
glNCEPTS FOR COMPUTER-AIDED PRELIMINARY -
DESIGN AND MODELING OF ASSEMBLIES

WITH MOVING PARTS

By

XIANGHONG
'*

Bachelor of Science in Engineering

Shanghai Jiao Tong University

Shanghai, P.R. China

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1991

• ' ,~· 1"

Oltlahoma State Univ. Library

CONCEPTS FOR COMPUTER-AIDED PRELIMINARY

DESIGN AND MODELING OF ASSEMBLIES

WITH MOVING PARTS

Thesis Approved:

Dean of the Graduate College

ii

ACKNO~GEMENTS

I would like to take this opportunity to express my appreciation to my thesis adviser,

Dr. R. D. Delahoussaye for his invaluable assistant, and guidance in the development of

this thesis, and encouragement throughout my master studies.

I would also thank my committee members, Dr. P. M. Moretti and Dr. J. D. Spitler,

for their suggestions and directions to my thesis.

My heartfelt gratitude is extended to my parents, Mrs. and Mr. Xingxia Hong, for

their encouragement during my studies.

Appreciation is extended to Mr. and Mrs. Dalton for their help during my study.

iii

TABLE OF CONTENTS

Chapter Page

I. THE RESEARCH PROBLEM ... ; . 1

Introduction. 1
Motivation 2
Concepts for Computer-Aided Preliminary Design 2
Objectives . 4

II. LIT'ERATURE REVIEW . 6

Computer-Aided Preliminary Design . 6
Geometric Modeling System. 9
Solid Modeling System. 13

Decomposition Model. 13
Exhaustive Enumeration . 13
Octree Representation . 20
Cell Decomposition Representation 24

Constructive Solid Geometry Model. 28
Boundary Representation Model . 35

Summary .. 45

III. COMPUTER-AIDED PRELIMINARY DESIGN WITH
MOVING PARTS . 48

Introduction . 48
Overview of System Capabilities. 49
Interactive Motion Simulation . 53
Component Data Structure . 59

IV. DEVELOPING A SOLID MODELING SYSTEM 61

Introduction . 61
Solid Representation in Solid Modeling System 61
CSG Primitives . 62
Boundary Representation Data Structure . 62
Using Data Structure to Express CSG Primitives 65
Boundary Evaluation Procedure . 65
Geometric Calculation . 71

V. CONCLUSIONS AND RECOMMENDATIONS 77

Results. 77
Conclusions . 79

lV

Chapter Page

Recommendations . 81
Computer-Aided Preliminary Design 81
Solid Modeling System . 81

REFERENCES. 83

v

LIST OF TABLES

Table Page

I. Values of Cube Origin 17

II. Values of Sub-Cube Origin . 23

III. Face Table in Polygon Based Data Structure. 36

IV. Face Table in Vertex Based Data Structure. 38

V. Vertex Table in Vertex Based Data Structure. 39

VI. Face Table in Edge Based Data Structure. 41

VII. Vertex Table in Edge Based Data Structure. 42

VIII. Edge Table in Edge Based Data Structure. 43

IX. Face Table in Winged-Edge Based Data Structure . 46

X. Vertex Table in Winged-Edge Based Data Structure. 46

XI. Relation Table in Winged-Edge Based Data Structure.. 47

XII. Changing Face Rules . 70

Vl

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LIST OF FIGURES

Page

Camera Shutt~r System . 3

Constraint Change. 8

Wireframe Model Ambiguity. 11

Wireframe Model without Silhouettes . 12

Exhaustive Enumeration Representation . 14

One Object . 16

Using Exhaustive Enumeration to Model an Object 18

Do Boolean Set Operations Based on Exhaustive Enumeration Model 19

Model an Object by Using Octree Representation . 21

A Cube is Divided by Using Octree Representation. 22

Using Octree Representation to Do Union Operation 25

Using Octree Representation to Do Difference Operation 26

Using Octree Representation to Do Intersection Operation. 27

Define Primitives in CSG Model . 29

Built a Half Sphere by Doing Difference Operation 30

General Intersection Boolean Set Operation . 32

Regularized Intersection Boolean Set Operation . 33

Binary Tree for CSG . 34

Modeling Block Using Polygon Based Data Structure 36

Modeling Block Using Vertex Based Data Structure 38

Modeling Block Using Edge Based Data Structure 41

vii

Figure

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page

Camera Shutter and Actuator. 50

Computer-Aided Preliminary Design System Configuration 51

Slide. 52

Objects Contact. 54

Maximum Collision Distance . 55

Movement by Using Large Time Step and Small Time Step 57

Movement with Large Collision and Small Collision 58

Pin, Slot and Outloop. 60

Solid Modeling System Configuration . 63

Using Boundary Representation to Model Block Primitive 66

Create New Edges and Vertexes . 67

Two Blocks Do Union Boolean Set Operation . 67

Changed Faces by Doing Regularized Union Boolean Set Operation. 69

Relation Between Face and Object . 70

Two Planes . 72

Calculate Common Intersection Segment . 73

Two Polygons Do Not Intersect . 75

Design 1 Initial Position . 78

Design 1 in Second Stable Position . 78

Design 2 Initial Position . 80

Design 2 With Lens Opening During Shutter Actuator Goes Back 80

Vlll

CHAPTER I

Tiffi RESEARCH PROBLEM

Introduction

In today's world, an engineer designs a wide range of tools and devices to suit the

people's purposes. In modem society, these design activities and manufacturing activities

are separated. The manufacturing process usually can not start until the design process is

complete. This is why design activities become so important.

In order to speed up the design process, computer technologies are applied to design.

Today, there are many Computer-Aided Design software packages, like CADAM, CAEDS,

etc. These CAD softwares aid engineers in design activities. For example, software

supplies an easy and efficient way to design mechanical parts, and do analysis of the

mechanical parts. The design activities are so complex, however, that no current CAD

software can perform the entire design process, supplanting the need for people.

Even though current CAD software can support the individual mechanical part

design, few CAD applications can handle the whole design process, such as the design of

mechanical assemblies. In particular, there is no CAD software which can support

preliminary design, which is an important part in the design process. This is the reason

why we are developing a framework for CAD software for preliminary design.

Because in the real world, design activities involve "real world objects" (solids), solid

modeling has become very popular today. Actually, solid modeling plays an important role

in computer graphics, computer vision, computer-aided mechanical and civil engineering.

It is the heart of Computer-Aided Design and Computer-Aided Manufacturing. The

1

purpose of the solid modeling is to use a mathematical model, which is widely used in all

scientific fields and engineering, to represent engineering activities such as representing

individual mechanical part design, mechanical part manufacturing, mechanical assembly

and inspection. In this way, the time for the whole production cycle can be rapidly

reduced.

In this thesis, we will develop concepts for preliminary design modeling and test

some of these concepts by implementing them in software.

Motivation

2

Most machines with what appear to be complex 3-D motion are actually a collection

of planar sub-systems, located in planes with various 3-D orientations. The planar sub

systems are connected by relatively simple 3-D interfaces. For example, in Figure 1 the

movement of the camera shutter is in the x-y plane, the movement of the shutter actuator is

in the x-z plane. The two movements are synchronized in three dimensions. Design for

planar motion of components in an assembly is common, non-trivial and very often

difficult, and therefore important. This is why we have chosen to focus on the design of

assemblies of planar moving parts.

Concepts for Computer-Aided Preliminary Design

In 1985, French suggested that a typical design process can be divided into three

stages, preliminary design stage, embodiment design stage and detail design stage. In

preliminary design stage, we are doing an initial plan and approximate dynamic

performance analysis and motion analysis. In embodiment design stage, we are choosing

components and make them to an assembly. In detail design stage, we are doing

engineering computations, accurate dynamic analysis and various drawings. The goal of

computer-aided preliminary design is to provide a platform for designers to do better and

faster evaluation during the preliminary design stage. From the discussion of our

3

Actuator

Frame z
Shutter

Figure 1. Camera Shutter System

motivation, we will restrict our attention to the motion design of planar assemblies. Our

concepts of software for computer-aided preliminary design include the following:

1) It should have a user interface that:

a) Allows specification of geometry with the same ease as pencil and paper.

4

b) Allows the constraint relationships between components to be defined, such as

a pin in a slot.

c) Allows rapid editing of the geometry.

d) Allows the designers to interact with the design by "pushing" on parts to make

them move.

e) Allows easy adjustment of model parameters to give fast, but reasonable

motion.

2) Because many designs rely on large deformations of component geometry, it

should handle the motion of compliant parts.

3) It should provide some "understanding" of the motion of the assembly using only

shape information. Constraint changes should be detected and handled without

user intervention.

4) It should be able to assemble multiple planar sub-systems into their proper 3-D

orientations to model the complex motion generated.

5) It should provide a connection to a solid modeler for better visualization of the

design and for possible enhanced analysis.

Objectives

The primary objective of this research is to implement in software some of the

concepts described in the previous section, and to investigate the validity of these concepts

by using the software to examine example designs.

The following will be implemented:

1) Develop a minimal user interface which can create components, and connect them

in an assembly.

2) Create a simple dynamic model by which we can get the fast, realistic and

interactive motion simulation.

3) Develop a method for automated detection of constraint changes.

4) Develop a "force block" which the designer can use to apply forces to the model

interactively.

5) Develop a means of quickly changing the value of the model parameters.

6) Develop a prototype solid modeler in order to provide better visual understanding

of the design and to allow potential refined analysis.

The development of a solid modeler listed in item 6 is actually a second major
c

5

objective for two reasons. Although commercial solid modelers are available, their source

code is not available. In order to do further research in design modeling, a solid modeler

with source code is needed. Also, the geometric algorithms developed as part of a solid

modeler are useful in other applications. In particular, the polygon intersection algorithms

can be used directly in the preliminary design modeler for detection of constraint changes.

CHAPTER II

LITERATURE REVIEW

Computer-Aided Preliminary Design

From ancient times, people understood how to design the mechanical system to

function properly. But at that time, it took a long time to get the fmal system since they did

not have simulation methods or experimental methods. Today, computers are used widely

not only for scientific computation but also for aiding the various engineering system

designs. Computer-aided design can save significant amount of time and money while

reducing the complete product design cycle.

In order to apply the CAD technology to the engineering design process, we must

know what the engineering design process is. Usually, the engineering design process

involves three stages: preliminary design, embodiment design, and detail design. In the

preliminary design stage, the goal is to analyze the design problem and propose possible

solutions based on engineering, practical, and manufacturing knowledge. Approximate

dynamic performance analysis and motion analysis should be done during this stage. In

the embodiment design stage, the focus is on choosing subassemblies and components and

connecting them together, depending on the preliminary design. Some feedback

information should be sent to preliminary design. In the detail design stage, there are

various engineering computations, more accurate dynamic analysis, and strength analysis.

Individual components and subassemblies are better modified in order to get the greater

performance of the total system. Various drawings, not only for the design process, but

also for the manufacturing process and the assembly process, are created.

6

Computer-aided design technology has been applied to the engineering design area

for a long time. Today, various CAD softwares have been developed to help the design

process. Engineers can use these packages to establish the model, then do analysis and

simulation. For example, in 1988, Thatch and Myklebust listed that IMP, DRAM,

ADAMS and Dymac, are software packages for mechanism design analysis. Kinsyn,

Mecsyn, LINCAGEA, and Recsyn are used for mechanism synthesis.

There are two shortcomings for these current computer packages. The first one is

that all these packages require the user to input a large amount of data for problem

formulation and other technical information such as linkage information for mechanism

design. This impedes usage of these packages.

7

The second shortcoming involves the packages lack of the ability to handle kinematic

constraint changes. It is difficult to simulate the mechanical system because in general, the

kinematic constraints of the mechanical system are always changing. This will change the

motion equations. For example, in Figure 2 (a), object A has no constraints, it is a free

body object. In Figure 2 (b), object A has one contacting point with the wedge. In Figure

2 (c), object A has two contacting points with the wedge. In Figure 2 (d), object A not

only contacts two points with wedge, but also has one contacting point with wall C. So we

can see that, during the whole process, the constraints of object A have been changed three

times. If we analyze the motion of the object A, we should change the motion equations

when the constraint conditions have been changed. Now the problem is how to detect the

constraint changes and change the motion equations.

Mechanical systems are made of subsystems which connect together through

constraints. The changing of constraints will change the whole system. An elastic

mechanical joint (linkage with pin clearance) is a typical constraint changes example. In

1971, Dubow sky and Freudenstein represented this constraint changes by using the Impact

Pair model in which spring and damping are used between the two objects which have a

relative motion. The reason they can use spring and damping to model the constraint

8

(8.) (b)

(c) (d)

Figure 2. Constraint Change

9

changes is that Hertzian nonlinearities affect little in the dynamic response of the model.

In 1973, Winfery, Anderson and Gnilka represented the general approach to handle

constraint changes. They apply fmite element technology to the elastic machinery system

with general constraint changes. Even though this method can handle the different

constraints, it still needs the user to indicate when and where the constraint change occurs

and to choose the appropriate equations.

In 1991, Gilmore and Cipra presented a method which can automatically predict and

detect the kinematic constraint change and reformulate the equations of motion. They use

the concepts of point to line contact kinematic constraints, force closure, and ray firing

together with the rigid body boundary information, with state variables and with reaction

forces to characterize the kinematic constraint changes.

Geometric Modeling System

Geometry, a branch of mathematics concerned with the shape and spatial relations of

objects, is one of the fundamental ways in which engineering objects are described. In

current production industries, the geometric specification, which is two dimension(2-D)

projection drawing, is widely used from design to manufacturing, from assembly to

inspection. It becomes an "essential language" for today's engineer.

Taking advantage of computers in the 1960's, many computer companies developed

computer systems which can replace the basic engineer routine -- drawing. This computer

revolution improves productivity and efficiency.

In 1979, Baer, Eastman and Henrion made a survey of geometric modeling system

which is described as following. Between 1955 and 1964, interactive computer graphics

became available. Almost all CAD systems were based on the 2-D wireframe geometric

model. The internal representation of 2-D wireframe is lists of lines and arcs, which can

replace the engineer drawing and produce the point-to-point NC (Numerical Control) codes

for drilling and punching operations. In 1970, three dimensions (3-D) wireframe systems

10

appeared, which could represent the segments of 3-D space curves instead of 2-D lines and

arcs. Using the computer graphics principles, we can also set orthographic, isometric, and

perspective views. However, there are two flaws.

One flaw is that more than one object can be imagined based on the wireframe model.

This is called wireframe ambiguity. This implies that wireframe model representation of

the object sometimes is not unique, so this representation is incomplete. An example is

given in Figure 3.

Another flaw is that 3-D wireframe model can not represent the curved object

properly due to missing the "profile line" or "silhouettes" with the object is displayed by

using different view point. See Figure 4.

Consequently, the wireframe method can not completely represent the 3-D object.

The second method to represent the 3-D object is called polygonal schemes, which were

developed in order to make visual effects and support the realism computer graphics. It is

used in real-time 3-D animation systems, such as flight training simulation. This method

uses two technologies. One is that an object is represented by many planar polygons.

Another uses a spatial clipping operation to trim the part or whole polygons which are

hidden in order to get a realistic image.

The third method is the sculptured surface method which uses mathematics to defme

curves and surfaces, developed by Coons, Bezier and Gordon from 1967 to 1974., in

order to support the model dealing with a curved surface object (such as a car body, ship

hull, aircraft, and so on). Although the sculptured surface theory and technology has

developed rapidly and has helped design engineers solve more problems concerning how to

establish the sculptured curves and surfaces models in the computer, the theory has been

applied very little to solid model development. Until1980, the B-Splines had been applied

in solid modeling to represent "general" halfspace. Another advantage of using the

sculpture surface model is that we can get NC codes from it directly.

Currently, the more important and popular method to represent the 3-D objects is

1 1

Figure 3. Wireframe Model Ambiguity

, ,

, , ,

, , ,

/ ,
, , ~ , \

, , , ~

,' \

Figure 4. Wireframe Model without Silhouettes

12

1 3

called solid modeling. Using this method, we can create the unambiguous, complete, and

unique model in a computer to describe the real world object. There are several solid model

schemes. The first one is called Decomposition Model, the second is called Constructive

Solid Geometry Model, and the third is called Boundary Representation Model.

Solid Modeling System

"Solid Modeling" means an "informationally complete" representation of the physical

object of which some properties, like volume or surface area, should be calculated

automatically without human help. In 1970, the solid modeling system became more

popular since it could not only offer many new utilities but also link CAD/CAM together.

Generally, there are three types of models called Decomposition Model, Constructive Solid

Model, and Boundary Model. They are explained in more detail below.

Decomposition Model

Decomposition Model uses the "Finite Element" principle. The physical object is cut

into a hundred or a thousand small simple element volumes. By using different rules, these

element volumes are combined together to represent a new object. So there is one important

technology -- how to divide the physical object into a thousand small element volumes.

There are several methods to divide a physical object into many small element volumes.

Exhaustive Enumeration. Since a physical object is made of continuous material,

which implies that it is composed of infinite points in three-dimensional space, we can not

divide a physical object into points. However, as in converting the continuous system into

the discrete system, in 1980 Christessen suggested that we could divide the physical object

into a set of smaller element volumes (usually cubes), according to our accuracy. In this

way, an object is represented by a list of tiny cubes which are completely or partially

contained in the solid. This representation is called exhaustive enumeration (see Figure 5).

14

Figure 5. Exhaustive Enumeration Representation

15

Since the physical object is now represented by a list of small cubes which have no

overlapping, uniform dimension and origin, we can define a data structure to describe the

object. The data structure is defmed as follows:

struct EXHAUSTIVE_ENUMERA TION

{

};

int id;

float x·
'

float y;

float z;

/* x value of origin of the cube */

/* y value of origin of the cube */

/* z value of origin of the cube */

struct EXHAUSTIVE_ENUMERATION *next;

Because we already know how many element cubes there are and each element cube's

origin (x', y', z') in global coordinate, we can use the link data structure to connect all

these element cubes together. There is an example in Figure 6, Figure 7 and Table I.

Through this example, we can see that exhaustive enumeration is a good way to

represent the physical object However, how to get these element cubes? We can not get

these element cubes by solid description language directly or input these element cubes

manually. We should use the other models ftrst, such as Constructive Solid Geometry

Model, which has a good user interface to create a model, then we use the conversion

algorithm to convert the CSG Model to Exhaustive Enumerations Model.

By using Exhaustive Enumerations representation, we can do Boolean Set Operations

to create a new object. There are examples in Figure 8.

Since the exhaustive enumeration representing the physical object is always a valid

solid, the Boolean Set Operation should also make the object valid. For example, one

element cube disconnecting with other element cubes is not allowed. Every element cube

should have at least one face to connect with other element cubes.

One shortcoming of Exhaustive Enumeration Model is that it takes a lot of memory

space based on increased resolution. Another is that it is an approximate representation

method.

5

1

4

H

, ,

, , ,

2

, ,

, ,

,

2

-----~-----,',
,' I ,

, , , , ,
I , I ,

2

, ,

, , ,

, ,

Figure 6. One Object

N

1 6

y

17

TABLE I

VALUES OF CUBE ORIGIN

Element Cube Id ox' oy' oz'

1 1.0 0.0 1.0

2 0.0 0.0 1.0

3 0.0 1.0 1.0

4 1.0 0.0 0.0

5 0.0 0.0 0.0

6 0.0 1.0 0.0

7 1.0 1.0 0.0

1 8

Node: Element Cube 10 (oH',oy',oz') pointer

1
Stflrt pointer

~I 1 1 (1.0,0.0, 1.0) 1 I .. 2 (0.0,0.0, 1.0)

..... 3 (0.0, 1.0, 1.0) 4 (1.0,0.0,0.0)

...... II"""' II"""'

..... 5 (0.0,0.0,0.0) 6 (0.0, 1.0,0.0)

..... 7 (1.0, 1.0,0.0) NULL

Figure 7. Using Exhaustive Enumeration to Model an Object

H

H

z z

+
/ / /

v
y 0

H

z z

z z

y
,

H

,

z

0)-------

z

I
I
I
I
I I____.,

0)-------
,'

z

1 9

y

Or-------I•Y

Figure 8. Do Boolean Set Operations Based on Exhaustive Enumeration Model

20

Octree Representation. Since Exhaustive Enumeration Model takes a lot of memory

space, other space subdivision schemes have been developed to overcome this

shortcoming. Instead of using a regular element cube as a space subdivision, a more

efficient and adaptive space subdivision has been chosen for representing the physical

object. In 1980, Jackins and Tanimoto developed an adaptive space subdivision scheme

called Octree representation , which is analogous to quadtree representation developed by

Samet in 1984 for two dimension objects. The object is represented by the Octree scheme

using recursive subdivision of the space which contains a complete or partial object. The

object in Figure 9 is represented by Octree representation.

Although the element cubes have different size in Octree Representation, they do not

overlap and have their own origins. So we can define a tree date structure to describe the

physical object.

The data structure is defmed as follows:

struct OCIREE

{

int id;

int flag; /*flag*/

float x; /* x value of origin of the cube *I

float y; /* y value of origin of the cube *I

float z; /* z value of origin of the cube *I

float size; /* size of cube */

struct OCIREE *octree[8];

};

By using this data structure, we can represent the physical object if we know the

origin and dimension of each element cube. See example in Figure 10 and Table II.

Although the Octree model is a better scheme for representation, how do we get it?

The procedure is as follows.

21

z

H

Figure 9. Model an Object by Using Octree Representation

5

2

1

6

HI

z'

,
I ,
I ,
;II!.---

a

, , ,

Figure 10. A Cube is Divided by Using Octree Representation

22

4

23

TABLE II

VALUES OF SUB-CUBE ORIGIN

Sub-Cube Id ox' oy' oz'

1 a/2.0 0.0 a/2.0

2 0.0 0.0 a/2.0

3 0.0 a/2.0 a/2.0

4 a/2.0 a/2.0 a/2.0

5 a/2.0 0.0 0.0

6 0.0 0.0 0.0

7 0.0 a/2.0 0.0

8 a/2.0 a/2.0 0.0

24

First, we should find the maximum cube to contain the object, then we divide this

cube into eight octants. In every octant, we test whether the object partially fills it in,

completely fills it in or does not fill it in at all. If the object partially fills in an octant, we

can use this octant as the original one, and do the same above procedure. We can

recursively do this procedure until we achieve the accuracy we require.

The advantage of using Octree representation is that we can calculate some geometric

properties, like volume, center of mass and moments of inertia easily. Also using this

representation, we can do Boolean Set Operation easily. There are some examples in Figure

11, Figure 12, and Figure 13.

Compared to Exhaustive Enumeration Representation, the Octree representation saves

more memory space. However, compared to other representations, such as CSG,

Boundary Representation, Octree Representation still occupies more memory space.

Another shortcoming is that the Octree Representation is an approximate representation.

Cell Decomposition R~resentation. Just as there are two basic elements, triangular

and rectangular, in two dimension fmite element model, in 1978, Elliott suggested that we

could define some basic volume elements,such as cube, block, prism, polyhedron etc. in

three dimensions and use these elements to represent the physical objects by doing the glue

operation which combine the two objects together along their bounding surface.

The advantage of this method is that it can save more memory space, compared with

Exhaustive Enumeration and Octree Representation. Sometimes it is an accuracy model to

represent the solid. Also we can make use of this representation to do finite element

analysis.

However, by using different volume elements, it is difficult to get this model by

converting from other models.

25

N

= II

+ --

N

=

N

II

' ' ' --· I''
I '

-- L.- ~. ·~~,-----T,, I I

' I --""
I '' I , I

N +~,..--;--~---:~--'"-""""'
'"' I :''' : :

'!.. - - ... - -'~ - - ... -
I ' ' I

' I ' I
'\.-----~------

N

26

r::;

·8
~
G)
,::lo

0

II G)

~ = e
G)

~
A
0
A
9
r::;
·8
~
G)

~

e
,::lo
G)

0:
~
~

~
u
0

-~ =
~

::>
N -a
-~ r:r..

=

z

H

•
y

H

•

,
, (•-

z

I , I I ,

I I ' I I '
--1"'--,.'--r--,'

'/ I ' I ' , ,
I _____ j,::, ____ .• ,

z

--
, y 0 1 V • y I

H

Figure 13. Using Octree Represen1ation to Do In1el'3ection Operation

N
-......)

28

Constructive Solid Geometty Model

In Decomposition Model, all cells do "glue" operations only to represent the physical

object. In 1977, Requicha and Tilove developed Constructive Solid Geometry Model, in

which there are more primitives, like block, cylinder, cone, and sphere, etc. Also they

defined Regularized Boolean Set Operation to combine these primitives together. The

defined primitives are all parameterized instances. For example, we can use three

variables, length, width, and height, to defme a block. Here coordinate is the block local

coordinate. By choosing the different value of parameters, we can get the different size

block. Just as we define block, we can also define cylinder, cone, and sphere. (see Figure

14).

The above primitives are called default primitives. Also, we can define primitives

which are built by doing a set of Boolean Set Operations on default primitives. For

example, a half sphere can be built by a whole sphere minus a block. See Figure 15. So in

this way, the user can create primitives by themselves and use these primitives to do

Boolean Set Operation.

The most important in CSG is that we can use three basic Boolean Set Operations,

Union, Intersection, and Difference. However, though the Boolean Set Operation is used

in boolean algebra, it should be different from constructive geometric solid Boolean Set

Operation since the set domain is totally different! What we are concerned with in CSG

model is the real world object which should be the bounded and closed subset of whole

three-dimensional space. Every real world solid should be ftlled by material

homogeneously. This implies that every solid representation should have volume

mathematically. Since "dangling" edge and face do not have volume, a complete solid

model should not contain them.

In the primitives, we see that all default primitives have the real world object property:

that is, the objects are bounded and closed solids. However, using general Boolean Set

H"

H"

o·~-------

, ,

, , ,

L

z•

, ,

-----,.- I

y•

H"

Figure 14. Define Primitives in CSG Model

29

=

y

y•

30

-=

-N

~ s::

II -= ·8
~
G) -= Pt
0
G)

~ e
~
~
Q

.rf
I

0
I Q
I 0>-. - I ,D

N I
I e

l!
Pt

t/2

' ' :a ' - ' = ' ::r:
' ' «<

~
- ~

=" Ll'i -a
.~
Jl..

.
N

-=

3 1

Operation, which is the same used in boolean algebra, we can not guarantee that the final

solid is a "real" solid since it may contain some dangle edges or faces. See the example in

Figure 16 below.

In order to keep the solid, which is built by a series of Boolean Set Operations, to be

a "real" solid, in 1977, Requicha and Tilove added more constraints on general Boolean Set

Operation and call them "Regularized Boolean Set Operation". Using Regularized Boolean

Set Operation will guarantee that the final object is a real solid We can defme the

Regularized Boolean Set Operation, Union, Intersection, and Difference like Union*,

Intersection*, and Difference*. So object A and object B doing Regularized Boolean Set

Operation can be defined as follows.

A Union* B = r(A Union B)

A Intersection* B = r(A Intersection B)

A Difference* B = r(A Difference B)

By using the same primitives on Figure 16 and doing Regularized Boolean Set

Operation, we can get the correct result. See Figure 17.

In Constructive Geometric Solid Model, the user uses basic primitives to build the

desired solid by doing a series of Regularized Boolean Set Operations. We can use binary

tree data structure to represent this model. The root of the binary tree is the fmal object.

Every node is an intermediate object. The leaf is a primitive. See Figure 18. When we

have established a binary tree, we can traverse the whole tree and do the proper Regularized

Boolean Set Operations. Finally, we will get a solid.

One important property in CSG Model is that we can use different Regularized

Boolean Set Operations to build the same object. So it is difficult to use CSG model

directly to determine whether the two CSG models express the same objects.

o"

y•

•
,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
''"''''''' ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
~~~~~~~~~~~JJJIJJIIJJJJIJJJJJII ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .... ....... 

y• 

• 

* 

u· o· 

''''''~ ,,,,,, ... 
' ''''' '''''' '''''' '''''' ''''"' '''''' '''''' ,,,,,, ,,,,,, 
'''''' '''''' '''''' '''''' ,,,,,, ... 
''''''"' '''''' '''''' '''''' '''''' '''''' '''''' '''''' '''''' ,,,,,, 
'''''' ,,,,,, ,,,,,, 
'''''' '''''' '''''' '''''' '''''' '''''' ,,,,,, .... .. 

y• 

--

u· o• 

Figure 16. General In'te:rsection Boolean Set Operation 

u· 

w 
N 



33 

= 

. = 
II . 

= 
Jt. 

. -=" ...... . 
= 

* = 
J~ 

['--''''''''' ''''''''' ,,,,,,,,,, 
''''''''' ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, 
''''''''' ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, 
''''''''' ''''''''' ''''''''' ''''''''' ,,,,,,,,, 

'''''''''''''''''''''''''''' '''''''''''''''''''''''''''' ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
'''''''''''''''''''''''''''' ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
'''''''''''''''''''''''''''' . 

~ 

,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
=" '''''''''''''''''''''''''''' 

....... 

= 



34 

Complete Object 

Intermediate Object 

Cylinder Primitive 

Bl oclc Primitive 

Bl oclc Primitive 

Figure 18. Binary Tree for CSG 



35 

Boundary Rsmresentation Model 

In 1979, Baer, Eastman, and Henrion discussed Boundary Representation. 

Boundary Representation Model views the physical objects via their bounding surfaces. It 

divides the surface into many "single faces", which can be easily described by the 

mathematics formula, and connects these faces together based on "topology". Since the 

Boundary Representation Model uses faces to represent the solid, face representation is the 

heart of Boundary Representation Model. There are several data structures to represent the 

face as follows. 

1) Polygon Based Data Structure 

Generally, the faces in Boundary Representation Model are planar faces and 

polyhedrons which we can use polygon model to represent The direct data structure to 

model a polygon is defined as follows: 

struct POLYGON 

{ 

int polygon_id; 

int vertex_number; 

float x[N], y[N], z[N]; 

struct POLYGON *next; 

}; 

where x, y, z, are pointer coordinates. N is the largest pointer number. 

By Using this date structure, we can use Table III to represent the block in Figure 19. 

2) Vertex Based Data Structure 

In Polygon Based Data Structure, there is a redundancy caused by using the same 

vertex coordinates to represent the faces. We can introduce the modified data structure 

which uses the vertex ID instead of using vertex coordinates. This method saves a lot of 

space since vertex ID is one dimension. The data structure is defmed as follows: 



36 

(HB, ya, za) (H7, y7, z7) 

. 
(H4, y4, z4) 
4 J~--------

JJJJJJ 6 1 
(H3, y3, z3) 

(H 1, y 1, Z 1) (H2, y2, z2) 

Figure 19. Modeling Block Using Polygon Based Data Structure 

TABLE ill 

FACE TABLE IN POLYGON BASED DATA STRUCTURE 

Face Id Vertex Link 

1 (x1, y1, z1), (x2, y2, z2), (x6, y6, z6), (x5, y5, z5) 

2 (x2, y2, z2), (x3, y3, z3), (x7, y7, z7), (x6, y6, z6) 

3 (x7, y7, z7), (x3, y3, z3), (x4, y4, z4), (x8, y8, z8) 

4 (x5, y5, z5), (x8, y8, z8), (x4, y4, z4), (x1, y1, z1) 

5 (x5, y5, z5), (x6, y6, z6), (x7, y7, z7), (x8, y8, z8) 

6 (x1, y1, z1), (x4, y4, z4), (x3, y3, z3), (x2, y2, z2) 



struct VERTEX 

}; 

int 

float 

struct VERTEX 

struct POLYGON 

{ 

int polygon_id; 

vertex_id; 

x, y, z; 

*next; 

int vertex_number; 

int vertex_id[N]; 

struct POLOYGON *next; 

}; 

37 

By Using this data structure, we can use Table IV and Table V to represent the block 

in Figure 20. 

3) Edge Based Data Structure 

Since the polygon is bounded by many connecting straight line segments, we can also 

use these segments to represent the polygon. The data structure is defined as follows. 

struct VERTEX 

{ 

}; 

int vertex_id; 

float x, y, z; 

struct VERTEX *next; 



IJ5 3 

u4 , 
4 ~~--------

,',,,' 6 1 
u3 

IJl u2 

Figure 20. Modeling Block Using Vertex Based Data Structure 

TABLEN 

FACE TABLE IN VERTEX BASED 
DATASTRUCfURE 

Face Id Vertex Link 

1 Vl, V5, V6, V2 

2 V2, V3, V7, V6 

3 V3, V4, V8, V7 

4 V5, V8, V4, Vl 

5 V5, V6, V7, V8 

6 Vl, V4, V3, V2 

38 



TABLEV 

VERTEX TABLE IN VERTEX BASED 
DATA STRUCTURE 

Vertexld Coordinate 

1 (xl, yl, zl) 

2 (x2, y2, z2) 

3 (x3, y3, z3) 

4 (x4, y4, z4) 

5 (x5, y5, z5) 

6 (x6, y6, z6) 

7 (x7, y7, z7) 

8 (x8, y8, z8) 

39 



structEDGE 

{ 

int edge_id; 

int start_ vertex_id, end_ vertex_id; 

structEDGE 

}; 

struct POLYGON 

{ 

int polygon_id; 

int edge_nurnber, 

int edge_id[M]; 

struct POLYGON 

}; 

*next; 

*next; 

where M is the largest number of line segments. 

The Block in Figure 21 can be represented by Table VI, Table VII and Table VIII. 

4) Winged-Edge Data Structure 

40 

In order to combine two or more objects to create the new object, we should do a lot 

of calculation to get the correct geometry and topology informations of the object. In this 

process, we always need to search the connect faces which share one edge, or search the 

faces which share the same vertex. So we should establish a data structure which can 

support these calculations rapidly. 

In 1974, Baumgart developed Winged-Edge Data Structure and applied it to the 

computer vision system. Now Winged-Edge Data Structure has been widely used in Solid 

Model System. By this data structure, we can search the vertexes, edges, and faces more 

efficiently. Winged-Edge Data Structure is defmed as follows. 



u5 

e9 

ul 

I 
I 

e12 I 
I 

e7 

3es u6 

:u4 e3 elO 
4 e~~--------
~~J~ 6 1 

el u2 

ell 

u3 

Figure 21 Modeling Block Using Edge Based Data Structure 

Face Id 

1 

2 

3 

4 

5 

6 

TABLE VI 

FACE TABLE IN EDGE BASED 
DATASTRUCIURE 

Coordinate 

e1, e9, e5, elO 

e2, elO, e6, ell 

e3, e12, e7, ell 

e4,e9,e8,e12 

e5,e6,e7,e8 

e1,e4,e3,e2 

41 



TABLEVll 

VERTEX TABLE IN EDGE BASED 
DATASTRUCfURE 

Vertexld Coordinate 

1 (xl, yl, zl) 

2 (x2, y2, z2) 

3 (x3, y3, z3) 

4 (x4, y4, z4) 

5 (x5,"y5, z5) 

6 (x6, y6, z6) 

7 (x7, y7, z7) 

8 (x8, y8, z8) 

42 



43 

TABLE VIII 

EDGE TABLE IN EDGE BASED DATA STRUCTURE 

Edge Id Stan Vertex End Vertex 

1 v1 v2 

2 v2 v3 

3 v3 v4 

4 v4 v1 

5 v5 v6 

6 v6 v7 

7 v7 v8 

8 v8 v5 

9 v1 v5 

10 v2 v6 

11 v3 v7 

112 v4 v8 



struct VERTEX 

{ 

}; 

int vertex_id; 

float x, y, z; 

struct VERTEX *next; 

struct EDGE_RELATION 

{ 

int face_id; 

int previous_edge_id, next_edge_id; 

struct EDGE_RELA TION *next; 

}; 

struct RELATION 

{ 

int edge_id; 

int start_ vertex_id, end_ vertex_id; 

struct EDGE_RELA TION 

struct RELATION *next; 

}; 

struct POLYGON 

{ 

int polygon_id; 

int first_edge_id; 

struct POLYGON *next; 

}; 

few, fccw; 

44 

Using this data structure, we can quickly fmd two faces which share the same edge, 

and the vertex which is met by three edges. Also we can get the edge of face quickly by 



45 

traversing a RELATION table. 

We can use Table IX, Table X, and Table XI to represent the block in Figure 21. 

Boundary Representation Model is often used as the internal representation of the 

Solid Modeling System. However, it is very difficult to get it directly from input. Usually, 

we can get Boundary Representation Model by converting other modeling system like 

CSG. 

Summary 

Above we have discussed computer-aided preliminary design. There are several 

methods to handle the constraint change. Some methods can also predict the constraint 

change automatically. 

Also we have discussed three methods to represent the physical object. Each method 

has its own advantages and disadvantages. Sometimes, we need more than one kind of 

representation in the system in order to do more analysis. This requires us to convert one 

kind of representation to another quickly. Actually, Solid Modeling System usually uses 

multi-representation to get good user interface and keep more information for applications. 



TABLE IX 

FACE TABLE IN WINGED-EDGE BASED 
DATA STRUCfURE 

Face Id Start Edge 

1 e1 

2 e2 

3 e3 

4 e4 

5 e5 

6 e1 

TABLE X 

VERTEX TABLE IN WINGED-EDGE BASED 
DATASTRUCfURE 

Vertexld Coordinate 

1 (x1, y1, z1) 

2 (x2, y2, z2) 

3 (x3, y3, z3) 

4 (x4, y4, z4) 

5 (x5, y5, z5) 

6 (x6, y6, z6) 

7 (x7, y7, z7) 

8 (x8, y8, z8) 

46 



47 

TABLE XI 

RELATION TABLE IN WINGED-EDGE BASED DATA STRUC1URE 

Edge Vstart Vend Few New Pew Feew Neew Peew 

el vl v2 f6 e2 e4 f1 e9 elO 

e2 v2 v3 f6 e3 el f2 elO ell 

e3 v3 v4 f6 e4 e2 f3 ell e12 

e4 v4 vl f6 el e3 f4 e12 e9 

e5 v5 v6 f1 elO e9 f5 e8 e6 

e6 v6 v7 f12 ell elO f5 e5 e7 

e7 v7 v8 f3 e12 ell f5 e6 e8 

e8 v8 v5 f4 e9 e12 f5 e7 e5 

e9 vl v5 f1 e5 el f4 e4 e8 

elO v2 v6 f2 e6 e2 f1 el e5 

ell v3 v7 f3 e7 e3 f2 e2 e6 

e12 v4 v8 f4 e8 e4 f3 e3 e7 



CHAPTER ill 

COMPU1ER-AIDED PRELIMINARY 

DESIGN WITH MOVING PARTS 

Introduction 

Applying computer technology to Mechanical Design is no longer a new approach. 

However, there are only specific computer programs for aiding specific mechanical design 

problems. Also there is no computer-aided preliminary design package. Developing a 

general approach for aiding mechanical design is still a developing area. 

Since we want to use computers for aiding mechanical design, we should analyze the 

design process first. The typical mechanical design process involves three stages described 

as preliminary design, Embodiment design and detail design. 

1) Preliminary design is doing an initial plan, performance estimation, rough 

structural analysis, and principal dimension. 

2) Embodiment design is doing structural analysis, approximate motion analysis, and 

simulation. 

3) Detail design involves various engineering computations, dynamic analysis, and 

various drawings. 

Of the above definitions, we can deduce that the preliminary design is the more 

important stage since it is the start of the design process. If we can do better analysis and 

evaluation in the preliminary stage, time can be saved since we must redesign the system if 

we fmd that we can not meet some requirements in the detail stage. This is the reason we 

pay close attention to every aspect and do more simulation during this stage. 

48 



49 

Another characteristic for mechanical design is that a large portion of complex 

mechanical design involves assemblies of planar moving parts. We usually design the 

planar sub-assemblies, then assemble these planer sub-assemblies together. So it is 

important to develop the general approach to design the planer sub-assemblies. Figure 22 

is an example of designing the camera shutter and actuator. The shutter rotates in the x-y 

plane. The actuator rotates on the x-z plane. When the actuator rotates on the x-z plane, it 

pushes the shutter to move on the x-y plane. Therefore, the complex 3-D motion can be 

synthesized by combining planar sub-systems in various 3-D orientations and providing 

simple connection between sub-systems. 

Overview of System Capabilities 

According to our objectives, we have developed a preliminary design model with 

following capabilities. We have developed the simple dynamic model which detects the 

constraint changes automatically. We have provided a minimal user interface and the 

capability to replay the model motion in 3-D. The computer-aided preliminary design 

system configuration is shown in Figure 23. 

In order to do motion simulation, we have implemented a simple dynamic model 

which can handle the planar motions. Newton's second law has been used to generate the 

equations of motions. 

When the object moves, the constraints will change. We can automatically detect the 

constraint changes by using the polygon collision technology. Using this technology, the 

user will not be interrupted during the simulation. Also, the reaction forces have been 

calculated in order to maintain the constraints. 

A minimal user interface has been implemented. We can use this interface to defme 

the components with the geometric features, such as the slot and the pin, and combine these 

components together to make an assembly. In order to interact with the model, we 

developed the "force block" which is used by the user to apply an interactive force on the 



50 

Actuator 

Pin 
Shutter 

Spring 

Lens 
Block 

-
0 

F rame 
z \ --

-
\ 

---
Figure 22. Camera Shutter and Actuator 



51 

START 

DEfiNE OBJECT 

SIMULATION 

3-D VISUALIZATION 

Figure 23. Computer-Aided Preliminary Design System Configuration 



52 

moving component. Also we developed the "slide" (see Figure 24) to control the 

parameters of the model, such as spring stiffness, time step, etc. in order to speed up the 

motion. 

We have implemented the 3-D replay by using the motion data in 2-D to get better 

visual understanding of the design and keep geometric data of the model to further analysis. 

Variable Name 

Var1 able Value 

Sllde to Change the Variable Value 

Figure 24. Slide 



53 

Interactive Motion Simulation 

The important part of the computer-aided preliminary design is how to detect the 

constraint change, how to change the motion equations and how to make the mechanical 

part move reasonably. Since we are only concerned with two dimensional object now, we 

can apply Newton's second law to a free body object. 

{L:F = m *a 
L:M = J * E (3.1) 

When the body is free, it does not have any constraints. The total force is equal to the 

external force. When the object contacts another object, the total force of the object should 

be equal to the reaction force plus external force. See Figure 25. 

Now we can use the boundary information of the objects to detect the two polygons 

of the objects. If two polygons collide, then the reaction force should be created. We first 

calculate the maximum collision distance. See Figure 26. 

Since 

(3.2) 

Where k1 and kz are stiffness of objectl and object2. x 1 and x2 are deformation of 

object 1 and object 2. w is the width of the collision. 

From (3.2), we get the following, 

(3.3) 

So: 

Since 



54 

External Force 

Object B 

External Force 

Reaction Force 

Object B 

Figure 25. Objects Contact 



Maximum Colllsion Distance of Two Objects 

Width of Collision of Two Objects 

Figure 26. Maximum Collision Distance 

55 



then 

k *k 
F 1 = Fz = 1 2 * w * x 

k1 + kz 

So by using (3.4), we can calculate the reaction forces. 

By knowing all the forces at any time, we can calculate the acceleration and the 

angular acceleration at any time. Using the continuous time formulas below: 

(
v = vo +a* t 

s = so + vo * t + i * a * t2 

(
ro=roo+E*t 

a=ao+roo*t+i *e*t2 

We can derive the discrete time formulas as follows: 

56 

(3.4) 

(3.5) 

(3.6) 

By using (3.5) and (3.6), we see that if we know the previous step at> v~. s1 , Et, rot 

and at. we can calculate the next time step Vt+h• st+h., rot+h and at+h· 

Since we use discrete time formulas to calculate the step v,, s,, rot and at, we should 

reduce the time step h in some situation in order to get reasonable motion. For example, in 

Figure 27, we can see if the time step h is large, the moving object will go out of slot A. 

This is not reasonable. So we reduce the time step h until the pin does not totally go out of 

the slot. In Figure 28, there is another situation in which we should reduce the time step h. 

We see in Figure 28 (a), the collision is too large, so we reduce the time step h to get the 

smaller collision. Actually, when we calculate the s,, we make a backup step if necessary. 

This means that we first try a large time step h, if the collision is too large, abort this St. 

Reduce the time step h, calculate the s, again until we get the smaller collision. 



57 

Moving Object 
Moving Object 

Pin 
Pin 

Slot 
Slot 

(a) 

Moving Object 
Moving Object 

v 

Pin 
Pin 

Slot 
Slot 

(b) 

Figure 27. Movement by Using Large Time Step and Small Time Step 



58 

Moving Object 
Moving Object 

Pin 
Pin 

Slot 
Slot 

(a) 

Moving Object 
Moving Object 

Pin 
Pin 

Slot 
Slot 

(b) 

Figure 28. Movement with Large Collision ·and Small Collision 



Component Data Structure 

The data structure of the component is defined as follows: 

struct OBJ 

double outloop[MAX_ VERTEX][3]; 

int outloop_ vertex_number; 

double pin_center[MAX_PIN][3]; 

double pin_r[MAX_PIN]; 

int pin_number; 

double slot_center[MAX_SLOT][3]; 

double slot_dir[MAX_SLOT][3]; 

double slot_ w[MAX_SLOT]; 

int slot_ number; 

double mass_center[3]; 

double spring_fix_pointer[3]; 

structOBJ *next; 

}; 

where the pin and the slot are defmed in Figure 29. 

By using this data structure, we can defme the planar mechanical part. 

59 



60 

Pin 

Out 1 oop 

Slot 

Figure 29. Pin, Slot and Outloop 



CHAPTER IV 

DEVELOPING A SOLID MODELING SYSTEM 

Introduction 

In order to use a computer to help people design and manufacture products, we must 

install some information to describe the products since the computer can not actively get 

information on its own. It is not an easy job to input all the data which is used to define the 

object. So, we should develop an application program. This program is called Solid 

Modeling System. 

A Solid Modeling System is a program which allows the user to input basic 

information to describe the object and manipulate this information and store in a data 

structure for further applications. 

Solid Representation in Solid Modeling System 

Since all rigid real-life objects are solid, we should find a way to express them as 

models in the computer. As we described above, many models express the objects, such 

as CSG Model, Boundary Representation Model, Decomposition Model, etc. Every model 

has its own character, for example, the CSG Model is an easy way to express the object 

through the Boolean Set Operation. The Boundary Representation Model is a good model 

for display. So, in different situations, we should choose the appropriate model. 

In our Solid Modeling System, we choose the CSG Model for user interface since 

this is the easiest way to express the solid. We choose the Boundary Representation Model 

as an internal solid model since we can develop more applications based on this method, 

6 1 



62 

such as displaying the object and generating finite element mesh, etc. 

The Solid Modeling System Configuration is depicted in Figure 30. 

CSG Primitives 

In CSG method, we should encourage the user by implementing default primitives 

and Boolean Set Operations in order to create the object. In this Solid Modeling System, 

we support the three basic primitives, Block, Cylinder, and Cone. Also, we support three 

Regularized Boolean Set Operations, Union*, Difference* and Intersection*. 

Since all the CSG primitives are defined in its local coordination, we also support the 

translation and rotation function in order to allow users move the primitives to their proper 

place to do Regularized Boolean Set Operations. 

Boundary Representation Data Structure 

The data structure which is used to express the solid is the heart of Boundary 

Representation Model. Choosing a good data structure can save memory space and 

calculation time. 

Below is my data structure used in Boundary Representation to express a solid: 

struct SOLID 

{ 

int solid_id; 

int solid_type; 

structFACE *face_pointer; 

struct S_ VERTEX_T *svt_pointer; 

struct SOLID *next; 

} 



63 

USER INPUT 

' I CGS MODEL 

' I BOUNDARY EVALUATION 

' ~ ' ~ ' ~ 
DISPLAY ANALYSIS CAM 

Figure 30. Solid Modeling System Configuration 



structFACE 

{ 

int 

int 

double 

structLOOP 

structLOOP 

struct SOLID 

structFACE 

}; 

structLOOP 

{ 

}; 

int 

int 

structLOOP 

structFACE 

struct S_ VERTEX_T 

{ 

int 

double 

face_id; 

inter_loop_number; 

face_nonnal_x, face_nonnal_y, face_normal_z; 

*loop_pointer; 

inter_loop_pointer[MAX_INTER_LOOP _NUMBER]; 

*solid_pointer; 

*next; 

vert_id; 

vert_ type; 

*for_pointer, *back_pointer; 

*face_pointer; 

index; 

x, y, z; 

struct S_ VERTEX_T *next; 

}; 

This data structure has three advantages: 

1) It keeps all the information to describe the solid. There is little redundancy 

. information. 

2) By using the vertex table, we can save a lot of memory space. 

64 



65 

3) By using "feed back" pointer, like face_pointer in loop structure, solid_pointer in 

face structure, we can quickly get information. For example, suppose we are in 

the loop structure and want to know vertex values x, y, z. We can use 

face_pointer to go back to face structure and use solid_pointer to go back to solid 

structure. From solid structure, we can find solid_ vertex_table_pointer to get 

vertex values of x, y, and z. 

Using Data Structure to Express CSG Primitives 

Since the CSG primitives are basic solids, we should first use the data structure 

which we defme above, to express these primitives. Then use these primitives which are 

expressed in the Boundary Representation Model to do boundary evaluation. 

For example, in Figure 31, we use this data structure to model a block primitive. 

Boundary Evaluation Procedure 

The Boundary Evaluation Procedure is an important part in a solid Modeling System. 

Its function is to change the geometric information and topology information to create the 

new object depending on the Regularized Boolean Set Operations. 

When two objects do Regularized Boolean Set Operation, sometimes new vertices 

and edges will be created, and the topology of some faces will be changed. For example, 

the rectangle face will be changed into a concave surface by doing some Regularized 

Boolean Set Operation. See Figure 32. 

Creating the new vertexes and new edges, changing the topology of some faces 

correctly are the major objectives of the Boundary Evaluation Procedure. 

The Boundary Evaluation Procedure in this Solid Modeling System is decomposed 

step by step. The Procedure is: 

1) Choose the reference object and candidate object. 

2) Change all the faces of the candidate object properly based on calculation and 



66 

z 

us 
y 

H 

ul u2 

us ---~---- u6 u6--..... ~--u7 

Face 1 Face 2 

ul u2 u2 IJ3 

u7 .----....... IF----, u8 IJ8 .---.... F--.... us 

Face 3 Face 4 

u3 IJ4 IJ4 IJl 

IJ8 ,..... ___ ..,. ___ u7 
IJl ---...... 1"----.. IJ3 

FaceS Face 6 

us IJ6 u4 IJ3 

Figure 31. Using Boundary Representation to Model Block Primitive 



67 

New UerteH 

New Edge 

Figure 32. Create New Edges and Vertexes 

I I 

1------------ ,_ -----------
1 6 1 6 

Object 1 Object 2 

~ + / 

Object 1 
Object 2 

Figure 33 Two Blocks Do Union Boolean Set Operation 



68 

restore these changed faces. 

3) Swap the reference object and candidate object and repeat step 2. 

4) The final object is composed of the changed faces. 

Here is an example in Figure 33. Suppose object 1 and object 2 do union 

Regularized Boolean Set Operation. We define object 1 as a reference object, object 2 as a 

candidate object. So face 2, 3, 5 of object 2 should not be changed and face 1, 4, 6 of 

object 2 are changed to facel' 4' 6'. By swapping the reference object and candidate 

object, we know that face 1, 4, 6 of object 1 should not be changed, and face 2, 3, 5 of 

object 1 should be changed to face 2", 3", 5". See Figure 34. 

The final object is composited of face 1, 4, 6 of object 1, face 2, 3, 5 of object 2, 

changed faces, face 2", 3", 5" of object 1 and changed face 1', 4', 6' of object 2. 

By this example, we know that after defming the reference and candidate object, we 

should test every face of candidate object to check whether it should be kept, deleted or 

changed based on Regularized Boolean Set Operation. Usually, if we get one face and one 

object, we can classify which part of the face is inside object and which part of the face is 

outside the object. Changing each face of the candidate object becomes easy if we know 

which part of each face of the candidate object is inside the reference object and which part 

of each face of candidate object is outside the reference object. There is an example in 

Figure 35. Face 1 is one face of candidate object -- object2. we can calculate what part of 

face 1 is inside the reference object and what part of face1 is outside the reference object. 

So if object 1 and object 2 do Union*, we should change face 1 into " outside object 1 part 

of face 1 ". If object 1 and object 2 do Difference*, we should change face 1 into " inside 

object 1 part of face 1 ". If object1 and object 2 do Intersection*, we should change face 1 

"inside object 1 part of face 1 ". 

Table XII illustrates how to change the face based on Regularized Boolean Set 

Operation. 



69 

-

Face 1' Face 4' Face 6' 

-

Face 2" Face 3" Face 5" 

Figure 34. Changed Faces by Doing Regularized Union Boolean Set Operation 



70 

Face 1 is one face of candidate object 

Outside object 1 part of face 

I 

,. --------------
' , 

' , 

Face 1 

Object 1 as reference object Inside object 1 part of face 1 

Union* 

Difference* 

Intersection* 

Figure 35. Relation Between Face and Object 

TABLE XII 

CHANGING FACE RULES 

Changed Face of Objectl 

Outside Object2 Part 

Outside Object2 Part 

Inside Object2 Part 

Changed Face of Object2 

Outside Object 1 Part 

Inside Objectl Part 

Inside Objectl Part 



7 1 

Geometric Calculation 

When we use the Boundary Evaluation Procedure, we first should calculate the 

intersection line of the two faces. Usually we can write the following equations to describe 

the two planes. See Figure 36. 

Plane 1· 

Plane 2 

a1 * X+ b1 * y + Cl * Z + d1 = 0 

az * x + bz * y + cz * z + dz = 0 

(3. 1) 

(3. 2) 

By using the following formula, we can determine whether the two planes intersect or 

not. 

a1 * az + b1 * bz + c1 * cz cos cp = ---;::========--;=::::::::::==== 
1 at + hi + ct * 1 a~+ b~ + c~ 

When cos cp = 1 or cos cp = -1 , two planes could parallel or coincident. Choose one 

pointer ( x1 Yl, z1) at plane one, and calculate the distance between pointer (XI. Yl, z1) and 

plane two. by using the following formula. 

d = laz * x1 + bz * Yl + cz * z1 + dj 

1a~+b~ +c~ 
If d = 0, then two planes are coincident, otherwise the two planes are parallel. 

if cos cp -:t: 1 and cos cp -:t: -1 , then two planes intersect. 

The direction of intersection linel is: 

r=[a1b1l 
az bv 

where a1, b1, cl, a2, b2, c2 are coefficients of plane equations (3.1) and (3.2). 

Now we should check whether this intersection line of two planes intersects two 

polygons or not. See Figure 37. By choosing one segment of the polygon in plane one, 

we test whether this segment intersects the intersection line. If the intersection line 



Intersection line 

Figure 36. Two Planes 

Plane 2 

Plane 1 

72 



73 

Plane 2 

Plane 1 

Intersection line 

pl p2 

p3 \ p4 

Common segment 

Figure 37. Calculate Common Intersection Segment 



74 

intersects the segment of polygon in plane one, restore this intersection pointer. Mter 

finishing to check each segment of the polygon in plane one with intersection line, we can 

get two intersection pointers, p 1 and p2. Using the same method, we can check the 

polygon in plane two and get two intersection pointers p3 and p4. Choosing the common 

part of the segment p 1 p2 and segment p3p4, and we get the two polygon intersection 

segment p2p3. 

If the intersection line does not intersect any segment of the polygon in plane one or 

polygon in plane two, we can deduce thatthe polygon in plane one and the polygon in 

plane two have no intersection line. See Figure 38. 

The intersection formula of two planar lines is as following: 

If we know that linel direction is p1, r1, q1 and line2 direction is p2, q2, r2, we can 

calculate the angle between the two lines as, 

If cos <p = 1 or cos <p = -1, we know two lines are parallel or coincident. Choose one 

pointer at line one and then test whether this pointer is in line two or not. If this pointer is 

in line two, the two lines are identical. Otherwise the two lines are parallel. If cos <p *- 1 

and cos <p *- -1, two lines intersect. The line intersection pointer is as following, 

Line Equation: 

Line one 

Line two 

(
X = X2 + P2 * t2 
Y = Y2 + q2 * t2 
z = z2 + r2 * t2 

ifq1 * P2- q2 * Pl *- 0, then we can get 



Polygon in plane 2 

Plane 2 

Plane 1 

Polygon in plane 1 

Intersection line 

Figure 38. Two Polygons Do Not Intersect 

75 



* Y2 * P2 + q2 * X1 - q2 * X2- P2 * Y1 t 1 = :f....:::...____!:.=:_--..::!=:___!'--~-=-~___,'-!. 
q1 * P2 - q2 * P1 

if r1 * q2 - r2 * q1 '# 0, then we can get 

* Z2 * q2 + r2 * Y1- r2 * Y2- q2 * Z1 t 1 = -=----'=-___;:=--,-~____;=--:-...:...::---'=-___;;; 
r1 * q2 - r2 * q1 

if P1 * r2- P2 * r1 '# 0, then we can get 

Intersection pointer 

lx* = x1 + P1 * t~ 
* * * Y = Y1 + q1 t1 
* * * z = z1 + r1 t1 

76 



CHAPIERV 

CONCLUSIONS AND RECOMMENDATIONS 

Results 

We have implemented the computer-aided preliminary design software based on the 

concept and objectives stated in Chapter I. We have used this software to design and 

evaluate variqus configurations of the camera shutter system referred to previously. By 

interacting,tli~~~odel, we can simulate the planar part movement and test whether design 
/ 

functions properly. 

Figure 39 shows a camera shutter system which includes a shutter with a slot, a 

shutter actuator, a pin, a lens, a spring and two stop blocks. At the initial position, the 

shutter is kept stationary by the force of a compression spring, the force of the stop blockl 

and the pin reaction force. When the shutter actuator moves to the right, the shutter rotates 

around the pin and the lens is opened. When the shutter actuator reaches the far right 

position, the shutter returns to its initial position by the counterclockwise moment created 

by the force of the compression spring. Then the shutter actuator moves from right to left 

to reset. The lens should always remain closed when the shutter actuator resets. 

In Figure 40, we see that t'his design does not function properly. The shutter actuator 

pushes the shutter until the lens is opened. At this point, the compression spring causes the 

shutter to rotate around the pin in the clockwise direction. The shutter will never return to 

its initial position. By changing the location of the spring, we can guarantee that the force 

of the compression spring creates a counterclockwise moment on the shutter, so that it 

returns to the stable initial position. 

77 



78 

Pin 
v 

> Block 1 

Spring Shutter 

Block2 

Figure 39. Design 1 Initial Position 

Shutter 

Lens 
Spring 

Figure 40 .. Design 1 in Second Stable Position 



In Figure 42, the design also does not function properly. The lens will be opened 

when the shutter actuator moves from right to left. We can redesign the shape of the 

shutter to guarantee that the lens is always closed when the shutter actuator returns to its 

initial position. 

79 

By taking advantage of computer-aided preliminary design software, we can easily 

test the performance of our designs. When problems are found, we can correct them 

before we have made a large investment of time and money. 

Conclusions 

In Chapter I, a new concept for preliminary design modeling was developed. 

According to our objectives, we have explored this concept by developing prototype 

computer-aided preliminary design software. 

In order to get realistic and interactive motion simulation, a dynamic model has been 

establish. Also a method for automated detection of constraint change has been found by 

using the polygon collision technology. The collision geometry is used to calculate the 

reaction forces which are applied to the components to maintain the constraints. 

We have implemented a user interface by which we can define the components and 

connect these components together in an assembly. A force block has been created in order 

to interactively apply a force. Also a slider has been developed by which the model 

parameters can be changed. 

We have developed a solid modeler. By using this solid modeler, we have provided 

improved visual understanding of the design. 

Finally, we have tested the system and found that even though the motion is slow, the 

user is able to interact the model and detect design problem. 



80 

Actuator 
Pin v 

< 

Shutter 

Block2 

Figure 41. Design 2 Initial Condition 

Block 1 

Sprin 

Lens 

Figure 42. Design 2 With Lens Opening During Shutter Actuator Goes Back 



Recommendations 

Computer-Aided Preliminary Desi~m 

Although we have made a good user interface to define the parts, it uses a fixed 

sequence to defme the parts. We should modify this interface so that we can defme 

8 1 

"geometric features", such as the outline of a part, defme "constraint features" such as slots 

and pins and associate these features together to make a part. After completing the 

definition all individual parts, we should connect these parts together in an assembly. 

Different mathematical models can be used to represent fixed constraints and variable 

constraints. We should add to our modeler the ability to handle both fixed and variable 

constraints. 

Even though we have developed a way to simulate the movement of the parts, it may 

not be the fastest method. More investigations should be done in order to fmd better ways 

to perform the simulation as fast as possible, such as high speed parallel computation. For 

example, one processor could be assigned the task of computing collisions for a single 

component. 

At this point, we have only implemented planar computer-aided preliminary design. 

We should continue the research to include preliminary design in three dimensions. 

SQlid Modelin~ System 

This solid modeling system developed in this project is useful in its own right and 

should be improved. Now we use a data ftle for user input of geometry. We should write 

a graphical user interface to interactively define the primitives and Regularized Boolean Set 

Operations. 

We should add "features" such as holes, steps and slots etc.to the solid modeling 
• 

system and make it intelligent to other application such as manufacturing and assembly. 

An investigation should also be done on the data structure used to represent the 



mechanical part. Currently, different data structures are used at each phase of the 

prcxluction cycle. A single consistent data structure should be developed which contains 

the information necessary for the complete prcxluction cycle. 

82 



REFERENCES 

Baer, A., Eastman, C. M. and Henrion, M. "Geometric Modeling: A Survey." Computer
Aided Design, Vol. 11, No.5, 1979, pp. 253-272. 

Baumgart, B. "A Polyhedron Representation for Computer Vision." AFIPS Conf. Pro .. 
In National Computer Conference, 1975, pp. 589-596. 

Baumgart, B. "Geometric Modelling for Computer Vision." PhD Thesis, Stanford 
University, 1974. 

Bezier, P. Numerical Control-Mathematics and Applications. A. R. Forrest (trans), 
Wiley, London, 1972. 

Chiyokura, H. and Kimura, F. "A Method of Representing the Solid Design Process." 
IEEE Computer Graphics and Applications, Vol. 5, Apr. 1985, pp. 32-41. 

Christessen, A. H. J. "Approximation of A Donut." Computer Graphics, Vol. 14, No.3, 
July, 1980. 

Coons, S. A. "Surfaces for Computer Aided Design of Space Forms." MIT Project Mac, 
TR-41, June 1967. 

Dubow sky, S. and Freudenstein, F. "Dynamic Analysis of Mechanical Systems With 
Clearances - Part I: Formation of Dynamic Model." ASME Journal of Engineering 
for Industry, Vol. 93, Feb. 1971, pp. 305-309. 

Dubowsky, S. andFreudenstein, F. "Dynamic Analysis ofMechanical Systems With 
Clearances - Part II: Dynamic Response." ASME Journal of Engineering for 
Industry, Vol. 93, Feb. 1971, pp. 310-316. 

Elliott, W. S. "Interactive Graphical CAD in Mechanical Engineering Design." Computer
Aided Design, Vol. 10, No.2, 1978. 

French, M. J. "Conceptual Design for Engineers." Design Council, London, 1985. 

Gilmore, B. J. and Cipra, R. J. "Simulation of Planar Dynamic Mechanical Systems With 
Changing Topologies - Part I: Characterization and Prediction of the Kinematic 
Constraint Changes." ASME Journal of Mechanical Design, Vol. 113, March 1991, 
pp. 70-76. 

Gilmore, B. J. and Cipra, R. J. "Simulation of Planar Dynamic Mechanical Systems With 
Changing Topologies - Part II: Implementation Strategy and Simulation Results for 
Example Dynamic Systems." ASME Journal of Mechanical Design, Vol. 113, 
March 1991, pp. 77-83. 

83 



84 

Gordon, W. J. and Riesenfeld, R. F. "B-Spline Curves and Surfaces." Computer Aided 
Geometric Desi~n, Academic Press, New York, 1974. 

Jackins, C. L. and Tanimoto, S. L. "Octrees and Their Use in Representing three
dimensional objects." Computer Gnwhics and Ima2"e Processin~, Vol. 14, 1980, 
pp. 249-270. 

Kajiya, J. T. "New Techniques for Ray Tracing Procedurally Defmed Objects." ACM 
Transactions on Graphics, Vol. 2, No.3, July.1983, pp. 161-181. 

Kawaguchi, E. and Endo, T. "On a Method of Binary Picture Representation and Its 
Application to Picture Compression." IEEE Transactions on Pattern analysis and 
Machine Intelli~ence, Vol. 2, No. 1, 1980, pp. 27-35. 

Light, R. and Gossard, D. "Modification of Geometric Models Through Variational 
Geometry." Computer-Aided Desi~n, Vol. 14, No.4, July 1982, pp. 209-214. 

Meagher, D. "Geometric Modeling Using Octree Encoding." Computer Graphics and 
Ima~e Processin~, Vol. 19, 1982, pp. 129-147. 

Orlandea, N., Chace, M.A. and Calahan, D. A. "A Sparsity-Oriented Approach to the 
Dynamic Analysis and Design of Mechanical Systems - Part I." ASME Journal of 
En~ineerin~ for Industry, Vol. 99, Aug. 1977, pp. 773-779. 

Pfeifer, H. "Methods used for Intersecting Geometrical Entities in the GPM Module for 
Volume Geometry." Computer-Aided Desi~n, Vol. 17, No.7, Sept. 1985, pp. 
311-317. 

Requicha, A. A. G. "Representations for Rigid Solids: Theory, Methods, and Systems." 
Computing Surveys, Vol. 12, No.4, Dec. 1980, pp. 437-465. 

Requicha, A. A. G. and Chan, S. C. "Representation of Geometric Features, Tolerances, 
and Attributes in Solid Modelers Based on Constructive Geometry." IEEE Journal 
of Robotics and Automation, Vol. RA-2, No.3, Sept. 1986, pp. 156-166. 

Requicha, A. A. G. and Tilove, R. B. "Constructive Solid Geometry." Tech. Memo. 25, 
Production Automation Project, University of Rochester, Rochester, NY, Nov. 
1977. 

Requicha, A. A. G. and Tilove, R. B. "Mathematical Foundations of Constructive Solid 
Geometry: General Topology of Closed Regular Sets." Tech. Memo. 27, 
Production Automation Project, University of Rochester, Rochester, NY, March 
1978. 

Samet, H. "The Quadtree and Related Hierarchical Data Structures." ACM 
Computin~ Surveys, Vol. 6, 1984, pp. 187-260. 

Shah, J. J. and Rogers, M. T. "Expert Form Feature Modelling Shell." Computer-Aided 
Design, Vol. 20, No.9, Nov. 1988, pp. 515-524. 

Smith, D. A. "Reaction Force Analysis in Generalized Machine Systems." ASME Journal 
of Engineering for Industry, Vol. 95, May 1973, pp. 617-623. 



85 

Thatch, B. R. and Myklebust, A. "A PHIGS- Based Graphics Input Interface for Spatial
Mechanical Design." IEEE Computer Graphics & Applications, Vol. 8, March 
1988, pp. 10-30. 

Tilove, R. B. "Set Membership Classification: A Unified Approach to Geometric 
Intersection Problems." IEEE Transactions on Computers, Vol. C-29, No. 10, Oct. 
1980, pp. 874-883. 

Voelcker, H. B. and Requicha, A. A. G. "Geometric Modeling of Mechanical Parts and 
Processes." Computer, Vol. 10, Dec. 1977, pp. 48-57. 

Wehage, R. A. and Haug, E. J. "Dynamic Analysis of Mechanical Systems With 
Intermittent Motion." ASME Journal of Mechanical Desim, Vol. 104, Oct. 1982, 

pp. 778-784. 

Winfery, R. C., Anderson, R. V. and Gnilka, C. W. "Analysis of Elastic Machinery 
With Clearances." ASME Journal ofEnW.neerin& for Industty, Vol. 95, Aug. 1973, 
pp. 695-703. 



VITA 

XIANGHONG 

Candidate for the Degree of 

Master of Science 

Thesis: OONCEPTS FOR OOMPUTER-AIDED PRELIMINARY DESIGN AND 
MODELING OF ASSEMBLIES WITH MOVING PARTS 

Major Field: Mechanical Engineering 

Biographical: 

Personal data: Born in Shanghai, P. R. C., October 18, 1963, the son of Mr. and 
Mrs. Xingxia Hong. 

Education: Graduated from Yucai High school, Shanghai, P.R. C., in July, 1982; 
Received Bachelor of Science in Engineering Degree from Shanghai Jiao Tong 
University,Shanghai, P. R. C. in July, 1986; Completed requirements for the 
Master of Science degree at Oklahoma State University in December, 1991. 

Professional Experience: Research Assistant, School of Mechanical and Aerospace 
Engineering, Oklahoma State University, Oklahoma, June, 1990, to May, 
1991; CAD/CAM Lab Assistant, College of Engineering, Architecture and 
Technology, Oklahoma State University, Oklahoma, January, 1990 to May, 
1991. 


