
FORMALIZATION AND COMPARISON OF TWO QUERY
; .

EVALUATION METHODS IN VERY LARGE

FULL-TEXT DATABASES

By

RODNEYLEEBARNETI ,,
Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the degree of
MASTER OF SCIENCE

December, 1991

Olrlahoma State flriiv. library

FORMALIZATION AND COMPARISON OF TWO QUERY

EVALUATION METHODS IN VERY LARGE

FULL-TEXT DATABASES

Thesis Approved:

~. ·~sA Addvivi~sor

~~

Dean of the Graduate College

11

ACKNOWLEDGEMENTS

The author thanks Dr. M. Samadzadeh for his advice, patience, and repeated

reviews of this thesis during the extended period in which it was completed. Addi

tional thanks go to TMS, Inc. for permission to use the algorithms and methods

described herein and to Art Crotzer for his professional and academic guidance. The

author thanks committee member Dr. K. M. George for his reviews of this thesis and

his academic advice. Final thanks go to committee member Dr. J.P. Chandler for

his participation and friendship.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. 1

II. FULL-TEXT RETRIEVAL CONCEPTS .. S

2.1 Document Lists .. S
2.2 Boolean Search Queries ... 8
2.3 Syntax Tree ... 9

III. QUERY EVALUATION ALGORITHMS ... 14

3.1 Cosequential Query Evaluation .. 14
3.2 Incremental Query Evaluation .. 20

IV. FORMALIZATION OF THE EVALUATION METHODS 30

4.1 Cosequential Evaluation Algorithms ... 30
4.2 Incremental Evaluation Algorithms ... 32

4.2.1 Incremental Support Algorithms ... 32
4.2.2 AOUT .. 34
4.2.3 Definition of M for the Root Node 36
4.2.4 Definition of M for the Children of OR Nodes 36
4.2.5 Definition of M for the Children of AND NOT Nodes ... 38
4.2.6 Definition of M for the Children of AND Nodes41
4.2.7 Full Definition of M43

V. COMPARISON OF THE EVALUATION METHODS45

5.1 Space Complexity .. 45
5.2 Time Complexit:y ... 48

VI. CONCLUSIONS AND FUTURE WORK ... 56

REFERENCES .. 59

iv

LIST OF TABLES

Table Page

I. A Sample Full-Text Database .. 7

II. Values of the Syntax Tree Functions for the Query in Example 3 12

III. Sample Invocation of Algorithm 1 .. 17

IV. Sample Invocation of Algorithm 2 .. 18

V. Sample Invocation of Algorithm 3 .. 20

VI. Sample Execution Trace of Algorithm 5 .. 25

VII. Sample Execution Trace of Algorithm 6 .. 26

VIII. Sample Execution Trace of Algorithm 7 .. 28

IX. Approximate Number of Steps for the Two Query Evaluation Methods50

v

LIST OF ALGORITHMS

Algorithm Page

1. Cosequential Evaluation of the OR Search Operator 15

2. Cosequential Evaluation of the AND NOT Search Operator 16

3. Cosequential Evaluation of the AND Search Opera tory 18

4. Incremental Driver Algorithm ... 23

5. Incremental Evaluation of the OR Search Operator 24

6. Incremental Evaluation of the AND NOT Search Operator 25

7. Incremental Evaluation of the AND Search Operator 27

VI

CHAPTER I

INTRODUCTION

Computers can access very large quantities of data. The compact disc (CD),

that typically holds about one hour of high quality digitized music, can hold in excess

of 600 megabytes of data when used as a computer storage medium. (CDs are called

CD-ROMs [Compact Disc-Read Only Memory] when used as a computer storage

medium.) One can collect a library of data on CD-ROMs much the same way that

one can collect music on CDs. With such large amounts of data it is necessary to or

ganize the data so that it can be retrieved efficiently. This organization can be

achieved in many different ways depending on the type of data and the type of

retrieval desired.

One method of data organization is the full-text database. A full-text

database is designed for storage and efficient retrieval of textual information. Tex

tual information is the information typically published in books and periodicals like

textbooks, journals, manuals, fictional and nonfictional literature, etc. RESEARCH

is a full-text retrieval system created by TMS, Inc. [1], [2]. This system uses the

printed book as a model for its design. When a database is opened, the first "page"

1

2

of the database is visible on the screen. One could read the database page by page, if

desired, by merely scrolling through it.

One of the key capabilities provided by RESEARCH, and other full-text

retrieval systems, is searching. RESEARCH provides this capability in the form of

Boolean-like queries using words which appear in the database as operands. The

user enters a search query. RESEARCH parses the query and builds a syntax tree

which it then uses to guide the evaluation of the query.

Query evaluation, in the context of full-text databases, is the process of find

ing the location(s) in the database which meet the criteria of the query. In RE

SEARCH, this process uses the syntax tree mentioned above and an automatically

generated index which lists the location(s) for the words in the database. The syntax

tree helps determine which lists to retrieve from the index and how to combine the

lists into a single list of locations which meet the criteria of the query.

The current method of query evaluation used in RESEARCH is called cose

quential evaluation. Another method being explored at TMS is called incremental

query evaluation. This method evaluates the same queries as the cosequential

method and produces the same results; however, it takes a more holistic approach to

the evaluation process. The incremental evaluation method uses fewer input/output

operations, but more CPU operations than the cosequential evaluation method. It

also seems more complicated than the cosequential evaluation method due to its

3

holistic approach- it is difficult to visualize how the method works by analyzing the

components in isolation.

One reason to study the incremental query evaluation method is that it may

evaluate queries more efficiently than the cosequential query evaluation method.

Other methods of optimizing query evaluation have been studied. Most of the re

search in query optimization emphasizes query evaluation in relational database sys

tems; however, some of the methods can be applied to full-text retrieval systems.

[11] gives a survey of general query optimization methods. [8], [10], [13], [14], [16],

and [17] describe particular methods of optimizing query evaluation. One common

approach is to restate the query to minimize redundancy within the query or to mini

mize secondary storage access costs. [7], [9], and [18] focus on the optimization of ac

cess to secondary storage.

Another form of query optimization being studied is increasing the effective

ness of the query evaluation process in terms of precision (a measure of the number

of documents in the answer set which are relevant) and recall (a measure of the num

ber of relevant documents found). [15] defines a method of generalizing the search

operators. [12] empirically compares several different methods in terms of perfor

mance and effectiveness.

In this thesis, the cosequential query evaluation method and the incremental

query evaluation method are formalized and the computational differences between

the two methods are discussed. Chapter II introduces the concepts of a full-text

4

retrieval system that are relevant to searching. Chapter III discusses the cosequential

and incremental query evaluation methods. Chapter IV presents a formalism for

analyzing the two query evaluation methods. Chapter V contains the comparison of

the two query evaluation methods. Chapter VI contains the conclusions of this thesis

and some areas of future work.

CHAPTER II

FULL-TEXT RETRIEVAL CONCEITS

2.1 Document Lists

This section discusses document lists, the components of document lists, and

the ordering of document lists. A full-text database is composed of a number of

documents. These documents are numbered in ascending order starting with one.

The set D = { 1, 2, ... , n } , n > 0 represents all valid document numbers for a par

ticular full-text database. (The terms database and full-text database will be used in

terchangeably henceforth.) Each document contains one or more lexical units (i.e.,

words). The lexical units are numbered by their offset from the beginning of the

documents containing them. For each document, the first lexical unit has an offset of

one, the second, two, etc. The set 0d = { 1, 2, ... , I d I } , d E D, represents all valid

lexical unit offsets for document number d and I d I is the number of offsets con

tained in document number d.

A point on notation is in order here. The symbol d stands for both a natural

number (a document number) and a set (a document comprised of lexical units).

Hence, it is meaningful to refer to both a document number d in a list of documents

5

6

and the size of document number d or I d 1. Example 1, which follows shortly,

clarifies this point.

Combining a document number d and a lexical unit offset o into an ordered

pair (d,o) allows each lexical unit to be identified uniquely. Such an ordered pair is

called a database location. A special database location (oo,oo) is used as an end-of-list

marker. The value of oo is chosen so that oo > d and oo > o for all document num-

bers d and lexical unit offsets o. The set L = { (d,o) I dE Dando E 0d} u { (oo,oo)}

represents all database locations for a database.

A list of database locations which includes (oo,oo) is called a document list.

(This is somewhat of a misnomer since the list also contains lexical unit offsets.) The

set DL = { dl u (oo,oo) I dl ~ L } represents all document lists for a particular

database. Note that { (oo,oo) } is the empty document list. It is produced by the query

evaluation algorithms when a lexical unit that does not appear in the database is used

in a search query or when there are no locations that satisfy the criteria of a search

operator in a query.

Many of the uses of document lists presented here assume an ordering of the

database locations within the document lists. This ordering is defined as follows. Let

h, l2 E L where h = (d1,01) and l2 = (d2,o2), then

(i) h < l2 if and only if either d1 < d2, or d1 = d2 and 01 < o2;
(ii) It = l2 if and only if d1 = d2 and 01 = o2; and, by exclusion,
(iii) h > l2 if and only if either d1 > d2, or d1 = d2 and 01 > 02.

TABLE I

A SAMPLE FULL-TEXT DATABASE

Document Number

Example 1

1

2

3

4

5

6

7

8

9

10

Lexical Unit Offset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- - - - W - X - - - - - - - W -

- - w - - -

X y Z W X - - - -

- X - - - - z - - - - - - -

w y - w -
X - y
- w z -

- - - - - y

- - - X

7

TABLE I contains a sample contrived full-text database. Letters w, x, y, and z

each represent the position of a particular lexical unit and "-" represents the position

of other lexical units. A blank position indicates that no lexical unit exists at that

location. For this sample database, D = { 1, 2, ... , 10 }, there are ten sets oflexical

unit offsets 01 = { 1, 2, ... , 16 }, ... , 010 = { 1, 2, ... , 13 }, and L= { (1,1), ... , (1,16),

(2,1), ... , (2,6), ... , (10,1), ... , (10,13), (oo,oo) }. Four sample document lists, each of

which contains all of the locations of a particular lexical unit, are

dlw = { (1,5), (1,15), (2,3), (3,4), (5,1), (5,11), (7,2), (oo,oo) },

dlx = { (1,7), (3,1), (3,5), (4,2), (6,1), (9,4), (oo,oo) },

dly = { (3,2), (5,9), (6,5), (8,8), (oo,oo) }, and

dlz = { (3,3), (4,7), (7,3), (oo,oo) }.t

2.2 Boolean Search Queries

8

Boolean search queries contain lexical units, which actually appear in the

database, intermingled with search operators to form an infix search expression.

These queries allow the user to indicate which documents he/she desires by describ-

ing the lexical units that these documents should contain and the interrelationships

among those lexical units.

Full-text retrieval systems use several different Boolean query operators.

Most of the operators are based on Boolean logic which is the namesake of these

queries. For example, the search query "income and tax" would result in a list of

documents in the database which contain both the lexical unit "income" and the lexi-

cal unit "tax."

Only the AND, OR, and AND NOT search operators are discussed in this

thesis. The formal definitions of these operators follow. These definitions assume

that dh, dh E DL.

t Note that the document lists are listed in increasing order according to the ordering

relation. This will be the convention henceforth.

9

AND : DL x DL-+ DL is defined by AND (db, dh) = { (d;,o;) I (di,oi) E dh

and 3 (dj,Oj) e dh such that d; = dj} u { (dj,Oj) I (dj,oj) e dh and 3 (d;,o;) E dh such

thatdj = d;}

OR : DL x DL-. DL is defined by OR (dh, dh) = dh u dh

AND NOT: DL x DL-. DL is defined by AND NOT (db, dlz) = { (d;,o;) I

(d;,o;) e dh and~ (dj,Oj) e dh such that di = dj} u { (oo,oo) }

Example 2

In the following examples, dlw, dlx, dly, and dlz are as defined in Example 1.

AND NOT (dlw, dlx) = AND NOT ({ (1,5), (1,15), (2,3), (3,4), (5,1), (5,11), (7,2),

(oo,oo)}, { (1,7), (3,1), (3,5), (4,2), (6,1), (9,4), (oo,oo)}) = { (2,3), (5,1), (5,11), (7,2),

(oo,oo)}

OR (dly, dlz) = OR ({ (3,2), (5,9), (6,5), (8,8), (oo,oo) }, { (3,3), (4,7), (7,3), (oo, oo) })

= {(3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8), (oo,oo)}

AND (AND NOT (dlw, dlx), OR (dly, dlz)) = { (5,1), (5,9), (5,11), (7,2), (7,3), (oo,oo)}

2.3 Syntax Tree

A syntax tree results from parsing a search query. The syntax tree is used to

guide the query evaluation process in both cosequential and incremental evaluation

methods. This section provides a formal definition of the syntax tree.

Abo and Ullman [3] provide the following definition for a tree.t

A tree Tis a directed graph G = (A, R), where A is the
set of nodes and R is the set of edges, with a specified
node r in A called the root such that

- r has in-degree 0,
- All other nodes ofT have in-degree 1, and
- Every node in A is accessible from r.

10

As an extension to the definition of a tree, we can define a binary tree BT as a

tree T such that the out-degree of any node is at most two. Each direct descendent of

a node in a BT is designated either as the left child or the right child of that node

such that each node has at most one left child and one right child. Unless otherwise

specified, we will refer to a binary tree as a tree.

A syntax tree ST = (BT, r, f) is a labeled binary tree BT with root r such that

a labeling function f maps each node of the BT to a type t e P, where P = {AND,

OR, AND NOT, LU} is a set of node types. The types AND, OR, and AND NOT

associated with a node indicate that the node is an internal node labeled with the ap-

propriate search operator. The type LU indicates that the node is a leaf node as-

sociated with the document list for a particular lexical unit that was specified in the

search query (see the definition of DLIST below).+

t Terminology relating to trees and directed graphs corresponds to that used in [3].

:j: Note that a node a for which f (a) = AND will be referred to as an AND node. A node

whose type is OR or AND NOT will be treated analagously. A node whose type is LU will

be referred to as a leaf node.

11

Several functions are used in the ensuing discussion as a notational con-

venience. The definitions given below assume that BT = (A, R) is a binary tree with

root node r and a, b E A.

LEFT: A-+ A is defined as LEFT (a) = b where b is the left child of a if a

has a left child and nil otherwise.

RIGHT: A-+ A is defined as RIGHT (a) = b where b is the right child of a if

a has a right child and nil otherwise.

PARENT : A -+ A is defined as PARENT (a) = b where b is the direct ances-

tor (immediate predecessor) of a if a :;t: rand nil if a = r.

SIB : A -+ A is defined as

{
nil,

SIB (a) = LEFT (PARENT (a)),
RIGHT (PARENT (a)),

if a= r
if RIGHT (PARENT (a)) =a
if LEFT (PARENT (a))= a

DLIST : A -+ DL is defined as DLIST (a) = dl, such that dl = 0 if

f (a) :;t: LU and dl is the document list associated with node a otherwise.t

t An implementation of either the incremental or cosequential search evaluation method
would probably make this association indirect by associating a string containing a lexical

unit with each node of type LU. The lexical unit would then be used as a key to retrieve a

document list from an index containing one such document list for each lexical unit in the

database. The document list would contain the locations of all occurrences of the lexical

unit in the database.

12

Example3

Consider the search query "(wand not x) and (y or z)." The syntax tree ST for

this query would be ST = (BT, r, f), BT = ({r, u, v, w, x, y, z }, { (r,u), (r,v), (u,w),

(u,.x), (v,y), (v,z) }) with f (r) = AND, f (u) = AND NOT, f (v) = OR, and f (w) =

f (x) = f (y) = f (z) = LU. Also, u, w, andy are designated as left children and v,x,

and z are designated as right children.

TABLE II gives the values of the LEFT, RIGHT, PARENT, SIB, and DLIST

functions, which were defined earlier in this section, for the syntax tree ST. Note that

the document lists dlw, dlx, dly, and dlz are as defined in Example 1.

TABLE II

VALUESOFTHESYNTAXTREEFUNCTIONSFORTHEQUERYIN
EXAMPLE3

Function

Node LEFT RIGHT PARENT SIB DLIST

r u v nil nil nil

u w X r v nil

v y z r u nil

w nil nil u X dlw

X nil nil u w dlx

y nil nil v z dly

z nil nil v y dlz

13

This chapter has defined the concepts which are shared by the cosequential

query evaluation method and the incremental query evaluation method. These con

cepts are necessary for further discussion of these methods. The concepts defined in

clude document lists which represent sets of lexical units within a full-text database,

Boolean search queries which identify a set oflexical units to retrieve from a full-text

database, and syntax trees which represent Boolean search queries. The next chapter

uses these concepts to discuss the algorithms used in the two query evaluation

methods.

CHAPTER III

QUERYEVALUATIONALGORITHMS

Both the cosequential and the incremental query evaluation methods traverse

the syntax tree during the evaluation process. The cosequential method performs a

single postorder traversal while the incremental method performs a large number of

partial traversals. Each method uses a different algorithm for each of the four types

of nodes in the syntax tree and when a node is encountered, the algorithm for that

type of node is invoked to perform the next step in the evaluation process. Because a

syntax tree can contain more than one node of any one type, there does not exist a

one-to-one relationship between the nodes and algorithms; hence, the relationship

between nodes and algorithms will be referred to as an association.

This chapter describes both of the query evaluation methods and the algo

rithms of which they are comprised. The algorithms presented here are based on al

gorithms developed by the technical staff at TMS, Inc. [1], [2].

3.1 Cosequential Query Evaluation

In the cosequential query evaluation method, each of the search operators

takes two input document lists and produces a single output document list. The input

14

15

document lists are produced by another search operator or are retrieved from some

type of inverted index file which allows access to the document lists via a lexical unit

key. The two input document lists are processed sequentially and in combination to

produce the output document list. This type of combined sequential operation is

called a cosequential operation [6]. Using this definition of the term cosequential,

the algorithms which implement the search operators are called cosequential query

evaluation algorithms and the search evaluation process is called cosequential query

evaluation. This section discusses the cosequential query evaluation algorithms.

Each cosequential query evaluation algorithm requires two node identifiers as

input. These node identifiers identify the children of the node which is associated

with the current invocation of the cosequential algorithm and allow the algorithm to

invoke (recursively) the algorithms associated with the children of the node to pro-

duce the two complete document lists which the algorithm then processes to produce

a third complete document list. In the algorithms presented in this section, the in

vocation of an algorithm is indicated by the use of the function GetDList : A3 -+ DL.

The value of GetDList (a, b, c), a, b, c e A is the document list produced by whatever

algorithm is associated with node a given the children b and c of a as input.

ALGORITHM 1.

Cosequential evaluation of the OR search operator.

Input. The input consists of two node identifiers a, b e A.

Output. The output is a single document list dl containing all locations in the
document lists produced by the algorithms associated with the input nodes which

meet the criteria of the OR search operator.

Method.

Step 1. Let d1a = {h, h, ... , lr} = GetDUst (a, LEFT (a), RIGHT (a)) with

lr = (co, co).

Step2. Letdlb = {m1,m2, ... ,ms} = GetDUst(b,LEFf(b),RIGHr(b))
with ms = (co, co).

Step 3. Initialize ito 1,j to 1, and dl to 0.

16

Step 4. H li < mj, "let dl = dl u { li} and i = i + 1, repeat Step 4 untilli ~ mj.

Step 5. H li > mj, let dl = dl u {mj} andj = j + 1, repeat Step 5 untilli s mj.

Step 6. H li "" mj, go to Step 4.

Step Z Let dl = dl u {I;}.

Step 8. H li"" (co,co), let i = i + 1 andj = j + 1. Go to Step 4.

Step 9. End of algorithm.

Example4

TABLE ill illustrates an application of Algorithm 1 by showing the sequence

of steps which affect 1;, mj, and dl during the cosequential evaluation of the node v in

the syntax tree given in Example 3 in Chapter II. To reduce clutter, steps that do not

affect li, mj, or dl are not shown.

ALGORITHM 2.

Cosequential evaluation of the AND NOT search operator.

Input. The input consists of two node identifiers a, b e A.

Output. The output is a single document list dl containing all locations in the
document lists produced by the algorithms associated with the input nodes which
meet the criteria of the AND NOT search operator.

TABLE III

SAMPLE INVOCATION OF ALGORITHM 1

Step 1; mj dl
3 (3,2) (3,3) 0
4 (5,9) { (3,2)}
5 (4,7) { (3,2), (3,3) }
5 (7,3) { (3,2), (3,3), (4,7)}
4 (6,5) { (3,2), (3,3), (4,7), (5,9) }
4 (8,8) { (3,2), (3,3), (4,7), (5,9), (6,5)}
5 (co,co) { (3,2), (3,3), (4,7), (5,9), (6,5), (7,3)}
4 (co,co) { (3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8)}
7 { (3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8), (co,co) }

Method.

Step 1. Let dla = {h, h, ... , lr} = GetDList (a, LEFT (a), RIGHT (a)) with

1; = (d;,o;) for 1 s i s rand 1r = (co,co).

Step 2. Let dlb = {m1, mz, ... , ms} = GetDList (b, LEFT (b), RIGHT (b))

with mj = (ej,pj) for 1 s j s sand ms = (co,co).

Step 3. Initialize ito 1,j to 1, and dl to 0.

Step 4. If d; < ej, let dl = dl u {1;} and i = i + 1, repeat Step 4 until d; ~ ej.

Step 5. If d; = co, go to Step 9.

Step 6. If d; > ej, letj = j + 1, repeat Step 6 until d; s ej.

Step 7. If d; = ej, let i = i + 1, repeat Step 7 until d; > ej.

Step 8. Go to Step 4.

Step 9. Let dl = dl u {(co, co)}.

Step 10. End of algorithm.

17

18

ExampleS

TABLE IV illustrates an application of Algorithm 2 by showing the sequence

of steps which affect l;, mj, and dl during the cosequential evaluation of the node u in

the syntax tree given in Example 3 of Chapter II. To reduce clutter, steps that do not

affect l;, mj, or d1 are not shown.

TABLE IV

SAMPLE INVOCATION OF ALGORITHM 2

Step l; mj d1
3 (1,5) {1,7) 0
7 (1,15)
7 (2,3)
6 (3,1)
4 (3,4) { (2,3)}
7 (5,1)
6 (3,5)
6 (4,2)
6 (6,1)
4 (5,11) { (2,3), (5,1) }
4 (7,2) { (2,3), (5,1), (5,11) }
6 (9,4)
4 (oo,oo) { (2,3), (5,1), (5,11), (7,2) }
9 { (2,3), (5,1), (5,11), (7,2), (oo,oo) }

ALGORITHM 3.

Cosequential evaluation of the AND search operator.

Input. The input consists of two node identifiers a, b e A

19

Output. The output is a single document list dl containing all locations in the

document lists produced by the algorithms associated with the input nodes which
meet the criteria of the AND search operator.

Method.

Step 1. Let dla = {h, h, ... , lr} = GetDList (a, LEFT (a), RIGHT (a)) with
[j = (d;,o;) for 1 :::; i :::; rand lr = (oo,oo).

Step 2. Let dlb = {m1, m2, ... , ms} = GetDList (b, LEFT (b), RIGHT (b))

with mj = (ej.;pj) for 1 :::; j:::; sand ms = (oo,oo).

Step 3. Initialize ito 1,j to 1, and dl to 0.

Step 4. If d; < ej, let i = i + 1, repeat Step 4 until di;::: ej. Go to Step 10.

Step 5. If d; > ej, letj = j + 1, repeat Step 5 until d;:::; ej. Go to Step 10.

Step 6. Let d = d;.

Step 7. If [j < mj, let dl = dl u {l;} and i = i + 1. Otherwise, if [j > mj, let
dl =dll u {mj} andj = j + 1. Otherwise, let dl = dl u {!;},
i = i + 1, andj = j + 1.

Step 8. If d; = d and ej = d, go to Step 7.

Step 9. If d; = d, let dlt = { l ll E dla and l 2! li and d = d; } and
dl = dl u dlt and i = i + I dlt 1. Otherwise, if ej = d, let

dlt = { l I l E dlb and l ;::: mj and d = ej}, dl = dl u dlt, and

j =j + ldltl.
Step 10. If l; :;t: (oo,oo) and mj :;t: (oo,oo), go to Step 4.

Step11. dl = dl U {(oo,oo)}.

Step 12. End of algorithm.

20

Example6

TABLE V illustrates an application of Algorithm 3 by showing the sequence

of steps which affect li, mj, and dl during the cosequential evaluation of the node r in

the syntax tree given in Example 3 of Chapter IT. To reduce clutter, steps that do not

affect 1;, mj, or dl are not shown.

TABLEV

SAMPLE INVOCATION OF ALGORITHM 3

Step li mj dl
3 (2,3) (3,2) 0
4 (5,1)
5 (3,3)
5 (4,7)
5 (5,9)
7 (5,11) { (5,1)}
7 (6,5) { (5,1), (5,9) }
9 (7,2) { (5,1), (5,9), (5,11)}
5 (7,3)
7 (oo,oo) { (5,1), (5,9), (5,11), (7,2)}
9 (8,8) { (5,1), (5,9), (5,11), (7,2), (7,3) }
11 { (5,1), (5,9), (5,11), (7,2), (7,3), (oo,oo) }

3.2 Incremental Query Evaluation

Incremental evaluation is an alternative method of evaluating a search query.

It produces locations in the final document list one at a time (i.e., incrementally),

21

rather than all at once by the evaluation of the operator at the root of the syntax tree,

as in the case of cosequential evaluation.

The syntax tree used by the cosequential evaluation is used to guide the in

cremental evaluation also; however, the order which the tree is traversed is not strict

ly postorder, nor do the incremental evaluation algorithms produce complete

document lists when they are called. A postorder traversal is completed for each

database location which meets the criteria of the query; however, there is typically

much backtracking before the traversal is completed. When an operator has at least

one database location from each of its operands, it starts processing until it has a

single database location which meets its criteria. This processing may require addi

tional database locations from one or both of its operands. When an operator has a

database location which meets its criteria, it passes that location to the operator

which is its parent in the syntax tree. When the operator which is at the root of the

syntax tree has a database location that meets its criteria, the number (i.e., the

database location) is added to the final document list for the query.

Incremental evaluation would be nothing more than a complicated way to do

the cosequential evaluation were it not for one additional feature. When an operator

calls one of its operands for additional database locations, it passes a database loca

tion to it called the minimum return value. The operand must produce a database

location which is at least as large as this minimum return value. This allows the

22

operand to skip all the database locations that are not large enough to pass the re

quirement on to its operands.

The incremental search evaluation algorithms (except Algorithm 4, the driver

algorithm) return at most one database location. This location meets the criteria of

the search operator that the particular algorithm evaluates. There are typically many

database locations which meet the criteria of a search operator. The location

returned by a particular invocation of an incremental algorithm is the smallest one

which is at least as large as an input parameter called the minimum return value (i.e.,

the value returned must be greater than or equal to the minimum return value).

Algorithm 4 drives the incremental evaluation process by repeatedly invoking

the algorithm associated with the ;root node of the syntax tree until (oo,oo) is returned.

The location or value (1,1) is used as the minimum return value in the first invoca

tion and the value (d,o + 1) is used in all subsequent invocations where (d,o) is the

location returned by the previous invocation.

Note that (d,o + 1) f/. Lifo = ldl (i.e., o represents the last lexical unit in

document number d). This is one of the reasons that minimum return values are ele

ments of a superset of L denoted L'. Another reason is that Algorithm 6, which

evaluates the AND search operator, can use the value (oo,1) as a minimum return

value when invoking a child. So, a set of potential minimum return values would be

L' = Lu { (d,o+1) I (d,o) eLando = ldl} u { (oo,1) }.

23

The invocation of a child in the incremental algorithms is indicated by the use

of a function GetN ext : A x L' -+ L, where A is the set of nodes in the syntax tree, L'

is the set of minimum return values, and L is the set of database locations. The value

of GetNext (a, lm), with a e A and lm e L', is the return value lr from the invocation

of the algorithm associated with node a with lm and all required outputs from the

previous invocation used as inputs. For example, given the syntax tree of Example 3,

GetNext (r, (5,10)) would cause Algorithm 7 (the AND algorithm) to be invoked

with the minimum return value of (5,10). In addition, the node identifiers for the

children of r (i.e., u and v) and the database locations output from the previous in-

vocation of Algorithm 7 (i.e., la, lb, and lr) would be provided as input to the current

invocation.

ALGORITHM 4.

Incremental driver algorithm.

Input. The input is a syntax tree, ST = (BT, r, f), BT = (A, R) representing

the query to be evaluated.

Output. The output is a document list dl that is the result of the evaluation of

the query represented by the syntax tree ST.

Method.

Step 1. Initialize dl to 0 and lm to (1,1).

Step 2. Let l = GetNext (r, lm).

Step 3. Let dl = dl u { l } .

24

Step 4. If l = (oo,oo), go to Step 7.

Step 5. Let lm = (d,o + 1).t I* Update the minimum return value. *I

Step 6. Go to Step 2.

Step 7. End of algorithm.

The incremental algorithms for AND, OR, and AND NOT are presented

below.

ALGORITHM 5.

Incremental evaluation of the OR search operator.

Input. The input consists of three database locations la, lb, lm e L, where la

and lb are outputs of the previous invocation of this algorithm or (-1,-1), if this is the

first invocation of the algorithm, and lm is the minimum return value, and two node

identifiers a, b e A that identify the left and right children of the node in the syntax

tree which is associated with the current invocation of this algorithm.

Output. The output consists of three database locations la, lb, lr e L, where la

and lb are values that should be input to the next invocation of this algorithm and lr is

the return value of the current invocation of this algorithm.

Method.

Step 1. If la < lm, la = GetNext (a, l m). If lb < lm, lb = GetNext (b, lm).

Step 2. If la < lb, lr = la; otherwise, lr = lb.

Step 3. End of algorithm.

t Note that each instance of 1 is an ordered pair (d,o), so Step 5 is incrementing the lexical

unit offset portion of I and assigning that value to the next minimum return value.

25

Example 7

TABLE VI illustrates the incremental evaluation of the OR search operator

in the query given in Example 3 in Chapter II by showing the input and output values

of all of the invocations of Algorithm 5 in that evaluation process. Note that the

values of the input node identifiers a and b are not shown in the table; in this case,

they are y and z, respectively.

TABLE VI

SAMPLE EXECUTION TRACE OF ALGORITHM 5

Input Output

Invocation la lb lm la lb lr

1 (-1,-1) (-1,-1) (1,1) (3,2) (3,3) (3,2)
2 (3,2) (3,3) (5,1) (5,9) (7,3) (5,9)
3 (5,9) (7,3) (5,10) (6,5) (7,3) (6,5)
4 (6,5) (7,3) (7,1) (8,8) (7,3) (7,3)
5 (8,8) (7,3) (7,4) (8,8) (oo,oo) (8,8)
6 (8,8) (oo,oo) (oo,1) (oo,oo) (oo,oo) (oo,oo)

ALGORITHM 6.

Incremental evaluation of the AND NOT search operator.

Input. The input consists of three database locations la, lb, lm E L, where la
and lb are outputs of the previous invocation of this algorithm or (-1,-1), if this is the
first invocation of the algorithm, and lm is the minimum return value, and two node
identifiers a, b E A that identify the left and right children of the node in the syntax
tree which is associated with the current invocation of this algorithm.

26

Output. The output consists of three database locations la, lb, lr E L, where la
and lb are values which should be input to the next invocation of this algorithm and lr

is the return value of the current invocation of this algorithm.

Method.

Step 1. If la < lm, la = GetNext (a, lm). If lb < lm, lb = GetNext (b, lm).

Step 2. If la = (oo,oo), lr = la. Go to Step 7.

Step 3. If da < db, lr = la. Go to Step 7.

Step 4.]fda > db, lb = GetNext (b, (da,1))

Step 5. If da =db, la = GetNext (a, (da + 1,1)).

Step 6. Go to Step 2.

Step 7. End of algorithm.

ExampleS

TABLE VII illustrates the incremental evaluation of the AND NOT search

operator in the query given in Example 3 in Chapter II by showing the input and out-

TABLE VII

SAMPLE EXECUTION TRACE OF ALGORITHM 6

Input Output

Invocation Ia lb lm Ia lb lr
1 (-1,-1) (-1,-1) (1,1) (2,3) (3,1) (2,3)

2 (2,3) (3,1) (3,1) (5,1) (6,1) (5,1)

3 (5,1) (6,1) (5,2) (5,11) (6,1) (5,11)

4 (5,11) (6,1) (5,12) (7,2) (9,4) (7,2)

5 (7,2) (9,4) (7,3) (oo,oo) (9,4) (co, co)

27

put values of all of the invocations of Algorithm 6 in that evaluation process. Note

that the values of the input node identifiers a and b are not shown in the table; in this

case, they are w and x, respectively.

ALGORITHM 7.

Incremental evaluation of the AND search operator.

Input. The input consists of four database locations la, lb, lr, lm E L, where la

and lb are outputs of the previous invocation of this algorithm or (-1,-1), if this is the

first invocation of the algorithm, lr is the return value of the previous invocation or

(-1,-1), if this is the first invocation algorithm, and lm is the minimum return value,

and two node identifiers a, b E A that identify the left and right children of the node

in the syntax tree which is associated with the current invocation of this algorithm.

Output. The output consists of three database locations la, lb, lr E L, where all

three values should be input to the next invocation of this algorithm and lr is the

return value of the current invocation of this algorithm.

Method.t

Step 1. If la < lm, la = GetNext (a, lm). If lb < lm, lb = GetNext (b, lm).

Step 2. If da = dr and la :S lb, lr = la. Go to Step 8.

Step 3. If db = dr and la > lb, lr = lb. Go to Step 8.

Step 4. If da = db, lr = min { la, lb } . Go to Step 8.

Step 5. If da < db, la = GetNext (a, (db,l)).

Step 6. If da > db, lb = GetNext (b, (da,l)).

Step 7. Go to Step 4.

Step 8. End of algorithm.

t Note that instances of Ia and lb are ordered pairs (da,oa) and (db,Ob) respectively, so

statements that modify Ia and/or lb also modify da and/or db.

28

Example 9

TABLE VIII illustrates the incremental evaluation of the AND search

operator in the query given in Example 3 in Chapter II by showing the input and out-

put values of all of the invocations of Algorithm 7 in that evaluation process. Note

that the values of the input node identifiers a and b are not shown in the table; in this

case, they are u and v, respectively.

TABLE VIII

SAMPLE EXECUTION TRACE OF ALGORITHM 7

Input Output

Invocation la lb lm lr la lb lr

1 (-1,-1) (-1,-1) (1,1) (-1,-1) (5,1) (5,9) (5,1)

2 (5,1) (5,9) (5,2) (5,1) (5,11) (5,9) (5,9)

3 (5,11) (5,9) (5,10) (5,9) (5,11) (6,5) (5,11)

4 (5,11) (6,5) (5,12) (5,11) (7,2) (7,3) (7,2)

5 (7,2) (7,3) (7,3) (7,2) (oo,oo) (7,3) (7,3)

6 (oo,oo) (7,3) (7,4) (7,3) (oo,oo) (oo,oo) (oo,oo)

This chapter defined the cosequential query evaluation method and the in-

cremental query evaluation method by presenting the algorithms which implement

each of these methods. For each method, one algorithm was presented for each of

the three search operators (the AND operator, the AND NOT operator, and the OR

operator). An additional driver algorithm was presented for the incremental evalua-

29

tion method. The next chapter formalizes the two evaluation methods defined by the

algorithms in this chapter.

CHAPTER IV

FORMALIZATION OF THE EVALUATION METHODS

The interaction among the search operators in the cosequential and in

cremental evaluation methods differ. In the cosequential evaluation method, evalua

tion of an operator has no effect on the output of the search operator(s) which are its

descendents in the syntax tree corresponding to the search query. In contrast,

evaluation of an operator can effect the outputs of its descendents in the incremental

evaluation method. This means that a comparison of the two evaluation methods

must examine the search operators in the context of the entire query rather than in

isolation. This chapter contains such an analysis.

4.1 Cosequential Evaluation Algorithms

In the cosequential evaluation method, the search operators produce a com

plete document list given two complete document lists as input. The isolated nature

of the operators in this method, as opposed to the incremental evaluation method,

makes it quite easy to describe the result of processing a node in the syntax tree

during query evaluation. The definition of OUT below is such a description. The

value of OUT, when given the root node of a syntax tree, is the document list result-

30

31

ing from the evaluation of the query which was parsed to obtain that syntax tree.

When given any other node in a syntax tree, the value of OUT will be the partial

document list resulting from the evaluation of that node and all descendents of that

node.

Let ST = (BT, r, f), BT = (A, R) be a syntax tree and a e A, then

OUT : A-. DL is defined as

DUST (a), if f (a) = LU
AND (OUT (LEFf (a)), OUT (RIGHT (a))), if f (a) = AND

OUT (a) = OR (OUT (LEFf (a)), OUT (RIGHT (a))), if f (a) = OR
AND NOT (OUT (LEFf (a)), OUT (RIGHT (a))),

if f (a) = AND NOT

Example 10

This example illustrates OUT by giving the values for the nodes in the sample

syntax tree given in Example 3 in Chapter II. The contents of the resulting sets can

be seen in Examples 1 and 2 in Chapter II.

OUT (z) = DUST (z) = dlz

OUT (y) = DUST (y) = dly

OUT (x) = DLIST (x) = dlx

OUT (w) = DUST (w) = dlw

OUT (v) = OR (OUT (y), OUT (z)) = OR (dly, dlz)

OUT (u) =AND NOT (OUT (w), OUT (x)) =AND NOT (dlw, dlx)

OUT (r) = AND (OUT (u), OUT (v))

=AND (AND NOT (dlw, dlx), OR (dly, dlz))

32

4.2 Incremental Evaluation Algorithms

In the incremental evaluation method, the search operators interact much

more frequently than in the cosequential method. The increased interaction allows

the incremental evaluation method to use a minimum return value as described in

Section 2 of Chapter ill. This minimum return value allows the constraints from the

search operator to be "passed around" the syntax tree so that those database loca

tions that do not meet the constraints can be eliminated more quickly than it is pos

sible in the cosequential evaluation method. On the other hand, this increased

interaction makes the output of each operator more difficult to define and analyze.

4.2.1 Incremental Support Algorithms

Before examining the incremental evaluation method, a brief digression is

necessary to define three functions, G, GE, and LV, which will be useful in that ex

amination. Informally, G and GE accept two document lists, each element of which

meets two criteria, and extract a set of locations from the first list. The first criterion

is that each element must be greater than, or greater than or equal to in the case of

GE, some location l in the second document list. The second criterion is that each

element must be the smallest element which meets the first criterion for l. The func

tion LV (short for loop values) returns a set containing all locations, which are be

tween pairs of locations in the second and third input sets, from the first input set.

These locations are within the range of the loops of the incremental AND and AND

33

NOT algorithms. These functions play a central role in the description of the results

of the incremental search operators. The formal definitions of G, GE, and LV fol-

low.

G : DL x DL -+ DL is defined as G (dh,dlz) = { h I h e dh and h =

min { /'1 ll'l e dh and /'1 > l2 for some lz e dlz} }.

GE: DL x DL-+ DLis defined as GE (dh,dh) = {hI he dh and h =

min { /'1 l/'1 e dh and /'1 ~ l2 for some l2 e dh} }.

LV: DL x DL x DL-+ DLis defined as LV (dh,dh,dh) = { h I he dh and

l2 < lis /3, where l2 e dh and l3 e GE (db,{ lz}) }.

Example 11

This example illustrates G, GE, and LV by giving the values of these functions

for some of the invocations in Example 15.

G { { (3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8), (oo,oo) }, { {2,3), (5,1), (5,11), (7,2),

(oo,oo) }) = { (3,2), (5,9), (6,5), (7,3) }

GE ({ (2,3), (5,1), (5,11), (7,2), (oo,oo) }, { (1,1), (5,2), (5,10), (5,12), (7,3), (7,4) })

= { (2,3), (5,11), (7,2), (oo,oo)}

LV { {3,2), (5,9), (6,5), (7,3) }, { (2,3), (5,11), (7,2), (oo,oo) }, { (5,1), (5,9), (5,11),

(7,2), (7,3), (oo,oo)}) = { (3,2)}

34

4.2.2AOUT

The output of a node in the incremental evaluation method can be viewed as

an adjusted version of the output of a node in the cosequential evaluation method.

For this reason, the output of a node in the incremental evaluation method is

denoted AOUT. The adjustment is relatively simple: all outputs, which are not at

least as large as the minimum return value input to the algorithm, are skipped. This

can be stated formally as follows.

Let ST = (BT, r, f), BT = (A, R) be a syntax tree and a E A, then AOUT :

A ... DL is defined as AOUT (a) = GE (OUT (a),M (a)) where M (a) is the set of

minimum return values provided as input to the algorithm associated with node a.

The definition of M (a) varies based on whether PARENT (a) = nil and, if

PARENT (a)~ nil, the value off (PARENT (a)). If the node is the root of the syn-

tax tree, it has no parent. Otherwise, it may have a parent of type AND, AND NOT,

• or OR. The remainder of this chapter (after the following example) defines M (a)

for each of these four cases accompanied by illustrative examples. These definitions

are followed by a summary section which gives the full definition of M (a).

Example 12

This example illustrates the definition of AOUT by giving the value of AOUT

for all of the nodes in the syntax tree given in Example 3 in Chapter II. The various

values of M which are used in this example are taken from Examples 13 through 16.

35

AOUT (r) = GE (OUT (r),M (r))

= GE ({ (5,1), (5,9), (5,11), (7,2), (7,3), (oo,oo) }, { (1,1), (5,2), (5,10), (5,12),

(7,3), (7,4) })

= { (5,1), (5,9), (5,11), (7,2), (7,3), (oo,oo)}

AOUT (u) = GE (OUT (u),M (u))

= GE ({ (2,3), (5,1), (5,11), (7,2), (oo,oo) }, { (1,1), (3,1), (5,2), (5,12), (7,3) })

= { (2,3), (5,1), (5,11), (7,2), (oo,oo)}

AOUT (v) = GE (OUT (v),M (v))

= GE ({(3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8), (oo,oo)}, {(1,1), (5,1), (5,10),

(7,1), (7,4), (oo,l)})

= { (3,2), (5,9), (6,5), (7,3), (8,8), (oo,oo) }

AOUT (w) = GE (OUT (w),M (w))

= GE ({ (1,5), (1,15), (2,3), (3,4), (5,1), (5,11), (7,2), (oo,oo) }, {(1,1), (2,1),

(3,1), (4,1), (5,2), (5,12), (7,3)})

= { (1,5), (2,3), (3,4), (5,1), (5,11), (7,2), (oo,oo)}

AOUT (x) = GE (OUT (x),M (x))

= GE ({ (1,7), (3,1), (3,5), (4,2), (6,1), (9,4), (oo,oo) }, { (1,1), (3,1), (5,1), (7,1),

(oo,1)})

= { (1,7), (3,1), (6,1), (9,4), (oo,oo)}

AOUT (y) = GE (OUT (y),M (y))

= GE ({ (3,2), (5,9), (6,5), (8,8), (oo,oo) }, { (1,1), (5,1), (5,10), (7,1), (oo,1)})

= { (3,2), (5,9), (6,5), (8,8), (oo,oo)}

AOUT (z) = GE (OUT (z),M (z))

= GE ({ (3,3), (4,7), (7,3), (oo,oo) }, { (1,1), (5,1), (7,4)})

= { (3,3), (7,3), (oo,oo) }

36

4.2.3 Definition of M for the Root Node

For the root node of the syntax tree, the set of minimum return values is

defined by the driver algorithm for the incremental evaluation (see Algorithm 4 in

Chapter III). This algorithm uses (1,1) as the initial minimum return value and then

uses the value (d,o + 1) when the previous output value of theroot node is (d,o). So

when node a is the root, M(a) = { (1,1)} u { (d,o + 1) I (d,o) E OUT (a)}.

Example 13

This example illustrates the definition of M for the root node of a syntax tree

by giving the value of M (r) for the root node r of the syntax tree given in Example 3

in Chapter II.

M (r) = { (1,1)} u { (d,o + 1) I (d,o) E OUT (r)}

= { (1,1), (5,2), (5,10), (5,12), (7,3), (7,4)}

4.2.4 Definition of M for the Children of OR Nodes

For the children of an OR node, the definition of M is based on Algorithm 5

given in Chapter III. Both children are treated equally by the algorithm, so a single

definition of M applies to both children. M is composed of two disjoint sets for these

children. The first component of M for a child of an OR node is generated by Step 1

of the initial invocation of Algorithm 5 for the OR node. This component is due to

the initial conditions of the incremental algorithms. Namely, la is initialized to (-1,-1)

37

and the first minimum return value passed to the algorithm is always (1,1). This

means that lm > Ia on entry to the first invocation of the algorithm, which in turn

means that Step 1 will pass lm on to the child of the OR node. Thus, the first com-

ponent ofM is { (1,1) }.

The second component of M is also generated by Step 1 of Algorithm 5. This

step invokes the child of the OR node with lm as the minimum return value when

1m > Ia; however, since the invocation replaces Ia with a new value, only the first

lm > Ia will be used as a minimum return value for the child a. In other words, if

f (PARENT(a)) = OR for some node a, then for each IE OUT(a) only the smallest

element of M(PARENT(a)) that is larger than I is also an element of M(a). So the

set G (M (PARENT (a)),OUT (a)) is the second component of M for the children of

an OR node.

Example 14

This example illustrates the definition of M for nodes which are children of

OR nodes by giving the value of M (y) and M(z) where y and z are nodes in the syntax

tree given in Example 3 in Chapter II.

M (y) = { (1,1)} u G (M (v),OUT (y))

= { (1,1) } U G ({ (1,1), (5,1), (5,10), (7,4), (oo,1) }, { (5,2), (5,9), {6,5), (8,8),

(oo,oo)})

= { (1,1), (5,1), (5,10), (7,1), (oo,1)}

M (z) = { (1,1)} u G (M (v),OUT (z))

= { (1,1)} U G ({(1,1), (5,1), (5,10), (7,1), (7,4), (oo,1)}, {(3,3), (4,7), (7,3),

(oo,oo)})

= { (1,1), (5,1), (7,4)}

4.2.5 Definition of M for the Children of AND NOT Nodes

38

For the children of an AND NOT node, the definition of M is based on Algo-

rithm 6 given in Chapter Ill This algorithm treats the left and right children of the

node to which it is associated differently, resulting in different definitions of M for

the two children. For the left child M is composed of two disjoint sets, and for the

right child it is composed of three disjoint sets.

Algorithm 6 always returns a value Ia. The minimum return value 1m is always

greater than the return value lr of the previous invocation, or greater than (-1,-1)

when there is no previous invocation, thus lm > Ia at the beginning of each invoca-

tion of Algorithm 6. Therefore, lm is always passed to the left child by Step 1 of Algo-

rithm 6. So, the first component of M for the left child a of an AND NOT node is M

(PARENT (a)).

The second component of M for the left child of an AND NOT node is

generated by Step 5 of Algorithm 6. This step invokes tbe left child when Ia = (d,o)

and lb = (d,o') for some document number d. The minimum return value used in

this invocation is (d + 1,1) so that la will be replaced by the smallest value in OUT (a)

which has a larger document number. Step 5 is executed in a loop which begins with

la > lm and lb > lm and ends when la e OUT (PARENT (a)); however, Step 5 is not

39

executed if la = (oo,oo). Taking this all into consideration, one can see that the fol

lowing set is the second component of M for the left child of an AND NOT node:

{ (d + 1,1) I d ;e oo and for some o, o' E 0d, (d,o) E LV (OUT (a), G (OUT (a),

M (PARENT (a))), OUT (PARENT (a))) and (d,o') E LV {OUT (SIB (a)),

G (OUT (SIB(a)), M (PARENT (a))), OUT (PARENT (a)))}.

The first component of M for a right child of an AND NOT node is { (1,1) }

due to the initial conditions for the incremental algorithms. This component and the

reasoning for it are the same as the first component of M for the children of an OR

node (see Section 4.2.4).

The second component of M for a right child b of an AND NOT node is

generated by Step 1 of Algorithm 6. On entry to Algorithm 6 (except for the first in

vocation that is part of the initial conditions discussed above), lb E GE (OUT (b),

{lp}) where lp is the return value from the previous invocation of the algorithm (lr at

the end of that invocation). Also, lm E G (M (PARENT (b)), {lp}). If lm > lb, then

Step 1 will invoke child b with lm as the minimum return value. So, the second com

ponent of M is { lm I lm E G (M (PARENT (b)), {lp}), for some lp E OUT

(PARENT (b)) and lm > lb for lb E G (OUT (b), {lp}) }.

The third component of M for the right child of an AND NOT node is

generated by Step 4 of Algorithm 6. This step invokes the right child with (da,1) as

the minimum return value when da >db, where la = (da,oa) and lb = (db,Ob). Note

that only the first la which meets this condition will be used to generate a minimum

40

return value (da,1). Step 4 is executed in a loop which begins with Ia E GE (OUT(a),

{lm}) and lb E GE (OUT (b), {lm}), and ends with Ia E GE(OUT (PARENT (a)),

{1m}). This can be restated formally by the following definition of the set which is

the third component of M for the right child b of an AND NOT node: { (d,1) I d ¢

co, and for some o E 0d, (d,o) E OUT (SIB (b)) and lm s (d,o) s lp for some 1m EM

(PARENT (b)), and lp E G (OUT (PARENT (b)), {1m}), and d > d' for some (d',o')

E OUT (b) such that (d',o') ~1m and ;t (d",o") E OUT (SIB (b)) such that d" > d' and

(d",o") < (d,o) }.

Example 15

This example illustrates the definition of M for nodes which have AND NOT

nodes as parents by giving the value of M for the nodes w and x in the syntax tree

given in Example 3 in Chapter II.

M (w) = M (u) u { (d+ 1,1) I d ¢co and for someo, o' E 0d, (d,o) E LV

(OUT (w), G (OUT(w), M(u)), OUT(u)) and (d,o') e LV (OUT (x), G (OUT (x)),

M(u))), OUT(u)) }

= { (1,1), (3,1), (5,2), (5,12), (7,3)} u { (2,1), (4,1)}

= { (1,1), (2,1), (3,1), (4,1), (5,2), (5,12), (7,3)}

M (x) = { (1,1)} u {1m lim E G (M (u), {lp}) for some lp E OUT (u) and

lm > Ia for Ia E G (OUT (x), {lp})} u { (d,1) I d ¢ co and for some o E 0d, (d,o) E

OUT (w) and lm s (d,o) s lp for some lm EM (u) and lp E G (OUT (u), {lm}) and

d > d' for some (d',o') E OUT (x) such that (d',o') ~ lm and ;t(d",o") E OUT (w)

such that d" > d' and (d",o") < (d,o) }

= { (1,1) } u 0 u { (1,1), (3,1), (5,1), (7,1) }

41

= { (1,1), (3,1), (5,1), (7,1)}

4.2.6 Definition of M for the Children of AND Nodes

For the children of an AND node, the definition of M is based on Algorithm 7

given in Chapter III. Both children are treated equally by Algorithm 7, so the same

definition applies to both nodes. M is composed of three disjoint sets for these

children. The first component of M is { (1,1) } due to the initial conditions for the

incremental algorithms. This component and the reasoning for it are the same as the

first component of M for the children of an OR node (see Section 4.2.4).

The second component of M is generated by Step 1 of Algorithm 7. On entry

to Algorithm 7 (except for the first invocation that is part of the initial conditions dis

cussed above), la E GE (OUT (a), {lp}) where lp is the return value from the pre

vious invocation of the algorithm (lr at the end of that invocation) and a is either of

the children of the AND node. Also, lm E G (M (PARENT (a)), {lp}). Iflm > la,

then Step 1 will invoke child a with lm as the minimum return value. So, the second

component of M is { lm llm E G (M (PARENT (a)), {lp}), for some lp E OUT

(PARENT (a)) and lm > la for la E G (OUT (a), {/p}) }.

The third component of M for a child of an AND node is generated by either

Step 5 or Step 6 of Algorithm 7 depending on whether the child is the left child or

right child, respectively. The two children are treated identically, so, without loss of

generality, we can consider only node a, the left child of an AND node. In this case,

42

Step 5 invokes the algorithm for node a any time da < db, or equivalently la < lb,

since Step 4 catches the case where da = db. Note that only the first value of lb which

is larger than la will cause Step 5 to invoke the node a. In other words, only

lb E G (OUT (SIB (a)), { la}) is used or, in general, only the set G (OUT (SIB (a)),

OUT (a)) can provide a location (d,o) which will be used to provide a minimum

return value of (d,1) to node a. Step 5 is executed in a loop which begins with

la E GE (OUT (a), {lm}) and lb E GE (OUT (SIB (a)), {lm}) for some lm E M

(PARENT (a)), and ends with la E OUT(PARENT (a)) or lb E OUT (PARENT(a)).

The function LV selects values which are between an upper bound and a lower

bound from one set, so the third component of M is the set { (d,1) I for some o E

0d, (d,o) E LV (G (OUT (SIB (a)), OUT (a)), GE(OUT(a), M (PARENT (a))),

OUT (PARENT (a)))}.

Example 16

This example illustrates the definition of M for the children of AND nodes by

giving the value of M for the nodes u and v in the syntax tree given in Example 3 in

Chapter II.

M (u) = { (1,1)} u {Ill E G (M (r), { lp}) for some lp E OUT (r) and 1 > la for

la E GE (OUT (u), {lp})} u { (d,1) I for some o E 0d, (d,o) E LV (G (OUT (v),

OUT (u)), GE (OUT (u), M (r)), OUT (r))}

= { (1,1} u {Ill E G ({ (1,1), (5,2), (5,1), (5,12), (7,3), (7,4) }, { lp}) for

some lp E { (5,1), (5,9), (5,11), (7,2), (7,3), (8,8), (oo,oo)} and 1 > la for la E

43

GE({(2,3), (5,1), (5,11), (7,2), (oo,oo) }, {/p})} u { (d,1) I forsomeo E 0d, (d,o) E

LV (G ({ (3,2), (3,3), (4,7), (5,9), (6,5), (7,3), (8,8), (oo,oo) }, { (2,3), (5,1), (5,11),

(7,2), (oo,oo) }), GE ({ (2,3), (5,1), (5,11), (7,2), (oo,oo) }, { (1,1), (5,2), (5,10), (5,12),

(7,3), (7,4)}), { (5,1), (5,9), (5,11), (7,2), (7,3), (oo,oo)}) }

= { (1,1) } u { (5,2), (5,12), (7,3) u { (3,1)}

= { (1,1), (3,1), (5,2), (5,12), (7,3)}

M (v) = { (1, 1) } u { l ll E G (M (r), { lp }) for some lp E OUT (r) and l > la for

la E GE (OUT (v), {lp})} u { (d,1) I for some o E 0d, (d,o) E LV (G (OUT (u),

OUT (v)), GE (OUT (v), M (r)), OUT (r))}

= { (1,1)} U { (5,10), (7,4)} U { (5,1), (7,1), (oo,1)}

= { (1,1), (5,1), (5,10), (7,1), (7,4), (oo,1)}

4.2.7 Full Definition of M

The preceding definitions are summarized in the following complete defini-

tion of M. From Section 3.2, L' is the domain of the minimum return values. Let

L' ST = (BT, r, f), BT = (A, R) be a syntax tree and a E A, then M : A ~ 2 , where

2L' is the power set of L', is defined as

(i) if a = r,
M (a) = { (1,1)} u { (d,o + 1) I (d,o) E OUT (a)};

(ii) iff (PARENT (a)) =OR,
M (a) = { (1,1)} u G (M (PARENT (a)), OUT (a));

(iii) iff (PARENT (a)) =AND NOT and LEFT (PARENT (a)) =a,

44

M (a) = M (PARENT (a)) u{ (d+ 1,1) I d ~co and for some o, o' e 0d,

(d,o) e LV (OUT (a), G (OUT (a}, M (PARENT (a))),

OUT (PARENT (a))) and (d,o') e LV (OUT (SIB ((a)),

G (OUT (SIB (a)), M (PARENT (a)}}, OUT (PARENT (a))) }; and

(iv) iff (PARENT (a)) = AND NOT and RIGHT (PARENT (a)) = a,
M (a) = { (1,1)} u {1m lime G (M (PARENT (a)), {lp}) for some
lp E OUT (PARENT (a)) and lm > Ia for Ia E G (OUT (a), {lp})} u
{ (d,1) I d ~co and for some o e 0d, (d,o) e OUT (SIB (b)) and
1m s (d,o) s lp for some 1m e M (PARENT (b)) and lp e
G (OUT (PARENT (b)}, {lm}) andd > d' for some (d',o') e OUT (b)
such that (d',o') ~ lm and ;l(d",o") e OUT (SIB (b)} such that d" > d'
and (d",o") < (d,o) };

(v) iff (PARENT (a)) = AND,
M (a) = { (1,1)} u {1m lime G (M (PARENT (a)), {lp}) for some
lp E OUT (PARENT (a)) and Ln > Ia forla E G (OUT (a), {lp}}} u

{ (d,1) I for some o e 0d, (d,o) e LV (G (OUT (SIB (a}}, OUT (a)),

GE (OUT (a), M(PARENT (a))), OUT (PARENT (a))) }.

This chapter formalized the cosequential query evaluation method and the in-

cremental query evaluation method. Namely, the outputs of each of the algorithms

in each of the methods were formally defined for a given syntax tree representing a

query of a full-text database. For the incremental method, this definition required a

rather extensive definition of the set of minimum return values for a given query.

The next chapter uses the formalisms provided in this chapter and the algorithms

defined in Chapter III to compare the cosequential query evaluation method to the

incremental query evaluation method.

CHAPTERV

COMPARISON OF THE EVALUATION METHODS

This chapter compares the cosequential and incremental query evaluation

methods by analyzing their space and time complexities.

5.1 Space Complexity

The query evaluation algorithms require a constant amount of space for code,

instance variables, stack frames, etc. This space is dependent upon the computing

environment in which the algorithms are executed, but it is relatively minor in quan

tity and it is asymptotically insignificant.

The major dynamic space utilization is in the input and output document lists.

Both query evaluation methods take the same input document lists at the level of the

leaf nodes in the syntax tree and produce the same output document lists from the

root node. This leaves only the internally generated document lists for comparing

the space utilization of the two methods.

Let ST = (BT, r, f), BT = (A, R) be a syntax tree. From Section 4.1, the

document list generated from a cosequential algorithm for syntax tree node a is

45

46

OUT (a). Thus S = L I OUT (a) I is the total number of document list ele
aEA

ments produced during the cosequential evaluation of the syntax tree ST. As a

result, an upper bound for the space complexity of the cosequential evaluation

method is O(S - I OUT(r) I) in terms of the number of document list elements stored.

This approximation assumes that none of the space used to store document lists is re-

used during the evaluation process.

A more accurate approximation for the space complexity requires that the re-

use of space be accounted for. Consider a path p = (a1, a2, ... , an) in the syntax tree

ST with a1 = r and n ;;=:: 1. Such a path represents a state of the query evaluation

process. In this state nodes a1 through an-1 are pending and node an is active (i.e., it

has received all its required input and is about to process that input). The cosequen-

tial evaluation process performs a postorder traversal of the syntax tree (see Chapter

III). We can assume without loss of generality that the traversal proceeds in the

usual left-to-right manner. Thus, for each node a;, the output of its left child on the

path is pending (i.e., waiting to be consumed) unless that left child is the next node in

the path, viz. a;+ 1. In addition, the output of the right child of the last node in the

path, an, is pending if an is not a leaf node. The sum of the sizes of all pending output

document lists is the space utilization for the path p. Thus, the following statements

express the space utilizations for the pathp .

. _ { I OUT(LEFf(a;)) I, ifLEFf (a;)¢ ai+1 and i < n
x, - 0, if LEFf (a;) = a;+ 1 and i < n

s' = { IOUT(LEFf(an))l + IOUT(RIGHT(an))l, iff(an) ~ LU
0, if f(an) = LU

s = s' + ~
1 s i < n

x· l

47

Now, let P = {p1, pz, ... , pm} be the set of all paths from the root r to the

leaves of the syntax tree ST. Let S = max {Sl, sz, ... , sm}, where s; is the space utiliza-

tion for path p;, be the space utilization for the syntax tree ST. The space utilization

for the cosequential evaluation of the syntax tree is then O(S).

Each of the incremental query evaluation algorithms produces a single output

value; hence the space complexity for the incremental evaluation method is 0(I A I)

for the syntax tree ST.

Therefore, for most syntax trees the space utilization of the incremental query

evaluation method is less than that of the cosequential query evaluation method. Ex-

ceptions to this are syntax trees consisting of a single node and the case where all

input document lists consist of only the end-of-list marker (oo,oo). In the former case,

there are no internally generated document lists, and in the latter case, each internal-

ly generated document list contains exactly one value which equals the space utiliza-

tion for the incremental evaluation algorithms.

48

5.2 Time Complexity

Comparing the time complexities of the cosequential and incremental query

evaluation algorithms is more difficult than comparing their space complexities and

the results are not as clear.

One of the factors involved in time complexity analysis is input and output

processing. Some amount of input processing is required to retrieve the document

lists provided as input to the leaf nodes of the syntax tree because these document

lists will probably be retrieved from an inverted file. This amount of time is ignored

here because the inverted file is not a topic of this thesis and can be implemented in

various manners, thus making general statements about its performance impossible.

The cosequential evaluation algorithms require additional input/output

processing. Each cosequential algorithm produces a document list containing all

database locations in the input document lists meeting the criteria of the search

operator implemented by that algorithm; hence, the size of the output document list

is based on the sizes of the input document lists. When accessing a large database,

the document lists input to the query evaluation process can be quite large because

each list typically represents all occurrences of a particular word. Hence, the docu

ment lists produced by the cosequential algorithms can be quite large. In a typical

computing environment, these large document lists will have to be stored on a mass

storage device until they are consumed in a subsequent step of the evaluation. Thus,

the document lists will have to be written to a mass storage device as they are

49

produced and read from a mass storage device as they are consumed. Therefore, if

ST = (BT, r,f), BT = (A, R) is a syntax tree, then the time for input/output process-

ing in the cosequential evaluation method would be 0 (L
aEA

I OUT(a)l).

The incremental query evaluation algorithms produce a single value per in-

vocation, so there is no need to store these values on mass storage devices until they

become part of the final document list. Hence, the input/output processing time for

the incremental evaluation method is 0 (I OUT(r) I) for storing the values produced

by the root of the syntax tree. So, T 1 = 0 (L
aEA

I OUT (a) I)- 0(IOUT(r) I) or

0(L I OUT(a) I) is the difference between the input/output processing times
a EA,
a¢r

for the incremental and cosequential evaluation methods.

The other main factor in the difference in the time complexities of the case-

quential and incremental evaluation methods is the time spent executing the instruc-

tions in the algorithms. Because this time is highly sensitive to the computing

environment in which the algorithms are run and because the exact instructions

necessary are also dependent on that environment, the comparison of processing

times that follows is based on the number of steps used by the algorithms.t For the

t As with the input/output processing time comparison, the step comparison does not

include the time required to access the inverted file to obtain the document lists provided

as input to the leaf nodes of the syntax tree.

50

purposes of this analysis, a step is defined to be one function invocation (including

INPUT and OUTPUT which read or write a value), one function return statement,

one comparison with the accompanying branches (including a three-way branch), or

one assignment.

Let ST = (BT, r, f), BT = (A, R) be a syntax tree with c E A. In addition, if

f(c) ;t: LU, let a, b E A with LEFf(c) = a and RIGHT(c) = b. Let de be the num-

ber of different documents in OUT (c) and di be the number of different documents

in AOUT (c). TABLE IX shows the value of Ec and Ei, the approximate number of

TABLE IX

APPROXIMATE NUMBER OF STEPS FOR THE TWO QUERY
EVALUATION METHODS

f(c) Ec Ei

AND 2(/0UT(a)/ + /OUT(b)/ + /OUT(c)/ 2(/AOUT(a)/ + /AOUT(b)/ + di) +

+de) 4/AOUT(c)J

OR 3/0UT(c)J 5/AOUT(c)J

AND NOT 2(/0UT(a)/ + /OUT(b)/) + /OUT(c)J 2(/AOUT(a) I + /AOUT(b) /) +

3/AOUT(c)J

LU 3/0UT(c)J 2/AOUT(c)J

f(c) is the node type.

Ec is the number of steps for the cosequential evaluation method.

Ei is the number of steps for the incremental evaluation method.

51

steps required to evaluate node c using the cosequential evaluation method and the

incremental evaluation method, respectively, for each possible value of f(c).

For the sake of simplicity, some assumptions have been made in calculating

these approximations. First, the likelihood of a database location appearing in both

document lists input to an algorithm is assumed to be negligible. This assumption

forces the approximations to overestimate Ec and Ei slightly because the approxima

tions assume that each pass through the main loop of an algorithm either rejects or

accepts one database location. When the two current database locations are equal,

one pass through the loop either rejects or accepts both database locations.

A second assumption is that an optimization on the placement of the test for

the end-of-list marker has been removed from the AND and AND NOT algorithms

in both evaluation methods. This optimization allows the AND algorithms in both

evaluation methods to terminate immediately when the end-of-list marker is found in

either input list, and it also allows the AND NOT algorithms in both evaluation

methods to terminate when the end-of-list marker is found in the input list from the

left child. This optimization has a mixed effect on performance because it moves a

test from a low-use branch into the main flow of control, but it can save a large num

ber of comparisons when one input list is significantly shorter than the other (espe

cially in the incremental algorithms where the optimization augments the

performance gains resulting from the use of the minimum return value). The as

sumption that this optimization has been removed eliminates the need for an addi-

52

tional term (and complications that are entailed by that) to account for the input

values which are never accessed.

A third assumption is that the minimum return value causes only one value to

be input at the beginning of each invocation of one of the incremental evaluation al

gorithms. In some cases when the minimum return value has been determined by an

ancestor AND or AND NOT algorithm (rather than by Algorithm 4, the incremental

driver algorithm), the minimum return value will increase so much that it would be

larger than both of the current input values. When this happens, a new value must be

input from both children rather than just one or the other. This assumption causes

the approximations to overestimate in the same manner as the first assumption. One

additional step is executed, but an entire sequence of steps which normally deter

mines the fate of one input value now determines the fate of two input values.

Notice that the entries in TABLE IX are very similar for a given value of f(c)

with only two differences: some of the constants for the incremental algorithms are

greater, and the terms for all of the incremental algorithms are proportional to the

AOUT sets while the cosequential algorithms are proportional to the OUT sets.

The difference in the constants for the cases where f(c) ;t: LUis the cost of

the two extra comparisons required to implement the minimum return value used in

the incremental evaluation method. The difference between the use of the OUT and

AOUT sets represents the potential benefit of those comparisons due to smaller

input and output document lists.

53

The algorithms for the LU nodes of the syntax tree have not been discussed

previously because of their simplicitly and lack of impact on prior discussions. They

consist of an invocation of the inverted file followed by an output of the value

returned from that invocation (or a return of that value in the case of the incremental

LU algorithm). In addition, the cosequential version requires a comparison for each

value to determine when the end of the input document list has been reached. The

incremental version simply will not be invoked again once it has returned the end-of-

list marker. The foregoing discussion accounts for the expressions in TABLE IX

where f(c) = LU.

Thus, we have T 2 = 2: Ec(a) - (31 AOUT(r) I +
aEA

L Ei(a)) as the
aEA

difference between the number of steps required to execute the cosequential and in-

cremental evaluation algorithms. The term 31 AOUT(r) I is due to the incremental

driver algorithm (Algorithm 4).

Hence, the total difference between the time complexities of the cosequential

and incremental evaluation methods would beT = aT1 + {ffz, where a and {3 are

scale factors to convert the number of execution steps and input/output processing

values to an equivalent time measurement. The values of a and {3 are dependent on

the computing environment and the implementation language.

The value ofT can be computed given the values of a and {3, the syntax tree ST

and the input document list for each leaf node of ST. However, this value would be

relevant only to that particular query. To make a general statement about the rela-

54

tive performance of the evaluation methods, it is necessary to have a model of the

"typical" use of a "typical" full-text database.

The general model would include three components. First, the document lists

input to the query evaluation process must be represented. This representation must

characterize the size of input document lists in terms of the number of database loca

tions included as well as the number of documents included. It must also charac

terize the relationships among the elements of various document lists. These

characterizations are necessary for an effective representation of the size of the out

put of the evaluation algorithms relative to the input and the number of steps re

quired to produce that output.

The Zipfian distribution is commonly used to model the distribution of words

within a database ([5] for example). These models can express the relationships

among the occurrences of words within a database; however, they must be combined

with a model of the words chosen in queries before they can model the relationships

among the document lists input to a query evaluation.

A second necessary component of the model is a representation of the syntax

tree. The number and placement of the query operators within a syntax tree must be

characterized to allow the affect of the minimum return value to determined. [4] is

an example which models some of the necessary aspects for a particular online sys

tem. This model does not include any representation of the relationships among the

55

operators within a query. Also, because it is based on data from a particular online

system, it could be difficult to generalize.

The final component of the model is a representation of the computing en

vironment. This is necessary to determine the relative costs of the input/output and

step execution as well as a realistic description of the actual steps required to

evaluate a query. This is probably the easiest component of the model to define. An

existing computing environment which is capable of handling the large amount of

storage and processing necessary for evaluating queries in very large databases could

be identified and the characteristics of that environment used.

The definition of the model described is beyond the scope of this thesis be

cause of the large amounts of history data required. A conclusive comparison of the

incremental and cosequential evaluation methods requires such a model.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This thesis contains the definitions of two methods of evaluating queries in

very large full-text databases. The two methods are called cosequential evaluation

and incremental evaluation. The cosequential method is the more commonly used

method of the two. It evaluates query elements in pairs until a single document list

results. The incremental method is a method which evaluates all query elements in

an incremental fashion. Algorithms were presented to evaluate the AND, OR, and

AND NOT query operators using both evaluation methods.

A formalism was defined for the discussion of the query evaluation methods.

This formalism includes representations of the syntax tree resulting from the parsing

of the query (ST), the output of each cosequential algorithm (OUT), the output of

each incremental algorithm (AOUT), and the sets of minimum return values (M)

used in the incremental evaluation method.

An attempt was made to compare the evaluation methods asymptotically.

This comparison showed that the cosequential evaluation method can require sig

nificantly larger amounts of disk storage and input/output processing time than the

incremental evaluation method. The comparison also showed that the number of

56

57

steps executed during the que:ry evaluation was similar for both evaluation methods.

The incremental evaluation method pays a price for the use of the minimum return

values, but it also benefits from the minimum return values.

The comparison was unable to determine whether the cost of the minimum

return values outweighs the benefits because an adequate model of the query evalua

tion system (including the computing environment, the full-text database, and the

queries) was not available.

One area of future work is the definition of a theoretical model of the query

evaluation system that includes all of the described components. With that model in

hand, the complexity analysis begun here could be completed. Another area of fu

ture work is the empirical evaluation of the two query evaluation methods. This may

be easier than the definition of a full model of the query evaluation system, but it

does require history data describing a typical database and the typical queries used to

retrieve information from that database.

Another area of future work is finding query evaluation methods that improve

on the cosequential and incremental query evaluation methods presented here. One

possibility is a combination of the cosequential and incremental query evaluation

methods. It might be possible to examine a given query and use the most efficient

method for that query.

The incremental query evaluation method reduces access to secondary

storage by eliminating large intermediate results and by using the query in a holistic

58

manner to reduce the number of database locations which must be examined for

each lexical unit in the query. It would interesting to compare these reductions to

the reductions achieved by methods based on the optimizations in relational

database systems, methods that are expressly designed to optimize the secondary

storage access. (e.g., [7], [14], and [17]).

REFERENCES

[1] -,RESEARCH Retrieval Version 2.1- User's Guide, TMS, Inc., 110 W. Third,
Stillwater, OK, 74074, (1987).

[2] -,RESEARCH Database Preparation 2.1- User's Guide, TMS, Inc., 110 W.
Third, Stillwater, OK, 74074, (1987).

[3] Alfred Aho and Jeffery D. Ullman, The Theory of Parsing, Translation, and
Compiling, Volume 1: Parsing, Englewood Cliffs, New Jersey: Prentice Hall,
Inc., 1972.

[4] Michael D. Cooper, "Usage Patterns of an Online Search System," Journal of
the American Society for Information Science, Vol. 34, No.5 (May 1983),
pp. 343-349.

[5] Jane Fedorowicz, "Database Performance Evaluation in an Indexed File
Environment," ACM Transactions on Database Systems, Vol. 12, No.1 (March
1987), pp. 85-110.

[6] Michael J. Folk and Bill Zoellick, File Structures: A Conceptual Toolkit,
Addison-Wesley Publishing Company, (1987).

[7] Farshad Fotouhi and Sakti Pramanik, "Optimal Secondary Storage Access
Sequence for Performing Relational Join," IEEE Transactions on Knowledge
and Data Engineering, Vol. 1, No.3 (September 1989), pp. 318-328.

[8] Johann Christoph Freytag, "A Rule-Based View of Query Optimization," ACM
SIGMOD Record, Vol. 16, No.3 (December 1987), pp. 173-180.

[9] Jeffrey A. Hoffer and Antonio Kovacevic, "Optimal Performance of Inverted
Files," Operations Research, Vol. 30, No.2 (March/April1982), pp. 336-354.

[10] Yannis E. Joannidis and Eugene Wong, "Query Optimization by Simulated
Annealing," ACM SIGMOD Record, Vol. 16, No.3 (December 1987), pp. 9-22.

[11] Matthias Jarke and Jlirgen Koch, "Query Optimization in Database Systems,"
Computing Surveys, Vol. 16, No.2 (June 1984), pp. 111-152.

59

60

[12] Whay C. Lee and Edward A Fox, "Experimental Comparison of Schemes for
Interpreting Boolean Queries," Technical Report TR 88-27, Department of
Computer Science, Virginia Polytechnic Institute and State University, 1988,
117pages.

[13] Jane W. S. Liu, "Algorithms for Parsing Search Queries in Systems with Inverted
File Organization," ACM Transactions on Database Systems, Vol. 1, No.4
(December 1976), pp. 299-316.

[14] Anne Putkonen, ''The Order of Merging Operations for Queries in Inverted File
Systems," IntemationalJoumal ofComputerandlnformation Sciences, Vol. 9,
No.5 (October 1980), pp. 351-369.

[15] Gerard Salton, Edward A Fox, and Harry Wu, "Extended Boolean Information
Retrieval," Communications oftheACM, Vol. 26, No. 12 (December 1983),
pp. 1022-1036.

[16] Sreekumar T. Shenoy and Zebra Meral Ozsoyoglu, "Design and Implementation
of a Semantic Query Optimizer," IEEE Transactions on Knowledge and Data
Engineering, Vol. 1, No.3 (September 1989), pp. 344-361.

[17] S. B. Yao, "Optimization of Query Evaluation Algorithms," ACM Transactions
on Database Systems, Vol. 4, No. 2 (June 1979), pp. 133-155.

[18] S. B. Yao, "Approximating Block Accesses in Database Organizations,"
Communications oftheACM, Vol. 20, No.4 (April1977), pp. 260-261.

VITA'}

Rodney Lee Barnett

Candidate for the Degree of

Master of Science

Thesis: FORMALIZATION AND COMPARISON OF TWO QUERY
EVALUATION METIIODS IN VERY LARGE FULL-TEXT
DATABASES

Major Field: Computer Science

Biographical:

Personal Data: Born in Edmond, Oklahoma, February 20, 1963, son of Cliff
and Betty Barnett.

Education: Graduated from Edmond Memorial High School, Edmond,
Oklahoma, in May 1981; attended Southern Methodist University,
Dallas, Texas during the 1981-82 academic year; received Bachelor of
Science Degree in Computing and Information Sciences and
Mathematics at Oklahoma State University in May 1986; completed
requirements for the Master of Science degree in Computer Science
at Oklahoma State University in December 1991.

Professional Experience: Part-time computer programmer, TMS, Inc.,
Stillwater, OK, January 1985 to June 1986; full-time software
engineer, TMS, Inc., July 1986 to March 1991; senior software
engineer, Teltech, Minneapolis, MN, March 1991 to present.

