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CHAPTER I 

INTRODUCTION 

Road vehicles are subject to the excitation caused by 

the irregular road roughness. The transmitted force 

usually causes passengers to feel uncomfortable. The 

primary function of a suspension in ground vehicles is the 

isolation of the vehicle body (sprung mass) from the road 

excitation. Until recently, vibration control was achieved 

by using passive devices, such as springs and dampers. A 

suspension system using only passive devices does not 

require any energy input; it controls the effects of an 

irregular road profile by storing energy in springs and by 

dissipating energy with dampers. Because the passive 

suspension system has fixed characteristics, the system has 

distinct performance limitations. 

Although vibration isolation is the main objective 

of suspension systems, there are other performance 

requirements. One is the suspension deflection limitation 

(workspace restriction); suspension stroke should be within 

the allowable workspace for suspension deflection. 

Also, the road contact force is another performance 

requirement; the suspension should not cause the tire to 

lose contact with the road for driving safety. There are 

1 



other suspension criteria, but ride comfort, allowable 

suspension deflection, and road holding are primary 

criteria. In this paper I will only consider a ride 

quality and workspace restriction as the performance 

criteria. 

2 

The performance criteria conflict with each other; 

"soft" suspensions yield better ride quality, but have more 

chances to hit the stops. "Stiff" suspensions ensure the 

suspension deflection to be small at the cost of poorer 

ride comfort. An optimal suspension involves a trade-off 

between a comfortable ride within an allowable workspace. 

In the past, many attempts were made to improve 

suspensions with control systems which alter the parameters 

of suspension elements of the system. There are two types 

of alternative suspension systems: active suspension system 

and semi-active suspension system. An active suspension 

system is a control system which can supply energy to the 

system, while a semi-active suspension system cannot supply 

energy to the system but can adjust the parameters of the 

damper. 

Active suspension systems use a high power, high speed 

device such as a hydraulic cylinder and electrohydraulic 

valve combination to generate suspension forces. Various 

measuring and sensing devices like accelerometers, force 

transducers, and potentiometers are additionally necessary 

for an active suspension. The suspension force could be a 

function of many variables which are measured. In 



contrast, passive suspension systems are restricted to 

generating forces in response to relative motion between 

sprung and unsprung masses. The ability of active systems 

to modulate forces according to conditions leads to better 

performance. However, there are some disadvantages of 

active suspension. First, the implementation of active 

suspensions is quite complex because it requires many 

elements. Second, it requires considerable energy 

consumption, so running cost is high. Third, active 

systems tend to be less reliable because of their 

complexity. 

Semi-active suspension systems have been introduced 

and developed as a compromise between active and passive 

suspensions with a hope of approaching active suspension 

performance, while maintaining simplicity, and energy 

saving. A semi-active suspension requires an adjustable 

damper which can yield changeable damping force. 

Adjustable dampers can be realized by employing a valve 

which controls the flow of fluid in a damper. 

Research papers show that the performance of active 

control system is better than that of semi-active and 

passive control system. However, it is stillworthwhile to 

study semi-active suspension systems because they require 

only small amount of power supply and are simpler and more 

reliable than active suspension systems. With a good 

operating strategy, the performance of a semi-active 

control system might be much better than that of passive 

3 
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systems, perhaps almost as good as an active system. 

In general, a semi-active suspension is inherently 

non-linear, so it is impossible to apply the linear control 

theory; computer simulation is unavoidable. Numerical 

simulation was used to study several types of nonlinear 

damping configurations and logically controlled damping. 

The results are compared with the performance of a 

reference passive system. 

Describing road roughness is an important input into 

vehicle suspension studies. The idea of describing the 

road as a continuous random excitation is common. The road 

displacement is described by a type of integrated white 

noise power spectral density function. In other words, the 

velocity of road roughness is assumed to be white noise, so 

velocity magnitudes of road input are same for every 

frequency. Many papers dealing with the description of the 

road roughness show that the white noise assumption agrees 

with many real roads. However, this kind of road model 

might sometimes lead to unfavorable conclusions for other 

typical roads. 

This paper selects two typical simple road models and 

adapts a two degree-of-freedom quarter-car model for 

analysis. Suspension performance is a weighted summation 

of root-mean-square body acceleration or body jerk and 

suspension deflection amplitude. Computer simulation is 

the tool to analyze various suspension systems. Passive 

linear damping, nonlinear damping, and semi-active damping 
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which is based on absolute velocity feedback active damping 

are simulated and compared with each other. 



CHAPTER II 

LITERATURE REVIEW 

Vibration isolation is the main objective of the 

vehicle suspension system, which has been studied 

extensively. Vibration control is achieved by using 

passive devices such as springs, shock absorbers, and 

masses in many cases. These passive elements control the 

vibration by storing or dissipating the energy associated 

with the vibration motion; no energy input is required. 

But a passive system has a certain performance limitation 

because it controls vibration only by storing and 

dissipating energy in passive devices . 

Two alternative control schemes, active control and 

semi-active control, have been studied by many researchers. 

Active control systems can supply and dissipate energy 

independent of the energy previously stored by the 

suspension. An active system may generate forces which are 

a function of any state variables of the system. 

Semi-active control systems were developed for the hope of 

overcoming the disadvantages of active systems and 

approaching the performance of active systems. Semi-active 

systems control the vibration problems by varying the 

characteristics of passive devices. Though semi-active 

6 



7 

systems do not supply energy to the suspension systems, 

they need small amount of energy to adjust the 

characteristics of passive devices. Many researchers have 

studied these three vibration control systems, but the 

semi-active systems need further studies and research. 

Description of Road Roughness 

The description of road roughness is one of the 

important aspects in the study of vehicle suspensions. 

Integrated inches per mile of the road irregularities can 

be an index of roads. The index for the best roads is 

about 80 in/mile while the index obtained on main roads 

ranges from 100 to 250 in/mile [11. Bastow relates the 

integrated road roughness to the amplitudes to judge 

whether the road is smooth or rough at the normal vehicle 

speed. 

Dodds and Robson [21 show that typical road surfaces 

may be considered as realizations of homogeneous and 

isotropic two-dimensional Gaussian random processes. They 

described road surface roughness by a single spectral 

density function. For example, very good principal roads 

have the spectral density range of 2 - 8 x 10- 6 m8 /cycle, 

while the spectral density of average principal roads 

-d 3 ranges 32 - 128 x 10 m /cycle. 

Thompson [3] used an integrated white noise road 

description, and Sharp and Hassan £41 used a displacement 

spectral density function to represent a road. It is 



common to model the road vertical velocity as white noise; 

this white velocity noise road model is used by many 

authors [3,5,6,7,8]. Also, the road velocity white noise 

assumption is valid for real roads in the interesting 

frequency range. 

Active Control Systems 

8 

Full state feedback control, absolute body velocity 

feedback control, and LOG method control are compared in 

reference (8] for a two degree-of-freedom quarter-car 

model. Hedrick et. al. [8] show that the feedback of 

unsprung mass velocity causes high frequency "harshness", 

and does not affect the low frequency performance much. So 

the absolute velocity feedback yields all the nice 

properties of the full state feedback design without 

causing the high frequency harshness problem. 

Redfield and Karnopp [6] studied the frequency 

response of body acceleration, suspension deflection, and 

road contact force with varying suspension parameters. 

Also, Redfield and Karnopp showed RMS responses of 

performance to variable suspension parameters. 

Karnopp [7] studied the optimization of a single 

degree-of-freedom system under white noise base velocity 

excitation, using analytical expressions for mean square 

response quantities. Karnopp [9] also studied optimal 

feedback law applied systems which involve two often used 

criteria: one concerns with ride comfort and road contact 



force variation, the other concerns with ride comfort and 

main suspension deflection. He showed how optimal 

suspension parameters change as the weighting of ride 

comfort and road contact force or suspension deflection is 

varied through the use of symmetric root locus techniques. 

Karnopp [101 studied limitations result from a state 

variable feedback control in two degree-of-freedom 

suspension systems. 

Sharp and Hassan [4) studied a full-state feedback 

active system, a limited-state feedback active system, and 

compared discomfort parameter (the root-mean-square value 

of the ISO 2631 weighted vertical body acceleration) with 

passive and semi-active systems. For other active 

suspension control systems, please see references 

[3,8,11,12). 

Semi-active Control Systems 

9 

Even though performances of active suspension systems 

are excellent, some disadvantages exist in active 

suspension systems, such as high running cost, difficulty 

to implement, and complexity. Crosby and Karnopp [51 

proposed a new semi-active suspension concept. The 

semi-active force generator can respond to general feedback 

signals to control the vibration without any external power 

for the suspension system. Crosby and Karnopp presented 

physical embodiments of a semi-active controller and 

compared them with hardware devices used in active and 
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passive vibration control systems. Their computer 

simulation results show that the performance of semi-active 

control systems is comparable to that of fully active 

control systems. 

Karnopp and Margolis [131 proposed a new concept 

involving variable spring stiffness and damping. They 

discussed how frequency response changes according to 

parameter variation for a single degree-of-freedom system. 

Karnopp [141 presented many possible ways to create 

semi-active dampers with hydraulic devices and 

electromagnetic devices through bond graph manipulations. 

Margolis [151 presented a model which included both the 

heave and pitch motions, and compared the performance of 

passive, active, and semi-active suspensions. He 

investigated absolute damping and state variable feedback 

control for both active and semi-active systems. Margolis 

studied frequency response for active and semi-active 

system subject to more realistic control signals -­

non-ideal body velocity measurement and no acceleration 

feedback [16]. He compared passive, active, and 

semi-active suspension performance which included sprung 

mass isolation and unsprung mass controlling for a two 

degree-of-freedom model [17]. 

Sharp and Hassan [4] compared the performance of 

passive systems, active systems which have control 

parameters obtained by using optimal control theory, and 

semi-active systems which use on-off switching control to 
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follow the control scheme of the fully active systems. 

Cheok et. al. [181 described the modeling and formulation 

of an optimal control suspension reference model, and 

experimented a suspension model with a microcomputerized 

optimal model-following variable air damper. Hrovat et. 

al. [191 developed a two degree-of-freedom model to 

optimize a quadratic performance index reflecting workspace 

limitations and ride quality requirements for passive, 

active, and semi-active suspension systems. 



CHAPTER III 

PRELIMINARIES 

Road Configuration 

Dodds et. al. showed that roads have profiles of 

random roughness which could be considered as realizations 

of homogeneous and isotropic two-dimensional Gaussian 

random processes [2]. Also, there is the Parkhilovskii 

assumption that the roll and vertical motions of the road 

undulation are uncorrelated. Usually the velocity of road 

model is simplified as a white noise process used with 

various analytical methods. 

Here, I illustrate some methods for the representation 

of road roughness for numerical simulation. Karnopp, 

Crosby and Harwood simplified the road input to a white 

noise so that the velocity of road roughness has an 

approximately white spectral density for frequencies above 

0.8 Hz up to a cutoff frequency of 15 Hz. The white noise 

was generated by selecting Gaussian random numbers and 

using the numbers as constant input amplitudes over 

sampling times of 0.005 sec [51. Sharp and Hassan 

generated a white noise road input by adding together 60 

sine waves with frequencies 1/4, 1/2, 3/4, ..• , 15Hz, by 

12 
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choosing the proper amplitudes to represent the assumed 

spectral density and by determine phases with a random 

number generator. So the road input has the profile an 

approximately Gaussian probability density [4]. In these 

two examples, we should notice that the frequency range 

they used is from 0.25 Hz to 15 Hz. These models are well 

supported by the fact that the frequency range of 1 Hz to 

10 Hz is considered as the most important range for the 

ride quality [81. Khulief and Sun modeled a road surface 

to a single bump with 0.2 m height and 0.4 m width, which 

was simplified to a sinusoidal function [201. 

Although the white-noise random-process models for 

roads are widely used and easy to manipulate, it is 

doubtful that these models can properly represent real 

roads. It is preferable to select particular road 

conditions which a vehicle frequently encounters. One 

common road surface to be considered might be a 

concrete-slab road (e.g. interstate freeway). It can be 

represented by a saw-tooth wave form function with a 

wavelength of approximately 6.3 m and an assumed amplitude 

of 6 mm (refer to Figure 1.). The choice of wavelength of 

the road is reasonable because it is based on the common 

road construction convention £21. 

As a form of external excitation, the road undulation 

should be related with the spring constant of a tire and 

the speed of the vehicle. On a highway, the vehicle speed 

could be assumed to be a constant speed of about 50 mi/hr 
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(~ 80 km/hr). To make calculation easy, the saw-tooth 

function is represented as an appropriate Fourier series. 

With this approach, road roughness can be converted to an 

external force which applies to the unsprung mass of 

vehicle. 

However, the frequencies exerted to a high speed 

vehicle by the saw-tooth road are quite high, so we should 

choose another vehicle speed or road model to cover the 

entire frequency range interested, i.e. 0.1 to 15Hz. An 

alternative road model is made to contain several 

frequencies of 0.5, 1, 5, 10, and 15 Hz. I selected the 

two natural frequencies (i.e. 1 and 10 Hz) and those 

neighborhood frequencies. for the rest of the paper, I 

will call this alternative road model "a rough road model" 

by assigning high amplitudes for each frequency and their 

velocity amplitudes are chosen to be identical for each 

frequency. 

Concrete-Slab Road Model 

Concrete-slab roads can be assumed to have a form of 

saw-tooth wave form function which has a wavelength of 6.3 

m and an amplitude of 0.006 m; the speed of vehicle is 

assumed to be a constant speed of 80 km/hr. 

Let a wavelength be A [m], an amplitude be h [m] and a 

vehicle speed be v [m/secl, then the fundamental frequency, 

w [rad/sec], of the road input can be expressed 
0 
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v = Af 
0 

w = 2nf 

( 1 ) 

( 2 ) 
0 0 

so, with the vehicle parameters which will be given later, 

w becomes 22 [rad/secJ. 
0 

With this fundamental frequency, the saw-tooth wave 

form function can be expressed as a Fourier series 

expansion as follows 

x (t) = h/2 -h/n·sin(w t) -h/(2n)·sin(2w t) 
0 0 0 

-h/(3n)·sin(3w t)--- -h/(nn)·sin(nw t)··· (3) 
0 0 

It is noticeable that the velocities of the saw-tooth 

wave form road excitation are identical for each 

frequency. You can find it with ease, if you take the time 

derivative of the road roughness function. It becomes: 

x (t) = - w h/n·cos(w t) - w h/n·cos(2w t) 
0 0 0 0 0 

- w h/n·cos(3w t) --- - w h/n•cos(nw t) (4) 
0 0 0 0 

The coefficients of cosine terms of each frequency are 

same, so the spectral density of the velocity of the road 

input has the white noise property in the sense of the 

amplitudes of each frequency are identical. The 

concrete-slab road model also has similar properties with 

other white noise models adapted by other researchers. 

Let's assume that usual vehicle velocity range is from 

20 km/hr to 80 km/hr. If we take 18 terms from the Fourier 

series of saw-tooth function, the frequency range of road 
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excitation would be 0.88 Hz to 15.9 Hz at the vehicle 

velocity of 20 km/hr. Thus 18 will be assigned to n of the 

equation (3) so as to cover most of the frequency range of 

0.1 Hz to 15 Hz. The road excitation frequency range of a 

high speed vehicle shifts to higher range, for example, 

3.53 Hz to 63.49 Hz for 80 km/hr. Thus we can observe that 

the higher speed the vehicles have, the higher frequency 

range excitation they have. 

Rough Road Model 

A rough road model can be realized by a linear 

combination of high amplitude sinusoidal functions of 

several selected frequencies. Because the transmissibility 

of workspace is important at the natural frequencies (1.0 

and 10 Hz), I will include these frequencies in my rough 

road model. The body acceleration response is also 

important at the natural frequencies, and the response 

tendency of the frequencies higher than the sprung mass 

natural frequency is quite different from that of lower 

frequencies. Thus I included neighbor frequencies 0.5, 5, 

and 15 Hz to yield more accurate ride quality response. A 

constant vehicle speed of 20 km/hr can be an appropriate 

choice for a rough road model. Let the amplitude of 1 Hz 

term be h, then the roughness function will be given by 

equation (5). The value of his selected to be 0.05 (m], 

and phase angles are assigned to be -n/6, n/2, n/6, -n/2, 

and 0 for ¢ , ¢ , ¢ , ¢ , and ¢ , respectively. Figure (2) 
i 2 9 4 ~ 
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shows how the rough road model looks like. 

x (t) = 2h·sin(0.5wt + ¢ ) + h·sin(wt + ¢ ) 
0 ~ 2 

+ (1/S)h·sin(Swt + ¢ ) + (1/lO)h·sin(lOwt + ¢ ) 
a • 

+ (l/15)h·sin(l5wt + ¢) (5) 
!S 

Here, w = 2rr [rad/secl. 

( Multi-criteria of Performances 

A good suspension design should satisfy a number of 

conflicting desires. A suspension system should isolate 

the body motion from the external roadway disturbances, 

which is the principal objective of the suspension system. 

However, there are subsidiary requirements: one is the 

limitation of the relative displacement between the body 

and the tire known as a "workspace" or "suspension travel" 

which is desired to be always within a certain limitation, 

and another requirement is the wheel-road contact force 

which should be as constant as possible. 

From the studies of linear system with harmonic 

excitation, we can say that the isolation of a mass can be 

judged by looking at the transmissibility between the 

sprung mass motion and the roadway motion. For one 

degree-of-freedom system, when the frequency ratio is less 

than ~ , the transmissibility decreases as the damping 

ratio increases; when the frequency ratio is greater than 

f2, the transmissibility increases as the damping ratio 

increases. Transmitted accelerations are larger in the 
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high frequency range than in the low frequency range, so it 

is plain that a smaller damping suspension is better for 

good ride quality. This tendency can be extended to higher 

degree-of-freedom systems. 

The problem of vehicle suspension system control lies 

on the fact that the criteria conflict with each other; the 

workspace amplitude decreases but the ride quality becomes 

worse as the suspension becomes stiffer. So it is obvious 

that there is no one system which both gives the best ride 

quality and also maintains minimum workspace. Generally, 

an optimal suspension design must compromise somehow 

between those conflicting desires, specially between the 

ride quality and the workspace limitation. An optimal 

suspension system will show a minimum acceleration 

transmissibility for a given allowable workspace 

deflection. As the suspension becomes stiffer, the 

workspace deflection decreases and the body acceleration 

increases; so the ride quality become worse than the 

optimum suspension. Furthermore, if either the speed of 

vehicle increases or the roadway becomes rougher, the 

minimum acceleration will be larger for the same allowable 

workspace deflection limitation. For this new situation, 

the optimal suspension characteristics should be changed to 

another optimal point. Thus, we cannot design a suspension 

system which is optimal to all roads. The best way we can 

do is to design a optimal spenslon system to the road 

models that a vehicle frequently encounters.~ 
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Evaluation of Performance 

We could get an optimal performance by doing some 

trade-off between criteria conflicting each other. Among 

performance criteria, ride comfort and workspace amplitude 

are more important than any other criterion. So the most 

desirable suspension performance is to keep a small body 

acceleration or jerk as possible and a workspace amplitude 

within the limitation. However, it is not usually possible 

to keep these two values small for every road. For 

low-frequency and high-amplitude roads, i.e. rough roads, 

the workspace criterion is more important than the ride 

comfort, and for high frequency and low amplitude roads, 

i.e. good quality roads, the ride comfort is more important 

because the workspace problem seldom happens on good roads. 

Many researchers applied frequency analysis as a tool 

to judge suspension performances [5,6,8,10,11,15-17,21-231. 

This is valid for linear systems at any time and very 

useful to study the effect of each suspension elements, but 

not always valid for nonlinear systems like nonlinear 

damping systems and semi-active systems. 

Root-mean-square (RMS) values might be a possible 

measure of the performance. In this paper, RMS values of 

body jerk or acceleration and workspace amplitude are 

calculated for the two road models described above. A good 

suspension system should meet criteria such as low RMS body 

jerk (or acceleration) and low RMS workspace amplitude. 



20 

Introducing a cost function, J, makes the comparison easy. 

The cost function is a weighted sum of root-mean-square 

values of the representative variables of the criteria 

chosen for comparison. In other words, J is a weighted sum 

of RMS body acceleration (or jerk) and RMS workspace. The 

cost function can be expressed as equation (6) for the case 

of that body acceleration and suspension deflection are 

considered as the performance criteria. 

~ t> T r-::-;- J 2 
J = lim T"o [ p ... x; + (x2 - x~) ]dt ( 6 ) 

T-+00 

where p is a weighting to emphasize one of the performance 

, x is unsprung mass displacement, and x is sprung mass 
~ 2 

displacement. 

Two Degree-of-Freedom Vehicle Modeling 

Dahlberg treated a vehicle suspension system as a five 

degree-of-freedom plane linear model that is a half-car 

model [241. Also, there are quarter-car models which can 

be treated as one degree-of-freedom model, or as two 

degree-of-freedom model which includes the unsprung mass 

and spring. 

In order to predict most accurately the effect of a 

certain suspension condition, a full-car model is better 

than other models. However, the full-car model is very 

complex and likely to lead us to simulation problems and 

errors. In addition, it is not easy to recognize important 

results from the complex model, making design 
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interpretation almost impossible. On the other hand, a one 

degree-of-freedom quarter-car model is too simple to derive 

useful design concepts for real suspension systems. 

Since the essential trends of suspension system 

performance could be shown with a two degree-of-freedom 

quarter-car model, it is reasonable to choose a two 

degree-of-freedom representation of a quarter-car model for 

simplicity. 

The following system equations might be formulated by 

inspection of the passive system model (Figure 3). The 

coordinates of the displacements are from each static 

equilibrium position. 

.. . . 
m x 

s 2 
+ c(x - x ) + k (x - x ) = 0 

2 ~ s 2 ~ . . 
m X + C(X - X ) + k (X - X ) + k X = k X 

u ~ ~ 2 s ~ 2 u ~ u 0 

Let x = x and x = x , then the system equations 
3 ~ 4 2 

can be written as state space equations, 

where 

X = AX + Bx 
0 

X = (X X 
~ 2 

A = r 0 

0 
2 2 

-(1) -w 
~ 2~ 

2 
w 

2 

X 
3 

T 
X ) I 

4 

0 1 0 

0 0 1 
2 -2e(w 2 e( c.o (1) 
2~ 2~ 2~ 

2 2{w -2Cw -w 
2 2 2 

w = 1k /m , w = 1k /m , w = 1k /m , 
~ u u 2~ • u 2 • • 

( = c/(2~), e = Tm /m 
s s • u 

( 7 ) 

( 8 ) 
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B = [0 0 k /m OJT 
u u 

Computer Program and Numerical Stability 

This paper deals with nonlinear systems, and frequency 

analysis is not valid for nonlinear systems. Computer 

simulation is one of the best way to analyze nonlinear 

systems. The simulation program written in this paper 

consists of several Pascal procedures which are for the 

selection of road type, choice of damping scheme, system 

equations, Runge-Kutta solution routine, and RMS outputs. 

The program has three kinds of road input which are a 

single tone sinusoidal excitation, a rough road model, and 

a good quality road model (concrete-slab road). A single 

tone sinusoidal excitation exists mainly for a frequency 

analysis. The rough road model and the good quality model 

are used for the analysis of RMS performances. 

Included damping schemes in this program are linear 

passive damping, asymmetric damping, cubic damping, and 

semi-active damping. Linear damping ratio, rebound and 

compression damping ratio of asymmetric damping, and 

damping ratio of cubic damping can be arbitrary input. 

The differential equations of this system are solved 

by Runge-Kutta method. A time step is very important for 

stable solutions and a fast computation. If a stepsize is 

greater than the stepsize which is critical for a numerical 

stability, the solutions blow up and the program will be 

terminated with overflows. On the other hand, if a 
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stepsize is much smaller than the critical stepsize 

(maximum stepsize to be numerical stable), the computation 

might take a long time to yield only slightly improved 

accuracy. One should find the critical stepsize for 

numerical stability, and after that assign a stepsize 

smaller than the critical stepsize for the required 

accuracy. 

During the development of the program there were 

sometimes "runtime errors", so I traced the cause of errors 

and found no coding errors. However, I found that the 

numerical stability depends not only the natural frequency, 

but also on the damping ratio of the system; numerical 

instability caused the "runtime errors". Through a lot of 

simulation with different damping ratios and stepsize, the 

stabilizing stepsize for each damping ratio was found. 

Numerical stability is not sensitive to input parameters 

like external frequencies or amplitudes. 

There are two kinds of numerical instability: first, 

exponentially growing unstable solutions, second, 

oscillating solutions with growing amplitude. Sometimes, 

the second case is not easy to be checked because of slow 

growth, but if one prolongs the calculation time the 

growing amplitude is noticeable. 

The stabilizing stepsizes for each damping ratio are 

listed in Table (1) and plotted in Figure (4). There are 

three columns in the Table (1), i.e. damping ratio, stable 

stepsize and unstable stepsize. The stepsizes in the 
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column of the stable stepsize guarantee that the solution 

will be numerically stable for an equation whose damping 

ratio is less than listed in the damping ratio column, but 

they are not the largest stepsizes to ensure a numerical 

stability. Also, the stepsizes in the column of the 

unstable stepsize surely make the solutions be numerically 

unstable, but not the smallest stepsize. In order to yield 

numerically stable solutions, one should not choose a 

stepsize larger than the stepsize in the stable stepsize 

column. However, it does not guarantee accurate results. 



CHAPTER IV 

PASSIVE SYSTEMS 

Frequency Responses of Passive System 

Frequency analysis can guide us to select a good 

performance passive suspension system for both a good 

quality and a rough road. When the input to the system 

is the road roughness, transfer functions of the system are 

as follows : 

where 

-~ G(s) = C(si-A) B + D 

A and B are same as in equation (8), 

I is a 4 by 4 unit matrix, 

c = [ 0 0 0 1 for evaluation of body velocity 

[-1 1 0 0 for evaluation of workspace 

D = 0 • 

( 9 ) 

If we substitute jw to the Laplace transform operator, 

s, we can plot Bode diagrams of frequency versus the 

amplitude of transfer function. Hedrick et. al. remarked 

that the frequency range of 1 to 10 Hz is important for the 

ride quality, so it is not necessary to have high frequency 

25 
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(e.g. above 20Hz) responses [8]. 

A white noise has same powers for every frequency, so 

frequency responses with a white noise input are easy to 

comprehend actual magnitude output responses. Because the 

velocity of real roads are nearly white, a road velocity 

input makes analysis easy. For linear systems, we know 

that: 

lx /x I = lwx /x I = lx /x I 
2 0 2 0 2 0 

(10) 

and 

I Z/X I = I Z/ ( (l)X ) I 
0 0 

(11) 

Using the above two equations (10,11), it is possible to 

get frequency responses of road velocity input with only 

multiplying 1 and 1/w to the transfer function which 

is given with road displacement input. 

The following numerical data for a typical passenger 

car are used for analysis. 

m = 240 Kg • k = 16000 N/m • 
m = 36 Kg 

u 
k = 160000 N/m 

u 

c = 1176 Ns/m (reference case) 

Performances are studied with various damping ratios 

in the range of 0.1 to 100 Hz, but the range of 0.1 to 15 

Hz is mainly considered. Figure (5) is the frequency 

response of body acceleration by road velocity input. The 

result shows that the body acceleration is reduced as 
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damping increase in the 1 Hz range which is the natural 

frequency of sprung mass, but increased at higher 

frequencies. The reason of this result is that the stiffer 

suspension transmits more road input to the vehicle body in 

high frequency range. Also, at the unsprung mass resonant 

frequency (about 10 Hz), body acceleration is not dependent 

of the damping ratio. This is because the sprung mass 

acceleration is independent of unsprung mass variables at 

the unsprung natural frequency (w = ~ /m ). This 
u u 

interesting property of automotive suspensions can be found 

in the Hedrick's paper [8]. Adding the two equations of 

suspension system gives 

.. 
m x + m x = k (x -x ) 

& 2 u ~ u 0 ~ 
(12) 

Transforming and setting initial conditions to zero yields: 

m x (jw) + (k - m w2 )x (jw) = k x (jw) 
&2 u u ~ uo 

( 13) 

If we substitute w = ~ /m to equation (13), we find that 
u u 

the sprung mass acceleration is independent of the 

displacement of unsprung mass, x~, at the unsprung mass 

natural frequency. If we define, 

H (jw) s x (jw)/X (jw) 
A 2 0 

then we have the magnitude of acceleration transfer 

function at the unsprung natural frequency, 

= ( k /~ /m ) /m = ,lk'ii\ /m 
u u u 8 u u 8 

(14) 

(15) 
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Substituting the numerical values for typical passenger car 

given later to the equation (15) yields IH.I = 10; this 

result agrees with the acceleration frequency plot in 

Figure (5). Redfield and Karnopp also show a similar 

frequency response in Ref. [6]. In order to reduce the 

body acceleration at the unsprung mass natural frequency, 

the spring constant of unsprung mass should be reduced for 

given sprung and unsprung masses. We can learn from 

frequency response of body acceleration that a soft 

suspension gives better ride quality than stiff suspension 

if frequencies of road excitation are evenly distributed. 

Frequency response of workspace by road velocity input 

is on Figure (6), which is also similar to the result 

showed in Ref. [6]. Two peaks appear at each natural 

frequencies, but the peaks dies out as damping increases. 

The workspace response shows that increased damping reduces 

the suspension deflection amplitude for all of the 

frequency range, but there are no big differences by 

changing damping in low (i.e. less than 0.5 Hz) and high 

(i.e. greater than 12 Hz) frequencies. However, we can 

conclude that higher damping reduces the workspace 

amplitude for any frequency range. 

Selection of Reference Passive System 

Frequency analysis of passive system tells us that 

higher damping could improve the performance of workspace 

amplitude, but hurts the performance of ride quality. so 
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we cannot expect that a suspension system simultaneously 

improve both two criteria, but we can do some trade-off 

between them. The damping ratio of about 0.3 can be a good 

passive suspension system damping ratio which satisfies 

those two criteria; the performance of this system is 

compared with other suspension systems. This reference 

passive system damping ratio is chosen to yield the minimum 

value of the cost function given by equation (6) with a 

weighting of 0.03 for sprung mass acceleration or 0.003 for 

sprung mass jerk {i.e. x ). Let's define the cost function 
2 

of the concrete-slab road as J and that of the rough road 
c 

as J . Assigning 0.8 for the weighting of concrete-road 
r 

model and 0.2 for that of rough road model, then the 

weighted cost function, J , can be expressed the equation 
cr 

given by (16). 

J = O.SJ + 0.2J (16) 
cr c r 

If we divide J with minimum value of it, we can normalize 
cr 

the weighted cost function. If we define a performance 

index, PI, to be the normalized weighted cost function, it 

is easy to compare the performance between other damping 

schemes. Figure (7) is the plot of performance index for a 

passive system as a function of nominal damping ratio, (. 

The numerical simulation is done with the typical two 

road conditions above mentioned and the results are taken 

root-mean-square values. To avoid the inaccuracy of the 

numerical calculation, the results within two second are 
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discarded and results 2 to 10 second are used to yield the 

root-mean-square values. The results of several outputs 

are tabulated with respect to the nominal damping ratio 

which is simply defined as equation (17), 

( = c/2j m k • 
• • 

(17) 

The results in Table (2) and (3) show that a better 

isolation (ride quality) response can be achieved at low 

damping ratio and the suspension deflection decreases as 

damping increases. Similar simulation is done with 

different vehicle speeds for the concrete-slab road model; 

Figure (8) - (10) are RMS plots for body acceleration, 

jerk, and workspace, respectively. Results show that if 

the vehicle speed is increased both the ride quality and 

workspace performance become worse. 



CHAPTER V 

NONLINEAR DAMPING PERFORMANCE 

Real shock absorbers are usually nonlinear; they have 

static friction also known as the "stiction", rubber 

mounts, and different characteristics in compression and 

rebound. Also, the damping coefficients vary with the 

temperature. so it is useful to consider nonlinear damping 

systems and compare responses with those of linear damping 

systems. 

Asymmetric Damping 

At first, asymmetric damping systems are taken into 

account. Asymmetric damping systems are assumed to have 

different damping coefficients according to the relative 

velocity between sprung and unsprung masses. Vehicle 

dynamics engineers use "compression" for the negative 

relative velocity (z ~ x -x ) motion and "rebound" for the 
2 ~ 

positive relative velocity. Simulation is done for the 

cases of one of the compression or rebound damping ratio is 

positive values (varying from 0 to 2) and the other is 0. 

The nominal damping ratio is defined as equation (17). 

To simulate the asymmetric damping systems, the 

relative velocity is monitored while solving the 

31 
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differential equation set and if it is positive, { is set 

to a value and if it is negative then { is set to 0 for the 

rebound damping case. Similarly, the compression damping 

cases can be simulated. 

The results are calculated as the form of RMS values 

calculated from 2 [sec] to 10 [sec]. The simulated RMS 

workspace, body acceleration, and body jerk are tabulated 

in Table (4) - (7) for compression and rebound damping. 

Also, performance index is drawn as a function of nonzero 

damping ratio in Figure (11) to be compared with reference 

passive system performance. The results of asymmetric 

damping show that the performance is worse than the 

performances of reference linear damping ({=0.3) case. 

However, we could learn from these results that, for 

previous mentioned typical road surfaces, nonzero damping 

for rebound motion reduces the amplitude of relative 

displacement and RMS body jerk, but nonzero damping for 

compression motion reduces the RMS body acceleration (refer 

to Table 4-7). Figure (11) shows that the performance of 

compression damping system is better than rebound damping 

system for the typical road input. 

Relative Displacement Dependent Damping 

We could think about a damping scheme of which the 

nominal damping ratio, { (defined as before), depends on 

the relative displacement (x -x ). Let's take an 
2 ~ 

asymmetric linear relative displacement dependent damping 
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case. This case is almost similar to the asymmetric 

damping case except damping ratio varies due to the sign of 

relative displacement rather than of relative velocity. 

Let's call "compression" for the case of a negative 

relative displacement and "rebound" for the case of a 

positive relative displacement. Simulation is done nominal 

damping ratios of 0 to 2 for one and 0 for the other, 

similar to the case of asymmetric damping simulation above. 

During the simulation, the sign of relative 

displacement is monitored, if it is positive the damping 

ratio is set to a value (less than 2) and if negative the 

damping ratio is set to 0 for the case of nonzero rebound 

damping. The opposite case is also simulated. 

The results are expressed as a form of RMS value 

calculated during the time duration of 2 - 10 second. The 

performances are compared with the reference linear damping 

case ((=0.3). The numerical results reveal that the RMS 

values of relative displacement dependent asymmetrical 

damping are not satisfactory compared to those of reference 

case. With this kind of damping scheme, the workspace 

amplitude tends to be greater and the vibration isolation 

tends to be worse than those of reference damping system. 

The results of this damping scheme are not included in this 

paper. 

Also, we can think about a damping scheme such as the 

nominal damping ratio, ( (same as before), is a function 

like equation (18). This kind of damping characteristic 



could be occurred in real systems such as the middle zone 

fluid flow area of shock absorbers is quite wide and the 

end zone fluid flow area of shock absorbers is narrow. 
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( 18) 

Simulation is done with varying the constant value of 

"b" of the equation (18) from 0 to 45. The relative 

displacement is calculated with previous time step 

conditions, with the value the damping ratio is changed and 

the system equation set is solved with new damping ratio 

and so on. As before, the RMS values during 2 - 10 second 

are calculated with different "b" values. The performance 

index is plotted in Figure (12) as a function of the 

constant "b" of the equation (18). RMS values of body 

acceleration, body jerk and workspace are tabulated in 

Table (8) and (9) for the typical road inputs. 

The workspace RMS amplitude decreases monotonically as 

"b" increases; this result agrees with the general concept 

of higher damping reducing workspace amplitude. The 

minimum RMS, acceleration and jerk are at 5 for the 

concrete-slab road input and 10 for acceleration and 0 for 

jerk for the rough road input. So we could say that better 

ride quality can be achieved with small "b". comparing 

with the reference linear system, this system could be 

better in ride quality sense, but the rattle space 

limitation could be violated more easily. Performance 

index plot (Figure 12) shows that this system is not better 
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than the reference passive system. However, if "b" is 

about 20, the performance is nearly same as the performance 

of reference passive system. 

Cubic Damping 

More realistic damping has the characteristics of 

cubic damping, it yields a damping force which is 

proportional to the 3rd power of relative velocity between 

sprung and unsprung masses. It can be written as the 

equation (19) below, 

• 9 
Fd = Bz 

where z represents relative velocity. 

RMS body accelerations, body jerks, and workspace 

amplitudes as a function of "B" are results of the 

( 19) 

simulation of the time duration of 2 to 10 second. The 

range of cubic damping coefficient, "B", is considered from 

0 to 3. 

From the results of saw-tooth road model in Table 10, 

it is shown that the minimum workspace RMS value is 

-a 2.725x10 at which "B" is 3, which is about 30 \ greater 

than that of reference linear system. The minimum RMS 

values of body acceleration and jerk are 0.318 and 19.4 

where "B" is 0.2 and 0.1, respectively. These values are 

quite less than those of reference linear system. 

Generally, we can say that the workspace amplitude 

decreases and the acceleration and the jerk increases as a 



value of "B" increases. 

The result of performance index in Figure 13 shows 

that the cubic damping scheme can improve the performance 

if "B" is taken from 0.2 to 2.5. Also, the best 

performance of cubic damping system can be achieved at 

which "B" is about 0.7. 
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CHAPTER VI 

SEMI-ACTIVE DAMPING PERFORMANCE 

Active Damping 

Because semi-active control systems are based on 

active control systems, one should know about active 

control systems first to study a semi-active system. 

Active suspension systems can supply energy to the 

suspension system, and dissipate energy from the system. A 

force generator like a servomechanism could be an active 

damping device which can produce force of a function of any 

state variables. One possible feedback can be the absolute 

body velocity feedback. In fact, the same effect can be 

achieved only with passive devices if we have an inertial 

ground to fix a damper to a sprung mass as shown in Figure 

(14). However, this kind of damping scheme cannot be 

implemented onto real vehicle suspension systems because we 

cannot have an inertial ground. This fictitious damping 

system is referred as "sky-hook" damping. 

Performance of Sky-hook Damping System 

Active control of absolute body velocity feedback can 

be studied by the analysis of the "sky-hook" damping. 
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Frequency analysis can help to choose a feedback gain of 

absolute body velocity. System equations for the sky-hook 

damping system are given by equation (20) . 

.. 
m x + ex + k (x - x ) = 0 

a 2 2 a 2 1 

m X + k (X - X ) + k X = k X 
u 1 • 1 2 u 1 u 0 

Let x 3 = x 1 and x 4 = x 2 , then the system equations 

can be written by state space equations, 

where 

. 
X = AX + Bx 

0 

X = [X X 
1 2 

A = 0 
0 

2 2 -w -w 
1 21 

2 w 
2 

(1,) = -{)( /m ' 1 u u 

X 
3 

0 
0 

w 

-w 

(1,) = 
21 

( = c/(2~), • • 
B = [ 0 0 k /m 

u u 

T 
X ) I • 

1 0 
0 1 

2 
0 0 

21 

2 

2 
0 -2(w 

2 
I 

' 
(1,) = -{)( /m •' 2 • 

-{)( /m • u 

O]T 

When the input to the system is vertical road 

displacement, the transfer function of the system is as 

follows: 

G(s) = C(sl-A) 1 B + D 

where 

A and B are given in equation (21), 

(20) 

( 21) 

(22) 



I is a 4 by 4 unit matrix, 

c = [ 0 0 0 11 for evaluation of body velocity 

= [-1 1 0 01 for evaluation of workspace 

D = 0. 
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Using the relations given by equations (10) and (11), it is 

possible to get the body acceleration and workspace 

responses of the road velocity input. Multiplying 1 and 

1/w to the magnitudes of transfer function gives the 

frequency responses of road velocity input. 

Figure (15) and (16) are the frequency response of 

workspace and body acceleration of sky-hook damping system 

of which numerical parameters are same as those of passive 

system given earlier. Figure (15) shows that the body 

acceleration decreases as the damping of sky-hook system 

increases near the natural frequency of sprung mass, but 

changes little lower and higher frequency ranges. 

Especially, a sky-hook damping scheme transmits energy 

quite mu·ch to the sprung mass at the unsprung mass resonant 

frequency regardless of the damping ratio. This is why 

there is no damper to retard the motion of unsprung mass 

and the road excitation is transmitted to the sprung mass 

through the suspension spring without any excitation 

attenuation. 

Figure (16) shows that the workspace response is more 

complicated. At the sprung mass resonant frequency, higher 

damping decreases the suspension deflection, while lower 
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damping decreases the suspension deflection in the lower 

frequency range. However, in the higher frequency range 

there is unnoticeable differences between the responses of 

different damping. The maximum magnitude is at the 

unsprung mass resonant frequency, which cannot be reduced 

by changing the damping ratio of sky-hook systems. 

The damping ratio of 0.3 or 0.5 in this scheme can 

give a good compromise for the two performance criteria for 

the road input which contains wide frequency range. This 

result also implies that the active control of absolute 

body velocity feedback gain of 0.3 or 0.5 gives the best 

performance. 

Performance of 2 Inertial Ground Damping 

We can think about an active control system of which 

the absolute sprung and unsprung mass velocity feedback. 

This system is same as the system as drawn in Figure (17), 

where the velocity feedback gains are same as the damping 

coefficients. The two independent inertial grounds support 

each mass and damper, so each damper can control the motion 

of mass by a control force of a function of each mass 

velocity only. The system equation is given by equation 

( 2 3) • 

.. 
m X + C X + k (X - X ) + k X = k X 

u i i i • i z u i u 0 
( 23) 

where c1 and c2 are the damping coefficients of unsprung 



mass and sprung mass, respectively. 

Let x = x and x = x , the system equations can be 
3 1 4 2 

written by state space equation same as equation (21), 

where 

X = [X X 
1 2 

A = 0 
0 

2 -w -w 
1 

w 

w = -.'k /m 
1 u u 

0 
0 

2 w 
21 

2 -w 
2 

, w = 21 

1 0 
0 1 

2 
-2{ w 0 

21 1 1 

2 
0 -2{ w 

2 2 2 

-.'k /m w = -.'k 
s u 

, 
2 

{ = c /(2~), { = c /(2~) 
1 1 U U 2 2 B 8 

B = [0 0 k /m OJT 
u u 

, 
/m 

s s' 
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Figure (18) to (23) are the frequency analysis results 

of 2 inertial grounded damping scheme or active control 

system with sprung and unsprung mass velocity feedback. 

The results show that the damper attached to the sprung 

mass affects on the acceleration and workspace in the lower 

frequency range, while the damper attached to the unsprung 

mass affects on those in the higher frequency range. 

In the case of body acceleration, larger sprung mass 

damping decreases body acceleration only near the sprung 

mass resonant frequency, but does not much change it higher 

(e.g. greater than 10 Hz) and very low (e.g. less than 0.2 

Hz) frequency ranges. Small unsprung mass damping can 

arise a peak at the unsprung mass natural frequency, but 

the peak dies out with increased damping. Only for the 



body acceleration criterion, larger sprung and unsprung 

damping is preferable. 
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The results of workspace show that the sprung mass 

damping is responsible for the response in the lower 

frequency range, while the unsprung mass damping is 

responsible for the response at unsprung mass natural 

frequency. Larger sprung mass damping increases workspace 

amplitude in the low (less than 0.5 Hz) frequency range, 

and decreases it near the sprung mass natural frequency. 

However, there is not noticeable change in the higher 

frequency range. The unsprung mass damping is mainly 

responsible for the response at the unsprung mass natural 

frequency. Small damping can yield a peak at the unsprung 

mass natural frequency, but it dies out with slightly 

increasing unsprung damping. The responses in the lower 

frequency range are not changed with different unsprung 

mass damping. 

For road excitations which contain only higher 

frequencies (e.g. greater than 5 Hz), higher damping for 

each mass will be good for the both performance criteria. 

Large damping for the unsprung mass and small damping for 

the sprung mass is preferable for the roads which contain 

only low (e.g. less than 0.5 Hz) frequencies. 0.3 for the 

sprung mass damping and 0.5 for the unsprung mass damping 

can be a good trade-off selection for the road excitations 

which contain wide frequency range. 



Semi-Active Damping 

The semi-active suspension concept is derived from 

active suspension; it differs from active suspension 

systems in having no energy input. So it is natural that 

the performance of semi-active suspensions be worse than 

the performance of active suspensions. However, the 
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advantages of semi-active suspensions are simplification of 

the implement, reduction of running cost, and more 

liability. 

The strategy of semi-active suspension is performing 

an active control force by a adjustable passive damper. 

Because semi-active suspensions use a passive device, it is 

not possible to follow an active damping force at any time. 

The best way is setting the damping 0 when the active 

damper generates energy. This logic can be done by 

monitoring the velocities of sprung mass and unsprung mass. 

Let Fd be the expecting force to be supplied by an damper 

and v and v be the velocity of sprung and unsprung mass 
s u 

velocity, respectively. The passive device limitation is 

given by : 

F (V - v ) ~ 0 
d • u 

(24) 

Here, Fd can have different forms depend on the active 

control strategy which the semi-active control follows. If 

a semi-active control intends to follow absolute body 

velocity feedback control, Fd will be given as equation 
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( 2 5) • 

= Kv 
s 

(25) 

where K is the feedback gain. 

Equation (24) implies that the power associated with 

Fd should be always dissipated for semi-active systems. 

Thus, when the relative velocity between sprung mass and 

unsprung mass is positive, Fd must be positive, and when 

the relative velocity is negative, Fd must be negative. 

"Tensile" and "compressive" are commonly used in the 

vehicle dynamic field for the case of Fd > 0 and Fd < 0, 

respectively. If we denote F for the actual damping force 
s 

generated by a semi-active damper, 

F = 0 
s 

, if Fd(v -v ) > 0 
• u 

if Fd(v -v ) < 0 , s u 

(26) 

( 27) 

Simulation results for the semi-active system which 

follows body velocity feedback control are tabulated in 

Table 12 and 13. The semi-active damper is assumed to have 

the ability to adjust the nominal damping ratio from 0 to 

2. Results show that there is no firm relationship between 

damping ratio and output RMS values, but large damping 

tends to increase body acceleration and jerk so ride 

quality becomes worse. Semi-active control performance is 

much improved for the concrete-slab road model, but 

deteriorated for the rough road model. Performance index 

plot (Figure 24) shows that semi-active control can yield 
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better performance than the passive reference system. When 

the damping ratio of "sky-hook" system is 0.6 or 0.7, the 

performance is slightly better than that of reference 

system. However, much improved performance might be 

expected by selecting proper feedback gains for different 

road input or by following other efficient active control 

systems. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Generally, higher damping reduces the suspension 

deflection and increases body acceleration and body jerk 

regardless of whatever damping scheme is applied. Thus, we 

cannot find a system which improves ride quality and 

reduces the suspension travel amplitude simultaneously. 

The best we can do is to find a good optimal condition 

which both satisfies the workspace limitation and minimizes 

the body acceleration as much as possible. 

In this paper, I considered that a better performance 

yields a smaller cost function value given by equation (6) 

which emphasizes the ride quality. The cost functions are 

calculated for the two typical road inputs, and the 

properly weighted summation of these two cost functions 

yields a combined cost function as written in equation 

(16). The combined cost function divided by that of the 

reference passive system represents the performance index. 

Thus, if the performance index of a system is less than 

unity, the performance is better than that of the reference 

system. 

The study of frequency responses of the passive system 

gives an idea of choosing a damping ratio with which a 
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suspension system could compromise the performance 

criteria; such damping ratio might be 0.3 (refer to Figure 

5,6). This value is confirmed by the performance index 

plot in Figure 7. So I can conclude that the passive 

system of which the damping ratio is 0.3 has the best 

performance for the typical road inputs. 

The performance of asymmetric damping is worse than 

that of the reference system. However, we can see that 

damping on compression motion yields better performance 

than damping on rebound motion (see Figure 11). The 

performance of relative displacement dependent damping is 

not as good as the reference performance, but quite close 

to it when "b" is about 20 (refer to Figure 12). Figure 13 

shows that the cubic damping can improve the performance 

where "B" is from 0.2 to 2.5. The best performance of 

cubic damping system can be achieved at which "B" is about 

0 • 7 • 

Semi-active control which follows the body velocity 

feedback control shows performance improvement at which the 

"skyhook" damping ratio is 0.6 and 0.7 (from Figure 24). 

However, the performance of semi-active system is not 

better than that of cubic damping system. So we can 

conclude that a cubic damping scheme could yield better 

performance with proper parameter choice. 

However, the semi-active system we studied is not the 

best one of semi-active systems. Future study might yield 

better results for semi-active systems if nonlinear control 
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concept is applied to find the control parameters for 

semi-active systems rather than on-off switching to follow 

the objective active control. Also, we see the advantages 

of cubic damping scheme, so studies should be extended to 

cubic damping characteristics and its implementation. 

Another beneficial research is to study a system which can 

exert force to sprung mass·only or unsprung mass only or to 

both. This system has some hard nonlinearity like 

"backlash" or "threshold" so it is not easy to analyze, but 

it could improve ride quality without any violation of 

workspace limitation. 
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TABLE 1 

NUMERICALLY STABLE STEPSIZE FOR RUNGE-KUTTA 

zeta 

0.1 
0.25 
0.5 
0.75 
1.0 
1. 05 
1.1 
1.2 
1.3 
1.4 
1.5 
1.75 
2.0 
2.5 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

10.0 
15.0 
20.0 

stable 

0.04 
0.04 
0.04 
0.04 
0.04 
0.03 
0.025 
0.02 
0.02 
0.015 
0.015 
0.01 
0.01 
0.008 
0.006 
0.004 
0.004 
0.003 
0.003 
0.002 
0.002 
0.001 
0.001 

unstable 

0.045 
0.045 
0.045 
0.045 
0.045 
0.035 
0.03 
0.025 
0.025 
0.02 
0.02 
0.015 
0.015 
0.01 
0.008 
0.006 
0.006 
0.004 
0.004 
0.003 
0.003 
0.002 
0.002 
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TABLE 2 

PASSIVE SYSTEM RMS RESPONSE OF SAW-TOOTH ROAD 

zeta workspace acceleration jerk 

0.000 6.1082E-03 4.0033E-01 2.3939E+01 
0.100 3.0244E-03 3.3769E-01 2.0843E+01 
0.200 2.3220E-03 3.9026E-01 2.4066E+01 
0.300 2.0852E-03 4.5122E-01 2.7352E+01 
0.400 1. 9665E-03 5.1260E-01 3.0313E+01 
0.500 1.8904E-03 5.7162E-01 3.2905E+Ol 
0.600 1. 8345E-03 6.2760E-01 3.5163E+01 
0.700 1.7905E-03 6.8070E-01 3.7136E+Ol 
0.800 1. 7546E-03 7.3138E-01 3.8872E+01 
0.900 1.7247E-03 7.8020E-01 4.0415E+Ol 
1. 000 1.6994E-03 8.2763E-01 4.1807E+01 
1.100 1.6778E-03 8.7409E-01 4.3089E+Ol 
1. 200 1.6590E-03 9.1988E-01 4.4302E+01 
1.300 1. 6426E-03 9.6526E-01 4.5495E+01 
1. 400 1. 6281E-03 1.0105E+OO 4.6725E+01 
1. 500 1.6152E-03 1.0557E+OO 4.8058E+Ol 
1. 600 1.6037E-03 1.1011E+OO 4.9572E+01 
1. 700 1.5935E-03 1.1471E+OO 5.1349E+Ol 
1. 800 1.5845E-03 1.1940E+OO 5.3470E+Ol 
1. 900 1.5772E-03 1.2424E+00 5.6007E+Ol 

NOTE . Vehicle Speed = 80 km/hr 1// . 
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TABLE 3 

PASSIVE SYSTEM RMS RESPONSE OF ROUGH ROAD 

zeta workspace acceleration jerk 

0.000 8.7632E-02 5.8369E+OO 9.0480E+01 
0.100 6.1006E-02 4.3654E+OO 1.1202E+02 
0.200 5.0228E-02 4.1266E+OO 1. 4401E+02 
0.300 4.1406E-02 3.9941E+OO 1.6289E+02 
0.400 3.4930E-02 3.9957E+OO 1.7601E+02 
0.500 3.0228E-02 4.0967E+OO 1.8627E+02 
0.600 2.6740E-02 4.2616E+OO 1.9495E+02 
0.700 2.4073E-02 4.4659E+OO 2.0274E+02 
0.800 2.1969E-02 4.6932E+OO 2.0995E+02 
0.900 2.0264E-02 4.9324E+OO 2.1677E+02 
1. 000 1.8849E-02 5.1761E+OO 2.2326E+02 
1.100 1.7651E-02 5.4188E+OO 2.2945E+02 
1.200 1.6619E-02 5.6569E+OO 2.3532E+02 
1. 300 1.5720E-02 5.8876E+OO 2.4088E+02 
1. 400 1.4926E-02 6.1094E+OO 2.4611E+02 
1. 500 1.4219E-02 6.3209E+OO 2.5102E+02 
1. 600 1. 3585E-02 6.5218E+OO 2.5563E+02 
1.700 1.3015E-02 6.7120E+OO 2.6000E+02 
1. 800 1. 2501E-02 6.8927E+OO 2.6429E+02 
1.900 1.2041E-02 7.0669E+OO 2.6882E+02 

NOTE . Vehicle Speed = 20 km/hr . 
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TABLE 4 

ASYMMETRIC DAMPING SYSTEM RMS RESPONSE 1 

zeta workspace acceleration jerk 

0.000 6.1082E-03 4.0033E-01 2.3939E+01 
0.100 4.7280E-03 3.3087E-01 2.4540E+01 
0.200 4.6639E-03 3.5573E-01 2.9203E+01 
0.300 4.5384E-03 3.8829E-01 3.3475E+Ol 
0.400 4.5340E-03 4.2088E-01 3.6507E+01 
0.500 4.7772E-03 4.5959E-01 4.0035E+01 
0.600 5.1298E-03 4.9944E-01 4.3585E+01 
0.700 5.5077E-03 5.3603E-01 4.6829E+Ol 
0.800 5.8690E-03 5.6960E-01 4.9897E+01 
0.900 6.3013E-03 5.9801E-01 5.2628E+01 
1. 000 6.6930E-03 6.2429E-01 5.5022E+01 
1.100 7.1120E-03 6.4766E-01 5.7306E+01 
1. 200 7.5175E-03 6.6955E-01 5.9436E+01 
1. 300 7.8962E-03 6.9065E-01 6.1412E+Ol 
1. 400 8.1854E-03 7.1351E-01 6.3006E+01 
1. 500 8.4825E-03 7.3515E-01 6.4805E+01 
1. 600 8.8169E-03 7.5491E-01 6.5483E+01 
1. 700 8.9573E-03 7.8699E-01 6.7397E+01 
1. 800 9.1743E-03 8.1453E-01 6.9633E+01 
1. 900 9.1827E-03 8.5815E-01 7.2598E+Ol 

NOTE . Vehicle Speed . = 80 km/hr 
Input Road . saw-tooth Road . 
Cheta is for Compression. 
Rebound cheta is 0. 
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TABLE 5 

ASYMMETRIC DAMPING SYSTEM RMS RESPONSE 2 

zeta workspace acceleration jerk 

0.000 8.7632E-02 5.8369E+OO 9.0480E+Ol 
0.100 7.0569E-02 4.7338E+OO 1. 0574E+02 
0.200 7.0272E-02 4.7415E+OO 1.4371E+02 
0.300 6.9736E-02 4.7433E+OO 1.7042E+02 
0.400 6.8903E-02 4.7399E+OO 2.0553E+02 
0.500 6.7559E-02 4.7028E+00 2.2685E+02 
0.600 6.6233E-02 4.6536E+OO 2.4265E+02 
0.700 6.2534E-02 4.5736E+OO 2.6851E+02 
0.800 6.1510E-02 4.5743E+OO 2.8446E+02 
0.900 5.9746E-02 4.6034E+OO 3.1142E+02 
1. 000 5.8472E-02 4.6200E+OO 3.3041E+02 
1.100 5.9877E-02 4.6572E+OO 3.3294E+02 
1. 200 5.9719E-02 4.6763E+OO 3.4448E+02 
1. 300 6.0066E-02 4.7304E+OO 3.5481E+02 
1. 400 6.2060E-02 4.8349E+OO 3.6240E+02 
1.500 6.4476E-02 4.9285E+00 3.7112E+02 
1. 600 6.6803E-02 5.0565E+00 3.7581E+02 
1. 700 6.9488E-02 5.1673E+00 3.8372E+02 
1. 800 7.2919E-02 5.3541E+OO 3.8745E+02 
1.900 7.5035E-02 5.5724E+OO 3.8860E+02 

NOTE . Vehicle Speed = 20 km/hr . 
Input Road : Rough Road 
Cheta is for Compression. 
Rebound cheta is 0. 
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TABLE 6 

ASYMMETRIC DAMPING SYSTEM RMS RESPONSE 3 

zeta workspace acceleration jerk 

0.000 6.1082E-03 4.0033E-01 2.3939E+01 
0.100 4.5883E-03 3.4731E-01 2.2976E+01 
0.200 4.3525E-03 3.9837E-01 2.7336E+01 
0.300 4.3626E-03 4.5243E-01 3.0525E+01 
0.400 4.2018E-03 5.0278E-01 3.5972E+01 
0.500 4.2273E-03 5.5118E-01 3.9792E+Ol 
0.600 4.2614E-03 5.9478E-01 4.4141E+01 
0.700 4.3613E-03 6.3216E-01 4.8181E+Ol 
0.800 4.5205E-03 6.6491E-01 5.1528E+Ol 
0.900 4.8017E-03 6.9016E-01 5.0941E+01 
1. 000 5.1831E-03 7.1307E-01 4.9609E+01 
1.100 5.6671E-03 7.3611E-01 4.6766E+Ol 
1. 200 6.1817E-03 7.6420E-01 4.4182E+Ol 
1.300 6.5862E-03 7.9547E-01 4.5380E+Ol 
1. 400 6.9936E-03 8.2807E-01 4.6565E+01 
1.500 7.3985E-03 8.6154E-01 4.7959E+Ol 
1. 600 7.7998E-03 8.9424E-01 4.9530E+Ol 
1.700 8.2032E-03 9.2713E-01 5.1235E+Ol 
1. 800 8.5784E-03 9.6107E-01 5.3421E+Ol 
1.900 8.8966E-03 1.0022E+00 5.6221E+01 

NOTE Vehicle Speed = 80 krn/hr 
Input Road . Saw-tooth Road . 
Cheta is for Rebound. 
Compression cheta is 0. 
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TABLE 7 

ASYMMETRIC DAMPING SYSTEM RMS RESPONSE 4 

zeta workspace acceleration jerk 

0.000 8.7632E-02 5.8369E+OO 9.0480E+01 
0.100 6.8648E-02 4.6175E+OO 1.1000E+02 
0.200 6.9355E-02 4.7079E+OO 1. 5686E+02 
0.300 7.1715E-02 4.8514E+OO 1.9310E+02 
0.400 7.2457E-02 4.8690E+OO 2.1327E+02 
0.500 7.2588E-02 4.8287E+OO 2.1834E+02 
0.600 7.1083E-02 4.8420E+OO 2.4945E+02 
0.700 7.1018E-02 4.8389E+OO 2.5397E+02 
0.800 7.1065E-02 4.8595E+OO 2.5986E+02 
0.900 6.9273E-02 4.8824E+OO 2.7320E+02 
1. 000 6.9258E-02 4.9758E+OO 2.8120E+02 
1.100 7.0687E-02 5.0561E+00 2.8117E+02 
1. 200 7.0421E-02 5.1614E+OO 2.9006E+02 
1.300 7.0469E-02 5.2729E+OO 2.9191E+02 
1. 400 7.0545E-02 5.4072E+OO 2.8500E+02 
1.500 7.1132E-02 5.5160E+OO 2.8812E+02 
1. 600 7.0821E-02 5.7130E+OO 2.9908E+02 
1. 700 7.0829E-02 5.8383E+00 3.0378E+02 
1.800 7.1054E-02 5.9788E+OO 3.1103E+02 
1.900 7.1848E-02 6.1325E+OO 3.0874E+02 

NOTE . Vehicle Speed . = 20 km/h:r 
Input Road : Rough Road 
Cheta is for Rebound. 
Compression cheta is 0. 



TABLE 8 

RELATIVE DISPLACEMENT DEPENDENT DAMPING 
RMS RESPONSE OF SAW-TOOTH ROAD 

b workspace acceleration jerk 

0 6.1082E-03 4.0033E-01 2.3939E+Ol 
5 4.8733E-03 3.1211E-01 2.0281E+Ol 

10 4.6325E-03 3.1534E-01 2.3323E+Ol 
15 4.2979E-03 3.2433E-01 2.6094E+Ol 
20 3.9962E-03 3.3642E-01 2.8359E+Ol 
25 3.7503E-03 3.5054E-01 3.0573E+Ol 
30 3.5469E-03 3.6503E-01 3.2519E+Ol 
35 3.3759E-03 3.7896E-01 3.4161E+Ol 
40 3.2322E-03 3.9228E-01 3.5575E+Ol 
45 3.1109E-03 4.0504E-01 3.6868E+Ol 

NOTE Vehicle Speed = 80 km/hr 
b is defined in the paper. 
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TABLE 9 

RELATIVE DISPLACEMENT DEPENDENT DAMPING 
RMS RESPONSE OF ROUGH ROAD 

b workspace acceleration jerk 

0 8.7632E-02 5.8369E+OO 9.0480E+Ol 
5 5.7725E-02 4.6426E+OO 1.7503E+02 

10 4.6631E-02 4.5206E+OO 1. 9388E+02 
15 3.9985E-02 4.5507E+00 2.1128E+02 
20 3.5347E-02 4.6346E+00 2.2604E+02 
25 3.2359E-02 4.7807E+OO 2.3873E+02 
30 3.0011E-02 4.9078E+OO 2.4303E+02 
35 2.8279E-02 5.0660E+OO 2.5565E+02 
40 2.6964E-02 5.2383E+OO 2.7075E+02 
45 2.5666E-02 5.3538E+OO 2.7862E+02 

NOTE Vehicle Speed = 20 km/hr 
b is defined in the paper. 
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TABLE 10 

CUBIC DAMPING RMS RESPONSE OF SAW-TOOTH ROAD 

B workspace acceleration jerk 

0.000 6.1082E-03 4.0033E-01 2.3939E+Ol 
0.100 4.6410E-03 3.1926E-01 1.9421E+01 
0.200 4.3579E-03 3.1790E-01 1.9986E+Ol 
0.300 4.1401E-03 3.2021E-01 2.0725E+Ol 
0.400 3.9630E-03 3.2410E-01 2.1550E+Ol 
0.500 3.8157E-03 3.2890E-01 2.2419E+01 
0.600 3.6910E-03 3.3428E-01 2.3308E+Ol 
0.700 3.5837E-03 3.4003E-01 2.4206E+Ol 
0.800 3.4904E-03 3.4601E-01 2.5104E+Ol 
0.900 3.4082E-03 3.5214E-Ol 2.5999E+Ol 
1. 000 3.3353E-03 3.5835E-01 2.6888E+01 
1.100 3.2702E-03 3.6460E-Ol 2.7771E+01 
1. 200 3.2118E-03 3.7085E-01 2.8646E+01 
1.300 3.1590E-03 3.7710E-01 2.9513E+Ol 
1. 400 3.1112E-03 3.8331E-01 3.0373E+01 
1. 500 3.0678E-03 3.8948E-01 3.1225E+01 
1. 600 3.0282E-03 3.9560E-01 3.2071E+Ol 
1. 700 2.9921E-03 4.0167E-01 3.2909E+01 
1. 800 2.9591E-03 4.0768E-01 3.3740E+Ol 
1. 900 2.9289E-03 4.1363E-01 3.4564E+01 
2.000 2.9012E-03 4.1951E-01 3.5382E+Ol 
2.100 2.8758E-03 4.2533E-01 3.6194E+01 
2.200 2.8525E-03 4.3109E-01 3.7000E+01 
2.300 2.8312E-03 4.3678E-01 3.7800E+01 
2.400 2.8117E-03 4.4241E-01 3.8594E+01 
2.500 2.7937E-03 4.4797E-01 3.9382E+01 
2.600 2.7774E-03 4.5347E-01 4.0165E+Ol 
2.700 2.7624E-03 4.5891E-01 4.0942E+01 
2.800 2.7487E-03 4.6428E-01 4.1713E+01 
2.900 2.7362E-03 4.6959E-01 4.2479E+01 
3.000 2.7248E-03 4.7485E-Ol 4.3240E+Ol 

NOTE Vehicle Speed = 80 km/hr 
B is defined in the paper. 
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TABLE 11 

CUBIC DAMPING RMS RESPONSE OF ROUGH ROAD 

B workspace acceleration jerk 

0.000 8.7632E-02 5.8369E+OO 9.0480E+Ol 
0.100 4.9957E-02 4.1637E+OO 2.0503E+02 
0.200 4.2887E-02 4.0214E+OO 2.3290E+02 
0.300 3.9382E-02 3.9765E+OO 2.4578E+02 
0.400 3.7096E-02 3.9654E+OO 2.5419E+02 
0.500 3.5379E-02 3.9697E+OO 2.6080E+02 
0.600 3.3991E-02 3.9824E+OO 2.6654E+02 
0.700 3.2821E-02 4.0001E+OO 2.7180E+02 
0.800 3.1809E-02 4.0209E+OO 2.7669E+02 
0.900 3.0917E-02 4.0437E+OO 2.8129E+02 
1. 000 3.0120E-02 4.0676E+OO 2.8563E+02 
1.100 2.9401E-02 4.0923E+OO 2.8972E+02 
1. 200 2.8746E-02 4.1174E+OO 2.9360E+02 
1. 300 2.8144E-02 4.1425E+OO 2.9729E+02 
1. 400 2.7588E-02 4.1678E+OO 3.0082E+02 
1. 500 2.7070E-02 4.1929E+OO 3.0422E+02 
1. 600 2.6587E-02 4.2179E+OO 3.0751E+02 
1.700 2.6132E-02 4.2428E+OO 3.1072E+02 
1. 800 2.5704E-02 4.2676E+OO 3.1387E+02 
1.900 2.5298E-02 4.2922E+OO 3.1698E+02 
2.000 2.4911E-02 4.3167E+OO 3.2006E+02 
2.100 2.4543E-02 4.3410E+00 3.2311E+02 
2.200 2.4190E-02 4.3651E+OO 3.2612E+02 
2.300 2.3851E-02 4.3891E+OO 3.2909E+02 
2.400 2.3525E-02 4.4127E+OO 3.3198E+02 
2.500 2.3210E-02 4.4361E+OO 3.3476E+02 
2.600 2.2907E-02 4.4590E+OO 3.3740E+02 
2.700 2.2613E-02 4.4815E+OO 3.3985E+02 
2.800 2.2329E-02 4.5033E+OO 3.4206E+02 
2.900 2.2054E-02 4.5245E+OO 3.4397E+02 
3.000 2.1788E-02 4.5449E+OO 3.4554E+02 

NOTE . Vehicle Speed = 20 km/hr . 
B is defined in the paper. 



TABLE 12 

SEMI-ACTIVE DAMPING RMS RESPONSE 
OF SAW-TOOTH ROAD 

zeta workspace acceleration :Jerk 

0.000 6.1082E-03 4.0033E-01 2.3939E+Ol 
0.100 5.2647E-03 3.4209E-01 2.1562E+01 
0.200 4.9200E-03 3.1744E-01 1. 9930E+01 
0.300 4.9388E-03 3.1939E-01 2.0686E+01 
0.400 4.9443E-03 3.1904E-01 2.0949E+Ol 
0.500 5.0762E-03 3.4518E-01 2.7187E+01 
0.600 4.9248E-03 3.1807E-01 2.2344E+Ol 
0.700 4.9518E-03 3.2620E-01 2.4667E+Ol 
0.800 4.9335E-03 3.1755E-01 2.2325E+Ol 
0.900 4.9713E-03 3.4514E-01 3.0539E+Ol 
1. 000 5.0235E-03 3.5541E-01 3.3362E+Ol 
1.100 5.2746E-03 3.7229E-01 3.8027E+01 
1. 200 5.0728E-03 3.3736E-01 3.0112E+Ol 
1. 300 5.2498E-03 3.7477E-01 3.8945E+01 
1.400 5.2210E-03 3.6215E-01 3.6522E+Ol 
1.500 5.2910E-03 3.6247E-01 3.6890E+Ol 
1. 600 5.1961E-03 3.8263E-01 4.0496E+Ol 
1. 700 5.0972E-03 3.6561E-01 3.7273E+01 
1. 800 5.3584E-03 3.8659E-01 4.3614E+Ol 
1.900 5.2318E-03 3.9821E-01 4.5698E+01 

. NOTE . Vehicle Speed = 80 km/hr . 
Based on body velocity feedback control. 
Cheta is that of "skyhook" damping. 
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zeta 

0.000 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1. 000 
1.100 
1. 200 
1.300 
1. 400 
1. 500 
1. 600 
1. 700 
1. 800 
1. 900 

NOTE 

TABLE 13 

SEMI-ACTIVE DAMPING RMS RESPONSE 
OF ROUGH ROAD 

workspace acceleration jerk 

8.7632E-02 5.8369E+OO 9.0480E+01 
6.4679E-02 4.3869E+OO 1.6201E+02 
6.0711E-02 4.2634E+OO 2.3826E+02 
5.8446E-02 4.1521E+00 2.5300E+02 
5.2052E-02 3.8099E+OO 2.9666E+02 
5.0280E-02 3.9763E+00 3.3926E+02 
4.9515E-02 3.6663E+00 2.9680E+02 
4.7907E-02 3.7357E+OO 2.6457E+02 
4.7896E-02 3.9287E+OO 2.7130E+02 
4.8185E-02 3.9840E+OO 3.0849E+02 
4.8738E-02 3.9115E+OO 2.7884E+02 
5.0541E-02 3.9196E+OO 3.1308E+02 
5.4460E-02 4.1159E+OO 3.9096E+02 
5.5214E-02 4.4283E+OO 4.5618E+02 
5.3625E-02 4.1655E+00 3.9699E+02 
5.5393E-02 4.3579E+OO 4.0983E+02 
5.2538E-02 4.4637E+OO 4.3210E+02 
5.6167E-02 4.0911E+OO 3.5076E+02 
5.3680E-02 3.8802E+OO 3.1260E+02 
5.5941E-02 4.1399E+OO 3.4916E+02 

: Vehicle Speed = 20 km/hr 
Based on body velocity feedback control. 
Cheta is that of "skyhook" damping. 
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Figure 1. Configuration of Concrete-slab Road Model 
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Rough Road Model 
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Figure 2. Configuration of Rough Road Model 
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Figure 3. Passive Suspension Model 
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Figure 4. Stable Stepsizes for Runge-Kutta 
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Passive System Body Acceleration 
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Figure 5. Passive System Frequency Response 
for Body Acceleration 
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Passive System Workspace 
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Passive System 

2r-----------~.------------T1 ------------r-,----------~ 

1.8 

X 

.X 

1.6 

.X 

.· 
1.4 ..:.. 

.X 

X 

1.2 
X 

.X 

.X 

1 -

0.8~----------._·----------~·----------~·~--------~ 
0 0.5 1 1.5 2 

Zeta 
Figure 7. Performance Index for Passive System 
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Passive~ Sawtooth Road 
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Passive, Sawtooth Road 
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x1Q-3 Passive, Sawtooth Road 
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Figure 10. Passive system RMS Workspace Response 
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Asymmetric Damping 
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Figure 11. Performance Index for Asymmetric Damping 
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Cubic Damping 
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Figure 13. Performance. Index for Cubic Damping 



81 

I N"ERT I A L frl20UND -- ---- ... ---
c 

k<: 
... i 

Figure 14. Skyhook Damping Model 



Ct:: 
1-

£ 
..0 
·c;; 

CIJ 

E 
(/] 

c 
0 
L... 

1-

82 

Skyhook Body Acceleration 
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2 Inertial Grounds Acceleration 
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2 Inertial Grounds Acceleration 
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Semi-active System 
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{*********************************************************} 
{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

{ 

Mechanical & Aerospace Engineering 
Oklahoma State University 
Stillwater, OK 74075 

Date : 03/11/91 
Programmed by 

Minsup Lee 

Two Degree-of-Freedom Vehicle suspension Simulation. 

===================================================== 

Procedures 

!.Heading 
2.Analysis_Input: 

3 Property 
4.0DE1 
5.0DE2 

Program Heading 
Input the System Enviornments 
Assign the System Properties 
Ordinary Differential Eqution 1 
Ordinary Differential Eqution 2 

6.SineExcitation: Sinusoidal Excitation 
7.Roughroad 

8.SawTooth 

Roughroad Excitaiton 
sawtooth Type Road Excitation 

9.Damping_Scheme: Damping Scheme Selector 
{ lO.square 

{ ll.RMS 

Squaring variables 

Root-Mean-square Calculator 
calculation Next-step-Values 
Runge-Kutta, etc. Iterator 

{ 12.RungeKutta 
{ 13.RK_Loop 
{ 

{ Note 
{ 

Real time by second can be input. 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

} 

{*********************************************************} 

PROGRAM TwoDOF(infile,outfile); 

CONST 

PI = 3.141592654; 



VAR 

Ten_Per_Decade = 1.258925412; 

NO = 0; 

YES = 1; 
UPPER_LIMIT = 30.0; {Highest interesting frequency 

ratio is 15.} 

infile,outfile : TEXT; 

94 

LIMIT,road,i : INTEGER; 
scheme,frequency_analysis,root_mean_square 

non_linear_scheme,time_response : INTEGER; 
INTEGER; 

FINAL_TIME,max_height : REAL; 

XO,YO,UO,VO,wn,c_cubic,c_tension,c_compression :REAL; 
mass1,mass2,damper,springl,spring2,cheta REAL; 
rms_x,rms_y,rms_z,rms_v,rms_a,rms_j 

freq_ratio,vehicle_speed,kl,k2 
step_size,TR_x,TR_y,TR_z,TR_v,TR_a,TR_j 

REAL; 
REAL; 

REAL; 

{---------------------------------------------------------} 
PROCEDURE Heading; 

VAR 

begin 

end; 

i :INTEGER; 

fori := 1 to 25 do wrlteln(''); 
for 1 := 1 to 57 do write('*');wrlteln('*'); 
write('Two Degree-of-Freedom Vehicle Suspension'); 
writeln('System Simulation'); 

writeln('Programmed by Hinsup Lee.'); 

fori :=1 to 57 do write('*');writeln('*'); 
writeln(' '); 

{---------------------------------------------------------} 



PROCEDURE Analysis_Input; 

VAR 

semi_active,passive,non_llnear,l :INTEGER; 

LOWER_LIMIT : REAL; 
{LIMIT,step_size,scheme,frequency_analysis,road, 

XO,YO,UO,VO:GLOBAL} 

begin 
scheme := 0; non_linear_scheme := 0; 
frequency_analysls := 0; cheta := 0; 

pass 1 ve : = 1; 

non_linear := 2; 

semi_active := 3; 
LOWER_LIMIT := 0.1;{Lowest interesting frequency 

ratio is 0.1} 

writeln(' '); 
writeln('Input the step size. [i.e. 0.011'); 
readln(step_slze); 

writeln('' >; 
writeln('Input the final time [sec]. [i.e. 101'); 
readln(FINAL_TIME); 
writeln(''>; 
writeln('Input initial conditions -XO YO uo VO-.'>; 
readln(XO,YO,UO,VO); 

writeln(''); 

writeln('Do you want the frequency analysis?'); 

writeln('If yes input 1, otherwise 0'); 
readln(frequency_analysis); 

if frequency_analysls = NO then begin 
writeln(''); 

95 
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writeln('Input vehicle speed lkm/hrl. [i.e. 801'); 

readln(vehicle_speed); 

writeln(''); 
writeln('Input road condition.'); 

writeln('1 Sawtooth Shape Road'); 

writeln('2 : Sinusoidal Road'); 

writeln('3 : Rough Road'); 
readln(road); 

while NOT((road = 1) OR (road= 2) OR (road= 3)) 

do begin 

writeln(' '>; 
writeln('Invalid Input!!!'); 

write('INPUT : 1 (sawtooth), 2 (sine)'); 

writeln(' 3 (rough)'); 

readln(road) 

end; 

end; 

if frequency_analysis = YES then begin 

road := 2; 
freq_ratio := LOWER_LIMIT 

end 
else if frequency_analysis = NO then begin 

freq_ratio := LOWER_LIHIT; 

end; 

writeln(''>; 

writeln('Input damping condition.'); 

writeln('1 Passive Control'); 

wr1teln('2 :Nonlinear Damping'>; 

writeln('3 : Semi-Active Control'); 

readln(scheme); 



end; 

if scheme = non_linear then begin 

writeln(' '); 

writeln('l 

writeln( '2 

writeln('3 

Cubic damping'); 

Asymmetric damping'); 
Displacement dependent damping'); 

readln(non_linear_scheme); 

end; 

writeln(''); 
while NOT((scheme=l) OR (scheme=2) OR (scheme=3)) do 
begin 

wr 1 teln ( ' ' ) ; 

writeln('Invalid Input!!!'); 

write( 'INPUT : 1 (passive), 2 (nonlinear), '>; 
wr1teln('3 (semi_active)'); · 

readln(scheme); 

end; 

if scheme = semi_active then begin 

writeln(' '); 

writeln('Input velocity feedback gains.'); 

writeln('For body velocity:'); 

readln(k2); 

writeln('For tire velocity:'); 

readln(kl); 

end; 
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{---------------------------------------------------------} 
PROCEDURE Property; 

{massl,mass2,damper,cheta,springl,spring2,wn:GLOBAL} 

begin 

{1/4 Car Model Parameters used by Hedrick or Thompson} 
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mass1 := 36 {28.58}; 
mass2 := 240 {Hedrick}f288.9:Thompsonl; 

{damper := cheta*3920} 

{980 = damp 0.25,damp 1 = 3920}{1861}; 

spring1 := 160000 {155900}; 

spring2 := 16000 {1960}; 

wn := sqrt(spr1ng2/mass2) 

end; 

{---------------------------------------------------------} 
PROCEDURE ODE1(x,y,vx,vy,m,damper,spr1ng1,spring2,f:REAL; 

VAR ax:REAL); 

{ i.e., y represents the deviation from the static } 

{ equilibrium of the sprung mass, } 

{ x represents samething for the unsprung mass. } 

begin 

end; 

ax := f/m +damper*(vy-vx)/m 

-spring1*x/m +spr1ng2*(y-x)/m 

{---------------------------------------------------------} 
PROCEDURE ODE2(x,y,vx,vy,m,damper,spring1,spring2,f:REAL; 

VAR ay:REAL); 

{ Same coordinates as used in PROCEDURE ODEl 
begin 

{When one degree of freedom is simulated, 
set damper = 0} 

} 
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ay := -damper*(vy-vx)/m -spring2*(y-x)/m 

end; 

{---------------------------------------------------------} 
PROCEDURE SineExcitation(time:REAL; 

CONST 

begin 

VAR roughness,force,vr,ar,jr:REAL); 

phase = PI/2; 

w,f,v : REAL; 

force_amplitude : REAL; 
{springl,wn,freq_ratio,step_size,max_heght:GLOBAL} 

max_height := 0.006;{m} 

force_amplitude := springl*max_height; 

w := wn * freq_ratio; 

roughness := max_height * sin(w*time + phase) 
+ max_height; 

vr := max_height * w * cos(w*time + phase); 
ar := -max_height * w * w * sin(w*time + phase); 
jr := -max_height * w * w * w * cos(w*time + phase); 

force := force_amplitude * sin(w*time + phase); 

end; 

{---------------------------------------------------------} 
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PROCEDURE RoughRoad(time:REAL; 

VAR roughness,force,vr,ar,jr:REAL); 

CONST 

VAR 

wavelength = 5.5556;{m} 
max_height = 0.05;{m} 

w,f,v 
ph_1,ph_2,ph_3,ph_4,ph_5 

force_amplitude 

REAL; 
REAL; 

REAL; 

{spring1,wn,freq_ratio,step_size:GLOBAL} 

begin 

end; 

V ·-.- vehlcle_speed/3.6; 

f := v/wavelength; 

w := 2*PI*f; 
ph_1 := -PI/6; 

ph_2 
ph_3 
ph_4 
ph_5 

. -.-

. -. -

. -.-

. -.-

roughness 

+ 
+ 
+ 

PI/2; 
PI/6; 

-PI/2; 
0; 

. - 2 * max_helght .-
+ max_height 

(1/5) * max_helght 
(1/10) * max_height 

(1/15) * max_helght 

force := roughness * springl; 

* sin(0.5*w*time 

* sin( w*time 

* sin( 5*w*time 
* sin( 10*w*time 

* sin( 15*w*tlme 

+ ph_1) 

+ ph_2) 

+ ph_3) 
+ ph_4) 

+ ph_5); 

{---------------------------------------------------------} 
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PROCEDURE SawTooth(time:REAL; 

VAR roughness,force,vr,ar,jr:REAL); 

CONST 

VAR 

Slab_h = 0.006 {m};{road input} 

wavelength = 6.3 {ml;{road input} 

roadx,h,w,t,f,v : REAL; 

{step_size,springl:GLOBAL} 

begin 

h . - Slab h· . -
- I 

v . - vehicle_speed/3.6; {m/sec} .-
f . - v/wavelength; .-
w ·- 2*PI*f; .-
t := time; 

roadx . - h/2 - h/PI*sin(w*t) .- - h/( 2*PI)*sin( 2*w*t) 

- h/( 3*PI)*sin( 3*w*t) - h/( 4*PI)*sin( 4*w*t) 

- h/( 5*PI)*sin( 5*w*t) - h/( 6*PI)*sin( 6*w*t) 

- h/( 7*PI)*sin( 7*w*t) - h/( 8*PI)*sin( 8*w*t) 

- h/( 9*PI)*sin( 9*w*t) - h/(10*PI)*s1n(10*w*t) 

- h/(ll*PI)*sin(ll*w*t) - h/(12*PI)*sin(12*w*t) 

- h/(13*PI)*sin(13*w*t) - h/(14*PI)*sin(14*w*t) 

- h/(15*PI)*sin(15*w*t) - h/(16*PI)*sin(16*w*t) 

- h/(17*PI)*sin(17*w*t) - h/(18*PI)*sin(18*w*t); 

roughness := roadx; 

force := roughness * springl; 

end; 

{---------------------------------------------------------} 



PROCEDURE Damping_Scheme(vx,vy,vz:REAL); 
v~ 

passlve,non_llnear,semi_active :INTEGER; 

cubic,asymmetric,posltion :INTEGER; 
power,sa_cheta :REAL; 

{freq_ratio,scheme,cheta,damper:GLOBAL} 
begin 
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passive := 1; non_linear := 2; semi_active := 3; 

end; 

cubic := 1; asymmetric := 2; position := 3; 

if scheme = non_linear then begin 

if non_llnear_scheme = cubic then 

cheta := c_cubic*vz*vz; 

if non_linear_scheme = asymmetric then 

end; 

1£ vz <= 0 then cheta := c_compresslon 

else cheta := c_tension; 

1£ scheme = semi_active then begin 
power := vy*vz; 

if power = 0 then cheta := 0 
else sa_cheta := k2*vy/vz; 

if power > 0 then cheta := sa_cheta 

else if power < 0 then cheta := 0; 

if cheta < 0 then cheta := 0 

else if cheta > 2 then cheta := 2; 
end; 

damper := cheta*3920; 

{---------------------------------------------------------} 
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PROCEDURE Square(step_size,x,y,z,vy,ay,jy:REAL; 
VAR sq_x,sq_y,sq_z,sq_v,sq_a,sq_j:REAL); 

{step_size:GLOBAL} 

begin 

sq_x := x*x * step_size; 
sq_y . -.- y*y * step_size; 
sq_z . - z*z * step_size; .-
sq_v . - vy*vy * step_size; .-
sq_a . - ay*ay * step_size; .-
sq_j . - jy*jy * step_size . -

end; 

{---------------------------------------------------------} 
PROCEDURE RHS(sum_of_square, 

flnal_tlme,start_time : REAL; 
VAR root_mean_square : REAL); 

VAR 

begin 

end; 

t,tO REAL; 

tO := start_time; 
t := flnal_time; 

root_mean_square := sqrt(sum_of_square/(t-tO)); 

{---------------------------------------------------------} 



PROCEDURE RungeKutta(time,d,x,y,vx,vy,ay:REAL; 

VAR 

VAR xn,yn,zn,vxn,vyn,ayn,jyn,vzn, 

roughness,vr,ar,jr:REAL); 

dx,dy 
dvx,dvy 
old_ay 

:REAL; 
:REAL; 
:REAL; 

nl,n2,n3,n4,pl,p2,p3,p4 
11,12,13,14,ql,q2,q3,q4 

fxl,fx2,fx3,fx4,fyl,fy2,fy3,fy4 

force 

:REAL; 
:REAL; 

:REAL; 

:REAL; 

{road,massl,mass2,springl,spring2,damper:GLOBAL} 

begin 

if road = 1 then 
SawTooth(time,roughness,force,vr,ar,jr) 

else if :road = 2 then 
SineExcitation(time,roughness,force,vr,ar,jr) 

else if :road = 3 then 
Roughroad(tlme,roughness,force,vr,ar,jr); 

old _ay . - ay; .-

nl ·-.- x; 
11 . -.- vx; 
pl . - y; .-
ql . - vy; .-

ODEl(nl,pl,ll,ql,massl,damper,sp:ringl,spring2, 

force,fxl); 

ODE2(nl,pl,ll,ql,mass2,dampe:r,sp:ringl,sp:ring2, 

force,fyl); 
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n2 . -. - X + ll*d/2;; 

12 . - vx + fx1*d/2; .-
p2 . - y + ql*d/2; .-
q2 . -.- vy + fy1*d/2; 
ODE1(n2,p2,12,q2,massl,damper,spring1,spring2, 

force,fx2); 

ODE2(n2,p2,12,q2,mass2,damper,spring1,spring2, 

force,fy2); 

n3 . - X + 12*d/2;; .-
13 . - vx + fx2*d/2; .-
p3 . - y + q2*d/2; .-
q3 . - vy + fy2*d/2; . -
ODE1(n3,p3,13,q3,massl,damper,springl,spring2, 

force,fx3); 

ODE2(n3,p3,13,q3,mass2,damper,springl,spring2, 
force,fy3); 

n4 . - X + 13*d;; .-
14 . - vx + fx3*d; .-
p4 ·- y + q3*d; .-
q4 ·- vy + fy3*d; .-
ODE1(n4,p4,14,q4,massl,damper,springl,spring2, 

force,fx4); 

ODE2(n4,p4,14,q4,mass2,damper,springl,spring2, 
force,fy4); 

dx ·-.- (11 + 2*12 + 2*13 + 14)/6.0*d; 
dy . - (ql + 2*q2 + 2*q3 + q4)/6.0*d; .-
dvx . - (fxl + 2*£x2 + 2*£x3 + £x4)/6.0*d; .-
dvy . - (fyl + 2*fy2 + 2*fy3 + fy4)/6.0*d; .-

xn . - X + dx; .-
yn . - y + dy; .-
zn := yn - xn; 
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end; 

vxn := vx + dvx; 
vyn := vy + dvy; 
vzn := vyn - vxn; 

ayn := (fyl + 2*fy2 + 2*fy3 + fy4)/6.0; 

106 

{ayn := dvy/d; gives same results as above line} 
jyn := (ayn-old_ay)/d; 

{---------------------------------------------------------} 
PROCEDURE RK_Loop(VAR rms_x,rms_y,rms_z,rms_v,rms_a,rms_j, 

VAR 

begin 

TR_x,TR_y,TR_z,TR_v,TR_a,TR_j :REAL); 

x,y,z REAL; 
vx,vy,vz REAL; 

ax,ay REAL; 
jy REAL; 
time,d,w REAL; 
vr,ar,jr REAL; 

sq_x,sq_y,sq_z,sq_v,sq_a,sq_j 

sumx,sumy,sumj,sumz,sumv,suma 

roughness 
skip, YET 

STEADY,START_TIHE 

REAL; 

REAL; 

REAL; 
INTEGER; 

: REAL; 

{step_size,LIHIT,freq_ratlo,wn,cheta:GLOBALl 

YET := 0; {skip lines} 

skip := YET; 
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d := step_size; 
STEADY := 2.0; 

X := XO; y := YO; vx := UO; vy := VO; 

z := O; ay:= 0; jy :=0; vz := vy-vx; 

time:= 0; 

sq_x:=O; sq_y:=O; sq_z:=O; sq_v:=O; sq_a:=O; sq_j:=O; 
sumx:=O; sumy:=O; sumz:=O; sumv:=O; suma:=O; sumj:=O; 
rms_x:=O;rms_y:=O;rms_z:=O;rms_v:=O;rms_a:=O;rms_j:=O; 

w := wn * freq_ratio; 

while time <= (FINAL_TIME -step_size) do begin 

Damping_Scheme(vx,vy,vz); 

RungeKutta(time,d,x,y,vx,vy,ay, 

x,y,z,vx,vy,ay,jy,vz,roughness,vr,ar,jr); 

time := time + d; 
if (time<STEADY+step_size) and (time>=STEADY) then 

START_TIME := time; 

if (time_response=Yes) AND (time>=STEADY) 
then 
writeln(time:6:3,' ',x:ll,' ',y:ll, 

' ',z:ll,' ',vy:ll,' ',ay:ll,' ',jy:ll); 

if (time>=STEADY) then 

skip := skip + 1; 

if time >= STEADY then begin 

Square(d,x,y,z,vy,ay,jy, 
sq_x,sq_y,sq_z,sq_v,sq_a,sq_j); 



end; 

sumx . - sumx + sq_x; .-
sumy ·- sumy + sq_y; .-
sumz . - sumz + sq_z; .-
sumv . - sumv + sq_v; .-
suma . - suma + sq_a; . -
sumj ·-.- sumj + sq_j 

end; 

end; 
FINAL_TIME := time; 

RHS(sumx,FINAL_TIME,START_TIHE,rms_x); 

RHS(sumy,FINAL_TIHE,START_TIHE,rms_y); 

RHS(sumz,FINAL_TIHE,START_TIHE,rms_z); 

RHS(sumv,FINAL_TIHE,START_TIHE,rms_v); 

RHS(suma,FINAL_TIHE,START_TIME,rms_a); 

RHS(sumj,FINAL_TIHE,START_TIHE,rms_j); 

if frequency_analysis = YES then begin 

{Input : the velocity of road roughness} 

TR _x . - rms_x/(max_height*w/sqrt(2)); .-
TR_y . - rms_y/(max_height*w/sqrt(2)); . -
TR z . - rms_z/(max_height*w/sqrt(2)); - .-
TR_v . - rms_v/(max_height*w/sqrt(2)); .-
TR_a . - rms_a/(max_height*w/sqrt(2)); . -
TR_j . - rms_j/(max_he1ght*w/sqrt(2)); .-

wrlteln(outflle,' ',freg_ratlo:5:2,' , 
TR_x:6:3,' ',TR_y:6:3,' ',TR_z:6:3,' 

TR_v:6:3,' ',TR_a:6:3,' ',TR_j:6:3); 

end; 
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, 

{---------------------------------------------------------} 



begin 

assign(outfile,'fout.out'); 
rewr1te(outf1le); 

Heading; 
Analysls_Input; 

writeln(' '>; 

if scheme = 1 then begin 
writeln('Input cheta.'); 

readln(cheta); 

end 

else if scheme = 2 then begin 
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if non_linear_scheme = 1 then begin 

writeln('Input cheta for cubic damping.'); 
readln(c_cubic) 

end; 

end 

else if non_linear_scheme = 2 then begin 
writeln('Input cheta for compression.'); 
readln(c_compression); 

end 

writeln('Input cheta for tension.'); 
readln(c_tension); 

writeln(''); 
writeln('Do you want RMS values?'); 
writeln('Input 1 for yes, 0 for no.'); 

readln(root_mean_square); 

writeln; 

writeln('Do you want time responses?'); 
writeln('Input 1 for yes, 0 for no.'); 
readln(time_response); 



end. 

fori := 1 to 25 do writeln(''); 
wr i teln (' Calculation is started.'); 

write(' Results will be stored in the file'); 

wrlteln(' named "fout."'>; 

while freq_ratio <= UPPER_LIMIT do begin 

Property; 
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RK_Loop(rms_x,rms_y,rms_z,rms_v,rms_a,rms_j, 
TR_x,TR_y,TR_z,TR_v,TR_a,TR_j); 

if (root_mean_square = YES) 

then 

wrlteln(outflle,rms_z:ll,' ',rms_a:ll, 

' ' , r ms _j : 11 ) ; 

if frequency_analysis = YES then 

freq_ratio := freq_ratio * Ten_Per_Decade 
else if frequency_analysis = NO then 

freq_ratio := UPPER_LIMIT+1; 

end; 
close(outfile); 
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