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CHAPTER I 

INTRODUCTION 

Software quality should be a primary concern in any 

software development effort. The traditional methods of 

assessing the quality of software are program testing and 

software evaluation [DEMI87]. Program testing is an 

important means of achieving an improvement in software 

quality and reliability [LIN89, ADRI82, BEIZ83, MYER79]. 

Testing could be visualized as a process whereby a 

program is executed with the intention of finding the errors 

contained therein [MYER79]. Testing could also be perce1ved 

as 11 the controlled analysis andjor execution of a program 

expressed in some language, done to verify the pre­

determined (pre-specified) presence of some desired program 

property11 [MILL79]. The general goal of program testing is 

11 to affirm the quality of a software system by 

systematically exercising the software under carefully 

controlled circumstances 11 [MILL81). In this context, it is 

1nteresting to note Dijkstra's comment regarding testing as 

reported by Miller [MILL79], 11program testing can only serve 

to identify program bugs, never to eliminate them11 • If it 

were possible to guarantee the correctness of programs, 
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this would serve as the ultimate goal of program testing 

[NTAF84]. 

Adrion, Branstad, and Cherniavsky [ADRI82], cite five 

essential components of a program test: 

1. The program in executable form; 

2. A description of the expected behavior; 

3. A way of observing the program behavior; 

2 

4. A description of the functional domain; and 

5. A method of determining whether the observed behavior 

conforms with the expected behavior. 

Of the five essential components of a program test 

cited i~ [ADRI82], the second component is the most 

difficult one to obtain. Ideally, an oracle (a source which 

for any g1ven input description can provide a complete 

description of the corresponding output behavior) is 

required in order to obtain this component [ANDR86). 

Miller [MILL81) claims that the primary motivating 

force for program testing is the considerable cost involved 

in the process of testing. The veracity of th1s claim is 

evident from the abundance of concurrence from other 

published sources, a few of which are [BEIZ84, ADRI82, 

MCCA76, MILL84, and ONOM87]. 

There seems to be a need for some means of quantifying 

program testing. Such a measure is usually called a metric 

and is generally defined as any number that is used to 

measure an interesting property of something [BEIZ83]. 



In the context of this thesis, the term "metric" 

applies specifically to a measure used for quantifying the 

complexity of programs. The development of such a 

complexity measure or metric would serve to fulfil the need 

for some objective measures of various aspects of software, 

such as software quality [PAIG80]. 

This thesis involves the development of an algorithm 

used to compute such a complexity metric and another that 

serves as an adaptive testing strategy. Both of these 

algorithms rely upon a graph-theoretic, matrix-based 

approach. 

3 



CHAPTER II 

LITERATURE REVIEW 

2.1 Graph Theory Preliminaries 

This section introduces the graph theory preliminaries 

used throughout this thesis. It is essentially a 

compilation of all the graph-theoretic terminology used in 

this document. 

DIGRAPH (DIRECTED GRAPH): A digraph is an ordered pa1r 

(V,E) where V is a finite set of vertices, and E is a 

relation on v. The elements of E are called the edges of 

the digraph. For every pair of vertices u,v V, the set of 

edges E will contain at most one edge (u,v) from u to v, and 

at most one edge (v,u) from v to u. If (u,v) E, we say 

that u precedes v or is an antecedent of v [SKVA86]. 

STRONG COMPONENT: The set of vertices in a digraph D can be 

partitioned into equivalence classes, and by giving each 

equivalence class all the nodes connected to one another, 

the connected subgraphs of a graph, called its components, 

can be constructed [SKVA86]. 

If u is a point in a digraph D then the set of vertices 

that belong to the equivalence class of u is called the 

component (or, alternatively, a strong component) of u, 

which is symbolized by C(u). Since components are 

4 
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equivalence classes, the components defined by two points 

are either the same or have no points in common [ROBISO]. 

STRONGLY CONNECTED GRAPH: A digraph with one strong 

component is called strongly connected. 

LINEAR DEPENDENCE: A set of vectors X1, X2, .•. , Xr (over 

some field F) is said to be linearly independent if for 

scalars c1, c2, ••• , cr in F, the expression 

c1X1 + c2X2 + ... + crXr = o 

holds only if c1 = c2 = ... = cr = o. Otherwise, the set of 

vectors is said to be linearly dependent [DE074]. 

BASIS VECTOR: If every vector in a vector space W can be 

expressed as a linear combination of a given set of vectors, 

this set is said to span the vector space W. The dimension 

of the vector space W is the minimal number of linearly 

independent vectors required to span W. Any set of k 

linearly independent vectors that spans w, a k-dimensional 

vector space, is called a basis for the vector space W 

[DE074]. 

ADJACENCY MATRIX: Two nodes v1, v2 € V in the digraph D = 

(V,E) are adJacent if there exists either of the two edges: 

(v1, v2) or (v2, v1) € E. Given a digraph D, 1ts adjacency 

matrix A(D), is defined by 

A(D) = [aij] i i, j = 1, 2, ... , n, 

{

1, 

where aij = 

o, otherwise 
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INCIDENCE MATRIX: The incidence matrix [DE074] of a digraph 

D, with n nodes, e edges and no self-loops is an n by e 

matrix I[D] = [aijJ, whose rows correspond to the nodes and 

its columns correspond to the edges, such that 

{ 

1, if the jth edge is incident out of the ith node 

aij = -1, if the jth edge is incident into the ith node 

0, if the jth edge is not incident on the ith node 

PATH MATRIX: A path matrix [DE074], is defined for a 

specific pair of nodes in a graph, say x and y, and is 

written as P(x,y). The rows in P(x,y) correspond to the 

different paths between nodes x and y and the columns 

correspond to the edges in a digraph D. That is, the path 

matrix for the nodes x andy is P(x,y) = [PijJ, where 

Pij = , {

1 if jth edge lies in its path 

o, otherwise 

OPEN CHAIN: This term refers to the set of 1's in a 

specific row of the adjacency matrix linked together as 

specified in the complexity measure algorithm (see Chapter 

III). 

LINK OF A CHAIN: This term is used to represent the pairs 

of 1's grouped together as shown in the adjacency matrices 

of the example digraphs for the complexity measure algorithm 

(see Chapter III, Section 3.4). 

~: is the proposed measure of complexity as derived from 

the adjacency matrix according to the proposed algorithm 

(see Chapter III). 
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STATEMENT COVERAGE: Execution of all statements in the 

graph of a program, as a testing strategy [PRAT87]. 

NODE COVERAGE: Encountering all decision node entry points 

in the graph of a program, as a testing strategy [PRAT87]. 

PATH COVERAGE: Traversing all paths of the graph [PRAT87]. 

BRANCH COVERAGE: Encountering all exit branches of each 

decision node in the graph of a program, as a testing 

strategy. The branch coverage criterion has come to be 

regarded as a minimal standard of achievement in structured 

testing and is widely recognized as the basic measure of 

testing thoroughness [PRAT87]. 

BRANCH TESTING: A testing method satisfying the coverage 

criteria that requires that for each decision point each 

possible branch be executed at least once (ADRI82]. 

MUTATION TESTING: Mutation testing involves the application 

of a set of mutation transformations to a user's program. 

Each transformation results in a mutant. A set of test data 

is considered complete if, for each mutant, there is at 

least one test for which the user's program and the mutant 

generate different output (HOWD81b]. 

2.2 Testing Strategies and Their Classification 

The subject of program testing can be approached from 

two angles (HOWD78]: theoretical and empirical. 

The theoretical approach calls for the characterization 

of situations where it is poss1ble to use testing to prove 
/ 

formally the correctness of programs. This approach relies 
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upon the application of graph theoretic and algebraic 

methods. Gourlay [GOUR83] provides a mathematical framework 

for investigation of testing. 

The empirical approach relies upon collection of 

statistics regarding the frequency with which different 

testing strategies reveal the errors existing in a 

collection of programs [HOWD78]. Several testing strategies 

such as path testing, branch testing, structured testing, 

special values testing and symbolic testing fall under this 

category [HOWD78]. 

Although each of these approaches, theoret1cal and 

empirical, have their respective advantages and 

disadvantages, Howden [HOWD78] contends that the greatest 

practical benefits could accrue from the continuance of 

empirical studies rather than theoretical studies. 

According to Adrion, Branstad, and Chern1avsky 

[ADRI82], a program is to be viewed as a representation of a 

function. This function is considered as being capable of 

describing the relationship of an input element called a 

"domain element" to an output element called a "range 

element". The testing process is then used to ensure that a 

program faithfully realizes the function that it was 

originally intended to perform. They go on to say that 

program test methods can be classified into two broad 

categories, dynamic and static analysis techniques. This 

form of classification finds concurrence in many other 



published sources [MILL84, DEMI87, ANDR86, HOWD81b, ONOM87, 

and others]. In the case of dynamic analysis, the program 

is run with some test instances and the results of the 

program's performance obtained thereby are used to check 

whether its actual behavior conforms with the expected 

behavior. Static analysis, on the other hand, typically 

involves some form of conceptual execution. Static analysis 

does not usually involve actual program execution. 

9 

There are a host of other methods of classifying 

testing strategies. It would be relevant to mention some of 

the other prominent methods: black-box and white-box testing 

[DEMI87, CHOW85, NTAF84, ONOM87], error-drlven strateg1es 

[DEMI87, NTAF84, DEMI78, GOOD75, LIN89], top-down testing 

and bottom-up testing [DEMI87], and symbolic testing 

[DEMI87, MILL77, MILL81, KING76, MILL84, ADRI82] • Another 

interesting testing strategy is that of domain testing 

[ONOM87, WHIT80, WEYU80]. 

The work done by Ntafos [NTAF88], and Basili and Selby 

[BASI87] offers an interesting insight into the methodology 

of comparing several testing strategies. The end results of 

their work is useful in making a comparison among different 

testing strategies. Ntafos [NTAF88] compares a host of 

structural test1ng strategies in terms of the1r relative 

coverage of a program's structure and also in terms of the 

number of test cases needed to satisfy each strategy. He 

also points out the attendant shortcomings of such 

comparisons. Also, a study comprising the application of 
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state-of-the-practice software testing techniques such as 

code reading by stepwise abstraction, functional testing 

using equivalence partitioning and boundary value analysis, 

and structural testing using 100 percent statement coverage 

criteria can be found in [BASI87]. 

According to Prather and Myers [PRAT87], the theory of 

program testing diverges into two separate streams: 

functional testing [WEYU80, HOWD81b, ANDR86, MILL81, CHOW85) 

and structural testing [PRAT87, FURU87, LIN89, WOOD80, 

HOWD81c, HOWD76, HOWD81b, HUAN75]. 

Prather and Myers [PRAT87) point out the highlights of 

the functional and structural testing strategies. Functional 

testing involves the use of a program's specification in 

designing an "adequate test". Structural testing, on the 

other hand, requires a careful study of the problem at hand, 

based upon which an attempt is made to partition the 

problem. In the latter case, an attempt is made to use the 

program flow graph in designing an "adequate" test. The 

concept of an "adequate test" appeared first in an article 

by Goodenough and Gerhart [GOOD75]. 

From Adrian et al. [ADRI82], a complete verification of 

a program, at any stage in the software life cycle, can be 

obtained only by test1ng the program with every element in 

the domain. A program is said to have been verified, if and 

only if each test instance is successful. In the event that 

the program should fail for even a solitary test instance, 

an error is said to have been found. Such a method of 
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testing is called "exhaustive testing". Exhaustive testing 

is the only dynamic analysis technique that will guarantee 

the validity of a program. However, this technique 

obviously is not practically feasible [ADRI82]. The failure 

of this technique on the grounds of practical feasibility 

could be attributed to the size of the functional domains, 

which are infinite more often than not. 

In the event that the functional domain of a program 

is finite, it can still be large enough to cause the number 

of test instances required to be prohibitively large. 

Therefore, it is necessary to find a way of reducing this 

potentially infinite exhaustive testing process to a 

practically feasible one. This can be accomplished by 

finding a "criterion" for choosing a number of 

representative elements from the functional domain. This 

concept of "criteria" (or more specifically "testing 

criteria") is discussed in greater detail in Section 2.3. 

At this point it would be sufficient to say that many 

criteria have been suggested to date. These criteria may 

act to portray the functional description or the structure 

of a program. 

As pointed out by Adrian et al. [ADRI82], an 

important part of the testing problem is to find an 

"adequate test set". The testing process involves the 

choice of a subset of elements called a "test set". The 

test set that is chosen should be large enough to span the 

domain and yet small enough to ensure that the testing 
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process itself can be carried out for each element in the 

test set. such a test set is said to be an "adequate test 

set" [ADRI82] . 

The first formal treatment for determining when a 

criterion for test set collection is adequate, appeared in 

[GOOD75]. Goodenough and Gerhart [GOOD75] define a 

criterion "C" which is said to be reliable if the test sets 

T1 and T2 chosen by "C" are such that all test instances of 

T1 are successful exactly when all test instances of T2 are 

successful. The criterion "C" is said to be "valid" if it 

can produce test sets that uncover all errors. These 

definitions lead to the fundamental theorem of testing which 

states [ADRI82]: 

If there exists a consistent, reliable, 
valid, and complete criterion for test set 
selection for a program P and if a test set 
satisfying the criterion is such that all 
test instances succeed, then the program P is 
correct. 

Since the objective of this thesis is to develop an 

adaptive, graph-theoretic, and matrix-based testing 

strategy, it would be relevant to identify the class of 

testing strategies to which it belongs. Clearly, such a 

strategy would fall into the broad category of structural 

testing because of its reliance on the flowgraphs of 

programs. Consequently, it is appropriate that the emphasis 

of this discussion from this point onwards, should lie in 

the field of structural testing. 



The structural testing methodology in turn, can be 

divided into three distinct phases [PRAT87]: 

1. program graph construction, 

2. test path selection, and 

3. test case selection. 

13 

These three phases of structural testing are dealt with 

independently in the following subsections. This discussion 

is followed by separate sections on adaptive testing 

strategies, complexity measures (metrics), and automated 

testing tools. 

2.3 Structural Testing Considerations 

The structural testing methodology can be divided into 

three phases [PRAT87] as shown in Section 2.2. The 

following three subsections deal with these phases. 

2.3.1 Program Graph Construction 

A graph is a collection of nodes and pairs of nodes 

called arcs [H084]. The nodes are used to represent the 

elements of a structure while the arcs are used to represent 

their interrelationships. 

The program graph construction phase involves the 

"annotation" of the source code listing to derive the 

underlying flowgraph as a collection of vertices and edges 

[PRAT87]. 

According to Miller [MILL79], the theory of testing 

relies largely upon two forms of graph-theory-based 
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modelling of program properties. They are known as control 

flow analysis and data flow analysis. The application of 

graph-theory in the field of program testing is widespread 

[HOWD81b]. The adoption of the graph-theoretic approach 

permits us to analyze programs and infer data about suitable 

test forms directly from the control andjor data structure 

of the program [MILL81]. The control flow and data flow in 

a program can be modelled using graph theory techniques 

[HOWD81b]. 

In program testing, the graph-theoretic model used 

assigns arcs in a directed graph (digraph) to actions or 

segments in the program, and nodes in the digraph to 

represent locations in a program. Such a model is obviously 

well suited to program testing because the control structure 

of a program in any language with a deterministic decisional 

structure can be represented as a finite, possibly 

disconnected, directed graph with a single entry node and a 

single exit node [MILL79]. Such representations make use of 

the assumption that a program is constructed purely with the 

standard structured programming conventions, i.e., 

succession, alteration, and iteration [MILL79]. 

There are numerous published sources elucidating the 

application of graph-theoretic principles to program 

testing, an excellent example is [H084] which discusses 

several classes of models and techniques such as directed 

graph models of sequential programs, analysis of program 

structure, and computing network models of reliability. 
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2.3.2 Test Path Selection 

Test path selection, the second phase of the structural 

testing methodology, involves choosing a finite set {Pi} of 

program paths, with a view towards satisfying one or more 

"coverage" criteria [PRAT87]. The criteria most often cited 

in program testing literature are: statement coverage, 

branch coverage, multiple condition coverage, and path 

coverage. 

According to Tai [TAI79], a "criterion" is needed to 

select or generate test data and also in the measurement of 

the level of test thoroughness while testing a program. An 

ideal test criterion would be one that would guarantee the 

absence of errors in a program based upon successfully 

completing execution on test data satisfying the criterion. 

Howden [HOWD81a] cites the development of a criterion for 

test completeness. He claims that it is more effective than 

branch testing and that it incorporates some of the 

advantages of mutation testing [HOWD81b, ADRI82, HOWD81a]. 

Three of the most commonly used testing criteria in 

generating test data and in measuring the level of test 

thoroughness [TAI79] are: 

1. each and every statement is executed at least once, 

2. each and every branch is executed at least once, and 

3. each and every path is executed at least once. 

Goodenough and Gerhart [GOOD75] propose a fundamental 

theorem of testing, basic definitions for a theory of 



testing, and criteria for the selection of test items from 

the domain of possible inputs to a program. In this 

connection the work done by Gourlay [GOUR83], and Weyuker 

and Ostrand [WEYU80] are particularly interesting. 

2.3.3 Test Case Generation 

16 

The final phase of the structural testing methodology 

is test case generation which involves the determination of 

a set of test inputs X = {Xi} that will "drive" the program 

through the indicated paths, given that we have selected a 

set P = {Pi} of program paths based upon their having 

satisfied some test coverage criteria [PRAT87]. 

The test data generation problem is stated by Miller 

[MILL81] as follows : "given a part of a program that has 

not yet been tested, construct specific test data that will 

cause that part to be executed". This problem is addressed 

by Goodenough and Gerhart [GOOD75], Weyuker and Ostrand 

[WEYU80], and Demillo et al. [DEMI78]. Goodenough and 

Gerhart note that test data selected solely on the basis of 

program structure in general will be inadequate for the 

purposes of thorough testing. 

2.4 Adaptive Testing Strategies 

Conventional test case generation methods are severely 

limited by their reliance on a set of preselected complete 

paths to be traversed [PRAT87]. This is because, we are 

forced to return to the path selection phase in the event 
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that even one of the preselected paths proves to be 

infeasible. Consequently, Prather and Myers [PRAT87] 

contend that there is an intrinsic interplay between the 

path selection phase and the test case generation phase. 

They go on to say that the virtue of the adaptive approach 

to testing lies in its ability to exploit this interplay 

between phases even while acknowledging its existence. As 

before, this strategy still relies heavily upon the use of a 

program flowgraph. However, the idea here is to add just 

one new test path (and hence, one new input test) at a time, 

using previously traversed paths (inputs) as a guide to the 

selection of subsequent paths (inputs), in accordance with 

some inductive strategy [PRAT87]. 

For the purposes of this thesis the "inductive 

strategy" referred to by Prather and Myers is defined on the 

basis of the adjacency matrix developed for the program 

flowgraph of a program. The motivation for the adaptive 

testing strategy in question largely accrues from the work 

done by Prather and Myers and from the book written by 

Beizer [BEIZ83]. Beizer suggests that successive test paths 

could be selected as small variations of previously 

traversed paths while attempting to change only one thing at 

a time. 

2.5 Complexity Metrics 

There is a need for developing some objective measure 
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of software, particularly structural complexity which can be 

considered as an indicator of software "quality" as captured 

in the structure of a program. In response to this need, 

several different complexity measures (or metrics) have been 

proposed [see, for example, PAIGSO, HALS77, CHEN78, MCCL78, 

and SAMA88]. According to Chen [CHEN78], "program 

complexity is the least known factor in programming activity 

and it is not easily measured or described and is often 

ignored during the system planning process". 

Some of the complexity-based metrics proposed are: 

McCabe's cyclomatic complexity [MCCA76], Halstead's software 

science metrics [HALS77], Chen's maximal intersect number 

[CHEN78], McClure's invocation complexity [MCCL78], Paige's 

metrics [PAIGSO], and Samadzadeh and Edwards' residual 

complexity [SAMA88]. 

McCabe [MCCA76] defines cyclomatic complexity by 

finding the graph theoretic "basis set". A maximal set of 

linearly independent paths in a program graph is called a 

basis set. From well-known results in graph theory, the 

cyclomatic number of a graph, V(G) is given by 

V(G) = e - n + p 

for a graph G with n nodes, e edges, and p connected 

components. The number of linearly independent program 

paths through a program graph is given by V(G) + p. McCabe 

calls this number the cyclomatic complexity of the program. 

The cyclomatic complexity, can therefore be calculated from 

a program graph as 



c = e - n + 2p 

Halstead's metrics [HALS77], rely upon four easily-

measured parameters of a program 

n1 = the number of distinct operators in the program, 

n2 = the number of distinct operands in the program. 

N1 = total program operator count 

N2 = total program operand count 
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Halstead defines the estimated program length in 

tokens, which is different from the number of statements in 

a program, by 

H = n1log2n1 + n2log2n2 

Halstead's metrics treat paired operators such as 

"BEGIN ••. END", "DO ... UNTIL", and "FOR ... NEXT" as single 

operators. 

The actual Halstead length is calculated as 

N = N1 + N2 

Halstead also defines a program's vocabulary as the sum 

of the number of distinct operators and operands given by 

n = n1 + n2 

Paige [PAIG80], cites four metrics which he claims have 

found some utility in software test environments. They are 

1. The cyclomatic number (C). 

2. The level of effort (E) to implement a software module 

based on the mental discriminations or comparisons 

required (E is one of Halstead's software science 

metrics). 

3. The nesting level (NX) which indicates the maximum 



nesting structure utilized in the program. 

4. The iteration level (IX) which indicates the maximum 

iteration structure utilized in the program. 
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Of these four metrics, c, NX and IX are structure 

related measures while E is a syntactic token count measure. 

Paige concludes, on the basis of the work done by him, that 

the metrics NX and E are found to be very useful. The 

utility of the measure NX arises from its ease of 

determination and also because of its direct relationship to 

c. On the other hand, the utility of the measure E is 

obvious since it is the only available measure of the 

difficulty and the time needed to derive each test [PAIGSO]. 

Chen [CHEN78], proposes a measure of program control 

complexity from an information theory viewpoint while 

pointing out the factors which determine the complexity of a 

computer program. McClure [MCCL78], discusses the probable 

sources of complexity in a well-structured program and 

presents a methodology for measuring and controlling the 

complexity of such programs. 

2.6 Automatic Testing Tools 

The need for automated testing tools is obvious. In 

most cases software systems are far more complex than the 

programmers who developed the system would think they are. 

In addition to this, the "work" involved in testing is not a 

very enjoyable one, since it is tedious and time consuming. 

Several automated testing tools have been developed to date. 
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Osterweil and Fosdick [OSTE76] developed a static 

analysis tool, DAVE, for FORTRAN programs. Ramamoorthy and 

Ho [RAMA75] described the FACES software analysis system. 

Browne and Johnson [BROW78] described a FORTRAN analysis 

system which is implemented using a commercially available 

database-management system (System 2000). Howden [HOWD79] 

presented the DISSECT system - a symbolic evaluation and 

program testing system built at the University of California 

on a PDP-10 LISP environment. Clarke [CLAR79] described a a 

system that attempts to generate test data automatically for 

programs that are written in ANSI FORTRAN. Jessop [JESS79] 

presented the ATLAS system used at Bell Laboratories to test 

one of their Electronic Switching Systems. This system used 

a high level of automation to achieve acceptable levels of 

quality assurance. Finally, Budd and Lipton [BUDD78] 

discussed a program testing system which relies upon the 

relatively new concept of program mutation analysis. 



CHAPTER III 

COMPLEXITY MEASURE ALGORITHM 

3.1 Complexity Measure Algorithm Preliminaries 

This chapter focuses on the development of a graph­

theoretic, matrix-based approach to devise a complexity 

measure for program testing. 

This approach relies upon using the basic number of 

paths in the control flow graph of a program. The adoption 

of this means of arriving at a measure is largely dictated 

by the fact that it is impractical to consider the total 

number of paths in the graph in question [MCCA76]. 

Although, a number of algebraic expressions which yield the 

total number of paths in the graph are either readily 

available or could be developed easily, it is still not a 

feasible proposition to consider all the possible paths in a 

given graph. Even a simple program with a solitary backward 

branch presents us with the possibility of an infinite 

number of paths. Consequently, the adoption of a means 

which utilizes the basic number of paths seems appropriate. 

It is to be noted that the basic paths in a graph could be 

utilized to form any other path in the graph by forming 

appropriate linear combinations [MCCA76]. 
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The approach used in this thesis makes the following 

assumptions: 
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1. For a given program we can draw a directed graph (known 

as the program control flow graph) with unique entry and 

exit nodes; 

2. Each node in the graph corresponds to a block of code in 

the program with the flow within each block being 

sequential; 

3. Each edge in the directed graph corresponds to the 

branches taken in the program; and 

4. Each node can be reached from the entry node and each 

node can reach the exit node. 

3.2 Complexity Measure Algorithm 

This algorithm is aimed at computing the complexity of 

a structured program from the adjacency matrix of its 

control flow graph. The algorithm is outlined below. 

1. Develop the directed graph representation (i.e., the 

control flow graph) of a given program. 

2. Develop the adjacency matrix of the control flow graph. 

3. Add another column to the adjacency matrix after the 

last existing column and label it "# of links in the 

open chain". 

4. starting from the top row and working downwards identify 

all rows which contain two or more "1" entries. The 

existence of two or more 11 1 11 entries in any particular 

row signif1es the fact that the node label aga1nst that 



24 

row represents a decision node. 

5. Disregard all other rows which have either a single "1" 
entry or none at all. This is because a row which 

exhibits such a feature corresponds to a node that is 

not a decision node. It could be a node which appears 

sequentially in the control flow graph, it can be a 

collecting node, or a sink node. 

6. Starting with the first identified row in Step 5 and 

working downwards carry out the following procedure: 

6.1. Locate the first "1" entry in that row. Then 

locate the next occurrence of a "1" in the 

same row. Encircle these two siblings which 

need not necessarily be consecutive entries 

of the same row of the adjacency matrix. They 

could have one or more "O" entries separating 

them, in which case the interven1ng "O" 

entries are disregarded. 

6.2. Look for the next sibling. Encircle the last 

and the next siblings. Obviously, the second 

circle overlaps the first one since a sibling 

is shared between the two circles. 

6.3. Continue this procedure until all the siblings 

are exhausted. At this point there should be an 

"open chain" consisting of one or more circles 

linked together, with the two outermost circles 

each having one sibling apiece which is not 

shared. Each circle in the chain will be 



called a "link of a chain" hereafter. 

6.4. Count the number of circles in the "open 

chain". Enter the number so obtained, in the 

same row and in the last column that was added 

to the original adjacency matrix. 
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7. Enter a "0" against all rows that were disregarded 

(because they had only one 11 1 11 entry or none at all) in 

the last column labelled "# of links in the open 

chain". 

8. Compute the sum of all entries in the last column of the 

modified adjacency matrix. Add 1 to this sum. Call 

this value "C(G)". C(G) is the cyclomatic complexity of 

the graph in question. 

An examination of the adjacency matrix and the 

algorithm shows that the complexity is not dependent 

directly on the actual size of the program (e.g., in terms 

of the number of lines of code). 

3.3 Identification of a Set of Basic Paths 

The set of basic paths identified by following the 

algorithm outlined below is by no means unique [PAIGSO]. 

The algorithm outlined in this subsection identifies a set 

of basic paths from the adjacency matrix of the control flow 

graph of a program. 

1. Begin with the unique entry node for each basic path, 

that is, start with the first row of the adjacency 

matrix each time around. 
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2. Look for the 11 1 11 entryjentries in the first row of the 

adjacency matrix and note down the corresponding row 

label first. Then write down the corresponding column 

label next to it. Move down to the row having the same 

row label as the column label of the 11 1 11 entry just 

identified. Look for the occurrence(s) of 11 1 11 entries. 

Then, note down the corresponding column label next to 

the list of node labels. Continue this procedure until 

the unique exit node is reached. No single graph node 

is to be traversed more than twice in any single basic 

path. this double traversal is permitted in order to 

provide for the possible existence of backward loops. 

3. Repeat this procedure with the next occurrence of a 

11 1 11 entry in the first row. Continuation along these 

lines will eventually yield a set of node label lists 

each of which corresponds to a basic path and the 

number of such paths, should be equal to the value of 

C(G) previously computed (Section 3.2). 

The complexity measure algorithm outlined in Section 

3.2 yields a measure of the complexity of a program by 

computing the value C(G) from the adjacency matrix of its 

graph. This value corresponds to the number of linearly 

independent paths in the graph. The procedure outlined 

above identifies a set of basic paths for the graph being 

considered. 
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3.4 Examples 

The application of the complexity measure algorithm to 

some example graphs from McCabe's work [MCCA76] appears in 

Appendix A. 



CHAPTER IV 

THE ADAPTIVE TESTING STRATEGY 

The testing strategy proposed in this chapter is 

adaptive in nature. A graph-theoretic, matrix-based 

approach was adopted in arriving at this strategy. This 

strategy utilizes the adjacency, incidence, and path 

matrices of the program flow graph of a structured program. 

This strategy is hinged upon a few modifications that are 

made to some of these matrices. In the case of the 

adjacency matrix, the modifications made are useful in 

demonstrating the achievement of "branch coverage". The 

path matrix is constructed using the paths generated by the 

application of the adaptive testing strategy. The 

modifications made to the path matrix are useful in 

illustrating the attainment of complete "node coverage" and 

"edge coverage". 

4.1 Adaptive Testing Strategy Preliminaries 

This section deals with the preliminaries required for 

the discussion of the adaptive testing strategy. As 

mentioned before, this testing strategy required that some 

modifications be made to the adjacency matrix. These 

modifications are dealt with in Subsection 4.1.1. Another 
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matrix called the "Branch Coverage Matrix" is also required, 

which is dealt with in Subsection 4.1.2. 

4.1.1 Modifications Proposed for the Adjacency 

Matrix 

The basic adjacency matrix is constructed using the 

directed graph representation of a given program (i.e., the 

control flow graph has unique entry and exit nodes). The 

basic adjacency matrix has as many rows and columns as the 

number of nodes in the control flow graph. This basic 

adjacency matrix is then modified as follows: 

1. Add three more columns to the basic adjacency matrix 

after the last column and label them "base value 

column", the "weighted digital signature column", and 

"enhanced value column". 

2. Starting from the top-most row and working downwards, 

identify all the rows which contain two or more 11 1 11 

entries (signifying decision nodes). Count the number 

of 11 1 11 entries in all the rows identified thereby and 

enter the values so obtained in the "base value column" 

against the respective row. In this process of row 

identification disregard all rows which have a either a 

single "1" entry or none at all. However, a "O" entry 

is to be made against such rows in the "base value 

column". 

3. Identify all the non-zero entries in the "base value 

column". Fill all locations in the "weighted digital 



signature column" with corresponding non-zero entries 

in the "base value column" with the value 11 3 11 (called 

the "key value" hereafter). Insert "0" entries in 

all other locations. 

The "key value" of 11 3 11 could be replaced by any 

other positive number. This is because the purpose 

of using this "key value" is merely to have a 

recognizable quantity once the strategy has run 

through its full course. The significance of the use 

of a "key value" will become apparent when the 

algorithm is outlined in detail(see Section 4.2). 

4. In the last column labelled as the "enhanced value 

column", make an entry equal to the sum of the values 

in the "base value column" and the "weighted digital 

signature column" against the respective rows. 
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When this process has been completed, the last three 

columns of the modified adjacency matrix should contain non­

zero entries against all the rows identified in Step 2 above 

(representing decision nodes), and 11 0 11 entries against all 

other rows (representing sequential nodes). Obviously, the 

non-zero entries in the "base value column" represent the 

number of children that the respective decision nodes 

possess. 

4.1.2 Branch Coverage Matrix 

Another matrix called the "Branch Coverage Matrix" is also 



constructed which is an important part of the adaptive 

testing strategy. This matrix is constructed as follows: 

1. Set up the matrix with as many rows as there are nodes 

in the program flow graph. 

2. Identify the decision node with the largest number of 

children (easily recognized by observing the values in 

base value column of the modified adjacency matrix 

described in Section 5.1.1). Then the number of 

columns required for this matrix is computed as 

follows: 

# of columns = (largest # of children as above) + 2 

The numeral "2" in the above expression is not a magic 

number. This number in fact represents the need for 
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two additional columns. One of these is used to carry 

a replica of the "enhanced value column" from the 

modified adjacency matrix, and the other column is 

required to house the "residual digital signature". 

The existence of a tie for the largest number of 

children does not affect the situation in any way. This 

is because the number of columns required would be the 

same as would have been needed in the absence of a tie. 

If, for example, the decision node with the maximum 

number of children were to have 2 children (could even be a 

case statement) and if we had several other binary decision 

nodes in a 10 node decision matrix, the corresponding 

"Branch Coverage Matrix" would probably look like the one 

shown in TABLE I on the next page. 



TABLE I 

SAMPLE BRANCH COVERAGE MATRIX 

EVC 1 2 RDS 

1 5 ~1 j-1 3 

2 0 0 0 0 

3 5 ~1 ~1 3 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

row labels represent node numbers 
column labels represent child node counts 
EVC represents Enhanced Value Column 
RDS represents Residual Digital Signature 
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Now that ~he number of rows and columns required for 

this matrix have been computed, the task of filling up the 

matrix remains. This matrix is then filled by following the 

procedure outlined below: 

1. Fill the first column with a replica of the "enhanced 

value column" from the modified adjacency matrix. 

2. Identify the rows representing decision nodes (rows 

containing non-zero entries). 

3. Fill the node labels of the children of all the 



decision nodes in the corresponding rows from left to 

right after the EVC entry. 

4. The decision(s) with fewer children than the one with 

the maximum number of children will have some vacant 

spaces. Pad these spaces with 11 0 11 entries. 

5. Fill the rows against all the non-decision nodes with 

11 0 11 entries. This includes the corresponding 

locations on the "residual digital signature column" 

which is the last column in this matrix. 
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This process should leave a matrix completely filled 

except for the locations against the decision nodes in the 

last column called "residual digital signature column". The 

contents of these remaining locations will be decided in the 

course of the application of the adaptive testing strategy. 

4.2 Adaptive Testing Strategy 

The proposed adaptive strategy is expected to yield a 

set of program paths, P = {Pi} which meet the "branch 

coverage" and "node coverage criteria". Now, let the set of 

test inputs required to drive the program through the 

indicated paths be X= {Xi}· 

This strategy is adaptive in nature because a clearly 

recognizable digital signature called the "residual digital 

signature" is left behind whenever a particular path is 

traversed. On subsequent searches for other paths, repeated 

traversals of previously traversed nodes is avoided by 

recognizing the digital signature, left behind during 
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previous traversals. So, in effect, the choice of a path 

helps us to determine subsequent paths without the attendant 

threat of making wasteful and expensive repetitions. The 

adaptive strategy is outlined in detail below: 

1. All paths begin at the unique source node (a column of 

all zeros) and terminate at the unique sink node (a 

row of all zeros). 

2. Consider the incidence matrix of the program flow 

graph in question. Start the traversal at the source 

node. It is possible that the source could be a 

sequential node (i.e., not a decision node). Make a 

record of the corresponding node label. 

3. The row representing the source node should contain 

one or more 11 1 11 entries. Locate the first instance 

of a "1" entry in this row. The traversal begins at 

this entry. 

4. Traverse the column containing the entry identified 

in the previous step in a downward fashion until a 

"-1" entry is encountered. Then, record the node 

label that corresponds to the row containing the 

"-1 11 entry, next to the node label previously 

recorded (i.e., the source node in this case). The 

edge connecting the source node and the node 

identified in this step is the first edge in the path. 

5. At this point, start a horizontal search, along the 

same row until a 11 1 11 entry is reached. It is possible 

that more than one such "1" entries could exist in a row 



(i.e., in the case of a decision node). At the first 

occurrence of a "1" entry in this row, drop down until 

a "-1" entry is reached lower down in the column 

containing this entry. Then add the node label of the 

row containing the "-1" entry to the list of node 

labels being maintained (which presently consists of 

the source node and another node). Continue this 

procedure, recording node labels along the way in the 

manner specified above. 

This procedure will terminate when the unique exit 

node is reached. The exit node is easily identified 

when a "-1" entry is encountered and for which no "1" 

entry can be found along the same row. 
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6. During the process of traversing a path, whenever a 

child node of a decision node is traversed go back to 

"Branch Coverage Matrix" (which also accounts for node 

coverage), and replace the corresponding node label by a 

value of "-1". If however such a node is traversed more 

than once, this replacement is to be carried out only 

the first time around. 

7. This "-1" entry replacing the node labels serve as the 

"recognizable digital signatures" which are useful in 

serving as a reminder of the fact that the node in 

question has been traversed previously. Thus, when 

the path is being identified the node number which 

bears the signature of "-1" is avoided and instead 

another branch is chosen for traversal. 
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8. This process is carried out starting from the first 

decision node encountered after traversing the unique 

source node down to the decision node before the unique 

sink node and until each child node of every decision 

node bears the digital signature 11 -1 11 • 

9. A backward loop is identified in this traversal when it 

is no longer possible to find a 11 -1 11 entry upon dropping 

down from a 11 1 11 entry. In such a case look for a 11 -1 11 

entry above the 11 1 11 entry and continue as before with 

the only difference being that the horizontal search at 

this juncture is now directed from right to left in the 

incidence matrix. 

10. If at some decision node the children are placed such 

that one node is in the forward direction (identified 

when a 11 -1 11 entry is reached by dropping down from a 11 1 11 

entry in the incidence matrix) and the other is reached 

by looping backwards (identified when a 11 -1 11 entry is 

reached by moving upwards from a 11 1 11 entry in the 

incidence matrix), choose the node in the forward 

direction the first time around through that decision 

node. Record the corresponding path as was outlined 

before. For the next path (with one child node obtained 

by looping backwards), start out by traversing the path 

as before. This process is initiated at the unique 

source node as before and is carried out until the 

decision node is reached. At this point the backward 

looping branch is chosen (the forward going branch is 
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avoided upon encountering the signature value of "-1") 

and the node labels are recorded as before. It is 

important to ensure that this loop is traversed only 

once. This is accomplished easily by avoiding 

repetitive traversals whenever the signature value is 

encountered. Then, when the traversal procedure returns 

to the decision node encountered previously (the branch 

that was traversed previously is avoided and a branch 

which was not traversed previously is chosen), simply 

copy the rest of the path from that point onwards, from 

the previous path through that decision node. (For 

example, see path 2 on page 72.) 

11. This procedure is completed when all the non-zero node 

label entries in the child node columns of the node 

coverage matrix (i.e., branch coverage matrix) bear the 

digital signature "-1". 

12. At this point compute the sum of all the elements in 

each row of the Branch Coverage Matrix (the sum is zero 

for all non-decision nodes and has been entered 

previously) and enter these values in the corresponding 

locations in the "residual signature column". This 

column should now consist of only "O" entries and 11 3 11 

entries (i.e., the key value). This column vector so 

obtained is called the "residual digital signature". 

When the adaptive strategy has run through its full 

course, it returns the pre-assigned "weighted digital 

signature" (Section 4.1.1). The "residual digital 
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signature" generated by this strategy should in fact match 

the previously assigned "weighted digital signature" 

exactly. Furthermore, complete node and branch coverage are 

achieved when this strategy is applied. Although it is 

obvious that edge coverage follows from branch coverage, an 

additional means of demonstrating edge coverage is 

illustrated in Section 4.3. 

4.3 Modifications Proposed for the Path Matrix 

The basic path matrix is constructed with the path 

numbers representing the rows and the edge numbers 

representing the columns [DE074]. If an edge is part of a 

path, a 11 1 11 entry is made against the path in question and 

in the column assigned for the edge being considered; and 

"O" entries are made against the edges that are not part of 

the path. In order to demonstrate the achievement of edge 

coverage, the basic path matrix is modified slightly. The 

only modification needed is the addition of a row. The 

modified path matrix, which is constructed as specified 

above, would probably look like the one shown in TABLE II on 

the next page. 

In this context it would be relevant to discuss the 

interpretation of the basic path matrix [DE074]. In the 

basic path matrix a column consisting of all 11 0 11 entries 

corresponds to an edge that does not lie on any path between 

the source node and the sink node. A column of all 11 1 11 

entries corresponds to an edge that lies in every path 
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between the source node and the sink node. There is no row 

with all "O" entries because a row in the path matrix 

represents a path which is made up of edges and there cannot 

be a path made up of no edges. It is seen that every column 

in this matrix has at least a single "1" entry since each 

node in-the graph is traversed when the adaptive testing 

strategy has run through its full course (see TABLES XII and 

XVI in Appendix B). 

TABLE II 

SAMPLE MODIFIED PATH MATRIX 

1 2 3 4 5 6 7 

1 1 0 0 1 0 0 1 

2 0 1 1 0 0 1 0 

3 1 0 0 0 1 0 0 

1 1 1 1 1 1 1 

row labels represent path numbers 
column labels represent edge labels 

8 9 

0 1 

0 1 

1 0 

1 1 

last row indicates coverage of all edges (row of 1's) 

4.4 Complete Edge Coverage 

Every column of the modified path matrix (see Section 

4.3) is checked for the presence of one "1" entry. In the 

event that a "1" entry is found in a particular column, a 

"1" entry is made in the last row of the same column, 
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otherwise a 11 0 11 is entered at this position. When the 

process of searching the columns of the modified path matrix 

for "1" entries is completed, the last row of the modified 

path matrix should consist of only 11 1 11 entries signifying 

that every edge in the graph is included in at least one 

path. 

Thus, the adaptive testing strategy yields a set of 

program test paths that provide complete node coverage, path 

coverage, and hence edge coverage. The residual digital 

generated by the adaptive testing strategy at the conclusion 

of its application is indicative of the fulfillment of the 

said coverage criteria. Relabelling of the nodes in the 

control flow graph of a program does not produce a different 

set of paths. The set of paths generated remains the same, 

the only difference being that the node labels get changed 

due to the relabelling. 

4.5 Examples 

The application of the adaptive testing strategy to 

some example flowgraphs from McCabe's work [MCCA76] appears 

in Appendix B. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

The main theme of this thesis was the development of an 

algorithm to compute the complexity of structured programs 

and an adaptive testing strategy using a graph-theoretic 

matrix-based approach. The approach used in this thesis 

relies upon the following assumptions: 

1. For a given program we can draw a directed graph (known 

as the program control flow graph) with unique entry and 

exit nodes; 

2. Each node in the graph corresponds to a block of code in 

the program with the flow within each block being 

sequential; 

3. Each edge in the directed graph corresponds to the 

branches taken in the program; and 

4. Each node can be reached from the entry node and each 

node can reach the exit node. 

Essentially, these assumptions convey the notion that 

the algorithms developed as part of this thesis apply only 

to structured programs. 

The complexity measure calculated would be useful, 

amongst other things, in assessing software quality as 

captured in the structure of a program. A low complexity 
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value is considered desirable and is indicative of high 

quality. The adaptive testing strategy that has been 

developed is expected to offer several advantages over 

conventional testing strategies. These advantages are 

likely to manifest themselves in the form of significant 

savings in the cost of the testing process and in having 

fewer computational requirements when compared with its 

conventional counterparts which involve the application of 

costly path selection techniques. 
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However, the graph-theoretic matrix-based approach 

adopted for this thesis introduces some attendant 

limitations. This approach relies heavily upon the use of 

the incidence matrix of the program control flow graph. The 

definition of the incidence matrix does not accommodate the 

existence of self-loops (a node in the graph is a child of 

itself). This limitation is in turn imposed upon the 

adaptive testing strategy, thereby limiting its 

applicability to only structured programs which are devoid 

of self-loops. 

Suggestions for future work include finding a way 

around the limitation imposed upon the adaptive testing 

strategy so as to accommodate the existence of self-loops 

which are fairly commonplace in actual programs. Further, 

time and space complexity analyses which were not conducted 

as part of this thesis could be carried out. 

Other future work might include the development of an 

automated testing tool which relies upon the adaptive 
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testing strategy developed as part of this thesis. Such an 

automated testing tool would be useful in relieving the 

tedium of testing and possibly contribute towards reducing 

the amount of time spent in the testing process. 
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C(G) = 2 

Figure 1.. Control Flow Graph for Example 1 



TABLE III 

ADJACENCY MATRIX FOR EXAMPLE 1 

1 2 3 # 

1 0 1 0 0 

2 0 1 1 1 

3 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 
I represents the number of links in the open chain 
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C(G) = 3 

Figure 2. Control Flow Graph for Example 2 



TABLE IV 

ADJACENCY MATRIX FOR EXAMPLE 2 

1 2 3 4 5 6 7 8 ' 1 0 1 1 0 0 0 0 0 1 

2 0 0 0 0 0 1 0 0 0 

3 0 0 0 1 1 0 0 0 1 

4 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 
I represents the number of links in the open chain 
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CCGl = 5 

Figure 3. Control Flow Graph for Example 3 



TABLE V 

ADJACENCY MATRIX FOR EXAMPLE 3 

1 2 3 4 5 6 7 8 9 

1 0 1 0 0 0 0 0 0 0 

2 0 0 1 1 0 0 0 0 0 

3 0 0 0 0 0 1 0 0 0 

4 0 1 0 0 1 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 0 1 c 1 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 1 0 0 

llo 0 0 0 0 0 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 

10 t 

0 0 

0 1 

0 0 

0 1 

1 0 

0 0 

0 1 

0 0 

1 1 

0 0 

t represents the number of links in the open chain 
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CCGl = 6 

Fiqure 4. Control Flow Graph for Example 4 



TABLE VI 

ADJACENCY MATRIX FOR EXAMPLE 4 

1 2 3 4 5 6 7 8 9 10 1112 I 

1 0 1 0 0 0 0 0 0 0 0 0 

2 0 0 1 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 1 1 0 0 0 0 0 

5 0 0 0 0 0 1 0 0 1 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 

7 0 1 0 0 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 1 0 

10 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 

row labels represent,node numbers 
column labels represent node numbers 

0 0 

0 1 

0 0 

0 1 

0 1 

0 0 

0 1 

1 0 

0 1 

0 0 

1 0 

0 0 

I represents the number of links in the open chain 
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C(G) = 8 

Figure 5. Control Flow Graph for Example 5 



TABLE VII 

ADJACENCY MATRIX FOR EXAMPLE 5 

1 2 3 4 5 6 7 8 9 10 11 12 t 

1 0 1 1 1 1' 1 1 0 0 0 0 0 5 

2 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 0 0 0· 0 0 0 0 1 0 0 0 0 0 

4 0 0 0 0 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 0 0 

6 0 0 0 0 0 0 0 1 0 0 0 0 0 

7 0 1 0 0 0 0 0 0 0 0 1 0 1 

8 0 0 0 0 0 0 0 0 1 1 0 0 1 

9 0 0 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 0 

11 0 0 0 0 0 0 0 0 0 0 0 1 0 

U_ 0 0 0 0 0 0 0 0 0 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 
t represents the 'number of links in the open chain 
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CCG) = 8 

Figure 6. Control Flow Graph for Example 6 



TABLE VIII 

ADJACENCY MATRIX FOR EXAMPLE 6 

1 2 3 4 5 6 7 8 9 10 11 12 13 I 

1 0 1 1 0 0 0 0 0 0 0 0 

2 0 0 1 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 1 1 0 0 0 0 0 

5 0 0 0 0 0 1 0 0 1 0 0 

6 0 0 1 0 0 0 1 1 0 0 0 

7 0 0 0 0 0 0 0 0 1 0 0 

8 0 0 0 0 0 0 0 0 1 0 0 

9 0 0 0 0 0 0 0 0 0 1 0 

~0 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 

[!3 0 0 0 0 0 0 0 0 0 0 0 

row labels represent nod~ numbers 
column labels represent node numbers 

0 0 1 

0 0 1 

0 1 0 

0 0 1 

0 0 1 

0 0 2 

0 0 0 

0 0 0 

0 0 0 

1 0 1 

1 0 0 

0 1 0 

0 0 0 

f represents the number of links in the open chain 

62 



APPENDIX B 

EXAMPLES FOR ADAPTIVE TESTING STRATEGY 

63 



64 

edge 3 

Figure 7. Control Flow Graph for Example 7 



TABLE IX 

MODIFIED ADJACENCY MATRIX FOR EXAMPLE 7 

1 2 3 4 5 6 7 8 # BVC WDS 

1 0 1 1 0 0 0 0 0 1 2 3 

2 0 0 0 0 0 1 0 0 0 0 0 

3 0 0 0 1 1 0 0 0 1 2 3 

0 0 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 

6 0 0 0 0 0 0 1 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 

EVC 

5 

0 

5 

0 

0 

0 

' represents the number of links in the open chain 
BVC represents Base Value Column 
WDS represents Weighted Digital Signature 
EVC represents Enhanced Value Column 
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TABLE X 

INCIDENCE MATRIX FOR EXAMPLE 7 

1 2 3 4 5 6 7 8 9 

1 1 1 0 0 0 0 0 0 0 

2 0-1 1 0 0 0 0 0 0 

3 -1 0 0 1 1 0 0 0 0 

4 0 0 0 -1 0 0 1 0 0 

5 0 0 0 0 -1 0 0 1 0 

6 0 0 -1 0 0 1 0 0 0 

17 0 0 0 0 0 -1 -1 0 1 

~ 0 0 0 0 0 0 0-1-1 

row labels represent node numbers 
column labels represent edge labels 
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TABLE XI 

BRANCH COVERAGE MATRIX FOR EXAMPLE 7 

EVC 1 2 ROS 

1 5 1-1 ~-1 3 

2 0 0 0 0 path 1: 1,3,4,7,8 

3 5 ~-1 ;-1 3 
Path 2: 1,2,6,7,8 

4 0 0 0 0 

5 0 0 0 0 Path 3: 1,3,5,8 

6 0 0 0 '0 

7 0 0 0 0 

8 0 0 0 0 

row labels represent node numbers 
column labels represent child node counts 
EVC represents Enhanced Value Column 
RDS represents Residual Digital Signature 
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TABLE XII 

MODIFIED PATH MATRIX FOR EXAMPLE 7 

1 2 3 4 5 6 7 8 

1 1 0 0 1 0 0 1 0 

2 0 1 1 0 0 1 0 0 

3 1 0 0 0 1 0 0 1 

1 1 1 1 1 1 1 1 

row labels represent path numbers 
column labels represent edge labels 

9 

1 

1 

0 

1 

last row indicates coverage of all edges (row of l's) 
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1 

edge dge 2 

edge 
5 

edge 

12 

Fiqure 8. Control Flow Graph for Example 8 



TABLE XIII 

MODIFIED ADJACENCY MATRIX FOR EXAMPLE 8 

1 2 3 4 5 6 7 8 9 10 * BVC 

1 0 1 0 0 0 0 0 0 0 0 0 0 

2 0 0 1 1 0 0 0 0 0 0 1 2 

3 0 0 0 0 0 1 0 0 0 0 0 0 

4 0 1 0 0 1 0 0 0 0 0 1 2 

5 0 0 0 0 0 0 0 0 0 1 0 0 

6 0 0 0 0 0 0 1 0 0 0 0 0 
-

7 0 0 0 0 0 0 0 1 1 0 1 2 

8 0 0 0 0 0 0 0 0 1 0 0 0 

9 0 0 0 0 0 0 1 0 0 1 1 2 

tlO 0 0 0 0 0 0 0 0 0 0 0 0 

row labels represent node numbers 
column labels represent node numbers 

WDS EVC 

0 0 

3 5 

0 0 

,3 5 

0 0 

0 0 

3 5 

0 0 

3 5 

0 0 

# represents the number of links in the open chain 
BVC represents Base Value Column 
WDS represents Weighted Diqital Signature 
EVC represents Enhanced Value Column 
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TABLE XIV 

INCIDENCE MATRIX FOR EXAMPLE 8 

1 2 3 4 5 6 7 8 9 10 1112 13 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 -1 -1 1 1 0 0 0 0 0 0 0 0 0 

3 0 0-1 0 0 1 0 0 0 0 0 0 0 

4 0 1 0-1 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 -1 0 0 0 0 0 0 1 0 

6 0 0 0 0 0 -1 1 0 0 0 0 0 0 

7 0 0 0 0 0 0 -1 1 1 0 0 0 -1 

8 0 0 0 0 0 0 0-1 0 0 1 0 0 

9 0 0 0 0 0 0 0 0 -1 1 -1 0 1 

10 0 0 0 0 0 0 0 0 0 -1 0 -1 0 

row labels represent node numbers 
column labels represent edge labels 
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TABLE XV 

BRANCH COVERAGE MATRIX FOR EXAMPLE 8 

EVC 1 2 RDS 

1 0 0 0 0 

2 5 1-1 !-1 3 

3 0 0 0 0 

4 5 t-1 ~-1 3 Path 1 : 1,2,3,6,7,8,9,7,9,10 

5 0 0 0 0 
Path ~ 1,2,4,2,4,5,10 

6 0 0 0 0 

7 5 ;-1 ,_1 3 

8 0 0 0 0 

9 5 j-1 J,-6-1 3 

tl.O 0 0 0 0 

row labels represent node numbers 
column labels represent child node counts 
EVC represents Enhanced Value Column 
RDS represents Residual Digital Signature 
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TABLE XVI 

MODIFIED PATH MATRIX FOR EXAMPLE 8 

1 2 3 4 5 6 7 8 9 10 1112 13 

1 1 0 1 0 0 1 1 1 1 1 

2 1 0 0 1 1 0 0 0 0 0 

3 1 1 0 1 1 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

row labels represent path numbers 
column labels represent edge labels 

1 0 1 

0 1 0 

0 1 0 

1 1 1 

last row indicates coverage of all edges (row of 1's) 
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{**********************************************************} 
{* *} 
{* Complexity Measure Program Listing *} 
{* *} 
{**********************************************************} 
{* *} 
{* Author: Shankar Narayanaswamy *} 
{* Date: 05/30/91 *} 
{* Class: COMSC 5000 - Thesis *} 
{* Adviser: Dr. Mansur Samadzadeh *} 
{* *} 
{**********************************************************} 
{* *} 
{* Procedures Used: *} 
{* ---------------- *} 
{* pause, clearscreen, printlines, initialize, *} 
{* read_matrix_values, print_matrix, print_entryexit_nodes*} 
{* read_incidence matrix, print_incidence_matrix, *} 
{* print_proof_matrix, print_child_matrix, *} 
{* readin_child_matrix, main program. *} 
{* *} 
{* Input for Program: *} 
{* ------------------ *} 
{* 1. Adjacency Matrix for the Control Flow Graph. *} 
{* 2. The number of nodes in the Control Flow Graph. *} 
{* 3. The Incidence Matrix for the Control Flow Graph. *} 
{* 4. The number of edges in the Control Flow Graph. *} 
{* *} 
{* Output of Program: *} 
{* ------------------ *} {* 1. Prints the Adjacency Matrix on the screen. *} 
{* 2. Prints the value of C(G), i.e., the Complexity. *} 
{* 3. The identity of the Unique Entry Node. *} 
{* 4. The identity of the Unique Exit Node. *} 
{* 5. Prints the Incidence Matrix on the screen. *} 
{* 6. Generates the child matrix (each row contains *} 
{* the number of children possessed by each node *} 
{* followed by the node labels of the children of the *} 
{* respective node) which is used by the adaptive *} 
{* testing strategy program. *} 
{* *} 
{* Program Function *} 
{* ---------------- *} {* The program accepts input in the format specified above*} 
{* Given the input in this format the program generates *} 
{* the complexity number for the program in question *} 
{* according to the Complexity Measure Algorithm. *} 
{* Adaptive Testing Strategy. *} 
{* *} 
{* Debugging Tools Used: *} 
{* --------------------- *} {* Turbo Pascal Debugger *} 
{* *} 
{**********************************************************} 



program adaptive_test; 

const 
MAX SIZE = 100; 

var 
matrix: array [1 •. MAX_SIZE,1 •• MAX_SIZE+1] of integer; 
childmatrix : array [1 •. 10,1 •• 10] of integer; 
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incmatrix : array [1 •• MAX_SIZE,1 •• MAX_SIZE] of integer; 
proofmatrix: array [1 •• MAX_SIZE,1 •. MAX_SIZE) of integer; 
ndary: array [1 •• 2] of integer; {saves entryjexit} 

{node labels} 
n : integer; {# of nodes in the control flow graph} 
totedges : integer; {# of edges in the control flow graph} 
total_sum : integer; {total # of links in the open chains} 
entrynodeflag,exitnodeflag : boolean; 
setentry,setexit,selfloopset,doneonce : boolean; 
uen,uxn : integer; {save unique entry and exit nodes} 
bigchild : integer; {to save the maximum # of children} 

{possessed by any decision node in} 
{the control flow graph} 

maxcols integer; {# of columns for proof of branch} 
{coverage matrix} 

origin integer; 
edge_direction : integer; 

{**********************************************************} 
{* *} 
{* procedure pause *} 
{* --------------- *} 
{* This procedure is used to generate a pause during the *} 
{* execution of the program *} 
{* *} 
{**********************************************************} 
procedure pause; 

begin 
writeln; 
writeln('Hit <Enter> to continue .•. '); 
r~adln; 

end; 

{**********************************************************} 
{* *} 
{* procedure clearscreen *} 
{* --------------------- *} 
{* This procedure is used to clear the screen during the *} 
{* execution of the program. *} 
{* *} 
{**********************************************************} 



procedure clearscreen; 

const 
scrnlimit = 25; 

var 
int : integer; 

begin 
for int := 1 to scrnlimit do 
writeln; 

end; 
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{**********************************************************} 
{* *} {* procedure printlines *} 
{* -------------------- *} {* This procedure is used to generate a specified number *} 
{* of lines which is passed to it as a parameter. *} 
{* *} 
{**********************************************************} 
procedure printlines(z: integer); 

var 
i integer; 

begin 
for i := 1 to n do 
writeln; 

end; 

{**********************************************************} 
{* *} 
{* procedure initialize *} 
{* -------------------- *} {* This procedure is used to initialize all the global *} 
{* variables. *} 
{* *} 
{**********************************************************} 
procedure initialize; 
var 

a,b,c : integer; 
begin 

setentry := false; 
setexit := false; 
entrynodeflag := false; 
exitnodeflag := false; 
for a := 1 to 2 do 
ndary[a] := -1; {initialize entry and exit} 

{node labels to -1} 
selfloopset := false; 
doneonce := false; 
bigchild := O; 



edge_direction := 1; 
end; 
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{**********************************************************} 
{* *} 
{* procedure read_matrix_values *} 
{* ---------------------------- *} 
{* This procedure is used to read in the adjacency matrix*} 
{* supplied by the user. *} 
{* *} 
{**********************************************************} 

procedure read_matrix_values; 
var 

infile : text; 
i,j,sum,a1,a2,a3,a4,a5,cntrl 
fname : string; 

begin 

integer; 

write('Enter adjacency matrix file name: '); 
readln(fname); 
assign(infile,fname); 
reset(infile); 
write('Enter #of nodes in control flow graph: '); 
readln(n); 
for i := 1 to n do 
begin 

for j := 1 to n do 
read(infile,matrix[i,j]); 

readln(infile); 
end; 
for i := 1 to n do 
begin 

sum := O; 
for j := 1 to n do 

sum:= sum+ matrix[i,j]; 
if (sum =1) or (sum = 0) then 

matrix[i,n+1] := o 
else 

matrix[i,n+1] := sum -1; 
end; 
close(infile); 
for a1 := 1 to n do 

begin 
if (matrix[a1,n+1] > bigchild) then 

bigchild := matrix[a1,n+1]; 
end; 

bigchild := bigchild + 1; {largest # of children} 
{of any decision node } 

maxcols := bigchild + 2; {number of columns} 
{in proof matrix} 

for a2 := 1 to n do 
for a3 := 1 to maxcols do 

proofmatrix[a2,a3] := O; 



for a2 := 1 to n do {generate EVC for proof matrix} 
if (matrix(a2,n+1] >= 1) then 

proofmatrix[a2,1] := matrix[a2,n+1] + 1 + 3; 
{ fill up proof matrix } 
for a4 := 1 to n do 

begin 
cntrl := 2; 
if (matrix[a4,n+1] >= 1) then 

for a5 := 1 to n do 
begin 

if (matrix[a4,a5] = 1) then 
begin 

proofmatrix[a4,cntrl] := a5; 
inc(cntrl); 

end; 
end; 

end; 
total sum := O; 
for i-:= 1 to n do 

end; 

total sum:= total sum+ matrix[i,n+1]; 
inc(total_sum); 
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{**********************************************************} 
{* *} 
{* procedure print_matrix *} 
{* ---------------------- *} {* This procedure prints out the adjacency matrix. *} 
{ * *} 
{**********************************************************} 

procedure print_matrix(n: integer); 
var 

i,j : integer; 
begin 

clearscreen; 
write(' '); 
fori := 1 to (((n + 1)* 3) + 6) do 

write('_'); 
write(' '); 
writeln; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write(' '); 
writeln('l'); 

write(' I'); 
write (' ' : 4) ; 
for i := 1 to n+1 do 

write(i:3); 
write (' 1 ') ; 
writeln; 



write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write ( '_,) ; 
write(' I'); 
writeln; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write(' '); 
writeln('l'); 

for i := 1 to n do 
begin 

write(' I'); 
write(i:2,'1':2); 
for j := 1 to n+1 do 

write(matrix[i,j]:3); 
wri teln (' I ') ; 

end; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write (' ') ; 
writeln('l'); 

write('''); 
fori := 1 to (((n + 1)* 3) + 6) do 

write('-'); 
write(''''); 
writeln; 
writeln; 
writeln(' *******ADJACENCY MATRIX*******'); 
writeln; 
pause; 
writeln(' #of links in' open chain= ',total_sum-1); 
writeln; 
writeln(' Complexity Measure, C(G) = ',total_sum); 
writeln; 
{writeln(' bigchild is= ',bigchild);} 

end; 
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{**********************************************************} 
{* *} 
{* procedure print_entryexit_nodes *} 
{* ------------------------------- *} 
{* This procedure is used to ascertain and print out the *} 
{* node labels of the unique entry and exit nodes. *} 
{* *} 
{**********************************************************} 

procedure print_entryexit_nodes(n: integer); 

var 
i,j : integer; 



rowsum,colsum : integer; 
entrynode,exitnode : char; 

begin 
{WRITELN('AM IN PRINT PATH PROCEDURE'); 
WRITELN('HIT ENTER TO CONTINUE ••. '); 
READLN;} 

for j := 1 to n do 
begin 
if (not(entrynodeflag)) then 
begin 

{WRITELN('AM IN ENTRY NODE FOR LOOP'); 
WRITELN('HIT ENTER TO CONTINUE .•• '); 
READLN;} 
colsum := O; 
for i := 1 to n do 
colsum := colsum + matrix[i,j]; 

{WRITELN('COLSUM = ', COLSUM); 
WRITELN('ENTRYNODEFLAG IS= ',ENTRYNODEFLAG);} 
if (colsum = 0) and (not(setentry)) then 
begin 
setentry := true; 
entrynodeflag := true; 
if (ndary[1] = -1) and (entrynodeflag) then 

ndary [ 1 ] : = j ; 
end 

else 
if (colsum = 0) and (setentry) then 
begin 

writeln(' 
writeln(' 
exit; 

end; 
end; 

end; 

ERROR!! MORE THAN ONE ENTRY NODE!!'); 
ONLY A UNIQUE ENTRY NODE PERMITTED'); 

for i := 1 to n do 
begin 
if (not(exitnodeflag)) then 
begin 

{WRITELN('AM IN EXIT NODE FOR LOOP'); 
WRITELN('HIT ENTER TO CONTINUE .•• '); 
READLN;} 
rowsum := o; 
for j := 1 to n do 

rowsum :=rowsum + matrix[i,j]; 
{WRITELN('ROWSUM = ', ROWSUM); 
WRITELN('EXITNODEFLAG IS= ',EXITNODEFLAG);} 
if (rowsum = 0) and (not(setexit)) then 
begin 
setexit := true; 
exitnodeflag := true; 
if (ndary[2] = -1) and (exitnodeflag) then 
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ndary [ 2 ] : = i ; 
end 

else 
if (rowsum 
begin 

writeln(' 
writeln(' 
exit; 

end; 
end; 

end; 

= 0) and (setexit) then 

ERROR!! MORE THAN ONE EXIT NODE!!'); 
ONLY A UNIQUE EXIT NODE PERMITTED'); 

{WRITELN('NDARY[1] = ',NDARY[1]); 
WRITELN('NDARY[2] = ',NDARY[2]);} 
clearscreen; 
if (ndary[1] <> -1) then 
if (ndary[1] <= n) then 
begin 

uen := ndary[1]; 
writeln(' Unique Entry Node is= Node #',NDARY[1]); 

end; 

if (ndary[2] <> -1) then 
if (ndary[2] <= n) then 
begin 

uxn := ndary[2]; 
writeln(' Unique Exit Node is= Node #',NDARY[2]); 

end; 
printlines(12); 
end; 
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{**********************************************************} 
{* *} 
{* procedure read_incidence_matrix *} 
{* ------------------------------- *} 
{* This procedure is used to read in the incidence matrix*} 
{* supplied by the user. *} 
{* *} 
{**********************************************************} 

procedure read_incidence_matrix; 
var 

nextfile : text; 
nexti,nextj,nextsum : integer; 
nextfname : string; 

begin 
write('Enter incidence matrix file name: '); 
readln(nextfname); 
assign(nextfile,nextfname); 
reset(nextfile); 
write('Enter #of edges in control flow graph: '); 
readln(totedges); 
for nexti := 1 to n do 



begin 
for nextj := 1 to totedges do 

read(nextfile,incmatrix[nexti,nextj]); 
readln(nextfile); 

end; 
close(nextfile); 

end; 
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{**********************************************************} 
{* *} 
{* procedure print_incidence_matrix *} 
{* -------------------------------- *} {* This procedure is used to print out the incidence *} 
{ * matrix supplied by the user., *} 
{* *} 
{**********************************************************} 

procedure 
print_incidence_matrix(n:integer;totedges:integer); 
var 

i,j : integer; 
begin 

clearscreen; 
write(' '); 
fori := 1 to (((totedges + 1)* 3) + 4) do 

write(' '); 
write(' '); 
writeln; 

write(' I'); 
fori := 1 to (((totedges + 1)* 3) + 4) do 

write (' '); 
writeln('l'); 

write(' I'); 
write (' ' : 4) ; 
for i := 1 to totedges do 

write(i:3); 
write (' I ') ; 
writeln; 

write(' I'); 
fori := 1 to (((totedges + 1)* 3) + 4) do 

write ( '_') ; 
write(' I'); 
writeln; 

write(' I'); 
fori := 1 to (((totedges + 1)* 3) + 4) do 

write(' '); 
writeln('l'); 

for i := 1 to n do 
begin 



write(' I'}; 
write ( i: 2, ' I ': 2} ; 
for j := 1 to totedges do 

write(incmatrix[i,j]:3}; 
wri teln (' I ') ; 

end; 

write(' I'}; 
for i := 1 to (((totedges + 1)* 3) + 4} do 

write(' '}; 
writeln('l'}; 

write('''}; 
fori := 1 to (((totedges + 1}* 3} + 4) do 

write ( '-') ; 
write(''''}; 
writeln; 
writeln; 
writeln(' ********INCIDENCE MATRIX*******'); 

end; 
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{**********************************************************} 
{* *} 
{* procedure print_proof_matrix *} 
{* ---------------------------- *} 
{* This procedure is used to print out the branch coverage*} 
{* matrix. *} 
{* *} 
{**********************************************************} 

procedure print_proof_matrix(n: integer;maxcols: integer); 
var 

i,j : integer; 
begin 

clearscreen; 
write (' ') ; 
fori := 1 to (((maxcols + 1)* 4) + 4} do 

write ( '_'} ; 
write(' '}; 
writeln; 

write(' I'}; 
fori := 1 to (((maxcols + 1}* 4} + 4) do 

write(' '); 
writeln('l'); 

write(' I'); 
write (' ' : 4} ; 
for i := 1 to maxcols do 
begin 
if (i = 1} then 

write ( ' EVC' : 4 ) 
else 
if (i = maxcols) then 



write ( 'RDS ' : 4) 
else 
write((i-1):4); 

end; 
write(' I'); 
writeln; 

write(' I'); 
fori := 1 to (((maxcols + 1)* 4) + 4) do 

write(' '); 
write ( ' I '); 
writeln; 

write(' I'); 
fori := 1 to (((maxcols + 1)* 4) + 4) do 

write(' '); 
writeln('l'); 

for i := 1 to n do 
begin 

write(' I'); 
write(i:2,'1':2); 
for j := 1 to maxcols do 

write(proofmatrix[i,j]:4); 
writeln(' I'); 

end; 

write(' I'); 
fori := 1 to (((maxcols + 1)* 4) + 4) do 

write(' '); 
writeln('l'); 

write('''); 
fori := 1 to (((maxcols + 1)* 4) + 4) do 

write('-'); 
write(''''); 
writeln; 
writeln; 
writeln(' ******** COVERAGE MATRIX *******'); 

end; 
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{**********************************************************} 
{* *} 
{* procedure print_child_matrix *} 
{* ---------------------------- *} 
{* This procedure is used to print out the child matrix. *} 
{* *} 
{**********************************************************} 

procedure print_child_matrix(n: integer); 
var 

i,j : integer; 
children : integer; 

begin 



clearscreen; 
write(' '); 
fori := 1 to (((n + 1)* 3) + 6) do 

write ( '_') ; 
write(' '); 
writeln; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write(' '); 
writeln('l'); 

write(' I'); 
write (' ' : 4) ; 
for i := 1 to n + 1 do 

write(i:3); 
write ( ' I ' ) ; 
writeln; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write ( '_') ; 
write(' I'); 
writeln; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write (' ') ; 
writeln('l'); 

for i := 1 to n do 
begin 

write(' I'); 
write(i:2,' ':2); 
children := matrix[i,n+1] +1; 
for j := 1 to children do 

write(childmatrix[i,j]:3); 
writeln(' I'); 

end; 

write(' I'); 
fori := 1 to (((n + 1)* 3) + 6) do 

write(' '); 
writeln('l'); 

write('''); 
fori := 1 to (((n + 1)* 3) + 6) do 

write('-'); 
Write (I I I I) ; 
writeln; 
writeln; 
writeln('***** CHILD MATRIX*****'); 

end; 
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{**********************************************************} 
{* *} 
{* procedure readin_child_matrix *} 
{* ----------------------------- *} {* This procedure is used to generate the child matrix *} 
{* based upon the adjacency matrix supplied by the user. *} 
{* *} 
{**********************************************************} 
procedure readin_child_matrix; 
{this procedure makes a copy o~ the adjacency matrix and is} 
{used in the generation of basic paths} 
var 

outfile : text; 
i,j,checksum : integer; 
k :integer; 

begin 
assign(outfile,'child.dat'); 
rewrite(outfile); 
k := 1; 
for i := 1 to n do 
begin 

k := 1; 
for j := 1 to n do 

begin 
if (matrix[i,j] = 1) then 

begin 

end 
end; 

childmatrix[i,k] := j; 
inc(k); 

end; 
for i := 1 to n do 
begin 

if (i = uxn) then 
write(outfile,O) 

else 
write(outfile,matrix[i,n+1]+1); 
write(outfile,' '); 

for j := 1 to matrix[i,n+1]+1 do 
begin 

if (i = uxn) then 
write(outfile,'O') 

else 
begin 

write(outfile,childmatrix[i,j]-1); 
write(outfile,' '); 

end; 
end; 

writeln(outfile); 
end; 

close(outfile); 
end; 
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{**********************************************************} 
{* *} 
{* main program *} 
{* ------------ *} {* This is the main program. It calls all the other *} 
{* procedures. *} 
{ * *} 
{**********************************************************} 
begin 

initialize; 
read matrix values; 
writeln; -
{read incidence matrix; 
writeln;} -
print_matrix(n); 
pause; 
print_entryexit_nodes(n); 
pause; 
{print_incidence_matrix(n,totedges); 
pause;} 
print_proof_matrix(n,maxcols); 
pause; 
readin child matrix; 
{print=child=matrix(n);} 

end. 
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/**********************************************************/ 
I* */ 
/* Adaptive Testing Strategy */ 
I* *I 
/**********************************************************/ 
/* */ 
/* Author: Shankar Narayanaswamy */ 
/* Date: 05/16/91 */ 
/* Class: COMSC 5000 - Thesis */ 
/* Adviser: Dr. Mansur Samadzadeh */ 
/* *I 
/**********************************************************/ 
I* *I 
/* Procedures Used: */ 
I* ---------------- */ /* main, process, print, start_another_recursion, */ 
/* insertchar. */ 
/* */ 
/* Input for Program: */ 
I* ------------------ *I /* Child matrix for the Control Flow Graph. */ 
/* (Each row in the child matrix consists of the number */ 
/* of children each node possesses followed by the node */ 
I* labels of the children). */ 
I* *I 
/* Output of Program: */ 
I* ------------------ */ /* Prints out the various paths generated according to */ 
/* the adaptive testing strategy. */ 
/* *I I* Program Function */ 
I* ---------------- *I /* The program accepts input in the format specified above*/ 
/* Given the input in this format the program generates */ 
/* the paths in accordance with the Adaptive Testing */ 
/* Strategy. */ 
I* *I 
/* Debugging Tools Used: */ 
/* --------------------- */ 
/* Turbo c Debugger */ 
/* */ 
/**********************************************************/ 

#include <stdio.h> 
#include <conio.h> 

/* global declarations */ 

int Visit [25] = { o, o, 
o, o, o, o, 
o, o, o, o, 

int Par child [20][12]; 

o, o, o, o, o, o, o, o, 
o, o, o, o, o, o, 
o, } ; 
I* array to store parents and *I 
I* their respective children *I 



int destination = O; I* keeps track of destination *I 
int Note Node = -1, Note i = -1, check = O; 
int marknode = O; I* node marked or not ? *I 
I* arrays used to save paths for printing purposes *I 
int print_nodes [20], prev_print_nodes[20]; 

int nofprint_nodes = o, prev_printnodes = O; 
int numberof_common_nodes = 0; 
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1**********************************************************1 
I* *I 
I* main *I 
I* *I I* This is the main program. It calls all the other *I 
I* routines whenever required. *I 
I* *I 
I* *I 
I* *I 
1**********************************************************1 

main (argc, argv) 
int argc; 
char *argv[]; 
{ 
FILE l*fp; 
int number_of_children, i = o, j = 0; 

fp = fop en (argv[1], "r") ; 

clrscr (); 

I* read in input from designated file *I ( 
while (fscanf (fp, "%d", &number_of_children) != EOF) { 

Par child [i][j] =number of children; 
for-(j = 1; j <= number_of_children; j++) 

fscanf (fp, "%d", &Par_child[i][j]); 
j = 0; i++; 
} 

destination = i-2; 
process (0); 

if (marknode != destination) { 

} 

for (i = 1; i <= Par_child[marknode][O]; i++) 
if (Par_child[marknode][i] < marknode) { 
print_nodes[nofprint_nodes++J= Par_child[marknode][i]+1; 

} 
process (marknode); 
} 
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/**********************************************************/ 
/* *I 
/* process */ 
I* ------- */ 
/* This procedure is used to process the various nodes in */ 
/* the graph. This processing is done recursively. Other*/ 
/* procedures are called at appropriate locations. */ 
I* *I 
/**********************************************************/ 

process (int node) { 
int i = o, k = O; 

{ 

if (node == destination I I check) 
print (node); 

if (node-- destination) return(O); 

for (i = 1; i <= Par_child(node](OJ; i++) { 
if (Par_child(node][i] <node) 

} 

for(k = l;k <= Par_child[Par_child[node][i]](O];k++) 
if (Par_child(Par_child(node](i]](k] ==node) 

check++; 
if (check == 2) { 

check = o; 
start another recursion (node); 
return (0); 
} 

print (node); 
return (0); 
} 

print (node); 
process (Par_child (node)(i)); 
} 

/**********************************************************/ I* / *I 
/* print */ 
/* ----- *I 
/* This procedure is used to print out the test paths as */ 
/* generated by the application of the adaptive testing */ 
/* strategy. It does so by making insertions into two */ 
/* arrays which are meant to be used solely for this. */ 
I* */ 
I********************************************************** I 
print (int node) { 

int i; 

marknode = node; 



/* printf ("%-3d", node+l); */ 
print_nodes [nofprint_nodes++] = node+l; 
if (node == destination) { 

printf ("\n"); 

if (prev_printnodes != O) { 
i = 0; 

93 

while (print_nodes[i] != prev_print_nodes[i]) { 
insertchar(prev_print_nodes[i], print_nodes, i); 

} 

} 

i++; 
} 

for (i = O;i < nofprint_nodes; i++) { 
prev_print_nodes[i] = print_nodes[i]; 
printf ("%-3d", print_nodes[i]); 
} 

prev_printnodes = i; 
nofprint_nodes = O; 
} 

/**********************************************************/ 
I* *I 
/* start another recursion */ 
I* ----------------------- */ /* This procedure is used to start another recursion from */ 
/* the point at which it is called during the execution */ 
/* of the adaptive testing strategy. */ 
I* *I 
/**********************************************************/ 

start another recursion (int node) { 
int -k; -
for (k = 1; k <= Par_child[node][O]; k++) 

if (Par_child[node][k] >node) { 
process (Par_child [node][k]); 
} 

} 

I********************************************************** I 
I* *I 
/* insertchar */ 
I* ---------- *I 
/* This procedure is used to insert node labels during the*/ 
I* process of printing out the test paths generated, into */ 
I* the array used for this purpose. It inserts labels */ 
/* into the front end of the array by shifting the */ 
/* previous contents of the array to the right. */ 
I* */ 
I********************************************************** I 



insertchar (ch, aray, pes) 
int ch, *aray, pes; 
{ 
int i = nofprint_nodes; 
do { 

*(aray + i) = *(aray + i- 1); 
i--; 
} while (i !=pes); 

nofprint_nodes++; 
*(aray + pes) = ch; 
} 
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USER MANUAL 

Part 1: complexity Measure Program 

1. At the C:\> prompt type 

complexy <Enter> 

2. The program will print the following query on the 

screen. 

Enter adjacency matrix file name: 

Respond with <adjacency matrix filename> <Enter> 

3. The following query will then appear on the screen. 

Enter # of nodes in control flow graph: 

Respond with <# of nodes in control flow graph> 

<Enter> 
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The program will display the adjacency matrix, the 

value of C(G), the unique entry node and exit node, and the 

branch coverage matrix on the screen, in that order. It 

will also create a file called child.dat which is used by 

the adaptive testing program. 

Part 2: Adaptive Testing Program 

At the C:\> prompt type "testing <child.dat> <Enter>". 

The file child.dat used here is the one that was 

created by the complexity measure program in Part 1 above. 

The program will display the list of test paths on the 

screen. 
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