
~ GRAPH-THEORETIC MATRIX-BASED APPROACH FOR

A MEASURE OF PROGRAM TESTING AND

AN ADAPTIVE TESTING STRATEGY

By

SHANKAR NARAYANASWAMY
II

Bachelor of Engineering,

Bangalore University

Bangalore, India

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
July, 1991

A GRAPH-THEORETIC MATRIX-BASED APPROACH FOR

A MEASURE OF PROGRAM TESTING AND

AN ADAPTIVE TESTING STRATEGY

Thesis Approved:

Dean of the Graduate College

1398475 ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to

Dr. Mansur H. Samadzadeh for his encouragement and advice

throughout my thesis research. I would also like to place

on record my thanks to Drs. John P. Chandler and Huizhu Lu

for serving on my graduate committee.

I would also like to thank my brothers Selvam and

Shekar, my sister Sumathi, and most of all my parents for

their unflinching, unquestioned, and constant support in

everything that I have done so far. I wish to thank

Sharmila for her love and understanding, and my good friend

Ravi Mandadi for his invaluable assistance.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. • . . • • • • • • • • . . • • . . • • • . . 1

II. LITERATURE REVIEW. • • • • • . . • • • 4

2.1
2.2

2.3

2.4
2.5
2.6

Graph Theory Preliminaries
Testing Strategies and Their

Classification•...............
Structural Testing Considerations
2.3.1 Program Graph Construction
2.3.2 Test Path Selection
2.3.3 Test Case Generation
Adaptive Testing Strategies
Complexity Metrics
Automatic Testing Tools

4

7
13
13
15
16
16
17
20

III. COMPLEXITY MEASURE ALGORITHM•........... 22

3.1 Complexity Measure Algorithm
Preliminaries. 22

3.2 Complexity Measure Algorithm•..... 23
3.3 Identification of a Set of Basic Paths. 25
3. 4 Examples....... 27

IV. THE ADAPTIVE TESTING STRATEGY .•••••••...••....•.• 28

4.1 Adaptive Testing Strategy Preliminaries 28
4.1.1 Modifications Proposed for the ,

Adjacency Matrix•..•...... 29
4.1.2 Branch Coverage Matrix 30

4.2 Adaptive Testing Strategy•........ 33
4.3 Modifications Proposed for the Path

Matrix............................... 38
4.4 Complete Edge Coverage ..•....•...•..... 39
4. 5 Examples........ 40

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK ...•........ 41

REFERENCES • 4 4

APPENDIXES . . . • • • . • • • . . • • . . . • . . • . • 4 9

APPENDIX A - EXAMPLES FOR COMPLEXITY MEASURE

iv

,,

ALGORITHM. • • • • 50

APPENDIX B - EXAMPLES FOR ADAPTIVE TESTING
STRATEGY. • • • • • • • • • . • • • • • • . • • • • • • • • • • 63

APPENDIX C - COMPLEXITY MEASURE PROGRAM
LISTING. 7 4

APPENDIX D - ADAPTIVE TESTING STRATEGY PROGRAM
LISTING. 89

APPENDIX E- USER MANUAL ••.•••••••..••••••••.•••• 95

v

Table

I.

II.

III.

IV.

v.

VI.

VII.

VIII.

LIST OF TABLES

Sample Branch Coverage Matrix

Sample Modified Path Matrix

Adjacency Matrix for Example 1

Adjacency Matrix for Example 2 • • . . . • •

Adjacency Matrix for Example 3 • • • • • • • • • • • • • • • • •

Adjacency Matrix for Example 4

Adjacency Matrix for Example 5 •••••••.•••••••••

Adjacency Matrix for Example 6 • • • • • • • • • • • • • • • • •

Page

32

39

52

54

56

58

60

62

IX. Modified Adjacency Matrix for Example 7 65

X. Incidence Matrix for Example 7 66

XI. Branch Coverage Matrix for Example 7 ••••••••••• 67

XII. Modified Path Matrix for Example 7 .•.•...•.•..• 68

XIII. Modified Adjacency Matrix for Example 8 70

XIV. Incidence Matrix for Example 8 71

XV. Branch Coverage Matrix for Example 8•..•. 72

XVI. Modified Path Matrix for Example 8 ••••••••••••• 73

vi

LIST OF FIGURES

Figure Page

1. Control Flow Graph for Example 1 51

2. Control Flow Graph for Example 2 • • • • • • • • • • • • • • • • • • 53

3. Control Flow Graph for Example 3 • • • • • • • • • • • • • • • • • • 55

4. Control Flow Graph for Example 4 . • • 57

5. Control Flow Graph for Example 5 •••••••••••••••••• 59

6. Control Flow Graph for Example 6 •••••••••••••••••• 61

7. Control Flow Graph for Example 7 •••••••••••••••••• 64

8. Control Flow Graph for Example 8 • • • • • • • • • • • • • • • • • • 69

vii

CHAPTER I

INTRODUCTION

Software quality should be a primary concern in any

software development effort. The traditional methods of

assessing the quality of software are program testing and

software evaluation [DEMI87]. Program testing is an

important means of achieving an improvement in software

quality and reliability [LIN89, ADRI82, BEIZ83, MYER79].

Testing could be visualized as a process whereby a

program is executed with the intention of finding the errors

contained therein [MYER79]. Testing could also be perce1ved

as 11 the controlled analysis andjor execution of a program

expressed in some language, done to verify the pre­

determined (pre-specified) presence of some desired program

property11 [MILL79]. The general goal of program testing is

11 to affirm the quality of a software system by

systematically exercising the software under carefully

controlled circumstances 11 [MILL81). In this context, it is

1nteresting to note Dijkstra's comment regarding testing as

reported by Miller [MILL79], 11program testing can only serve

to identify program bugs, never to eliminate them11 • If it

were possible to guarantee the correctness of programs,

1

this would serve as the ultimate goal of program testing

[NTAF84].

Adrion, Branstad, and Cherniavsky [ADRI82], cite five

essential components of a program test:

1. The program in executable form;

2. A description of the expected behavior;

3. A way of observing the program behavior;

2

4. A description of the functional domain; and

5. A method of determining whether the observed behavior

conforms with the expected behavior.

Of the five essential components of a program test

cited i~ [ADRI82], the second component is the most

difficult one to obtain. Ideally, an oracle (a source which

for any g1ven input description can provide a complete

description of the corresponding output behavior) is

required in order to obtain this component [ANDR86).

Miller [MILL81) claims that the primary motivating

force for program testing is the considerable cost involved

in the process of testing. The veracity of th1s claim is

evident from the abundance of concurrence from other

published sources, a few of which are [BEIZ84, ADRI82,

MCCA76, MILL84, and ONOM87].

There seems to be a need for some means of quantifying

program testing. Such a measure is usually called a metric

and is generally defined as any number that is used to

measure an interesting property of something [BEIZ83].

In the context of this thesis, the term "metric"

applies specifically to a measure used for quantifying the

complexity of programs. The development of such a

complexity measure or metric would serve to fulfil the need

for some objective measures of various aspects of software,

such as software quality [PAIG80].

This thesis involves the development of an algorithm

used to compute such a complexity metric and another that

serves as an adaptive testing strategy. Both of these

algorithms rely upon a graph-theoretic, matrix-based

approach.

3

CHAPTER II

LITERATURE REVIEW

2.1 Graph Theory Preliminaries

This section introduces the graph theory preliminaries

used throughout this thesis. It is essentially a

compilation of all the graph-theoretic terminology used in

this document.

DIGRAPH (DIRECTED GRAPH): A digraph is an ordered pa1r

(V,E) where V is a finite set of vertices, and E is a

relation on v. The elements of E are called the edges of

the digraph. For every pair of vertices u,v V, the set of

edges E will contain at most one edge (u,v) from u to v, and

at most one edge (v,u) from v to u. If (u,v) E, we say

that u precedes v or is an antecedent of v [SKVA86].

STRONG COMPONENT: The set of vertices in a digraph D can be

partitioned into equivalence classes, and by giving each

equivalence class all the nodes connected to one another,

the connected subgraphs of a graph, called its components,

can be constructed [SKVA86].

If u is a point in a digraph D then the set of vertices

that belong to the equivalence class of u is called the

component (or, alternatively, a strong component) of u,

which is symbolized by C(u). Since components are

4

5

equivalence classes, the components defined by two points

are either the same or have no points in common [ROBISO].

STRONGLY CONNECTED GRAPH: A digraph with one strong

component is called strongly connected.

LINEAR DEPENDENCE: A set of vectors X1, X2, .•. , Xr (over

some field F) is said to be linearly independent if for

scalars c1, c2, ••• , cr in F, the expression

c1X1 + c2X2 + ... + crXr = o

holds only if c1 = c2 = ... = cr = o. Otherwise, the set of

vectors is said to be linearly dependent [DE074].

BASIS VECTOR: If every vector in a vector space W can be

expressed as a linear combination of a given set of vectors,

this set is said to span the vector space W. The dimension

of the vector space W is the minimal number of linearly

independent vectors required to span W. Any set of k

linearly independent vectors that spans w, a k-dimensional

vector space, is called a basis for the vector space W

[DE074].

ADJACENCY MATRIX: Two nodes v1, v2 € V in the digraph D =

(V,E) are adJacent if there exists either of the two edges:

(v1, v2) or (v2, v1) € E. Given a digraph D, 1ts adjacency

matrix A(D), is defined by

A(D) = [aij] i i, j = 1, 2, ... , n,

{

1,

where aij =

o, otherwise

6

INCIDENCE MATRIX: The incidence matrix [DE074] of a digraph

D, with n nodes, e edges and no self-loops is an n by e

matrix I[D] = [aijJ, whose rows correspond to the nodes and

its columns correspond to the edges, such that

{

1, if the jth edge is incident out of the ith node

aij = -1, if the jth edge is incident into the ith node

0, if the jth edge is not incident on the ith node

PATH MATRIX: A path matrix [DE074], is defined for a

specific pair of nodes in a graph, say x and y, and is

written as P(x,y). The rows in P(x,y) correspond to the

different paths between nodes x and y and the columns

correspond to the edges in a digraph D. That is, the path

matrix for the nodes x andy is P(x,y) = [PijJ, where

Pij = , {

1 if jth edge lies in its path

o, otherwise

OPEN CHAIN: This term refers to the set of 1's in a

specific row of the adjacency matrix linked together as

specified in the complexity measure algorithm (see Chapter

III).

LINK OF A CHAIN: This term is used to represent the pairs

of 1's grouped together as shown in the adjacency matrices

of the example digraphs for the complexity measure algorithm

(see Chapter III, Section 3.4).

~: is the proposed measure of complexity as derived from

the adjacency matrix according to the proposed algorithm

(see Chapter III).

7

STATEMENT COVERAGE: Execution of all statements in the

graph of a program, as a testing strategy [PRAT87].

NODE COVERAGE: Encountering all decision node entry points

in the graph of a program, as a testing strategy [PRAT87].

PATH COVERAGE: Traversing all paths of the graph [PRAT87].

BRANCH COVERAGE: Encountering all exit branches of each

decision node in the graph of a program, as a testing

strategy. The branch coverage criterion has come to be

regarded as a minimal standard of achievement in structured

testing and is widely recognized as the basic measure of

testing thoroughness [PRAT87].

BRANCH TESTING: A testing method satisfying the coverage

criteria that requires that for each decision point each

possible branch be executed at least once (ADRI82].

MUTATION TESTING: Mutation testing involves the application

of a set of mutation transformations to a user's program.

Each transformation results in a mutant. A set of test data

is considered complete if, for each mutant, there is at

least one test for which the user's program and the mutant

generate different output (HOWD81b].

2.2 Testing Strategies and Their Classification

The subject of program testing can be approached from

two angles (HOWD78]: theoretical and empirical.

The theoretical approach calls for the characterization

of situations where it is poss1ble to use testing to prove
/

formally the correctness of programs. This approach relies

8

upon the application of graph theoretic and algebraic

methods. Gourlay [GOUR83] provides a mathematical framework

for investigation of testing.

The empirical approach relies upon collection of

statistics regarding the frequency with which different

testing strategies reveal the errors existing in a

collection of programs [HOWD78]. Several testing strategies

such as path testing, branch testing, structured testing,

special values testing and symbolic testing fall under this

category [HOWD78].

Although each of these approaches, theoret1cal and

empirical, have their respective advantages and

disadvantages, Howden [HOWD78] contends that the greatest

practical benefits could accrue from the continuance of

empirical studies rather than theoretical studies.

According to Adrion, Branstad, and Chern1avsky

[ADRI82], a program is to be viewed as a representation of a

function. This function is considered as being capable of

describing the relationship of an input element called a

"domain element" to an output element called a "range

element". The testing process is then used to ensure that a

program faithfully realizes the function that it was

originally intended to perform. They go on to say that

program test methods can be classified into two broad

categories, dynamic and static analysis techniques. This

form of classification finds concurrence in many other

published sources [MILL84, DEMI87, ANDR86, HOWD81b, ONOM87,

and others]. In the case of dynamic analysis, the program

is run with some test instances and the results of the

program's performance obtained thereby are used to check

whether its actual behavior conforms with the expected

behavior. Static analysis, on the other hand, typically

involves some form of conceptual execution. Static analysis

does not usually involve actual program execution.

9

There are a host of other methods of classifying

testing strategies. It would be relevant to mention some of

the other prominent methods: black-box and white-box testing

[DEMI87, CHOW85, NTAF84, ONOM87], error-drlven strateg1es

[DEMI87, NTAF84, DEMI78, GOOD75, LIN89], top-down testing

and bottom-up testing [DEMI87], and symbolic testing

[DEMI87, MILL77, MILL81, KING76, MILL84, ADRI82] • Another

interesting testing strategy is that of domain testing

[ONOM87, WHIT80, WEYU80].

The work done by Ntafos [NTAF88], and Basili and Selby

[BASI87] offers an interesting insight into the methodology

of comparing several testing strategies. The end results of

their work is useful in making a comparison among different

testing strategies. Ntafos [NTAF88] compares a host of

structural test1ng strategies in terms of the1r relative

coverage of a program's structure and also in terms of the

number of test cases needed to satisfy each strategy. He

also points out the attendant shortcomings of such

comparisons. Also, a study comprising the application of

10

state-of-the-practice software testing techniques such as

code reading by stepwise abstraction, functional testing

using equivalence partitioning and boundary value analysis,

and structural testing using 100 percent statement coverage

criteria can be found in [BASI87].

According to Prather and Myers [PRAT87], the theory of

program testing diverges into two separate streams:

functional testing [WEYU80, HOWD81b, ANDR86, MILL81, CHOW85)

and structural testing [PRAT87, FURU87, LIN89, WOOD80,

HOWD81c, HOWD76, HOWD81b, HUAN75].

Prather and Myers [PRAT87) point out the highlights of

the functional and structural testing strategies. Functional

testing involves the use of a program's specification in

designing an "adequate test". Structural testing, on the

other hand, requires a careful study of the problem at hand,

based upon which an attempt is made to partition the

problem. In the latter case, an attempt is made to use the

program flow graph in designing an "adequate" test. The

concept of an "adequate test" appeared first in an article

by Goodenough and Gerhart [GOOD75].

From Adrian et al. [ADRI82], a complete verification of

a program, at any stage in the software life cycle, can be

obtained only by test1ng the program with every element in

the domain. A program is said to have been verified, if and

only if each test instance is successful. In the event that

the program should fail for even a solitary test instance,

an error is said to have been found. Such a method of

11

testing is called "exhaustive testing". Exhaustive testing

is the only dynamic analysis technique that will guarantee

the validity of a program. However, this technique

obviously is not practically feasible [ADRI82]. The failure

of this technique on the grounds of practical feasibility

could be attributed to the size of the functional domains,

which are infinite more often than not.

In the event that the functional domain of a program

is finite, it can still be large enough to cause the number

of test instances required to be prohibitively large.

Therefore, it is necessary to find a way of reducing this

potentially infinite exhaustive testing process to a

practically feasible one. This can be accomplished by

finding a "criterion" for choosing a number of

representative elements from the functional domain. This

concept of "criteria" (or more specifically "testing

criteria") is discussed in greater detail in Section 2.3.

At this point it would be sufficient to say that many

criteria have been suggested to date. These criteria may

act to portray the functional description or the structure

of a program.

As pointed out by Adrian et al. [ADRI82], an

important part of the testing problem is to find an

"adequate test set". The testing process involves the

choice of a subset of elements called a "test set". The

test set that is chosen should be large enough to span the

domain and yet small enough to ensure that the testing

12

process itself can be carried out for each element in the

test set. such a test set is said to be an "adequate test

set" [ADRI82] .

The first formal treatment for determining when a

criterion for test set collection is adequate, appeared in

[GOOD75]. Goodenough and Gerhart [GOOD75] define a

criterion "C" which is said to be reliable if the test sets

T1 and T2 chosen by "C" are such that all test instances of

T1 are successful exactly when all test instances of T2 are

successful. The criterion "C" is said to be "valid" if it

can produce test sets that uncover all errors. These

definitions lead to the fundamental theorem of testing which

states [ADRI82]:

If there exists a consistent, reliable,
valid, and complete criterion for test set
selection for a program P and if a test set
satisfying the criterion is such that all
test instances succeed, then the program P is
correct.

Since the objective of this thesis is to develop an

adaptive, graph-theoretic, and matrix-based testing

strategy, it would be relevant to identify the class of

testing strategies to which it belongs. Clearly, such a

strategy would fall into the broad category of structural

testing because of its reliance on the flowgraphs of

programs. Consequently, it is appropriate that the emphasis

of this discussion from this point onwards, should lie in

the field of structural testing.

The structural testing methodology in turn, can be

divided into three distinct phases [PRAT87]:

1. program graph construction,

2. test path selection, and

3. test case selection.

13

These three phases of structural testing are dealt with

independently in the following subsections. This discussion

is followed by separate sections on adaptive testing

strategies, complexity measures (metrics), and automated

testing tools.

2.3 Structural Testing Considerations

The structural testing methodology can be divided into

three phases [PRAT87] as shown in Section 2.2. The

following three subsections deal with these phases.

2.3.1 Program Graph Construction

A graph is a collection of nodes and pairs of nodes

called arcs [H084]. The nodes are used to represent the

elements of a structure while the arcs are used to represent

their interrelationships.

The program graph construction phase involves the

"annotation" of the source code listing to derive the

underlying flowgraph as a collection of vertices and edges

[PRAT87].

According to Miller [MILL79], the theory of testing

relies largely upon two forms of graph-theory-based

14

modelling of program properties. They are known as control

flow analysis and data flow analysis. The application of

graph-theory in the field of program testing is widespread

[HOWD81b]. The adoption of the graph-theoretic approach

permits us to analyze programs and infer data about suitable

test forms directly from the control andjor data structure

of the program [MILL81]. The control flow and data flow in

a program can be modelled using graph theory techniques

[HOWD81b].

In program testing, the graph-theoretic model used

assigns arcs in a directed graph (digraph) to actions or

segments in the program, and nodes in the digraph to

represent locations in a program. Such a model is obviously

well suited to program testing because the control structure

of a program in any language with a deterministic decisional

structure can be represented as a finite, possibly

disconnected, directed graph with a single entry node and a

single exit node [MILL79]. Such representations make use of

the assumption that a program is constructed purely with the

standard structured programming conventions, i.e.,

succession, alteration, and iteration [MILL79].

There are numerous published sources elucidating the

application of graph-theoretic principles to program

testing, an excellent example is [H084] which discusses

several classes of models and techniques such as directed

graph models of sequential programs, analysis of program

structure, and computing network models of reliability.

15

2.3.2 Test Path Selection

Test path selection, the second phase of the structural

testing methodology, involves choosing a finite set {Pi} of

program paths, with a view towards satisfying one or more

"coverage" criteria [PRAT87]. The criteria most often cited

in program testing literature are: statement coverage,

branch coverage, multiple condition coverage, and path

coverage.

According to Tai [TAI79], a "criterion" is needed to

select or generate test data and also in the measurement of

the level of test thoroughness while testing a program. An

ideal test criterion would be one that would guarantee the

absence of errors in a program based upon successfully

completing execution on test data satisfying the criterion.

Howden [HOWD81a] cites the development of a criterion for

test completeness. He claims that it is more effective than

branch testing and that it incorporates some of the

advantages of mutation testing [HOWD81b, ADRI82, HOWD81a].

Three of the most commonly used testing criteria in

generating test data and in measuring the level of test

thoroughness [TAI79] are:

1. each and every statement is executed at least once,

2. each and every branch is executed at least once, and

3. each and every path is executed at least once.

Goodenough and Gerhart [GOOD75] propose a fundamental

theorem of testing, basic definitions for a theory of

testing, and criteria for the selection of test items from

the domain of possible inputs to a program. In this

connection the work done by Gourlay [GOUR83], and Weyuker

and Ostrand [WEYU80] are particularly interesting.

2.3.3 Test Case Generation

16

The final phase of the structural testing methodology

is test case generation which involves the determination of

a set of test inputs X = {Xi} that will "drive" the program

through the indicated paths, given that we have selected a

set P = {Pi} of program paths based upon their having

satisfied some test coverage criteria [PRAT87].

The test data generation problem is stated by Miller

[MILL81] as follows : "given a part of a program that has

not yet been tested, construct specific test data that will

cause that part to be executed". This problem is addressed

by Goodenough and Gerhart [GOOD75], Weyuker and Ostrand

[WEYU80], and Demillo et al. [DEMI78]. Goodenough and

Gerhart note that test data selected solely on the basis of

program structure in general will be inadequate for the

purposes of thorough testing.

2.4 Adaptive Testing Strategies

Conventional test case generation methods are severely

limited by their reliance on a set of preselected complete

paths to be traversed [PRAT87]. This is because, we are

forced to return to the path selection phase in the event

17

that even one of the preselected paths proves to be

infeasible. Consequently, Prather and Myers [PRAT87]

contend that there is an intrinsic interplay between the

path selection phase and the test case generation phase.

They go on to say that the virtue of the adaptive approach

to testing lies in its ability to exploit this interplay

between phases even while acknowledging its existence. As

before, this strategy still relies heavily upon the use of a

program flowgraph. However, the idea here is to add just

one new test path (and hence, one new input test) at a time,

using previously traversed paths (inputs) as a guide to the

selection of subsequent paths (inputs), in accordance with

some inductive strategy [PRAT87].

For the purposes of this thesis the "inductive

strategy" referred to by Prather and Myers is defined on the

basis of the adjacency matrix developed for the program

flowgraph of a program. The motivation for the adaptive

testing strategy in question largely accrues from the work

done by Prather and Myers and from the book written by

Beizer [BEIZ83]. Beizer suggests that successive test paths

could be selected as small variations of previously

traversed paths while attempting to change only one thing at

a time.

2.5 Complexity Metrics

There is a need for developing some objective measure

18

of software, particularly structural complexity which can be

considered as an indicator of software "quality" as captured

in the structure of a program. In response to this need,

several different complexity measures (or metrics) have been

proposed [see, for example, PAIGSO, HALS77, CHEN78, MCCL78,

and SAMA88]. According to Chen [CHEN78], "program

complexity is the least known factor in programming activity

and it is not easily measured or described and is often

ignored during the system planning process".

Some of the complexity-based metrics proposed are:

McCabe's cyclomatic complexity [MCCA76], Halstead's software

science metrics [HALS77], Chen's maximal intersect number

[CHEN78], McClure's invocation complexity [MCCL78], Paige's

metrics [PAIGSO], and Samadzadeh and Edwards' residual

complexity [SAMA88].

McCabe [MCCA76] defines cyclomatic complexity by

finding the graph theoretic "basis set". A maximal set of

linearly independent paths in a program graph is called a

basis set. From well-known results in graph theory, the

cyclomatic number of a graph, V(G) is given by

V(G) = e - n + p

for a graph G with n nodes, e edges, and p connected

components. The number of linearly independent program

paths through a program graph is given by V(G) + p. McCabe

calls this number the cyclomatic complexity of the program.

The cyclomatic complexity, can therefore be calculated from

a program graph as

c = e - n + 2p

Halstead's metrics [HALS77], rely upon four easily-

measured parameters of a program

n1 = the number of distinct operators in the program,

n2 = the number of distinct operands in the program.

N1 = total program operator count

N2 = total program operand count

19

Halstead defines the estimated program length in

tokens, which is different from the number of statements in

a program, by

H = n1log2n1 + n2log2n2

Halstead's metrics treat paired operators such as

"BEGIN ••. END", "DO ... UNTIL", and "FOR ... NEXT" as single

operators.

The actual Halstead length is calculated as

N = N1 + N2

Halstead also defines a program's vocabulary as the sum

of the number of distinct operators and operands given by

n = n1 + n2

Paige [PAIG80], cites four metrics which he claims have

found some utility in software test environments. They are

1. The cyclomatic number (C).

2. The level of effort (E) to implement a software module

based on the mental discriminations or comparisons

required (E is one of Halstead's software science

metrics).

3. The nesting level (NX) which indicates the maximum

nesting structure utilized in the program.

4. The iteration level (IX) which indicates the maximum

iteration structure utilized in the program.

20

Of these four metrics, c, NX and IX are structure

related measures while E is a syntactic token count measure.

Paige concludes, on the basis of the work done by him, that

the metrics NX and E are found to be very useful. The

utility of the measure NX arises from its ease of

determination and also because of its direct relationship to

c. On the other hand, the utility of the measure E is

obvious since it is the only available measure of the

difficulty and the time needed to derive each test [PAIGSO].

Chen [CHEN78], proposes a measure of program control

complexity from an information theory viewpoint while

pointing out the factors which determine the complexity of a

computer program. McClure [MCCL78], discusses the probable

sources of complexity in a well-structured program and

presents a methodology for measuring and controlling the

complexity of such programs.

2.6 Automatic Testing Tools

The need for automated testing tools is obvious. In

most cases software systems are far more complex than the

programmers who developed the system would think they are.

In addition to this, the "work" involved in testing is not a

very enjoyable one, since it is tedious and time consuming.

Several automated testing tools have been developed to date.

21

Osterweil and Fosdick [OSTE76] developed a static

analysis tool, DAVE, for FORTRAN programs. Ramamoorthy and

Ho [RAMA75] described the FACES software analysis system.

Browne and Johnson [BROW78] described a FORTRAN analysis

system which is implemented using a commercially available

database-management system (System 2000). Howden [HOWD79]

presented the DISSECT system - a symbolic evaluation and

program testing system built at the University of California

on a PDP-10 LISP environment. Clarke [CLAR79] described a a

system that attempts to generate test data automatically for

programs that are written in ANSI FORTRAN. Jessop [JESS79]

presented the ATLAS system used at Bell Laboratories to test

one of their Electronic Switching Systems. This system used

a high level of automation to achieve acceptable levels of

quality assurance. Finally, Budd and Lipton [BUDD78]

discussed a program testing system which relies upon the

relatively new concept of program mutation analysis.

CHAPTER III

COMPLEXITY MEASURE ALGORITHM

3.1 Complexity Measure Algorithm Preliminaries

This chapter focuses on the development of a graph­

theoretic, matrix-based approach to devise a complexity

measure for program testing.

This approach relies upon using the basic number of

paths in the control flow graph of a program. The adoption

of this means of arriving at a measure is largely dictated

by the fact that it is impractical to consider the total

number of paths in the graph in question [MCCA76].

Although, a number of algebraic expressions which yield the

total number of paths in the graph are either readily

available or could be developed easily, it is still not a

feasible proposition to consider all the possible paths in a

given graph. Even a simple program with a solitary backward

branch presents us with the possibility of an infinite

number of paths. Consequently, the adoption of a means

which utilizes the basic number of paths seems appropriate.

It is to be noted that the basic paths in a graph could be

utilized to form any other path in the graph by forming

appropriate linear combinations [MCCA76].

22

The approach used in this thesis makes the following

assumptions:

23

1. For a given program we can draw a directed graph (known

as the program control flow graph) with unique entry and

exit nodes;

2. Each node in the graph corresponds to a block of code in

the program with the flow within each block being

sequential;

3. Each edge in the directed graph corresponds to the

branches taken in the program; and

4. Each node can be reached from the entry node and each

node can reach the exit node.

3.2 Complexity Measure Algorithm

This algorithm is aimed at computing the complexity of

a structured program from the adjacency matrix of its

control flow graph. The algorithm is outlined below.

1. Develop the directed graph representation (i.e., the

control flow graph) of a given program.

2. Develop the adjacency matrix of the control flow graph.

3. Add another column to the adjacency matrix after the

last existing column and label it "# of links in the

open chain".

4. starting from the top row and working downwards identify

all rows which contain two or more "1" entries. The

existence of two or more 11 1 11 entries in any particular

row signif1es the fact that the node label aga1nst that

24

row represents a decision node.

5. Disregard all other rows which have either a single "1"
entry or none at all. This is because a row which

exhibits such a feature corresponds to a node that is

not a decision node. It could be a node which appears

sequentially in the control flow graph, it can be a

collecting node, or a sink node.

6. Starting with the first identified row in Step 5 and

working downwards carry out the following procedure:

6.1. Locate the first "1" entry in that row. Then

locate the next occurrence of a "1" in the

same row. Encircle these two siblings which

need not necessarily be consecutive entries

of the same row of the adjacency matrix. They

could have one or more "O" entries separating

them, in which case the interven1ng "O"

entries are disregarded.

6.2. Look for the next sibling. Encircle the last

and the next siblings. Obviously, the second

circle overlaps the first one since a sibling

is shared between the two circles.

6.3. Continue this procedure until all the siblings

are exhausted. At this point there should be an

"open chain" consisting of one or more circles

linked together, with the two outermost circles

each having one sibling apiece which is not

shared. Each circle in the chain will be

called a "link of a chain" hereafter.

6.4. Count the number of circles in the "open

chain". Enter the number so obtained, in the

same row and in the last column that was added

to the original adjacency matrix.

25

7. Enter a "0" against all rows that were disregarded

(because they had only one 11 1 11 entry or none at all) in

the last column labelled "# of links in the open

chain".

8. Compute the sum of all entries in the last column of the

modified adjacency matrix. Add 1 to this sum. Call

this value "C(G)". C(G) is the cyclomatic complexity of

the graph in question.

An examination of the adjacency matrix and the

algorithm shows that the complexity is not dependent

directly on the actual size of the program (e.g., in terms

of the number of lines of code).

3.3 Identification of a Set of Basic Paths

The set of basic paths identified by following the

algorithm outlined below is by no means unique [PAIGSO].

The algorithm outlined in this subsection identifies a set

of basic paths from the adjacency matrix of the control flow

graph of a program.

1. Begin with the unique entry node for each basic path,

that is, start with the first row of the adjacency

matrix each time around.

26

2. Look for the 11 1 11 entryjentries in the first row of the

adjacency matrix and note down the corresponding row

label first. Then write down the corresponding column

label next to it. Move down to the row having the same

row label as the column label of the 11 1 11 entry just

identified. Look for the occurrence(s) of 11 1 11 entries.

Then, note down the corresponding column label next to

the list of node labels. Continue this procedure until

the unique exit node is reached. No single graph node

is to be traversed more than twice in any single basic

path. this double traversal is permitted in order to

provide for the possible existence of backward loops.

3. Repeat this procedure with the next occurrence of a

11 1 11 entry in the first row. Continuation along these

lines will eventually yield a set of node label lists

each of which corresponds to a basic path and the

number of such paths, should be equal to the value of

C(G) previously computed (Section 3.2).

The complexity measure algorithm outlined in Section

3.2 yields a measure of the complexity of a program by

computing the value C(G) from the adjacency matrix of its

graph. This value corresponds to the number of linearly

independent paths in the graph. The procedure outlined

above identifies a set of basic paths for the graph being

considered.

27

3.4 Examples

The application of the complexity measure algorithm to

some example graphs from McCabe's work [MCCA76] appears in

Appendix A.

CHAPTER IV

THE ADAPTIVE TESTING STRATEGY

The testing strategy proposed in this chapter is

adaptive in nature. A graph-theoretic, matrix-based

approach was adopted in arriving at this strategy. This

strategy utilizes the adjacency, incidence, and path

matrices of the program flow graph of a structured program.

This strategy is hinged upon a few modifications that are

made to some of these matrices. In the case of the

adjacency matrix, the modifications made are useful in

demonstrating the achievement of "branch coverage". The

path matrix is constructed using the paths generated by the

application of the adaptive testing strategy. The

modifications made to the path matrix are useful in

illustrating the attainment of complete "node coverage" and

"edge coverage".

4.1 Adaptive Testing Strategy Preliminaries

This section deals with the preliminaries required for

the discussion of the adaptive testing strategy. As

mentioned before, this testing strategy required that some

modifications be made to the adjacency matrix. These

modifications are dealt with in Subsection 4.1.1. Another

28

29

matrix called the "Branch Coverage Matrix" is also required,

which is dealt with in Subsection 4.1.2.

4.1.1 Modifications Proposed for the Adjacency

Matrix

The basic adjacency matrix is constructed using the

directed graph representation of a given program (i.e., the

control flow graph has unique entry and exit nodes). The

basic adjacency matrix has as many rows and columns as the

number of nodes in the control flow graph. This basic

adjacency matrix is then modified as follows:

1. Add three more columns to the basic adjacency matrix

after the last column and label them "base value

column", the "weighted digital signature column", and

"enhanced value column".

2. Starting from the top-most row and working downwards,

identify all the rows which contain two or more 11 1 11

entries (signifying decision nodes). Count the number

of 11 1 11 entries in all the rows identified thereby and

enter the values so obtained in the "base value column"

against the respective row. In this process of row

identification disregard all rows which have a either a

single "1" entry or none at all. However, a "O" entry

is to be made against such rows in the "base value

column".

3. Identify all the non-zero entries in the "base value

column". Fill all locations in the "weighted digital

signature column" with corresponding non-zero entries

in the "base value column" with the value 11 3 11 (called

the "key value" hereafter). Insert "0" entries in

all other locations.

The "key value" of 11 3 11 could be replaced by any

other positive number. This is because the purpose

of using this "key value" is merely to have a

recognizable quantity once the strategy has run

through its full course. The significance of the use

of a "key value" will become apparent when the

algorithm is outlined in detail(see Section 4.2).

4. In the last column labelled as the "enhanced value

column", make an entry equal to the sum of the values

in the "base value column" and the "weighted digital

signature column" against the respective rows.

30

When this process has been completed, the last three

columns of the modified adjacency matrix should contain non­

zero entries against all the rows identified in Step 2 above

(representing decision nodes), and 11 0 11 entries against all

other rows (representing sequential nodes). Obviously, the

non-zero entries in the "base value column" represent the

number of children that the respective decision nodes

possess.

4.1.2 Branch Coverage Matrix

Another matrix called the "Branch Coverage Matrix" is also

constructed which is an important part of the adaptive

testing strategy. This matrix is constructed as follows:

1. Set up the matrix with as many rows as there are nodes

in the program flow graph.

2. Identify the decision node with the largest number of

children (easily recognized by observing the values in

base value column of the modified adjacency matrix

described in Section 5.1.1). Then the number of

columns required for this matrix is computed as

follows:

of columns = (largest # of children as above) + 2

The numeral "2" in the above expression is not a magic

number. This number in fact represents the need for

31

two additional columns. One of these is used to carry

a replica of the "enhanced value column" from the

modified adjacency matrix, and the other column is

required to house the "residual digital signature".

The existence of a tie for the largest number of

children does not affect the situation in any way. This

is because the number of columns required would be the

same as would have been needed in the absence of a tie.

If, for example, the decision node with the maximum

number of children were to have 2 children (could even be a

case statement) and if we had several other binary decision

nodes in a 10 node decision matrix, the corresponding

"Branch Coverage Matrix" would probably look like the one

shown in TABLE I on the next page.

TABLE I

SAMPLE BRANCH COVERAGE MATRIX

EVC 1 2 RDS

1 5 ~1 j-1 3

2 0 0 0 0

3 5 ~1 ~1 3

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

row labels represent node numbers
column labels represent child node counts
EVC represents Enhanced Value Column
RDS represents Residual Digital Signature

32

Now that ~he number of rows and columns required for

this matrix have been computed, the task of filling up the

matrix remains. This matrix is then filled by following the

procedure outlined below:

1. Fill the first column with a replica of the "enhanced

value column" from the modified adjacency matrix.

2. Identify the rows representing decision nodes (rows

containing non-zero entries).

3. Fill the node labels of the children of all the

decision nodes in the corresponding rows from left to

right after the EVC entry.

4. The decision(s) with fewer children than the one with

the maximum number of children will have some vacant

spaces. Pad these spaces with 11 0 11 entries.

5. Fill the rows against all the non-decision nodes with

11 0 11 entries. This includes the corresponding

locations on the "residual digital signature column"

which is the last column in this matrix.

33

This process should leave a matrix completely filled

except for the locations against the decision nodes in the

last column called "residual digital signature column". The

contents of these remaining locations will be decided in the

course of the application of the adaptive testing strategy.

4.2 Adaptive Testing Strategy

The proposed adaptive strategy is expected to yield a

set of program paths, P = {Pi} which meet the "branch

coverage" and "node coverage criteria". Now, let the set of

test inputs required to drive the program through the

indicated paths be X= {Xi}·

This strategy is adaptive in nature because a clearly

recognizable digital signature called the "residual digital

signature" is left behind whenever a particular path is

traversed. On subsequent searches for other paths, repeated

traversals of previously traversed nodes is avoided by

recognizing the digital signature, left behind during

34

previous traversals. So, in effect, the choice of a path

helps us to determine subsequent paths without the attendant

threat of making wasteful and expensive repetitions. The

adaptive strategy is outlined in detail below:

1. All paths begin at the unique source node (a column of

all zeros) and terminate at the unique sink node (a

row of all zeros).

2. Consider the incidence matrix of the program flow

graph in question. Start the traversal at the source

node. It is possible that the source could be a

sequential node (i.e., not a decision node). Make a

record of the corresponding node label.

3. The row representing the source node should contain

one or more 11 1 11 entries. Locate the first instance

of a "1" entry in this row. The traversal begins at

this entry.

4. Traverse the column containing the entry identified

in the previous step in a downward fashion until a

"-1" entry is encountered. Then, record the node

label that corresponds to the row containing the

"-1 11 entry, next to the node label previously

recorded (i.e., the source node in this case). The

edge connecting the source node and the node

identified in this step is the first edge in the path.

5. At this point, start a horizontal search, along the

same row until a 11 1 11 entry is reached. It is possible

that more than one such "1" entries could exist in a row

(i.e., in the case of a decision node). At the first

occurrence of a "1" entry in this row, drop down until

a "-1" entry is reached lower down in the column

containing this entry. Then add the node label of the

row containing the "-1" entry to the list of node

labels being maintained (which presently consists of

the source node and another node). Continue this

procedure, recording node labels along the way in the

manner specified above.

This procedure will terminate when the unique exit

node is reached. The exit node is easily identified

when a "-1" entry is encountered and for which no "1"

entry can be found along the same row.

35

6. During the process of traversing a path, whenever a

child node of a decision node is traversed go back to

"Branch Coverage Matrix" (which also accounts for node

coverage), and replace the corresponding node label by a

value of "-1". If however such a node is traversed more

than once, this replacement is to be carried out only

the first time around.

7. This "-1" entry replacing the node labels serve as the

"recognizable digital signatures" which are useful in

serving as a reminder of the fact that the node in

question has been traversed previously. Thus, when

the path is being identified the node number which

bears the signature of "-1" is avoided and instead

another branch is chosen for traversal.

36

8. This process is carried out starting from the first

decision node encountered after traversing the unique

source node down to the decision node before the unique

sink node and until each child node of every decision

node bears the digital signature 11 -1 11 •

9. A backward loop is identified in this traversal when it

is no longer possible to find a 11 -1 11 entry upon dropping

down from a 11 1 11 entry. In such a case look for a 11 -1 11

entry above the 11 1 11 entry and continue as before with

the only difference being that the horizontal search at

this juncture is now directed from right to left in the

incidence matrix.

10. If at some decision node the children are placed such

that one node is in the forward direction (identified

when a 11 -1 11 entry is reached by dropping down from a 11 1 11

entry in the incidence matrix) and the other is reached

by looping backwards (identified when a 11 -1 11 entry is

reached by moving upwards from a 11 1 11 entry in the

incidence matrix), choose the node in the forward

direction the first time around through that decision

node. Record the corresponding path as was outlined

before. For the next path (with one child node obtained

by looping backwards), start out by traversing the path

as before. This process is initiated at the unique

source node as before and is carried out until the

decision node is reached. At this point the backward

looping branch is chosen (the forward going branch is

37

avoided upon encountering the signature value of "-1")

and the node labels are recorded as before. It is

important to ensure that this loop is traversed only

once. This is accomplished easily by avoiding

repetitive traversals whenever the signature value is

encountered. Then, when the traversal procedure returns

to the decision node encountered previously (the branch

that was traversed previously is avoided and a branch

which was not traversed previously is chosen), simply

copy the rest of the path from that point onwards, from

the previous path through that decision node. (For

example, see path 2 on page 72.)

11. This procedure is completed when all the non-zero node

label entries in the child node columns of the node

coverage matrix (i.e., branch coverage matrix) bear the

digital signature "-1".

12. At this point compute the sum of all the elements in

each row of the Branch Coverage Matrix (the sum is zero

for all non-decision nodes and has been entered

previously) and enter these values in the corresponding

locations in the "residual signature column". This

column should now consist of only "O" entries and 11 3 11

entries (i.e., the key value). This column vector so

obtained is called the "residual digital signature".

When the adaptive strategy has run through its full

course, it returns the pre-assigned "weighted digital

signature" (Section 4.1.1). The "residual digital

38

signature" generated by this strategy should in fact match

the previously assigned "weighted digital signature"

exactly. Furthermore, complete node and branch coverage are

achieved when this strategy is applied. Although it is

obvious that edge coverage follows from branch coverage, an

additional means of demonstrating edge coverage is

illustrated in Section 4.3.

4.3 Modifications Proposed for the Path Matrix

The basic path matrix is constructed with the path

numbers representing the rows and the edge numbers

representing the columns [DE074]. If an edge is part of a

path, a 11 1 11 entry is made against the path in question and

in the column assigned for the edge being considered; and

"O" entries are made against the edges that are not part of

the path. In order to demonstrate the achievement of edge

coverage, the basic path matrix is modified slightly. The

only modification needed is the addition of a row. The

modified path matrix, which is constructed as specified

above, would probably look like the one shown in TABLE II on

the next page.

In this context it would be relevant to discuss the

interpretation of the basic path matrix [DE074]. In the

basic path matrix a column consisting of all 11 0 11 entries

corresponds to an edge that does not lie on any path between

the source node and the sink node. A column of all 11 1 11

entries corresponds to an edge that lies in every path

39

between the source node and the sink node. There is no row

with all "O" entries because a row in the path matrix

represents a path which is made up of edges and there cannot

be a path made up of no edges. It is seen that every column

in this matrix has at least a single "1" entry since each

node in-the graph is traversed when the adaptive testing

strategy has run through its full course (see TABLES XII and

XVI in Appendix B).

TABLE II

SAMPLE MODIFIED PATH MATRIX

1 2 3 4 5 6 7

1 1 0 0 1 0 0 1

2 0 1 1 0 0 1 0

3 1 0 0 0 1 0 0

1 1 1 1 1 1 1

row labels represent path numbers
column labels represent edge labels

8 9

0 1

0 1

1 0

1 1

last row indicates coverage of all edges (row of 1's)

4.4 Complete Edge Coverage

Every column of the modified path matrix (see Section

4.3) is checked for the presence of one "1" entry. In the

event that a "1" entry is found in a particular column, a

"1" entry is made in the last row of the same column,

40

otherwise a 11 0 11 is entered at this position. When the

process of searching the columns of the modified path matrix

for "1" entries is completed, the last row of the modified

path matrix should consist of only 11 1 11 entries signifying

that every edge in the graph is included in at least one

path.

Thus, the adaptive testing strategy yields a set of

program test paths that provide complete node coverage, path

coverage, and hence edge coverage. The residual digital

generated by the adaptive testing strategy at the conclusion

of its application is indicative of the fulfillment of the

said coverage criteria. Relabelling of the nodes in the

control flow graph of a program does not produce a different

set of paths. The set of paths generated remains the same,

the only difference being that the node labels get changed

due to the relabelling.

4.5 Examples

The application of the adaptive testing strategy to

some example flowgraphs from McCabe's work [MCCA76] appears

in Appendix B.

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

The main theme of this thesis was the development of an

algorithm to compute the complexity of structured programs

and an adaptive testing strategy using a graph-theoretic

matrix-based approach. The approach used in this thesis

relies upon the following assumptions:

1. For a given program we can draw a directed graph (known

as the program control flow graph) with unique entry and

exit nodes;

2. Each node in the graph corresponds to a block of code in

the program with the flow within each block being

sequential;

3. Each edge in the directed graph corresponds to the

branches taken in the program; and

4. Each node can be reached from the entry node and each

node can reach the exit node.

Essentially, these assumptions convey the notion that

the algorithms developed as part of this thesis apply only

to structured programs.

The complexity measure calculated would be useful,

amongst other things, in assessing software quality as

captured in the structure of a program. A low complexity

41

value is considered desirable and is indicative of high

quality. The adaptive testing strategy that has been

developed is expected to offer several advantages over

conventional testing strategies. These advantages are

likely to manifest themselves in the form of significant

savings in the cost of the testing process and in having

fewer computational requirements when compared with its

conventional counterparts which involve the application of

costly path selection techniques.

42

However, the graph-theoretic matrix-based approach

adopted for this thesis introduces some attendant

limitations. This approach relies heavily upon the use of

the incidence matrix of the program control flow graph. The

definition of the incidence matrix does not accommodate the

existence of self-loops (a node in the graph is a child of

itself). This limitation is in turn imposed upon the

adaptive testing strategy, thereby limiting its

applicability to only structured programs which are devoid

of self-loops.

Suggestions for future work include finding a way

around the limitation imposed upon the adaptive testing

strategy so as to accommodate the existence of self-loops

which are fairly commonplace in actual programs. Further,

time and space complexity analyses which were not conducted

as part of this thesis could be carried out.

Other future work might include the development of an

automated testing tool which relies upon the adaptive

43

testing strategy developed as part of this thesis. Such an

automated testing tool would be useful in relieving the

tedium of testing and possibly contribute towards reducing

the amount of time spent in the testing process.

REFERENCES

[ADRI82]
W. Richards Adrian, Martha A. Branstad, and John c.
Cherniavsky, "Validation, Verification, and Testing of
Computer Software", ACM Computing Surveys, pp. 159-192, June
1982.

[ANDR86]
Stephen J. Andriole (Editor), Software Validation,
Verification, Testing. and Documentation, Petrocelli Books,
1986.

[BASI87]
Victor R. Basili and Richard W. Selby, "Comparing the
Effectiveness of Software Testing Strategies", IEEE
Transactions on Software Engineering, Vol. SE-13, No. 12,
pp. 1278-1296, December 1987.

[BEIZ83]
Boris Beizer, Software Testing Techniques, Van Nostrand
Reinhold Company, 1983.

[BEIZ84]
Boris Beizer, Software System Testinq and Quality Assurance,
Van Nostrand Reinhold Company, 1984.

[BERG73]
c. Berge, Graphs and Hypergraphs, Amsterdam, The Netherlands
North-Holland, 1973.

[BROW78]
J. c. Browne and David B. Johnson, "FAST: A Second
Generation Program Analysis System", Proceedings of the 3rd
International Conference on Software Engineering, pp. 142-
148, Atlanta, Georgia, May 1978.

[BUDD78]
Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward,
and Richard A. DeMille, "The Design of a Prototype Mutation
System for Program Testing", Conference Proceedings,
National Computer Conference, pp. 623-627, 1978.

[CHEN78]
Edward T. Chen, "Program Complexity and Programmer
Productivity", IEEE Transactions on Software Engineering,
Vol. SE-4, No. 3, pp. 187-194, May 1978.

44

[CHOW85]
Tsun s. Chow, "Part 6: Technical Issues: Testing and
Validation", IEEE Tutorial: Software Quality Assurance -A
Practical Approach, pp. 269-274, 1985.

[CLAR79]
L. A. Clarke, "A System to Generate Test Data and
Symbolically Execute Programs", IEEE Tutorial: Automated
Tools for Software Engineering, IEEE Computer Society, pp.
211-218, 1979.

[DEMI78]
Richard A. DeMillo, Richard J. Lipton, and Frederick G.
Sayward, "Hints on Test Data Selection: Help for the
Practicing Programmer", Computer, pp. 34-41, April 1978.

[DEMI87]

45

Richard A. DeMillo, W. Michael McCracken, R. J. Martin, and
John F. Passafiume, Software Testing and Evaluation, The
BenjamimjCummings Publishing Company, Inc., 1987.

[DE074]
Narsingh Deo, Graph Theory with Applications to Engineering
and Computer Science, Prentice-Hall Inc., N.J., 1974.

[FURU87]
Zengo Furukawa and Kazuo Ushijima, "A Model for the Testing
Support Method with Sequences of a Directed Graph",
Proceedings of COMPSAC87, IEEE Computer Society's Computer
Software and Applications Conference, pp. 311-316, 1987.

[GOOD75]
John B. Goodenough and Susan L. Gerhart, "Toward a Theory of
Test Data Selection", IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, pp. 156-173, June 1975.

[GOUR83]
John s. Gourlay, "A Mathematical Framework for the
Investigation of Testing", IEEE Transactions on Software
Engineering, Vol. SE-9, No. 6, pp. 685-709, November 1983.

[HALS77]
M. H. Halstead, Elements of Software Science, Elsevier
Publishers, 1977.

(H084]
Hon s. Ho, "Graph Theoretic Modeling and Analysis in
Software Engineering", Handbook of Software Engineering, Van
Nostrand Reinhold Company, pp. 26-37, 1984.

[HOWD76]
William E. Howden, "Reliability of the Path Analysis Testing
Strategy", IEEE Transactions on Software Engineering, Vol.
SE-2, No. 3, pp. 208-215, September 1976.

[HOWD78]
William E. Howden, "Theoretical and Empirical Studies of
Program Testing", Proceedings of the 3rd International
Conference on Software Engineering, Atlanta, Georgia, May
10-12, pp. 305-311, 1978.

[HOWD79]

46

William E. Howden, "Dissect - A Symbolic Evaluation and
Program Testing System", IEEE Tutorial: Automated Tools for
Software Engineering, pp. 207-210, 1979.

[HOWD81a]
William E. Howden, "Completeness Criteria for Testing
Program Functions", IEEE Tutorial: Software Testing and
Validation Techniques, pp. 67-75, 1981.

[HOWD81b]
William E. Howden, "A Survey of Dynamic Analysis Methods",
IEEE Tutorial: Software Testing and Validation Techniques,
pp. 209-231, 1981.

[HOWD81c]
William E. Howden, "Functional Testing Design Abstractions",
IEEE Tutorial: Software Testing and Validation Techniques,
pp. 281-287, 1981.

[HUAN75]
J. c. Huang, "An Approach to Program Testing", ACM Computing
surveys, pp. 113-128, September 1975.

[JESS79]
w. H. Jessop, J. R. Kane, s. Roy, and J. M. Scanlon, "ATLAS­
An Automated Software Testing System'', IEEE Tutorial:
Automated Tools for Software Engineering, pp. 219-225, 1979.

[KING76]
James c. King, "Symbolic Execution and Program Testing",
Communications of the ACM, Vol. 19, No. 7, pp. 385-394, July
1976.

[LIN89]
Jin-Cherng Lin and Chyan-Goei Chung, "Zero-One Programming
Model in Path Selection Problem", Proceedings of COMPSAC89,
Thirteenth Annual International Conference on Computer
Software and Applications Conference, Orlando, Florida, pp.
618-627, 1989.

[MCCA76]
Thomas J. McCabe, "A Complexity Measure", IEEE Transactions
on Software Engineering, Vol. SE-2, No. 4, pp. 308-320,
December 1976.

[MCCL78]
Carma L. McClure, "A Model for Complexity Analysis",

47

Proceedings of the 3rd International Conference on Software
Engineering, pp. 149-157, Atlanta, Georgia, May 1978.

[MILL77]
Edward F. Miller, "Program Testing: Art Meets Theory", IEEE
Computer, pp. 42-51, July 1977.

[MILL79]
Edward F. Miller, "Program Testing Technology in the 1980s",
The Oregon Report: Proceedings of the Conference on
Computing in the 1980s, pp. 72-79, 1979.

[MILL81]
Edward F. Miller, "Introduction to Software Testing
Technology", IEEE Tutorial: Software Testing and Validation
Techniques, pp. 4-16, 1981.

[MILL84]
Edward F. Miller, "Software Testing Technology: An
Overview", Handbook of Software Engineering, Van Nostrand
Reinhold Company, pp. 359-379, 1984.

[MYER79]
G. J. Myers, The Art of Software Testing, A Wiley­
Interscience Publication, John Wiley & Sons, 1979.

[NTAF84]
Simeon C. Ntafos, "On Required Element Testing", IEEE
Transactions on Software Engineering, Vol. SE-19, No. 6, pp.
795-803, November 1984.

[NTAF88]
Simeon c. Ntafos, "A Comparison of Some Structural Testing
Strategies", IEEE Transactions on Software Engineering, Vol.
14, No. 6, pp. 868-874, June 1988.

[ONOM87]
Akira K. Onoma, Tsuneo Yamauara, and Yoshio Kobayashi,
"Practical Approaches to Domain Testing: Improvements and
Generalization", Proceedings of COMPSAC87, IEEE Computer
Software and Applications Conference, pp. 291-297, 1987.

[OSTE76]
L. J. Osterweil and L. D. Fosdick, "DAVE -A Validation
Error Detection and Documentation System for FORTRAN
Programs", Software Practice and Experience, pp. 473-486,
October-December 1976.

[PAIG80]
Michael Paige, "A Metric for Software Test Planning",
Proceedings of COMPSAC80, IEEE Computer Society's Fourth
International Computer Software and Applications Conference,
October 27-31, pp. 499-504, 1980.

[PRAT87]
Ronald E. Prather and J. Paul Myers, Jr., "The Path Prefix
Software Testing Strategy", IEEE Transactions on Software
Engineering, Vol. SE-13, No. 17, July 1987.

[RAMA75]

48

c. v. Ramamoorthy and s. F. Ho, "Testing Large Software with
Automated Software Evaluation Systems", IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, pp. 46-58, March
1975.

[ROBI80]
D. F. Robinson and L. R. Foulds, Digraphs: Theory and
Techniques, Gordon and Breach Science Publishers, New York,
1980.

[SAMA88]
M. Samadzadeh and W. Edwards, "A Classification Model of
Software Comprehension", Proceedings of the 21st Annual
Hawaii International Conference on System Science (HICSS
~, Hawaii, 1988.

[SKVA86]
Romualdas Skvarcius and William B. Robinson, Discrete
Mathematics with Computer Science Applications, The
Benjamin/Cummings Publishing Company, Inc., 1986.

[TAI79]
Kuo-Chung Tai, "On Program Testing Criteria", Proceedings of
COMPSAC79, IEEE Computer Society's Third International
Computer Software and Applications Conference, pp. 494-499,
1979.

[TEMP81]
H. N. v. Temperley, Graph Theory and Applications, Ellis
Horwood Series in Mathematics and Its Applications, England,
1981.

[WEYU80]
Elaine J. Weyuker and Thomas J. Ostrand, "Theories of
Program Testing and the Application of Revealing
Subdomains", IEEE Transactions on Software Engineering, Vol.
SE-6, No. 3, pp. 236-246, May 1980.

[WHIT80]
Lee J. White and Edward I. Cohen, "A Domain Strategy for
Computer Program Testing", IEEE Transactions on Software
Engineering, Vol. SE-6, No. 3, pp. 247-257, May 1980.

[WOOD80]
Martin R. Woodward, David Hedley, and Michael A. Hennell,
"Experience with Path Analysis and Testing of Programs",
IEEE Transactions on Software Engineering, Vol. SE-6, No. 3,
pp. 278-285, May 1980.

APPENDIXES

49

APPENDIX A

EXAMPLES FOR COMPLEXITY MEASURE ALGORITHM

50

51

C(G) = 2

Figure 1.. Control Flow Graph for Example 1

TABLE III

ADJACENCY MATRIX FOR EXAMPLE 1

1 2 3 #

1 0 1 0 0

2 0 1 1 1

3 0 0 0 0

row labels represent node numbers
column labels represent node numbers
I represents the number of links in the open chain

52

53

C(G) = 3

Figure 2. Control Flow Graph for Example 2

TABLE IV

ADJACENCY MATRIX FOR EXAMPLE 2

1 2 3 4 5 6 7 8 ' 1 0 1 1 0 0 0 0 0 1

2 0 0 0 0 0 1 0 0 0

3 0 0 0 1 1 0 0 0 1

4 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 0 0

row labels represent node numbers
column labels represent node numbers
I represents the number of links in the open chain

54

55

CCGl = 5

Figure 3. Control Flow Graph for Example 3

TABLE V

ADJACENCY MATRIX FOR EXAMPLE 3

1 2 3 4 5 6 7 8 9

1 0 1 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 0 0 0

4 0 1 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 1 c 1

8 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 1 0 0

llo 0 0 0 0 0 0 0 0 0

row labels represent node numbers
column labels represent node numbers

10 t

0 0

0 1

0 0

0 1

1 0

0 0

0 1

0 0

1 1

0 0

t represents the number of links in the open chain

56

57

CCGl = 6

Fiqure 4. Control Flow Graph for Example 4

TABLE VI

ADJACENCY MATRIX FOR EXAMPLE 4

1 2 3 4 5 6 7 8 9 10 1112 I

1 0 1 0 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 1 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 1 0 0

6 0 0 0 0 0 0 0 0 0 0 1

7 0 1 0 0 0 0 0 1 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 1 0

10 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

row labels represent,node numbers
column labels represent node numbers

0 0

0 1

0 0

0 1

0 1

0 0

0 1

1 0

0 1

0 0

1 0

0 0

I represents the number of links in the open chain

58

59

C(G) = 8

Figure 5. Control Flow Graph for Example 5

TABLE VII

ADJACENCY MATRIX FOR EXAMPLE 5

1 2 3 4 5 6 7 8 9 10 11 12 t

1 0 1 1 1 1' 1 1 0 0 0 0 0 5

2 0 0 0 0 0 0 0 1 0 0 0 0 0

3 0 0 0· 0 0 0 0 1 0 0 0 0 0

4 0 0 0 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0 0 0 0

6 0 0 0 0 0 0 0 1 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 1 0 1

8 0 0 0 0 0 0 0 0 1 1 0 0 1

9 0 0 0 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0

11 0 0 0 0 0 0 0 0 0 0 0 1 0

U_ 0 0 0 0 0 0 0 0 0 0 0 0 0

row labels represent node numbers
column labels represent node numbers
t represents the 'number of links in the open chain

60

61

CCG) = 8

Figure 6. Control Flow Graph for Example 6

TABLE VIII

ADJACENCY MATRIX FOR EXAMPLE 6

1 2 3 4 5 6 7 8 9 10 11 12 13 I

1 0 1 1 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 1 0 0

6 0 0 1 0 0 0 1 1 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 0 1 0

~0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

[!3 0 0 0 0 0 0 0 0 0 0 0

row labels represent nod~ numbers
column labels represent node numbers

0 0 1

0 0 1

0 1 0

0 0 1

0 0 1

0 0 2

0 0 0

0 0 0

0 0 0

1 0 1

1 0 0

0 1 0

0 0 0

f represents the number of links in the open chain

62

APPENDIX B

EXAMPLES FOR ADAPTIVE TESTING STRATEGY

63

64

edge 3

Figure 7. Control Flow Graph for Example 7

TABLE IX

MODIFIED ADJACENCY MATRIX FOR EXAMPLE 7

1 2 3 4 5 6 7 8 # BVC WDS

1 0 1 1 0 0 0 0 0 1 2 3

2 0 0 0 0 0 1 0 0 0 0 0

3 0 0 0 1 1 0 0 0 1 2 3

0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0 0

6 0 0 0 0 0 0 1 0 0 0 0

row labels represent node numbers
column labels represent node numbers

EVC

5

0

5

0

0

0

' represents the number of links in the open chain
BVC represents Base Value Column
WDS represents Weighted Digital Signature
EVC represents Enhanced Value Column

65

TABLE X

INCIDENCE MATRIX FOR EXAMPLE 7

1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0

2 0-1 1 0 0 0 0 0 0

3 -1 0 0 1 1 0 0 0 0

4 0 0 0 -1 0 0 1 0 0

5 0 0 0 0 -1 0 0 1 0

6 0 0 -1 0 0 1 0 0 0

17 0 0 0 0 0 -1 -1 0 1

~ 0 0 0 0 0 0 0-1-1

row labels represent node numbers
column labels represent edge labels

66

TABLE XI

BRANCH COVERAGE MATRIX FOR EXAMPLE 7

EVC 1 2 ROS

1 5 1-1 ~-1 3

2 0 0 0 0 path 1: 1,3,4,7,8

3 5 ~-1 ;-1 3
Path 2: 1,2,6,7,8

4 0 0 0 0

5 0 0 0 0 Path 3: 1,3,5,8

6 0 0 0 '0

7 0 0 0 0

8 0 0 0 0

row labels represent node numbers
column labels represent child node counts
EVC represents Enhanced Value Column
RDS represents Residual Digital Signature

67

TABLE XII

MODIFIED PATH MATRIX FOR EXAMPLE 7

1 2 3 4 5 6 7 8

1 1 0 0 1 0 0 1 0

2 0 1 1 0 0 1 0 0

3 1 0 0 0 1 0 0 1

1 1 1 1 1 1 1 1

row labels represent path numbers
column labels represent edge labels

9

1

1

0

1

last row indicates coverage of all edges (row of l's)

68

69

1

edge dge 2

edge
5

edge

12

Fiqure 8. Control Flow Graph for Example 8

TABLE XIII

MODIFIED ADJACENCY MATRIX FOR EXAMPLE 8

1 2 3 4 5 6 7 8 9 10 * BVC

1 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 0 0 0 1 2

3 0 0 0 0 0 1 0 0 0 0 0 0

4 0 1 0 0 1 0 0 0 0 0 1 2

5 0 0 0 0 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0 1 0 0 0 0 0
-

7 0 0 0 0 0 0 0 1 1 0 1 2

8 0 0 0 0 0 0 0 0 1 0 0 0

9 0 0 0 0 0 0 1 0 0 1 1 2

tlO 0 0 0 0 0 0 0 0 0 0 0 0

row labels represent node numbers
column labels represent node numbers

WDS EVC

0 0

3 5

0 0

,3 5

0 0

0 0

3 5

0 0

3 5

0 0

represents the number of links in the open chain
BVC represents Base Value Column
WDS represents Weighted Diqital Signature
EVC represents Enhanced Value Column

70

TABLE XIV

INCIDENCE MATRIX FOR EXAMPLE 8

1 2 3 4 5 6 7 8 9 10 1112 13

1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 -1 -1 1 1 0 0 0 0 0 0 0 0 0

3 0 0-1 0 0 1 0 0 0 0 0 0 0

4 0 1 0-1 1 0 0 0 0 0 0 0 0

5 0 0 0 0 -1 0 0 0 0 0 0 1 0

6 0 0 0 0 0 -1 1 0 0 0 0 0 0

7 0 0 0 0 0 0 -1 1 1 0 0 0 -1

8 0 0 0 0 0 0 0-1 0 0 1 0 0

9 0 0 0 0 0 0 0 0 -1 1 -1 0 1

10 0 0 0 0 0 0 0 0 0 -1 0 -1 0

row labels represent node numbers
column labels represent edge labels

71

TABLE XV

BRANCH COVERAGE MATRIX FOR EXAMPLE 8

EVC 1 2 RDS

1 0 0 0 0

2 5 1-1 !-1 3

3 0 0 0 0

4 5 t-1 ~-1 3 Path 1 : 1,2,3,6,7,8,9,7,9,10

5 0 0 0 0
Path ~ 1,2,4,2,4,5,10

6 0 0 0 0

7 5 ;-1 ,_1 3

8 0 0 0 0

9 5 j-1 J,-6-1 3

tl.O 0 0 0 0

row labels represent node numbers
column labels represent child node counts
EVC represents Enhanced Value Column
RDS represents Residual Digital Signature

72

TABLE XVI

MODIFIED PATH MATRIX FOR EXAMPLE 8

1 2 3 4 5 6 7 8 9 10 1112 13

1 1 0 1 0 0 1 1 1 1 1

2 1 0 0 1 1 0 0 0 0 0

3 1 1 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

row labels represent path numbers
column labels represent edge labels

1 0 1

0 1 0

0 1 0

1 1 1

last row indicates coverage of all edges (row of 1's)

73

APPENDIX C

COMPLEXITY MEASURE PROGRAM LISTING

74

75

{**}
{* *}
{* Complexity Measure Program Listing *}
{* *}
{**}
{* *}
{* Author: Shankar Narayanaswamy *}
{* Date: 05/30/91 *}
{* Class: COMSC 5000 - Thesis *}
{* Adviser: Dr. Mansur Samadzadeh *}
{* *}
{**}
{* *}
{* Procedures Used: *}
{* ---------------- *}
{* pause, clearscreen, printlines, initialize, *}
{* read_matrix_values, print_matrix, print_entryexit_nodes*}
{* read_incidence matrix, print_incidence_matrix, *}
{* print_proof_matrix, print_child_matrix, *}
{* readin_child_matrix, main program. *}
{* *}
{* Input for Program: *}
{* ------------------ *}
{* 1. Adjacency Matrix for the Control Flow Graph. *}
{* 2. The number of nodes in the Control Flow Graph. *}
{* 3. The Incidence Matrix for the Control Flow Graph. *}
{* 4. The number of edges in the Control Flow Graph. *}
{* *}
{* Output of Program: *}
{* ------------------ *} {* 1. Prints the Adjacency Matrix on the screen. *}
{* 2. Prints the value of C(G), i.e., the Complexity. *}
{* 3. The identity of the Unique Entry Node. *}
{* 4. The identity of the Unique Exit Node. *}
{* 5. Prints the Incidence Matrix on the screen. *}
{* 6. Generates the child matrix (each row contains *}
{* the number of children possessed by each node *}
{* followed by the node labels of the children of the *}
{* respective node) which is used by the adaptive *}
{* testing strategy program. *}
{* *}
{* Program Function *}
{* ---------------- *} {* The program accepts input in the format specified above*}
{* Given the input in this format the program generates *}
{* the complexity number for the program in question *}
{* according to the Complexity Measure Algorithm. *}
{* Adaptive Testing Strategy. *}
{* *}
{* Debugging Tools Used: *}
{* --------------------- *} {* Turbo Pascal Debugger *}
{* *}
{**}

program adaptive_test;

const
MAX SIZE = 100;

var
matrix: array [1 •. MAX_SIZE,1 •• MAX_SIZE+1] of integer;
childmatrix : array [1 •. 10,1 •• 10] of integer;

76

incmatrix : array [1 •• MAX_SIZE,1 •• MAX_SIZE] of integer;
proofmatrix: array [1 •• MAX_SIZE,1 •. MAX_SIZE) of integer;
ndary: array [1 •• 2] of integer; {saves entryjexit}

{node labels}
n : integer; {# of nodes in the control flow graph}
totedges : integer; {# of edges in the control flow graph}
total_sum : integer; {total # of links in the open chains}
entrynodeflag,exitnodeflag : boolean;
setentry,setexit,selfloopset,doneonce : boolean;
uen,uxn : integer; {save unique entry and exit nodes}
bigchild : integer; {to save the maximum # of children}

{possessed by any decision node in}
{the control flow graph}

maxcols integer; {# of columns for proof of branch}
{coverage matrix}

origin integer;
edge_direction : integer;

{**}
{* *}
{* procedure pause *}
{* --------------- *}
{* This procedure is used to generate a pause during the *}
{* execution of the program *}
{* *}
{**}
procedure pause;

begin
writeln;
writeln('Hit <Enter> to continue .•. ');
r~adln;

end;

{**}
{* *}
{* procedure clearscreen *}
{* --------------------- *}
{* This procedure is used to clear the screen during the *}
{* execution of the program. *}
{* *}
{**}

procedure clearscreen;

const
scrnlimit = 25;

var
int : integer;

begin
for int := 1 to scrnlimit do
writeln;

end;

77

{**}
{* *} {* procedure printlines *}
{* -------------------- *} {* This procedure is used to generate a specified number *}
{* of lines which is passed to it as a parameter. *}
{* *}
{**}
procedure printlines(z: integer);

var
i integer;

begin
for i := 1 to n do
writeln;

end;

{**}
{* *}
{* procedure initialize *}
{* -------------------- *} {* This procedure is used to initialize all the global *}
{* variables. *}
{* *}
{**}
procedure initialize;
var

a,b,c : integer;
begin

setentry := false;
setexit := false;
entrynodeflag := false;
exitnodeflag := false;
for a := 1 to 2 do
ndary[a] := -1; {initialize entry and exit}

{node labels to -1}
selfloopset := false;
doneonce := false;
bigchild := O;

edge_direction := 1;
end;

78

{**}
{* *}
{* procedure read_matrix_values *}
{* ---------------------------- *}
{* This procedure is used to read in the adjacency matrix*}
{* supplied by the user. *}
{* *}
{**}

procedure read_matrix_values;
var

infile : text;
i,j,sum,a1,a2,a3,a4,a5,cntrl
fname : string;

begin

integer;

write('Enter adjacency matrix file name: ');
readln(fname);
assign(infile,fname);
reset(infile);
write('Enter #of nodes in control flow graph: ');
readln(n);
for i := 1 to n do
begin

for j := 1 to n do
read(infile,matrix[i,j]);

readln(infile);
end;
for i := 1 to n do
begin

sum := O;
for j := 1 to n do

sum:= sum+ matrix[i,j];
if (sum =1) or (sum = 0) then

matrix[i,n+1] := o
else

matrix[i,n+1] := sum -1;
end;
close(infile);
for a1 := 1 to n do

begin
if (matrix[a1,n+1] > bigchild) then

bigchild := matrix[a1,n+1];
end;

bigchild := bigchild + 1; {largest # of children}
{of any decision node }

maxcols := bigchild + 2; {number of columns}
{in proof matrix}

for a2 := 1 to n do
for a3 := 1 to maxcols do

proofmatrix[a2,a3] := O;

for a2 := 1 to n do {generate EVC for proof matrix}
if (matrix(a2,n+1] >= 1) then

proofmatrix[a2,1] := matrix[a2,n+1] + 1 + 3;
{ fill up proof matrix }
for a4 := 1 to n do

begin
cntrl := 2;
if (matrix[a4,n+1] >= 1) then

for a5 := 1 to n do
begin

if (matrix[a4,a5] = 1) then
begin

proofmatrix[a4,cntrl] := a5;
inc(cntrl);

end;
end;

end;
total sum := O;
for i-:= 1 to n do

end;

total sum:= total sum+ matrix[i,n+1];
inc(total_sum);

79

{**}
{* *}
{* procedure print_matrix *}
{* ---------------------- *} {* This procedure prints out the adjacency matrix. *}
{ * *}
{**}

procedure print_matrix(n: integer);
var

i,j : integer;
begin

clearscreen;
write(' ');
fori := 1 to (((n + 1)* 3) + 6) do

write('_');
write(' ');
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write(' ');
writeln('l');

write(' I');
write (' ' : 4) ;
for i := 1 to n+1 do

write(i:3);
write (' 1 ') ;
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write ('_,) ;
write(' I');
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write(' ');
writeln('l');

for i := 1 to n do
begin

write(' I');
write(i:2,'1':2);
for j := 1 to n+1 do

write(matrix[i,j]:3);
wri teln (' I ') ;

end;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write (' ') ;
writeln('l');

write(''');
fori := 1 to (((n + 1)* 3) + 6) do

write('-');
write('''');
writeln;
writeln;
writeln(' *******ADJACENCY MATRIX*******');
writeln;
pause;
writeln(' #of links in' open chain= ',total_sum-1);
writeln;
writeln(' Complexity Measure, C(G) = ',total_sum);
writeln;
{writeln(' bigchild is= ',bigchild);}

end;

80

{**}
{* *}
{* procedure print_entryexit_nodes *}
{* ------------------------------- *}
{* This procedure is used to ascertain and print out the *}
{* node labels of the unique entry and exit nodes. *}
{* *}
{**}

procedure print_entryexit_nodes(n: integer);

var
i,j : integer;

rowsum,colsum : integer;
entrynode,exitnode : char;

begin
{WRITELN('AM IN PRINT PATH PROCEDURE');
WRITELN('HIT ENTER TO CONTINUE ••. ');
READLN;}

for j := 1 to n do
begin
if (not(entrynodeflag)) then
begin

{WRITELN('AM IN ENTRY NODE FOR LOOP');
WRITELN('HIT ENTER TO CONTINUE .•• ');
READLN;}
colsum := O;
for i := 1 to n do
colsum := colsum + matrix[i,j];

{WRITELN('COLSUM = ', COLSUM);
WRITELN('ENTRYNODEFLAG IS= ',ENTRYNODEFLAG);}
if (colsum = 0) and (not(setentry)) then
begin
setentry := true;
entrynodeflag := true;
if (ndary[1] = -1) and (entrynodeflag) then

ndary [1] : = j ;
end

else
if (colsum = 0) and (setentry) then
begin

writeln('
writeln('
exit;

end;
end;

end;

ERROR!! MORE THAN ONE ENTRY NODE!!');
ONLY A UNIQUE ENTRY NODE PERMITTED');

for i := 1 to n do
begin
if (not(exitnodeflag)) then
begin

{WRITELN('AM IN EXIT NODE FOR LOOP');
WRITELN('HIT ENTER TO CONTINUE .•• ');
READLN;}
rowsum := o;
for j := 1 to n do

rowsum :=rowsum + matrix[i,j];
{WRITELN('ROWSUM = ', ROWSUM);
WRITELN('EXITNODEFLAG IS= ',EXITNODEFLAG);}
if (rowsum = 0) and (not(setexit)) then
begin
setexit := true;
exitnodeflag := true;
if (ndary[2] = -1) and (exitnodeflag) then

81

ndary [2] : = i ;
end

else
if (rowsum
begin

writeln('
writeln('
exit;

end;
end;

end;

= 0) and (setexit) then

ERROR!! MORE THAN ONE EXIT NODE!!');
ONLY A UNIQUE EXIT NODE PERMITTED');

{WRITELN('NDARY[1] = ',NDARY[1]);
WRITELN('NDARY[2] = ',NDARY[2]);}
clearscreen;
if (ndary[1] <> -1) then
if (ndary[1] <= n) then
begin

uen := ndary[1];
writeln(' Unique Entry Node is= Node #',NDARY[1]);

end;

if (ndary[2] <> -1) then
if (ndary[2] <= n) then
begin

uxn := ndary[2];
writeln(' Unique Exit Node is= Node #',NDARY[2]);

end;
printlines(12);
end;

82

{**}
{* *}
{* procedure read_incidence_matrix *}
{* ------------------------------- *}
{* This procedure is used to read in the incidence matrix*}
{* supplied by the user. *}
{* *}
{**}

procedure read_incidence_matrix;
var

nextfile : text;
nexti,nextj,nextsum : integer;
nextfname : string;

begin
write('Enter incidence matrix file name: ');
readln(nextfname);
assign(nextfile,nextfname);
reset(nextfile);
write('Enter #of edges in control flow graph: ');
readln(totedges);
for nexti := 1 to n do

begin
for nextj := 1 to totedges do

read(nextfile,incmatrix[nexti,nextj]);
readln(nextfile);

end;
close(nextfile);

end;

83

{**}
{* *}
{* procedure print_incidence_matrix *}
{* -------------------------------- *} {* This procedure is used to print out the incidence *}
{ * matrix supplied by the user., *}
{* *}
{**}

procedure
print_incidence_matrix(n:integer;totedges:integer);
var

i,j : integer;
begin

clearscreen;
write(' ');
fori := 1 to (((totedges + 1)* 3) + 4) do

write(' ');
write(' ');
writeln;

write(' I');
fori := 1 to (((totedges + 1)* 3) + 4) do

write (' ');
writeln('l');

write(' I');
write (' ' : 4) ;
for i := 1 to totedges do

write(i:3);
write (' I ') ;
writeln;

write(' I');
fori := 1 to (((totedges + 1)* 3) + 4) do

write ('_') ;
write(' I');
writeln;

write(' I');
fori := 1 to (((totedges + 1)* 3) + 4) do

write(' ');
writeln('l');

for i := 1 to n do
begin

write(' I'};
write (i: 2, ' I ': 2} ;
for j := 1 to totedges do

write(incmatrix[i,j]:3};
wri teln (' I ') ;

end;

write(' I'};
for i := 1 to (((totedges + 1)* 3) + 4} do

write(' '};
writeln('l'};

write('''};
fori := 1 to (((totedges + 1}* 3} + 4) do

write ('-') ;
write(''''};
writeln;
writeln;
writeln(' ********INCIDENCE MATRIX*******');

end;

84

{**}
{* *}
{* procedure print_proof_matrix *}
{* ---------------------------- *}
{* This procedure is used to print out the branch coverage*}
{* matrix. *}
{* *}
{**}

procedure print_proof_matrix(n: integer;maxcols: integer);
var

i,j : integer;
begin

clearscreen;
write (' ') ;
fori := 1 to (((maxcols + 1)* 4) + 4} do

write ('_'} ;
write(' '};
writeln;

write(' I'};
fori := 1 to (((maxcols + 1}* 4} + 4) do

write(' ');
writeln('l');

write(' I');
write (' ' : 4} ;
for i := 1 to maxcols do
begin
if (i = 1} then

write (' EVC' : 4)
else
if (i = maxcols) then

write ('RDS ' : 4)
else
write((i-1):4);

end;
write(' I');
writeln;

write(' I');
fori := 1 to (((maxcols + 1)* 4) + 4) do

write(' ');
write (' I ');
writeln;

write(' I');
fori := 1 to (((maxcols + 1)* 4) + 4) do

write(' ');
writeln('l');

for i := 1 to n do
begin

write(' I');
write(i:2,'1':2);
for j := 1 to maxcols do

write(proofmatrix[i,j]:4);
writeln(' I');

end;

write(' I');
fori := 1 to (((maxcols + 1)* 4) + 4) do

write(' ');
writeln('l');

write(''');
fori := 1 to (((maxcols + 1)* 4) + 4) do

write('-');
write('''');
writeln;
writeln;
writeln(' ******** COVERAGE MATRIX *******');

end;

85

{**}
{* *}
{* procedure print_child_matrix *}
{* ---------------------------- *}
{* This procedure is used to print out the child matrix. *}
{* *}
{**}

procedure print_child_matrix(n: integer);
var

i,j : integer;
children : integer;

begin

clearscreen;
write(' ');
fori := 1 to (((n + 1)* 3) + 6) do

write ('_') ;
write(' ');
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write(' ');
writeln('l');

write(' I');
write (' ' : 4) ;
for i := 1 to n + 1 do

write(i:3);
write (' I ') ;
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write ('_') ;
write(' I');
writeln;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write (' ') ;
writeln('l');

for i := 1 to n do
begin

write(' I');
write(i:2,' ':2);
children := matrix[i,n+1] +1;
for j := 1 to children do

write(childmatrix[i,j]:3);
writeln(' I');

end;

write(' I');
fori := 1 to (((n + 1)* 3) + 6) do

write(' ');
writeln('l');

write(''');
fori := 1 to (((n + 1)* 3) + 6) do

write('-');
Write (I I I I) ;
writeln;
writeln;
writeln('***** CHILD MATRIX*****');

end;

86

87

{**}
{* *}
{* procedure readin_child_matrix *}
{* ----------------------------- *} {* This procedure is used to generate the child matrix *}
{* based upon the adjacency matrix supplied by the user. *}
{* *}
{**}
procedure readin_child_matrix;
{this procedure makes a copy o~ the adjacency matrix and is}
{used in the generation of basic paths}
var

outfile : text;
i,j,checksum : integer;
k :integer;

begin
assign(outfile,'child.dat');
rewrite(outfile);
k := 1;
for i := 1 to n do
begin

k := 1;
for j := 1 to n do

begin
if (matrix[i,j] = 1) then

begin

end
end;

childmatrix[i,k] := j;
inc(k);

end;
for i := 1 to n do
begin

if (i = uxn) then
write(outfile,O)

else
write(outfile,matrix[i,n+1]+1);
write(outfile,' ');

for j := 1 to matrix[i,n+1]+1 do
begin

if (i = uxn) then
write(outfile,'O')

else
begin

write(outfile,childmatrix[i,j]-1);
write(outfile,' ');

end;
end;

writeln(outfile);
end;

close(outfile);
end;

88

{**}
{* *}
{* main program *}
{* ------------ *} {* This is the main program. It calls all the other *}
{* procedures. *}
{ * *}
{**}
begin

initialize;
read matrix values;
writeln; -
{read incidence matrix;
writeln;} -
print_matrix(n);
pause;
print_entryexit_nodes(n);
pause;
{print_incidence_matrix(n,totedges);
pause;}
print_proof_matrix(n,maxcols);
pause;
readin child matrix;
{print=child=matrix(n);}

end.

APPENDIX D

ADAPTIVE TESTING STRATEGY PROGRAM LISTING

89

90

/**/
I* */
/* Adaptive Testing Strategy */
I* *I
/**/
/* */
/* Author: Shankar Narayanaswamy */
/* Date: 05/16/91 */
/* Class: COMSC 5000 - Thesis */
/* Adviser: Dr. Mansur Samadzadeh */
/* *I
/**/
I* *I
/* Procedures Used: */
I* ---------------- */ /* main, process, print, start_another_recursion, */
/* insertchar. */
/* */
/* Input for Program: */
I* ------------------ *I /* Child matrix for the Control Flow Graph. */
/* (Each row in the child matrix consists of the number */
/* of children each node possesses followed by the node */
I* labels of the children). */
I* *I
/* Output of Program: */
I* ------------------ */ /* Prints out the various paths generated according to */
/* the adaptive testing strategy. */
/* *I I* Program Function */
I* ---------------- *I /* The program accepts input in the format specified above*/
/* Given the input in this format the program generates */
/* the paths in accordance with the Adaptive Testing */
/* Strategy. */
I* *I
/* Debugging Tools Used: */
/* --------------------- */
/* Turbo c Debugger */
/* */
/**/

#include <stdio.h>
#include <conio.h>

/* global declarations */

int Visit [25] = { o, o,
o, o, o, o,
o, o, o, o,

int Par child [20][12];

o, o, o, o, o, o, o, o,
o, o, o, o, o, o,
o, } ;
I* array to store parents and *I
I* their respective children *I

int destination = O; I* keeps track of destination *I
int Note Node = -1, Note i = -1, check = O;
int marknode = O; I* node marked or not ? *I
I* arrays used to save paths for printing purposes *I
int print_nodes [20], prev_print_nodes[20];

int nofprint_nodes = o, prev_printnodes = O;
int numberof_common_nodes = 0;

91

1**1
I* *I
I* main *I
I* *I I* This is the main program. It calls all the other *I
I* routines whenever required. *I
I* *I
I* *I
I* *I
1**1

main (argc, argv)
int argc;
char *argv[];
{
FILE l*fp;
int number_of_children, i = o, j = 0;

fp = fop en (argv[1], "r") ;

clrscr ();

I* read in input from designated file *I (
while (fscanf (fp, "%d", &number_of_children) != EOF) {

Par child [i][j] =number of children;
for-(j = 1; j <= number_of_children; j++)

fscanf (fp, "%d", &Par_child[i][j]);
j = 0; i++;
}

destination = i-2;
process (0);

if (marknode != destination) {

}

for (i = 1; i <= Par_child[marknode][O]; i++)
if (Par_child[marknode][i] < marknode) {
print_nodes[nofprint_nodes++J= Par_child[marknode][i]+1;

}
process (marknode);
}

92

/**/
/* *I
/* process */
I* ------- */
/* This procedure is used to process the various nodes in */
/* the graph. This processing is done recursively. Other*/
/* procedures are called at appropriate locations. */
I* *I
/**/

process (int node) {
int i = o, k = O;

{

if (node == destination I I check)
print (node);

if (node-- destination) return(O);

for (i = 1; i <= Par_child(node](OJ; i++) {
if (Par_child(node][i] <node)

}

for(k = l;k <= Par_child[Par_child[node][i]](O];k++)
if (Par_child(Par_child(node](i]](k] ==node)

check++;
if (check == 2) {

check = o;
start another recursion (node);
return (0);
}

print (node);
return (0);
}

print (node);
process (Par_child (node)(i));
}

/**/ I* / *I
/* print */
/* ----- *I
/* This procedure is used to print out the test paths as */
/* generated by the application of the adaptive testing */
/* strategy. It does so by making insertions into two */
/* arrays which are meant to be used solely for this. */
I* */
I** I
print (int node) {

int i;

marknode = node;

/* printf ("%-3d", node+l); */
print_nodes [nofprint_nodes++] = node+l;
if (node == destination) {

printf ("\n");

if (prev_printnodes != O) {
i = 0;

93

while (print_nodes[i] != prev_print_nodes[i]) {
insertchar(prev_print_nodes[i], print_nodes, i);

}

}

i++;
}

for (i = O;i < nofprint_nodes; i++) {
prev_print_nodes[i] = print_nodes[i];
printf ("%-3d", print_nodes[i]);
}

prev_printnodes = i;
nofprint_nodes = O;
}

/**/
I* *I
/* start another recursion */
I* ----------------------- */ /* This procedure is used to start another recursion from */
/* the point at which it is called during the execution */
/* of the adaptive testing strategy. */
I* *I
/**/

start another recursion (int node) {
int -k; -
for (k = 1; k <= Par_child[node][O]; k++)

if (Par_child[node][k] >node) {
process (Par_child [node][k]);
}

}

I** I
I* *I
/* insertchar */
I* ---------- *I
/* This procedure is used to insert node labels during the*/
I* process of printing out the test paths generated, into */
I* the array used for this purpose. It inserts labels */
/* into the front end of the array by shifting the */
/* previous contents of the array to the right. */
I* */
I** I

insertchar (ch, aray, pes)
int ch, *aray, pes;
{
int i = nofprint_nodes;
do {

*(aray + i) = *(aray + i- 1);
i--;
} while (i !=pes);

nofprint_nodes++;
*(aray + pes) = ch;
}

94

APPENDIX E

USER MANUAL

95

USER MANUAL

Part 1: complexity Measure Program

1. At the C:\> prompt type

complexy <Enter>

2. The program will print the following query on the

screen.

Enter adjacency matrix file name:

Respond with <adjacency matrix filename> <Enter>

3. The following query will then appear on the screen.

Enter # of nodes in control flow graph:

Respond with <# of nodes in control flow graph>

<Enter>

96

The program will display the adjacency matrix, the

value of C(G), the unique entry node and exit node, and the

branch coverage matrix on the screen, in that order. It

will also create a file called child.dat which is used by

the adaptive testing program.

Part 2: Adaptive Testing Program

At the C:\> prompt type "testing <child.dat> <Enter>".

The file child.dat used here is the one that was

created by the complexity measure program in Part 1 above.

The program will display the list of test paths on the

screen.

~

VITA

Shankar Narayanaswamy

Candidate for the Degree of

Master of Science

Thesis: A GRAPH-THEORETIC MATRIX-BASED APPROACH FOR A
MEASURE OF PROGRAM TESTING AND AN ADAPTIVE TESTING
STRATEGY

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangalore, Karnataka, India,
June 16, 1962, the son of P. Narayana Swamy and
Savithri.

Education: Graduated from National College, Bangalore,
India, in May 1980; received Bachelor of
Engineering in Electronics Engineering from
Bangalore University at Bangalore in December
1984; completed requirements for the Master of
Science degree at Oklahoma State University in
July 1991.

Professional Experience: Teaching Assistant,
Department of Electrical Engineering, University
Visvesvaraya College of Engineering, Bangalore
University at Bangalore, May 1985 to July 1986.
Programmer, Oklahoma Resources Integrated General
Information Network Systems, Oklahoma State
University, August 1989 to January 1991

