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CHAPTER I 

BACKGROUND AND RATIONALE 

Introduction 

Historical 

High-performance capillary electrophoresis, using, sophisticated instrumentation 

and advanced capillary technology, is becoming an important microseparation technique 
' ' 

in the life science, biotechnology and environmental research. 

Free zone electrophoresis in open tubes was first demonstrated by Hjerten in 

1967 (1) in rotating tubes of 3 mm inner diameter. In 1974, Virtanen (2) reported the 

advantages of zone electrophoresis in glass tubes of smaller diameter (i.e. 200 J.Lm to 

500 J.Lm). However, high separation efficiencies were not achieved due to the poor 

detection sensitivity and concomitantly large injection volumes. Twelve years later, 

Teflon tubes of 200 J.Lm inner diameter were introduced, and separations with plate 

height of less than 10 J.Lm were obtained (3). The breakthrough in capillary 

electrophoresis was brought about by Jorgenson and co-workers (4, 5), who provided 

the first demonstration of high separation efficiency with capillaries of inner diameter 

less than 100 J.Lm. This work has become the landmark for capillary electrophoresis. 

Other workers followed the lead and demonstrated the high resolving power of capillary 

electrophoresis in important applications (6-12). 

Another major development in HPCE was the pioneering work of Terabe (13) 

and co-workers, who introduced micellar electrokinetic capillary chromatography 

(MECC); a subdivision of capillary electrophoresis. MECC is an important approach to 

1 



the separation of neutral species under the influence of an electric field (14) .. The 

techniques of isoelectric focusing (15), isotachophoresis (16) and gel electrophoresis 

(17, 19) have also been adapted to capillary tubes. 

Merits of Capillary Electrophoresis CCE) 

2 

Electrophoresis in capillaries offers numbers of advantages. The most important 

characteristic of capillary tubes is the effective heat dissipation. In electrophoresis, Joule 

heating, and consequently temperature gradient within the solution, is the major cause of 

zone broadening. With capillary tubes, the large ratio of inner surface area to volume 

greatly enhances the heat dissipation through the wall. Such heat removal can nearly 

eliminate convection so that as high as one million theoretical plates can be obtained (4). 

This also permits the use of very high electric field to speed the separations. The 

absence of a stationary phase eliminates the contribution of mass transfer resistances in 

· the stationary phase to band broadening. Thus, the only significant factor that causes 

band spreading in CE is longitudinal molecular diffusion in the bulk of the running 

buffer. 

Because very small sample volume is required, capillary electrophoresis is 

advantageous when the sample amount is extremely limited The ultra-small sample 

requirement also permits the analysis of samples from single cells (20). Moreover, 

capillary electrophoresis is simple in instrumentation, since well developed detectors for 

high performance liquid chromatography (HPLC) can be used after slight modifications. 

Also, CE is readily automated, and the recently introduced prototype instruments by 

several companies have many of the features of HPLC instruments. 

Compared with high performance liquid chromatography (HPLC), in which 

separation is due to the interaction of solutes with chromatographic surfaces, capillary 

electrophoresis exhibits different selectivities. Indeed, the elution orders in capillary 



electrophoresis and HPLC often differ from each other. Hence, capillary 

electrophoresis can be a complementary tool to HPLC. The coupling of these two 

methods m~y become one of the most powerful approaches for the separation of 

multicomponent mixtures (21). 

Instrumentation for Capillazy Elect:rQphoresis ' 

3 

Instrumental Set-Up. Figure 1 illustrates a typical instrument set-up for capillary 
'' 

electrophoresis. Essentially, a capillary electrophoresis instrument contains five basic 

elements: a high voltage source to apply a potential drop across the capillary, of ca. 20 

to 30 kV; an on-column detector; two reservoirs for electrolytes with their corresponding 

electrodes; a capillary ,which spans betW~n the reservoirs; a recorder, or an integrator or 

a computer. To prevent hydrodynamic flow, the two reservoirs are maintained at equal 

height. The capillaries are usually of fused-silica with inner diameters of 20 to 100 ~m 

and lengths in the range of' 10 tq 100 em. Optical windows for detection are made by 

burning out a short section of polyimide coating near one end of the capillary. In 

addition, the electrode at which high voltage is applied, is surrounded by a Plexiglass 

safety interlock box. When opening the box to gain access to the electrodes and 
' . 

reservoirs, the high volta~e power supply is automatically turned off and in the 

meantime, its output is shorted to the ground through the voltage relay. Fig. 1 illustrates 

a typical in~trument set-up for capillary electrophoresis. 

Sample Introduction. Sample is introquced at one end of the capillary by either 

hydrodynamic flow or electromigration. In both cases, when t4e sample is being 

introduced, the electrolyte reservoir at the injection end is,replaced by a sample 

reservoir. When hydi;odynamic flow is used, a small pressure gradient between the inlet 

and outlet of the capillary is applied for a very short period of time to introduce a thin 

plug of sample. This can be made by gravity, vacuum, or pressure. When the sample 



High voltage 
power supp,ly 

Preconcentration Detect 

capillary r---~~ ..-o~r-----
Separation 

capillary 

Electrolyte 
reservoir 

Figure 1. Instrument Set-up for Capillary Electrophoresis 
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is introduced by electromigration, the high voltage is applied for a few seconds to allow 

the electromigration of a small amount of sample into the capillary. Sample,volllflles are 

in the range of nanoliters. 

Detection. Detection can be made by either on-line or off-line. The most widely 

used detection modes in capillary electrophoresis at present are UV absorption and 

fluorescence. Other detection methods have been described for capillary 

electrophoresis. These are laser-based,detection (22), radioisotope detectors (23) and 

mass spectrometry (24). Derivatization (25, 26) and indirect detection method (27) are 

, applied for non-fluorescent compounds. Each method has its own advantages and 

limitations. One of the major challenges in capillary electrophoresis is the detector 

sensitivity. In fact, the detection volumes are as small as 30 pL or less, depending on 

the inner diameter of the capillary. Because of the ultra-small sample volume involved, 

detectors must be of very high sensitivity. For example, the conductivity and refraction 

index detection modes, which can be used in HPLC, are not sufficiently sensitive for 

capillary electrophoresis. 

Different Modes of Capillary Electrophoresis, 

The versatility and the wide scope of capillary electrophoresis stem from the, 

various modes of separation, each of which has.its Gwn selectivity and utility. 

Isotachophoresis. This mode is the electrophoretic analogue of displacement 

chromatography, whereby all sample components will migrate at the same velocity, a 

fact that gives the technique its name. In isotachophoresis, sample is introduced 

between a leading and terminating electrolyte. A steady-state condition is ultimately 

attained and each individual sample component is migrating as a "pure" band. Under 

this condition, each band is completely separated by sharp boundaries from the 
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preceding and the following zone. When sample cations are being determined, the 

leading electrolyte, which is on the side of the cathode, contains a cation of higher 

mobility than any of the sample cations,. while the terminating electrolyte, which is on 

the side of the anode, contains a cation 'of lower mobility than any of the sample cations. 

In this mode, either cations or anions can be determined but not both at once. 

Isoelectric Focusin~. This mode involves separation of amphoteric compounds 

according to their isoelectric poi~t. It has similarity to chromatofocusing. The key 

element to this method is the formation of a pH gradient in the separation channel, with 

low pH in the anodic reservoir and high pH at the cathodic reservoir. Sample 

components are thus focused in locations in the pH gradient that correspond to their 

isoelectric points and cease to move. Consequently, they are separated from each other. 

Isoelectric focusing in capillary tubes has been very useful for the separation of proteins 

according to their isoelectric points (28, 29). 

Zone Electrophoresis. The most widely used mode is capillary zone 

electrophoresis (CZE). It is the eleCtrophoretic analogue of elution chromatography. In 

this mode, sample is introduced as a narrow zone at one end of the capillary tube. 

Under the applied voltage, sample components migrate at different velocities and are 

eventually separated from each oiher as "pure zones". The separation is based on the 

differeQ.ce in electrophoretic mobilities. 

The most important application of CZE is in the area of proteins. Indeed, several 

reports have shown that peptides 'and proteins can be resolved by capillary zone 

electrophoresis (30-33). Howev~r, due to the solute-wall interactions, high molecular 

weight proteins can easily be adsorbed through multipoint attachment, which often leads 

to severe band broadening or no elution. This problem can be minimized by adjusting 

operational parameters such as the pH (30, 31, 34), salt concentration (35), and by the 
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capillary surface modification (10, 31, 36, 37). The capillary surface treatment, either 

by chemical reaction deactivation or by physical coating, is by far the most versatile. 

The high resolving power of CZE has been further exploited in the analysis of enzymatic 

digest of proteins with on-line MS. With this coupling, the analysis of protein digest 

can be routinely conducted (24, 38). 

Gel Electrophoresis. This mode is the electrophoretic analogue of size exclusion 

chromatography. Gel columns provide unique selectivity. The porous nature of the gel, 

such as polyacrylamide, causes a sieving effect in which small molecules migrate faster 

than larger molecules. For this reason, this mode of capillary electrophoresis is also 

called gel-sieving electrophoresis. 

Capillary gel electrophoresis with buffer containing sodium dodecyl sulfate 

(SDS) has been introduced for the separations of proteins and peptides (19). In the case 

of separation with SDS polyacrylamide gel electrophoresis (SDS-PAGE), proteins and 

peptides are denatured by SDS (39) and acquire approximately the same charge density, 

regardless of their identity. Because almost all the peptides bind with the negatively 

charged SDS in a constant weight ratio (1.4 g of SDS per gram of protein), the elution 

order is based solely on the molecular size or molecular weight Non-denaturing 

polyacrylamide gel electrophoresis (PAGE) can also be employed whereby both size and 

charge will contribute to, separation. It has been shown that PAGE is superior for the 

separation of large DNA fragments, RNAs, and synthetic oligonucleotides, since they 

have the same magnitude of charge/mass ratios. Besides the potential for sequencing, 

the gel columns provide a rapid means of purity assessment of synthesized 

oligonucleotides and micropreparative isolation of such species (18). PAGE can also be 

used with complexing agents to achieve unique selectivities. PAGE incorporated with 

inclusion compound, such as ~-cyclodextrin, has been applied in the separation of D,L­

dansylated amino acids (17). 
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Electrokinetic Chromatomphy. As mentioned earlier, separation in capillary 

electrophoresis can be modified by complexation. This approach led to the development 

of micellar electrokinetic capillary chromatography (MECC) (13, 40). The first 

separation with MECC was made with sodium dodecyl sulfate (SDS) micelles (13). 

The separations in MECC are based on the chromatographic partitioning between an 

aqueous phase and a micellar phase. 

Surfactants other than SDS can also be used. These surfactants can either be 

anionic or cationic. Anionic surfactants are sodium decyl sulfate (41), sodium tetradecyl 

sulfate (42, 43), sodium N-lauroyl-N-methyltaurate (44), and sodium dodecyl salt (13, 

42, 25, 45, 46). Cationic surfactants are dodecyltrimethylammonium salts (41), and 

cetyltrimethylammonium salts (41, 47). Changing anionic to cationic micellar system 

will change the sign of the zeta potential by the adsorption of the positively charged 

monomers to the solid surface, and reverse the electroosmotic flow (41). 

MECC is particularly important in the analysis of neutral species and chiral 

racemates. Since neutral compounds have no electrophoretic mobility, they co-elute at 

the velocity of electroosmotic flow and can not be separated by CZE. Examples for the 

separations of neutral compounds with MECC are the separations of phenolic 

compounds and other substituted benzenes (13, 48), phenylthiohydantoin amino acids 

( 45), metabolites of vitamin B6 ( 46) and purines ( 49). Examples of the chiral 

separations with MECC are the separation of D, L-dansyl amino acids with Cu(ll)-L­

histidine complex (43) and Cu(II)-aspartame complex STS (50), the separation ofD, L­

dansyl-threonine, methionine and leucine with mixed micelles of didecyl-L-Ala and SDS 

(25). Many otherchiral separations have been made with MECC (17, 51-55). MECC 

has also been applied to the separation of nucleotides, and oligonucleotides (49, 56). 

The selectivity of the separations can be manipulated by changing pH, or metal or 

surfactant concentrations. 
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MECC possesses several advantages over other separation techniques. When 

compared with HPLC, it has much higher separation efficiency, does not require the 

tedious procedures for the preparation of bonded stationary phases, and therefore is 

experimentally simple to use. While capillary zone electrophoresis is restricted to the 

separation of ionic compounds, MECC can be used effective! y to separate neutral 

species. Moreover, MECC can provide enhanced selectivity for the separations of ionic 

compounds. However, it is limited by its elution range, the solute solubility, and the 

critical micelle concentration of surfactants. 

Although it is also called MECC, polymer ions (57) and non-charged species 

such as crown-ethers, or charged species such as cyclodextrin derivatives (58) have also 

been employed as pseudostationary phases instead of micelles. In the case of polymer 

MECC, a polymer ion with an opposite charge to the analyte ions is added to the 

running buffer as the modifier. The analyte combines with polymer through ion-pair 

formation. The separation is based on the difference in the apparent velocities of the 

analytes, which is determined by the difference in the complex formation constants with 

the polymer ions. In the case of cyclodextrin MECC, cyclodextrin derivatives having 

ionizable groups served as pseudostationary phases. Solutes partition between the 

buffer phase and the interior of cyclodextrin derivatives. The separation is based on the 

inclusion-complex formation mechanism. 

Theory 

Since this study involved the investigation of some aspects of capillary zone 

electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC), the 

theory part in this chapter will only cover CZE and MECC. 

Basic Principles of Capillary Zone Electrophoresis 
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Electroosmosis. The most widely used capillaries are fused-silica tubes. Under 

normal aqueous conditions, the solid swface of fused-silica capillaries has an excess of 

negative charges, due to the ionization of the swface silanol groups. Electrolyte 

counterions form an electric double layer adjacent to the capillary walls. This electric 

double layer consists of a stagnant layer and a diffuse layer. As a result, a potential 

gradient arises at the solid-liquid interface. The potential across the layers is termed the 

zeta potential, ~. When an electric field is applied, the electrostatic force will drive the 

cations in the diffuse layer to the cathode. Because the ions are solvated, the 

surrounding solvent will migrate to the cathode, and a bulk flow is formed, which is 

termed electroosmotic flow. The rate of this flow, Ueo. is determined primarily by the 

zeta potential. The relationship between: ~ and u00 can be expressed by the following 

equations (59): 

and 

eE~. 
Ueo = ~eoE = -­

. 47tfl 

(1) 

(2) 

where ~ is the coefficient for electroosmotic flow, £ is the dielectric constant of the 

running buffer, f1 is the viscosity of the solution, and E is the electric field strength, 

which is given by 

v 
E=L (3) 

where V is the potential drop across the capillary, Lis the total length of the capillary. 

Because the flow originates in the diffuse region of the electric double layer 

(which has a thickness of around 3 to 300 nm for electrolyte concentrations of 10 mM to 

1 ~M respectively), in practice, it is considered that the flow originates at the wall of the 

capillary. When the capillary radius is greater than seven times the double-layer 
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thickness, a flat profile is expected inside the capillary. Figure 2a illustrates the electric 

double layer and the flow profile of electroosmotic flow. According to Eqn 2, the 

electroosmotic flow can be manipulated by changing some operational parameters such 

as the electric field, the viscosity and/or the dielectric constant of the running electrolyte. 

Since the zeta potential is dependent on the nature and the ionic content at the capillary 

surface, the velocity of the electroosmotic flow will also change if there is a change in 

these parameters. For example, increasing the ionic strength of the running electrolyte 

will decrease the flow. It has been shown that the rate of electroosmotic flow is 

different in capillaries of different materials (e.g. glass, silica and Teflon). 

Electroosmosis is advantageous for the separation of oppositely charged species 

in CZE. It allows their transport passing the detection point. Also, electroosmosis is 

the driving force for the differential migration of solutes in MECC. In CZE and MECC, 

the electroosmotic flow should not affect separation efficiencies (10). In fact, the plug­

flow profile of this built-in "pump" causes less band spreading than hydrodynamic 

flow. While electroosmotic flow is suitable for separation in CZE and MECC, it must 

be eliminated or reduced in istachophoresis or isoelectric focusing in capillaries. 

Electrophoretic Mobility. When an electric field is applied to a capillary filled 

with an electrolyte, all charged species will move toward the electrode of opposite 

charge by electrostatic attraction forces. Without considering the electroosmotic flow, 

the migration velocity of charged species is proportional to the strength of the electric 

field. The proportionality constant is termed electrophoretic mobility, denoted~. The 

magnitude of J.le depends on the charge density (i.e. the overall valence) and the size of 

the solute, as well as the dielectric constant and the viscosity of the running buffer. 

Temperature also has some effect on the electrophoretic mobility. The relationship is 

given by 
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J.le=--
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(4) 

where A is a constant whose value depends on the relative size of the solute and the 

electrical double layer surrounding the particle, which is termed the zeta potential, ~0, of 

the solute. ~0 is directly related to the charge density, p, of the solute through 

Poisson's equation (61). 

S~aration Principle. In the presence of electroosmotic flow, the total mobility 
' 0 

of the solute, Jl, and the qri.gration velocity, u, are given by 

Jl = J.le + Jleo (5) 

and 

'U = 'Ue + 'Ueo = (J.le + J.leo)E (6) 

where 'Ue and u00 are the electrophoretic velocity and electroosmotic flow, respectively. 

The retention time, tr, i.e. the time for a solute to migrate from the injection end of the 

capillary to the detection point, is given by 

I lL tr=-=-----
'U (J.le + J.leo) V 

(7) 

where I is the length of the capillary between the injection end and the detection point It 

should be noted that I and L are usually not of the same value (I < L). From this 

equation, the total mobility of solute can be determined experimentally: 

lL 
Jl = J.le + Jleo =trY 

Since the electroosmotic flow can be determined by an electrically neutral species, 

lL 
J.leo =toY 

(8) 

(9) 
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where to is the retention time of a neutral species, the magnitude of electrophoretic 

mobility of a charged species can be obtained from Eqn 10: 

14 

(10) 

In most cases, the electroosmotic flow is greater than the migration velocity of 

charged species under electrostatic force, that is IJ..1e0 l > IJ.tel. Thus, all ions, regardless 

of their charges will migrate in the same direction toward the cathode. The separation in 

free solution electrophoresis is based on difference in electrophoretic mobility of the 

species. The electrophoretic mobility of positively charged species is in the same 

direction as the electroosmotic flow, but that of the negatively charged species is in the 

opposite direction. The electrophoretic mobility of non-ionic species is zero. So, under 

these conditions, positively charged species elute first, followed by neutral species and 

then the negatively charged species. Fig. 2b shows the separation of charged and 

uncharged species by CZE in open tubes. 

Separation Efficiency. There are several factors that cause band broadening in 

capillary electrophoresis. If, the conditions are optimized, that is, in the absence of 

solute-wall interaction and Jou1e heating, the major cause of band spreading will be 

longitudinal molecu1ar diffusion. Under these conditions, the separation efficiency in 

terms of the total number of theoretical plates, N, is expressed as the standard molecular 

diffusion term (62): 

N _ (J.te + 'J.leo)V _ (Ue + Ueo)L 
- 2D - 2D (11) 

Since 

therefore, 



2D H=---
Ue + Ueo 

where D is the diffusion coefficient of the solute and H is the height equivalent to a 
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(11a) 

theoretical plate. It is interesting to note that according to this equation, keeping all the 

other parameters unchanged, the higher the field the better the separation efficiency will 

be. However, there are practical limits to this approach. At some point, Jou1e heating 

generated from the applied field will ultimately form a temperature gradient inside the 

capillary. This temperature gradient will resu1t in a viscosity gradient across the tube 

diameter, which lead to perturbation in the overall velocity profile. This perturbation 

will resu1t in mass transfer resistance causing band spreading. 

Similar to chromatography, in capillary electrophoresis, N can also be calculated 

from the half width of the peak using the equation: 

- tr N - 5.54(rrr-:-:-) 
vv 1/2 

(12) 

where W 112 is the width of the peak at half height. 

Resolution and Selectivity. The selectivity, a, and the resolution, R8, of two 

adjacent zones in electrophoresis can be given by the following equations ( 4, 63): 

du dJ.le rv----u.- - (13) 
'\) J.1e 

(14) 

where du is the difference in zone velocities, u is the average zone velocity, dJ.le is the 

difference in electrophoretic mobilities of the two adjacent solutes, J.1e is the average 

electrophoretic mobility. According to this equation, high resolution can be obtained 

with high fields and low diffusion coefficient of the solute. Moreover, the best 
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resolution is obtained when the magnitude of !leo is close to that of -J..Le, however, the 

analysis time will be greatly increased 

Separation in MECC 

Pseudostationar.y Phase. When a surfactant is added to the running buffer above 

its critical micelle concentration, it will form micelles with hydrophobic center and 

highly charged outer surface. Upon application of electric field, these micelles will gain 

a large electrophoretic mobility toward the electrode of opposite charge. However, 

under normal condition in capillary electrophoresis, there is a strong electroosmotic flow 

in the opposite direction to the electrophoretic flow of the micelles and is of greater 

magnitude. As a result, two distinct phases, aqueous (mobile) and micellar 

(pseudostationary), exist within the capillary and migrate at different velocities toward 

the electrode with the same charge as the micelles. Unlike conventional 

chromatography, where the stationary phase is immobilized on the support, the 

"stationary" phase in MECC is moving in the same direction with the mobile phase but 

at a much lower velocity. The net mobility of the micellar pseudostationary phase, J..Lmc, 

can be determined according to Eqn 4: 

llmc = !leo + llmc,e 

where J..lmc,e is the electrophoretic mobility of micelles. The time required for the 

electrophoretically retarded micelles to reach the detection point, tmc, is given by 

lL 
tmc = ---'----

(!leo + llmc,e) V 

(15) 

(16) 

The value of tmc is measured experimentally with a solute such as Sudan lli or any 

uncharged and hydrophobic solute that is fully solubilized by the micelles (13, 42). 

Note that !leo and J..lmc,e are of opposite sign and the absolute magnitude of !leo is greater 
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than that of Jlmc,e (i.e. IJ.Leol > IJ.Lmc,el). Thus, reduction in IJ.Leol or increase in IJ.Lmc,el can 

result in. a dramatic increase in tmc as IJ.Leol and IJ.Lmc,el approach the same value. 

Retention Parameters. In MECC, the selective retention arises from the 

differential partitioning of solutes between the·faster-moving aqueous phase and the 

slower-moving hydrophobic interior of the micellar P,hase. This partitioning requires 

solubilization by the micelles through surface interactions or through penetration of the 

solute into the micelle core. Thus, electrically neutral species are separated based on 

their relative hydrophobicities. The more hydrophobic the solute, the longer time it will 

spend in the micellar phase and consequently it will be more retarded. ·A schematic 

representatien of a system for MECC is shown in Fig. 3a. Terabe et al. (13) have 

derived equations for the retention time, tr; and retention factor, k', of non-ionic solutes 

inMECC: 

and 

(1 + k')t0 

tr = 1 + (to/tmc)k' 

k' _ tr- to 
- to(1 - trftmc) 

(17) 

(18) 

where to is the retention time of an unretained marker, such as that of water or methanol 

which has no interaction with the micelles. The value of to is determined only by the 

magnitude of the electroosmotic flow velocity. Since the retention factor k' is. 
, 

' 
proportional to the volume ratio of the micellar phase to the aqueous phase, the k' values 

can be easily adjusted by changing the nature and/or the concentration of the surfactant, 

and therefore the volume of the micellar phase. 

Selectivity. As in chromatography, the relative retention or selectivity, a.,is , 

given by: 

(19) 



18 

¢ flmc,e ~ -0\ 
-0 ~-0 

-0 

1 -0~ ® c::> Jleo 
0-

® r 0-
( ~0--0 

® Solute Molecule 

(a) 

-14-------Retention Window----~ 
Solute 

Micelle 

Inert Tracer 

-----~~--~~--------------------~· t __ __ 
f 

I I I 

Injection 

(b) 

Figure 3. Schematic Representation of MECC System (a), and Retention Window in 
MECC(b) 



19 

where k1' and kz' are the retention factors of solute 1 and 2, respectively. One of the 

major advantages of MECC is its versatility in the manipulation of selectivity. The 

selectivity in MECC can be altered by changing a number of parameters such as the 

composition of both the aqueous and the pseudostationary phases. For example, the 

composition of the aqueous phase can be adjusted by adding organic modifiers. 

Micellar composition can be modified by using different surfactants in order to produce 

micelles of different sizes, aggregation numbers, and geometries. Also, the nature of 

micelles can be altered by the addition of divalent metal ions to the running buffer to 

produce metal-micelle complexes. All these adjustments will in turn affect the selectivity 

ofMECC. 

Resolution and Peak Capacity. Resolution, Rs, in MECC is given by the 

following equation: 

efficiency selectivity retention 

(20) 

Peak capacity is defmed as the maximum number of peaks that can be separated 

with an Rs = 1.0 within a specified range of retention time. According to Giddings 

(64), for cases in which peaks are separated with 4cr resolution, where cr is the standard 

deviation of the peak, under a constant plate number N, peak capacity, n, is given by 

n = 1 + -{N In tlast 
4 trust 

(21) 

where tfirst and ttast are the retention time of the first and the last eluting peaks, 

respectively. In MECC, neutral solutes that interact with the micelles will elute within 

the "retention window". This "retention window" is defined as the time window 
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between the retention time of an unretained marker, to, and the retention time of the 

micelles, tmc. as shown in Fig. 3b. Therefore, peak capacity in MECC is expressed as 

(22) 

The above equation shows that the peak capacity in MECC is limited by the ratio, tmdto, 

which is determined by the specific MECC system. The limited "retention window" is 

the major obstacle in the application of MECC to complex sample.analysis. 

Sample Introduction 

In capillary electrophoresis, sample can be injected either by hydrodynamic flow 

or by electromigration. From Eqn 6, the sample volume injected by electromigration, 

ve, can be determined by: 

(23) 

where ti is the injection time, r is the inner radius of the capillary. The amount of solute 

injected by electromigration, Qe, is: 

where C is the concentration of the sample. 

For hydrodynamic flow, the average hydrodynamic velocity, Ub, can be 

calculated by Poiseuille equation: 

(24) 



21 

where pis the solution density, g is the gravitational force constant, Ah is the difference 

in height between the two ends of the capillary. The volume and the amount of sample 

introduced by hydrodynamic flow, Vh and Qh, can be determined by 

(25) 

and 

(26) 

In both cases, the volume and the amount of sample introduced, v and Q, can be 

determined by experimental measurement and calculated as follows: 

(27) 

and 

(28) 

It should be noted that in the case of hydrodynamic sample introduction, tr is the 

time it takes for the sample zone to migrate from the injection end to the detection point 

under the gravity force. There are two conditions which must be met for this equation to 

be valid. First, the analytes must be dissolved in the running buffer. Second, the 

injection voltage must be equal to that of the voltage applied during the separation 

process. 

Hydrodynamic injection mode is not dependent on electrophoretic mobility and 

the amount of sample introduced into the capillary is a slug with a composition similar to 

that of the sample. Conversely, in electromigration, the amount of each component of 

the sample is dependent on the their relative electrophoretic mobilities as well as the ionic 

strength of the sample buffer. 



Rationale of the Research 

Capillary electrophoresis uses high voltage to carry out separations. The 

technique has many advantages such as high efficiency, high resolution, small sample 
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requirement, rapid separation, and simple :ip.strumentation. As a microseparation and 

micropreparative technique, capill~ electrophoresis is a complementary tool to HPLC. 

Capillary electrophoresis has been_ used for the separations of small molecules, as well 

as large molecules, -such as ~iopolyme:rs. With the introduction of complexation and 

electrokinetic chromatography, neutral compounds can be separated readily by capillary 

electrophoresis. Chiral separation is also an important application of capillary 

electrophoresis. 

Although capillary electrophoresis has been shown as a powerful separation 

technique, many aspects of the capillary ~lectrophoresis system require further 

development. As discussed above, the limited retention window is an obstacle in the 

application of micellar electrokinetic chromatography to the analysis of multicompQnent 

samples. Another problem with capillary electrophoresis is its inadequacy for dilute 

samples. Since very small sample volume (ca. 1-5 nL) should be used to avoid band 

broadening, the minimum detectable sample concentration is limited. 

In order to provide ways by which the retention window of MECC can be 

modified, and to facilitate the separation and elution in this mode of capillary 

electrophoresis, we introduced a new MECC system with ·micelles of controlled surface 

charge density and degree of ionization. The retention w:jndow of the MECC system 

was readily manipulated by changing operational parameters such as pH, concentration 
' 

of the surfactant, and concentration of the surface charge density modifier of the 

micelles. 

We also attempted to improve the concentration detectability Qf CZE. In this 

study, capillaries coated with metal chelating ligands or octadecyl functions were 
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developed for on-line preconcentration of dilute samples. This approach allowed the use 

of large sample volumes without sacrificing the separation efficiency. 

To further advance the field of capillary electrophoresis and enlarge the scope of 

its applications, we have developed novel methodologies that are useful for the rapid 

determination of dissociation constants of weak bases, acids and ampholytes. 



CHAPTER II 

EVALUATION OF CZE WITH-CHARGED 

POLLUTANTS. SEPARATION AND 

IONIZATION BEHAVIOR 

Introduction 

Capillary zone electrophoresis (CZE) is a powerful technique for the analysis of 

charged species. The electroosmotic flow as a built-in pump allows the transport of 

positively and negatively charged species passing the detection point. The difference in 

electrophoretic mobility permits the separation. The use of free zone electrophoresis in 

open-tubular format in conjunction with novel electrolyte systems permits high 

separation efficiencies, low mass detection limit and rapid separations. 

Currently, the separation and determination of non-volatile pollutants is mainly 

carried out by HPLC, whereas gas chromatography (GC) is the chief technique for the 

determination of volatile compounds. For CZE to become widely accepted and 

complement HPLC and GC, its scope of applications needs to be enlarged. 

Capillary zone electrophoresis holds a lot of promise in this area, not only for the 

separation but also for the characterizatioFl of charged solutes, i.e., the determination of 

their ionization behavior. This chapter will discuss the capability of CZE in the 

separation and the determination of ionization behavior of some species of 

environmental interest. The methodologies developed in this study can be applied for a 

wide range of organics. 

24 



25 

Experimental 

Instruments 

The instrument used in this study for electrophoresis was the same as that 

described in the first chapter. It consists of a 30-kV de power supply (Glassman High 

Voltage, Whitehouse Station, NJ, U.S.A.) Model HP30P3 of positive polarity and a 

Linear (Reno, NV, U.S.A.) Model200 UV-Vis variable wavelength detector equipped 

with a cell for on-column detection. Platinum wires were used as the electrodes in this 

study. The electropherograms were recorded with a computing integrator from 

Shimadzu (Columbia, MD, U.S.A.). Fused-silica capillaries having an inner diameter 

of 50 ~m and outer diameter of 375 ~m were obtained from Polymicro Technology 

(Phoenix, AZ, U.S.A.). The untreated fused-silica capillary used in this study has 80 

em total length with a separation distance of 50 em (i.e., from the injection end to the 

detection poui.t). The instrument for the UV spectrometry measurement was a UV­

Visible Recording Spectrophotometer, Model UV-160 from Shimadzu. 

Rea~ents and Matenals 

Aniline was from Fisher Scientific Company (Fair Lawn, NJ). Anisidine, 2-

aminopyridine and p-aminobenzoic acid were purchased from Aldrich (Milwaukee, WI). 

The herbicides, i.e., paraquat and diquat, were purchased from Chern SeiVice (West 

Chester, PA, U.S.A.). Their structures are as follows: 

(}{) 2Br· 

\._/ 

Paraquat Diquat 
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Phenol was from J. T. Baker Inc. (Phillipsburg, Nn. Sodium phosphate, phosphoric 

acid, sodium borate, boric acid, sodium acetate, and sodium hydroxide were from 

Fisher Scientific (Pittsburgh, PA, U.S.A.). Deionized water was used to prepare the 

running electrolyte. All solutions were filtered with 0.2 Jlm Uniprep Syringeless filters 

from Genex Corp., (Gaithersburg, MD, U.S.A.) to avoid capillary plugging. 

Procedures 

UV Spectrophotometry. Sample solutions were made by dissolving a small 

amount of paraquat and diquat in distilled water. Absorption spectra of the herbicides 

were obtained by scanning from 200 to 350 nm. 

Figure 4 shows the UV spectra of the two herbicides. The maximum 

wavelengths, A-max. the molar absorptivities, £, and the correlation coefficient of the 

plots of absorbance versus concentration, for paraquat and diquat are listed in table 1. 

Sample 

Paraquat 

Diquat 

TABLEl 

MAXIMUM WAVELENGTH AND MOLAR ABSORPTIVITY 

A-max (nm) 

258 

308 

£ (cm-lM-1) 

1.72 X 104 

1.62x 104 

Correlation 

Coefficient 

0.9996 

0.9979 

Capillary Electrophoresis. The running electrolyte was prepared by dissolving 
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proper amount of sodium salt in deionized water and adjusting the pH to the desired 

value. Sample solutions were prepared by dissolving pure compounds in the running 

electrolyte. All injections were made by electromigration for 2-5 seconds, at an 
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applied voltage that was .the same as that for separation. The running voltage used for 

all the measurements was 15 kV. Electroosmotic flow was determined by measuring the 

migration time of phenol, which was considered as neutral under the experimental 

conditions. 

Results and Discussion 

Determination of Strongly Basic Pollutants 

In this study, paraquat and diquat were chosen as examples of fully ionized 

pollutants. Paraquat and diquat are effective aquatic herbicides and are used at low 

concentrations (1-5 J:Lg/mL). Residues cause problems in soil and subsequent rotational 

· crops may be affected . They can also contaminate the water-table which may pose 

serious health problems. The analysis of these herbicides at such low concentrations 

with conventional bioassy was time consuming and laborious (65). The precision 

instrumentation of CZE makes the determinations of these species easier and faster. 

Figure 5 is a typical electropherogram of the separation of the two herbicides. 

As shown in Fig. 5, the separation was achieved in 10 minutes with high separation 

efficiency. The two herbicides are quaternary ammonium ions having tlie same net 

charges (i.e., +2) and slightly different molecular weights (184 for diquat, 186 for 

paraquat). The separation is based on the difference in the shape of the two species. 

The electrophoretic and the overall mobilities of the two herbicides as well as the 

electroosmotic flow are shown in Fig. 6. They were calculated according to Eqns 10, 

8 and 9, respectively. The measurements of electroosmotic flow and the overall 

mobility are necessary for the determination of electrophoretic mobility (see Eqn 10). 
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Paraquat 

o.ooos 

Diquat 

2-Aminopyridine ( I.S.) 

Min 

Separation capillary: untreated fused-silica, 50 em (to the detection point), 80 em 

(total length) x 50 J..Lm I. D.; Running electrolyte: 0.10 M sodium phosphate, pH 3.5; 
Sample injection: electromigration, 5 seconds; Running voltage: 15 kV; Internal 
standard: 2-aminopyridine; Detection: 254 nm. 

Figure 5 Typical Electropherogram lllustrating the Rapid Separation of Herbicides by 
CZE 



-tn 

:> 

E 
u -
0 ,.... 

·-.a 
0 

::E 

6 

4 

2 

a~~--~--~_.--~~~----~~~~----~ 

4 5 6 

1, Electroosmotic flow; 

7 

pH 

8 9 10 

2 and 3, Electrophoretic mobilities of diquat and paraquat, respectively; 
4 and 5, Overall mobilities of diquat and paraquat, respectively 
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Separation capillary: same as in Figure 5; Sample injection: electromigration, 
2 seconds; Running voltage: 15 kV; Detection: 254 nm; 
Running electrolytes: pH 4.0-5.5, 5 mM acetate + 0.2 M sodium chloride; 

pH 6.0-8.0, 5 mM phosphate + 0.2 M sodium~chloride; 
pH 8.5-9.5, 5 mM borate+ 0.2 M sodium chloride; 

The experimental data points are the average of two measurements. 

Figure 6 Mobilities- of Herbicides 
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Since the two herbicides have constant charge density over the pH range studied, their 

electrophoretic mobilities remained unchanged regardless of the change in pH. 

High efficiency was obtained in ~e separation of paraquat and diquat. Figure 7 

illustrates the separation efficiency of paraquat and diquat as a function of 

electroosmotic flow (i.e., at various pH). The theoretical plate number, N, was 

calculated according to Eqn 1,2. As shown in Fig. 7, $e average theoretical plate 

number was above 100,000 (or 200,000) plates/meter. The fact that N increases with 

the magnitude of electroosmotic flow may be due to diminishing longitudinal molecular 
' ' 

diffusion. 

The detection limits of CZE in terms of concentration and absolute amount were 
" 

also determined and the results are listed in Table 2. 

TABLE2 

LIMITS OF DETECTION* 

· Lirlrits ·bf Detection 
Correlation 

Sample Concentration Injected Quantity Coefficient 

Paraquat 

Diquat 

(J.1g/mL) ~M) ' 

0.40 

0.50 

1.55 

1.45 

' ' 

(pg) (femtomole) 

3.97 

5.78 

15.4 

16$ 

0.996 

0.996 

* Detection: 308 ~.for diquat., 254 nm for pf1Iaquat; other experimental conditions are 

as in Fig. 5. The data are the average of two measurements. 
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Experimental conditions are as in Figure 6. The experimental data points are the 
average of two measurements. 

Figure 7 Separation Efficiency of Herbicides 



In order to obtain these detection limits, calibration curves for paraquat and 

diquat were made by injecting several dilutions of stock solutions. In these 
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measurements, 2-aminopyridine was used as an internal standard to minimize errors in 

sample injection. For both paraquat and diquat, the linearity was quite satisfactory in the 

concentration range studied. The data show that CZE is suitable for quantitative analysis 

of femtomole quantities. 

Determination of Weakly Ionized Pollutants. 

Electrophoretic Determination 

of Dissociation Constants 

Principles. Electrophoretic mobility of many charged species can be 

adjusted by changing parameters such as pH of the running electrolyte to alter their 

charge densities. This renders CZE adequate for the determination of dissociation 

constants of weak acids and bases. For the protonation of a base, B, 

the equilibrium constant, Kb, can be expressed as 

K [BH+][QH-] 
b= [B] 

Since the ion-product constant of water, Kw, is given by 

the acid dissociation constant, Ka, is then 

K _ [B][H+] 
a- [BH+] 
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where B and BH+ denote the deprotonated and protonated species, respectively. 

If Jlob is the electrophoretic mobility of the fully protonated species, BH+, the 

net electrophoretic mobility, J.le, of the charged species is the product of its mole fraction 

and J.lob (66, 67): 

lle = [BH+] + [B] !lob (29) 

Rearranging the above equations lead to the following fundamental relationship: 

(30) 

or 

pH = pKa - log J.1e (31) 
!lob - lle 

A plot of pH versus log J.1e will result in a straight line with a slope equal to -1 
!lob - J.le 

and an intercept equal to pKa. 

In an analogous way, for the dissociation of an acid, AH, 

AH--- A"+W 
' 

the following equations can be obtained: 

(32a) 

(32b) 

pH = pKa + log J.1e (32c) 
!loa - J.le 

where AH and A- denote the protonated and fully deprotonated species, respectively, 

and J.loa is the electrophoretic mobility of A-. Similar to that of a base, plot of pH versus 
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log lle will result in a straight line with a slope equal to 1, and an intercept equal 
Jloa - Jle 

to pKa. 

For the dissociation of an ampholyte species, BAH, 

BAH~BA-+H+, 

BAH+ H20~BAH2+ + OH-, 

[BA-][H+] 
Ka= [BAH] 

K , [BAHz+][QH-] 
b = [BAH] 

where the base dissociation constant, Kb', can be expressed as acid dissociation 

constant, Ka', through the ion-product constant of water, Kw: 

If Jlob is the electrophoretic mobility of the fully protonated form, BAHz+, and 

J.loa is that of the deprotonated form, BA-, the net electrophoretic mobility of the charged 

species, J.le, is the sum of the products of J.lob, J.loa and the mole fractions of their 

respective species: 

[BAHz+]J!ob [BA-]J.loa 
Jle = [BAHz+] +[BAH]+ [BA-] + [BAH2+] +[BAH]+ [BA-] (33) 

Since the fully protonated and deprotonated species have the same magnitude of charge 

densities except that they are of opposite sign, i.e.: 

Jlob = -J.Loa = Jlo 

Combining the above equations yields the following expression: 

Jle = Ka'[H+] + [H+]2 + KaKa' J.lo 
(34) 

or 



(Jle + Jlo)KaKa' + Jle[H+]Ka' + (Jle -Jlo)[H+]2 = 0 

Solving Eqn 35 yields: 

Ka= 

and 

Ka'= 

Jlel[H+]I (Jlel-Jlo)[H+h2 , 

Jle2[H+h (Jle2-Jlo)[H+h2 

(Jlel-Jlo)[H+h 2 Jlel+Jlo 

(Jle2-Jlo)[Hth2 Jle2+J.1o 

(Jlel-Jlo)[H+h 2 Jlel+Jlo 

(JlerJlo)[H+h2 Jle2+Jlo 

Jlel +Jlo J+el[H+h 

Jle2+J.1o Jle2[H+h 

From Eqns 36a and 36b, we can determine Ka and Ka', provided that values of 

electrophoretic mobility of the ampholyte at two or more different pH values are 

available. 

36 

(35) 

(36a) 

(36b) 

Awlicability to Pollutants. To demonstrate the capability of CZE in the 

determination of dissociation constants of pollutants, aniline, p-anisidine and p­

aminobenzoic acid were chosen as model solutes, since they represent a class of priority 

pollutants; the aromatic amines (68). 

Aniline and anisidine were examples of weak bases. Figure 8a shows the plots 

of electrophoretic mobilities of aniline and p-anisidine versus pH. They were 

determined as indicated above using Eqn 10. The sigmoidal curves obtained are similar 

to that of the titration curves and can be used for the measurement of ionization constants 

of these two weak bases. However, according to Eqn 31, a more direct determination 
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of the dissociation constants can be made by the plots of pH versus log J..l 
J..lob- J..l 

Figure 8b is the illustration of such plots. In these plots, only the points in the pH 

domain where small changes in the electrolyte pH cause large changes in the 

electrophoretic mobilities are used. J..lob for each sample was approximated as the value 

of the net mobility at low pH (i.e., pH 2) where the species are considered as fully 

protonated, and the electroosmotic flow is negligible. The pKa values can be determined 

from the y-intercept of these straight lines. The results together with the reported values 

for pKa are listed in Table 3. 

TABLE3 

DETERMINATION OF DISSOCIATION CONSTANT OF WEAK BASES 

pKa 
Sample Slope Correlation 

Measured Value Reported Value* Coefficient 

Aniline 4.45 (-0.2) 4.60 ± 0.005' (0) -0.98 0.996 
4.46 (-0.2) 4.82 (0.1) 

4.71 (0.5) 
4.65 ± 0.03 (1.0) 

p-Anisidine 4.98 (-0.2) 5.01 (0.3) -1.09 0.994 
5.10 (-0.2) 5.36 (0) 

*Taken from reference 69. The numbers in parentheses indicate the ionic strength. The 

temperature of the reported values was 25 °C. 
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4.0 

3.0 

1: aniline I p-anisidine. 

2.0 

1.0 

0.0 
1 2 3 4 5 6 7 8 

pH 

(a) 

6 

5 I: aniline 
. p-anisidine 

4 

3~----------~----~----~----------~ 
-1.5 0.0 1.5 

log J.L e 
J.L - J.L o e 

(b) 

Sample: aniline and anisidine; Inert tracer: phenol; Other experimental conditions 
are as in Figure 6. The experimental data points are the average of two measurements. 

Figure 8a, b Determination ofpKa of Weak Bases 
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Solutes: aniline and anisidine; Other experimental conditions are as in Figure 6. 
The experimental data points are the average of two measurements. 

Figure 8c Selectivity of Aniline and p-Anisidine as a Function of pH 



These data shows that the dissociation constant can be determined from 

electrophoretic mobility measurements. The measured values were close to those 

obtained by potentiometric measurements. In a similar way, we project that pKa of 

weak acids can also be determined by CZE. 

The selectivity a, for aniline and anisidine at different pH is illustrated in Fig. 

8c. They are calculated using Eqn 13. As expected, the maximum selectivity was 

obtained near the average value of pKa's of the two weak bases. 
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P-aminobenzoic acid was an example of ampholytes. Fig. 9 is the plot of 

electrophoretic mobility of p-aminobenzoic acid as a function of pH. From the curve, 

one of the pKa value can be measured directly. Although the first ionization constant is 

difficult to determine in this curve, it was calculated using Eqns 36a and 36b. In this 

calculation, the values of the electrophoretic mobilities at six different pH values (i.e., 

pH 2.0, 3.0, 4.0, 4.5, 5.0 and 5.5) were used to obtain an average value. Table 4 

presents the calculated and reported values for p-aminobenzoic acid The difference 

between the calculated and the reported values may due to the difference in temperature 

and in ionic strength of the media. 

Conclusions 

The above studies have proved that CZE is suitable for th~ determination of 

charged pollutants. High theoretical plate number can be obtained, which allowed the 

separation of closely related herbicides. In addition, the precision instrumentaton of 

CZE permitted the determination of the ionization behavior of weak bases and acids. 

This study developed a general methodology for the determination of dissociation 

constant by CZE. 
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Figure 9 Determination ofpKa ofp-Aminobenzoic Acid 
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TABLE4 

DETERMINATION OF DISSOCIATION CONSTANT OF P-AMINOBENZOIC ACID 

pKa pKa' 

Calculated Reported* Calculated Reported* 

4.47 ± 0.28 (-D.2) 4.87 ± 0.02 (0) 2.82 _± 0.69 (-0.2) 2.41 ± 0.04 (0) 

* Taken from reference 69. The numbers in parentheses indicate the ionic strength. The 

temperature of the reported values was 25 °C. 

CZE has several advantages as a tool in the determination of ionization behavior 

over titrimetric method. CZE requires small amount of samples and permits the 

determination of several species simultaneously. In fact, samples do not need to be 

pure, since CZE can separate the impurities from the solutes of interest. 

However, since the separation in CZE is based on the differences in the 

electrophoretic mobilities,,CZE is inadequate for the analysis of neutral species, which 

have zero electrophoretic mobility and migrate with the bulk flow. The separations of 

neutral species can be achieved with the use of micellar electrokinetic capillary 

chromatography. The following chapter will cover this part of the work. 



CHAPTER ill 

MICELLAR ELECfROKINETIC CAPILLARY CHROMATOGRAPHY 

OF NEUTRAL SOLUTES WITH MICELLES OF ADWSTABLE 

SURFACE CHARGE DENSITY. APPLICATIONS TO 

THE SEPARATION OF HERBICIDES 

Introduction 

Micellar electrokinetic capillary chromatography (MECC) is increasingly used 

for the separation of neutral species (13, 49, 45, 46, 48). To date most applications of 

MECC have used sodium dodecyl sulfate (SDS) in a neutral pH buffer as the micellar 

phase. However, MECC with SDS suffers from limited elution range which limits peak 

capacity and resolution. In addition, hydrophobic compounds all partition completely 

into the micelles and are not resolved. Several attempts have been made to extend the 

elution range of the technique (70, 71). In one approach, surfactants having shorter 

alkyl chains (e.g., sodium decyl sulfate) have been introduced. The smaller micelles 

thus obtained exhibited higher electrophoretic mobility. Since this modification did not 

affect the electroosmotic flow appreciably, the net result was a decrease in the total 

mobility of the micelles. However, the relatively high critical micelle concentration 

(CMC) of short chain-length surfactants dictated the use of high concentration (i.e., high 

ionic strength), which posed problem,s of high current and therefore system overheating. 

Another approach was to decrease the electroosmotic flow. This was achieved by 

coating the capillary inner surfaces (72, 73), or adding organic modifiers (74). Under 

these conditions, both tmc and to increased Such methods lead to long analysis time, 
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and as a result, species which are strongly retained by the micelles may not pass the 

detection point. 
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In this work, we have introduced a novel micellar system that allows the 

adjustment of the elution range to the desired value in order to suit a wide range of 

applications. Also, the new micellar system investigated here has a decreased shade of 

hydrophobicity. 

This new approach exploited the complexation between octylglucoside 

(surfactant) and borate (complexing agent). This method provided several advantages 

over traditionally used micelles. First, octylglucoside has a relatively short non-polar 

chain and a large polar head moiety. This balance in hydrophobicity-hydrophilicity is 

advantageous for the separations of highly nonpolar species. Due to their relatively high 

hydrophobicity, previously described micelles have been inadequate for the separation 

of strongly non-polar compounds, which associated avidly with the slow-moving 

micelles and could not be separated. Furthermore, in the octylglucoside-borate micelles, 

the surface charge can be varied conveniently by changing the borate concentration in the 

running electrolyte and/or by varying the pH of the aqueous phase. These readily tuned 

features provided a means to manipulate the separation efficiencies, peak capacity and 

selectivity. 

Theory 

The manipulation of the surface charge density of the micelles under 

investigation is based on varying the extent of complexation between octylglucoside and 

borate. Figure 10 is a schematic illustration of the novel MECC system developed and 

evaluated in this work. It shows the mechanism of retention of neutral solutes and the 

control of the surface charge of the micelles through complexation with borate. 
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Octylglucoside which is a non-ionic surfactant, can acquire a negativ~ charge 

upon complexing with borate. The process of octylglucoside-borate complexation has 

an equilibrium constant, Keq, given by 

K ___ [Cs-Glc][Borate][OH-] 
~""tAl- [Cs-Glc-Borate] (37) 

where [Cg-Glc], [Borate], [OH-], and [C8-Glc-Borate] stand for the concentrations of 

octylglucoside, borate, hydroxide ions and octylglucoside-borate complex, respectively. 

The reaction is as follows: 

OH 

+ HO-B< 
HO OH 

Octylglucoside 

H+ 1l OH" 

0 

Gl 
HO_B-0 + 2 H20 

\ HO OH 

Octylglucoside-borate complex 

As a result of the complexation, the overall charge density of the micelles, Pmc, 

can be expressed as 

Pmc = [Cs-Glc] + [Cs-Glc-Borate] · Pcomplex (38) 
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where Pcomplex is the charge density of the octylglucoside-borate complex. The change 

in the overall charge density will alter the electrophoretic mobility of the micelles Jlmc,e 

(see Eqn 4). According to Eqn 16, without changing the electroosmotic flow, this 

process will lead to a change in tmc· This is particularly important in the manipulation of 

"retention window" and separation behavior in MECC system. 

Experimental 

Instruments 

The instruments used in this study for UV spectrophotometry and capillary 

electrophoresis measurements were the same as those described in the previous chapter. 

The untreated capillaries were rinsed successively with methanol, 0.1 M HCl, and 

water, and then filled with the running buffer. In order to maintain reproducibility, the 

capillary was rinsed with the running electrolyte between runs. In all the measurements, 

the running voltage was 15 kV. 

Rea~ents and Materials 

Octylglucoside was obtained from Sigma Chemical Co (St. Louis, MO, 

U.S.A.). Sodium borate, boric acid, sodium hydroxide, and hydrochloric acid were 

from Fisher Scientific (Pittsburgh, PA, U.S.A.). Deionized water was used to prepare 

the running electrolyte. All solutions were filtered with 0.2 Jlm Uniprep Syringeless 

filters from Genex Corp. (Gaithersburg, MD, U.S.A.) to avoid capillary plugging. 

The herbicides, i.e., prometon, prometryne, butachlor and propazine, were 

purchased from Chern Service (West Chester, PA, U.S.A.). The structures of the four 

herbicides are shown below: 



Prometon 

Propazine 

Procedures 

Prometryne 

C2Hs 

~_,cHfJc4u, 
~ 'cOCIIJ;I 

C2Hs 

Butachlor 
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UV Spectrophotometry Measurements. Sample solutions were made by 

dissolving a small amount of prometon, prometryne, butachlor and propazine in distilled 

water containing a small amount of acetonitrile to enhance the solubility of the 

herbicides. Mter calibration of the instrument 'with the solvent (blank), absorption 

spectra were obtained for each of the above herbicides by scanning from 200 to 350 nm. 

Figure 11 shows the UV spectra of the four herbicides. The maximum 

wavelengths, Amax, for prometon, prometryne, and propazine were found at 220, 223, 

and 223 nm respectively, while that of butachlor was at lower wavelength but with 

reasonable absorption at 220 nm. For this reason, the UV detector for capillary 

electrophoresis was Syt at 220 run. 

Sample and Micellar Solution Preparation. Due to the low solubility of the 

prometon and prometryne, the stock solutions of each herbicide were prepared by 

adding an excess amount of the pure compound to water. Mter stirring overnight, the 
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Figure 11 UV Spectra of the Herbicides 
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solution was filtered and refrigerated in a closed vial. In order to accurately detennine 

the concentration of each stock solution, calibration curves were made for each herbicide 

from standards prepared by dissolving the herbicides in water-acetonitrile solutions. 

This allowed the preparation of standard solutions of accurate concentrations. The 

calibration curves were obtained by CZE using 10 mM phosphate buffer, pH 6.0. For 

the preparation of samples of propazine and butachlor, the herbicides were dissolved in 

the running electrolyte (micellar solution). The concentration of these stock solutions 

were detennined in the same way as that of prometon and prometryne. The running 

electrolyte was prepared by dissolving proper amount of sodium borate, octylglucoside, 

and adjusting the pH to the desired value. The solutions were degased ,in an ultrasonic 

bath. 

Mode of Injection. Both electrpmigration and hydrodynamic sample injection 

modes were used in this study. In the case of electromigration mode, the injection 

voltage which was the same as the separation voltage ~as applied for 5 to 10 seconds. 

This mode was used for the samples dissolved in water. The herbicides used in this 
, ' 

study are electrically neutral and since they migrate with the bulk flow, injection by 

electromigration would not introduce qiscrimination. When the analytes were dissolved 

in the electrolyte containing the micelles, they associated with the charged micelles, 

which imparted them different negative charge densities due to the difference in the 

dissociation censtants for the various herbicides with t:J.te micelles. In this case, gravity­

driven flow (hydrodynanii~ mode) was used for sample injection, whereby sample 

reservoir was raised to a height of 20 em above the ,outlet reservoir for 10 seconds. 

_ Detennination of t!lli: and fQ. The retention time ~f phenolphthalein, which is 

considered te be fully solubilized by the micelles, was considered as the retention time 

of the micelle, tmc· The retention time of methanol was used as to. Both 



phenolphthalein and methanol were dissolved in the running electrolyte (i.e., micellar 

solution). 

Results and Discussion 

Effect of Operational Parameters 

In order to evaluate the new micellar phase system, several operational 

parameters were studied using prometon and prometryne as model solutes. All the 

measurements were made at the same running voltage, and a separation distance of 50 

em (i.e., from the injection end to the detection point). 

Borate Concentration. To examine the effect of borate concentration on the 

separation properties of octylglucoside-borate micelles, the electrophoretic 

measurements were made with running electrolytes containing 40 mM octylglucoside, 

pH 10, at various concentrations of borate. Under these conditions, the amount of 

octylglucoside is well above its CMC, which has been reported to be 25 mM in pure 

water (75). 
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Figure 12 illustrates the effect of borate concentration in the running electrolyte 

on the retention window and peak capacity of the MECC system. It can be seen that the 

retention window increased significantly at borate concentrations between 10 to 50 mM. 

The optimal value seems to span between 50 and 100 mM. This wide range of 

concentration is important as far as the separation reproducibility is concerned. Indeed, 

a change in borate concentration will not introduce any appreciable fluctuation in the 

"retention window", tmc - to. Referring to Fig. 12, the retention time of the inert tracer 

increased slightly with the borate concentration. At pH 10, the surface silanols of the 
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Separation capillary: untreated fused-silica, 50 em (to the detection point), 80 em 
(total length) x 50 ~m I.D.; Running electrolyte: 40 mM octylglucoside, pH 10; Sample 
injection: hydrodynamic, 5 seconds; Running voltage: 15 kV; Tracers: phenolphthalein 
(for tmc) and methanol (for to); Detection: 220 nm. The experimental data points are the 
average of two measurements. 

Figure 12 Effect of Borate Concentration on Retention Window and Peak Capacity 
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capillary are fully ionized and a constant electroosmotic flow is expected. However, 

increasing borate concentration leads to a decrease in the zeta potential (63), and in tum, 

the electroosmotic flow (see Eqn 2). This can explain the slight increase in the retention 

time of the inert tracer. 

Unlike to, the retention time of the micelles, tmc. increased substantially at low 

concentrations of borate but remained constant at higher concentrations. The increase in 

the retention time of the micelles with borate concentration is due to an increase in the 

charge density of the micelles upon complexation between octylglucoside and borate 

ions. According to Eqn 37, if the concentrations of octylglucoside and hydroxide ions 

are kept constant, the magnitude of [Cs-Glc-Borate] will increase with borate 

concentration. As a result, the overall charge density of the micelles, Pmc. will increase 

causing the electrophoretic mobility of the micelles, Jlmc,e. to rise in the opposite 

direction to the electroosmotic flow. Since the electroosmotic flow was almost 

unchanged in the range of borate concentration from 10 mM to 100 mM, the net result 

was a decrease in the net mobility of the micelles, which in turn led to an increase in the 

retention time of the micelles. Thus, the separation window was elongated. 

According to Eqn 38, at elevated borate concentrations, [Cs-Glc] approaches 

zero, and therefore, Pmc = Pcomplex· As can be seen in Fig.12, upon exceeding a certain 

borate concentration, a saturation stage was reached. At this point, further increase in 

the concentration of borate' did not bring about significant increase in the overall charge 

density of the micelles. The saturation stage was obtained at borate concentration 

around 50 mM, see Fig.12. 

The retention factors, k', of prometon and prometryne, were determined using 

Eqn 18. Figure 13 portrays the relationship between k' and the borate concentration. 

The retention factors of prometon and prometryne first increased at low borate 

concentrations, and then remained relatively unchanged at borate concentrations above 
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Sample: prometon and prometryne; Sample injection: electromigration, 10 
seconds; Other experimental conditions are as in Fig.l2. The experimental data points 
are the average of two measurements. 

Figure 13 Effect of Borate Concentration on Retention Factor of Herbicides 
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50 mM. This trend is analogous to that obtained with the retention time of the micelles 
I 

and the explanation ,of the k'-borate concentration depen~ency follQws the same 

reasoning. 

The separation efficiencies, N, and the selectivity, a, were calculated using Eqns 

12 and 19, respectively. The res~~ are depicted in Fig. 14 for the two model solutes, 

prometon and prometryne. 

A~ording to Fig. 14, N,increased with bora~ concentration. This may be due 

to the following phenomena. In MECC, the micelles are so small that there is no mass 

transfer limitation (76). Under these condi,tions, longitudinal· molecular diffusion in the 

moving electrolyte is the ultimate limi~tion and Eqq 11a applies. Since increasing the 

borate concentration slightly decr~ased the flow velocity, i.e., from 0.091 to 0.056 

em/sec, the amount of longitudin,al diffusion in this velocity ran~e is virtually 

unchanged. On the other qand, th~ mole fraction of charged micelles increased-with 

borate concentration, and as a res1;11t, the average intermicellar distance decreased. 

Smaller interrirlcellar diffusion distances improve the kinetic of mobile ·phase mass 
' ' 

transfer (77). Therefore, for the s~e amount of longitudinal molecular diffusion and 

teduced resistance to mas~ trans~er in ~e moving electrolyte, N would increase with 

increasing borate concentrations in the running' electrolyte. 

The selectivity of the two herbicides also increased with borate ·concentration. 

This observa~on may indicate that the ·associa~on constants of prometon and prometryne 

with the uncharged micelles (no.t complexed with borate) and the charged micelles 

( complexed with borate) are different. 

The values of peak capacity were calculated using ;Eqn 22, and the results are 

p~sented in Fig. 12. As can be seen, ~ak capacity increaSed ~th borate c.~ncentration, 

and follows the same profile as that of tmc· When compared to that of the i.J:lert tracer, 

the retention time of micelles, tmc. increased significantly with borate concentration, and 
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Figure 14 Effect of Borate Concentration on Separation Efficiency and Selectivity 



as a consequence, the ratio tmcfto increased. The combined increase in the values of 

tmclto and that of N would therefore produce an increase in peak capacity, see Eqn 22. 
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pH of the Running BUffer. To evaluate the effect of pH-on the separation 

properties of the system ~der investigation, the electrophoretic experiments were 

carried out by running electrolytes containing 40 mM octylglucoside and 50 mM sodium 

borate at various pH. 

Figure 15 illustrates the effect of pH on the "r~tention window", and peak 

capacity of the MECC system. The "reterttion window" , tmc - to, was greatly enlarged 

when the pH was raised from 9 to 11. Irideed, tmc augmented significantly whereas to 

· remained relatively unchanged The increase in tmc with pH can be explained by Eqn 

37. According to this equation, while keeping the concentrations of the octylglucoside 

and borate constant, any eleyation in the concentration of hydroxide ions, [O~-], will 

lead to an increase in the concentration of octylglucoside-borate complex, with 

concomitant increase in the charge density ef the micelles. On the other hand, to 

remained constant in this pH range, because the silanol groups on the surface of the 

capilla.fy are fully deprotonated ·above pH 8, and a further increase in pH will not 

produce more negative ch~ge on the capillary surface. Therefore, ·the concentration of 

ionized surface silanols was unchanged, which resulted in a constant electroosmotic 

flow in this pH range. 

As can be seen in Fig. 15, the peak capacity increased with electrolyte pH. This 

is due to the increase in N and the ratio tmclto with increasing pH~ 

The plots of the retention factors of prometon. and prometryne vet:sus pH is 

shown in Fig. 16. The retention. factors, k', increased continuously in the pH range 

from 9 to 11; a trend similar to that of tmc· 

The separation efficiency and sel~tivity of prometon and prometryne were also 

pH dependent, as shown in Fig. 17. The~e results suggest that at higher pH, greater 
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Figure 15 Effect of pH on Retention Window and Peak Capacity 
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Figure 17 Effect of pH on Efficiency and Selectivity 
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separation efficiency can be obtained, may be due to the shorter intennicellar diffusion 

distance. The selectivity of the two herbicides decreased with increasing pH. This 

observation shows that thC? hydrophobicity, of these two species ~s pH dependent. 

Concentration of Octylglqcoside. In order to study the effect of octylglucoside 
' ' 

concentration on the effectiveness of the MECC system, the pH and the concentration of 

borate in -the running' electrolyte were kept constant. Th~ running electrolYte was 50 
' ' 

mM sodium borate, pH 10, at various octylglucoside concentrations. 

Plots of tmc and to versus octylglucoside concentration are shown in Fig. 18. As 

can be seen in Fig. 18, the retention window was kept almost constant regardless of the 

octylglucoside concentration. At const3nt ~rate and hydroxide ion concentrations, the 
" 

increase in concentration qf octylglucoside will lead to a higher concentration of 

octylglucoside-borate complex. However, this increase was not obvious since there 

was a relatively high concentration of borate (50 mM). As shown in Fig. 18, the 

retention time of the micelles, t~c did not change significantly with increasing 

concentration of octylglucosid~. , The slight decrease in the electroosmotic flow was 

probably due to the increase in .the viscosity of the running electrolYte as a result of high 
•' 

c~mcentration of the surlactant. This is re:(lected by the increase in to as shown in Fig. 
' . ' 

18. The peak capacity of the MECC-system also increased sli~htly in the range of 

octylglucoside. concentration studied 

Increasing the ~ctylglucoside c~ncentration in the eluent co~sponds to 

increasing the phase ratio, ~. which is defined as the ratio of volume of the 

pseudestationary phase to that of the mobile phase. The retention factor, k', is related to 

cp and K through k' = cj>K. As can be· seen in Fig. 19, plots of retention factor y~rsus 

ectylglucoside concentration are· linear at low concentration of surlactant and leveled off 

at concentration greater than 60 mM. 
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Plots of separation efficiencies, N, and selectivity, a, versus the concentration 

of octylglucoside are shown in Fig. 20. While the selectivity for the two herbicides was 

almost unchanged within the range of experimental errors, the average theoretical plate 

number increased with increasing concentration of octylglucoside. The higher 

separation efficiencies obtained at elevated octylglucoside concentration may be 

explained by the shorter diffusion distance between the micelles and concomitantly faster 

mass transfer in the mobile phase. 

T)l?ical Separation 

Figure 21 is a typical electropherogram for the separation of the four herbicides, 

prometon, prometryne, propazine, and butachlor. The separation was carried out under 

the optimal condition, i.e., in a buffer with 50 mM borate, and 40 mM octylglucoside, at 

pH 10. The four herbicides were completely resolved within 20 minutes. The 

structures of prometon, prometryne and propazine differ only by one functional group 

from each other (see page 48). All of them are non-ionic under the experimental 

conditions, and can not be separated by conventional capillary zone electrophoresis. 

This experiment shows the usefulness of MECC for the separation of electrically neutral 

compounds. 

Limits of Detection 

The limits of detection obtained in this work are listed in Table 5. The data were 

determined under conditions of Fig. 21, by injecting several dilutions of a relatively 

concentrated standard mixtures. The concentration limits correspond to a signal-to-noise 

ratio (SIN) of 3. The injected quantities were determined by Eqn 28. The detection 

limits show that as low as 1 J.lg/mL (or a few micromolar) in terms of concentration or a 

few picograms in terms of absolute mass of solute injected can be determined. 
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Experimental conditions are as in Fig. 19. The experimental data points are the 
average of two measurements. 

Figure 20 Effect of Octylglucoside Concentration on Efficiency and Selectivity 
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Running voltage: 15 kV; Solutes: 1, 3.0 ~g/mL prometon; 2, 6.0 ~g/mL prometryne; 3, 

2.0 ~g/mL propazine; 4, 8.0 ~g/mL butachlor; Detection: 220 nm. 

Figure 21 Typical Electropherogram lllustrating the Separation of Neutral Herbicides 



Sample solute 

Pro me ton 

Prometryne 

Propazine 

Butachlor 

TABLES 

LIMITS OF DETECTION 

Limit of Detection 

Concentration Inj~ted Qyan~ 

(jlg/mL) (llM) (pg) (femtomole) 

1.0 4.4 "6 .. 0 26.5 

2.0 8.3 12 49.9 

0.7 3.0 4.2 18.0 

2.7 8.7 16 52.3 

Conclusions, 
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Micellar electrokinetic capillary chromatography shows promise for the 

determination of neutral organics. The pew MECC system with micelles of adjustable 

surface charge density allowed the control of the "retention·window" by altering some of 

the operational parameters. The detection limits was quite promising. 

However, as one of the techniques of capillary eleetro_Rhoresis, MECC also 

suffers from its smail sample loadability. Since the detection volumes are usually in the 

range of picoliters, further decrease in sample concentration is limited due to the detector 

sensitivity. To solve this problem, conc~ntrating dilute samples prior to analysis is 

necessary. The next chapters provide solutions for the analysis of dilute samples. 



CHAPTER IV 

ON-LINE PRECONCENTRATION OF NEUTRAL SPECIES 

WITH TANDEM OCfADECYL CAPILLARIES­

CAPILLARY ZONE ELECTROPHORESIS 

Introduction 

As described in the previous chapters, capillary electrophoresis employs high 

electric fields to yield rapid separations. In order to dissipate Joule heating resulting 

from the passage of current through the electrolyte inside the tube, capillaries of25-100 

~m I.D. are used. With such small diameter capillary tubes, the injection volume must 

be small (i.e., 1-5 nL) in order to achieve high separation efficiencies. For this reason 

samples must be concentrated so that the thin plug injected would contain a detectable 

amount of the solutes. However, the requirement of concentrated samples is often 

difficult to meet, especially for environmental pollutants and biological samples. 

Although this problem has been recognized since the introduction of capillary 

electrophoresis, little or no attention has focused on developing devices for sample 

concentration, especially on-line preconcentration. Recently, on-line preconcentration 

by isotachophoresis and electrophoresis were introduced (78-80). However, these 

techniques have some drawbacks. The isotachophoretic concentration mode is difficult 

to automate and is limited by the choice of electrophoresis buffers. Also, positive and 

negative analytes cannot be determined at the same time. The electrophoretic 

concentration method has a limited loadability, which means only small sample volume 

can be introduced. 
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In this regard, we have developed capillaries with interactive walls for on-line 

preconcentration of dilute samples. This chapter will discuss the performance of tandem 

octadecyl capillaries-capillary zone electrophoresis in concentrating neutral species of 

environmental interest. 

In general, on-line preconcentration has several advantages over off-line 

preconcentration. With on-line preconcentration, sample contamination and 

decomposition can be effectively minimized. As will be demonstrated in this chapter 

and the following chapter, with interactive preconcentration open tubular capillaries, 

large amount of sample can be introduced without significant loss in separation 

efficiency, and consequently very low detection limit in terms of sample concentration 

can be achieved. 

Principles 

The accumulation of solutes on the capillary inner surface is an adsorption 

process, which can be represented as the reversible reaction of solute S in the liquid 

phase with an adsorption site A on the solid surface to form adsorbed S, i.e., SA: 

S+A~SA 

The distribution coefficient Kx of the above equilibrium is defined as 

X sA 
Kx =xsXA 

where XsA, Xs, and XA are mole fractions of SA, S, and A. Kx is considered as 

(39) 

constant if the intermolecular interactions in each phase is assumed to be constant as XsA 

and Xs vary. If the fractional coverage of sites by the adsorbed solute is defined as 8, 

then XsA= 8 and XA = 1- 8. Substitution of XsA and XA into Eqn 39, yields the 

equation of Langmuir isotherm (81): 
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(:) 
Kx =----

Xs(1 - (:)) 
(40) 

or 

(41) 

A Langmuir isotherm, i.e., a plot of(:) versus the molar fraction of S in the 

nonadsorbed phase, Xs, is shown in Fig. 22a. At low solute concentrations, Xs is very 

small so that KxXs << 1, we have(:) p KxXs, and a linear isotherm is obtained. Also 

as illustrated in Fig. 22a, when the solute concentrations are large so that KxXs >> 1, 

we have the limiting value of(:),(:) p 1, and the isotherm flattens out, i.e., Kx p 0. 

This means that at high concentrations of solute, the.adsorption sites become saturated 

with adsorbed solute molecules, and the concentration of solute in the adsorbed phase 

approaches a maximum value. The solute concentrations were relatively low in the on­

line preconcentration studies. Therefore, linear isotherms were expected. 

The capillary used in this study consisted of two sections connected with a 

Teflon tube having an inner diameter of the same size as the outer diameter of the two 

capillaries. The frrst part is a precoilcentration capillary, i.e., an open-tubular reversed-

phase chromatography column with bonded octadecyl functions on the inner wall. The 

second part is a separation capillary, i.e., a CZE capillary. 

The on-line preconcentration with octadecyl capillaries exploits the principles of 

reversed-phase chromatography, in which the stationary phase is nonpolar with respect 

to the mobile phase. Figure 22b illustrates the structure of the inner surface of octadecyl 

capillaries used in this study. 

As the sample is introduced, it frrst enters the preconcentration capillary, and is 

accumulated at the interactive walls. Samples are retained by the octadecyl groups by 

hydrophobic interaction. Since this type of interaction is non-selective, octadecyl 
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capillaries can be applied for a wide variety of compounds provided that they have non­

polar functions. 

The on-line preconcentration process involves two consecutive steps: the 

accumulation of sample onto the walls of the preconcentration capillary, and the 

stripping of the accumulated solute from the capillary walls. The introduction of dilute 

samples should be carried out in the presence of a binding electrolyte (e.g. aqueous 

solution) that affords the strongest interactions between the analyte and the interactive 

walls. In the de binding step, the accumulated solutes on the walls of the 

preconcentration capillary should be stripped off the walls with a strong debinding 

electrolyte (e.g. hydro-organic solution) so that they enter the separation capillary as a 

thin plug whereby separation starts. The binding electrolytes used in this study were 

sodium phosphate solutions, whereas the de binding electrolytes were sodium phosphate 

solutions containing acetonitrile. Acetonitrile ~rved as the debinding agent. 

Experimental 

Instruments 

The instruments used in this study was the same as that described in the previous 

chapters except the modification in the capillary. The capillary used in this study 

composed of two capillaries connected in series. The first one was the preconcentration 

capillary, which had a length of 20 em and an inner diameter of 50 J..Lm. The second one 

was the separation capillary, which pad a total length of 60 em with 30 em to the 

detection point. Untreated fused-silica capillary was used as the separation capillary. 

Rea&ents and Materials 

Colloidal silica, Ludox HS-40, was a gift from Du Pont (Willmington, DE). 
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Ammonium hydrogen bifluoride was from Fisher Scientific Company (Fair Lawn, NJ). 

Dimethyloctadecylchlorosilane and octadecyltrichlorosilane were from Petrarch Systems 

Inc (Bristol, PA). Naphthol was purchased from Aldrich (Milwaukee, WI). All the 

other chemicals and materials used in this study were the same as those described in the 

previous chapters. 

Procedures 

Capillazy Surface Modification. The inner surface of the preconcentration 

capillaries were roughened before the bonding of the interactive functions (see Fig. 

22b ). The purpose of this treatment is to increase the specific surface area of the 

capillary wall and in turn the concentration of the interactive functions on the surface, so 

that larger amount of the analytes can be accumulated. This treatment involved etching, 

and in most cases, subsequent coating with colloidal silica. 

In the etching process, the capillaries were filled with a 5% (w/v) solution of 

ammonium hydrogen bifluoride in methanol and allowed to stand for 1 hour before the 

solution was removed with a flow of nitrogen gas (82). The capillaries were then sealed 

in flame and heated .at 250 oc or: 300 oc for 5 hours. At high temperature, ammonium 

hydrogen bifluoride dissociates to produce gaseous hydrogen fluoride and ammonia 

(82). Thereafter, the capillaries were flushed with 0.01 M HCl, water and finally stored 

in HPLC grade methanol. Etching of fused-silica with hydrogen fluoride has been 

shown to produce pits of different diameters on the surface (83). 

To prepare support coated capillaries, the etched tubes were filled with a 10% 

(w/v) colloidal silica solution and heated at 250 oc for 1 hr. This treatment was repeated 

3 times and finally the capillaries were stored in HPLC grade methanol. 

The preparation of capillaries with surface-bound octadecyl functions was 

carried out as follows: the etched and/or support coated capillaries were filled with a 
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solution of 0.2 g/mL octadecylmonochloro- or trichlorosilane in toluene, and heated at 

110 oc for 1 hour. This treatment was repeated twice. Mter this treatment, the 

capillaries were flushed with acetone and stored in HPLC grade methanol. 

In this study, the capillary surface was either etched or etched and then coated 

with colloidal silica in order to increase the surface area available for the attachment of 

octadecyl functions. The octadecyl capillary tubes are denoted by ODS-monofunctional­

Cap, or ODS-trifunctional-Cap, to distinguish between capillaries coated with 

octadecyldimethylchlorosilane or octadecyltrichlorosilane, respectively. 

ChromatofUaphic Measurement with Qpen-tubular Octadecyl columns. To 

determine the retentivity of the octadecyl preconcentration capillaries toward the 

pollutants under investigation, a gravity-driven flow was used for both sample injection 

and the measurement of retention time. The reservoir at one end was raised to 20 em 

above the outlet reservoir. Sodium nitrate was used as the inert tracer, since it is not 

retained by the octadecyl preconcentration capillary and detects well in UV. The 

retention factor was calculated using the following equation: 

k' = tr -to 
to 

(42) 

where tr and to are the retention time of the sample and the the inert tracer, respectively. 

Bindin~ and Debindin~ Processes. The running electrolytes were prepared in 

deionized water. Dilute samples were prepared in the binding electrolyte. All samples 

and electrolytes were filteied, as described in the previous chapter. 

For all types of solutes, sample introduction (or feeding) was carried out by 

either electromigration or hydrodynamic flow at the anode end When the 

electromigration mode was used for sample introduction, the injection voltage was the 

same as that for the separation. The debinding electrolyte was also introduced by 



electromigration. When the hydrodynamic mode was used, sample reservoir was 

raised to a certain height above the outlet reservoir. The debinding electrolyte was 

allowed to flow under hydrodynamic flow for the same period of time as that for the 

sample introduction. Then the reservoir at the anode end was lowered to the same 

height as that of the outlet reservoir and the voltage was applied. 
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In bo~ cases, the volume and the amount of Sample introduced were determined 
' ' 

by Eqn 27, and 28·, respectively. Between runs, the capillaries were flushed 

successively with acetonitrile, water, and the binding electrolyte. Thereafter, ·the 

capillaries were allowed to equilibrate for 10 to 20 minutes with the binding electrolyte 

before the next run. 

Results and Discussion 

Nonna1 Detection Limits with CZE 

To evaluate the preconcentration approach under investigation, two herbicides, 
' '~ 

prometon and prometryne were chosen as neutral solutes to examine the detection lmut 

with CZE alone. Under normal injection conditions, i.e., the sample was introduced as 

a thin plug, the detection limits for both prometon and prometryne were 1 f.!g/mL (i.e., 

4.4 and 8.3 micromolar forprometon and prometryne, respectively). To further 

' 
decrease this c:letectipn limit, preconcentration is necessary. 

Qpen-tubular Cbromato&raphy with Preconcentration Capillaries 

The retention of octadecyl capillaries toward the solutes of interest was 

determined by elution chromatography with a gravity-driven flow (see experimental for 

detail). Figure 23 illustrates the results obtained with prometon, prometryne and 

naphthol by plots of retention facror, k', versus percent acetonitrile (v/v) in the eluent. 
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Figure 23. Retention Factor as a Function of Acetonitrile Concentration in the 
Mobile Phase 
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As shown in Fig. 23, these species were retained by the preconcentration 

capillaries to different extent. Prometon and prometryne were more retained than 

naphthol. This may due to their larger size (see the structures in chapter Ill) than that of 

naphthol. The presence of the two isopropyl groups in prometon and prometryne 

imparted to these solutes stronger hydrophobic interactions with the octadecyl functions 

of the preconcentration capillaries. Als~, the unshared pairs of electrons on the nitrogen 

atoms in prometon and prometryne may form hydrogen bonds with the unreacted silanol 

groups of the surface of octadecyl capillaries surfaces, i.e., silanophilic interaction (84). 

These may explain the higher retention for prometon and prometryne when compared 

with naphthol. The only difference in the structures of prometon and prometryne is that 

the methoxy group in prometon is replaced by a methylthio group in prometryne. Since 

oxygen is more electronegative than sulfur, the methoxy group is more polar than 

methylthio group. Therefore, prometryne is more hydrophobic than prometon. This 

may explain the slightly higher retention of prometryne. In all the cases, the retention 

factors decreased rapidly with increasing acetonitrile concentration in the mobile phase. 

This experiment shows the ability of octadecyl preconcentration capillaries to 

retain neutral solutes when the mobile phase is pure aqueous buffer. It also shows that 

relatively high concentration of acetonitrile is needed to elute accumulated sample from 

the capillary wall. 

Effect of Operational Parameters 

In order to determine the optimum conditions for the preconcentration with 

octadecyl preconcentration capillaries, naphthol was chosen as a model solute to study 

the effects of various operational parameters. These parameters are the concentration of 

debinding agent, feeding time and capillary surface treatment . 

Concentration of Debinding Agent. In this study, acetonitrile was chosen as the 
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debinding agent Figure 24 shows the effect of acetonitrile _concentration in the 

debinding electrolyte on the peak height of desorbed naphthol. As expected, the signal 

increased with the concentration of acetonitrile. This means that high concentration of 

debinding agent can result in better recovery of the sample. However, high 

concentration of organic solvent led to a large breakthrough signal, which caused 

problem in the determination of very dilute samples. 
' ' 

Peedin~ Time. The effect of feeding time is shown in Fig. 25. As the feeding 

time increased the signal increased rapidly frrst and then leveled-off. This means that an 

adsorption equilibrium was reached between the feed and the inner surface of the 

preconcentration capillary~ and further increase in feeding time did not lead to more 

accumulation of solute. 

Capillazy Treatment The capillary inner surface treatment is critical for the 

quality of preconcentration. The, effect of this treatment on the preconcentration process 

was studied by comparing several octadecyl capillaries whose inner surfaces were 

treated differently. The results are illustrated in Fig 26 in terms of peak height of 

naphthol versus sampl~ concentration. For comparison, the result obtained by normal 

CZE (i.e., without preconcentration) is also shown. 

According to these plots, with the same sample concentration, the highest 

detector signal was obtained with the capillary whose inner surface was etched, support 
' . 

coated and bonded with trifunctionaloctadecyl silane. The signal obtained by normal 

CZE was much less than those obtained with on-line preconcentration. As shown in 
. ' 

Fig. 26, with the use of octadecyl preconcentration capillaries, the detectability of CZE 

can be increased 40.,50 times, when the surface coverage with octadecyl functions is 

high, curve 4 in Fig. 26. 
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Acetonitrile Concentration in Debinding Electrolyte (%v/v) 

Preconcentration capillary: ODS-monofunctional-Cap, etched at 250 oc , 20 em 

x 50 J.Lm I.D.; Separation capillary: same as in Fig. 23; Binding electrolyte: 50 mM 
sodium phosphate, pH 6.5; Debinding electrolyte: acetonitrile in pinding electrolyte; 

Sample: 1.3 J.Lg/mL naphthol; Sample introduction: electromigration, 5 min; Running 
voltage: 15 kV; Detection: 226 nm. The experimental data points are the average of two 
measurements. 

Figure 24. Effect of Acetonitrile Concentration in the Debinding Electrolyte 
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Debinding electrolyte: 50% (v/v) acetonitrile in binding electrolyte; Sample: 
naphthol; other experimental conditions are as in Fig. 24. . 

Figure 25 Effect of Feeding Time 
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2, 3,4: Preconcentration capillaries: 20 em x 50 Jlm I.D.,(2) ODS-monofunctional-Cap, 
etched at 450 oc, (3) ODS-trifunctional-Cap, etched at 250 oc, (4) ODS­
trifunctional~Cap, etched at 250 oc, support coated; Separation capillaries: same 
as in Fig. 23. Binding and debinding electrolytes are as in Fig. 25; Sample 
injection: electromigration: 5 min. 

The experimental data points are the average of two measurements. 

Figure 26 Effect of Capillary Surface Concentration in Octadecyl Functions 



Quantitative Determinatio~ of Dilute Samples with 

Octadecyl Preconcentration Capillaries 
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To examine the usefulness of tandem octadecyl capillary-->CZE in the 

quantitative determination from dilute samples, and to assess the detection limit in terms 

of concentrations using the tandem format, prometon and prometryne were employed as 

model solutes: The results are depicted i.p. Fig. 27 by plots of peak height versus sample 

concentration. As can be seen in Fig. 27, peak height increased linearly with sample 

concentration in the range studied. The detection limit for both prometon and 

prometryne were approximately 0~ 1 J.Lg/mL (i.e., 0.44 and 0.83 micromolar for 

prometon and prometryne, respectively), which is 10 folds lower than that of normal 

CZE, under otherwise the same experimental conditions. 

Conclusion 

With the on-line preconcentration technique, the minimum detectable 

concentrations were 10-50 fold lower than normally handled by CZE alone with 

concentration sensitive detecto,rs. The octadecyl preconcentration capillary requires 

small amount.of the sample and permits continuous sample l~ading, i.e., large sample 

volume can be introduced and consequently low detection liffiit in terms of concentration 

can be obtai~ed. Furthermore, with preconcentration capillaries plots of peak height 

versus sample concentration are linear over a wide range, which allow the quantitative 

determination of dilute samples. Moreover, the on-line preconcentration with interactive 

capillaries involves small;;unounts of mteracta.Bts, and requires simple instrumentation 

that are customarily used in CZE. These features make the on-line preconcentration 

technique developed in this work potentially useful in the area of analytical chemistry. 
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Preconcentration capillary: ODS-trifunctional-Cap, etched at 300 ·c, 20 em x 50 

Jlm I.D.; Separation capillary: same as in Fig. 23; Binding electrolyte: 10 mM sodium 
phosphate, pH 6.0; Debinding electrolyte: 50% (v/v) acetonitrile in binding electrolyte; 
Sample introduction: hydrodynamic, 5 min; Running voltage: 15 kV; Detection: 220 nm. 

Fig. 27 Quantitative Determination of Dilute Sample with Octadecyl Preconcentration 
Capillaries 



CHAPTERV 

ON-LINE PRECONCENTRATION OF PROTEINS IN TANDEM 

METAL CHELATE CAPILLARIES-CAPILLARY 

ZONE ELECTROPHORESIS 

Introduction 

In the previous chapter, we introduced octadecyl capillaries for sample 

preconcentration by hydrophobic interaction. Since this type of interaction is non­

selective, the octadecyl capillaries can be used for various species. However, polar and 

moderately polar compounds can not be retained by octadecyl capillaries. In addition, 

most often one or two components in, a mixture are the analytes of interest, and 

therefore, a preconcentration step based on selective isolation will be preferred. 

The development of life sciences and biotechnologies have engendered the need 

for new and capable separation methods based on biospecific interactions not only for 

the determination of the analytes of interest but also for their characterization. Many 

biological substances and in particular proteins lack in their structures a center for their 

sensitive detection, which limits their determination at low levels. 

To overcome these impediments and to render capillary electrophoresis suitable 

for the determination of proteins from dilute samples, we introduced metal chelate 

capillaries, i.e., capillaries having surface-bound metal chelating functions. The 

preconcentration with metal chelate capillaries is based on the affmity between proteins 

and the immobilized metal chelates on the capillary walls. Since this type of interaction 

is selective, only the proteins having affinity for the chelated metal can be retained. 
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Indeed, with tandem metal chelate capillaries-capillary zone electrophoresis, the selective 

preconcentration and subsequent separation of dilute protein samples were 

accomplished 

Principles 

In metal chelate capillaries, the metal is immobilized via chelating ligands 

chemically bonded to the capillary wall. Iminodiacetic acid (IDA) was used as the metal 

chelate stationary phase. Similar to metal interaction chromatography, proteins are 

retained by the immobilized metal through interaction with electron donor side chain 

groups situated on the protein surface. These groups are histidine, cysteine, and to a 

lesser extent tryptophan residues (85). Therefore, metal chelate capillaries would allow 

selective preconcentration of a protein or a group of proteins having affinity to the metal 

chelate walls. 

As described in the previous chapter, the on-line preconcentration involves two 

steps, the accumulation followed by the desorption of the solutes, in which binding and 

debinding electrolytes are used successively. The accumulation of solute on the wall can 

be described by the adsorption model introduced in chapter IV. Since the accumulated 

solute on the inner walls should be stripped of the walls and introduced in the separation 

capillary as a thin plug, the debinding electrolyte should contain a strong competing 

agent that desorbs the metal and the protein from the binding sites on the surface of the 

metal chelate capillary. In this regard, EDT A is an excellent candidate since it forms 

stronger complex with metals than the covalently attached IDA functions on the surface 

of the capillaries. Thus, the binding electrolytes used in this study were sodium 

phosphate solutions, whereas the debinding electrolytes were sodium phosphate 

containing EDT A. Besides that, the concentration of the debinding agent is also very 



important to ensure a fast desorption kinetic and minimize band broadening during the 

process of debinding. 

Experimental 

Instruments 
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The instruments used in this study was the same as that described in chapter IV, 

except that the preconcentration capillaries used in this study were open-tubular metal 

interaction chromatography capillaries, i.e., fused-silica capillaries of 50 or 75 Jlm I.D. 

with immobilized IDA functions on the inner walls. The separation capillaries consisted 

of fused-silica capillaries of 50 Jlm I.D. with interlocked polyether coatings prepared in 

our laboratory as described earlier (10). The hydrophilic coatings were essential to 

minimize solute-wall interactions during solutes differential migration. 

Reagents and Materials 

Albumin and iron-free transferrin from human, and carbonic anhydrase from 

bovine erythrocytes were purchased from Sigma (St. Louis, MO, U.S.A.). y­

Glycidoxypropyltrimethoxysilane (Z-6040) was a gift from Dow Corning (Midland, 

MI, U.S.A.). Iminodiacetic acid was donated by Hampshire (Nashua, NH, USA). 

Reagent grade ethylenediaminetetracetic acid disodium salt (EDT A) was from Fisher 

Scientific (Pittsburgh, PA, U.S.A.). Deionized water was used to prepare the running 

electrolyte. All solutions were filtered. Other chemicals and materials used in this study 

were the same as those described in the previous chapters. 

Procedures 

Capillary Surface Modification. Similar to the octadecyl capillaries, the inner 
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surface of the metal chelate preconcentration capillaries were also treated before the 

bonding of the interactive functions. The procedures for the etching and coating of the 

capillaries were the ~arne 3:8 those described in chapter IV. 

To prepare capillaries with'surface-bound metal chelating functions, the 

following procedure~ were applied: the etched and/or support coated capillary was filled 

with a solution of y-glycidoxypropyltrimethoxysilane and h~ated at 100 oc for 30 min. 

This treatment was repeated twice. Subsequently, the epoxy activated capillaries were 

allowed to react with a 10% (w/v) solution ofiminodiacetic acid at 65 oc in an oven. 

This treatment was repeated twice. Finally, the cap~laries were, flushed with water and 

then stored in HPLC grade methanol. , 
' ' 

Figure 28 depicts th.e idealized structure of the metal chelate capillaries used in 

this study. The capillary surface was either etched or etched and then coated with 

colloidal silica . As can be seen ip Fig. 28, a hydrophilic coating was introduced in 

order to shield the modified surface 'toward proteins and minimize protein adsorption by 

non specific interactions. lminodiacetic acid functions (IDA) were covalently attached to 

this hydrophilic coating to serve aS1 ~etal chelating ligands. In all the studies, Zn(ll) 

was immobilized on the capillary surface, and the corresponding metal chelate capillary 

tubes are denoted by Zn(II)-IDA-Cap .. 

Bindin~ and Debindin~ Processes. Proteins were dissolved in the binding 

electrolyte. All the samples were freshly prepared for each set of experiments. The 

binding and debinding processes were carried-out by either electromigration or 
'! 

hydrodynamic flow, i.e., gravity-driven flow, following the same procedures as that 

described in chapter IV. 

Before each run, the capillaries were flushed successively with debinding 

electrolyte containing 30 mM EDTA, water, 0.2 M ZnC12 solution, water again and then 
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Figure. 28. Schematic lllustration of the Idealized Structure of the Inner 
Surface of Metal Chelate Preconcentration Capillary 
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the binding electrolyte. Finally, the capillaries were allowed to equilibrate for 10 to 20 

minutes with the binding electrolyte. 

Results and Discussion 

Human albumin, human transferrin and bovine carbonic anhydrase were selected 

as model proteins to illustrate the principles of on-line preconcentration using tandem 

metal chelate capillaries-capillary zone electrophoresis. These proteins are known for 

their interactions with Zn(II)-IDA sorbents (86, 87) 

Electroosmotic Flow 

In order to ascertain the influence of the preconcentration capillary and its surface 

content on the overall electroosmotic flow, the bulk flow through both capillaries was 

measured with phenol as the inert tracer under various electrolyte compositions and 

capillary surface content. The results are listed in Table 6. 

'TABLE6 

ELECTROOSMOTIC FLOW* 

Status of Preconcentration Capillary Electroosmotic flow (nL/min) 

Without chelated Zn 

With chelated Zn 

With chelated Zn and adsorbed protein 

68.5 

54.4 

54.2 

* Preconcentration capillary: Zn(II)-IDA, 20 em x 50 tJ.m I.D., etched at 300 ·c; 
Separation capillary: interlocked polyether 200, 30 em (to the detection point), 60 em 



(total length) x 50 J.Lm; Running voltage: 20 kV; Running electrolyte: 10 mM sodium 

phosphate, pH 6.0; Sample: human albumin 200 J.Lg/mL; Sample injection: 

electromigration, 5 seconds; Detection: 210 nm. 
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As can be seen in table 5, the electroosmotic flow was higher in the absence than 

in the presence of the chelated metal on the capillary inner surface. This may be due to 

the negative zeta potential of the naked iminodiacetic acid capillary at pH 6.0. The 

decrease in electroosmotic flow in the presence of chelated zinc may be due to the fact 

that the metal neutralized the negative charge on the surface and therefore decreased the 

negative zeta potential. On the other hand, the presence of the adsorbed protein on the 

capillary surface did not change the magnitude of the flow when compared to that in the 

presence of chelated zinc. This can be explained by the ampholyte nature of the protein 

at this particular pH. Therefore, since the presence of adsorbed proteins and/or metal at 

the surface of the capillary resulted in a slight decrease in the overall electroosmotic 

flow, the elution and stripping of the protein of the capillary walls passing the detection 

point were readily achieved by electromigration. 

Normal Detection Limit 

To evaluate the effectiveness of the preconcentration approach under 

investigation, it was necessary to examine the potential of CZE alone in the analysis of 

dilute protein samples. Under normal injection conditions, plots of peak height versus 

sample concentration were linear in the concentration range studied, i.e., for up to 1 

mg/mL (see Fig. 29). However, the detection limits in terms of concentrations were 25 

and 50 J.Lg/mL for carbonic anhydrase and albumin, respectively. This set of 
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Separation capillary: interlocked polyether 200, 50 em (to the detection point), 

80 em (total length) x 50 Jlm J.D.; Running electrolytes: 10 mM sodium phosphate for 
albumin, 100 mM sodium phosphate for carbonic anhydrase, pH 6.0; Running voltage, 
20 kV; Sample injection: electromigration, 5 seconds; Detection: 200 nm. The 
experimental data points are the average of two measurements. 

Figure 29 Normal Detection Limit of Albumin and Carbonic Anhydrase 



experiments shows that a means for preconcentration is necessary in order to analyze 

trace amounts of analyte in a given sample. 

Quantitative Determination of Dilute Samples with 

Metal-Che1ate Preconcentration Capillaries 
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To examine the usefulness of tandem Zn(II)-IDA-Cap.-->CZE in the quantitative 

detennination of proteins from dilute samples, and to assess the detection limit in terms 

of concentrations using the tandem format, human albumin was employed as model 

solute. The results· are depicted in Fig. 30 by plots of peak area and peak height versus 

sample concentration. As can be seen in Fig. 30, peak area and peak height increased 

linearly with sample concentration for up to 40-50 ~g/mL. This concentration range 

was then used throughout the studies to evaluate the effects of operating parameters 

using metal chelate preconcentration capillaries. The detection limit for albumin was 

approximately 0.5 ~g/mL (i.e., ca 7.0 nanomolar), which is 100 times lower than the 

detection limit with normal CZE, under otherwise the same detection conditions. 

Quantitative determination of dilute samples by CZE with on-line metal chelate 

preconcentration capillaries can also be applied to other proteins having affmity toward 

the chelated zinc. Figure 31 shows the results for carbonic anhydrase, and a straight 

line was obtained over a relatively wide range of concentration. The detection limit was 

about 1 ~g/mL. This represents a decrease in the detection limit by a factor of ca. 25 

when compared to normal injection in CZE. 

Figures 32 and 33 portray typical electropherograms for carbonic anhydrase and 

human albumin, respectively, obtained with tandem Zn(II)-IDA-Cap.-->CZE. Sharp 

peaks are obtained even though the sample volumes introduced were relatively large, ca. 

120 nL. It has to be noted that in normal CZE, the maximum sample volume that can be 

introduced is about 5-10 nL. Above this amount, severe band broadening will result. 
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Preconcentration capillary: Zn(ll)-IDA, etched at 250 oc, support coated with 

colloidal silica, 20 em x 75 J.lm; Separation capillary: same as in Fig. 29; Binding 
electrolyte: 10 mM sodium phosphate, pH 6.0; Debinding electrolyte: 10 mM sodium 
phosphate, 30 mM EDTA, pH 3.8; Sample introduction: electromigration, 5 min; 
Running voltage 20 kV; Detection: 210 nm. 

Figure 30 Preconcentration of Dilute Human Albumin 
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Preconcentration capillary: Zn(II)-IDA, etched at 300 oc, 20 em x 50 J..Lm I.D.; 
Separation capillary: same as in table 5; Binding electrolyte: 10 mM sodium phosphate, 
pH 6.0; Debinding electrolyte: 100 mM sodium phosphate, 30 mM EDTA, pH 3.8; 

Sample introduction: hydrodynamic, & = 18 em, 5 min; Running voltage, 20 kV; 
Detection: 200 nm. · 

Figure 31 Preconcentration of Dilute Carbonic Anhydrase 
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Experimental conditions are as in Fig. 30. 
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Debinding electrolyte: 100 mM phosphate containing 30 mM EDTA, pH 6.0; 

Other experimental conditions are as in Fig. 30; Sample concentration: (A) 10 J..Lg/mL, 
(B) 40 J.Lg/mL, (C) 100 J..Lg/mL. 

Figure 33 Typical Electropherograms lllustrating the Preconcentration of Carbonic 
Anhydrase with Zn(II)-IDA-Cap-->CZE 
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This illustrate the effectiveness of on-line preconcentration with metal chelate capillaries 

as far as the separation efficiencies and detection limit are concerned. 

Effects of Operational Parameters 

To determine the optimum conditions for on-line preconcentration, the effects of 

various operational parameters were investigated. These parameters include the capillary 

design, i.e., capillary inner surface treatment, the composition of the binding and 

debinding electrolytes, and the mode and duration of sample introduction. 

Capillary Desiw. An important operational parameter in on-line 

preconcentration with interactive capillary is the design of the preconcentration capillary. 

The linear capacity of the preconcentration capillary influences the amount of sample that 

can be accumulated on the inner walls. The higher the linear capacity of the capillary the 

lower the detection limit is. The linear capacity of the preconcentration capillary 

increases with increasing the concentration of metal chehiting ligands attached to the 
,. 

capillary surface. 

The inner surface .of the preconcentration capillaries was increased by chemical 

and/or physical treatments before the metal chelating, functions were attached. The 

surface roughening is described in the experimental section. The results are depicted in 

Fig. 34 in terms of peak height versus sample concentration. As can be seen in Fig. 34, 

the best results were.obtained with the capillary that is etched at 300 oc and coated with 

colloidal silica This means tha~ ithas the highest surface coverage with metal chelating 

functions. 

Concentration of De binding Agent. As mentioned earlier, the choice and the 

concentration of the debinding agent is very important in the preconcentration process. 

The graph in Fig. 35 shows that the detector signal increases with the concentration of 
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Preconcentration capillary: Zn(II)-IDA, etched and/or coated with colloidal silica, 

20 em X 50 Jlm I.D.; (1) etched at250 °C; (2) etched at 300 °C, (3) etched at 300 oc 
and support coated with colloidal silica; Sample introduction: hydrodynamic, 5 min, 

& = 18 em; Detection: 200 nm; .Other experimental conditions are as in Fig. 30. 

Figure 34 Effect of Capillary Design on the Effectiveness of On-line Preconcentration 
with Zn(ll)-IDA-Gtp-->CZE 
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Debinding electrolyte: 10 rnM sodium phosphate containing different 

concentration of EPTA, pH 3.8; Sample: 30 Jlg/mL albumin; Other experimental 
conditions are as in Fig. 30. 

Figure 35 Effect of the Concentration of the Competing Agent in the Debinding 
Electrolyte 
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EDTA in the debinding electrolyte. An optimum concentration for the debinding process 

is about 30 mM, whereby the current is still in the range that does not lead to system 

overheating. At this optimum concentration of EDTA, a good recovery of the sample is 

achieved and fast desorption is obtained. 

Ionic Strength of the Electrolyte. The effect of the ionic strength of the binding 

and debinding electrolytes was a.Jso investigated and the results are shown in Fig. 36 

and table 7. 

TABLE7 

EFFECT OF IONIC STRENGTH IN THE DEBINDING ELECTROLYTE* 

Phosphate Concentration (mM) 

10 

20 

40 

100 

Peak Height x 103 (A.U.F.S.) 

2.46 

2.60 

2.72 

2.40 

* Preconcentration capillary: Zn(II)-IDA, etched at 250 oc, 20 em x 50 Jlm I.D.; 

Binding electrolyte: 10 mM sodium phosphate, pH 6.0; Debinding electrolyte: 30 mM 

EDTA containing different concentration of sodium phosphate, pH 6.0; Sample: 25 
' -

J..Lg/mL albumin; Sample introduction: hydrodynamic, 5 min, Ah = 18 em; Running 

voltage: 20 kV; Detection: 210 nm. The experimental data are the average of two 

measurements. 
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(b) 

(a) Sample: 25 ~g/mL albumin; ·other experimental conditions are as in Fig. 30. 

(b) Preconcentration capillary: etched at 300 oc, 20 em x 50 ~m I.D; Sample: 20 ~g/mL 
albumin; Other experimental conditions are as in Fig. 34. 

Figure 36 Effect oflonic Strength in Binding (a) and Debinding (b) Electrolytes 
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It can be seen in Fig. 36a that increasing the concentration of phosphate in the 

binding electrolyte decreases the peak height When the concentration reaches 30 mM, 

the peak height drops to almost zero. This may reflect that phosphate behaves as a 

competing agent with the protein for the binding sites on the surface of the 

preconcentration capillary. As expected, without the debinding agent, i.e., EDTA, 

increasing the ionic strength of the de binding electrolyte resulted in an increase in the 

peak height, as shown in Fig. 36b. 

It seems that phosphate can also be used as debinding agent. However, as far as 

the efficiency and the peak height are concerned, phosphate were not as good as 

EDT A in terms of the protein recovery from the surface and the desorption kinetics. If 

phosphate salt is used as debinding agent, high concentration is necessary in order to 

strip the accumulated proteins of the capillary wall as a narrow plug. But high ionic 

strength is undesirable in CZE, because excessive Joule heating will be generated which 

will cause band broadening. 

On the other hand, with constant concentration of EDTA (30 mM), the 

concentration of phosphate concentration in the debinding electrolyte did not affect the 

peak height within the concentration range studied, as shown in table 7. This is 

manifested by the drop in peak height when phosphate concentration increased from 40 

mM to 100 mM, see Fig. 7. Increasing the phosphate concentration in the EDT A 

solution from 40 to 100 mM resulted in a significant drop in peak height , probably due 

to band broadening arising from excessive Joule heating at this high ionic strength. 

EDT A solutions containing low salt concentration are effective in bringing about 

complete desorption of the accumulated analyte from the inner walls. 

pH of the Debinding Electrolyte. The effect of pH of the de binding electrolyte 

was studied and the results are listed in table 8. As shown in table 8, the peak height is 

constant in the pH range investigated. This is because EDT A was the major factor that 



103 

led to the desorption of the accumulated solutes from the preconcentration capillary inner 

surface. 

TABLE8 

EFFECT OF PH OF THE DEBINDING ELECTROLYTE* 

pH Peak Height x 103 (A.U.F.S.) 

3.3 1.72 

3.8 1.88 

5.0 1.88 

6.0 1.76 

7.0 ~.88 

* Debinding electrolyte: 10 mM sodium phosphate, 30 mM EDTA, at different pH; 

Sample: 25 f.Lg/mL albumin; Other, experimental conditions same as in Fig. 30. 

Mode of Sample Introduction. Dilute samples can be introduced by either 

hydrodynamic flo,w or eletromigration. The graph in Fig. 37 shows that both injection 

modes resulted in linear relationship between the peak height and the concentration of 

the sample. So either of them can be used in quantitative analysis of dilute protein 

,samples. 

The sample volumes introduced in this study are listed jn table 9. The 

experimental data were determined by Eqn 27. The calculated value for hydrodynamic 
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Figure 37 Comparison of Sample Introduction by Hydrodynamic and Electromigration 
Modes 
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sample introduction was obtained using Poiseuille equation (Eqn 25). Since the ionic 

strength of the electrolyte was relatively low, 11 and p were taken as those of plain water 

at 25 oc. Because the volume introduced by electromigration is greater than that by 

hydrodynamic flow, the signal obtained in the first mode was higher ~an that obtained 

by the second mode. 

TABLE9 

SAMPLE VOLUME INTRODUCED BY ELECfROMIGRATION 
AND HYDRODYNAMIC FLOW* 

Mode of sample introduction 

Hydrodynamic 

Electromigration 

*Experimental conditions are as in Fig. 37. 

Volume introduced (nL) 

Experimental 

110 

121 

Calculated 

98 

Feeding time. The duration of sample introduction determines the volume 

introduced and consequently influep.ce the amount accumulated on the walls from a 

given solution. The result of this study is shown in Fig. 38. The sample volume 

introduced as a function of time is also shown . In all cases the linear capacity of the 

capillary was not exceeded, and more accumulation on the wall can be expected. For 

samples of low concentration the amount accumulated increased slightly than with high 

concentrations as the time increased. This is expected since adsorption from dilute 
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Figure 38 Effect of Feeding Time on the Amount of Solute Accumulated 
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Preconcentration capillary: Zn(II)-IDA, etched at 300 oc, 20 em x 50 J..tm I.D.; 
Separation capilla.Ij: as in Fig 2. Binding electrolyte: 10 mM phosphate, pH 6.0; 
Debinding electrolyte: 10 mM phosphate, 30 mM EDTA, pH 6.0; Sample introduction: 
hydrodynamic, 5 min, Ah = 18 em; Detection: 210 nm. 

Figure 39. Preconcentration: and Subsequent Separation with 
Tandem Zn(II)-IDA Cap--> CZE 



solution occurs at a slower rate than with relatively concentrated sample; a diffusion 

controlled process. 

Preconcentration and Separation of Proteins 
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Metal chelate capillary has the virtue of allowing the selective concentration of a 

protein or a group of proteins from dilute samples. Indeed, metal chelate sorbents 

exhibit affinity toward proteins having electron donor groups on their surfaces. Figure 

39 shows the preconcentration of two zinc binding proteins, albumin and carbonic 

anhydrase, and subsequent separation at different concentration of both analytes. It is 

seen that both proteins can be concentrated and separated with relatively short time. 

Although large sample volume was introduced, the peaks are relatively narrow. The 

preconcentration of a group of proteins is accompanied by a competing process during 

which the protein that has the strongest affinity to the chelated metal will accumulate to a 

greater extent Therefore, it is also possible to accumulate preferentially a given protein 

from a mixture containing other proteins. 

Restoration of Capillazy Coatin~ 

Although, preconcentration capillaries can perform constantly for few days, 

aft~ prolonged use the capillary will lose some of its interactive coatings by hydrolytic 

degradation, and, consequently its capacity for preconcentration will decrease. These 

capillaries can be restored by first removing the remained coating from the walls and 

then recoating of the surface as previously described (10). As can be seen in Fig. 40, 

the performance of the capillary can be restored to its original state by this procedure. 

This is another advantage of the preconcentration capillaries. 
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Conclusions 

The on-line preconcentration method described here with capillary having 

metallic walls offers a means by which dilute sample of proteins can be analyzed by 

CZE. The metal chelate capillaries were very effective in the selective accumulation of 

detectable amounts of proteins from dilute samples. The coupled format , Zn(II)-IDA­

Cap.--> CZE, permitted the detection of 50 to 100 folds less concentrated sample than 

by CZE alon~ with concentration sensitive detectors. It also allowed simultaneous 

preconcentration and separation. 

As a means for on-line preconcentration, the metal chelate capillaries have many 

advantages, such as small sample requirement, continuous sample loading and the 

ability for quantitative analysis from dilute samples. The capillaries can be reused, since 

the restoration of a deteriorated metallic tube can be easily and reproducibly performed 

and do not involve an extensive labor. 
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