
~YNAMIC ADDITION AND REMOVAL OF

ATTRIBUTES IN ~~~Q FILES ----

By

NALINI T. HOSUR
II

Master of Arts
Karnatak University

Karnatak, India
1981

Doctor of Philosophy
Karnatak University

Karnatak, India
1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1991

. '

...

Oklahoma State Univ. Library

DYNAMIC ADDITION AND REMOVAL OF

ATTRIBUTES IN BANG FILES

Thesis Approved:

v
Thesis Adviser ' ~

~- ~. JJ~~
I

Dean of the Graduate College

ii

1393128

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr.

Huizhu Lu, for her encouragement, advice, and patient

guidance. I also wish to thank my committee members, Dr.

George E. Hedrick and Dr. J P. Chandler for their

assistance.

I owe my special thanks to my family, and my friends

for their encouragement, and support which made this thesis

possible.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

II. BANG FILE DATA STRUCTURES 5

III.

Overview of Multidimensional
Data Structures 5

Tree Structures. 6
Multiple Extendible Hashing. 7
Grid and BANG Files 8

Structures and Characteristics of
BANG Files 10

Directory. 11
Update 13

Splitting 14
Merging 14

Queries 15
Creation of Empty Buckets During

Subdirectory Splitting 17
Creation of Empty Regions During

Deletion of Records 22
Dependence of Directory Entries on

the Order of the Data 25

TECHNIQUES FOR DYNAMIC CHANGE
OF ATTRIBUTES 30

Naive Approach 30
Directory Modification Technique 31

Addition of Attributes . . . 32
Attribute Addition in The

Presence of Buddies. 33
Modification of Directory Entries 36
Transformation of Directory

Entries 37
Transformation of Single

Entries 38
An Example of Transformation of

Directory Entries • . 39
Removal of The Attributes 40

Modification of Directory Entries 41
Transformation of directory

Entries 41

iv

Chapter Page

Transformation Single
Entries. 42

An Example of Transformation
of Directory Entries. 43

Multiple BANG Files. 44
Addition of Attributes . . . 45

Steps to Add Attributes 46
Deletion of Attributes 46

Steps to Remove Attributes. . . 47
Organization of Multiple BANG Files. 47

IV. RESULTS AND DISCUSSIONS 52

Results and Discussions for 'Directory
Modification' 52

Results and Discussions for 'Multiple
BANG' Files 69

Results and discussions for
Range Queries 70

Results and Discussions for
Partial Queries 79

v. CONCLUSIONS AND RECOMMENDATIONS . 91

BIBLIOGRAPHY 96

APPENDIX - PROCEDURES TO ADD AND REMOVE ATTRIBUTES . 99

v

LIST OF TABLES

Table Page

I. Data and Directory Occupancy 28

II. Range Query For 'abed' 28

I I I. Partial Query For 'a' 29

IV. Partial Query For 'abc' 29

v. Partial Query for 'cd' . 29

VI. Addition of attribute Test File I (N = 1,000). 55

VII. Addition of Attribute Test File I (N = 2,000). 56

VIII. Addition of Attribute Test File I (N = 5,000). 57

IX. Addition of Attribute Test File II (N = 1,000). 58

X. Addition of Attribute Test File II (N = 2,000). 59

XI. Addition of Attribute Test File II (N = 5,000). 60

XII. Removal of Attribute Test File I (N = 1,000). 61

XIII. Removal of Attribute Test File I (N = 2,000). 61

XIV. Removal of Attribute Test File I (N = 5,000). 62

XV. Removal of Attribute Test File II (N = 1,000). 62

XVI. Removal of Attribute Test File II (N = 2,000). 63

XVI I. Removal of Attribute Test File II (N = 5,000). 63

XVIII. Range Retrieval (N = 1,000, 25% Data with
3rd Attribute). 72

XIX. Range Retrieval (N = 1, 000 1 50% Data with
3rd Attribute). 72

XX. Range Retrieval (N = 2,000, 25% Data with
3rd Attribute). 73

vi

Table Page

XXI. Range Retrieval (N = 2,000, 50% Data with
3rd Attribute). 73

XXII. Range Retrieval (N = 5,000, 25% Data with
3rd Attribute). 74

XXIII. Range Retrieval (N = 5,000, 50% Data with
3rd Attribute). 74

XXIV. Partial Query for 'ab' (100% Search) 81

XXV. Partial Query for 'a' (100% Search) 81

XXVI. Partial Query for 'ac' (50% Search) 82

XXVI I. Partial Query for 'bd' (50% Search) 82

XXVIII. Partial Query for 'abc' (50% Search) 83

XXIX. Partial Query for 'cd' (25% Search) 83

XXX. Partial Query for 'bed' (25% Search) 84

XXXI. Range Query for 'abed' (25% Searrch) . . . 84

vii

LIST OF FIGURES

Figure

2.1. Nested Block Regions

2.2. Two Level Directory ..

2.3. (a) Regions, (b) Directory Entries
and After Splitting.

Before

2.4. (a) Directory Entries, and (b) Regions Before

Page

10

12

13

Splitting 18

2.5. (a) Directory Entries, (b) Regions, After
Splitting (Empty Regions Created) 19

2.6. After Merging Empty Region 21

2.7. Merging of Directory Entries During Deletion
of Records 23

2 . 8 . Directory Entries at the End of Deletion
of Records 24

2.9. Partitioning for the Data Arriving
in Order 'A' 25

2.10. Partitioning for the Data Arriving
in Order 'B' 27

3.1. Distribution of Set of Points in 2-D and 3-D 33

3.2. Splitting of Region <3,2> in 2-D . 33

3.3. Splitting of Region <3,2> in 3-D 34

3.4. Buddies in 2-D, and 3-D Due to Partition
on Y-axis 35

3.5. Transformation of Directory Entries During
Addition of Attribute 39

3.6. Transformation of Directory Entries During
Removal of Attribute 43

viii

Figure

3.7.

3. 8.

3. 9.

Addition of Attribute 'c' ..

Before and After Deletion of Attribute 'b'
from record #3

Record Distribution in 'Traditional', and
'Multiple BANG' Files

3.10. Organization of Multiple BANG files

4 .1.

4 . 2 .

4.3.

Dependence of Normalized Disk Accesses on
Records Modified - Attribute Addition

Dependence of Normalized Disk Accesses on
Records Modified - Attribute Addition

Dependence of Normalized Disk Accesses on
Records Modified - Attribute Deletion

4.4. Dependence of Normalized Disk Accesses on

Page

45

47

48

50

64

65

66

Records Modified - Attribute Deletion 67

4.5. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files 76

4.6. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files 77

4.7. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files . . . 78

4.8. 'Traditional' and 'Multiple BANG' Files Used
for Partial Query 80

4. 9. Dependence of Disk Accesses for 3 Search
Sizes - 2 Attribute Partial Query

4.10. Dependence of Disk Accesses for 2 Search
Sizes - 3 Attribute Partial Query

4.11. Dependence of Disk Accesses on the Number
of Attributes - 25% Search Size

ix

86

88

89

CHAPTER I

INTRODUCTION

Database applications with large numbers of records

often are stored so that major portions of the data reside

on secondary storage. In many existing systems, access to

secondary storage is relatively slow compared to operations

on data in main memory. As a result the time used for

retrieval of data from secondary storage can become the

dominant factor in determining the performance of the

database system. The BANG (Balanced And Nested Grid) file

structure has proved to be an efficient approach to

minimizing the number of accesses to secondary storage in

res~onse to queries, or for addition and deletion of

records with multiple attributes.

Many practical applications however require an added

capability: the addition and removal of attributes from an

existing database either for some of the records, or all

the records. Two simple (hypothetical) examples will

illustrate the necessity of addition and removal of

attributes.

A physician has information about his patients, which

is built into a database. Within the records are the name

and address of his patients, some of whom need to be

1

2

watched: they are prone to heart disease or similar threat.

The attributes (keys) consist of a number of factors such

as age, height, weight, cholesterol level etc. When the

database was initially created, there was no key

corresponding to the ratio of low density lipoproteins to

high density lipoproteins, because it was not deemed as an

important factor. Recent research has disclosed that this

is a critical factor in determining propensity to heart

attack. In addition there are other attributes which are

now known to be important in determining the level of risk

of a heart attack. It is therefore necessary to add these

attributes to the database so that a better evaluation of

risk can be made.

A second example concerns a database set up by a

dealer who sells personal computing systems and work

stations. The record consists of the make of hardware; the

attributes are the various features available on each

system. Since the manufacturers constantly change the

features available on each system, it is necessary to add

or remove attributes corresponding to features that are

added or not provided with the system.

These simple examples clearly illustrate that the

ability to add and remove attributes is an important step

in extending the utility of a database. If we look upon

the ability to add and remove records from a database as a

first step in generalizing a static data structure,

addition and removal of attributes represents an equally

3

important second step.

For this reason, all recent relational databases allow

the addition and removal of' attributes. However

implementing this capability in main memory may not be

optimal for databases iesident on secondary storage

devices.

In view of the established superiority of the BANG

file structure [FREE 87, and LIAN 88] in minimizing

accesses to secondary storage, it is highly desirable to

investigate the efficiency of this structure with respect

to the addition and removal of attributes. A naive and

obvious approach is to change the contents of the entire

database whenever we add or remove attributes from any

record. However this can be highly inefficient and can

seriously limit the applicability of BANG files in many

practical applications. To date there is no published work

dealing with efficient approaches for the addition and

removal of attributes from BANG files. The goal of this

thesis is to explore two new techniques for the removal and

addition of attributes within the structural framework of

BANG files.

In Chapter 2, we give a brief outline of the various

approaches towards multiple attribute data structures that

resulted in the development of BANG files, and describe in

brief the basic workings of the BANG file data structure.

In chapter 3, we describe two new approaches for adding and

removing attributes ftom a BANG file; the first of these

4

approaches is termed the "Directory modification

technique", and the second is termed the "Multiple BANG

file technique". In Chapter 4, we present results for each

of these methods when we add and remove attributes;

comparisons are made with the naive approach. In Chapter

5, we analyze the advantages of each of the methods, and

conclude with recommendations regarding the use of these

methods.

CHAPTER II

BANG FILE DATA STRUCTURES

The BANG file structure represents an important step

in the development of efficient data structures for

multidimensional data that are accessed with multiple keys.

In this chapter, we place the BANG file in context by

reviewing other multidimensional data structures. We also

provide here details regarding the structure and

organization of BANG files so as to be able to refer to

them in later sections.

Overview of Multidimensional Data Structures

A number of different data structures have been

developed for the storage, retrieval and query of records

that have only one attribute per record. A simple

extension of these data structures to retrieve records with

multiple attributes results in structures that are not

efficient in terms of accesses to secondary storage,

particularly for interactive queries. There have been many

attempts to overcome these deficiencies by designing new

multidimensional file structures and access mechanisms.

Research has followed three distinct lines [FREE 87]:

1. Tree structures: a generalization ton dimensions.

5

Some examples are quad trees, quintary trees, polygon

trees, range trees, k-d trees, k-d B trees, multiple

attribute trees (MAT), multidimensional B trees (MDBT).

2. Multidimensional Extendible Hashing.

3. Grid files and BANG files: a geometrical approach.

Tree Structures

Quad trees [FINK 74] are generalizations of binary

trees, and deal with two dimensional data. Each node

stores one record and has up to four offspring, each a

node. Both insertion and region searching are quite

efficient, but deletion and merging can be complicated.

Though the basic concept involved in quad trees can be

generalized to an arbitrary number of dimensions, for a m

dimensional datum, each node will have 2m offspring. This

results in a large number of pointers, and in the case of

the-leaf node, many null pointers.

6

Quintary tree [LEE 80] implementation is limited to

data with fewer than 5 attributes. Quintary trees also

require that a number of assumptions be made regarding the

ordering of the keys in a record, and key specifications in

a query.

A k-dimensional binary tree(k-d tree)[BENT 75, BENT

79] is a natural generalization of the standard one -

dimensional binary search tree. For the one dimensional

tree only one key is used as the discriminator, while for

the k-dimensional tree, at each internal node exactly one

of the k keys is used as a discriminator. This structure

has certain shortcomings in dealing with large and dynamic

databases.

7

The multiple-attribute-tree (MAT) structure, k-d trees

and their variants, and quintary trees fare best when it is

necessary to deal with relatively complex queries. However

the basic shortcoming of these methods is that they are

limited to fairly static databases. An expensive

reconstruction is essential for MAT organization when

changes occur dynamically.

The Multidimensional B-tree (MDBT) [OUSK 81,SCHE 82].

is a method for multiple attribute indexing which uses a B

-tree to maintain the filial sets at each level, and

imposes an ordering on the filial sets in order to ensure

efficient searching. Updates can be done in logarithmic

time in the worst case. However this structure is not

efficient when there are very small filial set sizes,

especially in the last level.

Multiple Extendible Hashing

Hash transformations have access time of 0(1).

Hashing schemes have been adapted to dynamic files on

secondary storage devices by a technique of attaching

overflow buckets whenever needed, thus slowly changing the

0(1) access time characteristic of hashing towards O(n)

time. Radix search trees, known to have faster access than

other types of search trees [FRED 60], can be used only for

8

small files, since they often waste memory. These two

addressing schemes are unrelated, but the two goals, namely

1) to make hash tables extendible so that they can adapt to

dynamic files;

2) to fill radix search trees uniformly, so that they

remain balanced;

gave rise to extendible hashing. In extendible hashing the

user is guaranteed no more than two page faults to locate

the data associated with a given unique key [RONA 79].

Interpolation-based index maintenance [BURK 83] is a

multidimensional extension based on linear hashing [LITW

80]. It extends the hash file organization using chaining

for overflow. In case of non-uniform distribution,

overflow chains become long and reduce the performance

[TAMM 83].

Grid And BANG Files

The grid file [BURK 83, NIEV 84, FREE 87] is a

multidimensional data structure that supports multikey

access. All keys are treated symmetrically, therefore,

queries that involve diff~rent keys are processed with

equal efficiency. The grid file handles proximity queries

such as range and neighbor queries in multidimensional data

efficiently [HINR 85]. Query efficiency of this structure

tends to increase with large databases compared to k-d-B

trees [SARI 87].

In a grid file structure the directory is stored on

9

secondary memory. This structure has proved to be superior

to conventional structures such as inverted files and

multilists in terms of adaptation to dynamic environments.

The fundamental weakness of grid files is that as the data

distribution becomes less uniform, the ratio of directory

entries to data buckets increases and the directory

expansion approaches an exponential rate. Most of the

directory entries point to empty block regions and the

problem is magnified by the number of dimensions of the

file [FREE 87].

Balanced and Nested Grid file (BANG) [FREE 87, FREE

89a] is of the grid file type. Its most important feature

is that, in contrast to the grid file design, its directory

always expands at the same rate as the data, whatever the

data distribution may be. BANG files become increasingly

superior in terms of the rate of directory expansion and

the efficiency of access operations, as the data

distribution becomes less uniform and/or the number of

dimensions increase [HINR 85]. Every direct representation

of a sub-space is guaranteed to be a minimal

representation, and this substantially improves the

efficiency of range, partial, and joins [FREE 89a].

Simulation results which support the above statements can

be found in [LIAN 88]. Previous studies have established

that the BANG file structure is well suited for large

databases with multiple attributes per record.

Structure And Characteristics

Of BANG Files

10

Although the BANG file is of the grid file type, it is

sufficiently different in its characteristics and

performance to distinguish itself from earlier grid file

structures. In this section, we describe in brief the

major features of BANG file structure; the reason is that

we will need to refer to these details in subsequent

chapters and by describing them in this chapter, we will

avoid redescribing them in later chapters.

Each directory entry of the BANG file is a unique

number pair <r,l> where r is region number and 1 is level

number. There is a one to one correspondence between a

directory entry and a data bucket. This is made possible

by allowing nested block regions ie., if two subspaces into

which data space has been partitioned intersect, then one

of the subspaces completely encloses the other. In Figure

2.1 region R1 encloses R2.

R1

R2

Figure 2.1. Nested Block Regions

11

The subspaces do not have to be hyperrectangles. In

addition to this, there is a particular numbering scheme

used for BANG files that allows us to locate the entries

unambiguously. The binary numbering scheme is simpler and

provides the following properties:

1. For a given set of keys (k1,k2 ... kn) allows us to

calculate the smallest region number in which they lie.

2. Each region number is identified by a unique number pair

<r,l> where r is the region number and 1 is the level

3. It is possible to find all enclosing regions at possible

levels for a given region number at a certain level.

Directory

As described before each directory entry of the BANG

file structure is number pair <r,l>, where r is region

number and 1 is level number. Only a one dimensional array

is necessary to constitute the directory. But for very

large databases the directory itself may become too large

to fit into primary memory, and hence must be stored on the

disk. It is essential that directory be organized

efficiently.

A two level directory is maintained. The root

.directory resides in the main memory and points to a

subdirectory bucket. The subdirectory is the second level

directory, which resides on the secondary memory and

manages the data buckets, see Figure 2.2. In both the root

as well as the secondary directory the entries are arranged

12

in order of increasing partition level. This avoids the

ambiguity in locating an entry.

Root Subdirectory Data Buckets

I 0,1 I 0,2
I

>~~--~--~--~--~

2,2 >~~--~--~--~--~

I 1,1 I 1,2 I >~~--~--~--~--~
3,3 >I
7,3 >~~--~--~--~--~

Figure 2.2. Two Level Directory

The complete BANG file directory is organized as a

tree structure. When the first leaf node overflows it is

split into by using the same method applied to the data

bucket. Block regions are treated as data points

themselves. Figure 2.3 shows the splitting of subdirectory

and its effect on the root. Let the subdirectory capacity

be 4. When one of the entries <1,2> is split into (1,3>,

and <5,3>, the original root entry <0,0> needs to be

partitioned, thus gets split into <0,1>, and <1,1>. Figure

2.3b illustrates entries corresponding to Figure 2.3a.

Root

I 0,0

Update

2,2 3,2 2,2

0,2 1,2 0,2

(a) Regions

Subdirectory Root

0,2

l
1,2

I 2,2
3,2

(b) Directory Entries

3,2

1,3 5,3

Subdirectory

0,2
2,2

3,2
1,3
5,3

Figure 2.3. (a) Regions (b) Directory Entries
Before and After Splitting

The addition of a record may cause the capacity of a

bucket to exceed. In whi~h case a split operation is

performed. The deletion of a record may cause the number

13

of records in a bucket to fall below a threshold level. In

that case it may be possible to merge with another bucket

to economize disk space. These two operations are

described below.

14

Splitting

When a data bucket overflows, the corresponding

logical region is partitioned into two, with on enclosing

the other. The region containing more data points is

halved until the 'best balance' [FREE 87, FREE 89a] is

achieved, then the best one is chosen. Assuming that there

is no preferred attribute, a pre-defined cyclic

partitioning through all the dimensions is continued.

1. If the balance is achieved at the first division, then

buddy regions are created. The directory entry <r,l> is

replaced by two entries <r,l+1>, and <r+2l,l+1>.

2. If number partitions is greater than one, the external

boundary of the partitioned logical remains the same,

but a new logical region is created within it. The two

entries are <r,l>, and <r1,l+n>, where r1 is the newly

formed region, and n is number of partitions.

3. Splitting of a region is always treated as a

continuation of an upper level split which sometimes

allows distribution without creating new data buckets

[FREE 87, FREE 89a].

Merging

A very simple and logical strategy is chosen for

merging. The three possibilities of merging are:

1. Merge the logical region with a region that it

immediately encloses (starting with the smallest).

2. Merge with the immediately enclosing region.

3. Merge with a buddy.

Merging with the immediate enclosed or enclosing

region prevents the ambiguity in the directory entries,

which are adjusted after each merging operation.

Queries

1. Exact query: in which values of indexed attribute is

specified.

2. Partial match query: values of d < n of the indexed

attributes are specified.

3. Range query: range is specified for each attribute.

1. Exact match query

15

Let k1,k2 kn be the values of n attributes. In

order to locate a record with these values, using the

mapping function calculate the region r, that encloses

the record at the current level 1. Using the identifier

<r,l> the record P is located/searched in the following

steps.

i. Search the root directory for an entry <r1,l1>,

where is the smallest region that encloses the

region <r,l>.

ii. Retrieve the subdirectory bucket pointed by the root

entry <r1,l1>.

iii. Search the subdirectory bucket for an entry <r2,l2>,

where r2 is the smallest region that encloses

<r,l>.

iv. Retrieve the data bucket pointed by <r2,l2>, and

search for the record P.

16

In the BANG file structure exact queries, whether

successful or unsuccessful should require no more than two

disk accesses.

2. Partial Match query:

For a partial match query, the key values k~~,k~2, .. k~m

are such that il < i2 < im and im< n, where n is

the number of attributes. The query is treated in

exactly the same way as the exact match query, except

the given key values are transformed into a set of

region identifiers.

i. Pick one region identifier from the set and use the

same method as in exact match query to locate the

data bucket corresponding to it.

ii. Find all the records in the data bucket that fulfil

the query.

iii. Carry on step i, and ii until the set is empty.

In order to minimize the disk accesses the same directory

and data bucket are loaded into memory exactly once.

3. Range query:

The range query is of the form of Li <= Ai <= Ui,

where Li and Ui are the lower and upper bounds for an

attribute Ai. The method is exactly same as the partial

match query.

This completes a description of the details of the

17

BANG file structure which are well covered in the article

by [FREE 87]. However, in the process of devising new

approaches for the addition and removal of attributes,

several interesting features of the behavior of the BANG

file structure have been observed. These features have not

yet been described in the existing literature, but can

greatly increase the difficulty in developing general

methods for the addition and removal of attributes.

Creation of Empty Buckets During

Subdirectory Splitting

Let the subdirectory capacity be 6. A seventh

entry/region causes the subdirectory to split and in turn

changes the root entires. Consider the subdirectory

entries and regions pointed by a root entry <1,1> Figure

2.4. Due to the new entry <67,8>, root <1,1> is split into

entries <1 11> and <3 14> Figure 2.5.

ROOT SUBDIRECTORY

I <1 I 1> :1-----f < 112>
< 312>
<1114>
<1715>
<1915>
<9115>

<67 I 8>-~> new region

(a). Directory Entries

/ / <3,2> /
/ / ./

/ /

<19,5> 91,7
/

<3,2> <11,4> vv r6 --.=-
1 7,8
I

<17,5>

<1,2> v
(b). Regions Before Splitting

Figure 2.4. (a) Directory Entries, and (b) Regions
before splitting

ROOT

<1,1>

<3,4>

SUBDIRECTORY

< 1,2>
r------> < 7,3>--~>Ernpty bucket

<11,4>
<17,5>
<91,7>

< 3,4>
r----> <19,5>

<67,8>

(a). Directory Entries

18

Empty region

""'·
/ / <7,3> ~ /

/ L /
/ /

<19,5> 91,7
/

<3,4> <11,4> /v 167,8

<17,5>

<1,2> v
(b). Regions

Figure 2.5. (a) Directory Entries, (b) Regions After
Splitting (Empty Region Created)

19

During the splitting, portions of the region <3,2> get

divided into newly created roots: <3,4> into root <3,4>,

and <7,3> into root <1,1> respectively. When the data is

extremely non-uniform it may happen that one of these

regions may be empty. In the case, where <7,3> is empty,

this needs to be merged with some region, using the merging

strategy. The target region with which the empty region

can be merged either is enclosed immediately, a buddy, or

the enclosing region. Unfortunately, none of these regions

are present in the same directory.

It is contradictory to have empty regions in the BANG

file structure. The author proposes a new strategy to

merge such empty regions.

Look for the siblings of the empty region, i.e

children of its parent. In the current example, <7,3>

Figure 3.5 is the empty region, and <3,2> is the parent.

Any region that is enclosed by <3,2> is called its child.

Any such child that is in the same bucket as that of the

empty bucket can be chosen to be merged with.

20

In the above example, Figure 2.5b we can merge <7,3>

with <11,4>. Rename the area covered by these two as <3,2>

Figure 2.6a. Delete the entry <7,3> replace entry <11,4>

by <3,2> Figure 2.6b. This strategy allows us to have

better directory occupancy.

<19,5> 91,7

<3,4> <3,2>
67,8

<17,5>

<1,2>

(a). Regions

21

< 1,2>
<1,1> ~-----> < 3,2>--~>replaced in place

<17,5> of <11,4> and <7,3>
<91,7> is removed.

(a) Directory Entries

Figure 2.6. After Merging Empty Region

Steps involved in merging the empty region:

- Locate the sibling in the same subdirectory.

- Replace the sibling by an entry, which was the common

parent to both the empty and the sibling *·
Delete the entry corresponding to the empty region.

Another point that needs to be addressed during

directory splitting is that regions cannot be considered as

points (as in the bucket splitting). Unlike points,

* Consider the binary representation of the two regions

being merged.

<7,3> <11,4>

1 1 1 1 0 1 1

Up to level 2, they have the same parent, which is 3.

This is decided by looking at the common bits starting from

the least significant position. Thus in the above example,

<11,4> is replaced by <3,2>.

22

regions have boundaries, and may be spread into two

directory buckets (as explained in the above example). At

every step of balancing it is necessary to see if any

region gets divided into two directories, and if it does,

ensure that there are no empty regions.

Creation of Empty Regions During The

Deletion of Records

It is not unusual to see some empty buckets during

deletion. Up to a point the empty buckets can be merged

with another region according to the merging strategy. But

at some point merging is no longer possible. In the

example, Figure 2.7, there are 46 buckets in the

subdirectory. At the time of deletion, as the capacity of

a bucket falls below threshold it gets merged, Figure 2.8.

At the end of deletion, there are 39 buckets. Out of these

7 are empty (about 17.94%); further merging is not

possible.

As suggested before, these empty buckets can be merged

with their siblings. Another possibility is to convert all

the buddies into enclosing regions; then it is possible to

find an enclosing region. After merging we convert back

into buddies if possible.

< 5 1 3)
< 4 1 4)
(12 1 4)
< 14 1 4)
< 15 1 4)
< 0 1 5)
< 1 1 5)
(2 1 5)
< 5 1 5)
< 6 1 5)
(7 1 5)
< 9 1 5)
< 10 1 5 >
< 11 1 5)
< 13 1 5)
< 16 1 5)
< 17 1 5 >
< 18 1 5 >
< 19 5 >
< 22 1 5)
< 23 1 5 >
< 24 1 5)
< 25 1 5)
< 27 1 5)

_j ><413>

><614>
><714>

>< 5 3 ><513> I >-r-

><613>
><713>

< 35 1 6 >----,______
< 40 1 6))______s-->
< 58 1 6
< 0 1 7 >
< 2 7 >
< 3 1 7 >
(. 8 1 7)
(10 1 7)
(17 1 7)
(25 1 7)
(26 1 7)
< 65 1 7 >
(67 1 7)
(72 1 7)
(73 1 7)
< 75 1 7 >
(80 1 7)
< 82 1 7 >
< 83 1 7 >
(88 1 7)
< 90 1 7 >
(91 1 7)

merging not possible
according to the merging
strategy

Figure 2.7. Merging of Directory Entries
During the Deletion of Records

23

24

< 4 I 3

~=r> < 5 I 3 empty regions can not be
< 6 I 3 merged further
< 7 I 3
< 0 I 5 >
< 1 I 5 >
< 2 I 5 >
< 9 I 5 >
< 10 I 5 >
< 11 I 5 >
< 16 I 5 >
< 17 I 5 >
< 18 I 5 >
< 19 I 5 >
< 24 I 5 >
< 25 I 5 >
< 27 I 5 >
< 24 I 5 >
< 25 I 5 >
< 27 I 5 >
< 35 6 >

~> < 40 I 6 > empty regions
< 58 6 >
< 0 I 7 >
< 2 I 7 >
< 3 I 7 >
< 8 I 7 >
< 10 I 7 >
< 17 I 7 >
< 25 I 7 >
< 26 I 7 >
< 65 I 7 >
< 67 I 7 >
< 72 I 7 >
< 73 I 7 >
< 75 I 7 >
< 80 I 7 >
< 82 I 7 >
< 83 I 7 >
< 88 I 7 >
< 90 ' 7 >
< 91 I 7 >

Figure 2 . 8 . Directory Entries at the End of
Deletion of Records

Dependence Of Directory Entries

On The Order Of The Data

An interesting feature of the BANG File structure is

that a permutation of a data set can result in different

entries in the directory; both sets of directory entries

correctly represent the same data. Thus the BANG file

directory entries are NOT UNIQUE FOR A GIVEN SET OF

DATA. This is shown below.

Let the data bucket capacity be 2 and total records be 6.

Consider the situation, when data arrives in order 'A':

1, 2, 3, 4, 5, 6 , Figure 2. 9.

* * 1 2
<2,2>

*
1

<2,2>

* 4

* 5
I

I
<0,3>

*
3

*
2

3

*

<0,0>

(a) First Split

*
6

<0,0>

(b) Second Split

<0,0>

I

<0,0>

I

Figure 2.9. Partitioning for a Data Arriving
in Order 'A'

25

26

When the points are considered in the above order, 3

regions are created, <0,0>, <2,2>, and <0,3> in all.

Consider the above records arriving in a different

order- 'B': 1, 2, 6, 5, 3, 4 Figure 2.10.

* * * <0,0>
1 2 6 I

<!,1>
I

<1,1>
<0,1> <1,1>

(a) First Split

* * * <0,0>
1 2 6

<2,2>
<0,1> <1,1>

<0,2> <1,1>

*5 n
<0,2> <2,2>

(b) Second Split

* * * <0,0>
1 2 6

<2,2>

*4

*5

I
<0,3>

<0,1> <1,1>
<1,1>

3
* n
I

<4,3>

<0,2> <2,2>

~
<0,3> <4,3>

(c) Third Split

Figure 2.10. Partitioning for The Data Set
Arriving in Order 'B'

When the data points arrive in order 'B' we have 4

regions, as opposed to three with order 'A'.

The dependence of the directory on the order of the

data was tested with a simulated data example. Shuffling

of the data set was achieved by a random permutation of a

27

single data set, with parameters listed below. The results

of the data permutation on data and directory occupancy are

listed in Table I, while the number of disk accesses for

range and partial queries are compared in Tables II - V.

The comparison confirms the earlier results.

Dimension 4 (Attributes 'a','b','c','d')

Total records 5,000

Data Bucket Capacity 32

Directory Bucket capacity 8

28

TABLE I

DATA AND DIRECTORY OCCUPANCY

Data Directory Disk
Occupancy Occupancy Accesses

Before
Shuffling 22.12 6.10 20,881

After
Shuffling 22.22 5.62 20,801

TABLE II

RANGE QUERY FOR 'abed'

Range Size 10% 30% 50%

Records Found 0 11 76

Disk Accesses
Before shuffling 3 26 124

Disk Accesses
After Shuffling 3 24 119

29

TABLE III

PARTIAL QUERY FOR 'a'

Range Size 10% 30% 50%

Records Found 502 1490 2515

Disk Accesses
Before shuffling 50 116 185

Disk Accesses
After Shuffling 54 125 191

TABLE IV

PARTIAL QUERY FOR 'abc'

Range Size 10% 30% 50%

Records Found 3 70 302

Disk Accesses
Before shuffling 6 33 125

Disk Accesses
After Shuffling 7 38 131

TABLE V

PARTIAL QUERY FOR 'cd'

Range Size 10% 30% 50%

Records Found 10 105 309

Disk Accesses
Before shuffling 115 143 229

Disk Accesses
After Shuffling 108 147 228

CHAPTER III

TECHNIQUES FOR DYNAMIC CHANGE

OF ATTRIBUTES

As mentioned in the introduction, the ability to add

and delete attributes from an existing data base is an

important requirement for most practical problems. The

BANG file is known to be an efficient structure for very

large databases because it minimizes accesses to secondary

storage. However, without an efficient method for addition

and removal of attributes, the practical utility of BANG

files is severely limited. Before describing new

approaches for addition and removal of attributes, we will

describe an intuitively obvious approach for performing

this task which we term the "Naive approach".

Naive Approach

An attribute {or a key) in a multidimensional database

can be associated with a dimension. An N attribute

database can be considered as a hyperrectangle in an N -

dimensional space. The number of attributes determines the

dimensionality of the problem.

The BANG file structure provides a mapping function

between the buckets containing the data records, and

30

31

regions in N dimensional space that contain the data

values. Algorithms for existing BANG files consider the

number of attributes fixed. Changing attributes for some

or all records requires the creation of a new BANG file,

with the new (modified) number of attributes which requires

rewriting the data in every data bucket. Since these data

buckets are usually resident on secondary storage, this

approach is heavily penalized in data access time. The

shortcomings of this method are particularly evident when

the number of attributes is altered for only a small number

of records.

Alternate approaches for the addition and deletion of

attributes that are more efficient in terms of accesses to

secondary storage. To distinguish the two new methods from

the existing approach, the 'naive approach' or the single

BANG file approach will be referred to loosely as the

'Traditional' approach.

Directory Modification Technique

When an attribute is added or removed there is a

change in number of dimensions; under certain assumptions

(which will be explained later in this section), it is

possible to modify the directory entries without

redistributing the records. This leads to significant

savings in disk access time over the 'Traditional'

approach. For certain special simple instances, the

directory modification approach is not difficult to

32

implement; however, for more general problems, the

structure of the BANG file introduces serious

complications. A number of problems occur at almost every

stage, and it is necessary to develop individual approaches

to handle these problems which make this a highly involved

and complex approach. An explanation of the source of

these problems with examples, and methods to overcome the

difficulties appear below.

It is useful to consider addition and deletion of

attributes separately.

Addition Of Attribute/s

In order to illustrate the basic idea, it is helpful

to consider a special, simple problem where the addition of

an attribute can be done without undue complications. A

database with two attributes can be represented as a

rectangle in a 2-D space, say the X-Y plane. The addition

of a third attribute changes the representation to three

dimensions, X,Y, and Z. The 2-D distribution forms the X-Y

plane in the 3-D case, which is shown in Figure 3.1. All

the points in the X-Y plane in 2-D still lie in X-Y plane

in 3-D, except that the values of the Z coordinate are

zero.

33

II'Y y.~y

* * * *
/'\

1c * :z /
/

* *
> "

X X
2-D 3-D

Figure 3.1. Distribution of Set of Points in 2-D and 3-D

Attribute Addition In The Presence

Of Buddies

We will consider next a problem where the above simple

approach cannot be employed.

Figure 3.2 shows the data distribution in a 2-D

database. Let us consider the situation, when the region

<3,2> Figure 3.2a, is split into buddies, and the

corresponding partitions for 3-D.

<2,2> <3,2> <2,2> 3,3 7,3

<0,2> <1,2> <0,2> <1,2>

(a) Before Splitting (b) After Splitting

Figure 3.2. Splitting of Region <3,2> in 2-D

34

In 2-D, after partition on the X axis, the entry

<3,2>, results in buddy regions <3,3>, and <7,3> Figure

3.2b. But in 3-D, Figure 3.3 due to the extra partition on

the Z axis, the entry <3,2> results in enclosing regions

<3,2>, and <11,4> Figure 3.3b.

<7,3> ---

<2,2> <3,3> <2,2>

<0,2> <1,2> <0,2> <1,2>

(a) (b)

3,2 3,2

I I
3,3 7,3 3,3 7,3

I
3,4 11,4

Figure 3 . 3 . Splitting of Region <3,2> in 3-D

On the other hand the corresponding entries of <7,4>,

and <15,4> have remained buddies, <11,5>, and <27,5>

respectively, as shown in the Figure 3.4.

/ / /
/ /

15,4
3,3

<2,2> 7,4

3,2 27,5
/

<2,2> 11,5 v
v

<0,2> <1,2> <0,2> <1,2> v
(a) 2-D (b) 3-D

Figure 3.4. Buddies in 2-D and 3-D due to Partition
on Y-axis

The reason for this is that balance was obtained in

the first partition on the Y-axis in both the cases.

The increase in the level is due to the additional

split in the Z direction at the end of every X,Y cycle.

The region number is controlled by the bit settings

associated with each partition level. The addition of an

attribute changes the partition sequence (zyxzyx instead

of yxyx) and consequently alters the bit settings in the

region. For simple modifications, that do not involve

35

buddies a transformation function can be derived to account

for the changes in the dimensionality of the database. As

the levels increase, transformation from one dimension to

another requires more thought. For certain levels the

buddy regions in 2-D may not remain buddies in 3-D as

pointed out in the example before. This is due to the

extra partition on the Z axis. In 2-D at the end of every

36

cycle i.e. after a partition on Y-axis, the next partition

is on the X-axis. If there is a balance after a first

partition on X-axis, the resulting regions become buddies.

If the same data is considered in 3-D, after the Y

partition, it has to go through the Z partition and then

the X partition, to achieve the balance. Since this

requires more than one partitioning, it results in

enclosing regions.

It is clear that the buddies may create complications

during modification of the directory entries. Factors like

directory entry level, the axis along which partition has

taken place, and presence of buddies need to be taken into

consideration during transformation of directory entries.

Modification Of Directory Entries

The steps involved in modification of directory

entries to add an attribute are:

1) Delete the n records which require that an additional

attribute to be added, fro~~ the existing database

2) Transform the directory entries

3) Insert the n records with new number of attributes to

the database with modified attributes.

Some assumptions are necessary for the success of this

approach, and are listed below:

There is a priori knowledge of the maximum number M (or

upper bound) of attributes the database will have.

Each record has enough space to hold the maximum

number of attributes.

- All the values of attributes of N+l through Mare set

37

to zero, where N (N < M) is the current dimension of the

database.

Steps 1 and 3 deal with the standard record update in

a BANG file and do not need an explanation. Step 2 is the

heart of the new method, and will be discussed in detail.

Transformation of Directory Entries

As discussed previously, the presence of buddies do

not allow for a simple transformation of directory entries.

The complications of the buddies can be eliminated by an

additional step in the transformation that converts buddies

into enclosing regions. Through this step, a simple yet

general transformation can be formulated. Given a set of

directory entries for N dimensional data, the steps for

transformation are:

i) Convert buddies into enc asing regions for the

existing N dimension.

ii) Transform the entries obtained from step i, using the

transformation of single entries, described below.

This gives the entries for N+l dimensions in the

enclosing regions form.

iii) Convert the enclosing regions into buddies, which

reflect the addition of the N+lth dimension.

38

Transformation Of Single Entries Let us consider

the transformation, for entries <7,3>, <18,5>, and <81,7>

individually. Take the binary representation of the region

of the entry, <7,3>

X y X

1 1 1 --------->
X Z y X

1 .Q_ 1 1

< 7,3 >is transformed to <11, 4>

X

1

y

0

X

0

y X

1 0

X Z y

------> 1 .Q_ 0

X Z y X

0 .Q_ 1 Q_

<18, 5> is transformed to <66,7>

X y X

1 0 1

y X y

0 0 0

X

1

X Z X y Z y X Z y X

------> 1 .Q_ 0 1 0 0 0 .Q_ 0 1

<81, 7> is transformed to <577,10>

During the transformation, a bit 'O'(underlined) is

inserted at the end the x,y cycle, and it corresponds to

the new dimension (attribute) z. The reason is, all the z

values are zero, and every time a partition is made on Z

axis, it does not affect the balancing since all the

entries still lie in the lower portion after partition.

A function (procedure MOD_SUBDIR()) for the transformation

of entries is included in the Appendix.

39

An Example of Transformation of

Directory Entries

Every entry in the directory is transformed as

explained above, except that we have to account for the

existence of the buddy of the entry being transformed. As

an illustration, let the contents of a subdirectory be as

indicated in Figure 3.5. The operations needed to

transform the directory are described below.

Original Enclosing Transformed to 3-D
2-D 2-D Enclosing 3-D

< 3,2> < 0,2> < 0,2> < 0,2>

< 0,3> <0,2> < 1,2> < 1,2> < 1,2>

< 1,3> <1,2> < 2,2> < 2,2> < 2,2>

< 4,3> < 3,2> < 3,2> < 3,2>

< 5,3> '- < 4,3> < 8,4> < 8,4>

< 2,4> r-2,3>2,2 < 5,3> < 9,4> < 9,4>

< 6,4> >6,~ < 6,3> <10 1 4>- >10,5> < 10,5>

<10,4> <10,4> <18,5> < 18,5>

<14,4> ,___ <14,4> <26,5>- < 26,5>

<15,4> <15,4> <27,5> < 27,5>

<58,6> <58,6> <210,8> <210,8>

Figure 3.5. Transformation of Directory Entries During
the Addition of Attribute

40

Start from the last entry in the bucket. If its

buddy exits, then convert the entry into an enclosing

region. If a buddy is not found, then proceed to the next

entry. Also, if the entry itself is a higher buddy, go

to the next entry. Only the lower buddy gets converted

into enclosing region. Process all the entries. In the

above example, entries <6,3>, <2,3>, <1,3>, and <0,3>

get converted.

At the end of this step, we have buddy free entries

in the original dimension. From this point onwards, every

entry is transformed individually as explained for

individual entries. The transformed entries are the

entries of the database with the increase of attribute.

These entries do not contain any buddies. The last

step is to convert the enclosing regions into buddies if

possible. In the above example, entry <10,4> gets

converted into <10,5> because of <26,5>; this defines the

areas more specifically.

The final entries are th~ modified entries. These

represent the original data which is N dimensional,

modified to N+1 dimensions, and the values corresponding to

the N+lth dimension are zero.

R~moval_ Qf_ The Attribute~

The removal of attributes is also based on the

geometrical approach. In this case it is necessary to

assume that the values of the attributes that are being

41

removed are zero.

When any dimension is removed from a data base with H

dimensions, the data can be represented in H-1 (L)

dimension by suitable modifications to the directory

without redistributing the records. As in addition of

attributes, the simple approach fails in the case of

buddies, and it is necessary to adopt a more sophisticated

approach.

Modification of The Directory Entries

Consider an H-dimensional data distribution in a data

base; assume that we want to lower the dimension to L. Set

all the appropriate coordinate values to zero. Given a set

of directory entries for H dimensional data, the steps in

modifying the directory to a lower dimensional distribution

are as follows:

i. Delete then records for which attributes needs to be

removed.

ii. Modify the directory entries.

iii. Insert the n records with the modified attributes.

Step ii. is again the key part for the removal of an

attribute and is discussed in detail below.

Transformation o~ DirectQKY Entries

The steps for transformation of entries follow the

steps in the addition of attributes and are listed below.

i. Convert all the buddies into enclosing regions.

42

ii. Transform the entries using transformation of single

entries described below, this gives the entries for L

dimensions.

iii. If possible, convert the enclosing into buddies.

At the end of step iii. we have the L dimensional data.

Transformation of Single Entries Let us

single entries for a 3-D data, with X, Y, and

For an entry <26,5> remove X attribute.

y X z y X y z y

1 1 0 1 0 -------> 1 0 1

Entry <26,5> is transformed into <5,3>

For the same entry <26,5> remove Y attribute

y X Z y X

1 1 0 1 0 ------->

X

1

z

0

Entry <26,5> is transformed into <4,3>

When Z attribute is removed,

y X Z y X

1 1 0 1 0 ------->

y

1

X

1

y

1

X

0

Entry <26,5> is transformed into <12,4>

X

0

consider

z axis.

When any attribute is being removed, the corresponding

bits are dropped from the original bit string to obtain the

modified entry. This is possible because this attribute

does not exist any more, and thus during balancing, there

is no partitioning on the dimension being removed. A

43

function (procedure MOD_SUBDIR_DECR()) to remove attributes

is presented in the Appendix.

An Example of Transformation of

Directory Entries

Figure 3.6 illustrates the directory modification

associated with the removal of an attribute from a 3-D data

set. The steps are similar to those described in the

addition of attributes.

Original
3-D

<0,2>

<1,2>

<2,2>

<3,2>

<8,4>

<10,4>

<11,5>

<17,5>

<10,7>

<24,7>

<75,7>

Enclosing
3-D

<0,2>

<1,2>

<2,2>

<3,2>

<8,4>

<10,4>

<11,5>

<17,5>

<10,7>

<24,7>

<75,7>

Enclosing
2-D

<0,2>

<1,2>

<2,2>

<3,2>

<4,3>

<6,3>

<7,4>

<9,4>

<6,5>

<12,5>

<23,5> -

Modified
2-D

> <0,3> <1,2>

<3,2>

><2,3> <0,3>

<2,3>

<4,3>

<6,3>

> <7,5> <9,4>

<6,5>

<7,5>

<12,5>

<23,5>

Figure 3.6. Transformation of Directory Entries
During the Removal of Attribute

44

There are no buddies in the original 3-D entries.

Consequently the entries remain unchanged. These entries

are transformed as single entries into 2-D. At this stage

all the regions are in the enclosing form. It is possible

to convert some of the entries into buddies. The enclosing

entry <0,2>, and entry <4,3> together form buddies, thus

entry <0,2> can be converted to <0,3>. Similarly entries

<2,2> and <7,4> get converted into <2,3>, and <7,5>

respectively. At the end of the modification, the entries

represent the original database with 2 attributes.

The 'Directory Modification' approach has been

implemented for both addition and removal of attributes,

and the results for various data are presented in Chapter

IV. It should be noted that the modified entries, do not

exactly match the entries obtained from redistribution of

records, for that dimension. This is because the directory

entries are not unique (as pointed out in Chapter II), and

there will not in general be perfect agreement between the

two sets of directory entries.

Multiple BANG Files

This approach for the addition and removal of

attributes differs from the previous technique by

maintaining separate BANG files for each unique combination

of attributes

Multiple files are generated to accommodate changes in

the dimension or the combination of attributes in the

45

database. Addition, and deletion of attributes are

described first followed by the organization of the BANG

files.

Addition Of Attributes

Let there be a database with 2 attributes say 'a' I and

'b' 1 stored in file Fl Figure 3.7a. A third attribute 'c'

needs to be added to some of the records 2, 41 and 5.

Records File Fl File Fl File F2

1 a1 1 bl all bl a2, b2, c2
2 a2 1 b2 a3, b3 a4, b4, c4
3 a3, b3 a6 I b6 a5, b5, c5
4 a4, b4
5 aS, bS
6 a6, b6

(a) Before Addition (b) After Addition

Figure 3. 7. Addition of Attribute I C I

Remove the records 2 1 4, and 5 from the existing file

Fl. Create a new BANG file F2 1 for three attributes and for

the combination 'abc' (if nonexistent), and insert records

2,4, and 5 with the new attribute value into file F2.

Figure 3.7b shows the files Fl, and F2 after the addition

of the third attribute.

All the files are independent of each other. Any

46

update or query can be performed on individual files as in

single BANG file.

Steps To Add Attributes Consider a BANG file with N

attributes. If a new N+lth attribute is added to some of

the records (say n),~the following steps are needed:

1. Delete the n records with N attributes from the

existing file.

2. Check if a BANG file with N+l attributes and the

required combination of attributes exists.

- If it exits, insert the n records with N+l attributes

into the existing N+l dimensional BANG file.

- If it does not exist, create a new BANG file, and

insert the n records with new N+l attributes into it.

Deletion Of Attributes

Deletion of the attribute is done along the same lines

as addition of attributes. In the above example, if the

attribute 'c' is removed from the third record in file F2,

this record is removed from F2, and inserted back into Fl.

Instead of attribute 'c', if attribute 'b' is removed it

will have to be put in a new file F3, since the file for

combination 'ac' does not exist. Figure 3.8a, and Figure

3.8b show the file F2, before and after removing the

attribute 'b' for the third record.

Records File F2 File F2 File F3

1
2
3

(a)

a2, b2, c2 a2, b2, c2 aS,
a4, b4, c4 a4, b4, c4
aS, bS, cS

Before Deletion (b) After Deletion

Figure 3.8. Before and After Deletion of
Attribute 'b' from record #3

cS

Steps to remove an attribute can be summarized as

below.

47

Steps Tq Remov~ Attributes Let there be a BANG file H

attributes. A certain attribute needs to be removed for

some of the records, say n. New number of attributes for

these records be L, where L = H - 1 . Steps involved in

removing an attribute are given below.

1. Delete the n records with H attributes from the existing

file.

2. Check if file with L attributes and required combination

exists.

- If it exists, insert the n records with new attribute

values into this file.

- If it does not, create a new BANG file for the new

combination of attributes and insert the n records.

Organization Of Multiple BANG Files

Consider the 'Traditional' BANG file, where all the

48

records with different combination are stored in one big

file FO, it would look as shown in Figure 3.9a. The

'Multiple BANG' files, corresponding to the same data is

shown in Figure 3.9b.

Traditional BANG file FO Multiple BANG files

a 0 c d I a c d

a b 0 0

I a b
a b c 0

a 0 c d I a b c I
a b c d

I dl a c

I a b c d

(a) Traditional (b) Multiple BANG

Figure 3 . 9 . Record Distribution in 'Traditional', and
'Multiple BANG' Files

In the above data all the records do not have all 4

attributes. Instead of maintaining one large BANG file with

four attributes, the records can be distributed into

different BANG files according to the number and

combinations of the attributes. Although 'ab' and 'ac'

have the same number of attributes, the combination is

different and thus are stored in separate files.

49

Each BANG file contains a unique set of attributes. As

the modifications (insertion/deletion) of attributes

increase, the combination of attributes also increase,

resulting in a proliferation of files (2n - 1, in the

worst case, where n is the number of attributes). In the

above example, there are 4 attributes, taking all

combinations into consideration, there can be 15 files.

However, in practical situations, the number will be

considerably lower, because all the combinations may not be

present.

For any operation, addition/deletion of records, or

query it is required to search the BANG file associated

with that set of attributes. The operation is performed

after locating the required file(s). In case of partial

queries, it may be necessary to search more than one file;

thus it is essential that we organize the collection of

BANG files in such a way that the search is reasonably

efficient.

There are many possibili~ies; one is to store the BANG

filename as the nodes of the binary search tree. This

structure is quite efficient for an exact query; for a

partial query, more than one BANG file may need to be

searched. In the worst case, when all the files are to be

searched, this will cause a search of the entire tree.

Linked lists (with BANG filename as its elements), are

not as efficient as trees for exact queries. But it is

easy to update the lists which becomes necessary due to the

50

addition/removal of attributes. To date there is no best

structure available to process range/partial query

efficiently. The author proposes the following structure

to organize the BANG files.

Let there be 4 attributes ('a', 'b', 'c', 'd') in a

database. Figure 3.10 below illustrates all the possible

BANG files and organization of these files using a linked

list data structure.

An array with the size of the number of attributes is

maintained. Each element of the array is associated with a

list. Each element in a list is BANG a filename, and the

filenames are arranged in alphabetical order.

-
1
>~>~>~>IL--d----1

-
2

>G->G->0-->B-->0->0
-

3
>~>~>~>~ bed

-
4

>I abed

Figure 3.10. Organization of Multiple BANG Files

Note : symbol ab represents a BANG file with
attributes 'a', and 'b'.

51

For an exact query of attributes 'abed', only the list

associated with four attributes is searched. In case of a

query involving attributes ·'a' and 'd', lists of 2, 3, and

4 attribute need to be searched. In this particular case,

it becomes a range query for file 'ad' and partial for

files 'abd', 'acd', 'bed', and 'abed'. Once the files are

found, operations on each file are handled as in the case

of a single BANG file.

During addition and removal of attribute, the major

disk accesses are due to the updates of records, with

changes in number of attributes. There is no need to

rewrite the entire database. Since there are separate

files for each unique set of attributes, there is no need

to deal with maximum attributes for every operation, as in

the 'Traditional', and 'Directory Modification' techniques.

CHAPTER IV

RESULTS AND DISCUSSIONS

Two new techniques, 'Directory modification', and

'Multiple BANG' files were developed and tested for dynamic

modification (addition, and removal) of attributes.

Comparison were made with the 'Traditional' BANG file.

Results, discussion, and simulation specifications for each

method are provided separately. Below are some of the

common specifications.

The 'C' language is used for simulation programming on

XELOS, which is a Perkin-Elmer 3230 licenced product

derived from UNIX SYSTEM V, Release 2.0. Uniform random

distributions are used to generate test files. Performance

evaluation is based on the number of disk accesses for each

of the two proposed techniques 'Directory Modification',

and 'Multiple BANG' Files, compared with the 'Traditional'

BANG file method.

Results and Discussions for

'Directory Modification'

Evaluation of this technique is based on the number of

disk accesses for addition and removal of attributes as

compared to the number of disk accesses with the

52

'Traditional' BANG file method.

The parameters for this BANG file structures are as

follows.

Data bucket capacity

Block size

Directory bucket capacity

Test file size

64

2048 bytes

200

Test File I

Test File II

(n = 1,000, 2,000, and 5,000)

(n = 1,000, 2,000, and 5,000}

Percent of data, to which an attribute was added

10%, 25%, 40%, and 50%

Addition of attribute (2-D ---> 3-D)

53

Start with a 2 dimensional data and modify into 3

dimensional data (Using the 'Directory Modification'

technique explained in Chapter III). The algorithm,

TRANS_ENTRY() (Appendix) is set to increment one attribute

at a time, but if necessary, can be upgraded to handle more

than one increment at a time.

Removal of attribute (3-D ---> 2-D)

Start with a three dimensional data, modify it into

two dimensional data (using the 'Directory Modification'

technique). The algorithm BACK_TRANS() (Appendix) reduces

one attribute at a time, however it can be changed to

remove more than one attribute at a time.

The 'Directory Modification' technique was used on 2

sets of data, with data sizes of 1,000, 2,000, and 5,000

54

records in each set. The two sets of data represent

different realizations of random numbers and are used to

estimate the variability of the results. For each data

size, disk accesses, data occupancy, and directory

occupancy were computed for addition/deletion of attributes

for 10, 25, 40, and 50% of the total number of records.

The results for the addition are provided first in Tables

VI through XI, followed by the results for the deletion in

Tables XII through XVII.

The results of the disk accesses for addition of

attributes corresponding to the first and second set are

shown on Figures 4.1 and 4.2. They have been normalized by

the data accesses for recreation of the BANG file from

scratch. The results for deletion are shown in Figures 4.3

and 4.4.

The normalized disk accesses show consistent

behavior during addition and deletion of attributes, for

both data sets and also between the three data sizes. The

relationship can be well approximated by a line through the

origin with a slope of 2, especially when the number of

records modified is low; consequently, it is seen that the

'Directory Modification' technique is superior to

regeneration of the BANG file for addition/deletion of

attributes for half the records of the data set.

55

TABLE VI

ADDITION OF ATTRIBUTE TEST FILE I (N = 1,000)

ADDITION OF ATTRIBUTE FOR 10\ OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 45.45 22 4, 067

TECHNIQUE 1 45.45 22 806

ADDITION OF ATTRIBUTE FOR 25\ OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 45.45 22 4,067

TECHNIQUE 1 40.00 25 2,018

ADDITION OF ATTRIBUTE FOR 40\ OF DATA

STATISTICS DATA OCCUPANCY DlR OCCUPANCY DISK ACCESSES

TRADITIONAL 50.20 20 4,061

TECHNIQUE 1 43.47 23 3,216

ADDITION OF ATTRIBUTE FOR 50\ OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 47.61 21 4,064

TECHNIQUE 1 43.47 23 4,028

56

TABLE VII

ADDITION OF ATTRIBUT~ TEST FILE I (N = 2,000}

ADDITION OF ATTRIBUTE FOR 10% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 47.61 42 8,127

TECHNIQUE 1 43.47 46 1,604

ADDITION OF ATTRIBUTE FOR 25% OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 52.63 38 8,115

TECHNIQUE 1 40.00 50 4,022

ADDITION OF ATTRIBUTE FOR 40% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 48.78 41 8,124

TECHNIQUE 1 45.45 44 6,436

ADDITION OF ATTRIBUTE FOR 50% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 43.47 46 8,139

TECHNIQUE 1 43.47 46 8,056

57

TABLE VIII

ADDITION OF ATTRIBUTE TEST FILE I (N = 5,000)

ADDITION OF ATTRIBUTE FOR 10% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 38.75 129 20,388

TECHNIQUE 1 37.59 133 4,020

ADDITION OF ATTRIBUTE FOR 25% OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 39.68 126 20,379

TECHNIQUE 1 34.72 144 10,056

ADDITION OF ATTRIBUTE FOR 40% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 45.87 109 20,328

TECHNIQUE 1 35.97 139 16,126

ADDITION OF ATTRIBUTE FOR SO% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 44.44 113 20,340

TECHNIQUE 1 40.00 125 20,186

58

TABLE IX

ADDITION OF ATTRIBUTE TEST FILE II (N = 1,000)

ADDITION OF ATTRIBUTE FOR 10\ OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 43.47 23 4,070

TECHNIQUE 1 40.00 25 812

ADDITION OF ATTRIBUTE FOR 25\ OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 45.45 22 41061

TECHNIQUE 1 40.00 25 2,010

ADDITION OF ATTRIBUTE FOR 40\ OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 50.00 20 4,061

TECHNIQUE 1 41.66 24 3,224

ADDITION OF ATTRIBUTE FOR 50% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 47.61 21 4,064

TECHNIQUE 1 45.45 22 4,026

59

TABLE X

ADDITION OF ATTRIBUTE TEST FILE II (N = 2,000)

ADDITION OF ATTRIBUTE FOR 10% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 47.61 42 8,127

TECHNIQUE 1 44.44 45 1,606

ADDITION OF ATTRIBUTE FOR 25% OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 50.00 40 8,121

TECHNIQUE 1 40.81 49 4,020

ADDITION OF ATTRIBUTE FOR 40% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 44.44 45 8,136

TECHNIQUE 1 42.55 47 6,408

ADDITION OF ATTRIBUTE FOR 50% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 43.47 46 8,139

TECHNIQUE 1 43.47 46 8,052

60

TABLE XI

ADDITION OF ATTRIBUTE TEST FILE II (N = 5,000)

ADDITION OF ATTRIBUTE FOR 10% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 39.06 128 20,385

TECHNIQUE 1 37.59 133 4,024

ADDITION OF ATTRIBUTE FOR 25% OF DATA

STATISTICS DATA OCCUPANCY DIR BUCKETS DISK ACCESSES

TRADITIONAL 41.32 121 20,364

TECHNIQUE 1 34.72 144 10,060

ADDITION OF ATTRIBUTE FOR 40% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 46.29 108 20,325

TECHNIQUE 1 35.71 140 16,116

ADDITION OF ATTRIBUTE FOR 50% OF DATA

STATISTICS DATA OCCUPANCY DIR OCCUPANCY DISK ACCESSES

TRADITIONAL 44.24 113 20,340

TECHNIQUE 1 40.00 125 20,184

METHOD

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

METHOD

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

TABLE XII

REMOVAL OF ATTRIBUTE
TEST FILE I (N = 1000)

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10% 25% 40% 50%

41.66 47.61~ 47.61 47.61

24 21 21 21

810 2,014 3,219 4,020

TABLE XIII

REMOVAL OF ATTRIBUTE
TEST FILE I (N = 2000)

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10\ 25% 40% 50\

44.44 44.44 44.44 44.44

45 45 45 45

1,626 4,040 6,448 8,052

61

TRADITIONAL

47.61

21

4,060

TRADITIONAL

44.44

45

8,136

METHOD

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

METHODS

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

TABLE XIV

REMOVAL OF ATTRIBUTE
TEST FILE I (N = 5000}

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10% 25% 40% 50%

39.37 39.37 39.37 39.37

127 127 127 127

4,016 10,087 16,202 20,226

TABLE XV

REMOVAL OF ATTRIBUTE
TEST FILE II (N = 1,000)

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10% 25% 40% 50%

43.47 43.47 43.47 43.47

23 23 23 23

806 2,006 3,125 4,038

62

TRADITIONAL

39.37

127

20,382

TRADITIONAL

43.47

23

4,070

METHODS

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

METHOD

DATA OCCUPANCY

DIR OCCUPANCY

DISK ACCESSES

TABLE XVI

REMOVAL OF ATTRIBUTE
TEST FILE II (N = 2,000)

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10% 25% 40% 50%

41.66 41.66 41.66 41.66

48 48 48 48

1,611 4,036 6,454 8,076

TABLE XVII

REMOVAL OF ATTRIBUTE
TEST FILE II (N = 5,000)

DIRECTORY MODIFICATION

REMOVAL OF ATTRIBUTE FOR

10% 25% 40% 50%

49.01 49.01 49.01 49.01

102 102 102 102

4,020 10,050 16,082 20,122

63

TRADITIONAL

42.55

47

8,142

TRADITIONAL

49.01

102

20,308

N 100
0
R
A
t.1
L 80

I
z
E
D 60

D
I
s 40
K

A
c
c 20
E
s
s
E 0 s

N 100
0
R
t.1
A
L 80

I
z
E
D 60

D
I
s 40 K

A
c
c 20
E
s
s
E 0 s

99.14 N 100
0
R
t.1

79. A 79.
L 80

I
z
E
D 60

49. D 49.
I
s 40 K

A
19. c 19. c 20

E
s
s
E 0

0 5 10 15 20 25 30 35 40 45 50 s 0 5 10 15 20 25 30 35 40 45
% OF RECORDS MODIFIED % OF RECORDS MODIFIED

(a) Test File I (n = 1 ,000) (b) Test File I (n = 2,000)

99.24

79.

49.

19.

0 5 10 15 20 25 30 35 40 45 50

% OF RECORDS MODIFIED

(c) Test File I (n = 5,000)

Figure 4.1. Dependence of Normalized ~isk Acce7s7s on
Records Modified - Attr1bute Add1t1on

64

a8.98

50

N 100
0
R
A
M

80 L
I
z
E
D 60

D
I
s 40
K

A
c
c 20
E
s
s
E 0 s 0

N 100
0
R
M
A
L 80
I
z
E
D 60

D
I
s 40 K

A
c
c 20
E
s
s
E 0 s 0

65

99.06 N 100 98.113
0
R
M

79. A 78.
L 80

I
z
E
D 60

D
I
s 40 K

A
19. c 19. c 20

E
s
s
E 0 s 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45

% OF RECORDS MODIFIED % OF RECORDS MODIFIED

(a) Test File II (n 1 ,000) (b) Test File II (n = 2,000)

99.23

79.

49

19.

5 10 15 20 25 30 35 40 45 50
% OF RECORDS MODIFIED

(c) Test File il (n 5,000)

Figure 4.2. Dependence of Normalized Disk Accesses on
Records Modified - Attribute Addition

50

N
0
R
A
M
A
L
I
z
E
D

D
I
s
K

A
c
c
E
s
s
E
s

N
0
R
M
A
L
I
z
E
D

D
I
s
K

A
c
c
E
s
s
E
s

100 99.04 100 • I

N ,
I

I 0 I , R I I

7~~~ M '
80 A 80 79.~

~

' L I , I , I

I ' ' I z I ' I
I I

I E I
I I

60 ' D 60 I

I I

I I

I I

49,.tl D 49.$5 ,.
I

,.
I I

I s I , I
I

K 40
I

40 I I ,
I

I
I

I I , A I

I I

I c I

I
,

I c I

19.95 19.98
20 E 20

s
s
E
s

0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 .30 35 40

% OF RECORDS MODIFIED % OF RECORDS MODIFIED

(a) Test File I (n = 1,000) . (b) Test File I (n = 2,000)

100

80

60

40

20

I
I

I

,
I

I

I

49.,..8
I

I
I

I
I ,

I
' I

I
I

79~,Q

I ,
I

I

I
I

I

99.23 ,.
I

I
I

0 5 10 15 20 25 30 35 40 45 50

% OF RECORDS MODIFIED

(c) Test File I (n = 5,000)

Figure 4.3. Dependence of Normalized Disk Accesses on
Records Modified - Attribute Deletion

66

98.98
• I ,

I
I

I

'

45 50

67

100
99.21 100 99.18

N
0
R
t.4
A 80

L
I
z
E
D 80

D
I
s
K 40

A
c
c
E 20
s
s
E
s

0
0

(a)

N
0
R

100

M 80
A
L
I
z
E
D so

D
I
s
K 40

A
c
c
E 20
s
s
E
s

5

I

7~;7&
I

I ,
I

I ,
I

I
I ,

I
I ,

49.28
I'

I ,
I

I
I

I
I

I , ,
I

I
I

19.!

10 15 20 25 30 35 40

% OF RECORDS MODIFIED

Test File II (n

19~

, ,
I

I ,
,

I
I

49;,46 , ,
I

I

=

I ,
I

I

I
I

1,000)

, , ,

79JG
I

I ,

I

, ,
I

45

I ,
I

.
I

I
I

50

99.08
I' , ,

I

o~~~--~~~--~~~--~~

0 5 10 15 20 25 30 35 40 45 50

% OF RECORDS MODIFIED

(C) Test File II (n = 5,000)

N
, ,

0 I ,
R I ,
t.4

I

79.2$
A 80 ,•
L

I
I

I

I I
I z I

I

E I
I

D 80 I

,
,

I

D 49.~

I I' , , s I

K 40
I

I
I

I
I

A ,
' c , ,

c I

E 20
19.~

s
s
E
s

0
0 5 10 15 20 25 30 35 40 45

% OF RECORDS MODIFIED

(b) Test File II (n = 2,000)

Figure 4.4. Dependence of Normalized Disk Accesses on
Records Modified - Attribute Deletion

• I

50

68

The linear relationship reflects the two operations

of deletion and addition associated with 'Directory

Modification'. Since generation of a BANG file involves

only the operation of addition, the slope of the line is

two. For practical problems, a small number of additional

data accesses are required to handle directory splitting

and merging. Attribute addition, in general, results in

slightly lower data occupancy than with the BANG file

regenerated. The data occupancy appears to be lower for

about 25 to 40% of the records. Attribute deletion

however, does not show any decrease in the data occupancy.

The explanation for this is as follows:

attribute addition is accomplished by deleting a record

followed by inserting the new record with the additional

attribute. The deletion of records causes a decrease in

the data occupancy. The addition of an attribute is done

in a new dimension and consequently needs additional

directories leading to lower data occupancy. Deletion of

attribute is also accomplished by deletion of record.

However, this redistributes the data into a lower dimension

and is accomplished by a reduction in directory buckets.

Addition of the record is done later in a lower dimension;

this compensates for the loss of data occupancy.

Results And Discussions for

'Multiple BANG' Files

The second technique, the 'Multiple BANG' files

technique, stores the data in multiple files. A separate

BANG file is created for each unique combination of

attributes.

69

There are two important considerations in evaluating

the Multiple BANG file approach; one deals with the disk

accesses connected with the creation of the file, and the

second with the accesses connected with the queries. The

disk accesses associated with the addition, and deletion of

records are well understood: namely four disk accesses for

each operation. Consequently, testing of the method was

restricted exclusively to disk accesses resulting from

queries.

Queries may be divided into three types: exact

queries, range queries, and partial queries. In exact

queries, the values of all the attributes are specified,

and finding the record consists of searching the bucket in

which the record is stored. Exact queries require two disk

accesses for both 'Traditional' and 'Multiple BANG' files;

thus there is no need to perform any tests, since the

results are known in advance.

Range queries specify the range of all attributes. In

partial queries, the range is specified for one or more

attributes but not for all the attributes. All allowable

values are accepted for attributes whose range are not

70

specified.

This section deals with the comparison of disk

accesses for range and partial queries. The following

common set of BANG file parameters were used in testing all

queries:

Block size

Data bucket capacity

Directory bucket capacity

Results And Discussions For

Range Queries

2048 bytes

32

8

Comparison of disk accesses for the 'Traditional', and

the 'Multiple BANG' files were performed using the

following data examples.

Dimension

Data size

Range sizes

3

1,000, 2,000, and 5,000

10%, 20%, 30%, 40%, and 50%

Third attribute specified for 25%, and 50% of total records

The three attribute (3-D) simulation was carried out

for three data sizes. For each data size, the third

attribute was specified for 25%, and 50% of the total

records. Consider an example of 2,000 records with three

attributes 'a', 'b', and 'c'. A value for 'c' may be

specified for either 25% (500 records), or 50% (1000

records) for the data; the rest of the records are assigned

71

a zero value for 'c' attribute.

The range query was performed on three attributes,

and the range size was varied from 10 to 50% in increments

of 10%. Values of 0, and 50% were selected and the results

shown in Tables XVIII through XXIII represent average

values.

The results of the disk accesses for each of three

data sizes are consistent. Consequently, the results can

be discussed for one data size, namely, 5,000 records. The

data distribution is uniform, and the number of records

found in any range are given by the product of the range in

the three dimensions, the fraction of the records having

those attributes, and the total number of records.

For range query of 30%, with 5,000 records, and 50%

with a third attribute, TABLE XXIII the number of records

found should be

(.3)*(.3)*(.3)*(.5)*(5000) = 67.5

The number observed in the table is 70.5, which is within

5% of the expected value.

TABLE XVIII

RANGE RETRIEVAL (N = 1,000)
25% DATA WITH 3rd ATTRIBUTE

Range size 10% 20% 30%

Avg Records found 0.0 2.0 7.5

Avg Disk Accesses
for Traditional 3.0 3.0 6.0
BANG file

Avg Disk Accesses
for Multiple 2.0 2.0 4.0
BANG files

TABLE XIX

RANGE RETRIEVAL (N = 1,000)
~0% DATA WITH 3rd ATTRIBUTE

Range size 10% /0% 30%
..

Avg Records found 1.5 6.0 16.5

Avg Disk Accessed
for Traditional 2.0 3.0 8.0
BANG file

Avg Disk Accesses
for Multiple 2.0 2.0 5.0
BANG files

72

40% 50%

19.0 34.5

7.0 16.0

4.0 8.0

40% 50%

39.5 68.0

8.0 20.0

5.0 12.0

TABLE XX

RANGE RETRIEVAL (N = 2,000)
25% DATA WITH 3rd ATTRIBUTE

Range size 10% 20\ 30%

Avg Records Found 1.5 6.0 16.5

Avg Disk Accesses
for Traditional 3.0 4.0 10.0
BANG file

Avg Disk Accesses
for Multiple 2.0 2.0 5.0
BANG files

TABLE XXI

RANGE RETRIEVAL (N = 2,000)
50\ DATA WITH 3rd ATTRIBUTE

Range size 10\ 20\ 30%

Avg Records Found 2.5 12.0 33.0

Avg Disk Accesses
for Traditional 2.0 4.0 13.0
BANG file

Avg Disk Accesses
for Multiple 2.0 2.0 8.0
BANG files

73

40\ 50\

39.5 68.0

13.0 26.0

5.0 12.0

40% 50%

79.5 137.0

15.0 31.0

8.0 19.0

TABLE XXII

RANGE RETRIEVAL (N = 5,000)
25% DATA WITH 3rd ATTRIBUTE

Range size 10% 20% 30%

Avg Records Found 3.0 15.0 42.5

Avg Disk Accesses
for Traditional 3.0 8.0 21.0
BANG file

Avg Disk Accesses

40%

99.0

32.0

for Multiple 2.0 2.0 10.0 10.0
BANG files

TABLE XXIII

RANGE RETRIEVAL (N = 5,000)
50% DATA WITH 3rd ATTRIBUTE

Range size 10% 20% 30%

Avg Records Found 3.5 21 70.5

Avg Records Found
for Traditional 4.0 7.0 17.0
BANG file

Avg Records Found
for Multiple 3.0 4.0 14.0
BANG files

40%

177.5

32.0

17.0

74

50%

172.5

54.0

22.0

50%

317.5

58.0

35.0

75

Figures 4.5, 4.6, and 4.7 show the consistent

reduction in disk accesses for the 'Multiple BANG' files

technique over the 'Traditional BANG' file for all range

values. As the range increases, the difference gets larger,

and the superiority of the 'Multiple BANG' is clearly

demonstrated.

Results may also be analyzed in terms of the percent

of data to be searched. As the percentage of records with

the third attribute gets lower, the difference gets

larger,i.e the results are better for the case where the

third attribute is specified for 25% rather than for 50%.

The reduced disk accesses come from the searching of fewer

records.

Disk accesses show a non-linear dependence on the

range. In general disk accesses appear to increase as a

power of the range. This pattern is seen for the two cases

with 25%, and 50% of the third attribute defined.

Additionally a simple doubling from 25% to 50% is not

observed. Note that, the bucket capacity of 32 and

directory capacity of 8 can not provide statistically

significant results, when the number of records accessed is

small. This explains the non-smooth behavior observed for

the lower range queries.

The 'Traditional' BANG approach does not really scan

all the records. The specification of the range eliminates

certain buckets within the given region. A comparison of

disk accesses for the 'Traditional' BANG method, and

76

20

A
v 18
E
R 16
A
G H
E

D 12

I
s 10
K

8
A
c 6 c
E

4 s
s
E 2
s

0
1~ 20,. ~ 4~ 50,.

RANGE SIZE

""* Traditional - +- Multiple Bo\NG

(o) n = 1000 (251; with Jrd attribute)

20

A
v 18
E
R 16
A
G 14
E

D 12

I
s 10 I

K I

8 I
A I

c 6 c ~-- _f
E /'

s 4 /

s
E 2
s

OL--L----~----~------L-----L---

10" 20,. 50%

""* Traditional - +- Multiple Bo\NG

(b) n = 1000 (SO% with 3rd attribute)

Figure 4.5. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files

A28
v
E
R 2.4
A
G
E 2.0

D
I 16
s
K

A
c

12

c 8
E
s
s 4
E
s

4

2 2/ /
+--- +

l--- .r
,

I

,

QL--L----~----~----~L-----~--

A .32. v
E
R 28
A
G

24 E

D 20
I
s
K 16

A
c 12

c
E 8
s
s ... E
s

10ll!: 20ll!: 3(),;

RANGE SIZE

40"

-"*"" lrodittonal - +- MuHip~ fW'.IG

(a) n = 2000 (25,; with 3rd attribute)

10% 2.01; 30"

RANGE SIZE

40%

I

I
I

-"*"" Traditional - + Multiple BANG

I
I

(b) n = 2000 (SOT. with 3rd attribute)

77

Figure 4.6. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
s
s
E
s

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
s
s
E
s

60

50

40

30

20

10

60

50

40

30

20

10

10" 20"

10 1()-,...._-- +
~

~

30"

RANGE SIZE

40"

" " "

"""*" Trodltlonal - +- t.luHiple ~

2J
"

50"

(a) n = 5000 (25X with 3rd attribute)

8 /

-~

I
I

I
I

58

38
t

I
I

OL--L-----L----~----~~----L--

10" 20" 30"

RANGE SIZE

"""*" Traditional · + Multiple BANG

50"

(b) n = 5000 (so,; with 3rd attribute)

78

Figure 4.7. Average Disk Accesses for Range Query (3-D)
Traditional Vs Multiple BANG Files

79

'Multiple BANG' files for the larger ranges, shows a

reduction of 60% for the case where 50% of the records have

third attribute. The reduction is even more significant,

around 45%, for the case where only 25% of the data has the

third attribute.

Results And Discussions for

Partial Queries

The comparison of disk accesses for partial queries

for the 'Traditional', and 'Multiple BANG' files were

tested on the following data examples.

Dimension

Data size

Range sizes

4

5,000 records

10%, 30%, and 50%

Four attributes (4-D) were chosen to simulate some of

the complexity that can arise in partial queries as the

number of attributes is increased. It was also felt that a

database with less than 5,000 records would not be

statistically acceptable in terms of records encountered.

The database with 4 attributes, 'a', 'b', 'c', and

'd'. Figure 4.8 shows the actual combination of attributes

and number of the records distributed in different files,

used for partial query in the simulation.

80

'Traditional' 'Multiple BANG'

a b 0 0 <-1250 records-> I a b File 'AB'

a b c 0 <-1250 records-> I a b c I File 'ABC'

a b 0 d <-1250 records-> I a b d I File 'ABD'

a b c d <-. 1250 records-> I a b c diFile 'ABCD'

Figure 4.8 'Traditional' and 'Multiple BANG' files
used for partial query

In a general four attribute data set, there can be

fourteen partial queries, and a range query. The partial

queries are 'a' 1 'b', 'c', · 'd' 1 'ab' 1 'ac' 1 'ad' 1 'be',

'bd', 'cd' 1 'abc', 'abd' 1 'acd', and 'bed', and the range

query is 'abed'. The data distribution selected here

allows attributes 'a', and 'b', and 'c' I and 'd' to be

interchanged. Consequently only seven types of partial

queries namely, 'a', 'c, 'ab' 1 'ac', 'cd' 1 'abc' 1 'acd' and

one range query 'abed' exist.

Partial and range queries were selected for the

following combinations 'a', 'ab' I 'ac' I 'abc', 'bd', 'cd' I

'bed', and 'abed'. Note that 'bd' provides the 'ac' type

of partial query and provides a measure of statistical

variability in the results.

A range of 10%1 30%, and 50% is taken for each

81

combination of attributes. The ranges start at different

positions i.e. 0, 25, and 50% for each attribute. The

results listed in Tables XXIV through XXXI are average

values.

TABLE XXIV

PARTIAL QUERY FOR 'ah' {100% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 51.33 449.00 1249.00

AVG DISK ACCESSES
FOR TRADITIONAL 14.66 58.00 114.66

AVG DISK ACCESSES
FOR MULT BANG 22.00 69.33 126.66

TABLE XXV

PARTIAL QUERY FOR 'a' {100% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 526.33 1521.00 2525.00

AVG DISK ACCESSES
FOR TRADITIONAL 54.00 119.66 168.66

AVG DISK ACCESSES
FOR MULT BANG 67.00 133.00 180.66

82

TABLE XXVI

PARTIAL QUERY FOR 'ac' (SO% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 25.66 232.66 637.33

AVG DISK ACCESSES
FOR TRADITIONAL 19.33 57.66 102.00

AVG DISK ACCESSES
FOR MULT BANG 16.00 44.00 76.33

TABLE XXVII

PARTIAL QUERY FOR 'bd' (50% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 21.33 215.66 599.00

AVG DISK ACCESSES
FOR TRADITIONAL 27.33 66.00 112.66

AVG DISK ACCESSES
FOR MULT BANG 18.66 46.66 78.00

83

TABLE XXVIII

PARTIAL QUERY FOR 'abc' {50% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 3.33 71.33 314.33

AVG DISK ACCESSES
FOR TRADITIONAL 4.66 28.66 73.33

AVG DISK ACCESSES
FOR MULT BANG 6.00 25.33 57.33

TABLE XXIX

PARTIAL QUERY FOR 'cd' (25% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 14.00 116.33 309.33

AVG DISK ACCESSES
FOR TRADITIONAL 56.00 87.33 118.66

AVG DISK ACCESSES
FOR MULT BANG 19.33 36.66 53.33

84

TABLE XXX

PARTIAL QUERY FOR 'bed' {25% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 2.00 35.00 157.33

AVG DISK ACCESSES
FOR TRADITIONAL 11.33 42.66 86.66

AVG DISK ACCESSES
FOR MULT BANG 3.00 20.66 40.33

TABLE XXXI

RANGE QUERY FOR 'abed' (25% SEARCH)

RANGE SIZE 10% 30% 50%

AVG RECORDS FOUND 0.00 9.66 76.33

AVG DISK ACCESSES
FOR TRADITIONAL 2.66 20.00 63.00

AVG DISK ACCESSES
FOR MULT BANG 2.00 11.33 30.00

The observed results appear to depend on two key

quantities: the percent of data searched, and the number

of attributes used in the query.

85

A search is said to be 100%, if the search covers the

entire file. Similarly 50%, and 25% search indicate the

percent of the file to be searched.

Let us consider the results for a two-attribute

partial query. Figure 4.9 show the disk accesses for

partial queries 'ab, 'bd', 'ac', and 'cd'.

Partial query 'ab' requires a 100% search. It

becomes a range query for file 'AB', a partial for 'ABC',

'ABD, and 'ABCD'. The 'Multiple BANG' files technique uses

four files, and needs between 8 to 12 additional disk

accesses over the single BANG file. The search of three

additional BANG files introduces 6 disk accesses (2 per

BANG file). There also appears to be a small increase in

accesses resulting from multiple accesses of a given 'ab'

range in the separate BANG files.

The partial query for 'bd' (and also 'ac') requires a

partial search for file 'ABD'('ACD') and 'ABCD', equivalent

to a 50% search. The 'Multiple BANG' requires less than

0.7 accesses of the 'Traditional' method. The difference

in disk accesses get larger as the range is increased

Partial queries for 'bd' and 'ac', Figure 4.9, show

the magnitude of scatter that can arise from the data

distribution. The disk accesses show the same trend. The

'Traditional' method appears to require larger number of

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
E
s
s
E
s

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
E
s
s
E
s

PARTIAL QUERY ON 'bd' (50% SEARCH)

120
11 .66

100

80 78
X

/

' ' 6
' ' ' 60 ' ' ' '

46.66'
X

' ' 40 '
' ' ' ' 27. ' ' ' '

18.66' 20 X

0
10:; 30:; so:;

RANGE SIZE

-G- TRADITIONAL ··X-- MULTIPL£ BANG

PARTIAL QUERY ON 'cd' (25% SEARCH)r

140

120
118.66

100

87.

80

60 56 53.33
.:X

,
40 36it6_ij----

-·
20

19.3~----
x·

0
10% 30% 50%

RANGE SIZE

--&- TRA.DrTIOJW\L ·-X- MULTIPLE BANG

120
A
v
E
R 100

A
G
E

80

D
I
s 60
K

A
c 40
c
E
E
s 20

s
E
s

0

140
A
v
E 120
R
A
G 100
E

D
I 80

s
K

60
A
c
c 40
E
E
s 20 s
E
s

0

PARTIAL QUERY ON 'oc' (50% SEARCH)

10:1;

57

'
-~,·

30%

RANGE SIZE

102

76.33

/,,··'X

so:;

-G- TRADITIONAL --)(-- MULTIPLE BANG

86

PARTIAL QUERY ON 'ob' (100% SEARCH)·

126.66
,x

l~ .66
I

I

' I
I

I
I

'
69.33 ;x

'
'

'
' ' '

22;'
14x

10" 30% 50%

RANGE SIZE

--4- TRADITIOANL ·-><-·MULTIPLE BANG

Figure 4.9. Dependence Of Disk Accesses for 3 Search
Sizes - 2 Attribute Partial Query

87

disk accesses for 'bd' as compared to 'ac'.

The partial query for 'cd', Figure 4.9, requires a

partial search of file 'ABCD' only, a 25% search. The

improvement in the disk accesses of the 'Multiple BANG'

files are even more dramatic, requiring less than 45% of

the accesses of the 'Traditional' approach. Again the

absolute difference gets larger as the range is increased.

The partial queries for 3 attributes, 'abc', and 'bed'

Figure 4.10 show similar trends. The 25% search for 'bed'

shows greater reduction in disk accesses over 'Traditional'

than does a 50% search for 'abc' over the 'Traditional'.

The effect of the number of attributes on

partial/range queries Figure 4.11, is seen by comparing the

results of the 25% search, queries for 'cd', 'bed', and

'abed'. It is seen that the largest absolute difference in

disk accesses between the 'Traditional', and 'Multiple

BANG' occur for 'cd' and the smallest for 'abed'. The

volume of the data space that falls within the specified

range for a given partial query is related to the range and

the number of attributes.

For a given range, this volume decreases as the number

of attributes are increased. The ratio of the disk

accesses of the 'Multiple BANG' files to the single BANG

file for the 50% range increases slightly from 0.45 to 0.46

to 0.48, for 'cd', bed', and 'abed' respectively.

The results clearly demonstrate the superiority of

the 'Multiple BANG' files over the 'Traditional' method for

A
v
E
R
A

80

G 60

E

D
I
s 40
K

A
c
c
E 20
E
s
s
E

PARTIAL QUERY ON 'abc' (50% SEARCH)

I

I

s oL---J-------~~------~~--
30~ 50% 10~

A
v
E

100

R 80
A
G
E

D 60
I
s
K

A 40

c
c
E
E
s
s
E
s

20

RANGE SIZE

-B- TRADITIONAL --x-- MULTIPLE BANG

PARTIAL QUERY ON 'bed' (25% SEARCH)

86 66

42 6

11

RANGE SIZE

-B- TRADITIONAL ·-*- MULTIPLE BANG

88

Figure 4.10. Dependence Of Disk Accesses for 2 Search
Sizes - 3 Attribute Partial Query

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
E
s
s
E
s

A
v
E
R
A
G
E

D
I
s
K

A
c
c
E
E
s
s
E
s

89

PARTIAL QUERY ON 'cd' (25% SEARCH) PARTIAL QUERY ON 'bed' (25% SEARCH)

140

120

100

80

60

40

20

0

70

60

50

40

30

20

10

0

19.3;:.,---····
X"

10"

#,.

36.6.~---
•• x:

.- -..

30"

RANGE SIZE

53.33
•.•... x

-e- TRAOOlOW\l --)(--MULTIPLE BANG

RANGE QUERY ON 'abed' (25% SEARCH)

63

30
X . ,

' .
' ,

' , . ,
' .

' 11.33 .x
.--

2. . -··
10" 30" 50"

RANGE SIZE

-e- TRADITIONAL ·-x-- MULTIPLE BANG

100
A
v 86.66
E
R

80 A
G
E

D 60
I
s
K

40.33
A 40 . ,X

,
c . ,

-, c , -. -
E -. 20.6£1-'
E 20 ,X'
s -----s -· --,
E 3 ---s x-·

0
10)1; 30)1; 50"

RANGE SIZE

-e- TRADffiOW\l --)(-- MULTIPLE BANG

Figure 4.11. Dependence Of Disk Accesses on the Number
of Attributes - 25% Search Size

90

range and partial queries. As the percent of search

becomes smaller, dramatic improvements in disk accesses are

observed.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Previous studies have demonstrated the efficiency of

the BANG file structure in minimizing accesses to

secondary storage. It retains a one-to-one correspondence

between a data bucket and a directory entry for any

arbitrary distribution of data through a flexible

definition of enclosing regions.

The BANG file structure is based on a fixed number of

attributes. Updates deal only with the insertion and

deletion of records. A number of practical applications

however require the addition and removal of. attributes to a

selected number of records.

Two new techniques, 'Directory Modification' and

'Multiple BANG' files, have been developed and tested to

extend the applicability of BANG files. 'Directory

modification' preserves the existing data structure of the

data and modifies the dimension of the directory to reflect

the addition or deletion of attributes. 'Multiple BANG'

files generates separate BANG files necessary for each

unique combination of attributes. Both these new methods

have been developed to deal with changing attributes for a

portion of the data, rather than for the whole data set.

91

92

The 'Traditional' approach does not use the existing BANG

file structure, and has to recreate a BANG file from

scratch each time the number of attributes are modified for

any record(s) in the data set.

Comparison of both the 'Directory Modification'

technique and the 'Multiple BANG Files' technique with the

'Traditional' method, were made on the basis of disk

accesses required for addition and deletion of attributes

as well for queries.

The first technique, 'Directory Modification', has

been developed to allow for arbitrary addition and/or

deletion of attributes. The normalized disk accesses for

the 'Directory Modification' method show a linear

relationship with the fraction of records whose attributes

are modified; the slope of this line is 2. Consequently,

'Directory Modification' is superior to generation of the

BANG file from scratch for attribute modifications up to

50% of the records in the data file.

In practical examples where the number of attributes

modified at a time is only a small fraction of data say

less than 5%, 'Directory Modification' takes less than 10%

of the disk accesses for regeneration of the BANG file, a

significant reduction in the disk accesses.

During the development of 'Directory Modification'

technique, some properties of the BANG file structure

emerged; these have not been published in the literature

but have the effect of drastically increasing the

complexity of developing and coding for the 'Directory

Modification' method.

The data occupancy and.disk accesses for range

93

query for a data set depend on the ordering of the data.

Permutation of the data. set can change the regions defining

the buckets. Directory splitting can result in

buckets/regions that point to empty buckets, and this has

to be checked. During deletion it is possible to end up

with regions that cannot be merged with either a buddy,

enclosing or enclosed regions and the region has to be

merged with another region, that is a sibling or has a

common boundary. This form of merging was not recognized

previously.

One of the limitations of the 'Directory Modification'

is that, for every operation we have to deal with the

maximum number of attributes/dimensions, even though all

the attributes may not be present for all records. This is

also true in the case of 'Traditional' method. The

'Directory Modification' technique can only match the disk

access efficiency of the 'Traditional' method which is

inefficient for range/partial queries when a large number

of records have zero values for the attributes.

The second technique 'Multiple BANG' files obviates

the problems associated in dealing with databases where a

large number of records have zero values for the

attributes.

The generation of the 'Multiple BANG' file requires

disk accesses comparable to 'Directory Modification'

method. Consequently, this technique like the 'Directory

Modification' is vastly superior to the 'Traditional'

approach when the number of records whose attributes are

modified is small.

'Multiple BANG' files show significant improvement

over 'Traditional' BANG files in disk accesses for range

and partial queries. The improvement is dependent on the

fraction of the data searched for range/partial queries

between the single file and the multiple BANG files

accessed by the query. As the fraction of the data

searched becomes smaller the improvements become more

dramatic. The absolute reduction in disk accesses is

enhanced as the range is increased, or the number of

attributes in the partial query are decreased. Reduction

in disk accesses greater than 50% are observed when the

data search is 25% of the single BANG file.

94

The 'Multiple BANG' files approach is the superior

method. It will be particularly useful for large attribute

files, where the data is distributed over a combination

of attributes. 'Directory Modification' approach will be

useful if the data ends up with a full complement of

attributes for all records after repeated modifications.

This thesis deals with the development and comparison

of two new techniques for dynamic modification of

attributes. Adequate testing of statistical variability

95

resulting from the data distribution needs to be studied in

future work. This can be accomplished by averaging results

over a large number of random realizations of attribute

values for both the techniques. Non-uniform data

distribution also needs to be tested.

In the case of 'Directory Modification' technique,

range/partial queries should be performed to evaluate the

effect of data occupancy on the disk accesses. This can

then suggest an optimum percentage of attribute addition by

'Directory Modification' after which the BANG file needs to

be regenerated from scratch.

This thesis presents the linked list structure in the

case of 'Multiple BANG' files. Evaluation of data

structures adapted to partial queries for a large number of

files can enhance the applicability of this powerful

approach.

BIBLIOGRAPHY

[BENT 75] Bentley, J.L. "Multidimensional binary search
tree used for associative searching" Communications
of the ACM 1975, 18(9), 509-517.

[BENT 79] Bentley,J.L., and Friedman, J.H. "Data structure
and range searching" ACM computing surveys 1979,
11(4), 397-409.

[BENT 80] Bentley, J.L., and Maurer, H.A. "Efficient Worst
Case Data Structures for Range Searching" Acta
Formatica 13, 1980, 155-168

[BURK 83] Burkhard,W.A. "Interpolation based index
maintenance" Proc ACM ~Principles of Database
Systems (1983), 76-89.

[CHAN 81] Chang Joe-Mei, Fu King-Sun. "Extended K-d Tree
Database Organization: A Dynamic Multiattribute
Clustering Method" IEEE Sept 1981, 284-290.

[CHUN 89] Chun,S.H., Hedrick G.E., Lu H., and Fisher D.D.
"A Partitioning Method for Grid File Directories"
IEEE Proc of the 13th Annual International Computer
Software and Applications Conference 1989, 271-277.

[EDWA 63] Edward, H., and Sussenguth Jr. "Use of Tree
Structures for Processing Files" Communications of
ACM May 1963, 272-279.

[FAG! 79] Fagin,R., Nievergelt,J., Pippinger, N.,and
Strong, H.R. "Extendible hashing - a fast access
method for dynamic files" ACM Tran on Database
Systems Vol4, No.3 (Sept 79), 315-344.

[FINK 74] Finkel,R.A., and Bentley, R.a. "Quad Trees- A
data structure for retrieval on composite keys" Acta
Informatica 4, (1974}, 1-9.

[FRED 60] Fredkin, E. " Trie Memory" Communications of ACM
3, 9(Sept 60}, 490-499.

[FREE 87] Freeston, M. " The BANG file : a new kind of grid
file" Proc ACM SIGMOD (Dec 1987), 260-269.

[FREE 89a] Freeston, M. "Advances in the design of BANG

96

97

file" Third Internatoinal Conference on Foundations
of Data Organisation and Algorithms, Paris, June 1989

[FREE 89b] Freeston, M. "A well behaved file structure for
the storage of spatial objects" Symposium on the
Design and Implementation of Large Spatial Databases
Santa Barbara, California, July 1989.

[GOPA 80] Gopalkrishna, V., Madhavan, C. E. Veni.
"Performance Evaluation of Attribute Based Tree
Organization" ACM Transaction on Database Systems,
Vol 5, No.1, March 1980, 69-87.

[GUTT 84] Guttman, A. "R Trees: A Dynamic Index Structure
for Spatial Searching" ACM 1984 47-57.

[HINR 85] Hinrichs, K. " Implementation of grid file :
Design concept and Exp" BIT 25, 3 (1985) 569-582.

[HUTF 88] Hutflesz, A., Six Hans-Werner., and Widmayer, p.
"Twin Grid Files" ACM March 1988, 183-198.

[IYEN 88] Iyengar,S.S., Rao,N.S.V., Kashyp,R.L., and
Vaishnavi, V.K. "Multidimensional data stuctures:
Review and Outlook" Adv. in computers Vol 27{1988),
69 - 119.

[LEE 80] Lee,D.T., and Wong.C.K. "Quintary Trees : A file
Structure for Multidimensional database systems"
ACM-TODS vol 5, No.3, Sept 80, 339-353.

[LIAN 88] Lian,T.H. "Implementation and evaluation of BANG
file structure" O.S.U. Master Thesis 1988.

[LITW 80] Litwin,w. "Linear Hashing: a new tool for file
and table addressing" Proc. 6th Int. Con£. on Very
Large Databases, 212-223.

[LUCK 78] Lucker, George. "A Data Structure for Orthogoanl
Range Query" IEEE Sept 1988 28-33.

[NAGE 85] Nageswar Rao, S.V., Sitharama Iyengar, S. ,and
Veni Madhavan, C.E. "A Comparative Study of Multiple
Attribute Tree and Inverted File Structures for Large
Bilbliographic Files" Information Processing and
Management Vol. 21, #5 1985, 433-442.

[NIEV 84] Nievergelt,H.J., and Sevcik,K.C. "The Grid File:
An adaptable, symmetric multikey structure" ACM
Trans on Database systems vol 9, No.1, (march 1984}.

[OUKS 81] Ouksel, M., and Scheurmann,P. "Multidimensional
B-Trees: Analysis of dynamic behavior" Bit 21 {1981}
401 - 418.

98

[SARI 87] Saritepe, H.N.A. "An Analytical of Grid File and
k-d-B Tree Structures" o.s.u Master's Thesis 1987

[SCHE 82] Scheurmann,P., and Ouksel,M. "Multidimensional
B- tree for associative searching in database
systems" Inf. Systems. 7, 2(1982), 123- 137.

[TAMM 83] Tamminen, M. " On Search by address computation"
Report HTKK-TKO-B56, Helsinki Univ of Tech Espoo 1983

APPENDIX

PROCEDURES TO ADD AND REMOVE ATTRIBUTES

99

100

This file has procedures related to the first technique,
developed for ADDITION AND REMOVAL OF ATTRIBUTES.
The technique is referred as 'Directory Modification'
Main program is not included. Most of the variables are
global, and these procedures are called from main
program. Thus, the file can not be tested independently.

l*---*1
PROCEDURE TRANS ENTRY() IS USED TO MODIFY SINGLE ENTRIES
IN THE SUBDIRECTORY DURING THE ADDITION OF ATTRIBUTE.

PROCEDURE BACK TRANS() IS USED TO MODIFY SINGLE ENTRIES
IN THE SUBDIRECTORY DURING THE DELETION OF ATTRIBUTE.

MAJOR PROCEDURES

INTERMEDIATE(): Converts the buddy regions into enclosing
regions, for a set of entries in a
subdirectory bucket.

MOD_SUBDIR() Used during Addition of Attribute, to
modify subdirectory entries. Calls
TRANS_ENTRY() to modify single entry.

MOD_SUBDIR_DECR() : Used during Deletion of Attribute to
modify subdirectory entries. Calls
BACK_TRANS() to modify single entries.

l*---*1

/* This procedure is used during the 'Addition of
Attribute' to modify the subdirectory entries. Uses
TRANS_ENTRY() for transformation of single entries. */

MOD_SUBDIR()
{

int numsub, i,j,k , level ;
unsigned long reg, maskl,mask2 ;
int part_level ; long loc ,tloc
BSUBDIR temp ;
NODE *cell[MAXCELL] ;

101

LEVEL[DIMENSION] = 0 ;
mask2 = power(2,DIMENSION-1) ; /* mask2 = (2DIM-~) */
maskl = power(2,DIMENSION) ;
mask1 -= 1 ; /*mask1 = (2DIM) -1 */

numsub = br_dir.header ;
for(i = 0; i < numsub ; i++)
{

}

loc = (long)(i) * BLOCK_SIZE
lseek(b_dr,loc,O) ;
read(b_dr,&temp, sizeof(BSUBDIR))
j = temp.header ;
for(k = 0; k < j ; k++)
{

}

reg= temp.cell[k].region
level = temp.cell[k].level ;
/* transform single entry */
TRANS_ENTRY(® , &level , maskl, mask2)
temp.cell[k].region = reg ;
temp.cell[k].level = level

if(level > TOTAL_LEVEL)
TOTAL_LEVEL = level

/* Convert the enclosing regions to buddy
regions, if possible */

for(k = 0 ; k < j ; k++)

do
{

cell[k] = &temp.cell[k]

for(k = 0; k < j; k++)
FIND_UNIQUE_PAIR(cell[k],cell,j);

} while((CHANGES1 == 1) :: (CHANGES2 == 1))

for(k = 0; k < j ; k++)
COPYNODE(&temp.cell[k],cell[k]);

SORTED(temp.header,temp.cell) ; I* sort the sub dir
entries */

lseek(b_dr,loc,O) ;
write(b_dr, &temp, BLOCK_SIZE) ;

I* BCT_FETCH++ ;*/

part_level = 0
for(k = 0; k < DIMENSION ; k++)

part_level = part_level + LEVEL[k]

/*Modify the total LEVEL, and increase the DIMENSION*/
LEVEL[DIMENSION] = TOTAL_LEVEL - part_level
DIMENSION ++ ;

} /* END OF ROUTINE -- MOD_SUBDIR() */

102

!--/

/* Called from MOD_SUBDIR() to transform the single

*I

entries in the subdirectory bucket. For a given pair of
region and level, returns the transformed region & level

TRANS_ENTRY(reg, level, mask1, mask2)
unsigned long *reg , mask1, mask2;
int *level ;
{

}

unsigned long b, c,newreg ,incr = 1;
int i, j

newreg = (*reg) & mask1 ; /* save th unaffected lowest
order bits*/

for(i = 0; i < (*level)/DIMENSION ; i++)
{

}

mask2 <<= 1 /*set mask2 at the start of cycle */

for(j = 0; j < DIMENSION ; j++)
{

mask2 <<= j ;
b = (*reg) & mask2 ; /* choose the intended

bit */
b <<= (i + incr) ;
newreg = newreg l b ;/* set the chosen bit in

the right position
} of modified region */

*reg = newreg ;
if(((*level) % DIMENSIO~)

*level += (i - 1)

/* transformed region
== 0) and level */

else
*level = *level + i

/* END OF ROUTINE TRANS_ENTRY() */

/*---*/

/* Intermediate step to convert the buddy regions into
enclosing regions. Calls the routine MAKE_ENCLOSE(), for
the conversion. All other entries are left unchanged.*/

INTERMEDIATE(type)
int type ; /* increase/decrease dimension */
{

103

int ,level,ptr;
int
BSUBDIR
unsigned
long

i,j, totroot,nsub_entry,exist
pes ,k ,changes,push
temp ;

long reg
loc

totroot = br_dir.header
for(i = totroot -1 ; i >=0 ; i--)
{

}

nsub_entry = br_dir.cell[i].header
SET_HEAD(i,&loc) ;
read(b_dr, &temp, sizeof(BSUBDIR))
BCT_FETCH++ ;
j = nsub_entry - 1 ;
while(j >= 0)
{

changes = 0
level = temp.cell[j].level
reg= temp.cell[j].region

if(type == 1)
{

/* increase the dimension */

}

if(level > DIMENSION)
MAKE_ENCLOSE(&temp,reg,level,&changes,j)

else
if(type == -1) /* decrease the dimension */
{

}

if(level >= DIMENSION)
MAKE_ENCLOSE(&temp,reg,level,&changes,j)

if(changes -- 1)/* buddy or the components of
buddy are found, i.e level
is modified, so sort, but
but do not change index*/ {

PART_SORT{j,&temp,&push) ;

}

if(push == 0)
j = j - 1

else

j :: j -1 ;

/* position was not
changed, goto next*/

/* buddy not found, go to
next entry */

SORTED(temp.header,temp.cell)
DELETE_EMPTY(&temp) ; /* delete empty regions */
lseek{b_dr,loc,O);
write(b_dr, &temp, BLOCK_SIZE) ;
BCT_FETCH++ ;
}

} /* END OF ROUTINE -- INTERMEDIATE() */

104

/*---*/

/* For a given entry, this procedure finds the exact
buddy, or the components of the buddy. If found,
decreases the level, in the entry to make it enclosing
region */

MAKE_ENCLOSE(temp,reg,level,changes,j)
BSUBDIR *temp ;
unsigned long reg;
int level, j, *changes ;
{

int higher, blevel ,found = 0 ;
unsigned long breg ;

higher= power(2,level-1); /*higher buddy */
if(reg < higher) /* lower buddy */
{

}

buddy(reg,level,&breg) ;
blevel = level ;
found =
sch_sub_same_level(breg,blevel,*temp,j);
if(found > -1) /* found exact buddy */
{

}

temp->cell[j].level = level - 1 ;
*changes = 1 ;

else /* find components of buddy */
{

}

MAINFLAG = 1 ;
MAINFLAG = CHK-SUB-RECUR(breg,blevel,

level,*temp ,j);
if(MAINFLAG == 1)
{

}

temp->cell[j].level =level -1 ;
*changes = 1 ;

} /*END OF ROUTINE-- MAKE_ENCLOSE() */

!*---*!

/* Finds the buddy region (breg) for a given region (r)*/

buddy(r,l,breg)
unsigned long
int
{

r, *breg
1

unsigned long max

max = power(2, 1-1) ;
if(r >= max)

*breg = r - max
else

*breg = r + max
} /* END OF ROUTINE -- buddy() */

105

/*---*/

/* Checks the subdirectory recursively to see if the
components of the buddy are present. If all components
are present, returns 1 else -1. */

CHK_SUB_RECUR(breg,blevel,level,temp,j)
unsigned long breg ;
int blevel ,level, j ;
BSUBDIR temp
{

}

unsigned long i

if(blevel >= (level + DIMENSION))
MAINFLAG = -1 ;

else
if(!sch_sub_high_level(breg,blevel,temp,j))
{

CHK_SUB_RECUR(breg,blevel+1,level,temp,j)
if(MAINFLAG != -1)
{

i = power(2,blevel)
CHK_SUB_RECUR(breg + i, blevel+1,level,

temp,j)
}

}
return(MAINFLAG)

/* END OF ROUTINE CHF_SUB_RECUR() */

/*---*/

/*This routine searches for a buddy entry(breg,blevel)
within the same level in a subdirectory bucket . If
found returns the position of the buddy in the
subdirectory else returns -1. */

sch_sub_same_level(breg,blevel,temp,j)
int blevel ,j;
unsigned long breg
BSUBDIR temp
{

int i ,h

h = temp.header ;
for(i = j+1 ; i < h ; i++)
{

}

if((temp.cell[i].level == blevel) &&
(temp.cell[i].region -- breg))

return(i)

return(-1) ;
} I* END OF ROUTINE -- sch_sub_same_level() *I

106

l*---*1

I* Search for an entry in the subdirectory, at higher
levels, if found return 1 else return 0 *I

sch_sub_high_level(r,l,temp,j)
int l,j ; I* j is the position of the entry in the

subdir temp *I
unsigned long r ;
BSUBDIR temp
{

int i ,total ;

total = temp.header ;
for(i = j+1 ; i < total ; i++)
{

}

if((temp.cell[i].region == r) &&
(temp.cell[i].level -- 1))

return(1) ;

return(O) ;
} I* END OF ROUTINE -- sch_sub_high_level() *I

1*---*l

I* Searches for a region in the given subdirectory 'temp'.
If found, returns the position of the region, else -1 */

find_pos_in_sub(breg,j, temp)
unsigned long breg
int j ;
BSUBDIR temp
{

int i, total ;

total = temp.header ;
for(i = j ; i < total ; i++)
{

if(temp.cell[i].region == breg)

107

return(i)
}
return(-1) ;

} /* END OF ROUTINE -- find_pos_in_sub() */

/*---*/

/* Sets the read head to the position from where a
subdirectory needs to be read, pointed by 'i'th root */

SET_HEAD(i,loc)
int i ;
long *loc
{

int ptr;

ptr = br_dir.cell[i].ptr
*loc = (long)ptr * BLOCK_SIZE
lseek(b_dr, *loc , 0) ;

} /* END OF ROUTINE -- SET_HEAD() */

/*---*/

I* Within a subdirectory checks recursively if the entries
that make up buddy exist, if they exist,level is
decreased depending upon the region number. changes is
set to 1,if level is modified */

RECUR(breg,blevel,level,j,less,temp,changes)
unsigned long breg ;
int level,blevel,j,less, *changes
BSUBDIR temp
{

int pos

*changes = 0 ;
MAINFLAG = 1 ;
MAINFLAG = CHK_SUB_RECUR(breg,blevel,level,temp,j)
if(MAINFLAG == 1)
{

}

pos = find_pos_in_sub(breg,j,temp)
if(less == 1)
{

}

temp.cell[pos].level = 2
*changes = 1 ;

} /* END OF ROUTINE -- RECUR() */

108

l*---*1

I* Sorting is done within the subdirectory only on the
affected Entries. Rest are left alone *I

PART_SORT (j,
int j ;

temp,push)
I* position at below are left unchaned *I
I* tells whether the entry was relocated or

not *I
int *push

BSUBDIR
{

*temp ;

int jlevel
unsigned long

,i ,jheader,
jregion

jptr;

*push = 0 ;
jlevel = temp->cell[j].level
jregion = temp->cell[j].region
jheader = temp->cell[j].header
jptr = temp->cell[j].ptr
for(i = 0; i < j ; i++)
{

}

if(temp->cell[i].level -- jlevel)
{

}

if(temp->cell[i].region == jregion)
{

}

MESSAGE(S)
exit (0) ;

else
if(temp->cell[i].region > jregion)
{

}

PUSH_DOWN(temp,i, j, jregion,
jlevel,jheader,jptr);

*push = 1
break

else
if(temp->cell[i].level > jlevel)
{

}

PUSH_DOWN(temp,i, j,
jregion,jlevel,jheader,jptr);

*push = 1 ;
break

} I* END OF ROUTINE -- PART_SORT() *I

109

l*---*1

I* In the subdirectory 'temp', entries below the position
'i' up to position 'j' are pushed down by one position.
The ith entry is replaced by given jregion, & jlevel *I

}

PUSH_DOWN(temp,i,j, jregion,jlevel,jheader,jptr}
int i, j ,jlevel,jheader,jptr;
unsigned long jregion
BSUBDIR *temp;

{
int pos

for(pos = j - 1 ; pos >= i; pos-- }
{

temp->cell[pos+1].region = temp->cell[pos].region;
temp->cell[pos+l].level = temp->cell[pos].level;
temp->cell[pos+1].header = temp->cell[pos].header;
temp->cell[pos+1].ptr = temp->cell[pos].ptr;

}

temp->cell[i].region = jregion
temp->cell[i].level = jlevel
temp->cell[i].header = jheader ;
temp->cell[i].ptr = jptr ;

I* END OF ROUTINE -- PUSH_DOWN() *I

l*---*1

I* This procedure is used during DELETION OF ATTRIBUTE to
decrease the dimension of the existing problem. Calls
BACK_TRANS() for transforming single entries. All the
entries are assumed to be in one subdirectory *I

MOD_SUBDIR_DECR()
{

int numsub, i, j, k, nattrib ,level;
BSUBDIR temp;
long loc ;
unsigned long reg, mask
NODE *cell[MAXCELL] ;

mask = power(2, DIMENSION-!}
mask -= 1 I* mask= (2**(DIM -1)) - 1 *I
nattrib = 0;
nattrib = 3 ;

I*DELETE_EMPTY() ;*I
numsub = br_dir.header ;
for(i = 0; i < numsub ; i++)
{

loc = (long)(i) * BLOCK_SIZE
lseek(b_dr, loc, 0) ;
read(b_dr, &temp, sizeof(BSUBDIR))
BCT_FETCH++ ;
for(k = 0; k < temp.header ; k++)
{ I

}

reg= temp.cell[k].region ;
level = temp.cell[k].level ;
BACK_TRANS(®, &level, mask)
temp.cell[k].region = reg ;
temp.cell[k].level = level ;

if(level < TOTAL_LEVEL)
TOTAL_LEVEL = level ;

DIMENSION -= 1 ; I* decrease the dimension *I

I* convert enclosing regions in the subdirectory
into buddy regions if possible *I

j = temp.header ;
for(k = 0 ; k < j ; k++)

cell[k] = &temp.cell[k]
do
{

for(k = 0; k < j; k++)
FIND_UNIQUE_PAIR(cell[k],cell,j);

}while((CHANGES1 == 1) l l (CHANGES2 -- 1))

for(k = 0; k < j ; k++)
COPYNODE(&temp.cell[k],cell[k]);

SORTED(temp.header, :emp.cell)
lseek(b_dr, loc, 0) ;
write(b_dr, &temp, BLOCK_SIZE)
BCT_FETCH++ ;

110

printf("\n# OF PAGES ACCESSED TO DECREASE THE DIM
= %d\n",BCT_FETCH);

}
} /* END OF ROUTINE -- MOD_SUBDIR_DECR() */

/*--~--------*/

/* This routine is used to transform the single entries
during the Deletion of Attributes, called from
MOD_SUBDIR_DECR(). Right now it is only set to decrease
the dimension by one. Needs slight modifications for
arbitrary number of attributes. *I

BACK_TRANS(reg,level, mask)
int *level ;
unsigned long *reg, mask
{

}

unsigned long new_reg, b, c ,deer, treg;
int i ;

treg = *reg ;
deer = 1 ; I* decrement dimension by 1 *I
new_reg = (treg) & mask ;

for(i = 0; i < (*level)IDIMENSION; i++)
{

b = treg >> (i+decr) ;
mask <<= DIMENSION - 1
c = b & mask ;
new_reg = new_reg I c ;

111

level -= i ; I decrement the level
it has gone through

by the #of times
the loop *I

}
*reg =

I*
new_reg I* modify the region

END OF ROUTINE -- BACK_TRANS()
*I

*I

1*---*l

I* After removing about 35 to 40% of records, there are
some empty buckets. This routine, tries to find an
enclosing region and merges with it. Entry corresponding
to empty region is removed. *I

DELETE_EMPTY(temp)
BSUBDIR *temp ;
{

NODE
int

enode ,big;
i ,p , pes ,header, found, total;

total = temp->header ;
for(i = total - 1 ; i >= 0 ; i--)
{

header = temp->header ;
if((temp->cell[i].header) == 0)
{

enode.region = temp->cell[i].region
enode.level = temp->cell[i].level
enode.header = temp->cell[i].header
enode.ptr = temp->cell[i].ptr
for(p = i-1 ; p>=O; p--)
{

found = 0 ;

}
}

}

}

112

if((temp->cell[p].level) < enode.level)
{

big.region = temp->cell[p].region
big.level = temp->cell(p].level
big.header = temp->cell(p].header
big.ptr = temp->cell[p].ptr ;
found = IS_INCLUDE(enode,big) ;
if(found)
{

}

RETURN_DT_TO_AVAIL(temp->cell[i].ptr);
for(pos = i+l ; pos < header; pos++)
{

}

temp->cell[pos-1].region =
temp->cell[pos].region

temp->cell[pos-l].level =
temp->cell[pos].level

temp->cell[pos-l].header =
temp->cell[pos].header

temp->cell[pos-l].ptr =
temp->cell[pos].ptr ;

temp->header-- ;
br_dir.cell[O].header-- /*modify

root dir */
break ;

else
fprintf(fr,"\n NO merging Candidate'');

} /* end of if*/

/* end of for */
/* END OF ROUTINE-- DELETE_EMPTY() *I

Thesis:

VITA/-

Nalini T. Hosur

Candidate for the Degree of

Master of Science

DYNAMIC ADDITION AND REMOVAL OF ATTRIBUTES
IN BANG FILES

Major Field: Computer Science

Biographical:

Personal Data: Born in Karnatak, India, August 1954,
daughter of Late Smt. and Shri. R B. Sonnad,
daughter-in-law of Smt S L. Hosur and Late Shri
L T. Hosur.

Education: Received Bachelor of Science Degree in
Physics from University of Bombay in March, 1974;
Master of Arts in Industrial Psychology from
Karnatak University in Feb, 1981; Doctor of
Philosophy in Social Psychology from Karnatak
University in Feb, 1981; completed the
requirements for the Master of Science degree at
Oklahoma State University in May, 1991.

Professional Experience: Lecturer, Department of
Psychology, Karnatak University, Karnatak, India,
March, 1981, to May, 1985.

