
IMPLEMENTATION OF REGULAR EXPRESSION

TRANSFORMATION ALGORTIHMS

ON THE HYPERCUBE

BY

SRIDHAR ffANDYAM

Master of Technology
Karnataka Regional Engineering College

Surathkal, India
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1991

IMPLEMENTATION OF REGULAR EXPRESSION

TRANSFORMATION ALGoRITHMS

ON THE HYPERCUBE

Thesis Approved:

f/2~/ld~
Dean of the 'Graduate College

11

TABLE OF C01'IT£NTS

Chapter Page·

I. INTRODUCTION _ ~ . 1

II. PARALLEL PROCESSING ; . 4

2.1 Introduction 4
2.2 Classification of Computers: ·. 7

2.2.1 SISD Computer ·. 7
2.2.2 SIMD Computer · ... · ·8
2.2.3 MISD Computer . 8
2.2.4 MIMD' Computer. 8

2.3 Types of Parallel Computers . 10
2.3.1 Pipelined Processors . 10
2.3.2 Vector Processors . 11
2.3.3 Array Processors. ~ : ·. 11
2.3.4 Systolic Processors : ·. 12
2.3.~ Multiprocessors. 13

2.4 Performance Measures . 14
2.5 The iPSC/2 Parallel Computer. 15

2.5.1 Hypercube' and the iPSC/2 ·•............ 15
2.5.2 iPSC/2 Node Architecture. 17
2.5.3 NX/2 Operating System.· 19

III. FUNDAMENTALS OF LANGUAGE THEORY 21

3.1 Preliminaries .. : _ ,· ~ ... , ; -........... : . 21
3.2 Regular Expressions ·. 22
3.3 Finite Automata · ; ; .. , 23
3.4 Transformation Algorithms ; 26

3.4.1 Transformation Tl- RE to NFA 26
' I ' '

3.4.2 Transformation T2'- Removing £-moves ; 29
3.4.3 Transformation T3- NFA to DFA .· 31
3.4.4 Transforrilation T4- Minimizing the DFA 32
3.4.5 Transformation T5 - DEA to RE ... : ... ,. .. '. 34
3.4.6 Transformation T6- RE Equations for the DFA 37
3.4.7 Transformation T7- Solution of RE Equations 37

IV. MULTIPROCESSOR SCHEDULING 40

4.1 A Partitioning Approach 40

iv

Chapter Page

4.2 Graphical Representation of the Problem . 4~
4.2.1 Precedence Graphs ·~· . 43
4.2.2 Rooted Trees : '• . 43

4.3 Scheduling Algorithms . 44
4.3.1 Gantt-Chart Representation~of a Schedule 45 ·

· 4.3.2 Scheduling Algorithm A ~. 45
4.3.3 Another Partitioning Approach . 48
4.3.4 Scheduling Algorithm B. : 48

. 4 .. 3.5 Scheduling Algorithm C : 53 .
4.4 Implementation and Optimization Issues ·. 56

4.4.1 Optimal Number of Processors. 56
4.4.2 Suitability Issue ~ ,. 57
4.4.3 Memory Allocation Issues , 58
4.4.4 Machine-Independent. Communication Issues 59
4.4.5 Machine-Dependent Communication Issues. 60

' ' •,

V. SUMMARY AND FUTURE WORK 62

5.1 Summary · ... ·. 62
5.2 Future Work : . 64

REFERENCES ... 65

APPENDIXES , 69

APPENDIX A - USER MANUAL 70

APPENDIX B - C PRoGRAMS 78

APPENDIX C- EXECUTION DETAILS THROUGH A
CYCLE OF TRANSFORMATIONS 142

APPENDIX D - SAMPLE RUNS FOR A CONVERGENT CASE 146

APPENDIX E - SAMPLE RUNS FOR A DIVERGENT CASE 151

APPENDIX F - COMPARISON OF PERFORMANCE MEASURES 156 ·

v

UST OF TABLES

TABLE Page

I. Chronology of Parallel Processing Projects . 6

II. Computer Systems Based on Flynn's Classification. 10

VI

LI~T Of FIGURES

Figure Page

1. Flynn's Classification of Computers' , ; 9

2. A Pipeline Structure., .. ·•...... : t ••••••••• , • • • • 11

3. Functional Structure of an Array Processor. . .. 12

4. The ·concept of a Systolic Array Processor . 13

5. Types of Multiprocessors : , 14

6. n-dimensional Hypercube for n= 0, 1, 2, and 3 . 16

7. iPSC/2 Node Block Diagram 18

8. Cycle of Transformations Perforn1ed on a Regular Expression 26

9. Rules for Synthesizing an NFA from Autot,nata M1 and M2 27

10. NFA WithE-moves for the"RE 0*1* 28

11. Algorithm for Removing E-moves ln an NFA ; 30

12. NFA Without E-moves for theRE 0*1 * ~ 31

13. Algorithm to Construct a DFA from an NFA ... ' :. 31

14. DFA Equivalent to the NFA for theRE 0*1 * :\ 32

15. Algorithm for Marking Pairs of Inequivalent States in a DFA 33

16. The Minimized DFA for the RE·0*1 * · 34

17. Algorithm to Build an RE Representing an FA 35
. .
. .

18. Two Cases in Deleting a State qi': 35

, .. 19. Algorithm for Solving a Set of RE Equations ' ~ 38

20. Partitioning an RE into Tasks ~ '42

21. An Example of a Precedence Graph. 43

vii

Figure Page

22. An Example of a Rooted Tree · 44

23. Algorithm A: Scheduling a Rooted Tree' on p Processors. 47

24. Schedule Obtained by Algorithm ~ on p'=:=2 Processors. 47

25. Partitioning an RE with Co~on Sub-Expressions . ,· ,· 49

26. (a) Graph with Tasks of Unequal Node Weights
(b) Graph with Tasks of Equal Node Weights ,·. 50

27. lllustration of Converting a DAG into a Rooted Tree : 51

28. An Example of a Rooted T~ee with Repeated Nodes and Its Label Table 52

29. Algorithm B: Scheduling a Rooted Tree with Repeated Nodes on p Processors . . 53

30. Schedule Obtained by Algorithm B on p=2 Processors 53

31. An Example of a DAG with :Some Nodes Having Multiple Successors. 54

32. Algorithm C: Scheduling a DAG on p Processors Directly 55

3 3. Schedule Obtained by Algorithm C on p=2 Processors 56

34. Schedule Obtained by Algorithm A after Communication Optimization 60

3 5. An Example of a Rooted Tree and a' Schedule to lllustrate the
Look Ahead Approach ... '· . 60

Vll1

CHAPTER~

INTRODUCTION

Seitz speculated· that von Neumann uniprocessor systems' performance was ·
' '

approaching an asymptotic limit of nearly 3x109 operations per second [SEIT84]. Even

with the ongoing tremyndous advances in semiconductor technology; it is becoming
' ' '

increasingly difficult to obtain higher performance from single processor systems.

Generally speaking, technology has reached a s~ate that any further development would

face certain physical constraints [LEA87]. Moreover, high performap.ce systems like

supercomputers have become unaffordable by many research organization due to the high

price tags of such systems [KARIN87]. But there still remain several classes of

applications for which high speed is crucial and beyond the capabilities of the fastest single
(' ' -

processor machines available [HA YES88]. With this trend, there is a general approach to
,, ' ' '

avoid the limitations of uniprocessor systems by using several processors. Parallel

processing provides a possible solution in this regard [FOX88]. Other solutions include

distributed processing and massively parallel systems.

As part of compiling a program written in a high level language, a phase called

lexical analysis is performed [AH086]. In this phase~ strings of characters of a language

denoting keywords, identifiers, constants, etc. are grouped together into single symbols

called "tokens". A program which performs this phase is called a "Lexical Analyzer" or a

"Scanner". "Regular Expression Notation" is a formalism which can be used for describing

the tokens of a programming language. A "Finite Automaton" is a mathematical model of a

recognizer which can be used to recognize the tokens of a programming language specified

by a regular expression. These two tools (Regular Expressions and Finite Automata) form

1

2

the basis of a Scanner [FIS88]. There is a close relationship between the sets described by

regular expressions and the sets identified by finite automata, and there are a set of

transformations that can be performed on them.' Such transformations have been described
,, ~ " (

in the literature by sequential algorithms' [BRZQ62, AHQ72, HQP79~ SUD88]. Two

cycles of such tran~formations were considered in this thesis (as described in section 3.4).

As one objective of this thesis, a .regular expression wa,s subjected to the set of

transformations along each cycle a number of times. As expected, the form of the regular,

expression changes th~ough every iteration of each of the cycles. The changes occuring in ..
. .

the form of regular expressions was investigated. One of the cycles of transformations

appeared to produce regular expressions that, although not necessarily irredundant and' '

minimized, are in a closed form that can be loosely called a "canonical form". Thus we can

say that this cycle "converges". The other cycle yields the canonical form generally after a
~ .

larger number of iterations than the first one (or it may not even produce a canonical form).

Thus we can say that, the latter cycle does not always converge, or it "diverges". This

seems to be attributable to a particular transformation in the latter cycle. These details are

covered in section 4.4 and Appendixes D and E.

As another objective of this thesis,. the parallelism existing in the sequential

algorithms for these transformations was exploited to develop parallel algorithms.

Subsequently, the parallel algorithms were implemented iri the C programming language on
.! I, '

a typical parallel processor, namely the Intel's iPSC/2 32-processor, distributed-memory

system, with a hypercube interc,onnecti!)n topology between the processors. Some

multiprocessor performance t:neasures, such as speed-up, processor efficiency, and serial

fraction were evaluated and the results have been discu.ssed. In order to do so, the

programs developed were executed on a varying number of processors for different regular

expressions of different sizes. The performance measures and results have been

summarized (section 5.1).

3

Implementing parallel algorithms involves such multiprocessor-dependent issues as

partitioning and scheduling. The problem of partitioning a problem for the iPSC/2 panillel

processor, was~~ studied and implemented. ·.subsequently, a suitable multiprocessor
I ' - -'

scheduling algorith~. namely Hu's algorithm bru61J, ~~s·used·to optimally s~hedule the
' ' '

' '

tasks in the problem; so as to achieve nearly uniform processor utilization and reduce
- '

communication overhead. Moreover, extenstons to Hu's scheduling algorithm (namely ., '

Algorithms Band C) have. been derived to ta~kle its limi~tions and·they'have been realized

in developing better schedules for the given probl~m. An important observation on the

number of processors required for scheduling· :a ·given p~oblem is also derived from these

algorithms. The details are given in.vari~us sections of Chapter IV.
' '

The thesis report is' divided into v;arious chapters relating 'to various topics.
' \

Initially, related-literature work on th~ subject of language theory and parallel processing is
' '

described in chapters I and II. ~Subsequent!~.; .the contributions made by tl;le thesis in

relation to the deye~opment ·and implementation of the parallel algorithms for regular

expressions, and in relation to the concept of the changing form of a regular expression

subjected to a set of transformations, ar~ discussed in Chapter IV. Finally, the report

concludes with a discussidn of the results and future improvements· to this project in

Chapter¥.

CHAPTER II

PARALLEL PROCESSING,

Obtaining more performance from the v~n Neu~ann, m~del is becoming ,

increasingly difficult, The task of solving vety complex problems within specified time

'
periods continues to surpass the capabilities of the ~orld's fastest and most powerful

computers [HWANG89]. Parallel processing holds a good promise to achieve high

performance in solving such complex task&'[KUCK78, HOCK81, HWANG84]. This

chapter presents an overview ,of the concepts of parallel processing, including details of the

Intel's iPSC/2 Parallel Computer, which is the implementation platform used in this thesis.

2. f Introduction

The term parallel processor refers to, a class of systems ,that try to increase the

computing speed by performing more thai). one computation concurrently on more than one

'
processor. Connecting a number of powerful processors or Processing Elements (PEs)

together into a single system and making them solve a single complex problem through

cooperation with each other, is the underlying principle of parallel processing. Parallelism

commonly means to do more than one thing at once, which could be interpreted in several
' " '

' '

ways [DES87]: doing n different activities at once; doing one activity inn simultaneous
' "

parts; doing n activities st~ggered in time; or using k resources for n jobs or k reso~ces for
' '

one job. Events occuring on different processors during' the same time interval are termed,

"parallel" events, and those occuring at the sameinstant are termed "simultaneous" events

[HWANG84].

4

5

One of the factors for the spread and popularity of parallet processing has been

improvements in the hardware technology. Although Grosch's law [t>OR85] states that the
' '

best pricdperformance can _be obtained with th_e. most powerful uniprocessor, it is no longer

true that a system consisting of less powerful processors 'win. have a lower performance
- '

' '

than a single large processor of ~~e same total cost [LEA87]. With the important
' ' '

recognition attained by supercomputing and supercomputers . among researchers who need

more than 100 MFLOPS (Millions-of Floating P~int Operations Per Second) computing
- ' ., '

performance, there is a need for super~omputing-class performance that is more affordable

[KARIN87]. Summing these issues, conventional architectures are close to their
'

performance limits due to physical effects like the-speed of light, supercomputing reso~es

are generally unaffordable due to their high price tags, and researchers' quest for solving
' '

computationally intensive problems-has beep ever increasing. With th~se trends, research

has opened ·gateways to the field of p~llel processing.
-- '

Concurrent or parallel architectures are not a new idea. As early as 1945, Vannevar
I ~ \ r

Bush described some proposals a}ong tl}ese lines. John von Neumann also preferred the . - '

parallel approach [HOCK81], hut dropped, the iqea due to the unreliability and bulkiness of ·
' ' '

vacuum tubes. In the 1950s, Slotnick arid his collaborators at ffiM propo.sed some parallel

architectures like Solomon [SLOT62] and Illiac IV [~ARN68]. But the first general-
, I ~ _, '

purpose, computer commercially available, which could petforril -several operations

concurrently, was the Heterogeneous Element' Processor (HEP) [JORD83]. A partial list

of the many parallel processing· projects that have been 'completed or currently under

progress .is illustrated ~n TABLE I. We can se~ that some parallel corpputers hav:e been·
' '

proposed earlier but without achieving success.)'his could be attributed to the technology

that was inadequate at that time and the general preference to the the conceptual simplicity

of the sequential stored-program computer [DEN85].

Currently, parallel processing is seen as having the potential to improve $UCh

factors as, cost/perlormance, productivity, and reliability. Some applications suitable for

TABLE I

CHRONOLOGY OF PARALLEL PROCESSING PROJECTS

1960-69 1970-79 1980-84 1985-87 1988-90 1990-

Solomon STAR-100 Cyber203 Cray-2 NECIPP Cray-3
STARAN AP-120b Cyber205 CrayX-MP/4 Alliant FX/8 ETA-30
CDC6600 ffiM360/195 ffiM3033 NCube CrayY-MP ffiMRP3

ffiM360/91 ffiM370/165 BSP NECSX-2 iPSC/2
UNIVAC1108 ffiM370/168 CrayX-MP ConvexXP FPST

CDC7600 ILLIACN Hitachi S-810 iPSC/1 Encore
PEPE Fujitsu VP-100 BBN Butterfly Elxsi6400
Cray-1 Hitachi S-820 CM-1 Ametek2010
HEP-1 Fujitsu VP-200 FPS 164 .Hitec-10

Pluribus Cm* NECSX-1 AmetekS-14 ffiM3090/400
Tandem C.mmp DAP Fujitsu VP-400 ffiMGF11

MPP ETA10
Sequent8000

HEP-2
Loral
Flex

7

parallel processing, where high speed is crucial, include scientific calculations [Wll..87], 3-
. '

dimensional partial differential equations so,ution ([PETER85] as ~ited in [HW ANG89H,

monte-carlo t~hniques in physics· and chemistry [~87}, signal processing ofsampled
. '

data [HW ANG89], graph problems [HIRS82], and weather modelling.
1 1 "' I

2.i c'Iassification of Computers . '

There are many ways· of classifying co~puter systems based ()D their structure and/or

behavior. Flynn's classifiqation is bas~ on multiplicity of. instruction stre~s and data_

streams in a computer system [FL YN72], Feng's classification is based on the degree of

parallelism [FENG77], and Handler;s classification is based on ~e degree of parallelism

and pipelining ~n various subsystems [HAND??].· 'Kuck's classification [KUCK78],

which replaced the data streams _with execution streams in Flynn's classification, gives

more detail at the hardware .level:_ -Other classification schemes have been presented by

Treleaven [TREL82], Gajski and Peir [GAJ85], etc.
''. '

Flynn's classification is si.mple and also the. most widely used.- In this
' .

classification, the flow of instructions fe'tched by the. CPU from the memory forms an
,' '

"instruction stream" (IS), and the flow of operands between the CPU and the me~p.ory _

forms a "data stream" (DS).- The four-machine organizations based on this classification
- ' - ' ' ' ' ' ~

are described in the following subsections.

2.2.1 SISD Computer

Single Instruction stream Single Data stream (SISD) organization consists of one

processing element (PE) and one control unit (CU), and it represents the class of

sequential computers. 'The general architecture.of an_ SISD Computer is shown in Figure

1 (a). In SISD computers, instructio~s are executed sequentially but may be overlapped in

their execution stages (a technique called pipelining).

8

2.2.2 SIMD Computer

Single Instruction stream Multiple Data stream (SIMD) organization represents the

class of machines consisting of multiple processing elements, which are controlled by a

single control unit. The general StiJICture of an SIMD machine is shown in Figure l(b). ·

The control unit sends the same i1;1structions to all the PEs which operate on different data

sets from distinct data streams. Some exampl~s of systems belonging to this class are Illiac

IV Array Processor, the Distributed Array Processor (DAP) [HOCK81], Associative

Processors like the Massively Parallel Processor (MPP) [POTI86], and Connection

Machine CM-1 [HILL85].

2.2.3 MISD Computer

Multiple Instruction stream Single Data stream (MISD) organization consists of

multiple processing elements and multiple control units. Its structure is illustrated in Figure

l(c). Each PE receives distinct instructions, but all of them operate on the same data set.

Not many parallel processors fit into this category, except Fault-tolerant computers where

several CPUs process the same data using different programs [HA YES88].

2.2.4 MIMD Computer

Multiple Instruction stream Multiple Data stream (MIMD) organization represents

most multiprocessor systems having the ability to execute several programs

simultaneously. Its structure is shown in Figure l(d). It is almost similar to an MISD

system except thlH each PE operates individually through its own instruction stream on its

own data stream [HW ANG84]. Since the same data space is shared by all processors, the

processors need to interact with each other. If the degree of interactions among the

processors is high in an MIMD computer, it is termed as "tightly" coupled. Otherwise, it is

"loosely" coupled. Intel's iPSC Hypercube [SULL77, GRAH87], Cm* [GEHR87],

NCube [PALM87], Cray X-MP/4, Sequent 8000 [ANI89], etc. belong to the MIMD class.

IS

IS'

(a) Structure of an SISD Computer. (b) Structure of an SIMD Computer. _

~ I cmj I PEl I G. ·lSI
lSI'

.....;;.;;.;;..

- lSI I CUll lSI IPEll DSI B ..lli.

Q ~Q ns Q
Q Q Q ..

Q Q Q
Q Q Q

ISn fcun I ISn· EJ El n~· r~·
ISr I cunl. ISn B DSn I Mm I lSD ...

·n
(c) Structure of an MISD Computer. (d) Structure of an MIMD Computer.

Figure l. Flyrm's Classification of Computers.

(Source: K. Hwang and F.A. Briggs.· Computer Architecture and Parallel Processing, McGraw-Hill
Book Co., New York, NY, p. 33, 1984.)

10

Table II [HWANG84] lists several systems under each of the three existing

computer organizations (no real systems of MISD class exists).

TABLE II

COMPUTER SYSTEMS BASED ON FLYNN'S CLASSIFICATION

Organization

SISD

SIMD

MIMD

Computer systems

IBM 701, IBM 7090, PDP VAX 11n80, IBM 360, Cray-1,
CDC Cyber-205, Fujitsu VP-200; FPS-164, TI-ASC

Illiac IV, BSP, Staran, MPP, DAP, CM-1

IBM 3081/3084, Cm*, Univac 1100/89, C.mmp, Cray-2,
i Cray X-MP, HEP, iPSC Hypercube, NCube, BBN Butterfly

2.3 Types of Parallel Processors

Parallel processors are categorized under the following architectural configurations.

2.3.1 Pipelined Processors

Pipelined processors are those which perform overlapped computations. In a

pipelined processor different parts of a singl~ operation are executed simultaneously in

dissimilar modules connected as stages (called pipeline stages) into a cascade chain

[KOG81]. The structure of a Pipeline Processor is shown in Figure 2. Each operand

passes through several stages in successive time steps before it has been completely .

processed. The effect of all of the pipeline stages on a data element constitutes an operation.

Hence pipeline computers are more tuned for vector processing, where component

operations need to be repeated many times [KAIN89]. Typical examples of pipelined

computers include Control Data Corporation's Star-100 series [CONT70], Tl's Advanced.

Scientific Computer (ASC), Cray-1, Cray-2, etc.

X

y

R: Interstage Register, S : Functional Stage

I I I 1 I 1'

Figure 2. A Pipeline Structure.

(Source: R.Y. Kain. Computer Architecture: Software and Hardware, vol. II, Prentice Hall,
Englewood Cliffs, NJ, p: 30, 1989.)

2.3.2 Vector Processors

11

Vector Processors, as their name implies, are suitable for performing computations

on vector data. Vector processing is characterized by the performance of the same

operation on all elements of a regular array or a vector simultaneously [ALMA89]. Kogge

[KOG81], and Hockney and Jesshope [HOCK81] describe vector processing in detail..

The basic idea of vector processing is outlined below. The multiplication of two 100-

element vectors on a sequential computer would consist of a loop like, for I = 1 to 100 do

A(I) = B(I)*C(I). In addition to fetching '100 pairs of operands, the multiplication

instruction is also fetched and decoded 100 times, which is a large overhead. Instead, a

single vector instructkm, indicating that the same operation be performed on all pairs of

elements of the two vectors, can be used as A(1:100) = B(1:100)*C(1:100).

2.3.3 Array Processors

According to Karplus [KARP87] "an Array Processor consists of a regularly

connected array of processing elements under the supervision of one control unit". All the

PEs perform the same function in synchronization with the help of a data-routing

mechanism. In general terms, an array processor is seen as a rectangular grid, with each

intersection denoting a PE, and the lines between intersections denoting common paths.

The architecture of an array processor is shown in Figure 3. The only function of the PEs

12

is to receive data on the interfaces, operate on the data, and then send data back onto the

interfaces. Most of the important functions are performed by the control unit which include

specifying each PE's operation, properly routing data among the PEs through the

interconnection network, controlling the transfer of data to and from the memory, etc.

[HWANG84].

Data bus Control
Unit

Memory
modules

Processing
Elements

Inter-PE Connection Network (data routing)

Control bus

Figure 3. Functional Structure of an Array Processor.

(Source: K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processmg,
McGraw-Hill Book Co., New York, NY, p. 24, 1984.) ·

2.3.4 Systolic Processors

A Systolic Processor consists of a set of interconnected PEs each capable of

performing some simple operation. The basic principle of a systolic array is illustrated in

Figure 4. A single PE in a conventional computer is replaced with an array of PEs, to

achieve higher computational throughput [KUNG82]. Once a data item is fetched from the

memory, it can be used effectively by each PE it passes through. Thus, systolic systems

13

are suitable when multiple operations are performed on a data item in a repetitive manner

[KAIN89].

MEMORY MEMORY,

(a) A Conventional Processor. (b) A Systolic Array ProCessor.

Figure 4. The Concept of a Systolic Array Processor.
'

(Source: T.Y. Kung. "Why Systolic Architectures?", IEEE Computer; vol. 15, no.1, p. 38, January 1982.)

2.3.5 Multiprocessors

The term multiprocessor includes virtually all architectures with more than one

processor. The system consists of a ~uqt~er of processors, which are connected through
' '

some kind of a communication system to a shared memory, a shared 1/0 system, and ,

possibly to each other [DES87]. Each processor may have its own local memory and also

private devices. A si~gle integrated global operating system provides interactions between

processors and their programs. This system can be viewed as a system with n processors

and m memory units. If all them memory units form one single global main memory,

which can be accessed by all, the PEs, then the system is termed a "shared memory"

system, otherwise it is a "distribu~ed memory" _system [LAK90l The structure of both

these systems is shown in Figure 5. Communication between processors is required in

multiprocessors for coordination purposes, whi~h is employed in the form of "message

passing" in distributed memory systems and in the form of "shared variables" in shared

-memory systems [ALMA89]. The term message passing computer is also used for

distributed memory systems.

Cl Cl Cl

Interconnection Network N

Processmg
Elements

(a) Shared-Memory System.

Memory
Units

Cl 0 Cl

Processing
Elements

Interconnection Network N

(b) Distributed-Memory System.
'

Figure 5. Types of Multiprocessors.

(Source: S. Lakshmivarahan and S.K. Dhall. Analysis and Design of Parallel Algorithms: Arithmetic
and Matrix Problems, McGraw-Hill Book Co., New York, NY, p. 6, 1990.) ~

2.4 Performance Measures

14

Simple metrics such as . clock speed, peak MFLOPS (Millions of Floating :Point

Operations Per Second) rating, peak MIPS (Millions of Instructions Per Second) rating,

memory size and speed, disk size and speed, base system price, price/performance ratio,

etc., are available for evaluating parallel processing systems [HWANG89]. A linear

combination of these that correspond with' the application(s) to be used can help decide to

purchase a parall~l machine. In practice, the- realizable ,performance· from a parallel

processing system may be much lower than the peak performance, whic.h could be

attributable to the improper match between the parallel algorithm and the architecture

[LAK90]. Thus, there.are other factors which can help find how e{fectively the system is

being used. Three such measures will be discussed in this section.

The best known measure of the effectiveness of parallel algorithms is the speed-up

ratio (Sp) [FOX88]. If T(N) is the time required to solve a given problem of size N using

the sequential method, and Tp(N) is the time required to solve the same problem using a

parallel algorithm with p processors, then speed-up is defined as,

T(N)
Sp = Tp(N)

15

Speed-up is normally measured by running the same program on a varying number of

processors. Speed-up is greatly influenced by the amount of time the processors spend in

communicating with each other. For an application, an approximately linear speed-up with

respect to the number of processors is desirable.

Another related measure is efficiency Ep [MOIT87] which is the ratio of speed-up

Sp to the number of processors p. In other words, Ep is the speed-up achievable per

processor. Thus,

An efficiency factor close to 1 implies that the resources (the number of processors used

for the application) in the system are being used effectively, otherwise they are being

under-utilized.

Another important factor is the serial fractionf[KAR90], which is defined as

f _ 1/s - 1/p
- 1 - 1/p

where s is the speed-up on p processors. Serial fraction is used along with speed-up and

efficiency to provide useful information on the performance of a system. It is a measi.rre of

the rate of change of efficiency. If this rate of change is not linear, then it implies limited

parallelism in the application, which can be detected by the serial fraction. Also, this factor

can provide information on load imbalances, overhead of synchronization, etc., which

cannot be obtained from speed-up and efficiency.

2.5 The iPSC/2 Parallel Computer

2.5.1 Hypercube and the iPSC/2

There are several types of parallel processors in existence like shared memory and

16

distributed memory, loosely coupled and tightly coupled, packet switching and message

passing of data, fine grain and coarse grain, and so on. Among these, one set of choices is

the hypercube or the boolean n-cube architecture which is a coarse-grained, MIMD,

loosely-coupled, distributed-memory, message-passing, concurrent computer

[HW ANG89]. The name hypercube origillated from the interconnection network used to

interconnect its processing. elements (PEs) or nodes. There are various types of

interconnection network topologies [ALMA89]~ The hypercube topology is shown in

Figure 6. In this topology the number of nodes is always a power of two (2n). The value n

is called the dimension of the hypercube. ·Each of these nodes is directly connected by

fixed communication channels to n other nodes. The nodes in the cube are numbered 0 to

2n - 1 and there is an edge between two nodes if their numberings differ by one bit position

in their binary representation [HEA TH86].

0 0 1

0 o-----o
(a) n=O (b) n=1

010
00 10

100 110

001
011

01 11

(c) n=2 (d) n=3

Figure 6. n-dimensional Hypercubes for n = 0, 1, 2, and 3.

Intel's iPSC/2 Concurrent Supercomputer employs the hypercube topology. An

iPSC/2 system consists of compute processors, 1/0 processors, and a front-end processor.

17

The front-end processor (generally termed as the iPSC host processor) is called the System

Resource Manager (SRM). Each compute processor.(generally termed as the iPSC node) is

a processor/memory pair, with its own physical me~ory distinct from that of the host and

other nodes. The iPSC computers have supporl for message passing capabilities so as to

communicate with-other nodes. 1/0 processors do not take part in the numerical work of a

computation but provide the iPSC/2 system with access to the file system. An iPSC/2.

application has a host program that runs on the host processor. A group of iPSC nodes,

called a "cube", are allocated for a particular application. A node'program runs on this .

group of allocated nodes. Duties of the host program include initializing the application,

providing the necessary hu~an interface, loading the node program on to the nodes, etc.

[IPSC89]. Duties of a node program include performing ·calculations, exchanging

messages with other nodes, and sending the data back to the host or other nodes [IPSC89] ..

2.5.2 iPSC/2 Node Architecture

A block diagram of the iPSC/2 node architecture is depicted inFigure 7. Each of

the functional units are discussed in detail in _this section.

The Central Processing Unit (CPU)· of the iPSC/2 compute node is the Intel's 16

MHz 80386 microprocessor with a ''rating of 4 MIPS (Million of Instructions Per Second).

Like other modern microprocessors, the 8038~ also employs pipeline architecture, but

unique to the 80386 is the on-chip memory management unit (MMU) which' eliminates the

serious access delays found in implementations that use off-chip methods.

The iPSC/2 node supports two Numeric Coprocessor options for scalar operations,

which reside on the node board itself [CLOSE88]. The first option is the Intel 80387

Numeric Coporcessor which provides floating point, extended integer, and BCD data

types .. The second option is the Intel's SX Scalar Extension module, which provides two to

three times better performance. A third option for vector operations, namely the VP

Coprocessor board, can also be attached via the Standard Bus Interface.

1""- iPSC-VX Vector Accelerator Board I
~ r--

r-
g

Standard
Memory

§ Sub-system CPU
u .9 Bus ~ r--

~ § Interface

\ - 8 j

r-- t ·t
f

0 1

Direct -Connect ,
Routing Module Numeric

6 Coprocessor

Extern all/0

Figure 7. iPSC/2 Node Block Diagram.

(Source: P. Close. "ThdPSC/2 Node Ar~hitecture", Proc. of the 3rd Conf. on Hypercube
Concurrent Computers. and their Applications, p. 44, 1988.)

18

A Routing Logic Interface called the Direct Connect Module., DCM (which replaces

the store-and-forward message passing rpechani~m used in the original iPSC/1 system) is

used in the iPSC/2 system. This module .enhances the performance by reducing the

message passing latency, increasing the node-to-node channel bandwidth, and allows

simultaneous bidirectional message traffic between any two nodes [NUG88]. Routing in

this module is based on thee-cube routing algorithm [SULL77], which eliminates deadlock

between nodes in the network. Paths (combination ·of communication channels) between

any two nodes are dynamically constructed by this algorithm in a step-by-step process

using "routing elements". But the algorithm has a drawback since there is a specific

constraint to guarantee deadlock free communication between nodes.

The Memory Subsystem consists of three components: a 16-Megabyte Main

Memory, a 64-Kilobyte static RAM cache, and a 64-Kilobyte EPROM containing the boot

19

loader.'Main memory can be in configurations of 1, 4, and 8 Megabyte modules. At most

two memory modules can be installed at a time, and hence a maximum of 16 Megabyte

configuration with two 8 Megabyte modules can be obtained.

The iPSC/2 also has a Standard Bus Interface tightly coupled to the 386 CPU bus

to facilitate the attachment of optional boards of popular buses.

2.5.3 NX/2 Operatin~ System

The NX/2 operating , system runs on each node of the Intel iPSC/2 concurrent

computer. It provides .standard system services such as memory management, multiple

process management, message passing capability, intertask protection, and coprocessor

support [HWANG89]. There can be up to 20 user processes on each node. All processes

have access to 1 Gigabyte of virtual address space (due to 386's paging hardware).

There are two protocols for message passing: a "short messages" (100 bytes or

less) 1-trip protocol and a "long messages" (longer than 100 bytes) 3-trip protocol

[PIER88]. There are many short message buffers which can be allocated by each node to

another node. When a node wants to send a short message to another node and there is a

buffer available for it, it simply sends the message. If no buffers are available, it holds the

message until buffers are returned by other nodes to the operating system. When a long

message is sent by a node, the system initially sends a control message (first trip) to the
' '

receiving node. If there is a receive buffer posted for the message on the receiving node,

the system sends back a control message (second trip) to the sending node requesting to

send the rest of the message (third trip).

The message passing capabilities can be accessed through a nested set of system

calls. These calls range from a set of simple synchronous calls, to a set of advanced

asynchronous calls that allow overlap of message passing and processing, to interrupt

driven message calls [IPSC89]. Synchronous calls include "csend", "crecv", "cprobe" and

message "info" calls which block processing till their completion. Asynchronous calls

20.

include "isend", "irecv", "msgwait", "msgdone", and "iprobe" calls, which return as soon

as the operation is initiated and do not block. Interrupt driven calls include the "hrecv" and

"hsend" calls, which allow more independence between message passing and processing ..

Moreover, mixing of calls from different levels is permitted. That is, a message can be sent

with an asynchronous call and can be received with a simple blocking or interrupt-driven

call.

CHAPTER III

FUNDAMrnNTALSOFLANGUAGETHEORY

Programs written in high-level languages are translated .into equivalent machine

code programs before they can be executed on a computer. A program which translates a

program written in a particular high-level language into an equivalent program in some

other language (usually the code for some particular machine) is called a "compiler",

"translator", or "interpreter". Compiling a program consists of two stages [FIS88]: an

"analysis" stage to recognize the structure and meaning of the program to be compiled (i.e.,

to determine the intended effect of the program), and a "synthesis" stage to produce the

machine or assembly code. In addition, there is an "error correction" stage to detect if the

input program is invalid in any sense (i.e., 'does not belong to the language for which the

compiler was written), and if so, return an appropriate message to the programmer.

As far as the compiler is concern~d, an initial phase, called lexical analysis,

normally performs the task of grouping characters together into what are usually referred to

as "tokens" (e.g., print, begin, end, read, identifiers, etc.) [AH086]. A'lexical analyzer is

sometimes called a scanner. A programming language can be thought of as consisting of a

number of strings (sequences of symbols). The definition of a language specifies which

strings belong to the language ("syntax" of the language) and the meaning of these strings

("semantics" of the language).

3.1 Preliminaries

The subject of "formal language theory" provides a definition of a most universal

language structure by specifying precise rules. The word "formal" refers to the fact that all

21

22

the rules for the language are explicitly stated in terms of what strings of symbols can

occur. With this general understanding we can now state some abstract defmitions.

A symbol is loosely defined as any representable character. The terms letter, character, and

symbol are used interchangeably.

An alphabet, denoted by 1:, is any set of symbols. An alphabet will be considered a finite

set for all practical_ purposes. Examples of alphabets include the set of 26 uppercase and 26

lowercase roman letters called the roman alphabet, the set of numbers 0,1,2, ... ,9 called the

decimal alphabet, and the set { 0,1} consisting of only 0 and 1, called the binary alphabet.

A string is a sequence of symbols juxtaposed or put side by side. The terms string, word,

and sentence are used interchangeably. Examples of strings are 0011 over the binary

alphabet, and abba over {a, b}. There exists a special string which is allowed to have no

symbols. This string, called the "empty string'' or "null string", is denoted by e. e belongs

to any language.

A language is always defined over an alphabet 1:. A language over 1: is defined as a set of

strings obtained from 1:. Some examples of languages are

- the empty set <j>,

- the set { e} containing only the empty string, and

-the set { 1 io \ i;;::: 0} consisJing of all strings of zero or more 1's followed by a 0.

There is a special language in which any sequence of symbols from an alphabet 1: is a valid

string including the null string. This is denoted by 1:*, For the binary alphabet { 0,1},

1:* = {e,0,1,00,01,10,11,000,001, ... }

Note that every language over 1: is a subset of 1:*. Thus 1:* is considered the universal

language.

3.2 Regular Expressions

The process of forming tokens is often driven by token descriptions. "Regular

Expression Notation" is a formalism used to describe the various tokens required by

23

programming languages. According to Fischer and Leblanc, Jr. [FIS88], "the interpretation

of regular expressions is the basis of scanner generators, programs that actually produce a

working scannergiven only a specification of the tokens they are to recognize". Such a

program will be a valuable compiler-building tool. The sets of strings defined by regular

expressions are termed "regular sets", which are a Class of languages central to much of

language theory.

One of the operations . defined on regular expressions is the closure operation.

Closure of a language L, denoted by L *,is the set of strings formed by concatenating. any

number of strings from L. Formally, L * is defined as, .

00

L* = r. LI
i=O

The other operations are union and concatenation and they apply the same way as in sets.

When interpreting a regular expression that contains several operators, the closure operator

has the highest precedence followed by concatenation and union operators.

Let r. be an alphabet. The regular expressions over r. and the sets they denote are

defined as follows [HOP79]:

- <1> is a regular expression and denotes the empty set.

- E is a regular expression and denotes the set { E}.

- every symbol, r in the alphabet is a regular expression.
- if rands are two regular expressions, then their union (r+s), their concatenation

(rs), and closure (r*) are regular expressions. . .

Some examples of regular expressions are 00, 0+ 1, o* (strings consisting of any number

of O's), 0*1 *o (strings consisting of any number of O's, followed by any number of l's,

and ending with a 0).

3.3 Finite Automata

Before writing a compiler, it is necessary to have a clear and unambiguous

defmition of the particular source language. There are two methods of defining languages

24

[AH072]: a generator, which uses a generative system called a "grammar", and a

recognizer, which is a highly stylized procedure capable of deciding whether a string

belongs to the language or not. A finite automaton (FA) is one of the simplest recognizers. ·

It is a device for recognizing strings of a particular language, in other words, it can be used

to recognize the. tokens specified by a programming language. Conceptually, a finite

automaton is a ma~ematical model of a system with inputs and outputs. The system can be

in any one of a finite number of internal configunl.tions or "states", some of which are

termed "final" states. There is a control mechanism which passes control from state to state

as each character of the string is read, according to a given set of transitions (or niles).

Thus, a finite automaton is a 5-tuple (Q,:E,o;qO,F) [AH072] where .

- Q is a finite set of states

- :E is a finite set of input symbols

- o is a function which, given a possible combination of the current state and jnput,
takes the automaton to a new state (possibly back to the same state)

- qO is the start state
- F is the set of final states

According to Hopcroft and Ullman [HOP79], "every FA is associated with a

directed graph, called a transition graph, where the vertices correspond to the states of the

FA and arcs correspond to the transitiori(s) that each state can make on an input symbol". If

on input a, the FA moves from a state p to a state q, then there is an arc labeled a from

vertex p to vertex q in the graph. An example transition graph which accepts all strings of

O's and 1 's in which the number of 1 's is a multiple of three is given below. The initial

state qO, is indicated by the arrow labeled "start". The final states qO and q3, are indicated

by the double circle. The start state and one of the final states can coincide. If all the

~ 25

transitions from one state lead to at most one single state on an input symbol, the machine

is called a Deterministic Finite Automaton (DFA), otherwise it is called a Nondeterministic

Finite Automaton (NFA). The automaton shown above is an example of a DFA. An

example of an NFA is shown below. There can also be special moves in an NFA called£-

moves, which means that the finite automaton makes a transition from state to state on an

empty string£.

Now the recognizing power of a finite automaton is illustrated. If after reading the

final character of a string, the finite automaton is in one of the final states then the string is

"accepted" by the automaton otherwise it is "rejected". A way of representing the transition

function 8 is by using a 2-dimensional table, as shown below, with rows representing the

states and columns representing the input symbols. Each entry in the table is the next state

States I

qO
ql
q2
q3

Inputs

0

qO
'ql
q2
q3

1

ql
q2
q3
ql

----------------------------------' '

qO- start state
qO,q3 - final states,

that the automaton will move to, on the input symbol given in the column entry, from the

original state given in the row entry. From the transition table, the following transitions can

be observed.

8(q0,1) = ql

o(ql,l) = q2

Hence,

Similarly,

o(qO,ll) = o(o(qO,l),l)

= o(q1 ,1)
= q2

o(q0,J01001) = q3

which is a final state, and hence the string 101001 is accepted by the DFA.

3.4 Transformation Algorithms

26

As mentioned earlier, a set of transformations can be performed on a regular

expression representing a particular language. A cycle of transformations that are used in

this thesis are shown in ,Figure 8. In the following subsections, an example RE 0*1 * is

T7

T4

Minimized
DFA

Figure 8. Cycle of Transformations Performed on a Regular Expression.

considered and the various changes occuring during this cycle of transformations are

explained in detail. Appendix C gives these details for another example.

3.4.1 Transformation Tl - RE to NFA

Converting a regular expression into an equivalent finite automaton is the first

transformation performed in the cycle. This is the synthesis step as an NFA representing

the given regular expression is constructed. The basis for this step is that there is a simple

27

finite automaton for atomic regular expressions, (i.e., regular expressions without any

operators) as shown below.

(a) RE = E (b) RE =<I> (c)RE =a

A regular expression, r elm be written in the form of (q +r2) or (q .r2) or (q *)

where q and r2 are regular expressions too. Let M 1 and M2 represent the finite automata

for regular expressions q and r2 respectively. Then the finite automaton for the three ,

forms of an RE can be constructed using the rules shown in Figure 9. Applying this

Ml

M2
(a) Union of Ml and M2

Start~l..__·0_ql -MI_@__...I' L--l--®_q2 ._. _M2_C@---II
(b) Concatenation of M 1 and M2

E

Start

(b) Closure of M 1

Figure 9. Rules for Synthesizing an NFA from Automata Ml and M2.

(Source: J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory. Languages. and
Computation, Add1son-Wesley, Readmg, MA, p. 31, 1979.)

28

construction technique iteratively yields the automaton for a given regular expression.

The method is illustrated through an example. Consider the regular expression

0*1 *. The regular expression in "COmplete paranthesized form (considering operator

precedence) is ((0)*.(1)*). Note that concatenation is now denoted by the symbol "."
' ' '

instead of juxtaposing. This is in the form of q .r2 where q = (0)* and r2 = (1)*. Again

q is in the form of r3* where r3 = 0. The finite automaton for r3 can be obtained directly

from the basis step. Then we use the construction step of Figure 9(c)' to obtain the finite

automaton for 0* as follows.

Similarly, the finite automaton for (1)* can be constructed. Now we use the construction

step of Figure 9(b) on the machines Ml and M2 to obtain the automaton for 0*1 *as shown

in Figure 10. Note that the automaton o}?tained by this method is an NFA with some E-

moves.

Figure 10. NFA WithE-moves for theRE 0*1 *.

29

3.4.2 Transformation T2 - Removing £-moves

This transformation removes thee-moves from the NFA obtained in the previous

step. The method is illustrated through a simple example. We will come back to the

example of 0* 1 * a little later in this section. Consider the NF A with £-moves given below,

which accepts the language consisting of any number (including zero) of O's, followed by

any number of 1's followed by any number of . Note that arcs labeled E may be included

in any path. Thus the string 012 is accepted by the NFA by following the path with arcs

labeled 0, E, 1, E, 2.

£-closure(q) of a state q is the set of all states p such that there is a path from q top

with' one or more arcs labeled E. Let us find the E-closure(qO) for the NFA shpwn above.

There is always a path from qO to qO with an arc labeled E. There is a path from qO to q 1

with an arc labeled E. Also, there is a pinh from qO to q2 with arcs labeled E, e. Hence E-

closure(qO) = { qO,q 1,q2}. Similarly E-closure(q 1) = { q 1 ,q2}, and E-closure(q2) = { q2}.

Let M = (Q,1:,8,qO,F) be the NFA with £-moves. Then the new NFA M' is

constructed by following the algorithm [HOP79] in Figure 11. Let us apply these rules to

the NFA considered above. The new machine is given by M' = ({qO,q1,q2}, {0,1,2},

8',q0, F') where

F' = F U {qO} as E-closure(qO) contains the final state q2
= {qO,q2}

Then we determine the new transition function, 8' as follows.

8'(q0,0) = E-closure(P), where

P = 8(8'(q0,E),O)

= 8(£-closure(qO),O)

Thus,

let the NFA withE-moves be M = {Q,:r.,8,qO,F);
'

the NFA without E-moves is given by

M' = (Q,:r.,8',,q0,F');
where ,

8'(q,E) =:= E-closure(q);

if E-closure(qO) contains a state ofF then
F' = F U {qO};

else, F' '= F;

for any string w in :r.* and any symbol a in :r.

8~(q,wa) = E-closure(P)' where,

P = (p\for some rin 8'(q,w), pis in 8(r,a) };

Figure 11. Algorithm for Removing E-moves in an NFA.

(Source: J.E. Hopcroft and J.D. Ullman. Introductton'to Automata Theory. Languages. and
Computatton, Addison-Wesley, Reading, MA, p. 26, 1979.)

= 8({q0,ql,q2},0)

= 8(q0,0) U 8(ql,O) U 8(q2,0)

= {qO} U <I> U <I>
= {qO}

8'(q0,0) = E-closure(qO)
= (qO,ql,q2}

30

Following this approach, the transition function of M' is determ!ned. Thus the NFA after

removing E-moves is shown below.

Using this method on the example of 0* 1 *, whose NFA with E-moves was shown

in Figure 10 of section 3.4.1, we obtain the NFA without E-moves as shown in Figure 12.

31

0 1

S,F cp {ql,q2,q3,q4,q5,q7) {q5,q6,q7)

ql {q1,q2,q3,q4~q5,q7) <I>

~ { q 1 ,q2,q3,q4,q5,q7) {q5,q6,q7)

q3 <I> {q5,q6,q7)

q4 <I> {q5,q6,q7)

'qS -<I> {q5,q6,q7)

cf> <I> {q5,q6,q7}

F q7 <I> {q5,q6,q7}

Figure 12. NFA Without E-moves for theRE 0*1 *.

3.4.3 Transformation T3- NFA to DFA

This transformation removes the nondetenninism from the automaton obtained in

the previous transformation. That is, a DFA equivalent to the given NFA will be

constructed. Let M = (Q,:E,o,qO,F) be the given NFA. Then we can construct the DFA M'

by the-algorithm [AH072] presented in Figure 13.

let the NFA be given by M = (Q,:E,o,qO,F);

the equivalent DFA is given by M' = (Q',:E,o',qO',F') where

Q' is the power set of Q;
/* the states of M' are sets of states of M *I
qO' = { qO};
F' consists of subsets, S of Q such that S Q F :t:- <I>;

for all subsets S, and any symbol a in :E, o'(S,a) = S' where

S' = {p\8(q,a) contains p for some q inS};

Figure 13. Algorithm to Construct a DFA from an NFA.

(Source: A.V. Aho and J.D. Ullman. The Theory of Parsing. TranslatiOn. and Compiling,
Prentice-Hall, Englewood Chffs, NJ, p. 117, 1972.)

Consider the NFA M obtained in transformation T2 for theRE 0*1 *as shown in

Figure 12. Since M has 8 states it appears that the DFA M' to be constructed will have

32

28=256 states. But, not all of the 256 states will be accessible from the initial state {qO},

and hence M' may not contain all the 256 states. Since { qO}, the start state, is always

accessible the construction begins from this state.

o'({qO},O) = o(qO,O) = {q1,q2,q3,q4,q5,q7} and

o'({qO},l) = o(q0,1) = {q5,q6,q7}.

Let Ql = {ql,q2,q3,q4,q5,q7} and Q2 = {q5,q6,q7}, and consider these as the new states

obtained. Then,

o'(QI,o) = o·c r q I,q2,q3,q4,q5,q7 },O)

= o(ql,O) u o(q2,0) u o(q3,0) u o(q4,o) u o(q5,0) u o(q7,0)
= {q1,q2,q3,q4,q5,q7}
=Ql

o'(QI,I) = o({qi,q2,q3,q4,q5,q7},1)
= { q5,q6,q7}
=Q2

Following this procedure, the new transition function is completely determined when no

more new states are encountered. In this example, we see that Ql and Q2 are the only new

states obtained. Since Q1 and Q2 both contain state q7 which is a final state of M, both Ql

and Q2 are termed as final states of M' along with qO. Thus the DFA equivalent to the

given NF A is shown in Figure 14.

S,F

F

F

QO=[qO]

Ql =[q 1 ,q2,q3,q4,qS;q7]

Q2=[q5,q6,q7]

0 1

Ql Q2

Ql Q2

<I> Q2

Figure 14. DFA Equivalent to the NFA for theRE 0*1 *.

3.4.4 Transformation T4- Minimizin~ the DFA

The DFA constructed in transformation T3 may have redundant and inaccessible

states which are removed in this transformation. Consider the DFA shown in Figure 14.

for pin F and q in Q-F do
mark .(p,q) entry in the table;

for each pair of distinct states in F x For (Q-F) x (Q-F) do
begin · ·

if for some input symbol a, (C>(p,a),B(q,a)) is marked then
begin .

n;tark (p,q) entry in the table; _.
recursively J]lark all unmarked entries on the list for (p,q) and
on the lists of other entries th,aJ are marked at this step;

end; /* then */ '

else begin , /*no pair (C>(p,a),~(q,a)) is marked*/
for all input symbols a do ' -

if C>(p,a) <> C>(q,a) then
put (p,q) on the list for (C>(p,a),C>(q,a));

end; /*end else*/
end /*do*/

Figure 15. Algorithm for Marking Pairs of Inequivalent States in a DF~.

(Source: J.E. Hopcroft and J.D. Ullman. Introduct10n to Automata Theory. Languages.
and Computation, Addison-Wesley, Readmg, MA, p. 70, 1979.)

33

The algorithm for minimizing a DFA [HOP79], outlined in Figure 15, will find the set of

states which are equivalent. A table is c0nstructed with an entry for each pair of states as

shown below. Each entry corresponding t~ one final state and one nonfinal state, that is the

entries (q0,q3), (q1,q3), and (q2,q3), are marked wlth an X. For each entry (p,q) that is

not yet marked in the table, we consider the pair of states r=B(p,a) and s=B(q,a) for each.

input symbol a. If the entry (r,s) is marked for some input symbol a, then the entry (p,q)

gets marked. If the (r,s) entry does no~ get marked for all inputs, then the pair (p,q) is

placed on a list associated with the (r,s) entry. If (r,s) entry gets marked in further steps,

then each pair on the list associated with the (r,s) entry also gets marked.

In this example, to mark the entry (ql,qO) we see that B(q1,0) = C>(qO,O) and also

B(q1,1) = B(q0,1), that is qO and ql states go to the same state on both input symbols 0 and

1. Hence (q0,q1) entry can neither be marked nor can it be placed on any associated list.

34

ql

q2 X X

F X X X I
ql q2

For the entry (q2,q0) we see that,(B(q2,0),B(q0;0)) = (q3,q1) has already been marked and

hence (q2,q0) entry gets marked. Continuing with these steps we complete marking the

table. From the table we see that only (q0,q1) entry is not marked, and hence states qO and

ql are considered equivalent. They are merged into a new state Ql, and the other state q2

is retained as is in the minimized DFA. Moreover, B(Ql,a) = B(qO,a) U B(q1,a) for any

input a. Now, the minimum state DFA can be easily constructed as shown in Figure 16.

QO=[qO,ql]
Ql=[q2]

Figure 16. The Minimized DFA for theRE 0*1 *.

3.4.5 Transformation T5- DFA toRE

In this transformation the transiti0n graph of a finite automaton is extended to have

arcs labeled by regular expressions. The algorithm, shown in Figure 17, builds a regular

expression for the set of strings accepted by each individual final state [SUD88]. The

language accepted by the DFA is then given by the union of these regular expressions. Let

the arc from state q1 to state qJ be denoted by Wij (wij=<l> if there is no such arc). A set of

subgraphs are constructed from the original transition graph G of the DFA such that each

subgraph has exactly one final state of G. Each sub graph is processed by deleting particular

states as shown in Figure 18. To delete a state qh all paths of length two that have

35

make m copies (Gt, G2, ... Gm) of the transition graph G such that each
subgraph has one unique final state of G.

for t=l tom do
begin

repeat
a state qi is chosen in Gt that is n~ither the start nor the final state;

/* delete this state as follows */
for every pair of states qj. qk not equal to qi (including qj=qk) do
begin , ' ,

if Wji '# <1> and Wik '# <1> and Wii = <1> then
,an arc is added from state qJ to state qk labeled WjiWik;

if Wji '# <1> and Wik '# <1> and Wii '# <1> then
an arc is added from state qJ to state qk labeled Wji(wii)*wik;

if states qj., qk have arcs WJ, w2, .. wr connecting them then
they are replaced by a single arc labeled WI U w2 U ... U wr;

state qi and all arcs incident to it are removed from Gt;
end; /*do*/

until Gt has only the start and final states;
the regular expression REt for Gt is determined;
the regular expression for the graph G is accumulated as

REG = REG + REt;
end; /*do*/

Figure 17. Algorithm to Build an RE Representing an FA.

(Source: T.A. Sudkamp. Languages and Machmes: An Introduction to the Theory
of Computer Science, AddJson-Weslcy, Readmg, MA, p. 160, 1988.)

state qi in between state qJ and state qk are found. Then an arc is added directly from state

qJ to state qk, and labeled WjiWik if Wii = <j>, else labeled Wji(Wjj)*wik·

(a) Case 1 - wu = <!>
q

~~-p~•~~~~r--~•~·@0 ~ ~6
(a) Case 2 - wu <> <!>

Figure 18. Two Cases in Deleting a State q1•

36

After deleting all possible states, the reduced graph has at most two states, a start

state and a final state. This graph may have the following form, where the start and final

states coincide. The regular expression for this g:t;aph is w 1 *. On the other hand, the graph

may have the following form.

wl~-----w-2~-----:-.....,
w4

The regular expression for this graph is w1 *wz(w3 U w4w1 *wz)* which may be

simplified if any of the arcs in the gr~ph is missing.

Now, consider the minimized DFA shown in Figure 16 of section 3.4.4 for the

example RE 0* 1 *. Since this graph has t}VO states, two subgraphs are constructed as:

1

Subgraph Gl Subgraph G2

State Q1 in Gl can be easily deleted since It does not fit into any of the two cases shown in

Figure 18. This leaves the reduced version of G 1 as follows.

RE=O*

37

02 cannot be reduced any further since it has exactly one start state and one final state. The

RE for 02 is 0* 11 *. Then, the RE for the original graph G is obtained by the union of the

REs for G 1 and 02 as , 0* + 0* 11 ~ ,,

3.4.6 Transformation T6- RE eQUations for the DFA
' '

This transformation determines the -set of RE equations which represents a finite

automaton. Let m be the number of states i,n the given automaton. Let aij denote the set of

input symbol~ such that B(qj,a1j) = qj for i=1, ... ,m and j=1, ... ,m. If there are no such

transitions, then aij = E, since any state can be reached from itself by an arc labeled e. Let

Xk represent the RE for the state qk. Then the following equations can be written for an

automaton [ARD60].

x1 = x1a11 + x2a21 + ... + xmamt + e
X2 = x1a12 + x2a22 + ... + Xmam2
Xm = Xtalm + x2a2m + · · · + Xmamm

Note that the equation for the start state XI has an E added at the end. For the DFA

shown in Figure 16 of transformation T4, we can write the set of RE equations as follows.

Xo=XoO+E
Xo =XoO +Xtl

I
II

where Xo and Xt represent the expressions for the-states QO and Q1, respectively.

3.4.7 Transformation T7 - Solution of RE Equations
- '

This method is similar to that of solving a set of linear equations using Gaussian

elimination. The algorithm for solving a ~et of n regular expression equations [AH072] is

presented in Figure 19. The algorithm relies on the ~act that there is a simple solution to the

equation X = Xa + b where a and b are regular expressions. One of the solutions for this

equation is X= ba*

The method is illustrated through an example. Consider the following set of RE

equations.

i=1;
while i $ n do
begin

write equation for Xi as X1 = Xi + b where
a is an RE and b = bo + Xi+1bi + .. + Xnbn (each bi is an RE)
for r = i+ 1 to n do

In the equation for Xr replace X1 by the RE ba*
i = i + 1;

end; /*do*/

/* At this point, the equation for X1 will have only symbols in l: and
Xi, .. ,X0 on the RHS. Thus the equation for Xn will have only Xn and

symbols in l: on the RHS. *l

i = n;
while i ~ n d,o
begin

Solve for Xi= ba*;
~u~stitute ba* for X1 in the remaining equations;
1 = 1- 1;

end; /*do*/

Figure 19. Algorithm for' Solving a Set of RE Equations.

(Source: A.V. Aho and J.D. Ullman. The Theory of Parsmg. Translation. and Compihng,
Prent1ce-Hall, Englewood Chffs, NJ, p. 106, 1972.)

Xt=Xt0+X21+£

X2=X20+X31

X3=X11+X21

Equation (1) can be written as

which can be solved as

Equation (4) can be substituted in Equation (3) to obtain

X3 = (X21-te)0*1 + X2l .

= X2(10*1+1) + 0*1

Now Equation (2) can be solved as

(1)

(2)

(3)

(4)

(5)

38

Substituting Equation (6) in Equation (5) we obtain

X3 = x310*(10*1+1) + 0*1
' '

= X3(10*10*1+10*1) + 0*1

(6)

(7)

We have now reached the last step of the algorithm. We solve for X3 to obtain,

X3 = 0*1(10*10*1+10*1)* (8)

X3 can now be back substituted in Equation (6) to get

X2 = 0*1(10*10*1+10*1)*10* (9)

Then X2 can be substituted in Equation (4) to obtain the solution for XI.·

39

Following this procedure, we can obtain the solution for equations I and IT obtained

in transformation T6 for the DF A in Figure 16, as follows.

Xo=O*
XI= 0*11 *

Since both QO and Q1 are final states, the regular expression for the DFA is obtained by the

union ofXo and XI. Thus the final RE for the DFA is given by 0* + 0*11 *.

CHAPTER IV

MUL TIPR,OCESSOR SCHEDULING

As mentioned earlier, parallel processing proyides a possibl~. solution in meeting the
' I

increasing demand for computational speed in solving very ~omplex problems which

would not be possible on sequential computers. Interestingly enough, many physical

problems show some sort of inherent parallelism which enables· them to be modeled by

parallel systems. This factor makes it possible for solving many complex problems on

parallel systems. Extracting this inherent parallelism effectively from a given problem leads

to the solution of the problem, which could be subsequently implemented on a parallel

system. Initially, a given problem is decomposed or partitioned by identifying the

sequential units of computation; called "tasks", in the problem and e~tablishing the

interdependencies among them [FOX88]. Subsequently, the tasks are assigned to a set of

available processors following a scheduling procedure. Partitioning and scheduling are

two important multiprocessor-dependent issues in implementing parallel algorithms

[POLY86]. In this chapter, we will discuss the partitioning and sche~uling approaches

used in the implementation of parallel algorithms for the transformations described in

section 3.4.

4.1 A Partiiiomng Approach

The first step in the implementation of parallel algorithms is partitioning the

problem. As mentioned above, partitioning a problem consists of identifying the sequential

units of computation, called ~·tasks", m the given problem. The partitioning appro~ch

adopted must ensure to make the granularity of the parallel algorithm coarse enough for the

40

41

target multiprocessor [SARK89]. The parallelism in the problem is usually specified by the

way tasks depend on each other in the partitioned problem. These dependencies should be

kept at a minimum by the approach used for partitioning. In this section we will discuss

the partitioning approach used in the thesis.

The first transformation T1, in the cycle of transformations shown in Figure 8 of.

Section 3.4, is to synthesize a finite automaton from a regular expression. The construction

method is described in section 3.4.1. It can be easily seen that this process is similar to

evaluating an arithmetic expression with various operators and operands. Several methods,

both sequential and parallel, for evaluating an expression are available in the literature

[AH072, AH086, MOIT87, RAM71]. The approach adopted in the thesis follows the

general concept of evaluatin~ an expression in Reverse Polish Notation [SOR76].

Initially, a regular expression is converted into a form which consists of only binary

operators and the two operands. This requires. adding a dummy operand (say 0 or 1) to
. '

the right of every closure operator in the RE. For example, 0* becomes 0*0. But this
. . '

dummy operand will not be used in the evaluation of theRE. Also, the concatenation

operation, which is generally represented by juxtaposing its two operands, is now

represented by the operator "." between the two operands in the RE. Thus, 00 is

represented as 0.0 in theRE. Using these transformations, a given RE, for example,

(0*1 + 11)1 + (00+0*1)0 + 0*1

is now represented as,

(0*0.1+1.1).1 + (0.0 + 0*0.·1).0 + 0*0.1

Then this expression is converted to post-fix notation by using the Polish algorithm

[SOR76] as follows.

00* 1.11.+ 1.00.00*1.+0.+00*1.+

Identifying the individual tasks in the RE represented in this form is now straightforward.

Each binary operation (the two operands and the binary operator succeeding them) consists

42

of a single task. Identification of tasks is completed when the last task in the RE is

identified. The tasks are identified for the given RE as shown in Figure 20.

0 0 * 1 • -1 1 • + 1 .• 0 0 • 0 0 * 1 • + 0 • + 0 0 * 1 • +

T 1·r +1·1 r 1·+0·+11-+
T T T

T6 T2. + f • T3 17 T8 +

+ J
T9 1 • T10 0 • + T8 +

T J
Tll. Tl2 + T8 +

J
T13 T8 +

~
T14

Figure 20. Partitioning an RE into Tasks.

One can directly see that tasks T1, T2, T3, T4, and Ts do not depend on any other tasks

(they only need 0 or 1 as their operands), and are. thus independent. But task T6 depends

on task T1 since it needs the result of task Tt as one of its mput. In a similar fashion the

other dependencies can be established from the partitioned problem.

4.2 Graphical Representation of the Problem

A problem partitioned into several tasks forms a task system, which can be

represented in a form that shows the relationships among the tasks. Various representation

43

forms for a task system are available [AH086, GURD85], and two simple forms are

discussed in this section.

4.2.1 Precedence Graphs

In general, a task system can be modeled by a precedence graph [COFF76], which

is a directed acyclic graph (DAG), G consisting of a set of nodes and a set of edges

(directed arcs). An example of a pr~cedence graph is shown in Figure 21. Each node nj in

G represents a task Ti and each arc between nodes nj and nj indicates that a precedence

relation exists between the tasks, T1 and Tj. on these nodes. This precedence relation

specifies which one of the tasks, T1 or Tj. needs to be initiated before the other one. The

"predecessors" of a task T1 are the nodes from which arcs are incident to Ti, and the

"successors" of Ti are the nodes to which arcs are incident from Ti. Nodes with no
''

predecessors are called leaf nodes which represent the initial tasks in the system. A task can

be executed or assigned when all of its predecessors hav.e been executed or assigned. Each

node is associated with an attribute called 'weight of the node which is the execution time of

the task represented by that nod~ (node weight and node execution time are used

interchangeably).

Figure 21. An Example of a Precedence Graph.

4.2.2 Rooted Trees

Another form of representing a task system is by a rooted tree [HU61]. A rooted

44

Figure 22. An Example o(a Rooted Tree.
'

tree is a directed graph similar to a precedence graph in which each node has at most one

successor (and any numbe~ of predecessors,- including zero predecessors). The node

which has no successors is called the root node; An example of a rooted tree is shown in
'

Figure 22. This corresponds to theRE partitioned into a task system in Figure 20. We can
- '

easily see that node T14 is the root node and nodes T1, T2, T3, T4, and Ts, which do not

have any predecessors in the inverted tree are the leaf nodes.

4.3 Scheduling Algorithms

Once the tasks have been represented in the form of a suitable graph, they can be

assigned to a set of processors on the multiprocessing system. A schedule or assignment ,

for a given precedenc~ graph and a multiprocessor system with p processors, is a

complete description of the work to be done l;>y each processor as a function of .time

[RAM71]. The schedule must not violate any of the precedence relationships in the task

graph and it must not allocate more than one processor to a task at any given time. There

are several ways of representing schedules for a task systems.

4.3.1 Gantt-Chart Representation of a Schedule

One of the simplest ways to display or specify a schedule is by timing diagrams

called Gantt charts [CLARK52]. For the precedence graph shown in Section 4.2.1, a

schedule on three processors is drawn in the form of a Gantt chart as shown below. An

idle period denoted by <1> on this chart is a time interval within which the processor is not

PI

P2

P3

T1

T3

I

T4

T2

I .I

I <I>

T6 <I>

I T5 T7

I I
012 34 56 7

executing any task. The execution time or schedule length of a schedule is the total time

taken to execute all the tasks in the. graph as specified by the schedule [COFF76]. The

execution time of the schedule shown above is 9. The Speed-up ratio Sp obtained by a

schedule on p processors is 'the ratio of the time taken to execute the task system on an

uniprocessor system (which is equal to, 'the s·um of all node weights) over the execution

time obtained by the schedule on p processors rPOL Y86]. In the example, Sp =:= 18n for p

= 3. The efficiency (utilization factor) Ep obtained by a schedule is the ratio of the total

busy time of all the processors to the total time during which all the processors were

available for execution [HWANG84]. In the example, Ep = 18n*3 = 18/27.

4.3.2 Scheduling Algorithm A

In this section we will describe a multiprocessor scheduling algorithm, called

Algorithm A, which schedules a task system given in the form of a rooted tree. Algorithm

A follows the general approach used in the Hu's algorithm for multiprocessors ([HU61] as

cited in [HWANG84]). Each node in the graph is assigned a label as follows.

• The label of the root node is set to 1.
• The label of any other node is set to 1 plus the label of its unique successor node.

46

For the rooted tree in Figure 22 the label table is shown below.

Tl T2 T3 T4 TS T6 TI T8 T9 TIO Til Tl2 T13 Tl4

6 5 5 6 3 5 5 2 4 4 3 3 2 1

Let L denote the value of the maximum label in the label table, Wi denote the subset

of jobs with label i, and lwil be the number of tasks in Wi. We defme the width, wo of the

graph as,

wo =max (lw}l, lw21, ... , lwLI).

Thus, for the graph in Figure 22 we have,

w6 = {T1,T4}, ws = {T2,T3,T6,T7}, w4 = {T9,T10}, w3 = {Ts,Tu,TI2l.
W2 = {Tg,T13}, and WI= {Tt4}

Hence, the width is

wo = max(2,4,2,3,2,1) = 4.

Algorithm A [HU61] for scheduling a rooted tree on p processors is outlined in

Figure 23. The trace of this algorithm can be illustrated by scheduling the task graph in

Figure 22 on p=2 processors. Initially we see that lwsl>2, and either T2 or T3 can be

chosen as the victim node since they have no predecessors in W6. T2 is chosen arbitrarily

and moved to the set W6. At this point the set representation is,

W6 = {TI.T2,T4}, ws = {T3,T6,T7}, w4 = {T9,T10}, w3 = {Ts,Tu,Tt2l.
w2 = {Tg,T13}, and w1 = {T14};

Now lw61>2 .. Any one of the tasks in W6 can be chosen as the victim since they are leaf

nodes. Again, T2 is chosen arbitrarily and moved to a new set w7. At this point the set

representation is,

W7 = {T2}, W6 = {Tt,T4}, ws = {T3,T6,T7}, W4 = {T9,TIO},
w3 = {Ts,Tu,Tt2l. w2 = {Ts,T13}, and w1 = {T14};

Now, since lwsl>2, T3 is moved from ws to W6 and then to w7. Subsequently, Ts is

moved from w3 all the way up to w7, and then to a new set wg. At this point,

Ll:

L2:

Label tasks and group them into sets Wi as described in text.

if Wil S p for i = L, ... , n, ... , 1 then
_Goto L3;

else if for some i, lwjl > p then
n=i;

if n ;e L then
find a noqe from wn that does not have any predecessors in Wn+ 1;
I* such a node can always be found in a rooted tree *I
change the node's label from n to n+ 1;

end I* then *I

ifn = L then
select any node from the set WL as the victim;
I* since all are leaf vertices in WL *I
ch'ange the node's label from L to L+ 1;
increment L by 1;

end I* then *I

Goto Ll;
L3:

form the schedule as follows:
fori= 1,2, ... , L do

execute a task in the set Wi in the (L-i+1)th unit of time on one of
the p processors;
I* if less than p tasks available then the remaining processors idle *I

end I* do *I

Figure 23. Algorithm A: Scheduling a Rooted Tree on p Processors.

(Source: T.C. Hu. "Parallel Sequcncmg and Assembly Lme Problems", Operations Research,
vol. 9, no. 6, pp. 841-848, 1961.)

ws = {Ts}, w7 = {T2,T3}, w6 = {T1,T4}, ws = {T6,T7}, w4 = {T9,T10},
w3 = {Tu,T12}, w2 = {Tg,T13}, and w1 = {T14};

Now, lwiiS2 for i=1, ... ,6. Hence, the schedule can be obtained as shown below.

Pl T5 T3 T4 T6 T9 T11 T8 T14

P2 <l> T2 T1 T7 TlO Tl2 Tl3 <l>

0 2 3 4 5 6 7 8

Figure 24. Schedule Obtained by Algorithm A on p=2 processors.

47 '

48

To schedule the tree on p=4 processors, we see that lwil ~ 4 for i=1, ... ,6. Hence,

the schedule can be readily obtained from the initial set representation of the tasks in the

label table as shown below. Note th;it the width woof the tree is also 4. Thus, we can see

that when p=wo (that is, when the number of processors is equal to the width of the

graph), the schedule is obtained directly frorri ,the initial set representation of the tasks.

PI

P2

P3

P4

0

Tl

T4

c:t>

c:t>

T2 T9

T3 TIO

T6 c:t>

T7 c:t>

'2 3

TS T8 T14

Til Tl3 c:t>

Tl2 c:t> c:t>

c:t> c:t> <l>

4 5 6

It should be noted that Algorithm 'A has certain limitations. Firstly, it is limited to

rooted trees and secondly, the rooted tree must have equal weighted nodes.

4.3.3 Another Partitioning Approach

In the RE (0* 1 + 11) 1 + (00+0* 1)0 + 0* 1 considered in section 4.1, we see that the

sub-expression 0* and 0*1 are repeated. In the partitioning approach used in section 4.1

we did not consider this fact, and identified different tasks for the sub-expressions which

are repeated in the RE. This approach leads to replication of a task on processors, either

different or same, which is a major disadvantage. This can be avoided by identifying a

repeated sub-expression with a single task, and then establish the dependencies to other

tasks. An RE with common sub-expressions is partitioned as shown in Figure 25. Then

the tasks can be represented in the form of a DAG as mentioned earlier.

4.3.4 Scheduling Algorithm B·

The resulting DAG obtained by the above mentioned partitioning approach will not

be a rooted tree, since it will have nodes havmg more than one successor. S'ince Algorithm

A is limited to rooted trees, it cannot be used to schedule this DAG. A multiprocessor

49

RE: (0* 11 +0*)0* 110 + (0* 11 + 11)0

Polish notation: (0 * 0 • 1 * 0 + 0 * 0) • 0 * 0 • 1 * 0 • 0 + (0 * 0 • 1 * 0 + 1· * 0) • 0

0 0 * 10 *. 0 0 * + 0 0 * 10 *. 0 •·• 0 0 *, 10 *. 10*+0•+

TT T TT TT T
T1 T2 • T1 + Tl T2 • 0 • • Tl T2 •

' ' ' T3 T1 + T3 0 • • T3. T2 + 0. + ,_

' i
T4 T5 • T6 0. +

' ' T7 T8 +

T9

Figure 25. Partitioning an RE with Common Sub-expressions. ·

<

scheduling algorithm called Algorithm B has been developed to overcome this problem.

The alogorithm has a preprocessing :step in converting the given DAG with some nodes

having multiple successors into a rooted-tree form with equal node weights.

Removing the constraint of equal node weights

The constraint that all nodes should have equal weights can be eliminated as

outlined below. A process of normalization can be d~fined for general task graphs. Any

task graph G can be converted into 'another graph G' in which all nodes have equal

weights [GON77] as shown in Figure 26. A node n1 with weight Wi . can be split into a

sequenc~ of r nodes (all with execution time t) such .t~at w1=rt. Then the graph G is

redrawn to obtain G' by maintaining the integrity of the original graph. The idea is to fmd

the least factor of all the node weights in the original graph G and use this factor as the

value fort. Obviously, if this factor is anything other than 1, the vaue r for each node is

not very large. This ~eeps the exploration of nodes in the new graph G', which is the cost

of the conversion process, to a low value.

jt=2
'' I

(a) (b)

Figure 26. (a) Graph with Tasks of Unequal Node Weights.
(b) Graph with Ta.sks of Equal Node Weights.

r=3

(Source: M.J. Gonzalez. "Deterministic Processor Scheduling", Computing Surveys,
vol. 9, no. 3, p. 186, September 1977.)

Removing the constraint of limitatiqn to a rooted tree

50

The second constraint of "limitation to 11 rooted tree" in Algorithm A can be

removed as fo1Iows. Consider the DAG sho~n in Figure 27(a). Starting from T1. the

condition of a rooted tree is violated at node T 1 which has two successors. This violation

can be removed by replicating the suQtree above (and including) the node T1 as' many times

as the number of successors of T1. Since T1 has no predecessors (a source node), T1 is

simply duplicated as T11 and T12· The graph is transf<:>rmed as shown in Figure 27(b) by

drawing the directed arcs from T11 to T2, and from T12 to T3 corresponding to the

precedence relations among tasks TI, T2, and T3 in the original graph. For the graph in

·Figure 27(b) the condition of a rooted ·tree is again violated at node T3 which has three

successors. Hence the sublree above and including T3 is replicated three times.

Subsequently, the precedence relations are established by drawing the directed arcs

between T31 and T4, T32 and T5, and T33 and T7. Note that T12 in the subtree also gets

51

replicated as T121, T122. and Tt23· Now the graph in Figure 27(c) is a complete rooted

tree version of the DAG in Figure 27(a).

~~
®

(a) (b) (c)

Figure 27. Illustration of Converting a DAG into a Rooted Tree.

Obviously, this method suffers from the disadvantage of the replication of nodes in

the resulting rooted tree. For a node at ,a violation point, let P be the number ofall nodes in

the subtree above it and let S be the number, of its sucessors. It can be seen easily that the

replication factor at each violation point is given by '(P+l)S- (P+l) = (P+l)(S-1) = PS.

But, it will be shown in Scheduling Algmjthm B that the replication of nodes is only for the

purpose of representation and will not be reflected in the schedule to be developed. That is,

if a node T1 is duplicated, it will not be assigned twice as T11 and T12 to two processors

(same or different).

Now we will describe the scheduling Algorithm B which assumes that a given task

graph has already been preprocessed so that a corresponding rooted tree with equal node

weights is available. Consider the rooted tree with replicated nodes in Figure 28(a) which

corresponds to a given DAG that has been preprocessed. Each node in the graph is

assigned a label as follows:

52

• The label of the root node is set to 1.
• The label of any other node (including replicated nodes) is set to 1 plus the label of.

its unique successor node.

Using this labeling scheme, the label table for the tree is obtained as shown in Figure

28(b). Note that replicated nodes have different labels.

rru tn2 T211 T212 T22 T2~ T3 T41 T42 TS T6 T7

4 3 4 3 3 3 3 3 2 '2 2 1
'

Figure 28. An Example of a Rooted Tree with Repeated Nodes and Its Label Table.

Let L denote the value of the maximum label in the label table, Wi denote the set of

tasks with label i, and lw11 denote the number of tasks in Wj. The width WG of the graph is

defmed as in Algorithm A. The initial set representation of the tasks is as follows.

w4 = {Tu, T21}, w3 = {T4t.T:i2.T12. T23. T24, T3}, w2 = {T42,Ts,T6}, w1 = {T7}

Once the tasks have been labeled and grouped into sets Algorithm B, outlined in Figure 29,

can be used for scheduling the rooted tree (with repeated nodes) onp processors.

The trace of this algorithm for scheduling the above tree on p=2 processors is as
" ' '

follows. Initially, we see that the leaf nodes T1 and T2 (actually 1'11 and T21 which"will be

scheduled as Tt and T2 respectively) can be scheduled from w4 during the first time

interval. This reduces w4 to {}. Subsequently, T41 (scheduled as T4) is selected· from w3

for the second interval (since both its predecessors have been scheduled) and removed from

w3. Now, T22 can be chosen, but being a repeated task one of whose cournterparts is

already scheduled in the previous time interval, T22 is removed from w3. At this point, _

repeat
Select at most p tasks from Wi such that:

they are the leaf nodes;
or
all their,predecessors have been assigned in an interval previous to the
current time interval; ·

if the predecessor of a task is a repeated node then
any counterpart of a repeated node is considered its predecessor;

if a repeated node needs to be sele~cted then
if any of its counterparts has been selected earlier or in the
current interval then

discard it from the current set Wi;
else select it for the current time interval;

end; /*'then *I

if all tasks in the set Wi have been tried for selection then . '

goto next set Wi+ 1;

Schedule the p (or fewer) tasks on p processors during the current interval;
until (all tasks have been scheduled);

Figure 29. Algorithm B: Scheduling a Rooted Tree With Repeated Nodes
on p Processors.

53

Similarly, tasks T12, T23, and T24 ·are tried and removed from w3. Then, task T3 is

selected since it satisfies all the conditions. In this manner, the complete schedule is

constructed as shown in Figure 30.

Pl Tl T4 T6 T7

P2 T2 T3 T5 <1>

0 2 3 4

Figure 30. Schedule Obtained by Algorithm B on p=2 Processors.

4.3.5 Scheduling Algorithm C

Algorithm B has a disadvantage in the form of replication of nodes during the phase

54

of preprocessing. A multiprocessor scheduling algorithm called Algorithm C is developed

which also schedules a task system given in the form of a DAG on p processors. The

advantage of Algorithm C over Algorith~ B is thCJ.t the phase of converting a DAG into a

rooted tree is eliminated and the algorithm schedules the DAG directly. .

Consider the task graph with some nodes·having multiple successors as shown in

Figure 31. Each node in it is assigned a label as follows.

• The label of the root node is set to 1. .
• The label of any other node is set to 1 more than the label of its successor. If a node

has more than 1 successor, than the maximum label is considered.

T9 T8 T7 T6 T5 T4 T3 T2 T1

1 2 2 3 3 3 4 5 5

Label Table

Figure 31. An Example of a DAG with Some Nodes Having Multiple Successors.

Using this labeling scheme the label table for the DAG is obtained as shown in Figure 31.

Note that the label of the task Tt is 4, and not 3.

Again, let L denote the maximum label in the table, w1 denote the set of tasks with

label i, and lwil denoted the number of tasks in the set w1• The width wo of the graph is

defined as in Algorithm A. Thus, for the DAG shown above, the inital set representation

of the tasks is as follows.

Once the tasks have been labeled and grouped into sets, they can be scheduled on any

number, say p, of processors using Algorithm C outlined in Figure 32.

L1:

L2:

L3:

Label nodes and group them into sets Wi as described in text.

if lwil :s; p for i = L, .. ,n, . . 1 then goto L3;
else if for ·some i, lwil > p then n = j; ·

ifn =F L then
find a node from wn that does not have any predecessors in Wn+ 1;
if no such node available in w0 then · · ·

n = n + 1; ·
goto L2

end I* then *I
change the node's label from n to n+1;

end I* then *I

ifn = L then
select any node from the set WL as the victim;.
I* all are leaf nodes in WL *I
change the node's label from L to L+ 1;
increment L by 1; ·

end /* then */
goto L1;

form the schedule as follows:
for i = 1,2, .. ,L do

Execute a task in the set Wi ,in the (L-i+ 1)th unit of time on the
p processors;
I* if fewer than p tasks available then remaining processors idle *I

end /*do*/

Figure 32. Algorithm C: Scheduling a DAG on p Processors Directly.

55

The trace of the algorithm for scheduling the DAG in Figure 31 on p=2 processors

is as follows. Initially, we see that lw3l > 2, but none of T4, Ts, or T6 can be chosen as

the victim node since they have a predecessor in w4. So we try to search for the victim in

w4. Again we fail and finally T1 in ws is chosen as the victim. Then T1 is removed from

ws and added to a new set W6. At this point,

Again lw3l > 2, and, following the same argument, T2 is now removed from ws and added

to W6. Now, we have

56

In the next step, T3 will be removed from w4 and added tows. Then one of T4 or Ts or T6

can be moved to w4, giving a set representation as follows.

w6={T1.T2}, ws = {T3}, w4 = {T4}, w3 = {Ts,T6}, w2 = {T7, Ts}, w1 = {T9}

Now, lwil <= 2 for i=1, ... ,5, and hence the schedule is formed as follows.

PO Tl T3 T4 TS T7 T9

PI T2 ci> ci> T6 T8 ci>

0 2 3 4 5 6

Figure 33. Schedule Obtained by Algorithm C on p=2 Processors.

4.4 Implementation and Optimization Issues

Various aspects of implementation of the problem on the iPSC/2 hypercube system,

and several optimization issues are considered in the following subsections.

4.4.1 Optimal Number of Processors

From the algorithms described above, it can be seen easily that when p=wa (that

is, when the available number of processors is equal to the width of the graph), the

schedule can be directly obtained from the initial set representation of the tasks in the label

table. The length of the schedule thus obtained will be equal to L, where Lis the number

of nodes in the longest path in the DAG. Moreover, it has been shown that, for any

precedence graph, L is the minimal schedule length of any optimal schedule [CON67].

Hence, the schedules obtained by either Algorithm A, B, or C have minimum schedule

lengths when the available number of processors is equal to the width of the graph.

Thus we conclude with the followmg lemma which captures this important

observation from these scheduling algorithms.

Lemma: Consider a task system of n tasks given in the form of a graph G (either a DAG or

a rooted tree) which has a width, wG=k. This system can be executed by Algorithm A, B

57

or C in L units of time on k processors where L is the number of nodes in the longest path

in G.

This is a definite improvement over scheduling the graph G on m processors by any

other algorithm, which would also yield a schedule-length of L, where m is the number of

initially available tasks (or leaf nodes) of G. Larger number of processors (i.e., more than

m in this case) would result in poor processor utilization. Suppose a program can be

executed in a given time interval by a lesser number of processors than the available
. '

number of processors. Then, the remaining processors could be used as back up

processors in critical applications, resulting in increased reliability and efficiency. In non-

critical applications, they can be used for doing some important background operations,

resulting in better utilization and performance.

Moreover, the schedule obtained on p (>wa) processors will have the same

schedule length as the schedule obtained when p=wa-. In the case when p>wa, the ·

additional (wo-p) processors will idle throughout the schedule length. Thus, as an

optimization, the user is informed of this optimal number of processors.

4.4.2 Suitability Issue

Another factor, which is the suitability of this application on the hypercube, is

discussed in this section. To achieve better speed-up and utilization, each node (individual

processor) on the hypercube should have a sufficiently large computation time in

comparison to the communication time between the nodes (communication between nodes

is required for synchronization purposes). This was realized by feeding a regular

expression reasonably large in size (that is, one which contains a large number of terms and

numerous operators) as the input to the cycle of transformations in Figure 8. Typically, at

the end of every cycle of transformations, there would be an explosion of.terms in the new

regular expression relative to the most recent one. This could be attributed to

transformations T3 (converting an NFA to a DFA) or T6 (solving the set ofRE equations)

58

depending on whether the shorter or longer cycle of transformations is chosen. Hence by

feeding a large enough RE, we obtained an RE much larger in size every time through the

cycle of transformations. As the size of the RE grows the corresponding finite autOJ;naton

has a large number of states, and hence. the computation needed in synthesizing and

subsequently processing such an FA is also large. Thus, each node performs a sufficiently

larger number of computations on successive cycles of transformations. Hence, this

application is suitable for the hypercube as the computation time is on a larger scale than the

communication time.

4.4.3 Memory Allocation Issues

Another implementation issue discussed in this section is the memory allocation for

the data structures used in the program. A DFA is represented by a 2-dimensional array

and an NFA by a 3-dimensional array (so as to accomodate for its nondeterministic

behavior) in the program developed. A major factor which influences the allocation of

memory for these structures is the indecisiveness of their sizes. As noted earlier, there is

an explosion of states occuring in a finite automaton through every cycle of

transformations. This explosion factor is not determinate. Thus, no definite bound can be

fixed on the size of the arrays for the NFA and the DFA. One approach is to decide on an

arbitrary size and stat~cally allocate memory to these arrays. But, this approach has two

major drawbacks. It might lead to an inefficient usage of memory if the automata are not

large enough to fill the whole array. On the other hand, the approach might even fail when

the explosion of states in the NF A is too large to be accomodated in the fixed size arrays.

Such examples have been encountered and can be evidenced in Appendixes C and D.

A better approach that has been adopted in the program is to obtain an

approximately close estimate on the number of states in the NFA based on the number of

operators in theRE at the beginning of each iteration. Initially, the arrays are sized to this

estimate by using dynamic memory allocation features, which facilitate altering the size of

59

the arrays. Thus if the number of states in the NFA grows larger than the size of the array,

more memory is allocated to them. This technique avoids the uncertainity and the problems

involved in the previous approach. In additio~, the 3-dimensional array used for

representing an NFA has been observed to be mostly sparse. That is, only certain states in

the NFA exhibit the non-deterministic behavior, which implies that only certain lists in the

3-dimensional array expand in size while others donot. Hence only such lists need to be

allocated more memory. This calls forth¥ use of sparse array techniques for the NFA

array. In the program implemented for thi~ thesis project the NFA-array is realized by

using a 2-dimensional array of linked lists and the dynamic memory allocation features.

These techniques helped reduce the amount of memory used by the program.

4.4.4 Machine-Independent Communication Issues

An optimization issue in reducing the communication overhead is discussed in this

section. By arbitrarily assigning a task Ti with a final label i to a processor during a time

unit, we obtained the schedule for p=2 case as shown in Figure 24 of section 4.3.2. In

this schedule, we see that T6 assigned to processorPI depends on TI assigned to processor

Pz. Hence processor Pz has to communicate the result of T1 to processor PI; until then

task T6 "blocks" on processor P1. Similarly, task T7 blocks until it gets the result of T4

from processor PI. The same situation exists during the 5th time interval, when tasks T9'

and Tw have to block for the results of their predecessors Tz and T3, respectively. This

communication overhead can be avoided if a task is assigned judicious!~ to a processor,

based on the task's predecessors. For example, when T6 is to be assigned we check that

its predecessor TI has been assigned to processor Pz, and hence we try to assign T6 to

processor Pz. If a task has more than one predecessor, then we assign it to that processor

to which at least any one of its predecessors has been assigned. Following this

optimization, the schedule on p=2 processors for the tree in Figure 22 is shown in Figure

34. From this schedule, we see that only one communication is required between the two

60

processors between tasks Tu and T13. Since communication involves wasting time,

reducing the communication between processors is a significant improvement.

PI T5 T3 T4 T7 TIO Tll T8 T14

P2 <l> T2 T1 .T6 T9 T12 T13 <l>

0 I 2 3 4 6 7 s·

Figure 34. Schedule Obtained by Algorithm A after Communication Optimization.

4.4.5 Machine-Dependent Communication Optimization

Another implementation as well as optimization issue is discussed in this section. It

also concerns the aspect of communication between processors which is important in

implementing parallel programs on the hypercube system. It is made feasible by the use of

message passing features available on the iPSC/2 hypercube system.

Consider the rooted tree and the corresponding schedule obtained by Algorithm A

on two processors as shown iQ Figure 35. , We consider the execution sequence of

processor P2. Initially P2 can execute the task T2; and then has to wait for the message to

PI Tl T3 1'5 T8

P2 T2 T4 T6 T7

0 I 2 3 4

Figure 35. An Example of a Rooted Tree and a Schedule to Illustrate
the Look Ahead Approach.

T9

<l>

5.

61

be arrived from processor Pl for the execution of task T4. The conventional approach

would be to block execution until the 'message has arrived by using the synchronous

"crecv" call of ~e desired message ~ype on the iPSC/2 sys_tem. This approach is simple and

straightforward Jrom the programmers point of view, but results in the loss of processor
' '

time (a valuable resource) and a corre'sponding decrease in the speed-up.

As an alternative, processor· P2 posts an asynchronous receive request for the

desired message through the "irecv" call 'on the iPSC/2 system. It then checks if 'the

message has arrived yet or not, through the "cprobe" message ipformation call. If the .

message has already arrived, task T4 is immediately' executed. If it has not yet arrived,

then processor P2 adopts the "look-ahead" approach and scans its job queue for the next

task that is "ready" to be executed. A "ready" task is one with no predecessors at all or one

whose predecessors have all been executed on the same processor or one which has

received messages from all its predecessors from all processors. In this case, processor P2

finds task T6 which is an independent task and hence executes it, instead of blocking at T4.

Subsequently, it switches context back to· task T4, probes again for its requested receive

message, and again follows the look-ahead approach, if necessary: It should be noted that

multiple probing calls can be safely posted, but posting multiple receive calls for one

pending message to be received is a programming error.

Although an asynchronous "crecv·" call was posted for receiving a message on

processor P2 (receiving processor), the sending processor (processor Pl in this case) has

the choice to send the message through ~ny type of call. In this program, messages are

always sent by the synchrono11:s "csend" call, since it blocks only for a short period of tirile

until the message leaves the sending processor. Also, a simple "csend" call avoids any

further programming complexity.

It is emphasized here that, sending a message synchronously and receiving it

asynchronously is made feasible by the flexibility, provided by the iPSC/2 system, of

freely mixing different types of message passing calls.

CHAPTERV

SUMMARY AND FUTURE WORK

5.1 Summary

Since parallel proc~ssing provides a possible solution to solving computationally

intensive problems, the current trend is to avoid the limitations 9f uniprocessors systems by

using several processors. The underlying principle of parallel processing is to connect

several powerful processors into a single system and make them solve a complex problem

through coordination and cooperation with each other.

The problem that was considered for parallel implementation in this thesis is a set of

transformations that can be perfo!ffied on regualr expressions and finite automata both of

which form the basis of a "lexical analyzer". The parallelism existing in the sequential

algorithms for these transformations was exploited to develop parallel algorithms.

1 Subsequently, the parallel algorithms were implemented in the C programming language on

a typical parallel processor, namely Intel's iPSC/2 which is a 32-processor, distributed

memory system with a hypercube inte:r:connection topology between the proqessors.

Certain multiprocesor _performance IJieasures, such as speed-up, processor, efficiency, and

serial fraction were evaluated and the results are discussed.

A given RE was initially partitioned and represented in the form of a task graph by

an approach wihch yields a "rooted tree". Then a mutiprocessor scheduling algorithm

called Hu's algorithm (referred to as Algotihm A in this report) was used and implemented

to schedule the tasks in the rooted tree on a varying number of processors. Realizing the

limitaitons of Algorithm A, a different approach to partitioning the RE was adopted which

yields a DAG with nodes having multiple successors (this is a better approach than the

62

63

partitioning approach yielding a rooted tree, since it considers all repeated sub-tasks as a

single task). Subsequently, two scheduling algorithms were developed to execute such a

DAG. One of them, called Algorithm B, was- a,nalyzed theoretically and was not

implemented due to its cost factor. The other scheduling algorithm, called Algorithm C,

was developed as an extension to Hu's algorithm and was implemelued. Both theoretical

and practical values have, been obtained for the performanc~ measures usin:g both

Algorithms A and C. Also, the results havy been discussed and compared.

An important observation was made from these algorithms regarding the number of

processors needed to schedule a task graph in minimum time. This observation, which

depends on the "width" of the graph, has been stated as a lemma. In addition, several

optimizatins have been realized in developing the schedules for varying number of

processors which helped reduce the communication between tasks assigned to different

processors. These optimizations have been realized in the implementation and schedules

obtained with and without these optimizations were compared.

As another objective, the changing form of a regular expression, which has been

subjected to a set of transformations a number of times, has been studied. It was observed

that one such cycle of transformations appeared to produce regular expressions that are in a

closed form which can be loosely called a "canonical form". Another cycle of

transformations always yielded the canonical form generally after a larger number of

iterations than the first one (or it would not even produce a canonical form). Thus it was

decided that the former cycle "converges" and the latter cycle does not always converge, or

it "diverges".
' .

Certain limitations of the program are mentioned below. The size of a given RE,

and hence the NFA, grows exponentially through each iteration of the "divergent" cycle.

Under such situations the program demands too much memory which might fail. Thus, the

program is restricted to a certain size of the RE and the NF A. Also, the size of the input

symbol set is limited due to memory constraints. Another drawback of the thesis research

64

is that space and/or time complexity analysis for the scheduling Algorithms A, B, and C is

not done in this project.

5.2 Future Work

It should be noted that Algorithms A, B, and 'C assumed, prior to scheduling, .that

all the tasks have "approximately" equal execution times. This assumption holds true in the

case of evaluation of RE's because in the process of transforming REs, each individual task

represents either "concatenation", "union", or "Closure" of tasks all of which have the same

time complexity in the corresponding algorithm. Other algorithms which do not have such

restrictions can be investigated and implemented. Another improvement would be to

predetermine the execution times of all tasks, through historical data, heuristics,or some

kind of preprocessing, and then u~e a suitable scheduling algorithm. This. would probably
''

lead to stochastic scheduling approaches which are more practical.

In the scheduling algorithms the communication time required to communicate

information between tasks on different processors was assumed to be negligible. But in ..

practice, the communciation time significantly reflects upon the speed-up and other

measures. Thus another improvement, which has practical significance, is to estimate the

communication time based upon the amount of information to be communicated between

processors and upon the communication scheme used on the implementation platform.

Such multiprocessor scheduling algorithms, which utilize the communication times during

the scheduling process, could be developed and implemented. Some such algorithms are

available in the literature.

Other future work includes investigation of other transformations that can be

performed on regular expressions and finite automata, implementation of Algorithm B and

comparing the results with that of the other algorithms, implementation of all the algorithms

on shared memory parallel processor and comparison of results, and time/space complexity

analysis of all scheduling algorithms.

REFERENCES ·

[AH072] A.V. Aho and J.D. Ullman.· The Theory of Parsine. Translation. and
Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[AH086] A.V. Aho, R. Sethi,:and J.D. Ullman. Compilers Principles. Technigues
and Tools, Addison-Wesley, Reading, MA, 1986. "

[ALMA89] G.S. Almasi and A. Gottlieb. Highly Parallel Computing, The
Benjamin/Cummings Pub. Co., Inc., RedwOQd City, CA, 1989.

·".

[ANI89] 0. Anita (Ed.) Guide to Parallel Programming on Seguent Computer
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[ARD60] D.N. Arden. "Delayed Logic and Finite State Machines", in Theory of
Computing Machine Design, PP: 1-35, Univ. of Michigan, Ann Arbor, MI,
1960.

[BARN68] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.J. Sl()tnick, and R.A.
Stokes. "The ILLIAC IV Computer", IEEE Trans. on Computers, vol. C-
17, no. 8, pp. 746-757, August 1968.

[BRZ062] J.A. Brzozowski. "A Survey of Regular Expressions and Their
Applications", IRE Trans. on Electronic Computers, vol. EC-11, no. 3, pp.
324-335, June 1962.

[CLARK52] W. Clark. The Gantt Chart , 3rd Edition, Sir Isaac Pitman & Sons, Ltd.,
London, 1952.

[CLOSE88] P. Close. "The iPSC/2 Node Architecture", Proc. of the 3rd Conference on
Hypercube Concurrent Computers. and Applications, pp.43.:50, 1988.

[COFF76] E.G. Coffman Jr. (Ed.) Computer and Job-ShQP Scheduling Theory, John
Wiley, New York, NY, 1976.

[CON67] R.W. Conway, W.L. Maxwell, and L.W. Miller Theory of Scheduling,
Addison-Wesley, Reading, MA, 1967.

[CONT70] "Control Data STAR-Computer System~·. Publication 6025600, Hardware
Reference Manual, Control Data Corporation, Arden Hills, MN, 1970.

[DEN85] P. Denning. "The Science of Computing: Parallel Computation", American
Scientist, vol. 73, no. 4, pp. 322-323, August 1985.

[DES87] G.R. Desrochers. Principles of Parallel and Multiprocessing, Intertext
Publications, Inc., McGraw-Hill Book Co., New York, NY, 1987.

65

66

[DOR85] P. Ein-Dor. "Grosch's Law Revisited", Comm. ACM, vol. 28, no. 2, pp.
142-151, February 1985.

[FENG77] T.Y. Feng. (Ed.) "An Overview of Parallel Processors and Processing",
ACM Computing Surveys, special issue, vol. 9, no. 1, March 1977.

[FIS88] N.C. Fischer and J.R. LeBlanc Jr. Crafting a Compiler, The
Benjamin/Cummings Pub. Co., Inc., Menlo Park, CA, 1988.

[FLYN72] M.J. Flynn. "Some Computer Organizations and Their Effectiveness",
IEEE Trans. on Computers, vol. C-21, no. 9, pp. 948-960, September
1972. '

[FOX88] G.C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.
Solving Problems on Concurrent PrOcessors: General Techniques and
Regular Problems, vol. I, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[GAJ85] D.D. Gajski and J.K. Peir. "Comparison of Five Multiprocessor Systems".
Parallel Computing, vol. 2, pp. 265-282, November 1985.

[GEHR87] E.F. Gehringer, D.P. Siewiorek, and G. Segall. Parallel Processing: The
Cm* Experience, Digital Press, Digital Equipment Corporation, USA,
1987.

[GON77] M.J. Gonzalez. "Deternministic Processor Scheduling", Computing
Surveys, vol. 9, no. 3, pp. 173-204, September 1977.

[GRAH87] J. Graham, and J. Rattner. "Expert Computations on the iPSC Concurrent
Computer", Multiprocessors and Array Processors, edited by W.J.Karplus,
pp. 167~ 176, Simulation Councils, Inc., San Diego, CA, January 1987.

[GURD85] J.R. Gurd, C.C. Kirkham,, and I. Watson. "The Manchester Prototype
Dataflow Computer", Comm. of the ACM, vol. 28, no. 1, pp. 34-52,
January 1985. , , -

[HAND77] W. Handler. "The Impact of Classification Schemes on Computer
Architectures", Proc. of 1977 International Conference on Parallel
Processing, edited by J.L. Baer, pp. 7-15, Detroit, MI, 1977.

[HA YES88] J.P. Hayes. Computer Architecture and Organization, 2nd Edition,
McGraw-Hill Book Co., New York, NY, 1988.

[HILL85] W.D. Hillis. The Connection Machine, MIT Press, Cambridge, MA, 1985.

[HIRS82] D.S. Hirschberg. "Parallel Graph Algorithms without Memory Conflicts".
Proc. of 20th Allerton Conferen~e, pp. 257-263, 1982.

[HOCK81] R.W. Hockney and C.R. Jesshope. Parallel Computers, Hilger, Bristol,
1981.

[HOP79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory.
Languages. and Computation, Addison-Wesley, Reading, MA, 1979.

[HU61]

67

T.C. Hu. "Parallel Sequencing and Assembly Line Problems", Operations
Research, vol. 9, no. 6, pp. 841-848, 1961.

[HWANG84] K. Hwang and F.A. Briggs. Computer Architecture and Parallel
Processing-, McGraw-Hill Book Co., New York, NY, 1984.

[HW ANG89] K. Hwang and D. Degroot. Parallel Processing- Supercomputer and
Artificial Intelling-ence, McGraw-Hill Series in Supercomputing and Parallel
Processing, McGraw-Hill Book Co., New York, NY, 1989.

[IPSC89]

[JORD83]

[KAIN89]

[KAW87]

[KAR90]

[KARIN87]

[KARP87]

[KOG81]

[KUCK78]

[KUNG82]

[LAK90]

[LEA87]

[MOIT87]

iPSC/2 User's Guide, InteL Scientific Computers, Beaverton, Oregon,
October 1989. ·

H.F. Jordan. "Performance Measurements of HEP-Pipelined MIMD
Computer". Proc. of the lOth Annual Symposium on Computer
Architecture, Stockholm, Sweden, pp. 207-212, June 1983.

R.Y. Kain. Computer Architecture: Software and Hardware, vol. II,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

M.H. Kalos., "Monte Carlo Methods and the Computers of the Future".
Supercomputers-Alg-orithms. Architectures. and Scientific Computation,
Edited by F.A. Matsen and T. Tajima, Univ. of Texas Press, 1987.

A.H. Karp and H.P. Flatt. "Measuring Parallel Processor Performance",
Comm. of the ACM, vol. 33, no. 5, pp. 539-543, May 1990.

S. Karin and P.N. Smith. The Supercomputer Era, Harcourt Brace
Jovanovich Publishers, Boston, MA, 1987.

W.J. Karplus. (Ed.) Multiprocessors and Array processors, The Society of
Computer Simulation, Simulations Councils, Inc., San Diego, CA, Jan
1987.

P.M. Kogge. The Architecture of Pipelined Computers, McGraw-Hill Book
Co., New York, NY, 1981.

D.J. Kuck. The Structure of Computers and Computations, voL 1, John
Wiley, New York, NY, 1978.

H.T. Kung. "Why Systolic Architectures?", IEEE Computer, vol. 15, no.
1, pp. 37-46, January, 1982.

S. Lakshmivarahan and S.K. Dhall. Analysis and Design of Parallel
Algorithms: Arithmetic and Matrix problems, McGraw-Hill Book Co., New
York, NY, 1990.

R.M. Lea. "An Overview of the Influence of Technology on Parallelism",
Major Advances in Parallel Processing, Edited by C. Jesshqpe,· pp. 3-12,
1987.

A. Moitra and S.S. Iyengar. "Parallel Algorithms for some Computational
Problems", Advances in Computers, Edited by M.C. Yovits, vol. 26, pp.
94-153, Academic Press, San Diego, CA, 1987.

68

[NUG88] S. Nugent. "The iPSC/2 Direct-Connect Technology", Proc.' of the 3rd
Conference on Hypercube Concurrent Computers and Applications, pp. 59-
68, 1988.

[PALM87] J.F. Palmer. "The NCube Family of Supercomputers", Multiprocessors
and Array Processors, Edited by W.J. Karplus, pp. 177-187, Simulation .
Councils, Inc., San Diego, CA, January 1987.

[PETER85] V.L. Peterson. "Use of Supercompute~s in Computational Aerodynamics",
Proc. of the 1985 Science and Ener~y Symposium, Cray Research Inc.,
Minneapolis, 1985. . ·

[POL Y86] C.D. Polychronopoulos. "On Program Restructuring, Scheduling, and
Communication for Parallel Processor Systems", Centre for
Supercomputin~ Research & Development, Rep. No. 595, August 1986.

[PIER88] P. Pierce. "The NX/2 Operating System", Proc. of the 3rd Conference on
Hypercube Concurrent Computers and Applications, pp. 51-57, 1988. ·

[POTT86] J.L. Potter. The Massively Parallel Processor, 2nd Edition, The MIT
Press, Cambridge, MA, 1986.

[RAM71] C.V. Ramamoorthy, K.M. Chandy, and M.J. Gonzalez. "Optimal
Scheduling Strategies in Multiprocessor Systems", IEEE Trans. on
Computers, vol. C-21, no.2, pp. 137-146, February 1971.

[SARK89] V. Sarkar. "Partitioning and Scheduling Parallel Programs for
Multiprocessors", Research Mono~aphs in Parallel and Distributed
Computin~, The MIT Press, Cambridge, MA, 1989.

[SEIT84] C.L. Seitz and J. Matisoo. "Engineering Limits on Computer
Performance", Physics Today, vol.. 37, no. 5, pp. 38-45, May 1984.

[SLOT62] D.L. Slotnick, C.W.Borck, and R.C.McReynolds. "The SOLOMON
Computer", Proc. of the AFIPS Fall Joint Computer Conference, vol. 22, ·
pp. 97-107, 1962.

[SOR76] P.O. Sorenson and J.P.Tremblay. "An Introduction to Data Structures
with Applications, McGraw-Hill Book Co., New York, NY, 1976.

[SUD88] T.A. Sudkamp: Lan~ua~es and Machines: An Introduction to the Theozy of
Computer Science. Addison-Wesley, Reading, MA, 1988.

[SULL77] H. Sullivan, F.R. Bashkow, D. Klappholz, and L. Cohn. "A Large Scale
Homogoneous, Fully Distributed Parallel Machine", Proc. of the 4th
Annual Symposium on Computer Architecture, College Park, MD, pp. 105-
124, 1977. .

[TREL82] P.C. Treleaven, D.R. Brownbridge, and R.P. Hopkins. "Data-Driven and
Demand-driven Computer Architectures", ACM Computin~ Surveys, vol.
14, no. 1, pp. 95-143, March 1982.

[WIL87] R. Wilhelmson. (Ed.) Hi~h Speed Computin~: Scientific Applications and
Al~orithm Design, University of Illinois Press, 1987.

APPENDIXES

_,.

APPENDIX A

USER MANUAL

A.l Introduction

This is the user manual ~or the parallel· implementation of Regular Expression

Transformation Algorithms on the Intel's iPSC/2 32~node HyP.ercube machine. The

programs are written in the standard C language {except for extensions supported by the

iPSC/2 System for message-passing capabilities). The· programs have been compiled on the

C-386 compiler and have been executed on the iPSC/2 System with varying number of

processors. The programs are compatible with the Green Hill Compilers (except for the

extensions supported by the iPSC/2 System).

A major objective of this progranlming project is to study the performance issues of

some multiprocessor scheduling algorithms. The project also attempts to study the

changing form of a Regular Expression subjected to a set of transformations. More details

on RE transformations, Scheduling Algorithms, etc., can be obtained from the various

chapters and appendixes of the report.

This project is divided into two main modules: a host module which is a collection

of routines that run on the host, computer, and a node module which is a collection of

routines that run on all of the nodes (processors) of the iPSC/2 System. The host module

and the node module are designed in a way that avoids much of the synchronization

between them except for an initial and a final item of information to be communicated

between them. On the other hand, the programs in the node module co-ordinate and

synchronize their execution through communication with each other appropriately.

70

71

A.2 Description of the Host MOdule

The input to the host module is a regular expression (REj of arbitrarily long size

and its input symbol set (i.e., alphabet). The host module partitions this RE into a set of

tasks and represents it as a task system in the form of a graph. Two partitioning approaches

are adopted. The. first approach partitions the RE such that repeated common sub

expressions are identified as distinct tasks. This approach always yields a representation for

the task system in the form of a "rooted tree~·. The second approach of partitioning

considers the repeated common sub-expressions and identifies all of them into a single

task. This approach alway~ yields a representation for the task system in the form of a

DAG with some nodes possibly having multiple successors.

When the former partitioning approach is chosen (yielding a rooted tree for the

partitioned RE), the host module sched\lles the tree. on an arbitrary number, say p, of

processors using the scheduling Algorithm A to prodU<;e the schedule in the form of a Gantt

chart. When the latter approach is chosen (yielding a DAG with nodes having multiple

successors), the host module schedules this DAG using Algorithm C to produce the

schedule in the form of a Gantt chart.

Once the schedule has been obtained in the form of a Gantt chart, performance

measures like "serial execution time", "parallel executi.on time", "speed-up", "efficiency",

and "serial fraction" are evaluated. Subsequently, the host module sends the initial

information in the form of a Gantt-chart and the task graph (either rooted tree or DAG) to·

the node module to initiate its execution~ After. the node module completes execution, the

host module recieves information from the node module on the timing parameters.

The host module is divided into sub-modules each corresponding to the functions

described above. Each sub-module is contained in a separate file as described below.

FileName

host.c

partn.c

schedule.c

misc.c

Description

The driver routine for the host module. Also, calculates
and tabulates all the results for Appendixes.

Contains the two partitioning approaches, namely,
partn_A for AlgOrithm A and partn_B for Algorithm C.

·Obtains the sch¢ule _in the form of a Gantt chart using
Algorithm A or c; and performs the needed optimizations
as described in'Section 4.4. '

Miscellanious ·functions.

A.3 Description of the Node Module

72

The node module does the core computation for this package. The node module

comprises. a set of nodes (p~essors) each ~nning the same program. All the nodes work

together and synchronize their execution through communication with each other. This

module is initiated by the information sent by the host module and subsequently it does not
'

need any more information from either 't~e host module or the user to complete its

execution. After completion of its execution, the node module sends information back to
'

the host module for calculating the practicial results.

The node module is divided into a set of sub-modules. Each sub-module~ contained

in a separate file as described below, corresponds to one of the transformation depicted in

Figure 8 of Section 3.4.

FileName Transformation Description Nodes

makenfa.c Tl · Converts RE to an NF A All
with e-moves

ecl.c T2 Removes e-moves in the NFA All

nfa_dfa.c T3 Converts the NF A to a DFA Root

min.c T4 Minimizing the DFA Root

dfa_re.c T5 DFAtoRE All

eqns.c T6 RE eqns for the DF A Root

73

TI Solution of RE eqns Root

other.c Miscellaneous routines All

Some of the transformations are ,performed in parallel on all the nodes.

transformation Tl is executed by all the nod~s. but the'final NFA is available only on the

the root node which then sends the NF A .to all other nodes. Subsequently, transformations

T2 and T5 are performed on all nodes, but transformatiQns ,T3, T4, T6, and T7 are

performed only on tlie·root n<><l.e. At the end. of the cycle of transformations, the final RE
~ ["

along with the timing information is sent to the hos~ m~ule by the root node.

A.4 Variables Influencing Execution

Some factors which affect the execution of the program are discussed here. All

these factors concern the-constant definitions included in the header files (host.h in the host
' I

module and node.h in the node module). The user should choose the values of these

constants appropriately (depending on the size ofRE, size ofNFA to be produced, and the

implementatin machine) before executing the· program.
' '

I '

DEBUG: Flag to obtain the debug output of the program.

ALG_A: Choice of Algorithm A which will 'be solicited from the user.

ALG_B: Choice of Algorithm B which will be solicited from the user.

ALG_C: Choice of Algorithm C which will be solicited from the user.
' '

MAX_NFA: Maximum number of states in the NFA to be synthesized. This number needs

to be chosen so as not to waste memory, since the transtition tablle for the NF A depends on
: '

MAX_NFA.

MAX_COLS: This variable should be set to l more than the actu'al input alphabet used.
I
I

MAX_DFA: Maximum number of states in the DFA (analogous to MAX_NFA).

Pill: This variable represents the Pill task in an NFA or a DFA and should be set to the

value of the maximum state in the FA, that is~ MAX_NFA or MAX_DFA.

74

MAX_RE: Maximum size of the RE. This size should be long enough to accomodate the

divergence of the RE size observed sometimes in the "divergent" cycle.

MAX_PROCS: Maximum number of procesSors to be used

MAX_LEVELS: Maximum length of the schedule as given in the Gantt chart.

MAX_ TASKS: Maximum number of tasks that can be present in the task graph produced

by either of the partitioning approaches.

CONVERG: Choice of Convergence as solicited from the user.

DIVERG: Choice of Divergence as solicited from the user.

A.5 Steps to Execute the program

The sequence of steps to be taken for the execution of the program are as follows.

1. The source code for the program is in :the thesis directory. Change to the thesis
directory and list contents to check that the following flies are available.

makefile
host.h
node.h
dja_re.c

2. Issue the command:

make

README
host.c
node.c
eqns.c

partn.c
makenfa.c
other.c

schedule.c
nfa dfa.c

misc.c
min dfa.c

"make" needs one of the following options:

makecx
make sx
makerx
make host
make node
make clean
make make

3. Issue the command:

make make

to use 386 nodes with 387 coprocessors
to use 386 nodes with SX coprocessors

, to use i860 nodes
to build only the host executable
to build only the node executable
to cleanup the directory of unwanted files
to view and/or edit the makeflle

to view (or possibly edit) the makefile. The user might want to change the CC,
CFLAGS, or LDFLAGS options. For example, if the Green Hill Compiler needs to be
invoked:

75

change CC to CC=gcc

If the user wants to debug the program, to use the profiling information, or to invoke
particular compiler optimizations, the CFLAGS and/or LDFLAGS need to be
modified.

4. Issue the cmnand:

make clean

to remove all previous executable files and Iilake a fresh start.

5. Now list the directory contents and ensure that only the files listed in Step 1 are present.

6. Issue the command:

make ex (or sx or vx depending on the type of th~ node)

The executables "host" and "node" are created. The user need not allocate a cube to
execute the program, since a suitable cube is obtained by the HOST MODULE.

7. Before executing the program, enter the RE to be tested in a datafile. Execute the
program by issuing the command:

host

The following user interface is produced:

Do you want: .
1. Details of the fo11Il changes of an RE
2. Details of the scheduling algorithms

Enter your option: 2

Choose option 1 if you need to study the changing form of an RE subjected to
the cycle of transfolmations for a specific number of times. No timing
information on scheduling algorithms is produced when this option is chosen.
Another submenu will seek the user's choice of convergent or divergent cycle
of transformations to be used. The form changes ar~ reported in a file called
"app_D" for the convergent cycle, and "app_E" for divergent cycle.

Choose option 2 if you do not want the form changes of an RE, but instead
need the timing parameters and the performance measures of the scheduling
algorithms. Performance measures are reported for varying number of
processors (up to a maximum equal to the width of the graph) in a file called
app_F. Note that convergent cycle is always used for studying the scheduling
algorithms. · · '

Do you want:

1. Theoretical Results only
2. Practical Results only
3. Both

76

Enter your option: 1

Choose option 1 if only theoretical measures (obtained from the Gantt chart)
are required. The REs are not actually evaluated through execution on the
hypercube. The measures are obtained directly from the sechedule

Choose option 2 if only practical measures are needed. The REs are now
evaluated througJ;t"execution on the nodes of the hypercube.

Choose option 3 if both theoretical and practical measures are needed. This
option is used to compare the theoretical results with the practical results for
either Algorithms A, C, or for both. -

Do you want to use:

1. Scheduling Algorithm A
(Note: Partitioning Approach A will be used.)

2. Scheduling algorithm C
(Note: Partitioning Approach B will be used.)

3. Both
(Note: Partitioning Approach A for Algorithm A and Approach B for
Algorithm C will be used.)

Enter your option: 1

This submenu seeks your ,choice of the scheduling algorithm to be used for·
scheduling the task graph (the partitioned RE). If option 3 is chosen, each RE
is evaluated by Algorithms A and (:. Option 3 is used to compare performance
measures of Algorithms A and C.

Enter the input alphabet: 01

This submenu seeks the input alphabet from the user. The user should make
sure that the RE(s) fed as input contain only symbols from this alphabet set.
The symbol "e" (denoting epsilon) need not be contained in the alphabet as it is
assumed to be contained in every alphabet. Also, the user should set the
MAX_ COLS constant in both the header files to 1 more than the size of the
alphabet. For example,

if alphabet is "01" .
MAX_COLS should be set to 3 (to include epsilon)

Do you want details for:

1. A single RE
2. Multiple REs

Enter your option: 2

77

Enter the name of the datafile: data. I

This submenu inquires whether the user wants to execute the program for only
one RE or for multiple REs. If option 1 is chosen, the user enters the RE
directly on the terminal. If option 2 is chosen, the program reads the REs from
a file specified by the user. This reduces the burden of creating a file just for a
single RE or entering multiple REs at the terminal.

APPENDIXB

CPROGRAMS

MAKEFILE

This file is used to compile and link the host_module and
node_module files for the thesis program of Sridhar Mandyam.

CFLAGS=-W -0 -B
help:

@echo
@echo "You must specify the type of node you Wlsh to build a node"
@echo •executable for, choose one of the following:"
@echo
@echo "
@echo •
@echo •
@echo

make ex
make sx
make rx'

(for 386 nodes with 387 coprocessors)"
(for 386 nodes with SX coprocessors) •
(for i860 nodes) •

ex: host node #Use default compile and link flags
sx:

make "CFLAGS=-W -0 -B" host
make "CFLAGS=-w -0 -B -sx" "LDFLAGS=-SX" node

rx:
make "CFLAGS=-w -0 -B" host
make "CFLAGS=-W -0 -B -i860" "LDFLAGS=-i860" node

host: host.o partn.o schedule.o misc.o host.h
cc -o host host.o partn.o schedule.o misc.o -host

host.o partn.o schedule.o misc.o: host.h

node: node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o eqns.o other.o node.h
cc -o node node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o eqns.o other.o

$(LDFLAGS) -node
node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o eqns.o other.o: node.h

make:
vi makefile

clean:
rm host node host.o node.o makenfa.o ecl.o nfa_dfa.o min_dfa.o dfa_re.o

eqns.o other.o host.o partn.o schedule.o misc.o

HOST.H
#lnclude <stdlo.h>
#lnclude <ctype.h>
#include <strings.h>

/*** Scheduling
#define MAX_RE
#define MAX_COLS
#define MAX_PROCS
#define MAX_LEVELS
#define MAX_TASKS
#define MAX_SUCC
#define PHI_TASK

Constants ***/
250 /* Maximum size of RE */

3 /* Maximum SlZe of the input alphabet */
16 /* Maximum number of processors */

100 /*Maximum number of levels in the graph *I
100 I* Maximum number of tasks in the graph *I

15 /* Maximum successors of a task *I

/***
#define
#define

General Header
I* Symbol for phi task ln the Gantt chart *I

Constants ***I
TRUE 1
FALSE O#define SENTINEL -1

78

#define DEBUG FALSE I* To print debug inforrnat~on *I
I*** Partitioning Constants - DONOT CHANGE THESE CONSTANTS ***I
#define MIN_SYMB 0 I* Range for number alphabets * 1
#define MAX_SYMB 90
#define BEG_TASK 100 I* Range for number of tasks *I
#define END_TASK 1000
#define CLOSURE MAX_SYMB + 1 I* symbol of Closure operation *I
#define CONCAT MAX_SYMB + 2
#define UNION MAX_SYMB + 3

I* symbol of Concatenation operat~on *I
I* symbol of Un~on operation *I

#define EPSILON MAX_SYMB
I*** Type definitions ***I

typedef
typedef
typedef

int boolean;
unsigned short SHORT;
unsigned char STTYPE;

I* Type for a task ~n the graph *I
typedef struct {

int label,
node,
wt,
status,
done;

STTYPE succ [MAX_SUCC],
task[3];

Task_ tree;

I* task's label *I
I* task's processor *I
I* task's weight *I

I* if task has completed execution *I
I* task's successors *I
I* task's operation *I

I* Type for the label table of the task graph *I
typedef struct Label_struc {

SHORT value;
struct Label_struc *next;

} Label_list;

HOST.C
#include "host.h"
#define DEBUG 1
/***
This file (host.c} conta~ns the following HOST routines:

main(} The driver routine for the HOST MODULE
evaluate_re() Evaluates an RE by partitioning and scheduling
send_nodes() Sends information to the NODE MOUDLE
measures() Calculates the theoretical and practical results
Some printing routines

The external routines called from this f~le include:
chk_re()
in_to__post ()
partn_A(), partn_C()
algorithm_A(), algorithm_C()
Get_schedule ()

in
in
in
~n

in

misc.c file
mise. c file
partn.c file
schedule.c f~le
schedule.c file

**/

#define
#define
#define
#define
#define
#define
#def~ne
#define
#define

#define
#define
#def~ne
#define
#define
#define

I****
int

CONVERG 1 I* Convergent cycle *I
DIVERG 2 I* Divergent cycle *I
ALG_A 1 I* option for Algorithm A *I
ALG_C 2 I* option for Algorithm C *I
TH 1 I* option for theoretical results *I
PRACT 2 I* option for practical results *I
SINGLE 1 I* Single RE for execution *I
MULTIPLE 2 I* REs taken from file for execution *I
BOTH 3

HOSTPID 100 I* process id for host process *I
NODEPID 0 I* process id for node process *I
ALLNODES -1 I* symbol for all nodes */
ALLPIDS -1 I* symbol for all processes *I
INIT_TYP 10 I* type of host to node message *I
RE_TYP 100 I* type of RE message to be rece~ved *I

Declaration of
max_terrns,

All Global Variables for the host program ***I
I* Number of terms in the RE = the # of states

nurn_tasks,
nurn_levels,
nurn__procs=1,
iter,

in the N~A to be synthesized *I
I* number of tasks in the graph *I
I* number of levels in the graph *I
I* number of processors to run the problem *I
I* number of iterations through the cycle of

79

transformations *I main_ch, I* ma~n choice of
study in the program *I

res_ch,
alg_ch,
form_ch,
re_ch;

/*Need theoretical and/or practical results */
/* choice of scheduling Algorithm A or C *I
/* choice of Convergent or Dlvergent cycle */
/* single or multiple REs for study */

char infile[SO], /* string for input file name */
re [MAX_RE] ,
oldre [MAX_RE],
post [MAX_RE],
symb_set[MAX_COLS];

Task_tree
Label_list
STTYPE

tlist[MAX_TASKS];
*l_list[MAX_LEVELS];
G_chart[MAX_PROCS] [MAX_LEVELS];

/***
Function Definition: int main(void)

Description:
This is the driver routlne for the HOST MODULE. It obtains an RE
preprocesses it and then partitions it into a suitable task graph. One
of Algorithms A or C lS chosen to schedule the task graph. Once the
schedule lS obtained in a Gantt chart form it is sent to various nodes
of the cube for their execution. Finally the host program collects
the data from the nodes which include the final RE and some timing
parameters. The RE thus obtained at the end of one cycle of
transformations is subJected agaln to the cycle as many times as required.

**/
main() /* MAIN of the host program */
{

char cubetyp[6];
int count, /* current iteration */

numre=O;
boolean quit = FALSE;

/* number of REs processed */

/* declaration
extern lnt
extern void

VOld

of functions used in main */
chk_re ();
in_to_post();
get_input(), evaluate_re();

FILE *infp,
*ofp2,
*ofp2a,
*ofp2b,
*ofp3a,
*ofp3b;

/* input file *I

/* file for Appendix D- Convergence details */
/* file for Appendlx E - Divergence details */
/* file for Appendix F - theoretical results */

/* file for Appendix G - practical results */

get_input ();

if (re_ch != SINGLE)
if ((infp=fopen(infile,"r")) ==NULL) {

printf("Sorry cannot open %s file \n",infile)
exit (1);

}
if ((ofp2a=fopen{"app_D","w")) ==NULL) {

}

printf("Sorry cannot open Appendix DE - Conv/Div file \n")
exit(l);

if ((ofp2b=fopen("app_E","w")) ==NULL) {

}

printf{"Sorry cannot open Appendix DE- Conv/Div file \n")
exit(l);

if ((ofp3a=fopen("app_F","w")) ==NULL) {
printf("Sorry cannot open Appendix F - Results flle \n")
exit(l);

if ((ofp3b=fopen("app_G","w")) ==NULL) {

}

printf("Sorry cannot open Appendix G - Results(P) file \n")
exit (1);

fprintf(ofp3a,"\nNOTE: All tasks have unit execution times \n");
fprintf(ofp3a,• Width speclfies the maximum number of processors");
fprintf(ofp3a,• that will be used\n\n\n");
fprintf{ofp3b,"\nNOTE: All tasks have unit execution times \n");
fprintf(ofp3b," Wldth specifies the maximum number of processors");
fprintf(ofp3b," that will be used\n\n\n");
printf("Input symbol set used: %s \n",symb_set);

80

printf("\tNumber of Iterations %d \n",iter);
printf("\tChoice is ");
if (form_ch == CONVERG)

print!(" Convergence\n");
if (form_ch == DIVERG)

print!(" Divergence\n");
if (form_ch =~ CONVERG) ofp2 = ofp2a;
if (form_ch == DIVERG) ofp2 = ofp2b;
I* print the data into a file *I
fprintf(ofp2,"Input symbol set used: %s
fprintf (ofp2, • \ tNumber of Iterations",
fprintf(ofp2,"\tChoice is");
if (form_ch == CONVERG)

fprintf(ofp2," Convergence\n");
if (form_ch == DIVERG)

fprintf(ofp2;" Divergence\n");

\n • , symb_set l ;
%d \n •, iter) ;

I* form the cubetyp string depending on num_procs *I
cubetyp[O] = '0'+num_procsl10;
cubetyp[1) = 'O'+num_procs%10;
cubetyp[2) = '\0';
strcat(cubetyp,"mB");
getcube("susri",cubetyp,NULL,O);

I* get a cube named 'susri' with the requested nodes *I
setpid(HOSTPID);

I* set host process id *I
load("nodedirlnode",ALLNODES,NODEPID);

I* load all nodes with pid NODEPID *I

wh~le (!quit) { I* process all REs *I
if (re_ch == MULTIPLE)

fscanf(infp,"%s\n",re);
printf("\nRE Number: %d \t****\tRE: %s\n",numre++,re);

count = 0;
I* Subjecting the given RE to the cycle of transformations 'iter'

number of times *I
while (count < iter)

fprintf(ofp2,"\n\tiTERATION%d\n",count);
fprintf(ofp2,"RE at the beginning of the cycle: %s\n",re);
fprintf(ofp3a,"RE = %s\n",re);
fprintf(ofp3b,"RE = %s\n",re);
printf("\nThe given"regular expression"is %s\n",re);
strcpy(oldre,re);

I* check RE and get the approximate estimate of the number of
states in the NFA to be synthesized *I

if ((max_terms=chk_re(re,symb_set)) !~ 0) {
in_to_post(post,re); I* convert to post fix notat~on *I
printf("\nThe post-fix expression is: %s\n",post);
printf("Estimated i of states in NFA = %d\n",max_terms);

header (ofp3a);
header (ofp3b);

I* partition RE and obtain the schedule *I "
if (alg_ch == BOTH) {

}

evaluate_re(ofp3a,ofp3b,ALG_A);
fprintf(ofp3a,•--");
fprintf(ofp3a,•----------------\n");
fprintf _(ofp3b, • --")';
fprintf(ofp3b,"----------------\n");
evaluate_re(ofp3a,ofp3b,ALG_C);

else evaluate_re(ofp3a,ofp3b,alg_ch);

fprintf(ofp3a,•---");
fprintf(of~3a,·---------------\n");
fprintf(ofp3b,"---");
fprintf(ofp3b,"---------------\n");
print f (• \n \n •) ;
fpri~tf(ofp2, "RE at the end of the cycle: %s \n",re);

}
else { printf("\nSorry- Invalid RE %s \n",oldre);

printf("Skipping to next RE \n");

81

count++;
} I* inner while *I
fprintf(ofp2,"**\n\n");
if (re_ch == SINGLE)

quit = TRUE;
if (re_ch ==MULTIPLE && feof(infp))

quit = TRUE;
I* while !qu~t *I

killcube(ALLNODES,ALLPIDS);
I* kill all processes on all nodes *I

relcube("susri");
I*

if (re_ch == MULTIPLE)
fclose(ofp2a);
fclose(ofp2b);
fclose(ofp3a);
fclose (ofp3b);

I* end of host main *I

release the allocated cube *I
fclose (infp);

/**
Prototype Definition: void evaluate_re(FILE *, FILE *, int)

Description:
This rout~ne evaluates an RE in post fix form (similar to evaluating an
arithmetic expression) . The RE is initially partitioned and represented
as a Task Graph. Then, it is scheduled by scheduling Algorithm A or C to
obtain the Gantt chart. This schedule is sent to the nodes for subjecting
the RE to a cycle of transformations. The f~nal RE and timing parameters
are received from the nodes.

***/
void evaluate_re(ofp3a,ofp3b,alg_ch)
FILE *ofp3a, *ofp3b;
int alg_ch; I* choice of Algor~thm A or C *I
{

int nlevels,
width; I* width of the task graph *I

I* function prototypes for this rout~ne *I
extern int ~nit_labels ();
extern void partn_A(), partn_C(), algorithm_A(), algorithm_C(),

print_schedule(), free_llist(),
Get_schedule();

vo~d measures(), senq_nodes(),
print_llist(); '

if (alg_ch == ALG_A) partn_A(symb_set,post);
else if (alg_ch == ALG_C) partn~C(symb_set,post);

I* Get the initial set representation of tasks and the width of the
graph from the label table. *I

width= in~t_labels(num_tasks);
~f (DEBUG) {

printf("\n\n\t INITIAL LABEL TABLE \n\n");
print_llist();

I* print the initial set representation *I

if (main_ch == 1) {
num_procs = width;

}
else if (main_ch == 2)

num_procs = 1;

nlevels = num_levels;
while (num_procs <= width)

if (alg_ch == ALG_A) algorithm_A(nuiDLProcs);
if (alg_ch == ALG_C) algorithm_C(num_procs);
if (DEBUG) {

printf (" \n\n\t ADJUSTED LABEL TABLE \n\n");
print_lhst();

} '

I* get the schedule from the final configuration of label table *I
if (DEBUG) { printf("\n\nSchedule Obtained by Algorithm");

82

if (alg_ch == ALG_A)
printf (• A •) ;

if (alg_ch == ALG_C)
printf (• C •) ;

printf("BEFORE Optimization for p=%d Processors\n",num_procs);
}
Get_schedule(G_chart,num_procs);
if (DEBUG) {

printf("\n\nSchedule Obtained by Algorithm");
~f (alg_ch == ALG_A)

printf (• A •) ;
if (alg_ch == ALG_C)

printf(" C ");
printf("AFTER Optimization for p=%d Processors\n",nurn_procs);
print_schedule(G_chart,num_procs,nurn_levels);

}
free_llist();

if (res_ch == TH I I res_ch == BOTH) {
measures(ofp3a,TH,alg_ch,width);

if (rna~n_ch == 1 I I res_ch == PRACT I I res_ch BOTH) {

}

send_nodes(fOrmLCh);
I* send required information to all nodes *I

crecv(RE_TYP,re,MAX_RE*sizeof(char));
I* Block to receive final message from root node. *I

if (res_ch == PRACT I I res_ch == BOTH)
measures(ofp3b,PRACT,alg_ch,width);

if (rnain_ch == 1)
nurn_procs = width+1;

else if (rnain_ch == 2) {
nurn_levels = nlevels;
width= in~t_labels(num_tasks);
nurn_procs++;
I* else ~f *I

} I* while *I
I* end schedule_re *I

I**************'**
Funct~on Definition: void measures(FILE *, int, int, ~nt)

Description:
This function calculates all the theoret~cal performance measures namely
the Schedule length, Speed-up, Efficiency, and Serial Fraction from the
schedule obtained in G_chart str¥cture.

***I
void measures(ofp3,typ,choice,width)
FILE *ofp3;
int typ;
~nt choice;
~nt width;
{

I*

*I

I*

*I

int

float

par_tm,
ser_tm;
sp_up, I*
eff~ciency,
serial;

I* parallel time or schedule length *I
I* serial time = sum of task we~ghts *I

speed-up factor *I
I* efficiency factor *I
I* serial fraction factor *I

if (nurn_procs == 1) {
ser_tm = final_rnsg->tm;
return;

I* since all are unit tasks, serial time
if (typ == TH)

ser_tm = num_tasks;

else if (typ == PRACT)
ser_tm = time->serial;

number of tasks *I

I* par_tm is same as schedule length which is the number
of levels in the adjusted (stretched) task graph *I

83

I*

*I

if (typ == TH)
par_tm = num_levels;

else if (typ == PRACT)
par_tm = tirne->par;

I* speed-up is the ratio of execution on one processor (sum of all
task weights) to the execution time on p processors *I

sp_up = (float) ser_trnlpar_tm;

I* efficiency is the ratio of speed-up to number of ,Processors */
efficiency = sp_uplnurn_procs;

I* serial fraction is given by, *I ,
serial= (1.01sp_up- 1.01nurn_procs)I(1.0-1,0inurn_procs);

I* print all the performance measures
if (choice== ALG_A) fpr~ntf(ofp3,"

if (choice== ALG_C) fprintf(ofp3,"
fprintf(ofp3," %4d %4d

*I
A");
c•);
%2d",width,nurn_procs,ser_tm);

fprintf(ofp3," %2d %6.3f %6.3f\n",par_tm,sp_up,efficiency);
fprintf(ofp3,"------~--~~-------------------------------------"l;
fprintf(ofp3," __________ \n");

/***
Function Name: void send_nodes(int)

Description:
Sending the required information to the nodes for the initiation of their
execution. The info sent is the task graph in tlist struc and the
schedule in G_chart array. Synchronous send is used here.

***/
void senQ_nodes(form_ch)
~nt forreLch;
{

int
long
struct

i,j;
len;

rnsg_typ
int

char
STTYPE

Task_ tree

init_msg;

I* structure for host message *I
work_nodes, I* i of user requested nodes *I
nurntasks, I* i of tasks in task tree *I
nurnlevels, I* ,f of levels in the tree *I
maxterrns, I* maxi of states in the NFA *I
form_choice; I* CONVERGENCE or DIVERGENCE ? *I
symbset[MAX_COLS]; I* input alphabet set *I
G_chart[MAX_PROCS] [MAX_LEVELS];

I* schedule ~n Gantt chart form */
tlist[MAX_TASKS];

I* Task graph structure *I

I* copy all information to be sent into the ~n~t_rnsg structure */
init_msg.work_nodes = nUmLProcs;
init_rnsg.numtasks = nurn_tasks;
init~g.nurnlevels = num_levels;
init_rnsg.maxterrns = max_terrns;
init~g.forrn_choice = forrn_ch;
strcpy(init_rnsg.symbset,symb_set);

I* copy the Task tree to the init~sg structure *I
for (~=O;~<nurn_tasks; i++)

init_rnsg.tlist[i] = tlist[i];
I* copy the Gantt chart to the init_rnsg structure */
for (i=O; i<nurn_procs; i++)

for (j=O; j<nurn_levels; j++)
~nit~g.G_chart[i] [J] = G_chart[i] [j];

len= sizeof(struct rnsg_typ);
pr~ntf(" Sending message- Type=%d, Length=%d PID=%d\n",

INIT_TYP,len,NODEPID);

I* send init~sg struc to ALLNODES w~th rnsg_type INIT_TYP *I
csend(INIT_TYP, &init_msg, len, ALLNODES, NODEPID);

}/***
Prototype Definition: void get_input(void)

84

Description:
This is the routine which provides the user interaction and obtains
all the input required from the user for the execution of the program.

***/
void get_input () ,
{

main_ch = alg_ch = res_ch = re_ch = form_ch = ,0:
do {

printf("\nDo you want:\n");
printf("\t1. Details of. Form Changes of an RE\n");
printf("\t2. Details of Scheduling Algorithms \n");
printf("\n\t\tEnter your option: ");
scanf (• %d • , &main_ch) ; .·
if (main~ch!=1 && main_ch!=2)

priritf("\nincorrect option- Enter again \n\n");
} while (main_ch ,! = 1 && main_ch ! = · 2 l. ;

if (main_c;:h == 1) {
printf("\nEnter Number of Itertations to be used: ");
scanf("%d",&iter);
print f (• \n •) ;

}

else if (main_ch == 2)
iter = 1; ·

if (main_ch == 1)
do {

printf("\nDo you want to use:\n");
printf("\t1. Convergent Cycle \n");
printf("\t2. Divergent Cycle \n");
printf("\n\t\tEnter your option: ");
scanf("%d",&form_ch);
if (form_ch!=1 && form~ch!=2)

printf("\nincorrect opt1on ·-Enter again \n\n");
} while (form_ch != 1 && form_ch != 2);
else if (main_ch == 2)

form_ch = CONVERG;

if (main_ch == 2)
do {

printf (• \nDo you want: \n •) ; ·
printf("\t1. Theoretical Results only \n");
printf("\t2. Practical Results only\n");
printf (• \t3. Both \n •) ;'
printf("\n\t\tEnter'your, option: ");
scanf("%d",&res_ch);
if (res_ch!=1 &&,res_ch!=2 && res_ch!=3)

printf("\nincorrect option - Enter again
} while (res_ch ! = 1 && res_ch :! = 2 && res_ch! =3);
else if (main_ch == 1)

res_ch = 0;

do {
printf (• \nDo you want to choose: \n "") ;
printf("\n\t1. Scheduling Algorithm A \n");

\n\n •);

printf (• \ t Note: · Part1 tioning Approach A will be used \n") ;
printf("\n\t2. Scheduling algorithm c \n");
printf("\t Note: Partitioning Approach B will be used \n");
printf("\n\t3. Both \n"); '
printf("\t Note: Partitioning Approach A for Algorithm A \n");

printf (• \t and Approach B for Algorithm C will be used \n");
printf("\n\t\tEnter your opt'ion: ");
scanf("%d",&alg_ch);
printf (• \n •) ;
if (alg_ch!=1 && alg_ch!=2 && alg_ch!=3)

printf("\nincorrect option- Enter again \n\n");
} while (alg_ch != 1 && alg_ch != 2 && alg_ch != 3);

/* read the input symbol set from file */
printf("\nEnter the input alphabet: ");
scanf("%s",symb_set); printf("\nDo you want details for: \n");
printf("\t1. A single RE \n");
printf("\t2. Multiple REs\n");
printf("\n\t\tEnter your option: ");
scanf (• %d", '&re_ch);

85

if (re_ch == SINGLE) {

}

pr~ntf("\nEnter the input RE: ");
scanf (• %s", re);
printf ("\n");

~f (re_ch == MULTIPLE) {

}

pr~ntf("\nEnter the name of the datafile: ");
scanf("%s",infile);
printf ("\n");

/* end get_input */

header(ofp3)
FILE *ofp3;
{

fpnntf (ofp3, ·---------:---::-:----------------");
fprintf(ofp3," \n");
fpr~ntf(ofp3,"---");
fprintf(ofp3,"---------------\n");
fprintf(ofp3,"Algorithm Width Processors Serial Parallel ");
fpnntf(ofp3, •speed Efficiency\n");

fprintf(ofp3," time time up\n");
fprintf(ofp3, ·----------------~--~-----------------------------------"); fprintf(ofp3, • \n");
fprintf(ofp3,"---");
fprintf(ofp3,"---------------\n");

/**
Function Definition: void print_llist()
Descr~ption:

Th~s routine prints the label table of the Task Graph in the form of
sets of tasks with a particular label (which corresponds to the set
representation of tasks).

**/
void print_llist()
{

int i;
Label_list *ptrl;
printf("\tMax levels: %d\n\n",num_levels);
printf("---------------------------------------\n");
printf("Num Tasks I Tasks \n");
pr~ntf("---------------------------------------\n");

for (i=O;i<num_levels;i++) {
ptrl = l_list[i);
printf(" %d •,ptrl->value);
while (ptrl->next != NULL) {

ptrl = ptrl->next;
printf(" T%d",ptrl->value);

}
printf (• \n");

}
printf("---------------------------------------\n");

}

PARTN.C
#include "host.h"
#deflne DEBUG 1
/**
This file (partn.c) contains the following HOST routines:

partn_A Partit~oning approach for Algorithm A
partn_B Partition~ng approach for Algorithm B
Some printing routines

**/

typedef struct xx {
unsigned short symb;
struct xx *next;

} RE_list;

86

I* Declaration of external functions and variables *I
extern, int num_tasks, nurn_levels;
extern Task_tree tlist [MAX_TASKS];

/***
Prototype: void partn_A(void)

Description:
This routine partitions the RE following the original approach of
Partitioning and yields a rooted tree as the task graph for the RE. Thus
the partn_A routine is used along w1th the Scheduling Algorithrn_A for
scheduling the roooted tree thus obtained

**/
vo1d partn_A(syrnb_set,post)
char symb_set[MAX_COLS], post[MAX_RE];
{

int i,pos=O,
lpred, rpred,
t_nurn=O;

I* predecessors of task *I
I* task number *I

RE_list *start, *curr, *nl, *n2, *junk!, *junk2;
I* po1nters to list which contains the postfix RE *I

I* function prototypes *I
extern char *itos();
void print_RElist();
void print_tlist();

nurn_levels = 0;
I* Convert the RE in postfix form to a linked list for ease of

processing in this routine. Also form this list as the
reverse of RE, b'cos Polish alorithrn evaluates an expression
from its end */

start = curr = (RE_list *) NULL;
i=strlen(post);
for (--i; i>=O;l--) {

if (curr ==NULL) I* first element to be created */
start= curr = (RE_list *) rnalloc(sizeof(RE_llst));

else if (curr != NULL) { I* element created at the end */
curr->next = (RE_list *) malloc(sizeof(RE_list));
curr = curr->next;

if (post [i l == 'I')
curr->symb = CLOSURE;

else if (post[i] == '.')
curr->symb = CONCAT;

else if (post[i] == '+')
curr->symb = UNION;

else if (post[i] == 'e')
curr->symb = EPSILON;

else curr->syrnb = strindex(symb_set,post[i]);
} I* for *I
curr->next = NULL;

I* Start processing the RE to obta1n the partition of tasks in the
"tlist• structure */

nurn_levels=O;
curr = start;
if (DEBUG) {
printf("\t Details of Partitioning Approach A \n");
printf ("\ t AAAAA.I'\AAAAAAAA/'U'\AAAAAAI'\A/'\AAAAAAA/'\/'\ \n \n II) i

printf("\tNOTE: \"*\"has only one operand\n\n");
print_RElist(start,num_levels,symb_set);
}
while (start->next != NULL) { /* t1ll end of list */

int syrnb=O, symbl=O, symb2=0; nl = curr->next; n2 = nl->next;
symb=curr->symb; syrnbl=nl->symb; symb2=n2->symb;
if ((symb>=MIN_SYMB && symb <= MAX_SYMB) I I

(symb>=BEG_TASK && symb <= END_TASK)) {
I* if current symbol is either an ALPHABET or a TASK then

skip to next symbol */
curr = nl;

87

else if (symb>MAX_SYMB && symb<BEG_TASK) {
I* if the current symbol is an OPERATOR,then we try var1ous cases

depending on the two operands *I
if (((symbl>=MIN_SYMB && symbl<=MAX_SYMB) I I symbl==EPSILON) &&

}

((symb2>=MIN_SYMB && symb2<=MAX_SYMB) I I symb2==EPSILON)) {
I* if both the operands are ALPHABETS, then we have an
independent task. Store this task in the task table *I
tlist[t_num).done =FALSE;
tlist[t_num].node = t_num;
tlist[t_num) .wt = 0;
strcpy(tlist[t_num) .succ,"");
tlist[t_num) .task[OJ n2->symb;
tlist[t_num).task[l) curr->symb;
tlist[t_num] .task[2) = nl->symb;
tlist[t_num) .label = num_levels;

curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

n2->next = NULL; nl->next NULL;
junkl = nl; junk2 = n2; '
free(junkl); free(junk2);

else if (symbl>MAX_SYMB && symbl<BEG_TASK) {

}

I* if one of the operands is an operator, move up the list *I
curr = nl;

else if (symb2>MAX_SYMB && symb2<BEG_TASK) {

}

I* if the other operand too is an operator, move up the list *I
curr = n2;

else if ((symbl>=MIN_SYMB && symbl<=MAX_SYMB) &&
(symb2>=BEG_TASK && symb2<=END_TASK)) {

}

I* first operand is an alphabet and second is a task, then we
have a dependent task. Store the task and all its
information in the task table *I

tlist[t_num).done =FALSE;
tllst[t_num) .node = t_num;
tlist[t_num] .wt = 0; I* set node weightt to 0*1
strcpy(tlist[t_num) .succ,"");
strcat(tlist[n2->symb-BEG_TASK) .succ,itos(t_num));
tlist[t_num) .task[O] n2->symb;
tlist[t_num) .task[l) curr->symb;
tlist[t_num).task[2) = nl->symb;
tlist[t_num).label = num_levels;

curr->symb = t_num++ + BEG_TASK;
curr->next = n2-~next;
curr = curr->next;

nl->next = NULL; n2->next NULL;
junkl = nl; junk2 = n2 ;.
free(junkl); free(junk2);

else if ((symb2>=MIN_SYMB && symb2<=MAX_SYMB) &&
(symbl>=BEG_TASK && symbl<=END_TASK)) {

I* n2 operand is a symbol and nl is a node *I
tlist[t_num).done =FALSE;
tlist[t_num).node = t_num;
tlist[t_num) .wt = 0;
strcpy(tlist[t_num) .succ,"");
strcat(tlist[nl->symb-BEG_TASK) .succ,itos(t_num));
tlist[t_num).task[OJ n2->symb;
tlist[t_num) .task[l) curr->symb;
tlist[t_num) .task[2) nl->symb;
tlist[t_num) .label num_levels;

curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;

88

curr = curr->next; nl->next NULL; n2->next NULL;
junkl = nl; junk2 = n2;
free(junkl); free(junk2);

}
else if ((symbl>=BEG_TASK && symbl<=END_TASK) &&

}

(symb2>=BEG_TASK && symb2<=END_TASK))
/* if both operands are nodes */
tlist[t_nurn] .done = FALSE;
tlist[t_nurn] .node = t_nurn;
tlist[t_nurn] .wt = 0;
strcpy(tlist[t_nurn] .succ,"");
strcat(tlist[n1->symb-BEG_TASK] .succ,itos(t_nurn));
strcat(tlist[n2->symb-BEG_TASK] .succ,itos(t_nurn));
tlist[t_nurn] .task[O] n2->symb;
tlist[t_nurn] .task[1] curr->symb;
tlist[t_nurn] .task[2] = n1->symb;
tlist[t_nurn].label = nurn_levels;

curr->symb = t_nurn++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

n1->next = NULL; n2->next NULL;
junk1 = n1; junk2 = n2;
free(junk1); free(junk2);

/* end of else if */

if (curr NULL I I curr->next == NULL I I

}

curr->next->next == NULL) {
nurn_levels++;
if (DEBUG) print_RElist(start,nurn_levels,symb_set);
curr = start;

/* end of while */

if (DEBUG)
printf("\nLast task is T%d which represents the root node\n\n",t_nurn-1);

/* While part1tioning above tasks are assigned labels correspond1ng to
the level it appeared f1rst in the rooted tree. Now, we adjust the
label such that the label of every task differs exactly by 1 from
its successor */

for (i=O;i<t_nurn;i++l {
if (no_preds(i)) /*Task i has no predecessors*/

continue;
if (tlist[i] .task[O]>=BEG_TASK) { /*Has left predecessor *I

lpred = tlist[i] .task[O] - BEG_TASK;

}

if (tlist[i].label != tlist[lpred].label+1) { /*Labels donot */
tlist[lpred] .label= tlist[i] .label-1; /* differ by 1 */
i = -1;
continue;

if (tlist[i] .task[2] >= BEG_TASK) { /*Has right predecessor *I
rpred = tlist[i].task[2] - BEG_TASK;

}

if (tlist[i] .label != tlist[rpred] .label+1) { /* Labels do not*/
tlist[rpred] .label = tlist[i] .label-1; /* differ by 1 */
i = -1;
continue;

/* of for loop */

nurn_tasks = t_nurn;
for (i=O;i<nurn_tasks; i++l

tlist[i] .label= nurn_levels-tlist[i] .label-1;

if (DEBUG) {
prlntf("\nTask Graph produced by Partitioning Approach A\n");
printf(HAA\nll)j

print_tlist();
}

/* end of Partn_RE */

void print_RElist(start,level,symb_set)
RE_list *start;
int level;
char symb_set[MAX_COLS];
{

1nt symbol,i=O;
RE_list *ptr;

89

printf("\nLevel %d ==> \t",level);
ptr = start;
while (ptr != NULL) {

symbol = ptr->symb;
if (symbol == EPSILON)

printf("e ");
else if (symbol <= MAX_SYMB)

printf("%c •,symb_set[symbol]);
else if (symbol < BEG_TASK) {

if (symbol == CONCAT)
printf (•. •);

if (symbol == UNION)
printf("+ ");

if (symbol == CLOSURE)
ptr = ptr->next;
printf (• * •) ;

}
} I* else *I
else if (symbol >= BEG_TASK)

printf("T%d ",symbol-BEG_TASK);
ptr = ptr->next;

} I* while *I
printf (n \n.) ; '

/***
Function Name: void partn_C(void)

Description:
This routine partitions the RE following the ~mproved approach of
Partitioning and to yield a DAG with nodes~ having multiples successors.
Thus the partn_C routine is used along with the Scheduling Algorithm_B for
scheduling the DAG thus obtained.

***I
void partn_C(symb_set,post)
char symb_set [MAX_COLS] ,

post [MAX_RE];

~nt i,j,pos=O,
lpred,rpred,
t_num=O,
maxlabel;

boolean repeated=FALSE;
char ctask[S],

succ[MAX_TASKS];

I* predecessors of task *I
I* task number *I

RE_list *start, *curr, *nl, *n2, *junkl, *Junk2;
I* point~rs to list which contains the postfix RE *I

I* function prototypes *I
extern char *itos();
void print_RElist();
void print_tlist (_) ;
~nt is_present();

num_levels = 0;
I* Convert the RE in postfix form to a linked list for ease of

processing in this routine. Also form this list as the
reverse of RE, b'cos Polish alorithm evaluates an expression
from its end *I

start = curr = (RE_l~st *) NULL;
i=strlen(post);
for (--~; i>=O;i--) {

if (curr == NULL) I* first element to be created *I
start= curr = (RE_list *) malloc(sizeof(RE_l~st));

else if (curr != NULL) { I* element created at the end *I
curr->next = (RE_list *) malloc(sizeof(RE_list));
curr = curr->next;

if (post[i] =='I')
curr->symb = CLOSURE;

else if (post[i] == '.')
curr->symb = CONCAT;

else if (post[i] == '+')
curr->symb = UNION;

else if (post[i] == 'e')

90

curr->symb = EPSILON;
else curr->symb = strindex(symb_set,post[i]);

} I* for *I
curr->next = NULL;

if (DEBUG) {
printf("\t Details of Partitioning Approach B \n");
printf(•\t AAA~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \n\n");
printf("\tNOTE: \"*\"has only one operand\n\n");
print_RElist(start,nurn_levels,symb_set);
} .

I* Start processing the RE to obtain the partition of tasks in the
"tlist" structure *I

curr = start;
while (start->next != NULL)

I* not end of list *I
int rtask, symb=O, symbl=O, symb2=0;

nl = curr->next; n2 = nl->next;
symb=curr->symb; symbl=nl->symb; symb2=n2->symb;

if ((symb>=MIN_SYMB && symb <= MAX_SYMB) I I
(symb>=BEG_TASK && symb <= END_TASK)) {

I* if current symbol is either an ALPHABET or a TASK then
skip to next symbol *I

curr = nl;

else if (symb>MAX_SYMB && syrnb<BEG_TASK) {
I* if the current symbol is an OPERATOR,then we try various cases

depending on the two operands *I
1f (((syrnbl>=MIN_SYMB && syrnbl<=MAX_SYMB) I I syrnbl==EPSILON) &&

}

((syrnb2>=MIN_SYMB && syrnb2<=MAX_SYMB) I I symb2==EPSILON)) {
I* if both the operands are ALPHABETS, then we have an
independent .task. Store this task in the task table *I

I* extract current task's operation *I
ctask[O] = n2->syrnb; ctask[l] = curr->symb;
ctask[2] = nl->syrnb; ctask[3] = '\0';

I* first check 1f current task is repeated or not *I
if (t_nurn! =0 &&

(rtask=is_present(ctask,t_nurn)) !=SENTINEL) {
repeated TRUE;

else repeated FALSE;

if (!repeated) { . I* store only if not repeated task *I
tlist[t_nurn] .done= FALSE;
tlist[t_nurn] .node= SENTINEL;
tlist[t_nurn] .wt = 0;
strcpy(tlist[t_num] .succ, "");
tlist[t_nurn].task[O] n2->syrnb;
tlist[t_nurn] .task[l] curr->symb;
tlist[t_nurn].task[2] nl->syrnb;
tlist[t_nurn].label nurn_levels;
I* if *I

I* replace operation by its task number in the RE list *I
I* and move up the list for next operation *I
if (repeated)

curr->syrnb = rtask+BEG_TASK;
else curr->syrnb = t_nurn++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;
I* replace operation by its task number in RE list *I
n2->next = NULL; nl->next = NULL;
junkl = nl; JUnk2 = n2;
free(junkl); free(junk2);

else if (symbl>MAX_SYMB && syrnbl<BEG_TASK) {

}

I* if one of the operands 1s an operator, move up the list *I
curr = nl;

else if (symb2>MAX_SYMB && syrnb2<BEG_TASK) {
I* if the other operand too is an operator, move up the list *I

91

curr = n2;
}
else if ((symbl>=MIN_SYMB && symbl<=MAX_SYMB) &&

(symb2>=BEG_TASK && symb2<=END_TASK)) {

}

I* first operand is an alphabet and second is a task, then we
have a dependent task. Store it, establishing its dependency
in the task table. *I

I* extract current task's operation *I
ctask[O) = n2->symb; ctask[l) = curr->symb;
ctask[2) = nl->symb; ctask[3) = '\0';

I* first check if current task is repeated or not *I
if ((rtask=1s_present(ctask,t_num)) !=SENTINEL) {

repeated TRUE;
}
else repeated FALSE;

if (! repeated) {
tlist[t_num) .done= FALSE;
tlist[t_num) .node= SENTINEL;
strcpy(tlist[t_num) .succ,""l; .
strcat(tlist[n2->symb-BEG_TASK) .succ,itos(t_num));
tlist[t_num).task[O) n2->symb;
tlist[t_num) .task[l) curr->symb;
tlist[t_num].task[2) nl->symb;
tlist[t_num).label num_levels;

I* replace operation by its task number in the RE list *I
I* and move up the list for next operation *I
if (repeated)

curr->symb = rtask+BEG_TASK;
else curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

nl->next = NULL; · n2->next
junkl = nl; junk2 = n2;
free(junkl); free(junk2);

NULL;

else if ((symb2>=MIN_SYMB && symb2<=MAX_SYMB) &&
(symbl>=BEG_TASK && symbl<=END_TASK)) {

I* n2 operand is a symbol and nl is a node *I
I* extract current task's operation *I
ctask[O) = n2->symb; ctask[l) = curr->symb;
ctask[2) = nl->symb; ctask[3) = '\0';

I* first check if curr'ent task is repeated or not *I
if ((rtask=is_present(ctask,t_num)) !=SENTINEL) {

repeated TRUE;'
}
else repeated FALSE;

if (!repeated) { I* store only if not repeated task *I
tlist[t_num) .done= FALSE;
tlist[t_num) .node= SENTINEL;
strcpy(tlist[t_nurn] .succ,"");
strcat(tlist[nl->symb-BEG_TASK] .succ,itos(t_num));
tlist[t_num).task[OJ n2->symb;
tlist[t_num) .task[l) curr->symb;
tl1st[t_num).task[2) nl->symb;
tlist[t_num) .label num_levels;

I* replace operation by its task number in the RE l1st *I
I* and move up the list for next operation *I
if (repeated)

curr->symb = rtask+BEG_TASK;
else curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;

92

curr = curr->next; nl->next NULL; n2->next NULL;
junkl = nl; JUnk2 = n2;
free(junkl); free(junk2);

}
else if ((symbl>=BEG_TASK && symbl<=END_TASK) &&

(symb2>=BEG_TASK && symb2<=END_TASK)) {
I* if both operands are nodes *I
I* extract current task's operation *I

}

ctask[O] = n2->symb; ctask[1] = curr->symb;
ctask[2] = n1->symb; ctask[3] = '\0';
I* first check if current task is repeated or not *I
if ((rtask=is_present(ctask,t_num)) !=SENTINEL) {

repeated TRUE;
}
else repeated = FALSE;

if (!repeated) {
tlist[t_num] .done= FALSE;
tlist[t_num].node =SENTINEL;
strcpy(tlist[t_nurn] .succ,"");
strcat(tlist[n1->symb-BEG_TASK].succ,itos(t_nurn));
strcat(tlist[n2->symb-BEG_TASK].succ,itos(t_num));
tlist[t_num].task[O] n2->symb;
tlist[t_num].task[1] curr->symb;
tlist[t_num].task[2] nl->symb;
tlist[t_num].label num_levels;

I* replace operation by its task number in the RE list *I
I* and move up the list for next operation *I
if (repeated)

curr->symb = rtask+BEG_TASK;
else curr->symb = t_num++ + BEG_TASK;
curr->next = n2->next;
curr = curr->next;

n1->next = NULL; n2->next NULL;
junk1 = n1; junk2 = n2;
free(junk1); free(Junk2);

I* end of else if *I

if (curr == NULL I I curr->next == NULL I I

}

curr->next->next == NULL) {
num_levels++;
if (DEBUG) print_RElist(start,num_levels,symb_set);
curr = start;

} I* end of while *I
num_tasks = t_num;

I* While part1tioning above tasks are assigned labels corresponding to
the level it appeared first in the rooted tree. Now, we adjust the
label according to the label1ng scheme of Algorithm C *I

for (i=O;i<num_tasks; i++)
tlist[i] .label = num_levels-tlist[i] .label-1;

for (i=t_nurn-1; i>=O; i--) {
strcpy(succ,tlist[i].succ);
rnaxlabel = SENTINEL;
for (J=O; succ[j] != '\0'; j++)

if (tlist[succ[j]] .label> rnaxlabel)
rnaxlabel = tlist[succ[J]] .label;

if (i != t_nurn-1)
tlist[i].label = rnaxlabel + 1;

I* for i loop *I
if (DEBUG) {

printf("\nTask Graph produced by Partitioning Approach B\n");
printf(MAAA~AA\n");

print_tlist();

I* end of partn_C *I
1nt is_present(ctask,nurn)
char ctask[S];
int nurn;
{

char ternp[S];
int i,j;
for (J=O;j<=2; j++)

ctask[j] += 1;
for (i=O; i<num; i++)

for (j=O;j<=2; j++)
ternp[j] = tlist[i] .task[j]+1;

ternp[3] = '\0'; ctask[3] = '\0';

93

if (strcmp(temp,ctask) 0)
return(i);

}
return(SENTINEL);

/**
Function Name: void print_tlist()

Description:
This routine prints all the information for all the tasks in the task
graph in the form of a table. It uses the tlist global structure. The
routine "print_atask" given below prints all the required information
of a task.

***/
vo1d print_tlist()
{

int i;
void print_atask();

printf("\n---\n");
printf("Task Number Level Predecesors Successors Processor\n");
prlntf("--~---------\n");

for (i=O;i<nurn_tasks;i++)
print_atask(i);

printf("---\n\n");
/* of print_tlist */

void print_atask(task)
1nt task;
(

1nt i,j, pred, succ;

/* print Task number and its level */
pr1ntf(" T%2d\t %2d\t ",task,tlist[task] .label);

/* print L and/or R predecessors, NONE 1f no predecessors */
if (no_preds(task))

pnntf ("NONE ");
else {
if ((pred=tlist[task] .task[O]) >= BEG_TASK)

pr1ntf("T%d ",pred-BEG_TASK);
if ((pred=tlist[task] .task[2]) >= BEG_TASK)

printf(" T%d",pred-BEG_TASK);

/* print all successors of task */
printf("\t\t");
for (j=O; (succ=tlist[task] .succ[j]) != '\0'; j++)

printf("T%d •,succ);
if (j==O) /* no successors for task */

printf ("NONE") ;

/* print task's processor */
if (tlist[task] .node != SENTINEL)

printf("\t%d\n",tlist[task] .node);
else printf("\tNONE\n");

} /* print_atask */

SCHEDULE.C
#include "host.h"

/**
This f1le (schedule.c) contains the following HOST routines:

Get_schedule() Gets the schedule
init_labels() gets initial label table
Algorithrn_A () Applies Algorithm A
algorithrn_B() Applies Algo1rhtm C

**//*
Declaration of external variables */
extern int num_levels;
extern Task_tree tlist [MAX_TASKS];
extern Label_list *l_list [MAX_LEVELS];
!***
Prototype Definition: Get_Schedule(Label_list J_llst[]*, char **G_chart);
Parameters: l_list - the structure for the label table of the tasks.

G_chart - the structure (a 2-d array) to represent the schedule 1n the
form of a Gantt Chart.

94

Description:
This routine schedules the task graph by either using Algorithm A or
Algorithm B dependlng on the user's choice. It then obtains the
schedule in Gantt chart form in the G_chart structure and performs the
optimization as mentioned in the document.

***/
void Get_schedule(G_chart,num_procs)
STTYPE G_chart[MAX_PROCS] [MAX_LEVELS];
int num_procs;
{

int i,j,k,

boolean
Label_list

col,
row,
cur_task,
pred,
pred_node,
that_task,
that_lpred,
that_rpred,
op1,op2,
~re~
rpred;

swap=FALSE;
*ptr;

I* current task for execution *I
I* current task's predecessor *I
I* predecessor task's node *I
I* task to swap for optimization *I
I* swapping task's predecessors *I

I* operands of current task *I
I* current task's Land R predecessor *I

I* function prototypes *I
extern void print_schedule();
int no_preds();

I* Intially the Gantt chart to PHI tasks for all processors during
all tlme intervals *I

for (i=O; i<num_procs; i++)
for (J=O; j<num_levels; J++)

G_chart[i] [j] = PHI_TASK;

I* Copying information from l_list (which is the final label table) in
to the Gantt chart. That is, the tasks with label "i" are scheduled
arbltrarily on the available processors during ith time lnterval */

for (col=num_levels-1; col>=O; col--)
ptr = l_llst[col]->next;
for (row=O;row<num_procs;row++)

if (ptr != NULL)
cur_task = ptr->value;

else
break;

G_chart[row] [num_levels-col-1] = cur_task;
I* Update info ln the task table as to which node the

current task is assigned to *I
tlist[cur_task] .node= row;
ptr = ptr->next;

} .
for (row=O; row<num_procs; row++)

G_chart[row] [num_levels] = 0; I* null terminate each row string *I
if (DEBUG)

print_schedule(G_chart,num_procs,num_levels);

if (num_procs == 1) return;
I* no optimization done if only one processor *I

I* Now, we do the optimization of scheduling the tasks based on thelr
predecessors. Thls lS done by checking for the predecessors node
trying to move the current task to that node */

for (col=1; col < num_levels; col++) {
for (row=O; row<num_procs; row++) {

cur_task = G_chart[row] [col];
lf (cur_task == PHI_TASK) continue;
lf (no_preds(cur_task)) {

tlist[cur_task] .node = row;
contlnue;

} op1 = tlist[cur_task] .task[O];
if (op1>=BEG_TASK && op1<=END_TASK)

lpred op1 - BEG_TASK;
else

lpred 0;

95

op2 = tlist[cur_task] .task[2];
if (op2>=BEG_TASK && op2<=END_TASK)

rpred op2 - BEG_TASK;
else '

rpred = 0;

I* Check if one of its predecessor is assigned to the same node,
then just update the task table and proceed *I

if (lpred && tlist[lpred] .node == row) {
continue;

}
else if (rpred && tlist[rpred] .node== row)

continue;

I* Else, check if "that_task" which is in the interval of the
cur_task's predecessor, but assigned to the current node is
an lndependent task or a PHI_TASK

OR
if that_task's predecessor is in the current interval,
then just swap cur_task with that_task *I

if (lpred) pred = lpred;
else if (rpred) pred = rpred;

swap = FALSE;
for (; ;) {

pred_node = tlist[pred] .node;
that_task = G_chart[pred_node] [col];
if (tlist[that_task] .task[O]>=BEG_TASK)

that_lpred = (tlist[that_task] .task[O]-BEG_TASK);
else

that_lpred = 0;
if (tlist[that_task] .task[O]>=BEG_TASK)

that_rpred (tlist[that_task] .task[O]-BEG_TASK);
else

that_rpred = 0;

if (that_task == PHI_TASK I I no_preds(that_task) I 1
(that_lpred && tlist[that_lpred] .node==row) I I
(that_rpred && tlist[that_rpred] .node==row))

swap = TRUE;
G_chart[row] [col] = that_task;
G_chart[pred_node] [col] = cur_task;
tlist[that_task] .node= row;
tlist[cur_task] .node= pred_node;

if (!swap && pred == lpred)
if (rpred) pred = rpred;
else break;

}
else break;

} I* of infinite for loop *I
} I* for col loop *I

I* for row loop *I
I* end of Get_schedule() *I

/**
Function Definition: int init_labels(lnt);
Description:

Thls functlon initially assigns labels to tasks followlng the
Labeling Scheme ln Algorithrn_A. Then the tasks with label "i" ae
grouped into the set "Wi", that is, tasks with label "i" is stored
ln the ith list of l_list structure.

~**************/

lnt init_labels(nurn_tasks)
lnt num_tasks;
{

lnt level,
cur_task,
wg;

Label_list *ptrl;
I* Initialize the l_list

in all the levels *I

I* current level in the task tree *I
I* current task *I
I* width of the task graph *I

to have 0 in its first element

96

for (level=O;level<num_levels;level++) {
l_list[level] = (Label_list *) malloc(sizeof(Label_list));
l_list[level]->value = 0;
l_list[level]->next =NULL;

I* Group tasks with label "l" into the set "wi' in the label l1st
from the initial label table of tasks *I

for (cur_task=O;cur_task<num_tasks;cur_task++) {
I* Task w1th label "i', is stored in ith list of l_list *I
ptrl = l_list[tlist[cur_task] .label];
ptrl->value++;
while (ptrl->next != NULL)

ptr1 = ptrl->next;

ptrl->next = (Label_list *) malloc(sizeof(Label_list));
ptrl->next->value = cur_task;
ptrl->next->next = NULL;

I* of for *I
I* Also find out the Wldth of the graph from this initial set

representation in l_list structure *I
wg = 0; ·
for (level=O;level<num_levels;level++)

if (l_list[level]->value > wg)
wg = l_list[level]->value;

}
return (wg) ;

/***
Function Definition: void algorithm_A(int)

Description:
This routine is the implementation for Algorithm A (Hu's algorithm) which
is outlined in Section 4.3.1 of the thesis document. The algorithm
schedules a task graph given in 'tlist' structure on an arbitrary number,
say p, of processors by adjusting the label table given in 'l_list'
structure.

**/
void algorithm_A(num_procs)
int num_procs;
{

int i,
level,
victim,
lpred,rpred;

I* current set Wi of tasks *I
I* victim task to be moved to set Wl+1 *I

boolean found, I* tells if a predecessor is found in Wi+1 *I
selected; I* tells lf a victim is found *I

Label_list *ptr1,*backptr, *ptr2, *junk1;

level = num_levels-1; I* process from leaf tasks *I
while (level >= 0) {

if (l_list[level]->value > num_procs) {
if (level == num_levels-1) { I* if level==L *I

I* create a new set W1+1 and 1ncrement L *I
ptr1= (Label_list *) malloc(sizeof(Label_list));
ptrl->value = 0;
ptr1->next = NULL;
l_list[num_levels++l = ptrl;

I* if level <> L *I
backptr = l_list[level];
ptr1 = backptr->next;
selected = FALSE;
I* search until a v1ctim is selected *I
wh1le (!selected && ptr1 !=NULL) {

if (no_preds(ptrl->value)) {
selected = TRUE;

}
else { I* if the cur_task has predecessors, then *I

if (tlist[ptr1->Value] .task[O]>=BEG_TASK)
lpred = tlist[ptrl->value] .task[O]-BEG_TASK;

97

}

else lpred = 0;
if (tlist[ptr1->value] .task[2]>=BEG_TASK)

rpred = tlist[ptr1->value] .task[2]-BEG_TASK;
else rpred = 0;
/* check if lpred or rpred is in Wn+1 set */
ptr2 = l_list[level+1]->next;
found = FALSE;
while (!found && ptr2 !=NULL) {

if ((lpred && lpred == ptr2->value) I I
(rpred && rpred == ptr2->value))

found = TRUE;
else ptr2 = ptr2->next;

if (found) { /* found a predecessor in Wn+1 */
backptr = ptr1;
ptr1 = ptr1->next;
!* 1f */

else /* no predecessors in Wn+1 */
selected = TRUE;

/* of inner while */

victim= ptr1->value; /*found a victim so store it */
/* free the victim node from the current row */

backptr->next = ptrl->next;
ptr1->next = NULL;
junk1 = ptr1;
free (junk1) ;

/* adjust the no. of tasks in the victim's row and its next row */
l_list[level]->value~-;
l_llst[level+1]->value++;

/* 1ncrement the label of the victim node,
1.e. add it in Wn+1 set */
ptr1 = l_list[level+1];
while (ptr1->next !=NULL)

ptr1 = ptr1->next;
ptr1->next = (Label_list *) malloc(sizeof(Label_list));
ptr1->next->value = victim;
ptr1->next->next = NULL;
level = num_levels - 1; /* start from highest level */

} /* of initial if after while */
else level--;
I* of while */

/**
Function Definition: void algorlthm_C (int)

Description:
This routine is the implementation for Algorithm A (Hu's algorithm) which
is outlined in Section 4.3.1 of the thes1s document. The algorithm
schedules a task graph given in 'tlist' structure on an arbitrary number,
say p, of processors by adjusting the label table g1ven in 'l_list'
structure.

**/
void algorithm_C(num_procs)
int num_procs;
{

int i,
level,
VlCtim,
lpred,rpred;

/* current set W1 of tasks */
/* victim task to be moved to set Wi+1 */

boolean found, /* tells if a predecessor is found in Wi+1 */
selected; /* tells if a victim is found */

Label_list *ptr1,*backptr, *ptr2, *junk1;

level = num_levels-1;
while (level >= 0) {

/* if IWil <= p, then goto next set */
if (l_list[level]->value <= num_procs)

level--;
continue;

98

backptr = l_list[level];
ptr1 = backptr->next;
selected = FALSE;
while (!selected && ptr1 !=NULL) {

if (level == num_levels-1) {
ptr2= (Label_list *) malloc(sizeof(Label_list));
ptr2->value = 0;
ptr2->next = NULL;
l_llst[num_levels++l = ptr2;

if (no_preds(ptr1->value))
selected TRUE;

}
else {

}

I* if the cur_task has predecessors, then *I
lf (tli:ptr~Jr=1 -;b";tu[~]t.r\a_s~~Ol]:e=t~~s:~t[SO~)-BEG_TASK;
else lpred = 0;
if (tlist[ptr1->value] .task[2]>=BEG_TASK)

rpred = tlist[ptr1->value] .task[2]-BEG_TASK;
else rpred = 0;
I* check if lpred or rpred is in Wn+1 set *I
ptr2 = l_list[level+1]->next;
found = FALSE;
while (!found && ptr2 !=NULL) {

if ((lpred && lpred == ptr2->value) I I
(rpred && rpred == ptr2->value))

found = TRUE;
else ptr2 = ptr2->next;

if (found) { I* found a predecessor in Wn+1 *I
backptr = ptr1;
ptr1 = ptr1->next;

} I* if *I
else I* no predecessors in Wn+1 *I

selected = TRUE;

if (ptr1==NULL) { I* could not flnd a vict1m Wn *I
backptr = l_list[++level]; I* try in Wn+1 *I
ptr1 = backptr->next;

}
I* of immediate while *I

I* else found a victim in Wn, so store it *I
victim = ptr1->value;
I* free the victim node from the current row *I
backptr->next = ptr1->next;
ptr1->next = NULL;
junk1 = ptr1;
free(junk1);

I* adjust the no. of tasks in the victim's row and its next row *I
l_list[level]->value--;
l_list[level+1]->value++;

I* add the victim node in the immediately next row *I
ptr1 = l_list[level+1];
while (ptr1->next !=NULL)

ptr1 = ptr1->next;
ptr1->next = (Label_list *) malloc(slzeof(Label_list));
ptr1->next->value = victim;
ptr1->next->next = NULL;
level = num_levels - 1;

I* of while *I

/***
Function Name: no_preds();
Functlon Prototype: no_preds(int);
Description:

This function returns FALSE if a task has no predecessors, that is, it is
an independent task. It returns TRUE, if task has atleast one predecessor,
giv1ng no indication whether it is the R or L one.

***/
int no_preds(task)
1nt task;

99

int opl,op2;
opl = tlist[task].task[O];
op2 = tlist[task].task[2];
if ((opl>=MIN_SYMB && opl<=MAX_SYMB) &&

(op2>=MIN_SYMB && op2<=MAX_SYMB))
ret urn (TRUE) ;

else
return(FALSE);

void free_llist()
{

int level;
Label_list *back_ptr,*frnt_ptr;

for (level=O;level<num_levels;level++l
back_ptr = 1_11st[level];
frnt_ptr = back_ptr->next;
wh1le (frnt_ptr != NULL) {

}

free (back_ptr) ;
bac~tr frnt_ptr;
frnt_ptr = frnt_ptr->next;

I* of for *I
}

MISC.C
#include "host.h"

/***
This f1le (rrusc.c) includes the following HOST routines:

chk_re () Checks the input RE
1n_to_post() Converts RE to postfix form
print_schedule() Prints the schedule 1n Gantt chart form
M1scellaneous routines

***/

I***
Function Name : int chk_re(void)

Descr1ption:
Checks whether the given RE is in the right form or not, counting the
number of right and left parantheses, checking for the right operators
etc.

**I
int chk_re(exprn,symb_set)
char exprn[MAX_RE];
char symb_set[MAX_RE];
{

int

char

left=O,
right=O,
done = FALSE,
max,
i,];

c,chl,ch2,
expl [MAX_RE],
new_exp [MAX_RE]; ·

I* number of left parantheses *I
I* number of right parantheses *I

I* number of terms in the RE
I* local 1ndex variables *I

*I

for (i=O,j=O;(c=exprn[i]) != '\O';i++l
if (C==' (1) left++;
if (C==') ') right++;

if (c == '*')

expl[J++l ='I';
I* b'cos - ASCII(I)>ASCII(.) >ASCII(+), which matches the

precedence vals of *(I) > . > + *I
expl[J++l = '0';

I* converting to infix notation with num(op)num format *I
}
else expl[j++l = c;

expl[J] = '\0';
wh1le (! done) {

done = TRUE;

} I* for *I

100

for (j=O,i=O;(c=expl[i++ll != '\0';) {
if (c ! = ' I ' && c ! = ' + ' && c ! = ' (' && c ! = ' . ' l {

chl = c; _
ch2 = expl[i++);
if (isdigit(chll I I chl == 'e')

if (isdigit (ch2) II ch2 == ' (')
new_exp[j++l = chl;
new_exp[j++l = '.';
new_exp[j++l = ch2;
done = FALSE;

} I* of isdigit .. *I
else {

new_exp[j++l = chl;
--i; '

else if (chl == ')') {
if(ch2 == '(' II isdig~t.(ch2) l

new_exp[j++l = chl;
new_exp[j++l = '.';
new_exp[j++J = ch2;
done = FALSE;

}
else {

}

new_exp[j++l chl;
--i;

} I* of if chl *I
else {

new_exp[J++J chl;
--i;

} I* of uppermost if *I
else new_exp[j++l = c;
I* of for *I
new_exp[j) = '\0';
strcpy(expl,new_exp);

} I* of while *I
strcpy(exprn,expl);

I* estimate number of states in the NFA to be synthesized
from the RE *I

max = 0;
for (i=O; (chl=exprn[i)) != '\0'; i++l {

if (strchr(symb_set,chl)) I* if an alphabet *I
max +=2; I* every ato~c RE (an alphabet) needs

if (chl == '+')
max += 2;

if (chl == 'I' l
max += 2;

} I* for *I

two states to get its NFA *I

I* UNION adds two new states to the NFA *I

I* also does CLOSURE *I
I* But, CONCAT does not add any new states *I

max += 4; I* tolerance on the estimate *I
printf("Estimate on states= %d \n",max);

if (left == r~ght)
else

return (max);
return (0);

I***
Function Name: void ~n_to_post(char *, char *)

Description:
This routine takes an RE in inf~x form and converts it ~nto a postfix
form which ~s returned in exprn array.

**/
void in_to_post (post, exprn) '
char post[MAX_RE), I* ~nput RE ~n infix form *I

exprn[MAX_RE); I* REconverted to postf~x form *I

int
char

quit, i,j=O,k=O;
c,
str[MAX_RE), I* temp string for the postfix exprn *I
stack[MAX_RE); I* stack for converting infix to postfix form *I

101

I* Allocate memory to the local strings and initialize them *I
strcpy{stack,"");
strcpy{str, "");
for {i=O; {c=exprn[i]) != '\0'; i++)
if {C>=48) {

}

I* operand encountered *I
str[j++l = exprn[i];

else if { c == ' {')
stack[k++l = c;

else if {{c<48) && {c>41))
{

}

I* an operator encountered, popo from stack and'add to
'post' each operator having >= precedence tha present
operator *I

quit = 0;
while {k>O && !quit)

if {stack[--k] < c)
quit = 1; ++k;

} else str[j++l

stack[k++l = c;

stack[k];

else if { c == ') ') {

}

I* right paran encountered *I
while {stack[--k] != '{')

str[j++l = stack[k];

I* of for loop *I
for {--k;k>=O;k--)

str[j++l = stack[k];
str[j] = '\0';
strcpy{post,str);

} I* of in_to_post *I

/*********************************~*******************************

Description:
Thls routine converts the glven lnteger 'i' to a string and
returns the string

**/
char *ltos{num)
lnt num;
{

int i;
char temp[S];

temp [0] = num;
temp[l] = '\0';
return{temp);

/***
Description:

This routine searches for a character 'c' in the string 's' and
returns the position where it found 'c'. If 'c' not ln the
strlng 's' it returns a 0.

**/
int strindex{s,c)
char *s;
lnt c;
{

int n;
for {n=O; ;n++) {
if {s[n] == c)

return{n);
if {s[n] == '\0')

return{SENTINEL);

!***
Function Definition: print_schedule{char **, int, lnt);
Descrlption:

This routine prints the Gantt chart as a tlming diagram Wlth processor

102

axis and a time axis. The schedule is printed in lntervals of 13 so as
to accomodate in a line. The routine •p_sch" prints all the requried
data.

***/
void print_schedule(G~chart,num_procs,num_levels)
STTYPE G_chart[] [MAX_LEVELS];
int num_procs,num_levels;
{

int nlevels,beg,last;
void p_sch () ;
nlevels = nllim~levels;
beg = 0;
if (nlevels > 13)

last = 13;
else last = nlevels;
while (nlevels>O) {

p_sch (beg, last, G_chart, num_procs, num_levels,) ;
nlevels -= 13;
beg+= 13;
if (nlevels > 13)

last += 13;
else last = num_levels;

void p_sch(beg,last,G_chart,num_procs,num_levels)
int beg,last;
STTYPE G_chart[] [MAX_LEVELS];
int num_procs,num_levels;
{

int i,j;

I* printing dividing line of exact length between every
processor's queue *I

printf ("\n •) ;
for (j=beg; j<last; j++)

printf("---;--");
printf (•- \n •) ;

for (i=O; i<num_procs; i++)
printf ("P%d I •, i);
for (j=beg; j<last; j++l { ,

if (G_chart[i] [j] != PHI_TASK)
prlntf("T%2d I",G_chart[i] [j]);

else
printf ("phi I •) ;

} I* for j loop *I
I* printing dividing line of exact length between every

processo,r' s queue *I
printf (• \n •) ;
for (j=beg; j<last; j++)

printf("-----");
printf (•- \n •) ;
I* for i loop *1

I* printing time ticks at the bottom'of schedule *I
printf(" I"); '
for (j=beg; j<last; j++)

printf (• I •) ;
printf (• \n •) ;

I* printing time intervals at the bottom of schedule *I
if (begl10)

pr1ntf(" %d",beg);
else

printf(" 0");
for (j=beg; j<last; j++)

if (jl9) printf("
else printf("

printf (• \n");

%d",j+1);
%d.' j +1) ;

NODE.H
#include <stdio.h>
#include <ctype.h>
#include <string.h>

103

I*******
#define
#define
#define
#define
#define

General Header
ROOTNODE 0

Constants *****I

TRUE 1
FALSE 0
SENTINEL -1
DEBUG FALSE

NFA and
MAX_NFA 250
MAX_DFA 200
MAX_COLS 3
MAX_RE 250

I* node 0 is set as the controll1ng node *I

I* switch for debug informat1on *I

DFA header Constants ******I
I* Maximum number of states in an NFA *I
I* Maximum number of states in an NFA *I
I* Maximum size of the input alphabet *I
I* Maximum size of the input RE *I
I* Maximum number of tasks in the Task Graph *I
I* Maximum number of levels in the Task Graph *I
I* Max1mum number of levels in the Task Graph *I
I* Maximum number of successors of a task *I

104

I******
#define
#define
#define
#define
#define
#define
#def1ne
#define
#define
#define

MAX_TASKS 100
MAX_ LEVELS 10 0
MAX_PROCS 16
MAX SUCC 15
PHI MAX_NFA
PHI_ TASK

I* Symbol for phl state in FA's trans1tion table *I
I* Symbol for phi task in the Gantt chart *I

I*******
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
*I
#define
#define

I***

RE Header
MIN_SYMB
MAX_SYMB
BEG_ TASK
END_TASK
CLOSURE
CONCAT
UNION
EPSILON

Constants *****I

FREE 0
IN_USE 1
MARKED 1
UNMARKED 0

CONVERG 1
DIVERG 2

0
90

100
1000

I* Range for number of input symbols *I

I* Range for number of tasks *I

MAX_SYMB+1 I* symbol for Closure operation *I
MAX_SYMB+2 I* symbol for Concatenation operation *I
MAX_SYMB+3 I* symbol for Union operation *I

MAX_SYMB I* symbol for Epsilon *I
I* Symbol for a free buffer *I
I* Symbol for a used buffer *I
I* Symbol for a marked pa1r 1n the marking table *I
I* Symbol for an unmarked pair in the marking table

I* Symbol for Convergent cycle *I
I* Symbol for Divergent cycle *I

Type Definitions ***I
typedef
typedef
typedef

unsigned short boolean;
unsigned short SHORT;
unsigned char STTYPE;

typedef struct
SHORT
SHORT
STTYPE
STTYPE

} NFA;

typedef struct
SHORT
SHORT
STTYPE
STTYPE

} DFA;

typedef struct
int

STTYPE

Task_tree;

I* Type Definition for an NFA *I
{
nurnst; I* number of states *I
start; I* start state *I
final[20); I* set of final states *I
*table [MAX_NFA) [MAX_COLS);

I* transition function - delta *I

I* Type Definition for a DFA *I
{
numst; I* number of states *I
start; I* start state *I
final[20); I* set of final states *I
table[MAX_DFA) [MAX_COLS);

I* transition function - delta *I

I* Type Defin1tion for a task in the Task Graph *I
{
label, I* task's label *I
node, I* task's processor *I
wt,
status,
done; I* if task has completed execution *I
succ [MAX_SUCC), I* task's successors *I
task[3); I* task's operat1on *I

I* Type Defin1tion of my node's task queue for execution
by Look Ahead approach *I

typedef struct Q_struc {
int task;
struct Q_struc *next;

} My_Q;
I* Type Definit1on for temporary store of NFA wh1le using

Look Ahead approach *I
typedef struct BUFTYP {

int access;
int task;
int status;
NFA *bufnfa;
struct BUFTYP *next;

BUFFER;
typedef struct Label_struc {

SHORT value;
struct Label_struc * next;

} Label_list;

NODE.C
#include •node.h"

/***~**********
This file (node.c) contains the following,NODE routines:

main() The driver routine for the NODE MODULE
get_myQ() Obtains task queue of my node from schedule
print_myQ() Prints my node's task queue

The driver routine calls the following external routines:
exec_myQ() in makenfa.c file
rm_emoves() in ecl.c file
nfa_to_dfa() in nfa_dfa.c fil
min_dfa() in min_dfa.c file
dfa_re() 1n dfa_re.c flle
solve_eqns() in eqns.c f1le
Miscellanious routi-nes in other. c flle

***/

I******** Node Header Constants ******I
#define HOSTPID 100 I* process id for host process *I
#define NODEPID 0 I* process id for node process *I
#define ALLNODES -1 I* symbol for all nodes *I
#define ALLPIDS -1 I* symbol for all processes *I
#define INIT_TYP 10 I* type of host to node message *I
#define NFA_TYP 20 I* type of node to node NFA message */
#define DFA_TYP 30 I* type of node to node DFA message *I
#define RE_TYP 100 I* type of node to host RE message *I
I****** All variables global to this and other files are declared ******I
NFA *nfa = NULL; I* Global nfa Structure *I
DFA *dfa = NULL; I* Global dfa Structure *I
int maxterms, I* max # of states in NFA to be synthesized *I

nnodes, I* # of nodes in the allocated cube *I
work_nodes, I* # of working nodes as requested by the user *I
numtasks, I* # of tasks in the task tree *I
numlevels; I* # of levels in the tree *I

char re[MAX_RE], I* Given RE *I
symbset[MAX_COLS];

boolean rootnode = FALSE; I* node which has the last task, i.e the NFA from
transformation T1 *I

static long
my_node, I* node 1d of my node *I
mpid, I* process id of process in my node *I
mhost; I* node id of my host node *I

My_Q *HEAD;
Task_tree tlist[MAX_TASKS];
struct msg_typ {

int work_nodes,
numtasks,
numlevels,
maxterms,
form_choice;

char symbset [MAX_COLS];
STTYPE G_chart[MAX_PROCS] [MAX_LEVELS];

Task_tree tlist[MAX_TASKS];
init_msg; I* structure for send1ng initial message to nodes *I

/***
Function Name: int maln(void);
Description: This is the main routine of the node program. It initially rece1ves

105

the
information (task graph and the schedule in Gantt chart form obtained
either scheduling Algorithm A or Algorithm B) from the host. Then:

1. All nodes participate in synthesizing an NFA following the method
outlined in transformation T1 of Section 3.4.1. The NFA thus obtained
is sent to all other nodes for the next step.

2. Next, all nodes participate in removing thee-moves from the NFA
obtained in T1, following the transformation T2 of Section 3.4.2.

3. Then, only Node 0 participates in converting the NFA to a DFA by
following the algorithm in Transformation T3 of Section 3.4.3.
Since this algorithm cannot be implemented in parallel, only node 0
participates in this step. Other nodes idle.

4. Again only Node 0 participates in minimizing the DFA of T3 by
following the method in Transformation T4 of Section 3.4.4. This
procedure cannot be implemented in parallel. The DFA is sent to all
other nodes for the next step.

5. If the user's choice corresponds to CONVERGENCE case, all nodes
participate in obtaining the RE corresponding to the DFA of step 4,
by following the algorithm outlined in Transformation T5 of Section
3.4.5. The RE is sent to the host as the final result from Node 0.

6. If the user's choice corresponds to DIVERGENCE case, then only node 0
obtains the set of RE equations corresponding to the DFA of step 4, by
following the procedure outlined in Tran~formation T6 of Section 3.4.6

7. The set of RE equations of step 6 are solved by using Gaussian
Elimination method of Transformation T7 of Section 3.4.7 by Node 0
only. This method cannot be imeplemented in parallel. The RE for the
DFA is subsequently obtained and sent to the host from Node 0.

Then, all nodes wait for more 1nformation -(another task graph and its
corresponding schedule) from-the node until a stop signal is encountered
from the host.

***/
main()
{ I* 'main' of node *I

int i, j,

char
choice; I* choice of DIVERGENCE or CONVERGENCE *I
mylist[MAX_LEVELS];

I* declarations of functions used in main *I
extern void exec_myQ () , rm_emoves () , nfa_to_dfa () , min_dfa () ,

dfa_re(), solve_eqns();
void get_myQ () , free_myQ () , print_myQ () ,

prlnt_tlist(), print_schedule(),
print_nfa(), print_dfa();

I* node bookkeeping done *I
my_node = mynode();
mpid = mypid();
rnhost = myhost();

while (TRUE) { I* node loops until stopped by host *I
I* receive initial message from host into init_msg struc *I
crecv(INIT_TYP, &init_msg, sizeof(struct msg_typ));

I* unpack information from init_msg received from host *I
work_nodes init_msg.work_nodes;
numtasks init_msg.numtasks;
numlevels = init_msg.numlevels;
maxterms = init_msg.maxterms;
choice = init_msg.form_choice;
strcpy{syrnbset,init_msg.syrnbset);
for (i=O; i<numtasks; i++)

tlist[i] = init_msg.tlist[i];

I* if i am not a working node just busy loop *I
if (my_node >= work_nodes) continue;

I* get my node's set of tasks from the Gantt chart into mylist *I
I* form linked list of tasks (task Q) from mylist and print it *I
get_myQ(inlt_msg.G_chart[my_node]);
I* lnitialize nfa *I
if ((nfa=(NFA *) malloc(sizeof(NFA)))==NULL)

exit (1);
mem3D(nfa->table,maxterms,MAX_COLS,maxterms);

106

I* All nodes together synthesize the NFA;
but only rootnode has the resulting NFA *I

exec_myQ () ;
free_myQ () ;
if (rootnode) { I* only my, node contains the NFA *I

NFA_BUFTYP nfa_buf;
long node;
nfa_buf.nurnst = nfa->nurnst;
nfa_buf.start = nfa->start;
strcpy(nfa_buf.nurnst,nfa->final);
for (i=l; i<=nfa->nurnst; i++)

for (j=O; j<MAX_COLS; j++)
strcpy(nfa_buf.table[i] [j],nfa->table[i] [j]);

I* CSEND message of TYPE NFA_TYP from static buffer nfa
* to all other work_nodes *I

for (node=O; node<work_nodes; node++)
if (node != my_node)

csend(NFA_TYP, &nfa_buf, sizeof(NFA_BUFTYP), node, NODEPID);
}
else { I* other nodes receive NFA from rootnode *I

NFA_BUFTYP nfa_buf;
I* CRECV message of type NFA_TYP into static nfa buffer *I
crecv(NFA_TYP, &nfa_buf, sizeof(NFA_BUFTYP));
nfa->nurnst = nfa_buf.nurnst;
nfa->start = nfa_buf.start;
strcpy(nfa->final,nfa_buf.final);
for (i=l; i<=nfa->nurnst; i++)

for (j=O; j<MAX_COLS; j++)
strcpy(nfa->table[i] [j],nfa_buf.table[l] [J]);

if (DEBUG && (my_node == ROOTNODE)) {
printf("\n\n****** FSA after STEP 1 (NFA)
print_nfa(nfa);

********\n\n");

I* All nodes participate in removing the e-moves from the NFA *I
rm_emoves();
if ((dfa=(NFA *) malloc(sizeof(NFA)))==NULL)

exit(l);
I* only ROOTNODE does transformation T3 *I
if (my_node == ROOTNODE) {
if (DEBUG) {

}

printf("\n\n****** FSA after STEP 2 (NFA)
print_nfa(nfa);

********\n\n");

nfa_to_dfa(); I* ROOTNODE obtains the DFA from the NFA *I
if (DEBUG) {

printf("\n\n****** FSA after STEP 3 (DFA) ********\n");
printf("\n\t\t\t Transitlon Table (dfa) \n\n");
print_dfa();

I* All nodes free their NFA structure *I
free3D(nfa->table,maxterrns,MAX_COLS);
free ((NFA *) nfa);
nfa = (NFA *) NULL;
I* ROOTNODE minimizes the DFA and prints it *I
lf (my_node == ROOTNODE) {

}

min_dfa () ;
if (DEBUG) {

printf("\n\n****** FSA after STEP 4 (DFA) ******\n");
printf("\n\t\t\t Transition Table (dfa) \n\n");
prmt_dfa () ;

if (choice == CONVERG) {
if (my_node == ROOTNODE)

long node;
I* ROOTNODE global sends the Inln DFA to all other work_nodes *I
for (node=O; node<work_nodes; node++)

if (node != ROOOTNODE)
csend(DFA_TYP, dfa, sizeof(DFA), node, NODEPID);

107

else I* all other nodes receive the new DFA *I
crecv(DFA_TYP, dfa, sizeof(DFA));

dfa_re(); I* all nodes do transformation TS *I
I* CONVERGENCE case ends *I

I* If Divergence case chosen, only ROOTNODE finds the min DFA and
also obtains the RE for this DFA *I

if (choice == DIVERG) {
if (my_node == ROOTNODE)

solve_eqns();
} I* if my_node == ROOTNODE *I

I* ends DIVERGENCE case *I
if (rny_node == ROOTNODE) {

csend(RE_TYP,re,MAX_RE,rnhost,HOSTPID);
I* send the final RE to the host *I

I* free DFA space *I
free ((DFA *) dfa);
dfa = (DFA *) NULL;
I* now loop back to receive another task graph from the host

or the stop signal *I
} I* while *I

I* end of node main *I

!**
Function Name: get_rnyQ(char *)
Descript1on:

Thls routine forms the task queue for mynode in the form of a linked
list from the G-chart . PHI_TASKs in the schedule are ignored.

***/
void get_myQ(rnylist)
char rnylist[MAX_LEVELS];
{

int
My_Q

col,task;
*cur;

HEAD NULL;
for (col=O; col<nurnlevels; col++.) {

if ((task=mylist[col]) == PHI_TASK) continue;
if (HEAD == NULL) {

HEAD= (My_Q *) malloc(l*sizeof(My_Q));
cur = HEAD;
cur->task = task;

l I* if *I
else {

cur->next = (My_Q *) malloc(l*sizeof(My_Q));
cur = cur->next;
cur->task = task;

I* else *I
} I* for *I
cur->next = NULL;
I* check if this task does not have any successors, i.e. it is

last task. Then make thls node as the "rootnode" *I
if (tlist[cur->task].succ[O] == '\0'1 {

rootnode TRUE;
}
else rootnode FALSE;

} I* of get_myQ *I

/**
Function Name: void free_myQ(vo1d)
Descr1ption:

Th1s routine releases the memory for the ent1re task Q of my node
**!
void free_myQ ()
{

My_Q *qptr,*freeptr;
qptr = HEAD;
while (qptr != NULL)

freeptr = qptr;
qptr = qptr->next;

108

freeptr->next = NULL;
free(freeptr);

/**
Function Deflnltion: print_nfa()
Description:

Thls routine prints the nfa in a suitable tabular form. The start
and final states are also marked appropriately. '

t************************/
void print_nfa(nfa)
NFA *nfa;
{

int i,j,k,st;
printf("\n\t\t\t\t\t Inputs \n");
printf("\t\t -----------------~--------~---------------------\n");

printf ("\ t \ t ,1 •) ;

for (J=O; j<MAX_COLS-1; j++)
printf ("\t%c\ t", symb_set [j]);

printf("\t\te\n");

109

printf("\t ---------------------------------------~---------------\n");

for (i=1;i<=nfa->numst; i++)
printf (• \ t •) ;
I* print whether the current ~tate is START, FINAL or START-FINAL

'state *I
if (i == nfa->start) {

}

if (strchr(nfa->final,i) != NULL)
printf ("S-F");

else
printf(" S ");

else if (strchr(nfa->final,i))
printf (• F •) ;

else printf (• •) ;

prlntf(" I q%2d ",i);

I* now print the transition table entries *I
for (j=O;j<=MAX_COLS-1;j++) {

printf (• {") ;
for(k=O; ((st=nfa->table[i] [j] [k]) != 0); k++)

if (st !=PHI) printf("q%d,",st);
if (j < MAX_COLS-1)

printf (•} \ t \ t •) ;
else

printf("}");

} I* for j *I
printf (• \n\t

---\n");
} /* for i *I

I* of print_nfa *I

/**
Function Definition: print_dfa()
Description:

This routine prints the dfa in a suitable tabular form. The start
and final states are also marked appropriately.

***/
void print_dfa ()
{

int i,j,st;
printf("\n Check- DFA final : ");
for (l=O; (st=dfa->final[i]) != 0; i++)

printf(" Q%d",st);
printf ("\n •) ;
printf (• \ t States Inputs \n") ;
printf("\t ----------------------------\n");
printf("\t I");
for (j=O; j<MAX_COLS-1; j++)

printf("\t%c\t I •,symb_set[j]);
printf("\n\t ----------------------------------\n");

for (i=1;i<=dfa->numst; i++l {

I* print whether the current state is START, FINAL or START-FINAL
state *I

printf (• \ t");
if (i == dfa->start) {

}

if (strchr(dfa->final,l))
printf ("S-F");

else
printf(" S ");

else if (strchr(dfa->final,l))
printf(" F ");

else printf(" ");
printf (• I q%2d I", i);
I* now print the transition table entries *I
for (j=O; j<MAX_COLS-1; j++)

if ((st=dfa->table[i] [j]) '=PHI)
printf ("\tq%2d\t I", st);

else printf("\tphi\t I");
printf("\n\t ----------------------------------\n");

} I* 1st for *I
printf (• \n \n •) ;

I* of print_dfa *I
no_preds(task)
int task;
{

if ((tlist[task] .task[O]>=MIN_SYMB &&
tlist[task] .task[O]<=MAX_SYMB)

&& (tllst[task] .task[2]>=MIN_SYMB &&
tlist[task] .task[2]<=MAX_SYMB))

return(TRUE);
else return(FALSE);

}

MAKENFA.C
#include "I).Ode.h"

/***
This file (makenfa.c) contains the following NODE routines:

exec_rnyQ() execute my Q using Look Ahead approach
task_to_nfa() synthesizes NFA for a task
rules_nfa() apply rules for mak1ng NFA of a task
printing routines

**-/
I*** Declaration of external functions and var1ables ****I
extern vo1d mem3D () , free3D () ;
extern char *itos ();

extern NFA *nfa; I* nfa structure *I
extern int rnaxterms;
extern char syrnbset [MAX_COLS] ;
extern Task_tree tlist [MAX_TASKS];
extern My_Q *HEAD; I* Pointer to head of task queue *I
I* Declaration of global variables for this file *I
BUFFER *buf_hd, I* ptr to the head of the free buffer list *I

bufptr; I a ptr to the free buffer list *I
NFA *oldl=NULL, *old2=NULL;
/**
Function Definition: void exec_rnyQ(void);
Description :

This routine synthes1zes the NFA from the Schedule given in Gantt chart
form by the host program. The method in Section 3.4.1 1s followed

**/
vo1d exec_myQ ()
{

My_Q *cur, I* other po1nters to task queue *I
*back;

int i, j, col,
node,
rny_node,
task, I* current task *I
pred,
lpred, I* L and R predecessors of a task *!

110

rpred;
char succ;
boolean Go; /* flag for Look-Ahead technique */

/* function prototypes *I ,
void task_to_nfa (), store_in_buffer-(),

free_bufferlist () , rm_task U ;

/* allocate oldl and old2 structures and memory to its table */
oldl = (NFA *} malloc(l*sizeof(NFAJY; , ,
mem3D(oldl->table,maxterms,MAX_COLS,rnaxterms);
old2 = (NFA *) malloc(l*sizeof(NFA));- - ,;
mem3D(old2->table,maxterms,'MAX_COLS,maxterms);

cur = HEAD; /* HEAD is the beginning of the task list of mynode() */
while (cur ! = NULL). { ' /* till end- of list *I

tlist[cur->task] .done= FALSE; /*,no task done yet*/
cur = cur->next; ' ,

} /* of while */

I*********************************,*'*********·*****************
Look-ahead technique implemented by checking:
* Has the task no predecessor?
* Has the task 'a (L or R) predeeessor?

** Is the predecessor on same node?
**** Has the pr~decessor(s) completed execution?

** Is the predepessor on a different node?
*** If so, has the message been received?

***/
my _node = mynode () ·;
cur = HEAD; back = cur;
while (HEAD != NULL) { /* not end of list */

task = cur->task; ,
if (tlist[task] .task[O]>BEG_TASK)

lpred ~ (tlist[task].task[O]-BEG_TASK);
else lpred = 0;
if (tlist[task] .task[2]>BEG_TASK)

rpred (tlist[task] .task[2]-BEG_TASK);
else rpred = 0;

Go FALSE;
if (!lpred && !rpr~d) /*no predecessors -so execute*/

Go = TRUE;
else {

if (lpred) pred = lpred; /* set pred to L or R pred */
else if (rpred) pred = rpred;
while (TRUE) { '

if (tlist[pred] .node == my_node) { /* pred on same node */
if (tlist[pred] .done) /* pred completed execution *I

Go = TRUE; /* so task can execute */
}
else if (iprobe(rpred)) Go= TRUE;

I*
* if message of TYPE 'rpred' waiting to be rece1ved
* then task can execute
*I

if (!Go) break;
else if (! lpred I I
else {

! rpred) break;
/* if both preds exist, then check */
/* for the other pred to~ */ Go = FALSE;

pied = rpred;
} ,

lpred = 0;

} /* while */
/* else before while */

if (Go) { /* task READY to be executed */
tlist[task] .done = TRUE;
task_to_nfa(task);
/* storing or sending result' for successors of the task */
for (i=O; (succ=tlist[cur->task] .succ[i]) != '\O';i++) {

if (tl.ist [succ] .node ! = my_node) { ,
/* lf successor on another node send result to that node */
NFA_BUFTYP nfa_buf;
int i,j;
nfa_buf.numst nfa->numst;
nfa_buf.start = nfa->start;

111

strcpy(nfa_buf.final,nfa->flnal);
for (i=l; i<=nfa->nurnst; i++)

for (j=O; j<MAX_COLS; j++)
strcpy(nfa_buf.table[i] [j],nfa->table[i] [j]);

I* Synchronously send message of TYPE cur->task, from
* static buffer nfa to 'succ' node *I

csend(cur->task, &nfa_buf, Slzeof(NFA_BUFTYP), tlist[succ] .node, NODEPID);
} I* if *I
else { I* successor on same node - so store result in buffer *I

store_in_buffer () ';
bufptr->status = IN_USE;
bufptr->access++;
bufptr->task = cur->task;

} I* else *I
I* for *I

rm_task(cur,back); I* remove the task from the task Q *I
cur = back = HEAD;

I* search for next READY task from head of the task-Q *I

else { I* Look ahead for next READY task *I
I* by moving cur and back pointers *I
I* in the list *I

lf (cur != back)
back = cur;

cur = cur->next;
}

I* of upper while *I
I* free oldl and old2 structures *I
free3D(oldl->table,maxterms,MAX_COLS);
free ((NFA *) oldl) ;
free3D(old2->table,maxterms,MAX_COLS);
free ((NFA *) old2) ;
free_bufferlist(); I* free all the buffer space *I

/**
Prototype Definition: void task_to_nfa(int)

Description:
This routine gets the NFA correpsonding to
by using the routine rules_nfa(). It uses
NFA for the two operands of its operation.
of atomlc REs or NFA of previous result.

the current task's operation
"oldl" and "old2" as the
oldl and old2 could be NFA

**/
void task_to_nfa(task)
int task;
{

int

char

pred,
my_node;
opl,op2,
op;

I* the two operands for the task *I
I* infix operator for the task *I

I* function prototypes *I
void rules_nfa () , assign () , get_from_buffer () ;

my_node = mynode();
opl tlist[task] .task[O];
op2 = tlist[task] .task[2];
op = tlist[task] .task[l];

if (opl>=MIN_SYMB && opl<=MAX_SYMB)
assign(oldl,opl);

if (opl>=BEG_TASK && opl<=END_TASK)
pred = opl - BEG_TASK;
if (tlist[pred] .node == my_node) I* pred on same node *I

get_from_buffer(pred,oldl);
I* get result from buffer lnto oldl *I

else if (tlist[pred] .node != my_node) { I* pred on dlfferent node *I
NFA_BUFTYP nfa_buf;
I* Synchronous receive message of TYPE pred, into buffer *I
crecv(pred, &nfa_buf, sizeof(NFA_BUFTYP));
oldl->numst = nfa_buf.numst;
oldl->start = nfa_buf.start;
strcpy(oldl->final,nfa_buf.final);
for (i=l; i<=oldl->nurnst; i++)

for (j=O; j<MAX_COLS; j++)
strcpy(oldl->table[i] [j],nfa_buf.table[i] [j]);

112

\
if (op2>=MIN_SYMB && op2<=MAX_SYMB)

assign(old2,op2);
if (op2>=BEG_TASK && op2<=END_TASK)

pred = op2 - BEG_TASK;
if (tlist[pred] .node== my_node) I* pred on same node *I

get_from_buffer(pred,old2);
I* get result from corresponding buffer into old2 *I

else if (tlist[pred].node != rny_node) { I* pred on different node *I
NFA_BUFTYP nfa_buf;

I* Synchronous receive message, of TYPE pred, into buffer *I
crecv(pred, &nfa-Puf, sizeof(NFA_BUFTYP));
old2->nurnst = nfa_buf.nurnst;
old2->start = nfa_buf.start;
strcpy(old2->final,nfa_buf.final);
for (i=l; i<=old2->nurnst; i++)

for (j=O; j<MAX_COLS; j++)
strcpy (old2->table [i] [j] ,nfa_buf. table [i] [j]);

}
rules_nfa(op);

I* make the nfa from oldl and old2 depending on 'op' *I

/***;*********************************
Function Name: rrn_task.

Prototype Definit~on: rm_task(My_Q *, My_Q *, My_Q *);

Description:
Removes the currently executed task (pointed to by curr) from rnynode's
task queue, and adjusts the curr and back po~nters appropr~ately.

**/
void rrn_task(curr,back) '
My_Q *curr, I* pointers to rnynode's task queue *I

*back;

My_Q *old=NULL;

old = curr; I* temp pointer to the node to be deleted *I
if (curr == back) {
I* task to be deleted is the first node in the task list *I

HEAD = HEAD->next;
}
else { I* task to be deleted in the middle of the list *I

back -> next = curr;

old->next = NULL;
free(old);

I***
Function Name: get_from_buffer()

Function Prototype: void gt_from_buffer(BUFFER *, int, NFA *, int)

Description:
Get the corresponding buffer from the buffer l~st which corresponds
to the 'pred' task. Then copy all the information from this buffer's nfa
to the 'old' nfa passed as parameter

***/
void get_from_buffer(pred,old)
int pred;
NFA *old;
{

int i,j;

bufptr = buf_hd;
I* Get the right buffer - which has the result of pred *I
while (bufptr->task != pred)

bufptr = bufptr->next;
I* Copy nfa from that buffer to old *I
I* copying the state information of the nfa *I
old->nurnst bufptr->bufnfa->nurnst;
old->start = bufptr->bufnfa->start;

113

strcpy(old->final, bufptr->bufnfa->final);
I* copying the transition table *I
for (~=1; i<=bufptr'->bufnfa->nurnst; i++)

for (j=O; j<MAX_COLS; j++) {
strcpy(old->table[i] [j],bufptr->bufnfa->table[~] [j]);

} I* for j *I
I* Since one task has retrived

its # of accesses *I
bufptr->access--;

info from this buffer, decrement

I* if #access becomes 0 *I if (bufptr->access == 0) {
bufptr->status = FREE;' I* mark the buffer FREE and also

free its nfa *I
free3D(bufptr->bufnfa->table,maxterrns,MAX_COLS);
free((NFA *) bufptr->bufnfa);

!**
Function Name: get_free_buffer()
Prototype Definition: BUFFER *get_free_buffer(BUFFER *, int)
Description:

Th~s function searches the buffer list for a free buffer. If it finds
an existing buffer which is FREE, it in~tializes this buffer's nfa.
If no FREE buffer available in the list, then it creates one at the
beginining or at the end of the list and initializes it appropriately.
The free buffer is then returned.

**/
void get_free_buffer()
{

/* Funct~on prototypes *I
BUFFER *create_buffer();

bufptr = buf_hd; I* bufptr points to the head of the buffer list */
if (buf_hd == NULL) { /* buffer list is empty */

}

buf_hd=create_buffer(); I* Create buffer at beginning*/
bufptr = buf_hd;

else { /* Buffer list is not empty now */
while (bufptr !=NULL) { .1* find a FREE buffer *I

if (bufptr->status == IN_USE)
bufptr = bufptr->next;

else break;

if (bufptr NULL) { /* No' FREE buffer available in list */

}

bufptr = buf_hd;
wh~le (bufptr->next != NULL)

bufptr = bufptr->next;
bufptr->next=create_buffer(); /*Create buffer at the end*/
bufptr bufptr->next;

else I* a FREE buffer available, so allocate memory

}

and in~t~alize its nfa *I
bufptr->bufnfa = (NFA *) malloc(sizeof(NFA));
mem3D(bufptr->bufnfa->table,maxterms,MAX_COLS,maxterms);

I* else */

I**
Function Name: create_buffer()

Prototype Defin~tion: BUFFER *create_buffer(int)
Description:

This function creates a structure of type BUFFER and ~nit~alizes the
structure members, including allocating and in~tializ~ng the buffer's
nfa. The created buffer is returned.

***/
BUFFER *create_buffer()
{

BUFFER *new_buffer;
new_buffer = (BUFFER*) malloc(l*s~zeof(BUFFER));
new_buffer->next = (BUFFER *) NULL; new_buffer->status FREE;

114

I*

set status to FREE buffer */
new_buffer->access = 0; /* set # of accesses to 0 *I
new_buffer->bufnfa = (NFA *) malloc(sizeof(NFA));
/* Allocate small amount of memory anq initialize the

transition table of the buffer nfa */
mem3D(new_buffe~->bufnfa->table,maxte~s,MAX_COLS,maxterms);

return(new_buffer);

/**************************************~********************************
Function Name : free_bufferlist () -- ,

Function Prototype : void free_bufferlist,(BUFFER *)

Description:
Removes the complete buffer list occupied by'all the buffers used
in this file. Note that the 'bufnfa' members of each of the buffers -
have been assumed to be freed as and when a buffer becomes FREE during
execution of the program. This routine only frees ,all the buffers and
removes the links between them.

*******************~***~*****************~****~*****~*********************/
void free_bufferlist()
{

BUFFER *bufptr = buf_hd, *freeptq'

while (bufptr !=NULL) {
freeptr = bufptr;
bufptr = bufptr->next;
freeptr->next = NULL;
free ((BUFFER * l.ifreeptr);

} /*while */
buf_hd = NULL;

!****************************~***
Function Name: store_in_buffer()

Prototype Definition: void,store_in_buffer(NFA *, NFA *)

Description:
This routine copies the nfa structure from the 'from nfa' structure to
the 'to_nfa' structure, by copying all the members of the structure
including the transition table. It is assumed that the 'to_nfa' member
has been allocated only a small,amount of memory when passed as a
parameter. So this routine checks if additionally memory is required and
allocates the sufficient memory whenever needed.

**/
void store_in_buffer () , '
{

int i,j,szl;

get_free_buffer();

/* copying the state information of the nfa */
bufptr->bufnfa->numst = nfa-~nurnst;
bufptr->bufnfa->start = nfa->start;
strcpy(bufptr->bufnfa->f~nal, nfa->final);

/* copying the transition table */
for (i=l; i<=nfa->nurnst; i++)

for (j=O; j<MAX_COLS; j++) {
strcpy(bufptr->bufnfa->table[~] [j],nfa->table[i] [j]);

} /* for j */

/********************~**

Function Definltion: 'void assign (NFA "; ,' STTYPE),

Description:
Gets the NFA for an atomic RE, i.e. either a "e" or "phi" or "a".
Note, the states in the NFA start from ql instead of qO.

***/
void assign(fa,opl)
NFA *fa;
STTYPE opl;
{

STTYPE i,j;
if (opl == EPSILON)

fa->nurnst = 1;
I* NFA for EPSILON */

115

fa->start = 1; I* states always start from q1 *I
strcpy(fa->final,itos(1));
I* start and only state in the NFA moves to the PHI state on

any input symbol *I
for (j=O; j<MAX_COLS-1; j++)

strcpy(fa->table[1] [j],itos(PHI));
I* Except on input •e•, when it moves to the start state itself *I
strcpy(fa->table[1] [MAX_COLS-1],itos(1));

else { I* NFA for any symbol other than EPSILON *I
fa->nurnst = 2;
fa->start = 1;
strcpy(fa->final,l~os(2));
for (j=O; j<MAX_COLS; j,++)

if (j==Op1)
strcpy(fa->table[1] [j],itos(2));

else
strcpy (fa->table [1] [j], itos (PHI));

strcpy(fa->table[2] [j],itos(PHI));
I* for *I

} I* of else *I
I* end of assign *I

/**
Function Definition: void rules_nfa(char)

Description:
Applies the rules of •concatenation•, •union•, or "closure• on the
two automata "old1" and "old2" to get the new nfa. The method is
1llustrated in section 3.4.1 of the thesis document.

**/
void rules_nfa(op) '
STTYPE op; I* operation between machines M1 and rn2 *I
{

int i=O,j=O,k=O,p=O,t;
int shift;

STTYPE *offset();

I* local index variables *I
I* shift position of states *I

if (op == CONCAT) I* CONCAT of M1 and M2 *I
nfa->start old1->start; I* start state of M' is that of M1 *I
nfa->nurnst = old1->nurnst + old2->nurnst;

I* number of states in M' = M1 + M2 states *I
I* M1's transition table is added toM' without any change;

e-moves from the final state of M1 is added later *I
for (1=1; (i<=old1->nurnst); i++)

for (j=O;j<=MAX_COLS-1;j++) {
strcpy(nfa->table[i] [j],old1->table[i] [j]);

p i;
shift = old1->nurnst;
I* M2's transition table is added toM' without any change;

e-moves from the final state of M1 is added later *I
for (i=1; (i <= old2->nurnst); i++,p++)

for (j=O;j<=MAX_COLS-1;j++) {
strcpy(nfa->table[p] [j],offset(old2->table[i] [j],shlft));

I* set the final in the new nfa *I
strcpy(nfa->final,itos(--p));

I* Adding e-moves from the final states of M1 to the start
state of M2 in the new machine M' *I

for (i=O; (t=old1->final[i]) != '\0'; i++)
strcat(nfa->table[t] [MAX_COLS-1],itos(old2->start+shift));

I* end of CONCAT operation *I
else if (op == UNION) { I* begin of UNION operation *I

I* set the number of states in M' *I
nfa->nurnst = old1->numst + old2->nurnst + 2;
nfa->start = 1; I* set the start state in M' *I
for (j=O;j<MAX_COLS; j++) I* and its transitions to PHI *I

strcpy(nfa->table[1] [j],ltos(PHI));
p =2; I* e-move from q1 of M' to start state of M1 *I

116

strcpy (nfa->table [1] [MAX_COLS-1], itos(p));
/* Add the transition table of M1 to M' without any change;

e-rnoves from the final state of M1 is added later */
for (i=1; (i<=old1->numst); i++,p++l

for (j=O;j<=MAX_COLS-1;j++) {
strcpy(nfa->table[p] [j],offset(old1->table[i] [j],1));

shift = p-1;
/* Adding the e-move from q1 of M' to start state of M2 */
strcat (nfa->table [1] [MAX_COLS~ll, itos (p));

/*Add the transition table ofM1 toM' without any change;
e-rnoves from the final state,of Ml is added later */

for (i=l; (i<=old2->numst); i++,p++l >

for (j=O;j<=MAX_COLS-1;j++) {
strcpy(nfa->table[p![j],offset(old2-~table[i] [j],shift));

'
/* Now 'p' polnts to the last state of M', which we

set as the final state of M''*/ '
strcpy(nfa->final,itos(p)); "
for (J=O;j<MAX_CO~S; j++l /* set its transitions to PHI */

strq)y(nfa-i>t:able[p] [j] ,itos(PHI)); '

/* Now we add all the e-moves from,all final states of
M1 to the above final state of'M' */

for (i=O; (t=old1->final[i]l != '\O'·; i++l'
strcat (nfa->table [t+1] [MAX_COLS-1] ,·itos (p));

/* Now we add all the e-moves from all final states of
M2 to the above final state of M' */

for (i=O; (t=old2->final[i]) != '\0'; i++l
strcat(nfa->table[t+shift] [MAX_COLS-1],itos(p));

/* end of UNION ~peration */

else if (op == CLOSURE) ,{ /*'·begin of CLOSURE operation *I

/*Set the number of states in M'·' '*I
nfa->numst = old1->numst + 2;

/* Set the start state in M' *I
nfa->start = 1;
for (j=O;j<MAX_COLS; j++l /,*set its transitions to PHI */

strcpy (nfa->table [1 f[j], itos (PHil l;

/* e-move from qO of M' to,start state of M1 *1
strcpy(nfa->table[1] [MAX_COLS~1],itos(oldl->start+l));

/* Adding transition table of M1 to M' without any change;
e-rnoves from the final state of, M1 ~s added later */

p =2; '
for (i=1; (i<=old1->numst); ,i++,p++l

for (j=O;j<=MAX_COLS-1;j++): {
strcpy(nfa->table[p] [j],offset(old1->table[i] [j],1));

/*Now index 'p' points to last state of M', which we
mark as a final'state .*/

strcpy(nfa->final,itos(p)); .
for (j=O; j<MAX_COLS; j++) /* set its transitions to PHI * /,

strcpy (nfa->table [p]'[j], itos (PHI) l; ,

/* adding e-move from start to final state of M' */
strcat (nfa->table [1] [MAX_,COLS"-1], itos (p));

/* adding all the e-moves from all final states of
M1 'to the' final state of M' ind~cated by' index 'p' *I

for (i=O; (t=old1->final [i]) != '\0'; i++l
strcat (nfa->table [t+1] [,MAX_COLS-1], itos (p) l ;

I* adding all the e-moves from:'all final states of'
M1 to the start state of M1 */

for (i=O; (t=old1->final [i]) ! = '\0'; i++l
strcat(nfa->table[t+1] [MAX_COLS-1],itos(2));

} /* end of CLOSURE operation *I
/* end of rules_nfa */

/**
Function Name : offset().
Prototype Definition: char *offset(char *, int)
Description:

This routine takes a string, adds an offset value to each character

117

of the string, and returns the new string.
***/
STTYPE *offset(oldstr,val)
STTYPE *oldstr;
char val;
{

}

ECL.C

int i;
STTYPE newstr(MAX_RE];
strcpy(newstr,oldstr);
for (i=O; oldstr[i] !=0; i++l

if (oldstr[i] != PHil
newstr[1] += val;

return (newstr) ;

#1nclude •node.h"

/***
This file (ecl_p.c) contains the following NODE routines:

r.m_emoves Removes the e-moves from the NFA
get_ecl Obtains the a-closure for every NFA state
print_ecl Prints the a-closure of every NFA state

**I

I* All external declarations of functions and variables *I
extern char *itos ();
extern void rm_repeat () ;
extern NFA
extern int

*nfa;
work_nodes,maxterms;

I* Declaration of local variables to the file *I
static long

my_node,
basic_states, /* basic number of states for each node *I
extra_states, /* additional number of states *I
my_states, I* total number of states for my node *I
my_beg,my_end, I* range of states for my node *I
xlens[MAX_PROCS];

/***
Function Definition: r.m_emoves(void l
Description:

This routine removes the e-moves in the NFA by following the method
outlined in transformation T2 of Section 3.4.2

***/
void rm_emoves ()
{

boolean both = FALSE; /* flag for to tell if qO belongs to F *I
1nt pos,

i,j,k,p,t1; /* temporary index vars *I
STTYPE *tot_ecl[MAX_NFA], I* array for e_closure of all states *I

*tot_fn[MAX_NFA] [MAX_COLS],
I* total transition table of the new NFA *I

*my_fn(MAX_NFA] [MAX_COLS],
I* transition table for my states only *I

temp[MAX_NFA]; I* temporary string variable *I
extern void mem3D (), free3D ();

void get_ecl () , print_ecl () ;
I* calculating parameters for my node operation */
my_node = mynode();
basic_states = nfa->numstlwork_nodes;
extra_states = nfa->numst%work_nodes;
my_states = basic_states+extra_states;
if (my_node < extra_states) {

}

my_states = basic_states + 1;
my_beg = my_node*my_states+1;

else {
my_states = basic_states;
my_beg = (my_node*my_states) + extra_states+1;

}
my_end = my_beg + my_states-1;

118

rm_repeat(nfa->final);
I* allocate memory only to the required number of row pointers

in tot_ecl and assign to null *I
for (i=O; i<=maxterms; i++) {

if ((tot_ecl[i] = (STTYPE *)
malloc(maxterms*slzeof(STTYPE))) NULL)

exit(1);
strcpy(tot_ecl[i],"");

I* Obtain the e_closure of all states and print it *I
get_ecl(tot_ecl); I* all nodes execute this *I
if (DEBUG && ro¥node() == ROOTNODE)

print_ecl(tot_ecl,nfa->numst); I* only one node prints *I
I* if e_closure(q1) contains a state ofF, i.e. the set of f1nal

states, then F' = F U {qO} *I
for (i=O,both=FALSE; !both && ((t1=nfa->f1nal[i]) !=0); i++)

if (strchr(tot_ecl[1],t1))
both = TRUE;

I* Allocate memory dynamically to the my_fn and tot_fn arrays
which act as the temporary NFA after removing e-moves *I

mem3D(my_fn,maxterms,MAX_COLS,maxterms);
mem3D(tot_fn,maxterms,MAX_COLS,maxterms);

I* This part forms the transfer function of the new NFA.
Algorithm in Transformat1on T2 of Section 3.4.2 of the
thesis report followed. But parallel lmplementation done *I

for (i=ro¥_beg; i<=my_end; 1++) {
for (j=O; j<MAX_COLS-1; j++) {

strcpy (temp, • •);
for (p=O; (pos=tot_ecl[i] [p]) != 0; p++)

if (pos != PHI) {
strcat(temp,nfa->table[pos] [j]);
r.l!Lrepeat(temp);

}
strcpy (ro¥_fn [i] [j J, • •);
for (p=O; (pos=temp[p]) != 0; p++)

if (pos != PHI) {
strcat(ro¥_fn[i] [j],tot_ecl[pos]);
rm_repeat(ro¥_fn[i] [j]);

}
} I* for j loop *I

I* for i loop *I
if (my_node != 0) {
for (i=ro¥_beg; i<=my_end; i++)

for (j=O; j<MAX_COLS-1; j++)
strcpy(ro¥_fn[i] [j],ro¥_fn[i+ro¥_beg] [j]);

xlens[OJ = (ro¥_states+1)*MAX_COLS*maxterms*slzeof(STTYPE);
for (i=1; i<wor~nodes; i++)

xlens[1] = ro¥_states*MAX_COLS*maxterms*slzeof(STTYPE);
I* get length of contribution of each node 1nto xlens *I

gcolx(my_fn,xlens,tot_fn);
I* collect tot_fn using •gcolx" *I

I* Assign the new transition matrix to the structure 'nfa'
Note to blank thee-move column in the newly formed 'nfa' *I

for (i=1; i<=nfa->numst; i++) {
for (k=O;k<MAX_COLS-1;k++)

strcpy(nfa->table[i] [k],tot_fn[i] [k]);
strcpy(nfa->table[i] [MAX_COLS-1],"");

I* Check if F' = F U {qO} or not *I
if (both)

strcat(nfa->final,itos(nfa->start));
I* free memory for all local dynam1c structures *I
free3D(ro¥_fn,maxterms,MAX_COLS);
free3D(tot_fn,maxterms,MAX_COLS);
for (i=O; i<=maxterms; i++l

free(tot_ecl[i]);
)I**
Function Definition: vo1d get_ecl(STTYPE **)

119

Description:
This part forms the my_ecl table, whcih consists of e_closure for my
states. Then, my_ecl from all nodes is collected to give the e_closure
of all states in tot_ecl, by using the "gcolx" global operation.
E_closure of a state qO denoted by e_closure(qO) is def1ned as the set of
all the states which can be reached from state qO with one or more arcs
labeled with •e•.

***/
void get_ecl(tot_ecl)
STTYPE *tot_ecl[MAX_NFA];
{

boolean done;
STTYPE ,*my_ecl[MAX_NFA],

temp [MAX_NFA] ,
i,k, st,pos, tl;

, I* e_closure of my states only *I

I* allocating memory to my_ecl *I
for (i=O; i<=maxterms; i++) {

1f ((my_ecl[i] = (STTYPE *)
malloc(maxterms*sizeof(STTYPEJ))

strcpy(my_ecl[i],'');

for (st=my_beg; st<=my_end; st++l
k=O;
strcpy (temp, • •);
done = FALSE;
pos = st;
strcpy(my_ecl[st] ,itos(st));
while (!done) {

NULL)

for (i=O; (tl=nfa->table[pos] [MAX_COLS-1] [i]) != 0; i++) {
if (tl != pos && tl !=PHI && !strchr(my_ecl[st),tl))

strcat(my_ecl[st],itos(tl));
strcat(temp,1tos(tl));

I* storing future states 1n a temp array *I
}

} I* for *I
if ((pos=temp[k++ll == 0)

done = TRUE;
} I* while *I
I* outer for *I

if (my_node ! = 0) {'
for (i=O; i<my_states; i++)

strcpy(my_ecl[i],my_ecl[i+my_beg]);

xlens[OJ = (my_states+l)*maxterrns*sizeof(STTYPE);
for (i=l; i<work_nodes; 1++)

xlens[i] = my_states*maxterrns*sizeof(STTYPE);
I* get length of contribution of each node into xlens *I

gcolx(my_ecl,xlens,tot_ecl);
I* collect vector using "gcolx' *I

I* deallocate memory for my_ecl *I
for (1=0; i<=maxterms; i++) {

free(my_ecl[i));

/***
Function Definition: void print_ecl(char**, int);
Description:

This function prints the E-el table which contains the e-closure of each
state of the nfa with ~-moves

***/
void print_ecl(tot_ecl,num)
STTYPE *tot_ecl[MAX_NFA);
int num;
{

int i,j,t;
for (i=l; i<=num; i++l {

printf("\nE_CLOSURE OF q%d: {",i);
for (j=O; (t=tot_ecl [i) [j]) ! = 0; J++l

120

printf("q%d •,t);
/* for i */

printf (" } \n •) ;

NFA_DFA.C
#include "node.h"
/***
This file (nfa_dfa.c) contains the following NODE routines:

nfa_to_dfa() Converts an NFA to a DFA
set_dfa_final() Sets the final states in the DFA
exists() Checks if a new DFA state is encountered
Some printing routines

~***********/

/*
extern
extern
extern
extern
extern

Declaration of all external functions and variables */
char *itos();
void rm_reeat();
NFA *nfa;
DFA *dfa;
int maxterms;

/* Declaration of All global variables */
unslgned char *nfa_st [MAX_NFA];

/***
Function Definition: void nfa_to_dfa(void)
Description:

This routine converts the given NFA to a DFA by following the
transformation T3 in Section 3.4.3 of the thesis document. The
structure "palrs• containing the new DFA state and the corresponding
set of NFA states is used.

**/
void nfa_to_dfa()
{

STTYPE strl [MAX._NFA] , str2 [MAX_NFA] ;
int indexl=O, index2=0, /* indexes into pairs */

index=O,
i,j,k,st,
inp; /* input symbol */

/* functlon prototypes */
vold set_dfa_final(), print_pairs();
int exists();

mem2D(nfa_st,MAX_NFA,maxterms);
strcpy(nfa_st[indexl++],itos(nfa->start));
rm_repeat(nfa->final);
while (indexl != index2) {

for (inp=O; inp<=MAX_COLS-2; inp++) {
strcpy(str2,"");
for(i=O; (st=nfa_st[index2] [i]) != 0; i++)

strcpy(strl,nfa->table[st] [inp]);
if (i==O) {

strcpy(str2,strl);
contlnue;

}
for (j=O; strl[j] !=0; j++)

if (strl[j] == PHI) continue;
if (!strchr(str2,strl[j]))

strcat(str2,itos(strl[J]));
} /* for "J" loop */

/* for "i" loop */

if (strlen(str2)==0) {
dfa->table[index2+1] [inp]
continue;

PHI;

}
if (index=exists(str2,indexl))

/* existing set of NFA states */
dfa->table[index2+1] [inp] = index+l;

else { /* a new set of NFA states =>new DFA state */
dfa->table[index2+1] [inp] = indexl+l;
strcpy(nfa_st[indexl++],str2); /*else*/

121

} /* for "inp• loop */
index2++;

} /*while */
dfa->start = 1;
dfa->nurnst = index2;
strcpy(dfa->final,"");

1f (DEBUG && rnynode() == ROOTNODE)
print_pairs(index2);

/* find the final states of DFA from the 'nfa_st' structure */
set_dfa_final(index2);

} /* end nfa_to_dfa */

/***
Function Definition: int ex1sts(char*, int)

Description:
This rout1ne checks for every set of NFA states, if this set corresponds
to a new DFA state and returns the new DFA<state.

***/
int exists(set,last)
uns1gned char set[];
int last;
(

int i,j;

for (1=0; i<=last; i++) {
if (strcmp(nfa_st[i],set) 0)

return(i);
}
return(O);

/***
Function Definition: void set_dfa_final(char*)

Description:
Given a set of NFA states which corresponds to a DFA state, th1s routine
determ1nes if the DFA state 1s a final state or not, prov1ded one of the
NFA states in the set 1s a final state.

**/
void set_dfa_final(last)
int last;
{

int i,j,st;

for (i=O; (st=nfa->final[i]) != 0; i++)
for (j=O; j<last; J++) {

}

if (strchr(nfa_st[J],st))
strcat(dfa->flnal,itos(j+l));

} /* end set_dfa_final */

/***
Function Defin1tion: void print_pairs(int)

Description:
This routine prints the set of NFA states and the corresponding DFA
state obtained in the new DFA.

**/
void pr1nt_pa1rs(last)
int last;
{

int i,j,st;

printf("\n\n\n\t*** STEP 3 -Correspondence between DFA and NFA");
printf (• States ***\n\n");
pr1ntf (" DFA State \tNFA State set \n");
printf("--\n");
for (i=O; i<last; i++) {

printf("\tQ%2d <==> \t{",i+l);
for (j=O; (st=nfa_st[i] [j]) != 0; j++)

printf(" q%2d ",st);
if ((j%20)==0) printf("\n");

122

pnntf("}\n");
}
printf("--\n");

}

MIN_DFA.C
#include "node.h"

/***
This file (min_dfa.c) contains the following NODE routines:

get_newst() To get the new DFA state
mark_others() To mark pairs of states in the pending list
put_pend() To put in the pending list of the current pair
append() To put in a queue for recursively marking a

pend1ng list '
Some printing routines

**/

typedef struct rq { I* type for recursive pairs to be marked *I
SHORT p,q;
struct rq *next;
} r_Q;

I* Declartion
extern void
extern

of all external functions and variables *I
rrn_repeat ();
char *itos();

extern DFA *dfa;

/* Declaration of all variables global to this file *I
STTYPE pend[lOO] [70],

STTYPE

r_Q

newfinal [MAX_DFA] '; I* final states of the new DFA *I
*marks [MAX_DFA] ,

*new_fn[MAX_DFA],
*new_st[MAX_DFA];

*recursive_Q;

I* marking table *I
I* tr table for the minimized DFA */
I* states in the minimized DFA *I
I* head of recursive list of pairs *I

/**
MININIZATION ALGORITHM

Function Definition: void min_dfa(vo1d

Description:
This funct1on takes a dfa and removes the inaccessible and irredundant
states by following the minimization algorithm of transformation T4
outlined in Section 3.4.4. The minim1zed dfa is returned back in the
same 'dfa' structure.

************************************~**************************************/
void min_dfa ()
{

boolean marked = FALSE;

SHORT i,j,m,n,
p,q,
r,s,
a,
nurn_eq,
nurn_st=O,
st,
newstart;

I* function prototypes *I

I* local index variables *I
I* states p and q in ~he algorithm *'/
I* r = delta(p,input) and s = delta(q,input) *I
I* inut symbol *I
I* # of equivalent states *I
I* # of states in DFA */

I* start of the new DFA *I

void put _pend () , mark_others () , print_marks () , print _pend () ;
STTYPE get_newst();

nurn_st = ++dfa->nurnst;
I* allocate only required memory dynamically to all arrays *I
for (i=O; i<= nurn_st+S; i++) {

if ((new_st[i]=(STTYPE *)
rnalloc((nurn_st+S)*sizeof(STTYPE)))==NULL)

ex1t(l);
strcpy(new_st[i], "");
if ((rnarks[i]=(STTYPE *)

rnalloc((nurn_st+S)*sizeof(STTYPE)))==NULL)
exit(l);

strcpy(marks[i],"");

123

if ((new_fn [i] = (STTYPE *)
malloc((num_st+5)*sizeof(STTYPE)))==NULL)

exit(l);
strcpy(new_fn[i],"");

I* for i *I
I* Make the last state as PHI-STATE and adjust the transitions

accordingly *I
for (j=O; j<=MAX_COLS-2; j++)

dfa->table[num_st] [j] = num_st;

for (i=l;i<num_st;i++)
for (j=O;j<=MAX_COLS-2;j++)

if (dfa->table[i][j] ==PHI)
dfa->table [.i] [j] = num_st;

for (i=O; i<lOO; i++)
strcpy(pend[i],"");

for (i=O; i<=num_st; i++)
new_st[i] [0] = 0;

for (i=O;i<=num_st;i++)
for (j=O;j<=num_st;j++) I* initialize marks to UNMARKED *I

marks[i] [j] = UNMARKED;

I* STEP 1: Mark (p, q) for all- p in F and q in (Q-F) *-I
for (q=l; q<=num_st; q++) {

I* q in (Q--F) *I
!= 0; i++) ,{

if (!strchr(dfa->final,q)) {
for (i=O; (p=dfa->flnal[i])

I* p in (F) *I
marks[q] [p] MARKED;
marks[p] [q] =MARKED;

if (p<q)
else

I* for i
} I* if *I

I* for q *I

loop *I

for (p=2; p<=num_st; P++) {
for (q=l; q<p; q++) {

if (marks[p] [q], ==MARKED) continue;

marked = FALSE;
for (a=O; a<=MAX COLS-2; a++)

r = dfa->table[p] [a];
s = dfa->table[q] [a];

{
I* r
'!* s

I* for all input symbols *I
d(p,a) *I
d(q,a) *I

if (r==s) continue;

r;
if (r<s) {

SHORT temp
r s; I* swap r and s *I
s = temp;

if (marks[r] [s]) {
marks[p] [q] =MARKED;
marked = TRUE;
mar~_others(2,q);

break;
}

I* for a loop *I

I* if (r,s) entry marked *I
I* mark (p,q) entry also *I

I* mark all unmarked-pairs on the
list for (p,q) *I_ ,

I* go for next (p,q) _pair *I

if (!marked) { i* no pair (d(p,a),d(q,a)) is marked *I
for (a'=O; a<=MAX_COLS-2; a++) { I*· for all input symbols *I

r = dfa->table[p] [a]; I* r d(p,a) *I
s = dfa->table[q] [a]; I* s d(q,a) *I

if (r==sl
if (r<s) {

SHORT temp
r = s;
s = temp;

continue;

r;
I* swap r and s *I

}
put_pend(p,q,r,s);

I* put (p,q) pair on the list for (r,s) *I
I* for a loop *I

124

} I* of if *I
} I* for q loop *I

I* for p loop *I
if (DEBUG && my_node == ROOTNODE)

print_marks(num_st);

num_eq = 0;
for (i=0,p=2; P<=num_st; p++)

for (q=l; q<p; q++)
if (marks [p l [q] ! =. ~KE\)) ·

num_eq++;
if (num_eq == Pl return;.

for (p=2; p<=num_st; p++) {
for (q=l; q<p; q++) {

if (marks[p] [q] !=MARKED)
boolean found = FALSE;
for (i=l; new_st[i] [OJ != 0; i++) {
if (strchr(new_st [i] ,p),_l I' strcf1r (new_st [i] ,q))

· strcat(new_st[i],itos(p));
strcat (new_st [i] ;i tos (q)) ;
rm_repeat(new_st[i]);
found = TRUE; .
break;

} /* if *I
} I* for i loop *I
if (!found)' {

strcat (new_st [i], itos'(p));
strcat(new_st[i],itos(q));

}
} I* if !MARKED *I

} I* for q loop *I
I* for p loop *I

for (p=O;p<=num_st;p++) {
boolean found = FALSE;
for (i=l; new_st[i] [0] != 0; i++)

if (strchr(new_st[i],p))
found = TRUE;
break; ·

}
} I* for i loop *I
if (! found) ·

strcat (new_st [i] , i tos.(p)) ;
I* for p loop *I ·

dfa->numst = --i;

for(i=l;new_st[i] [OJ !=O;i++)
for(a=O; a<=MAX_COLS-2; a++) {

st = dfa->table[new_st[i] [OJ] [a];
new_fn[i] [a] get_newst (st);

strcpy(newfinal,"");
rm_repeat(dfa->final);
for (i=l; new_st [i] LOJ ! = 0; i++) {

for(j=O; (st=new_st[i] [j]) !=O;j++)
if (st == dfa->start)

newstart = i;
if (strchr(dfa->final,st))

strcat(newfinal,itos(i));

for (i=l;new_st[i] [0] !=O;i++)
for(j=O;j<=MAX_COLS-2;j++)

·dfa->table[i] [j] = new_fn[i] [j];
dfa->numst = --i;
strcpy(dfa->final,newfinal);
dfa->start = newstart;

I* free memory for all dynaiDQc arrays *I
for (i=O; i<=num_st+S; i++) {

free(marks[i]);
free(new_st[i]);
free(new_fn[i]);

125

/* of min_dfa */

/**
Function Name: get_n~~st()

Prototype Definition:, STTYPE get_newst(SHORT);

Description:
If the given state oldst is in the set of states (new_st) of the new DFA,
this function returns the corresponding new state.

~·~~*********************/

STTYPE get_newst(oldst)
SHORT oldst;
{

SHORT p,q;

for (p=l;new_st [pJ [OJ != O;p++)
if (strchr(new_st[pJ,oldst))

ret ur;n ((STTYPE) p) ;

void put_pend(p,q,r,s)
SHORT p,q;
{

STTYPE put_str[3J,
srch_str[3J,
strl [MAX_DFAJ;

SHORT i, j;

put_str[OJ = p; put_str[lJ = q; put_str[2l = 0;
srch_str[OJ = r; srch_str[lJ = s; srch_str[2J = 0;

for (i=O; pend[iJ [OJ != 0; i++) {
strcpy(strl,pend[iJ);
strl [2J = 0;
if (strcrnp(srch_str,strl) == 0) { ~

strcat(pend[iJ,put_str);
return;

}
/* for i loop */

strcat,(pend[i]', srch_str);
strcat (pend[iJ ,put_str); '

/**~****************************
Function Name: void rnark_others(SHORT, SHORT)'

Description:
When the pair (p,q) gets marked, then recursively mark all pairs on the
list for (p,q) and also on the lists of other pairs that gets marked 1n
this list.

***/
void rnark_others(p,q)
SHORT p,q;
{

SHORT i, j,
mark_p, rnark_q;

STTYPE srch_str [3J,
strl[lOOJ;

r_Q *freeptr;

recursive_Q = NULL;
append(p,q);

while (recursive_Q != NULL) {
p = recursive_Q->p;
q = recursive_Q->q;
srch_str[OJ = p; srch_str[lJ q; srch_str[2J 0;
for (i=O; pend[iJ [OJ != 0; i++) {

strcpy(strl,pend[iJ);
strl [2J = 0;
if (strcmp(srch_str,strl) == 0) {

for (j=2; pend[iJ [JJ != 0; j += 2)
mark_p = pend[iJ [jJ;
rnark_q = pend[iJ [j+lJ;
rnarks[mark_pJ [mark_qJ =MARKED;
append(rnark_p,mark_q); } /*for j loop*/

126

pend[i] [2] = 0;
} I* if *I

} I* for i loop *I
freeptr = recursive_Q;

recursive_Q = recursive_Q->next;'
freeptr->next = NULL;
free (freeptr);

} I* while *I
/* end of rnark_others */

append(p,q)
SHORT p,q;
{

r_Q *ptr;

if (recursive_Q == NULL) {

}

recursive_Q = (r_Q *) rnalloc(l*sizeof(r_Q));
ptr = recursive_Q;

else {

}

I* if (p,q) already exists in the queue then return *I
ptr = recursive_Q;
while (ptr != NULL) {

if, (ptr->p == p && ptr->q ==q)
return;

ptr = ptr->next;

/* now (p,q) does not exist - so append it at the end */
ptr = recursive_Q;
while (ptr->next != NULL)

ptr = ptr->next;
ptr->next = (r_Q *) rnalloc(l*sizeof(r_Q));
ptr = ptr->next; '

ptr->p = p;
ptr->q = q;
ptr->next = NULL;

/***
Function Def1nition: void print_rnarks(int)

Description:
This routine prints the Marking Table of transformation T5. Each
marked pair is represented by an "X" and an unmarked pa1r by an "U".

***/
void print_marks(num)
SHORT num;
{

SHORT i,j;

printf("\n\t Snap shot of Marking table \n\n");
for (i=2; i<=num; i++) {

for (j=l; J<i; j++) {

}

printf(" (%d,%d)-",i,j);
if (marks [i] [j l)

printf (•x•);
else printf (•u•) ;

printf (" \n •) ;

} /* end of pr1nt_marks */

DFA_RE.C
#include "node.h"

/***
This f1le (dfa_re.c) contains the following NODE routines:

dfa_re() Driver routine to obtain the RE for the DFA
rm_redun() Removing redundanc1es in the RE
Miscellaneous linked list routines

***/
extern void rm_redun () , rm_repeat () ;
extern char *itos();
extern DFA *dfa;

127

work_nodes; extern int
extern char re [MAX_RE],

symbset[MAX_COLS];

typedef struct gl {
SHORT row, col;
char re [MAX_RE];
struct gl *next;
} Gtype;

Gtype *Gl=NULL; I* G_l array for sub-graph Gl *I

/**
Function Definition: vo~d dfa_re(void)

Description:
This function takes a dfa and constructs the regular expression in 're'
corresponding to the given dfa, by following the algorithm outlined in
transfromation TS of Section 3.4.5. It constructs several sub-graphs from
the transition graph of the given DFA, determines the RE for ea'ch
sub-graph, and f~nally obtains the RE for the DFA by the un~on of the
REs of all the sub-graphs.

**/
void dfa_re ()
{

SHORT i,j,k,p,x,y,
accept,
start,
node_i,
nurn_st,
inp;
my_node;

I* temporary variables *I
I* only final state of each subgraph *I
I* start state of DFA *I
I* node to be deleted in reducing subgraph *I
I* # of dfa states *I
I* input symbol *I

long

Gtype *wl,*w2,*w3,*w4, I* represent arcs ~n reduced subgraph *I
*ptrl, *ji_ptr, *ik_ptr, *ii_ptr, *jk_ptr;

STTYPE temp_re[MAX_RE], I* temporary store for RE *I
strl[MAX_RE], I* temporary string variables *I
Wjk [MAX_RE] ,
delnodes[MAX_DFA];

I* function prototypes *I
void print_Gt(), free_Gt();
void listcat () , listcpy () , delete () ;
Gtype *inlist(), *create(); ·

strcpy(re,"");
nurn_st = dfa->nurnst;
rm_repeat(dfa->final);

I* if only one state in DFA, find its RE and qu~t *I
if (nurn_st == 1) {

strcpy(re,"(");
for (j=O;j<MAX_COLS-1; j++)

if (dfa->table[1] [i] != PHI) {'
strcat(re,itos(syrnbset[i)));
strcat (re, "+");

} I* if *I
re[strlen(re)-1] = '\0'; I* removing last '+' in re *I
strcat(re,")*");
return;

rny_node = mynode(); ,
num f~nal = strlen(dfa->final);
I* Start processing e~ch subgraph Gt by selecting *I
I* only one final state of DFA for each subgraph *I
for (p=my_node; p<num_f~nal; p += work_nodes) {

accept=dfa->final[p];
I* Reinitialize G1 for every subgraph by construct~ng a node-node

transition graph from the dfa transition table, with entr~es
being REs instead of states *I

free_Gt();

128

for (i=1; (i<=nurn_st); i++) for (~np=O; inp < MAX_COLS-1; inp++) {
x=dfa->table[i] [inp];
strcpy(str1,itos(syrnbset[~np]));

strcat(str1,"+");
listcat(i,x,str1);

I* for inp loop *I
for (i=1; i<=num_st; i++)

for (j=1; j<=num_st; j++)
if ((ptr1=inlist(i,j)) !=NULL) {

strcpy(str1,"(");
k = strlen(ptr1->re) - 1;
ptr1->re[k) = 0; I* removing the '+' at end *I
if (k>1) {

strcat(str1,ptr1->re);
strcat (str,l, •) •) ;.
strcpy(ptr1->re,str1);

} I* of i:f k *I
I* if ptr:1 *I

strcpy(temp~re,"");
strcpy(delnodes,"");
I* Choosing a node "i" in G1, that is neither the start

nor the accepting node *I
for (node_i=1; node_i<=num_st; node_i++) {
if (node_i == dfa->start I I node_i == accept) continue;
I* Delete node i as follows *I
I* Initially select every pair [j,k), neither equal to

i, including j=k *I
strcat(delnodes,itos(node_i));
for (j=1;j<=num_st;j++) {

if (j == node_i I I strchr(delnodes,j)) continue;
for (k=1;k<=num_st;k++) {

if (k == node_i I I strchr(delnodes,k)) continue;
I* Now test for the TWO cases in the algorithm for

deleting a node *I
strcpy(Wjk,"");
I* Test of CASE 1 *I
if (((ji_ptr=inlist(];node_i)) !=NULL) &&

((ik_ptr=inllst(node_i,k)) !=NULL) &&
((ii_ptr=inlist(node_i,node_i)) ==NULL))
I* find the new arc Wjk *I
strcpy(Wjk,ji~tr->re);
strcat(Wjk,ik_ptr->re);

I* end of CASE 1 *I
I* Test of CASE 2 *I
if (((ji_ptr=inlist (j ,node_i)) ! = NULL) &&

((ik_ptr=inlist(node_i,k)) !=NULL) &&
((ii_ptr=inl~st(node_i,node_i)) !=NULL))

I* find the new arc Wjk = Wji(Wii)*Wik *I
strcpy(Wjk,ji_ptr~>re);
strcat (Wjk, ii_ptr->re);
strcat(Wjk,"*");
strcat(Wjk,ik_ptr->re);

} I* end of CASE 2 *I
I* Last step of replacing,all arcs between. node j and node k

with a single arc which is the union of all .. the arcs
including the new Wjk arc *I

if (Wjk[O) == 0) continue;
if ((jk_ptr=inlist(j,k)) ==NULL)

I* assigning only the new arc *I
listcpy(j,k,Wjk);

else if ((jk_ptr=inlist(j,k)) !=NULL)
strcpy (str1, • (•) ;
strcat(str1,jk_ptr->re);
strcat (str1, • +") ;
strcat(str1,Wjk);
strcat(str1,")");
strcpy(jk_ptr->re,str1);

} I* if *I
} I* of fork loop *I

} I* of for j loop *I I* Removing all arcs incident onto
node_i in Gt *I

for (i=1;i<=num_st;i++)
delete(i,node_i);

for (j=1;j<=num_st;j++)
delete(node_i,j); } I* for node_i loop *I

I* At this point only start and accept ndoes are

129

left in Gl. Use them to find theRE for the
educed graph of G t *I

strcpy(temp_re,"");
start = dfa->start;
Wl=W2=W3=W4=(Gtype *) NULL;
wl=inlist(start,start);
w2=inlist(start,accept);
w3=inlist(accept,accept);
w4=inlist(accept,start);
I* Copy wl* to temp_re *I
if (wl != NULL) {

if (strlen(wl) > 1) {
strcat(temp_re,"(");
strcat(temp_re,wl->re);
strcat(temp_re,")");

else strcat(temp_re,wl->re);
strcat(temp_re,"*");

I* if only one state in Gt then temp_re has theRE for Gt *I
if (start == accept) {

}

if (wl == NULL)

else
strcat(re,•e + ");

strcat(re,temp_re);
strcat(re,• + ");

continue;

I* Then Concatenate w2 to temp_re *I
if (strchr(w2->re, '+') !=NULL).{

}

strcat(temp_re,"(");
strcat(temp_re,w2->re);
strcat(temp_re, ") ");

else strcat(temp_re,w2->re);
strcat(temp_re,"(");

I* Then Concatenate w3 to temp_re *I
lf (W3 != NULL) {

strcat(temp_re,w3->re);

if (w3 != NULL && w4 != NULL && .w2 != NULL)
strcat(temp_re, "+");

I* Then add w4 to temp_re, if it is not NULL.
if w4 is NULL, temp_re is ready *I

if (W4 == NULL) {.
strcat(re,temp_re);
strcat(re,")* + ");
cont1nue;

else if · (w4 ! = NULL)
if (strchr(w4->re,'+'l !=NULL)

strcat(temp_re, "(");
strcat(temp_re,w4->re);
strcat(temp_re,")");

}
else strcat (temp_re,w4->re);

I* Then Concatenate wl* to temp_re *I
if (wl ! = NULL)

strcat(temp_re,wl->re);
I* Then Concatenate w2 to temp_re '*I
if (strchr(w2->re,'+'l !=NULL) {

strcat(temp_re,"(");
strcat(temp_re,w2->re);
strcat(temp_re,") ");

else strcat(temp_re,w2->re);
I* finally append temp_re to re with a "+" *I
strcat(temp_re, ")* + ");
strcat(re,temp_re);

I* for p =0 ... *I

130

free_Gt();
rm_redun (re) ;
I* Each node has a part of the final RE. All these parts are

collected by using global concatenation system call gcolx() *I
for (i=O; i<work_nodes; i++)

relens[i] = sizeof(char)*strlen(re);
I* getting lengths of all node's RE contributions *I

gcolx(re,relens,temp_re);
I* Global collect RE vector *I

strcpy(re,temp_re);
re[strlen(re)-2] = '\0'; I* remove extra '+' at end of re *I
rm_redun· (re) ;

I* of dfa_re *I
/**
Functlon Definition: Gtype *inlist(SHORT, SHORT)

Description:
This routine checks if the i,j entry is in the list. If so, it returns
a pointer to that entry in the list, else a null pointer.

~*******************/

Gtype *inlist(i,J)
SHORT i,j;
{

Gtype *ptrl;

ptrl = Gl;
while (ptrl != NULL) {

if ((ptrl->row == i) && (ptrl->col ,== j))
I* check for i,j entry *I

break;
else ptrl = ptrl->next;

}
return(ptrl);

/**
Function Definition: void listcat(SHORT, SHORT, char *) '

Description:
This routine checks if the i,j entry exists int he list. If so, lt
concatenates 'str' to the re of the i,j entry. If not, it creates
a new l,j entry at the end of the list, and concatenates 'str' to the
re of this new entry.

***/
void llstcat(i,j,str)
SHORT l,j;
char str [J;
{

Gtype *ptrl;

if ((ptrl=inlist(i,j)) !=NULL) I* i,j entry exists in list *I
strcat(ptrl->re,str);

else { I* i,j entry does not exist in list *I
ptrl = create(i,j);
strcat(ptrl->re,str);

!**
Function Definition: void listcpy(SHORT, SHORT, char *)
Description:

This routine checks if the l,j entry exlsts lnt he llst. If so, lt
coples 'str' to the re of the i,J entry. If not, lt creates
a new i,j entry at the end of the list, and copies 'str' to the
re of this new entry.

***/
void llstcpy(i,j,str)
SHORT i,j;
char str[J;
{

Gtype *ptrl;
if ((ptrl=inlist(i,j)) !=NULL) I* l,j entry exists in list *I

strcpy(ptrl->re,str);
else { I* i,j entry does not exist in list *I

ptrl = create(i,j);
strcpy(ptrl->re,str);

131

/***
Function Definition: Gtype *create(SHORT, SHORT)
Description:

This routine creates the i,j entry at the end of the Gl l1st, and returns
a pointer to th1s newly created entry.

***/
Gtype *create(i,j)
SHORT i,j;
{

Gtype *ptrl;

if (Gl ==NULL) { I* if list empty, create new *I
Gl = (Gtype *) malloc(sizeof(Gtype));
ptrl = Gl;

}
else { I* if list not empty, create at end *I

ptrl = Gl;
while (ptrl->next !=' NULL)

ptrl = ptrl->next;
ptrl->next = (Gtype *) malloc(sizeof(Gtype));
ptrl = ptrl->next;

I* else *I

ptrl->row = i;
ptrl->col = j;
ptrl->next = NULL;
strcpy(ptrl->re,"");
return(ptrl);

/**
Function Definition: void delete(SHORT, SHORT);
Description:

This routine deletes the i,j entry if it exists from the Gl list.
***/

void delete(i,j)
SHORT i,j;
{

Gtype *front,*back;
front = Gl;
while (front != NULL) {

if ((front->row == i) && (front->col
if (front == Gl)

Gl = Gl->next;
else

back->next = front->next;
front->next = NULL;
free(front);
front = NULL;

} I* if *I
else {

back = front;
front = front->next;

}
I* while *I

void free_Gt ()
{

Gtype *ptrl, *freeptr;

1f (Gl != NULL)
ptrl = Gl;
while (ptrl !=NULL)

freeptr = ptrl;
ptrl = ptrl->next;
freeptr->next = NULL;
free (freeptr);
I* while *I

j)) {

132

G1 = NULL;
I* if *I

EQNS.C
#include "node.h"

/***
This file (eqns.c) contains the following NODE routines:

sol ve_eqns () dr1 ver routine for solving RE equations
get_eqns() obtains theRE equations for the DFA
sub_eqns() forward substitution of equations

**/

I* Declaration
extern void
extern DFA
extern char

of external functions and vr1ables *I
rrn_redun () ;
*dfa;
re[MAX_RE], symbset[MAX_COLS];

typedef struct eq (
SHORT row,col;
char eqn[MAX_RE];
struct eq *next;
} Eqtype;

Eqtype *eqnrnat = NULL; I* list to store RE equations *I
/**
Function Name: solve_eqris()

Prototype Definition: void solve_eqns(DFA * char *, char *)

Description:
This routine initially forms the set of RE equations in the 'eqnrnat'
array for the g1ven DFA by the method in Sect1on 3.4.6. Then, the equations
in 'eqnrnat' are solved by the method in Section 3.4.7 to obtain the solut1on
for the state variables of each of the final states of the DFA. Finally,
the RE is obtained by the un1on of the REs for all the final states.

**/
void solve_eqns()
{

SHORT i' j 'k,
nurnvar,
nurn_st;

I* # of state var1ables *I
I* # of DFA states *I

boolean flg = FALSE;
char str1 [MAX_RE] ;
Eqtype *ptr1, *ptr2;

I* function prototypes *I
void init_eqns (), get_eqns (),

sub_eqns(), free_eqnrnat(),
eqlistcat(), eqlistcpy(), eqdelete();

Eqtype *eqcreate () , * ineqlist () ;

num_st
nurnvar

= dfa->nurnst-1;
dfa->nurnst-1; I* # of state variables

for (i=1; i<=num_st; l++)
for (j=O; j<=MAX_COLS-2; j++)

if (dfa->table[i] [j] == (num_st+1))
dfa->table[i] [j] = PHI;

get_eqns(numvar);

of states *I

I* Forward iteration of solving equations using Gaussian
El1minat1on method as outl1ned 1n transforrnat1on T7 of
section 3.4.7 *I

for (i=1;i<=nurnvar;i++) {
if ((ptr1=ineqlist (i, i)) ! = NULL) {

strcpy(str1,"(");
strcat(str1,ptr1->eqn);
strcat(str1,")*");
strcpy(ptr1->eqn,"");
eqdelete(i,i);
flg = TRUE;
for (J=1;J<=nurnvar+1;j++)

if ((ptr1=ineqlist(l,J)) !=NULL)
if (strcmp{ptr1->eqn,"e") != 0)

strcat(ptr1->eqn,str1);

133

else strcpy(ptr1->eqn,str1);
}
else if (flg) flg = TRUE;
if (flg)

eqlistcpy(i,numvar+1,str1);
} /* of upper if */

flg FALSE;

sub_eqns(i,numvar); /*forward subs'titution of the
equatin just solved*/

/* of uppermost for i loop */
/* Back substitution process - This part of the code substitutes the

solutions for all variables starting from the last variable (which
is already solved) into the rest of the equations */

for (i=numvar-1;i>=1;i--)
for (j=1;j<=numvar;j++) {

strcpy(str1,"");
~f ((ptr1=ineqlist(i,j)) !=NULL) {

}

if ((ptr2=ineqlist(j,numvar+1)) !=NULL)

}

if (strchr(ptr2->eqn,'+') !=NULL) {
strcat(str1," ("); ·
strcat(str1,ptr2->eqn);
strcat(str1,")");

}
else

strcat(str1,ptr2->eqn);

else
eqlistcpy(j,numvar+1,str1);

if (strchr(ptr1->eqn,'+') !=NULL)
strcat(str1,"(");
strcat(str1,ptr1->eqn);
strcat(str1,") ");

}
else

strcat(str1,ptr1->eqn);
eqdelete(i,j);

else continue;
if ((ptr1=ineqlist(i,numvar+l)) !=NULL) {

strcat(ptrl->eqn,"+");
strcat(ptr1->eqn,str1);

}
else eqlistcat(i,numvar+1,str1);

/* of inner for */

strcpy(re,"");
for (i=1;i<=numvar;i++)

if (strchr(dfa->final,i))
if ((ptr1=ineqlist(i,numvar+1)) '=NULL) {

strcat(re,ptrl->eqn);
strcat(re,• + ");

re[strlen(re)-2] = 0;
rm_redun(re);

free_eqnmat();
/* of solve_eqns */

/* removing the '+' at the end */
/* removing the redundancies ~n theRE */

/**
Function Name: void sub_eqns()
Descr~ption:

This routine performs the forward substitut~on of the equation which has
been currently solved (indicated by the 'ind' parameter) ~nto the rest of
the bottom equations until the last equat~on. The procedure followed for
th~s forward substitut~on process is that used in Gaussian Eliminat~on
method of transformation T7 of Section 3.4.7

**!
void sub_eqns(ind,numvar)
SHORT ~nd,numvar;
{

SHORT
char
Eqtype

i,j;
str1[MAX_RE),str2[MAX_RE];
*ptr1, *ptr2;

134

if {ind != numvar)
for {i=ind+l;i<=numvar;i++)

strcpy{strl,"");
if {{ptrl=ineqlist{i,ind)) !=NULL) {

if {strcmp{ptrl->egn,"e") != 0)
if {strchr{ptrl->eqn,'+') !=NULL)

strcpy {strl, ~ { •);
strcat {strl,,ptrl->eqn);
strcat{strl,")");

}
else

strcpy{strl,ptrl->eqn);
strcpy{ptrl->eqn, "");
eqdelete {i, ind);

for {j=l;j<=numvar+l; j++)
strcpy{str2;"");
if {{ptrl=ineqlist{ind,j)) !=NULL
if {strcmp{ptrl-:>egn,"e") !,= 0)

}

if {strchr {ptrl->egn, '+') ·! = NULL)
strcpy {str2, • { •);
strcat{str2,ptrl->eqn);
strcat {str2, •) •);

}
else

strcpy{str2,ptrl->eqn);
strcat{str2,strl);
if {{ptrl=ineqlist{i,j)) !=NULL)

strcat{ptrl->egn,"+~);

strcat{ptrl->egn,str2);
}
else

eqlistcat{i,j,str2);

} I* of for j loop *I
} I* of if strlen loop *I
I* of for i loop *I

I* of sub_eqns• *I
/******************************~******************************~*************
Function Name : get_egns{)
Prototype Definition: void gt_egns(DFA *, int, lnt, char ***)
Description: ,

This routine forms the equation for each state of the DFA by using the
method in transformation T6 of Section 3.4.6,
Initially, the dfa state-input 2D transition table lS transformed into a
state-state 2D transition table. Each table entry is an RE obtained by the
union of all input symbols on which' the DFA moves from the state in the' row
entry to the state in the column entry. Then the equations matrix is
constructed by transposlng the above state-to-state matrix.

*********~**/
void get_eqns(num)
SHORT num;
{

SHORT i,j,k,x;
char strl [MAX_REJ ;
Eqtype *ptrl, *ptr2;

I* Obtain each entry of the, state-stae matrix from the DFA transltion
table *I

for(i=l;i<=num;i++)
for{j=O;j<=MAX_COLS_:2;j++) {

if ((x=dfa->table[i] [j]) ==PHI) 'c?ntinue;
strcpy(stil,itos(syrnbset[j]));
strcat(strl,"+");
eqlistcat(x,i,strl);

} I* for j *I
for{i=l; i<=num; i++)

for(j=l; j<=num; j++)
if ((ptrl=ineqlist(i,j)) !=NULL)

strcpy (strl," { •);
k = strlen(ptrl->egn)-1;
ptrl->eqn[k] = 0;

I* removing the '+' at the end *I
if {k>l) {

135

strcat(strl,ptrl->eqn);
strcat(strl,")");
strcpy(ptrl->eqn,strl);

} I* if k *I
} I* if *I

for (i=l;i<=num;i++l
if (i==dfa->start) {

eqlistcpy(i,num+l,"e");
break;

}
I* of get_eqns *I

/**
Function Definition: Eqtype *ineqlist(SHORT, SHORT)
Description:

This routine checks if the i,j entry is in the eqlist. If so, it returns
a pointer to that entry in the eqlist, else a null pointer.

**/
Eqtype *ineqlist(i,j)
SHORT l.,J;
{

Eqtype *ptrl;

ptrl = eqnrnat;
while (ptrl != NULL) {

if ((ptrl->row i) && (ptrl->col == j))
I* check for i,j entry *I

break;
else ptrl = ptrl->next;

}
return(ptrl);

/**
Function DefinJ.tion: void eqlistcat(SHORT, SHORT, char*)
Description:

This routine checks if the i,j entry exists int he eqlist. If so, it
concatenates 'str' to the re of the i,j entry. If not, it creates
a new i,J entry at the end of the eqlJ.st, and concatenates 'str' to the
re of this new entry.

***/
void eqlistcat(J.,j,str)
SHORT J.,j;
char str[];
{

Eqtype *ptrl;

if ((ptrl=ineqlist(i,j)) !=NULL) I* i,j entry exists in eqlist *I
strcat(ptrl->eqn,str);

else { I* i,j entry does not exJ.st in eqlist *I
ptrl = eqcreate(i,j);
strcat(ptrl->eqn,str);

!**
FunctJ.on DefJ.nition: void eqlJ.stcpy(SHORT, SHORT, char *)
Description:

This routine checks if the i,j entry exJ.sts int he eqlist. If so, it
copies 'str' to the re of the i,j entry. If not, J.t creat'es
a new i,j entry at the end of the eqlist, and copJ.es 'str' to the
re of this new entry.

*************************************~***********************************/
void eqlistcpy(i,j,str)
SHORT i, j;
char str [];
{

Eqtype *ptrl;
if ((ptrl=ineqlist(i,j)) !=NULL)

strcpy(ptrl->eqn,str);
I* i,j entry exists in eqlist *I

else { I* i,j entry does not exJ.st J.n eqlJ.st *I
ptrl = eqcreate(i,j);
strcpy(ptrl->eqn,str);

136

/***
Function Definition: Eqtype *eqcreate(SHORT, SHORT)
Description:

This routine creates the i,j entry at the end of the eqnrnat eqlist, and
returns a pointer to this newly created entry.

***/
Eqtype *eqcreate (i, j) ·
SHORT i,j;
{

Eqtype *p~rl;
if (eqnmat == NULL) { I* if eqlist empty, create new *I

eqnrnat = (Eqtype *) rnalloc·(sizeof (Eqtype));
ptrl = eqnrnat;

}
else { I* if eqlist not empty, create at end *I

ptrl = eqnrnat;
while (ptrl->next !=.NULL)

ptrl = ptrl->next;
ptrl->next ~ (Eqtype *) malloc(sizeof(Eqtype));
ptrl = ptrl->next;

I* else *I

ptrl->row = i;
ptrl->col = j;
ptrl->next = NULL;
strcpy (ptrl- >eqn; n •) ;'

return(ptrl);

/***·***************
Function Definition: void eqdelete(SHORT, SHO~T);

Description:
This routine deletes the i,j entry if it exists from the eqnrnat eqlist.

***/
void eqdelete(i,j)
SHORT i, j;
{

Eqtype *front,*back;
front = eqnrnat;
while (front != NULL) {

if ((front->row == i) && (front->col
if (front == eqnrnat)

eqnrnat = eqnrnat->next;
else

back->next = front->next;
front->next = NULL;
free(front);
front = NULL;

} I* if *I
else {

back = front;
front = front->next;

}
I* while *I

void free_eqnrnat()
{

Eqtype *ptrl, *freeptr;
if (eqnrnat != NULL) {

ptrl = eqnrnat; '
while (ptrl !=NULL)

freeptr = ptrl;
ptrl = ptrl->next;
freeptr->next = NULL;
free (freeptr);

} I* while *I
eqnrnat = NULL;
I* if *I

j)) {

137

OTHER.C
#include "node.h"
/***
This file (other.c) contains the following NODE routines:

mem2D() ,mem3D() Dynamic Memory Allocation routines
free2D(),free3D() Dynamic Memory Deallocation routines

rm_redun() Remove redundancies in the RE
**/
/* Dynamic Memory Allocation routines for 2-D and 3-D arrays used

in the program*/

void mem2D(array,nl,n2)
STTYPE *array[MAX_COLS);
int nl,n2;
{

}

int i,j;

for (i=O; i<nl; i++) {
if ((array[i) = (STTYPE *) malloc(n2 * SlZeof(STTYPE)))

exit(l);
strcpy(array[i),"");

void mem3D(array,nl,n2,n3)
STTYPE *array [) [MAX_COLS);
int nl,n2,n3;
{

int i, j;

for (l=O; i<nl; i++)
for (j=O; j<n2; j++) {

NULL)

if ((array[i) [J) = (STTYPE *) malloc(n3 * Slzeof(STTYPE)))
exit (1);

strcpy(array[i) [j), • ");

}
void free3D(array,nl,n2)
STTYPE *array[) [MAX_COLS);
int nl,n2;
{

}

int i, j;
STTYPE *temp;

for (i=O; i<nl; i++)
for (j=O; j<n2; j++) {

temp= array[i) [j];
free (temp);

void free2D(array,nl)
STTYPE *array[MAX_COLS);
int nl;
{

int i;
STTYPE *temp;

for (i=O; i<nl; i++)
temp = array[i);
free(temp);

strindex(s,c)
char *s,c;
{

int i;
for(i=O; ;
if (S [i)
if (s [i)

char *itos (num)
int num;
{

i++) {
c) return(i);

== '\0') return(O);

char str[S);
str[O) = num;

138

NULL)

str [1] = ' \ 0 ' ;
return(str);

/***
Function Definition; void rm_repeat(str)

Description:
Removes all repeated characters,in the given string.

***/
void rm_repeat(str)
char str [];
{

char

int

str1 [MAX_NFA] ,
str2 [MAX_NFA],
ch;
i;

strcpy(str1,str);
strcpy (str2, • •,) ;
for (i=O; (ch=str1[i]) != 0; H+)
if (! strchr (str2, ch))

strcat(str2,itos(ch));
}
strcpy(str,str2);

/**
Function Definition: char *strstr(char *, char *)

Description:
Finds out lf a string is contained ln another string and returns a
pointer to the sring found'

***/
char *strstr(cs,ct)
char *cs,*ct;
{

char *ptr;
int len;

ptr cs;
len strlen(ct);

while (*ptr != '\0') {
if (strncmp (ptr, ct,,len) 0)

return(ptr);
else ptr++;

return(NULL);

!***
Function Definition: void rm_redun(char *)

Descrlption:
Remove redundant terms like ()* (+)* (0)*, (1)*, 00*, 11*, etc.
and also redudant parantheses

**/
void rm_redun(re)
char re [MAX_RE];
{

int i=O,p=O,
done=FALSE,plus=FALSE,
pos1=0,pos2=0;

char stack[MAX_REJ,
temp_re[MAX_RE],
*ptr1;

done = FALSE;
while (!done) {
if ((ptr1=strstr(re,"()*")) !=NULL)

strcpy(temp_re,ptr1+3);
*ptr1 = '\0';
strcat(re,temp_re);

139

/*

*I

else if ((ptrl=strstr(re,"(+)")) !=NULL) {
strcpy(ternp_re,ptr1+3);
*ptrl = '\0';
strcat(re,ternp_re);

)
else if ((ptrl=strstr(re," (+)*")) !=NULL) {

strcpy(ternp_re,ptr1+4);
*ptrl = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"+l"ll !=NULL) {

strcpy(ternp_re,ptrl+l);
*ptrl = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"(+"ll !=NULL) {

strcpy(ternp_re,ptrl+2);
*(ptrl+ll = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"e0")) !=NULL) {

strcpy(ternp_re,ptrl+l);
*(ptrll = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"el")) !=NULL) {

strcpy(ternp_re,ptrl+l);
* (ptrl) = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"Oe")) !=NULL) {

strcpy(ternp_re,ptrl+2);
*(ptrl+l) = '\0';_
strcat(re,ternp_re);

}

else if ((ptrl=strstr(re,"le")) !=NULL) {
strcpy(ternp_re,ptrl+2);
* (ptrl+l) = '\0';
strcat(re,ternp_re);

}
else if ((ptrl=strstr(re,"(O)*"ll !=NULL) {

strcpy(ternp_re,ptrl+4);
*(ptrl) = '\0';
strcat (re, "0*");
strcat(re,ternp_re);

}
else 1f ((ptrl=strstr(re,"(l)*"ll !=NULL) {

strcpy(ternp_re,ptr1+4);
*ptrl = '\0';
strcat(re,"l*");
strcat(re,ternp_re);

}
else done = TRUE;

/* of while *I

1f (DEBUG) printf("\n ** DEBUG RE

while (re[posl] != '\0')
if (re[posl] == '(') {

stack[p++l posl;
re[posl] = ' ';

if (re[posl] == ') ') {
plus = FALSE;
pos2 = stack[--p];
for (i=0;1<posl-pos2;i++l

if (re[pos2+i] == '+')
plus = TRUE;
re[pos2+i] = 'P';

}
if (re[posl+l] == '*') plus

%s\n",re);

TRUE;

140

I*

*I

if (plus)
re[pos2] = '(';

else re[posl] = ' ';
} I* of if ptrl = ' '*I
posl++;

I* of while *I
for (posl=O;re[posl] != '\O';posl++)
if (re[posl] == 'P') re[posl] = '+';

while ((ptrl=strstr(re,• ")) !=NULL) {
strcpy(temp_re,ptrl+l);
*ptrl = '\0';
strcat(re,temp_re);

if (DEBUG) 'printf (" \n ** DEBUG RE %s\n",re);

} I* of rm_redun *I

141

APPENDIX C

EXECUTION DETAILS THROUGH A CYCLE OF TRANSFORMATION

The given RE is (0*+1*) (01)
The post-fix expression is: 0*1*+01 ..
Estimate on states = 22

Details of Partitioning Approach A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

NOTE: "*" has only one operand

Level 0 ==> . 1 0 + * 1 * 0

Level 1 ==> TO + T1 T2

Level 2 ===> • TO T3

Level 3 ==> T4

Last task is T4 which represents the root node

Task Graph produced by Partitioning Approach A
AA

Number of Levels: 3

Task

TO
T1
T2
T3
T4

Operation

0.1
1*0
0*0 '

T2+T1
T3.TO

Number of tasks: 5

Label

1
2
2
1
0

Predecesors

NONE
NONE
NONE
T2 T1
T3 TO

INITIAL LABEL TABLE

Num Processors: 2

Num Tasks

1
2
2

Tasks

T4
TO T3
T1 T2

Max levels: 3

ADJUSTED LABEL TABLE

Num Processors: 2

Num Tasks

1
2
2

Tasks

T4
TO T3
T1 T2

Max levels: 3

142

Successors

T4
T3
T3
T4
NONE

Processor

0
1
2
3
4

Schedule Obtained by Algorithm A BEFORE and AFTER Optimization

PO IT 1 IT 0 IT 4 I

P1 IT 2 IT 3 lphi I

I
0

I
1

I
2

I
3

PO IT 1 IT 0 lphi I

P1 IT 2 IT 3 "IT 4 I

I
0

I
1

I
2

I
3

****** FSA afte-r STEP 1 '(NFA)' ********
Inputs

·o 1

s I q 1 {} {} { q2 , q6, }

e

---I q 2 {} {q3, qS,}. _

I q 3 {q4,} {} {}

I q 4 {} {} {q5,q3,}
----------------~--------------------------------------I q 5 {} {} {q~O,}

I q 6 { } { } {q7,q9,}

I q 7 {} ·{ q8, } {}

I q 8 { } ;{} {q9,q7,}

I q 9 {} {) {q10,}

I c;r10 {} {} {qll,}

I qll {q12,} {} {}

I q12 { } ,{} {q13,} '

I q13 {q14,} '{}

----------------------~--------------------------------F I q14 {} {} {}

*** Transformation T2 - Removing e-moves ***-**
e CLOSURE(q1) {q1 q2 q6 q3 qS q7 q9 q10 q11
a-CLOSURE(q2) {q2 q3 qS q10 q11 }
a-CLOSURE(q3) {q3 } _
a-CLOSURE (q4) {q4 qS' q3 q10 qll
e-CLOSURE(q5) {q5 q10 q11 }
e-CLOSURE(q6) {q6 q7 q9 q10 q11
e-CLOSURE(q7) {q7 }
e-CLOSURE(q8) {q8 q9 q7 q10 q11
e-CLOSURE(q9) {q9 q10 q11 }
a-CLOSURE(q10) {q10 q11 }
a-CLOSURE(q11) {q11 }
e-CLOSURE(q12) {q12 q13
a-CLOSURE(q13) {q13 }
e:CLOSURE(q14) {q14 }

143

****** NFA after Removing e-moves ********
Inputs

s I q 1

I q 2

I q 3

I q 4

I q 5

I q 6

I q 7

I q 8

I q 9

I q10

I qll

I q12

I q13

F I q14

0

{q4,q5,q3,q10,
qll,q12,q13,}

{q4,q5,q3,q10,qll,
q12,q13}

{q4,q5,q3,q10,q11}

{q4,q5,q3,q10,q11,
q12,q13}

{q12,q13}

{q12,q13}

{}

{q12,q13}

{q12,q13}

{q12,q13}

{q12,q13}

{}

{}

{ }

1

{q8,q9,q7,q10,q11}

{ }

{ }

{}

{}

{q8,q9,q7,q10,q11}

{q8,q9,q7,q10,q11}

{q8,q9,q7,q10,q11}

{}

{}

{}

{q14}

{q14}

{}

e

{ }

{}

{}

{ }

{}

{ }

{}

{ }

{}

{}

{ }

{}

{}

{ }

*** STEP 3 - Correspondence between DFA and NFA States ***
DFA State NFA State set

Q 1 <==> q 1 }
Q 2 <==> q 4 q 5 q 3 qlO qll q12 q13 }
Q 3 <==> q 8 q 9 q 7 qlO qll }
Q 4 <==> q14 }
Q 5 <==> q12 q13

****** FSA after STEP 3 (DFA) ********

States Inputs

0 1

s q 1 q 2 q 3

q 2 q 2 q 4

q 3 q 5 q 3

F q 4 phi phi

q 5 phi q 4

144

*** STEP 4 - Snap shot of Marking table ***
(2,1)-X
(3,1)-X
(4,1)-X
(5,1)-X
(6,1)-X

(3,2)-X
(4,2)-X
(5,2)-X
(6,2)-X

(4,3)-X
(5,3)-X
(6,3)-X

(5,4)-X
(6,4)-X (6, 5) -x

****** Minimized DFA after STEP 4 " ******

States Inputs"

0 1

s q 1 q 2 q 3.

q 2 q 2 q 4

q 3 . q 5

F q 4 q 6 q 6 . . ----------------------------------
q 5 q 6 q 4

q 6 q 6 q 6

****** STEP 5 - DFA to RE ******

Initial G4 Subgraph
State 1 .2 . 3 4 5
State 1 0 1

State 2 0 1

State 3 1 0

State 4

State 5 1

State 6

G4 Subgraph after deleting internal states

6

(0+1)

0

(0+1)

State 1 2 3 4 5 6
State 1 (00*1+11*01)

State 2

State 3

State 4

State 5

State 6

Final RE: (00*1+11*01)

145

APPENDIX D

SAMPLE RUNS FOR A CONVERGENT CASE

(Note: Both Algorithms A and C produce the same results)

ITERATIONO
Given RE: 0*+ 1 *
Final RE: 00*+ 11 *+e

ITERATION!
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e

11ERATION2
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e ' '

ITERATIONO
Given RE: 0* 1 *
Final RE: 0*+0* 11 *

ITERATIONl
Given RE: 0*+0* 11 *
Final RE: 0*+0* 11 *

11ERATION2
Given RE: 0*+0*11 *
Final RE: 0*+0* 11 *

ITERATIONO
Given RE: (00+01+10+11)*
Final RE: (0+1)(0+1)*

ITERATIONl
Given RE: (0+1)(0+1)*
Final RE: (0+1)((0+1))*

11ERATION2
Given RE: (0+ 1)((0+ 1))*
Final RE: (0+ 1)((0+ 1))*

ITERATIONO
Given RE: (01+11)00(1+10)
Final RE: (0+1)1001+(0+1)10010

ITERATIONl
Given RE: (0+1)1001+(0+1)10010

146

Given RE: (0+1)1001+(0+1)10010
Final RE: (0+1)1001+(0+1)10010

ITERATION2
Given RE: (0+1)1001+(0+1)10010
Final RE: (0+1)1001+(0+1)10010

ITERATIONO
Given RE: (00+11)(0.1+10)(11+01) ,
Final RE: ((000+110)1(0+ 1)1 +(001 + 111)0(0+1)1)

ITERA TION1 .
Given RE: ((000+ 110)1(0+ 1)1 +(001 + 111)0(0+ 1)1)
Final RE: (0(001 +010)(0+ 1)1 + 1(101 + 110)(0+ 1)1)

ITERA TION2 ·· . '
Given RE: (0(001+010)(0+1)1+1(101+110)(0+1)1)
Final RE: (0(00 1 +0 10)(0+ 1) 1 + 1 (101 + 110)(0+ 1) 1)

ITERATIONO
Given RE: (0111 +000*11 + 11)+011
Final RE: ((11+000*11)+0111)+011

ITERATION1
Given RE: ((11+000*11)+0111)+011
Final RE: ((11 +000* 11)-KH11)+0 11

ITERA TION2 ·
Given RE: ((11+000*11)+0111)+011
Final RE: ((11 +000*11)+0111)+011

ITERATIONO
Given RE: 101+1 *10+010
Final RE: ((010+ 101)+ 111 *0)+ 10

ITERATION1
Given RE: ((010+ 101)+ 111 *0)+ 10
Final RE: ((111 *0+010)+ 101)+ 10

ITERATION2
Given RE: ((111 *0+010)+ 101)+ 10
Final RE: ((111 *0+010)+ 101)+ 10

ITERATIONO
Given RE: 010+101+010+1 *10+10
Final RE: ((010+101)+111*0)+10

ITERATION!
Given RE: ((010+ 101)+ 111 *0)+ 10
Final RE: ((111 *0+010)+ 101)+ 10

ITERATION2
Given RE: ((111 *0+010)+ 101)+ 10
Final RE: ((111 *0+010)+ 101)+ 10

ITERATIONO
Given RE: (0* 1 *)(1 +0)
Final RE: 00*+(1 +00*1)1 *+(1 +00*1)1 *0

147

ITERATION!
Given RE: 00*+(1 +00*1)1 *+(1 +00*1)1 *0
Final RE: 00*+(1 +00* 1) 1 *+(1 +00* 1) 1 *0

ITERATION2
Given RE: 00*+(1 +00* 1) 1 *+(1 +00* 1) 1 *0
Final RE: 00*+(1 +00*1)1 *+(1 +00*1)1 *0 <

ITERATIONO
Given RE: 0* 1 *00
Final RE: 000*+((1 +01)1 *0+000*11 *0)0

ITERATION! ' - · ,
Given RE: OOO*+((l+Ol)l*O+OOO~ll*O)O
Final RE: 000*+(11 *00+0(11 *0+00* 11 *0)0)

ITERA TION2 ,
Given RE: 000*+(11 *00+0(11 *0+00* 11 ~0)0)'
Final RE: 000*+(11 *00+0(1 1*0+00*-11 *0)0) , , .

ITERATIONO
Given RE: 1 *(0+ 1)0*
Final RE: (0+ 11 *0)0*+ 11 *

. ITERA TIONl
Given RE: (0+ 11 *0)0*+ 11 *
Final RE: (0+ 11 *0)0*+ 11 * ,

ITERATION2
Given RE: (0+ 11 *0)0*+ 11 *

' '

Final RE: (0+ 11 *0)0*+ 11 *

ITERATIONO
Given RE: (0*1 *)*
Final RE: (0+1)*

ITERATION!
Given RE: (0+ 1)*
Final RE: (0+1)*

ITERATION2
Given RE: (0+ 1)*
Final RE: (0+ 1)*
*************************~***************************************

ITERATIONO
Given RE: (0* 1 *(0*+ 1 *))
Final RE: 0*+0* 11 *+0* 11 *00* ,,

ITERATION!
Given RE: 0*+0* 11 *+0* 11 ~00*
Final RE: 0*+0* 11 *+0* 11 *00*

ITERATION2
Given RE: 0*+0* 11 *+0* 11 *00*
Final RE: 0*+0* 11 *+0* 11 *00*
***************************************~*************************

ITERATIONO
Given RE: (0*+ 1 *)*

148

Final RE: (0+ 1)*
TIERATIONl

Given RE: (0+ 1)*
FinalRE: (0+1)*

TIERATION2
Given RE: (0+ 1)*
Final RE: (0+1)*.
*************~***

TIERATIONO
Given RE: (O*+J *f-(00)*+(11)*)
Final RE: 00*+ 11 *+e

TIERATIONl
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e

TIERATION2
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e
**********************************~********~*********************

TIERATIONO
Given RE: (00+ 11)*
.Final RE: (00+11)*

ITERATION!
Given RE: (00+ 11)*
Final RE: (00+ 11)*

TIERATION2
Given RE: (00+ 11)*
Final RE: (00+ 11)*

ITERATIONO
Given RE: (0+00+ 11)*
Final RE: (0+ 11)*

ITERATION!
Given RE: (0+ 11)*
Final RE: (0+ 11)*

ITERATION2
Given RE: (0+ 11)*
Final RE: (0+ 11)* . ,
******************************~**********************************

ITERATIONO
Given RE: (0(00+ 11))*
Final RE: (000+011)*

ITERATION!
Given RE: (000+011)*
Final RE: (000+011)*

ITERATION2
Given RE: (000+011)*
Final RE: (000+0 11)*

ITERATIONO

149

Given RE: (0+1+00+11)*
Final RE: (0+ 1)*

ITERATION!
Given RE: (0+ 1)*
FinalRE: (0+1)*

ITERATION2
Given RE: (0+ 1)*
Final RE: (0+ 1)*

ITERATIONO
Given RE: (01+(00+11))*
Final RE: (0(0+ 1)+ 11)*

ITERATION!
Given RE: (0(0+ 1)+ 11)*
Final RE: (0(0+1)+11)*

ITERATION2
GivenRE: (0(0+1)+11)*
Final RE: (0(0+ 1)+ 11)*

ITERATIONO
Given RE: (000+ 11)*
Final RE: (11 +000)*

ITERATION!
Given RE: (11 +000)*
Final RE: (11 +000)*

ITERATION2
Given RE: (11 +000)*
Final RE: (11 +000)*

ITERATIONO
Given RE: (000+ 111)*
Final RE: (000+ 111)*

ITERATION!
Given RE: (000+ 111)*
Final RE: (000+ 111)*

ITERATION2
Given RE: (000+ 111)*
Final RE: (000+ 111)*

150

APPENDIX E

SAMPLE RUNS FOR A DIVERGENT CASE

(Note: Both Algorithms A and C produce the same results)

ITERATIONO
Given RE: 0*+ 1 *
Final RE: e+OO*+ 11 *

ITERA TIONl .
Given RE: e+OO*+ 11 *
Final RE: 00*+ 11 *+e

ITERATION2
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e
************************************~~***************************

ITERATIONO
Given RE: 0* 1 *
Final RE: 0*+0* 11 *

ITERATION!
Given RE: 0*+0* 11 *
Final RE: 0*+0*11 *

ITERATION2
Given RE: 0*+0* 11 *
Final RE: 0*+0* 11 *

ITERATIONO
Given RE: (00+01+10+11)*
Final RE: ((0+ 1)(0+ 1))*

ITERATION!
Given RE: ((0+ 1)(0+ 1))*
Final RE: ((0+ 1)(0+ 1))*

ITERATION2
Given RE: ((0+ 1)(0+ 1))*
Final RE: ((0+ 1)(0+ 1))*

ITERATIONO
Given RE: (01+11)00(1+10)
Final RE: (0+1)1001+(0+1)10010

ITERATION!
Given RE: (0+ 1)1001 +(0+ 1)10010
Final RE: (0+1)1001+(0+1)10010

151

Final RE: (0+1)1001+(0+1)10010
ITERATION2

Given RE: (0+1)1001+(0+1)10010
Final RE: (0+1)1001+(0+1)10010
**************************************~**************************

ITERATIONO
Given RE: (00+t'1)(01+10)(11+01) ,
Final RE: (000+110)1(0+1)1+(001+111)0(0+1)1

ITERATION! , ,
Given RE: (000+110)1(0+1)1+(001+111)0(0+1)1,
Final RE: 0(001+010)(0+1)1+1(101+110)(0+1)1 ,

ITERATION2
Given RE: 0(001+010)(0+1)1+1(101+110)(0+1)1
Final RE: 0(001+010)(0+1)1+1(101+110)(0+1)1
**************************************-***************************

ITERATIONO
Given RE: 10+(0+11)0*11
Final RE: 10+(00*1+110*1)1

ITERATION!
Given RE: 10+(00*1+110*1)1
Final RE: (00*1+110*1)1+10

ITERATION2
Given RE: (00*1+110*1)1+-10
Final RE: (00*1+110*1)1+10

ITERATIONO
Given RE: (0111+000*11+11)+011
Final RE: 11 +000* 11 +0111 +011

ITERA TIONl _
Given RE: 11 +000* 11 +0111 +011
Final RE: 11 +000*11 +0111 +011

ITERATION2
Given RE: 11+000*11+0111+011
Final RE: 11 +000*11 +0111 +011

ITERATIONO
Given RE: 00+ 11(0+ 1)*11 +00
Final RE: 110*1(00*1)*1(1+00*1(00*1)*1)*+00

ITERATION!
Given RE: 110*1(00*1)*1(1+00*1(00*1)*1)*+00
Final RE: 110*1(00*1)*1(1+00*1(00*1)*1)*+00

ITERA TION2 ,
Given RE: 110*l(OO*l)*l(ft-OO*l(OO*l)*l)*+OO
Final RE: 11 0* 1 (00* 1)* 1 (1 +00* 1 (00* 1)* 1)*+00

ITERATIONO
Given RE: 101 + 1 *10+010 ,
Final RE: 010+ 101 + 111 *0+ 10

ITERATION!

152

Given RE: 010+101+111 *0+10
Final RE:' 111 *0+0 10+ 101 + 10

ITERATION2
Given RE: 111 *0+010+ 101 + 10
Final RE: 111 *0+0 10+ 101 + 10
***********************************~*****************************

. -

ITERATIONO
Given RE: 010+101+010+1*10+10
Final RE: 010+ 101 + 111 *0+ 10

ITERATION!
Given RE: 010+101+111 *0+10
Final RE: 111 *0+010+ 101 + 10

ITERA TION2·
GivenRE: 111*0+010+101+10
Final RE: 111 *0+0 1 0+ 101 :+-10

ITERATIONO
Given RE: 010+ 1 * 10+010+ 101 + 10+ 101
Final RE: 010+ 101 + 111 *0+ 10

ITERATION!
Given RE: 010+ 101 + 111 *0+ 10
Final RE: 111 *0+010+ 101 + 10

ITERATION2
Given RE: 111 *0+0 10+ 101 + 10
Final RE: 111 *0+010+101+10

ITERATIONO
Given RE: 0* 1 *00

' .'

Final RE: 000*+((1 +011 *)0+000*11 *0)0
ITERA TIONl .

Given RE: 000*+((1 +0 11 *)0+000* 11 *0)0
Final RE: 000*+0(1 +00* 11 *)00+ 100

ITERATION2
Given RE: 000*+0(1+00*11 *)00+100
Final RE: 000*+100+0(100+00*ll*OO),

ITERATIONO
Given RE: (0* 1 *0* 1 *)*
Final RE: ((0+ 1))*

ITERATION!
Given RE: ((0+1))*
Final RE: ((0+ 1))*

ITERATION2
Given RE: ((0+ 1))*
Final RE: ((0+ 1))*

ITERATIONO
Given RE: (0* 1 ;1<(0*+ 1 *))
Final RE: 0*+0* 11 *+0* 11 *00*

153

ITERATION!
Given RE: 0*+0* 11 *+0* 11 *00*
Final RE: 0*+0* 11 *+0* 11 *00*

ITERA TION2 _
Given RE: 0*+0* 11 *+0* 11 *00*
Final RE: 0*+0* 11 *+0* 11 *00*

ITERA TIONO'
Given RE: (0*+ 1 *+(OO)*+(i 1)*)
Final RE: 00*+ 11 *+e

ITERATION1
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e
_ ITERATION2
Given RE: 00*+ 11 *+e
Final RE: 00*+ 11 *+e

ITERATIONO
Given RE: (00+ 11)*
Final RE: e+(0(00)*+(1 +0(00)*01(11 + 10(00)*01)*)10(00)*)0+(1 +0(00)*

01(11 + 10(00)*01)*)1
ITERATION!

Given RE: e+(O(OO)*+(l +0(00)*01(11 + 10(00)*01)*) 10(00)*)0+(1 +0(00)*
01(11 + 10(00)*01)*)1

Final RE: 00(00)*1(1(00)*1)*1(00)*+00(00)*+ 110(00)*0+ 11 +e
ITERATION2

Given RE: 00(00)*1(1(00)*1)*1(00)*+00(PQ)*+ll0(00)*0+ll+e
Final RE: 00(00)* 1 (1 (00)* 1)* 1 (00)*+00(00)*+ 11 0(00)*0+ 11 +e

ITERATIONO
Given RE: (0(00+ 11))*
Final RE: e+(OO(OOO)*+(Ol +00(000)*00 1 (1 01 + 1 00(000)*00 1)*) 1 00(000)*)

0+(01 +00(000)*001(101 + 100(000)*001)*)1
ITERATION1

Given RE: e+(OO(OOO)*+(Ol +00(000)*001(101 + 100(000)*001)*) 100(000)*)
0+(0 1 +00(000)*00 1 (101 + 1 00(000)*00 1)*) 1

Final RE: (0000(000)* 1 (1 0(000)* 1)* 1 0(000)*+0000(000)*)00+0000(000)*
1 (1 0(000)* 1)* 1 +000+0 11 00(000)*0+0 11 +e

ITERATION2
Given RE: (0000(000)* 1 (1 0(000)* 1)* 1 0(000)*+()()()()(000)*)00+0000(000)*

1(10(000)*1)*1 +000+01100(000)*0+011 +e
Final RE: (0000(000)* 1 (1 0(000)* 1)* 1 0(000)*+0000(000)*)00+0000(000)*

1 (1 0(000)* 1)* 1 +000+0 11 00(000)*0+0 11 +e-

ITERATIONO
Given RE: (01(00+ 11))*
Final RE: e+(010(0010)*+(011 +010(0010)*0011(1011 + 1010(0010)*0011)*)

1010(0010)*)0+(011 +010(0010)*0011(1011 + 1010(0010)*0011)*)1
ITERA TI:ONl

Given RE: e+(010(0010)*+(011 +010(0010)*0011(1011 + 1010(0010)*0011)*) -

154

1010(0010)*)0+(011 +010(0010)*0011(1011 + 1010(0010)*0011)*)1.
Final RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(00Q1)*)00+

010001(0001)*1(101(0001)*1)*1+0100+0111010(0010)*0+0111 +e
ITERATION2

Given RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(0001)*)00+
010001(0001)*1(101(0001)*1)*1 +0100+0111010(0010)*0+0111 +e

Final RE: (010001(0001)*1(101(0001)*1)*101(0001)*+010001(0001)*)00+
010001(0001)* 1(101(0001)*1)*1 +0100+0111010(0010)*0+0111 +e

~******************

ITERATIONO
Given RE: (01+(00+11))*
Final RE: e+(O((O+l)O)*+(l +0((0+ 1)0)*(0+ 1)1(11 + 10((0+ 1)0)*(0+ 1)1)*)

10((0+ 1)0)*)(0+ 1)+ 1+0((0+1)0)*(0+ 1)1(11 + 100+ 1)0)*0+ 1)1)*1
ITERATION!

Given RE: e+(O((O+l)O)*+(l+O((O+ 1)0)*(0+ 1)1(11+10((0+ 1)0)*(0+ 1)1)*)
10((0+ 1)0)*)(0+ 1)+ 1 +0((0+ 1)0)*(0+ 1)1(11 + 100+ 1)0)*0+ 1)1)*1

Final RE: e+(O((O+ 1)0)*+(1+0((0+1)0)*(0+1)1(11 + 10((0+ 1)0)*(0+ 1)1)*)
10((0+ 1)0)*)(0+ 1)+ 1 +0((0+ 1)0)*(0+ 1)1(11 + 100+ 1)0)*0+ 1)1)*1

ITERATIONO
Given RE: (000+ 11)*
Final RE: e+(l(ll)*+(OO+ 1(11)*100(000+01(11)*100)*)01(11)*)1 +

(00+ 1(11)*100(000+01(11)*100)*)0
ITERATION!

Given RE: e+(l(ll)*+(OO+ 1(11)*100(000+01(11)*100)*)01(11)*)1 +
(00+ 1(11)*100(000+01(11)*100)*)0

Final RE: 0001(11)*1 +000+ 11(11)*00(0(11)*00)*0(11)*+ ll(ll)*+e
ITERATION2 , .

Given RE: 0001(11)*1+000+11(11)*00(0(11)*00)*0(ll)*+ll(ll)*+e
Final RE: 11(11)*00(0(11)*00)*0(11)*+ 11(11)*+0001(11)*1 +OOO+e
~************

ITERATIONO
Given RE: (000+ 111)*
Final RE: e+(OO(OOO)*+(ll +00(000)*011(111 + 100(000)*011)*)100(000)*)

0+(11 +00(000)*011(111+ 100(000)*011)*)1
ITERATION!

Given RE: e+(OO(OOO)*+(ll +00(000)*011(111 + 100(000)*011)*) 100(000)*)
0+(11 +00(000)*011(111 + 100(000)*011)*)1.

Final RE: 000(000)*11(1(000)*11)*1(000)*+000(000)*+11100(000)*0+ 111 +e
ITERATION2

Given RE: 000(000)*11(1(000)*11)*1(00Q)*+000(000)*+ 11100(000)*0+ 111 +e
Final RE: 000(000)*11(1(000)*11)*1(000)*+000(000)*+ 11100(000)*0+ 111 +e

155

APPENDIX F

COMPARISON OF PERFORMANCE MEASURES

:'

NOTE: All tasks have unit execution tinles.
Width specifiC!S the maximum number qf processors that can be used.

Current RE: ((0*+ 1 *)0+(0":+ 1 *)1 *)((0*+ 1 *)0*+0)

Algorithm Width Processors Serial Parallel Speed- Efficiency
time time- up

A 6 2 17 9 1.889 0.944

A 6 3 17 7 2.429 0.810

A 6 4 17 6 2.833 0.708

A 6 5 17 6 2.833 0.567

A 6 6 17 5' 3.400 0.567

---c 3 2 9 - 6- 1.500 0.750

c 3 3 9 5 1.800 0.600

Current RE: (00+11)(01)+(00+11)(10)

Algorithm Width Processors Serial Parallel Speed Efficiency
time time up

A 4 2 11 6 1.833 0.917

A 4 3 11 5 2.200 0.733

A 4 4 11 4 2.750 0.688

c 3 2 8 5 1.600 0.800

156

157·

c 3 3 8 4 2.000 0.667

Current RE: (01 + 10)(0+ 1 *+00)00+(00+11)(10-+;0011 + 1 *)

Algorithm Width Processors. Serial Parallel Speed ·· Efficiency
time 'time. up

A 5 2 22 12 1.833 0.917

A 5 3 '22 9 2.444 ().815

A 5 '4 22. 7 3.143 0.786

A 5 5 22 7 3.143 0.629

--c 4 2 18 10 1.800 0.900

c 4 3 18 7 2.571 0.857

c 4 4 18 7 2.571 0.643

Current RE: (010+ 100)(0+ 1 *+00)00+(00+ 11)(10+0011 + 1 *)

Algorithm Width Processors Serial Parallel Speed Efficiency
time time up

A 5 2 24 13 1.846 0.923

A 5 3 24 9 2.667 0.~89

A 5 4 24 8 3.000 0.750

A 5 5 24 '7 3.429 0.686

--
c 4 2 20 11 1.818 0.909

c 4 3 20 8 2.500 0.833

c 4 4 20 7 2.857 0.714

VITA·.

Sridhar Mandyam

Candidate for the Degree of

Master of Science

Thesis: IMPLEMENTATION OF REGULAR EXPRESSION TRANSFORMATION
ALGORITHMS ON THE.HYPERCUBE

Major Field: Computer Science

Biographical:

Personal Data: Bom in Ban galore, India, June 11, 1965, the son of Krishna Swami
and Vatsala.

Education: Graduated from V.R. College, Nellore, India, in May, 1982; received
· Master of Science (Tech.) degree in Electronics and Instrumentation from

Birla I~stitute of Technology and Sci~nce, Pilani, India in July, 1986;
received Master of T~ch11ology degree in Industrial Electronics from
Karnataka Regional Engineering College, Surathkal, India in March, 1988;
completed requirements for the Master of Science degree at Oklahoma State
Universtiy in July, 199,1. ·

Professional Experience: Teaching Assistant, Department of Computer· Science,
Oklahoma State University, August, 1988 to December, 1990; Research
Assistant, ORIGINS, Business School, Oklahoma Srate University, June, .
1989 to July, 1989. ·

