as: every place or transiti9n can be another net in a deeper

level; the algorithms for nested nets could be developed in

a recursive manner in order to use the same code for

different levels of reasoning; every subnet should contain a

place or transition as an initial alerter to start the

process in that specific node when the algorithm reaches the

subnet; the final results of a subnet should be sent to the

upper level net to maintain the flow of information; the

program could create subnets dynamically and attach them to

89

the upper net as a single node; every subnet should have all

the descriptions and characteristics of the nodes;, in other

words, every subnet should define its own places,

transitions, marking vector, enabled vector, active vector, - ' '

sequence queue, result vector, input and output functions,

etc.

Under these conditions it is possible to develop a

powerful _tool to analyze complex systems whi'C::h are not easy

to represent in a single net.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The initial design of the Petri net representation for

a system is a process that involves precise· knowledge-of

the system and usually should be carried out· by more than

one expert, especially when concurrent activities are

involved. Sometimes designers must create places and

transitions that are not obvious or clearly specified in the

real system. One way to facilitate the initial design is to
> ,,,

take small parts of the system a~d design the corresponding

Petri net for each one independently; after that , it is

easier to integrate all the mo9u1~s in a higher level net.

In the future, .a graph interface should be developed to

facilitate the initial design. and the modifications or

upgrades of .the system. ·With th.is interface the user would

probably not have to code the net representation; thus the

~ossibility of making mistakes wilL be reduced.

Although the software developed·· to analyze Petri nets

so far tends to be application-dependent (due to the

assumptions of developers and the general restrictions

of the nets) the present tool can.be used to analyze

information systems by introducing modifications to the

90

91

original design. The user or knowledge'engineer can observe
the behavior of the system by introducing.or deleting nodes
or connections, or by changing the transition functions. It
is especially useful in ana~yzi~g control systems that
include feedback data to t~ne,the system or reach certain '•

optimal conditions. Also I it co:l:lld be us~ful in developing
software and controlling the information -flow among modules
or nodes in a n~twork or·any information system.

The tool developed.in the present work can be used to
develop expert systems because the r~asoning process based
on Petri nets' .can traverse · the correct sequence or sequences
of activities to reach the final goal of the system.

With the phil?sophy o~ Petri nets a user can design
complex or neste~ nets, where a place or transition is
itself another net •. The subnets can.be connected usirig
"switch places": however, all connections should be
specified in detail, be'cause the main function of a switch

- ' -place is to reset the initial conditions of the subnet that
it controls and pass-the' information needed by the subnet.
Therefore, it will be convenient if, in the future, an

-algorithm is implemented for analyzing nested·nets with
several levels; for this purpose the knowledge table is
useful because any slice c~n be ~notper knowledge table.

In ad~i tion to general rules of Petr-i nets, coloured
Petri nets and Knowledge Tables, the present work adds some
rules for representing knowledge. These rules are related
with the data flow among nodes; in other words, these are

92

specific rules for the messages and the tokens which are

presented in chapter IV.

The model proposed as a combination of Petri nets,

Knowledge tables, and Control tables is a flexible and

modular technique because the representation is independent

of the reasoning strategies; the elementary nets can be

combined to build complex nets. The model can be applied to

the specification of information systems and for the
'<

simulation and prototyping of asynchronous activities.

In the prototyp~ the transition functions are fixed, so

every time a transition is fired, the tokens are moved

according to specific transition functions. It would be

interesting to consider the possibility of having several

transitions functions for a specific transition and place;

with this feature a system could be more dynamic because the

movement of tokens and their colors would be used according

to the results of the transition.

BIBLIOGRAPHY

1 Brady, N.C. THE .NATURE AND PROPERTIES OF SOILS.
Macmillan Publ~shing Co. Inc. 8th edition.
New York. 1974. · ·

2 Caudill, M. USING N~URAL·NETS: REPRESENTING KNOWLEDGE.
AI Expert. Vol.4, No.12. pp.34-41. December 1989.

3 Chang, S.K. and Ho,: C.S. KNOWLEDGE TABLE AS A UNIFIED
KNOWLEDGE REPRESENTATION FOR OFFICE AUTOMATION
SYSTEM DESIGN. Office Knowledge Engineering,
Newsletter of IEEE TC on Office Automation.
Vol.3, No.1. pp.l2-25. February 1989.

4 Charniak, E. and McDermott· D. INTRODUCTION TO
ARTIFICIAL INTELLIGENCE. Addison-Wesley Publishing
Co. California. 1986.

5 Chen, S-M. Ke, J-S. and Chang J-F. KNOWLEDGE
REPRESENTATION USING FUZZY PETRI NETS. IEEE
Transactions on Knowledge and Data Engineering.
Vol.2, No.3. pp. 311-319. September 1990.

6 Deng, P., Holsapple c.·w. and Whinston A. B. A·SKILL
REFINEMENT LEARNING MODEL FOR RULE-BASED EXPERT
SYSTEMS. IEEE Expert. Vol.5, No.2. pp. 15-27.
April 1990. · ·

7 Deng, Y. and Chang S-K. A G-NET MODEL FOR KNOWLEDGE
REPRESENTATION AND REASONING. IEEE Transactions
on Knowledge and Data Engineering. Voi.2,.No.3.
pp. 295-310. September 1990. ·

8 Deng, Y. and Chang S. A FRAMEWORK FOR THE MODELING AND
PROTOTYPING OF DISTRIBUTED INFORMATION SYSTEMS.·
International Journal of Software Engineering and
Knowledge Engineering. September 1991.

9 Deng, Y. Department of Computer Science, University of
Pittsburgh, PA 15260. Personal communication via
E-mail and telephone. 1991~

93

10 Fordyce, K. Jantzen, J. Sullivan, G. A. Sr. and
Sullivan, G.A. Jr. REPRESENTING KNOWLEDGE WITH
FUNCT,IONS AND BOOLEAN ARRAYS. IBM Journal of
Research and Development. Vol.33, No.6.
pp. 627-645. November 1989.

94

11 Hunt, V.D. ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS
SOURCEBOOK. Chapman and Hall. New York. 1986.

12 Jacob, R.J.K. and Frpscher' J.N. A SOFTWARE ENGINEERING
METHODOLOGY FOR RULE-BASED SYSTEMS. IEEE
Transactions on Knowledge and Data .Engineering.
Vol.-2. No.2 pp. 173-185: June 1990.

13 Jensen, K. COLOURED PETRI NETS. ,Lecture Notes in
Computer Science.· Vol.254. pp.249-299. 1987.

14 Kasturia, E. DiCesare, F. and Desrachers, A. REAL
TIME CONTROL OF ~LTILEVEL MANUFACTURING SYSTEMS
USING COLORED PETRI NETS. Proceedings - 1988 IEEE
International Conference on _Robotics and
Automation. pp. 1114-1119. April 1988.

15 Mayfield, B.E. Assistant'Professor, Computing and
Information Sciences, Oklahoma State University,
Stillwater. 1991.

16 Murata, T. PETRI NETS:~ PROPERTIES, ANALYSIS AND
APPLICATIONS. Proceedi~gs of the IEEE. Vol.77.
pp. 541-sao·. April 1989.

17 Obermeir, K.K. ·and Bar~on, J.J. TIME TO GET FIRED UP.
Byte. Vol.14, No.8. pp. 217-224. August 1989.

18 Parsaye, K. ACQUIRING AND VERIFYING KNOWLEDGE
AUTOMATICALLY. AI Expert. Vol.3, No.5. pp.48-63.
May 1988 · -

19 Peterson,- J.'L. PETRI NETS. Computing surveys.
Vol.9, No.3 pp.223-250. September 1977.

20 Ribaric, S. KNOWLEDGE REPRESENTATION SCHE~E· BASED
ON PETRI NET THEORY. International Journal of
Pattern Recognition and Artificial Intelligence.
Vol.2, No.4. pp. 691-700. December 1988.

' '
21 Roberts, L. ARE NEURAL NETS LIKE THE HUMAN BRAIN?.

Science. Vol.243. pp.481-482. January 27, 1989.

22 Schildt H. C THE COMPLETE REFERENCE. Osborne
McGraw-Hill. Berkeley, California. 1987.

23 Shapiro, s.c. Encyclopedia of Artificial Intelligence.
Vol.1-2. John Wilwy and Sons. New York. 1987.

24 Simmons, A.B. and Chappel, S.G. ARTIFICIAL INTELLIGENCE - DEFINITION AND PRACTICE. IEEE Journal of Oceanic Engineering. Vol.13 No.2. pp. 14-41. April 1988.

25 Slagle, J.R. and Gardiner, D.A. KNOWLEDGE· SPECIFICATION OF AN EXPERT SYSTEM. IEEE Expert. Vol. 5. No.4 pp.29-37. August 1990.

26 .Smith, R. THE FACTS ON FILE DICTIONARY OF ARTIFICIAL INTELLIGENCE. Facts on File. New York. 1989.
27 Touretzky, D.S. and Pomerlau D· .. A .. ·.WHAT'S HIDDEN IN THE HIDDEN LAYERS?. Byte. Vol.14, No. 8. pp.227-233. August 1989.

95

28 Walters, J. and Nielsen, N.R. CRAFTING KNOWLEDGE-BASED . SYSTEMS. John Wiley and Sons. New York. 1988.
29 Westerman, R.L. FACTORS AFFECTING SOIL ACIDITY. Solutions Magazina. May-June 1981.

30 Westerman, R.L. Head of Agronomy Department, Oklahoma State University, Stillwater, Oklahoma. 1991.

APPENDIXES

96

97

Appendixes A and B contain the des~ription of the

systems used in the examples and the trace'or flow of

reasoning proc~ss.

The description of the system is the same input file

that contains the speciffcations of plac~s and transitions,
'< '

and the initial conditions.

The trace of the reasoning process basically shows:

a) the contents of ~he execution queue after any important

modification of the queue; b) the execution of the

activities in the places with the corresponding results; the

order and me~ning of those results depend on the specific

system being analyzed; c) the execution of the activities

in the transitions with corresponding results.

If the user has designed the system as a cycle, the

reasoning process asks if he/she wants to run another cycle

after reaching the 'initia~ alerter which is the starting

point of the cycle.

APPENDIX A

TRACE FOR EXAMPLE 1

98

P E T R I NET R E A S 0 N I N G

DESCRIPTION OF THE SYSTEM AND INITIAL CONDITIONS
(Input File)

Name : Lime Recommendation for Acid Soils.

Number of Places = 6
read a 0 LRREAD
*TIN: if1 if2
*TOUT: t3
bsreal a 0 lrbsreal
*TIN: t1
*TOUT: if1
bsth a ~0 lrbsth
*TIN: t2
*TOUT: if2
bsnec a 0 lrbsnec
*TIN: if3 if4
*TOUT: t1 t2
lime a 0 lrlime
*TIN: t4
*TOUT: if3
print a 0 lrprint
*TIN: t3
*TOUT: t4 if4

Number of Transitions = 8
if1 0 lrif1
*PIN: (read 1 .1)
*POUT: (bsrea1 1 1)
if2 0 lrif2
*PIN: (read 1 1)
*POUT: (bsth 1 .1)
t1 1
*PIN: (bsreal 1 1)
*POUT: (bsnec 1 1)
t2 1
*PIN: (bsth 1 1)
*POUT: (bsnec 1 1)
if3 0 lrif3
*PIN: (bsnec 1 1)
*POUT: (lime 1 1)
if4 ·0 lrif4
*PIN: (bsnec 1 1)
*POUT: (print 1 1)
t4 1
*PIN: (lime 1 1)
*POUT: (print 1 1)
t3 1
*PIN: (print 1 1)
*POUT: (read 1 1)

99

TRACE OF REASONING PROCESS

Contents of Queue:
print p

Contents of Queue:
print p read p

Place read was executed
Results: st c 80 4.0 30 .6

Transition to be fired: if1
Results: 1st 0 co 80 4.0'30 .6

Contents of Queue:
if1 t

Transition to be fired: if2
Results: o st o c o 80 4.0 30 .6

Contents of Queue:
if1 t

Contents of Queue:
read p

Contents of Queue:
read p bsreal p

Place bsreal was executed
Results: st c 80 4.0 30 .~ 31.~0 r

Transition to be fired: t1
Results: st c 80 4.0 30 .6 31.80 r

Contents of Queue:
t1 t

Contents of Queue:
bsreal p

Contents of Queue:
bsreal p bsnec p

Place bsnec was executed
Results: st c 48.200001 4.0 30 .. 6 r

Transition to be fired: if3
Results: 1 st c 48.200001 4.0 30 .6 r 0

Contents of Queue:
if3 t

100

Transition to be fired: if4
Results: o st c 48.200001 4.0 30 .6 r 0

Contents of Queue:
if3 t

Contents of Queue:
bsnec p

Contents of Queue:
bsnec p lime p

Place lime was executed
Results: st c 48.200001 4.0 30 .6 r 24100.000000

Transition to be fired: t4
Results: st c 48.200001 4.0 30 .6 r 24100.000000

Contents of Queue:
t4 t

Contents of Queue:
lime p

Contents of Queue:
lime p print p

Place print was executed
Results: st c 48.200001 4.0 30 .6 r 24100.000000

Transition to be fired: t3
Results: st c 48.200001 4.0 30 .6 r 24100.000000

Contents of Queue:
t3 t

*** End of Reasoning ***

101

APPENDIX B

TRACE FOR EXAMPLE 2

102

P E T R I NET R E A S 0 N I N G

DESCRIPTION OF THE SYSTEM AND INITIAL CONDITIONS
(Input File)

Name : Mathematic Computations-

Number of Places = 12
p1 a 0 _p1a
*TIN: copy a
*TOUT: read
p2 a 0 p2b
*TIN: copyb
*TOUT: read
p3 v 0
*TIN: add
*TOUT: copy a
p4 v 0
-*TIN: subtr
*TOUT: copy a
p5 v 0
*TIN: add
*TOUT: copyb
p6 v 0
*TIN:. subtr >

*TOUT: copyb
p7 v 0
*TIN: divide
*TOUT: add
p8 v 0
*TIN: if1 if2
*TOUT: subtr
p9 v 0
*TIN: "divide
*TOUT: if1
p10 v 0
*TIN: true1
*TOUT: divide
p11 v 0
*TIN: true2
*TOUT: if2
start s 1
*TIN: read
*TOUT: true1 true2

Number of Transitions = 10
read 0 read
*PIN:
*POUT: (p1 1 1) (p2 1 1)
copy a 1
*PIN: (p1 1 1)
*POUT: (p3 1 1) (p4 1 1)

103

copyb 1
*PIN: (p2 1 1)
*POUT: (p5 1 1) (p6 1 1)
add 0 add
*PIN: (p3 1 1) (p5 1 1)
*POUT: (p7 1 1)
subtr 0 subtr
*PIN: ' (p4 1 1) (p6 1 1)
*POUT: (p8 1 1)
divide 0 divide
*PIN: (p7 1 1) (p9 1 1)
*POUT: (p10 1 1) ,
if1 0 if1
*PIN: (p8 1 1)
*POUT: (p9 1 1)
if2 0 if2
*PIN: (p8 1 1)
*POUT: (p11 1 1)
true1 1
*PIN: (p10 1 1)
*POUT: (start 1 1)
true2 1
*PIN: (p11 1 1)
*POUT: (start 1 1)

TRACE OF REASONING PROCESS

Place start was executed
Results:

Transition to be fired: read
Results: 1 123.45 122.0

Contents of Queue:
read t

Contents of Queue:
p1 p

Contents of Queue:
p1 p p2 p

Place p1 was executed
Results: 123.45

Transition to be fired:
Results: 123.45

Contents of Queue:
p2 p copya t

copy a

104 '

105

Place p2 was executed
Results: 122.0

Transition to be fired: copyb
Results: 122.0

Contents of Queue:
copya t copyb t

Contents of Queue:
copyb t p1 p

Contents of Queue:
copyb t p1 p p3 p

Contents of Queue:
copyb t p1 p p3 p p4 p

Contents of Queue:
p1 p p3 p p4 p p2 p

Contents of Queue:
p1 p p3 p p4 p p2 p p5 p

Contents of Queue:
p1 p p3 p p4 p p2 p p5 p p6 p

Place p3 was executed
Results: 123.45

Transition to be fired: add

Place p4 was executed
Results: 123.45

Transition to be fired: ·subtr

Place p5 was executed
Results: 122.0

Transition to be fired: add
Results: 1 245.449997

Contents of Queue:
p6 p add t

Place p6 was executed
Results: 122.0

Transition to be fired: subtr
Results: 1 1.449997

Contents of Queue:

add t subtr t

Contents of Queue:
subtr t p3 p

Contents of Queue:
subtr t p3 p

Contents of Queue:
subtr· t p3 p

Contents of Queue:
p3 p p5 p p7

Contents of Queue:
p3 p p5 p p7

Contents of Queue:
p3 p p5 p p7

Place p7 was executed
Results: 245.449997

Transition to befired:

Place p8 was executed
Results: 1.449997

Transition to be fired:
Results: 1 1.449997

Contents of Queue:
if1 t

Transition to be fired:
Results: 0 1.449997

Contents of Queue:
if1 t

Contents of Queue:
p8 p

Contents of Queue:
p8 p p9 p

Place p9 was executed
Results: 1.449997

Transition to be fired:
Results: 1 169.276215

Contents of Queue:
divide t

106

p5 p

p5 p p7 p

p p4 p

p p4 p p6 p

p p4 p p6 p p8 p

divide

if1

if2

divide

Contents of Queue:
p7 p

Contents of Queue:
p7 p p9 p

Contents of Queue:
p7 p p9 p p10 p

Place p10 was executed.
Results: 169.276215

Transition to be fi'red: true1
Results: 169.276215

Contents of Queue:
true1 t

Contents of Queue:
p10 p

Contents of Queue:
p10 p start p

*** End of Reasoning ***

107

RAFAEL ORTIZ

candidate f'or the Degree of

Master of Science

Thesis: KNOWLEDGE REPRESENTATION ,USING PE,TRI NETS AND
KNOWLEDGE TABLES,

Major Field: Computer Science

Biographical:

Personal Data~ Bor~ in J~sus Maria, Santander,
Colombia, March 15, 1955, the son of Rafael and
Imelda.

Education: Graduated from "Externado Nacional Camilo
Torres" High School, ·Bogota, Colombia in November
1973; received Ingeniero-Electricista· degree- from
"Universidad Nacional de Colombia", Bogota in
December 1986; completed requirements for the
Master of Sci~nce degreeat Oklahoma State
University in December, 1991.

Profess~ional Experi~nce: · Computer programer and
systems analyst,· De'partmerit of statistics,
Colombian Institute 9f Agriculture, January, 1987,
to the prese-nt·.·

