KNOWLEDGE REPRESENTATION USING PETRI

NETS AND KNOWLEDGE TABLES

By
RAFAEL /ORTI Z
/4
Ingeniero Electricista
Universidad Nacional de Colombia
Bogota, Colombia

1986

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1991

! ﬁ e q ? °
Okishoms Scate Univ, Library

KNOWLEDGE REPRESENTATION USING PETRI

NETS AND KNOWLEDGE TABLES

Thesis Approved:

j? Tﬁes:Ls AéVJ.s%uM
HIA—«*%» %
[

st L il

-

ev-on
Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I want to thank to Dr. Blayne Mayfield, my principal
advisor, for his advice, assistance and confidence. I also
want to thank to the other members of my committee, Dr.
Huizhu Lu and Dr. Robert Westerman for their suggestions and
support during the development of this project.

I want to express my sincere thanks to the "Institutq
Colombiano Agropecuario" for giving me the opportunity to
further my education and pfofessional qualities. I extend
special thanks to Dr. Orlando Martinez, the head of the
Department of Statistics, the understanding and support that
I have received from him has been outstanding.

Sincere and special gratitude is extended to my wife,
Maria Teresa, and my children, Natalia and Mariana for their
patience, cares and encouragement during my studies; I could
not have accomplished this important stép without their

support.

iii

TABLE OF CONTENTS
Chapter
T. INTRODUCTION . « e« v vnnsonnnsnnneenneenneennnnn,

ObJeCtiVeS. ittt eeeeseseseecececennncnnnnns
Features of Using Petri Nets and Knowledge

Tables as Knowledge Representations.......

Outline of the Program’s Development......

Tests for the Program.....ceeeeeececeeeceeceens

II. OVERVIEW OF KNOWLEDGE REPRESENTATION TECHNIQUES

Procedural Representation........cceeeeeen..
Rule-based Representation............. ceseas
Frames.....cceeeececcecccncs cececccenan ceeoe
Semantic Networks............ ceeerssaean oo

Functions and Boolean ArrayS......ceeeeees
Petri NetsS...iviieeeeeeneeeeeeceenonnnennns
Neural NetwOorKS....ceeeeeeeeeeceeccccecncees
Blackboard Representation........cceeeeee..
Knowledge Table..cieeeeeerseeeocceccoccanns

III. KNOWLEDGE REPRESENTATION AND REASONING USING
PETRI NET AND KNOWLEDGE TABLE. . ::esceeeeccaceens

Introduction...ceeeeeeeneeeeceeeeennnnnnns

Knowledge Table and Petri Net Model.......
Knowledge Table....ceeeeeeeeoscncccnn
Petri Net and G-net....ceceeeeeeeeennn
Formal Specification of D-net Model

and Knowledge Table......eoevsesnnnas
Features and Advantages of D-net Model.

'Reasoning for Dynamic NetS.............. e

Complex D-nets and Control Table........... .

Iv. IMPLEMENTATION ISSUES...ceveeeeenns ceccceceeeseene
Data Structures....... cteececcsccssasanns .o
PlaceS.c.eceeeesccessssscansocees ceseeses

TransitionsS...eeeeeeeeeeeesoessoeceens
Current Alerter...cceeeeeceeecsccesceces
Active Transition Vector....eeeeeeno..

Enabled Transition Vector..... ceececceen

Execution QUeUE. . ..o eeeeeenenn

iv

Page

17
21
24
26
30
36
40

41

41
45
45
46

50
53
54
55

59

59
60
61
62
62
62
62

Chapter

T = =
INPUt File..eieeeeoeoeeececceeecnnnnns
Output File of Transitions and Places.
Trace File....ceeereeereeeeeoeeeennnens

Results of Event-driven Reasoning..........

Special Considerations and Limitations...

V. ANALYSIS OF RESULTS...cceeeeconccce cecececesccanne

Example 1: A Protétype of an Expert System
for Lime Recommendations for Acid Soils..
Description of the System.............

_Petri Net and Knowledge Table Model

of the System....citiieeeececccccens
Activities or External Programs..
Input File for Reasoning Process.

Results of Lime Recommendation
System Prototype...ieeeeeceecccens
Example 2: Arithmetic Computations as
Concurrent and Asynchronous Activities.
Petri Net and Knowledge
Table of the System.....cccvveenn
Results of the Concurrent
Computations Prototype€.......c....
Analysis of Algorithm for Complex Nets...

VI. CONCLUSIONS AND FUTURE WORK.::eoveoeecceccocss

BIBLIOGRAPHY...'...I..........I..........I.......‘.

BAPPENDIXES ¢ « ¢ e e et e sevennnnneneneneneneneneennnennnnii,

APPENDIX A - TRACE FOR EXAMPLE l....cc00... .o

APPENDIX B = TRACE FOR EXAMPLE 2....ccc0eeees

Page
63
63
66
67
67
68
70
70
71
76
76
79
79
82
82

85
88

90
93
96
98

102

LIST OF FIGURES

Figure Page
1. General Structure of a Rule-based System.......... 10

2. Frame Based Representation with Slots,

Values and Restrictions.....eceeeeeeninnennnnns . 19
3. Semantic Network for Representing a Car........... 23
4. A Graph Representation of a Petri Net....... ceeens 27
5. Neural Network with a Hidden Layer.......... ceeaes 32
6. General Schematic of a Blackboard System.......... 38
7. A Complex D-net.......... ceeeccccesssessssessneean 56
8. Design of the INPUt File...eveeeeeneeeeneeonnnnnns 65
9. Structure 6f Output File of Transitions........... 66
10. Structure of Output File Of PlaceS....eeeeeeseeenn 67
11. General Description of the System Prototype for

Lime RecommendationsS...eeeeeeeeeeeeeneeneeeonnns 74
12. Petri Net of Lime Recommendation Prototype....... 78
13. Input File for Lime Recommendation Prototype...... 80
1l4. Petri Net of Concurrent Computations........... e 83
15. Input File of Concurrent Computations............ . 86

vi

CHAPTER I
INTRODUCTION

During the last few years, the development of
sufficiently precise notations for knowledge representation
has been oné‘of the main research topics of Artificial
Intelligence and Computer Science [5]. One of the principal
problems for computer scientists is to represent the real
world for processing in computers, in other words, to make
feal—world knowledge suitable for processing by a machine
(4], [3].

Knowledge representations are the methods used to
encode and store facts, rules and relationships among
objects or activities in a>know1edge base [11], [24], [28].

Knowiedge can be represented and structured in a
variety of ways; therform of representation can signifi-
cantly affect the efficiency with which knowledge éan be
stored and updated as well as the efficiency of inferencing.

The purpose of knowledge representation is to organize
required information into such a form that people or
computer programs can readily access it for making
decisions, planning, recognizing objects, perform processes,
drawing conclusions and performing other cognitive

functions; thus, knowledge representation is an important

topic for expert systems, machine vision, natural language

processing, planning and control systems, and other systems.

Objectives

The aims of this project are:
a) to present a knowledge representation and reasoning
method that combines Petri nets and a knbwledge table {7]
into a well-defined structure to support inference and
reasoning for dynamic systems with concurrent activities:
b) to develop programs in C language that implement
dynamic knowledge (event-driven reasoning), test them and
evaluate their pefformance. With this software a user can
analyze the behaviof of\a system and refine the model
according to the reéults observed;
c) to analyze whether this model for knowledge
representation can be used as a practicél tool in the
development of expert systems for asynchronous events or
processes. The software will be tested with sequential as
well as concurrent events or activities;
d) to analyze the algorithm for reasoning with complex or

nested nets and give guidelines for its implementation.

-Features of Using Petri Nets and
Knowledge Tables as Knowledge

Representations

Deng and Chang [7]:iﬁtroduce a new model for knowledge
representation and reasoning based on Petri nets and a
knowledge table; this modél is called "G-net". Petri nets
are introduced and extensively described by Peterson [19],
and knowledge tables are presented by Chang and Ho [3].

The purpose of combining Petri nets and a knowledge
table is to implement a new technique that facilitates the
graph representation and the reasoning process of a system.
A graph representation of a system is a model that expresses
the constraints ana reiationéhips among activities or
processes as a graph, so that reasoning algorithms can be
implemented efficiently [51,[19]. |

This new model can be used to reprééent "static" and
"dynamic" knowledge as described below. In this project,
dynamic representation is implemented and its applicability
to the desig of systems in which thé\activifies are
asynchronous and concurrent is analyzed.

Static representations are used to support reasoning
about aspects of a system that are relatively constant, such
as the interconnections between components. Dynamic |
representation can be used to investigate the time-varying
characteristics of a system; dynamic representation may be
viewed as a collection of procedures that, taken together,

reflect the behavior of a system over time [16],[19],[28].

Dynamic representation is especially useful in
situations where hypotheses about system behavior cannot be
tested or verified using 'an actﬁal system because that
system is ﬁot available for test purposes or does not exist.
When a real system has failed or instrumentation is not
available, an inability to réason might occur. In these
cases, use of the system in an experimental mode to test the
consequences of the hypothetical situations would be very
useful [28].

The main features of G-net model are summarized as
follows:

- The reasoning algorithms are based upon Petri net theory
and rules that have been étudied from the birth of Petri
nets.

- The G-net model can bé implemented using the knowledge
table representation, which is a convenient way of
representing objects, activities and its relationships.

- The G-net model can support different types of activities
throughout the net. Thoée(activities-can be éimple’or
complex; the complexity of the activities might increase the
time complexity of the reasoning process, but it does not
affect the logic of the reasoning process.

- The G-net is a unified model that can represent dynamic
knowledge and reasoning to carry out the subsequent logical
activities in a process.

The G-net model in combination with a knowledge table

is a flexible and modular technique because the

representation is independent of the reasoning strategies;
elementary G-nets can be combined to build complex nets, and
G-nets can be applied to thékspe¢ification of information

systems and the simulation of asynchronous activities.

outline of the Program’s Development

In order to analyze the results of the algorithm for
the reasoning process and to test it under different
situations, a program was developed according to the
following outline:

a) Define the data structures that will contain the data
about places, transitions, and relationships (arcs) of the
Petri net model. 1In addition, a data structure should be

considered for the distribution of tokens in the Petri net.

b) Define the files to store the description of the system
and the results of the reasoning process.

c) Write the code to read the input data that represents
the system as Petri net and convert it to internal’
representation.

d) Write the code for checking the correctness of the model
based on Petri net theory and the knowledge table.

e) Write the code for reasoning with dynamic nets (D-nets).

f) Write the code of the activities or external programs to
test the model.

Tests for the Programs

This new technique will be tested with two kind of
systems: one is a sequential reasoning system to determine a
specific goal. The analysis for lime recommendations in acid

soils was chosen for this purpose. The other test uses a

system in which there are several concurrent activities. For
this purpose a set of mafhematical computations was selected
to show concurrency with asynchronous activities.

To test the programs it was necessary to write soﬁe
procedureé and functions toisimulate the actiyities and
processes executed by the systeﬁ during the reasoning
process. In this stage, the results obtained with the tests
are analyzed, and problems found during the development of

the prototype of the model are identified.

CHAPTER II

OVERVIEW OF KNOWLEDGE REPRESENTATION

TECHNIQUES

Representation of knowledgé can be viewed as a
technique in which knowledge is storéd in a way that allows
people or automatic systems to interpret or "understand" the
relationships among elements of knowledge and to manipulate
those relationshipé‘[zs]. ;

In the search for a precise and flexible knowledge
representation many techniques have been developed; some
commonly used techniqges(are procedural representation,
rule-based systems, semantic networks, frames, Petri nets,
blackboard and neural networks [24], [28]. In this study,
the basics of these important techniques will be described.

The technique used in a speéific knoﬁledge
representation should be selected carefully because each
knowledge representation has relevance to particular types
of knowledge; as stated by Walters and Nielsen [28] "none is
applicable to all forms of knowledge". There is no set of
rules or procedures that the ‘designer of a system should
follow; the designer should consider the advantages,

disadvantages and limitations of every representation before

selecting the technique to be used. Fof example, in
selection, categorization o? diagnostics, backward chaining
may be the only mechanism needed [4]. In other cases, a
straightfor@arq procedural.aéproach may be all that is
needed for the reaéoniﬁg process [11], [28].

A multiple-environment representation méy be required
in some cases, especially when the possible solutions can be
enumerated [28]. |

Hunt [11] establishes that a blackboard representation
can be effective in those situations where the reasoning
process is complex and is to be controlled in a dynamic
manner depending on pé:tial results.

A D-net (dynamic Petri net, see Chapter III) is
suitable to represent knowledge about concurrent activities
[7]. It is modeled graphically and maéhematically and

presents several features for reasoning process.

Procedural Representation

Procedﬁral representation is a method tﬁatffepresents
knowledge about the world by é set of procedures, functions
or programs that pefform specific tasks [11], [28].

A procedure is a finite set of instructions for
performing a task. It also can be defined as a program that
executes an algorithm [11]; however, not all procedures
embody alg&rithms; the reason is that an algorithm is a

procedure that stops on all its inputs because the

instructions are exhausted or a "stop" instruction is
executed. In a procedural programming language, a procedure
is a syntactic unit that‘céh be paraméteriéed in such a way
that the same segment can be calledvfrpm different places in
the program, using different data or arguments each fime.
Procedural representation of knowledge combines a
number of items to form a solution. For example, XCON, which
is a procedural system, configures DEC computer systemns.
From a customers order it decides what components must be
added to produce a complete operationgl system and
determines the spaﬁial relationships among all of the
components. XCON presents a set of diagrams about these
spatial relationships to technicians who assemble the

computer system [11].

Rule-based Representation

Many knowledge-based software development tools are
designed on rule-based representation technqlogY} Examples
of rule-based systems are EMYCIN and OPS5, which are among
the more comprehensive systems in which rules are
conceptually represented as IF/THEN Statements [;1], [28].

EMYCIN is a knowledge engineering language suitable for
diagnosis and consultation type problems. It has user-
querying facilities and is implemented in INTERLISP. OPSS5
is a knowledge engineering language that supports generality

in data representation and control structures; OPS5 has been

10

implemented in MACLISP and FRANZLISP and is one of most
widely used knowledge engineering languages.

Using IF/THEN statements or condition/action rules,
knowledge can be accumulated into sets of rules. Figure 1
presents the structure of a typical rule-based system; the
system is divided into a general-reasoning program (rule
interpreter) and a file of rules, called the rule base,
obtained from an expert [6], [11]. The reasoning program
loads the rule base and use it to guide an interactive

consultation with the user.

Rule Base Input
Data

RULE INTERPRETER
(Reasoning Program or
Inference Engine)

Results or
Conclusions

Figure 1. General Structure of a
Rule-based System

11

The inference engine is the component of a rule-based
system that controls its operation by selecting rules to use
and determining when a solution has been found. An inference
engine is also known as a contfolkstructure or rule
_ interpreter [28]. The infereﬁce engine can process the
rules in one of two‘ways::backward-chaining or forward-
chaining.

In order to explain how backward and forward-chaining
work it is convenient to define the terms predicate,
antecedent, consequent and hypotﬁesis. A predicate is a
function that returns a true or false value, in other words,
it is a statement about individuals in relation to
themselves or other individuals; a predicate can be true or
false when applied to an ;peéific individual, so predicates
are used to select among conditional alternatives [11],
[26]. An antecedent is the left side of a production rule or
the condition neceséary to apply a procedure or a ’
consequent. A consequent is the right side of a production
rule or the result of applying a procedure. A hyﬁothesis is
a supposition or an unproved theory, also it is a consequent
that do not appear as an antecedént in any other rule in a
rule-set [11], [26].

The following example, taken from Walters and Nielsen
[28], constitutes a rule base to illustrate how a rule-based

system works.

12

Rule 1: IF IT IS A WORKDAY
AND | AM IN THE OFFICE
THEN | EAT IN THE CAFETERIA

Rule 2: |F | EAT IN THE CAFETERIA
THEN [EAT SOUP AND SANDWICH

Rule 3: |F IT IS A WORKDAY

AND | AM OUT OF THE OFFICE
THEN | EAT OUT

Rule 4: |IF | EAT OUT
THEN | EAT CHINESE FOOD

Rule 5: IF IT IS AWEEKEND DAY

AND | AM AT HOME
THEN | EAT AT HOME

Rule 6: |F | EAT AT HOME
THEN | EAT PUMPKIN PIE

Rule 7: |F IT IS AWEEKEND DAY

AND | AM OUT SHOPPING
THEN |EATOUT

- In this example the set of predicates is
{IT IS A WORKDAY, I AM IN THE OFFICE, I EAT IN THE
CAFETERIA, I AM OUT.OF THE OFFICE, I EAT OUT, IT IS A
WEEKEND DAY, I AM AT HOME, I EAT AT HOME, I AM OUT
SHOPPING} ;
the set of hypotheses is
{I EAT SOUP AND SANDWICH, I EAT CHINESE FOOD, I EAT
PUMPKIN PIE}
and the set of consequents is
{I EAT IN THE CAFETERIA, I EAT SOUP AND SANDWICH, I EAT
OUT, I EAT CHINESE FOOD, I EAT AT HOME, I EAT PUMPKIN
PIE}.

The terminal predicates, which are the predicates that

13

do not appear as consequents on any other rule in the rule
base, are {IT IS A WORKDAY, IT IS A WEEKEND DAY, I AM IN
THE OFFICE, I AM Oﬁf OF THEJOFFICE, I AM AT HOME, I AM
OUT SHOPPING}.

In backward chaining, the inference engine identifies
a set of one or more hypothéses and works backwards to
locate known predicates that would provide support. The
reasoning process begins with the inference engine taking
the first hypofhesis and locating all fules that have the
hypothesis as a consequent. It then moves backwards from the
consequent or goal to the premise of the selected rules and
tests the truth of each predicate. If no predicate is
determined to be true, then each unknown predicate is
established as a new hypothesis and the process continues
iteratively. This process forms a chain backward to the
consequents of other rules, this is the reason for the term
backward-chaining [11], [28].

If a hypothesis is selected from the above example, the
inference engine,operates as follows:

a. Select a hypothesis; for instance "I EAT SOUP AND
SANDWICH"

b. Locate the hypothesis in the rule-set. Rule 2 contains
the hypothesis as a consequent.

c. Examine the predicates of Rule 2 and determine whether
they have been evaluated; if not, evaluate them. In the
example, there is only one predicate to be evaluated
(I EAT IN THE CAFETERIA); it evaluates to unknown. Now,
the inference engine searches for another rule having
the predicate of Rule 2 as consequent.

d. Locate a rule whose consequents contain the
predicate "I EAT IN THE CAFETERIA"; Rule 1 contains

14

that consequent.

e. Evaluate the predicates of this rule (Rule 1); the
predicates (IT IS A WORKDAY, I AM IN THE OFFICE) are
unknown. ‘

f. Determine whether these are terminal predicates. In
this case they are terminal predicates because they do
not appear in any other rule.

g. Finally, ask the user for the values.of unknown
predicates; if they disprove the rule, select another
path to the hypothesis. If no other path exists, try
another hypothesis. :

In backward-chaining the system keeps track of the
values of the predicates and oniy asks that a value be
supplied by the user when the predicate applies to a
hypothesis being investigated and when the value of that
predicate cannot otherwise be determined [4]. Backward-
chaining is often used for selection applications, for
instance, in diagnosing a particular problem.

Forward chaining is a problem solving technique which
is characterized by working forward from known facts toward
conclusions or goals. This technique starts with initial
facts or knowledge, supplied by the user, and applies
inference rules to genefate new knowledge until one of the
inferences satisfies a goal or no further inferences can be
made [4], [11], [28].

'Forward-chaining allows the user to infer implicit
information from the exiéting information in a knowledge
base; it is also useful to analyze changes when a new data
item is added. A system that uses forward-chaining technique

is called a data-driven system because it follows the

conclusions obtained from the data or facts given [11],[28].

15

In forward-chaining no hypotheses are provided because
the rules afe not used to try to derive the truth of any
particular consequent. Instead, they are used to derive all
possible consequents from a set of predicates or facts that
cause one or more predicates to evaluate to true.

Using the same set of rules in the above example, if
the user provides the knowledge base with values such that
the predicates "IT IS A WEEKEND DAY" and "I AM AT HOME"
evaluate to true, then the forward-chaining inference engine
operates as follows:

a. Locate the rules containing either of the provided
predicates. Rule 5 and 7 are selected.

b. Select one of those rules. Rule 5 is selected, for
instance. ‘ ‘

c. Interpret (fire) the selected rule.
The predicates of Rule 5 are true, so the consequent is
given the value true.

d. Now, a search is made for a rule containing "I EAT
AT HOME" as a predicate. Rule 6 is found.

e. The rule (Rule 6) is interpreted and "I EAT PUMPKIN PIE"
is given the value true.

f. Again, a search is made for a rule containing
"I EAT PUMPKIN PIE" as a predicate. No such rule exists.

g. Rule 7 is evaluated to false because "I AM OUT SHOPPING"
is false (or unknown).

h. The process terminates and the information obtained from
the rule-based system is:
I EAT AT HOME and
I EAT PUMPKIN PIE.
This type of reasoning is appropriate for monitoring
situations in which it is desirable to learn as much as

possible about the state of the monitored system based upon

16

the available data [4], [28].

Conceptually, the reasoning process must evaluate the
predicate of each rule whenever a new fact is inserted into
the knowledge base [ésj; this is-inefficient; therefore,
many inference engines maintain an elaborated set of
pointers, requiring only those rﬁles containing new facts to
be reevaluated.

In general, backward chaining goes from a conclusion to
a set of premises to be evaluated, and forward chaining goes
from a set of premises to a conclusion.

Rule-based representations have some disadvantages
which can be summarized as follows:

a) Multiple evaluation of predicates. The inference engine
often permits or requires the reevaluation of predicates
more than one time, although a predicate is assumed to be
evaluated only once [28]. If the inference engine being
used permits or requires multiple evaluation of a predicate,
then the designer must be very careful not to include terms
within a predicate whose evaluation would have side effects
such as contradictions, repetitive arithmetic operations or
perhaps an infinite loop in the worst case.

b) Large sets ofjrules. The development of large sets of
rules can pose two types of problems: inefficient execution
and unmaintainable applications of expert systems [11],
[28]. If the knowledge engineer does not find a way to
decompose the problem into small independent rule-sets, then

he/she should consider different representations of the

17

problem or different organizations of the knowledge base.

Cc) Uncertainty. Hunt [11] defines certainty as "the degree
of confidence one has in a fact or relationship". It is very
difficult to ensure that the'desired relationships hold over
a large set of rules to combine certainty factors. A
certainty factor is a value or weight aésigned to a
relationship or~e§ent to specify the confidence level of
that relationship or event.:Although some tqols assist the
programmer in establishing éertainties, the proper operation
of a numeric certainty system across a large rule-set is a

significant problem [28].

Frames

A frame can be defined as a collection of related
information about a topic; this information can be factual
or procedural (i.e., data or functions). A frame is
basically a structure for holding various types of
knowledge. Conceptually, a frame represents an item such as
a physical object or a concept such as an idea: the contenté
of the frame then describe that item (e.g. characteristics,
properties, behaviors). A frame can be viewed as a data
reéord as used in programming languages as COBOL or PL/1;
however, in this case the frame does not include functions,
only data; in this sense, a frame consists of a set of named
fields containing data that are in some way related; the

relation depends on the particular problem or application

18

[11], [28].

Frames may be arbitrarily complex, and can have
procedures and functions (pieces‘of code) attached to the
slots to add or remove values from\them. A slot is a
feature, a component or an attribute associateé with an
object (or node) in a frame. A node is associated with an
object, a concept or an event. The éloés of a frame can
contain default values which are helpful when frames are
analyzed in the absence of full instantiation data (see
figure 2) [26].

Rule-based and procedural representations can operate
efficiently on frame-based representations. The object-
oriented programming technique that is becoming popular has
been developed on the frame foundation [26], [28].

Marvin Minsky conceived "frames" as complex data
structures for representing'sterestyped objects, events or
situations. The i&eé was originated because many daily
actiyities are instances of stereotyped situations such as
éoing to work, shopping, driving a car, etc. A frame has
slots for objects and relations that would be appropriate to
these situations.

Figure 2 shows a frame-basé representation of knowledge

about the general configuration of a microcomputer. The

features are associated with nodes representing concepts or

19

Frame: COMPUTER
Slots Values
Base Unit 16 MHz.
Restriction: (value-type text)
Restriction: (content-one-of:
16MHz, - 20MHz, 25MHz)
Expansion 3 -
Slots Restriction: (value-type Integer)
Drive Bays 2 ‘
Restriction: (value-type Integer)
Video Adapter CGA .
Restriction: (value-type Symbol)
Restriction: (content-one-of None,

CGA, EGA, VGA)

Monitor

Green Monochrome
Restriction: (Procedure to select
. monitor depending on Video Adapter
Restriction: (content-one-of None,
) Green Monochrome, Amber Monochrome
Color, VGA b/w, VGA color)

Communication
Board

None

Restriction: (content-one-of None,
3270 Communications Adapter,
Token Ring LAN Adapter)

Floppy Drive

1.2 Mb
Restriction: (maximum-2-of 1.2 Mb,

1.44 Mb, 360 Kb, 740Kb)

Hard Drive 40 Mb
Restriction: (content-one-of 40 Mb,
80 Mb, 100Mb, 200 Mb)
Keyboard 84-key
Restriction: (content-one-of: None,
84-key, 101/102-key)
Figure 2. Frame Based Representation with Slots,

Values and Restrictions

20

objects and they are deséribed in terms of attributes (or
slots) and their values. Each node’s slots can be filled
with values, according to théléttributes of the object, to
help deécribe thevconéept thét the node rgpresents:

Waltefs and Nielsen [28], and Charniak and McDermott
[4] present complete introductions to frames with some
examples. - |

An interesting characteristic of frames is the concept
of "inheritance"; inheritance is a mechanism for passing
knowledge or éttributes from frame to frame down through a
taxonomy of frames from generai to specific.

The principal advantaée of frame-based representation
is that it provides a means for structuring a variety of
types of data in the knowledge base. Othef advantages are:
it provides many charactéristi¢s of an object, through the
concept of inheritance, once the type of that object has
been identified, eliminating the need to derive these
properties individually; it enables rules and procedures to
be more generic; it enhances the maintainability of the
knowledge bases.

Frames are useful in categorizing knowledge when that
knowledge has some underlying structure. If the knowledge
can be related to a set of objects or concepts, then at
least a portion of the facts contained in the knowledge base
can be clustered around those objects or concepts.

The main disadvantages are: as in object-oriented

programming, the frame approach takes time and patience to

21

master and use properly; one of the major dissatisfactions
with frame reasoning is related with efficiency. The
structures and éapabilities of frames offer a variety of
benefits, but they are échieved at a price: increased time

complexity.

Semantic Networks

A semanticynetwork describes the properties and

- relationships of objects, eventsv,‘ concepts, situations and
actions by a directed graph consisting of nodes and labeled
edges. Semantic networks formalize objects and values as
nodes and connect nodes with arcs that indicate the
relationships between them. Semantic networks are popular
in artificial intelligence Bécausé of their naturalness to
represent objects [4], [11].

Smith [26j définesASemantics as "the study of the
meaning, intention or significance of a symbolic expression,
as opposed to its form". Semantics is a constraint on a
language understander because not all grammatically legal
sentences have a meaning, for instance, "the stone was
loud".

In semantic networks,Aconcebt types are organized in a
hierarchy according to levels of generality, for instance
(entity, animal, carnivore, lion) or (entity, thing,

building, house). The relationships that hold for all

concepts of a given type are inherited through the hierarchy

22

by all subtypes [23]. For example, lion is a carnivore and
also is an animal and an entity and‘inherits,the
characteristics of carnivére;[apimal and entity. In figufe
3 the basics of é semantic ngtwork~representing a car are
shown; from this network it can be concluded that a "tire"
is a "cylinder", a "car" has "tires", and an "engine" has
"cylinders"; however, the cyiinders for tireé are different
from the cylinders for engine, the differences are basically
in type of material, dimensions and purposes.

For semantic networks it is necessary to define an
associated vocabulary called "semantic primitives". This
vocabulary is made up of '"basic concepfual units in which
concepts, ideas or events can be represented" [11]. Several
attempts have been made to describe all primitives that are
unique representationé of ehtities or their attributes. A
semantic primitive is defined by\Smith [26] as "a primitive
attribute of a domain that is used to build up facts in the

data base".

Ford
Mustang

Figure 3.

Semantic Network for Representing a Car

23

24
Functions and Boolean Arrays

Fordyce et al. [%0] from IBM present an interesting»
model for representing knowiédge using functions and Boolean
arrays. The best‘known“appliCatipn of this technique is IMS
- Logistics Management Sysfem - which is an advanced
decision support system to dispatch, mpnitor and control the
manufacturing flow of the IBM Burlington semiconductor
facility.

The use of functions as a basic organizational unit of
knowledge was originated in functional programming languages
such as APL2 and LISP and their mathematical concept of
functions. 7

) In the techniqﬁe presented by Fordyce et al. [10] there
are two basic aspects: 1) knowledge is viewed as a
functional mapping between input and output variables, where
the functions are~expressed as fact tables or bases and
procedural modules; 2) the function network can be
represented with boolean arrays. The use of tables to store
and represent knowledge has its origins in general array
theory, relational data basés, ABLZ and PROLOG; the use of
Boolean arrays énd operatioﬁs to efficiently haﬁdle logical
processing is also well established.

Tables can represent a functional relationship between
input and output variables; small procedures can be defined
to describe functional relationships that can carry out
computations on the input variables to generate the output

variables; the linkages between tables and functions
|

25

represent composite functions, for instance,

X2 + 4Y
3W + 2V

W
z

£(X,Y)
g(w,Vv)

is a system of 2 equations; this system is expressing a
functional mapping of the input variables V, X and Y to the
output variableé W and Z. 2 has a dependency . on X and Y
through the variable W, this is called a composite function,
which is represented as follows:

z = h(X,Y,V) = g[f(X,Y),V]

Using Boolean arrays and Boolean operations it is
possible to determine automaticallyAhow the functions of a
system are related to one another and generate the network
of functions orltables that represents the system. In the
Boolean matrix a cell is assigned a 1 if the variable is in
the "input portion" of a function; if the variable is not in
the input of a functioﬁ; the corresponding cell is assigned
a zero.

All the concepts on this technique have been applied
using APszprograms because this language is based on matrix
operations [10]; this technique has been effective in real-
time applications, transactibﬁ-based and knowledge-based

systemns.

26‘
Petri Nets

A Petri net is an abstract and formal model to
represent and-analyze information flow [19].

Thé Petri ngt has increased in acceptance as a flexible
and powerful model of systems of asynchrénous and concurrent
computation. Actually, the properties, coﬁcépts and
techniques on Petri nets ﬁave been developed in a search for
more natural, simple and éonvenient methods for representing
and analyzing the flow of information and control in
systems, especially when the systems may exhibit
asynchronous and concurrent activities [16]. So far, the
most important use of Petri nets has peen the modeling of
systems of events that can occur concurrently.

A generalized Petri net is a five-tuple defined by:

Petri net = (P, T, I, O, ©)

where:
P = {p1,P2,-...Pn} 1is a finite set of places.
A place can be an static object or a dynamic
activity.
T = {ty,t2,.....tp}) 1is a finite set of transitions.

A transition represents the functional
relationship between dynamic objects or the
semantic relationship between static objects.

PNT-=o9

I: P° -> T is an input function, a mapping from
places to transitions.

O: T -> P® is an output function, a mapping from
transitions to places.

p: P -> N is a marking, a mapping from places to
non-negative integers N.

A Petri net is represented by a bipartite directed

27

multigraph containing two types of nodes: places and
transitions. Figure 4 shows a graph representation of a
simple Petri net; the places are represented by circles and

the transitions are represented by bars.

Figure 4. A Graph Representation of a
Petri Net

These nodes, places and transitions are connected by
directed arcs from places to transitions and from
transitions to places. The formal definition of the Petri-
net of figure 4 is:

Petri net = (P, T, I, O, u)

where :

e}
]

{pllp21p31p41p51p61p7}
T = {ty,t3,t3,t4,ts,tg}

28

I(t1) = (p2} 0(t1) = {p1}
I(t2) = {p1) ; O(t2) = {p2,p3}
I(t3) = {pP3,P5} ; . O(t3) = {ps}
I(tg) = (Pa) - “ . 0(ty) = {55}
I(ts) = (p3,P7) . o(ts) = (pe)
I(ts) = (ps) ~ o(te) = (py)

The marking Qector, which represents the number of tokens
in every place, is u = (,0,0,0,1,0,1)

"Token" is»a primitive concept for Petri nets; a token
is a "message" that can be fransmitted(between places [16],
[19]. This message can contain simple or cémplex information
about the net; on a Petri ﬁet graph, tokens are represented
by dots inside places as is shown in figure 4. A Petri net
with tokens is called a marked Petri net; fbkensqare moved
by the execution (firing) of the transitions of the net, so
that the marking may change as a result of thé'firing of any
transition.

In many scienceé a phenomenon is studied'by examining
not the actuallphenomenon itself but rather a model based on
mathematical terms. By the manipulation of the
representation, it is hoped that new knowledge about the
phenomenon, and the model itgelf,‘will be obtained without
the cost and inconvenience of manipulating the real
phenomenon. Petri nets are a modeling tool. They can model
systems and especially events, conditions, and the
relationships among them; the occurrence of events may

change the state of the system, causing some of the previous

29

conditions to cease holding,‘and causing other conditions to
begin to hold [16].

In the Petri net model, events or activities of places
and trénsitions can occur indepeﬁdently (7], [19]. Thus,
there is no need to synchronize the actions of events;
however, when synchronization is required, the situation is
also easily modeled [16]. Therefore Petri nets are ideal for
modeling syéfeﬁs of distributedicontrol with multiple
activities occurring concurrently [13], [19], [20].

One of the most important features of Petri nets is
their asynchroﬁoﬁs‘hature. There is no inherent measure of
time; the only important property of time, from a logical
point of view, is in defining a particular ordering of the
occurrence of events. A Petri net must contain ali necessary
information to define the pdssible-sequences of events of a
modeled system.

A Petri net is non-detérministic. If at any time more
than one transition is enabled, then any of the several
enabled transitions may fire; this feature of Petri nets
reflects the fact that in real life situations several
activities may happen coﬁcurrently. The order of occurrence
of events is. not unique (perhaps random), so that any of a
set of sequences may occur.

Nondeterminism is advantageous from the modeling éoint
of view, but it introduces more complexity in the analysis
of Petri nets. This complexity can be reduced if the firing

of a transition (execution of an event) is considered to be

30

instantaneous (zero time).

Another important feature of Petri nets is their
ability to model systems hierarchically. This means that a
net may be repléced by a single'place o:.transition for
modeling in a highef lével of abstraction. On the other
hand, a piace or transition méy be replaced by subnets to

provide more details in the model refinement [7], [8].

Neural Networks

The goal of neural networks research is to understand
complex human performance, such as how people learn to play
the piano. Even the simplest models provide insights into
how the learning procesénocdurs [17], [21].

When human beings learn something, there are several
activities involved such as remembering, understanding,
storing and retrieving; but brain surgeons say that there is
more: firing neurons, making new connections and retraining
‘behavior patterns.

There has been a need for a way to solve problems that
cannot be handled efficiently by digital means. Neural
networks technology is an attempt to simulate the behavior
of the brain from a physiological vie&, especially in that
kind of problems that cannot be efficiently handled by
digital means [17], [21].

A biological neuron consist of a cell body, axons and

dendrites; the cell body is the nucleus or "main processor"

31

of a neuron, which processes the information it receives; an
axon is that part of a nerve celi through which impulses
travel awéy from the cell bgdy, a dendrite is the branched
part of the cell that carries impulseS'toward the cell body.
The points éf coﬁtéct between adfacent neurons where nerve
impulses are transmittederom one to the other are called
synapses. An artificial neuron or "unit" emulates the axons
and dendrites with connections or arcs and the synapses by
simulating electric resistors with.weighted values.

Neural nets are computer-models inspired by the brain.
A neural net consists of processors or units that simulate
the behavior and properties of neurons. Each of these units
or "neurons" receives inputs that can be excitatory and
inhibitory, from other units; if the stfength of the signal
exceeds a given bound, the unit sends signals to other
units. Each of the many connections or synapses among units
has its own strength, of‘weight (like a multiplier) that can
be adjusted»as the net performs new tasks or operations (see
figure 5).

Perhaps the most interésting aspect of neural nets is
its capability of "learning". Instead of programming a
neural net, you "teach" it to give accgptable answers. As
stated bf Ccaudill [2], the knowledge in a neural net is
stored "in the pattern of weights and connections in the
network"; this means a user can input known information,

assign initial weights to the connections within the

32

Backward Forward
Error Activation
Flow low

Figure 5. Neural Network with a Hidden Layer.

architecture, and run the network over and over until the
output is satisfactorily accurate, the net can adjust the
weights by using several criteria. The net contains a
weighted matrix of intercohﬁections that allows to learn and
remember [2], [17], [21j.

When they work correctly, neural nets provide some
important benefits, such as the ability to take incomplete
data and produce approximate results. They are fault-

tolerant because of their parallelism, speed and

33

trainability [27].

However, bécause neural,neﬁs simulate the brain, they
do not handle numbers well; especially ‘for accurate answers.
Accuracy, computational pbwef and logic are not strong
aspects of neural nets [2]} another weak aspect is that they
cannot explain how‘they sélye a problem. The difficulty with
this aspect is that in this stage of technology the man does
not know completely how the brain works. What is available
now are artificial neural networks that run on digital
machines to develop general pfinciples to explain human
information processing [21].

Artificial neural nets are being used for a variety of
applications like financial analysis, database management,
medical diagnosis, fﬁzzy or incomplete information and some
kind of process control [2].

Neural network models congist of processing elements,
interconnection topologies, and learning schemes [27].
Processing elements interact each other dépending on how
they are interconnected; when a néurdl net is setting up, a
variety of criteria is used to define specific interconnec-
tions and determine its architecture.

Obermeir and Barron [17] say that ﬁeural network
"memory" is measured by the number of interconnections as
the memory in a digital computer is measured in bytes; in
the same way the neural net’s speed is measured in
interconnections per second.

Each processing element or neuron has a number of

34

inputs, a small set of possible states, and an output that
is a function of the inputs; each input to the neuron has a
weight value that usually is between -1 and 1.

Training a neural network is a matter of adjusting
weights; either manuélly or automatically. Obermeir [17]
establishes that the learning process of a neural net is
possible in one 6f three ways: supervised, unsupervised or
self-supervised.

Supervised learning occurs when trial-and-error inputs
are provided that teach the network correct and incorrect
responses. Unsupervised learning consists of entering and
adjusting data without human intervention. Self-éupervised
learning occurs when the net monitors itself and corrects
errors in the interpretation of data. This can be done by
feedback through the ngtwork.

One important characteristic of neural nets is
"stability"; after the initial weights are set, the user
enter data into the network. This process causes the net to
pass through state changes and finally reach stability. A
net achieves stability when the weight values associated
with the "units" stop changing [2], [27].

A neural network layer is a set of units or "neurons"
that are at the same level in the network (see figure 5).
Initially, neural nets consisted of only one or two layers
to represent knowledge, but adding more layers allows the
system to form a better representation of the problem [17],

[27]. Today neural nets are composed of several layers such

35

as the model presented in figure 5, this hierarchical
approach is more powerful because neural networks can
generate their own internal representation in’the so-called
hidden layers.

Touretzky and Pomerleau [27] present the characteris-
tics and features of the layers in a hierarchical net. A
hierarchical network consists of an input layer, an output
layer and one or more hidden layers. A hidden layer is a set
of units that are not directly connected to the input or
output layers. Reducing the size of a hidden layer not only
increases the rate of the simulation but also improves the
network’s performance. A network with too many hidden layers
can simply memorize the correct response to each pattern in
its training set instead of learning a general solution.

Neural networks can learn using an algorithm called
back-propagation [27]. With back-propagation an expert
provides the network with samples of inputs and desired
outputs, over and over, until thg‘network learns by
adjusting its weights. If the net solves the problem, it
will have found a set of weights that produces the correct
output for the given input. Whatever knowledge the network
acquires is encoded in its numerical weights. Unlike expert
systems, neural networks do not automatically explain their
reasoning.

Back-propagation consists of two passes. In the forward
pass, inputs proceed through the network and produce a

certain output; then, in the backward pass, the difference

* 36

between the desired output and the actual output generates
an error signal which is propagated back through the network
to teach it to come closer to producing the desired output
(see figure 5);' | |

Obermier and Barron [17] say: “Neufal nets won’t
replace data-base and knowledge-based proce551ng because
they do not work well with numbers or cut-and -dried
information". Maybe in ‘the next few years the first
practical neuron-like circuit will appear; in this event a
neural network could be used as a coprocessor controlled by

a host digital computer.

' Blackboard Representation

The blackboard approacﬂ is a system architecture that
uses a data base or records that are accessible to several
processes called knowledge sources [28]; each process can
"write" on the blackbo&rd, and all the qther processes can
"read" what has been written, and resbond in a similar
manner. This approach took that name 5ecause the system
organizes and processes knowledge in a fashiqn analogous to
a group of people working around a blackboard; each person
represents a specialized source of knowledge aboﬁt some
aspect of the problem. A leader provides the control
function, guiding and coordinating the activities of the
knowledge sources as well as sequencing their access to the

blackboard [11].

37

Actually, a blackboard system is not a particular form
of knowledge representation as it is a way of organizing and
processing knowledge represented in other forms. A
blackboard system can be seen as a'framework in which
knowledée caﬁ be arranged in such a way that it can be
distributed and shared among a number of cooperating
processes; the knowledge about a particular problem can be
distributed to a set of specialists or knowiedge sources,
each of which has a particular area of expertise. The
shared portion of knowledge is encoded on the blackboard
through which the specialists communicate; the distributed
part resides with the individual specialists who operate
independently of each other. The communication among them is
through the blackboard [28].

A blackboard structure provides room for many different
solution approaches, so 1t can be viewed more as a
philosophy or a set of guldellnes than as a very detailed
process for knowledge representation and reasoning.

The project HEARSAY II for speech recognition was
developed with the blackboard concept at Carnegle—Melon
University [28]. The blackboard approach has been applied in
a variety of fields such as real-time data processing,
speech recognition and signal proeessing, and scheduling and
planning. A blackboard representation might be considered
for problems thet naturally decompose into a number of
smaller and independent structures.

In figure 6 a schematic of the blackboard system is

38

presented; there are 3 basic components: knowledge sources
or expertise (KSj,..KSp), blackboard (knowledge storage and

communication), and control, which is the problem solving

strategy.
CONTROL
KS1— KSn
KS2—{ BLACKBOARD
I—KSn-1
KS3....

Figure 6. General Schematic of a
Blackboard System

The blackboard repfesents the communication medium
through which the specialists or knowledge sources
communicate their conclusiohs, findings, or‘requésts for
data to each other; thus, the blackboard is the source of
all data on which a knowledge sourceioperates and the
destination for all conclusions from a knowledge source
[11], [28].

The blackboard contains two kinds of knowledge: static
and dynamic. Static knowledge consists of factual data that

refer to initial conditions, parameters, and relationships;

39

dynamic knowledge is the knowledge that is generated during
the execution of the application. New facts, communications,
hypothesis, goals and suggestions are considered dynamic
knowledge. ‘

The blackboapd structure probably offers the best means
of representing procedural knowledge [28]; thus, if there
exists difficulty in converting domain expertise to a non-
procedural form, that knowledge might be répresented
procedurally in a set of knowledge sources as is shown in
figure 6. \

The major advantage of a blackboard system (viewed as
the application of procedural knowledge in a much more
structured way) is also, however, its principal weakness. By
training and by experience many knowledge engineers or
applications developers have computing backgrounds that
emphasize procedural programming, and they tend to think in
procedural terms. This:aspect causes a common problem in
rule-based applications: the incursion of procedural
knowledge in what should be a non-procedural representation.
A developer without prior experience in non-procedural
thinking and non-procedural knéwledgé representations can
slip easily back into using procedural terms, because the
blackboard model easiiy accommodates such thinking. In
conclusion, the blackboard entices the novice to think in
procedural terms rather than representing aspects of the

domain knowledge in some non-procedural form.

40

Knowledge Table

The knowledge table representation is a structure
proposed by Chang and Ho [3]1. A knowledge table is composed
of knowledge objects that can be values, éctivities,
expressions, concepts, or other knpwledge tables. The
knowledge objects can be static or dynamic, and different
semantic or functional relationships among those objects can
be defined.

A va}ué can be a symbol or number, an activity can be a
single action or a compound action, an expression is an
arithmetic or Boolean expression, and a conceﬁt or entity
refers to anything that contains various aspects or
properties. The use of tables to store and'represent
knowledge has origins in general array theory, relational
data bases, APL2 and Proiog [10]. .

A deFailed description of the knowledge table
representation is given'in Chapter 3, in combination with

Petri nets..

"CHAPTER III

KNOWLEDGE REPRESENTATION AND REASONING

USING PETRI NET AND KNOWLEDGE TABLE
Introduction

Knowledge can be classified into two basic types: fact
knowledge (F-type knowledge), which refers to what has been
explicitly specified to be true, and inference knowledge (I-
type knowledge), which specifies the cause-effect
relationship among the objeéts, from which new fact
knowledge can be derived [7].

F-type knowledge\is represented by objects or facts and
I-type knowledge is'denéted by inference rules for
sequential events. The real world can be modeled by a
collection of knowledge objects or facts and the cause-
effect relationship among them; however, F-type knowledge
and I-type knowledge are somefimes insufficient to
efficiently support inference and reasoning, especially in
concurrent or parallel activities like those presented in
the industry or in a computer systen.

Knowledge can be represented in static and dynamic
models. A static representation can be viewed as a

collection of initial conditions, parameters, facts and

41

42

relationships; examples of such representation are a
semantic network, an electronics diagram and a hydraulic
diagram. A dynamic fepresentation of a system may be viewed
as a collection of nodes and‘a;cs. In this case the
analyst’s concern is about the effects of changing inputs
over time and the propagation or effects of those changes in
the system [28].

Walter and Nielsen [28] say "A static model is
analogous to a set of production rules". A set of data is
provided as input to the model or rule-set and, as a result,
another set of data is returned. This mode of model usage is
analogous to forward chaining or backward chaining with a
set of production rules.

Static representations can be used to support reasoning
about aspects of a system that are relatively constant, such
as the interconnections between components. Static
representations are used with diagnostic or failure
isolation applications for example in hydraulic and electric
systems; the benefits of static representations are clarity,
famiiiarity, easy maintenance, simplification, efficiency
and easy application.

The dynamic representation of a system can be used to
investigate the time-varying characteristics of a system;
the analyst’s concern is about the system’s dynamic
behavior. The dynamic representation may be viewed, in
contrast to the static one, more like a collection of

procedures that, taken together reflect the behavior of the

43

system through time. One of the main disadvantages of
dynamic models for knowledge representation is that the
develoément and representation of the appropriate set of
basic érinciples is' a nontrivial task and sometimes might be
of unexpected dimensions [16], [19].

The new model based on Petri nets and knowledge table
representation can have static and dynamic objects. It is
static when the objects are grouped according to their
semantic relationships such as semantic networks and frame
structures. The model is dynamic when it groups dynamic
objects according to their functional relationships such
as Petri nets [19], [5].

Usually these two models are not compatible; that is, a
semantic network is not capable of modeling the functional
relationships among dynamic objects, and a Petri net is not
suitable for representing semantic relationsﬁips among
objects. J

The G-net is a unified model that can»représent;both
static and dynamic knowledge and also support inference and
reasoning. There are four basic reasoning algorithﬁs in Fhe
G-net model [7j:‘ |
1. Inheritance Reasoning. Inheritance reasoning is the
form of reasoning to infer properties of an object based on
the properties of its ancestors. Inheritance also may be
defined as the process of determining properties of an
object by looking up properties attached to objects that are
above it in the conceptual hierarchy. The results of this
process are all the properties of an object.

2. Recognition Reasoning. The recognition reasoning is in

the opposite of inheritance; recognition is the process of
finding an object or concept that best matches a given

44

description consisting of a set of properties. The results
of recognition are all the objects which exhibit the given
properties.

3. Event- drlven Reasonlng. Thls reasoning process is called
event-driven because it is based on the occurrences of
events. The goal of event-driven reasoning (reasoning for
dynamic nets) is to determine the subsequent activities
based on current events.

4. Complex Dynamlc Reasoning. This algorlthm is a higher
level reasoning based on the G-net model in order to control
the flow of the reasoning process when every object in the
model is another G-net.

The first two algorithms are the bases for some
Artificial Intelligence procedures, and they have been
studied extensively in different ways using techniques such
as semantic networks, predicate calculus, rule-based
systems, breadth-first search, depth-first search, etc. [4],
[24].

The algorithms for dynamic knowledge are useful for
analyzing concurrent and sequential activities. The major
use of Petri nets has been the modeling of systems of events
that occur concurrently; this model is based on the concepts
of asynchronous and concurrent operations by the parts of a
system [19].

According to Deng [9],’the—Department of Computer
Science of the University of Pittsburgh is developing an

editor for thexknowledge'table,representation, and they plan

to develop programs in Prolog for reasoning.

45

Knowledge Table and Petri Net Model

G-type knowledge model is a combination of knowledge

tables and Petri nets [7], [3], [19].

Knowledge Table

A knowledge table is a non-empty set of knowledge
slices. A knowledge slice of a knowledge table is a
nonempty set of knowledge objects. A knowledge object can be
a value, an éctivity, an expression, a conceptkor a
structure composed of other knowledge objects. The slice may
contain knowledge objects of different types; however the
basic types of slices are:

a. F-type, for objects of any type (except expressions)

b. I-type, which consiéts of at least two objects
(exp,cons); exp is of type expression and cons is any
type of object except expression. Cons is evaluated if
the expression exp is evaluated "true".

c. G-type, which ié used to represent a set of static
knowledge objects or a set of interrelated concurrent
and/or sequential activities.

The type of knowledge table depends on the relationship
among the slices; therefore the knowledge table can be I-
type when all the slices are of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>