
JNTEGRATING AN OBJECT-ORIENTED

PROGRAMMING LANGUAGE SYSTEM

WITH A DATABASE SYSTEM

By

HUI-CHEN NEE
If

Bachelor of Engineering

Tamkung University

Taiwan, R.o.c.

1987

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1991

Oklahoma State Univ .. Library

INTEGRATING AN OBJECT-ORIENTED

PROGRAMMING LANGUAGE SYSTEM

WITH A DATABASE SYSTEM

Thesis Approved:

Thesis Advisor

ii

1393242

ACKNOWLEDGMENTS

I wish to express my appreciation to the chairman of my

advisory committee, Dr. George Hedrick, for his patience,

guidance, counsel, and understanding provided throughout the

cou£se of my graduate study. I also like to extend my

thanks to Dr. Huizhu Lu and Dr. John Chandler for their

advice and close reading of the thesis, and for serving as

members of my graduate committee.

I also like to express my thanks to my parents,

Chinghui Nee, and Shunu Chou for their love and support

during my thesis writing.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Motivation. . • • 1
Preliminary Literature Review • . . • • 2

Object-oriented Paradigm 2
Object-Oriented Design 3
Integrated 4
Technology and Prototype 5
Comoparsion. • 5

Problem Statement . . . • 6
Scope and Outline 7

II. RELATED STUDIED 9

III.

Review of Object-Oriented Concepts. 9
Objects, Types and Methods 11
Classes Hierarchy and Inheritance. 12

The Development of Databases. 15
The Relational Data Model 16
The Object-Oriented Data Model. 17

COMPARISON OF TWO SYSTEMS 19

Traditional vs OOP Concepts . . . • 19
Relational DBMS vs OODBMS 21

Persistence. 22
Sharing. 22
Consistency. . . • • . 22
Associative Retrieval through a Query. 22
complex, Highly Interconnected Object. 23
Navigational Model • . • 23
Type Extensibility . • • 24
Strong Type Checking Data. 24
Composite Objects. . . • 24
Abstract Data TYpe 25
Better Suited to Stored Data • 25
Support for Long Transactions. 25
Read and Write Locking • 26

Conclusion. 26

iv

Chapter Page

IV. OODB IMPLEMENTATION. 28

An OOP Extension a Database Model . . . 28
An OODB Model Design and Implementation 32
Implementation Steps. • . • • • 33

Data Definition Language • 41
Data Manipulation Language 43

Analysis. • • • • • • • . . • . 46
conclusion. • . . . • . . 54

V. SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE WORK. 55

BIBLIOGRAPHY. . ~ . 58

APPENDIXES ... 62

APPENDIX A - GLOSSARY. 63

APPENDIX B - SAMPLE QUERY FROM COMPUTER PROGRAM. 66

APPENDIX C - PROGRAM LISTING . 69

v

LIST OF TABLES

Table Page

I. Object-Oriented Language Classification. 9

II. A Comparison of Object-Oriented and Traditional
Programming Concepts 20

vi

LIST OF FIGURES

Figure

1. IS-A Hierarchy ••.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

IS-PART-OF Hierarchy .

Generalization Relationship.

Aggregations Relationship ...

Class Definition Code Fragment •

The IS-A Hierarchy in Hydraulic Database

An Example of Hydraulic Database

The IS-PART-OF Hierarchy in Hydraulic Database . .

A DDL definition • . . .

Hydraulic Data Stored in Relational Tables

Hydraulic Data Stored in Object-oriented Classes .

Complex Data Structure Rect

Class Water •..

14. Class River .•

15. Class Lake ..

vii

Page

13

14

30

32

36

38

40

41

42

48

49

50

52

53

53

CHAPTER I

INTRODUCTION

, Motivation

Object-oriented programming is an important paradigm

for the software application challenges of the 1990s;

object-oriented goals should imprqve the software

development process resulting in the development of new and

better applications. These applications include database

management system (DBMS), artificial intelligence (AI), and

computer-aid design (CAD). Object-oriented programming

offers many advantages other than the traditional

programming for the applications. The result is software

that should be easier both to extend and to maintain as well

as applications that are richer, easier to use, as well as

more flexible (Wu, 1990).

Traditional relational database often both reduce the

time required for application development and improve data

sharing among applications. The relational data model has

advantages and disadvantages. The,primary advantage is that

it is simple and powerful, which is why it is so popular

among DBMS. However, the relational model is too simple,

forcing programmers to work at too low a level of

representation. Real-world applications are seldom so

1

2

simple. Programmers need to translate complex models into

the relational models. The primary disadvantage is that a

relational database has only a limited set of data types

(integer, string, and date), and it has a limited set of

operations on these data types (retrieving the data, storing

the data). Another disadvantage is the need to normalize

·data. Combining object-oriented programming concepts with

database concepts can resolve these problems. Object

oriented programming can offer features similar to flexible

abstract data type (ADT) facilities, using the ability to

encapsulate data and operations by the message metaphor.

The advantages of the combined object-oriented programming

and database can offer not only the ability to represent and

manage the complex relationships among data, but also the

ability to describe almost any real-world entity as an

object. The above benefits of object-oriented database

should improve the current DBMSs.

Preliminary Literature Review

Object-Oriented Paradigm

The object-oriented paradigm applies to most major

software fields, including languages, database management,

artificial intelligence, computer-aided design, and

manufacturing (CAD/CAM). The result is software that should

be easier both to extend and to maintain as well as

applications that are richer, easier to use, as well as more

flexible (Wu, 1990).

The traditional record-oriented databases, e.g.

hierarchical, network, and relational DBMS are limited in

their abstractions and representational power. David Maier

presents an object-oriented model offering more and better

benefits-tnar.lthe current models. An object-oriented

database can support the construction of objects and

supertyp~~and subtype hierarchies, which are useful for

managing the complex data found in software environments.

It can store not only complex application components but

also large data structures (Maier, 1986). It also enables

support of complex applications not supported well by the

other models, enhanced programmability and performance,

improve navigational access, and simplify concurrency

control (Danforth, 1988) (Garza, 1988) (Hornick, 1987).

Qbject-Oriented Design

3

OODBPL introduces an object-oriented database

programming (Suad, 1988). Two books provide techniques of

object-oriented software construction'; the design begins by

defining-objects and relationships. Next, life cycles of

the ob~ects are then describes in state models to define the

events acting on the objects. The last step is process

definition, based on the objects and their life cycles.

Unlike the functional decomposition and event-response

methods, the object-oriented approach results in minimal

data-driven code that remains stable even when requirements

are changing (Meyer, 1988) (Sally, 1988).

Integrated

Baroody examines object-oriented programming as an

implementation technique for database systems. The object

oriented approach encapsulates the representations of

entities and relationships with the,procedures that
' '

manipulate them (Baroody, 1981). There are two ways to

4

approach object-oriented DBMS : extending an object-oriented

programming language or exten:ding a relational DBMS. The

first way is by using language: database functionality, such

as persistence, authorization, and concurrency, is provided

as needed for individual objects. An extended object-

oriented programming language (OOPL) efficiently navigates

individual objects and has no inherent limits on

functionality. The method is good for sharing, querying and

optimization but bad for transparency and flexibility (Kim,

1988). The second way extends the relational model with new

types, operations, and access methods, which improves

flexibility but can prevent method optimization (Andrews,

1987). Bernstein states that integrated database support

will greatly reduce the efforts spent in maintaining this

data and improve productivity for software product

development (Bernstein, 1987). Agrawal develops a database

system and environment based on the object paradigm. It

begins with the object-oriented facilities of C++ and

extends them with features to support the needs of databases

(Agrawal, 1987). Kern shows how abstract data types

integrated into the structurally object-oriented model can

support engineering applications (Kern, 1987).

Technology and Prototype

Toby Bloom presents in an object-oriented database

paradigm, a real-world entity is modeled as an instance

(object) of a class which has a number of attributes

(properties) and operations (methods) applicable to the

objects (Bloom, 1987) (Penney, 1987) (Andrews, 1987)

(Fishman, 1987) (Woelk, 1986). A class should inherit

properties and methods from other classes. Banerjee

introduces the fundamental data modeling concepts

generalization and aggregation that are built into the

object-oriented paradigm (Banerjee, 1987). Further, the

inheritance mechanism makes it possible for applications to

define new classes and have them inherit properties from

existing classes, and this makes the applications easily

reusable and extendible (Liu, 1988).

Comparison

Duhl and Rubenstein compare the object-oriented

database and relational database. The results support

strong evidence that object-oriented databases are better

than relational database systems (Duhl, 1988) (Rubenstein

1987) .

5

I
\

6

Problem Statement

Recent research in record-oriented database modeling

has pointed to the lack of flexibility and expressiveness of

these models. Object-oriented models, however, provide the

database designer with expressive tools for conceptual

modeling and provide abilities not available in the

traditional models.

The following problems· seek to use the relational

database models as generic design data models:

1. The relational data models are all based on the notion of

the logical record. But most of the world does not

consist of records. The relational data models express

the semantics of complex objects with difficulty because

they possess only a table model for data storage.

2. Relational data models are limited in their abstractions

and representational power. It is difficult to manage

the complex and large software.

3. A relational data model is an inflexible model; it makes

an expansive modification and difficult to reusable.

The object-oriented database should resolve the above

problems.

1. Object-oriented programming can model real-world entities

appropriate to the user's requirements. Object-oriented

data models provide a rich set of relationships among

real world entities, including the generalization,

specialization, and aggregation relationships.

2. In an object-oriented data model, objects may exist in

aggregation hierarchies which provide the capability to

aggregate different types of multimedia information such

as text, sound, and complex graphics drawings. It also

supports dynamically varying data size, new data types

and complex data relationships.

3. Object inheritance increases extendibility and

reusability and saves the cost of maintenance.

7

The goal of this thesis is to combine an object-oriented

programming system with a database system and improve the

relational database. The object-oriented data model is

written using an object-oriented programming language (Turbo

C++). The data model is defined, manipulated, queried based

on C++ and support data encapsulation and inheritance.

After developing and designing the object-oriented data

model, we apply this model to water resource data and

compare this object-oriented DBMS with a relational DBMS.

The object-oriented DBMS shows better performance than a

relational DBMS as data type is complex.

Scope and Outline

The thesis is organized in the following manner:

Chapter 1 includes an introduction and a literature review.

Chapter 2 reviews the object-oriented programming and the

development of databases. Chapter 3 compares structure

programming vs object-oriented programming and relational

database vs object-oriented database. Chapter 4 presents an

object-oriented data model design and implementation.

Chapter 5 is the conclusion, summary, and discusses future

work to extend the work described in the thesis.

8

CHAPTER II

RELATED STUDIED

Object-oriented Programming

An object-oriented programming language must be object-

based, provide classes, and support inheritance.

object-oriented = object-based + classes + inheritance.

The object-oriented language classification is as shown in

Table I.

TABLE I

OBJECT-ORIENTED LANGUAGE CLASSIFICATION

Object Classes Inheritance

Traditional
languages No No No
(C I Pascal)

Object-based
(Ada) Yes No No

Class-based
(CLU) Yes Yes No

Object-oriented
languages Yes Yes Yes
(C++,Srnalltalk)

9

Basic object-oriented programming concepts include

encapsulation, abstraction, modularity, and inheritance

(Danforth, 1988).

10

Encapsulation is the process of hiding all of the

details of an object that do not contribute to its essential

characteristics; typically, the structure of an object is

hidden, as well as the implementation of its methods.

Data abstraction could be considered a way of using

information hiding. A programmer defines an abstract data

type (ADT) consisting of a set of properties and a set of

methods used to access and manipulate the data.

Modularity is the property of a system that has been

decomposed into a set of cohesive and loosely coupled

modules.

Inheritance is a mechanism for sharing properties and

methods among classes, subclass, and objects automatically.

A specialization of an existing class is called a subclass.

The subclass inherits properties and methods from its

superclass. The subclass may add properties and methods

that are appropriate to more specialized objects.

Object-oriented programming languages have many

advantages over than traditional structure programming

languages. Encapsulation and data abstraction increase

reliability and help decouple procedural and

representational specification from implementation.

Inheritance increases flexibility by allowing the addition

of new classes of data types without having to modify the

existing code. Inheritance also permits a code to be

reused.

11

The basic eleme~ts of object-oriented programming

language are objects and methods, classes and class

hierarchy, and inheritance (Goldberg, 1983) (Cargill, 1986)

(Meyer, 1987).

Objects and Methods

In object-oriented systems, all conceptual entities are

modeled as objects. We define a record as a set of fields

which corresponds to a tuple in a relational data model and

an object in an object-oriented data model. A simple object

could be an integer, a boolean value, a real value, or a

string. A complex object may exist in aggregation and

hierarchies which provides the capability to associate

different types of multimedia information such as text,

video, and complex graphics drawings. Object behavior is

described by a combination of properties and methods.

Properties represent static behavior and methods represent

dynamic behavior.

The behavior of an object is encapsulated in methods.

Methods consist of codes that manipulate or return the state

of an object. Methods are a part of the definition of the

object. However, methods, as well as objects, are not

visible from outside the object (Kim, 1989).

12

Classes Hierarchy and Inheritance -

Grouping objects into classes helps avoid the

specification and storage of much redundant information. We

define a record type as a group of records with the same

data types. It is a relation in a relational data model and

a class in an object-oriented data model. A class has two

components associated with it: a list of properties and a

set of methods. Properties of a class are described by the

instance variables defined on the class. Methods are the

operations that are performed on the instance variables of

the class. The domain of methods could be multiple classes.

The range of a method is a class. A method can be

considered as a functional object. A class could be a

system-defined class, or a user-defined class. A system-

defined class, such as a class of integers or strings. A

user-defined class such as a class of theses or students.
\

The objects of a class are called its instances. Associated

with each class is set of instance variables that describe

the state of the instances of a class (Shriver, 1988).

The distinction between classes and objects is that

objects are run-time elements that will be created during a

system's execution; classes are a purely static description

of a set of possible objects.
'

The concept of class hie~archy is based on two

fundamental class types: (1) the IS-A hierarchy which

describes generalization and specialization relationships.

(2) the IS-PART-OF hierarchy which describes aggregation

13

relationship. The IS-A hierarchy where a class has subclass

associated with it. The subclass inherits all of the

properties and methods associated with its superclass. For

example, the class of all people has the class of all

students as its subclass. This subclass will inherit all

the properties from its superclass plus have additional

properties such as 'ID# and major. The IS-A hierarchy

described is in Figure 1.

People
Class

I
student
Class

I

Under
Class

Graduate
Class

-

Name
Birthday

ID#
Major

Figure 1. IS-A Hierarchy

The second class hierarchy is the IS-PART-OF hierarchy.

An object of a class is considered to be the aggregation of

a set of objects, each of which belongs to same classes.

such an aggregate object also is called a composite object.

For example, a thesis object, which is an object of the

14

thesis class, consists of a title, table of contents, a set

of chapters, and a set of references. A chapter object that

belongs to the chapter class has a title and a set of

sections as its components. A section object that belongs

to the section class has a title and a set of paragraphs as

its components. The IS-PART-OF.hierarchy is in Figure 2.

Thesis
Object

I
I I l I

Title Table of A Set of A Set of
Data Contents Chapters References

Chapter
Object

I

I I
Title A Set of
Data Section

Data

Section
Object

I

I I
Title A Set of
Data Paragraphs

Data

Figure 2. IS-PART-OF Hierarchy

15

Inheritance allows objects to be arranged in taxonomies

in which the more specialized objects inherit properties,

i.e., the properties and the methods of more generalized

objects~ Similar objects with a few different properties

can be modeled by specialized classes from this superclass.

Derived classes can be used to construct heterogeneous data

structures such as lists with different types of elements

because a pointer to a class can point to any object whose

type is derived from this class.

The Development of Database System

The major goals of database are both reduce the time

and costs required for application development and improve

data sharing among application. Hierarchical data models

appeared in the late 1960s and consist of an ordered set of

trees, the mean is an ordered set consisting of multiple

occurrences of a single type of tree. Relational data

models appeared in the late 1970s and provided many benefits

over the hierarchical data model. The table and the

relational form are simple and powerful. The traditional

relational databases are designed for business-like

applications. As is well known, the relational data models

express the semantics of complex objects with difficulty

because they process only a table model for data storage.

Object-oriented databases appeared in the late 1980s. The

applications of the 1990s require support for complex data

structures, large data access, and better performance. The

change from relational data models to object-oriented

data models is the same as the change from hierarchical

data models to relational data models.

The Relational Data Model

The relational database approach created by E.F Codd

and developing since 1970 is a considerably different

approach to the logical description and manipulation of

data. It attempts to avoid many of the disadvantages

mentioned and to provide advantages in data independence,

ease to use and user friendly, database processing power,

and security controls. It views the logical database as a

simple collection of two-dimensional tables called

relations. These tables are flat in that no repeating

groups are involved. They are easy understood and handled

by users with little training in programming, and they

involve no consideration of positional, pointer, or access

path aspects (Date, 1990).

16

A relation or table is a two-dimensional array with the

following characteristics: (Date, 1990}

1. Each entry in the table is one data item; there are no

repeating groups. Each domain Di must be a simple

domain; that is, it does .not represent another relation.

A relation is said to be normalized if it has no

repeating groups; otherwise it is said to be

unnormalized.

17

2. Each column, the domain, is assigned a distinct name, a

domain name, and is made up of values of the same data

item.

3. All rows or tuples are distinct; duplicate are not

permitted.

4. The rows and the columns can be ordered in any sequence

at any time without affecting the information content or

the semantics involved.

Codd suggests two languages to carry out these

operations in logical terms: the relational algebra and the

relational calculus. The basic relational algebra operators

involved union, intersection, difference, extended cartesian

product, selection, projection, join, and division. A

relational algebra operator takes one or more relations as

its operands and produces a relation. A relational calculus

is a mathematically-oriented notation for defining a

relation to be derived from existing relations in the data

model. It permits users to describe what they want to

obtain without indicating many details of how to obtain it.

A relational data model is viewed by users as a

collection of normalized relations of various degrees

manipulated by powerful operators for extracting columns and

joining them.

The Object-Oriented Data Model

The object-oriented database is written using an

object-oriented programming language depending on database

18

systems for data storage and retrieval. Object-oriented

data models add to traditional programming languages such

concepts as persistence, sharing, transactions, and

efficient access to large amounts of data. They also add to

traditional database concepts such as abstraction,

extensible typing, and procedures.

Object-oriented data models produce relational

data models that close real-world applications and reduce

the normalization problems often appeared in relational

data model design. Object-oriented data models support code

reuse, code maintenance, and modularity. An object-oriented

data model, that is, a data model which is based on object

oriented concepts, provides the generalization and the

aggregation relationships. There are very useful semantic

relationships between objects (Maier, 1986) (Zdonik, 1990)

(Kim, 1989).

An object-oriented database is based on a set of

defined classes. Object behavior is described by a

combination of properties and methods. Properties represent

static behavior and methods represent dynamic behavior. The

object-oriented data model is based on two fundamental class

types : (1) the IS-A hierarchy which describes

generalization and specialization relationships; (2) the IS

PART-OF hierarchy which describes aggregation relationship.

CHAPTER III

COMPARISON OF TWO SYSTEMS

Traditional vs OOP Concepts

From a traditional programmer's viewpoint, some object

oriented concepts names are replaced with different names

than in the traditional concepts. In fact, some object

oriented concepts are similar to traditional programming

approaches. We will compare the traditional and object

oriented terms and concepts (Bloom, 1987) (Duhl, 1988)

(Date , 19 9 0) .

Class and properties corresponded to data in

traditional programming. A class is similar to an abstract

data type, although for object-oriented programs, the data

typing process is not revealed outside the class. A class

is an extension of the idea of the struct found in

traditional programming language. It is a way of

implementing a data type and associated functions and

operations.

A method is similar to a procedure because both have

processing operations. Methods and data are different

because procedures are seldom encapsulated with the data

they manipulate.

19

20

In an object-oriented program, message passing replaces

function calls as the primary method of control in object

oriented systems.

TABLE II

A COMPARISON OF TRADITIONAL
AND OOP CONCEPTS

Object-oriented
Programming Concepts

Properties

Classes

Methods

Messages

Calls under system's
control

Inheritance

Traditional Programming
Concepts

Data

Abstract data types

Procedures, functions,

Function call

Calls under programmer's
control

No

Inheritance has no similarity corresponding to the

traditional programming. Table II summarizes the contrasts

between the object-oriented and conventional perspectives

(Date, 1990).

The object-oriented programming paradigm differs from

the traditions of procedural programming. Procedural

programming focuses on data and procedures with no

21

constraints on which procedures act on which data. Data are

structured so that they can b~ acted upon procedure by a

separate and changing sets of procedures. Both the

structure of the data and the organization of the procedures

are subject to change, each potentially invalidating the

other. The languages ~nd techniques of the procedural

programmer are all built to support this procedural

programming paradigm.

Several significant departures from t~e procedural

approach drive the way object-oriented programs are'

constructed. First, programs are collections of only one

basic entity, the object, which combines data with the

procedures that act upon the methods. Second, unlike

traditional programs, which use procedures to accomplish

actions on a separate set of passive data, objects receive

requests and interact by passing messages to each other.

Third, the hierarchical organization of objects into classes

allows data and methods in one base class to be inherited by

the subclasses.

Relational DBMS vs OODBMS

The section presents the comparison of an object

oriented data model and a relational data model. Object

oriented data models offer all the traditional data model

advantages, including persistence, sharing, consistency, and

query.

22

Persistence

Creating objects that service the process that created

them. The objects considered so far exist for the duration

of a computing session. There is also a need for objects

with a longer time span.

Sharing

Sharing means not only that existing programmers and

users can share the data in the database, but also that new

programmers and users can be developed to operate against

that same stored data. In other words, it may be possible

to satisfy the data requirements of new programmers and

users without having to create any additional stored data.

Consistency

It should also be clear that if the given fact is

represented by a single entry, then such an inconsistency

can not occur. Alternatively, if the redundancy is not

removed but is controlled, then the data model could

guarantee that the data model is never inconsistent as seen

by the user, by ensuring that any change made to either

of the two entries is also applied to the other one

automatically.

Associative retrieval through £ query

In an object-oriented data model, the user can specify

queries with a nested dot notation rather than using a join,

23

In an object-oriented data model there is no need for many

of the joins used in relational data models, as there joins

often serve to recompose entities that were decomposed for

data normalization.

An object-oriented data model concepts depend on

several important features beyond thos~ offered by object

oriented language. Object-oriented data models, differ from

relational data models in several ways including (Kim, 1989)

Complexity, highly interconnected obiect

Because inter-object references are stored directly in

an object-oriented data model, an object's identity must be

invariant over changes to its state, and time must be a

qualifier of identity to allow references to specific states

of an object or to the "most recent" state.

Navigational model

An object-oriented data model is a navigational model

of computation. A relational data model is based on a

mathematical theory. A relational data model was never

really designed to permit for the nested structure and views

of a design. The advantage to navigation, especially when

using large, complex applications such as those used in

engineering design, and it is easier and much more natural

to weave the way through objects that model the real world

rather than tables, tuples, and records.

24

~ extensibility

A relational data model has relations as its only type.

The operations on all relations are restricted to retrieve

the data and store the data. However, an object-oriented

data model includes a rich set of types, such as strong

typing, abstract data types, procedures, and inheritance.

An object-oriented data model supports type extensibility.

Each object is associated with a class. User defined

objects, or classes, are at the same level as the built-in

types. The interface to each object is customized to the

object. A user can accomplish reuse automatically by
'

creating a subclass and overriding some of its properties

and methods.

Strong ~ checking Data

An object-oriented data model may perform type checking

at the database rather than the programming language level.

Moreover, messages to manipulate data can be sent directly

to data in the database rather than first moving data to the

memory space of the programming language. This makes

programs easier and more efficient.

Composite Objects

A composite object is a collection of other objects.

Composites can be locked, stored, retrieved, and moved as a

whole. In relational data model, there is no way to

identify composite objects. The similar mechanism is the

25

"view", which can join together multiple relations to form a

virtual table. However, programmers have to assemble

composite objects. This requires writing many slow and

complex queries.

Abstract data ~

In an object-oriented data model, the properties and

methods of an object are represented by a class definition.

Each of these classes is defined by a data abstraction. By

incorporating data.abstractions at the level of the

data model, it is possible to make changes to the way a

data model class is implemented without any effect on other

classes in the data model that make use of the abstraction.

Better suited to store Data

An object-oriented data model may be viewed as a

component of the programming environment that is ac~ively

integrated with other tools in the environment. Object-
, '

oriented data models are better suited to storing

programs, objects, and types than relational data models.

Support for long transactions

. Object-oriented data models may include support for

long transactions , complex objects, heterogeneous objects,

and changes management, like version control, action

triggers, exception handling, type changes.

26

Read and Write locking

The relational data model and object-oriented data

model provide a similar concurrency control scheme. Each

provides read and write locking at a record or an object.

Each also provides write aggregate locking at a relation or

a segment. However, there is a difference between the two

data models when it comes to locking information contained

in an ownership hierarchy. In a relational data model,

because hierarchies are represented across several

relations, the application needs to lock each record

specifically in each relation to lock the hierarchy.

However, in an object-oriented data model, the programmers

can lock pre-defined containment hierarchy with a single

operation.

Conclusion

Object-oriented data models differ significantly in

functionality from relational data models. Relational

data models are based on deriving a virtual structure at run

time based on values from sets of data stored in tables.

Object-oriented data models contain predefined objects that

do not need to be derived at run time. In a relational

data model, views are constructed by selecting data from

multiple tables and loading them into a virtual table. In

an object-oriented data model, views are obtained by

transversing pointers from object to object.

27

An object-oriented data model plays a very active role,

whereas a relational data model is passive. While the

relational data model primarily supports the ability to

insert or delete records, the object-oriented data model

offers the ability to combine methods within objects; thus

it permitting the data model to combine many of the

operations that must be left to the application with a

relational data model.

CHAPTER IV

OODB IMPLEMENTATION

An OOP Extended to a Data Model

Relational DBMSs have a greater foundation in theory

than either network or hierarchical systems motivating an

object-oriented approach to relational database system

implementation (Baroody 1981).

Objects extension to relational database are usually

implemented as objects flattened into tables or with tables

containing pointers to the objects. Object-oriented

features are being added to database to increase their

support for complex data types and complex data access

(Dawson, 1989).

The extended relational approach starts with a

relational model of data and query ,language and extends them

in various ways to allow the modeling and manipulation of

additional semantic relationships and database facilities.

· The external level focuses on the fundamental data

structure. The conceptual level contains generic, DBMS

independent tables and maps external-level object structures

into tables and domains. The internal level is the data

definition language of the target data models and contains

the actual data model commands that create tables,

28

29

attributes and indexes. (Baroody, 1981) (Chen, 1976)

Object

In the external level, an object is anything that both

exists and has an identity. Objects such as apple, green,

and Oklahoma belong to the object classes fruit, color, and

state, respectively. An object is a data of an object class

described by attributes or fields. In the conceptual level,

each object class maps directly to a table. All object

fields become attributes of tables. Each object has a

unique ID; all references to objects are made by the ID.

The stability of object IDs is particularly important for

relationships since they refer to objects. Domains both

ensure consistent decisions un attribute length and prevent

operations on inconsistent entities. It does not make sense

to add a name to a year. The concept of domain is similar

to strong typing in a programming language.

In order to design an object-oriented data model for

water resource management. We use two fundamental types of

relationships: generalization and aggregation relationships.

Generalization

In the external level, a generalization refers to the

ability to organize objects in an IS-A hierarchy.

Generalization can have an arbitrary number of levels. For

example (Figure 3} for the top generation, Water is the

superclass; River, Lake, and Sea are subclasses. The

superclass stores general properties like PH, temperature

30

(temp). The subclasses store properties particular to each

type of Water. In the conceptual level, a generalization

relationship has one superclass table and multiple subclass

tables. In the conceptual level identifies candidate keys.

We choose one of the candidate keys to be the primary key.

The object ID usually is the primary key for object tables.

IDs are the primary key even thqugh they have no inherent

meaning to the user. The primary key must be unique and

non-null. In the internal level is the data definition

language of the target data model. The level contains the

actual data model commands that create tables, attributes,

and index.

Water

PH, temp,

Water type

I I
I River Lake Sea

I discharge lake center salt
~

Figure 3. Generalization Relationship

31

Aggregation

Aggregate type constructors include set, multiset, list

and tuple. The aggregation relationship is an object

oriented context is simply that a class consists of a set of

objects. In the external level, aggregation is an assembly

component or IS-PART-OF relationship. Aggregation combines

low-level objects into composite objects. Aggregation may

be both multilevel and recursive; like a data structure it

may act recursively and refer to itself. For example

(figure 4), temperature is a component of characters, PH is

a component of characters.

temp and PH are components.

Characters is an assembly and

Aggregation often exhibit

existence dependency. In the conceptual level, many-to-many

relationships by necessity map to distinct tables. This is

a consequence of normal form. One-to-one and one-to-many

relationships may be mapped to distinct tables or merged

with a participating object. our handling of one-to-one and

one-to-many aggregations depends on the context. We merge

existence dependent aggregations with an object table to

simplify integrity enforcement.

32

Water

Name

I . I I

Character Metal Non-Metal

temp, PH cu, Hg, Mg I, F, Cl

Figure 4. Aggregations Relationship

An OODB Design and Implementation

This section presents a description of the object-

oriented data model design and implementation. We will

develop a data definition language (DDL), data manipulation

language (DML), and a query language. Using the data

definition language, the classes must be in a format that

the computer can translate into physical storage

characteristics for the data. We will use the data

definition language compiler program to translate a DDL text

into a DDL C++ language. To update and retrieve data, we

need a data manipulation language that .can process data.

The DML needs to insert, delete, retrieve, and update data.

The Query utility program allows the user to extract data

from the data model by specifying a class name, a list of

data to extract from the class, and a set of select

criteria. In developing and designing the object-oriented

33

data model, the following steps will be taken. We describe

our design of an object-oriented data model for water

resource database below.

Step 1: Identify the basis for the object-oriented data

model requirements.

Step 2: Define and describe objects: an object represents

an entity in the real world. Objects may be

system-defined objects or user-defined objects.

Step 3: Define classes: each class has a set of methods

that it defines and a list of objects to which

its instances pass messages.

Step 4: The data definition language (DDL) describes the

objects to the application program. This step

defines data types and specifies their combined

properties and operations.

Step 5: The data manipulation language (DML) provides the

four fundamental operations of insert, delete,

retrieve, and update.

Step 6: A query utility program allows the user to

extract data from the database by specifying a

class name, a list of data elements to extract

from the class, and a set of select criteria.

Implementation Steps

Step 1: Identify the basis for the object-oriented data

model requirements. The candidate classes and objects are

usually derived from perceptible things: people, events, and

34

interactions. We may range from informal to formal. It may

be sufficient to simply list the names of classes and

objects, using meaningful names that imply their semantics.

We must arrange those classes into a meaningful hierarchy.

Grady Booch created the grammatical approach. The

procedure creates a list of the key nouns, noun phrases, and

verbs from the data model requirements. Such a list may

serve as an approximation to the problem-domain entities.

He suggests using the nouns as potential identifiers of the

classes of objects. Verbs, on the other hand, identify

methods. The resulting list of nouns, noun phrases, and

verbs is then used to begin the design process (Booch,

1983).

The grammatical approach starts with a statement of the

model requirements and description of the solution, as shown

in the following example:

Develop a water resource database system. The water

resource database system allow the users to create water,

river, and riverbed classes. Moreover, water can be tested.

river can be inserted, deleted, updated, and selected.

riverbed can be surveyed. Then, these classes may be define

as follows.

class
property
method

class
property
method

water
name, date, PH, temp, hard
test, testl

river
discharge
insert, delete, retrieve, update, display

class
property
method

riverbed
11, lr, ul, ur
riverbed, circum, diagonal

Step 2: Define and describe objects: an object represents

35

an entity in the real world. Objects may be system-defined

objects or user-defined objects. The system-defined object

types are those predefined by the system. The user-defined

types are the application specific types defined by the

user.

Objects represent entities and concepts form the

application domain being modeled. They are unique entities

in the data model with their own identity and existence, and

they can be referred to regardless of their attribute

values.

Objects are described by their behavior, and can be

accessed and manipulated only by means of methods. As long

as the semantics of the methods remain the same, the

data model can be physically as well as logically

reorganized without affecting application programs. This

provides a high degree of data independence.

A simple object is an abstraction of the notion of a

variable-- both are responsible for holding data values such

as strings or integers. A complex object may itself, in

turn, aggregate simple and complex objects. Complex objects

may also have a set of occurrences. A complex object may be

thought as an abstraction of the notion of a struct or a

record in traditional programming languages. It allows us

to use nested structure too (Jacob, 1988).

36

A complex object may also be thought of as a tree. The

object itself is the parent node, and the objects that it

aggregates are the children of the parent node. Each of the

children node objects, which are simple, is a leaf node.

Each of those that is complex is itself a parent node. The

nodes of a set occurrence are siblings (Dawson, 1989). The

model class definition code fragment (Fig 5) below

illustrates the hierarchical structure of an example

hydraulic object's contents :

class water {

II properties
char name; II station name
date date; II test date
float spec; II specific code
float ph; II PH standard
float temp; II temperature
float hard; II hardness
int depth[lO]; II river depth
riverbed trap { II Riverbed shape

int :11; II lower left
int :lr; II lower right
int :ul; II upper left
int :ur; II upper right

}

II methods
testl(float ph); II test PH
test2(float temp); II test temp

}

Fig 5. Class Definition Code Fragment

37

The station_name (name), test date (date), specific code

(spec), ph standard (ph), hardness (hard), temperature

(temp), river depth (depth), and trapezoid (trap) objects

are aggregated by the complex parent water object. The

trapezoid object_ is a complex object; the others are simple

objects. The trapezoid object is parent to a set of

identically structured complex objects, composed of the

simple objects (lower_left, lower_right, upper_left, and

upper right) .

All system-defined objects, both simple (integer,

float, string ..) and complex (array, list, set, tree ..) can

be used in the formation of user-defined objects. Once a

user-defined object has been accepted by the object manager,

it may be used indistinguishable from system-defined bbjects

in the formation of further user-defined objects.

Any complex object is an aggregate of other objects,

any complex object type ip an aggregate of other types.

Thus the complex data type water is the aggregate of the

name, date, spec, ph, hard, temp, depth, and trap types.

Note that the river type definition is the user-defined

object that is made available for reuse in later user

defined type definitions; its component object types are not

(Kim, 1989).

Step 3: Define classes: each class has a set of methods

that it defines and a list of objects to which its data pass

messages. The step may establish the classes and objects

identified from step 2. The designer acts as a separate

38

outsider, viewing each class from the view of its interface

so as to identify the things. Sjhe manipulate do to each

instance of a class and manipulate the things that each

object can do to another object.

After the objects are described, we can gather common

object abstractions together in a class definition. For

example, we might define a class called water. The water

class for storing name, date, spec, ph, hard, temp, depth,

and trap. The river subclass for storing discharge

instances are then created.

Water

name, date, ph
spec, hard, temp

I
River

discharge

Figure 5. The IS-A Hierarchy in Water Resource Database

The class provides a variety of base types and type

constructors for defining schema types, some of which are

used in Figure 6. Predefined base types include integers,

floating point numbers, and character strings.

39

Inheritance increases flexibility by permitting the

addition of new class of data types without having to modify

the existing code. As an example, consider the following

class, river, derived from class water.

The subclass river inherits all of the properties and

methods of the class water, and in addition it has discharge

property.

II The parent class water has the properties (name, date,
II spec, Ph, hard, temp, and depth) and methods (test,
I I testl) .
II
II
class Water

{
II properties

}

char *name;
char *date;
float spec;
float ph;
float hard;
float temp;
int depth[lOJ;
riverbed trap;

II methods
int test (float ph, float hard);
int testl(float ph, float date);

II subclass river inherits all the properties from class
II water
class river : public water

{

}

II properties
float discharge;
River *next;

II methods
insert();
delete();
update();
select();

Figure 7. An Example of Water Resource Database

A water object, which is a member of the water class,

consists of basic characteristics, metal-element and

nonmetal-element. A metal-element object that belongs to

the metal-element class has Na, cu, Mg, and Hg as its

components.

water
object

40

metal
object

Figure 8. IS-PART-OF Hierarchy in Water Resource
Database

Step 4: The data definition language (DDL) describes the

41

objects to the application program. This step defines data

types and specifies their combined properties and methods.

DDL compiler compiles the user-defined objects into the

database, where they supplement the system-defined objects.

It is used to define a schema or data model for an

object-oriented data model. DDL is the class definition

language which extends the hierarchy of system defined

classes in an object-oriented data model, and defines the

relationships among the data objects and class. DDL is used

to define an abstract interface to the properties of new

data types which may be instantiated and the operations

which may be performed on these properties. Each class

definition code segment enclosed between "create" and "end"

contains a data definition statement, which defines the name

of the class, its superclass, and its associated properties

and its methods. It is a sample DDL definition:

create class water
Properties = {

}
Methods

int
int

}
end Water;

char *name;
char date;
float spec;
float PH;
float hard;
float temp;
int depth[lOJ;
riverbed trap;

= {
test(float ph, float hard);
testl(float ph, float date);

create class river
Superclass = { Water }
Properties = {

float discharge;
River *next;

}
Methods = {

void
void
void
void

insert();
delete();
update() ;
select();

}
end River;

create class riverbed
Properties = {

int 11;
int lr;
int ul;
int ur;

}
Methods = {

int area(int 11, int lr, int ul, int ur);

42

int circum(int 11, int lr, int ul, int ur);
int diagonal(int 11, int lr, int ul, int ur);

}
end Riverbed;

Figure 9 . A Data Definition Language

43

A method consists of the word "Method", followed by the

method-name as defined in the definition of the class that

defined the operation. A method is similar to the

definition of a programming language's function or

procedure. In a_data definition language, the following

built-in data types are provided:

1. integers, boolean

2. floating point

3. fixed-length string

4. unbounded varying length arrays of fixed types with

an arbitrary number of dimensions. e.g., text,

image, or sound.

5. Procedure used to represent shared complex objects

and to support multiple representations of data.

class riverbed {
int area () { xxxx }
int circum() { xxxx }
int diagonal() { #### }

}

Step 5: A data manipulate language (DML) includes

facilities to express queries and updates against a given

database (insert, delete, update).

The DML of object-oriented data model must allow users

to insert, delete and update appropriate objects of a class

by sending an appropriate message to the class. It must

allow users to fetch objects in several ways. First is a

navigational fetch of a single object keyed on its unique

identifier or of a collection of objects rooted at a user-

specified object. Second, it permits a declarative fetch of

44

a set of objects that specifies user-specified search

conditions. Third, DML must permit a declarative deletion

or modification of a set of objects that satisfy user

specified search conditions.

In a relational data model, an insert operation

encapsulates these actions: the creation of a tuple, and the

insertion of the tuple in a certain table. In an object-

oriented data model, we can extend the semantics of the SQL

form and insert (delete, and update) into clauses to permit

any aggregate expression. We employ a DML which is similar

to the DML in the relational database.

For example, we may use following statement to add the

value 3 to the "depth[4]" which is one of the properties of

the object in the river class, p.

insert
into p (depth[5])
Values ("3")

For another example, the following "update" command is used

to modify the value of ph, discharge, and set depth to

"5,4,3,2,6,7,8,0,4", respectively.

modify
set

where

p
ph = ph * 1.1
disch = 400
depth= "43267804 11 ;

ph= 7;

The "delete" command is used to delete objects, for example,

delete
from p
where depth[3] = 2;

45

Step 6: A query utility program permits the user to extract

data from the database by specifying a class name, a list of

data elements to extract from the class, and a set of select

criteria. The query language provides facilities for

selecting complex object structures, and it can be extended

through the addition of ADT functions and operators,

procedures and functions for manipulating schema types, and

generic set functions.

For example, the "select" command herein is used to

select name, date, the area value of trap, and to get the

diagonal value of the trap.

select name, date, area(trap), diag(area)
from p
where disch = 80;

In a relational data model, views are constructed by

selecting data from multiple tables and loading them into a

virtual table. In an object-oriented data model, a view is

obtained by transversing pointers from object to object.

A complex query, as it involves a number of classes, brings

out many of the same issues that complicate joins of

relations in relational data model. The semantics of

queries in object-oriented data models make it possible to

eliminate many of the permutations of classes that may not

be eliminated in evaluating relational queries. For

example,

Relational Model

create table Depth (
Riverbed_depth: char(5),
index : integer,
value : integer) ;
insert into Depth
values (1 01 1 , 0, 3) ;
insert into Depth
values (1 D1 1 , 1, 4) ;

insert into Depth
values(1 D1 1 ,9, 8);
select values into y
from Depth
where Riverbed_depth = 01 and index= 8;

Object-oriented Model

Define :
int Riverbed_depth[10];
01[0] = 3;
D1[1] = 4;

D1[9] = 8;
y = D1[8];

In this example, SQL is wordy, and for more complex

data types, is difficult to write, hard to understand, and

nearly impossible to modify and maintain.

In our experiment, Insert, Modify, Delete, and Select

are implement by four individual functions written in C++.

Analysis

The following problems seek to use the relational

46

data models as generic design data models; however, object-

oriented data models should resolve the problems.

As is well known, the relational data model expresses

the semantics of complex objects with difficulty because it

47

is only a table model for data storage. Object-oriented

programming can model real-world entities appropriate to the

user's needs. Assume we need a data type of one dimensional

array (river_depth) in the water resource database. One

dimensional array is an easy-understood data structures.

Most applications frequently use it. Nevertheless, there is

no direct way to store an one dimensional array data type in

the relational data model. We need to translate a one

dimensional array into a table. In relational data models,

each data structure must be mapped into a table by the

database designer. To store the one dimensional array data

type, we need a table called depth with three columns: the

riverdepth, index, and the actual value. The Index column

is required because rows in a relational table have no

implied ordering. These columns of the relational data

model take extra space on the memory.

additional time to copy and transfer.

More space requires

SQL is wordy, for

more complex data types, is difficult to write and modify,

hard to understand and maintain. Many frequently used data

structures, e.g., matrixs, sets, link lists, and trees

cannot be directly represented as tables. The relational

model does not directly support these complex data

structure. They need many expensive access translations.

48

Name date spec ph hard disch temp depth trap

ILLI055 02/07/1986 120 7 98 180 5 A1 r1

ILLI055 04/21/1986 220 8 109 472 26 A2 r2

.
water (name, date, spec, ph, hard, disch, temp, depth, trap)

riverdepth index value trap point X y

A1 0 3 r1 11 0 0
A1 1 4 r1 lr 3 0
A1 2 0 r1 ul 0 5
A1 3 1 r1 ur 3 5
A1 4 3 r2 11 1 1
A1 5 2 r2 lr 5 1
A1 6 5 r2 ul 2 4
A1 7 9 r2 ur 5 4
A2 0 1
A2 1 8 ..

Depth(riverdepth,index,value) Trap (trap, point, x, y)

Figure 10, Water Resource Database Stored
in Relational Tables

Class River

obj 3 ~--------------------------------------~
obj 2 r-~1----------------------------------~

obj 1r-~~----------~~------------------~--~ ST Name ph spec temp disch

I ILLINOIS- I ~ ~ ~ EJ
date hard trap

02/07/1986 lc:J 0 0
3 0
0 5
3 5

Depth
[31 41 o, 1, 3, 2, 5, 9, 1]

Figure 11. Water Resource database stored
in· object-Oriented Database

Figure10 and Figure 11 illustrate the differences

between tables and objects, using the example of water

resource data stored in a relational data model and an

49

object-oriented data model. In a relational data model, the

three base tables T1, T2, and T3 are indexed on the primary

key, then all the tuples can be directly accessed using the

primary key. For each manipulating operations, the time

complexity in a B-tree is (logmT1 + logmT2 + logmT3), where

m is the order of a B-tree and Ti indicate the numbers of

tuples stored in the table Ti. In object-oriented data

model, table are indexed on the primary key, then all the

objects can be directly accessed using the primary key. The

time complexity in a B-tree is logmC1, where m is the order

50

of a B-tree and Cl indicate the number of objects stored in

the Class Cl. With a simple example, notice how an object

can contain other objects to any level of nesting, thus

providing flexibility in defining new object types. As

illustrated in tpe example, objects make writing

applications easier, because all of the data for an entity

are located in one place. In an object-oriented database,

the programmers do not need to search through multiple files

by pointers to determine where the river's depth is stored.

A relational data model has only a limited set of

built-in data types (e.g., integer, string, date), and a

limited set of built-in operations on these data types

(e.g., select, project, retrieve, and store). The object

oriented data model provides richer data types and

operations for defining and managing the complex software.

A relational data model designer can connect basic data

types linearly to create complex data types, like as

joining fields into records, for example,

Trap Pl P2 P3 P4

p4

Riverbed

Figure 12. Complex Data Type Riverbed

51

However, we can not add new operations for the new complex

data type, the operations on it are limited to those defined

for the basic data types. For example, riverbed is

represented by four points pl, p2, p3, and p4, marking the

lower-left, lower-right, upper-left, and upper-right corners

of the Riverbed, respectively. In an object-oriented data

model, we can create a method area(), applied to a

particular Riverbed which computes the area of the

trapezoid. In a relational data model, it cannot provide an

operation to computer the area. The definition of the data

type Riverbed demonstrates how user-defined data types can

be provided like in built-in data types. Moreover, each

object in an object-oriented data model is a member of a

class, which determines the object's structure and defines

what operations can be performed on it. New classes are

created from existing classes through the technique of

subclassing and overriding of inherited properties and

methods. This results in complex data types and operations,

which may then be treated as if, they are the built-in types.

Object inheritance increases extendibility and

reusability and saves the cost of maintenance. Classes

provide not only modularity and information hiding but also

reusability enhanced by inheritance and polymorphism. A

relational data model designer can reuse code by copying or

editing. An object-oriented data model designer can

accomplish this automatically by creating a subclass and

overriding some of its properties and methods.

52

Subclasses can duplicate or inherit the properties and

methods of existing classes. The subclass inherits common

properties and methods from individual classes and permits

programmers to be factored into ever more refined modules.

As shown in figure 15, the class lake can be created as a

subclass of the class water to further describe lake which

are responsible for a group. Class lake inherits all the

properties and methods from its parent class, water, without

duplicating its code. Differences between water and lake

are expressed in the lake's methods and data. New lake data

structure like lake center and lake circum are declared. - -
Class lake inherits the methods such as Test() and Testl()

from its parent class water. Thus, a lake is like a water,

with some differences. As this example illustrates, a

programmer is not required to build from scratch.

Class water
{

}

II properties
char *name;
char *date;
float spec;
float ph;
float hard;
float temp;
int depth[lO];
riverbed trap;

II methods :
int Test(float ph, float hard);
int Testl(float temp, float hard);

Figure 13. Class Water.

II Class river inherits the properties date, ph, hard, and
II t~mp, and the method Test(), Testl() from class water
class river : water
{
II New properties discharge are declared

float
river

disch;
*next;

53

II Class river inherits methods test() and testl() from its
II parent water
II New river methods like insert(), delete(), update() and
II select() are added.

}

void
void
void
void

insert();
delete();
update();
select();

Figure 14. Class River.

class lake : water II Class Lake inherits from class Water
{
II Inherits all the data structures from its parent class II
water. Without duplicating its code.
II new property depth are declared.

int lake center;
int lake-circum;

II Class lake inherits methods test() and testl() from its
II parent class water.

int test2(int depth, char *date);
}

Figure 15. Class Lake.

Traditional relational data models are closed systems

to which the programmer is not permitted to make any

\

'

54

changes. Schema modification or the restructing of a

database will become an issue as upgrades or new versions of

object-oriented data models are required. This has always

been a problem in the relational model when large amounts of

data must be converted to a new format. With an object

oriented data model, the problem could be minimized by

subclassing.

Conclusion

Relational database has strong mathematical foundation.

It is also understandable, data independent, and easy to

manage business-like information. For the scientific and

engineering applications, non-record data types, such as

arrays, link lists, trees, sets, and complex graphics are

need. Then, object-oriented data model can provide complex

computi~g ability 1 over than relational database. The

object-oriented data model can provide richer types and

operations for managing the complex objects.

CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS
FOR FUTURE WORK

The relational database was created to provide a simple

abstraction that allowed the representation of large access

of data using a small set of principles. Similarly, the

object-oriented database was designed to permit creation and

description of complex data structures in a coherent and

uniform way.

For the business application, the relational database

can solve most business data processing problems. However,

for the engineering applications, a traditional relational

database is not appropriate. The major design goals of the

object-oriented database (OODB) are :

First, OODB proposed to support complex data types,

engineering data, in contrast to business data, are more

complex a~g dynamic.

The second goal is to allow new data type, new

applications and new access methods to be included in the

OODB.

The third goal is to increase relational database that

match real-world applications and reduce the normalization

problems often appeared in the relational design.

55

56

The fifth goal is to support code reuse, code

maintenance, and modularity.

The-following improvements are suggested for future

work

First, expect some languages to develop their own

native interfaces to object-oriented database.

Second, provide a graphic utility for the designer of a

database using the class types and relationships of object-

oriented data model.

Third, choose extended relational database or object-

oriented database to solve the complex computing needs in
\

the future.

Fourth, make as few changes to the>relational model as

possible. Many users in the business data processing world

will become familiar with relational concepts and this

framework be preserved if possible.

Fifth, extend the query language to allow more

operations to be specified declarative would allow better

optimization and use of indexes. Making use of instance

variable typing in complied methods to allow earlier binding

may reduce execution time.

In this thesis, we report our design and experiment of

an object-qriented database for water resource management.

From this database, we found that the object-oriented

paradigm provides better representations of objects, and

better reusability and extendibility of software than a

relational database. The major disadvantages of our object-

oriented database are expenses of the start-up costs and

slower speed than the relational database.

57

BIBLIOGRAPHY

Agrawal, R. (May 1987), "Object Database and Environment:

The Language and the Data Model," Communications of

ACM, pp. 26-48.

Andrews, T. and Harris, C. (October 1987), "Combining

Language and Database Advances in an Object-oriented

Development Environment," OOPSLA '87 Proceedings, pp.

430-440.

Banerjee, J. and Kim, w. (May 1987), "Semantics and

Implementation of Schema Evolution in Object-oriented

Database," Communications of ACM, pp. 311-322.

Baroody, A. J. and Dewitt, D. J. (December 1981), "An

Object-Oriented Approach to Database System

Implementation," ACM Transactions on Database Systems,

Vol. 6, No. 4, pp. 576- 601.

Bernstein, P. A. (March 1987), "Database System Support for

Software Engineering- An Extended Abstract," Proc. 9th

International Conf. on Software Engineering, pp. 166-

178.

Bloom, T. and Zdonik, S. B. (October 1987), "Issues in the

Design of Object-Oriented Database Programming

Languages," OOPSLA '87 Proceedings, pp. 441-451.

Booch, G. (March/April 1987), "Object-Oriented Design," Ada

Letters, Vol.1, No, 3.

58

59

Cargill, T. A. {September 1986), "A Case study in Object

Oriented Programming," OOPSLA '86 Proceedings, pp. 350-

360.

Chen, P. (March 1976), "The Entity-Relationship Model

Toward a Unified View of Date," ACM Transactions of

Database Systems, Vol. 1, No. 1, pp. 9-36.

Chennho, K. {November 1990), "Object Subclass Hierarchy in

SQL : A Simple Approach," Communications of the ACM,

pp. 99- 108.

Danforth, s. and Tomlinson, c. {March,1988), "Type theories

and Object-Oriented Programming," ACM Computing

Surveys, Vol. 20, No. 1, pp. 29-71.

Date, C. J. {1990), "An Introduction to Database Systems,"

Addison-Wesley, Reading, Mass.

Dawson, J. {September 1989), "A Family of Models," Byte, pp.

277-286.

Duhl, J. and Damon, c. (September 1989), "A Performance

Comparison of Object and Relational Databases Using the

Sun Benchmark," OOPSLA '88 Proceedings, pp. 153-163.

Fishman, D. H. and Beech, H. P. (January 1987), "Iris: An

Object-oriented Database Management System," ACM

Transactions on Office Information Systems, Vol. 5, No.

1 1 PP o 4 8-6 9 o

Garza, J. F. and Kim, W. (March 1988), "Transaction

Management in an Object-Oriented Database System," ACM

Transactions on Office Information Systems, pp. 37-35.

Goldberg, A. (1983), Smalltalk-80: The Language and Its

Implementation. Reading, Mass.: Addison-Wesley.

60

Hornick, M. F. and Zdonik, s. B. (January 1987), "A Shared,

Segmented Memory System for an Object-Oriented

Database," ACM Transactions on Office'Information

Systems. Vol. 5, No. 1,· pp. 70-95.

Jacob, s. (March 1988), "Object-oriented Programming and

Databases," Dr. Dobb's Journal, pp. 18-34.

Kemper, A. (May 1987), "An Object-Oriented Database System

for Engineering Applications," Communications of ACM,

pp. 299-310.

Kim, W. and Ballou, N. (September 1988), "Integrating an

Object-Oriented Programming System with a Database

System," OOPSLA '88 Proceedings, pp. 142-152.

Kim, W. (1989), "Object-Oriented Concepts, Databases, and

Applications," Reading, MA: Addison-Wesley.

Liu, L. c. and Horowitz, E. (January 1988), "Object Database

Support for a Software Project Management Environment,"

Communications of ACM, pp. 85-96.

Maier, D. and Stein, J. (1986), "Development of an Object

Oriented DBMS," OOPSLA '86 Proceedings. pp. 472-482.

Meyer, B. (February 1987), "Eiffel: Programming for

reusability and extendibility," SIGPLAN, Notices, Vol

22, No 2, pp. 85-94.

Mayer, B. {1988), "Object-oriented Software Construction,"

Englewood Cliffs, N.J.:Prentice Hall.

Penney, D. J. and stein, J. (October 1987), "Class

Modification in the GemStone Object-Oriented DBMS,"

61

OOPSLA '87 Proceedings, pp. 111-117.

Rentsch, T. (September 1982), "Object-Oriented Programming,"

SIGPLAN Notice, pp. 51-57.

Rubenstein, M.s. and Kubicar, R. G. (May 1987),

"Benchmarking Simple Database Operations,"

Communications of ACM, pp. 387-394.

Sauid, A. (1988), "Object-oriented Database Programming,"

Springer-Verlag.

Sally, S. and Meller, S. J. (1988), "Object-Oriented Systems

Analysis," Englewood Cliffs, N.J.:Prentice Hall.

Shriver, B. and Wengner, P. (1988), "Research Directions in

Object-Oriented Programming,"' The MIT Press.

Willian, J. (November 1990), "An Object-Oriented Relational

Database," Communication of the ACM, pp. 99-108.

Woelk, D. and Kim, w. (January 1986), "An Object-oriented

Approach to Multimedia Databases," Communications of

ACM, pp. 311-325.

Wu. C. T. (March/April 1990), "Benefits of Object-oriented

Programming in Implementing Visual Database Interface,"

Journal of Object-Oriented Progr~mming, pp. 8-16.

Zdonik, s. (1990), "Readings in Object-Oriented Database

Systems," San Mateo, CA : Morgan Kaufmann.

APPENDIXES

62

APPENDIX A

GLOSSARY

63

64

The terminology below must be defined prior to

discussing the concepts of object-oriented programming

(Rentsch, 82) .

Abstract Data Types

C++

A set of data structures or data types is defined in

terms of the structure's properties and the operations

executed on these structures. In object-oriented

programming, object types are similar to abstract data

types.

An object-oriented superset of the c language written

by Bjarne Stroustrup at AT&T's Laboratories. The term

C++, means "better than C."

Class --

The description of a set of nearly identical objects

that share common methods and general characteristics.

IS-A hierarchy --

The IS-A hierarchy where a class has a subclass

associated with it. The subclass inherits all of the

instance variables and methods associated with its

superclass.

IS-PART-OF hierarchy

The IS-PART-OF hierarchy where an object of a class is

considered to be the aggregation of a set of objects,

each of which belongs to some class.

Method --

The function or procedure that implements the response

when a message is sent to an object. Methods determine

how an object will respond to a message that it

receives.

Modularity --

65

Program construction in modules, blocks or units that

are combined to build complete programs. Ideally, the

redesign or reimplementation of a unit or module can be

accomplished without affecting the operation of the

rest of the program or system.

Multiple inheritance --

The ability of subclasses to inherit instance variables

and methods from more than one class. It is useful in

building composite behavior from more than one branch

of a class hierarchy.

Object --

The original element in object-oriented programming is

an object. Objects are entities that encapsulate

within themselves both the data describing the object

and the instructions for operating on that data.

Object identity

Properties of an object that remains invariant across

all possible modifications of its state. Can be used

to point to the object.

Object-oriented database --

A database that allows data to be stored as objects.

Polymorphism --

The property of sharing a single action (and action

name) by an object hierarchy, but with each object in

the hierarchy implementing the action.

APPENDIX B

SAMPLE QUERY FROM THE COMPUTER PROGRAM

66

The select statement -- The search is carried out by the

SELECT statement. Aggregate functions are also supported.

Some examples of basic queries on object-oriented database

whose schema are given below:

Ql Get stat_name, data and PH with PH= 7.

select name, date, ph
from p
where ph= 7;

Q2 Select river_bed[l], river_bed[3] for all objects.

select array[l], array[3]
from p
where temp = 50

67

Q3 Calculate the area, diagonal and circumference for each
trapezium where discharge = 400.

select area(trap), diag(trap), circ(trap)
from p
where disch = 400

The insert statement -- The insertion adds new objects to a

class, p.

Q4 : insert
into p (name, date, ph, hard, depth[4]);
values ("ILLION55 11 , "08/06/1980 11 , 11 6.89 11 , 11 2.7 11 , 11 3 11);

The delete statement deletes qualified objects from a class.

The objects are specified by a search condition.

Q5 : delete
from p
where depth[4] = 5;

The modify statement updates objects values in existing

class. The updating of a class can executed by providing

the values to be updated or by using an expression to build

these values.

Q6 : modify p
set ph = ph * 1.1,
disch = 400,
depth = II 4 1 3 1 2 1 6 1 7 1 8 1 0 1 4 II ;

where disch = 400;

68

APPENDIX C

PROGRAM LISTING

69

70

/***/
I* *I
/* Object-oriented Database Program */
I* *I
/***/
I* *I
/* Author HuiChen Nee */
/* Date December, 1990 */
/* Class COMSC 5000 - Thesis */
/* Adviser Dr. G. E. Hedrick */
I* */
I*** I
/* *I
/* This program is for modeling an object-oriented data */
/* model. The object-oriented data model is written */
/* using an object-oriented programming language (Turbo */
/* C++). The data model is defined, manipulated, */
/* queried based on C++ and support data encapsulation */
/* and inheritance. */
/* *I
/* The data manipulating language provides the four */
/* fundamental operations of insert, delete, select, and*/
/* update. A query utility allows the user to extract */
/* data from the database by specifying a class name, a */
/* list of data elements to extract from the class, and */
/* a set of select criteria. */
I* *I
/***/

II for printf, file ilo, etc
I I for strcpy ()
I I for itoa ()
I I for getch()

71

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <ctype.h>
#include <math.h>

II for isalpha() and isalnum()
I I for sqrt ()

FILE *in;
class region;
class water;
class river;

class region
{ II properties
friend class river;
public:

char
void
int
char*
int
int
int

rect[12];
basic(char rect[15]);
a2i(char *str);
md(char *ds, char *ss, int
diagonal(char rect[15]);
area(char rect[15]);
circum(char rect[15]);

} ;
int X, Y;

void region::basic(char rect[15])
{

}

char rx [3] , ry [3] , lx [3] , ly [3] ;

md (lx, rect, 1, 2) ;
md (ly, rect, 3, 2) ;
md(rx,rect,5,2);
md(ry,rect,7,2);
X = a2i(rx) - a2i(lx);
Y = a2i(ry) - a2i(ly);

int region::diagonal(char rect[15])
{

}

int diag;

basic(rect);
diag = sqrt(X*X + Y*Y);

return diag;

int region::area(char rect[15])
{

a, int b) ;

}

int ar;

basic(rect);
ar = X * Y;

return ar;

char* region::md(char *ds, char *ss, int a, int b)
{

int k, n;

n = strlen(ss);

72

if ((0< a && a<= n) && (O<b && b <= n) && (a+ b -1 <
{

}

for (k = a; k <a +b; k++)
ds[k-a] = ss[k -1];
dS [b] = I\ 0 I i

}
else

dS [0] = I \0 I i
return ds;

int region::a2i(char *str)
{

}

int s, flag3;

if (*str == 1 - 1) {

flag3 = (-1);
str++;

}
e 1 s e if (* s t r -- 1 + 1) {

flag3 = 1;
str++;

}
else

flag3 = 1;
s = O;
while (1 0 1 <= *str && *str <= 1 9 1) {

s = 10 * s + (*str) - 1 0 1 ;

str++;
}

return (s * flag3);

int region::circum(char rect[15])
{

int re;

basic(rect);
re = 2 * (X + Y) ;

return re;
}

II Class water is the base class of class river.
class water
{
public:

char name[10];
char ph[10];
char hard[10];
char date[15];
char temp[10];
char spec[10];
char array[10];
region *place;

II methods of class water

II
II
II
II
II
II
II
II
II

properties of class
station name
PH (standard units)
hardness
date
temperature
specific conductance
one dimension array
class region

char* md(char *ds, char *ss, int a, int b);
char* gap(char d1, char d2[], char d3[]);
char gap1(char d1, char d2, char d3);
char* f2a(char *str, float c);
char* i2a(char *str, long int a);
int a2i(char *str);
char* d2s(char dat[15]);
double a2f(char es[10]);
void test1(char ph[10]); II test the PH standard

} ;

char* water::md(char *ds, char *ss, int a, int b)
{

}

int k, n;
n = strlen(ss);
if ((0< a && a<= n) && (O<b && b <= n) && (a+ b -1
{

for (k = a; k <a +b; k++)
ds[k-a] = ss[k -1];
ds[b] = 1 \0 1 ;

}
else

dS [0] = I \0 I i
return ds;

char* water::gap(char d1, char d2[], char d3[])
{

char result[15];
double result1;
long int result2;

switch(d1) {
case 1 + 1 : result1 = a2f(d2) + a2f(d3);

result2 =result1;
if (result2 == result1)

73

}

i2a(result,result2);
else f2a(result,resultl);
return(result);

case '-' : resultl = a2f(d2) - a2f(d3);
result2 = resultl;
if (result2 == resultl)

i2a(result,result2);
else f2a(result,resultl);
return(result);

case'*' : resultl = a2f(d2) * a2f(d3);
result2 = resultl;
if (result2 == resultl)

i2a(result,result2);
else f2a(result,resultl);
return(result);

case 'I' : resultl = a2f(d2) I a2f(d3);
result2 = resultl;
if (result2 == resultl)

i2a(result,result2);
else f2a(result,resultl);
return(result);

default: puts("You have a wrong update format\n");
break;

}

char water::gapl(char dl, char d2, char d3)
{

char result;
int resultl;

switch(dl) {
case '+' resultl = (d2 - 'O') + (d3 - 'O');

result= resultl + 'O';
return result;

case '-' : resultl = (d2 - 'O') - (d3 - 'O');
result= resultl + '0';
return result;

case '*' : resultl = (d2 - 'O') * (d3 - '0');
result= resultl + 'O';
return result;

case 'I' : resultl = (d2 - 'O') I (d3 - 'O');
result= resultl + 'O';
return result;

74

default : puts("You have a wrong update format\n");
break;

}
}

char* water::d2s(char dat[15])
{

char result[15], result1[5], result2[5J;

}

md(result, dat, 7, 4);
md(result1, dat, 4, 2);
md(result2, dat, 1, 2);
strcat(result, result2);
strcat(result, result1);
return (result);

char* water::f2a(char *str, float c)
{

}

long int r1;
float r;
int q, flag, count, i, b;

count =
if (c

*(str++) =
count++;
c =(-c);

}

0;
<0){
I- I •

'

flag = 0;
b = c;
for (i = 10000; i>= 1; i= i/10) {

q = bji;
b = b % i;

if (q !=o II flag != o> <
*(str++) = q + 'O';
count++;

}
flag = 1;

}
if (count== 0){

*(str++) 'O';
count++;

}
*str++ = '.';
count++;
b = c;
r = 100000 *c - 100000 * b;
r1 = r;
for (i = 10000; i>= 1; i = i/10) {

q = r1ji;
r1 = r1 %i;

if((q==O&&r1--0) II count>7){

}

*str = '\O';
return str;

*(str++) = q+ 'O';
count++;

}
*str = '\O';
return str;

75

char* water::i2a(char *str, long int a)
{

}

long i;
int q, flag;

flag = O;
if (a < 0) {

*(str++) =
a= (-a);

}

I- I •

'

for (i = 100000; i>=1; i= i/10) {
q = (int) (aji) ;
a = a % i;
if c q ! = o 1 1 flag ! = o > {

*(str++) = q + 1 0 1 ;

flag = 1;
}

}
*str = 1 \0 1 ;

return str;

int water::a2i(char *str)
{

}

int s, flag3;

if (*str == 1 - 1) {

flag3 = (-1);
str++;

}
else if(*str -- 1 + 1) {

flag3 = 1;
str++;

}
else

flag3 = 1;
s = 0;

while (1 0 1 <= *str && *str <= 1 9 1) {

s = 10 * s + (*str) - 1 0 1 ;

str++;
}
return (s * flag3);

double water::a2f(char es[10])
{

float val, power;
int i, sign;

for (i = o; es [i] -- 1 1 II es [i] -- 1 \n 1 I I es [i] -
i++)

sign = 1;

76

}

if (es[i] == '+' I I es[i] == '-')
sign = (es[i++] == '+') ? 1 :-1;

for (val= O; es[i] >= 'O' && es[i] <= '9'; i++)
val = 10 *val+ es[i] - '0';

if (es[i] == '.')
i++;

for (power= 1; es[i] >= 'O' && es[i] <= '9'; i++) {
val= 10 *val+ es[i] - 'O';
power *= 10;

}
return (sign* val /power);

II the method test1() tests the PH value
void water::test1(char ph[10]) .
{

}

int val,ue;

value= a2f(ph) - 7;
if (value > 0)

puts("Alkalinity");
else if (value == 0)

puts("Neutrality");
else if (value < 0)

puts("Acidity");

II This class is derived
II members of the parent
class river:water

from water and inherits all the
class

{
public:

char

} ;

river
void
void
void
void
void
void
void
void
void
void
void
void
void
char*

disch[10]; //
*link; I I
inser(); I I
delet(); I I
modif(); //
selec (); I I
displ(); //
read input(); //
transfer(char word[50]); II
transfer1(char word[50])i//
io(int i); //
init(); 11
read file(); //
write_file(); 11
menu(); 11
mid(char *ds, char *ss~ int

property discharge
point to next river
method insert ()
method delete()
method modify ()
method select()
method display ()
method read_input()
method transfer()
method transfer1()
method inputjoutput()
method initial()
method read file()
method write_file()
method menu ()
a, int b);

char max[20][10], line[80], indata[10][12], tran[10][12];
char input[90], output[90], filenames[15];

77

int clock, clock1;
class river *record, *head, *tail, *potmp1, *tp1, *tp2;

void river::inser()
{

char index[3], ai[10], names[10];
int i, p, u, j ;

potmp1 = new river;
tp2 = NULL;
read_input();

II create a new river
II sets node point to

78

II omitted the list of properties is equivalent to specifing
II list of all properties in the class

if (clock ==1) {
strcpy(indata[2], 1);
strcpy(indata[3], 2) ;
strcpy(indata[4], 3) ;
strcpy(indata[5], 4) ;
strcpy(indata[6], 5) ;
strcpy(indata[7], 6);
strcpy(indata[8], 7) ;
strcpy(indata[9], 8) ;
strcpy(indata[10],"9");
clock = 9;

}
if(strcmp(indata[O], "into") != 0) {

io(11);
return;

}
read file();
for(I = 2; i< clock +1; i++){

if ((j = strcmp(indata[i],"name")) -- 0)
strcpy(indata[i],"1");

if ((j = strcmp(indata[i],"date")) -- 0)
strcpy(indata[i],"2");

if ((j = strcmp(indata[i],"spec")) -- 0)
strcpy(indata[i],"3");

if ((j = strcmp(indata[i],"ph")) == 0)
strcpy(indata[i],"4");

if ((j = strcmp(indata[i],"hard")) == 0)
strcpy(indata[i],"5");

if ((j = strcmp(indata[i],"disch")) == 0)
strcpy(indata[i],"7");

if ((j = strcmp(indata[i],"temp")) =:== 0)
strcpy(indata[i],"8");

if ((j = strcmp(indata[i],"place")) == 0)
strcpy(indata[i],"9");

mid (ai, indata [i] , 1, 5) ;
if (j = (strcmp(ai,"array") -- 0 && strlen(indata[i])
5))

strcpy(indata[i],"6");

79

if (j = (strcmp(ai 1 "array") -- o && strlen(indata[i])
5)) {
indata[i][O] = '6';
indata[i][1] = indata[i][5];
indata[i][2] = '\O';

}
if (j != 0){

io(11);
return;

}
j = 1;

}

gets(input);
transfer(input);
if (strcmp(tran[O] 1 "values") != 0) ,{

io(11);
return;

}
j = 2;
for (i= 2; i< clock+2 ; i++) {

switch(indata[i][O]) {
case '1': record= head;

strcpy(names 1 trari[i-1]);
break;

case '2': strcpy(potmp1->name 1 names);
for (u = strlen(names); u < 8; u++)

strcat(potmp1->name 1 11 ");

while((strcmp(potmp1->name 1 record->name) > 0)
&& (record->link !=NULL)) {
tp2 = record;
record = record->link;

}
while((strcmp(potmp1->name 1 record->name) -- 0)

&& (strcmp(tran[i-1] 1 record->date) >= 0)
&& (record->link !=NULL)) {
tp2 = record;
record = record->link;

}
strcpy(potmp1->date 1 tran[i-1]);
strcpy (potmp1->spec 1 " ") ;

strcpy(potmp1->ph 1 " ");

strcpy(potmp1->hard 1 11 ");

strcpy (potmp1->array 1 " ")';

strcpy(potmp1->disch 1 11 ");

strcpy(potmp1->temp 1 " ");

strcpy(potmp1->rect 1 11 ");

break;
case '3': strcpy(potmp1->spec 1 "");

for (u = strlen(tran[i-1]); u<7; u++)
strcat(potmp1->specl" n);
strcat(potmp1->spec 1 tran[i-1]);

break;
case '4': strcpy(potmp1->ph 1 "");

for (u = strlen(tran[i-1]); u<S; ~++)

strcat(potmp1->ph, 11 11);

strcat(potmp1->ph, tran[i-1]);
break;

case '5': strcpy(potmp1->hard, 1111);

for (u = strlen(tran(i-1]); u <8; u++)
strcat(potmp1->hard, 11 11);

strcat(potmp1->hard, tran(i-1]);
break;

case '6': strcpy(potmp1->array, 1111);

if (indata[i][1] == ''){
for (u = strlen(tran[i -1]);u < 8; u++)

strcat(potmp1->array, 11 11);

strcat(potmp1->array, tran[i-1]);
}
else {

strcpy(potmp1->array, 11 11);

potmp1->array(indata[i][1] - 'O'] = tran(i-1][0];
}
break;

case '7': strcpy(potmpl:->disch, 1111);

for (u =strlen(tran[i-1]); u< 8; u++)
strcat(potmp1->disch, 11 11);

strcat(potmp1->disch, tran(i~i]);
break;

case '8': strcpy(potmp1->temp, 1111);

for(u = strlen(tran[i-1]); u< 8; u++)
strcat(potmp1->temp, 11 11 };

strcat(pr1 tmp1->temp, tran(i-1]);
break;

case '9': strppy(potmp1->rect, 1111);

for(u = strlen(tran[i-1]); u< 8; u++)
strcat(pptmp1->rect, 11 11);

strcat(potmp1->rect, tran[i-1]);
break;

default: io(11);
return;

}
}

80

if (tp2 == NULL) {
entry

//insert at the front first

}

potmp1->link = head;
head = potmp1;

}
else {

potmp1->link = tp2->link;
tp2->link = potmp1;

}
displ();

void river::delet()
{

char m;
char result[20];

char set[10][30], names[20];
int i, flag, z, flag1, u;

i = 0;
do { II read the input

gets(set[i++J);
m = set[i-1][strlen(set[i-1]) -1];

} while (m != ';');

transfer1(set[OJ);
if (strcmp(tran[O],"from") !=

io (17) ;
return;

}
strcpy(indata[1],tran[1]);

0) {

II create a new river

81

read file() ;
record = head;
tp2 = NULL; II sets node point to empty
if (record== NULL){

io (2) ;
return;

}
transfer1(set[1]);
if (strcmp(tran[O],"where") !=

io (18) ;
return;

}
for (i = O; i<9; i++){

if (strcmp(tran[1],max[i]) -- 0)
flag = i;

}
z = 1;
flag1 = o;
while(record != NULL) {

switch(flag) {

0) {

case 0 : strcpy(names, tran[2]);
for (u = strlen(tran[2]}; u < 8; u++)

strcat(names," 11);

while ((record !=NULL)
&& (z = strcmp(record->name, names) != 0)){
tp2 = record;
record= record->link;}

break;
case 1 : while ((record !=NULL)

&& (z = strcmp(record->date, tran[2]) != 0)){
tp2 = record;
record= record->link;}

break;
case 2 : while((record !=NULL)

&& (z = (a2f(record->spec) - a2f(tran[2])) != 0)){
tp2 = record;
record= record->link;}

break;

case 3 : while((record !=NULL)
&& (z = (a2f(record->ph) - a2f(tran[2))) != 0)) {
tp2 = record;
record= record->link;}

break;
case 4 : while((record !=NULL)

&& (z = (a2f(record->hard) - a2f(tran[2])) != 0)) {
tp2 = record;
record= record->link;}

break;
case 5 : if (strlen(tran[2]) == 8) {

while((record !=NULL)
&& (z = strcmp(record->array,tran[2)) != 0)) {
tp2 = record;
record= record->link;}

}
if(strlen(tran[3]) == 1)
while((record !=NULL)

&& (z = ((record->array[tran[2)[0]- 1 0 1]- 1 0')
- (tran [3 J [o J - 1 o 1)) ! = o)) {
tp2 = record;
record = record->link;

}
break;

case 6 : while ((record ! = NULL}
&& (z=(a2f(record->disch) -a2f(tran[2])) !=0}) {
tp2 = record;
record = record->link; }

break;
case 7 : while ((record !=NULL}

&& (z=(a2f(record->temp) - a2f(tran[2])) != 0)) {
tp2 = record;
record= record->link;}

break;
case 8 : while((record !=NULL}

&& (z = strcmp(record->rect, tran[2]) != 0}){
tp2 = record;
record = record->link;}

break;
default io(18};

return;
}
if (tp2 == NULL && z ==

flag1 = 1;
head = record->link;
record = record->link;

}
else if (z == 0) {

tp2->link = record->link;
record = tp2->link;
flag1 = 1;

0){

}
else

io (3) ;

II no record deleted
if (flag1 == 0 && record == NULL)

II delete finished

82

}

else
io(4);

}
displ(); II display the data

void river::read_file()
{

if (strcmp(indata[l], filenames). != 0) {
head = new river;
if ((in = fopen(indata[l] ,."r")) == NULL) {

io (14) ;
exit(O);

} '

}

83

record = head; 11 sets node point to

}

empty
while (fgets(input,85,in) != 0) { II read file

mid(record->name,input,l,B);
mid(record->date,input,9,10);
mid(record->spec,input,19,7);
mid(record->ph,input,26,8);
mid(record->hard,input,34,8);
mid(record->array,input,42,8);
mid(record->disch,input,50,8);
mid(record->temp,input,58,8);
mid(record->rect,input,66,8);
tail = new river;
record->link = tail;
record = tail;
record->link = NULL;

}
strcpy(filenames, indata[l]);

void river::write_file()
{

}

record = head;
while (record->link != NULL) {

strcpy(output,record->name);
strcat(output,record->date);
strcat(output,record->spec);
strcat(output,record->ph);
strcat (output,,record->hard),;
strcat(output,record->array);
strcat(output,record->disch);
strcat(output,record->temp);
strcat(output,record->rectH
fprintf(in,"%s\n",output);
record = record->link;

}

void river::menu()
{

char ans;

do {
io (6) ;
gets(line);
switch(toupper(line[O])) {

}
}

case 1 S 1 selec();
break;

case IDI delet () ;
break;

case I I I inser();
break;

case IMI modif () ;
break;

case IQI break;
default io (5) ;

}
while (toupper(line[O])

void river::read_input()
{

char trl[lO];
char input[50];
int i;

for (i = 0; i < 10; i++)
strcpy(indata[i],"");

clock = O;
gets (input) ;
strcpy(indata[O],"");
clockl = clock;

,_ .- I Q I) i

II select

II delete

II insert

II modify

II quit

for (i = O; i<strlen(input); i++) {
if ((isdigit(input[i])) I I (isalpha(input[i])) I I

(input[i] == 1 • 1) •

84

II (input [i] == 1 + 1) 1 1 (input [i] == 1 - 1) I 1 (input [i] --
(input[i] == 1 1 1)) {

if (clock == clockl) . ,
else {

clock++;
clockl = clock;

}
strcpy(trl,"");
trl[O] = input[i];
trl[l] = 1 \0 1 ;

strcat(indata(clock], trl);
}
else if ((input[i] == 1 1) II (input[i] == 1 (1) II
(input[i] == 1) 1)

II (input [i] -- 1 = 1) I I (input [i] == 1 , 1) I I (input [i] ==
(input [i] == ""))

}

clock1++;
}

void river::transfer(char input[50])
{

char tr2[5J;
int i;

for (i = o ; i < 10; i++)
strcpy(tran[i] 1 1111);

clock = 0;
clock1 = clock;
for (i = o; i<strlen(input); i++) {

if ((isdigit(input[i])) I I (isalpha(input[i])) I I
(input[i] == 1 • 1)

85

II (input [i] == 1 + 1) I I (input [i] == 1 - 1) I I (input [i] -
(input[i] == 1 / 1)) {

if (clock == clock1)
,
else {

clock++;
clock1 = clock;

}
strcpy(tr2,"");
tr2[0] = input[i];
tr2 [1] = I\ 0 I j

strcat(tran[clock], tr2);
}
else if ((input[i] == 1 1) II (input[i] == 1 (1) II
(input[i] == 1) 1)

I I (input [i] -- 1 = 1) I I (input [i] == 1 , 1) I I (input [i]
I j I)

I I (input [i] -- 1 " 1))

clock1++;
}

}

void river::transfer1(char input[50])
{

char tr2[5];
int i;

for (i = o ; i < 10; i++)
strcpy(tran[i],"");

clock = O;
clock1 = clock;
for (i = O; i<strlen(input); i++) {

if ((isdigit(input[i])) I I (isalpha(input[i])) I I
(input[i] == 1 • 1)

II- (input [i J == 1 + 1) I 1 (input [i] == 1 - 1) I I (input [i]
(input (i] == 1 1 1)) {

}

clock++;
clock1 = clock;

}
strcpy(tr2,"");
tr2[0] = input[i];
tr2[1] = '\O';
strcat(tran[clock], tr2);

}
else if ((input[i] == ' ') II (input[i] == 1 (1) II
(input[i] == ') ')

86

II (input [i J == 1 = 1) II (input [i J == 1 , 1) II (input [i] ==
(input[i] == 1111) (input[i] == 1 [1) (input[i] ==

clock1++;
}

II method modify()
void river::modif()
{

char result[20];
char set[10][30], updt[10][10][15]; tran[10][20], tr1[4],
names[20];
int y, clock, i, p, flag, k, a, j, flag1, u, x,xx, clock1;
double a2f(), z;

strcpy(indata[1],"");
for (i = 7; i <strlen(line); i++){

tr1[0] = line[i];
tr1 [1] = I\ 0 I j

strcat(indata[1],tr1);
}
read_file();
i = O;
do {

mid(result, gets(set[i++]), 1,
y = strcmp(result, "where");

} while (y != O);

for (k = O; k < 10; k++)
strcpy(tran[k],"");

clock = O;
strcpy(tran[OJ,"");
clock1 = clock;

II read the input from screen
5) ;

for (k = O; k<strlen(set[i-1]); k++){
if ((isdigit(set[i-1][k])) I I (isalpha(set[i-l][k]))
I I (set [i -1] [k] -- 1 • ') I 1 (set [i -1] [k] -- 1 + 1) I I
1] [k] == I - I)

II (set(i-l][k]=='* 1) II (set[i-1][k]== 11')) {
if (clock == clock1)

else {
clock++;
clock1 = clock;

}
strcpy(tr1,"");

tr1[0] = set[i-1][k];
tr1 [1] = I \0 I i
strcat(tran[clock], tr1);

}

87

else if ((set[i-1][k] == 1 ') I I (set[i-1][k] == '(')
II (set[i-1] [k] == ') ') II (set[i-1] [k] -- '=')II (set[i-1] [k]

I I I)

ll<set[i-1][k] == ';') ll<set[i-1][k] =='[')II (set[i-1][k]
I] I))

clock1++;
}
if (strcmp(tran[O],"where 11) != 0) {

io(17);
return;

}

for (p = 0; p<9; p++){
if (strcmp(tran[1],max[p]) -- 0)

flag = p;
}

for(i = O; i<10; i++)
for (j = O; j<10; j++)

strcpy (updt [i] [j] , 1111) ;

record = head;
if (record== NULL){

io (2) ;
return;

}
z = 1;
while(record != NULL) {
switch(flag) {
case 0 : strcpy(names, tran[2]);

for (u = strlen(tran[2]); u < 8; u++)
strcat(names, 11 11);

while ((record !=NULL)
&& (z = strcmp(record->name, names) 1 - 0)){
record= record->link;}

break;
case 1 : while ((record !=NULL)

&& (z = strcmp(record->date, tran[2]) != 0)){
record= record->link;}

break;
case 2 : while ((record !=NULL)

&& (z = (water::a2f(record->spec)
- water: :a2f(tran[2])) != 0)) {
record= record->link;}

break;
case 3 : while ((record !=NULL)

&& (z = (water::a2f(record->ph)
- water::a2f(tran[2])) != 0)){
record= record->link;}

break;
case 4 :while ((record!= NULL)

}

- water::a2f(tran[2])) != 0)){
record = record->link;}

break;
case 5 : if (strlen(tran[3]) != 1)

while ((record !=NULL)

}

&& (z = strcrnp(record->array,tran[2]) != O)){
record = record->link;

if (strlen(tran[3]) == 1)
while ((record !=NULL)

}

&& (z = ((record->array[tran[2][0)- 1 0 1]- 1 0 1)

- (tran[3] [OJ - 1 0 1)) != 0)) {
record = record->link;

break;
case 6 : while ((record !=NULL)

&& (z =(water::a2f(record->disch)
- water::a2f(tran[2])) != 0)){
record = record->link;

break;
case 7 : while ((record !=NULL)

&& (z =(water::a2f(record->ternp)
- water::a2f(tran[2])) != 0)){
record = record->link;

}
break;

case 8 : while ((record !=NULL)
&& (z = strcrnp(record->rect, tran[2]) != 0)){
record= record->link;}

break;
default : io(17);

return;
}

if (z==O){
flag1 = 1;

for (x = O; x< 10; x++)
for (xx = O; xx < 10; xx++)

strcpy(updt[x][xx],"");

for(k = O; k < i-1; k++){
clock = o; ,
clock1 = clock;

88

for (j = O; j < strlen(set[k]); j++){
if((isdigit(set[k][j])) I I (isalpha(set[k][j])) I I (set[k]

== I 0 I)

I* I)
II (set[k] [j] == 1 + 1) II (set[k] [j] == 1 - 1) II (set[k] [j]

I I (set[k][j] == 1 / 1)) {

if (clock == clock1) .
' else {

}

strcpy(tr1,"");
tr1[0] = set[k][j];
tr1 [1] = I\ 0 I i
strcat(updt[k][clock], tr1);

else if((set[k][j] == 1

II (set[k][j] -- 1) 1)

1) II (set[k][j]
II (set[k] [j] --

I f I)

== I (I)
I=') I I

II (set(k][j] -- 1 ; 1)

I J I)) 11 (set[k][j] -- I [I) I I
clock1++;
}

if (k == 0){
if (strcrnp(updt[OJ [OJ, "set") != 0) {

io (17) ;
return;

}
else {

}

for (p = O; p<clock ; p++)
strcpy(updt[OJ(pJ,updt[O][p+1J);

}
}

for (y = 0; y< i-1; y++) {
for (p = 0; p <9; p++) {

if (strcrnp(updt[y][O],rnax[p]) == 0)
switch(p) {

case 0: strcpy(record->narne,updt[y][1J);
for (u =strlen(updt[yJ[1]); u <8; u++)

strcat(record->narne," ");
break;

case 1 : strcpy(record->date, updt[y][1]);
break;

89

(set[k] [j]

(set[k] [j]

case 2 : if(updt[yJ [2J [OJ != '' && (strcrnp(updt[yJ [1J, "spec")
0))

strcpy(updt[yJ[1],
gap(updt[yJ[2J[O], record->spec, updt[yJ[3J));

strcpy(record->spec,"");
for (u = strlen(updt[y][1J); u <7 ; u++)

strcat(record->spec," ");
strcat(record->spec,updt[y][1J);

break;
case 3 : if (updt[yJ [2] [OJ != 11 && (strcrnp(updt[y] [1], "ph")

0))
strcpy(updt[y][1],
gap(updt[y][2][0], record->ph, updt[y][3J));

strcpy(record->ph,"");
for (u = strlen(updt[y][1J); u <8 ; u++)

strcat(record->ph," ");
strcpy(updt[yJ[1],
gap(updt[y][2][0], record->hard, updt[y][3]));

strcpy(record->hard,"");
for (u = strlen(updt[y][1]); u <8 ; u++)

strcat(record->hard 1 11 ");

strcat(record->hard 1 updt[y][1]);
break;

case 5: if (strlen(updt[y][1]) == 8)
strcpy(record->array 1 updt[y][1]);

else if((strlen(updt[y][2])== 1)
&& (strcmp(updt[y][0] 1 "array") ==0))

record->array[updt[y][1J[OJ - 'O'J = updt[y][2J[OJ;
else if ((strlen(updt[y][2])==5)

&& (strcmp(updt[y][2] 1 11 array")==O)) {
updt[y][2][0] = gap1(updt[y][4][0] 1

record->array[updt[y][3][0]-'0'] 1 updt[y][5][0]);
record->array[updt[y][1][0] - 'O'] = updt[y][2][0];

}
break;

90

case 6 : if(updt[y] [2] [OJ != '' && (strcmp(updt[y] [1] 1 "dis
-- 0))

strcpy(updt[y][1] 1

gap(updt[y][2][0] 1 record->disch 1 updt[y][3]));
strcpy (record->disch 1 1111) ;

for (u = strlen(updt[y][1]); u <8 ; u++)
strcat(record->disch 1 11 ");

strcat(record->disch 1 updt[y][1]);
break;

case 7: if (updt[y][2][0] != '' && (strcmp(updt[y][1] 1 "tem
-- 0))

}

strcpy(updt[y][1] 1

gap(updt[y][2][0] 1 record->temp 1 updt[y][3]));
strcpy(record->temp 1 1111);

for (u = strlen(updt[y][1]); u <8 ; u++)
strcat(record->temp 1 11 ");

strcat(record->temp 1 updt[y][1]);
break;

case 8 : strcpy(record->rect 1 1111);

}
}

for (u =strlen(updt[y][1]); u <8; u++)
strcat(record->rect 1 " ");

strcat(record->rect 1 updt[y][1]);
break;

}
}

}
if (record != NULL)

record = record->link;

if (flag1 != 1)

II method initial()
void river::init()
{

}

strcpy(max[O],"name");
strcpy(max[1],"date");
strcpy(max[2],"spec");
strcpy(max[3],"ph");
strcpy(max[4],"hard");
strcpy(max[5],"array");
strcpy(max[6],"disch");
strcpy(max[7],"temp");
strcpy(max[8],"place");
strcpy(max[9],"diag");
strcpy(max[lO],"area");
strcpy(max[11],"circ");

II method select()
void river::selec()
{

char m;
char result[20], value[10];
char set[10][30], tran1[10][20], tr1[4], names[20];
inti, flag, flagl, j, k, sign, flag2, u;
double z;
double a2f();

i = 0;

91

do { II read the input
screen

gets(set[i++]);
m = set[i-l][strlen(set[i-1]) -1];

} while (m ! = ' ; ') ;

transfer1(set[O]);
if (strcmp (tran [0] , "from") '- 0) {

io (17);
return;

}
strcpy(indata[l], tran[1]);
read_file();
if ((strcmp(set[1],"")) != 0) {

transferl(set[1]);
if (strcmp (tran [0] , "where") ! = 0) {

io(19);
return;
}
flag2 = 10;
if (strcmp(tran[3],"and") == 0)

for (i = O; i <9; i++) {

}

if (strcmp(tran[4], max[i]) == 0)
flag2 = i;

for (i = O; i<9; i++){
if (strcmp(tran[l],max[i]) -- 0)

flag = i;

}

record = head;
tp2 = NULL;
if (record== NULL){

io (2) ;
return;

}

while(record != NULL) {
z = 1;
switch(flag) {
case 0: strcpy(names,tran[2]);

II empty file

for (u = strlen(tran[2]); u <8; u++)
strcat(names," ");

while ((record !=NULL)
&& (z = strcmp(record->name,names) 1 - O)){
record= record->link;}

break;
case 1 : while ((record !=NULL)

&& (z = strcmp(record->date, tran[2]) != 0)){
record= record->link;}

break;
case 2 : while ((record !=NULL)

&& (z = (water::a2f(record->spec)
- water::a2f(tran[2])) != 0}){
record= record->link;}

break;
case 3 : while ((record !=NULL)

92

&& (z = (water:;a2f(record->ph) - water::a2f(tran[2]))
0)) {

record= record->link;}
break;

case 4 : while ((record !=NULL}
&& (z = (water::a2f(record->hard)
- water::a2f(tran[2])) != 0)){
record= record->link;}

break;
case 5 : while ((record !=NULL)

&& (z = ((record->array[tran[2][0]-'0 1]- 1 0 1)

- (tran [3] [0 J- 1 o 1)) ! = o)) {
record= record->link;}

break;
case 6 : while ((record !=NULL)

&& (z = (water::a2f(record->disch)
- water::a2f(tran[2])) != 0}}{
record= record->link;}

break;
case 7 : while ((record !=NULL)

&& (z = (water::a2f(record->temp)
- water::a2f(tran[2])) != 0)){
record= record->link;}

break;
case 8 : while ((record !=NULL)

&& (z = strcmp(record->rect, tran[2]) •- 0}) {

}

record= record->link;}
break;

default: io(19);
return;

if (strcmp(tran[3],"and") == 0) {
switch(flag2) {
case 0 : strcpy(names, tran[5]);

for (u = strlen(tran[5]); u < 8; u++)
strcat(names," ");

z = strcmp(record->name, names);
break;

case 1: z = strcmp(record->date, tran[5]);
break;

case 2 : z = (water::a2f(record->spec) -
water::a2f(tran[5]));

break;

93

case 3 : z = (water::a2f(record->ph) - water::a2f(tran
break;

case 4 : z = (water::a2f(record->hard) -
water::a2f(tran[5]));

break;
case 5: z =((record->array[tran[5][0]- 'O'J - 1 0 1) -

(tran [6 J [o J - 1 o 1)) ;
break;

case 6 : z = (water::a2f(record->disch) -
water::a2f(tran[5]));

break;
case 7 : z = (water::a2f(record->temp) -

water::a2f(tran[5]));

}
}

break;
case 8 : z = strcmp(record->rect, tran[5]);

break;
default: io(19);

return;

clock = O;
strcpy(tranl[O],"");
for (i = O; i<strlen(line); i++){

switch(line[i]) {
case 1 1 : clock++;

strcpy(tranl[clock],"");
break;

case 1 1 1 break;
case 1 • 1 break;
case'(' break;
case')' break;
default strcpy(trl, "");

trl[O] = line[i);
trl[l] = 1 \0';
strcat(tranl[clock], trl);
break;

}
}

if (strcmp(tran1[0], "select"} != O} {
io(19};
return;

}

II select *, get full details of all properties
if (strcmp(tran1[1],"*"} == 0} {

strcpy(tran1[1],"name");
strcpy(tran1[2],"date"};
strcpy(tran1[3],"spec"};
strcpy(tran1[4],"ph"};
strcpy(tran1[5J,"hard"};
strcpy(tran1[6],"array"};
strcpy(tran1[7],"disch"};
strcpy(tran1[8],"temp"};
strcpy(tran1[9],"place");
clock = 9;

}

if (z == O} {
for (j = O; j <=clock; j++}{

sign = O;
for (i = o; i< 12; i++) {
if (strcmp(tran1[j],max[i]} == 0}
switch(i} {
case 0 printf("%s ",record->name);

break;
case 1 printf("%10s II ,record->date};

break;
case 2 printf("%s ",record->spec};

break;
case 3 printf ("%s II

1 record->ph} ;
break;

case 4 printf("%s 11 1 record->hard};
break;

case 5 printf("%s II ,record->array};
break;

case 6 printf("%s 11 1 record->disch};
break;

case 7 printf("%s 11 1 record->temp};
break;

case 8 printf ("%s" 1 record->rect} ;
break;

case 9 if (strcmp(tran1[j + 1] 1 "Place"}
j++;
printf(" %d ",diagonal(record->rect));
break;

-- 0}

case 10: if (strcmp(tran1[j + 1] 1 "Place"} -- 0}
j++;
printf(" %d ",area(record->rect}};
break;

case 11: if (strcmp(tran1[j + 1], "Place"} -- 0)
j++;
printf(" %d 11 1 circum(record->rect));

94

95

break;
}

mid(value, tran1[j],1,5);
if (strcmp(value,"array") -- o && (strlen(tran1[j]) >
sign== 0){

mid(value, tran1[j],7,1);
k = value[O] - 'O';
printf(" %c ", record->array[k]);
sign = 1;

}

}
}

}
printf("\n");

if (record != NULL)
record = record->link;

}
}

}

else
displ () ;
printf("\n");

II method inputloutput()
void river::io(int i)
{

switch(i) {
case 1: puts ("NAME I DATE I SPEC I PH
!ARRAY !DISCH !TEMP !PLACE");
break;

case 2: puts(" No data in this file");
break;

case 3: puts("No record deleted");
break;

case 4: puts("Delete finished");
break;

case 5: puts("");
puts(" Not correc~ !! Please Try Again!");
break;

!HARD

case 6: puts("Please enter your choice (Q to quit)!");
break;

case 7: puts("");
puts("Save data file? (Y or N)");
puts("");
break;

case 8: puts("Now saving data file ... ");
puts ("") ;
break;

case 9: puts("Data File do not save!!");
io(13);

break;
case 10: puts("");

puts("***** If you want to continueous please enter <c>

}

96

break;
case 11: puts("You have a wrong insert format");

break;
case 12: puts("Modify finished");

break;
case 13: puts("");

io(21);
puts ("") ;
break;

case 14: puts("Can't open the file");
break;

case 15: puts("");
puts("Sure? (Y or N)");
break;

case 16: puts("No record modified");
break;

case 17: puts("You have a wrong update format");
break;

case 18: puts("You have a wrong delete format");
break;

case 19: puts("Your have a wrong select format");
break;

case 20: strcpy(output,record->name);
strcat(output,record->date);
strcat(output,record->spec);
strcat(output,record->ph);
strcat(output,record->hard);
strcat(output,record->array);
strcat(output,record->disch);
strcat(output,record->temp);
strcat(output,record->rect);
puts(output);
break;

case 21: puts("=======l=========l======l=======l========l
=======1=======1=======1========");
break;

}

II method display()
void river::displ()
{

char test1[2];
int i = O;

record = head;
test1[0] = 'C':
while (testl[O] -- 'C') {

io(21);
io (1) ;
io (21) ;
while ((record->link !=NULL) && (i < 15)) {

io(20);
record = record->link;

}

i++;
}
test1 [o] = 1 1 ;

if (record->link !=NULL){
io(10);
gets(test1);
test1[0] = toupper(test1[0]);
i = 0;

}
}
return;

char* river::mid(char *ds, char *ss, int a, int b)
{

int k, n;

n = strlen(ss);

97

if ((0< a && a<= n) && (O<b && b <= n) && (a+ b -1 <
{

}

for (k = a; k <a +b; k++)
ds[k-a] = ss[k -1];
ds[b] = 1 \0 1 ;

}
else

dS [0] = I \0 I i
return ds;

II Main object oriented data model simulation parogram
II The main program that uses the classes and subclasses of
II hydraulic database system
main()
{

II object declarations
II station s;
river r;
char key1[2];

r. init () ;
r.menu ();
puts("Save data file ? (Y or N) ");
gets(key1);
if (toupper(key1[0]) == 1 Y') {

puts("Now Saving Data File ");
if (freopen ("p", "w", in) == NULL) {

puts("can't write into datafile !! ");
exit (1) ;

}

}
r.write file();
puts("Saving complete !!");
fclose(in);

98

else
puts("Data File not save!!");

}

Hui-Chen Nee

Candidate for the Degree of

Master of Science

Thesis: INTEGRATING AN OBJECT ORIENTED PROGRAMMING
LANGUAGE SYSTEM WITH A DATABASE SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Taipei, Taiwan, R. o. c., May
1, 1963, the daughter of Chinghui Nee and Shunu
Chou.

Education: Graduate from KingMei High School, Taipei,
Taiwan, in May 1982; received Bachelor of
Engineering Degree from Tamkang University in May,
1987; completed the requirements for the Master of
Science degree at Oklahoma State University in
May, 1991.

Professional Experience: Programmer, Department of
Civil Engineering, National Taiwan University,
May, 1987, to May, 1988.

