AN INTEGRATED SET OF TOOLS TO ASSIST
IN THE DEVELOPMENT AND MAINTENANCE

OF PROJECT LIFE CYCLES

By
SRIDHAR gHANDRASHEKAR
Bachelor of Engineering
P.E.S. College of Engineering
University of Mysore
Mysore, India

1986

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1991

AN INTEGRATED SET OF TOOLS TO ASSIST
IN THE DEVELOPMENT AND MAINTENANCE

OF PROJECT LIFE CYCLES

Thesis Approved:

Thesis

Chom il

%/%% m///w

/7§;H2W4n¢/%7/ﬁ/2%4éiwn

Dean of the Graduate College

1398333

ACKNOWLEDGEMENTS

I profoundly thank Dr. B. Mayfield for his unstinted
help and guidance His constructaive criticism helped me 1in
gaining confidence during my graduate program. My sincere
thanks to Drs D Miller and J Chandler for serving on my
graduate committee Their suggestions and support were very
helpful throughout the study

I would not be doing justice to myself 1f I do not
thank Dr M Samadzadeh, without whose help my knowledge 1in
Software Engineering would have remained limited He not
only helped me in my thesis, but(also 1in my course work

I would like to express my gratitude to Learmonth &
Burchett Management Systems, Inc., for sponsoring this
project in part In partaicular, I offer my thanks to Mr
John Bantleman, Mr Rick Plezcko, and Mr David Hsieh for
their help I would also like to thank Dr Hedrick for
helping me to go to Houston (LBMS Inc.) to complete this
project

My special thanks are extended to Mr Gopal Kulkarna
for helping me in everything, from designing to debugging
Last but not least, I express my gratefulness to Mr Manohar
Rao, Mr Ravi Kumar, Mr. Sarvesh Jagannivas, Mr. Suresh
Subramanian, and Mr Sangram Bhosale for helping me get my

project report ready

u

TABLE OF CONTENTS

Chapter

NOMENCLATURE

I. INTRODUCTION« « « .« .

Project Management

Project Management Tools
Scheduling Tools
Estimating Tools
Advantages and Limitations

Computer—-Aided Project Engineering
Statement of the Problem.
Objectives of the Study

II. CONCEPTS USED IN LIFE CYCLE BUILDER.

Introduction
Work Breakdown Structures. . .
The Project Database

The Binary Model.

—Attribute (EARA) Model. .

The Object, Property, Role and

Relationship (OPRR) Model
The User Interface. .

Different Approaches

Final User Interface Design.
Project Templates
Project Views and Task Hiding

v

The Entity-Attribute-Relationship

Page

W 0o N oy 1 W

. 11

11
11
12
14

14

16
18
19
19
20
20

Chapter
III. DESIGN AND IMPLEMENTATION . . .

Introduction.
Implementation of the Concepts. . . .
Implementation of the‘:Database
Project Templates.
The User Interface Implementation.
Project Views and Task Deletion.
The Software Architecture
The In-Memory Data Structure and N Levels
Object-Oriented Design.
The Grid Window Class.
The LCB Object Editor.
Project Modules.
Life Cycle Builder.
Risk Analysis

IV. FEATURES OF LIFE CYCLE BUILDER (LCB)

Introduction .

How to use LCB

The LCB List Window. e e .
Addition and Deletion of Objects
Collapse and:Expansion of Objects.
Promotion and Demotion of Objects.

The WBS Diagram Window

V. RISK ANALYSIS. . .

Introduction

Project Risks.

Risk Areas « .«
Possible Solutions

Page

22

22
22
22
23
24
24
25

26
30
32
33
34
34

36

36
37
38
39
40
41
43

45

45
46
46
47

Chapter

VI. CONCLUSIONS AND FUTURE WORK .

SELECTED BIBLIOGRAPHY . . .

APPENDIX A Project Engineer Modules

APPENDIX B Project Engineer Snapshots

Page

51

.56 °

.57

LIST OF FIGURES

Figure Page

1. The Standard Software Development Life Cycle 2
(The Waterfall approach)

2. The Limitations of Scheduling tools . . B |
3. Entity Relationship example 13
4, The EARA model example 15
5. The Software Architecture « 26

6. The left-linked right-sibling tree data structure . 27

7. The Object Editor« 33
8. Project Engineer LCB Window « . < . 38
9. Project Engineer modules 56
10. Snapshot of Life Cycle Builder (LCB) module 57
11. Snapshot of LCB module with WBS Diagram Editor. . . 58
12. Snapshot of Project Information dialog box. 59
13. Snapshot of Styles dialog box 60
14. Snapshot of the WBS Diagram Editor. . . B X

15. Snapshot of WBS diagram editor with LCB module. . . 62

vii

NOMENCLATURE

CASE. Computer-Aided Software Engineering.
CAPE. Computer-Aided Project Engineeraing.

Decision 123. An AI rule-based tool developed by The
Proctor and Gamble AI team Decision 123 helps the user
build the knowlédgebase through tables, decision networks
and/or rules The output code can run in either M1 (an AT
package) or KnowledgePro (a Windows based product combining
hypermedia, expert systems and object-oriented programming
technologies which also provides a software development

environment)

Direct Manipulation. The use of a pointing device to
perform actions on objects Examples are mouse-click and
mouse-drag [IBM SAA/CUA Guide, 1990]

Double-Click To press and release a mouse button within a
user-defined time limit without moving the mouse pointer off
the choice [IBM SAA/CUA Guide, 1990].

Function Point A measure of complexity of what 1s to be
delivered 1n a project

Hot Link A direct link between two applications
Icon A pictorial representation of an object or a selection
choice. Icons can represent objects that users want to work

on or actions that users want to perform. A unigque 1con
also represents the application when 1t 1s minimized

vini

KnowledgePro. A development tool for Windows applications

Menu. A component of a dialog design consisting of a
screen which can display options and receive control input.

Multiple Document Interface. An interface style that allows
users to view many objects at the same time or the same
object many times within one primary window [IBM SAA/CUA
Guide, 1990]

PERT Program Evaluation and Review Technique, a method
to i1indicate top-management presentations on major
deliverables, that 1s, the milestones or events [Zells, P ,
1990]

Software Development Kit (SDK) A development kit
supplied by Microsoft for software development under
Windows This works with the Microsoft C optimizing
compiler

Software Life Cycle. Various stages of software
development .

The possible stages are

- Project Initiation

- Requirements and Analysis study

- Project Specification and Logical Design

- Physical Design and High level design

- Coding, Debugging, and Testing

- Maintenance

OPRR Object, Property, Role and Relationship A term
used 1n conjunction with a repository schema developed at
LBMS Inc, The repository design incorporates an object-
oriented design and use of the concept of object-property-
role and relationship or OPRR, keeping in mind the future

trends in software automation

1X

Windows (3.0) A user interface developed by Microsoft
Corporation for IBM PCs and compatibles

Window. An area of the screen with visible boundaries
through which information 1is displayed. A window can be
smaller than or equal in size to the screen. Windows can
overlap on the screen and give the appearance of one window
being on top of another.

Work Breakdown Structure The process of dividing a
whole project into several small pieces which can be easily
manageable

CHAPTER T

INTRODUCTION

Software Engineering encompasses a variety of technical
methods, a set of management procedures, and a suite of
automated tools (often called CASE - Computer-Aided Software
Engineering) that enhance our ability to build effective
computer-based systems [Pressman, 1988] A project goes
through several stages, from project initiation to
implementation and maintenance; this 1s often referred to as
the software develobment life cycle Specific project
development life cycles constitute the foundation of
software systems Proper management of these life cycles
lead to better project planning and management. Fig. 1.1
1llustrates a standafd life cycle for software engineering.
The different stages in the life cycle can generally be
listed as follows-

Project Initiation (Planning)
Requirements Analysis

. Project Specification and Logical Design
Physical Design (High Level Design)

. Coding and Debugging
Testing

. Implementation (either in part or full as required)

. Maintenance
Every stage 1includes a loop back to the previous stage
and/or to some of the previous stages. This concept of loop
back allows for system checks against delays versus
scheduled task time lengths so that stage time estimates can

be revised to depict task time changes.

{co}ect
rhation ——-—\L
Py —
nalysis
N
Specifications &
Logical Design
Iy l
Physical Design
A l
Codmg &
mwwmmmm.___iL
1\ Testng & Implemented
Implementabion | System
! NDARD SOFTW ¥ LE [(Waterfall Approach)

Figure 1.1 The Standard Software Development Life Cycle.

(The Waterfall approach)

Within the context of software engineering, a method is
a procedure or technique for performing some significant
portion of the software life cycle [Orr et al , 1989] A
methodology, in software engineering terms, 1s a collection
of methods based on a common philosophy that fit together in
a framework called the systems development life cycle A
software life cycle may be implemented through any of
several methodologies Some of the well-known methodologies
are given below

The Warnier/Orr approach [0Orr et al , 1989]

The Yourdon approach [Orr et al , 1989]

The Gane/Sarson approach [Orr et al , 1989]

The Entity-Relationship approach
. HIPO (Hierarchical Input Process Output) approach
. The Michael Jackson approach [Cameron, 1986]

CASE 18 a combinatlon of software tools and structured
development methodologies [McClure, 1989] Whereas tools
attempt to automate the software process, methodoclogies

define the process to be automated

Project Management

A project may be defined as a group of interrelated
tasks taken one at a time to achieve a specific goal
Project management 1is the art of managing such tasks,
usually performed by a project leader A group of people

w1ll be assigned to a project with a leader to manage the

project Every project has to be planned to be properly
carried out Thus a systematic approach 1is called for

While planning 1s essential, 1t does not, by 1itself, produce
technical deliverables A tool may be helpful. Several
project management tools exist in the marketplace, but most
of these tools only perform the scheduling and estimation

activities and help i1n drawing charts

Project Management Tools (PMT)

The 1dea of a paperless office has given rise to
several important applications to be maintained on the
computer Among many areas of software development are the
software packages dealing with the technical aspects of
software engineering Tools which assist the project
manager 1in maintaining softwaxe projects are called Project
Management Tools (PMTs) PMTs range from simple scheduling
tools to complex estimation and analysis tools These tools
provide simple user interfaces, provide graphic displays and
help 1n maintaining the dynamically changing project phases
Examples of such existing tools are Harvard Project Manager,
SuperProject Expert, Time Line, and Microsoft Project It
should be noted tha£ any of these software tools, by
themselves, do not aid the project manager in all the

activities of project management Thus, there are

specialized tools to maintain separate parts of the project,

viz scheduling tools and estimation tools, to name a few

Scheduling Tools

Projects have to be scheduled as to when they would
start, how many days will be required to complete each phase
of the project, etc Likewise, appropriate resources have
to be assigned Scheduling tools help 1in maintaining these
numbers It should be understood that the numbers assigned
at the inception of a project are tentative numbers and are
subject to change due to many reasons For example, an
unexpected delay 1n acquiring resources, 1n the form of
hardware/software required for the project, or, the
unavallability of some key technical person(s), may lead to
delays which may be carried over to the successive phase (s)
Actual time and other resources taken for past projects can

be used to compute the schedule of the present project

Estimating Tools

A tool to estimate (calculate) the effort required to
do a particular task or a number of tasks in the project 1is
termed as an estimation tool There are two general ways to
approach estimation function point-based estimation and

object-based estimation

Function points are used to measure system size as a
component of productivity measurement [Zells, 1990] Users
count the number of inputs and outputs, number of internal
files, number of interfaces, etc. Starting the process at a
point, when a comfortable amount of analysis and design has
been completed, the estimators classify and count raw
function poants This, along with other important data, aid
1n estimating projects

Object-based estimation pertains to measuring the
effort involved 1in completing a particular task in a project
life cycle The effort depends upon several factors, for
example, the person doing a particular task in a project 1is
one of such factors Object-based estimation 1s the most

common method used 1in software tools

Advantages and Limitations

The scheduling tools help the project manager 1in
keeping track of time expended and time required for
different phases of a project Similarly, the estimation
tools aid in planning and maintaining the effort required to
complete the project Other management tools portray the
state of the project using charts, and pictorially represent
the same

The tools mentioned above support the project manager

1n several different aspects of project management Figure

1 2 depicts the performance of different tools with respect
to different phases of a project It may also be observed

that a tool to support a software project at all phases 1is

desired

Computer -A1ded Project Engilneering (CAPE)

There are two aspects to a software project techniques
and planning [Hsieh, 90] While the techniques helps in
implementing the project, planning aid, 1in designing the

project to be properly conceived and executed As mentioned

Project Engineering

Define Plan Control Improve
the 5 the the > the
Process Process Process Process

Project Engmneer (The proposed tool)

Scheduling Tools

Estimating Tools

Involvement of tools in the different stages of project ife cycle

Fig 1 2 The limitations of scheduling tools

in the previous section, there are several tools to automate
the techniques part (in particular the CASE tools that
support the Programmer/Analyst/Designer). However, the
planning and management aspects along with the automation of
software methodologies usually are not supported by existing
tools satisfactorily. While CASE tools automate the
production of technical deliverables, CAPE tools automate
the production of planning deliverables. Delivery of
planning deliverables usually 1s accomplished by project
managers manually, which makes manipulation and maintenance
of the same cumbersome. A tool to perform these management
aspects could increase the productivity of the project
manager, while providing a proper foundation for the project
from the start. Currently, support for the Project Manager

1s limited to such single-purpose tools

Statement of the Problem

Software projects range from simple to complex
systems. Each project has a unique Work Breakdown Structure
(WBS) constituting the project life cycle According to

Zells,

When managers try to plan a project without being
able to reference an internal corporate project

history file, a methodology checklist, or even a

book, they may simply draw a blank and be stymied

about where to start [Zells, 1990]

Lack of pre-existing templates of project plans may thus
hinder proper planning. In other words, an existing
template helps in this first and most important step

(planning) .

Software methods are used to plan projects. In the
past, one life cycle was adapted to fit all projects, this
approach was subsequently modified later to adopt one of
several life cycles to fit a particular project. Multiple
life cycles soon become a problem as they proliferate and
are a problem to maintain A solution to this problem can
be found in modular methods, which can be maintained easily

while being used with proper changes for specific projects

Objectives of the Study

The objective of this study 1s to design, implement,
and test a Computer-Aided Project Engineering (CAPE) tool
for automating and maintaining the software development life
cycle for (software) préjects from a Project Management
perspective. This tool allows the user to load and
manipulate project life cycles and templates, view the

project from various perspectives, and provides on-line

10

method help (hypermedia based), as well as an export link to
scheduler packages Emphasis 1s given to the design of the
user -interface component of this tool following the IBM
SAA/CUA standard [IBM SAA/CUA standards, 1990] The
proposed tool 1s called Project Engineer Project Engineer
uses Multiple Document Interface (MDI) child windows to
display information to the user from different perspectives
A pictorial representation of the Work Breakdown Structure
1s also be provided for the user to view the project
hierarchy (the other representation being the standard
Activity Outline window or the List window) At this stage,
the user 1s allowed only to view the pictorial
representation

In short, Project Engineer 1s designed to support a

wide range of project management activities in a modular and

1ntegrated fashion

CHAPTER II

CONCEPTS USED IN LIFE CYCLE BUILDER

Introduction

The purpose of this project 1s to provide a better way
to enhance the delivery and accessibility of (software)
Methods, to automate the work of the Project Manager, and
to provide support for continuous process improvement while
maintaining project document consistency This tool also
implements the best available industry/organization
practices with respect to user interface and modulazx

software methods

Work Breakdown Structures

A project may be split into stages, steps and tasks,
tasks being the smallest deliverable unit A group of
assoclated tasks comprise a step and a group of associated
steps comprise a stage This partitioning into several

small modules 1s referred to as a Work Breakdown Structure

11

12

(WBS) Given below 1s an example of the WBS for the Project

Initiation stage (Only one Step 1s expanded).

PI - Project Initiation (Stage)

PI.PI1 - Determine Scope (Step)
PI PI1.10 - Review Related Studies
PI.PI1.20 - Establish Scope
PI.PI1 30 - Establish Major Objectives
PI.PI1.40 - Establish Constraints
PI PI1.50 - Identafy Outline Solution

PI PI2 - Establish Project Plan and Budget

etc

The Project Database

CASE tools handle data that are related in complex
ways They need data integrity and non-redundancy 1n data
representation. A data repository 1s best suited for such
an application. A repository 1s a mechanism for storing and
organizing all information concerning a software system, \
including planning, analysis, design, 1mplementation and
project management information [McClure, 1989] It 1s also
referred to as a design dictionary, database, object-
oriented database, knowledgebase, or encyclopedia. The
purpose of a repository 1s to store system information at a
central place, keep the data uniform, and be accessible to

all users The repository must be robust enough to cater

13

to the needs of large software projects and must be scalable
[McClure, 1989]

One of the most essential steps in software development
1s to identify and define the different types of data
involved This 1s realized by data modeling Two basic
concepts 1n data modeling are 'entity' and 'relationship’
Matthews and McGee define an entity as any identifiable
thing or event that can be characterized in terms of a set
of attributes and their associated values and a relationship
as an assoclation of two or more entities which may have

attributes of 1ts own [Mattews and McGee, 1990]

calls

Module A Maodule
A N B
Relationship
between
Entity 1 Entity 1 and Entty 2
Entity 2

Fig 2 1 Entity-Relationship example

For example, as in Figure 2 1, let A and B be two modules
and let A call B, then A and B are two entities and

‘calling' 1s a relationship between A and B There are

14

several data models employing the concepts of entities and
relationships. Some of these models are delineated below

[Welke, 1989]

The Binary Model

This 1s a simple model characterized by the involvement
of exactly two entities and a single relationship between
them. There are two types of binary models: binary-1 and
binary-2 The binary-1 form allows multiple instances of
only one object ﬁype usually, denoted as 1.M (one to many)
Binary-2 form allows multiple instances of both entity types
(MM, many-to-many) Because of their simplicity, binary
models have very limited applicability to complex

applications such as CASE tools.

The Entity-Attribute-Relationship-Attribute (EARA)Model

To overcome the limitations of the binary model and to
express multi-part relationships, the EARA model 1s used.
In this model, properties or attributes are associated with
each entity participating in a relationship To 1llustrate
this, let us consider the previous example of module A
calling module B as depicted in Figure 2 2. Assume that

module A calls module B iteratively

15

calls
Calling W AN (Called

Module & J T L Module B

lteratively

Parameter passed/
Parameter returned

F1g 2 2 The EARA model example

This can be expressed by associating the attribute
‘lterataively' to relationship ‘calls’ Now considexr an even
more complex situation 1in which the parameter 1s either
'passed' or ‘returned' This can be expressed by
associating the attribute 'parameter type' (passed or
returned) to the ‘calls' relationship Even though the EARA
model allows sophisticated multi-part relationship's, 1t
does not express clearly the complexity involved in the
relationship It 1s not possible to clearly express the
roles played by the modules and the parameters, as 1s
evident i1n the above example Thus, there 1s a need for a

higher meta model

16

The Object, Property, Role, and Relationship (OPRR) Model

To overcome the limitations of the EARA model, the OPRR
model 1s used. In the OPRR model, roles are associated with
entities that modify the way an entity takes part in a
relationship This adds another degree of freedom and hence
enhances the expressiveness of the model. A meta model is a
powerful modeling technique to clearly and unambiguously
capture the meaning of design notations. In other words, a
meta model 1s a "database schema" for a data model. For
example i1n the previous section, the role of each object
(module) with respect to the 'calls' relationship can be
made explicit The role attribute indicates the direction,
1.e, the type of parameter (passed or returned). Thus there
1s no data redundancy and the semantics are expressed
clearly ensuring data integrity.

In the OPRR database, data modeling can be done at a
meta level. Hence many-to-many binary relationships with
roles attached to each participating entity and each entity
having multiple properties can be expressed very easily.

Two or more objects can take on different roles and
participate i1in one or more relationships with multiple
instances. This gives additional degrees of freedom 1in data
representation compared to other data modeling techniques
explained in the previous sections. The representation 1is
complete and can be modified easily without affecting other

relationships and entities. Welke makes a comparative study

17

of various modeling techniques and proves the superiority of
the OPRR technique [Welke, 1988]

The OPRR data engine actually uses two kinds of
databases 1n 1ts operation: the Meta database and the
Instance database A meta database contains the meta schema
definition that defines what kind of objects and
relationships are stored in the database 1 e , Activities,
Description of tasks, Status and Schedule information, etc
An Instance database contains the actual data about a
project This closely follows the object-oriented paradigm
(the meta database 1s like an object class and the instance
database 1s an instance of that object class) For example,
a WBS object 1s defined as an entity in the meta database
and all the tasks 1n a project are instances of this object
Simultaneously the tasks inherit all the properties
associated with the WBS object

The OPRR database can be accessed using an 1nterfacé
called the Logical Device Interface (LDI) The LDI allows
only one instance database to be the “current" instance at
any given time

Thus the Meta database approach imparts flexibility by
supporting multiple methodologies and lets the user
customize his/her own methodology [Welke, 1989] Also 1t
fully supports future evolution of the project and lets the
user add more analysis and reporting functions The OPRR
database has an object-oriented design and 1s easy to

malintain

18

The User Interface

Recent studies have shown that the user interface forms
a significant part of any application [Myers, 1988] It is
also arguably the most dafficult part to develop, since it
1s necessary for the designer to understand the problem
technically, while considering the human factors involved
The user interface of any software package 1s that part
which accepts i1nput, interacts with the user, and should
presents him/her with a friendly environment It should be
designed 1n such a way that 1t makes the interaction between
the user and the system easy and intelligent, with good
response time and efficient use of available resources The
1nteraction technique consists of the way of using physical
devices such as a mouse, the keyboard, and/or a light pen to
input a certain value There are different styles
(1nteraction styles) in which this interaction can be made,
viz , menu selection, form fill-in, command language,
natural language, and direct manipulation [Shneiderman,
1987] . Of these, direct manipulation i1s the most popular
The reason 1s that direct manipulation involves selecting an
object of interest and performing the required action
Elaborate graphics, mode-free interface, multiple ways for
the same command, ease of use and semantic feedback, all
make direct manipulation the most used interaction style 1in

recent software packages

19

Different Approaches

Initially, two approaches were tried to display the
project tasks in a window. One was to use list boxes
stacked side by side, giving an appearance of tabular data
display fashion. The other method was to use edit boxes for
the purpose. The latte£ gives the flexibility to edat
fields as they are, although 1t 1s problematic to select
multiple 1tems across rows and columns The former method
1s too awkward to code and maintain. Both methods are not
standard for such purposes, but 1t was a good exercise. The
Life Cycle Builder (Chapter 4) gives more details about the

third (and final) approach selected.

Final User Interface Design

The design of the user-interface for this project is
generally inspired by the IBM SAA/CUA standards The design
adopts all the relevant features listed in the SAA Advanced
Interface Design Guide [IBM SAA/CUA Guide, 1990]. Darect
manipulation interface design along with form fill-in
approcach will be used for certain parts . The platform
selected to design and implement this package 1s Microsoft
Windows version 3 0. It features a mouse-integrated,

graphical user interface in addition to using commands and

20

conventions considered standard for 'Windows-style'

programs

Project Templates

Different methodologies use different strategies in
breaking up the project into several parts A project can
be divided into several stages depending upon 1ts
complexity Thus a small three-month software project may
have just three stages and another two-year project may have
eight stages

The need for a template application occurs when certain
groups of jobs must be used over and over again within the
same project or across several projects [Zells, L , 1990]
Templates bring with them valuable information that is
needed to give the user a head start Since templates are
proven software life cycles themselves, they bring
experience and expertise with them This can save the user

considerable time and effort

Project Views and Task Hiding

Project Views 1s a feature that will allow the user to
restrict the view of the project database to those parts
concerning a single project team member This will be the

basis for a report that can be handed to a project team

21

member as his/her personal project plan, including action
ltems, estimates, resources, etc. The ViewPoints facility
will give precisely the information required by hiding
redundant data For example, to view the details regarding
the estimation of a particular project, the estimation
ViewPoints displays Estimated effort, Revised estimation,
Effort expended so far, and the Remaining Effort. This
helps the user to understand relatively easily and analyze

estimation requirements

CHAPTER III

DESIGN AND IMPLEMENTATION

Introduction

Project Engineer 1s coded in C, using the Software
Development Kit supplied by Microsoft Corporation to develop
applications which run in Windows version 3 0 The

application requires Windows 3 0 as a base and runs on PC

platforms

Implementation of the Concepts

In the following subsections a brief description of the
implementations of concepts discussed in the previous
chapter 1s provided

Implementation of the Database

Project Engineer uses an OPRR meta database model

discussed i1n the previous chapter Two types of files exast

22

23

1in Project Engineer. Life Cycle Templates and Project
Databases. There 1s no internal difference between the two
types (except i1n the DOS file extension) and both types are
based on the same OPRR Meta database (both are i1instance
databases). Dafferent Life cycles can be retrieved just by
changing the instance database. In the Life Cycle Builder
module's meta database, the WBS object 1s defined as an
entity with properties associated with 1t. Simple binary
relationships between these objects have been defined and

used.

Project Templates

A life cycle template will always be used as the basis
for a Project Database. It will be modified only when
changes that affect all future uses of the template are
made The user also will be allowed to make changes to a
Template/Project and save 1t as a template This facility
1s useful 1f the users handle projects which follow a
pattern but differ slightly. In order to create a new
project, a template will be loaded, modified, and then saved
as a project.

Hence, several templates will be provided in Project
Engineer for the user to cater to the different profiles of

software life cycles These templates present a starting

24

point for the user to tune the appropriate template to build

the required life cycle

The User Interface Implementation

Project Engineer uses Multiple Document Interface (MDI)
windows to display information from different perspectives.
MDI Child windows are windows which are controlled by and
appear within a parent or 'main' window [Petzold, 1990]
These child windows function exactly like main windows,
including minimize/maximize buttons, resizability, etc , but
they are limited to the boundaries of the parent window.
Each MDI Child window performs a function and can be
'1conized' and brought back to full size whenever needed
This 1interface i1s used by many other Windows products (like
Microsoft Excel and Word) and should seem familiar to

experlenced Windows users

Project Views and Task Deletion

Different views §f the selected task details can be
seen 1n Project Engineer by changing views This 1s
provided to help the project manager to look at the project
in different perspectives

Objects 1n Project Engineer are never physically

deleted Instead they are marked as deleted and 'hidden'

25

from view There are two reasons for this The primary
reason 1s that certain modules like the Life cycle Advisor
and Validator may need to access objects are ‘missing‘’ as
well as those that are present Further, the user can
eas1ly 'undelete’ a task at any point in time, without
having to recreate all of the associated information A
Hide/Unhide function will allow the user to toggle between

views that include or exclude 'deleted’ objects

The Software Architecture

The architecture employed for this project 1s shown in
Fig 3 1 As usual the user interface forms the front-end
and uses Windows version 3 0 Other tools that coexist with
the Life Cycle Builder are shown as internal tools The
front-end 1s connected to the database (back-end) via the
LDI Database Interface The connection to CASE tools 1is
planned but not yet implemented Similarly the intexrface to
popular schedulers will be implemented when the licensing of

the same 1s completed

The In-Memory Data Structure and N Levels

A copy of the tasks in the list window 1s stored in
memory for faster access to display them in the list window

whenever the window 1s repainted This feature also saves

26

User Interface
Internal Windows 3.0
Tools MDI
LDI Database Intetrface
OPRR Database Engine
Scheduler CASE Other
Interface Tools Tools

Figure 3 1 The Software Architecture

unnecessary disk accesses Since a project life cycle has a
hierarchy, i1t can be stored as a left-linked right-sibling
tree Since the maximum number of children in any level 1s
not limited, the link structure 1is provided Figure 3 2

depicts the data structure as 1t 1s stored in memory

Object-Oriented Design

Project Engineer employs an object-oriented approach in

the design of i1ts modules The 1solation of the interactive

The conceptual view of the Work Breakdown Structure
Levell
Stage 1 Stage2
Level2
Step1 Step2 Step3 Stepd
| [l
Level3
Task 1 Task 2 Task 1 Task2
LevelN
The physical data structure
Levell
Level2
Level3
LevelN
The storage view of the conceptual view shown above

Fig 3.2 The left-linked right-sibling tree data structure

part from the application part in any software design has
several advantages [Linton et al, 1989] This 1isolation can
be achieved easily using object-oriented design providing
abstraction and encapsulation Project Engineer 1s modular
in design and incorporates an i1ntegrated set of tools that
can be mixed and matched Each additional module will be a
separate executable segment and uses Microsoft Windows
version 3 0 message passing facilities to coordinate
activities befween modules and synchronize -repository
activity There 1s a subtle separation between the front
end, which 1s what the user sees and uses and the back end,
or the database A set of database interface routines are
used to provide this separation Thus either the front or
the back end can be changed without affecting the other
significantly This helps 1n maintaining the software
easlly while adapting to changing environments with little
difficulty If in the future the database engine needs to be
changed, 1t can be done without extensive alteration of the
code, only the interface routines will have to be modified
This can be called database encapsulation

The concept of reusability i1s emphasized in this
design Encapsulation allows us to build entities that can
be depended upon to behave i1n certain ways, and to contain
certain information [Wirfs-Borck, et al , 1990] Such
entities can be reused 1n every application that can make
use of this behavior and knoWledge Microsoft Windows

allows the creation of Windows Classes, which, once coded,

29

can be used for several different purposes The Grid Window
Class described below 1s developed as a Windows Class It
can even be made into a Dynamic Link Library (DLL) in future
versions, which makes 1t easily usable with other modules
whenever required Another window, the Object Editor, is
also developed as a Windows Class Each instance of the
Object Editor has 1ts own 1n-memory storage area That 1is
how the user can i1nvoke several instances of the Object
Editor and modify all of them simultaneously

The appendix gives an overview of all the modules that
make up Project Engineer Project Englneer uses the concept
of Multiple Document Interface (MDI) standards to permit
several tools to run under the same application This has
several advantages over simple individual windows design,
multiple tools can be i1nvoked at the same time and the
lnteraction between tools can be established while providing
the ability to display several windows (tools)
simultaneously Two of those modules are selected for the
purpose of demonstration They are the Risk Analysis module
and the Life Cycle Builder module

The Risk Analysis module 1s coded using an expert
system package (KnowledgePro) and later will be integrated
into Project Engineer as another MDI child window

The Life Cycle Builder (LCB) module 1s an MDI child
window 1n PIOjeét Engineer It uses the Grid Window class
described below to display project information in a tabular

fashion It helps the user bring up the Object Editor,

30

another MDI child window to help the user in editing any
selected object Interaction between the Object Editor

window and LCB window 1s provided by the MDI

The Graid Window Class

One of the most frustrating aspects of GUI applications
1s that the cohtrol mechanisms of the user interface are not
always consistent While window, menu, and dialog box
controls are fairly standardized, other user 1interface
controls are not Designers must always balance the unique
user 1nterface requirements of their application against the
benefits of adopting a familiar control mechanism Several
control designs were evaluated/prototyped including a list
box based control and an edit-control based control
Finally the decision was made to develop a Grad Wlndow Class
because 1t 1s more user friendly and has been accepted by
the users (in Microsoft Excel and Wingz spreadsheets) Even
though 1t takes more time to develop this control, 1t can be
used by other modules later

The Grid Window Class 1s designed to provide an
interface for displaying and managing tabular data Since
the data associated with projects has to be displayed from
various perspectives with each row of objects/tasks
representing a Work Breakdown Structure object, a grad

structure would be appropriate Columns 1ndicate the Name,

31

Status, Estimation information, etc Columns can be
customized by the user to view what the user wants at any
point 1n time. The columns are resizable with the use of a
mouse It 1s essential to be able to accommodate the
variety of data that can be displayed i1n each column For
example, the Name column for any WBS object can be up to
s1Xty characters 1n size whereas the WBS code will have a
maximum width of fifteen characters If the same column 1s
used for both these situations, the user can reduce/enlarge
the column width The resizing of columns will be achieved
by direct manipulation Scroll bars will be provided to
scroll the grid vertically or horizontally

Rows and columns can be 'highlighted' as 1in Microsoft
Excel A highlighted rectangle appears whenever the user
selects a particular ‘'cell', this action will remove the
highlighted rectangle from the previously selected area
Simultaneously, the contents of the selected cell will be
displayed 1n an 'edit' window where 1t can be modified

Since this grid structure design allows the display of
information in a matrix fashion and since this i1s designed
and implemented as a Windows Class, 1t can be reused 1in

other modules by just creating another instance of this

class

32

The LCB Object Editor

The purpose of this MDI child window 1is to display all
the information for one Activity, and allow the user to edit
any of the information fields After a modification, the
user either can accept or cancel the changes made
Modifications to an Activity description will require an
explicit commit action (via an 'OK' button) before any other
functions can be accessed This requirement ensures a
synchronlzatlonlamong all MDI child windows

The object editor 'pops' up when the usexr ‘double-
clicks' the mouse button on any selected Activity in the
List window of the Life Cycle Builder module This edator
also validates the modified data for any error in the
formatting For example, 1f the user enters an alphabetical
string for a date field, an Error MessageBox 1s displayed
requesting the user to input the data in proper format

The object editor 1is fllied with the data associated
with the selected Activity in the List window and the user
can modify any field The same object editor 'pops' up when
the user tries to insert a 'mew' activity in the List
window, 1n this case the fields will be empty except for the
default Activity type Each insertion 1is checked/validated
to make sure that the Activity level hierarchy is
maintained

Fig 3 3 shown on the next page gives an i1dea of how

the Object Editor i1s displayed when the user double-clicks

33

an object in the LCB window. It may be observed that
PI.PI1.10 is selected, since that row is highlighted in
inverse. There also are two other Object Editors which

have been iconized.

Projest Englaver - sample.lcp

File Edit View Options Window Help
Activity Outline
& | |P1.01.010 PLOL O ‘ »
@ [] E B Appoint Project Be
WBS CODE | NAME | START DATE | FINISH [t] [«
- | P1 Px - = i
- | PO
— | prowoto Name: [Apport Pioiect Boad |
- | P.O2
_ | pra2010 Whs Code: |P1.01.010 | Applicability: [Mandatory [2]
- | PLo2020 Effort Estimate Info—] [Dates Info Activity Level:
| P03 Original: Start: [tonw || [TASK [£]
- | PL03010 ‘
Expended: Due: Activity Status:
- | PLos [ToBeStated [2]
- | Prodomo Revised: Finish: ;
PLO4.020 r 1 Type: I
i Remaining: Review: (11/30/30 Project M 2
s e[@] [Profect Managemen]
| |
= Task Description |!| Prev Next
Sample Description to test the object editor. now called as the activity editor +

Activity Editor

Fig. 3.3 The Object Editor.

Project Modules

Project Engineer consists of several major modules,
each of which is an independent tool. The modules are (the

names indicate their purpose)

34

- Life Cycle Builder (described below).

- Estimator

- Scheduler Interface (since there are several
scheduler packages existing, only an interface to
common ones are provided)

- Resource Manager

- Metrics Trackez

- Life Cycle Vvalidator

- Life Cycle Advisor

- Hypertext Method

- Risk Analysis

Only the Life Cycle Builder module 1s selected for
demonstration of this concept ‘A prototype of Risk Analysis
1s also developed. To develop the whole package with all

tools 1s outside the scope of this thesis

Life Cycle Builder

This module provides core services for Project
Engineer It 1s the framework for all Project Engineer
activities and provides underlying services for other

modules (OPRR database engine and Traffic Controller)

Risk Analysis

This module supports Project Engineer's other modules

by analyzing the risks associated with a software

development project and recommends the actions to be taken

to minimize those risks

35

CHAPTER IV

FEATURES OF LIFE CYCLE BUILDER (LCB)

Introduction

The Life Cycle Builder module 1s the framework for all
Project Engineering activities and provides underlying
services for other modules Its purpose 1s to allow users
to load and manipulate project life cycles and templates
The following are some of the features of the LCB

Load a project database or a Life Cycle template

Save/Save As projects and templates

Display variouds views of the Life Cycle

Print the Life Cycle plan at various levels of detail

Insert, Delete, Modify, Copy, Paste Activitiles

Promote and Demote Activities

Collapse and Expansion of Activities

Explode an Activity to a detailed description

Hide/Unhide ‘'deleted' tasks

Export to other scheduler packages

Allow the user to customize the appearance of a Life
Cycle with fonts, etc

Provide On-line Method (hyper-media based help)
integration

and synchronization [Garg, 1990]

36

37

How to Use LCB

The LCB 1s designed to be used by the project managers
to create and maintain project life cycles. Project life
cycles can be created from existing templates or afresh (by
selecting an empty template). To start with, the user can
open a new project life cycle by selecting an appropriate
template that might closely match the new project. Then
appropriate names are given to tasks along with their
tentative starting dates and ending dates, the estimated
duration of that task etc. All unwanted tasks can be
deleted and new ones added as required by either copying
other tasks and changing the parameters or by inserting a
new task wherever needed and filling in the details At
least one parameter, the Work Breakdown Structure code
should be filled, as i1t 1s the unique factor that
differentiates one task from an other. The edited project
can be saved, either as a project or a template, and used
as.

The details regarding a task can be edited by selecting
the object editor, which 1s brought up by double-clicking
the required task Another way to edit the fields in the
list window 1s to select the field by clicking the mouse.
The selected i1tem appears i1in an edit window (as 1in Microsoft
Excel) and can be edited there. The changes automatically

appear 1n the selected field too The changes may either be

38

accepted or deleted by selecting the appropriate button next

to edit window.

The LCB List Window

This child window will display the Life Cycle in list
form, in a scrollable window. Entries (Work Breakdown
Structure objects) in the window can be assigned different
fonts and sizes based on styles, where styles are assigned

by level in the Work Breakdown Structure.

Project Eagineer - sample.dcp
Eile Edit View Format Options Window Help

Activity Outline

MR

[P1.01
WBS CODE | NAME | START DATE | FINISH DATE | STATUS
Pl Project Initiation 18714790 12714790 To be starteg
- | A7 FProyect Management Conte 1874950 Yo b el 70 bea starteq
P1.01.010 Appoint Project Board 10/14/90 12114790 To be started
- | A2 Froyac Scope 17490 127490 70 ba stanted
- | P.02.010 Determine Scope 10/14/90 12/14/90 To be started
- | P.02.020 Establish Scope 10/14/90 12/14/90 To be started
- | A2 Froyact Flan and Buaget 17490 12774050 70 be stanag
- | PL.O3.010 Select Development Ap; 10/14/90 1211490 To be started
- | Ao Froyact Organizabon 18T9%7 127450 70 be starned
- | PL.04.010 Confirm Project Team 10/14/390 12114/90 To be started
- | P1.04.020 Establish User Involvem 10/14/90 12/14/90 To be started
‘-)= 4738 Lusmess (Casa LT 482 22T 4080 In ~
Sample Description to test the object editor. now called as the activity editor +
W!Edu :”

Fig. 4.1 Project Engineer LCB window.

39

The interface style for the list window will closely emulate
the grid class feature found in Microsoft Excel. Faigure 4.1
1s an actual picture of Project Engineer LCB window with
actual objects filled in. The list window will also provide
column configurability. Column configurability will allow
choices of column formats (1.e., different combinations of
columns customized for a partiaicular purpose). The list
window will support character attributes determined by the
activity level. Each actaivity level (Stage, Step, Task,
etc.) can have 1its own font, style, and size. The List
Window also supports an outline format (with activities
indented for appropriate levels) and a straight list format.
Users can highlight rows/lines, columns, cells or
rectangular areas, and perform editing of the selected

1tems Column widths can also be resized dynamically, and
the list window will automatically clip text outside a

boundary.

Addition and Deletion of Objects

PfOJect tasks can be added or deleted as and when
needed. Addition of the tasks 1s done by either inserting a
new task wherever required and filling in the i1tems or by
copying another task and pasting i1t at the reguisite place.
The user interface for this operation follows Microsoft

Excel's format Similarly deletion of objects can be done

40

by selecting the objects and deleting them. For these
operations the edit menu item provides Copy, Paste, Delete
etc. as a standard practice. Objects are not actually
deleted, they are only hidden. The reason for this 1s that
the Life Cycle Validator module check upon the consistency
that exists in the project life cycle and provides
suggestions. The deleted tasks may be for producing a
deliverable that 1s needed 1n other tasks. 1In such cases

1t (Life Cycle Validator) points to these errors.

Collapse and Expansion of Objects

Since the project life cycle's work breakdown structure
follows a hierarchy, collapse and expansion of levels may be
needed This abets the user to see only the top hierarchy
or the details regarding a particular phase, etc. This
feature 1s very useful because the user can see only a
certain number of tasks at any time on the screen, or he/she
has to scroll the window to see more tasks, which may be
clumsy at times.

This feature 1s provided under the View menu item and
also as a button in the first column of the list window,
which, when double-clicked, will toggle between collapse and

expansion of tasks

41

For example assume that the tasks given below are shown
in the window. By collapsing 'PI.PI1', we get the situation

rendered below.

PI - Project Initiation (Stage)
PI.PI1 - Determine Scope (Step)
PI.PI1.10 - Review Related Studies (Task)
PI PI1.20 - Establish Scope
PI PI1.30 - Establish Major Objectives
PI PI1 40 - Establish Constraints
PI PI1.50 - Identify Outline Solution
PI.PI2 - Establish Project Plan and Budget

After collapsing 'PI.PI1l', we get

PI - Project Initiation (Stage)
PI.PI1 - Determine Scope (Step)
PI PI2 - Establish Project Plan and Budget

Similarly, this will be restored to the previous
(expanded) state when the above mentioned button 1s double-

clicked again

Promotion and Demotion of Objects

The Work Breakdown Structure divides the tasks into
several level heirarchies For example, in the LBMS

methodology [LBMS Systems Engineering Methods Handbook,

42

1990], there are three levels and these levels can vary.
The proposed tool, Project Engineer has 'n' levels, even
though ten levels seems to be sufficient for most project
life cycles. BAn object of Levell will have several Level2
objects as its 'children' and so on. A task of Levell can
be demoted to Level2 or a task of Level3 can be promoted to
a Level2 This 1s needed because a task might become too
important for i1t to be in that level and should be promoted
to a level above and children be provided for it Likewise
a task at a higher level may become so trivial i1t should not
remain at that level and be demoted A task at any level
can only be promoted/demoted to 1ts previous/next level
There are certain restrictions though To exemplify this,

consider the following work breakdown structure

Level 1 PI - Project Initiation (stage)
Level 2 PI PI1 - Determine Scope (step)
Level 3 PI PI1 10 - Review Related Studies (task)
PI PI1.20 - Establish Scope
PI PI1 30 - Establish Major Objectives
PI PI1 40 - Establish Constraints
PI PI1 50 - Identify Outline Solution
Level 2 PI PI2 - Establish Project Plan/Budget (step)
Level 2 PI PI3 - A new step (step)

43
The following promotions are valid

1). PI.PI1.30 (task) at level three can be promoted to
level two, 1in which case PI.PI1 (step) will now have
only two children (PI.PI1.10 and PI.PI1.20) and
PI.PI1.40 and PI.PI1 50 become children of the promoted
task PI.PI1 30.

2). PI.PI2 (step) at level 2 can be promoted to level
one. Now PI has only one child at level two, viz,

PI.PI1.

An example of an invalid promotion 1s trying to promote
PI.PI1 at level 2 to level 1, because now level 1 will have
children which are at level 3 Whlch 1s not correct.

Promotion and demotion of objects between levels are
possible only when the work breakdown structure is logically
valid

These two features are also provided under the View

menu 1tem.

The WBS Diagram Window

The WBS Diagram Window 1s another MDI child window, and
can be activated from the tools palette This provides a
graphic display of the WBS structure. Each Actaivity will be
displayed as an icon containing to indicate the Activity

code. A graphic library supplied by LBMS Inc., London, were

44

used to develop this window. At this stage of development,
users are not able to edit the structure from this window,
but they are able to navigate through the structure by
clicking and double-clicking 1cons to display the Object
Editor.

All operations within the diagram (highlighting,
collapse/expansion, etc) will synchronize with the list
mode window (1f visible) and the Object Editor (1f visible).

This window 1s used for viewing the project life cycle
in a graphical form. Objects can be selected and the object
editor broughtlup by double-clicking on the object
Collapsing and expanding can be performed by clicking on the
oval that joins two levels. A '+' appears 1in the oval when

the level 1s collapsed.

CHAPTER V

RISK ANALYSIS

Introduction

This 1s one of the several modules of the Project
Engineer tool A prototype of this module was developed for
study purposes Risks that are involved 1n a (software)
project can be reduced 1f proper action 1s taken The Risk
Analysis module leads the project manager through a
consultancy session using a Risk Analysis Questionnaire, to
produce a log of questions asked and the replies given, and
provides the option of producing a hardcopy of this log
The Ieport produced details the areas of risk associated
with the project and makes recommendations of actions
required to minimize risks This report should be viewable
in a scrollable window and may optionally bé printed on a
hardcopy device

This module was only developed for study purposes and

1s not part of the thesais

45"

46

Project Risks

A software project depends upon various things such as
hardware, software, and other subsystems to be completed
successfully These are called project risks Any of these
ltems can go wrong An expert system to compute these risks
1s being written using KnowledgePro, an expert system that
runs on Windows version 3 0 on a PC platform These risks

can be divided into several areas

Risk Areas

The level of risk 1s assessed 1in five different areas

External dependencies of a project
Organizational dependencies
Planning risks

Business case risks

Technical and Implementation risks

The risk level calculated 1s based upon the project
manager's responses to a pre-defined set of questions and
supporting rules regarding these questions A sample of two

duestions with answer choilces 1s given below

Q Is the project dependent on scarce resource/skills?

A Yes, No, Skip and Previous.

Q_ The number of major subsystems 1n the project i1s?

A. 1, 2, 3, etc ., and Skip and Previous.

The project manager may or may not answer all the

questions for reasons such as the following:-

a) The project manager may not have the information to
answer all the questions at that time

b) The question can be answered only partially

In either case the project manager can either skip the
question entirely or answer the question partially For
example, the project manager may answer a particular
question in this way
"There 1s a 20% chance that a particular function
will fail, rather than a definite YES or NO answer
regarding the possibility of that function

failing "

In other words a fuzzy logic approach may be used [Leber,

1990] Currently, the prototype 1s not following fuzzy

logic, but there are plans to implement 1t in a future

version

Possible Solutions

Once the questions have been answered and the

47

corresponding rules applied, a report 1is produced The risk

analyzer produces this report recommending those actions

48

required to reduce or minimize the level of risk in specific
areas The report also mentions those questions that were
not answered and that the level of risk might increase
depending upon the answers to those questions The report
may be viewed on a screen, copied to a file or printed

The Risk Analysis option 1s provided under the Tools
options of the Project Engineer as an 1icon which when
double-clicked will activate the i1con The prototype 1s
developed using Decision 123, an AI development package, and
runs on KnowledgePro, another rule-based development tool
under Windows 3 0 This module has to be i1ntegrated with
Life Cycle Builder

The computed value of risk 1s then converted into an

estimating factor which may be used 1n the Estimator module

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Life Cycle Builder 1s the first module, designed and
built 1n the integrated set of tools detailed in the
Appendix A. Saince a project life cycle has to be built in
any project first, the project life cycle 1s the first
module to be designed and developed The scheduler
interface to couple Project Engineer to other packages 1is
developed next. Parallel to this, the next most important
modules 1in Project Engineer, the estimator and a client
server for the database, have to be completed.

The user i1nterface 1s on par with the existing Windows
version 3 0 based tools. Minimum documentation will be
needed for the user to start and use this tool, and since 1t
1s coded 1in C, the speed 1s quite satisfactory The OPRR
database library consumes about 125K of memory and the LCB
module uses about 100K of memory The graphics library used
in the WBS diagram editor 1s 450K i1in size and when compiled
with the driver takes up about 200K of memory It 1s
suggested that Project Engineer be run in 386 enhanced mode

1in Windows version 3.0 rather than in the real mode.

49

50

The application may require other MDI child windows to
be added for clarity and better user interface It 1s also
possible that some of the windows described above may change
in thear functionality as the development continues 1n
future

Multiple font support can be afforded for displaying
tasks 1n different fonts for various purposes A hot link
(please refer to the glossary for details) to other
scheduler packages can be provided instead of an interface

Most of the 1tems described above will be accomplished
in future Of course, there 1s a chance that some of the
minor points may be missed In fact, several of the i1tems
mentioned above have been completed and tested

satisfactorily already

SELECTED BIBLIOGRAPHY

Beck, L. B., and Perkins, T. E , "A Survey of Software
Engineering Practice Tools, Methods, and Results",
IEEE Transactions on Software Endineerind, pp 541-561,
Vol SE-9, No 5, September 1983

Boehm, B W , "A Spiral Model of Software Development and
Enhancement", Computer, pp 61-722, May 1988

Cameron, J R , "An Overview of J3SD", IEEE Transactions on

Software Engineering, Vol SE-12, No 2, pp 222-240,
February 1986

Coad, P , and Yourdon, E , Object Oriented Analysis, Yourdon

Press, New Jersey, 1990,

Constantine, L. L , "Objects, Functions, and Program
Extensibility", Computer Languadge, pp 34-54, January
1990

Cornish, M , "Four Principles of User Interface Design",

Computer Languadge, ©pp. 67-75, March 1990

Cox, B J, Object Oriented Programming: An Evolutionary
Approach, Addison-Wesley Publishing Company,
Massachusetts, 1987

Daly, E D , "Management of Software Development", IEEE
Transactions on Software Engineering, pp 229-242, May
1977

51

52

Decision 123 AI package with Reference Manual, Proctor &
Gamble Artificial Intelligence Team, 1990.

Dodani, M. H , Hughes, C. E., and Moshell, J. M ,
"Separation of Powers", BYTE, pp 255-262, 1989

Garg, P. K , and Scacchi, W , "A Hypertext System to Manage
Software Life-Cycle Documents", IEEE Software, pp. 90-
98, May 1990

Hsieh, D , Personal communications with David Hsieh, 1990

IBM Systems Application Architecture - Common User Access
Advanced Interface Design Guide, International Business
Machines Corp., 1989

Kemmerer, R A , "Integrating Formal Methods i1nto

Development Process", IEEE Software, pp 37-50,
Septembexr 1990

Kernighan, B W , and Ritchie, D M , The C Programming
Language, Prentice Hall, Englewood Cliffs, New Jersey,
1978

KnowledgePro (Windows) rule-baséd development system with

1ts Manuals, Knowledge Garden, Inc , 1990
LBMS Systems Engineering Methods Handbook, LBMS Inc ,

Houston, 1990

Leber, J B , "A Fuzzy Approach to Data Repair", Database
Programming & Design, January 1990

Lee, E , "User-Interface Development Tools", IEEE Software,
pp 31-36, May 1990

53

Linton, M. A., Vlissides, J. M., and Calder, P R ,
"Composing User-Interfaces with Interviews", Computer,
pp 8-22, February 1989

Lugl , "Software Evolution Through Rapid Prototyping",
Computer, pp 13-25, May 1989

Matthews, R W , and McGee, W. C, "Data modelling for

software development", IBM Systems Journal, pp 228-
235, Vol. 29, No 2, 19%0

McClure, C , CASE 1s Software Automation, Prentice Hall, New
Jersey, 1989

McClure, C , "The CASE Experience", BYTE, pp 235-246, April
1989

Microsoft Windows Guide to Programming for Windows 3.0,

Microsoft Corporation, 1990

Microsoft Windows Programmers Reference for Windows 3 0,
Vol 1 and Vol 2, Microsoft Corporation, 1990

Microsoft Windows Programming Tools for Windows 3 0,
Microsoft Corporation, 1990

Muller, M J , "Multifunctional Cursor for Direct
Manipulation User Interfaces", SIGCHI, 1988

Myers, B J , "Creating User Interfaces by Demonstration",
Academic Press, Inc , California, 1988

Orr, K , Gane, C , Yourdon, E , Chen, P P , and
Constantine, L, L , "Methodology The Experts Speak",
BYTE, pp 221-233, April 1989

54

Paterson, T , and Flenniken, S., "Managing Multiple Data
Segments Under Microsoft Windows", Dr.Dobbs Jdournal,
February 1990

Petzold, C., Programming in Windows, Microsoft Press, 1988.

Petzold, C , "A New Multiple Document Interface API
Simplifies MDI Application Development", Microsoft
Systems Journal, pp 53-63, July 1990

Pressman, R. S., Making Software Engineering Happen,
Prentice Hall, New Jersey, 1988.

Reisman, S , "Management and Integrated Tools", IEEE
Software, pp 71-78, May 1990

Schildt, H , C The Complete Reference Second Edition,
Osborne McGraw Hill, California, 1990

Shneiderman, B , Designing the User Interface Strategies for
Effective Human-Computer Interaction, Addison-Wesley
Publishing Company, 1987

Towner, L. E , CASE Concepts and Implementation, McGraw-
Hill Book Company, 1989

Ward, P T , "The Transformation Schema: An Extension of the
Data Flow Diagram to Represent Control and Timing",
IEEE Transactions on Software Engineering, Vol SE-12,
No 2, pp. 198-210, February 1986

Welke, R J., "Meta Systems on Meta Models", CASE Outlook,
pp 35-43, Vol 4, 1989 '

55

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing

Object-Oriented Software, Prentice Hall, New Jersey,
1990

Zells, L., Managing Software Projects, QED Information

Sciences, Inc., Massachusetts, 1990

APPENDIXES

APPENDIX A

PROJECT ENGINEER MODULES

The figure presented below gives an idea of all the modules

present in Project Engineer.

Hypertext
Inteﬁace

A

|

Y

Hypertext
Method | |

Life Cycle
Advisor

PROJECT
ENGINEER

KNOWLEDGE
BASE

Life Cycle
Validator

Estimator

Metrics
Tracker

Resource
Manager

Scheduler
Interface

56

APPENDIX B

PROJECT ENGINEER SNAPSHOTS

The figure presented below gives an idea of how the Life
Cycle Builder module looks like.

- Project Eagineer - sample.lep v|s
File Edit View Format Options Window Help
] |G] EB

WBS CODE | NAME | START DATE | FINISH DATE | STATUS [t
- |PI Project Initiation 18/14/98 12/14/%0 To be startes
- | Aar Froyect Management_Combe 74:7 450 127430 70 be stareq
- | PL01.010 Appoint Project Board 10/14/90 12114/30 To be started
- | A Frovect Scope 197990 127090 7o ba startad
- | PL.02.010 Determine Scope 10/14/30 12/14/90 To be started
- | P1.02.020 Establish Scope 10/14/90 12/14/30 To be started
- | A03 Froyaec Flan and Budget Tqre80 1274950 70 ba sranag
- | P.03.010 Select Development Ap; 10/14/90 12/14/30 To be started
- | Ao Proyecl Organvzasaon 18 7¢%02 1274 70 be startaq
- | PLO4.010 Confim Project Team 10/14/90 12114730 To be started
- | F1.04.020 Establish User involvem 10/14/390 12/14/30 To be started

= y=7/.3 Ausmess (Case 12747 12745907 In = Y
Sample Description to test the object editor. now called as the activity editor +
N *

57

58

The figure presented below shows WBS Diagram Editor and Life
Cycle Builder modules 'tiled' next to each other. Also
observe that the activity 'PI.02' is 'collapsed' and that
can be seed in both the modules. A '+' sign indicates that
the task is collapsed.

Project Eagineer - sample.lcp

File Edit View Format Options Window Help
Woerk Breakdown Structure Diagram - f v|s
[Jor Foemsdo g A ;
| WBS CODE | NAME +1
- |PI Project Initiation =
- | A7 Froyect Management (|
- | PL.O1.010 Appoint Project Bog
A
- | A87 Froyect Fan and Budy:
- | PL03.010 Select Developmer
- | A Froyecy Organizavon
- | PL04.010 Confirm Project Tea I
e - | P1.04.020 Establish User Invo
- | A5 Busimess Case
- | Ale Froyact imabon Reviey
- | AN Analysis Stage
- | ANU7 S\stams invesigabon
"‘@ - | ANGZ Reagquirements Leinid,
L@ - [AN.02.010 Identify Business R |
I8 - [AND2020 it a
< *> * *

59

The figure presented below shows project information dialog
box used to display the information about any project. It
can also be modified as the project progresses.

s Project Engineer - sample.lcp - [Activity Outline] | v|s

=| File Edit View Format Options Window Help|$
E [Proiadeagunut&deSydm l BE

WBS CODE | NAME | START DATE | FINISH DATE | STATUS [*

I Iy |

— | 4 Project Intarmation

Title: IPWled1 J Version Number: [n

- | A Project Manager: IExampIe Resource] Project Id: [ﬂ

—] DateCreated: [1g28/90 | Lifecydeld: |[Template 1|

~ Date Modified: [10729/90 | Template |OBJECT1.0

- | A Description:

- | A This is a test project information.

- | AN.02.020 Perform Critical Requirer 10/14/30 12/14/90 In Progress

- | AN.02.030 Define Requirement Inte1 10/14/30 12/14/90 InProgress [4]
¢ | 1+

60

The figure presented below shows Styles dialog box. This is
used to change the font, size, color, style (bold, italic or
underline) of any activity level (stage, step or task) in

the project. It is also used to change the WBS code format.

= Project Engineer - sample.lcp - [Activity Outline] ME
=| File Edit View Format Options Window Help|s
E | Project Management & Control System I (=] (=]

WwBS CODE | NAME | START DATE | FINISH DATE | STATUS [+
-|P1 Projact Imtiahon 10714790 1271490 To be started ;
- Fﬂ”'ﬂ STYLES £ AL T ba stared
- |PIO 4730 12/14/90 To be started
+ | Aaq WBS Structure Insert & 2450 7o be staned
- | Aros RERE 2 L2480 To be stevted
- | P03 ~ Rbinbifemmy T0 b started
| e B o |
~|rioal | ¥ color [Red O itahc { Tobe stared
- Fllfﬁ- Font les R O Underscore 3 7o ba stanlad
- | A8 K | 7abesisred
- | AN | ¥ Size § Tobe started
- | ANGT ; 1 7obesianed
S war | Seweror [= | 7ote s
—|ANo2010 | WBS Code Format (CC Cancel i Tobe started
~ | aNo2020 | | inProgress
- | AN 02030 Define Requirement Inter 10/14/90 12£14/90 InProgress [+
o[1 s

61

The figure presented below shows the WBS diagram. This
presents the graphical view of the project work breakdown
structure

File Edit View Format Options Window (s
+
Project 1 P PLO1 P1.01.010 =4
Project Initiation Project Manageme Appoint Project Bo =
O O nt & Control Syste O—ad
P1.02
Project Scope {B
P03 PI.03.010
Project Plan and B | (") Select Developme
udget nt Approach
P1.O4 P1.04.010

Project Oiganizatio [(O)—— Confim Project Te
n am

Pi.04.020
Establish User Inv
olvement

P1.05

Business Case

*]

["L F]¢

62

The figure presented below shows the WBS Diagram Editor on
top of the Life Cycle Builder. This shows that multiple
windows can co—-exist in the same tool and help the user in
viewing the project in different ways. This is achieved
using the Microsoft Windows 3.0's multiple document
interface (MDI) feature.

Project Eagineer - sample.lop

File Edit View Format Options Window

Activity Outline
z [Proiede\t&ConhoISwun I E @

WBS CODE | NAME | START DATE | FINISH DATE | STATUS [t
PI Project Initiation 18714798 12714790 To be starteq—
y=0//4 Y U P - : . bo oo o d
PLO1.010 Work Bre -

, CX]] PLOLOI

A SR O :r'ohn witiation [()—{Project Appoint Project Bo
H'Oz‘m 0 t & Contrel System ard
P1.02.020 Wi CNIRT]

V= {7k ProjectSowe () Determine Scope
P1.03.010
i PL82.020

Establish Scope
P1.04.010
P1.04.020
W=7 ""”tmmau ()_;:..:n-m“

Pre, |

‘!ﬂm Approach

PLO4 PLOE O

Project Orsanizatie .O Confirm Project Te

L] E]

Iy
* >

)

A

VITA
Sridhar Chandrashekar
Candidate for the Degree of

Master of Science

Thesis: AN INTEGRATED SET OF TOOLS TO ASSIST IN THE
DEVELOPMENT AND MAINTENANCE OF PROJECT LIFE CYCLES

Major Field: Computer Science
Biographical:

Personal Data: Born in Bangalore, India, June 20,
1963, the son of K.S. Chandrashekar Iyver and
R. Sarojamma.

Education: Received Bachelor of Engineering Degree in
Electronics and Communications Engineering from
University of Mysore, Mysore, India 1in January,
1986; completed requirements for the Master of
Science degree at Oklahoma State University in
July, 1991.

Professional Experience:
Research Assistant, Department of Computer
Science, Oklahoma State University, September,
1990, to December, 1990.
Software Engineer, Learmonth & Burchett Management
Systems, 1800, W. Loop. S, Suite 1800, Houston,
Texas, May, 1990, to August, 1990.
Research Assistant, Department of Business
Administration, Oklahoma State University,
September, 1989, to April, 1990.
Scientist, Defense Research and Development
Organisation, Bangalore, India, October, 1987, to
August, 1989.
Customer Support Engineer, Hindustan Computers
Limited, Bangalore, India, Aprail, 1987, to
September, 1987.

