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CHAPTER I
INTRODUCTION

Seitz spéculated'\that von Neumann unipro‘cc’ssor systems’ performance was |
approaching an asymptotrc limit of nearly 3x109 operations per second [SEIT84] Even
with the ongoing tremendous advances in semlconductor technology; it is becommg
increasingly difficult to obtain hlgher pcrforrnance from single. processor systems
Generally speaking, technology has reached a state that any further development would
face certain physical constraints [LEA87]. Moreover, high performance systems like
supercomputers have become unaffordable by many research organization due to the nigh
price tags of such systems [KARIN87]. But there still remain several classes of "
applications for which nigh speed is cru01a1 and beyond the capabilities of the fastest single
processor machines available [HAYESSS]. Wirh ‘thi‘s trend, there is a general approach to
avoid the limitations of uniprocessor systems oy using several processors. Parallel
processing provides a possible solution in this regard [FOX88]. Other solutions include
distributed processing and massively parallel systems.

As part of compiling a program written in a high level language, a phase called
lexical analysis is performed [AHOS86]. In this phase, strings of characters of a language
denoting keywords, identifiers, constanrs, etc. are grouped together into single symbols
called "tokens". A program which performs tnis phase is oalled a "Lexical Analyzer" or a
"Scanner". "Regular Expression Notation" is a formalism which can be used for describing
the tokens of a programming language. A "Finite Automaton" is a matnematical model of a
recognizer which can be used to recognize the tokens of a programming language specified

by a regular expression. Those two tools (Regular Expressions and Finite Automata) form



the basis of a Scanner [FIS88]. There is a close relationship betyveen the sets described by
regular expressions and the sets identified by finite automata, and there are a set of
transformations that can be performed on them. Such transformattons have been described
in the literature by sequentlal algorrthms [BRZO62, AHO72, HOP79, SUD88]. Two
cycles of such transformanons were considered in thrs thesrs (as descrtbed in section 3.4).

As one obJectlve of this thesrs a regular expressron was subJected to the set of
transformations along each cycle a number of trmes As expected the form of the regular '
expression changes through every iteration of each of the cycles The changes occuring in
the form of regular expressions was mvesngated. Qne \of the 'cycles‘of transformations
appeared to produce regular expressions that, although not necessarily irredundant and -
rninimized, are in a closed form that can be loosely called a 'fcanonical form". Thus we can
say that this cycle ' converges The other cycle yields the canonical form generally after a
larger number of iterations than the first one (or it may not even produce a canonical form).
Thus we can say that, the latter cycle does not always converge, or it "diverges". This.
seems to be attributable to a particular transformation in the latter cycle. These details are
covered in section 4.4 and 4Appendi“xes’ Dand E. |

As another objective of this thesis,the parallelism existin’g‘ in the sequential
algorithms for these transformations was exploited’ to develop parallel algorithms
Subsequently, the parallel algorithms were 1mplemented in the C programmmg language on
a typlcal parallel processor, namely the Intel' s 1PSC/2 32 processor dlstrtbuted -memory
system, with a hypercube interconnection topology between the processors. Some
multiprocessor perforrnance measures, such as spéed-up, processor efficiency, and serial
fraction were evaluated and the results have been discussed. In order to do so, the
- programs developed were executed on a varying number of processors for different regular
expressions of different sizes. The performance measures and results have been

summarized (section 5.1).



Implementing parallel algorithms involr/es such multiprocessor-dependent issues as
partitioning and scheduling. The problem of partitioning a problem for the iPSC/2 parallel
processor, wa‘s" studied and implemented. Subsequently, a suitable multiprocessor
scheduling algorithm namely Hu‘s algorithm "[HU61] ;)ves’used" to optimally schedule the
tasks in the problem so as to achieve nearly umform processor utilization and reduce
communication overhead. Moreover extensxons to Hu s scheduling algonthm (namely
Algorithms B and C) have been denved to tackle its limitations and they have been reahzed
in developing better schedules for the g1ven problem An important observation on the
number of processors requlred for scheduling a given problem is also derived from these
algorithms. The details are given in various sections of Chapter IV. |

The thesis report is divided into vanous chapters relatmg to various toplcs
Initially, related literature work on the subject of language theory and parallel processmg is
described in chapters I and II. ,Subsequently; the contributions made by the thesis in
relation to the development and implementarion of the parallel algorithms for regular
expressions, and in relation to the concept of the changing form of a regular expression
subjected to a set of transformations, are discussed in Chapter IV. Finally, the report
concludes with a diecussio’n of the results and future improvements to this project in

Chapter V.



CHAPTER I
PARALLEL PROCESSING . -

Obtaining mofe perfofrriance from ihe ‘ven Ne‘urﬁann*ongdel is becoming -
increasingly dif;ﬁeult;‘ The task of solving very complex problen:ls within specified time
periods continues to sufpess the capabilitiee of the world's fastest and most powerful
computers [HWANG&89]. ‘Parallel processing hplds a good prorﬁise to achieve high
performance in solving such complex tasks [KUCK78, HOCK81, HWANG84]. This
chapter presents an overview of the concepts ‘of parallel processing, including details of the

Intel's iPSC/2 Parallel Computer, whieh is the implementation platform used in this thesis.
* 2.1 Introduction

The term parallel prlocessorirefers to a class of systems that try to increase the
computing speed by performing more than one computatlon concurrently on more than one
processor. Connecting a number of powerful processors or Processing Elements (PEs)
together into a single system and making them solve a single complex problem through
cooperation with each other, is the underlying pn'nciple of parallel) processing. Parallelism -
commonly means to do more than one thing at once, which could be interpreted in several
ways [DES87]: doing n dlfferent actlvmes at once; domg one activity in n s1multaneous '
parts; doing n activities staggered in time; or using k fesources for n jobs or k resources for
one job. Events occuring on different processors during' the same tirhe interval are termed " -
"parallel” events, and those occuring at the same instant are termed "simultaneous” events

[HWANGS4].



One of the factors for the spread and popularity‘ of parallel processing has been
improvements in the hardware technology. Although Grpsch's law [DORS85] states that the
best price/performance can be obtpined with the most powerful uniprocessor, it is no longer
true that a system consisting of less powerful processors lwill, have a lower performance
than a single large proc-essor pf the samc;, total cost [LE;\875. With the important
recognition attained by supercomppﬁng and sppercpmputers _amo;lg researchers who need
more than 100 MFLOPS (Millions of Floating Point Operations Per Second) computing ’
performance, there is a need" for supcfcomputing-élass performancc-thét is more affordable
[KARIN87]. Summing these issues, cpnventional architectures are close to their
performance limits due to physical effects like tyhe‘speed of light, supercomputing resources
are generally unaffordable due t(‘)‘ their high pricp tags, and researchers' quest for solving
computationally iniensive proble'ms/has been ever increasing. With these trends, research
has opened gateways to the field of parallel proéessing. |

Concurrent or parallel architecturéé are not a new idea. As early as 1945, Vannevar
Bush described some proposals along these lines. John von Neumann also preferred the
parallel approach [HOCKS81], but dropped the idea due to the unrehablhty and bulkiness of
vacuum tubes. In the 1950s, Slotnick and his collaborators at IBM proposed some parallel
archltectures hke Solomon [SLOT62] and Illiac IV [BARNG68]. But the ﬁrst gencral- ,
purpose computer commermally available, which could perform -several operatlons
concurrcntly, was the Hete_rogeneous Element Processor (_HEP) [JORDS83]. A partial list
of the many parallel processing projects that have been completed or currently under
progress is illustrated in TABLE I. We can see that some parallel computers have been
proposed earlier but without aéhievin g success. ThlS could be attributed to the technology
that was inadequate at that time and the general preferen(cc to the the concéppual simplicity
of the sequential stored-program computér [DENSS]. (

Currently, parallel processing is seen as having the potential to improve sﬁch

factors as, cost/pei‘formance, productivity, and reliability. Some applications suitable for



TABLE 1
CHRONOLOGY OF PARALLEL PROCESSING PROJECTS

1960-69 1970-79 1980-84 1985-87 1988-90 1990-
Solomon STAR-100 Cyber 203 Cray-2 NEC IPP Cray-3
STARAN AP-120b Cyber 205 Cray X-MP/4 Alliant FX/8 ETA-30
CDC 6600 IBM 360/195 IBM 3033 " NCube Cray Y-MP IBM RP3
IBM 360/91 IBM 370/165 BSP NEC S$X-2 iPSC/2
UNIVAC1108 IBM 370/168 Cray X-MP Convex XP FPST
CDC 7600 ILLIACIV Hitachi S-810 iPSC/1 Encore
PEPE Fujitsu VP-100 BBN Butterfly Elxsi 6400
Cray-1 Hitachi S-820 CM-1 Ametek 2010
HEP-1 Fujitsu VP-200 FPS 164 .Hitec-10
Pluribus Cm* NEC $X-1 Ametek S-14 IBM 3090/400
Tandem C.mmp DAP Fujitsu VP-400 IBM GF11
MPP ETA 10
Sequent 8000
HEP-2
Loral

Flex




parallel processing, where high speed is crucial, include scientific calculations [WIL87], 3-
dimensional partial differential equations solution ([PETERS5] as cited in [HWANG89]?;
monte-carlo techniques in physics and chemistry [KALOS7], signal prdcessing of sampled

data [HWANGS9], graph problems [HIRS82], and weather modelling.

A 2.2‘C‘lassification«of Computers

There are many wa)"s‘of classifying computer systems based Qh their structure and/or
behavior. Flynn's classification is based on muitiplicity of ,insjtru’ctionAstrea.ms and data
streams in a computer system [FLYN 72]4, Feng's claésification is based on the degree of
parallelism [FENG77], and Handler'\s classification is based on tfle degreé of parallelism
and pipelining in vaﬁoué subsystems [HA'ND77].‘ 'Kﬁck‘s classification [KUCK78],
which replaced the data streams with e;(ecution streams in Flynn's classification, gives
more detail at the hardware level. -Other classification schemes ﬁave been presented by
Treleaven [TRELS2], Gajski and Peir [GAJBS], etc.

Flynn's classification is siinplé and also the most widely used.” In this
classification, the flow of instru;:tions fetched by th(A:KCPU from the memory forms an
"“instruction stream" (IS), and the flowlof‘ opé}ands between the CPU and the memory .
forms a "data stream" (DS).‘» The féurmachine organizations baséd on this classification

are described in the following subsections.

2.2.1 SISD Computer

Single Instruction s&eam Single Data stream (SISD) orgmizaﬁon consists of one
processing element (PE) and one control uni£ (CU), and 1it represents the class of
sequential computers. The general architecture of an SISD Computer is shown in Figure
1(a). In SISD computers, instructions are executed s;:qucntially but may be overlapped in

their execution stages (a technique called pipelining).



2.2.2 SIMD Computer

Single Instruction stream Mulﬁplé Data stream (SIMD) organization represents the

class of machines consisting of multiple processing elements, which are controlled by a
single control unit. The general structure of an SIMD machine is shown in Figure 1(b)."
The control unit sends the same inﬁ;ructiong to ali the PEs which operatc 6n different data
sets from distinct data streams. Some examples of systems belonging to this class are Illiac
IV Array Processor, the Distributed Array Processor (DAP)\ [HOCKS81], Assoéiétive
Processors like the Massively Parallel i?rocessor (MPP) [POTT86], and Connection
Machine CM-1 [HILLSS5]. | '

2.2.3 MISD Computer

Multiple Instruction stream Single Data stream (MISD) organization consists of
multiple processing elements and multiple contrgl units. Its structure is illustrated in Figure
1(c). Each PE receives distinct instructiohs, but all of them operate on the same data set.
Not many parallel processors fit into this category, except Féult-tolcrant computers where

several CPUs process the same data using different programs [HAYES88].

2.2.4 MIMD Computer

Multiple Instruction stream Multiple Data stream (MIMD) organization represents
most multiprocessor‘ systems‘ having the ability to execute several programs
simultaneously. Its structure is shown in Figure 1(d). Itis almost similar to an MISD
system except that each PE operates iﬁdividually through its own instruétion stream on its
own data stream [HWANGS84]. Since the same data space is shared by all processors, the
processors need to interact with each other. If the degree of interactions among the
processors is high in an MIMD computer, it is termed as "tightly" coupled. Otherwise, it is
"loosely" coupled. Intel's iPSC Hypercube [SULL77, GRAH87], Cm* [GEHRS87],
NCube [PALMS87], Cray X-MP/4, Sequent 8000 [ANI89], etc. belong to tﬁe MIMD class.



- PE1 DS1 Mi
IS IS ° °
*» Cu o o
.JL» <—>D S . DSn
cu PE M ‘ -1 | PEn | | g—p | Mm

IS

(a) Structure of an SISD Computer. (b) Structure of an SIMD Computer.

o 81 o | |

181, | [cut] PISL ) | pE1 M1 : 1st__ | |cun fisi | [per | LDSL ] | mr | [ist
Qo Q DS ° Q 0. o
Q Q - o o o Q

15n | [cun| IS0 gt [PEa || | [Mm| [ ISn lSr|1_> Cun| {180 | |PEn | |-DSn_pf | Mm | 1Tn'

(c) Structure of an MISD Computer. (d) Structure of an MIMD Computer

~ Figure 1. Flynn s Classification of Computers.
- (Source: K Hwang and F.A. Briggs.” Computer Architecture and Parallel Processing, McGraw-Hill

Book Co., New York, NY, p. 33, 1984.)
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Table II [HWANGS84] lists several systems under eéch of the three existing

computer organizations (no real systems of MISD class exists).

| TABLE I
COMPUTER SYSTEMS BASED ON FLYNN'S CLASSIFICATION

Organizationv ‘ " Computer systems

SISD TBM 701, IBM 7090, PDP VAX 117780, IBM 360, Cray-1,
CDC Cyber-205, Fujitsu VP-200; FPS-164, TI-ASC

SIMD Tiliac 1V, BSP, Staran, MPP, DAP, CM-1

MIMD " IBM 3081/3084, Cm*, Univac 1100/89, C.mmp, Cray-2,

" Cray X-MP, HEP, iPSC Hypercube, NCube, BBN Butterfly

2.3 Types of Parallel Processors

Parallel processors are categorized under the following architectural configurations.

2.3.1 Pipelined Processors

Pipelined processors are those which perform overlapped computations. In a
pipelined processor different parts of a single operation are executed simultaneously in
dissimilar modules connected as stages (called pipeline stages) int‘o a cascade chain
[KOG81]. The structure of a Pipeline Prdces;or is shown in Figure 2. Each operand
passes through several stéges in successive time steps before it has beén completely |
processed. The effect of all of the pipeline stages on a data element constitutes an operation.
Hence pipeline computers are more tuned for vector processing, where component
operations need to be repeated many times [KAIN89]. Typical examples of pipelined
computers include Control Data Corporation's Star-100 series [CONT70], TI's Advanced

Scientific Computer (ASC), Cray-1, Cray-2, etc.
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R : Interstage Register, S : Functional Stage .

x "
RIP™ i re™ s2F """ "™ sn [TRas1 [ 72

Figure 2. A Pipeline Structure.

(Source: R.Y. Kain. Computer Architecture: Soff Hardware, vol. II, Prentice Hall,
Englewood Cliffs, NJ, p. 30, 1989.)

2.3.2 Vector Processdr’s

Vector Processors, as their name implies,-are ;s)uitable' for performing computaﬁons
on vector data. Vector prdcessing is. characterized by the performance of the same
operation on all elements of a regular array or a vector simultaneously [ALMA89]. Kogge
[KOG81], and Hockney and Jesshope [HOCK81] describe vector processing in detail.
The basic idea of vector pfocessing is outlined below. The multiplicat?on of two 100-
element vectors on a sequential computer would-consist of a loop like, for I =1 to 100 do
A(d) = BI)*C(I). In addition to fetching '100 pairs of operands, the multiplication
instruction is also fetched and deéoded 100 fimes, which is a large overhead. Instead, a
single vector instruction, indicating that the same operation be performed on all pairs of

elements of the two vectors, can be used as A(1:100) = B(1:100)*C(1:100).

2.3.3 Array Processors

According to Karplus [KARP87] "an Array Processor consists of a regularly
connected array of processing élerﬁents under the supervision of one control unit". All the
PEs perform the same function in synchronization with the help of a data-routing
mechanism. In general terms, an array processor is seen as a rectangular grid, with each
intersection denoting a PE, and the lines between intersections denoting common paths.

The architecture of an array processor is shown in Figure 3. The only function of the PEs
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is to receive data on the interfaces, operate on the data, and then send data back onto the
interfaces. Most of the important functions are performed by thc’control unit which include
specifying each PE's operatioﬁnv, properly rouiing data among the PEs through the
interconnection network, controlling the transfer of \data' to and from the memory, etc.

[HWANGS4].

Data bus Control Control bus
Unit -

. Memory
M1 : modules Mn
I —
PE1 . B PEn
Processing
4 Elements

Y

Inter-PE Connection Network (data routing)

o

Figure 3. Functional Structure of an Array Processor.

(Source: K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing,
McGraw-Hill Book Co., New York, NY, p. 24, 1984.)

2.3.4 Systolic Processors

A Systolic Processor consists of a set of intércbnnected PEs each capable of
performing some simple operation. The basic principle of a systolic array is illustrated in
Figure 4. A single PE in a conventional computer is replaced with an array of PEs, to
achieve higher computational throughput [KUNG82]. Once a data item is fetched from the

memory, it can be used effectively by each PE it passes through. Thus, systolic systems
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are suitable when multiple operations are performed on a data item in a repetitive manner

[KAINS89].

MEMORY |——

MEMORY

PE| PE| PE| PE| PE| PE

(a) A Conventional Proce'ssor. | (b) A Systolic Array Processor.

Fxgure 4. The Concept of a Systolic Array Processor.
(Source: T.Y. Kung. Why Systolic Architectures?”, IEEE Computer; vol. 15, no.1, p. 38, January 1982.)

2.3.5 Multiprocessors

The term multiprocéssor includes virtually all architectures with more than one
processor. The system consists of a number of processors, which are connected through
some kind of a communication system to a shared memory, a shared I/O system, and .
possibly to each other [DES87]. Each processor may have its own local memory and also
private devices. A single integrated glbbal operating system provides interactions between
processors and their programs. This éystem can be viewed as a system with n processors
and m memory units. If all the m memory units form one single global main memofy,
which can be accessed by éllfthe PEs, then the system is termed a "shared memory"
system, otherwise it is a "distributed memory" system [LAK90]. The structure of both
these systems is shown in Figure 5. Communication between processors is required in
multiprocessors for coordination purpbses, which is employed in the form of "mcssagé
passing” in distributed memory systcms and in the form of "shared variablés" in shared
memory systems [ALMAR89]. The term message passirig computer is also used for

distributed memory systems.



14

o Processing M1l Memory Mn
PEI °ee PER | Elements Units

, | PE1| | Processing | |PEn
Interconnection Network N ) i Elements
I ion N
Global nterconnection Network N
Memory M
(a) Shared-Memory System. - (b) Distributed-Memory System.

Figure 5. Types of Multiprocessors.

(Source: S. Lakshmivarahan and S.K. Dhall. Anal is an ign of llel Algorithms: Arithmeti
and Matrix Problems, McGraw-Hill Book Co., New York, NY, p. 6, 1990.) -

2.4 Perfonnanée Measures

Simple metrics such as clock speed, peak MFLOPS (Millions of Floating Point
Operations Per Second) rating, peak MiPS (Millions of Instructions Per Second) rating,
memory size and speed, disk size and speed, base system price, price/performance ratio,
etc., are available for evaluating; parallel processing systems [HWANGS89]. A linear
combination of these that correspond With’ the application(s) to be used can help decide to
purchase a parallel machine. In practice, the realizable performance from a parallel
processing system may be much lower than tﬁe peak performance, which could be
attributable to the improper match between the parallel algorithm and the architecture
[LAK90]. Thus, there are other factors which can help find how effectively the system is
being used. Three such measures will be discussed in this section.

The best known measure of the effectiveness of parallel algorithms is the speed-up

ratio (Sp) [FOX88]. If T(N) is the time required to solve a given problem of size N using

the sequential method, and Tp(N) is the time required to solve the same problem using a

parallel algorithm with p processors, then speed-up is defined as,
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S 0
P~ Tp(N)

Speed-up is normally measured by running the same program on a varying number of
processors. Speed-up is greatly influenced by the amount of time the processors spend in
communicating with each other. For an application, an approximately linear speed-up with

respect to the number of processors is desirable.

Another related measure is efficiency Ep [MOIT87] which is the ratio of speed-up

Sp to the number of processors p. In other words, Ep is the speed-up achievable per

processor. Thus,

=y
An efficiency factor close to 1 implies that the resources (the number of processors used
for the application) in the system are being used effectively, otherwise they are being
under-utilized.

Another important factor is the serial fraction f [KAR90], which is defined as

f = 1/s - 1/p
T 1-1/p

where s is the speed-up on p processors. Serial fraction is used along with speed-up and
efficiency to provide useful information on the performance of a system. It is a measure of
the rate of change of efficiency. If this rate of change is not linear, then it implies limited
parallelism in the application, which can be detected by the serial fraction. Also, this factor
can provide information on load imbalances, overhead of synchronization, etc., which

cannot be obtained from speed-up and efficiency.

2.5 The iPSC/2 Parallel Computer

2.5.1 Hypercube and the iPSC/2

There are several types of parallel processors in existence like shared memory and
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distributed memory, loosely coupled and tightly coupled, packet switching and message
passing of data, fine grain and coarse grain, and so on. Among these, one set of choices is
the hypercube or the boolean n-cube architecture which is a coarse-grained, MIMD,
loosely-coupled, distributed-memory, message-passing, concurrent computer
[HWANGS89]. The name hypercube origigate& from the intercbnncction network used to
interconnect its processing elements (PEs) or nodes. There are various types of
interconnection network topologies [ALMAS89]. The hypercube topology is shown in
Figure 6. In this topology the number of nodes is always a pongi of two (21). The value n
is called the dimension of the hypercube. Each of these nodes is directly connected by
fixed communication channels to #n other nodes. The nodes in the cube are numbered 0 to
20 - 1 and there is an edge between two nodes if their ﬁumberings differ by one bit position

in their binary representation [HEATHS86].

0 : ‘ 0 1
O O O
(a) n=0 ' (b) n=1
00 ‘10 000 010
O—O
100 110
001
‘ 011
N C :
o CJ , Oll ~ 101 . 111
(c) n=2 " (d) n=3

Figure 6. n-dimensional Hypercubes forn =0, 1, 2, and 3.

Intel's iPSC/2 Concurrent Supercomputer empl'oys the hypercube topology. An

iPSC/2 system consists of compute processors; I/O processors, and a front-end processor.
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The front-end processor (generally termed as the iPSC host processor) is called the System
Resource Manager (SRM). Each compute processor. (genera1ly termed as the iPSC node) is
a processor/mernory pair, with its own physical vmemory distinct from that of the host and
other nodes. The iPSC computers have support for message passmg capabilities so as to ‘
communicate with other nodes /O processors do not take part in the numencal work of a
computation but prowde the 1PSC/2 system with access to the file system. An iPSC/2.
application has a liost program ‘that’runs on the host’ processor. A group of iPSC nodes,
called a "cube", are allocated‘ for a particular application. A node‘program runs on this
group of allocated nodes. Duties of the host program inclucle initializing the application,
providing the necessary hurnan interface, loading the node program on to the nodes, etc.
[IPSC89]. Duties of a node program include performing calculations, exchanging

messages with other nodes, and sending the data back to the host or other nodes [IPSC89]. )

2.5.2 iPSC/2 Node Architecture

A block diagram of the iPSC/2 no,de architecture is depicted in Figure 7. Each of
the functional units are discussed in detail in ,this section.

The Central Process'ing‘ Unit'(CPUl'of the iPSC/2 compute node is the Intel's 16 |
MHz 80386 microprocessor with a rating of 4 MIPS (Million of Instructions Per Second).
Like other modern mlcroprocessors the 80386 also employs pipeline architecture, but
unique to the 80386 i is the on- Chlp memory ‘management unit (MMU) which eliminates the
serious access delays found in implementations that use off-chip methods.

The iPSC/2 node supports two Numeric Coprocessor options for scalar operations,
which reside on the node boarwdv itself [CLOSES88]. The first option is the Intel 80387
Numeric Coporcessor which provides floating point, extended integer, and BCD data
types. The second option is the Intel's SX Scalar Extension module, which provides two to
three times better performance. A third option for vector operations, namely the VP

Coprocessor board, can also be attached via the Standard Bus Interface.
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iPSC-VX Vector Accelerator Board
8 i
- g | Standard Memory CPU
5] 5 1b-
S § ‘Bus Sub-system
g ’Interface Cache
© A
[
e 0 .
3
£% Y
82 g Direct-Connect -
§1 [ Routing Module Numeric
o8
= 6 ‘ K Coprocessor
External I/0

Figure 7. iPSC/2 Node Block Diagram.
(Source: P. Close. "The iPSC/2 Node Architecture”, Proc. of the 3rd Conf. on Hypercube

Concurrent Computers. and their Applications, p. 44, 1988.)

A Routing Logic Interface called the Direct Connect Module, DCM (which replaces
the store-and-forward message passing mechanism used in the original iPSC/1 systcni) is
used in the iPSC/2 system. This modullelenhances the performance by reducing the
message passing latency, increasing the node-to-node channel bandwjdth, and allowS
simultaneous bidirectional message traffic between aﬁy two nodeé [NUGS8S8]. Routing in
this module is based on the e-cube routing algorithm [SULL77], which eliminates deadlock
between nodes in the network. Paths (combination of communication channels) between
any two nodes are dynamically constructed by this algorithm in a step-by-step process
using "routing elements”. But the algorithm has a drawback since there is a specific
constraint to guarantee deadlock free communication between nodes.

The Memory Subsystem consists of three components: a 16-Megabyte Main

Memory, a 64-Kilobyte static RAM cache, and a 64-Kilobyte EPROM containing the boot
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loader. Main memory can be in configurations of 1, 4, and 8 Megabyte modules. At most
two memory modules can be installed at a ﬁme, and hence a maximum of 16 Megabyte
configuration with two 8 Megabyte modules can be obtained.

The iPSC/2 aiso has a Standard Bus Interfac—:c tightly coupled to the 386 CPU bus

to facilitate the attachment of optional boards of popular buses.

2.5.3 NX/2 Operating System

The NX/2 operating system runs on ‘cach node of the Intel iPSC/2 concurrent
computer. It providesr.standard system services such as memory management, multiple
process management, message passing capability, intertask protection, and coprocessor
support [HWANGS89]. There can be up to 20 user processes on each node. All processes
have access to 1 Gigabyte of virtual address space (due to 386's paging hardware).

There are two protocols for message passing: a "short messages" (100 bytes or
less) 1-trip protocol and a ';long messages” (longer than 100 bytes) 3-trip protocol
[PIER88]. There are many short message buffers which can be allocated by each node to
another node. When a node wants to send a short message to another node and there is a
buffer available for it, it simply sends the message. If no buffers are available, it holds the
message until buffers are returned by other nodes to the operating system. When a long
message is sent by a npde, the system initiéllys sends a control message (first trip) to the
receiving node. If there is a receive buffer posted for the message on the receiving node,
the system sends back a control message (secbnd trip) to the sending node requesting to
send the rest of the message (third trip).

The message passing capabilities'can be accessed through a nested set of system
calls. These calls range from a set of simple synchronous calls, to a set of advanced
asynchronous calls that allow overlap of message'passing and processing, to interrupt
driven message>calls [IPSC89]. Synchronous calls includé "csend", "crecv", "cprobe" and |

message "info" calls which block processing till their completion. Asynchronous calls
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include "isend", "irecv", "msgwait", "msgdone"”, and "iprobe" calls, which return ag soon
as the operation is initiated and do not block. Interrupt driven calls include the "hrecv" and
"hsend" calls, which allow more independence between message passing and processing.
Moreover, mixing of calls from different levels is permitted. “That is, a message can be sent
with an asynchronous call and can be rééeived with a simple blocking or interrupt-driven

call.



CHAPTER III

FUNDAMENTALS OF LANGUAGE THEORY

Programs written in high-level languages are translated into equivalent machine
code programs before they can be executed on a computcr.' A program which translates a
program written in a paﬁicular high-level language into an equivalent program in some
other language (usually the code for some particular machine) is called a "compiler",
"translator”, or "interpreter". Compiling a program consists of two stages [FIS88]: an
"analysis" stage to recognize the structure and meaning of the program to be compiled (i.e.,
to determine the intended effect of the program), and a "synthesis" stage to produce the
machine or assembly code. In addition, there is an "error correction" stage to detect if the
input program is invalid in any sense (i.lc., ‘does not belong to the language for which the
compiler was written), and if so, rc;txim an appropriate message to the programmer.

As far as the compiler is concerned, an initial phase, called lexical analysis,
normally performs the task of grouping ch;cu*acters together into what are usually referred to
as "tokens" (e.g., print, begin, end, read, identifiers, etc.) [AHO86]. A lexical analyzer is
sometimes called a scanner. A programming l‘anéuage can be thought of as consisting of a
number of strings (sequences of symbois). The definition of a language specifies which
strings belong to the language ("syntax" of the language) and the meaning of these strings

("semantics" of the language).

3.1 Preliminaries

The subject of "formal language theory" provides a definition of a most universal

language structure by specifying precise rules. The word "formal" refers to the fact that all

21
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the rules for the language are explicitly stated in terms of what strings of symbols can
occur. With this general understanding we can now state some abstract dcfmiﬁons.

A symbol is loosely defined as any representable gharacter. The terms letter, character, and
symbol are used interéhan geébly. ‘

An alphabet, denoted by Z, js any set of symbols. An alphabet will be considered a ﬁnite
set for all practical purposes. Examples of —alphabets include the set of 26 uppercase and 26
lowercase roman letters called the roman alphabet; the set of numbers 0,1,2,...,9 called the
decimal alphabet, and‘the set {0,1} consisting of only 0 and 1 called the binary alphabet.

A string is a sequence of symbols juxtaposed or put §ide by side. The terms string, word,
and sentence are used interchangeably. Examples of strings are 0011 over the binary
alphabet, and abba over {a,b}. There exists a special string which is allowed to have no
symbols. This string, called the "empty string" or "null string", is denoted by €. € belongs
to any language.

A language is always defined over an alphabet Z. A language over Y is defined as a set of
strings obtained from Z. Some examples of languages are

- the empty set ¢, _ ,
- the set {€} containing only the empty string, and
- the set {110\1i > 0} consisting of all strings of zero or more 1's followed by a 0.

There is a special language in which any sequence of symbols from an alphabet Z is a valid
string including the null string. This is denoted by Z*. For the binary alphabet {0,1},

T* = {g,0,1,00,01,10,11,000,001,...} "
Note that every language over X is a subset of Z*. Thus Z* is considered the universal

language.
3.2 Regular Expressions

The process of forming tokens is often driven by token descriptions. "Regular

Expression Notation" is a formalism used to describe the various tokens required by
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programming languages. According to Fischer and Leblanc, Jr. [FIS88], "the interpretation
of regular expressions is the basis of scanner generators, programs that actually produce a
working scanner given only a specification of the tokens they are to recognize”. Such a
program will be a valuable compiler-building tqol. The sets of strings defined by regular
expressions are termed "regular sets", which are a class of ianguages central to much of
language theory.

One of thé operations defined on regular expressions is the closure operation.
Closure of a language:‘L, denoted by L*, is the set of strings formed by concatenating any

number of strings from L. Formally, L* is defined as,

L* =3 Li
i=0

The other operations are union and concatenation and they apply the same way as in sets.
When interpreting a regular expression that contains several operators, the closure operator
has the highest precedence followed by concatenation and union operators.

Let X be an alphabet. The regulYar expr;ssions over X and thé sets they denote are
defined as follows [HOP79]:

- ¢ is a regular expression and denotes the empty set.

- ¢ is a regular expression and denotes the set {€}.
- every symbol, 7 in the alphabet is a regular expression.
- if r and s are two regular expressions, then their union (r+s), their concatenation

(rs), and closure (r*) are regular expressions.
Some examples of regular expressions are 00, 0+1, 0* (strings consisting of any number
of 0's), 0™1*0 (strings consisting of any number of 0's, followed by any number of 1's,

and ending with a 0).
3.3 Finite Automata

Before writing a compiler, it is necessary to have a clear and unambiguous

definition of the particular source language. There are two methods of defining languages
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[AHO72]: a generator, which uses a generative system called a "grammar", and a
recognizer, which is a highly stylized procedure capable of deciding whether a string
belongs to the language or not. A finite automaton (FA) is one of the simplest ‘recogn/izers.‘
It is a device for récognizing strings of a particular language, in cher words, it can be used
to recognize the tokens specified by a prpgramming language. Conceptually, a finite
automaton is a maphemaﬁcal model of a system with inputs aﬁd outputs. The system can be
in any one of a finite number of internal configurations or "states", some of which are
termed "final" states. There is a control mechanism which passes control from state to state
as each character of the string is read, according to a given set of transitions (or rules).
Thus, a finite automaton is a 5-tuple \(Q,Z,S;qO,F) [AHO72] where .

- Qs a finite set of states
- X is a finite set of input symbols
- 8is a function which, given a possible combination of the current state and input,

takes the automaton to a new state (possibly back to the same state)
- q0 is the start state
- Fis the set of final states
According to Hopcroft and Ullman [HOP79], "every FA is associated with a
directed graph, called a transitioh graph, where the vertices correspond to the states of the
FA and arcs correspond to the transition(s) that each state can make on an input symbol". If
on input a, the FA moves from a state p to a state g, then there is an arc labeled a from

vertex p to vertex ¢ in the graph. An example transition graph which accepts all strings of

0's and 1's in which the number of 1's is a multiple of three is given below. The initial

Start 1

state q0, is indicated by the arrow labeled "start". The final states q0 and g3, are indicated

by the double circle. The start state and one of the final states can coincide. If all the
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transitions from one state lead to at most one single state on an input symbol, the machine
is called a Deterministic Finite Automaton (DFA), otherwise it is called a Nondeterministic
Finite Automatén (NFA). The automaton shown above is an example of a DFA. An
example of an NFA is shown below. Thére can also be spccial moves in an NFA called -
moves, which means that the finite automaton makes a transition from state to state on an

empty string €.

Now the recognizing power of a finite automaton is illustrated. If after reading the
final character of a string, the finite automaton is in one of the final states then the string is
"accepted" by the automaton otherwise it is "rejected”. A way of representing the transition

function & is by using a 2-dimensional table, as shown below, with rows representing the

states and columns representing the input symbols. Each entry in the table is the next state

Inputs
States | 0 1
q0 | q0 ql
ql | ql q2 qO - start state
qQ2 | q2 q3 q0,q3 - final states.

that the automaton will move to, on the input symbol given in the column entry, from the

original state given in the row entry. From the transition table, the following transitions can

be observed.

8(q0,1)
o(ql,1)

ql
q2
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Hence, ,
8(q0,11) = 8(3(q0,1),1)
= d(ql,1)
= q2
Similarly,

6(q0,101001) =qg3
which is a final state, and hence the string 101001 is accepted by ihc DFA.

3.4 Transformation Al gorithms

As mentioned earlier, a set of transformations can be performed on a regular
expression representing a particular language. A cycle of transformations that are used in

this thesis are shown in Figure 8. In the following subsections, an example RE 0*1* is

NFA with
' g-moves

TS [ Minimized ‘

\ DFA
T7 ’ Set of RE TG
equations

Figure 8. Cycle of Transformations Performed on a Regular Ekpression.

considered and the various changes occuring during this cycle of transformations are

explained in detail. Appendix C gives these details for another example.

3.4.1 Transformation T1 - RE to NFA

Converting a regular expression into an equivalent finite automaton is the first
transformation performed in the cycle. This is the synthesis step as an NFA representing

the given regular expression is constructed. The basis for this step is that there is a simple
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finite automaton for atomic regular expressions, (i.e., regular expressions without any

operators) as shown below.

@RE=¢ (_b)REécp (©)RE=a

A regular expression, r can be writteﬁ in the form of (r1+r2) or (r1.rp) or (r1*)
where r1 and r) are regular expressions too. Let M1 and M represent the finite automata

for regular expressions rq and rp_respectively. Then the finite automaton for the three

forms of an RE can be constructed using the rules shown in Figure 9. Applying this

@ w
3 : \
—(] ©
) -s M2 @//£'
(a) Union of M1 and M2
e ® w Q@

(b) Concatenation of M1 and M2

€

S MI @-—E
N~ .

(b) Closure of M1

Figure 9. Rules for Synthesizing an NFA from Automata M1 and M2.

(Source: J.E. Hopcroft and J.D. Uliman. Introduction to Automata Theory, Lan
Computation, Addison-Wesley, Reading, MA, p. 31, 1979.)
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construction technique iteratively yields the automaton for a given regular expression.

The method is illustrated through an example. Consider the regular expression
0*1*. The regular expression in -complete baranthesized form (considering operator
precedence) is ((0)*.(1)*). Note that concate’nkét‘ion is now denotéd by'thc symbol "."
instead of juxtaposing. This is in the fdrm of r{.rp where r{ = (0)* and rp = (1)*. Again
r1 is in the form of r3* where r3 = 0.7 The finite automaton for r3 can be obtained directly
from the basis step. Then we use the conStfuCtion step of Figure 9(c) to obtain the finite

automaton for 0* as follows.

Similarly, the finite automaton for (1)* can be constructed. Now we use the construction
step of Figure 9(b) on the machines M1 and M2 to obtain the automaton for 0*1* as shown

in Figure 10. Note that the automaton obtained by this method is an NFA with some &-

moves.

Figure 10. NFA With e-moves for the RE 0*1*.
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3.4.2 Transformation T2 - Removing €-moves

This transformation removes the e-moves from the NFA obtained in the previous

step. The method is illustrated through a simple example. We will come back to the

example of 0*1* a little later in this section. Consider the NFA with e-moves given below,

which accepts the language consisting of any number (including zero) of 0's, followed by

any number of 1's followed by any number of . Note that arcs labeled € may be included
in any path. Thus the string 012 is acceptéd by the NFA by following the path with arcs
labeled 0, &, 1, €, 2. ‘

. . :
!g €
Start 0 € @

e-closure(q) of a state g is the set of all states p such that there is a path from g to p

with one or more arcs labeled €. Let us find the e-closure(q0) for the NFA shown above.
There is always a path from q0 to qO with an arc labeled €. There is a path from g0 to q1
with an arc labeled €. Also, there is a'pa;h from q0 to q2 with arcs labeled €, €. Hence &-
closure(q0) = {q0,q1,q2}. Similarly e-closure(q1) = {q1,q2}, and e-closure(q2) = {q2}.

Let M = (Q,X,8,q0,F) be the NFA with e-moves. Then the new NFA M' is
constructed by following the algorithm'[HOP7—9] in Figure 11. Let us apply these rules to
the NFA considered above. The new machine is given by M' = ({qO,ql,qZ}, {0,1,2},
§',q0, F') where “

F' =F U {q0} as e-closure(q0) contains the final state g2

= {q0,q2}

Then we determine the new transition function, §' as follows.

8'(q0,0) = e-closure(P), where
P =8(8'(q0,¢),0)
= d(e-closure(q0),0)
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let the NFA with e-moves be M = {Q,Z,8,90,F);

the NFA without e-moves is given by
M = (QXZ,8,q0,F);
where .
d'(q.e) = e-closure(q);
if e—closure(q0) contains a state of F then
F =FU {q0};
else FF=F,

for any string w in £* and any symbol a in £
8(q,wa) = e-closure(P) where,
P = {p\for some r in 8§'(q,w), p is in 8(r,a)};

Figure 11. Algorithm for Removing €-moves in an NFA.

(Source: J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory. Languages. and
Computation, Addison-Wesley, Reading, MA, p. 26, 1979.)

=8({q0,q1,92},0)

= 8(q0,0) U 8(q1,0) U 8(q2,0) -
{(O}UU D N

{q0}

Thus,
8'(q0,0) = e-closure(q0)
= {q0,q1,92}

Following this approach, the tra‘nsition function of M' is determined. Thus the NFA after

removing €-moves is shown below.

0

Using this method on the example of 0*1*, whose NFA with e-moves was shown

in Figure 10 of section 3.4.1, we obtain the NFA without e-moves as shown in Figure 12.
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0 1

S,F @ {q1,92,93,94.95.947) {95.96.97)
ql {q1.92.93.944.9547) @

Q {91.92.93.94.9597) - {95.9647)

P @ | (95.96.97)

¢ @ {q5.96.q7)

P D {45496.97}

6 @ {95647}

E q7 @ {95.96.97)

Fighre 12. NFA Without e-moves for the RE 0*1*.

3.4.3 Transformation T3 - NFA to DFA

This transformation removes the nondeterminism from the automaton obtained in
the previous transformation. That is, a DFA equivalent to the given NFA will be

constructed. Let M = (Q,Z,3,q0,F) be the given NFA. Then we can construct the DFA M'

by the algorithm [AHO72] presented in Figure 13.

let the NFA be given by M = (Q,X,3,q0,F);
the equivalent DFA is given by M' = (Q',2,8',q0'",F") where

Q' is the power set of Q;
/* the states of M' are sets of states of M */

q0' = {q0}; :
F' consists of subsets, S of Q such that S Q F # @;
for all subsets S, and any symbol a in X, 8'(S,a) = S' where

S' = {p\d(q,a) contains p for some q in S};

Figure 13. Algorithm to Construct a DFA from an NFA.

(Source: A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation. and Compiling,
Prentice-Hall, Englewood Chiffs, NJ, p. 117, 1972.)

Consider the NFA M obtained in transformation T2 for the RE 0*1* as shown in

Figure 12. Since M has 8 states it appears that the DFA M' to be constructed will have
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28-256 states. But, not all of the 256 states will be accessible from the initial state {q0},
and hence M' may not contain all the 256 states. Since {q0}, the start state, is always

accessible the construction begins from this state.

3'({q0},0) = 8(q0,0) = {q1.92,93,94,95,97} and
8'({q0},1) = 8(q0,1) = {g5,96,97}.

Let Q1 = {q1,92,93,94,95,q97} and Q2 = {q5,96,97}, and consider these as the new states

obtained. Then,

8'(Q1,0) = 8'({q1,92,93,94,5,q7},0) |
= 8(q1,0) U 8(g2,0) U 8(q3,0) U 8(q4.,0) U 8(q5,0) U 8(q7.0)
({2?1,q2,q3,q4,q5,q7}

8'(Q1,1) =8({ql,q2,93,94,.95.,97},1)
= {q5,96.97}
=Q2
Following this procedure, the new transition function is completely determined when no
more new states are encountered. In this example, we see that Q1 and Q2 are the only new
states obtained. Since Q1 and Q2 both contain state q7 which is a final state of M, both Q1
and Q2 are termed as final states of M' along with qO0. Thus the DFA equivalent to the

given NFA is shown in Figure 14.

0 1

S.F Q0=[q0] Q1 Q2
Q1=[q1,42,93,44.959471 | Q1 Q2

F Q2=[q5.96.q7] @ Q

Figure 14. DFA Equivalent to the NFA for the RE 0*1*.

3.4.4 Transformation T4 - Minimizing the DFA

The DFA constructed in transformation T3 may have redundant and inaccessible

states which are removed in this transformation. Consider the DFA shown in Figure 14.



33

for p in F and ¢ in Q-F do
mark (p,q) entry in the table;

for each pair of dlstmct statesin Fx F or (Q-F) x (Q-F) do
begin
if for some input symbol a, (3(p,a), 5(q a)) is marked then
begin :
mark (p,q) entry in the table;
recursively mark all unmarked entries on the list for (p,q) and
on the lists of other entries that are marked at thls step;
end; /* then */

else begin -/* no pair (S(p,a) d(q,a)) is marked */
for all input symbolsa do -
if 8(p,a) <> 8(q,a) then
put (p,q) on the list for S(p,a), 8(q,a))

end; /* end else */
end /* do */ '

Figure 15. Algorithm for Marking Pairs of Inequivalent States in a DFA.

(Source: J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory. Languages,
and Computation, Addison-Wesley, Reading, MA, p. 70, 1979.)

The algorithm for minimizing a DFA [HOF79], outlined in Figure 15, will find the set of
states which are equivalent. A table is constructed with an entry for each pa1r of states as
shown below. Each entry corresponding to one final state and one non‘ﬁnal state, that is the
entries (q0,93), (q1,93), and (g2,93), are marked with an X. For each entry (p,q) that is
not yet marked in the table, we consider the pair of s)tates r=8(p;a) and s=06(q,a) for each,
input symbol a. If the entry (r,s) is marked for some input symbol a, then the entry (p,q)
gets marked. If the (r,s) entry does not get marked for all inputs, then the pair (p,q) is
placed on a list associated with the (r,s) entry. If (r,s) entry gets marked in further steps, V
then each pair on the list associated with the (r,s) entry also gé:ts marked.

In this example, to mark the entry (q1,q0) we see that 8(q1,0) = 8(q0,0) and aléo
8(q1,1) = 8(q0,1), that is g0 and q1 states go to the same state on both input symbols 0 andv

1. Hence (q0,q1) entry can neither be marked nor can it be placed on any associated list.



34

ql
QR X X
F X X X .

) gl @

For the entry (q2,q0) we see that’(ﬁ(qZ,O),S(qO;O)) = (q3,q1) has already been marked and
hence (q2,q0) entry gets marked. Continuing with these steps we complete marking the
table. From the table we see that only (q0,q1) entry is not marked, and hence states g0 and
q1 are considered equivalent. They are merged into a new state Q1, and the other state g2
is retained as is in the minimized DFA. Moreover, 8(Q1,a) = 8(q0,a) U 8(q1,a) for any

input a. Now, the minimum state DFA can be easily constructed as shown in Figure 16.

Q0=[q0.q1]
Ql=[q2]

Start 1

Figure 16. The Minimized DFA for the RE 0*1*.

3.4.5 Transformation TS - DFA to RE

In this transformation the transition graph of a finite automaton is extended to have
arcs labeled by regular expressions. The algorithm, shown in Figure 17, builds a regular
expression for the set of strings accepted by each individual final state [SUD88]. The
language accepted by the DFA is then given by the union of these regular expressions. Let
the arc from state q, to state ¢ be denoted by wjj (wj;=0 if there is no such arc). A set of
subgraphs are constructed from the original transition graph G of the DFA such that each
subgraph has exactly one final state of G. Each subgraph is processed by deleting particular

states as shown in Figure 18. To delete a state q,, all paths of length two that have
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make m copies (G1, G2, ... Gp) of the transition graph G such that each
subgraph has one unique final state of G.

for t=1tom do
begin
repeat ‘
a state q;j is chosen in Gy that is neither the start nor the final state;

/* delete this state as follows */
for every pair of states gj, gk not equal to g; (including qj-qk) do
begin
if wjj# ¢ and Wik # ¢ and wj; = ¢ then -
an arc is added from state g to state gk labeled wjjwik;
if wjj # ¢ and wig # ¢ and wjj # ¢ then
an arc is added from state g to state gk labeled wjj(wij)*wik;
if states gj, qk have arcs wj, wp,..wy connecting them then
they are replaced by a single arc labeled wi Uwp U ... U wy;
state g and all arcs incident to it are removed from Gy; ’
end; /* do*/
until G; has only the start and final states;
the regular expression RE; for G, is determined;

the regular expression for the graph G is accumulated as
REG =REG + REy;

end; /* do */

Figure 17. Algorithm to Build an RE Representing an FA.

(Source: T.A. Sudkamp. Languages dM. chimes: An Introduction the Th
of Computer Science, Addison-Wesley, Reading, MA, p. 160, 1988.)

state gj in between state q; and state gk are found. Then an arc is added directly from state

q;to state g, and labeled Wiiwik if w;; = 0, else labeled Wii(Wii) *Wik.

O O——® @

(a)Case 1 -wn=¢

® »8 -® O———®

(a)Case 2 - wn<>¢

Figure 18. Two Cases in Deleting a State q,.
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After deleting all possible states, the reduced graph has at most two states, a start

state and a final state. This graph may have the following form, where the startand final

wl

states coincide. The regular expression for this graph is wl’i‘. On the other hand, the graph

may have the following form.

w3

wl
84 e @

wd

The regular expression for this graph is wi*wp(w3 U wgqw1*w9)* which may be
simplified if any of the arcs in the graph is missing.
Now, consider the minimficd DFA shown in Figure 16 of section 3.4.4 for the

example RE 0*1*. Since this graph has iwo states, two subgraphs are constructed as:

Subgraph G1 ‘ . Subgraph G2

State Q1 in G1 can be easily deleted since 1t does not fit into any of the two cases shown in

Figure 18. This leaves the reduced version of G1 as follows.
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G2 cannot be reduced any further since it has exactly one start state and one final state. The

RE for G2 is 0*11*. Then, the RE for the original graph G is obtained by the union of the
REs for G1 and G2 as 0* + 0*11*.

3.4.6 Transformation T6 - RE equations fgr the DFA

This transformation determines the set of RE equations which represents a finite

automaton. Let m be the number of states in the given automaton. Let ajj denote the set of
input symbols such that 8(qj,a;j) = qj for i=1,...,m and j=1,...,m. If there are no such
transitions, then ajj = €, since any state can be reached from itself by an arc labeled €. Let
xk represent the RE for the state qx. Then the following equations can be written for an

automaton [ARD60].

X] =Xj1a11 + X2a21 +. ..+ Xmam] + €
X2 =Xj1d12 + X2a22 +. .. + Xpam?2
Xm = X141m + X242m +...+ Xmamm
Note that the equation for the start state x] has an € added at the end. For the DFA

shown in Figure 16 of transformation T4, we can write the set of RE equations as follows.

Xo=Xp0 +¢ I
X0 =X0p0 + X1 L. I

where X and X represent the expressions for the states Q0 and Q1, respectively.

3.4.7 Transformation T7 ] Solution of RE Equations

This method is similar to that of solving a set of linear equations using Gaussian
elimination. The algorithm for solving a set of n regulla_r expression equations [AHO72] is
presented in Figure 19. The algorithm relies on the fact that there is a simple solution to the
equation X =Xa+b ~where a and b are regular expressions. One of the solutions for this
equation is X = ba*

The method is illustrated through an example. Consider the following set of RE

equations.



i=1;
whilei <ndo
begin
write equation for Xj as X, = Xl + b where
ais an RE and b = bg + Xj+1bj +. . + Xpbp (each bj is an RE)
for r=i+1ton do
In the equation for X; replace X, by the RE ba*
i=i+1;
end; /*do */

/* At this point, the equauon for X, will have only symbols in £ and
Xj,..,Xpn on the RHS. Thus the equatlon for Xn wxll have only X; and

symbols in ¥ on the RHS. */

i=n; ‘
while i>n do
begin
Solve for X; = ba*;
Substitute ba* for X, in the remaining equations;
i=i-1;
end; /* do */

Figure 19. Algorithm for Solving a Set of RE Equations.

(Source: A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, Engl_ewood Chffs, NJ, p. 106, 1972.)

X1=X10+Xol +¢ S ()
X2 = X720 + X31 L. (2)
X3=X;1+X>s1 Co. 3)

Equation (1) can be written as

X1=X10+ X2l +¢)

which can be solved as

X1 = (X214€)0* , R 4)

Equation (4) can be substituted in Equation (3) to obtain

X3 = (X21+€)0*1 + Xo1 .
= X7(10*1+1) + 0*1 Co (5)

Now Equation (2) can be solved as

X2 = (X31)0*

38
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= X310* Co (6)
Substituting Equation (6) in Equation (5) we obtain

X3 = X310%(10*1+1) + 0*1 ,
= X3(10¥10*1+10*1) + 0*1 e (7)

We have now reached the last step of the algorithm. We solve for X3 to obtain,
X3=0*1(10%10¥1+10¥ ) . . . ~ ®)
X3 can now be back substituted in F;quation (6) to get -
X2=O*1(10*10*1+10;"1)*10* e %)
Then X7 can be substituted in Equation (4) to obtain the solution for Xj. -
Following this procedure, we can obtain the solution for equations I and II obtained

in transformation T6 for the DFA in Figure 16, as follows.

X =0*
X1 =0*11*

Since both QO and Q1 are final states, the regular expression for the DFA is obtained by the

union of X and X. Thus the final RE for the DFA is given by 0* + 0*11*.



- CHAPTER IV
MULTIPROCESSOR SCHEDULING

As mentioned earlier, parallel proccssing provides a pos/sibl\e solution in meeting the
increasing demand fcir computational speed in solving very complex problems which
would not be possible on sequential computers. Interestingly enough, many physical
problems show some sort of inherent parall.clis‘m’ which enables them to be modeled by
parallel systems. This factor makes it possible for solving many complex problems on
parallel systems. Extracting this inherent parallelism effectively from a given problem leads
to the solution of the problem, which( could be subsequently implemented on a parallel
system. Initially, a given problem is decomposed or partitioned by identifying the
sequential units of computaiion; called "tasks", in the problem and establishing the
interdependencies among thefri [FOX88]. Subsequently, the tasks are assigned to a set of
available processors following a sbheduling procedure. Partitioning and scheduling are
two important multiprocessor-dependent issues in implementing parallel algorithms .
" [POLY86]. In this chapter, we will discuss the partitionin;g‘and schéduling ap;iroachcs
used in the implementation of parallel algorithms for ihe transformations described in

section 3.4.
4.1 A Partitioming Approach

The first step in the implementation of parallel algorithms is partitioning the
problem. As mentioned above, partitioning a problem consists of identifying the sequential
units of computation, called "tasks", in the given problem. The partitioning approach

adopted must ensure to make the granularity of the parallel algorithm coarse enough for the

40
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target multiprocessor [SARK89]. The parallelism in the problem is usually specified by the
way tasks depend on each other in the partitioned problem. These dependencies should be
kept at a minimum by the approach used for partitioning. In this section we will discuss
the partitioning approaph used in the thesis.

The first transformation Tl,‘in the cycle of transformatior;s shown in Figure 8 of
Section 3.4, is to synthesize a finite automaton from a regular expression.. The construction
method is described in §ection 3.4.1. Ttcanbe easi‘lyv seen that this process is similar to
evaluating an arithmetic expression with various opératots and opérands. Several methods,
both sequential and parallci, for evaluating an expression are available in the literature
[AHO72, AHO86, MOIT87, RAM71]. The approach adopted in the thesis follows the
general concept of evaluating an expression in Reverse Polish Notation [SOR76].

Initially, a regular expression is converted into a form which consists of only binary
operators and the two operands. This requires. adding a dummy operand (say Oor1)to
the right of every closure operator in the RE. For é;éamp_le, 0* becorpes 0*0. Bui this
dummy operand will not be used in the evaluation of the RE. Also, the concatenation
operation, which is generally represented by juxtaposing its two operands, is now
represented by the operator "."‘ between“ the two operands in the RE. Thus, 00 is
represented as 0.0 in the RE. Using these transformations, a ’given RE, for example,

(0*1+11)1 + (00+0*1)0 + 0*1
is now represented as,

(0%0.1+1.1).1 + (0.0 + 0*0.1).0 + 0*0.1
Then this expression is converted to post-f,fx notation by using the Polish algorithm
[SOR76] as follows.

00%1.11.+1.00.00*1.+0.+00*1.+
Identifyiﬁg the individual tasks in the RE represented in this form is nbw straightforward.

Each binary operation (the two operands and the binary operator succeeding them) consists
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of a single task. Identification of tasks is completed when the last task in the RE is

identified. The tasks are identified for the given RE as shown in Figure 20.

00*1e11¢+1+00+00%1++0++00%15++

il 1-L+1-IT T

T4 1 «+0e¢+ TS5 1+
T6 7

+0e«+ T8 +

T2 + 1+ T3
_I—
T9 1. T10 0+«+ T8 +
E
T11 }T12 + T8 +
l -
T13 ‘ T8 +

T14
Figure 20. Partitioning an RE into Tasks.
One can directly see that tasks Tj, T, T3, T4, and T5 do not depend on any other tasks -
(they only need O or 1 as their operands), and are thus independent. But task Tg depends

on task Ty since it needs the result of task T; as one of its input. In a similar fashion the

other dependencies can be established from the partitioned problem.
4.2 Graphical Representation of the Problem

A problem partitioned into several tasks forms a task system, which can be

represented in a form that shows the relationships among the tasks. Various representation
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forms for a task system are available [AHO86, GURDS8S5], and two simple forms are

discussed in this section.

4.2.1 Precedence Graphs

In general, a task system can be modeled by a precedence graph [COFF76], which
is a directed acyclic graph (DAG), G consisting of a set of nodes and a set of edges
(directed arcs). An example of a precedence graph is showr; in Figure 21. Each node nj in
G represents a task Tj and each arc between nodes nj and nj indicates that a precedence
relation exists between the tasks, T, and Tj, on these nodes. This precedence relation
specifies which one of the tasks, T, or Tj, needs to be initiated before the othér one. The
"predecessors” of a ltask T, are the nodes ffom which arcs are incident to ‘Ti, and the
"successors" of Tj are7 the nodes to which arcs are incident from T;. Nodes with no
predecessors are called leaf nodes which represent the initial tasks in the system. A task can
be executed or assigned when all of ft§ predecessors have been executed or assigned. Each
node is associated with an attribute called weight of the node which is the execution time of

the task represented by that node (node weight and node execution time are used

interchangeably).
2 @ 4 2
3 4
' @ > (19
™)'
Figure 21. An Example of a Precedence Graph.
4.2.2 Rooted Trees

Another form of representing a task system is by a rooted tree [HU61]. A rooted
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Figure 22. An Example of a Rooted Tree.

tree is a directed graph similar to a precedence graph in which each node has at most one
successor (and any number of predecessors, including zero predecessors). The node
which has no successors is called the root node. An example of a rooted tree is shown in
Figure 22. This corresponds to the RE p\artitioned into a task system in Figure 20. We can
easily see that node T4 is the root node and nodes Tj, Tp, T3, T4, and Ts, which do not

have any predecessors in the inverted tree are the leaf nodes.

4.3 Scheduling Algorithms

Once the tasks have been represented in the form of a suitable graph, they can be
assigned to a set of processors on the multiprocessing system. A schedule or assignment .
for a given precedence graph and a multiprocessor system with p processors, is a
complete description of the work to be done by each‘ processor as a function of time
[RAM71]. The schedule must not violate any of the precedence relationships in the task
graph and it must not allocate more than one processor to a task at any given time. There

are several ways of representing schedules for a task systems.
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4.3.1 Gantt-Chart Representation of a Schedule

One of the simplest ways to display or specify a schedule is by timing diagrams
called Gantt charts [CLARKS2]. Fo; the precedence graph shown in Section 4.2.1, a
schedule on three processors is drawn in the f;)rm of a (}an& chart as shown below. An

idle period denoted by @ on this chart is a time interval within which the processor is not

P1 Ti T4 Lo}
2| T3 T6 @
P3 T2 | 15 |17
b | ‘
0 1 2

3 4 5 6 7

executing any task. The execution time or schedule length of a schedule is the total time
taken to execute all the tasks in the. graph as specified by the schedule [COFF76]. The
execution time of the schedule shown above is 9. The Speed-up ratio Sp obtained by a
schedule on p processors is the rati6 of the time taken to execute the task system on an
uniprocessor system (which is equal to, the sum of ail node weights) over the execution
time obtained by the schedule on p processors [POLY86]. In the example, Sp = 18/7 for p
= 3. The efficiency (utilization factor) Ep. obtained by a schedule is the rétio of the total
busy time of all the processors to the total time during which all the processors were

available for execution [HWANGS84]. In the example, Ep = 18/7*3 = 18/27. |

4.3.2 Scheduling Algorithm A

In this section we will describe a multiprocessor scheduling algorithm, called
Algorithm A, which schedules a task system given in the form of a rooted tree. Algorithm
A follows the general approach used in the Hu's algorithm for multiprocessors ([HU61]1as
cited in [HWANGS84]). Each node in the graph is assigned a label as follows.

« The label of the root node is set to 1.
» The label of any other node is set to 1 plus the label of its unique successor node.
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For the rooted tree in Figure 22 the label table is shown below.

TI | T2 | T3 | T4 | TS| T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14

Let L denote the value of the maximum label in the label table, wi denote the subset
of jobs with label i, and Iwjl be the number of tasks in wi. We define the width, wG of the
graph as,

wG = max (Iwil, Iw2l, ..., IwLl).

Thus, for the graph in Figure 22 we have,

we = {T1,T4}, ws = {T2,T3,T6,T7}, wa = {T9,T10}, w3 = {T5,T11,T12},
wa = {Tg,T13}, and w1 = {T14}

Hence, the width is

wG = max(2,4,2,3,2,1) = 4.

Algorithm A [HUG61] for scheduling a rooted tree on p processors is outlined in
Figure 23. The trace of this algorithm can be illustrated by scheduling the task graph in
Figure 22 on p=2 processors. Initially we see that lws|>2, and either T, or T3 can be
chosen as the victim node since they have no predecessors in wg. T is chosen arbitrarily
and moved to the set wg. At this point the set representation is,

we = {T1,T2,T4}, ws = {T3,T6,T7}, wa = {T9,T10}, w3 = {T5,T11,T12},
wp = {Tg,T13}, and w1 = {T14};

Now Iwgl>2. . Any one of the tasks in wg can be chosen as the victim since they are leaf
nodes. Again, T3 is chosen arbitrarily and moved to a new set w7. At this point the set
representation is,

w7 = (T2}, we = {T1,T4}, ws = {T3,T6,T7}, wg = {T9,T10},
w3 = {T5,T11,T12}, w2 = {Tg,T13}, and w1 = {T14};

Now, since Iwsl>2, T3 is moved from ws to wg and then to w7. Subsequently, Tj is

moved from w3 all the way up to w7, and then to a new set wg. At this point,



Label tasks and group them into sets wj as described in text.

L1:
if wil<pfori=L,...,n,...,1then
_Goto L3;
else if for some i, |wjl > p then -
n=i;
L2:
if n # L then

find a node from wy, that does not havc any predecessors in wn+1;
/* such a node can always be found in a rootcd tree */
change the node's label from n to n+1;

end /* then */

if n =L then
select any node from the set w as the victim;
/* since all are leaf vertices in wi, */
change the node's label from L to L+1;
increment L by 1;

end /* then */

Goto L1;
L3:

form the schedule as follows:

fori=12,..., Ldo
execute a task in the set w1 in the (L-i+1)th unit of time on one of
the p processors;
/* if less than p tasks avallable then the remammg processors idle */

end /* do */

Figure 23. Algorithm A: Scheduling a Rooted Tree on p Processors.

(Source: T.C. Hu. "Parallel Sequencing and Assembly Line Problems", Operations Research,

vol. 9, no. 6, pp. 841-848, 1961.)

wg = {Ts), w7 = (T2, T3}, wg = {T1,T4}, ws = {T6,T7}, wa = {T9,T10},
w3 = {T11.T12}, w2 = {Tg,T13}, and wy = {T14};

Now, Iwil<2 for i=1,...,6. Hence, the schedule can be obtained as shown below.

P1| T5| T3 | T4 | T6 | T9 | T11| T8 |Ti4

P2| @ T2| T | T7|TIO[T12|TI13 | &

0 1 2 3 4 5 6 7 8

Figure 24. Schedule Obtained by Algorithm A on p=2 processors.
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To schedule the tree on p=4 processors, we see that Iwil < 4 for i=1,...,6. Hence, “
the schedule can be readily obtained from the initial set representation of the tasks in the
label table as shown below. Note that the widthﬂ wg of the tree is also 4. Thus, we can see
that when p=wg (that is, when the number of »procpssors is equal to the width of the

graph), the schedule is obtained directly from the initial set répreéentation of the tasks.

pilm | | | 15| 18] T4
p2 | T4 | T3] TI0] T | TI3] @

P3| o) T6| @ | T12| ¢ | @
P4l @ | T7| @ ol o | @

o 1 ‘2 3 4 5 6
It should be noted that Algorithm ‘A has certain limitations. Firstly, it is limited to

rooted trees and secondly, the rooted tree must have equal weighted nodes.

4.3.3 Another Partitioning Approach

In the RE (0*1+11)1 + (OO+0*1)O + 0*1 conside;cd in section 4.1, we see that the
sub-expression 0* and 0*1 are repeatéd. In the partitioning approach used in section 4.1
we did not consider this fact, and identified different tasks for the sub-expressions which
are repeated in the RE. ’I"his approach leéds)to replication of a task on processors; either
different or same, which is a major disadvantage. This can be avoided by identifying a
repeated sub-expression with a single task, and then establish the dependencies to other
tasks. An RE with common sub-expressions is partitioned as shown in ‘Figure 25. Then

the tasks can be representéd in the form of a DAG as mentioned earlier.

4.3.4 Scheduling Algorithm B

The resulting DAG obtained by the above mentioned partitioning approach will not
be a rooted tree, since it will have nodes having more than one successor. Since Algorithm

A is limited to rooted trees, it cannot be used to schedule this DAG. A multiprocessor
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RE: (0*¥114+0%)0*110 + (0*11+11)0

Polish notation: (0*0+1*0+0*0)¢0*01*00+(0*01*0+1*0)«0

00*10*000*+OO*10"“°0°’~00*\10*°10*+O°+
vy v v ¥ AR
TIT T2  T1I + TI1 T2 «0e++ TI T2 « T2 +0-+

A

T3 TT + T3 0> T3. T2 +0-<+
Y P 1
T4 T5 . T6 Qe +
Y Y
T7 T8 +
Y
T9

Figure 25. Partitioning an RE with Common Sub-expressions. '

scheduling algorithm called Algorithm B has been developedﬂ to overcome this problem.
The alogorithm has a preprocessing step in converting the given DAG with some nodes

having multiple successors into a rooted-tree form with equal node weights.

Removing the constraint of equal node weights

The constraint that all nodes should have equal weights can be eliminated as
outlined below. A process of normalization can be defined for géneral task graphs. Any
task graph G can be converted into another graph G'in which all nédcs have equal
weights [GON77] as shown in Figure 26. A node n; with weight w;.can be splitinto a
sequence of r nodes (all with execution time 7) suéh that w=rt. Then the graph G is
redrawn to obtain G’ by maintaining the integrity of the ori ginai graph. The idea is to find
the least factor of all the node weights in the original graph G and use this factor as the
value for z. Obviously, if this factor is anything other than 1, the vaue r for each node is
not very large. ’fhis keeps the exploration of nodes in the new graph G', which is the cost

of the conversion process, to a low value.
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@@ (b)

Figure 26. (a) Graph with Tasks of Unequal Node Weights.
(b) Graph with Tasks of Equal Node Weights.

(Source: M.J. Gonzalez. "Deterministic Processor Scheduling”, Computing Surveys,
vol. 9, no. 3, p. 186, September 1977.)

Removing the constraint of l;’mitgtigj n 1o a rooted tree

The second co’nstraini of "limitation tb a rooted tree" in Algorithm A can be
removed as follows. Consider the DAG shown in Figure 27(a). Starting from Ty, the
condition of a rooted tree is violated at node T which has two successors. This violation
can be rernpvcd by replicating the subtree above (and including) the node T as many times
as the nuiriber of successors of 'f]. Since T; has no predecessors (a source node), Ty is
simply duplicated as T11 and T12. The graph is transfqrmcd as shown in Figure 27(b) by
drawing the directed arcs from Tjj to T2, and from Ti2 to T3 corresponding to the
precedence relations among tasks T1, T2, and T3 in the original graph. For the graph in

- Figure 27(b) the condition of a rooted tree is again violated at node T3 which has three
successors. Hence the subtree above and including T3 is replicated three times.
Subsequently, the precedence relations are established by drawing the directed arcs

between T31 and T4, T32 and T35, and T33 and T7. Note that T12 in the subtree also gets
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replicated as T121, T122, and T123. Now the graph in Figure 27(c) is a complete rooted-

tree version of the DAG in Figure 27(a).

©)

Figure 27. Ilustration of Converting a DAG into a Rooted Tree.

Obviously, this method suffers from the disadvantage of the replication of nodes in
the resulting rooted tree. For a node at a vitolation point, let P be the number of all nodes in
the subtree above it and let S be the number of its sucessors. It can be seen easily that the
replication factor at each violation point is given by (P+1)S - (P+1) = (P+1)(S-1) = PS.
. But, it will be shown in Scheduling Algorithm B that the ‘réplication of ﬁocieg is only for the
purpose of representation and will not be reflected in the schedule to be developed. That is,
if a node T1 is duplicated, it will not be assigned twice as T11 and T12 toytwo Processors
(same or different).

Now we will describe the schedulin g Algorithm B which assumes that a given task
graph has already been preprocessed so that a corresponding rooted tree with equal node
weights is available. Consider the rooted tree with replicated nodes in Figure 28(a) which
corresponds to a given DAG that has been preprocessed. Each node in the graph is

assigned a label as follows:



52

+ The label of the root node is set to 1.
« The label of any other node (including replicated nodes) is set to 1 plus the label of
its unique successor node.

Using this labeling scheme, the label table for the tree is obtained as shown in Figure

28(b). Note that replicated nodes have differenf labels.

T11{T12{T214T212Y T22|T23 T3 {T41| T42AT5|T6 | T7

Figure 28. An Example of a Rooted Tree with Repeated Nodes and Its Label Table.

Let L denote the value of the maximum label in the label table, wi denote the set of
tasks with label i, and Iw,| denote the number of tasks in w;j. The width wg of the graph is
defined as in Algorithm A The initial sgt\r’epresentatioh of the tasks is as follows.

wa = {T11, T21}, w3 = {T41,T22,T12, T23, T24, T3}, w2 = {T42,T5,Te}, w1 = {T7}
Once the tasks have been labeled and grouped into sets Algorithm B, outlined in Figure 29,
can be used for scheduling the rooted tree (with repeated nodeS) on p processors.

The trace of this algorithm for scheduﬁng the above tree on p=2 processbrs is as
follows. Initially, we see that the leaf nodes T; and T (actually T1; and T2 which will be
scheduled as Tj and T3 respectively) can be scheduled from w4 during the first time
interval. This reduces w4 to {}. Subsequently, T41 (scheduled as Ty4) is sglected~ from w3
for the second interval (since both its predecessors have been scheduled) and removed from
w3. Now, T2 can be chosen, but being a repeated task one of whose cournterparts is
already scheduled in the previous time interval, T92 is removed from w3. At this point, .

= {}, w3 = {T12,T23,T24, T3}, wa = {T4,T5,T¢6}, and w1 = {T7}
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repeat
Select at most p tasks from wj such that:
they are the leaf nodes;
or .
all their prcdecessors have been as31gned in an interval previous to the
current time interval;

if the predecessor of a task is a repeated node then
any counterpart of a repeated node is considered its predecessor;

if a repeated node needs to be selected then ‘
if any of its counterparts has been selected earlier or in the
current interval then
discard it from the current set wi;
else select it for the current time interval;
end; /* then */

if all tasks in the set wj have been tried for selection then
£0to next set wi+1; r

Schedule the p (or fewer) tasks on p processors dunng the current mterval
until (all tasks have been scheduled);

Figure 29. Algorithm B: Schedu]inhg a Rooted Tree With Repeated Nodes
on p Processors.

Similarly, tasks Tj2, T23, and To4 are tried and removed from w3. Then, task T3 is
selected since it satisfies all the conditions. In this manner, the complete schedule is

constructed as shown in Figure 30.

Pl | Tt| T4| T6 | T7

0 1 2 3 4

Figure 30. Schedule Obtained by Algorithm B on p=2 Processors.

4.3.5 Scheduling Algorithm C

Algorithm B has a disadvantage in the form of replication of nodes duririg the phase
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of preprocessing. A multiprocessor scheduling algorithm called Algorithm C is developed
which also schedules a task system given in the form of a DAG on p processors. The
advantage of Algorithm C over Algorithm B is that_the phase of converting a DAG into a
rooted tree is eliminated and the al gorithm‘ schedules th;: DAG directly.
Consider the task graph \Qith some nodeS'hz;ving mﬁltiple successors as shown in
Figure 31. Each node in it is assigned a label as follows.
« The label of the root node is set to 1. '

+ The label of any other node is set to 1 more than the label of its successor. If a node
has more than 1 successor, than the maximum label is considered.

Label Table

Figure 31. An Example of a DAG with Some Nodes Having Multiple Successors.

Using this labeling scheme the label table for the DAG is obtained as shown in Figure 31.
Note that the label of the task Tj is 4, and not 3. |

Again, let L denote thé maximum label in the table, w, denote the set of tasks with
label i, and Iwjl denoted the number of tasks in the set w,. The width wg of the graph is
defined as in Algorithm A. Thus, for the DAG shown above,‘the inital set representation
of the tasks is as follows.

ws = {T1,T2}, wa = {T3}, w3 = {T4,Ts,Tg}, w2 = {T7,Tg}, w1 = {To}
Once the tasks have been labeled and grouped into sets, they can be scheduled on any

number, say p, of processors using Algorithm C outlined in Figure 32.



Label nodes and group them into sets wj as described in text.
L1:
if lwjl<pfori=L,..n,. .1then goto L3;
else if forsome i, Iwjl >pthen n=1i;
L2: ’
if n 2L then -
find a node from wp, that does not have any predecessors in wp+1;
if no such node available in wy then ’
n=n+1; '
goto L2
end /* then */
change the node's label from n to n+1;
end /* then */

if n =L then
select any node from the set w, as the victim;
/* all are leaf nodes in w_ */ -
change the node's label from L to L+1;
increment L by 1;
end /* then */
goto L1;
L3:
form the schedule as follows:
fori=1,2,...L do .
Execute a task in the set wj in the (L-i+1)th unit of time on the
D Processors;
/* if fewer than p tasks available then remaining processors idle */
end /* do */

Figure 32. Algorithm C: Séhedu]ing a DAG on p Processors Directly.
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The trace of the algorithm for scheduling the DAG in Figure 31 on p=2 processors

ws and added to a new set we. At this point,

is as follows. Initially, we see that Iwsl > 2, but none of T4, Ts, or Tg can be chosen as
the victim node since they have a predecessor in w4. So we try to search for the victim in

w4. Again we fail and finally Tq in w5 is chosen as the victim. Then Tj is removed from

we = {T1}, ws = {T2}, wa = (T3}, w3 = {T4,T5,Te}, wa = {T7, Tg}, wi = {To}

to wg. Now, we have

Again Iw3l > 2, and, following the same argument, T is now removed from ws and added

we={T1,T2}, ws = {}, wa = {T3), w3 = {T4,T5,T¢}, wa = {T7, Tg}, w1 = {To}
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In the next step, T3 will be removed from w4 and added to ws. Then one of T4 or T5 or T¢
can be moved to w4, giving a set representation as follows.
we={T1,T2}, ws = {T3}, wg = {T4}, w3 = {T5,Te}, w2 = {T7, Tg}, w1 = {To}

Now, lwjl <=2 for i=1,...,5, and hence the schédule is formed as follows.

ol Ti| 3| |l 15| 7| T9

il 12| o]l | 16| 8] @

0 1 2" 3 4 5 6

Figure 33. Schedule Obtained by Algorithm C on p=2 Processors.

4.4 Implementation and Opfimization Issues

Various aspects of implementation of the problem on the iPSC/2 hypercube system,

and several optimization issues are considered in the following subsections.

4.4.1 Optimal Number of Prgégssors

From the algorithms described above, it can be seen easily that when p=wgG (that
is, when the available number of processors is equal to the width of the graph), the
schedule can be direc‘tly obtained from the initial set representation of the tasks in the label
table. The length of the schedule thus obtained will be equal to L, where L is the number
of nodes in the longest path in the DAG. Moreover, it has been shown that, for any
precedence graph, L is the minimal schedule length of any optimal schedule [CON67].
Hence, the schedules obtained by either Algorithm A, B, or C have minimum schedule
lengths when the available number of processors is equal to the width of the graph.

Thus we conclude with the following lemma which captures this important
observation from these scheduling algorithms.

Lemma: Consider a task system of # tasks given in the form of a graph G (either a DAG or

a rooted tree) which has a width, wG=k. This system can be executed by Algorithm A, B
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or C in L units of time on k processors where L is the number of nodes in the longest path
in G.

This is a definite improvement over scheduling the graph G on m processors by any
other algorithm, which would also yield a schedﬁle-length of L, where m is the number of
initially available tasks (or leaf podes) of G. Larger number of processors (i.e., more than
m in this case) would result in poor proce‘ssor utilization. Suppose a program can be
executed in a given time interval by a lesser number ofﬁ processors than the available
number of processors. Then, the remainiﬁg ’prrocessors could be used as back up
processors in critical applications, resulting in increased reliability and efficiency. In non-
critical applications, they can i)e used for doing some important background operations,
resulting in better utilization and performance.

Moreover, the schedule obtainevd on p (>wg) processors will have the same
schedule length as the schedule ob;gined when p=wg. In the case when p>wg, the |
additional (wg-p) processors will idle throughout the schedule Ier{gth. Thus, as an

optimization, the user is informed of this optimal number of processors.

4.4.2 Suitability Issue

Another factor, which is the suitability of this application on the hypercube, is
discussed in this section. To achieve better speed-up and utilization, each node (individual
processor) on the hypercube should have a sufficiently large corhputation time in
comparison to the communicaﬁon time between the nodes (communication between nodes
is required for synchronization purposes). This was realized by feeding a regular
expression reasonably large in size (that is, one which contains a largernumber of terms and
numerous opérators) as the input to the cycle of transformations in Figure 8. Typically, at
the end of every cycle of transformations, there would be an explosion of terms in the new
regular expression relative to the most recent one. This could be attributed to

transformations T3 (converting an NFA to a DFA) or T6 (solving the set of RE equations)
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depending on whether the shorter or longer cycle of transformations is chosen. Hence by
feeding a large enough RE, we obtained an RE much larger in size evei'y tirhe through the
cycle of transformations. As ‘the size of the RE grows the corresponding finite automaton
has a large number of states, and hence the computation needed in synthesizing and
subsequently processing such an FA is alsd 1afge. Thus, each node performs a sufficiently
larger number of computations on successive cycles of transformations. ‘Hence, this
application is suitable for the hypercube as the computation time is on a larger scale than the

communication time.

4.4.3 Memory Allocation Issues

Another implementation issué discussed in this section is the memory allocation for
the data structures used in the program. A DFA is represented by a 2-dimensional array
and an NFA by a 3-dimensional array (so as to accomodate for its nondeterministic
behavior) in the program developed. A major factor which influences the allocation of
memory for these structures is the indecisiveness of their sizes. As noted earlier, there is
an explosion of states occuring in a finite automaton through every cycle of
transformations. This explosion factof is not detefminate. Thus, no definite bound can be
fixed on the size of the arrays for the NFA ‘and the DFA. One approach is to decide on an
arbitrary size and stat@cally allocate memory to these arrays. But, this approach has two
major drawbacks. It might lead to an inefficient usage of memory if the automata are not
large enough to fill the whole érray. On the other hand, the approach might even fail when
the explosion of states in the NFA is too large to be accomodated in the fixed size arrays.
Such examples have been encountered and can be evidenced in Appendixes C and D.

A better approach that has been adopted in the program is to obtain an
approximately close estimate on the number of states in the NFA based on the number of
operators in the RE at the beginning of each iteration. Initially, the arrays are sized to this

estimate by using dynamic memory allocation features, which facilitate altering the size of
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the arrays. Thus if the number of states in the NFA grows larger than the size of the array,
more memory is allocated to them. This technique avoids the uncertainity and the problems
involved in the previous approach.‘ In addition, the é-dimensional array used for
representing an NFA has been observed to be mostly sparse. That is, only certain states in
~the NFA exhibit the non-deterministic behavior, which 1mphes that only certain lists in the
3-dimensional array expand in size while others donot. Hence only such lists need ! to be
allocated more memory This calls for the use of sparse array techniques for the NFA-
array. In the program implemented for th1s thesis project the NFA—array is realized by
using a 2-dimensional array of linked lists and the dynamic memory allocation features.

These techniques helped reduce the amount of memory used by the program.

4.4.4 Machine-Independent Communication Issues

An optimization issue in reducing the communication overhead is discussed in this
section. By arbitrarily assigning a task Tj with a final label i to a processor during a time
unit, we obtained the schedule for p=2 case as shown in Figure 24 of section 4.3.2. In
this schedule, we see that T¢ assigned to processor P1 depends on T assigned to processor -
P7. Hence processor P has to communicate the result of T1 to processor Pp; until then
task Tg "blocks" on processor Pj. SimiIaﬂy, task T7 blocks until it gctsvthc result of T4
from processor P;. The same situation exists during the 5th time interval, when tasks Ty
and Tjg have to bldck for the results of their predecessors Tp and T3, réspectiyely. This
communication overhead can be avoided if a task is assigned judiciously to a processor,
based on the task's predecessors. For exémple, when’ Tg is to be assigned we check that
its predecessor T1 has been assigned to processor P2, and hence we try to assign Tg to
processor Po. If a task has more than one predecessor, then we assign it to that processor
to which at least any one of its predecessors has been assigned. Following this
optimization, the schedule on p=2 processors for the tree in Figure 22 is shown in Figure

34. From this schedule, we see that only one communication is required between the two
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processors between tasks T1; and Tq13. Since communication involves wasting time,

reducing the communication between processors is a significant improvement.

P1| TS| T3| T4 | T7 | T10| T11| T8 | T14

P2l o | 2| T1|Te| T [TI2|T13] @

0t 2 3 4 5 6 .7 8

Figure 34. Schedule Obtained by Algbrithm A after Communication Optimization.

4.4.5 Machine-Dependent Communication imization

Another implementation as well as optirnizatibn issue is discussed in this section. It
also concerns the aspect of communication between processors which is important in
implementing parallel programs on the hypercube system. It is made feasible by the use of
message passing features available on the iPSC/2 hypercube system.

Consider the rooted tree and the coxresponding schedule obtained by Algorithm A
on two processors as shown in ‘Fig’ure 35. 'We consider the execution sequence of

processor P2. Initially P2 can execute the task T2, and then has to wait for the message to

@ 4 P1] T1| T3| TS| T8 | T9

Figure 35. An Example of a Rooted Tree and a Schedule to Ilustrate
the Look Ahead Approach.
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be arrived from processor P1 for the execution of task T4. The conventional approach
would be to block execution until the message has arrived by using the synchronous
"crecv" call of the desired message type on the iPSC/2 system. This approach is simple and
straightforward from the programmers point of view, but results in the loss of processor
time (a valuable resource) and a corre’spohdin g décrease in the speed-up.

As an alternative, processor P2 posts an asynchronous receive request for the
desired message through the "irecv" call on the iPSC/2 system. It then checks if the
message has arrived yet or not, through ‘t}‘xe "cprdbe" message information call. If tile ,
message has already arrived, task T4 is immediately executed. If it has not yet arrived,
then processor P2 adopts the "look-éhead" approach and scans its job queue for the next
task that is "ready" to be executed. A "ready" task is one with no predecessors at all or one
whose predecessors have'all been executed on the same processor or one which has
received messages from all its prc;depessors from all processors. In this case, processor P2
finds task T6 which is an indépendent task and hence executes it, instead of blocking at T4.
Subsequently, it switches context back to'\t'ask T4, probes again for its requested receive
message, and again follows the look-ahead approach, if necessary. It should be noted that
multiple probing calls can be safely posted, but posting multiple receive calls for one
pending messagé to be received is a brograrhrﬁiﬁ g erTor.

Although an asynchronous "crecv" call was posted for receiving a message on
processor P2 (receiving processor), the sénding processor (proceésor P1 in this case) has
the choice to send the message through any type of call. In this program, messages are
always sent by the synchronous "csend" call, since it blocks only for a short period of time
until the message leaves the sending proceSsorr Also, a simple r"csend" call avoids any
further programming complexity.

It is emphasized here that, sending a message synchronously and receiving it
asynchronously is made feasible by the flexibility, provided by the iPSC/2 system, of

freely mixing different types of message passing calls.



CHAPTER V
SUMMARY AND FUTURE WORK

5.1 Summary

Since parallel processing provides apoésible solution to solving computationa11§
intensive problems, the current trend is to avoid the limitations of uhiproccssors systems by
using several processors. The underlying principle of parallel processing is to connect
several powerful processors into a single system énd make them solve a complex I;roblem
through coordination and codperation with each other.

The problem that was considered for pérallel implementation in this thesis is a set of
transformations that can be performed on regualr expressions and finite automata both of
which form the basis of a "lexical analyzér". The parallelism existing in the sequential
algorithms for these transformations was exploited to develop parallel algorithms.

' Subsequently, the parallel algorithms were implemented in the C programming language on
a typical parallel processor, namely Intel's iPSC/2 which is a 32-processor, disnibﬁtcd-
memory system with a hypercube inte{connection topology between the processors.
Certain multiprocesor performance measures, such as speed-up, processo{r\ eﬂiciehcy, and
serial fraction were evaluated and the results are discussed.

A given RE was initially partitioned and represented in the form of a task graph by
an approach wihch yields a "rooted tree". Ther} a mutiprocessor scheduling algorithm
called Hu's algorithm (referred to as Algotihm A in this report) was used and implemented
to schedule the tasks in the rooted tree on a varying number of processors. Realizing the
limitaitons of Algorithm A, a different approach to partitioning the RE was adopted which

yields a DAG with nodes having multiple successors (this is a better approach than the
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partitioning approach yielding a rooted tree, since it considers all repeated sub-tasks as a
single task). Subsequently, two scheduling algorithms were developed to execute such a
DAG. One of them, called Algorithm B, was- analyzed theoretically and was not
implemented due to its cost factor. The’(i)ither scheduling algorithm, called Algorithm C,
was developed as an extension to Hu's algorithm and was irhplémehted. Both theoretical
and practical values have;bee;n obtained fqr( the performancc measures using both
Algorithms A and C. Also, the résqlts have been discussed a'ﬁd compared.

An important observation was made from these algorithms regarding the number of
processors needed to schedule a task graph in minimum time. This observation, which
depends on the "width" of the graph, has been stated as a lemma. In addition, several
optimizatins have been realized in developing the schedules for varying number of
processors which helped reduce the communication between tasks assigned to different
processors. These optimizations have been realized in the implementation and schedules
obtained with and without these optimizations were compared. |

As another objective, the changing form of a regular expression, which has been
subjected to a set of transformations a number of times, has been studied. It was obsevaed
that one such cycle of transformations appeared to produce regular expressions that are in a
closed form which can be loosely calléd a "canonical form". Another cycle of
transformations always yielded the canonical form gcnérally aftér a ‘largcr number of
iterations than the first one (or it would not even produce a canoﬂical form). Thus it was
decided that the former cycle "converges" and the latter cycle does not always converge, or
it "diverges". (

Certain limitatio‘nsl of the program are mentioned below. The size of a given RE,
and hence the NFA, grows exponentially through each iteration of the "divergent" cycle.
Under such situations the program demands too much memory which might fail. Thus, the
program is restricted to a certain size of the RE and the NFA. Also, the size of the input

symbol set is limited due to memory constraints. Another drawback of the thesis research



64

is that space and/or time complexity analysis for the scheduling Aigorithms A,B,and Cis

not done in this project.

52 Fumre Work

It should be noted that Algorithms A, B, and C assumed, prior to scheduling,, that
all the tasks have "approximately" equal execution times. This assumption holds true in the
case of evaluation of RE's because in the process of fré.nsfornﬁng REs, each individual task
represents either "concatenation”, "union", or "élosurg" of tasks all of which have the same
time complexity in the corresponding algorithm. Othef algorithms which do not have such
restrictions can be investigated and implcmented. Another,improvement would be to
predetermine the execution times of all tasks, through historical data, heuristics,or some
kind of preprocessing, and then uée a suitable scheduling algorithm. This would propably
lead to stochastic scheduling'approaches which are more practical.

In the scheduling algoﬁthrﬂs the communication time required to communicate
information between tasks on different processors was assumed to be negligible. Butin .
practice, the communciation time significantly‘ reflects upon the speed-up and other
measures. Thus another improvement, which h‘as'practical significance, is to estimate the
communication time based upon the amount of information to be communicated between
processors and upon the communication scheme used on the implementation platform.
Such multiprocessor séhedulih‘g algorithms, which utilize the commu‘nicatioﬁ times during
the scheduling process, could be developed and implemented. Some such algorithms are
available in the literature. | |

Other future work includes investigation of other transformations that can be -
performed on regular expressions and finite automata, implementation of Algorithm B and
comparing the results with that of the other algorithms, implementation of all the algorithms
on shared memory parallel processor and comparison of results, and time/space complexity

analysis of all scheduling algorithms.



[AHO72]

[AHOS86]

[ALMAR9]

[ANI89]

[ARD60]

[BARNG6S]

[BRZO62]

[CLARKS2]

[CLOSESS]

[COFF76]

[CON67]

[CONT70]

[DENSS5]

[DES87]

' REFERENCES

A.V. Aho and J.D. Ullman. The Theory of Parsing. Translation. and
Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1972.

A.V. Aho, R Sethi, and J.D. Ullman. Compilers Prmgxplgs, Techniques
and Tools, Addlson-Wesley, Reading, MA, 1986.

G.S. Almasi and A. Gottheb. Highly Pgrgllgl Computing, The
Benjamin/Cummings Pub. Co., Inc., Redwood City, CA, 1989.

O. Anita (Ed.) Guide to Parallel Prg gramming on Sequent Computer
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.

D.N. Arden. '"Delayed Logic and Finite State Machines", in Theory of

Computing Machine Design, pp. 1-35, Univ. of Michigan, Ann Arbor, MI,
1960.

G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.J. Slotnick, and R.A.
Stokes. "The ILLIAC IV Computer”, IEEE Trans. on Computers, vol. C-
17, no. 8, pp. 746-757, August 1968.

J.A. Brzozowski. "A Survey of Regular Expressions and Their

Applications", IRE Trans. on Elgctrgmg Computers, vol. EC-11, no. 3, pp.
324-335, June 1962. .

W. Clark. The Gantt Chart ,‘ 3rd Edition, Sir Isaac Pitman & Sons, Ltd.,
London, 1952.

P. Close. "The iPSC/2 Node Architecture”, Proc. of the 3rd Conference on
Hypercube Concurrent Computers and Applications, pp.43-50, 1988.

E.G. Coffman Jr. (Ed.) Computer and Job-Shop Scheduling Thg_ogy John
Wiley, New York, NY, 1976.

R.W. Conway, W.L. Maxwell, and L.W. Miller Theory of Scheduling,
Addison-Wesley, Reading, MA, 1967.

"Control Data STAR-Computer System", Publication 6025600, Hardware
Reference Manual, Control Data Corporation, Arden Hills, MN, 1970.

P. Dcnning. "The Science of Computing: Parallel Computation”, American
Scientist, vol. 73, no. 4, pp. 322-323, August 1985.

G.R. Desrochers. Principles of Parallel and Multiprocessing, Intertext
Publications, Inc., McGraw-Hill Book Co., New York, NY, 1987.

65



[DOR85]

[FENG77]

[FIS88]

[FLYN72]

[FOX88]

[GAJ85]

[GEHR87]

[GONT77]

[GRAH87]

[GURDS5]

[HAND77]

[HAYESSS]

[HILLSS]
[HIRS82]

[HOCKS81]

[HOP79]

66

P. Ein-Dor. "Grosch's Law Revisited", Comm. ACM, vol. 28, no. 2, pp.
142-151, February 1985.

T.Y. Feng. (Ed.) "An Overview of Parallel Processors and Processing",

ACM Computing Surveys, specw] issue, vol. 9, no. 1, March 1977.

N.C. Fischer and J.R. LeBlanc Jr. Crafting a Compiler, The
Benjamin/Cummings Pub. Co., Inc., Menlo Park, CA, 1988.

M.J. Flynn. "Some Computer Orgamzatlbns and Their Effectiveness"”,

IEEE Trans. on Computers, vol. C-21, no. 9 pp- 948-960, September
1972.

G. C Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker.
Solving Problems on angurrgn; Processors: General Tgchmgge§ and
Regular Problems, vol. I, Prentice-Hall, Englewood Cliffs, NJ, 1988.

D.D. Gajski and J.K. Peir. "Comparison of Five Multiprocessor Systems".

. Parallel Computing, vol. 2, pp. 265-282, November 1985.

E.F. Gehringer, D.P. Siewiorek, and G. Segall. Parallel Processing: The
Cm* Experience, Digital Press, Digital Equipment Corporation, USA,
1987.

M.J. Gonzalez. "Deternministic Processor Scheduling”, Computing
Surveys, vol. 9, no. 3, pp. 173-204, September 1977.

J. Graham, and J. Rattner. "Expert Computations on the iPSC Concurrent

Computer”, Multiprocessors and Array Processors, edited by W.J.Karplus,
pp. 167-176, Simulation Councils, Inc., San Diego, CA, January 1987.

J.R. Gurd, C.C. Kirkham, and I. Watson. "The Manchester Prototype
Dataflow Computer”, Comm of the ACM, vol. 28, no. 1, pp. 34 52,
January 1985. ‘

W. Handler. "The Impact of Classification Schemes on Computer
Architectures", Proc. of 1977 International Conference on Parallel

. Processing, edited by J.L. Baer, pp. 7-15, Detroit, MI, 1977.

J.P. Hayes. Computer Architecture and Organization, 2nd Edition,
McGraw-Hill Book Co., New York, NY, 1988.

W.D. Hillis. The Connection Machine, MIT Press, Cambridge, MA, 1985.

D.S. Hirschberg. "Parallel Graph Algorithms without Memory Conflicts".
Proc. of 20th Allerton g:onfergnge, pp. 257-263, 1982.

R.W. Hockney and C.R. Jesshope. Parallel Computers, Hilger, Bristol,
1981.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages. and Computation, Addison-Wesley, Reading, MA, 1979.



[HU61]

[HWANGS84]

[HWANG89]

[IPSC89]

[JORDS3]

[KAIN89]

[KALORg7]

[KAR90]

[KARINS7]

[KARP87]

[KOGS81]

[KUCK78]

[KUNGS82]

[LAK90]

[LEAS87]

[MOIT87]

67

T.C. Hu. "Parallel Sequencing and Assembly Line Problems", Operations
Research, vol. 9, no. 6, pp. 841-848, 1961.

K. Hwang and F.A. Briggs.( Computer Architecture and Parallel
Processing, McGraw-Hill Book Co., New York, NY, 1984.

K‘ Hwang and D. Degroot. Pargllgl Processing Supercomputer and
Artificial Intellingence, McGraw-Hill Series in Supercomputing and Parallel

Processing, McGraw-Hill Book Co., ‘New York, NY, 1989.

iPSC/2 User's Guide, Intel Scientific Computers, Beaverton, Oregon,
October 1989.

H.F. Jordan. "Performance Measurements of HEP- -Pipelined MIMD
Computer". Proc. of the 10th Annual Symposium on Computer
Architecture, Stockholm, Sweden, pp. 207-212, June 1983.

R.Y. Kain. Computer Architecture: Softwgre and Hardware, vol. II,
Prentice-Hall, Englewood Cliffs, NJ, 1989. J

M.H. Kalos.. "Monte Carlo Methods and the Computers of the Future".
rcomputers-Algorithms. Architectures. an ientifi mputation,
Edited by F.A. Matsen and T. Tajima, Univ. of Texas Press, 1987.

A H. Karp and H.P. Flatt. "Measuring Parallel Processor Performance”,
Comm. of the ACM, vol. 33, no. 5, pp. 539-543, May 1990.

S. Karin and P.N. Smith. The Supercomputer Era, Harcourt Brace
Jovanovich Publlshers Boston, MA, 1987. ‘

W.J. Karplus. (Ed.) Multiprocessors and Array processors, The Society of

Computer Simulation, Simulations Councils, Inc., San Diego, CA, Jan
1987.

P.M. Kogge. The Architecture of Pipelined Computers, McGraw-Hill Book
Co., New York, NY, 1981.

D.J. Kuck. The Str. : ire of Computers and Com ions, vol. 1, John
Wiley, New York, NY, 1978.

H.T. Kung. "Why Systolic Architectures?", IEEE ngpg’ ter, vol. 15, no.
1, pp. 37-46, January,‘71982.

S. Lakshmivarahanland S.K. Dhall. Analysis and Design of Parallel

Algorithms: Arithmetic and Matrix problems, McGraw-Hill Book Co., New
York, NY, 1990.

R.M. Lea. "An Overview of the Influence of Technology on Parallelism",

Major Advances in Parallel Processing, Edited by C. Jesshope, pp. 3-12,
1987.

A. Moitra and S.S. Iyengar. "Parallel Algorithms for some Computational
Problems", Advances in Computers, Edited by M.C. Yovits, vol. 26, pp.

94-153, Academic Press, San Diego, CA, 1987.



[NUGS8S]

[PALME7]

[PETERS85]

[POLY86]

[PIERS8S8]

[POTTS86]

[RAMT71]

[SARKS89]

[SEIT84]

[SLOT62]

[SOR76]

[SUDS8S]

[SULL77]

[TRELS2]

[WIL87]

68
S. Nugent. "The iPSC/2 Direct-Connect Technology", Proc. of the 3rd

Conference on Hypercube Concurrent Computers and Apgllcgnon S, pp. 59-
68, 1988.

J.F. Palmer. "The NCube Family of Supercomputers", Multiprocessors
and Array Processors, Edited by W.J. Karplus, pp. 177- 187, Simulation
Councils, Inc., San Diego, CA, January 1987.

V.L. Peterson. "Use of Supercomputers in Computational Aerodynamics",

Proc. of the 1985 Science and Engrgy Symposium, Cray Research Inc.,

Minneapolis, 1985.

C.D. Polychronopoulos. "On Program Restructuring, Scheduling, and
Communication for Parallel Processor Systems", Centre for

Supercomputing Research & Development, Rep. No. 595, August 1986.

P. Pierce. "The NX/2 Operating System", Proc. of the 3rd Conference on
Hypercube Concurrent Computers and Applications, pp. 51-57, 1988.

J.L. Potter. The Massively Parallel Processor, 2nd Edition, The MIT
Press, Cambridge, MA, 1986. ;

C.V. Ramamoorthy, K.M. Chandy, and M.J. Gonzalez. "Optimal
Scheduling Strategies in Multiprocessor Systems", IEEE Trans. on
Computers, vol. C-21, no.2, pp. 137-146, February 1971.

V. Sarkar. "Partitioning and Scheduling Parallel Programs for

Multiprocessors”, Research Monographs in Parallel and Distributed
Computing, The MIT Press, Cambridg_e, MA, 1989.

C.L. Seitz and J. Matisoo. "Engineering Limits on Computer
Performance", Physics Today, vol..37, no. 5, pp. 38-45, May 1984.

D.L. Slotnick, C.W.Borck, and R.C.McReynolds. "The SOLOMON

Computer", Proc. of the AFIPS Fall Joint Computer Conference, vol. 22, -
pp. 97-107, 1962.

P.G. Sorenson and J.P.Tremblay. "An Introduction to Data Structures
with Applications, McGraw-Hill Book Co., New York, NY, 1976. «

TA. Sudkamp: Languages and Machines: An Introduction to the Theory of
Computer Science, Addison-Wesley, Reading, MA, 1988.

H. Sullivan, F.R. Bashkow, D. Klappholz, and L. Cohn. "A Large 4Scale
Homogoneous, Fully Distributed Parallel Machine", Proc. of the 4th

Annual Symposium on Computer Architecture, College Park MD, pp. 105-
124, 1977.

P.C. Treleaven, D.R. Brownbridge, and R.P. Hopkins. "Data-Driven and
Demand-driven Computer Architectures”, ACM Computing Surveys, vol.
14, no. 1, pp. 95-143, March 1982.

R. Wilhelmson. (Ed.) High Speed Computing: Scientific Applications and
Algorithm Design, University of Illinois Press, 1987.



APPENDIXES



APPENDIX A
‘USER MANUAL

A.1 Introduction

This is the user manual for the parallel implementation of Regular Expression
Transformation Algorithms on the Intel's iPSC/2 32-node Hypercube machine. The
programs are written in thé standard C language (except for extensions supported by the
iPSC/2 System for message-passing capabilities). The programs have been compiled on the
C-386 compiler and have been executed on the iPSC/2 System with varying number of
processors. The programs are compatible with the Green Hill Compilers (except for the
extensions supported by the iPSC/2 System).

A major objective of this programming project is to study the performance issues of
some multiprocessor scheduling algorithms. The project also attempts to study the
changing form of a Regular Expression subjected to a set of transformations. More details
on RE transformations, Scheduling Algorithms, etc., can be obtained from the various
chapters and appendixes of the report. |

This project is divided into two main modules: a host module which‘is a collection
of routines that run on the host computer, and a node module which is a collection of
routines that run on all of the nodes (processors) of the iPSC/2 System. The host module
and the node module are designed in a way that avoids much of the synchronization
between them except for an initial and a final item of information to be communicated
between them. On the other hand, the programs in the node module co-ordinate and

synchronize their execution through communication with each other appropriately.
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A.2 Description of the Host Module |

The input to the host module is a ‘regular expression (RE) of arbitrarily long size
and its input symbol set (i.e., alphabet). The ﬁbst module partitions this RE into a set of
tasks and represents it as a task systém 1n the form of a graph. Two:_partitioning approaches
are adopted. The first approach partitioﬁs the RE such that repeated common sub-
expressions are identified as distinct tasks. 'i’his approach always yields a representation for
the task system in the form of a "rooted treg,". The second approach of partitioning
considers the repeated common sub-expre‘ssibns and identifies all of them into a single
task. This approach always yields a representation for the’ task system in the form of a
DAG with some nodes possibly having multiple successors. A

When the former partitioning approach is chosen (yielding a rooted tree for the
partitioned RE), the host module schedules the tree on an arbitrary number, say p, of
processors using the schedulfng Algorithm A to produce the schedule in the form of a Gantt
\ chart. When the latter approach is chosen (yielding a DAG with nodes having multiple
successors), the host module schedules this DAG using Algorithm C to produce the
schedule in the form of a Gantt chart. | |

Once the schedule has been obtained in the form of a Gantt chart, performance

"n " "non oo

measures like "serial execution time", "parallel execution ‘time , "speed-up", "efficiency",
and "serial fraction" are evaluated. Subsequently, the host module sends the initial
information in the form of a Gantt-chart and the task graph (either rooted tree or DAG) to
the node module to initiate its execution. After the node module completes execution, the
host module recieves information from the node rhoduie on the timing parameters.

The host module is divided into sub-modules each corresponding to the functions

described above. Each sub-module is contained m a separate file as described below.
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File Name Description
host.c The driver routihé for the host module. Also, calculates
and tabulates all the results for Appendixes.
partn.c . Contains the two partitioning approaches, namely,
) _ partn_A for Algorithm A and partn_B for Algorithm C.
schedule.c ‘Obtains the schedule in the form of a Gantt chart using
Algorithm A or C, and performs the needed optimizations
as described in'Section 4.4.
misc.c Miscellanious‘functipns.

A3 Description:of[ the Node Module

The node moduie does the core computation for this package. The node module
comprisesna set of nodc§ (processors) each running the same program. All the nodes work
together and synchronize their execution through communication with each other. This
module is initiated by the information sent by the host module and subsequently it does not
need any more information from either ‘tﬁe host module or the user to complete its
execution. After completion of its execution:, the node module sends information back to
the host module for calculating the practicial résults.

The node module is divided into a set ;)f sub-modules. Each sub-module, contained

in a separate file as described below, corresponds to one of the transformation depicted in

Figure 8 of Section 3.4.

File Name Transformation \’ “ Description Nodes
makenfa.c T1 ' Converts RE to an NFA Al

: with e-moves

eclc T Removes e-moves in the NFA All
nfa_dfa.c T3 Converts the NFA to a DFA Root
min.c | T4 Minimizing the DFA Root
dfa_re.c TS5 DFA to RE All

eqns.c T6 RE eqns for the DFA Root
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T7 Solution of RE eqns Root

other.c - Miscellaneous routines All

Some of the transformations are ‘pérformed in parallel on all the nodes.
transformation T1 is executed by all the nodes, but the final NFA is available only on the
the root node which then sends the NFA to all pﬂler nodes. Sﬁbsequently, transformations
T2 and TS5 are performed on all nodes, bﬁt transformatiohs T3, T4, T6, and T7 are
performed only on the root node. At the end‘nof the cycle of transformations, the final RE

along with the timing information is sent to thé host module by the root node.

A.4 Variables Influencing Execution

Some factors which affect the execution of the program are discussed here. All
these factors concern the constant definitions inclﬁded in the header files (host.h in the host
module and node.h in the. node module). 'i'he user should choose the values of these
constants appropriately (depending on the size of RE, size of NFA to be produced, and the

implementatin machine) before executihg the program.

DEBUG: Flag to obtain the debug output of the progrém.

ALG_A: Choice of Algorithm A which will be solicited from the user.

ALG_B: Choice of Algorithm B which will be sblicited from the user.

ALG_C: Choice of Algorithm C which will bie solicited from the user.

MAX_NFA: Maximum number of states in the NFA to be synthesized. This number needs
to be chosen so as not to waste memory, since the transtition tablle for the NFA depends on
MAX_NFA. ‘ | |
MAX_COLS: This variable should be set to 1 more than the actual input alphabet used.
MAX_DFA: Maximum number of states in tl;e DFA (analogous to MAX_NFA).

PHI: This variable represents the PHI task in an NFA or a DFA and should be set to the
value of the maximum state in the FA, that is, MAX_NFA or MAX_DFA. |
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MAX_RE: Maximum size of the RE. This size should be long enough to accomodate the
divergence of the RE size observed sometimes in the "divergent" cycle.

MAX_PROCS: Maximum number of prmeséom to be used.

MAX_LEVELS: Maximum length of the schedule as given in the Gantt chart.
MAX_TASKS; Maximum number of tasks that can be present in the task graph produced
by either of the partitioning approaches. | -

CONVERG: Choice of Convergence as solicited from the user.

DIVERG: Choice of Divérggnce as solicited from the user.

A.5 Steps to Execute the program

The sequence of steps to be taken for the execution of the program are as follows.

1. The source code for the

program is in 'the thesis directory. Change to the thesis

directory and list contents to check that the following files are available.

makefile README

host.h host.c partn.c schedule.c misc.c
node.h node.c makenfa.c nfa_dfa.c min_dfa.c
dfa re.c eqns.c other.c ‘

2. Issue the command:

make

"make" needs one of the following opﬁons:

make cx to use 386 nodes with 387 coprocessors
make sx to use 386 nodes with- SX coprocessors
make rx - to use 1860 nodes

make host to build only the host executable

make node to build only the node executable

make clean to cleanup the directory of unwanted files
make make to view and/or edit the makefile

. Issue the command:

make make

to view (or possibly edit) the makefile. The user might want to change the CC,
CFLAGS, or LDFLAGS options. For example, if the Green Hill Compiler needs to be

invoked:
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change CC to CC=gcc

If the user wants to debug the program, to use the profiling information, or to invoke
particular compiler optimizations, the CFLAGS and/or LDFLAGS need to be
modified.

. Issue the comand:

make clean

to remove all previous executable files and rﬁake a fresh start.

. Now list the directory contents and ensure that only the files listed in Step 1 are present.

. Issue the command:

make cx (or sx or vx dependmg on the type of the node)

The executables "host" and "node" are created. The user need not allocate a cubc to
execute the program, since a suitable cube is obtained by the HOST MODULE.

. Before executing the program, enter the RE to be tested in a datafile. Execute the
program by issuing the command:

host
The following user interface is produced:

Do you want:
1. Details of the form changes of an RE
2. Details of the scheduling algorithms

Enter your option° 2

Choose option 1 if you need to study the changing form of an RE sub_]ectcd to
the cycle of transformations for a specific number of times. No timing
information on scheduling algorithms is produced when this option is chosen.
Another submenu will seek the user's choice of convergent or divergent cycle
of transformations to be used. The form changes are reported in a file called
"app_D" for the convergent cycle, and "app_E" for divergent cycle.

Choose option 2 if you do not want the form changes of an RE, but instead
need the timing parameters and the performance measures of the scheduling
algorithms. Performance measures are reported for varying number of
processors (up to a maximum equal to the width of the graph) in a file called
app_F. Note that convergent cycle i is always used for studymg the scheduling
algorithms.

Do you want:

1. Theoretical Results only
2. Practical Results only
3. Both
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Enter your option: 1

Choose option 1 if only theoretical measures (obtained from the Gantt chart)
are required. The REs are not actually evaluated through execution on the
hypercube. The measures are obtained directly from the sechedule

Choose option 2 if only practical measures are needed. The REs are now
evaluated through execution on the nodes of the hypercube.

Choose option 3 if both theoretical and practical measures are needed. This
option is used to compare the theoretical results with the practical results for
either Algorithms A, C, or for both. -

Do you want to use:

1. Schedulmg Algorithm A
(Note: Partitioning Approach A will be used. )

2. Scheduling algorithm C
(Note: Partitioning Approach B will be used.)

3. Both
(Note: Partitioning Approach A for Algorithm A and Approach B for
Algorithm C will be used.)

Enter your option: 1

This submenu seeks your choice of the scheduling algorithm to be used for
scheduling the task graph (the partitioned RE). If option 3 is chosen, each RE
is evaluated by Algorithms A and C. Option 3 is used to compare performance
measures of Algorithms A and C.

Enter the input alphabet: 01

This submenu seeks the input alphabet from the user. The user should make
sure that the RE(s) fed as input contain only symbols from this alphabet set.
The symbol "e" (denoting epsilon) need not be contained in the alphabet as it is
assumed to be contained in every alphabet. Also, the-user should set the
MAX_COLS constant in both the header files to 1 more than the size of the
alphabet. For example,

if alphabet is "01"
MAX_COLS should be set to 3 (to include epsilon)
Do you want details for:

1. A single RE
2. Multiple REs

Enter your option: 2
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Enter the name of the datafile: data.1

This submenu inquires whether the user wants to execute the program for only
one RE or for multiple REs. If option 1 is chosen, the user enters the RE
directly on the terminal. If option 2 is chosen, the program reads the REs from
a file specified by the user. This reduces the burden of creating a file just for a
single RE or entering multiple REs at the terminal.



APPENDIX B

C PROGRAMS

MAKEFILE

#
#

# This file is used to cdmpile and link the host_module and
# node_module files for the thesis program of Sridhar Mandyam.

#

CFLAGS=-w -0 -B -

help:

CX:
SX:

rx:

host:

@echo
@echo "You must specify the type of node you wish to build a node"
@echo "executable for, choose one of the following:*

@echo

@echo " make cx (for 386 nodes with 387 coprocessors)*
@echo * make sx (for 386 nodes with SX coprocessors)*
@echo " make rx’ (for i860 nodes)*

@echo

host node #Use default compile and link flags

make "CFLAGS=-w -0 -B" host
make *“CFLAGS=-w -0 -B -sx" "LDFLAGS=-sxX" node

make “CFLAGS=-w -0 -B" host
make "CFLAGS=-w -O -B -i860" "LDFLAGS=-1i860" node

host.o partn.o schedule.o misc.o host.h
cc -o host host.o partn.o schedule.o misc.o -host

host.o partn.o schedule.o misc.o: host.h

node:

node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o egns.o other.o node.h
cc -0 node node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o egns.o other.o

$ (LDFLAGS) -node
node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o egns.o other.o: node.h

make:

clean:

vi makefile

rm host node host.o node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o

egns.o other.o host.o partn.o schedule.o misc.o
HOST.H

#1nclude <stdio.h>
#1nclude <ctype.h>
#include <strings.h>

#define
#define
#define
#define
#define
#define
#define

#define
#define

VARAd Scheduling Constants *kk [
MAX_RE 250 /* Maximum size of RE */
MAX_COLS 3 /* Maximum size of the input alphabet */

MAX_PROCS 16 /* Maximum number of processors */

MAX_LEVELS 100 /* Maximum number of levels in the graph */

MAX_TASKS 100 /* Maximum number of tasks in the graph */

MAX_SUCC 15 /* Maximum successors of a task */

PHI_TASK Y /* Symbol for phi task in the Gantt chart */
/*** General Header Constants ***/

TRUE 1

FALSE O#define SENTINEL -1
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#define DEBUG FALSE /* To print debug information */

/*** Partitioning Constants - DONOT CHANGE THESE CONSTANTS ***/

#define MIN_SYMB 0 /* Range for number alphabets */
#define MAX_SYMB 90

#define BEG_TASK 100 /* Range for number of tasks */

#define END_TASK 1000

#define CLOSURE MAX SYMB + 1 /* symbol of Closure operation */
#define CONCAT MAX_SYMB + 2 /* symbol of Concatenation operation */
#define UNION MAX_SYMB + 3 /* symbol of Union operation */

#define EPSILON MAX_SYMB

/*** Type definitions ***/

typedef int boolean;
typedef unsigned short SHORT;
typedef unsigned char STTYPE;
/* Type for a task in the graph */
typedef struct {

int label, /* task’s label */
node, /* task’s processor */
wt, /* task’s weight */
status,
done; /* 1f task has completed execution */
STTYPE succ[MAX_SUCC], /* task’s successors */
task([3]; /* task’s operation */
} Task_tree;

/* Type for the label table of the task graph */
typedef struct Label_struc (
SHORT value;
struct Label_struc *next;
} Label_list;

HOST.C

#include "host.h*
#define DEBUG 1

/******************'k****************************************************
This file (host.c) contains the following HOST routines:

main/() The driver routine for the HOST MODULE
evaluate_re () Evaluates an RE by partitioning and scheduling
send_nodes () Sends information to the NODE MOUDLE

measures () Calculates the theoretical and practical results

Some printing routines
The external routines called from this file include:

chk_re() in misc.c file
in_to_post () in misc.c file
partn_A(), partn_C() in partn.c file
algorithm A (), algorithm C() in schedule.c file
Get_schedule() in schedule.c file

***********************k*************************************************/

#define CONVERG 1 /* Convergent cycle */

#define DIVERG 2 /* Divergent cycle */

#define ALG_A 1 /* option for Algorithm A */

#define ALG_C © 2 /* option for Algorithm C */

#define TH 1 /* option for theoretical results */
#define PRACT 2 /* option for practical results */
#define SINGLE 1 /* Single RE for execution */

#define MULTIPLE 2 /* REs taken from file for execution */
#define BOTH 3

#define HOSTPID 100 /* process id for host process */
#define NODEPID 0 /* process id for node process */
#define ALLNODES -1 /* symbol for all nodes */

#define ALLPIDS -1 /* symbol for all processes */

#define INIT_TYP 10 /* type of host to node message */
#define RE_TYP 100 /* type of RE message to be received */

/****  Declaration of All Global Variables for the host program ***/
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int max_terms, /* Number of terms in the RE = the # of states
in the NFA to be synthesized */
num_tasks, /* number of tasks in the graph */
num_levels, /* number of levels in the graph */
num_procs=1, /* number of processors to run the problem */
iter, /* number of iterations through the cycle of
transformations */ main_ch, /* main choice of

study in the program */
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res_ch, /* Need theoretical and/or practical results */
alg_ch, /* choice of scheduling Algorithm A or C */
form_ch, /* choice of Convergent or Divergent cycle */
re_ch; /* single or multiple REs for study */

char infile[50], /* string for input file name */
re[MAX_RE], ‘

oldre[MAX_RE], i
post [MAX_RE],
symb_set [MAX_COLS] ;

Task_tree tlist [MAX_TASKS];
Label_list *1_list [MAX_LEVELS];
STTYPE G_chart [MAX_PROCS] [MAX_LEVELS] ;

/**********************************************'k****************************
Function Definition: int main( void )

Description:
This is the driver routine for the HOST MODULE. It obtains an RE
preprocesses it and then partitions it into a suitable task graph. One
of Algorithms A or C 1is chosen to schedule, the task graph. Once the
schedule 1s obtained in a Gantt chart form it is sent to various nodes
of the cube for their execution. Finally the host program collects
the data from the nodes which include the final RE and some timing
parameters. The RE thus obtained at the end of one cycle of

transformations is subjected again to the cycle as many times as required.
******************************************************************************/

main () /* MAIN of the host program */
{ .
char cubetyp(6];
int count, /* current iteration */
numre=0; /* number of REs processed */

boolean quit = FALSE;
/* declaration of functions used in main */

extern 1int chk_re();
extern void in_to_post();
void get_input (), evaluate_re();
FILE *infp, /* input file */
*ofp2,
*ofp2a, /* file for Appendix D - Convergence details */
*ofp2b, /* file for Appendix E - Divergence details */
*ofp3a, /* file for Appendix F - theoretical results */
*ofp3b; /* file for Appendix G - practical results */

get_input () ;

if (re_ch != SINGLE) '
if ((infp=fopen(infile,*r")) == NULL) {

printf ("Sorry cannot open %s file \n",infile) ;
exit(1);

}

if ((ofp2a=fopen("app_D","w")) == NULL) {
printf ("Sorry cannot open Appendix DE - Conv/Div file \n")
exit (1) ;

} .

if ((ofp2b=fopen("app_E","w")) == NULL) {
printf ("Sorry cannot open Appendix DE - Conv/Div file \n") ;
exit (1) ;

}

if ((ofp3a=fopen(“"app_F","w")) == NULL) {
printf ("Sorry cannot open Appendix F - Results file \n") ;
exit(1);

}

if ((ofp3b=fopen(*app_G","w")) == NULL) {
printf ("Sorry cannot open Appendix G - Results(P) file \n") ;
exit (1) ;

}
fprintf (ofp3a, "*\nNOTE: All tasks have unit execution times \n");
fprintf (ofp3a,* Width specifies the maximum number of processors");
fprintf (ofp3a,* that will be used\n\n\n");
fprintf (ofp3b, "\nNOTE: All tasks have unit execution times \n");
fprintf (ofp3b, " Width specifies the maximum number of processors');
fprintf (ofp3b, " that will be used\n\n\n");
printf (*Input symbol set used: %s \n",symb_set);



printf (*\tNumber of Iterations = %d \n",iter);
printf (*\tChoice is ");
if (form_ch == CONVERG) .
printf (" Convergence\n");
if (form_ch == DIVERG)
printf (" Divergence\n'") ;

if (form_ch == CONVERG) ofp2 = ofp2a;
if (form_ch == DIVERG) ofp2 = ofp2b;

/* print the data into a file */
fprintf (ofp2, *Input symbol set used: %s \n* , symb_set) ;
fprintf (ofp2, "\tNumber of Iterations” = %d \n*",iter);
fprintf (ofp2, "\tChoice is ");
if (form_ch == CONVERG)

fprintf (ofp2, * Convergence\n");
if (form_ch == DIVERG)

fprintf (ofp2, * Divergence\n );

/* form the cubetyp string depending on num_procs */

cubetyp([0] = ‘0’+num_procs/10;
cubetyp[l] = ‘0’+num _procs%10;
cubetyp([2] = ‘\0’;

strcat (cubetyp, "m8") ;

getcube(*susri*, cubetyp,NULL, 0) ; )
/* get a cube named ‘susri’ with the requested nodes */

setpid (HOSTPID) ; .
/* set host process id */

load("nodedir/node" , ALLNODES, NODEPID) ; )
/* load all nodes with pid NODEPID */

while (!quit) { /* process all REs */
if (re_ch == MULTIPLE)
fscanf (infp, "¥s\n*, re);
printf ("\nRE Number: %d \t****\tRE: %¥s\n", numre++,re);

count = 0;

/* Subjecting the given RE to the cycle of transformations ’‘iter’
number of times */

while (count < iter) ({

fprintf (ofp2, "\n\tITERATION%d\n", count) ;

fprintf (ofp2, "RE at the beginning of the cycle: %s\n",re);
fprintf(opra,'RE $s\n* ,re);

fprintf (ofp3b, *RE = 4%s\n“,re);

printf ("\nThe given regular expression is %s\n"*,re);
strcpy (oldre, re);

/* check RE and get the approximate estimate of the number of
states in the NFA to be synthesized */ .
if ((max_terms=chk_re(re,symb_set)) != 0) ({
in_to_post (post, re); /* convert to post fix notation */
printf (*\nThe post-fix expression is: %s\n",post);
printf ("Estimated # of states in NFA = %d\n",max_terms);

header (ofp3a);
header (ofp3b) ;

/* partition RE and obtain the schedule */ -
if (alg_ch == BOTH) { .
evaluate_re(ofp3a,ofp3b,ALG_A);

fprintf(ofp3a, " -------------------ceme e ")
fprintf (ofp3a,*---~-=-=-------- \n");
fprintf (ofp3b, *-------------- e - “);
fprintf (ofp3b, *~--~---~---------- \n") ;

evaluate, re(ofp3a ofp3b,ALG_C);

}
else evaluate_re(ofp3a,ofp3b,alg_ch);
fprintf(ofp3a,*-------------- - ")

fprintf(ofp3a, *--------------- \n") ;
fprintf (ofp3b, *------------- e ")
fprintf (ofp3b, *--------------- \n") ;

printf (*\n\n*");
fprintf (ofp2, "RE at the end of the cycle: %s \n",re);
}
else { printf ("\nSorry - Invalid RE %s \n",oldre);
printf ("Skipping to next RE \n");
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}
count++;

} /* inner while */
fprintf(ofpzl l'******************************************\n\nﬂ ) ;
if (re_ch == SINGLE)

quit = TRUE;
if (re_ch == MULTIPLE && feof (infp))

quit = TRUE;

} /* while !quit */

killcube (ALLNODES, ALLPIDS) ;
/* kill all processes on all nodes */
relcube("susri"); .
/* release the allocated cube */
if (re_ch == MULTIPLE) fclose (infp);
fclose(ofp2a) ;
fclose(ofp2b) ;
fclose(ofp3a);
fclose (ofp3b) ;

/* end of host main */

/****************************************-k****************************'k****
Prototype Definition: void evaluate_re(FILE *, FILE *, int )

Description:

This routine evaluates an RE in post fix form (similar to evaluating an
arithmetic expression). The RE is initially partitioned and represented
as a Task Graph. Then, it is scheduled by scheduling Algorithm A or C to
obtain the Gantt chart. This schedule is sent to the nodes for subjecting
the RE to a cycle of transformations. The final RE and timing parameters
are received from the nodes.

*****************************************************************************/

void evaluate_re(ofp3a,ofp3b,alg_ch)
FILE *ofp3a, *ofp3b;

int alg_ch; /* choice of Algorithm A or C */
{
int nlevels,
width; /* width of the task graph */
/* function prototypes for this routine */
extern int 1nit_labels();
extern void partn_A(), partn_C(), algorithm A(), algorithm_C(),

print_schedule(), free_llist(),
Get_schedule();
void measures (), send_nodes(),
print_llist();
if (alg_ch == ALG_A) partn_A(symb_set,post);
else if (alg_ch == ALG_C) partn_C(symb_set, post);

/* Get the initial set representation of tasks and the width of the
graph from the label table. */

width = init_labels (num_tasks);
1f (DEBUG) {

printf ("\n\n\t INITIAL LABEL TABLE \n\n");

print_1list();

/* print the initial set representation */

}

if (main_ch == 1) {
num _procs = width;

else if (main_ch == 2)
num_procs = 1;

nlevels = num_levels;
while (num_procs <= width) {

if (alg_ch == ALG_A) algorithm A (num_procs) ;
if (alg_ch == ALG_C) algorithm_ C(num_procs) ;
if (DEBUG) {
printf (*"\n\n\t ADJUSTED LABEL TABLE \n\n");
print_1llast();
}
/* get the schedule from the final configuration of label table */
if (DEBUG) ({ printf (*\n\nSchedule Obtained by Algorithm");
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if (alg_ch == ALG_A)
printf (" A *);
if (alg_ch == ALG_C)
printf(* C *);
printf (*"BEFORE Optimization for p=%d Processors\n",num_procs) ;
}
Get_schedule(G_chart,num_procs) ;
if (DEBUG) {
printf (*\n\nSchedule Obtained by Algorithm");
1f (alg_ch == ALG_A)
printf(" A ");
if (alg_ch == ALG_C)
printf(" C *);
printf ("AFTER Optimization for p=%d Processors\n",num_procs);
print_schedule(G_chart,num procs,num_levels);

} .

free_llist();

if (res_ch == TH || res_ch == BOTH ) {
measures (ofp3a,TH,alg_ch,width);

}

if (main_ch == || res_ch == PRACT || res_ch == BOTH) {
send_nodes (form_ch) ;
/* send required information to all nodes */
crecv (RE_TYP, re,MAX RE*sizeof (char));
/* Block to receive final message from root node. */

}
if (res_ch == PRACT || res_ch == BOTH)
measures (ofp3b, PRACT, alg_ch,width) ;

if (main_ch == 1)
num_procs = width+l;
else if (main_ch == 2) {

num_levels = nlevels;
width = init_labels (num_tasks);
num_procs++;
} /* else 1f */
} /* while */
} /* end schedule_re */

/**'k***********\*******************'k*****'k**********************************
Function Definition: void measures( FILE *, int, int, int )

Description:
This function calculates all the theoretical performance measures namely
the Schedule length, Speed-up, Efficiency, and Serial Fraction from the
schedule obtained in G_chart structure.
***************************************************************************/

void measures (ofp3, typ, choice,width)

FILE *ofp3;
int typ:
int choice;
int width;
{
int par_tm, /* parallel time or schedule length */
ser_tm; /* serial time = sum of task weights */
float sp_up, /* speed-up factor */
efficiency, /* efficiency factor */
serial; /* serial fraction factor */
/*
if (num_procs == 1) {
ser_tm = final_msg->tm;
return;
}
*/

/* since all are unit tasks, serial time = number of tasks */
if (typ == TH)
ser_tm = num_tasks;
/*
else if (typ == PRACT)
ser_tm = time->serial;
*/
/* par_tm is same as schedule length which is the number
of levels in the adjusted (stretched) task graph */



if (typ == TH)
par_tm = num_levels;
/*
else if (typ == PRACT)
par_tm = time->par;
*/
/* speed-up is the ratio of execution on one processor (sum of all
task weights) to the execution time on p processors */
sp_up = (float) ser_tm/par_tm;

/* efficiency is the ratio of speed-up to number of processors */
efficiency = sp_up/num_procs;

/* serial fraction is given by, */

serial = (1.0/sp_up - 1.0/num_procs)/(1.0-1: O/num_procs),

/* print all the performance measures */
if (choice == ALG_A) fpraintf (ofp3," AY);
if (choice == ALG_C) fprintf (ofp3," c*);

fprintf (ofp3, " %44 %44 %$2d",width,num_procs,ser_tm) ;
fprintf (ofp3,* %24 %6.3f $6.3f\n",par_tm,sp_up,efficiency);
fprintf (ofp3,* : ")
fprintf (ofp3,* \n");

/***************************************************************************
Function Name: void send_nodes( int )

Description:
Sending the required information to the nodes for the initiation of their
execution. The info sent is the task graph in tlist struc and the
schedule in G_chart array. Synchronous send is used here.
***************************************************************************/
void send_nodes (form_ch)
int form_ch;
{

int i,3;
long len;
struct msg_typ { /* structure for host message */
int work_nodes, /* # of user requested nodes */
numtasks, /* # of tasks in task tree */
numlevels, /* # of levels in the tree */
maxterms, /* max # of states in the NFA */
form choice; /* CONVERGENCE or DIVERGENCE ? */
char symbset [MAX_COLS]; /* input alphabet set */

STTYPE G_chart[MAX_ PROCS] [MAX_LEVELS] ;
/* schedule in Gantt chart form */
Task_tree tlist [MAX_TASKS];
/* Task graph structure */
} init_msg;

/* copy all information to be sent 1nto the 1nit_msg structure */
init_msg.work_nodes = num_procs;

init_msg.numtasks = num_tasks;

init_msg.numlevels = num_levels;

init_msg.maxterms = max_terms;

init_msg.form_choice = form_ch;

strcpy (init_msg.symbset, symb_set) ;

/* copy the Task tree to the init_msg structure */
for (1=0;1<num_tasks; i++)
init_msg.tlist(i] = tlist[i];
/* copy the Gantt chart to the init_msg structure */
for (i=0; i<num_procs; i++)
for (j=0; j<num_levels; Jj++)
1nit_msg.G_chart[i] [J] = G_chart([i][j];

len = sizeof (struct msg_typ);
printf (" Sending message - Type=%d, Length=%d PID=%d\n",
INIT_TYP, len, NODEPID) ;

/* send init_msg struc to ALLNODES with msg_type INIT_TYP */
csend (INIT_TYP, &init_msg, len, ALLNODES, NODEPID) ;

)/*************************************************************************
Prototype Definition: void get_input( void )



Description:
This is the routine which provides the user interaction and obtains
all the input required from the user for the execution of the program.
***************************************************************************/
void get_input ()
{
main_ch = alg_ch = res_ch = re_ch = form ch = 0;
do {
printf (*\nDo you want:\n") ;
printf(*\tl. Details of Form Changes of an RE\n");
printf("\t2. Details of Scheduling Algorithms \n") ;
printf (*\n\t\tEnter your option: *);
scanf ("%4",&main_ch);
if (main_ ch'—l && main ch'—2)
printf ("\nIncorrect option - Enter agaln \n\n )
} while (main_ch -!= 1 && main_ch '=\2),

if (main_ch == 1) {
printf (" \nEnter Number of Itertations to be used: *");
scanf ("%d",&iter) ;
printf('\n');

else if (main_ch == 2)
iter = 1; .

if (main_ch == 1)

do {

printf (*\nDo you want to use:\n");
printf("\tl. Convergent Cycle \n");
printf ("\t2. Divergent Cycle \n");
printf ("\n\t\tEnter your option: ");
scanf (*%d", &form_ch) ;
if (form _ch!=1 && form_ch!=2)
printf ("\nIncorrect option - Enter again \n\n");

} while (form_ch != 1 && form_ch != 2),
else if (main_ch == 2)
form_ch = CONVERG;
if (main_ch == 2)
do {

printf (*\nDo you want:\n") ;-
printf (*\tl. Theoretical Results only \n*);
printf (*\t2. Practical Results only\n");
printf (“\t3. Both \n*");
printf (*\n\t\tEnter'your option: ");
scanf ("%d", &res_ch) ;
if (res_ch!=1 && res_ch!=2 && res_ch!=3)
printf(*\nIncorrect option - Enter again \n\n");
} while (res_ch != 1 && res_ch != 2 && res_ch!=3);
else if (main_ch == 1)
res_ch = 0;

do {
printf (*\nDo you want to choose: \n");
printf(*\n\tl. Scheduling Algorithm A \n");
printf ("\t Note: 'Partitioning Approach A will be used \n");
printf(*\n\t2. Scheduling algorithm C \n");
printf ("\t Note: Partitioning Approach B will be used \n");
printf (*\n\t3. Both \n*);
printf("\t Note: Partitioning Approach A for Algorithm A \n");
printf("\t and Approach B for Algorithm C will be used \n");
printf (*\n\t\tEnter your option: *);
scanf (*“%d", &alg_ch) ;
printf(*\n");
if (alg_ch!=1 && alg_ch!=2 && alg_ch!=3)
printf ("\nIncorrect option - Enter again \n\n");
} while (alg_ch != 1 && alg_ch != 2 && alg_ch != 3);

/* read the input symbol set from file */

printf (*\nEnter the input alphabet: ");

scanf (“%s", symb_set) ; printf(*\nDo you want details for: \n");
printf(*\tl. A single RE \n");

printf ("\t2. Multiple REs\n");

printf ("\n\t\tEnter your option: ");

scanf (*%4d",&re_ch);
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if (re_ch == SINGLE) {
printf (*\nEnter the input RE: ");
scanf ("%s", re);
printf(*\n*);

}
1f (re_ch == MULTIPLE) {
praintf ("\nEnter the name of the datafile: ");
scanf ("%s",infile);
 printf(*\n");

}
} /* end get_input */

header (0ofp3)
FILE *ofp3;

{
fprintf (ofp3, * ");
fprintf (ofp3, " \n") ;
fprintf(ofp3, " -=--=mm e - ");
fprintf (ofp3, *---------~----- \n") ;
fprintf (ofp3, "Algorithm Width Processors Serial Parallel ");
fprintf (ofp3, “Speed Efficiency\n");

fprintf (ofp3, " time time up\n") ;

fprintf (ofp3, * ") ;
fprintf (ofp3, * \n*) ;
fprintf(ofp3, "—=- == - ");
fprintf (ofp3, "-------------—- \n") ;

}

/**********************************************************************
Function Definition: void print_llist( )

Descraption: ’
This routine prints the label table of the Task Graph in the form of
sets of tasks with a particular label (which corresponds to the set
representation of tasks).
************************************************************************/
void print_1llist()
{
int i;
Label_list *ptril;
printf (*\tMax levels: %d\n\n",num levels);

printf(f-----mm oo \n") ;
printf (*Num Tasks | Tasks \n") ;
printf(*--------smmmm e \n");

for (i=0;i<num_levels;i++) ({
ptrl = 1_list[i];
printf (" ¥d | *,ptrl->value);
while (ptrl->next != NULL) {
ptrl = ptrl->next;
printf(* T%4",ptrl->value);

}
printf(*“\n");

}
printf("-------- \n") ;
} ‘

PARTN.C

#include *"host.h"
#define DEBUG 1
/**********************************************************************
This file (partn.c) contains the following HOST routines:

partn_A Partitioning approach for Algorithm A

partn_B Partitioning approach for Algorithm B

Some printing routines
************************************************************************/

typedef struct xx {
unsigned short symb;
struct xx *next;

} RE_list;



/* Declaration of external functions and variables */
extern int num_tasks, num_levels;
extern Task_tree tlist [MAX_TASKS];

/*****************************************************************************
Prototype: void partn_A( void )

Description:
This routine partitions the RE following the original approach of
Partitioning and yields a rooted tree as the task graph for the RE. Thus
the partn_A routine is used along with the Scheduling Algorithm A for
scheduling the roooted tree thus obtained
******************************************************************************/
vold partn_A(symb_set,post)
char symb_set [MAX_COLS], post[MAX RE];

{
int i,pos=0, - .
lpred, rpred, /* predecessors of task */
t_num=0; /* task number */

RE_list *start, *curr, *nl, *n2, *junkl, *junk2;
/* pointers to list which contains the postfix RE */

/* function prototypes */
extern char *itos();

void print_RElist();
void print_tlist();

num_levels = 0;

/* Convert the RE in postfix form to a linked list for ease of
processing in this routine. Also form this list as the
reverse of RE, b’cos Polish alorithm evaluates an expression
from its end */

start = curr = (RE_list *) NULL;
i=strlen(post);
for (--i; i>=0;1--) {
if (curr == NULL) /* first element to be created */
start = curr = (RE_list *) malloc(sizeof(RE_list));
else if (curr != NULL) { /* element created at the end */
curr->next = (RE_list *) malloc(sizeof (RE_list));
curr = curr->next;

}

if (post[i] == '/")
curr->symb = CLOSURE;

else if (post(i] == ’.’
curr->symb = CONCAT;

else if (post[i] == '+’)
curr->symb = UNION;

else if (post[i] == ’e’)
curr->symb = EPSILON;

else curr->symb strindex (symb_set,post [i]);
} /* for */

curr->next = NULL;

/* Start processing the RE to obtain the partition of tasks in the
"tlist* structure */

num_levels=0;

curr = start;

if (DEBUG) {

printf(*\t Details of Partitioning Approach A \n");
printf (*"\tNOTE: \"*\" has only one operand\n\n");
print_RElist (start,num_levels, symb_set) ;

}

while (start->next != NULL) { /* till end of list */
int symb=0, symbl=0, symb2=0; nl = curr->next; n2 = nl->next;
symb=curr->symb; symbl=nl->symb; symb2=n2->symb;
if ((symb>=MIN_SYMB && symb <= MAX_SYMB) ||
(symb>=BEG_TASK && symb <= END_TASK)) {
/* 1if current symbol is either an ALPHABET or a TASK then
skip to next symbol */
curr = nl;
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else if (symb>MAX_SYMB && symb<BEG_TASK) {
/* if the current symbol is an OPERATOR,then we try various cases
depending on the two operands */

if (((symbl>=MIN_SYMB && symbl<=MAX SYMB) || symbl==EPSILON) &&

( (symb2>=MIN_SYMB && symb2<=MAX_SYMB) || symb2==EPSILON)) ({
/* if both the operands are ALPHABETS, then we have an
independent task. Store this task in the task table */
tlist[t_num].done = FALSE;
tlist[t_num].node = t_num;
tlist[t_num].wt = 0;

. strcpy(tlist[t_num].succ,*");

o

tlist[t_num].task[0] = n2->symb;
tlist[t_num].task[1] = curr->symb;
tlist[t_num].task([2] = nl->symb;

tlist[t_num].label num_levels;
curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;

curr = curr->next;

n2->next = NULL; nl->next = NULL;
junkl = nl; junk2 = n2;
free(junkl); free(junk2);
}
else if (symbl>MAX_SYMB && symbl<BEG_TASK) {
/* if one of the operands is an operator, move up the list */
curr = nl;
}
else if (symb2>MAX SYMB && symb2<BEG_TASK) ({
/* if the other operand too is an operator, move up the list */
curr = n2;

}
else if ((symbl>=MIN_SYMB && symbl<=MAX SYMB) &&
(symb2>=BEG_TASK && symb2<=END_TASK)) {
/* first operand is an alphabet and second is a task, then we
have a dependent task. Store the task and all its
information in the task table */

tlist[t_num].done = FALSE;
tlist[t_num].node = t_num; ‘
tlist[t_num].wt = 0; /* set node weightt to 0%/

strcpy (tlist [t_num].succ,*");
strcat (tlist [n2->symb-BEG_TASK] .succ,itos (t_num)) ;

tlist[t_num].task([0] = n2->symb;
tlist[t_num].task([1] = curr->symb;
tlist[t_num].task([2] = nl->symb;

tlist[t_num].label num_levels;

curr->symb = t_num++ + BEG_TASK;
curr->next = n2-snext;
curr = curr->next;

nl->next = NULL; n2->next = NULL;
junkl = nl; junk2 = n2;
free(junkl); free(junk2);

else if ((symb2>=MIN_SYMB && symb2<=MAX_ SYMB) &&
(symbl>=BEG_TASK && symbl<=END_TASK)) ({
/* n2 operand is a symbol and nl is a node */

tlist[t_num].done FALSE;

tlist[t_num].node t_num;

tlist[t_num].wt = 0;

strcpy (tlist [t_num] .succ, *");

strecat (tlist [nl1->symb-BEG_TASK] .succ,itos(t_num)) ;

onn

tlist[t_num].task[0] = n2->symb;
tlist[t_num].task([1] = curr->symb;
tlist[t_num].task[2] = nl->symb;

tlist [t_num].label num_levels;

curr->symb t_num++ + BEG_TASK;

curr->next = n2->next;

curr = curr-s>next; nl->next = NULL; n2->next = NULL;
junkl = nl; junk2 = n2;

free(junkl); free(junk2);

}
else if ((symbl>=BEG_TASK && symbl<=END_TASK) &&



(symb2>=BEG_TASK && symb2<=END_TASK)) {
/* if both operands are nodes */
tlist[t_num] .done FALSE;
tlist[t_num] .node t_num;
tlist[t_num].wt = 0;
strepy (tlist [t_num].succ,"");
strcat (tlist [nl1->symb-BEG_TASK] .succ, itos(t_num)) ;
strecat (tlist [n2->symb-BEG_TASK] .succ, itos (t_num)) ;

onn

tlist[t_num].task[0] = n2->symb;
tlist[t_num].task([1] = curr->symb;
tlist[t_num].task([2] = nl->symb;

tlist[t_num].label num_levels;

curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

nl->next = NULL; n2->next = NULL;
junkl = nl; junk2 = n2;
free(junkl) ; free(junk2) ;

}
} /* end of else if */

if (curr == NULL || curr->next == NULL ||
curr->next->next == NULL) {
num_levels++;
if (DEBUG) print_RElist (start,num levels,symb_set);
curr = start;

}
} /* end of while */

if (DEBUG)
printf ("\nLast task is T%d which represents the root node\n\n",t_num-1);

/* While partitioning above tasks are assigned labels corresponding to
the level it appeared first in the rooted tree. Now, we adjust the
label such that the label of every task differs exactly by 1 from
its successor */

for (i=0;i<t_num;i++) {
if (no_preds(i)) /* Task i has no predecessors */
continue;
if (tlist(i].task[0]>=BEG_TASK) { /* Has left predecessor */
lpred = tlist([i].task([0] - BEG_TASK;
if (tlist([i].label != tlist[lpred].label+l) { /* Labels donot */
tlist[lpred].label = tlist[i].label-1; /* differ by 1 */
i=-1;
continue;

}

}
if (tlist[i).task([2] >= BEG_TASK) { /* Has right predecessor */
rpred = tlist[i].task[2] - BEG_TASK;
if (tlist(i].label !'= tlist([rpred].label+l) { /* Labels do not*/
tlist [rpred].label = tlist[i].label-1; /* differ by 1 */
i=-1;
continue;
}

}
} /* of for loop */

num_tasks = t_num;
for (i=0;i<num_tasks; i++)
tlist[i].label = num levels-tlist([i].label-1;

if (DEBUG) {
praintf ("\nTask Graph produced by Partitioning Approach A\n");

s RAAAAAAAANANAANANNAAANANNANNNNANNANNANNNNNANANNANNNANANNNNANN "
printf( \n") ;

print_tlist();

}
} /* end of Partn_RE */

void print_RElist (start,level, symb_set)
RE_list *start;
int level;
char symb_set [MAX_COLS];
{
int symbol, i=0;
RE_list *ptr;
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printf (*\nLevel %d ==> \t",level);
ptr = start;
while (ptr != NULL) {
symbol = ptr->symb;
if (symbol == EPSILON)
printf("e ");
else if (symbol <= MAX_SYMB)
printf ("%c *,symb_set [symbol]) ;
else if (symbol < BEG_TASK) {
if (symbol == CONCAT)
printf(*. *);
if (symbol == UNION)
printf(*+ ");
if (symbol == CLOSURE) {
ptr = ptr->next;
printf(** *);
}
} /* else */
else if (symbol >= BEG_TASK)
printf (*T%d *,symbol-BEG_TASK) ;
ptr = ptr->next;
} /* while */
printf("\n");
}

/*****************************************************************************
Function Name: void partn_C( void )

Description:
This routine partitions the RE following the improved approach of
Partitioning and to yield a DAG with nodes- having multiples successors.
Thus the partn_C routine is used along with the Scheduling Algorithm B for
scheduling the DAG thus obtained.
*******************************************************************************/
void partn_C(symb_set,post)
char symb_set [MAX_COLS],
post [MAX_RE] ;
{

int i,j,pos=0,
lpred, rpred, /* predecessors of task */
t_num=0, /* task number */
maxlabel;

boolean repeated=FALSE;

char ctask|[5],

succ [MAX_TASKS] ;

RE_list *start, *curr, *nl, *n2, *junkl, *Jjunk2;
/* pointers to list which contains the postfix RE */

/* function prototypes */
extern char *itos();

void print_RElist();
void print_tlist();
int is_present () ;

num_levels = 0;

/* Convert the RE in postfix form to a linked list for ease of
processing in this routine. Also form this list as the
reverse of RE, b’cos Polish alorithm evaluates an expression
from its end */

start = curr = (RE_list *) NULL;
i=strlen(post);
for (--1; i>=0;i--) {
if (curr == NULL) /* first element to be created */
start = curr = (RE_list *) malloc(sizeof (RE_list));
else if (curr != NULL) { /* element created at the end */
curr->next = (RE_list *) malloc(sizeof(RE_list));
curr = curr->next;
} if (post{i] == /")
curr->symb = CLOSURE;
else if (post[i] L)

curr->symb = CONCAT;
else if (post([i] == "+’)

curr->symb = UNION;
else if (post[i] == ’'e’)
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curr->symb = EPSILON;
else curr->symb = strindex(symb_set,post[i]);
} /* for */

curr->next = NULL;

if (DEBUG) ({

printf("\t Details of Partitioning Approach B \n");
printf ("\tNOTE: \"*\" has only one operand\n\n");
print_RElist (start,num_levels, symb_set) ;

} ;

/* Start processing the RE to obtain the partition of tasks in the
"tlist® structure */ ,
curr = start;
while (start->next != NULL) {
/* not end of list */
int rtask, symb=0, symbl=0, symb2=0;

nl = curr->next; n2 = nl->next;
symb=curr->symb; symbl=nl->symb; symb2=n2->symb;

if ((symb>=MIN_SYMB && symb <= MAX_SYMB) ||
(symb>=BEG_TASK && symb <= END_TASK)) {
/* if current symbol is either an ALPHABET or a TASK then
skip to next symbol */
curr = nl;
} .
else if (symb>MAX_ SYMB && symb<BEG_TASK) {
/* if the current symbol is an OPERATOR,then we try various cases
depending on the two operands */

1f (((symbl>=MIN_SYMB && symbl<=MAX SYMB) || symbl==EPSILON) &&
( (symb2>=MIN_SYMB && symb2<=MAX_SYMB) || symb2==EPSILON)) {
/* if both the operands are ALPHABETS, then we have an
independent task. Store this task in the task table */

/* extract current task’s operation */
ctask([0] n2->symb; ctask[1l] = curr->symb;
ctask([2] nl->symb; ctask[3] = ‘\0’;

/* first check 1f current task is repeated or not */

if (t_num!=0 &&

(rtask=is_present (ctask,t_num)) != SENTINEL) {
repeated = TRUE;

}
else repeated = FALSE;

if (!repeated) { . /* store only if not repeated task */
tlist [t_num].done FALSE;
tlist [t_num] .node SENTINEL;
tlist[t_num].wt ;
strcpy (tlist [t_num].succ, "*);

tlist [t_num].task[0] = n2->symb;
tlist([t_num].task([1] = curr->symb;
tlist [t_num].task[2] = nl->symb;

tlist[t_num].label
} /* if */

num_levels;

/* replace operation by its task number in the RE list */
/* and move up the list for next operation */
if (repeated)
curr->symb rtask+BEG_TASK;
else curr->symb t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;
/* replace operation by its task number in RE list */
n2->next = NULL; nl->next = NULL;
junkl = nl; Jjunk2 = n2;
free(junkl); free(junk2);

}

else if (symbl>MAX_ SYMB && symbl<BEG_TASK) {
/* if one of the operands 1s an operator, move up the list */
curr = nl;

}
else if (symb2>MAX SYMB && symb2<BEG_TASK) {
/* if the other operand too is an operator, move up the list */
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curr = n2;

}
else if ((symbl>=MIN_SYMB && symbl<=MAX_ SYMB) &&
(symb2>=BEG_TASK && symb2<=END_TASK)) ({
/* first operand is an alphabet and second is a task, then we
have a dependent task. Store it, establishing its dependency
in the task table. */

/* extract current task’s operation */
ctask([0] = n2->symb; ctask([l] = curr->symb;
ctask[2] = nl->symb; ctask[3] = ’\0’;

/* first check if current task is repeated or not */

if ((rtask=1s_present (ctask,t_num)) != SENTINEL) {
repeated = TRUE;

}

else repeated = FALSE;

if (!repeated) {
tlist[t_num].done = FALSE;
tlist [t_num].node = SENTINEL;
strcpy (tlist [t_num].succ, **);
strcat (tlist [n2->symb-BEG_TASK] .succ, itos (t num)),

tlist[t_num].task[0] = n2->symb;
tlist [t_num].task([1] = curr->symb;
tlist([t_num].task([2] = nl->symb;

tlist (t_num].label
}

/* replace operation by its task number in the RE list */
/* and move up the list for next operatlon */
if (repeated)
curr->symb rtask+BEG_TASK;
else curr->symb t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

nl->next = NULL; 'n2->next = NULL;
junkl = nl; junk2 = n2;
free(junkl); free(junk2);

num_levels;

else if ((symb2>=MIN_SYMB && symb2<=MAX SYMB) &&
(symbl>=BEG_TASK && symbl<=END_TASK)) {
/* n2 operand is a symbol and nl is a node */

/* extract current task’s operation */
ctask[0] = n2->symb; ctask[l] = curr->symb;
ctask[2] = nl->symb; ctask[3] = '\0’;

/* first check if current task is repeated or not */

if ((rtask=is_present (ctask,t_num)) != SENTINEL) {
repeated = TRUE;’

}

else repeated = FALSE;

if (!repeated) { /* store only if not repeated task */
tlist [t_num].done FALSE;
tlist [t_num].node = SENTINEL;
strcpy (tlist [t_num].succ,*");
strcat (tlist [nl1->symb-BEG_TASK] .succ, itos (t_num)) ;

tlist[t_num].task([0] = n2->symb;
tlist[t_num].task[1] = curr->symb;
tlist[t_num].task[2] = nl->symb;

tlist[t_num].label
}

/* replace operation by its task number in the RE list */
/* and move up the list for next operation */
if (repeated)
curr->symb rtask+BEG_TASK;
else curr->symb t_num++ + BEG_TASK;
curr->next = n2->next;

num_levels;
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curr = curr->next; nl->next = NULL; n2->next = NULL;

junkl = nl; Jjunk2 = n2;
free(junkl); free(junk2);

}
else if ((symbl>=BEG_TASK && symbl<=END_TASK) &&
(symb2>=BEG_TASK && symb2<=END_TASK)) {
/* if both operands are nodes */
/* extract current task’s operation */



ctask[0] n2->symb; ctask[1] curr->symb;

ctask[2] nl->symb; ctask[3] ‘\0’;

/* first check if current task is repeated or not */

if ((rtask=is_present (ctask,t_num)) != SENTINEL) ({
repeated = TRUE;

}
else repeated = FALSE;

if (!repeated) {
tlist (t_num].done FALSE;
tlist [t_num].node = SENTINEL;
strepy (tlist [t_num].succ,*");
strcat (tlist [nl->symb-BEG_TASK] .succ, itos (t_num)) ;
strcat (tlist [n2->symb-BEG_TASK] .succ, itos (t_num)) ;

tlist [t_num].task([0] = n2->symb;
tlist[t_num].task(1] = curr->symb;
tlist[t_num].task([2] = nl->symb;

tlist [t_num].label
}

/* replace operation by its task number in the RE list */
/* and move up the list for next operation */
if (repeated)
curr->symb rtask+BEG_TASK;
else curr->symb t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

nl->next = NULL; n2->next = NULL;
junkl = nl; junk2 = n2;
free(junkl) ; free (jJunk2);

num_levels;

}
} /* end of else if */

if (curr == NULL || curr->next == NULL ||
curr->next->next == NULL) {
num_levels++;
if (DEBUG) print_RElist (start,num levels,symb_set);
curr = start;
}
} /* end of while */
num_tasks = t_num;

/* While partitioning above tasks are assigned labels corresponding to
the level it appeared first in the rooted tree. Now, we adjust the
label according to the labeling scheme of Algorithm C */

for (i=0;i<num_tasks; i++)

tlist[i].label = num levels-tlist([i].label-1;

for (i=t_num-1; i>=0; i--) {
strecpy (succ, tlist [i].succ);
maxlabel = SENTINEL;
for (3=0; succ[j] != ’\0’; J++)
if (tlist[succ([j]].label > maxlabel)
maxlabel = tlist[succ{j]].label;
if (i != t_num-1)
tlist[i].label = maxlabel + 1;
} /* for i loop */

if (DEBUG) ({
printf (*\nTask Graph produced by Partitioning Approach B\n");
print_tlist();

}

} /* end of partn C */

int is_present (ctask,num)
char ctask[5];
int num;
{
char temp(5];
int i,3;
for (3=0;j<=2; j++)
ctask[]j] += 1;
for (i=0; i<num; i++) {
for (j=0;7J<=2; j++)
temp[j] = tlist[i].task[j]l+1;
temp[3] = ‘\0’; ctask([3] = "\0’;



if (strcmp(temp,ctask) == 0)
return(i);

}
return (SENTINEL) ;
}

/**************************************************************************
Function Name: void print_tlist( )

Description:
This routine prints all the information for all the tasks in the task

graph in the form of a table. It uses the tlist global structure. The
routine "print_atask" given below prints all the required information

of a task. .
***************************************************************************/

void print_tlist()
{

int i;

void print_atask();
printf (*\n---------==----------- oo ----o-oo oo \n") ;
printf (*Task Number Level Predecesors Successors Processor\n") ;
printf("—---=---mmmmm—m oo oo m—eoo oo oo —m——mmm-- \n") ;

for (i=0;i<num tasks;i++)
print_atask(i);
printf("--------—--- s m e e — e \n\n");
} /* of print_tlist */

void print_atask(task)
int task;
{
int i,j, pred, succ;

/* print Task number and its level */
printf (" T$2d\t %24\t v, task,tlist[task].label);

/* print L and/or R predecessors, NONE 1f no predecessors */
if (no_preds(task))
printf ("NONE ") ;
else {
if ((pred=tlist[task].task[0]) >= BEG_TASK)
printf ("T%d ",pred-BEG_TASK) ;
if ((pred=tlist([task].task([2]) >= BEG_TASK)
printf(* T%d*,pred-BEG_TASK) ;
}

/* print all successors of task */
printf ("\t\t");

for (j=0; (succ=tlist([task].succ[]j]) !'= "\0’; j++)
printf("T%d4 ", succ);
if (j==0) /* no successors for task */

printf ("NONE") ;

/* print task’s processor */
if (tlist[task].node != SENTINEL)
printf (*\t%d\n",tlist [task].node) ;
else printf (*\tNONE\n");
} /* print_atask */

SCHEDULE.C

#include "host.h*

/**********************************************************************
This file (schedule.c) contains the following HOST routines:

Get_schedule() Gets the schedule
init_labels () gets initial label table
Algorithm A() Applies Algorithm A
algorithm B () Applies Algoirhtm C

************************************************************************//*
Declaration of external variables */

extern int num_levels;
extern Task_tree tlist [MAX_TASKS];
extern Label_list *]1_list [MAX_LEVELS];

/***************************************************************************

Prototype Definition : Get_Schedule(Label_list 1_list[]*, char **G_chart);
Parameters: 1_list - the structure for the label table of the tasks.
G_chart - the structure (a 2-d array) to represent the schedule in the
form of a Gantt Chart.
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Description:

This routine schedules the task graph by either using Algorithm A or
Algorithm B depending on the user’s choice. It then obtains the
schedule in Gantt chart form in the G_chart structure and performs the
optimization as mentioned in the document.

********************************************,*******************************/
void Get_schedule(G_chart,num _procs)

STTYPE
int

{

G_chart [MAX_PROCS] [MAX_LEVELS] ;

num_procs;

int i, 3.k,
col,
row,
cur_task, /* current task for execution */
pred, /* current task’s predecessor */
pred_node, /* predecessor task’s node */
that_task, /* task to swap for optimization */
that_lpred, /* swapping task’s predecessors */
that_rpred,
opl,op2, /* operands of current task */
lpred, /* current task’s L and R predecessor */
rpred;

boolean swap=FALSE;

Label_list *ptr;

/* function prototypes */
extern void print_schedule();
int no_preds() ;

/* Intially the Gantt chart to PHI tasks for all processors during
all taime intervals */
for (i=0; i<num_procs; i++)
for (3=0; j<num_levels; J++)
G_chart [i][]j] = PHI_TASK;

/* Copying information from 1_list (which is the final label table) in
to the Gantt chart. That is, the tasks with label "i" are scheduled
arbitrarily on the available processors during ith time interval */

for (col=num_levels-1; col>=0; col--) {
ptr = 1_list[col]->next;
for (row=0;row<num_procs;row++) {
if (ptr != NULL)
cur_task = ptr->value;
else
break;
G_chart [row] [num_levels-col-1] = cur_task;
/* Update info in the task table as to which node the
current task is assigned to */
tlist[cur_task].node = row;
ptr = ptr->next;
}

for (row=0; rOW<NUM_PYOCS; TOW++) .
G_chart [row] [num_levels] = 0; /* null terminate each row string */

if (DEBUG)
print_schedule(G_chart,num_procs,num_levels);

if (num_procs == 1) return;
/* no optimization done if only one processor */

/* Now, we do the optimization of scheduling the tasks based on their
predecessors. This 1s done by checking for the predecessors node
trying to move the current task to that node */

for (col=1l; col < num_levels; col++)
for (row=0; row<num procs; row++) { N

cur_task = G_chart[row] [col];

1f (cur_task == PHI_TASK) continue;

1f (no_preds(cur_task)) {
tlist[cur_task].node = row;
continue;

} opl = tlist[cur_task].task[0];

if (opl>=BEG_TASK && opl<=END_TASK)
lpred = opl - BEG_TASK;

else
lpred = 0;
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op2 = tlist[cur_task].task([2];

if (op2>=BEG_TASK && op2<=END_TASK)
rpred = op2 - BEG_TASK;

else
rpred = 0;

/* Check if one of its predecessor is assigned to the same node,
then just update the task table and proceed */

if (lpred && tlist[lpred].node == row) ({
continue;

}

else if (rpred && tlist([rpred].node == row) {
continue;

}

/* Else, check if "that_task" which is in the interval of the
cur_task’s predecessor, but assigned to the current node is
an 1ndependent task or a PHI_TASK

OR
if that_task’s predecessor is in the current interval,
then just swap cur_task with that_task */

if (lpred) pred = lpred;
else if (rpred) pred = rpred;

swap = FALSE;
for ( ; ; {
pred_node = tlist[pred].node;
that_task = G_chart(pred_node] [col];
if (tlist([that_task].task([0]>=BEG_TASK)
that_lpred = (tlist[that_task].task[0]-BEG_TASK);
else
that_lpred = 0;
if (tlist[that_task].task[0]>=BEG_TASK)
that_rpred = (tlist[that_task].task|[0]-BEG_TASK);
else
that_rpred = 0;

if (that_task == PHI_TASK || no_preds(that_task) ||

(that_lpred && tlist[that_lpred] .node==row) ||
(that_rpred && tlist[that_rpred] .node==row)) {

swap = TRUE;

G_chart[row] [col] = that_task;

G_chart [pred_node] [col] = cur_task;

tlist [that_task].node = row;

tlist [cur_task].node = pred_node;

}

if (!swap && pred == lpred) {
if (rpred) pred = rpred;
else break;

}
else break;
} /* of infinite for loop */
} /* for col loop */
} /* for row loop */

} /* end of Get_schedule() */

/****'k************'k***********************'k********************************

Function Definition: int init_labels(aint);
Description:
This function initially assigns labels to tasks following the
Labeling Scheme i1n Algorithm_A. Then the tasks with label "i*" ae
grouped into the set *"Wi*, that is, tasks with label "i" is stored
in the ith list of 1_1list structure.
**********************************************************V*****************/
int init_labels (num_tasks)
int num_tasks;
{
int level, /* current level in the task tree */
cur_task, /* current task */
wg; /* width of the task graph */
Label_list *ptril;
/* Initialize the 1_list to have 0 in its first element
in all the levels */
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for (level=0;level<num levels;level++) ({
1_list[level] = (Label_list *) malloc(sizeof (Label_list));
1_list[level]->value = 0;
1_list[level]->next = NULL;

}

/* Group tasks with label "1" into the set *wi" in the label list
from the initial label table of tasks */

for (cur_task=0;cur_task<num_tasks;cur_task++) {
/* Task with label "i", is stored in ith list of 1_list */
ptrl = 1_1list[tlist[cur_task].label];
ptrl->value++;
while (ptrl->next != NULL)
ptrl = ptrl->next;

ptrl->next = (Label_list *) malloc(sizeof (Label_list));
ptrl->next->value = cur_task;
ptrl->next->next = NULL;

} /* of for */

/* Also find out the width of the graph from this initial set
representation in 1_list structure */
wg = 0; '
for (level=0;level<num_ levels;level++) {
if (1_list[level]->value > wg)
wg = 1_list[level]->value;

return(wg) ;

/***************************************************************************
Function Definition: void algorithm A( int )

Description:

This routine is the implementation for Algorithm A (Hu’s algorithm) which
is outlined in Section 4.3.1 of the thesis document. The algorithm
schedules a task graph given in ‘tlist’ structure on an arbitrary number,
say p, of processors by adjusting the label table given in ’1_list’
structure. '

****************************************************************************/

void algorithm A (num_procs)
int num_procs;

{

int i,
level, /* current set Wi of tasks */
victim, /* victim task to be moved to set Wi+l */
lpred, rpred;

boolean found, /* tells if a predecessor is found in Wi+l */
selected; /* tells 1f a victim is found */

Label_list *ptrl,*backptr, *ptr2, *junkl;

level = num_levels-1; * /* process from leaf tasks */
while (level >= 0) {
if (1_list([level]->value > num_procs) {
if (level == num levels-1) { /* if level==L */
/* create a new set WL+1 and increment L */
ptrl= (Label_list *) malloc(sizeof(Label_list));
ptrl->value = 0;
ptrl->next = NULL;
1_list[num_levels++] = ptril;
}

/* if level <> L */
backptr = 1_list[level];
ptrl = backptr->next;
selected = FALSE;
/* search until a victim is selected */
while (!selected && ptrl != NULL) {
if (no_preds(ptrl->value)) {
selected = TRUE;
}
else { /* if the cur_task has predecessors, then */
if (tlist[ptril->value].task[0]>=BEG_TASK)
lpred = tlist[ptrl->value).task|[0]-BEG_TASK;



else lpred = 0;
if (tlist{ptrl->value].task[2]>=BEG_TASK)
rpred = tlist[ptrl->value].task([2]-BEG_TASK;
else rpred = 0;
/* check if lpred or rpred is in Wn+l set */
ptr2 = 1_list[level+l]->next;
found = FALSE;
while (!found && ptr2 != NULL) {
if ((lpred && lpred == ptr2->value) ||
(rpred && rpred == ptr2->value))
found = TRUE;
else ptr2 = ptr2-snext;
}

if (found) ({ /* found a predecessor in Wn+l */
backptr = ptrl;
ptrl = ptrl->next;

Y} /* 1f */

else /* no predecessors in Wn+l */

selected = TRUE;
}
} /* of inner while */

victim = ptrl->value; /*found a victim so store it */

/* free the victim node from the current row */
backptr->next = ptrl-s>next;
ptrl->next = NULL;
junkl = ptril;
free(junkl);
/* adjust the no. of tasks in the victim’s row and its next row */
1 _list[level]->value--;
1 _last[level+l]->value++;

/* 1ncrement the label of the victim node,
l1.e. add it in Wn+l set */
ptrl = 1_list[level+l];
while (ptrl->next != NULL)
ptrl = ptril->next;
ptrli->next = (Label_list *) malloc(sizeof(Label_list));
ptrl->next->value = victim;
ptrl->next-s>next = NULL;
level = num_levels - 1; /* start from highest level */
} /* of initial if after while */
else level--;
} /* of while */
}

/****************************************************************************
Function Definition: void algorithm C (int )

Description:
This routine is the implementation for Algorithm A (Hu’s algorithm) which
is outlined in Section 4.3.1 of the thesis document. The algorithm
schedules a task graph given in ‘tlist’ structure on an arbitrary number,
say p, of processors by adjusting the label table given in ’‘1_list’
structure.
******************************************************************************/
void algorithm C(num_procs)
int num_procs;
{
int i,

level, /* current set Wi of tasks */
victim, /* victim task to be moved to set Wi+l */
lpred, rpred;

boolean found, /* tells if a predecessor is found in Wi+l */
selected; /* tells if a victim is found */

Label_list *ptrl, *backptr, *ptr2, *junkl;

level = num_levels-1;
while (level >= 0) {
/* if |Wi| <= p, then goto next set */
if (1_list[level]->value <= num procs) {
level--;
continue;



backptr = 1_list{levell;
ptrl = backptr->next;
selected = FALSE;
while (!selected && ptrl != NULL) {
if (level == num_levels-1) {
ptr2= (Label_list *) malloc(sizeof (Label_list));
ptr2->value = 0; .
ptr2->next = NULL;
1_list[num levels++] = ptr2;
}

if (no_preds(ptrl->value)) {
selected = TRUE;

else {

/* if the cur_task has predecessors, then */
1f (tlist[ptrl->value].task{[0]>=BEG_TASK)

lpred = tlist{ptril->value].task{0]-BEG_TASK;
else 1lpred = 0;
if (tlist[ptrl->value].task[2]>=BEG_TASK)

rpred = tlist[ptrl->value].task[2]-BEG_TASK;
else rpred = 0;
/* check if lpred or rpred is in Wn+l set */
ptr2 = 1_list[level+l]->next;
found = FALSE;
while (!found && ptr2 != NULL) {

if ((lpred && lpred == ptr2->value) ||

(rpred && rpred == ptr2->value))
found = TRUE;

else ptr2 = ptr2->next;

}

if (found) { /* found a predecessor in Wn+l */
backptr = ptrl;
ptrl = ptrl-snext;
Yy /% if %/
else /* no predecessors in Wn+l */
selected = TRUE;
}
if (ptrl==NULL) { /* could not find a victim Wn */
backptr = 1_list[++level]l; /* try in Wn+l */
ptrl = backptr->next;

}
} /* of immediate while */

/* else found a victim in Wn, so store it */
victim = ptrl->value;
/* free the victim node from the current row */
backptr->next = ptrl->next;
ptrl->next = NULL;
junkl = ptril;
free(junkl) ;
/* adjust the no. of tasks in the victim’s row and its next row */
1 _list{level]->value--;
1_list[level+l]->value++;

/* add the victim node in the immediately next row */
ptrl = 1_list[level+l];
while (ptrl->next != NULL)
ptrl = ptrl->next; ’
ptrl->next = (Label_list *) malloc(sizeof(Label_list)):
ptri->next->value = victim;
ptrl->next->next = NULL;
level = num_levels - 1;
} /* of while */

/*****************************************************************************

Function Name: no_preds();

Function Prototype: no_preds( int);

Description:
This function returns FALSE if a task has no predecessors, that is, it is
an independent task. It returns TRUE, if task has atleast one predecessor,
giving no indication whether it is the R or L one.

****************1\-************************************************************/

int no_preds(task)

int task;



int opl,op2;

opl = tlist([task].task[0];

op2 = tlist([task].task[2];

if ((opl>=MIN_SYMB && opl<=MAX SYMB) &&

(op2>=MIN_SYMB && op2<=MAX_SYMB))

return (TRUE) ;

else
return (FALSE) ;

}

void free_llist ()

{
int level;
Label_list *back_ptr,*frnt_ptr;

for (level=0;level<num_levels;level++)
back_ptr = 1_list[level];
frnt_ptr = back_ptr->next;
while (frnt_ptr != NULL) {
free(back_ptr);
back_ptr = frnt_ptr;
frnt_ptr = frnt_ptr->next;

}
} /* of for */
}
MISC.C

#include “"host.h"
/***************************************************************************
This file (misc.c) includes the following HOST routines:

chk_re() Checks the input RE
in_to_post () Converts RE to postfix form
print_schedule() Prints the schedule in Gantt chart form

Miscellaneous routines
***************************************************************************/

/*************************************************************************
Function Name : int chk_re( void)

Descraption:
Checks whether the given RE is in the right form or not, counting the
nunber of right and left parantheses, checking for the right operators
etc.

**************************************************************************/

int chk_re(exprn, symb_set)

char exprn[MAX RE];

char symb_set [MAX_RE];

{

int left=0, /* number of left parantheses */
right=0, /* number of right parantheses */
done = FALSE,
max, /* number of terms in the RE */
i,J; /* local index variables */

char c,chl,ch2,

expl [MAX_RE],
new_exp [MAX_RE] ;"

for (i=0,3j=0; (c=exprn(i]) != “\0’;i++) {
if (c==" (") left++;
if (c==")") right++;

if (c == '*’") {

expl[jy++] = '/’;
/* b’cos - ASCII(/)>ASCII(.) > ASCII(+), which matches the
precedence vals of *(/) > . >+ */
expl[J++] = '0’;
/* converting to infix notation with num(op)num format */
}
else expl[j++] = c; } /* for */
expl[j] = ’\0’;
while (!done) {
done = TRUE;
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for (j=0,1i=0; (c=expl[i++]) !'= “\0’;) {
if (c!=’/’ && cl='+’ && c != "(' & c != ’".") {
chl = c; ;
ch2 = expl[i++];
if (isdigit(chl) || chl == ‘e’)
if (isdigit(ch2) || ch2 == ’(

new_exp(j++] = chl;
new_exp(j++] = ’.’;
new_exp[j++] = ch2;

done = FALSE;
} /* of isdigit .. */
else {
new_exp[j++] = chl;
—-i;

}

else if (chl == ’)’) {
if(ch2 == ‘(' || isdigit(ch2)) {

new_exp[j++] = chl;
new_exp([j++] = '.’;
new_exp[j++] = ch2;
done = FALSE;
}
else {
new_exp[j++] = chl;
--i;
}
} /* of if chl */
else { '
new_exp[j++] = chl;

—i;
}

} /* of uppermost if */
else new_expl[j++] = c;
} /* of for */
new_exp[jl = ‘\0’;
strcpy (expl,new_exp) ;
} /* of while */
strcpy (exprn, expl) ;

/* estimate number of states in the NFA to be synthesized
from the RE */

max = 0;
for (i=0; (chl=exprn[i]) != ‘\0’; i++) {
if (strchr(symb_set,chl)) /* if an alphabet */

max +=2; /* every atomic RE (an alphabet) needs
two states to get its NFA */
if (chl == "+’)

max += 2; /* UNION adds two new states to the NFA */
if (chl == ’/’)
max += 2; /* also does CLOSURE */
/* But, CONCAT does not add any new states */
} /* for */ .
max += 4; /* tolerance on the estimate */

printf (*Estimate on states = %3 \n",max);

if (left == raight) return (max) ;
else return(0) ;

}

/***********************************************************************
Function Name: void in_to_post( char *, char *)
Description: '

This routine takes an RE in infix form and converts it into a postfix

form which 1s returned in exprn array.
**************************************************************************/

void in_to_post (post, exprn)

char post[MAX_RE], /* input RE 1in infix form */
exprn [MAX_RE]; /* RE converted to postfix form */
{
int quit, 1i,j=0,k=0;
char c

str [MAX_RE], /* temp string for the postfix exprn */
stack[MAX_RE]; /* stack for converting infix to postfix form */
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/* Allocate memory to the local strings and initialize them */
strcpy (stack, "*);
strcpy (str,"");

for (i=0; (c=exprn[i]) != ’\0’; i++) {
if (c>=48) {

/* operand encountered */

str[j++] = exprn[i];
}
else if (c == (')
stack[k++] = c;
else if ((c<48) && (c>41))
{

/* an operator encountered, popo from stack and-add to
‘post’ each operator having >= precedence tha present
operator */

quit = 0;

while (k>0 && !quit)

if (stack[--k] < c¢) {
quit = 1; ++k;
} else strj++) = stackl[k];

stack[k++] = ¢c;
}

else if (c == ’)’) {
/* right paran encountered */
while (stack[--k] != ()

str[j++] = stackl(k];

}
} /* of for loop */

for (--k;k>=0;k--)
str[j++] = stacklk];
str(j] = "\0’;
strcpy (post, str) ;
} /* of in_to_post */

/*****************************************************************
Description: '
This routine converts the given integer ‘i’ to a string and

returns the string
******************************************************************/

char *itos(num)

int num;
{
int i; ;
char temp(5];
temp[0] = num;
temp[1l] = ‘\0’;

return(temp) ;

/*****************************************************************

Description:
This routine searches for a character ‘c’ in the string ‘s’ and
returns the position where it found ’‘c’. If ‘c’ not 1in the
string ‘s’ it returns a 0.
******************************************************************/
int strindex(s,c)
char *s;
int c;
{
int n;
for (n=0; ;n++) {
if (s[n] == c)
return(n);
if (s[n] == ’\0")
return (SENTINEL) ;
}

/*************************************************************************

Function Definition: print_schedule(char **, int, int);
Descraption:

This routine prints the Gantt chart as a timing diagram with processor
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axis and a time axis. The schedule is printed in intervals of 13 so as
to accomodate in a line. The routine *p_sch" prints all the requried

***************************************************************************/

void print_schedule (G_chart,num_procs,num levels)
STTYPE G_chart (] [MAX LEVELS];
int num_procs,num_levels;

}

int nlevels, beg, last;
void p_sch(); ,
nlevels = num_levels;

beg = 0;
if (nlevels > 13)

last = 13;
else last = nlevels;

while (nlevels>0) {
p_sch(beg, last,G_chart,num procs,num_levels);
nlevels -= 13;
beg += 13;
if (nlevels > 13)
last += 13;
else 1last = num_levels;
} -

void p_sch(beg, last,G_chart,num_procs,num_levels)
int beg,last;

STTYPE G_chart (] [MAX_LEVELS];

int num_procs,num_levels;

{

int 1i,3;
/* printing dividing line of exact length between every
processor’s queue */ .
printf(*\n "):
for (j=beg; j<last; j++)
printf("-----*);
printf(*-\n");

for (i=0; i<num_procs; i++) {
printf(*P%d |",1); :
for (j=beg; j<last; j++) { i
if (G_chart[i]l[j] != PHI_TASK)
praintf (*T%2d |*,G_chart[i][]j]);
else :
printf("phi |");
} /* for j loop */
/* printing dividing line of '‘exact length between every
processor’s queue */
printf("\n ");
for (j=beg; j<last; j++)
printf(*----- ");
printf(*-\n");
} /* for i loop */

/* printing time ticks at the bottom of schedule */

printf (" 1");
for (j=beg; j<last; j++)
printf (" 1");

printf(“\n");
/* printing time intervals at the bottom of schedule */
if (beg/10)
printf (" %d*,beqg) ;
else :
printf (" 0");
for (j=beg; j<last; j++) :
if (3/9) printf (* %d",j+1);
else printf (" %d*,j+1);
printf(*"\n");

NODE.H

#include <stdio.h>
#include <ctype.h>
#include <string.h>
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[REEKhEE General Header Constants ***#%%/
#define ROOTNODE O /* node 0 is set as the controlling node */
#define TRUE 1
#define FALSE 0
#define SENTINEL -1
#define DEBUG FALSE /* switch for debug information */
Vadddaad NFA and DFA header Constants *khkkx /
#define MAX NFA 250 /* Maximum number of states in an NFA */
#define MAX_DFA 200 /* Maximum number of states in an NFA */
#define MAX_COLS 3 /* Maximum size of the input alphabet */
#define MAX RE 250 /* Maximum size of the input RE */
#define MAX_TASKS 100 /* Maximum number of tasks in the Task Graph */
#define MAX LEVELS 100 /* Maximum number of levels in the Task Graph */
#define MAX_ PROCS 16 /* Maximum number of levels in the Task Graph */
#define MAX_SUCC 15 /* Maximum number of successors of a task */
#define PHI MAX_NFA /* Symbol for phi state in FA‘s transition table */
#define PHI_TASK o /* Symbol for phi task in the Gantt chart */
Vi RE Header Constants KkEkK )
#define MIN_SYMB 0 /* Range for number of input symbols */
#define MAX_SYMB 90
#define BEG_TASK 100 /* Range for number of tasks */
#define END_TASK 1000
#define CLOSURE MAX_SYMB+1 /* symbol for Closure operation */
#define CONCAT MAX_SYMB+2 /* symbol for Concatenation operation */
#define UNION MAX_SYMB+3 /* symbol for Union operation */
#define EPSILON MAX_SYMB /* symbol for Epsilon */
#define FREE 0 /* Symbol for a free buffer */
#define IN_USE 1 /* Symbol for a used buffer */
#define MARKED 1 /* Symbol for a marked pair in the marking table */
#define UNMARKED 0 /* Symbol for an unmarked pair in the marking table
*/
#define CONVERG 1 /* Symbol for Convergent cycle */
#define DIVERG 2 /* Symbol for Divergent cycle */

Vi Type Definitions *k% )/

typedef unsigned short boolean;
typedef unsigned short SHORT;
typedef unsigned char STTYPE;

/* Type Definition for an NFA */
typedef struct {

SHORT  numst; /* number of states */
SHORT start; /* start state */
STTYPE final(20]; /* set of final states */

STTYPE *table [MAX NFA] [MAX_COLS];
/* transition function - delta */
} NFA;
/* Type Definition for a DFA */
typedef struct {

SHORT numst ; /* number of states */
SHORT start; /* start state */
STTYPE final([20}; /* set of final states */

STTYPE table[MAX DFA] [MAX_COLS];
/* transition function - delta */
} DFA; ‘
/* Type Definition for a task in the Task Graph */
typedef struct {

int label, /* task’s label */

node, /* task’s processor */

wt,

status,

done; /* 1f task has completed execution */
STTYPE succ[MAX SUCC], /* task’s successors */

task([3]; /* task’s operation */

} Task_tree;
/* Type Definition of my node’s task gueue for execution
by Look Ahead approach */
typedef struct Q_struc {
int task;
struct Q_struc *next;



} My _Q;
/* Type Definition for temporary store of NFA while using
Look Ahead approach */
typedef struct BUFTYP {
int access;
int task;
int status;
NFA *bufnfa;
struct BUFTYP *next;
} BUFFER;

typedef struct Label_struc { ¢
SHORT value;
struct Label_struc * next;

} Label_list;

NODE.C

#include “node.h*
/************************************************************’**********
This file (node.c) contains the following .NODE routines:

main() The driver routine for the NODE MODULE
get_myQ () Obtains task queue of my node from schedule
print_myQ{() Prints my node’s task queue

The driver routine calls the following external routines:
exec_myQ() in makenfa.c file
rm_emoves () in ecl.c file
nfa_to_dfa() in nfa_dfa.c fil
min_dfa () in min_dfa.c file
dfa_re() in dfa_re.c file
solve_eqgns () in egqns.c file
Miscellanious routines in other.c file

*************************************************************************/

[ERIFIE KKK Node Header Constants KEEXEKX /
#define HOSTPID 100 /* process id for host process */
#define NODEPID 0 /* process id for node process */
#define ALLNODES -1 /* symbol for all nodes */
#define ALLPIDS -1 /* symbol for all processes */
#define INIT _TYP 10 /* type of host to node message */
#define NFA_TYP 20 /* type of node to node NFA message */
#define DFA_TYP 30 /* type of node to node DFA message */
#define RE_TYP ' 100 /* type of node to host RE message */
/*****%  A1] variables global to this and other files are declared *****x/
NFA *nfa = NULL; /* Global nfa Structure */
DFA *dfa = NULL; /* Global dfa Structure */
int maxterms, /* max # of states in NFA to be synthesized */
nnodes, /* # of nodes in the allocated cube */
work_nodes, /* # of working nodes as requested by the user */
nunmtasks, /* # of tasks in the task tree */
numlevels; /* # of levels in the tree */
char re[MAX_RE], /* Given RE */ ‘

symbset [MAX_COLS] ;

boolean rootnode = FALSE; /* node which has the last task, i.e the NFA from

transformation T1 */
static long

my_node, /* node 1d of my node */
mpid, /* process id of process in my node */
mhost; /* node id of my host node */
My_0Q *HEAD; '
Task_tree tlist [MAX TASKS];
struct msg_typ {
int work_nodes,
numtasks,
numlevels,
maxterms,
form_choice;
char synbset [MAX _COLS] ;

STTYPE G_chart [MAX_PROCS] [MAX_LEVELS] ;
Task_tree tlist [MAX TASKS];

} init_msg; /* structure for sending initial message to nodes */
/***********************************************************************

Function Name: int main( void );

Description: This is the main routine of the node program. It initially receives
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the
information (task graph and the schedule in Gantt chart form obtained
either scheduling Algorithm A or Algorithm B) from the host. Then:

1.

“ 106

All nodes participate in synthesizing an NFA following the method
outlined in transformation Tl of Section 3.4.1. The NFA thus obtained
is sent to all other nodes for the next step.

. Next, all nodes participate in removing the e-moves from the NFA

obtained in T1, following the transformation T2 of Section 3.4.2.

Then, only Node 0 participates in converting the NFA to a DFA by
following the algorithm in Transformation T3 of Section 3.4.3.
Since this algorlthm cannot be implemented in parallel only node 0
participates in this step. Other nodesg idle.

. Again only Node 0 participates in minimizing the DFA of T3 by

following the method in Transformation T4 of Section 3.4.4. This
procedure cannot be implemented in parallel. The DFA is sent to all
other nodes for the next step.

If the user’s choice corresponds to CONVERGENCE case, all nodes
participate in obtaining the RE corresponding to the DFA of step 4,
by following the algorithm outlined in Transformation T5 of Section
3.4.5. The RE is sent to the host as the final result from Node 0.

If the user’s choice corresponds to DIVERGENCE case, then only node 0
obtains the set of RE equations corresponding to the DFA of step 4, by
following the procedure outlined in Transformation Té of Section 3.4.6

The set of RE equations of step 6 are solved by using Gaussian
Elimination method of Transformation T7 of Section 3.4.7 by Node 0
only. This method cannot be imeplemented in parallel. The RE for the
DFA is subsequently obtained and sent to the host from Node 0.

Then, all nodes wait for more information (another task graph and its
corresponding schedule) from the node until a stop signal is encountered

from the host.
*************************************************************************/

main()
{ /* ‘main’ of node */
int i3,
choice; /* choice of DIVERGENCE or CONVERGENCE */
char mylist [MAX_LEVELS];
/* declarations of functions used in main */ :
extern void exec_myQ() ,rm_emoves (), nfa_to_dfa(), min_dfa(),
dfa_re(), solve_egns();
void get_myQ(), free_myQ(), print_myQ(),
print_tlist (), print_schedule(),
print_nfa(), print_dfa();
/* node bookkeeping done */
my_node = mynode() ;
mpid = mypid();
mhost = myhost();
while (TRUE) { /* node loops until stopped by host */

/* receive initial message from host into init_msg struc */
crecv (INIT_TYP, &init_msg, sizeof(struct msg_typ)):;

/* unpack information from init_msg received from host */
work_nodes init_msg.work_nodes;

numtasks = init_msg.numtasks;
numlevels = init_msg.numlevels;
maxterms = 1nit_msg.maxterms;
choice = init_msg.form_choice;

strcpy (symbset, init_msg.symbset) ;
for (i=0; i<numtasks; i++)
tlist[i] = init_msg.tlist([i];

/* if i am not a working node just busy loop */
if (my_node >= work_nodes) continue;

/* get my node’s set of tasks from the Gantt chart into mylist */
/* form linked list of tasks (task Q) from mylist and print it */
get_myQ(init_msg.G_chart [my_node]);
/* initialize nfa */
if ((nfa=(NFA *) malloc(sizeof {(NFA)))==NULL)

exit (1) ;
mem3D (nfa->table, maxterms,MAX_COLS, maxterms) ;



/* All nodes together synthesize the NFA;
but only rootnode has the resulting NFA */

exec_myQ();

free_myQ();

1f (rootnode) { /* only my node contains the NFA */
NFA_BUFTYP nfa_buf;
long node;

nfa_buf.numst = nfa->numst;
nfa_buf.start = nfa->start;
strcpy (nfa_buf.numst,nfa->final);
for (i=1; i<=nfa->numst; i++)
for (j=0; j<MAX_COLS; j++)
strcpy (nfa_buf.table[i]l [j],nfa->table{i](]j1);

/* CSEND message of TYPE NFA_TYP from static buffer nfa
* to all other work_nodes */
for (node=0; node<work_nodes; node++)
if (node != my_node) ,
csend (NFA_TYP, &nfa_buf, sizeof (NFA_BUFTYP), node, NODEPID);
}
else { /* other nodes receive NFA from rootnode */
NFA_BUFTYP nfa_buf;

/* CRECV message of type NFA_TYP into static nfa buffer */
crecv (NFA_TYP, &nfa_buf, sizeof (NFA_BUFTYP));
nfa->numst = nfa_buf.numst;
nfa->start = nfa_buf.start;
strepy (nfa->final,nfa_buf.final);
for (i=1; i<=nfa->numst; i++)

for (j=0; j<MAX_COLS; J++)

strcpy (nfa->table[i] [j],nfa_buf.tablel[1][3]);
}

if (DEBUG && (my_node == ROOTNODE)) {
printf (*\n\n****** FSA after STEP 1 (NFA) *rxxXXXF\N\n") ;
print_nfa(nfa);

}

/* All nodes participate in removing the e-moves from the NFA */
rm_emoves () ;

if ((dfa=(NFA *) malloc(sizeof (NFA)))==NULL)
exit(1);
/* only ROOTNODE does transformation T3 */
if (my_node == ROOTNODE) {
if (DEBUG) ({
printf ("\n\n*#***** FSA after STEP 2 (NFA) kEkk*kxxk\N\n") ;
print_nfa(nfa);

}

nfa_to_dfa(); /* ROOTNODE obtains the DFA from the NFA */

if (DEBUG) {
printf ("\n\n****** FSA after STEP 3 (DFA) *EARIEFX\N") ;
printf ("\n\t\t\t Transition Table (dfa) \n\n");
print_dfa();

}

}

/* All nodes free their NFA structure */
free3dD(nfa->table,maxterms, MAX_COLS) ;
free((NFA *) nfa);

nfa = (NFA *) NULL;

/* ROOTNODE minimizes the DFA and prints it */
1f (my_node == ROOTNODE) {
min_dfa();
if (DEBUG) {
printf(“\n\n****** PFSA after STEP 4 (DFA) ****x*x\n");
printf ("\n\t\t\t Transition Table (dfa) \n\n");
praint_dfa();
}

}
if (choice == CONVERG) {
if (my_node == ROOTNODE) ({
long node;
/* ROOTNODE global sends the min DFA to all other work_nodes */
for (node=0; node<work_nodes; node++)
if (node != ROOOTNODE)
csend (DFA_TYP, dfa, sizeof(DFA), node, NODEPID);
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}

else /* all other nodes receive the new DFA */
crecv (DFA_TYP, dfa, sizeof(DFA));
dfa_re(); /* all nodes do transformation T5 */

} /* CONVERGENCE case ends */
/* If Divergence case chosen, only ROOTNODE finds the min DFA and
also obtains the RE for this DFA */

if (choice == DIVERG) ({

if (my_node == ROOTNODE) ({

solve_eaqns();

} /* if my_node == ROOTNODE */

} /* ends DIVERGENCE case */

if (my_node == ROOTNODE) {
csend (RE_TYP, re,MAX_RE, mhost, HOSTPID) ;
/* send the final RE to the host */
}

/* free DFA space */
free((DFA *) dfa);
dfa = (DFA *) NULL;
/* now loop back to receive another task graph from the host
or the stop signal */
} /* while */
} /* end of node main */

/********************************************************************
Function Name: get_myQ( char * )

Description:
This routine forms the task queue for mynode in the form of a linked

list from the G-chart . PHI_TASKs in the schedule are ignored.

*********************************************************************/

void get_myQ(mylist)
char mylist [MAX LEVELS] ;
{
int col, task;
My _Q *cur;
HEAD = NULL;
for (col=0; col<numlevels; col++) {
if ((task=mylist([col]) == PHI_TASK) continue;
if (HEAD == NULL) ({
HEAD = (My_Q *) malloc(l*sizeof (My_Q));

cur = HEAD;
cur->task = task;
} /* if */

else ({
cur->next = (My_Q *) malloc(l*sizeof (My_Q)):

cur = cur->next;
cur->task = task;
} /* else */
} /* for */
cur->next = NULL;
/* check if this task does not have any successors, i.e. it is
last task. Then make this node as the "rootnode" */
if (tlist[cur->task].succ[0] == ‘\0’) {
rootnode = TRUE;
}
else rootnode = FALSE;
'} /* of get_myQ */

/**************************************************************************

Function Name: void free_myQ( void )

Description:
This routine releases the memory for the entire task Q of my node
**************************************************************************/

void free_myQ()
{
My_Q *gptr, *freeptr;
gptr = HEAD;
while (gptr != NULL) {
freeptr = gptr;
gptr = gptr->next;
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freeptr->next = NULL;
free(freeptr) ;

/******************************************************;***************
Function Definition: print_nfa( ) §

Description:
This routine prints the nfa in a suitable tabular form. The start
and final states are also marked appropriately.
***********************************************************************/
void print_nfa(nfa)
NFA *nfa;
{
int i,j,k,st;
printf (*\n\t\t\t\t\t Inputs \n"); .
printf("\t\t e e e T e \n") ;

printf ("\t\t 1");
for (3=0; j<MAX_COLS-1; j++)
printf ("\t%c\t", symb_set[j]);
printf ("\t\te\n"); .
printf("\t o T T ——— \n");

for (i=1;i<=nfa->numst; i++) {
printf("\t");
/* prlnt whether the current state is START FINAL or START-FINAL
state */
if (i == nfa->start) {
if (strchr(nfa->final,i) != NULL)
printf("S-F");
else
printf(* s *);
}
else if (strchr(nfa->final,i))
printf(" F ");
else printf (" ");

prantf(" | g%2d | *,i);

/* now print the transition table entries */
for (j=0;j<=MAX _COLS-1;j++) {
prlntf( {");
for (k=0; ((st=nfa- >table[1]{]][k]) t= 0); k++)
if (st != PHI) printf (*g%d,",st);
if (j < MAX_COLS-1)
printf ("}\t\t");
else
printf("}*);

} /* for j */
printf ("\n\t

} /* for i */
} /* of print_nfa */

/******x***************************************************************

Function Definition: print_dfa( )
Description:
This routine prints the dfa in a suitable tabular form. The start
and final states are also marked appropriately.
*****************************************t*****************************/
void print_dfa()
{
int i,3j,st;
printf("\n Check - DFA final : ")
for (1=0; (st=dfa->final([i]) != 0
printf (" Q%d",st);
printf("\n");
printf("\t States Inputs \n");
printf("\t = s-mmmmmmmme——e—e—— \n") ;
printf("\t 1");
for (j=0; j<MAX_COLS-1; j++)
printf(*\t%c\t | *,symb_set[j]);
printf("\n\t = ----"------------——— \n") ;
for (i=1;i<=dfa->numst; i++) {
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/* print whether the current state is START, FINAL or START-FINAL
state */
printf(*\t");
if (i == dfa->start) {
if (strchr(dfa->final,1))
printf (*S-F*);
else
printf(" s *);

else if (strchr(dfa->final,1))

printf(" F ");
else printf (" *);
printf(* | g%24 |",1);

/* now print the transition table entries */
for (j=0; j<MAX _COLS-1; j++)
if ((st=dfa->table[i][]j]) '= PHI)
printf ("\tg%2d\t |",st);
else printf ("\tphi\t 1");
printf("\n\t = ----------- \n") ;
} /* 1st for */
printf ("\n\n*");
} /* of print_dfa */

no_preds (task)
int task;
{
i if ((tlist[task].task[0]>=MIN_SYMB &&
tlist[task].task[0]<=MAX_ SYMB)
&& (tlist([task].task[2]>=MIN_SYMB &&
tlist[task].task[2]<=MAX_SYMB))
return (TRUE) ;
else return (FALSE) ;
}

MAKENFA.C

#include "node.h*
/*************************************************************************
This file (makenfa.c) contains the following NODE routines:

exec_myQ () execute my Q using Look Ahead approach
task_to_nfa() synthesizes NFA for a task
rules_nfa() apply rules for making NFA of a task

printing routines
****************************************************************************/

JEE* Declaration of external functions and variables k)
extern void mem3D(), free3D();

extern char *itos();

extern NFA *nfa; /* nfa structure */

extern int maxterms;

extern char symbset [MAX_COLS] ;

extern Task_tree tlist [MAX_ TASKS];

extern My_Q *HEAD; /* Pointer to head of task queue */

/* Declaration of global variables for this file */

BUFFER *buf_hd, /* ptr to the head of the free buffer list */
*pbufptr; /* a ptr to the free buffer list */

NFA *01d1=NULL, *o0ld2=NULL;

/******************************************************************************
Function Definition: void exec_myQ(void);

Description :
This routine synthesizes the NFA from the Schedule given in Gantt chart
form by the host program. The method in Section 3.4.1 1s followed
******************************************************************************/
void exec_myQ ()
{
My_0Q *cur, /* other pointers to task queue */
*back;
int i,j,col,
node,
my_node,
task, /* current task */
pred,
lpred, /* L and R predecessors of a task */



111

rpred; B
char succ; .
boolean Go; /* flag for Look-Ahead technique */
/* function prototypes */

void task_to_nfa(), store_in buffer(),
free bufferlist (), rm \ task(); -

/* allocate oldl and o0ld2 structures and.memory to its table */
0ldl = (NFA *) malloc(l*sizeof (NFA));

mem3D (01dl->table, maxterms, MAX COLS, maxterms),

0ld2 = (NFA *) malloc(l*sizeof (NFA));

mem3D(o0ld2->table, maxterms, MAX_COLS, maxterms),

cur = HEAD; /* HEAD is the beginning of the task list of mynode() */
while (cur != NULL). { * /* till end-of list */

tlist [cur->task].done = FALSE; /* no task done yet */

cur = cur->next; = ° )
} /* of while */
/*********************************ﬂ*********%****************

Look-ahead technique implemented by checking:
* Has the task no predecessor?
* Has the task a (L or R) predecessor'>
** Is the predecessor on same node?
**** Has the predecessor(s) completed execution?
** Js the predecessor on a different node?

. **x* Tf so, has the message been received?
*************************************************************/
my_node = mynode()’; .
cur = HEAD; back = cur;
while (HEAD != NULL) { /* not end of list */

task = cur->task; -
if (tlist[task] task[0]>BEG TASK)
lpred = (tlist([task].task[0]-BEG_TASK);
else 1lpred = 0;
if (tlist([task]. task[2]>BEG TASK)

rpred = (tlist[task]. task[2]-BEG_TASK) ;
else rpred = 0;
Go = FALSE; .
if (!lpred && !rpred) /* no predecessors - so execute */
Go = TRUE; '
else { -
if (lpred) pred = lpred; /* set pred to L or R pred */

else if (rpred) pred = rpred;
while (TRUE) { ‘

if (tlist([pred].node == my_node) { /* pred on same node */
if (tlist([pred].done) K , /* pred completed execution */
Go = TRUE; /* so task can execute */

} .
else if (iprobe(rpred)) Go = TRUE;
/*
* if message of TYPE ‘rpred’ waiting to be received
- * then task can execute

*/
if (!Go) break;
else if (!lpred || !rpred) break;
else { ) /* if both preds eéxist, then check */
Go = FALSE; /* for the other pred too */

pred = rpred; lpred 0;

Y.
} /* while */
} /* else before while */

if (Go) { /* task READY to be executed */

tlist([task].done = TRUE;

task_to_nfa(task);

/* storing or sending result for successors of the task */

for (i=0; (succ=tlist[cur->task].succ[i]) != ’\0’;i++) {

if (tlist([succ].node != my_node) {

/* if successor on another node send result to that node */
NFA_BUFTYP nfa_buf;
int 1i,3;
nfa_buf.numst
nfa_buf.start

nfa->numst;
nfa->start;



strcpy (nfa_buf.final,nfa->final);
for (i=1; i<=nfa->numst; i++)
for (j=0; j<MAX_COLS; j++)
strcpy (nfa_buf.table[i] [j],nfa->table([1][]]);
/* Synchronously send message of TYPE cur->task, from
* static buffer nfa to ’‘succ’ node */
csend(cur->task, &nfa_buf, sizeof (NFA_BUFTYP), tlist[succ].node, NODEPID) ;
Y /* if */
else { /* successor on same node - so store result in buffer */
store_in_buffer()s
bufptr->status = IN_USE;
bufptr->access++;
bufptr->task = cur->task;
} /* else */
} /* for */
rm_task (cur,back) ; /* remove the task from the task Q */
cur = back = HEAD;
/* search for next READY task from head of the task-Q */
}

else { /* Look ahead for next READY task */
1f (cur != back) /* by moving cur and back pointers */
back = cur; /* in the list */

cur = cur->next;

}

} /* of upper while */

/* free o0ldl and o0ld2 structures */

free3D(o0ldl->table, maxterms,MAX_ COLS) ;

free((NFA *) oldl);

free3D(old2->table, maxterms,MAX_COLS) ;

free((NFA *) o0ld2);

free_bufferlist(); /* free all the buffer space */
} .

/********************t*******************************************
Prototype Definition: void task_to_nfa( int)

Description:
This routine gets the NFA correpsonding to the current task’s operation
by using the routine rules_nfa(). It uses "oldl" and "old2" as the

NFA for the two operands of its operation. o0ldl and old2 could be NFA
of atomic REs or NFA of previous result.
******************************************************************/

void task_to_nfa(task)

int task;
{
int pred,
my_node;
char opl,op2, /* the two operands for the task */
op; /* infix operator for the task */
/* function prototypes */
void rules_nfa(), assign(), get_from buffer();
N my_node = mynode();
opl tlist[task].task([0];

op2 tlist[task].task[2];
op tlist([task].task([1];

if (opl>=MIN_SYMB && opl<=MAX_SYMB)
assign(oldl,opl);
if (opl>=BEG_TASK && opl<=END_TASK) {
pred = opl - BEG_TASK;
if (tlist[pred].node == my_node) /* pred on same node */
get_from buffer (pred,oldl);
/* get result from buffer into oldl */

else if (tlist[pred].node != my_node) { /* pred on different node */

NFA_BUFTYP nfa_buf;
/* Synchronous receive message of TYPE pred, into buffer */
crecv(pred, &nfa_buf, sizeof (NFA_BUFTYP));
oldl->numst = nfa_buf.numst;
oldl->start = nfa_buf.start;
strcpy (oldl->final,nfa_buf.final);
for (i=1; i<=o0ldl->numst; i++)

for (j=0; j<MAX_COLS; j++)

strcpy (oldl->table([i] [j],nfa_buf.table(i] [j]);
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if (op2>=MIN_SYMB && op2<=MAX SYMB)
assign(old2,op2);
if (op2>=BEG_TASK && op2<=END_TASK) {
pred = op2 - BEG_TASK;
if (tlist([pred].node == my_node) /* pred on same node */

get_from buffer (pred,old2);
/* get result from corresponding buffer into old2 */

else if (tlist[pred].node != my_node) { /* pred on different node */
NFA_BUFTYP nfa_buf;

/* Synchronous receive message of TYPE pred, into buffer */
crecv(pred, &nfa_buf, sizeof (NFA_BUFTYP));
o0ld2->numst = nfa_buf.numst;
old2->start = nfa_buf.start;
strepy (01d2->final,nfa_buf.final);
for (i=1; i<=o0ld2->numst; i++)
for (j=0; j<MAX_COLS; j++)
strepy (old2->table[i] [j],nfa_buf.table[i]l [j]);
}
}
rules_nfa(op);
/* make the nfa from oldl and o0ld2 depending on ‘op’ */

}

/*****************************************************************************
Function Name: rm_task.

Prototype Definition: rm_task(My_Q *, My _Q *, My _Q *);

Description:
Removes the currently executed task (pointed to by curr) from mynode’s
task queue, and adjusts the curr and back pointers appropriately.
******************************************************************************/
void rm_task(curr,back)
My_Q *curr, /* pointers to mynode’s task queue */
*back;
{
My_Q *o0ld=NULL;
old = curr; /* temp pointer to the node to be deleted */

if (curr == back) {

/* task to be deleted is the first node in the task list */
HEAD = HEAD->next;

}

else { /* task to be deleted in the middle of the list */
back -> next = curr;

}

old->next = NULL;
free(old);
}

/*************************************************************************
Function Name: get_from_buffer()
Function Prototype: void gt_from buffer (BUFFER *, int, NFA *, int)

p

Description:
Get the corresponding buffer from the buffer list which corresponds
to the ‘pred’ task. Then copy all the information from this buffer’s nfa
to the ‘old’ nfa passed as parameter
*************************************************************************/

void get_from buffer(pred,old)

int pred;
NFA *old;
{
int i,J;

bufptr = buf_hd;
/* Get the right buffer - which has the result of pred */
while (bufptr->task != pred)
bufptr = bufptr->next;
/* Copy nfa from that buffer to old */
/* copying the state information of the nfa */
old->numst = bufptr->bufnfa->numst;
old->start = bufptr->bufnfa->start;
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strcpy (o0ld->final, bufptr->bufnfa->final);
/* copying the transition table */
for (1=1; i<=bufptr-s>bufnfa->numst; i++)
for (j=0; j<MAX COLS; j++) {
strcpy (old->table([i] [j],bufptr->bufnfa->table(1]([]j1);
} /* for j */ -
/* Since one task has retrived info from this buffer, decrement
its # of accesses */
bufptr->access--; .
if (bufptr->access == 0) { /* if # access becomes 0 */
bufptr->status = FREE; /* mark the buffer FREE and also
free its nfa */
free3D(bufptr->bufnfa->table,maxterms, MAX_COLS) ;
free((NFA *) bufptr->bufnfa);

}

/************************************************************************
Function Name: get_free_buffer()

Prototype Definition: BUFFER *get_free_buffer (BUFFER *, int)
Description:
This function searches the buffer list for a free buffer. If it finds
an existing buffer which is FREE, it inatializes this buffer’s nfa.
If no FREE buffer available in the list, then it creates one at the
beginining or at the end of the list and initializes it appropriately.

The free buffer is then returned.
**************************************************************************/

void get_free buffer()
{

/* Function prototypes */
BUFFER *create_buffer();

bufptr = buf_hd; /* bufptr points to the head of the buffer list */

if (buf_hd == NULL) { /* buffer list is empty */
buf_hd=create_buffer(); /* Create buffer at beginning */

bufptr = buf_hd;
}

else { /* Buffer list is not empty now */
while (bufptr != NULL) { ./* find a FREE buffer */
if (bufptr->status == IN_USE)
bufptr = bufptr-s>next;
else break;
}

if (bufptr == NULL) { /* No FREE buffer available in list */

bufptr = buf_hd;
while (bufptr->next != NULL)
bufptr = bufptr->next;
bufptr->next=create_buffer(); /* Create buffer at the end*/
bufptr = bufptr->next;

}
else { /* a FREE buffer available, so allocate memory
and initialize its nfa */
bufptr->bufnfa = (NFA *) malloc(sizeof (NFA));
mem3D (bufptr->bufnfa->table, maxterms,MAX COLS,maxterms) ;

}
} /* else */
}

/**********************************************************************
Function Name: create_buffer ()

Prototype Definition: BUFFER *create_buffer( int )

Description:
This function creates a structure of type BUFFER and 1nitializes the
structure members, including allocating and initializing the buffer’s
nfa. The created buffer is returned.
*************************************************************************/

BUFFER *create_buffer()
{
BUFFER *new_buffer;

new_buffer = (BUFFER *) malloc(l*sizeof (BUFFER));
new_buffer->next = (BUFFER *) NULL; new_buffer->status = FREE;
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set status to FREE buffer */
new_buffer->access = 0; /* set # of accesses to 0 */
new_buffer->bufnfa = (NFA *) malloc(sizeof (NFA));
/* Allocate small amount of memory and initialize the
transition table of the buffer nfa */
mem3D (new_ buffer >spufnfa->table, maxterms MAX_COLS,maxterms) ;

return (new_ buffer),

}

/***********************************************************************
Function Name : free_bufferlist ()

Function Prototype : void free bufferlisthUFFER *)

Description:
Removes the complete buffer list occupied by'all the buffers used
in this file. Note that the ‘bufnfa’ members of each of the buffers .
have been assumed to be freed as and when a buffer becomes FREE during
execution of the program. This routine only frees all the buffers and
removes the links between them.
**************t***********************************************************/
void free_bufferlist()
{ : ' 5
BUFFER *bufptr = buf_hd, *freeptr; .

while (bufptr != NULL) ({
freeptr = bufptr;
bufptr = bufptr->next;
freeptr->next = NULL;
free( (BUFFER *) . freeptr);

} /*while */

buf_hd = NULL;

}

/****************************;*******************************************
Function Name: store_in_buffer()

Prototype Definition: void; store_ in buffer(NFA *, NFA *)

Description:
This routine copies the nfa structure from the ‘from _nfa’ structure to
the ’‘to_nfa’ structure, by copying all the members of the structure
including the transition table. It is assumed that the ‘to_nfa’ member
has been allocated only a small, amouht of memory when passed as a
parameter. So this routine checks if additionally memory is required and
allocates the sufficient memory whenever néeded.
**************************************************************************/
void store_in_buffer()
{
int i,3j,sz1;

get_free_buffer();

/* copying the state information of the nfa */
bufptr->bufnfa->numst = nfa->numst;
bufptr->bufnfa->start = nfa->start;

strcpy (bufptr->bufnfa- >f1na1 nfa- >fina1),

/* copying the trans1tlon table */
for (i=1; i<=nfa->numst; i++)
for (j=0; j<MAX_COLS; 'j++) {
strcpy(bufptr >bufnfa >table[1][]] nfa->table(i]l []j]):
} /* for j */ _
) ‘ <
/*************************************************************************

Function Definition: ‘void assign(NFA *; STTYPE).

Description:
Gets the NFA for an atomic RE, i.e. either a "e" or "phi" or "a*.
Note, the states in the NFA start from gl instead of q0.

***************************************************************************/

void assign(fa, opl)
NFA *fa;
STTYPE opl;
{
STTYPE i,3;
if (opl == EPSILON) { /* NFA for EPSILON */
fa->numst = 1;
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fa->start = 1; /* states always start from gl */
strcpy (fa->final,itos (1)) ;
/* start and only state in the NFA moves to the PHI state on
any input symbol */
for (j=0; j<MAX_COLS-1; j++)
strcpy (fa->table[1] [j],itos (PHI));
/* Except on input "e", when it moves to the start state itself */
strcpy (fa->table[1] [MAX COLS-1],itos(1));
}

else { /* NFA for any symbol other than EPSILON */
fa->numst = 2; '
fa->start = 1;
strcpy (fa->final, 1tos(2));
for (j=0; j<MAX _COLS; j++) {
if (j==opl)
strcpy (fa->table[1] [j],itos(2));
else
strcpy (fa->table[1] [j],itos (PHI));
strcpy (fa->table(2] [j],itos (PHI));
} /* for */

} /* of else */
} /* end of assign */

/*****'k**************************************************************
Function Definition: void rules_nfa (char) .

Description:
Applies the rules of "concatenation", "union", or "closure" on the
two automata "oldl" and "old2" to get the new nfa. The method is
1llustrated in section 3.4.1 of the thesis document.
***'k**********************************'k*****************************/
void rules_nfa(op) '
STTYPE op; /* operation between machines M1 and m2 */
{
int i=0,j=0,k=0,p=0,t; /* local index variables */
int shift; /* shift position of states */

STTYPE *offset();

if (op == CONCAT) { /* CONCAT of M1 and M2 */
nfa->start = oldl->start; /* start state of M’ is that of M1 */
nfa->numst = oldl->numst + old2->numst;
/* number of states in M’ = M1 + M2 states */

/* M1’s transition table is added to M’ without any change;
e-moves from the final state of M1 is added later */
for (1=1; (i<=o0ldl->numst); i++)
for (j=0;3j<=MAX_COLS-1;3j++) {
strcpy (nfa->table[i] [j],0ldl->table[i][]]);
}

p =1i;
shift = oldl->numst;
/* M2's transition table is added to M’ without any change;
e-moves from the final state of M1l is added later */
for (i=1; (i <= o0ld2->numst); i++,p++)
for (j=0;j<=MAX_COLS-1;j++) {
strcpy (nfa->table[p] [j],offset (old2->table[i] [j],sh1ift));
}

/* set the final in the new nfa */
strcpy (nfa->final,itos(--p));

/* Adding e-moves from the final states of Ml to the start
state of M2 in the new machine M’ */
for (i=0; (t=o0ldl->final[i]) != ’\0’; i++)
strcat (nfa->table[t] [MAX_COLS-1],itos(old2->start+shift));
} /* end of CONCAT operation */

else if (op == UNION) { /* begin of UNION operation */
/* set the number of states in M’ */
nfa->numst = oldl->numst + old2->numst + 2;
nfa->start = 1; /* set the start state in M’ */
for (j=0;3j<MAX_COLS; j++) /* and its transitions to PHI */
strcpy (nfa->table[1][j],1tos(PHI));
p =2; /* e-move from gl of M’ to start state of M1 */
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strepy (nfa->table[1] [MAX_COLS-1],itos(p));
/* Add the transition table of M1 to M’ without any change;
e-moves from the final state of M1 is added later */
for (i=1; (i<=o0ldl->numst); i++,p++)
for (j=0;3j<=MAX_COLS-1;j++) {
strcpy(nfa >table[p] [j], offset (0ldl- >table[1][3] 1));
}

shift = p-1;
/* Addlng the e-move from gl of M’ to start state of M2 */
strecat (nfa->table[1] [MAX_COLS- 1] 1tos(p)),

/* Add the transition table of MI to M’ without any change;
e-moves from the final state-of M1 is added later */
for (i=1; (i<=0ld2->numst); i++,p++)
for (j=0;3j<=MAX_COLS-1;j++) {
strcpy(nfa >table[pI[j] offset(old2 >table[1][j] shift));
}

/* Now ’‘p’ points to the last state of M’, which we
set as the final state of M’ */
strcpy (nfa->final,itos(p)); ' '
for (3=0;Jj<MAX_COLS; j++) /* set its tran51t10ns to PHI *x/
strcpy(nfa ‘>table(p] [j],itos(PHI));

/* Now we add all the e-moves from.all final states of
M1 to the above final state of M */ :
for (i=0; (t=oldl->final[i]) != “\0"; i++)
strcat(nfa->table[t+1][MAX_COLS-I],itos(p));

/* Now we add all the e-moves from all final states of
M2 to the above final. state of M’ . */
for (i=0; (t=o0ld2->final[i]) != ’\0’; i++)
strcat (nfa- >table[t+sh1ft][MAX CoLs-11, 1tos(p)),
} /* end of UNION operation */

else if (op == CLOSURE) { /* ‘begin of CLOSURE operation */

/* Set the number of states in M’-' */
nfa->numst = oldl->numst + 2;

/* Set the start state in M’ */

nfa->start = 1; -

for (j=0;3j<MAX_COLS; j++) /[* set its transitions to PHI */
strcpy (nfa->table[1][j],itos(PHI));

/* e-move from g0 of M’ to.start state of M1 */
strcpy (nfa->table[1] [MAX_COLS-1], itos (oldl->start+1));

/* Adding transition table of Ml to M’ without any change;
e-moves from the final state of M1 1s added later */
_2.
for (i=1; (i<=o0ldl- >numst), 1++,p++)
for (j=0;j<=MAX_COLS-1;j++). {
strcpy(nfa >table[p][J] offset (oldl->table[i] [j1,1)):
}

/* Now index ‘p’ points to last state of M’, which we
mark as a final'state .*/ ’
strcpy (nfa->final,itos(p)); - . 5
for (j=0;j<MAX_COLS; j++) /* set its transitions to PHI */
strcpy(nfa—>table[p][3] itos(PHI)); ,

/* adding e-move from start to final state of M’ */
strcat (nfa- >table[1][MAX COLS =1],itos (p));

/* adding all the e—moves from all final states of
Ml to the final state of M’ indicated by index ‘p’ */
for (i=0; (t=oldl->final[il) != "\0’; i++)
strcat(nfa >table[t+1][MAX COLS-1],itos(p));

/* adding all the e-moves from: all ‘final states of
M1 to the start state of M1 */
for (i=0; (t=o0ldl->final[i]) != ’\0’; i++)
strcat (nfa->table[t+1] [MAX_COLS-1],itos(2));
} /* end of CLOSURE operation */

/* end of rules_nfa */
/************************************************************************
Function Name : offset() . ’
Prototype Definition: char *offset(char *, int)

Description:
This routine takes a string, adds an offset value to each character



of the string, and returns the new string.
*********************************************************************t*****/
STTYPE *offset (oldstr,val)
STTYPE *oldstr;
char val;
{
int i;
STTYPE newstr[MAX_RE];
strcpy (newstr,oldstr);
for (i=0; oldstr([i]!=0; i++)
if (oldstr[i] != PHI) ‘
newstr[1] += val;
return(newstr) ;

}
ECL.C

#include “node.h*
/***********************************************************************
This file (ecl_p.c) contains the following NODE routines:

rm_emoves Removes the e-moves from the NFA
get_ecl Obtains the e-closure for every NFA state
print_ecl Prints the e-closure of every NFA state

************************************************************************/

/* All external declarations of functions and variables */

extern char *itos();

extern void rm_repeat ()
extern NFA *nfa;

extern int work_nodes,maxterms;

/* Declaration of local variables to the file */
static long

my_node,

basic_states, /* basic number of states for each node */
extra_states, /* additional number of states */
my_states, /* total number of states for my node */

my_beg,my_end, /* range of states for my node */

xlens [MAX_PROCS];
/*************************************************************************
Function Definition: rm_emoves( void )

Description:
This routine removes the e-moves in the NFA by following the method
outlined in transformation T2 of Section 3.4.2
***************************************************************************/

void rm_emoves{)

{
boolean both = FALSE; /* flag for to tell if g0 belongs to F */
int pos,
i,j.k,p,tl; /* temporary index vars */
STTYPE *tot_ecl[MAX NFA], /* array for e_closure of all states */

*tot_fn{MAX NFA] [MAX_COLS],
/* total transition table of the new NFA */
*my_fn[MAX_NFA] [MAX_COLS],
/* transition table for my states only */

temp [MAX NFA]; /* temporary string variable */
extern void menm3D(), free3D();
void get_ecl(), print_ecl();

/* calculating parameters for my node operation */
my_node = mynode();
basic_states = nfa->numst/work_nodes;
extra_states = nfa->numst%work_nodes;
my_states = basic_states+extra_states;
if (my_node < extra_states) {
my_states = basic_states + 1;
my_beg = my_node*my_states+1;

else {

my_states = basic_states;

my_beg = (my_node*my_states) + extra_states+l;
}

my_end = my_beg + my_states-1;
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rm_repeat (nfa->final);
/* allocate memory only to the required number of row pointers
in tot_ecl and assign to null */

for (i=0; i<=maxterms; i++) {

if ((tot_ecl[i] = (STTYPE *)

malloc (maxterms*sizeof (STTYPE))) == NULL)
exit(1);
strcpy (tot_ecl[i],*");

/* Obtain the e_closure of all states and print it */

get_ecl (tot_ecl); /* all nodes execute this */
if (DEBUG && mynode() == ROOTNODE)
print_ecl (tot_ecl,nfa->numst) ; /* only one node prints */

/* 1f e_closure(ql) contains a state of F, i.e. the set of final
states, then F’ = F U {g0} */
for (i=0,both=FALSE; !both && ((tl=nfa->final([i])!=0); i++)
if (strchr(tot_ecl[1],tl))
both = TRUE;

/* Allocate memory dynamically to the my_fn and tot_fn arrays
which act as the temporary NFA after removing e-moves */

mem3D (my_fn, maxterms,MAX_COLS,maxterms) ;

mem3D (tot_fn,maxterms,MAX_ COLS, maxterms) ;

/* This part forms the transfer function of the new NFA.
Algorithm in Transformation T2 of Section 3.4.2 of the
thesis report followed. But parallel implementation done */

for (i=my_beg; i<=my_end; 1++) ({

for (j=0; j<MAX_COLS-1; j++) {
strcpy (temp, "") ;
for (p=0; (pos=tot_ecl[i][p]) != 0; p++)
if (pos != PHI) {
strcat (temp,nfa->table[pos] [j]);
rm_repeat (temp) ;

}
strepy (my_£fn(i] (31,"");
for (p=0; (pos=temp[pl) != 0; p++)
if (pos != PHI) { .
strcat (my_fn(i] [j],tot_ecl[pos]);
rm_repeat (my_£fn[i] [j]);

}
} /* for Jj loop */
} /* for i loop */

if (my_node != 0) {
for (i=my_beg; i<=my_end; i++)
for (j=0; j<MAX _COLS-1; j++)
strepy (my_fn[i] [j],my_fn(i+my_begl [J]1);
}

xlens[0] = (my_states+1)*MAX COLS*maxterms*sizeof (STTYPE);
for (i=1; i<work_nodes; i++)
xlens[1] = my_states*MAX COLS*maxterms*sizeof (STTYPE) ;
/* get length of contribution of each node into xlens */
gcolx(my_fn,xlens, tot_£fn);
/* collect tot_fn using "gcolx" */

/* Assign the new transition matrix to the structure ‘nfa’
Note to blank the e-move column in the newly formed ‘nfa’ */
for (i=1; i<=nfa->numst; i++) ({
for (k=0;k<MAX_ COLS-1;k++)
strcpy (nfa->table[i] [k],tot_£fn([i] [k]);
strcpy (nfa->table[i] [MAX_COLS-1],"");

/* Check if F’ = F U {g0} or not */
if (both)
strcat (nfa->final,itos(nfa->start));
/* free memory for all local dynamic structures */
free3D(my_fn,maxterms,MAX COLS) ;
free3D(tot_fn,maxterms, MAX_ COLS) ;
for (i=0; i<=maxterms; i++)
free(tot_ecl[i]);
}/*****'k***********'k********************************************************

Function Definition: void get_ecl (STTYPE ** )
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Description:
This part forms the my_ecl table, whcih consists of e_closure for my
states. Then, my_ecl from all nodes is collected to give the e_closure
of all states in tot_ecl, by using the *"gcolx" global operation.
E_closure of a state g0 denoted by e_closure(q0) is defined as the set of
all the states which can be reached from state g0 with one or more arcs
labeled with *e*®.

*************'k**************************'k**********************************/

void get_ecl(tot_ecl)

STTYPE *tot_ecl[MAX NFA];

{

boolean done;

STTYPE *my_ecl[MAX NFA], . /* e_closure of my states only */
temp [MAX_NFA], :
i,k,st,pos,tl;

/* allocating memory to my_ecl */
for (i=0; i<=maxterms; i++) {
1f ((my_ecl[i] = (STTYPE *)
malloc (maxterms*sizeof (STTYPE))) == NULL)
strcpy (my_ecl([i],*"); ‘

for (st=my_beg; st<=my_end; st++) ({

strcpy (temp, " ") ;

done = FALSE;

pos = st;

strcpy (my_ecl(st],itos(st));

while (!done) ({
for (i=0; (tl=nfa->table{pos][MAX COLS-1][i]) != 0; i++) {
if (tl1 != pos && tl != PHI && !strchr(my_ecl[st],tl)) {
strcat (my_ecl([st],itos(t1));
strcat (temp, 1tos(tl));
/* storing future states 1in a temp array */

}
} /* for */
if ((pos=templk++]) == 0)
done = TRUE;
} /* while */
} /* outer for */

if (my_node != 0) {’
for (i=0; i<my_states; i++)
strcpy (my_ecl[i],my_ecl [i+my_beg]) ;
}

xlens[0] = (my_states+1l)*maxterms*sizeof (STTYPE);
for (i=1; i<work_nodes; 1++)
xlens[i] = my_states*maxterms*sizeof (STTYPE);
/* get length of contribution of each node into xlens */
gcolx (my_ecl,xlens, tot_ecl);
/* collect vector using "gcolx* */

/* deallocate memory for my_ecl */

for (1=0; i<=maxterms; i++) {
free(my_ecl[i]);

}

/***************************************************************************
Function Definition: void print_ecl( char **, int);

Description:

This function prints the E-cl table which contains the e-closure of each
state of the nfa with ‘e-moves
***************************************************************************/
void print_ecl (tot_ecl, num)
STTYPE *tot_ecl [MAX NFA];
int num;
{
int 1i,3j,t;
for (i=1; i<=num; i++) {
printf (*“\nE_CLOSURE OF g%d : {",1i);
for (j=0; (t=tot_ecl[il(j]) !'= 0; 3J++)
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printf("qg%¥d *,t); printf (" }\n");
} /* for i */
}
NFA_DFA.C
#include "node.h"
/***********************************************************************
This file (nfa_dfa.c) contains the following NODE routines:

nfa_to_dfa() Converts an NFA to a DFA
set_dfa_final() Sets the final states in the DFA

exists() Checks 1f a new DFA state is encountered

Some printing routines
**********************************************************t*************/

/* Declaration of all external functions and variables */
extern char *itos();

extern void rm_reeat () ;

extern NFA *nfa;

extern DFA *dfa;

extern int maxterms;

/* Declaration of All global variables */
unsigned char *nfa_st [MAX NFA];

/***********************************************************************
Function Definition: void nfa_to_dfa( void )

Description:
This routine converts the given NFA to a DFA by following the
transformation T3 in Section 3.4.3 of the thesis document. The
structure "pairs* containing the new DFA state and the corresponding
set of NFA states is used.
************************************************************************/
void nfa_to_dfa()

{
STTYPE strl[MAX NFA], str2[MAX NFA];

int index1=0, index2=0, /* indexes into pairs */
index=0,
i,j,k,st,
inp; /* input symbol */

/* function prototypes */

void set_dfa_final(), print_pairs{();

int exists();

mem2D (nfa_st,MAX NFA,maxterms) ;
strcpy (nfa_st [indexl++],itos(nfa->start));

rm_repeat (nfa->final);
while (indexl != index2) {
for (inp=0; inp<=MAX COLS-2; inp++) ({
strepy(str2,"");

for (i=0; {st=nfa_st{index2][i]) != 0; i++) {
strepy (strl,nfa->table(st] [inp]);
if (i==0) {
strcpy(str2,strl);
continue;

}
for (j=0; strl[j]!=0; Jj++) {
if (stril[j] == PHI) continue;
if (!strchr(str2,strl[jl))
strcat (str2,itos{strl(3]));
} /* for "3" loop */
} /* for "i* loop */

if (strlen(str2)==0) {
dfa->table[index2+1] [inp] = PHI;
continue;

if (index=exists(str2,indexl))
/* existing set of NFA states */
dfa->table[index2+1] [inp] = index+1;
else { /* a new set of NFA states => new DFA state */
dfa->table[index2+1] [inp] = indexl+1;
strepy (nfa_st [index1++],str2); } /* else */
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} /* for *inp" loop */

index2++;
} /* while */
dfa->start 1;

dfa->numst = index2;
strepy (dfa->final, "");

. 1f (DEBUG && mynode() == ROOTNODE)
print_pairs(index2) ;

/* find the final states of DFA from the ‘nfa_st’ structure */
set_dfa_final (index2);

} /* end nfa_to_dfa */

/*************************************************************************
Function Definition: int exasts( char *, int )

Description:
This routine checks for every set of NFA states, if this set corresponds
to a new DFA state and returns the new DFA .state.
*************************************************************************/
int exists(set, last)
unsigned char set(];

int last;
{
int i,7;
for (1=0; i<=last; i++) {
if (strcmp(nfa_st[i],set) == 0)

return(i);

return(0);

/*************************************************************************
Function Definition: void set_dfa_final( char *)

Description:
Given a set of NFA states which corresponds to a DFA state, this routine
determines if the DFA state 1s a final state or not, provided one of the
NFA states in the set 1s a final state.

**************************************************************************/

void set_dfa_final (last)

int last;
{
int i,j,st;
for (i=0; (st=nfa->final([i]) != 0; i++)

for (j=0; j<last; J++) { .
if (strchr(nfa_st[3j],st))
strcat (dfa->final,itos(j+1));

}
} /* end set_dfa_final */

/***********************************************************************

Function Definition: void print_pairs( int )

Description:
This routine prints the set of NFA states and the corresponding DFA

state obtained in the new DFA.
************************************************************************/
void prant_pairs(last)
int last;
{
int 1i,3j,st;

printf ("\n\n\n\t*** STEP 3 - Correspondence between DFA and NFA");
printf(* States ***\n\n") ;
printf (" DFA State \tNFA State set \n");
printf("---------"""-"— e \n");
for (i=0; i<last; i++) {
printf (*\tQ%24 <==> \t{",1i+1);
for (j=0; (st=nfa_st[i][j]) != 0; j++) {
printf (" g%2d4 *,st);
if ((j%20)==0) printf("\n");



}

prantf("}\n");

}
printf(*---------------- \n*);

MIN_DFA.C

#include "node.h"
/****************t****************************************************
This file (min_dfa.c) contains the following NODE routines:

get_newst ()

To get the new DFA state

mark_others () To mark pairs of states in the pending list
put_pend() To put in the pending list of the current pair
append () To put in a queue for recursively marking a

pending list

Some printing routines

**********************************************************************/

/* type for recursive pairs to be marked */

*next;

/* Declartion of all external functions and variables */

typedef struct rg {
SHORT p.d;
struct rqg
} r Q9;
extern void rm_repeat () ;
extern char *itos();
extern DFA *dfa;

/* Declaration of all variables global to this file */
STTYPE pend[100]({70],

STTYPE

r.Q

newfinal [MAX_DFA];

*marks [MAX_DFA],
*new_fn [MAX_DFA],
*new_st [MAX_DFA};

*recursive_Q;

/* final states of the new DFA’*/

/* marking table */

/* tr table for the minimized DFA */
/* states in the minimized DFA */

/* head of recursive list of pairs */

/****************************************************************************
MININIZATION ALGORITHM
Function Definition: void min_dfa( void )

Description:
This function takes a dfa and removes the inaccessible and irredundant
states by following the minimization algorithm of transformation T4

outlined in Section 3.4.4.

same

‘dfa’ structure.

The minimized dfa is returned back in the

***************************************************************************/
void min_dfa()

{

boolean marked = FALSE;

SHORT i,j,m,n,
p.d,
r,s,
al
num_eq,
num_st=0,
st,
newstart;

/* function prototypes */

/*
/*
/*
/*
/*
/*

/*

local index variables */

states p and q in the algorithm */

r = delta(p,input) and s
inut symbol */

# of equivalent states */
# of states in DFA */

start of the new DFA */

delta(q, input) */

void put_pend(), mark_others(), print_marks(),print_pend();

STTYPE get_newst();
num_st = ++dfa->numst;

/* allocate only required memory dynamically to all arrays */

for (i=0; i<= num_st+5; i++)

if ((new_st{i]=(STTYPE *)
malloc( (num_st+5)*sizeof (STTYPE) ) )==NULL)

exit(1);
strcpy (new_st [1],"");
if ((marks[i]=(STTYPE *)

{

malloc( (num_st+5) *sizeof (STTYPE) ) )==NULL)

exit(1);
strepy (marks[i]l,"");

123
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if ((new_fn[i]=(STTYPE *)
malloc ( (num_. st+5)*sizeof(STTYPE))) =NULL)
exit (1) ;
strcpy (new_£fn[i],"");
} /* for i */
/* Make the last state as PHI-STATE and adjust the transitions
accordingly */
for (j=0; j<=MAX_COLS-2; Jj++)
dfa->table[num _st][j] = num_st;

for (i=1;i<num_st;i++)
for (j=0;Jj<=MAX_COLS-2;j++)
if (dfa >table[i] [j] == PHI)
dfa->table[i] [j] = num_st;

for (i=0; i<100; i++)
strepy (pend[i], "");
for (i=0; i<=num_st; i++)
new_st[i][0] = O;
for (i=0;i<=num_st;i++) - :
for (j=0;j<=num_st;j++) /* 1n1t1allze marks to UNMARKED */
marks[i] [j] = UNMARKED; .

/* STEP 1: Mark (p,q for all'p in F and q in (Q-F) */

for (g=1; g<=num_st; g++) {
if (!strchr(dfa->final,q)) { /* g in (Q-F) */
for (i=0; (p=dfa->final[i]) != 0; i++) ({
/* p in (F) */

if (p<q) marks([q] [p] = MARKED;
else marks([p] [gq] = MARKED;
} /* for i loop */ '
} /* if */

} /* for q */

for (p=2; p<=num_st; p++) {
for (g=1; a<p; g++) {
if (marks[p][g]. == MARKED) continue;

marked = FALSE;

for (a=0; a<=MAX COLS-2; a++) { /* for all input symbols */
r = dfa->table[p][a]; /* r = d(p,a) */
s = dfa->table(qg][al; /* s = d(qg,a) */
if (r==s) continue;
if (r<s) { )
SHORT temp = r;
r = S; /* swap r and s */
s = temp; .
}
if (marks[rl([s]) { /* if (r,s) entry marked */

marks [p] [gq] = MARKED; /* mark (p,q) entry also */
marked = TRUE;

mark_others(p,q); l /* mark all unmarked pairs on -the
. ' list for (p,q) */.
break; /* go for next (p,q) palr */

}
} /* for a loop */

if (!marked) { /* no pair (d(p,a),d(q,a)) is marked */
for (a=0; a<=MAX_COLS-2; a++) { /* for all input symbols */
r = dfa->table(p][al; /* r = d(p,a) */
s = dfa->table(q][a]; /* s = d(g,a) */
if (r==s) continue;
if (r<s) {
SHORT temp = r;
= s; /* swap r and s */
s = temp;

}
put_pend(p,dq,r,s);
/* put (p,q) pair on the list for (r,s) */
} /* for a loop */
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} /* of if */
} /* for g loop */
} /* for p loop */

if (DEBUG && my_node == ROOTNODE)
print_marks (num_st); .

num_eq = 0;
for (i=0,p=2; p<=num_st; p++)
for (g=1; g<p; g++) C o
if (marks([pl{q] != MARKED): :
num_eq++; Y
if (num_eq == 0) return;.

for (p=2; p<=num_st; p++) {
for (g=1; a<p; g++) {
if (marks(pl[g] != MARKED) { -
boolean found = FALSE;
for (i=1; new_st[i][0] != 0; i++) {
if (strchr(new_st([i],p) || strchr(new_st([i],q)) {
“strcat (new_st[i],itos(p)); )
strcat (new_st[i],itos(q));
rm_repeat (new_st[i]);
found = TRUE; '
break;
} /* if */
} /* for i loop */
if (!found)' { ' ,
strcat (new_st[i],itos (p)):;
strcat (new_st[i],itos(q));

}
} /* if !MARKED */
} /* for g loop */
} /* for p loop */

for (p=0;p<=num_st;p++) {
boolean found = FALSE;
for (i=1; new_st[i][0] != 0; i++) {
if (strchr(new_st[il],p)) (
found = TRUE;

break;
}
} /* for i loop */
if (!found)

strcat(new_st[i],ito$1p5);
} /* for p loop */

dfa->numst = --i;

for (i=1;new_st[i][0]!=0;i++)
for(a=0; a<=MAX_COLS-2; a++) {
st = dfa->table[new_st[i][0]][a];
new_fn[il[a] = get_newst(st);
}

strcpy (newfinal, *");
rm_repeat (dfa->final);
for(i=1; new_st[i][0] != 0; i++) {
for(j=0; (st=new_st (1] [j]) !=0;j++) {
if (st == dfa->start)
newstart = i;
if (strchr(dfa->final,st))
strcat (newfinal,itos(i));
}
}
for (i=1;new_st[i][0] !=0;i++)
for (j=0; j<=MAX_COLS-2;j++) :
‘dfa->tdble[i] [j] = new_fn(il[]j];
dfa->numst = --i;
strcpy (dfa->final,newfinal) ;
dfa->start = newstart;

/* free memory for all dynamic arrays */
for (i=0; i<=num_st+5; i++) {
free(marks([i]);
free(new_st[i]);
free(new_£fn[i]);
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} /* of min_dfa */

/*****************************************************?********************
Function Name: get_newst () ’
Prototype Definition:. STTYPE get_newst ( SHORT ),

Descrlptlon ‘

If the given state oldst is in the set of states (new_st) of the new DFA,

this function returns the corresponding new state.
***************************************************************************/
STTYPE get_newst (oldst) :
SHORT oldst;
{

SHORT p,q;

for (p=1;new st[p][O] != 0;p++)
if (strchr(new st [p], oldst))
return((STTYPE) p);

}

void put_pend(p,q,x,s)
SHORT p,q;

STTYPE put_str(3],
srch_str(3],
strl[MAX_DFA];

SHORT i,3;

put_str(0] = p; put_strl[l] q; put_str([2] = 0;
srch_str[0] = r; srch str[l] = s; srch_str[2] = 0;

for (i=0; pend[i][0] != 0; i++) {
strecpy (strl,pend[i]);
strl([2] = O; ’
if (strcmp(srch_str,strl) == 0) { *
strcat (pend[i],put_str);
return;
}

} /* for i loop */i

strecat(pend[i], srch_str);
strcat (pend[i],put_str); "’
}

/**********************************************t****************************

Function Name: void mark_others (SHORT, SHORT)

Description:
When the pair (p,q) gets marked then recur51vely mark all pairs on the
list for (p,q) and also on the lists of other pairs that gets marked in
this list.
***************************************************************************/
void mark_others(p,q) -
SHORT p,dq;
{ ,
SHORT i, 3,
mark_p,mark_g;
STTYPE srch_str(3],
str1[100];
r_Q *freeptr;

recursive_Q = NULL;
append(p.q) ;
while (recursive_Q != NULL) {
p = recursive_Q->p;
g = recursive_Q->q; -
srch_str[0] = p; srch_str{l] = q; srch_str[2] = 0;
for (i=0; pend[i][0] != 0; i++) {
strcpy (strl,pend[i]);
strl([2] = 0;
if (strcmp(srch_str,strl) == 0) {
for (j=2; pend[il[3] != 0; J += 2) {
mark_p = pend[i][]];
mark_g = pend[i] [j+1];
marks [mark_p] [mark_g] = MARKED;
append (mark_p,mark_d) ; } /* for j loop */
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pend[i] [2] = O;
Y /* 1if */
} /* for i loop */
freeptr = recursive_Q;
recursive_Q = recursive_Q->next;
freeptr->next = NULL;
free(freeptr);
} /* while */
} /* end of mark_others */

append(p, q) .
SHORT p.,q;
{

r Q *ptr;

if (recursive_Q == NULL)
recursive_Q = (r_Q *) malloc(l*sizeof(r_Q));
ptr = recursive_Q;

else { '
/* if (p,q) already exists in the queue then return */
ptr = recursive_Q; '
while (ptr != NULL) {
if  (ptr->p == p && ptr->q ==q)
return;
ptr = ptr->next;

/* now (p,q) does not exist - so append it at the end */

ptr = recursive_Q;

while (ptr->next != NULL)

ptr = ptr->next;

ptr->next = (r_Q *) malloc(l*sizeof(r_Q));

ptr = ptr->next; '
}
ptr->p
ptr->gq
ptr->next

nn
g

}

/***********************************************************************

Function Definition: void print_marks( int )

Description:
This routine prints the Marking Table of transformation T5. Each

marked pair is represented by an *X" and an unmarked pair by an "U".
***********************************************************************/
void print_marks (num)

SHORT num;
{
SHORT i,3;
printf (*\n\t Snap shot of Marking table \n\n");
for (i=2; i<=num; i++) {
for (j=1; 3<i; j++) {
printf(" (%d4,%d)-",1i,3); h
if (marks[i][j])
printf (*X*);
else printf (*U");

érintf(“\n');
y /* eng of print_marks */
DFA_RE.C
#include *"node.h"

/*********************************************************************
This file (dfa_re.c) contains the following NODE routines:
dfa_re() Driver routine to obtain the RE for the DFA
rm_redun () Removing redundancies in the RE

Miscellaneous linked list routines
*********************************************************************/

extern void rm_redun(), rm_repeat();
extern char *itos();
extern DFA *dfa;
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extern int work_nodés;
extern char re[MAX_RE],
symbset [MAX_COLS] ;

typedef struct gl {
SHORT row,col;
char re[MAX_RE];
struct gl *next;
} Gtype;

Gtype *G1=NULL; /* G_1 array for sub-graph Gl */

/**************************************************************************
Function Definition: void dfa_re( void )

Description:
This function takes a dfa and constructs the regular expression in ‘re’
corresponding to the given dfa, by following the algorithm outlined in
transfromation T5 of Section 3.4.5. It constructs several sub-graphs from
the transition graph of the given DFA, determines the RE for each
sub-graph, and finally obtains the RE for the DFA by the union of the
REs of all the sub-graphs.
****************************************************************************/
void dfa_re() N
{

SHORT i,3,k,p,X,Y, /* temporary variables */
accept, /* only final state of each subgraph */
start, /* start state of DFA */
node_i, /* node to be deleted in reducing subgraph */
num_st, /* # of dfa states */
inp; /* input symbol */

long my_node;

Gtype *wl, *w2,*w3,*wd4, /* represent arcs i1n reduced subgraph */

*ptrl, *ji_ptr, *ik_ptr, *ii_ptr, *jk_ptr;

STTYPE temp_re[MAX RE], /* temporary store for RE */
strl1[MAX_RE], /* temporary string variables */
Wik [MAX_RE],
delnodes [MAX_DFA];

/* function prototypes */

void print_Gt (), free_Gt():;
void listcat (), listcpy (), delete();
Gtype *inlist (), *create();

strcpy(re,"");
num_st = dfa->numst;
rm_repeat (dfa->final);

/* if only one state in DFA, find its RE and quit */
if (num_st == 1) {
strcpy (re, " ("); ,
for (j=0;Jj<MAX_COLS-1; j++)
if (dfa->table[1][i] != PHI) {°
strcat (re,itos(symbset[i]));
strcat (re, "+");
Y /* if */
re[strlen(re)-1] = ’'\0’; /* removing last ’‘+’ in re */
strcat (re,")*");
return;

}

my_node = mynode(); :

num_final = strlen(dfa->final);

/* Start processing each subgraph Gt by selecting */
/* only one final state of DFA for each subgraph */
for (p=my_node; p<num final; p += work_nodes) ({

accept=dfa->final [p];

/* Reinitialize G1 for every subgraph by constructing a node-node
transition graph from the dfa transition table, with entries
being REs instead of states */

free_Gt();

for (i=1; (i<=num_st); i++) for (inp=0; inp < MAX_COLS-1; inp++) {

x=dfa->table[i] [inp];
strcpy (strl, itos (symbset [1inp])) ;
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strcat (strl,"+");
listcat (i,x,strl);
} /* for inp loop */

for (i=1; i<=num_st; i++)
for (j=1; j<=num_st; j++)
if ((ptrl=inlist(i,j)) != NULL) {
strepy(strl,* (");
k = strlen(ptrl->re) - 1;
ptrl->re[k] = 0; /* removing the ‘+’ at end */
if (k>1) {
strcat (strl,ptrl->re);
strcat (strl,")");
strecpy (ptrl->re,strl);
} /* of If k */
} /* if ptrl */

strcpy(temp_re,"");
strcpy (delnodes, **);
/* Choosing a node "i* in G1, that is neither the start
nor the accepting node */ '
for (node_i=1; node_i<=num_st; node i++) {
if (node_i == dfa->start || node_i == accept) continue;
/* Delete node i as follows */
/* Initially select every pair [(j,k], neither equal to
i, including j=k */
strcat (delnodes, itos (node_i));

for (j=1;j<=num_st;j++) {

if (j == node_i || strchr(delnodes,j)) continue;
for (k=1;k<=num_st;k++) { -
if (k == node_i || strchr(d@lnodes,k)) continue;

/* Now test for the TWO cases in the algorithm for
deleting a node */
strepy (Wik, "*);
/* Test of CASE 1 */
if (((ji_ptr=inlist(j,node_i)) != NULL) &&
((ik_ptr=inlist (node_i,k)) != NULL) &&
((ii_ptr=inlist (node_i,node_i)) == NULL)) {
/* find the new arc Wik */
strcpy (Wik, ji_ptr->re);
strecat (Wjk, ik_ptr->re);
/* end of-CASE 1 */ =

/* Test of CASE 2 ‘*/ ,
if (((Ji_ptr=inlist (j,node 1)) '= NULL) &&
({ik_ptr=inlist (node_i,k)) != NULL) &&
((1i_ptr=inlist (node_i,node_i)) != NULL)) {
/* find the new arc Wjk = Wji(Wii)*Wik */
strepy (Wik, ji_ptr->re);
strcat (Wjk,ii_ptr->re);
strcat (Wjk, "**);
strecat (Wjk, ik_ptr->re);

} /* end of CASE 2 */

/* Last step of replacing, all arcs between node j and node k
with a single arc which is the union of all .the arcs
including the new Wjk arc */

if (Wjk([0] == 0) continue;

if ((jk_ptr=inlist(j,k)) == NULL)

/* assigning only the new arc */
listcpy (3, k,Wik);

else if ((jk_ptr=inlist(j,k)) != NULL) {

strcpy (strl, " (");
strcat (strl, jk_ptr->re);
strcat (strl,"+");
strcat (strl,Wjk);
strcat (strl,")");
strcpy (jk_ptr->re, strl),
Y /* if */
} /* of for k loop */
} /* of for j loop */ /* Removing all arcs incident onto
node_i in Gt */
for (i=1;i<=num_st;i++)
delete(i,node_i);
for (j=1;j<=num_st;j++)
delete (node_i, j); } /* for node_i loop */
/* At this point only start and accept ndoes are
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left in Gl1. Use them to find the RE for the
educed graph of G_t */
strcpy (temp_re, **);
start = dfa->start;
wl=w2=w3=wd=(Gtype *) NULL;
wl=inlist (start,start);
w2=inlist (start,accept) ;
w3=inlist (accept,accept);
wd=inlist (accept, start) ;
/* Copy wl* to temp_re */
if (wl != NULL) {
if (strlen(wl) > 1) {
strcat (temp_re, " (") ;
strcat (temp_re,wl->re) ;
strcat (temp_re, *)");
}
else strcat (temp_re,wl->re);
strcat (temp_re,"*");

/* if only one state in Gt then temp_re has the RE for Gt */
if (start == accept) ({
if (wl == NULL)
strcat (re, e + ");
else {
strcat (re, temp_re) ;
strcat (re,* + ");

continue;

/* Then Concatenate w2 to temp_re */
if (strchr(w2->re,’+’) != NULL) .{
strcat (temp_re, * (") ;
strcat (temp_re,w2->re);
strcat (temp_re, ")") ;
}
else strcat (temp_re,w2->re) ;
strcat (temp_re, " (") ;

/* Then Concatenate w3 to temp_re */
1f (w3 != NULL) {
strcat (temp_re,w3->re);

if (w3 != NULL && w4 != NULL && .w2 != NULL)
strcat (temp_re, "+");

/* Then add w4 to temp_re, if it is not NULL.
if w4 is NULL, temp_re is ready */
if (w4 == NULL) {.
strcat (re,temp_re);
strcat(re,")* + *);
continue;

}
else if ' (w4 != NULL)
if (strchr(w4->re,’+’) != NULL) {
strcat (temp_re, " (") ;
strcat (temp_re,wd->re);
strcat (temp_re, ") ") ;
} N
else strcat (temp_re,wd->re);

/* Then Concatenate wl* to temp_re */
if (wl != NULL)
strcat (temp_re,wl->re);
/* Then Concatenate w2 to temp_re */
if (strchr(w2->re,’+’) != NULL) {
strcat (temp_re, " (") ;
strcat (temp_re,w2->re);
strcat (temp_re, ") ") ;
}
else strcat (temp_re,w2->re) ;
/* finally append temp_re to re with a "+" */
strcat (temp_re,*)* + *);
strcat (re,temp_re) ;
/* for p =0 ... */



free_Gt();
rm_redun(re) ;
/* Each node has a part of the final RE. All these parts are
collected by using global concatenation system call gcolx() */
for (i=0; i<work_nodes; i++)
relens[i] = sizeof(char)*strlen(re);
/* getting lengths of all node’s RE contributions */
gcolx(re,relens,temp_re);
/* Global collect RE vector */
strcpy (re,temp_re);
re[strlen(re)-2] = “\0’; /* remove extra ’‘+’ at end of re */
rm_redun(re) ;
} /* of dfa_re */

/**********************************************************************

Function Definition: Gtype *inlist( SHORT, SHORT)

Description:
This routine checks if the i,j entry is in the list. If so, it returns
a pointer to that entry in the list, else a null pointer.
******************k******************************f**********************/
Gtype *inlist(i,))
SHORT 1i,3;
{
Gtype *ptrl;
ptrl = G1;
while (ptrl != NULL) {
if ((ptrl->row == i) && (ptrl->col == j))
/* check for i,j entry */
break;
else ptrl = ptrl->next;

return(ptrl);
}

/************************************************************************
Function Definition: void listcat (SHORT, SHORT, char *) '

Description:
This routine checks if the i,Jj entry exists int he list. If so, 1t
concatenates ‘str’ to the re of the i,j entry. If not, it creates
a new 1,J entry at the end of the list, and concatenates ‘str’ to the
re of this new entry.
*************************************************************************/

void listcat(i, j,str)

SHORT 1,3;
char strl];
{

Gtype *ptril;

if ((ptrl=inlist(i,j)) != NULL) /* i,J entry exists in list */
strcat (ptrl->re,str);
else { /* i, entry does not exist in list */
ptrl = create(i,]j);
strcat (ptrl->re,str);
}
}

/************************************************************************

Function Definition: void listcpy (SHORT, SHORT, char *)
Description:
This routine checks if the 1,j entry exists int he list. If so, 1t
copies ’‘str’ to the re of the i,J entry. If not, 1t creates
a new i,j entry at the end of the list, and copies ’‘str’ to the
re of this new entry.
************t************************************************************/

void listcpy (i, j,str)

SHORT 1i,3;
char str(]l; }
{
Gtype *ptrl;
if ((ptrl=inlist(i,j)) != NULL) /* 1,j entry exists in list */
strcpy (ptrl->re,str);
else { /* i,j entry does not exist in list */

ptrl = create(i,j);
strcpy (ptrl->re,str);
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}

/*************************************************************************

Function Definition: Gtype *create(SHORT, SHORT)

Description:
This routine creates the i,j entry at the end of the Gl list, and returns

a pointer to this newly created entry.
*************************************************************************/ -
Gtype *create(i,]j)

SHORT 1i,3;

{

Gtype *ptril;

if (G1 == NULL) { /* if list empty, create new */
Gl = (Gtype *) malloc(sizeof (Gtype)):;
ptrl = G1;

}

else { ’ /* if list not empty, create at end */
ptrl = G1;

while (ptrl->next != NULL)
ptrl = ptrl->next; )

ptrl->next = (Gtype *) malloc(sizeof (Gtype));

ptrl = ptrl->next;
} /* else */
ptrl->row i;
ptrl->col J;
ptrl->next = NULL;
strepy (ptrl->re,®*");
return(ptrl);

/************************************************************************

Function Definition: void delete(SHORT, SHORT);

Description:
This routine deletes the i,j entry if it exists from the G1 list.

*************************************************************************/

void delete (i, )
SHORT 1i,3j;

{
Gtype *front, *back; :

front = G1;
while (front != NULL) {
if ((front->row == i) && (front->col == j)) {

if (front == G1)
Gl = Gl->next;
else
back->next = front->next;
front->next = NULL;
free(front);
front = NULL;
Yy /* if */
else {
back = front;
front = front->next;

}
} /* while */

void free_Gt ()

{
Gtype *ptrl, *freeptr;
1f (Gl != NULL) {
ptrl = G1;
while (ptrl != NULL) {
freeptr = ptril;
ptrl = ptrl->next;
freeptr->next = NULL;
free(freeptr);
} /* while */
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Gl = NULL;
Yy /* if */
}
EQNS.C
#include *"node.h"
/*******************************************************************

This file (egns.c) contains the following NODE routines:

solve_eagns () draiver routine ‘for solving RE equations
get_eagns () obtains the RE equations for the DFA
sub_egns () forward substitution of equations

********************************************************************/

/* Declaration of external functions and vriables */

extern void rm_redun() ;
extern DFA *dfa; .
extern char re[MAX_RE], symbset [MAX_COLS];

typedef struct eq {
SHORT row,col;
char egn[MAX RE];
struct eqg *next;
} Eqtype;
Egtype *egnmat = NULL; /* list to store RE equations */

/**************************************************************************
Function Name: solve_edns()

Prototype Definition: void solve_egns(DFA *, char *, char *)

Description:
This routine initially forms the set of RE equations in the ’egnmat’
array for the given DFA by the method in Section 3.4.6. Then, the equations
in ‘egqnmat’ are solved by the method in Section 3.4.7 to obtain the solution
for the state variables of each of the final states of the DFA. Finally,
the RE is obtained by the union of the REs for all the final states.

****************************************************************************/
void solve_eans ()

SHORT i,3.k,

numvar, , /* # of state variables */
num_st; /* # of DFA states */
boolean flg = FALSE;
char strl [MAX RE];

Egtype *ptrl, *ptr2;:

/* function prototypes */

void init_eagns(), get_eans(),
sub_egns (), free_egnmat (),
eglistcat (), eglistcpy(),

Eqtype “*eqcreate(), *ineqlist();

egdelete();

num_st = dfa->numst-1; :
numvar = dfa->numst-1; /* # of state variables = # of states */

for (i=1; i<=num_st; 1++)
for (j=0; j<=MAX_COLS-2; Jj++)
if (dfa->table[i][]j] == (num_st+1))
dfa->table[i] [j] = PHI;

get_egns (numvar) ;

/* Forward iteration of solving equations using Gaussian
Elimination method as outlined i1n transformation T7 of
section 3.4.7 */

for (i=1;i<=numvar;i++) {

if ((ptrl=ineqlist(i,i)) != NULL) {
strcpy(strl, " (*);
strcat (strl,ptrl->eqn);
strcat (strl,*)**);
strcpy (ptrl->egn, "");
egdelete(i,i);
flg = TRUE;
for (J=1;j<=numvar+l;j++)
if ((ptrl=ineqlist(1,3)) != NULL) {
if (strcmp(ptrl->egn,“e") != 0)
strcat (ptrl->eqn, strl);
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else strepy (ptrl->egn, strl); flg = FALSE;

}
else if (flg) flg = TRUE;

if (flg)
eglistcpy (i,numvar+l, strl);
} /* of upper if */ i
sub_egns (i,numvar); /* forward substitution of the
equatin just solved */
} /* of uppermost for i loop */

/* Back substitution process - This part of the code substitutes the
solutions for all variables starting from the last variable (which
is already solved) into the rest of the equations */

for (i=numvar-1;i>=1;i--)
for (j=1;j<=numvar;j++) {
strcpy (stril,*"); .
1f ((ptrl=ineqlist(i,j)) != NULL)
if ((ptr2=ineqlist(j,numvar+1)) != NULL) {
if (strchr(ptr2->egn,’+’) != NULL) {
strcat(strl, " (");
strcat (strl,ptr2-s>eqn);
strcat(strl,")");
}
else
strcat (strl,ptr2->eqn);

else
eglistcpy (j,numvar+l,strl);

if (strchr(ptrl-s>eqn, ’+’) != NULL) {
strcat(strl, " (");
strcat (strl,ptrl->eqn);
strcat (strl,*)");
}
else
strcat (strl,ptrl->eqn);
egdelete(i,j);

else continue;

if ((ptrl=ineqlist (i,numvar+1)) != NULL) {
strecat (ptrl->eqgn, "+");
strcat (ptrl->eqn,strl);

else eqglistcat (i,numvar+l, strl);
} /* of inner for */

strcpy (re,"");
for (i=1;i<=numvar;i++) .
if (strchr(dfa->final,i))
if ((ptrl=ineqlist(i,numvar+1)) '= NULL) {
strcat (re,ptrl->eqn);
strcat (re," + ");
}
re[strlen(re)-2] = 0; /* removing the ‘+’ at the end */
rm_redun(re) ; /* removing the redundancies in the RE */

free_egnmat () ;
} /* of solve_egns */

/************************************************************************
Function Name: void sub_egns()

Descraption:
This routine performs the forward substitution of the equation which has

been currently solved (indicated by the ‘ind’ parameter) into the rest of
the bottom equations until the last equation. The procedure followed for
this forward substitution process is that used in Gaussian Elimination
method of transformation T7 of Section 3.4.7
**************************************************************************/
void sub_eqgns (ind, numvar)
SHORT 1ind,numvar;
{
SHORT i,3;
char strl[MAX RE],str2[MAX_RE];
Egtype *ptrl, *ptr2;



if (ind != numvar) .
for (i=ind+1l;i<=numvar;i++) ({
strcpy(strl,"*);

if ((ptrl=ineqglist(i,ind)) != NULL) {
if (strcmp(ptri->eqgn,®e") != 0)
if (strchr(ptrl->egn,’+’) != NULL) {

strepy(strl,* (*);
strcat(strl,ptrl->eqn); .
strcat (strl,*)");
}
else
strepy(strl,ptrl- >eqn),
strcpy (ptrl->eqn, "*);
eqgdelete(i,ind);

for (Jj=1;j<=numvar+l; Jj++) {
strcpY(strz "y);

if ((ptrl=ineglist(ind,J))-

if (strcmp(ptrl->eqn, *e*)

if (strchr(ptrl->eqn,

strepy (str2," (") ;

!= NULL ) {
= 0)

‘+7) -1= NULL) ¢

g strcat (str2,ptrl->eqn);

strcat (str2,")");
} f
else

strcpy (str2,ptrl->eqn) ;

strcat(str2,strl);
if ((ptrl=ineqglist(i, J))
strcat (ptrl->eqn,

I= NULL) {

strecat (ptrl- >eqn,str2),

}
else :
eqlistcat (i, j,str2);

}
} /* of for j loop */
} /* of if strlen loop */
} /* of for i loop */

} /* of sub_egns¢ */

/******************************************************************'k********
. v

Function Name : get_egns()

Prototype Definition: void gt_egqns(DFA *, int, int, char ***)

Description:

This routine forms the equation for each state of the DFA by using the

method in transformation Té of Section 3.

Initially, the dfa state-input 2D transition table i1s transformed into a
state-state 2D transition table. Each table entry is an RE obtained by the
union of all input symbols on which the DFA moves from the state in the row

entry to the state in the column entry.

0

4.6,

Then the equations matrix is

constructed by transposing the above state-to-state matrix.

*********jt******************************************************************/

void get_egns (num)

SHORT num;

{
SHORT i,3.k,%;
char strl[MAX RE];
Egtype *ptrl, *ptr2;

/* Obtain each entry of the state stae matrlx from the DFA transition

table */
for (i=1;i<=num; i++) i
for(j:O;j<=MAX_COLS—2;j++),(

if ((x=dfa->table[i][j]) == PHI)

strcpy (strl, itos (symbset[j1));
strcat(strl,"+");
eglistcat(x,1i,strl);
} /* for j */
for (i=1; i<=num; i++)
for(j=1; j<=num; j++)

‘continue;

if ((ptrl=ineqglist(i,j)) != NULL) {

strepy(strl, " (");
k = strlen(ptrl->eqn)-1;
ptrl->eagni{k] = 0;

/* removing the '+’

if (k>1) {

at the end */
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strcat (strl,ptrl->eqn);
strcat (strl,*)*);
strcpy (ptrl->eqn, strl);
} /* if k */
Y /* if */
for (i=1;i<=num;i++)
if (i==dfa->start) {
eqglistcpy (i,num+l, "e"); ' ‘
break;

}
} /* of get_egns */

/************************t*********************************************

Function Definition: Egtype *ineqglist( SHORT, SHORT)

Description:
This routine checks if the i,j entry is in the eqlist If so, it returns
a pointer to that entry in the eglist, else a null pointer.
************************************************************************/
Egtype *ineqglist (i, j)
SHORT 1,3;

{
Egtype *ptril;
ptrl = egnmat;
while (ptrl != NULL) {
if ((ptrl->row == i) && (ptrl->col == j))
/* check for i,j entry */
break;
else ptrl = ptrl->next; '
return(ptrl);
}

/************************************************************************

Function Definition: void eqlistcat(SHORT SHORT, char *)

Description:
This routine checks if the 1,j entry exists int he eglist. If so, it
concatenates ’‘str’ to the re of the i,j entry. If not, it creates
a new i,J entry at the end of the eglist, and concatenates ‘str’ to the
re of this new entry.
*************************************************************************/
void eqllstcat(l 3, str)
SHORT 1,3;
char str[],

{
Eqgqtype *ptril;
if ((ptrl=ineqlist(i,j)) != NULL) /* i,j entry exists in eglist */
strcat (ptrl->eqgn, str);

else { /* 1,] entry does not exist in eglist */
ptrl = eqcreate(i,j);
strcat (ptrl->eqn, str) ;

}

/************************************************************************

Function Definition: void eqglistcpy (SHORT, SHORT, char *)

Description:
This routine checks if the i, entry exists int he eqglist. If so, it
copies ’‘str’ to the re of the i,j entry. If not, 1t creates
a new i,j entry at the end of the eglist, and copies ‘str’ to the
re of this new entry.
*************************************?***********************************/
void eglistcpy (i, j,str)
SHORT 1i,3;
char str(];

{
Egtype *ptril;

if ((ptrl=ineqlist(i,j)) != NULL) /* i,j entry exists in eqglist */
strcpy (ptrl->eqgn, str);
else { /* i,j entry does not exist in eglist */

ptrl = eqgcreate(i,j);
strcpy (ptrl->eqgn, str) ;
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/*****************************************************************t*******
Function Definition: Egtype *eqgcreate (SHORT, SHORT)
Description:

This routine creates the i,j entry at the end of the eqnmat eglist, and

returns a pointer to this newly created entry.
*************************************************************************/

Egtype *eqcreate(1 i)

SHORT 1i,3;
{
Egtype *ptrl; . o
if (egnmat == NULL) { /* if eqglist empty, create new */

egqnmat = (Egtype *) malloc(sizeof (Eqtype));
ptrl = egnmat;
}

else { /* if eqglist not empty, create at end */

ptrl = egnmat;

while (ptrl->next !=. NULL)

ptrl = ptrl->next;

ptrl->next = (Egtype *) malloc(sizeof(eqype)),

ptrl = ptril->next;
} /* else */ ‘
ptrl->row i;
ptrl->col J;
ptrl->next = NULL;
strecpy (ptrl->eqn, ") ;
return(ptrl);

}

/********************************************************t***************

Function Definition: void egdelete(SHORT, SHORT);

Description:

This routine deletes the i,j entry if it exists from the egnmat eglist.
****************t********************************************************/
void egdelete(i, j)

SHORT 1i,3;
{

Egtype *front, *back;

front = egnmat;
while (front != NULL) { ) .
if ((front->row == i) && (front->col == j)) {
if (front == egnmat)
egnmat = egnmat->next;
else .
back->next = front->next;
front->next = NULL; .
free(front);
front = NULL;
}y /* if */
else {
back = front;
front = front->next;

}
} /* while */
}

void free_egnmat ()
{
Egtype *ptrl, *freeptr;
if (egnmat != NULL) {
ptrl = egnmat;
while (ptrl != NULL) {
freeptr = ptril;
ptrl = ptrl->next;
freeptr->next = NULL;
free(freeptr);
} /* while */
egnmat = NULL;
Y /* if */
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OTHER.C

#include "node.h*
/************************'k********************************************

This file (other.c) contains the following NODE routines:

mem2D () ,mem3D() Dynamic Memory Allocation routines
free2D(), free3D() Dynamic Memory Deallocation routines
rm_redun() Remove redundancies in the RE

****************'k*******************************************************/
/* Dynamic Memory Allocation routines for 2-D and 3-D arrays used
in the program */

void mem2D(array,nl,n2)
STTYPE *array[MAX COLS];

int nl,n2;
{
int i,3;
for (i=0; i<nl; i++)
if ((array[i] = (STTYPE *) malloc(n2 * sizeof (STTYPE))) == NULL)

exit(1);
strcpy(array[il,"*);

}
void mem3D(array,nl,n2,n3)
STTYPE *array|[] [MAX_COLS];
int nl,n2,n3;
{
int 1i,3;
for (1=0; i<nl; i++)
for (j=0; j<n2; j++) {
if ((array[il (3] = (STTYPE *) malloc(n3 * sizeof (STTYPE))) == NULL)
exit(1);
strepy (array[il [j1,"");

}
void free3D(array,nl,n2)
STTYPE *array[] [MAX_COLS];
int nl,n2;
{
int 1i,3;
STTYPE *temp;
for (i=0; i<nl; i++)
for (j=0; j<n2; j++) {
temp = array([i][j];
free(temp);
}
}
void free2D(array,nl)
STTYPE *array [MAX_COLS] ;
int nl;
{
int 1i;
STTYPE *temp;
for (i=0; i<nl; i++) {
temp = arrayl[i];
free(temp);
}
}

strindex (s, c)
char *s,c;

{
int i;
for (i=0; ; i++) {
if (s[i] == c) return(i);
if (s[i] == ’\0’) return(0);
}

}

char *itos(num)

int num;

{
char str[5];
str[0] = num;
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str[l] = “\0’;
return(str) ;
}

/***********************************************************************
Function Definition; void rm_repeat (str)

Description:

Removes all repeated characters.in the given string.
*************************************************************************/
void rm_repeat (str)
char str(l;

{
char strl[MAX _NFA],
str2 [MAX_NFA],
ch;
int i;
strcpy (strl,str);
strcpy (str2, %) ;
for (i=0; (ch=strl[i]) != 0; 1++) {
if (!strchr(str2,ch))
strcat (str2,itos(ch));

}
strcpy (str, str2);
}

/************************************************************************
Function Definition: char *strstr( char *, char * )
Description: .

Finds out 1f a string is contained in another string and returns a

pointer to the sring found
*************************************************************************/

char *strstr(cs,ct)
char *cs,*ct;

{
char *ptr;
int len;
ptr = cs;
len = strlen(ct);
while (*ptr != ’“\0’)
if (strncmp(ptr,ct,len) == 0)
return(ptr) ;
else ptr++;
}
return (NULL) ;
}

/***********************************************************************
Function Definition: void rm_redun(char *)

Description: ‘
Remove redundant terms like ()* (+)* (0)*, (1)*, 00*, 11*, etc.
and also redudant parantheses
************************************************************************/
void rm_redun(re)
char re[MAX_RE];
{
int i=0,P=0,
done=FALSE, plus=FALSE,
posl=0,pos2=0;

char stack[MAX_RE],
temp_re [MAX_ RE],
*ptrl;

done = FALSE;

while (!done) {

if ((ptrl=strstr(re,*()*")) != NULL) {
strcpy (temp_re,ptrl+3);
*ptrl = '\0’;
strcat (re,temp_re);



else if ((ptrl=strstr(re,"(+)")) != NULL) {

strcpy (temp_re,ptrl+3);
*ptrl = ‘\0’;
strcat (re,temp_re);

}

else if ((ptrl=strstr(re,"*(+)*")) != NULL)
strcpy (temp_re,ptri+4);
*ptrl = '\0’;
strcat (re,temp_re);

}
else if ((ptrl=strstr(re,*+)")) != NULL) {

strcpy (temp_re,ptrl+l);
*ptrl = ‘\0’;
strcat (re,temp_re) ;

} .
else if ((ptrl=strstr(re,”(+")) != NULL) {

strcpy (temp_re,ptrl+2);
*(ptrl+l) = “\0’;
strcat (re,temp_re);

} .
else if ((ptrl=strstr(re,"e0")) != NULL) {

strcpy (temp_re,ptrl+l);
*(ptrl) = "\0’;
strcat (re,temp_re);

}
else if ((ptrl=strstr(re,"el")) != NULL) {

strcpy (temp_re,ptrl+l);
*(ptrl) = '\0’;
strcat (re,temp_re);

}
else if ((ptrl=strstr(re,*0e")) != NULL) {

strcpy (temp_re,ptrl+2);
*(ptrl+l) = ‘\0’; .
strcat (re,temp_re);

}
else if ((ptrl=strstr(re,*le")) != NULL) {

strcpy (temp_re,ptrl+2);
*(ptrl+l) = '\0’;
strcat (re,temp_re);

}
else if ((ptrl=strstr(re,*(0)*")) != NULL)
strcpy (temp_re,ptrl+4);
*(ptrl) = "\0’;
strcat (re, "0*");
strcat (re,temp_re);

} )

else 1f ((ptrl=strstr(re,*(1)*")) != NULL)
strcpy (temp_re,ptrl+4); ’ '
*ptrl = ‘\0’;
strcat(re,"1%");
strcat (re,temp_re);

}

else done = TRUE;

} /* of while */

/*
1f (DEBUG) printf(*"\n ** DEBUG RE = %s\n",re);
*/
while (re[posl] != ’\0’) {
if (re[posl] == ‘(') {
stack[p++] = posl;
re[posl] = ' ‘;
}
if (re[posl] == ")’) {

plus = FALSE;
pos2 = stack[--p];
for (i=0;1<posl-pos2;i++)
if (relpos2+i] == ‘+’) {
plus = TRUE;
re[pos2+i] = 'P’;

}
if (re[posl+l] == ’‘*’) plus = TRUE;
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if (plus)
re[pos2]
else re[posl] ;
} /* of if ptrl = 7 ’*/
posl++;

} /* of while */

7

-

for (posl=0;re[posl] != ’\0’;posl++)
if (re[posl] == 'P’) rel[posl] = ’+’;
while ((ptrl=strstr(re,* ")) != NULL) {

strcpy (temp_re,ptrl+l);
*ptrl = ‘\0’;

strcat (re,temp_re);

} .

/*

*/
} /* of rm_redun */

if (DEBUG) ‘printf("\n ** DEBUG RE = %s\n",re);
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APPENDIX C
EXECUTION DETAILS THROUGH A CYCLE OF TRANSFORMATION

The given RE is (0*+1%*) (01)
The post-fix expression is: 0*1*+01..
Estimate on states = 22

Details of Partitioning Approach A

AAAANAAAAANAANAAAANANAANANAAANANANANAANANAAANA

NOTE: "*" has only one operand

Level 0 ==> . .10+ *1*x0
Level 1 ==> . TO + T1 T2
Level 2 ==> . TO T3

Level 3 ==> T4

Last task is T4 which represents the root node

Task Graph produced by Partitioning Approach A

AAAANANAANANANANANNNANANANNANANANNANANNAANNANNANNANANAAANAAAANAAANAN

Number of Levels: 3 Number of tasks: 5

Task Operation Label Predecesors Successors
TO 0.1 1 NONE T4

Tl 1*0 2 NONE T3

T2 0*0 - 2 NONE T3

T3 T2+T1 1 T2 T1 T4

T4 T3.TO 0 T3 TO NONE

INITIAL LABEL TABLE

Num Processors: 2 Max levels: 3
Num Tasks | Tasks

1 ] T4

2 | TO T3

2 | Tl T2

ADJUSTED LABEL TABLE

Num Processors: 2 Max levels: 3
Num Tasks | Tasks

1 | T4

2 | TO T3

2 | Tl T2
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Schedule Obtained by Algorithm A BEFORE and AFTER Optimization

PO

IT 1

IT O

IT 2

IT 3°

e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
€_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (
e_CLOSURE (

FSA after STEP 1 (NFA)

% % % % %k Kk k%

———— — — —— — —— —— —— ——— —— - - - - -

-_————-_._———____——__....._———__.._._-.—___———————--———-—————-

- — — ——— — ————— —— —— T — —— s ————————_————
D et T ——

{ql
{q2
{q3
{q4
{a5
{qab
{q7
{g8 g9 g7 ql0 gl1i
{q%9 q10 qi1 }
{ql0 gl1 }

{qll }

{ql2 q13 }

{ql3 }

{q14 }

g3 g5 ql0 gql1
}

a5 g3 ql0 qll

ql0 gl1 }

q7 g9 ql0 ql1
}

*** Transformation T2 - Removing e-moves
: g2 g6 g3 g5 g7

g9 ql0 ql1
}

}
}



*¥xkxx% NFA after Removing e-moves **xxxk*x

Inputs
.o T 1 e
S 1a1 | {a4q5,3,q10, (a8, qn.qi0,qit) 01
qll,ql2,q13,}
a2 | tat,es,a@oq, 00
ql2,ql3}
a3 | tat,aes,@,a0,qn 00
a4 | tafes,ada0,@t, 00
ql2,ql3}
as 1 tazas o TG
a6 | (a12,a13) (a8, ql0 gl O
a1 10 i@eanate,qnr
a8 1 (@i2,a3)  (as,@an.qi0, gl
eS| ez, g TG
R T
el 1 gz, oG
a2 oo T T e TG
s o0 s TG
Foiae o0 GTTTOT

*** STEP 3 - Correspondence between DFA and NFA States * % %

DFA State NFA State set
Q1 <== {qg1l}
Q2 <== {g4a5 g3 ql0 qll ql2 ql13 }
Q 3 <== {a8qg9 g7 ql0 gll }
0 4 <==> { q14 }
Q5 <== { 912 gl13 }
**%x*x* FSA after STEP 3 (DFA) Fokok ok ok ok ok %
States ‘ Inputs
| 0 | 1 |
S lal | g2 I q3 |
lqg2z | g2 I q 4 I
la3 | aqb I q3 I
F Il g4 | phi | phi |



*** STEP 4 - Snap shot of Marking tabié * %k

(2,1)-X
(3,1)-x
(411)-X
(5,1)-X
(6,1)-X

(4,2)-X (4,3)-X
(5,2)-X (5,3)-X
(6,2)-X (6,3)-X

(5,4)-X
(6,4)-X

(615)-X

**%%%x%% Minimized DFA after STEP 4 - *¥kxx%x

State
State

State

w [\ Ll

State
State 4
State 5 :

State 6

State
State

State

State

L) w [\V) o

State

State

(<)} o

State

e

Final RE:

States

*kkkkk

1

(00*%1+11*01)

STEP 5 - DFA to RE **k%%*

0
0

2

Initial G4 Subgraph
2

3
1

-3

4 5
1

0
1

G4 Subgrabh after deleting internal states
1

4 5
(00*%1+11%01)

(0+1)

(0+1)
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APPENDIX D

SAMPLE RUNS FOR A CONVERGENT CASE

(Note: Both Algorithms A and C produce the same results)

ITERATIONO
Given RE: 0*+1%
Final RE: 00*+11*+e

ITERATIONI1
Given RE: 00*+11*+e
Final RE: 00*+11*+¢

ITERATION2
Given RE: 00*+11*+e
Final RE: 00*+11*+¢

*****************************************************************

ITERATIONO
Given RE: 0*1*
Final RE: 0*+0*11*

ITERATION1
Given RE: 0*+0%*11%*
Final RE: 0*+0*11*

ITERATION2
Given RE: 0*+0*11*
Final RE: 0*+0*11*

3k 3k ok o sk sk e ok ok 3k ke 3k sk sk ok o sk ok ok sk ok sk ok sk sk ok ok ok ok e skl e sk ke sk sk ke sk skesie sk sk sk skl sk sk skl sk sk sk sk kel sk sk sk ke ok

ITERATIONO
Given RE: (00+01+10+11)*
Final RE: (0+1)(0+1)*

ITERATION]
Given RE: (0+1)(0+1)*
Final RE: (0+1)((0+1))*

ITERATION2
Given RE: (0+1)((0+1))*
Final RE: (0+1)((0+1))*

*****************************************************************

ITERATIONO

Given RE: (01+11)00(1+10)

Final RE: (0+1)1001+(0+1)10010
ITERATION1

Given RE: (0+1)1001+(0+1)10010
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Given RE: (0+1)1001+(0+1)10010

Final RE: (0+1)1001+(0+1)10010
ITERATION2

Given RE: (0+1)1001+(0+1)10010

Final RE: (0+1)1001+(0+1)10010

3k 3k 3k 3k 3k 3k 3k ok e e ik ke e ke ok ke ok 3k ok 3k 3k sk ke sk e e 2k ok 3k 3k sk sk sk 3k ok ke ok ok sk 3k ok sk e ok 3k ok 2k 3k 3k 3k 3k sk sk ke e Bk ke e e e ke ke sk sk sk

ITERATIONO

Given RE: (00+11)(01+10)(11+01)

Final RE: ((OOO+110)1(0+l)l+(001+111)O(O+1)1)
ITERATION1

Given RE: ((000+110)1(0+1)1+(001+111)0(0+1)1)

Final RE: (0(001+010)(0+1)1+1(101+110)(0+1)1) -
ITERATION2 -

Given RE: (0(001+010)(0+1)1+1(101+110)(0+1)1)

Final RE: (0(001+010)(0+1)1+1(101+110)(0+1)1)

3¢ 3k e 3k 3k ke 3 Ok 3k 3 3¢ k¢ 3k 3k 3k 2k Sk ok 3¢ 2k 3k 3k ke ke ke e ke Sk ke e o ¢ 3k sk ke Sk ke sk ke e e ke ke e ke Sk S ke Sk e e ke ok e ok ke ok ke ke ok ok sk sk ke sk

ITERATIONO |
Given RE: (0111+000*%11+11)+011
Final RE: ((11+000*11)+0111)+011
ITERATION1
Given RE: ((11+000*%11)+0111)+011
Final RE: ((11+000*11)+0111)+011
ITERATION2 -
Given RE: ((11+000*11)+0111)+011
Final RE: ((11+000*11)+0111)+011

3k e sk ok 3 sk e sk ke 2k ok 3k sk ke sk e 3k sk e ke ke ok ke e ek ok e ek ke sk Sk e sk ke Sk e ke e kel ek ke sk ok sk ke sk sk sk sk sk ok ok ke ok sksk sk sk sk

ITERATIONO

Given RE: 101+1*10+010

Final RE: ((010+101)+111*0)+10
ITERATIONI1

Given RE: ((010+101)+111*0)+10

Final RE: ((111*0+010)+101)+10
ITERATION2

Given RE: ((111*0+010)+101)+10

Final RE: ((111*0+010)+101)+10

e e e e e e e 3 e e e e e e e e s e e de ke e e s b e e sk sk sk ke sk sk sk ek sk sk ke sk ke ke sk sk sk sk ok skl sk sk ok ksl ke skeok skokokosk sk ok

ITERATIONO
Given RE: 010+101+010+1*10+10
Final RE: ((010+101)+111*0)+10
ITERATIONI1
Given RE: ((010+101)+111*0)+10
Final RE: ((111*0+010)+101)+10
ITERATION2
Given RE: ((111*0+010)+101)+10
Final RE: ((111*0+010)+101)+10

2k 2k 3 k¢ 3k ske ke e ok ok sk e ok 3k 3k ke ok sk ke ke Sk sk sk ke sk sk ke ke skl e sk sk e Sk sk sk ke sk ke sk sk sk sk sk ok sk ket sk sk ki sk sk sk ke sk sk sk sk ok ok

ITERATIONO
Given RE: (0*1*)(1+0)
Final RE: 00*+(1+00*1)1*+(1+00*1)1*0
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ITERATIONI
Given RE: 00*+(1+00*1)1*+(1+00*1)1*0
Final RE: 00*+(1+00*1)1*+(1+00*1)1*0
ITERATION2
Given RE: 00*+(1+00*1)1*+(1+00*1)1*O
Final RE: 00*+(1+00*1)1*+(1+00*1)1*0

sk sk sk e ok e sk o sk s ke sk e sk s sk ok ke sk ke sk ok sk e sk s sk sk st sk sk s sk s sk s sk sk sk s sk o ke o ke o ke sk s sk sk sk o ok ok ke sk sk ok sk ke ske sk ke ok

ITERATIONO

Given RE: 0*1*00

Final RE: 000*+((1+01)1 *0+OOO*1 1*0)0
ITERATION1

Given RE: 000*+((1+01)1 *O+000"$1 1*0)0

Final RE: 000*+(11*00+0(11*0+00*11*0)0)
ITERATION2

Given RE: 000*+(11*00+0(11*0+00*11*0)0)

Final RE: 000*+(11*00+0(11*0+00*11*0)0)

*****************************************************************

ITERATIONO
Given RE: 1*(0+1)0*
Final RE: (0+11*0)0*+11*

- ITERATIONI1

Given RE: (0+11*%0)0*+11*
Final RE: (0+11*0)0*+11* -

ITERATION2
Given RE: (0+11*0)0*+11*
Final RE: (0+11*0)0*+11*

*****************************************************************

ITERATIONO
Given RE: (0*1*)*
Final RE: (0+1)*

ITERATIONI1
Given RE: (0+1)*
Final RE: (0+1)*

ITERATION2
Given RE: (0+1)*
Final RE: (0+1)*

3 3k 3k 3k ok 3k sk sk ok ske sk sk ke sk ok ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk ok ok sk sk skokok

ITERATIONO

Given RE: (0*1*(0*+1%*))

Final RE: 0%+0*1 1*+0*11*00*
ITERATION1

Given RE: 0*%+0*11*+0*11*00*

Final RE: 0*+0*11*+0*11*00*
ITERATION2

Given RE: 0*%+0*11*+0*11*00*

Final RE: 0*+0*11*+0*11*00*

sfeske sk sk e ok ok ok ok sk ok sk ok ok sk ke sk ok sk sk sk s ke sk sk e sk sk s sk s e sk sk s sk sk sk sk sk sk sk skoske sk stk sk stk sk ok stk sk skeoke s sk okosk sk skok

ITERATIONO
Given RE: (0*+1*)*
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Final RE: (0+1)*
ITERATION1
Given RE: (0+1)*
Final RE: (0+1)*
ITERATION2
Given RE: (0+1)*
Final RE: (0+1)*

*****************************************************************

ITERATIONO

Given RE: (0*+1*+(00)*+(11)*)

Final RE: 00*+11*+e
ITERATIONI1

Given RE: 00*+11*+¢

Final RE: 00*+11*+e
ITERATION2

Given RE: 00*+11*+e

Final RE: 00*+11*+e

*****************************************************************

ITERATIONO
Given RE: (00+11)*
Final RE: (00+11)*

ITERATION1
Given RE: (00+11)*
Final RE: (00+11)*

ITERATION2
Given RE: (00+11)*
Final RE: (00+11)*

*****************************************************************

ITERATIONO
Given RE: (0+00+11)*
Final RE: (0+11)*

ITERATION1
Given RE: (0+11)*
Final RE: (0+11)*

ITERATION2
Given RE: (0+11)*
Final RE: (0+11)*

*****************************************************************

ITERATIONO ' o
Given RE: (0(00+11))* :
Final RE: (000+011)*
ITERATION1
Given RE: (000+011)*
Final RE: (000+011)*
ITERATION2
Given RE: (000+011)*
Final RE: (000+011)*

*****************************************************************

ITERATIONO
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Given RE: (0+1+00+11)*

Final RE: (0+1)*
ITERATIONI1

Given RE: (0+1)*

Final RE: (0+1)*
ITERATION2 -

Given RE: (0+1)*

Final RE: (0+1)*

*****************************************************************

ITERATIONO
Given RE: (01+(00+11))*
Final RE: (0(0+1)+11)*

ITERATION1
Given RE: (0(0+1)+11)*
Final RE: (0(0+1)+11)*

ITERATION2
Given RE: (0(0+1)+11)*
Final RE: (0(0+1)+11)*

*****************************************************************

ITERATIONO
Given RE: (000+11)*
Final RE: (11+000)*

ITERATION1
Given RE: (11+000)*
Final RE: (11+000)*

ITERATION2
Given RE: (11+000)*
Final RE: (11+000)*

*****************************************************************

ITERATIONO
Given RE: (000+111)*
Final RE: (000+111)*

ITERATION1
Given RE: (000+111)*
Final RE: (000+111)*

ITERATION2
Given RE: (000+111)*
Final RE: (000+111)*

3 3k sk sk ok ok ok 3k 2k sk ok ok sk sk 3k sk sk s sk e sk sk sk sk sk o ok sk sk sk sk sk ok sk ok ok ok sk sk ok sk sk sk ok ok sk ok ok ok sk ok ok ok ok sk skok sk ke s Rk



APPENDIX E

SAMPLE RUNS FOR A DIVERGENT CASE

(Note: Both Algon'thmé A and C produce the same results)

ITERATIONO
Given RE: 0*+1*
Final RE: e+00*+11*

ITERATIONI1
Given RE: e+00*+11*
Final RE: 00*+11*+¢

ITERATION2
Given RE: 00*+11*+e
Final RE: 00*+11*+¢

*****************************************************************

ITERATIONO
Given RE: 0*1*
Final RE: 0*+0*11*

ITERATIONI1
Given RE: 0*+0*11*
Final RE: 0*+0*11*

ITERATION2
Given RE: 0*+0*11*
Final RE: 0*+0*11*

*****************************************************************

ITERATIONO

Given RE: (00+01+10+11)*

Final RE: ((0+1)(0+1))*
ITERATIONI1

Given RE: ((0+1)(0+1))*

Final RE: ((0+1)(0+1))*
ITERATION2

Given RE: ((0+1)(0+1))*

Final RE: ((0+1)(0+1))*

sk sk 3k ok sk sk 3k ok ok ok 3k ok ok sk sk sk sk sk sk ke sk 3k sk Sk sk 3k 3k sk ok ok sk 3k sk ok sk sk ok sk sk ok sk sk e ok ok e sk Sk sk ke ske sk ke sk ok sk ko ok sk kokok sk ok
ITERATIONO

Given RE: (01+11)00(1+10)

Final RE: (0+1)1001+(0+1)10010
ITERATIONI1

Given RE: (0+1)1001+(0+1)10010

Final RE: (0+1)1001+(0+1)10010
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Final RE: (0+1)1001+(0+1)10010
ITERATION2 ,

Given RE: (0+1)1001+(0+1)10010

Final RE: (0+1)1001+(0+1)10010

*****************************************************************

ITERATIONO

Given RE: (00+11)(01+10)(11+01)

Final RE: (000+1 10)1(O+1)1+(001+111)O(O+1)1
ITERATION1

Given RE: (000+1 10)1(O+1)1+(001+111)0(0+1)1

Final RE: 0(001+010)(0+1)1+1(101+1 10)(O+1)1
ITERATION2 .

Given RE: 0(001+010)(O+1)1+1(101+110)(0+1)1

Final RE: 0(001+010)(0+1)1+1(101+110)(0+1)1

*****************************************************************

ITERATIONO
Given RE: 10+(0+11)0*11
Final RE: 10+(00*1+110*1)1
ITERATION1
Given RE: 10+(00*1+110*1)1
Final RE: (00*¥1+110*1)1410 -
ITERATION2 )
Given RE: (00¥1+110*1)1+10
Final RE: (00*1+110*1)1+10 -

sk ok sk sk sk 3k sk ok ske skl sk ok ok sk e sk sk she ok ok o ok sk ok sk ok skl sk s ek sk skl sk skok sk skokokoskok skok kol sk kok ki sk skok kok

ITERATIONO
Given RE: (0111+000*11+11)+011
Final RE: 11+000*%11+0111+011 -
ITERATION1
Given RE: 11+000%11+0111+011
Final RE: 11+000*11+0111+011
ITERATION2
Given RE: 11+000*11+0111+011
Final RE: 11+000*11+0111+011

*****************************************************************

ITERATIONO

Given RE: 00+11(0+1)*11+00

Final RE: 110*1(00*1)*1(1+OO*1(OO*1)*1)*+00
ITERATION1

Given RE: 110*1(00*1)*1(1+00%1(00*1)*1)*+00

Final RE: 110*1(00*1)*1(1+00*1(00*1)*1)*+00
ITERATION2

Given RE: 110*1(00*1)*1(1+00%1(00*1)*1)*+00

Final RE: 110*1(00*1)*1(1+00*1(00*1)*1)*+00

sk 3k 3k sk 3k sk ok 3k sk ke sk Sk Sk Sk e 3k ke 3k 3k 3 e 3k sk ok ok sk o sk ok sk sk ke sk sk sk sk sl sk sk ke sk sk sk sk ke sk sk ske sk sk skeok skl sk sk ok skok ke ok

ITERATIONO
Given RE: 101+1*10+010 -
Final RE: 010+101+111*0+10
ITERATIONI1
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Given RE: 010+101+111*0+10

Final RE: 111*0+010+101+10
ITERATION2

Given RE: 111*0+010+101+10

Final RE: 111*0+010+101+10

*****************************************************************

ITERATIONO
Given RE: 010+101+010+1*10+10
Final RE: 010+101+111*0+10
ITERATION1
Given RE: 010+101+111*0+10
Final RE: 111*0+010+101+10
ITERATION2
Given RE: 111*0+010+101+10
Final RE: 111*0+010+101+10

*****************************************************************

ITERATIONO ‘

Given RE: 010+1*10+010+101+10+101

Final RE: 010+101+111*0+10
ITERATION1

Given RE: 010+101+111*0+10

Final RE: 111*O+010+101+10
ITERATION2

Given RE: 111*0+010+101+10

Final RE: 111*0+010+101+10

*****************************************************************

ITERATIONO

Given RE: 0*1*00

Final RE: 000*+((1+011*)0+000*1 1*0)0
ITERATIONI1

Given RE: 000*+((1+011%)0+000%*1 1*0)0

Final RE: 000*+0(1+00*11%)00+100
ITERATION2

Given RE: 000*%+0(1+00*11*)00+100

Final RE: 000*+100+0(100+00*11%00)

sk ok 3k sk 3k 3k ok ok sk ke 3k she sk sk e 3k She e 3k ke 3k 3k ok ke 3k ke 3k ok ke ke sk sk ke ok sk sk ok Sk ok ok sk sk sk sk ke sk sk sk sk skosk skok ko okeok ke sk skeokok sk sk ok

ITERATIONO
Given RE: (0*1*0*1*)*
Final RE: ((0+1))*

ITERATION1
Given RE: ((0+1))*
Final RE: ((0+1))*

ITERATION2
Given RE: ((0+1))*
Final RE: ((0+1))*

sk k3 3k ok sk e e 3k ok sk e e ok sk e e e ok ok ok ok ok ok ok sk sk ok sk ke ok sk sk e sk e sk sk ske skl ok sk sk skokok sk ke skeokok ke skok sk sk ke sk sk ok ok

ITERATIONO
Given RE: (0*1*(0*+1%*)) -
Final RE: 0%+0*11*+0%11*00*
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ITERATIONI1

Given RE: 0*+0*11*+0*11*00*

Final RE: 0%+0*11*+0*11*00*
ITERATION2

Given RE: 0%+0*11*+0*11*00*

Final RE: 0%+0*11*+0*11*00* .

*******************************************i*********************

ITERATIONO )
Given RE: (0*+1*+(00)*+(11)*)
Final RE: 00*+11*+e
ITERATIONI1
Given RE: 00*+11*+e
Final RE: 00*+11*+¢
_ ITERATION2
Given RE: 00*+11*+e
Final RE: 00*+11*+e =~ ,

sk o s 3 ke Sk 3k 3k 3k ok 3k ok ke sk sk sk s e e ke ke 3k sk o ok ke ke s sk e sk ke sk sk e e ke ke sk sk ok ok ke sk sk sk sk sk ke sk sk ok s sk sk ke sk ok sk sk sk sk oke sk ok

ITERATIONO
Given RE: (00+11)* '
Final RE: e+(0(00)*+(1+0(00)*01(11+10(00)*01)*)10(00)*)0+(1+0(00)*
01(11+10(00)*01)*)1 o
ITERATION1
Given RE: e+(0(00)*+(1+0(00)*01(11+10(00)*01)*)10(00)*)0+(1+0(00)*
01(11+10(00)*01)*)1
Final RE: 00(00)*1(1(00)*1)*1(00)*+00(00)*+110(00)*0+11+e
ITERATION2
Given RE: 00(00)*1(1(00)*1)*1(00)*+00(00)*+110(00)*0+11+e
Final RE: 00(00)*1(1(00)*1)*1(00)*+00(00)*+110(00)*0+11+e

sk 3k o ke ke 3 S 3k sk s e sk ke sk sk sk 3k 3 3k ke ok sk sk sk sk e sk sk sk e se ke ke sk sk ke ok ok sk ok s sk sk sk sk sk e e ke sk sk sk sk ok ok sk ke sk skosk skok

ITERATIONO
Given RE: (0(00+11))* '
Final RE: e+(00(000)*+(01+00(000)*001(101+100(000)*001)*)100(000)*)
0+(01+00(000)*001(101+100(000)*001)*)1
ITERATION1
Given RE: e+(00(000)*+(01+00(000)*001(101+100(000)*001)*)100(000)*)
0+(01+00(000)*001(101+100(000)*001)*)1 )
Final RE: (0000(000)*1(10(000)*1)*10(000)*+0000(000)*)00+0000(000)*
1(10(000)*1)*1+000+01100(000)*0+011+e . :
ITERATION2 ,
Given RE: (0000(000)*1(10(000)*1)*10(000)*-+0000(000)*)00+0000(000)*
1(10(000)*1)*1+000+01100(000)*0+011+e
Final RE: (0000(000)*1(10(000)*1)*10(000)*+0000(000)*)00+0000(000)*
1(10(000)*1)*1+000+01100(000)*0+011+e-

*****************************************************************

ITERATIONO
Given RE: (01(00+11))*
Final RE: e+(010(0010)*+(011+010(0010)*0011(1011+1010(0010)*0011)*)
1010(0010)*)0+(011+010(0010)*0011(1011+1010(0010)*0011)*)1
ITERATION1 ‘
Given RE: e+(010(0010)*+(011+010(0010)*0011(1011+1010(0010)*0011)*) -



1010(0010)*)0+(011+010(0010)*0011(1011+1010(0010)*0011)*)1.
Final RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(0001)*)00+
010001(0001)*1(101(0001)*1)*1+0100+0111010(0010)*0+0111+e
ITERATION2 :
Given RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(0001)*)00+
010001(0001)*1(101(0001)*1)*1+0100+0111010(0010)*0+0111+e
Final RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(0001)*)00+
010001(0001)*1(101(0001)*1)*1+0100+0111010(0010)*0+0111+¢

e sk sk sk ok sk o ok sk sk s ke sk sk s ke sk ok ok sk o sk sk sk sk sk s e sk sk ke sk ok ok sk sk e sk e sk sk e sk s ke sk sk sk ok skeskoke sk sk sk ke ke sk sk e ke sk sk

ITERATIONO
Given RE: (01+(00+11))* L "
Final RE: e+(0((0+1)0)*+(1+0((0+1)0)*(0+1)1(11+10((0+1)0)*(0+1)1)*)
10((0+1)0)*)(0+1)+1+0((0+1)0)*(0+1)1(11+100+1)0)*0+1)1)*1
ITERATIONI1 _
Given RE: e+(0((0+1)0)*+(1+0((0+1)0)*(0+1)1(11+10((0+1)0)*(0+1)1)*)
10((0+1)0)*)(0+1)+1+0((0+1)0)*(0+1)1(11+100+1)0)*0+1)1)*1
Final RE: e+(0((0+1)0)*+(1+0((0+1)0)*(0+1)1(11+10((0+1)0)*(0+1)1)*)
10((0+1)0)*)(0+1)+1+0((0+1)0)*(0+1)1(11+100+1)0)*0+1)1)*1

sk ok 3k sk 3k sk 3k ok sk sk sk sk sk ok ke ke ok ok ke ok sk ke ke sfe ke e ke ke ok ke sk sk ok sk ok sk s ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok ok sk ke ke ke ke e e e ke ke

ITERATIONO ,
Given RE: (000+11)*
Final RE: e+(1(11)*+(00+1(11)*100(000+01(11)*100)*)01(11)*)1+
(00+1(11)*100(000+01(11)*100)*)0
ITERATION1 ’
Given RE: e+(1(11)*+(00+1(11)*100(000+01(11)*100)*)01(11)*)1+
(00+1(11)*100(000+01(11)*100)*)0
Final RE: 0001(11)*1+000+11(11)*00(0(11)*00)*0(11)*+11(11)*+e
ITERATION2 ) '
Given RE: 0001(11)*1+000+11(11)*00(0(11)*00)*0(11)*+11(11)*+e
Final RE: 11(11)*00(0(11)*00)*0(11)*+11(11)*+0001(11)*1+000+e

e ke 3k ok 3k ok 3k sk ke sk sk s ke sk sk s e sk s ke sk o ok sk sk ok sk sk sk sk sk sk sk sk sk ke sk sk ke sk ke sk sk sk ke sk sk sk sk ok sk sk sk sk sk sk sk ok sk skok ok ok

ITERATIONO
Given RE: (000+111)*
Final RE: e+(00(000)*+(11+00(000)*011(111+100(000)*011)*)100(000)*)
0+(11+00(000)*011(111+100(000)*011)*)1 -
ITERATIONI1 |
Given RE: e+(00(000)*+(11+00(000)*011(111+100(000)*011)*)100(000)*)
0+(11+00(000)*011(111+100(000)*011)*)1
Final RE: 000(000)*11(1(000)*11)*1(000)*+000(000)*+11100(000)*0+111+e
ITERATION2
Given RE: 000(000)*11(1(000)*11)*1(000)*+000(000)*+11100(000)*0+111+e
Final RE: 000(000)*11(1(000)*11)*1(000)*+000(000)*+11100(000)*0+111+e

e sk s e sk e s ok ok 3k e sk sk sk sk e sk e sk s sk ok ke Sk ke sk ke sk sk sk s sk sk sk sk sk sk e s e s e sk e sk e sk sk ok ok ke sk sk R ok ke sk sk ok sk sk sk sk skeok
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APPENDIX F

COMPARISON OF PERFORMANCE MEASURES

NOTE: All tasks have unit execution times.

Width specifies the maximum number of processors that can be used.

Current RE: ((0*+1*)0+(0*+1*)1*)((0*+1*)0*+0)

Speed -

Algorithm  Width Processors  Serial  Parallel Efficiency
time time - up
A 6 2 17 9 1.889 0.944
A § 3 17 7 2429 0810
A 6 4 17 6 2.833 0.708
A 6 5 17 | 6 2.833 0.567
A 6 6 17 5 3.400 0.567
3 2 9 6  1.500 0.750
3 3 9 5 1.800 0.600
Current RE: (00+11)(01)+(00+11)(10)
Algorithm ~ Width Processors  Serial ~ Parallel  Speed Efficiency
time time up
A 4 2 11 6 1.833 0.917
A 4 3 1m 5 2.200 0.733
A 4 4 11 4 2.750 0.688
C 3 2 8 5 1600  0.800
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C 3 3 8 . 4 2000  0.667

Current RE: (01+10)(0+1%+00)00+(00+11)(10+0011+1%)

Algorithm Width Processors.  Serial Pax:allél Speed  Efficiency

time . - tme- up
A 5 2 22 12 1833 0917
A 5 3 22 o 2.444 0815
A C— 22 7 3143 0.786
A 5 3 2 7 3.143 0.629
C 4 2 18 10 1800  0.900
4 3 18 7 2571 0.857

4 4 18 7 25711 0.643

Current RE: (010+100)(d+1*+OO)OO+(OO+1’1)(10+001 1+1%)

Algorithm ~ Width Processors  Serial Parallel ~ Speed Efficiency

time time up
A 5 2 24 13 1846  0.923
A 5 3 24 9 2667  0.889
A 5 4 24 8 3000 0750 .
A 5 5 247 3429 0686
4 2 20 11 1818 0909
i 3 20 8 2500 0833

4 4 20 7 2.857 0.714
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