
A TOOL TO AUTOMATE SOFTWARE PROJECT
'Ji.

ESTIMATION FROM A PROJECT

MANAGEMENT PERSPECTIVE

By

GOPAL N. KULKARNI
If

Bachelor of Engineering

Karnatak University

Dharwad, India

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
December, 1991

A TOOL TO AUTOMATE SOFTWARE PROJECT

ESTIMATION FROM A PROJECT

MANAGEMENT PERSPECTIVE

Thesis Approved:

Thesis Adviser

d~)

Dean of the Graduate College

li

Olda!uJII"JJJ St;;t(f; lh;iv. lihrary

ACKNOWLEDGEMENTS

I profoundly thank my graduate advisor Dr. David Miller

for his unstinted help and guidance. His constructive

criticism helped me in gaining confidence during my graduate

program. My sincere thanks to Drs. G. E. Hedrick and J. P.

Chandler for serving on my graduate committee. Their

suggestions and support were very helpful throughout the

study. I thank Dr. M.Samadzadeh, for the help given to me

in my thesis.

I would like to express my gratitude to Learmonth &

Burchett Management Systems, Inc., for sponsoring this

project in part. In particular, I offer my thanks to Mr.

John Bantleman, Mr. Rick Plezcko and Mr. David Hsieh for

their help. My special thanks are extended to Mr.Sridhar

Chandrashekar and Mr. Manohar Rao for helping me in

everything, from designing to debugging. I thank my wife

Mrs. Shubhadaini Joshi for being so understanding and

cooperative.

I will be failing ln my duty if I did not express my

gratitude to my father Sri. Narayanrao, llV mother Sow.

Laxmibai, and my brother Raghvendra without whose support,

and sacrifice my higher education would not be possible.

ui

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Project Estimation

Project Estimation Tools

Computer-Aided Project Engineering

Statement of the Problem.

Objectives of the Study .

II. CONCEPTS USED IN THE ESTIMATOR .

Introduction . . .

Estimating Models.

. 4

. 7
. 7

8

10

. . . .12

. . 12

. 12

Saved Estimates. 16

Global and Local Values 17

The Project Database.. .18

The Metamodel.19

Database Models 20

The OPRR Model. 21

The User Interface

Estimating Model Templates

III. DESIGN AND IMPLEMENTATION .

Introduction

Design Evolution . . .

Implementation of the Concepts

Implementation of the Database

Estimating Models Implementation

The User Interface Implementation

The Software Architecture

Meta Schema Implementation

22

23

26

.26

.26

.28

.28

.33

34

. 35

• • 3 6

The In-Memory Data Structure 41

IV

Chapter Page

WBS Activity Record 43

Formula Record 44

Factor Record 46

The ESTIMATOR Computation Engine .47

The Formula Editor 49

The Factor Editor51

IV. FEATURES OF THE ESTIMATOR' 54

Introduction 54

How to use ESTIMATOR56

V. CONCLUSIONS AND FUTURE WORK.

Conclusions

Future Work

SELECTED BIBLIOGRAPHY .

v

.59

. . . . 59

. . . . 60

. . . . 61

LIST OF FIGURES

Figure Page

1. DFD Example 14

2. DFD Effort Estimation 15

3. Estimator Data Model 29

4. Meta Schema of Saved Estimate. 30

5 .

6.

7.

8.

Meta Schema of Formula Object ..

Database Retrieval Algorithm

In-memory Data Structure

WBS Record Structure

9. Formula Record Stucture

10. Factor Record Structure

11. Formula Editor .

• • • 3 0

32

41

. 44

. 45

. 46

50

12. Factor Editor 53

13. WBS List Window 55

14. Factors List Window 56

vi

NOMENCLATURE

CASE. Computer-Aided Software Engineering.

CAPE. Computer-Aided Project En9ineering.

Direct Manipulation. The use of a pointing device to perform
actions on objects.

Double-Click. To press and release a mouse button within a
user-defined time limit without moving the mouse pointer off
the choice [IBM SAA/CUA Guide, 1990].

Entity. Is a component of the system that can be identified
distinctly. Entities are classified into entity types. Each
type represents a group of components which share similar
characteristics and perform similar functions in the system
[OPRR API 1991] .

Estimating Formula. To estimate resources at any level in
the WBS, a formula is used. This formula mixes and matches
various estimating factors involved for that activity.

Estimating Factor. Is a quantitative expression of
considerations given 1n the process of estimation.

Estimating Model. It is a mathematical description of
aestimating method applied to a particular project. It 1s
expressed as a set of formulas.

Function Point. A measure of complexity of what is to be
delivered in a project.

Icon. A pictorial representation of an object or a
selection choice. Icons can represent objects that users
want to work on, or actions that users want to perform.

Iconised. An Object stored or represented as an icon.

Menu. A component of a dialog designing consisting of a
screen which can display options and receive control input.

Multiple Document Interface. An interface style that allows
users to view many objects at the same time or the same
object many times within one primary window [IBM SAA/CUA
Guide, 90].

VIi

CHAPTER I

INTRODUCTION

1 ,, An estimate is a prediction "based on a
I
I

probabilistic model, not a deterministic one--that is, the

quantity being estimated can take not just one value but

several values, with some more likely to be more correct

than others" [Burrill and Ellsworth, 1980]. Software

estimation involves estimation of effort, time, cost,

personnel, etc.

Software Engineering encompasses a variety of technical

methods, a set of management procedures, and a suite of

automated tools (often called CASE - Computer-Aided Software

Engineering) that enhance our ability to build effective

computer-based systems [Pressman, 1988]. A project goes

through several stages referred to as the software

development life cycle. The partitioning of the project

into several small modules is referred to as a Work

Breakdown Structure (WBS) . An estimate is characterized by

the following information [Donald Reifer, 1991]:

1) Statement of Work: An identification of the tasks to

be performed as part of the development process (WBS).

2) End Product List: A list of the products to be

1

generated and their format (Deliverables)

3) Risk Assessment: An identification of the risk

factors along with their relative impact on cost and

schedule (risk Analysis)

2

4) Definitions: An explanation of the key terms used in

the estimate (number of sourcelines of code, staff­

month of effort, etc.).

5) Assumptions: A list of any primary assumptions upon

which the estimate is based (productivity assumptions).

6) Schedule : An identification of any schedule

constraints (task dependencies) .

7) Estimated Resources: A prediction of what resources

are needed to complete the job as enumerated above.

A tool can produce an estimate with the above

characteristics if it is an integral part of a set of tools

that perform wide ranging tasks like Life Cycle Building,

Risk Analysis, Scheduling, etc. LBMS Inc., of Houston is

developing such an integrated set of PC based tools known as

Project Engineer. Project Engineer is designed to perform

all aspects of project management like Life Cycle Building,

Estimating, Resource Management etc. The Estimator module

is one of the tools provided by the Project Engineer. The

Estimator tool is the topic of this study and henceforth

will be referred to as the ProjectEngineerESTIMATOR. The

Project Engineer ESTIMATOR is sponsored and funded by LBMS

Inc., of Houston. The tool is being developed as a part of

this study. The term "estimate" or "estimates", 1s used in

a generic sense for cost, time, and effort. The following

paragraphs explain some problems associated with estimation

methods [Function Point Analysis with LSDM, 1988].

It is often reported that many software development

projects are completed late and over budget. Accepting this

statement as premise, there are two conclusions which are

commonly drawn from it. Some argue that it means that many

software development projects are done badly; others

maintain that the estimation techniques used during

development projects are thereby shown to be inadequate.

3

Adopting the middle ground, it is clear that there is

some truth in both of these possibilities. What is very much

needed is a way of disentangling the two issues. If a

reliable, standard way of estimating resource requirements

were available, then it would be possible to determine which

projects were really using more resources than necessary,

and for allocating appropriate amounts of resources in the

future.

Estimating is intimately connected with productivity

measurement. It is only possible to estimate future

requirements if one or more objective, reasonably accurate

ways of measuring present productivity are available. In

addition productivity measurement is also a means to other

ends than providing the basis for more accurate estimates.

A very high priority final objective is productivity

improvement. Broadly, this may be achieved by isolating

4

those factors which contribute positively or negatively to

productivity and promoting or eradicating them. Identifying

such factors is virtually impossible without objective

productivity measurement methods.

In the section on Project Estimation some popular

estimating methods are delineated. Object based estimation

is the most common method used in practice. The object

based estimation method has been chosen as the method of

estimation for the implementation in the ESTIMATOR.

Project Estimation

A project estimation provides an objective basis for

projecting the amount of effort required to carry out

Systems Engineering tasks. The estimating process should

allow estimating model verification, and subsequent tuning,

in order to compare actuals against planned values via an

appropriate control model [LBMS Estimating Guidelines,

1989].

There are many estimating models and methods. Choice

of models depends on the application, and the choice of

method depends on the access to history files, management

preferences, and on the company culture. The following is

an overview of estimating methods:

1) Object Based: Estimates are developed by breaking down

the job into detailed tasks and then having those who will

do the work predict the time and effort involved. Costs are

5

then summed to obtain the total estimate at the project

level and at any intermediate level. Object based

estimation is based on the premise that the effort required

to produce a deliverable is the sum of the effort associated

with each of the deliverable's objects. An example is given

in Figure 1. page 14. which is a diagram consisting of

rectangular boxes joined by lines. The drawing of the

diagram illustrates the task of describing a required data

model which, is a deliverable. The more boxes and lines on

the diagram, the greater the effort required to create and

describe the diagram, as shown in Figure 2. page 15.

2) Function Point Analysis: Function points are used to

measure system size as a component of productivity

measurement [Zells, 1990]. The process starts at a point

when a comfortable amount of analysis and design has been

completed. The estimators classify and count raw function

points. For each transaction cataloged for a system, for

I/0 fields and for entities referenced, are identified and

given a number of points. Since each such item is called a

function in this context, these points are called function

points. They are summed for each transaction as a measure

of its "size", and an estimate of the "size" of the complete

system is then obtained by adding together the points
I

contributed by all transactions. By comparing the resources

taken, or being taken, to develop "size", an objective

measurement of productivity can be obtained for the

development of the system. Moreover, an estimate of the

resources required for the development can be obtained by

performing the same analysis before commencement [Function

Point Analysis with LSDM, 1988] .

3) Mathematical Models: Estimates are developed using

mathematical models which vary estimates as a function of

several parameters (such as number of source lines of code

etc.). Again, estimates can be made at any level of the

work breakdown hierarchy using this approach.

4) Expert Judgment: Software engineering consultants, based

on their experience, predict estimates for projects. The

accuracy of the estimate depends solely on the expertise of

the consultant, so estimates are developed by different

people using different approaches. Consensus can then be

reached as these estimates are refined for each project to

arrive at final estimates.

The Object-based estimation method is the most popular

method. In this study only the object-based estimation is

implemented. The Function-point method is proposed to be

implemented in the next version of the ESTIMATOR.

6

Project Estimation Tools

Several project estimation tools exist in the

marketplace, but most of these tools only perform

spreadsheet like calculations with some scheduling

activities. They assume that estimation is done off-line.

Existing tools are inflexible and do not allow tuning of

estimating models. Most of the tools do not have a windows

style graphical user interface (GUI). Above all, these

tools do not allow different estimating model templates to

be manipulated and saved for future use.

While planning is essential, it does not, by itself,

7

produce technical deliverables. Project Management Tools

(including estimating tools) do not aid the project manager

in all the activities of project estimation and planning.

There is a need for an estimating tool that helps the

Project Manager in managing the process of estimation at all

phases of a software life cycle.

Computer-Aided Project Engineering

There are two aspects to a software project: techniques

and planning [Hsieh, 90]. While the techniques help in

implementing the project, planning aids in designing the

project to be properly conceived and executed. As mentioned

in the previous section, there are several tools to automate

the techniques part (in particular the CASE tools that

support the Programmer/Analyst/Designer). However, the

planning and management aspects, along with the automation

of software methodologies, usually are not satisfactorily

supported by existing tools.

8

While CASE tools automate the production of technical

deliverables, CAPE tools automate the production of planning

deliverables. Delivery of planning deliverables usually is

accomplished manually by project managers, which makes

manipulation and maintenance cumbersome. A tool to perform

these management aspects could increase the productivity of

the project manager, while providing a proper foundation for

the project from the start. Currently, support for the

Project Manager is limited. The ESTIMATOR is part of an

integrated set of CAPE tools.

Statement of the Problem

Many software projects overrun their estimated cost and

schedule, and do not meet the expected quality standards.

Few projects are completed within reasonable limits of the

original estimates. Such overruns are due to poor

estimation by software developers and managers. So what is

the cause of inaccurate estimates, and how can the error be

reduced?

To begin, competent estimators, based on their sheer

experience and expertise, often get promoted to positions

where their skill is no longer required. Then, newly

9

selected estimators rarely find adequate procedures or

skilled consultants from whom they can learn. This is

compounded by the fact that there is rarely a project

history file available for reference. Furthermore, 1n

organizations where there is a generally inadequate

understanding of the planning process and its value, lack of

commitment for time and resources also affect estimation

results. A project management software which at least

provides a foundation for such a database is needed [Zells,

1990].

As mentioned abov.e there are two aspects to the

successful completion of a software project: techniques and

planning, and there are several tools to automate the

techniques part, in particular, the CASE tools which support

the Programmer/Analyst/Designer. However, the automation of

methodologies, along with planning and management aspects,

usually are not supported in a satisfactory way. This is

usually accomplished manually by project managers, which

makes manipulation and maintenance cumbersome. A tool to

perform these management aspects could increase the

productivity of the project manager, while providing a

proper foundation for the project right from the start.

There are stand-alone tools that allow the user to perform

project estimation. Currently, support for the Project

Manager is limited to such single-purpose tools. There

exists a need for an integrated set of tools with the

capability of providing project management support.

10

Estimation is a crucial aspect of project management,

yet most project management software gives little

recognition for this need. Each project can have several

estimating models each of which must be tuned according to

software project needs and must be customized. When

managers try to estimate a project without being able to

reference an internal corporate estimating history file, a

methodology checklist, or even a book, they may end up

making inaccurate estimates. Unless they have some pre­

existing models or templates of project estimates, this

first step may be very difficult initially. In other words,

an existing estimating model helps in this first and most

important step [Zells, 1990].

Objectives of the Study

The objective of this study is to design, implement,

and test a Computer-Aided Project Engineering (CAPE) tool

for automating and maintaining software estimation from a

project management perspective. The CAPE estimating tool

enables the user to load and manipulate estimating models

and templates, view the estimates from various perspectives,

as well as providing on-line method help (hyper-media

based), and an export link to scheduler packages. The

emphasis is given to the design of the user-interface

component of this tool, keeping in mind the IBM SAA/CUA

standard [IBM SAA/CUA standards, 1990]. The tool being

11

developed is called Project Engineer ESTIMATOR.

The ESTIMATOR is designed to be generic in

functionality, i.e., it is independent of the estimation

model. ESTIMATOR enables the user to save both models and

estimates with all the relevant planning and management

information for future use as estimation templates. The

ESTIMATOR uses Multiple Document Interface (MDI) child

windows to display information to the.user from different

perspectives. Concisely, Project Engineer ESTIMATOR is

designed to support a wide range of estimating process

management activities in a modular and integrated fashion

and provide a good user interface. Function-point analysis

is not supported currently, but the next enhancement will

have function-point analysis capability. At present only

the object based estimation method is supported.

CHAPTER II

CONCEPTS USED IN ESTIMATOR

Introduction

The purposes of this project are; a) to provide a

better way to enhance the accessibility of estimating

methods, b) to provide a way to tune an estimating model, c)

to automate the work of the Project Manager, and d) to

provide a consistent user-friendly (GUI) front end. The

following sub sections explain the concepts used to realize

the above mentioned purpose.

Estimating Models

Each activity in the WBS is associated with an

estimated value. This value is calculated using a formula

connected to each activity. These formulas determine the

appropriate objects (estimating factors) for each task and

the unitary effort required for each object. An estimating

model is defined by a set of estimating formulas. Each

component of a formula is called an estimating factor or

object. Some factors are in turn derived by another formula

12

13

known as the derivation formula which, in turn consists of

factors.

The user is presented with a set of questions from

which to provide the number of objects that are the basis

for calculating all the deliverables required for a

particular project. Some of these nuroRers may be known. If

the diagram in Figure 1. page 14. exists, then the user can

count the number of objects represented by boxes and lines.

The type of objects that have known values vary according to

the current stage of the project. For example, if the

project is in the Construction and Testing stage, the

number of programs (an object) is known. However, when the

project is in the Project Initiation stage, the number of

programs has to be calculated.Given below is an example of

an estimating model for a part of WBS for the Analysis

Stage, of which only one Step is expanded.

AN- Analysis Stage (Stage) Value= 10.9
AN.ANl- System ~nvestigation (Step) ... Value= 6.9

AN.ANl.lO - Investigate the Current Data
Architecture (Task) Value= 5.4

AN.AN1.20 - Describe the Required Data Model
(Task) Value= 1.5

AN.AN2- Non System Investigation (Step) .. Value= 4

etc ...

Formula for task AN.ANl.lO is (Bl+B2) * 0.9, (Value = 5.4)

where Bl 1s the number of separate files

(value=4)

B2 is the number of number of users

(Value = 2)

0.9 is the adjustment factor.

Formula for task AN.AN1.20 is (A1+B0) * 0.1, (Value = 1.5)

where A1 is the number of entities (boxes)

(Value = 10)

B2 is the number of relationships (lines)

(Value = 5)

0.1 is ten per effort day.

STAGE: AN ANALYSIS

STEP: 4 REQUIRED SYSTEM

TASK: .40 DESCRIBE THE REQUIRED DATA MODEL

Figure 1. DFD example

14

15

r
""'

UNITARY
EFFORTS

(NUMBER OF ENTITIES (BOXES))

.. X 0.10

(NUMBER OF RElATIONSHIPS (LINES)) I
10 PER
EFFORT DAY

'- ..,;

Figure 2. DFD effort estimation

Note that only the tasks have formulas associated with

them, because the level of estimation is fixed at the task

level. The sum of estimates at the task levels becomes the

estimate for the step level. Similarly the stage estimates

are computed from step level estimates. Finally, the

project totals are obtained from the stages.

In later versions of ESTIMATOR, it is proposed that

estimation at different levels 1n the WBS hierarchy be

allowed. The estimation level is a property of the

estimating model. The user can select only one level of

estimation for a model. If varying estimation levels are

allowed, the way project totals are calculated is different.

In such a case, formulas are allowed only at the level at

which the estimation is allowed. Level restriction means

that user can manipulate formulas for only those

16

activities in the WBS hierarchy which are at the estimation

level defined in the model. All the activities at a level

lower than the estimation level obtain estimation values

which are apportioned from the next higher level according

to an apportionment formula. The apportionment formula is

simply a percentage value. So the sum of all the

apportioned values at levels lower than the estimation level

is equal to one hundred percent, i.e., equal to the value

for the activity at the estimation level. To calculate the

estimates for all the activities which are at a level higher

than the estimation level, the values at the estimation

level are summed up in a bottom-up manner just like in the

fixed task level estimation.

Saved Estimates

Each formula/factor can have several values. A set of

formula/factor values, across an estimating model,

constitutes a "saved estimate". Therefore an estimating

model can have several saved estimates. The concept of a

"saved estimate" allows the tool to have a "what if"

capability. The user can assign different values to

estimation factors within the same model, perform a

calculation and see if the estimates generated are

acceptable. The user can save the generated estimates for

later comparisons against other estimates saved previously.

The attributes associated with the object "saved estimate"

are save date, name of the estimate and the name of the

person saving the estimate. The user can view these

estimates from different perspectives.

17

There are four categories of estimating factors. They

are as follows:

1) Override - Manually entered by the user.

2) Derived - Calculated from a derivation formula.

3) Other - Factor value read from other CASE tools.

4) Default - A default value is provided with a model.

The above values are used in a hierarchical order by

the ESTIMATOR. The Override value has the highest

precedence following the order in which the other value

categories are delineated above. At least one value

category must be defined and only one of the above

categories is used in estimation. The user is allowed to

select the category of value to be used in calculations.

The derived value exists whenever a factor has a derivation

value.

Global and Local Values

Each estimating factor has a value assigned to itself.

A factor value can be of two types: Global and Local. Each

factor has a mandatory global value. The global value of a

factor is used by default in a formula calculation. But

there may be situations where it is necessary to use a value

other than the global value in a particular formula

calculation. In such situations, a factor is allowed to

have a value that is local to that particular formula.

The concept of local and global values for a factor

gives the user added functionality, and flexibility in

calculating estimates.

The Project Database

18

CASE tools handle data that are related in complex

ways. They need data integrity and non-redundancy in

representation. A data repository is suited best for such

an application. A repository is a mechanism for storing and

organizing all information concerning a software system,

including planning, analysis, design, implementation and

project management information [McClure, 1989]. The purpose

of a repository is to store system information at a central

place, keep the data uniform, and be accessible to all

users. The repository must be robust enough to cater to the

needs of large software projects and must also be scalable

[McClure, 1989].

One of the most essential steps in software development

is data modeling. The basic concepts in data modeling are

explained below.

19

The Metamodel

A metamodel (or metadefinition) consists of a set of

OPRR constructs (entity, property, relationship, and role

types), and the rules governing their use. The set of types

and rules are stored in a metadatabase. A particular tool

is determined by the contents of its metadatabase, which

consists of [OPRR API 1991]:

-Set of entity types such as processes, stores,

externals, and elements.

-Set of properties such as process number, store

layout, element value.

-Set of relationship types such as data "flowing"

between two processes, or the existence of a store

"satisfying" a requirement.

-Roles such as "flow-part", "source-part", and

"destination-part" for a "flows" relationship.

-Rules such as:"a process may only be assigned one

process number", "flows may not carry information

between two externals", and "entity names must be

unique".

A metadatabase 1s created by a metalanguage description

of the model. The metadatabase identifies each metaentity

(i.e., object, property, relationship, or role type) by a

name (metaname). The set of metanames are unique within a

relationship.

Each metaname has a numerical code assigned to it.

20

The numerical codes are unique over the entire set of codes.

The numerical code is used in the instance database.

The OPRR data engine actually uses two kinds of

databases in its operation: the Metadatabase and the

Instance database. An Instance database contains the actual

data about a project. The OPRR database can be accessed

using an interface called the Application Program Interface

(API).

There are several data models employing the concepts of

entities and relationships. Some of these models are

delineated below [Welke, 1989].

Database Models

The following is a brief description of some of the

database models currently in use [Chandrashekhar, 1991]:

The Binary Model: This is a simple model characterized by

the involvement of exactly two entities and a single

relationship between them. There are two types of binary

models: binary-1 and binary-2. The binary-1 form allows

multiple instances of only one object type, usually denoted

as 1:M (one to many). Binary-2 form allows multiple

instances of both entity types (M:M, many-to-many) . Because

of their simplicity, binary models have very limited

applicability to complex applications such as CASE tools.

The Entity-Attribute-Relationship-Attribute (EARA)Model: To

21

overcome the limitations of the binary model and to express

multi-part relationships, the EARA model is used. In this

model, properties or attributes are associated with each

entity participating in a relationship. Even though the

EARA model allows sophisticated multi-part relationships, it

does not express clearly the complexity involved in the

relationship. Thus, there is a need for a higher metamodel.

The OPRR Model

To overcome the limitations of the EARA model, the OPRR

model is used. In the OPRR model, roles are associated with

entities that modify the way an entity takes part in a

relationship. This adds another degree of freedom and hence

enhances the expressiveness of the model. ·A metamodel is a

powerful modeling technique used to capture clearly and

unambiguously, capture the meaning of design notations. In

other words, a metamodel is a "database schema" for a data

model. Thus there is no data redundancy and the semantics

are expressed clearly ensuring data integrity.

In the OPRR database, data modeling can be done at a

metalevel. Hence, many-to-many binary relationships with

roles attached to each participating entity and each entity

having multiple properties can be expressed very easily.

Two or more objects can acquire different roles and

participate in one or more relationships with multiple

instances. This gives additional degrees of freedom in data

---- - ------

22

representation compared to other data modeling techniques

explained in the previous sections. The complete

representation is can be modified easily without affecting

other relationships and entities. Welke makes a comparative

study of various modeling techniques and demonstrates the

superiority of the OPRR technique [Welke, 1988] .

Thus the metadatabase approach imparts flexibility by

supporting multiple methodologies and lets the user

customize his/her own methodology [Welke, 1989]. Also it

fully supports future evolution of the project and lets the

user add more analysis and reporting functions.

The User Interface

Recent studies have shown that the user interface forms

a significant part of any application [Myers, 1988]. The

user interface of any software package is that part which

accepts input, interacts with the user, and presents him/her

with a friendly environment. It must be designed in such a

way that it makes the interaction between the user and the

system easy and intelligent. There are different styles in

which user and system interaction can be made; i.e., menu

selection, form fill-in, command language, natural language,

and direct manipulation [Shneiderman, 1987]. Of these,

direct manipulation is the most popular, because direct

manipulation involves selecting an object of interest and

performing the required action. Elaborate graphics, ease of

23

use, and semantic feedback all make direct manipulation the

most used interaction style for currently developed software

packages [Chandrashekhar, 1991].

The design of the user-interface for this project is

generally inspired by the IBM SAA/CUA standards. It is

implemented to be the direct manipulation interface design

along with the form fill-in approach for certain parts. The

platform selected to design and implement this package 1s

Microsoft Windows version 3.0 which features a mouse­

integrated graphical user interface.

Project Engineer ESTIMATOR uses Multiple Document

Interface (MDI) windows to display information. MDI child

windows are windows which are controlled by and appear

within a Parent or 'main' window [Petzold, 1990]. These

child windows function exactly like any other window, but

they are limited to the boundaries of the parent window.

Each MDI Child window performs a function and can be

represented by an icon.

Estimating Model Templates

Different estimating models have different sets of

formulas in estimating each activity and different methods

of calculating the project totals. Depending on the project

characteristics such as size of the project, type of

application, etc., a suitable estimating model needs to be

selected. For example, a large real-time military software

24

project may have a large number of formulas having

dependencies in a complex way, while a small commercial

software project may have a much simpler set of formulas.

Therefore, several "Estimating Model Templates" will be

provided in Project Engineer ESTIMATOR for the user to cater

to the different profiles of software projects. These

templates provide a starting point for the user. Templates

can then be appropriately tuned to build required

estimating models.

Two types of databases exist in Project Engineer

ESTIMATOR: estimating model templates and project estimating

models. An estimating model template is always used as a

basis for a project estimating model. It is modified only

when changes that affect all future uses of the template are

being made. The user 1s allowed to make changes to an

estimating model template or the project estimating model,

and to save it as a template. This facility is useful if

the industry handles projects which follow a pattern but

differ slightly. In order to create a new project

estimation model, a template is loaded, modified, and then

saved as a project estimation model.

The need for an estimation model template type of

application occurs when certain groups of estimation

activities must be used over and over again within the same

project or across several projects [Zells, 1990].

Estimation model templates bring with them all the valuable

information that is needed to give the user a head start.

25

Since templates are proven software estimates themselves,

they bring the expert's experience and expertise with them.

CHAPTER III

DESIGN AND IMPLEMENTATION

Introduction

Project Engineer ESTIMATOR is coded in C, using the

Software Development Kit supplied by Microsoft Corporation

to develop applications which run in Windows version 3.0.

The application requires Windows 3.0 as a base and runs on

PC platforms.

Design Evolution

The aim of this study is to design, and develop a

project estimation software primarily as per LBMS Inc.

specifications. The following paragraphs clearly delineate

LBMS specifications, and contributions of this study.

The following are the high level design specifications

given by LBMS Inc.

1) The estimator data-model.

2) The estimator must support multiple approaches to

estimation.

3) Editing and customization of estimating models.

26

27

4) The estimator must support macro-level estimating.

5) Use OPRR repository.

6) Create, maintain, and access metrics database.

7) Hypermedia based on-line help system.

8) The estimator must work in coordination with other tools

such as life cycle builder, scheduler, etc.

The design, coding, testing, and the delivery of the

complete estimator software was the primary contribution of

this study. The other contributions of this study are:

1) User Interface :

-The estimator front end to look, feel, and function like a

spreadsheet.

-Compliance with SAA and CUA standards.

-Recursive functioning of formula and factor editors.

-Application of Microsoft Windows multiple document

interface (MDI) feature.

2) The in-memory data structure and algorithms (described 1n

section 3.2.1).

3) Estimator computation engine consisting of a formula

parser, a calculator, and data validation functions.

4) The concept of local and global values for a factor.

5) Detection of cyclic dependency between factors and

formulas by application of topological sorting.

28

Implementation of the Concepts

The implementation of concepts from the previous

chapter are briefly described in the following sub-section.

Implementation of the Database

The underlying data model for the Project Engineer

ESTIMATOR is described as below. An estimating model is

defined by a set of estimating formulas. Each component of

a formula is called an estimating factor. Each

formula/factor can have several values. As explained in

previous sections, a set of formula/factor values, across an

estimating model, constitute a "saved estimate". The

ESTIMATOR data model is designed to give a "what if"

capability to the user which, essentially means evaluating

different estimates for different possible values of

formula/factor. Some Factors are in turn derived by another

formula known as the derivation formula which in turn

consists of factors. Also, each WBS object is related to a

formula. A factor may have a value local to a formula or it

may have a value that is global to all related formulas.

The estimator data model is shown in Figure 3. page 29.

EST

EST
MODEL

SAVED

ESTIMATE

ESTIMATOR
DATA MODEL

Figure 3. Estimator data model

The following objects are defined in the OPRR metamodel:

1) Estimating Model

2) Estimating Factor

3) Formula .

4) Estimating Factor Value

5) Saved Estimate

29

The relationship between the above objects, as defined

in the metamodel, are shown in Figure 4. page 30. and Figure

5. page 30.

1 Estimating 1
Factor/Formula ----'::-

M

1

M 1 Saved
>----- Estimate

Estimating Factor/Formula
Value

SAVED ESTIMATE RELATIONSHIP

Figure 4. Meta schema of Saved Estimate

0
WBS Activity

M

1

Formula

Estimating
Model

FORMULA
USAGE

Figure 5. Meta schema of Formula object

30

31

The concepts of uniqueness and scoping are implemented

for objects and relationship and are explained below [OPRR

ORIF, 1990]. In a scoping relationship, two roles are

important: the scoping role and the scoped role. A database

object which isscoped cannot exist before the scoping

relationship is created. The scoping facility allows that

an identifying property need not be unique over the whole

database but only within the metatype of objects to which it

applies to i.e., an object within the scoped relationship in

which it is defined.

The following is an example of a scoping relationship

as defined in the metamodel. The relationship is called

Data-Structure with two roles: a "container-part" and a

"contained-part". The container-part is the scoping object.

The relationship is not associated with any properties.

Each role is fulfilled by an object with the specified

identifying property (in this example Basic-Name is an

identifying property) .

CREATE SCOPING RELATIONSHIP Data-Structure

ROLE

Container-Part = ICON-1: BASIC-NAME="name of icon"

SCOPED-ROLE

contained-Part =

(SELECT OBJECT Diagram: BASIC-NAME="customer­

information-record");

The database retrieval function is one of the most

32

important parts of the ESTIMATOR. The retrieval builds in-

memory data structure and the memory pointers between them.

Figure 6. gives a psedo-code of the database retrieval

algorithm.

DATABASE RETRIEVAL ALGORITHM

Retrieve an estimating model.
Retrieve a saved estimate.

While WBS activities
Begin

Retrieve WBS activity.
Retrieve WBS-FORMULA relationship.

LABELl :Retrieve formula object and its properties.
Retrieve FORMULA-SAVEDEST-VALUE relationship.
Retrieve FORMULA-FACTOR relationship.

While there are factors for this formula
Begin

Retrieve factor and its properties.
Retrieve FACTOR-SAVEDEST-GLOBALVALUE relationship
Retrieve FACTOR-SAVEDEST-LOCALVALUE-FORMULA relationship
Retrieve Factor value properties.
Retrieve FACTOR-DERIVATIONFORMULA relationship.

If Derivation formula exists for this factor then
Goto LABEL 1.

End While.

End While.

Figure 6. Database retrieval algorithm

33

Estimating Models Implementation

The underlying data structure is designed to be general

enough to handle both different estimating models and saved

estimates. The selection of models and saved estimates is

accomplished by selection of a menu item, and then

displaying a dialog box with model names. The name of the

model and saved estimate are obtained from this dialog box.

These names are sent as parameters to the data retrieval

routines. The data retrieval routines retrieve only those

formulas, factors, and their values that constitute the

currently selected model and saved estimate. The in-memory

data structure is then populated with data from the

database. Only one estimating model and saved estimate is

allowed to be manipulated at a time. Allowing more than one

model to be used concurrently creates complex memory

problems. If another model or saved estimate is chosen for

manipulation, the existing model is closed by freeing all

the allocated memory and reinitialising all the control

variables. Then the retrieval routines are invoked with the

new model, and saved estimate names as parameters.

Each WBS activity record has a pointer to one formula

record. Upon changing a model, this pointer points to a new

formula record. The estimated values are stored with each

WBS activity record, formula record, and factor record.

Therefore, each time a new saved estimate is chosen all

these values are re-populated.

34

The User Interface Implementation

The ESTIMATOR displays data in a tabular fashion. The

tabular data window has much functionality built into it and

functions like a grid. The grid-like window will be called

the list window henceforth. The ESTIMATOR uses the 'Grid

Class' developed by LBMS Inc. to implement the list window.

The list window is a scrollable child window. Several user

interface designs were evaluated. Finally the decision was

made to use a Grid Window Class because it is more user­

friendly and has been accepted by the users (in Microsoft

Excel). The Grid Window Class provides an interface for

displaying and managing tabular data. Since the data

associated with projects has to be displayed from various

perspectives with each row of objects/tasks representing a

WBS object, or a formula object, or a factor object, a grid

structure is appropriate. Columns indicate the Estimation

information. Columns can be customized by the user to v1ew

what the user wants at any point in time. The columns are

resizable with the use of a mouse. It is essential to be

able to accommodate the variety of data that can be

displayed in each column. Scroll bars are provided to

scroll the grid vertically or horizontally [Chandrashekhar,

1991].

Rows and columns can be 'highlighted'. Simultaneously,

the contents of the selected cell are displayed in an edit

window where it can be modified. Three instances of the

35

grid class are used to display three list windows. All

three windows have different data. Therefore, the data

retrieval (from database and in-memory data structure)

routines are independent of the window they are servicing.

All three windows have the same basic structure with minor

differences in specific features. Both window-specific data

and functionality are implemented by building into the code

the capability to recognize in which window the user is

currently in. The menus for each window are separate and

are allocated dynamically depending upon the window.

One of the important user interface implementations is

the formula/factor editor. The 'double-click' message is

trapped and processed for popping up the formula/factor

editor. These editors are modal dialog boxes created using

the Microsoft Windows Dialog editor. These dialog boxes are

recursive, i.e., it is possible to traverse from a formula

editor to factor editor and vice versa. This means all the

data to be displayed in these dialog boxes is pushed on to

the stack recursively. In order to avoid the attendant

memory problems, global memory is allocated dynamically for

each instance of the editor invoked. This also makes the

dialog box code reentrant and ensures data integrity.

The Software Architecture

The architecture employed for this project is described

below. As usual the user interface forms the front-end and

36

uses Windows version 3.0. The metadefinition best explains

the underlying software architecture. The following is the

metaschema of the ESTIMATOR.

WBS Activity

Properties:

Meta Schema Implementation

COLLAPSE-EXPAND: -INTEGER- This is a flag used for display

purposes, which tells us whether we should suppress all the

descendants of this activity or not.

EFFORT-ESTIMATE-ORIGINAL: -INTEGER- This lS the original

estimate of the effort for this activity.

EFFORT-ESTIMATE-REVISED: -INTEGER- This is the revised

estimate of the effort for this activity.

ACTIVITY-LEVEL: -INTEGER-

Description:This object represents each activity in the

project. These objects exist in the database according to a

hierarchy called the Work Breakdown Structure (WBS) . This

structure is built and maintained by the property of each

activity called ACTIVITY-LEVEL.

Estimating Model

Properties:

DEFAULT-WORKSHEET: -INTEGER- The worksheet to displayed in

the grid initially.

ORIGINAL-ESTIMATE-WORKSHEET: -INTEGER- The worksheet

designated by the user to the original estimate.

REVISED-ESTIMATE-WORKSHEET: -INTEGER- The worksheet

designated by the user to the revised estimate.

ESTIMATING-LEVEL: -INTEGER- The WBS activity level with

estimating formulae. It is the level at which the

estimating is done in the given model.

PROJECT-EST-FORMULA: -TEXT- Formula for project level

estimation.

37

Description: This object represents an estimating model. A

model represents a mathematical description of an estimating

method or approach applied to a work breakdown structure.

There can be multiple models in a project database. A model

is expressed as a set of factors and formulae.

Saved Estimate

Properties:

SAVEDBY: -STRING- The name of the user.

MODEL-PROJECT-TOTAL: -INTEGER- The total estimate for the

whole project.

PROJECT-REVISION-VALID-UNDER:--INTEGER- Version control

number for worksheets.

Description: This object represents a set of values for

factors and formulae across a model. This is scoped by

model. This object should be renamed Worksheet.

Formula

Properties:

38

FORMULA-STRING: -STRING- The mathematical expression entered

by the user for this formula.

Description: This is a estimating formula used in the

calculation of various estimates for the activities.

Formulae can be tied up to activities. They are scoped by

model. A formula mixes and matches various factors.

Factor Value

Properties:

GLOBAL-FACTOR-VALUE: -STRING- The manual value entered by

the user.

Description: This ~s the value of each factor object based

on the worksheet. This is not needed if the value is made a

property of the relationship between factor and worksheet.

Estimate Factor

Properties:

EST-FACTOR-CATEGORY: -INTEGER- The code which specifies the

category this factor belongs to.

FACTOR-NAME: -STRING- The name of the factor.

FACTOR-DEFAULT-VALUE: -STRING- The mandatory value for the

factor. This is entered by the user when the factor is

created.

Description: This represents the factors used in a formula.

A factor is a quantitative expression of considerations

g1ven 1n the process of estimation. They have different

values based on the worksheet. They are scoped by model.

Formula-Factor

Parts: FORMULA ONE-MANY

ESTIMATEFACTOR ONE-MANY

39

Description: This gives us the list of factors in a given

formula. Both formulae and factors are scoped by model, and

in this relationship, both should be scoped by the same

model. There is now no way of preventing the user from

going into an orf file and violating this rule, which could

lead to crashes when the estimator is run. Probably, these

relationships should be rethought-out. Note that the second

part below is redundant and should be deleted.

Estimating Model-Saved Estimate

Parts: ESTIMATINGMODEL

SAVEDESTIMATE

ONE-ONE SCOPING

ONE-MANY SCOPED

Description: This relationship gives us the list of

worksheets for the given model. As noted earlier, saved

estimates are scoped by model.

Factor-Saved-Value

Parts: SAVEDESTIMATE ONE-MANY SCOPING

ESTIMATEFACTOR ONE-MANY

ESTFACTORVALUE ONE-MANY SCOPING

Description: The name of this relationship is misleading.

It is the value that is global and not the factor itself.

We are using this relationship now to get the value of a

factor for a given worksheet.

WBS Activity-Model-Formula

Parts: ESTIMATINGMODEL

ACTIVITY

FORMULA

ONE-MANY SCOPING

ZERO-MANY

ZERO-MANY SCOPED

Description: This relationship connects one formula of a

model to exactly one activity. Therefore one activity has

different formulae for different models. This is again

scoping because formulae exist only in the context of a

given model and the same formula may mean an entirely

different thing in another model in the same project.

Model-Factor

Parts: ESTIMATINGMODEL

ESTIMATEFACTOR

ONE-MANY SCOPING

ONE-MANY SCOPED

40

Description: This relationship gives us the list of all the

factors in the project for the given model. The

relationship is scoped because factors exist only in the

context of a given model and a factor with the same name

might mean something totally different in another model in

the same project.

41

The In-Memory Data Structure

The list of WBS activities is maintained in a linked

list structure known as the left-linked right-sibling tree.

Each WBS activity record has a pointer field pointing to its

formula record. The formula records are maintained in

another doubly-linked list. The formula record has pointers

to each factor used in the formula. The estimating factors

are maintained in another doubly-linked list.

WBS List Formula List Factor List

Form/Owner ptr

Factor with
a derv form ptr

Figure 7. In-memory data structure

Each factor record maintains a linear linked list of

pointers to all formulas in which it is used. This data

structure scheme makes possible navigation from a

factor/formula to any other related factor/formula.

Extensive use of memory pointers is made to implement the

complex relationships among the data elements. Figure 7.

page 41. shows the relationships among various memory

structures. Microsoft Windows 3.0 limits the number of

memory handles to approximately two thousand. A typical

project may have about two thousand WBS objects and an

additional number of objects like estimating factor,

42

formula, etc. This limits the number of separate memory

handles that can be assigned to each object. To overcome

this problem, an in-memory data structure is designed to

improve the response time of ESTIMATOR. The in-memory data

structure consists of a dynamically allocated memory block

called the superblock with a memory handle. This superblock

is divided logically into sub-blocks (usually 20), in which

records can be stored. The address of a record is then

formed by concatenating the superblock handle and the byte

offset of the record. Thus, the number of handles required

is reduced by a factor of 20. The Memory-Manager routine

allocates and maintains a linear linked list of such

superblocks for each application that uses it. For example,

there is a linked list of superblocks for each record type

factor, formula, and WBS activity. Upon normal termination

of the ESTIMATOR, all the superblocks are freed by

traversing the linked list of superblocks.

The in-memory data structure has three primary data

records viz., WBS activity record, formula record, and

factor record. Each record is briefly described below.

WBS Activity Record

43

A WBS activity record contains all the properties of a

WBS object. The properties include activity name, WBS code,

WBS level, estimated value, and so on. Figure 8. page 44.

depicts various fields and pointer connections of a WBS

record. The following four memory pointers connect an

activity to other activities and formulas.

Next Record Pointer: Points to a WBS record which 1s at the

same level in the WBS hierarchy (sibling pointer) .

Previous Record Pointer: Points back to a sibling WBS

record if it exists, or to the parent WBS record (one level

higher in WBS hierarchy) .

Child Record Pointer: Points to a child WBS record (one

level lower in WBS hierarchy) if one exists, otherwise

points to null.

Formula Record Pointer: Points to a formula record if the

WBS record is associated with a formula.

44

WBS Record

Name.
Level.
WBS Code •
...
.......

Formula Pointer " /

Previous Next Pointer Child
Poi ter Pointer

/~

' /

Figure 8. WBS record structure

Formula Record

A formula record contains all the properties of a

formula object. The properties include formula name,

estimated value, description, and so on. Figure 9. page 45.

depicts fields of a formula record. The following four

memory pointers connect a formula to other activities and

factors.

Next Record Pointer: Points to the next formula record if

it exists.

Previous Record Pointer: Points to previous formula record.

Owner Pointer: A formula is associated with either a WBS

activity, or an estimating factor. The owner pointer points

45

to a WBS record when it is associated with a WBS activity.

The owner pointer points to a factor record if the formula

is a derivation formula of a factor record.

Formula Record

Name.
Description.
Formula String •
.... .. .
.... .. .

Array of Pointe rs to Factor Rec
'-
/

WBS Pointer I Factor Pointer """-
/

Previous Pointer Next Pointer

/ I'

" /

Figure 9. Formula record structure

Pointers to Factors: A formula consists of a number of

factors. An array of pointers to factor records is

maintained in a formula record. Each pointer points to a

factor used in the formula.

46

Factor Record

A factor record contains all the properties of a factor

object. The properties include factor name, estimated

value, description, and so on. Figure 10. depicts a factor

record and its ponter connections.

Factor Record

Name.
Description.
Value.

Header Pointer

Derivation Formula Pointer

Next Pointer

Formula Pointers

Figure 10. Factor record structure

The following three memory pointers connect a factor to

other activities and formulas.

Next Record Pointer: Points to the next factor record if it

exists.

Derivation Formula Pointer: If a factor has a derivation

formula, then a pointer points to the derivation formula

record.

47

Formula Linked list Header: A header node in the factor

record points to a linked list of pointers to formula

records. These pointers point to each formula in which this

factor is used.

The ESTIMATOR Computation Engine

The concept of modular design is implemented by

separating the database, the in-memory data structure, user

front end, and the computation part called the Computation

Engine. The Computation Engine consists of a formula

parsing module, a calculator module, and a set of user

service routines for navigating the in-memory data

structure, creating, deleting formulas/factors, etc.

Estimation formulas entered by the user or imported

from other databases, must be parsed to check for syntax.

At present, only the four basic arithmetic operators are

supported. It is proposed to have advanced mathematical

functions such as logarithms, exponential functions,

trigonometric functions, etc., in later versions of the

ESTIMATOR. The parsing algorithm handles formulas with

parenthesized sub-expressions and precedence constraints.

A formula is first broken up into tokens (factors and

operators). Each token is then validated. Parsing is

implemented by converting the formula from infix form to

reverse polish form using a stack data structure and then

ranking the tokens to preserve the order of precedence.

48

To compute the value of a formula, the formula in

reverse polish notation is converted to code that is

executed using a stack. Floating point arithmetic is

supported. The calculator routine intelligently selects the

"current" value of a factor, i.e., the formula could be

using a global or local value which may again be Override,

Derived, or Default value. All the factors in a formula

must be defined (created) before they are used in the

formula. The calculator searches the factor linked list for

each factor used in a· formula. If a factor is not found

then it aborts the calculation giving an error message

displaying the name of the undefined factor.

Circular Dependency: A WBS formula consists of estimation

factors. Some factors are in turn derived by a derivation

formula. The derivation formula again consists of factors.

Hence formula and factors are related in a recursive manner.

Such a recursion results in cyclic dependencies, which

result in creating an infinite loop. To detect such cycles

a topological sorting algorithm (imposing a linear order) is

applied. Upon detection of a dependency the user is given

an error message to correct the formula.

49

The Formula Editor

The purpose of this modal dialog box is to display all

the information associated with one formula, and allow the

user to edit any of the information fields. After a

modification, the user can either accept or cancel any

changes that were made. Modifications to the properties of

formula require an explicit "commit" action (via an 'OK'

button) before any other functions can be accessed.

The formula editor 'pops' up when the user 'double­

clicks' the mouse button on any selected activity in the

List window of the ESTIMATOR. The formula editor can also

be accessed via the factor (if that factor has a derivation

formula) editor using the "Derivation Formula" button. The

formula editor validates the modified data for any error 1n

the values input by the user. The formula string entered by

the user is parsed for syntax errors. The semantic parsing

of the formula is accomplished by checking to see if all the

factors used in the formula are previously defined. Another

function of the formula editor is to detect cyclic

dependency between formulas and factors. Appropriate error

message is given for the user to correct the changes made.

For example, if the user enters a non-alphanumeric string

for a formula field, an error Message Box is displayed

requesting the user to input the data in proper format.

The formula editor is filled with the data associated

with the selected formula in the List window. The user can

50

modify any field in this editor. The same formula editor

'pops' up when the user tries to create a 'new' derivation

formula; in this case the fields are empty.

The local value of a factor can be changed in the

formula editor if necessary. A new formula can be created

only as a derivation formula for a factor. The formula

editor for a typical formula is shown in Figure 11.

- Formula Editor

Name: Review Related Studies

formula: 1(81~)+(89*0.1)
List of Factors:

Formula ~alue -------,

Derived: 157.10

Qverride: 145
[!escription:

!This Is a sample test

Factor Value

0 Global: 51824.00

® Lo~al: L.;I1..;..1 __ ..J

I

Formula Type:

WBS Formula

Figure 11. Formula editor

51

The formula editor displays a list of all factors used

1n a formula. The user can access the factor editor of each

of these listed factors by double-clicking on the displayed

factor. Similarly, the factor editor displays a list of

formulas in which the factor is used. The user can access

the formula editor for each of these formula by double­

clicking on the displayed formula. The user can recursively

traverse from formula editor to factor editor and v1ce versa

by invoking multiple instances of these editors. Every

instance of an editor (formula/factor) uses the same code.

The re-entrant nature of editor code must maintain integrity

of data associated with each instance of the editor. To

protect the editor data, each instance maintains its own

private data record. This is accomplished by sending a

pointer to instance data record as a parameter to the editor

function for each invocation of the editor.

Factor Editor

The purpose of this modal dialog box is to display all

the information for one factor, and allow the user to edit

any of the information fields. After a modification, the

user can either accept or cancel any changes that were made.

The factor editor 'pops' up when the user 'double­

clicks' the mouse button on any selected factor in the List

window of the ESTIMATOR. This editor also validates the

modified data for any error in formatting, and checks to

see if the factor is already defined. Duplicate factor

definitions are not permitted.

52

The factor editor is filled with the data associated

with the selected factor in the List window. The user can

modify any field in this editor. The same factor editor

'pops' up when the user tries to insert a 'new' factor in

the List window; in this case the fields are empty. Users

can define a global set of categories and assign a category

from this global set to each factor. Factors can then be

categorized for easier maintainence of the estimating model.

For example a factor can be categorized either as a

productivity assumption, or a deliverable component. The

factor editor for a typical factor is shown in Figure 12.

page 53.

The global values of a factor can be changed in the

factor editor. The local value of factor can be changed ln

the formula editor to which the factor value is local.

The user can select any one of the four possible values for

a factor viz., Manually entered, calculated (from derivation

formula), imported from other databases, and default value.

The user can recursively traverse from formula to factor and

vice versa by invoking multiple instances of these editors.

The change in the value of a factor is reflected by

recalculating the values of all the formulas in which the

factor is used. This recursive automatic recalculation

functions similar to a spreadsheet and displays the data in

a tabular form in the grid window.

53

Modal dialog boxes are used for formula/factor editors.

The user must close all the editors (modal dialog boxes) in

the order in which the editors were invoked before accessing

any other item in the List window.

- Estimating Factor Editor

Name: I Number Of Levell current DFDsl

Reference: 81 ~ategory: I Productivity Assumptio1l

Global Values--------------------.

® .Qverride

178
0 Deriy:ed

613.35

This Is a description of the factor

Used In:
Review Related Studies

0 DDE 0 Default

11

Figure 12. Factor editor

It is proposed that editors be changed to MDI child

windows in future versions. The MDI child windows editors

will allow mode-less access of any item in the List window.

CHAPTER IV

FEATURES OF THE ESTIMATOR

Introduction

The ESTIMATOR module provides estimating services for

Project Engineer. It relates to all other tools like

scheduling, risk analysis, etc. The purpose of the

ESTIMATOR is to allow users to load and manipulate project­

estimating models and model templates. The following are

some of the features of the ESTIMATOR:

-Load a project-estimating model or an estimating model

template.

-Load/Save saved estimates.

-Display various views of the ESTIMATOR like

formula/factor, by category.

-Print the estimating information at various levels of

detail

-Insert, Delete, Modify, Copy, Paste formula/factors.

-Parse/Calculate formula.

-On-line help (hyper-media based) .

-Maintain information about saved estimates.

-Explode a formula/factor to a detailed description.

-Insert/Delete/Edit formula/factor categories/types.

-Allow the user to customize the appearance of the

estimating model with fonts, etc.

54

Figure 13. is an example of a List window with WBS

activities and associated information displayed. Some of

the above mentioned features are shown in the menu bar of

Figure 13.

Figure 13. WBS list window

55

The estimating factors list window is shown in Figure 14. on

page 56. Observe the menu items that provide the complete

set of functionality for the estimator. The Factors window

provides a convenient means of editing estimates. by

displaying them in a tabular fashion in the grid window.

56

Figure 14. Factors list window

How to Use ESTIMATOR

The ESTIMATOR is designed to be both consistent and

easy to use. The ESTIMATOR is started by 'double clicking'

on the ESTIMATOR icon. From the initial menu, the user can

select the project to be estimated from a Project-Open

dialog box. Then the ESTIMATOR reads data from the database

for the selected project. Initially two LIST windows are

displayed, one each for WBS activities and estimating

factors. Because these two windows are the most frequently

used by the user, they are displayed initially, by default.

57

A third List window for formulas can be viewed by selecting

the Formula-View menu item. One list window displays WBS

objects and their related formulas.

displays only estimating formulas.

Another list window

The third list window

displays estimating factors by category (productivity

assumption, adjustment factor, etc.). Each of these List

windows display the estimating values for each item

displayed along with the value category.

Entries (formula/factors) in the window can be assigned

different fonts and sizes based on styles. The list window

also provides column configurability. The list window

supports character attributes determined by the type of

information to be displayed.

To edit/create a formula/factor, a MDI child window

known as the formula/factor editor is provided. It displays

all the information for one formula/factor, and allows the

user to edit any of the information fields. The

formula/factor editor pops up when the user double-clicks

the mouse button on any selected formula/factor in the list

window. It also validates and parses the data input by the

user. The same formula/factor editor pops up when the user

tries to insert a new formula/factor in the List window.

Upon changing the value of an estimation factor, the

recalculation of all the dependendent formulas (both for

activities and derivation factors) is done automatically.

The updated values are displayed in the List window. To

calculate the estimates at the project level the

'Recalculate Now' item must to be selected. The project

totals can be viewed by selecting 'Model' item from the

menu.

58

The ESTIMATOR is designed to be used by the project

managers to create and maintain estimating models.

Estimating models can be created from existing templates or

afresh by selecting an empty model template. To start with,

the user can open a new project life-cycle by selecting an

appropriate model that might closely match the new project.

Then appropriate formulas are assigned to tasks along with

their tentative estimated values. The edited model can be

saved, either as a model or a model template.

CHAPTER V

CONCLUSIONS AND FUTURE WORK

Conclusions

Most project management software packages assume that

estimation is done off-line. The ESTIMATOR fulfills the

need for on-line estimation, and also enables customization

of estimating models, supports project management

activities, and provides a consistent user-friendly

environment. Project Engineer ESTIMATOR fulfills the above

mentioned needs that a Project Manager requires. The

ESTIMATOR tool provides a generic model-independent tool to

manage the process of estimation with a user-friendly front

end.

This work does not go into merits or demerits of different

estimating models or methods. Nor does it propose any new

ways of estimation. At present the ESTIMATOR is partially

functional, but it demonstrates the concept of CAPE well.

59

Future Work

The future versions of the ESTIMATOR 1s proposed to

have the following enhancements:

-Estimating models can perform estimation at

different levels of the WBS hierarchy. The user

selects the level at which estimation is to be

performed for a particular model. This enhancement

will require changes/additions to the algorithms that

calculate the project estimates.

60

-Advanced mathematical functions like trigonometric

functions, exponential functions are proposed to be

added to the present repertoire of estimation

functions. This will require substantial additions the

Computation Engine module.

-The user must be able view saved estimates (estimated

values) for different models simultaneously, and be

able to perform statistical comparisons. It is

suggested that the estimator have such a capability 1n

which the user can retrieve several saved estimates

across different models and perform statistical

functions like calculating mean, standard deviation,

and so on.

-Implement user configurable estimating units.

Provide conversion of different estimating units.

SELECTED BIBLIOGRAPHY

AD/M Productivity Measurement and Estimate Validation, IBM
CI/S & A Guideline 313, January 1985.

Burrill C., and Ellsworth L., Modern Project Management,
Burrill-Ellsworth Associates, Inc., New Jersy, 1980.

Function Point Analysis With LSDM, LBMS Plc., London, 1988.

Hsieh, D., Personal communications with David Hsieh, 1990.

IBM Systems Application Architecture - Common User Access
Advanced Interface Design Guide, International Business
Machines Corp., 1989.

LBMS Systems Engineering Estimating Guidlines, LBMS Inc.,
Houston, 1989.

LBMS Systems Engineering Methods Handbook, LBMS Inc.,
Houston, 1990.

McClure, C., CASE is Software Automation, Prentice Hall, New
Jersey, 1989.

Microsoft Windows Programmers Reference for Windows ~'
Vol. 1 and Vol. 2, Microsoft Corporation, 1990.

Mohanty, Siba., "Software Cost Estimation: Present and
Future", Software Practice and Experience, pp. 103-120,
November 1981.

Myers, B. J., "Creating User Interfaces by Demonstration",
Academic Press, Inc., California, 1988.

OPRR Interchange Format (ORIF) Language Specification,
Meta/LBMS Inc., Ann Arbor, 1990.

Petzold, C., "A New Multiple Document Interface API
Simplifies MDI Application Development", Microsoft Systems
Journal, pp. 53-63, July 1990.

Pressman, R. S., Making Software Engineering Happen,
Prentice Hall, New Jersey, 1988.

61

Reifer, Donald. J., "CASE and Software Cost Estimating",
CASE Trends , pp. 11-16, January/February 1991.

62

Shneiderman, B., Designing the User Interface Strategies for
Effective Human-Computer Interaction, Addison-Wesley
Publishing Company, 1987.

Specification for OPRR Application Proarammina Interface,
Version 2, Meta/LBMS Inc., Ann Arbor, 1991.

Chandrashekhar, S., Personal communications with
Chandrashekhar Sridhar, 1990-91.

Chandrashekhar, S., An Integrated Set of Tools to Assist ln
the Development and Maintenance of Project Life Cycles,
Oklahoma State University Masters degree thesis, 1991.

Welke, R. J., "Meta Systems on Meta Models", CASE Outlook,
pp. 35-43, Vol. 4, 1989.

Zells, L., Managing Software Projects, QED Information
Sciences, Inc., Massachusetts, 1990.

VIT~

Gopal N. Kulkarni

Candidate for the Degree of

Master of Science

Thesis: A TOOL TO AUTOMATE SOFTWARE PROJECT ESTIMATION FROM
A PROJECT MANAGEMENT PERSPECTIVE

Major Field: Computer Science

Biographical:

Personal Data: Born in Bijapur, India, July 22,
1960, the son of Narayanrao D. Kulkarni and
Laxmi N. Kulkarni.

Education: Received Bachelor of Engineering Degree in
Mechanical Engineering from Karnatak University,
India in February 1984; completed requirements for
the Master of Science degree at Oklahoma State
University in December, 1991.

Professional Experience:Research Assistant, Department
of Computer Science Oklahoma State University,
August,1990, to May,1991.
Part-time Programmer,Department of Agricultue,
Oklahoma State University, March, 1989, to
July,1990.
Assistant Engineer, WIDIA (India) Limited,
Bangalore, India, June, 1985, to June 1988.
Trainee Engineer, Mysore Kirloskar Limited,
Hubli, India, May, 1984, to April 1985.

