
AN INTEGRATED SET OF TOOLS TO ASSIST

IN THE DEVELOPMENT AND MAINTENANCE

OF PROJECT LIFE CYCLES

By

SRIDHAR CHANDRASHEKAR
~

Bachelor of Englneerlng

P.E.S. College of Englneerlng

Unlverslty of Mysore

Mysore, Indla

1986

Submltted to the Faculty of the
Graduate College of the

Oklahoma State Unlverslty
ln partlal fulflllment of

the requlrements for
the Degree of

MASTER OF SCIENCE
July, 1991

AN INTEGRATED SET OF TOOLS TO ASSIST

IN THE DEVELOPMENT AND MAINTENANCE

OF PROJECT LIFE CYCLES

Thes1s Approved:

Dean of the Graduate College

11

1398399

ACKNOWLEDGEMENTS

I profoundly thank Dr. B. Mayf1eld for h1s unst1nted

help and gu1dance H1s construct1ve cr1t1c1sm helped me 1n

ga1n1ng conf1dence dur1ng my graduate program. My s1ncere

thanks to Drs D M1ller and J Chandler for serv1ng on my

graduate comm1ttee The1r suggest1ons and support were very

helpful throughout the study

I would not be do1ng JUStlce to myself 1f I do not

thank Dr M Samadzadeh, w1thout whose help my knowledge 1n

Software Eng1neer1ng would have rema1ned l1m1ted He not

only helped me 1n my thes1s, but also 1n my course work

I would l1ke to express my grat1tude to Learmonth &

Burchett Management Systems, Inc., for sponsor1ng th1s

proJect 1n part In part1cular, I offer my thanks to Mr

John Bantleman, Mr R1ck Plezcko, and Mr Dav1d Hs1eh for

the1r help I would also l1ke to thank Dr Hedr1ck for

help1ng me to go to Houston (LBMS Inc.) to complete th1s

proJect

My spec1al thanks are extended to Mr Gopal Kulkarn1

for help1ng me 1n everyth1ng, from des1gn1ng to debugg1ng

Last but not least, I express my gratefulness to Mr Manohar

Rao, Mr Rav1 Kumar, Mr. Sarvesh Jagann1vas, Mr. Suresh

Subraman1an, and Mr Sangram Bhosale for help1ng me get my

proJect report ready

111

TABLE OF CONTENTS

Chapter Page

NOMENCLATURE

I . INTRODUCTION 1

ProJect Management . . .

ProJect Management Tools

Scheduling Tools . .

Estimating Tools

Advantages and Limitations . .

Computer-Aided Project Engineering

Statement of the Problem ..

Object1ves o,f the Study .

II. CONCEPTS USED IN LIFE CYCLE BUILDER ..

Introduct1on .

Work Breakdown Structures.

The Project Database

The Binary Model

3

4

5

5

6

7

8

9

. 11

. 11

11

. 12

14

The Entity-Attribute-Relationshlp

-Attribute (EARA) Model. 14

The Object, Property, Role and

Relat1onship (OPRR) Model

The User Interface

Different Approaches .

Final User Interface Design.

PrOJect Templates

Project Views and Task Hiding . . .

lV

16

18

19

19

20

20

Chapter Page

III. DESIGN AND IMPLEMENTATION 22

Introduction

Implementation of the Concepts

22

22

Implementation of the'Database . 22

Project Templates. 23

The User Interface Implementat1on. . 24

ProJect Views and Task Delet1on. . . 24

The Software Architecture 25
'

The In-Memory Data Structure and N Levels . . 25

ObJect-Oriented Des1gn ...

The Gr1d W1ndow Class.

The LCB Object Editor ...

Project Modules

Life Cycle Bu1lder.

Risk Analysis

26

30

32

. . . 33

. . . . 34

. 34

IV. FEATURES OF LIFE CYCLE BUILDER (LCB) 36

Introduction 36

How to use LCB . 37

The LCB L1st Wlndow. . 38

Add1t1on and Delet1on of ObJects . 39

Collapse'and~Expans1on of Objects. . 40

Promotion and Demotion of ObJects. 41

The WBS Diagram Window 43

V. RISK ANALYSIS. 45

Introduct1on .

ProJect R1sks.

Risk Areas . .

Poss1ble Solutions

v

. . . . 45

46

46

47

Chapter Page

VI. CONCLUSIONS AND FUTURE WORK 49

SELECTED BIBLIOGRAPHY

APPENDIX A Project Engineer Modules .

APPENDIX B Project Eng1neer Snapshots . .

VI

51

.56

. 57

LIST OF FIGURES

Figure Page

1. The Standard Software Development Life Cycle 2

(The Waterfall approach)

2. The Lim1tat1ons of Scheduling tools ..

3. Ent1ty Relationship example .

4. The EARA model example

5. The Software Arch1tecture . .

7

. . . 13

. . . 15

. • 2 6

6. The left-linked right-sibling tree data structure . 27

7.

8.

9.

10.

11.

12.

13.

14.

15.

The ObJect Editor

Project Eng1neer LCB W1ndow .

Project Eng1neer modules
Snapshot of L1fe Cycle Builder (LCB) module

Snapshot of LCB module Wlth WBS Diagram Editor.

Snapshot of PrOJeCt Information dialog box.

Snapshot of Styles dialog box .

Snapshot of the WBS Diagram Editor. .
Snapshot of WBS d1agram ed1tor w1th LCB module.

Vll

33

. 38

56

. . 57

58

. . 59

. . 60

. 61

. . 62

NOMENCLATURE

CASE. Computer-Alded Software Englneerlng.

CAPE. Computer-Alded ProJect Englneerlng.

DeclSlon 123. An AI rule-based tool developed by The

Proctor and Gamble AI team Declslon 123 helps the user

bulld the knowledgebase through tables, declslon networks

and/or rules The output code can run ln elther M1 (an AI

package) or KnowledgePro (a Wlndows based product comblnlng

hypermedla, expert systems and obJect-orlented programmlng

technologles whlch also provldes a software development

envlronment)

Dlrect Manlpulatlon. The use of a polntlng devlce to

perform actlons on obJects Examples are mouse-cllck and

mouse-drag [IBM SAA/CUA Gulde, 1990]

Double-Cllck To press and release a mouse button wlthln a

user-deflned tlme llmlt Wlthout movlng the mouse polnter off

the cholce [IBM SAA/CUA Gulde, 1990].

Functlon Polnt A measure of complexlty of what lS to be

dellvered ln a proJect

Hot Llnk A dlrect llnk between two appllcatlons

Icon A plctorlal representatlon of an obJect or a selectlon

cholce. Icons can represent obJects that users want to work

on or actlons that users want to perform. A unlque lcon

also represents the appllcatlon when lt lS mlnlmlzed

Vlll

KnowledgePro. A development tool for W1ndows appl1cat1ons

Menu. A component of a d1alog des1gn cons1st1ng of a

screen wh1ch can d1splay opt1ons and rece1ve control 1nput.

Mult1ple Document Interface. An 1nterface style that allows

users to v1ew many obJects at the same t1me or the same

obJect many t1mes w1th1n one pr1mary w1ndow [IBM SAA/CUA

Gu1de, 1990]

PERT Program Evaluat1on and Rev1ew Techn1que, a method

to 1nd1cate top-management presentat1ons on maJor

del1verables, that 1s, the m1lestones or events [Zells, P ,

1990]

Software Development K1t (SDK) A development k1t

suppl1ed by M1crosoft for software development under

W1ndows

comp1ler

Th1s works w1th the M1crosoft C opt1m1z1ng

Software L1fe Cycle.

development.

Var1ous stages of software

The poss1ble stages are

- ProJect In1t1at1on

- Requ1rements and Analys1s study

- ProJect Spec1f1cat1on and Log1cal Des1gn

- Phys1cal Des1gn and H1gh level des1gn

- Cod1ng, Debugg1ng, and Test1ng

- Ma1ntenance

OPRR ObJect, Property, Role and Relat1onsh1p A term

used 1n conJunctlon w1th a repos1tory schema developed at

LBMS Inc, The repos1tory des1gn 1ncorporates an ob]ect­

orlented des1gn and use of the concept of obJeCt-property­

role and relat1onsh1p or OPRR, keep1ng 1n m1nd the future

trends 1n software automat1on

IX

W1ndows (3.0) A user 1nterface developed by M1crosoft

Corporat1on for IBM PCs and compat1bles

W1ndow. An area of the screen w1th v1s1ble boundar1es

through wh1ch 1nformat1on 1s d1splayed. A w1ndow can be

smaller than or equal 1n s1ze to the screen. W1ndows can

overlap on the screen and g1ve the appearance of one w1ndow

be1ng on top of another.

Work Breakdown Structure The process of d1v1d1ng a

whole pro]ect 1nto several small p1eces wh1ch can be eas1ly

manageable

X

CHAPTER I

INTRODUCTION

Software Englneerlng encompasses a varlety of technlcal
'

methods, a set of management procedures, and a sulte of

automated tools (often called CASE - Computer-Alded Software

Englneerlng) that enhance our ablllty to bulld effectlve

computer-based systems [Pressman, 1988] A proJeCt goes

through several stages, from proJect lnltlatlon to

lmplementatlon and malntenance; thls lS often referred to as

the software development llfe cycle Speclflc proJeCt

development llfe cycles constltute the foundatlon of

software systems Proper management of these llfe cycles

lead to better proJeCt plannlng and management. Flg. 1.1

lllustrates a standard llfe cycle for software englneerlng.

The dlfferent stages ln the llfe cycle can generally be

llsted as follows·

. ProJect Inltlatlon (Plannlng)

. Requlrements Analysls

. ProJect Speclflcatlon and Loglcal Deslgn

. Physlcal Deslgn (Hlgh Level Deslgn)

. Codlng and Debugglng

. Testlng

1

Implementation (either in part or full as required)

. Maintenance

Every stage lncludes a loop back to the prevlous stage

2

and/or to some of the previous stages. This concept of loop

back allows for system checks against delays versus

scheduled task tlme lengths so that stage tlme estimates can

be revised to deplct task tlme changes.

I Pr~ect I llllttatlon I J,
I

Reqmremerns
8r AnalySis

J,
II\

SpeClflcatlons 8r
Log~cal DeSign

·~
J,

PhySical D eSJgn

j,
~~

Codmg&
ITYIIllementatJon

-t t Testmg&
Implementation

Implemented
System

F1a 11 THE STANDARD SOFTWARE DIVELOPMiNTLIFECYCLI (WaterfalAwroach)

Figure 1.1 The Standard Software Development Llfe Cycle.

(The Waterfall approach)

3

W1th1n the context of software eng1neer1ng, a method lS

a procedure or techn1que for perform1ng some s1gn1f1cant

port1on of the software llfe cycle [Orr et al , 1989] A

methodology, 1n software eng1neer1ng terms, lS a collectlon

of methods based on a common phllosophy that fit together in

a framework called the systems development l1fe cycle A

software l1fe cycle may be 1mplemented through any of

several methodologles

are g1ven below

Some of the well-known methodolog1es

The Warnler/Orr approach [Orr et al , 1989]

The Yourdon approach [Orr et al , 1989]

. The Gane/Sarson approach [Orr et al , 1989]

. The Entlty-Relatlonshlp approach

. HIPO (H1erarch1cal Input Process Output) approach

. The Mlchael Jackson approach [Cameron, 1986]

CASE lS a comb1nat1on of software tools and structured

development methodolog1es [McClure, 1989] Whereas tools

attempt to automate the software process, methodolog1es

deflne the process to be automated

ProJect Management

A proJect may be def1ned as a group of 1nterrelated

tasks taken one at a tlme to achieve a speclflc goal

ProJect management lS the art of manag1ng such tasks,

usually performed by a proJect leader A group of people

Wlll be ass1gned to a proJect Wlth a leader to manage the

4

proJect Every proJect has to be planned to be properly

carr1ed out Thus a systematlc approach 1s called for

Wh1le plann1ng 1s essent1al, 1t does not, by 1tself, produce

techn1cal del1verables A tool may be helpful. Several

proJect management tools exist 1n the marketplace, but most

of these tools only perform the schedul1ng and est1mation

act1v1t1es and help 1n draw1ng charts

ProJect Management Tools (PMT)

The 1dea of a paperless off1ce has g1ven r1se to

several 1mportant appl1cat1ons to be ma1nta1ned on the

computer Among many areas of software development are the

software packages deal1ng w1th the techn1cal aspects of

software eng1neer1ng Tools Whlch ass1st the proJect

manager 1n ma1nta1n1ng software prOJects are called ProJect

Management Tools (PMTs) PMTs range from s1mple schedul1ng

tools to complex est1mat1on and analys1s tools These tools

prov1de s1mple user 1nterfaces, prov1de graph1c d1splays and

help 1n ma1nta1n1ng the dynam1cally chang1ng proJect phases

Examples of such ex1st1ng tools are Harvard ProJect Manager,

SuperProJect Expert, T1me L1ne, and M1crosoft ProJect It

should be noted that any of these software tools, by

themselves, do not a1d the proJect manager 1n all the

act1v1t1es of proJect management Thus, there are

5

spec1al1zed tools to ma1nta1n separate parts of the proJect,

VlZ schedul1ng tools and est1mat1on tools, to name a few

Schedul1ng Tools

ProJects have to be scheduled as to when they would

start, how many days w1ll be requ1red to complete each phase

of the proJect, etc L1kew1se, appropr1ate resources have

to be ass1gned Schedul1ng tools help 1n ma1nta1n1ng these

numbers It should be understood that the numbers ass1gned

at the 1ncept1on of a proJect are tentat1ve numbers and are

subJect to change due to many reasons For example, an

unexpected delay 1n acqu1r1ng resources, 1n the form of

hardware/software requ1red for the proJect, or, the

unava1lab1l1ty of some key techn1cal person(s), may lead to

delays wh1ch may be carr1ed over to the success1ve phase(s)

Actual t1me and other resources taken for past proJects can

be used to compute the schedule of the present proJect

Est1mat1ng Tools

A tool to est1mate (calculate) the effort requ1red to

do a part1cular task or a number of tasks 1n the proJect 1s

termed as an est1mat1on tool There are two general ways to

approach est1mat1on funct1on polnt-based est1mat1on and

obJect-based est1mat1on

6

Functlon polnts are used to measure system slze as a

component of productlvlty measurement [Zells, 1990] Users

count the number of lnputs and outputs, number of lnternal

flles, number of lnterfaces, etc. Startlng the process at a

polnt, when a comfortable amount of analysls and deslgn has

been completed, the estlmators classlfy and count raw

functlon polnts Thls, along Wlth other lmportant data, ald

ln estlmating projects

ObJect-based estlmatlon pertaln~ to measurlng the

effort lnvolved ln completlng a partlcular task ln a proJect

llfe cycle The effort depends upon several factors, for

example, the person dolng a partlcular task ln a proJect lS

one of such factors ObJect-based estlmatlon ls the most

common method used ln software tools

Advantages and Llmltatlons

The schedullng tools help the proJect manager ln

keeplng track of tlme expended and tlme requlred for

dlfferent phases of a proJect Slmllarly, the estlmatlon

tools ald ln plannlng and malntalnlng the effort requlred to

complete the proJect Other management tools portray the

state of the proJect uslng charts, and plctorlally represent

the same

The tools mentloned above support the proJect manager

ln several dlfferent aspects of proJect management Flgure

7

1 2 deplcts the peifoimance of dlffeient tools Wlth Iespect

to dlffeient phases of a pioJect It may also be obseived

that a tool to suppoit a softwaie pioject at all phases lS

deslred

Computei-Alded ProJect Englneeilng (CAPE)

There aie two aspects to a softwaie piOJect technlques

and plannlng [Hsleh, 90] Whlle the technlques helps ln

lmplementlng the piOJ ect, plannlng ald, ln deslgnlng the

proJect to be propeily concelved and executed As mentloned

Project Engineenng

Defme Plan Control Improve
the f-.-;. the ~ / the f----7 the
Process Process Process Process

ProJect Engmeer (The proposed tool)
I I

Sche dulmg Tools

Esumaung Tools
I I

Involvement of tools m the d1fferent stages of proJect life cycle

Flg 1 2 The llmltatlons of schedullng tools

8

ln the prevlous sectlon, there are several tools to automate

the technlques part (ln partlcular the CASE tools that

support the Programmer/Analyst/Deslgner). However, the

plannlng and management aspects along Wlth the automatlon of

software methodologles usually are not supported by ex1Stlng

tools satlsfactorlly. Whlle CASE tools automate the

productlon of technlcal dellverables, CAPE tools automate

the productlon of plannlng dellverables. Dellvery of

plannlng dellverables usually lS accompllshed by proJect

managers manually, whlch makes manlpulatlon and malntenance

of the same cumbersome. A tool to perform these management

aspects could lncrease the productlvlty of the proJeCt

manager, whlle provldlng a proper foundatlon for the proJect

from the start. Currently, support for the ProJect Manager

lS llmlted to such Slngle-purpose tools

Statement of the Problem

Software proJects range from Slmple to complex

systems. Each proJect has a unlque Work Breakdown Structure

(WBS) constltutlng the proJeCt llfe cycle Accordlng to

Zells,

When managers try to plan a proJeCt Wlthout belng

able to reference an lnternal corporate pro] ect

hlstory flle, a methodology checkllst, or even a

9

book, they may Slmply draw a blank and be stymled

about where to start [Zells, 1990]

Lack of pre-exlstlng templates of pro]ect plans may thus

hlnder proper plannlng. In other words, an exlStlng

template helps ln thls flrst and most lmportant step

(plannlng) .

Software methods are used to plan proJects. In the

past, one llfe cycle was adapted to flt all prOJects, thls

approach was subsequently modlfled later to adopt one of

several llfe cycles to flt a partlcular proJect. Multlple

llfe cycles soon become a problem as they prollferate and

are a problem to malntaln A solutlon to thls problem can

be found ln modular methods, whlch can be malntalned easlly

whlle belng used wlth proper changes for speclflc projects

ObJeCtlves of the Study
;

The ob]ectlve of thls study lS to deslgn, lmplement,

and test a Computer-Alded Pro]ect Englneerlng (CAPE) tool

for automatlng and malntalnlng the software development llfe

cycle for (software) proJects from a ProJect Management

perspectlve. Thls tool allows the user to load and

manlpulate proJect llfe cycles and templates, vlew the

proJect from varlous perspectlves, and provldes on-llne

10

method help (hypermedla based) , as well as an export llnk to

scheduler packages Emphasls lS glven to the deslgn of the

user-lnterface component of thls tool followlng the IBM

SAA/CUA standard [IBM SAA/CUA standards, 1990] The

proposed tool lS called ProJect Engineer ProJect Englneer

uses Multlple Document Interface (MDI) chlld Wlndows to

dlsplay lnformatlon to the user from dlfferent perspectlves

A plctorlal representatlon of the Work Breakdown Structure

lS also be provlded for the user to Vlew the proJect

hlerarchy (the other representatlon belng the standard

ActlVlty Outllne Wlndow or the Llst Wlndow) At thls stage,

the user lS allowed only to Vlew the plctorlal

representatlon

In short, ProJect Englneer lS deslgned to support a

Wlde range of proJect management actlVltles ln a modular and

lntegrated fashlon

CHAPTER II

CONCEPTS USED IN LIFE CYCLE BUILDER

Introductlon

The purpose of thls proJect lS to provlde a better way

to enhance the dellvery and accesslbillty of (software)

Methods, to automate the work of the ProJect Manager, and

to provlde support for contlnuous process lmprovement whlle

malntalnlng proJect document conslstency Thls tool also

lmplements the best avallable lndustry/organlzatlon

practlces Wlth respect to user lnterface and modular

software methods

Work Breakdown Structures

A proJect may be spllt lnto stages, steps and tasks,

tasks belng the smallest dellverable unlt A group of

assoclated tasks comprlse a step and a group of assoclated

steps comprlse a stage Thls partltlonlng lnto several

small modules ls referred to as a Work Breakdown Structure

11

12

(WBS) Glven below lS an example of the WBS for the ProJect

Inltlatlon stage (Only one Step lS expanded) .

ways

PI - ProJect Inltlatlon (Stage)

PI.Pil - Determlne Scope (Step)

PI Pil.lO - Revlew Related Studles

PI.PI1.20 - Establlsh Scope

PI.Pil 30 - Establlsh MaJor Ob]eCtlves

PI.PI1.40 - Establlsh Constralnts

PI PI1.50 - Identlfy Outllne Solutlon

PI PI2 - Establlsh ProJect Plan and Budget

etc

The ProJect Database

CASE tools handle data that are related ln complex

They need data lntegrlty and non-redundancy ln data

representatlon. A data reposltory lS best sulted for such

an appllcatlon. A reposltory lS a mechanlsm for storlng and

organlzlng all lnformatlon concernlng a software system,

lncludlng plannlng, analysls, deslgn, lmplementatlon and

proJeCt management lnformatlon [McClure, 1989] It lS also

referred to as a deslgn dlctlonary, database, obJect­

orlented database, knowledgebase, or encyclopedla. The

purpose of a reposltory lS to store system lnformatlon at a

central place, keep the data unlform, and be accesslble to

all users The reposltory must be robust enough to cater

13

to the needs of large software projects and must be scalable

[McClure, 1989]

One of the most essent1al steps 1n software development

1s to 1dent1fy and define the d1fferent types of data

1nvolved Th1s 1s real1zed by data model1ng Two bas1c

concepts 1n data model1ng are •ent1ty' and 'relat1onship'

Matthews and McGee def1ne an ent1ty as any 1dent1f1able

th1ng or event that can be characterized 1n terms of a set

of attr1butes and the1r assoc1ated values and a relat1onsh1p

as an assoc1at1on of two or more ent1t1es wh1ch may have

attr1butes of 1ts own [Mattews and McGee, 1990]

/ " '
Module calls Module

A B

_}
Relatwnsh1p
between "- ./

Entlty 1 Enuty 1 and Enuty 2
Entlty 2

F1g 2 1 Ent1ty-Relat1onsh1p example

For example, as 1n F1gure 2 1, let A and B be two modules

and let A call B, then A and B are two ent1t1es and

'call1ng' lS a relat1onsh1p between A and B There are

several data models employ1ng the concepts of ent1t1es and

relat1onsh1ps. Some of these models are del1neated below

[Welke, 1989]

The B1nary Model

14

Th1s 1s a s1mple model character1zed by the 1nvolvement

of exactly two ent1t1es and a s1ngle relat1onsh1p between

them. There are two types of b1nary models: b1nary-1 and

blnary-2 The blnary-1 form allows mult1ple 1nstances of

only one ObJect type usually, denoted as l.M (one to many)

Blnary-2 form allows mult1ple 1nstances of both ent1ty types

(M·M, many-to-many) Because of the1r SlmpllClty, b1nary

models have very l1m1ted appl1cabll1ty to complex

appl1cat1ons such as CASE tools.

The Entlty-Attrlbute-Relatlonshlp-Attrlbute (EARA)Model

To overcome the l1m1tat1ons of the b1nary model and to

express mult1-part relat1onsh1ps, the EARA model 1s used.

In th1s model, propert1es or attr1butes are assoc1ated w1th

each ent1ty part1c1pat1ng 1n a relat1onsh1p To 1llustrate

th1s, let us cons1der the prev1ous example of module A

call1ng module Bas depleted 1n F1gure 2 2. Assume that

module A calls module B 1terat1vely

15

/' '"\ calls '"\

Callmg Called

Module A Module B

' / /

Iteratlvely
Parameter passed/
Parameter returned

Flg 2 2 The EARA model example

Thls can be expressed by assoclatlng the attrlbute

'lteratlvely' to relatlonshlp 'calls' Now conslder an even

more complex Sltuatlon ln whlch the parameter lS elther

'passed' or 'returned' This can be expressed by

assoclatlng the attrlbute 'parameter type' (passed or

returned) to the 'calls' relatlonshlp Even though the EARA

model allows sophlstlcated multl-part relatlonshlp's, lt

does not express clearly the complexlty lnvolved ln the

relatlonshlp It lS not posslble to clearly express the

roles played by the modules and the parameters, as lS

evldent ln the above example Thus, there lS a need for a

hlgher meta model

16

The ObJect, Property, Role, and Relat1onsh1p (OPRR) Model

To overcome the l1m1tat1ons of the EARA model, the OPRR

model lS used. In the OPRR model, roles are assoc1ated w~th

ent1t1es that mod1fy the way an ent1ty takes part 1n a

relat1onsh1p Th1s adds another degree of freedom and hence

enhances the express1veness of the model. A meta model lS a

powerful model~ng techn1que to clearly and unamb1guously

capture the mean1ng of des1gn notat1ons. In other words, a

meta model lS a "database schema" for a data model. For

example 1n the prev1ous sect1on, the role of each obJeCt

(module) Wlth respect to the 'calls' relat1onsh1p can be

made expl1c1t The role attr~bute 1nd1cates the d1rect1on,

l.e, the type of parameter (passed or returned). Thus there

lS no data redundancy and the semant1cs are expressed

clearly ensur1ng data 1ntegr1ty.

In the OPRR database, data model1ng can be done at a

meta level. Hence many-to-many b1nary relat1onsh1ps w1th

roles attached to each part1c1pat~ng ent1ty and each ent1ty

hav1ng multlple propertles can be expressed very eas1ly.

Two or more ObJects can take on d1fferent roles and

part1c1pate 1n one or more relat1onsh1ps w1th mult1ple

1nstances. Th1s g1ves add1t1onal degrees of freedom ln data

representat1on compared to other data model1ng techn1ques

expla1ned 1n the prev1ous sect1ons. The representat1on lS

complete and can be mod1f~ed eas~ly Wlthout affect1ng other

relat1onsh~ps and ent~tles. Welke makes a comparat1ve study

17

of var1ous modeling techn1ques and proves the super1or1ty of

the OPRR techn1que [Welke, 1988]

The OPRR data eng1ne actually uses two k1nds of

databases 1n 1ts operat1on: the Meta database and the

Instance database A meta database conta1ns the meta schema

def1n1t1on that def1nes what k1nd of obJects and

relat1onsh1ps are stored 1n the database 1 e , Act1v1t1es,

Descr1pt1on of tasks, Status and Schedule 1nformat1on, etc

An Instance database contains the actual data about a

proJeCt Th1s closely follows the obJect-or1ented parad1gm

(the meta database 1s l1ke an obJect class and the 1nstance

database 1s an 1nstance of that,ObJect class) For example,

a WBS obJect 1s def1ned as an ent1ty 1n the meta database

and all the tasks 1n a proJect are 1nstances of th1s obJect

S1multaneously the tasks 1nher1t all the propert1es

assoc1ated w1th the WBS obJect

The OPRR database can be accessed us1ng an 1nterface

called the Log1cal Dev1ce Interface (LDI) The LDI allows

only one 1nstance database to be the "current" 1nstance at

any g1ven t1me

Thus the Meta database approach 1mparts flex1b1l1ty by

support1ng mult1ple methodolog1es and lets the user

custom1ze h1s/her own methodology [Welke, 1989] Also 1t

fully supports future evolut1on of the proJect and lets the

user add more analys1s and report1ng funct1ons The OPRR

database has an obJect-or1ented des1gn and 1s easy to

ma1nta1n

18

The User Interface

Recent stud1es have shown that the user 1nterface forms

a s1gn1ficant part of any applicat1on [Myers, 1988] It is

also arguably the most d1fficult part to develop, s1nce lt

1s necessary for the des1gner to understand the problem

techn1cally, wh1le cons1der1ng the human factors 1nvolved

The user 1nterface of any software package lS that part

wh1ch accepts 1nput, 1nteracts w1th the user, and should

presents hlm/her w1th a fr1endly env1ronment It should be

des1gned 1n such a way that 1t makes the 1nteract1on between

the user and the system easy and 1ntell1gent, w1th good

response t1me and eff1c1ent use of ava1lable resources The

1nteract1on techn1que cons1sts of the way of us1ng phys1cal

dev1ces such as a mouse, the keyboard, and/or a l1ght pen to

1nput a certa1n value There are d1fferent styles

(1nteract1on styles) 1n wh1ch th1s 1nteract1on can be made,

v1z , menu select1on, form f1ll-1n, command language,

natural language, and d1rect man1pulat1on [Shne1derman,

1987] . Of these, d1rect man1pulat1on 1s the most popular

The reason 1s that d1rect man1pulat1on 1nvolves select1ng an

obJect of 1nterest and perform1ng the requ1red act1on

Elaborate graph1cs, mode-free 1nterface, mult1ple ways for

the same command, ease of use and semant1c feedback, all

make d1rect man1pulat1on the most used 1nteract1on style 1n

recent software packages

19

Dlfferent Approaches

Inltlally, two approaches were trled to dlsplay the

proJect tasks ln a wlndow. One was to use llst boxes

stacked Slde by slde, glvlng an appearance of tabular data

dlsplay fashlon. The other method was to use edlt boxes for

the purpose. The latter glves the flexlblllty to edlt

flelds as they are, although lt lS problematlc to select

multlple ltems across rows and columns The former method

lS too awkward to code and malntaln. Both methods are not

standard for such purposes, but lt was a good exerclse. The

Llfe Cycle Bullder (Chapter 4) glves more detalls about the

thlrd (and flnal) approach selected.

Flnal User Interface Deslgn

The deslgn of the user-lnterface for thls proJect lS

generally lnsplred by the IBM SAA/CUA standards The deslgn

adopts all the relevant features llsted ln the SAA Advanced

Interface Deslgn Gulde [IBM SAA/CUA Gulde, 1990]. Dlrect

manlpulatlon lnterface deslgn along Wlth form flll-ln

approach wlll be used for certaln parts . The platform

selected to deslgn and lmplement thls package lS Mlcrosoft

Wlndows verslon 3 0. It features a mouse-lntegrated,

graphlcal user lnterface ln addltlon to uslng commands and

conventlons consldered standard for 'Windows-style'

programs

ProJect Templates

Dlfferent methodologles use different strategles ln

breaklng up the proJect lnto several parts A proJect can

be dlVlded lnto several stages dependlng upon lts

complexlty Thus a small three-month software proJect may

20

have JUSt three ,stages and another two-year proJect may have

elght stages

The need for a template appllcatlon occurs when certaln

groups of JObs must be used over and over again Wlthln the

same proJect or across several proJects [Zells, L , 1990]

Templates brlng wlth them valuable lnformatlon that lS

needed to glve the user a head start Since templates are

proven software llfe cycles themselves, they brlng

experlence and expertlse Wlth them

conslderable tlme and effort

Thls can save the user

ProJect Vlews and Task Hldlng

ProJect Vlews lS a feature that Wlll allow the user to

restrlct the VleW of the proJect database to those parts

concernlng a slngle proJect team member Thls wlll be the

basls for a report that can be handed to a proJect team

member as hls/her personal proJect plan, 1nclud1ng act1on

1tems, est1mates, resources, etc. The V1ewPo1nts fac1lity

w1ll g1ve prec1sely the 1nformat1on requ1red by hid1ng

21

redundant data For example, to v1ew the deta1ls regard1ng

the est1mat1on of a part1cular proJect, the est1mat1on

V1ewPo1nts d1splays Est1mated effort, Rev1sed est1mat1on,

Effort expended so far, and the Rema1n1ng Effort. Th1s

helps the user to understand relat1vely eas1ly and analyze

est1mat1on requ1rements

CHAPTER III

DESIGN AND IMPLEMENTATION

Introductlon

ProJect Eng1neer 1s coded 1n c, us1ng the Software

Development Klt suppl1ed by M1crosoft Corporat1on to develop

appl1cat1ons wh1ch run 1n W1ndows vers1on 3 0 The

appl1cat1on requ1res Wlndows 3 0 as a base and runs on PC

platforms

Implementat1on of the Concepts

In the follow1ng subsect1ons a br1ef descr1pt1on of the

1mplementat1ons of concepts d1scussed 1n the prev1ous

chapter 1s prov1ded

Implementatlon of the Database

ProJect Eng1neer uses an OPRR meta database model

d1scussed 1n the prev1ous chapter Two types of f1les ex1st

22

23

ln ProJeCt Englneer. Llfe Cycle Templates and ProJect

Databases. There lS no lnternal dlfference between the two

types (except ln the DOS flle extenslon) and both types are

based on the same OPRR Meta database (both are lnstance

databases). Dlfferent Llfe cycles can be retrleved JUSt by

changlng the lnstance database. In the Llfe Cycle Bullder

module's meta database, the WBS obJeCt lS deflned as an

entlty wlth propertles assoclated Wlth lt. Slmple blnary

relatlonshlpS between these obJects have been deflned and

used.

ProJect Templates

A llfe cycle template Wlll always be used as the basls

for a PrOJeCt Database. It Wlll be modlfled only when

changes that affect all future uses of the template are

made The user also Wlll be allowed to make changes to a

Template/ProJeCt and save lt as a template Thls faclllty

lS useful lf the users handle proJects whlch follow a

pattern but dlffer sllghtly. In order to create a new

proJect, a template Wlll be loaded, modlfled, and then saved

as a pro]ect.

Hence, several templates Wlll be provlded ln ProJect

Englneer for the user to cater to the dlfferent proflles of

software llfe cycles These templates present a startlng

24

po1nt for the user to tune the appropr1ate template to build

the requ1red l1fe cycle

The User Interface Implementat1on

Pro]ect Eng1neer uses Multlple Document Interface (MDI)

w1ndows to d1splay 1nformat1on from dlfferent perspect1ves.

MDI Ch1ld w1ndows are w1ndows wh1ch are controlled by and

appear w1th1n a parent or 'maln' w1ndow [Petzold, 1990]

These ch1ld w1ndows functlon exactly l1ke ma1n w1ndows,

1nclud1ng mlnlmlze/maxlmlze buttons, res1zab1l1ty, etc , but

they are l1m1ted to the boundar1es of the parent w1ndow.

Each MDI Ch1ld w1ndow performs a funct1on and can be

'1con1zed' and brought back to full s1ze whenever needed

Thls 1nterface 1s used by many other Wlndows products (like

M1crosoft Excel and Word) and should seem fam1l1ar to

exper1enced W1ndows users

ProJect V1ews and Task Delet1on

D1fferent v1ews of the selected task deta1ls can be

seen 1n ProJect Eng1neer by changlng v1ews Thls lS

prov1ded to help the proJect manager to look at the proJect

ln d1fferent perspectlves

ObJects 1n ProJect Eng1neer are never phys1cally

deleted Instead they are marked as deleted and 'hldden'

from v1ew There are two reasons for th1s The pr1mary

reason 1s that certa1n modules l1ke the L1fe cycle Adv1sor

and Val1dator may need to access obJects are 'm1ss1ng' as

well as those that are present Further, the user can

eas1ly •undelete• a task at any po1nt 1n t1me, w1thout

hav1ng to recreate all of the assoc1ated 1nformat1on A

Hlde/Unhlde funct1on w1ll allow the user to toggle between

v1ews that 1nclude or exclude 'deleted' obJects

The Software Arch1tecture

25

The arch1tecture employed for th1s proJect 1s shown 1n

F1g 3 1 As usual the user 1nterface forms the front-end

and uses W1ndows vers1on 3 0 Other tools that coex1st with

the L1fe Cycle Bu1lder are shown as 1nternal tools The

front-end 1s connected to the database (back-end) v1a the

LDI Database Interface The connect1on to CASE tools lS

planned but not yet 1mplemented S1m1larly the 1nterface to

popular schedulers w1ll be 1mplemented when the l1cens1ng of

the same 1s completed

The In-Memory Data Structure and N Levels

A copy of the tasks 1n the l1st w1ndow 1s stored 1n

memory for faster access to d1splay them 1n the l1st w1ndow

whenever the w1ndow 1s repa1nted Th1s feature also saves

26

User Interface

Internal Windows 3.0
Tools MDI

I
LD I Database Interface

I

I
0 PRR Database Engine

I

J 1 " '/

Scheduler CASE Other
Interface Tools Tools

Flgure 3 1 The Software Archltecture

unnecessary dlsk accesses Slnce a proJect llfe cycle has a

hlerarchy/ lt can be stored as a left-llnked rlght-slbllng

tree Slnce the maxlmum number of chlldren ln any level lS

not llmlted/ the llnk structure lS provlded Flgure 3 2

deplcts the data structure as lt lS stored ln memory

ObJect-Orlented Deslgn

ProJect Englneer employs an obJect-orlented approach ln

the deslgn of lts modules The lsolatlon of the lnteractlve

27

The conceptual view of the Work Breakdown Structure

Levell

Level2

Level3

LevelN

The physical data structure

Levell

Level2

I

Level3

LevelN

The storage v1ew of the conceptual VIew shown above

Fig 3.2 The left-linked r2ght-s2bling tree data structure

part from the appl1cat1on part 1n any software des1gn has

several advantages [Llnton et al, 1989] Thls 1solat1on can

be ach1eved eas1ly us1ng object-orlented des1gn prov1d1ng

abstract1on and encapsulat1on ProJect Eng1neer lS modular

1n des1gn and 1ncorporates an 1ntegrated set of tools that

can be m1xed and matched Each add1t1onal module Wlll be a

separate executable segment and uses M1crosoft Windows

vers1on 3 0 message pass1ng fac1l1t1es to coord1nate

act1v1t1es between modules and synchron1ze repos1tory

act1v1ty There 1s a subtle separat1on between the front

end, wh1ch lS what the user sees and uses and the back end,

or the database A set of database 1nterface rout1nes are

used to prov1de th1s separat1on Thus e1ther the front or

the back end can be changed Wlthout affect1ng the other

s1gn1f1cantly Th1s helps 1n ma1nta1n1ng the software

eas1ly wh1le adapt1ng to chang1ng env1ronments Wlth l1ttle

d1ff1culty If 1n the future the database eng1ne needs to be

changed, lt can be done w1thout extens1ve alterat1on of the

code, only the 1nterface rout1nes w1ll have to be mod1f1ed

Thls can be called database encapsulat1on

The concept of reusab1l1ty 1s emphas1zed 1n th1s

des1gn Encapsulat1on allows us to bu1ld ent1t1es that can

be depended upon to behave 1n certaln ways, and to conta1n

certa1n 1nformat1on [Wlrfs-Borck, et al , 1990] Such

ent1t1es can be reused 1n every appl1cat1on that can make

use of th1s behav1or and knowledge M1crosoft W1ndows

allows the creat1on of W1ndows Classes, wh1ch, once coded,

29

can be used for several dlfferent purposes The Grld Window

Class descrlbed below lS developed as a Wlndows Class It

can even be made lnto a Dynamlc Llnk Llbrary (DLL) ln future

verslons, whlch makes lt easlly usable Wlth other modules

whenever requlred Another wlndow, the ObJect Editor, lS

also developed as a Wlndows Class Each lnstance of the

ObJect Edltor has lts own ln-memory storage area That ls

how the user can lnvoke several lnstances of the ObJect

Edltor and modlfy all of them slmultaneously

The appendlx glves an overvlew of all the modules that

make up ProJect Englneer ProJect Englneer uses the concept

of Multlple Document Interface (MDI) standards to permlt

several tools to run under the same appllcatlon Thls has

several advantages over slmple lndlvldual Wlndows deslgn,

multlple tools can be lnvoked at the same tlme and the

lnteractlon between tools can be establlshed whlle provldlng

the ablllty to dlsplay several Wlndows (tools)

slmultaneously Two of those modules are selected for the

purpose of demonstratlon They are the Rlsk Analysls module

and the Llfe Cycle Bullder module

The Rlsk Analysls module ls coded uslng an expert

system package (KnowledgePro) and later wlll be lntegrated

lnto ProJect Englneer as another MDI chlld wlndow

The Llfe Cycle Bullder (LCB) module lS an MDI chlld

Wlndow ln ProJect Englneer It uses the Grld Wlndow class

descrlbed below to dlsplay proJect lnformatlon ln a tabular

fashlon It helps the user brlng up the ObJect Edltor,

30

another MDI ch1ld w1ndow to help the user 1n edit1ng any

selected object Interact1on between the ObJect Editor

Wlndow and LCB Wlndow lS prov1ded by the MDI

The Grld W1ndow Class

One of the most frustrat1ng aspects of GUI appl1cat1ons

1s that the control mechan1sms of the user 1nterface are not

always cons1stent Wh1le w1ndow, menu, and d1alog box

controls are fa1rly standard1zed, other user 1nterface

controls are not Des1gners must always balance the un1que

user 1nterface requ1rements of the1r appl1cat1on aga1nst the

benef1ts of adopt1ng a fam1l1ar control mechan1sm Several

control des1gns were evaluated/prototyped 1nclud1ng a l1st

box based control and an edlt-control based control

F1nally the dec1s1on was made to develop a Gr1d W1ndow Class

because 1t 1s more user fr1endly and has been accepted by

the users (ln M1crosoft Excel and W1ngz spreadsheets) Even

though 1t takes more t1me to develop th1s control, 1t can be

used by other modules later

The Gild W1ndow Class 1s designed to prov1de an

1nterface for d1splay1ng and manag1ng tabular data S1nce

the data assoc1ated w1th pro]ects has to be d1splayed from

var1ous perspect1ves w1th each row of obJects/tasks

represent1ng a Work Breakdown Structure obJect, a gr1d

structure would be appropr1ate Columns 1nd1cate the Name,

31

Status, Est1mat1on 1nformat1on, etc Columns can be

custom1zed by the user to v1ew what the user wants at any

po1nt ln t1me. The columns are res1zable Wlth the use of a

mouse It lS essent1al to be able to accommodate the

var1ety of data that can be d1splayed ln each column For

example, the Name column for any WBS obJect can be up to

s1xty characters 1n s1ze whereas the WBS code w1ll have a

max1mum w1dth of f1fteen characters If the same column lS

used for both these Sltuatlons, the user can reduce/enlarge

the column w1dth The res1z1ng of columns w1ll be ach1eved

by d1rect man1pulat1on Scroll bars w1ll be prov1ded to

scroll the gild vertlcally or hor1zontally

Rows and columns can be ~hlghllghted' as ln Mlcrosoft

Excel A h1ghl1ghted rectangle appears whenever the user

selects a partlcular 'cell', thls act1on w1ll remove the

hlghllghted rectangle from the prev1ously selected area

Slmultaneously, the contents of the selected cell wlll be

dlsplayed ln an 'edlt' Wlndow where 1t can be mod1f1ed

Slnce thls gild structure des1gn allows the dlsplay of

1nformat1on 1n a matilX fash1on and s1nce thls is des1gned

and lmplemented as a W1ndows Class, lt can be reused 1n

other modules by JUSt creat1ng another 1nstance of thls

class

32

The LCB ObJect EdltOI

The purpose of thls MDI chlld wlndow lS to dlsplay all

the lnformatlon for one ActlVlty, and allow the user to edit

any of the lnformatlon flelds After a modlfication, the

user elther can accept or cancel the changes made

Modlflcatlons to an ActlVlty descrlptlon Wlll requlre an

expllclt commlt actlon (vla an 'OK' button) before any other

functlons can be accessed Thls requlrement ensures a

synchronlzatlon among all MDI child Wlndows

The obJect edltor 'pops' up when the user 'double­

cllcks' the mouse button on any selected Actlvlty ln the

Llst Wlndow of the Llfe Cycle Bullder module This edltor

also valldates the modlfled data for any error ln the

formattlng For example, lf the user enters an alphabetlcal

strlng for a date fleld, an Error MessageBox lS dlsplayed

requestlng the user to lnput the data ln proper format

The obJect edltor lS fllled Wlth the data assoclated

Wlth the selected Actlvlty ln the Llst wlndow and the user

can modlfy any fleld The same obJect edltor 'pops' up when

the user tiles to lnsert a •new' actlvlty ln the Llst

Wlndow, ln thls case the flelds Wlll be empty except for the

default ActlVlty type Each lnsertlon lS checked/valldated

to make sure that the Actlvlty level hlerarchy lS

malntalned

Flg 3 3 shown on the next page glves an ldea of how

the ObJect Edltor lS dlsplayed when the user double-cllcks

an object in the LCB window. It may be observed that

PI.Pil.lO is selected, since that row is highlighted in

inverse. There also are two other Object Editors which

have been iconized.

II

Wbs Code: ._IPI_.m_._m_o __ __.

Effort Estimate Info
Original: luo

Applicability: .._IM_andatcr)l_:..,.._ __ l.....~:t I

~level:

ITASC l:tl

Expended: ~~!11;::::~
Revised: 1120

~::::::
Remaining: j3l

sic Description

Finish: j12114~

Review: ,,/3ll!ll

Sample DIS$~ to lest the object editor. now called a. the acti~ editor

Fig. 3.3 The Object Editor.

Project Modules

33

Project Engineer consists of several major modules,

each of which is an independent tool. The modules are (the

names indicate their purpose) :

- L~fe Cycle Bu1lder (descr1bed below) .

- Estimator

- Scheduler Interface (s~nce there are several

scheduler packages ex1st1ng, only an 1nterface to

common ones are prov1ded)

- Re~ource Manager

- Metr1cs Tracker

- Life Cycle Val1dator

- L1fe Cycle Adv1sor

- Hypertext Method

- Risk Analys1s

Only the L1fe Cycle Bu1lder module 1s selected for

34

demonstrat1on of th1s concept 'A prototype of R1sk Analys1s

1s also developed. To develop the whole package w1th all

tools 1s outs1de the scope of this thes1s

L1fe cycle Bu1lder

Th1s module prov1des core serv1ces for ProJect

Eng1neer It 1s the framework for all Pro]ect Eng1neer

act1v1t1es and prov1des underly1ng services for other

modules (OPRR database eng1ne and Traff1c Controller)

R1sk Analys1s

Th1s module supports ProJect Eng1neer's other modules

by analyz1ng the r1sks assoc1ated w1th a software

development proJect and recommends the actlons to be taken

to mlnlmlze those rlsks

35

CHAPTER IV

FEATURES OF LIFE CYCLE BUILDER (LCB)

Introduct1on

The L1fe Cycle Bu1lder module 1s the framework for all

ProJect Eng1neer1ng act1v1t1es and prov1des underly1ng

servlces for other modules Its purpose lS to allow users

to load and manlpulate proJect life cycles and templates

The followlng are some of the features of the LCB

Load a proJect database or a Llfe Cycle template

Save/Save_As proJects and templates

Dlsplay varlous Vlews of the Llfe Cycle

Prlnt the Llfe cycle plan at varlous levels of detall

Insert, Delete, Modlfy, Copy, Paste ActlVltles

Promote and Demote ActlVltles

Collapse and Expanslon of Actlvltles

Explode an ActlVlty to a detalled descrlptlon

Hlde/Unhlde 'deleted' tasks

Export to other scheduler packages

Allow the user to customlze the appearance of a Llfe

Cycle Wlth fonts, etc

Provlde On-llne Method (hyper-medla based help)

lntegratlon

and synchronlzatlon [Garg, 1990]

36

37

How to Use LCB

The LCB lS deslgned to be used by the proJect managers

to create and malntaln proJect llfe cycles. ProJect llfe

cycles can be created from exlStlng templates or afresh (by

selectlng an empty template) . To start Wlth, the user can

open a new proJeCt llfe cycle by selectlng an approprlate

template that mlght closely match the new pro]ect. Then

approprlate names are glven to tasks along Wlth thelr

tentatlve startlng dates and endlng dates, the estlmated

duratlon of that task etc. All unwanted tasks can be

deleted and new ones added as requlred by elther copylng

other tasks and changlng the parameters or by lnsertlng a

new task wherever needed and fllllng ln the detalls At

least one parameter, the Work Breakdown Structure code

should be fllled, as lt lS the unlque factor that

dlfferentlates one task from an other. The edlted proJect

can be saved, elther as a proJect or a template, and used

as.

The detalls regardlng a task can be edlted by selectlng

the obJect edltor, whlch lS brought up by double-cllcklng

the requlred task Another way to edlt the flelds ln the

llst wlndow lS to select the fleld by cllcklng the mouse.

The selected ltem appears ln an edlt Wlndow (as ln Mlcrosoft

Excel) and can be edlted there. The changes automatlcally

appear ln the selected fleld too The changes may elther be

38

accepted or deleted by selecting the appropriate button next

to edit window.

The LCB List Window

This child window will display the Life Cycle in list

form, in a scrollable window. Entries (Work Breakdown

Structure objects) in the window can be assigned different

fonts and sizes based on styles, where styles are assigned

by level in the Work Breakdown Structure.

- PI.02.010

PI.02.020

- PIP.J

II

NAUE

Project Initiation

Aeyect MMlt{Jemem _t.--:al'lllf 1 l/t7 -t!ID
Appoint Project Board 1 011-1/90

ArJjed Scope !l/t1 (1!10

Determine Scope 1 011-1/90

Esteblish Scope 1 011-1/90

Rq8cl PIM11ml Budget 11/11-f'Ytl

Select Dewlopment Apf 1 011-1/90

Rq8c/ Org11111i'11h'ott 11/17 of'Ytl

Confirm Project Teem 1011-1/90

Establish User lnvolvem 1 011-1190

'.!?t7 -{t!l{l

12/14/90

1 ,e .. r oft~'''
12/14/90

12/14190

'J?t1-(t!lll

12/1-1/90

'J?t1-(tYll

12/1-1/90

Sample Desaipti:Jn to test the object editor. now called as the acti-dy editor

Fig. 4.1 Project Engineer LCB window.

39

The lnterface style for the llst wlndow Wlll closely emulate

the grld class feature found ln Mlcrosoft Excel. Flgure 4.1

lS an actual plcture of ProJeCt Englneer LCB Wlndow Wlth

actual obJects fllled ln. The llst Wlndow Wlll also provlde

column conflgurablllty. Column conflgurablllty Wlll allow

cholces of column formats (l.e., dlfferent comblnatlons of

columns customlzed for a partlcular purpose) . The llst

Wlndow Wlll support character attrlbutes determlned by the

actlvlty level. Each actlVlty level (Stage, Step, Task,

etc.) can have lts own font, style, and slze. The Llst

Wlndow also supports an outllne format (wlth actlvltles

lndented for approprlate levels) and a stralght llst format.

Users can hlghllght rows/llnes, columns, cells or

rectangular areas, and perform edltlng of the selected

ltems Column Wldths can also be reslzed dynamlcally, and

the llst wlndow Wlll automatlcally cllp text outslde a

boundary.

Addltlon and Deletlon of ObJects

ProJect tasks can be added or deleted as and when

needed. Addltlon of the tasks lS done by elther lnsertlng a

new task wherever requlred and fllllng ln the ltems or by

copylng another task and pastlng lt at the requlslte place.

The user lnterface for thls operatlon follows Mlcrosoft

Excel's format Slmllarly deletlon of obJects can be done

40

by select1ng the obJects and delet1ng them. For these

operat1ons the ed1t menu 1tem prov1des Copy, Paste, Delete

etc. as a standard pract1ce. ObJects are not actually

deleted, they are only h1dden. The reason for th1s lS that

the L1fe Cycle Val1dator module check upon the cons1stency

that ex1sts 1n the proJeCt l1fe cycle and prov1des

suggest1ons. The deleted tasks may be for produc1ng a

del1verable that 1s needed 1n other tasks. In such cases

lt (L1fe Cycle Val1dator) po1nts to these errors.

Collapse and Expans1on of ObJects

S1nce the proJect l1fe cycle's work breakdown structure

follows a h1erarchy, collapse and expans1on of levels may be

needed Th1s abets the user to see only the top h1erarchy

or the deta1ls regardlng a part1cular phase, etc. Thls

feature lS very useful because the user can see only a

certaln number of tasks at any tlme on the screen, or he/she

has to scroll the w1ndow to see more tasks, wh1ch may be

clumsy at t1mes.

Thls feature lS prov1ded under the V1ew menu 1tem and

also as a button ln the flrst column of the l1st w1ndow,

wh1ch, when double-cl1cked, w1ll toggle between collapse and

expans1on of tasks

41

For example assume that the tasks g1ven below are shown

1n the w1ndow. By collaps1ng 'PI.Pil', we get the s1tuat1on

rendered below.

PI - PrOJeCt In1t1at10n (Stage)

PI.Pil - Determ1ne Scope (Step)

PI. Pil.lO - Rev1ew Related

PI PI1.20 - Establ1sh Scope

Stud1es (Task)

PI PI1.30 - Establ1sh MaJor Ob]ect1ves

PI Pil 40 - Establ1sh Constra1nts

PI PI1.50 - Ident1fy Outl1ne Solut1on

PI.PI2 - Establ1sh ProJeCt Plan and Budget

After collaps1ng 'PI.Pill', we get

PI - ProJect In1t1at1on (Stage)

PI.Pil - Determ1ne Scope (Step)

PI PI2 - Establ1sh ProJect Plan and Budget

S1m1larly, th1s w1ll be restored to the prev1ous

(expanded) state when the above ment1oned button 1s double-

cl1cked aga1n

Promot1on and Demot1on of ObJects

The Work Breakdown Structure d1v1des the tasks 1nto

several level he1rarch1es For example, 1n the LBMS

methodology [LBMS Systems Eng1neer1ng Methods Handbook,

42

1990], there are three levels and these levels can vary.

The proposed tool, ProJect Englneer has 'n' levels, even

though ten levels seems to be sufficlent for most proJect

llfe cycles. An obJect of Levell wlll have several Level2

obJects as its 'chlldren' and so on. A task of Levell can

be demoted to Level2 or a task of Level3 can be promoted to

a Level2 Thls lS needed because a task mlght become too

lmportant for lt to be ln that level and should be promoted

to a level above and chlldren be provlded for lt Llkewlse

a task at a hlgher level may become so trlvlal lt should not

remaln at that level and be demoted A,task at any level

can only be promoted/demoted to lts prevlous/next level

There are certaln restrlctlons though To exempllfy thls,

conslder the followlng work breakdown structure

Level 1 PI - ProJect Inltlatlon (stage)

Level 2 PI Pil - Determine scope (step)

Level 3 PI Pil 10 - Revlew Related Studles(task)

PI PI1.20 - Establlsh Scope

PI Pil 30 - Establlsh MaJOr ObJeCtlves

PI Pil 40 - Establlsh Constralnts

PI Pil 50 - Identlfy Outllne Solutlon

Level 2 PI PI2 - Establlsh ProJect Plan/Budget (step)

Level 2 PI PI3 - A new step (step)

43

The follow1ng promot1ons are val1d

1). PI.PI1.30 (task) at level three can be promoted to

level two, 1n wh1ch case PI.PI1 (step) w1ll now have

only two ch1ldren (PI.PI1.10 and PI.PI1.20) and

PI.PI1.40 and PI.PI1 50 become ch1ldren of the promoted

task PI.PI1 30.

2). PI.PI2 (step) at level 2 can be promoted to level

one. Now PI has only one ch1ld at level two, v1z,

PI.PI1.

An example of an 1nval1d promot1on 1s try1ng to promote

PI.PI1 at level 2 to level 1, because now level 1 w1ll have

Chlldren WhlCh are at level 3 WhlCh lS not correct.

Promot1on and demot1on of obJects between levels are

poss1ble only when the work breakdown structure 1s log1cally

val1d

These two features are also prov1ded under the V1ew

menu 1tem.

The WBS D1agram W1ndow

The WBS D1agram W1ndow 1s another MDI ch1ld w1ndow, and

can be act1vated from the tools palette Th1s prov1des a

graphlc d1splay of the WBS structure. Each Act1v1ty w1ll be

dlsplayed as an 1con conta1n1ng to 1nd1cate the Act1v1ty

code. A graph1c l1brary suppl1ed by LBMS Inc., London, were

44

used to develop th1s w1ndow. At th1s stage of development,

users are not able to ed1t the structure from th1s w1ndow,

but they are able to nav1gate through the structure by

cl1ck1ng and double-cl1ck1ng 1cons to d1splay the ObJeCt

Ed1tor.

All operat1ons w1th1n the d1agram (h1ghl1ght1ng,

collapse/expans1on, etc) w1ll synchron1ze w1th the l1st

mode w1ndow (lf v1s1ble) and the ObJeCt Ed1tor (lf v1s1ble).

Th1s w1ndow 1s used for v1ew1ng the proJect l1fe cycle

1n a graph1cal form. ObJects can be selected and the obJeCt

ed1tor brought up by double-cl1ck1ng on the obJeCt

Collaps1ng and expand1ng can be performed by cl1ck1ng on the

oval that JOlns two levels. A '+' appears 1n the oval when

the level 1s collapsed.

CHAPTER V

RISK ANALYSIS

Int:roductlon

Thls lS one of the seve:ral modules of the P:roJect

Englnee:r tool A prototype of thls module was developed fo:r

study purposes Rlsks that a:re 1nvolved ln a (software)

p:ro]ect can be :reduced 1f p:rope:r actlon 1s taken The R1sk

Analys1s module leads the p:roJect manage:r th:rough a

consultancy sess1on us1ng a Rlsk Analysls Quest1onna1:re, to

p:roduce a log of quest1ons asked and the :repl1es g1ven, and

p:rov1des the optlon of p:roduc1ng a ha:rdcopy of thls log

The :repo:rt p:roduced detalls the a:reas of :r1sk assoclated

Wlth the p:ro]ect and makes :recommendatlons of act1ons

:requl:red to mlnlmlze :r1sks Thls :repo:rt should be v1ewable

1n a sc:rollable w1ndow and may opt1onally be p:r1nted on a

hardcopy dev1ce

Thls module was only developed fo:r study purposes and

lS not pa:rt of the thesls

45 '

46

ProJect Rlsks

A software proJect depends upon varlous things such as

hardware, software, and other subsystems to be completed

successfully These are called proJect rlsks Any of these

ltems can go wrong An expert system to compute these rlsks

lS belng wrltten uslng KnowledgePro, an expert system that

runs on Wlndows verslon 3 0 on a PC platform

can be dlvlded lnto several areas

Rlsk Areas

These rlsks

The level of rlsk lS assessed ln flve dlfferent areas

External dependencles of a pro]ect

Organlzatlonal dependencles

Plannlng rlsks

Buslness case rlsks

Technlcal and Implementatlon rlsks

The rlsk level calculated lS based upon the proJect

manager's responses to a pre-deflned set of questlons and

supportlng rules regardlng these questlons A sample of two

questlons Wlth answer cholces lS glven below

Q_ IQ ~ proJect dependent Qil scarce resource/skllls?

A_~ N.Q_.._ ..s..lu..r.2 and PreVlOUS.

Q_ ~ number of maJor subsystems ~ ~ proJect ~

A.... .L.. 2..... J........ etc and~ and Prev1ous.

The proJect manager may or may not answer all the

quest1ons for reasons such as the followlng·

a) The proJect manager may not have the 1nformat1on to

answer all the quest1ons at that t1me

b) The quest1on can be answered only part1ally

In e1ther case the proJect manager can elther sklp the

questlon ent1rely or answer the quest1on partlally For

example, the proJect manager may answer a part1cular

quest1on 1n th1s way

11 There lS a 20% chance that a part1cular funct1on

Wlll fall, rather than a deflnlte YES or NO answer

regard1ng the posslblllty of that funct1on

faillng "

In other words a fuzzy loglc approach may be used [Leber,

199 0] Currently, the prototype lS not follow1ng fuzzy

loglc, but there are plans to 1mplement lt ln a future

vers1on

Poss1ble Solutlons

47

Once the questlons have been answered and the

correspond1ng rules appl1ed, a report lS produced The rlsk

analyzer produces th1s report recommend1ng those act1ons

48

requ1red to reduce or m1n1mize the level of risk 1n spec1fic

areas The report also mentlons those quest1ons that were

not answered and that the level of r1sk m1ght increase

depend1ng upon the answers to those quest1ons The report

may be v1ewed on a screen, copied to a flle or pr1nted

The Rlsk Analysls optlon lS prov1ded under the Tools

opt1ons of the ProJect Eng1neer as an leon wh1ch when

double-cllcked w1ll actlvate the 1con The prototype lS

developed us1ng Dec1s1on 123, an AI development package, and

runs on KnowledgePro, another rule-based development tool

under Wlndows 3 0 Thls module has to be 1ntegrated Wlth

Llfe Cycle Bullder

The computed value of r1sk lS then converted 1nto an

est1mat1ng factor whlch may be used ln the Est1mator module

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Llfe Cycle Bullder lS the flrst module, deslgned and

bullt ln the lntegrated set of tools detalled ln the

Appendlx A. Slnce a proJect llfe cycle has to be bullt ln

any proJect flrst, the proJect llfe cycle ls the flrst

module to be deslgned and developed The scheduler

lnterface to couple ProJect Englneer to other packages lS

developed next. Parallel to thls, the next most lmportant

modules ln ProJect Englneer, the estlmator and a cllent

server for the database, have to be completed.

The user lnterface lS on par Wlth the exlstlng Wlndows

verslon 3 0 based tools. Mlnlmum documentatlon wlll be

needed for the user to start and use thls tool, and Slnce lt

lS coded ln C, the speed lS qulte satlsfactory The OPRR

database llbrary consumes about 125K of memory and the LCB

module uses about lOOK of memory The graphlcs llbrary used

ln the WBS dlagram edltor lS 450K ln Slze and when complled

wlth the drlver takes up about 200K of memory It lS

suggested that ProJect Englneer be run ln 386 enhanced mode

ln Wlndows verslon 3.0 rather than ln the real mode.

49

50

The appllcatlon may requlre other MDI chlld Wlndows to

be added for clarlty and better user lnterface It ls also

posslble that some of the Wlndows descrlbed above may change

ln thelr functlonality as the development contlnues ln

future

Multlple font support can be afforded for dlsplaylng

tasks ln dlfferent fonts for varlous purposes A hot llnk

(please refer to the glossary for detalls) to other

scheduler packages can be provlded lnstead of an lnterface

Most of the ltems descrlbed above Wlll be accompllshed

ln future Of course, there lS a chance that some of the

mlnor polnts may be mlssed In fact, several of the ltems

mentloned above have been completed and tested

satlsfactorily already

SELECTED BIBLIOGRAPHY

Beck, L. B., and Perk1ns, T. E, 11 A Survey of Software

Eng1neer1ng Pract1ce Tools, Methods, and Results .. ,

IEEE Transact1ons Qll Software Eng1neer1ng, pp 541-561,

Vol SE-9, No 5, September 1983

Boehm, B W , 11 A Splral Model of Software Development and

Enhancement .. , Computer, pp 61-722, May 1988

Cameron, J R , 11 An overv1ew of JSD 11 , .IEEE Transact1ons nn
Software Eng1neer1ng, Vol SE-12, No 2, pp 222-240,

February 1986

Coact, P , and Yourdon, E , ObJect Or1ented Analys1s, Yourdon

Press, New Jersey, 1990.

Constant1ne, L L , 11 0b]ects, Funct1ons, and Program

Extens1b1l1ty 11 , ComDuter Language, pp 34-54, January

1990

Corn1sh, M , 11 Four Pr1nc1ples of User Interface Des1gn .. ,

Computer Language, pp. 67-75, March 1990

Cox, B J, ObJect Orlented Programmlng: An Evolutlonary

ApDroach, Addlson-Wesley Publishlng Company,

Massachusetts, 1987

Daly, E D , 11 Management of Software Development .. , .I.EEE.

Transactlons nn Software Englneerlng, pp 229-242, May

1977

51

Declsion ~ AI package ~ Reference Manual, Proctor &

Gamble Artlflclal Intelllgence Team, 1990.

Dodanl, M. H, Hughes, c. E., and Moshell, J. M,

"Separatlon of Powers", .B.YTE, pp 255-262, 1989

52

Garg, P. K , and Scacchl, W , "A Hypertext System to Manage

Software Llfe-Cycle Documents", .I.EEE Software, pp. 90-

98, May 1990

Hsleh, D , Personal communlcations Wlth Davld Hsleh, 1990

IBM Systems Appllcatlon Archltecture - Common User Access

Advanced Interface Deslgn Gulde, Internatlonal Buslness

Machlnes Corp., 1989

Kemmerer, R A , "Integratlng Formal Methods lnto

Development Process", .IEEE Software, pp 37-50,

September 1990

Kernlghan, B W , and Rltchle, D M , The ~ Programming

Language, Prentlce Hall, Englewood Cllffs, New Jersey,

1978

KnowledgePro (Wlndowsl rule-based development system Wlth

lts Manuals, Knowledge Garden. InQ , 1990

LBMS Systems Englneerlng Methods Handbook, LBMS Inc ,

Houston, 1990

Leber, J B , "A Fuzzy Approach to Data Repalr", Database

Programmlng ~ Deslgn, January 1990

Lee, E , "User-Interface Development Tools", .IEEE Software,

pp 31-36, May 1990

53

L1nton, M.A., Vl1ss1des, J. M., and Calder, P R,

"Compos1ng User-Interfaces w1th Interviews", Computer,

pp 8-22, February 1989

Luq1 , "Software Evolut1on Through Rap1d Prototyplng",

Computer, pp 13-25, May 1989

Matthews, R W , and McGee, W. C, "Data modelling for

software development", .llllil Systems Journal, pp 228-

235, Vol. 29, No 2, 1990

McClure, c , CASE~ Software Automatlon, Prent1ce Hall, New

Jersey, 1989

McClure, C , "The CASE Experlence", BYTE, pp 235-246, Aprll

1989

Mlcrosoft W1ndows Gu1de ~ Programming fQL W1ndows ~'

M1crosoft Corporatlon, 1990

Mlcrosoft Wlndows Programmers Reference ~ W1ndows d_Q,

Vol 1 and Vol 2, M1crosoft Corporat1on, 1990

Mlcrosoft Wlndows Programmlng Tools 1QL Wlndows ~,

M1crosoft Corporat1on, 1990

Muller, M J , "Mult1funct1onal cursor for Direct

Man1pulat1on User Interfaces", SIGCHI, 1988

Myers, B J , "Creat1ng User Interfaces by Demonstrat1on",

Academlc Press, InQ , Cal1forn1a, 1988

Orr, K , Gane, C , Yourdon, E , Chen, P P , and

Constant1ne, L, L , "Methodology The Experts Speak",

BYTE, pp 221-233, Aprll 1989

Paterson, T, and Flennlken, s., "Managlng Multiple Data

Segments Under Mlcrosoft Windows", Dr.Dobbs Journal,

February 1990

54

Petzold, C., Programmlng ~ Wlndows, Mlcrosoft Press, 1988.

Petzold, c , "A New Multlple Document Interface API

Slmpllfles MDI Appllcatlon Development", Mlcrosoft

Systems Journal, pp 53-63, July 1990

Pressman, R. S., Maklng Software Engineerlng Happen,

Prentlce Hall, New Jersey, 198~.

Relsman, S , "Management and Integrated Tools", .IEEE
Software, pp 71-78, May 1990

Schlldt, H , C Tha Comvlete Reference Second Edltlon,

Osborne McGraw Hlll, Callfornla, 1990

Shnelderman, B , Deslgnlng ~ ~ Interface Strategles ~

Effectlve Human-Computer Interactlon, Addlson-Wesley

Publlshlng Company, 1987

Towner, L E , ~ Concepts gnd Implementatlon, McGraw­

Hlll Book Company, 1989

Ward, P T , "The Transformatlon Schema· An Extenslon of the

Data Flow Dlagram to Represent Control and Tlmlng",

IEEE Transactlons Qll Software Englneerlng, Vol SE-12,

No 2, pp. 198-210, February 1986

Welke, R J., "Meta Systems on Meta Models", .c.AS.E. outlook,

pp 35-43, Vol 4, 1989

Wirfs-Brock, R., Wilkerson, B., and W1ener, L., Des1gn1ng

Object-Orlented Software, Prentlce Hall, New Jersey,

1990

Zells, L., Managing_Software Projects, QED Informat1on

Sciences, Inc., Massachusetts, 1990

55

APPENDIXES

APPENDIX A

PROJECT ENGINEER MODULES

The figuie piesented below gives an idea of all the modules

piesent in Pioject Engineei.

Hypertext.
Interface

Ufe Cycle
Advisor

Hypertext
Method

Ufe CycJe
Validator

PROJECT

ENGINEER

KNOWLEDGE
BASE

Resource
Manager

56

Estimator

Interface

APPENDIX B

PROJECT ENGINEER SNAPSHOTS

The figure presented below gives an idea of how the Life
Cycle Builder module looks like.

Ptojec:t IDili&tioa 11114/tl
Aqisd Mtlnli{Jtlmtld _Clmflr I 1/11-#'YO 1.?/1-(tYll

Appoint Projed Board 1011 t(/90 1 211oV90
RIJ.? AqBc:l Scops 11/11-tYO 1.?/1-tYll

- PI.02.010 Detennine Scope 1011 t(/90 12114190

- PI.02.020 Establish Scope 1011 t(/90 12114190

AqSct .FYtllt Mel BlKI!}SI 11/11-(190 1.?/l-t9tl

Seled Development ApJ 1 011 t(/90 12114190
Fmjflci Otgtlllir6101t 1/lt'l-f-!10 1.?/1(19{/

Confinn Projed Teem 1011 t(/90 12114190

Establish User lnvolvem 1 011 t(/90

Sall1lie D~ to tesl the object editor. now called as the~ editor

II
ActiWy Ecilor

57

58

The figure presented below shows WBS Diagram Editor and Life
Cycle Builder modules 'tiled' next to each other. Also
observe that the activity 'PI.02' is 'collapsed' and that

can be seed in both the modules. A '+' sign indicates that
the task is collapsed.

59

The figure presented below shows project information dialog
box used to display the information about any project. It
can also be modified as the project progresses.

Projed t.4anager: I Example Resource Projed ld:

Date Created: 1._1_012_819_0 ___ ____, Lite Cycle ld:

Date t.4odlfied: 1._1_012_919_0 ___ ____.

Description:

This Is a test projed Information.

Define Requirement lntet 1 0/1 ~0

lo
!Template 11
loBJECTl.O

OK

Cancel

12/1~0 In Progress

.... ...

.... ...

60

The figure presented below shows Styles dialog box. This is

used to change the font, size, color, style (bold, italic or

underline) of any act1vity level (stage, step or task) 1n

the proJect. It is also used to change the WBS code format.

- AN02 030
+

Project Engmeer- samplc.l
format Qptions Window

l Prorect Management & Control System

NAUE

level Name lmm I
Color IRed 1~1
Font ITms Rmn 1~1
SIZC 116 1~1
Separator I

WBS Code format Icc

ctivity Outline]

I

FINISH DATE

lZ/14/90
J,:t7(/~11.7

12/14/90

~Bold

D ltahc

D Underscore

I OK

I Cancel

Defme Requirement Intel 1 0/14/90 12/14/90

.... ...

.... ...

STATUS

To be started
Ta .be st811sd

To be started

Ta .b~ Slt!tl'l~d

Ta .b~ st81'1E>d

To be started

Ta .b~ stt!tl'l~d

To be started

To be started

Ta.besttYted

Ta be st81'1£>d

To be started

Ta be stel'l~d

Ta be st81'1ed

To be stw1ed

In Progress

In Progress

The figure presented below shows the WBS diagram. This
presents the graphical view of the project work breakdown
structure

PI.05
BucineuCace

Pt04.010
Conlirn Project T e
sn

PI.04.020
Estabfth User lnv
olvement

61

The figure presented below shows the WBS Diagram Editor on
top of the Life Cycle Builder. This shows that multiple
windows can co-exist in the same tool and help the user in
viewing the project in different ways. This i s achieved
using the Microsoft Windows 3.0's multiple document
interface (MDI) feature.

WBS

- PI

FrO.!'

- PI.02.010

PI.02.020

62

VITA

Sr1dhar Chandrashekar

Cand1date for the Degree of

Master of Sc1ence

Thes1s: AN INTEGRATED SET OF TOOLS TO ASSIST IN THE
DEVELOPMENT AND MAINTENANCE OF PROJECT LIFE CYCLES

MaJor F1eld: Computer Sc1ence

B1ograph1cal:

Personal Data: Born 1n Bangalore, Ind1a, June 20,
1963, the son of K.S. Chandrashekar Iyer and
R. Saro)amrna.

Educat1on: Rece1ved Bachelor of Eng1neer1ng Degree 1n
Electron1cs and Commun1cat1ons Eng1neer1ng from
Un1vers1ty of Mysore, Mysore, Ind1a 1n January,
1986; completed requ1rements for the Master of
Sc1ence degree at Oklahoma State Un1vers1ty 1n
July, 1991.

Profess1onal Exper1ence:
Research Ass1stant, Department of Computer
Sc1ence, Oklahoma State Un1vers1ty, September,
1990, to December, 1990.
Software Eng1neer, Learmonth & Burchett Management
Systems, 1800, W. Loop. S, Su1te 1800, Houston,
Texas, May, 1990, to August, 1990.
Research Ass1stant, Department of Bus1ness
Adrnln1strat1on, Oklahoma State Un1vers1ty,
September, 1989, to Apr1l, 1990.
Sc1ent1st, Defense Research and Development
Organ1sat1on, Bangalore, Ind1a, October, 1987, to
August, 1989.
Customer Support Eng1neer, H1ndustan Computers
L1m1ted, Bangalore, Ind1a, Apr1l, 1987, to
September, 1987.

