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CHAPTER I 

INTRODUCTION 

At the beginning of the twenty-first century, biological control will be an 

alternative way to assist the development of agriculture. Biotechnology has 

been improving during the present decade; specifically, a great deal of 

information on molecular biology and interaction between host and pathogen 

has been acquired. Recently, some bacterial biocontrol agents have been 

commercially introduced, but this field of investigation cannot compete with the 

development of numerous pesticides because the performance for biocontrol 

agents is still inadequate for substitution of chemical control. Therefore, it will 

be a remarkable achievement if biocontrol agents can be substituted for 

hazardous, synthetic chemicals which damage the natural environment. For 

this reason, the attempts to introduce a new biocontrol agent will be beneficial 

to agriculture as well as the environment. 

The purpose of this research is to investigate the potential of Pseudomonas 

cepacia as a biocontrol agent, to study the P. cepacia I host I pathogen 

interaction, and to investigate factors involved in the enhancement of biocontrol 

to protect crops from soilborne diseases. The literature review looks at the 

previous and present investigations conducted on P. cepacia as biocontrol 

agent. Moreover, the review surveys similar aspects of closely related species 

of Pseudomonas. The focus of discussion is the phytopathogenic strains; 

however, some aspects of clinical and industrial strains of P. cepacia are 

mentioned in order to develop key points about the possible hazard to human 
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health and the environment. 

Since the detection, identification, and pathogenicity of ammonia 

produced by P. cepacia will not be discussed in the literature chapter, additional 

information comparing this bacterium to other microorganisms producing 

ammonia during pathogenic interactions will be discussed. 

It is intended that'this effort find a convincing answer to the main question of 

whether or not P. cepacia is a beneficial or deleterious organism. 



CHAPTER II 

LITERATURE REVIEW 

Pseudomonas cepacia Burkholder (1950} Palleroni and Holmes 1981 

has been described in Bergey's Manual of Determinative Bacteriology as a 

member of the family Pseudomonadaceae in the kingdom of prokaryotae 

(Palleroni, 1984}. The species name, "cepacia", from the latin word caepa or 

cepa, means onion and cepacia, signifies "of or like an onion". Many strains of 

these obligate aerobic bacteria have been isolated from onion; others are either 

soil inhabitants or human pathogens (Palleroni, 1984}. 

Morphology 

This species is characterized as a gram-negative, non-spore forming 

bacterium, having straight rods with rounded ends. It is motile with polar, 

multitrichous flagella and peritrichous fimbriae which occur singly or in pairs. 

The size of the cells varies from 1 urn to 2.8 Jlm by 1.9 to 3.2 Jlm. Sometimes, 

they may contain two granules (Palleroni, 1984). P. cepacia Burkholder (1950) 

has nonfluorescent, round colonies (5 mm in diameter} on chemically defined 

media with yellow or greenish pigmentation (Fuerst and Hayward, 1969). The 

pathogenic strains that affect onion commonly produce two types of colonies: 

first, a smooth, white, rapidly growing round colony, which turns into a pin-point 

form when cultured on beef extract-peptone agar; second, a rough yellow 

colony. 

P. cepacia can grow on many substrates and has been isolated from soil, 

3 
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water, and clinical specimens. The mechanism of survival is not known (Starr, 

1981 ) .. The range of temperature for growth is from 9 C to 41 C; it does not 

grow below 4 C. Optimum temperature for growth is 30 C (Burkholder, 1950, 

Ballard, et al., 1970). 

Major Synonyms 

1. P. cepacia Burkholder,(1950): There are 35 strains of P. cepacia but 

many other isolates were finally included under P. cepacia Burk., (1950) due to 

nomenclatural priority~ This group is comprised of plant pathogens causing 

onion rot (Snell, et al., 1972; Burkholder, 1950). No strain of P. cepacia 

produces purple pigment which is unique among P. multivorans strains 

(Sneath, et al., 1981; Strainer, et al, 1966). 

2. P. multivorans Stainer, Palleroni, and Doudoroff (1966): These 

bacteria are isolated from soil (Sinsabaugh and Howard, 1975; Snell et al., 

1966). Two strains of P. multivorans are known to be human opportunistic 

pathogens. At the present time, there is no phenotypic distinction between P. 

multivorans and P. cepacia. Purple pigmentation is unique among P. 

multivorans strains (Sneath, et al., 1981; Stainer, et al., 1966). Stainer, et al., 

(1966) named P. multivorans based on nutritional, cytological, and biochemical 

similarities. These strains are nutritionally versatile in type and number of 

organic substances used as carbon sources and they are able to accumulate 

poly-beta-hydroxybutyric acid (PHB). Numerical taxonomy of pseudomonads, 

based on the utilization of substrates, indicated that there were some 

differences between P. multivorans and P. cepacia (Sneath, et al., 1981 ). 

Isolates of P. cepacia from soil, water, and clinical material cannot be 

distinguished based on phenotypical characteristics. Two strains of P. cepacia 
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and P. multivorans share a level of genetic homology. Experimental inoculation 

indicated that P. multivorans was also capable of producing onion rot (Ballard, 

et al. 1970). 

3. P. kingii Jonsson, 1970: Three strains of this group were isolated from 

clinical specimens (Jonsson, 1970). Snell et al. (1972) proposed that P. kingii 

was synonymous with P. cepacia. P. kingii E0-1 was designated as Eugonic 

Oxidizer due to their great utilization of many carbohydrates. These obligate 

aerobes are pleomorphic with wavy polar flagella and may have a lateral one. 

Pigmentation occurs on iron containing media and colonies are nonfluorescent 

(Sinsabaugh and Howard, 1975). P. multivorans and P. kingii were described 

as synonyms for P. cepacia. Based on 52 biochemical, physiological, and 

morphological characteristics, P. kingii and P. multivorans showed the following 

similarities: (a) Both show lysis (blood cell lysin) but not hemolysin destruction 

or decoloration of blood agar. Only P. multivorans has a slightly greenish area 

around the edge of "lysis" zones (Sinbaugh and Howard, 1975). (b) Both are so 

similar that additional tests such as determination of flagellar number and/or 

arrangement, and antibiotic susceptibility are required, however, their ability to 

utilize numerous carbon compounds can be used to separate these organisms 

(Sinsabaugh and Howard, 1975; Snell, et al., 1975). 

4. P. alliicola Burkholder, 1942: Is the causal agent of onion bulb rot. 

5. P. marginata Me Culloch, 1921: Causes the rot of gladiolus. lr!. vitro 

DNA hybridization of P. a/liicola and P. marginata showed a high level of 

genetic homology (Ballard, et al., 1970). 

Importance of P. cepacia as Human Pathogen 

Although P. cepacia causes stem and bulb rot of onion, this organism 
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has special significance due to the continuous isolation of this bacterium in 

clinical specimens such as blood cultures, wounds, urine, etc.; and 

miscellaneous sources such as disinfectants (e.g. Cetavlon, Savlon), 

respirators, drip-lines, and even crystal violet (Snell, et al., 1972). Thus, some 

strains become potentially dangerous human pathogens and cause serious 

diseases to compromised human patients if an opportunity to enter into the 

blood stream becomes possible (Starr, et al., 1981; Snell, et al., 1972). 

Importance of P. cepacia as Plant Pathogen 

Soft rot bacteria are associated with onion decay. Approximately half of 

the bacteria which are isolated from decaying onions or organic soils cropped 

with onion belong to the genus Pseudomonas (Kawamoto and Lorbeer, 1967; 

1974; 1976). For selective isolation of soft rot bacteria of onion, non

contaminated, fresh slices of onion were either streaked with tissue of decayed 

onion or with 0.05 to 0.2 g of soil. Infected onion slices were incubated on moist 

filter paper in a petri dish at 30 C for 1-4 days (Kawamoto and Lorbeer, 1964, 

1972, a,b). Two bacterial diseases have caused considerable losses in stored 

onion. Burkholder (1950) identified these phytopathogenic bacteria from stored 

onions as P. alliico/a, P. cepacia and some other isolates which were similar if 

not identical to P. marginalis (Kawamoto and Lorbeer, 1967). P. alfiico/a 

frequently causes disease of onion in Hungary, Au~tralia and P. cepacia occurs 

in the USA. The susceptibility of onion cultivars and several Allium sp. to these 

bacterial isolates, methods for the inoculation of bulbs and foliage, and the 

evaluation of symptoms were investigated extensively by Burkholder (Darvas, et 

al., 1985; Cather aand Dowling, 1985). In 1942, Pseudomonas a/fico/a was 

identified as the causal agent of bacterial scale rot of onion. Also, another rot of 
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onion was described by A.G. Newell (1942) as "sour skin and slippery skin". 

The infection caused by P. alliicola does not have a watery or glossy 

appearance but is slimy and yellow colored under the epidermis of the scale 

(Burholder, 1950). 

Importance of P. cepacia as an Industrial Bacterium 

Many synthetic chemicals are produced for agricultural products or are 

developed by manufacturing processes. These substances are major sources 

of pollution to the environment because they may be highly toxic, carcinogenic, 

or persistent in the nature (Kilbane, et al., 1983}. Most microorganisms have 

limited ability to degrade a large variety of synthetic chemicals. Some microbial 

populations are able to degrade these compounds in a process called 

cometabolism (Kilbane, 1983). Cometabolism was defined by Reineke and 

Knachmuss (1988), as the widespread ability of microorganisms to catalyze 

partial transformation to products that do not support growth". For example, P. 

cepacia AC11 00 has ability to utilize 2,4,5-trichlorophenoxyacetic acid as 

carbon source. The removal activity in contaminated soil is more than 99% at 1 

mg/g of soil within one week. The benefit of this process is to support the 

growth of sensitive plants when the concentration is low. No serious ecological 

disturbance occurs after application of this strain in the contaminated area 

(Kilbane, et al., 1983). In addition, halogenated aromatic compounds such as 

pesticides, herbicides, lubricants, insulators, hydraulic fluid and m~ny toxic 

wastes (e.g. nonvolatile residue of nylon manufacturing) can be metabolized 

partially or completely by P. cepacia (Ramsay, 1986; Karns, et al., 1983). The 

ability of this bacterium to degradate substances is dependent on the enzyme 

systems (Karns, et al., 1983). The industrial characteristics of P. cepacia are an 



8 

additional advantage for this organism to be more beneficial to the polluted 

environment as well as removal agent of excessive chemical residues in 

agriculture. 

Potential of P. cepacia as Biological Control Agent 

P. ceoacia As Bjocontrol Agent of Eoljar Diseases 

P. cepacia has been considered as a useful bacterium to control foliar 

diseases. This organism is able to control southern corn leaf blight in 

greenhouse trials. In addition, it has an inhibitory effect on conidial germination 

of Alternaria alternata causing tobacco Alternaria leaf spot (Spurr and Sasser, 

1982). Cercospora leaf spot of peanut and Alternaria leaf spot of tobacco have 

been successfully controlled by spraying P. cepacia obtained from corn leaves 

infected by Bipolaris maydis (Mu kerjii and Garg, 1988). Higher concentrations 

of 1 o8 cells/ml of this organism are capable of inhibiting entire conidial 

populations of A. alternata (Spurr and Sasser, 1982). 

Xanthomonas translucens and P. cepacia combined with Septoria 

nodorum were applied to flag leaves of wheat at the 50% heading stage. 

Although apparent photosynthetic rate and transpiration rate of flag leaves did 

not change statistically, P. cepacia showed a very effective antagonism against 

S. nodorum (Jones, et al., 1981 ). Spore germination of S. nodorum was 

completely inhibited 96 hrs after inoculation of wheat with P. cepacia. Both X. 

translucens and P. cepacia reduced the germ tube development of S. nodorum. 

Although Bacillus subtilis was considered as a successful biocontrol 

agent for postharvest diseases, a new bacterial isolate was identified by 

Janisiewicz (1987, a, b) as Pseudomonas strain (L-22-64). Later it was 

identified as P. cepacia. This strain was tested against Penicillium expansum 
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causing blue mold of pome fruit, and Botrytis cinerea, the causal agent of gray 

mold. ln. Yl1r.Q. tests on apples and pears demonstrated this strain of 

Pseudomonas was most effective when applied at 5x1 0 7 cells/ml on 3 mm 

deep wounded fruits, compared with the untreated fruits (Janisiewicz, 1987, a). 

Fortunately, this isolate was effective in Y1l.m as well as in .Yb£.Q. where lesion 

development was totally inhibited. The period of time apples were submerged 

in the bacterial suspensions played an important role. In fact, there was a direct 

relationship between the effectiveness of the biocontrol agent and the fungal 

spore concentrations. Higher spore concentrations of pathogen were controlled 

by higher concentration of biocontrol agent. This protection was effective even 

after subsequent reinoculation of wounds by the pathogen. Persistence of P. 

cepacia L-22-64 on fruit stored at 1 C lasted for a period of two months. Thus, 

this bacterium can control postharvest diseases of stored fruits at low 

temperature (Janisiewicz, 1987, b). 

The antagonistic effects of P. cepacia were demonstrated in vitro on 

nutrient yeast dextrose agar (NYDA) against B. cinerea and Mucor sp .. Due to 

an antifungal compound, P. cepacia significantly reduced Mucor rot lesions on 

wounded apples (Janisiewicz and Reitman, 1987). When different 

combinations of antagonistic P. cepacia (2.0x1 o5 cfu/ml) were tested on fruit 

against mixture of B. cinerea and Penicillium expansum spores (1 o4 spores/ml}, 
-

fruits were protected in excellent conditions. The development of lesions on 

apples was dependent on the quantitative relationship between the bacterial 

population and the pathogen spore concentration (Janiciewicz, 1988). 

Recently, new strains of P. cepacia have been isolated from the 

caryopses of the grass Tripsacum dactyloides with antagonistic activity against 

important corn fungal pathogens. These strains produce an antifungal 

compound with antimicrobial activity on cornmeal agar and potato dextrose 
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agar toward Trichoderma viride (Jayaswal, et al., 1990). Successful application 

of P. cepacia as a foliar biocontrol agent is due to the production of effective 

antimicrobial compounds against a wide range of foliar fungal pathogens. It is 

important to know whether or not P. cepacia can perform efficiently against 

soilborne pathogens with similar mechanism. 

P. cepacia as Biocontrol Agent of Soilborne Diseases 

Onion seeds were infested using a suspension of 1 o7 cells/ml of P. 

cepacia to determine whether the bacterium could inhibit Fusarium oxysporum 

f.sp. cepae (Kawamoto and Lorbeer, 1972, a, b). P. cepacia colonized the root 

tips, the root-stem zone, and the seed coat of onion. The number of damped-off 

seedlings was reduced compared to uninfested seed (Kawamoto and Lorbeer, 

1972, a, b). Although protection of seedlings by treating seed with antagonistic 

microorganisms against soilborne fungi has been reported many times, 

selection of P. cepacia, an onion pathogen, for the protection of onion as a host 

was an unusual situation. P. cepacia was never recommended for commercial 

planting in spite of the potential to colonize the rhizosp~ere of many plants 

(Kawamoto and Lorbeer, 1972, a, b). Among four selected biocontrol agents for 

soilborne microorganisms, P. cepacia significantly increased plant fresh weight 

of china aster in the field and reduced the incidence of Fusarium wilt (Cavileer 

and Peterson, 1985). 

Possible Mechanisms of P. cepacia 

In spite of many investigations during the past ten years, few biological 

control agents are commercially available. To achieve the goal of a more 

efficient biocontrol agent, it is essential to know the mechanisms involved in 
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biological control (Baker, 1986). Enhancement of biocontrol efficiencies, plant 

growth, and increased yield are dependent on rhizosphere colonization. 

Therefore, extensive research is required to determine the mechanisms 

involved in the increased efficiency of rhizosphere-competent organism (Ahmad 

and Baker, 1987, b). 

Boot Colonization 

Biocontrol agents should have ability to colonize along the root 

(internally or on the surface), to become distributed in natural soil near the root 

(rhizosphere), and to survive for several weeks in the presence of competitive 

indigenous microflora of the root (Waner, 1988). 

Concept of Bhizosphere Competence 

Definitions: "Bhizosphere Competence (BC)" 

According to Ahmad and Baker (1987,a), RC is "the ability of a biocontrol 

agent to grow and function in the rhizosphere". Different bacteria have various 

RC; rhizosphere incompetent microorganisms lack this ability. The term 

"Rhizosphere" refers to "the zone of activity of microbial growth in the 

immediate vicinity of a plant root" (Goldberg, et at., 1989). 

Ahmad and Baker (1987, b) developed a rhizosphere competence assay 

to determine the population density of Trichoderma harzianum along the root of 

cucumber plants. This method provided a quantitative measurement of 

rhizosphere competent fungi at the root tip. Ahmad and Baker (1987, d) found 

that mutants of T. harzianum tolerant to benomyl (1 0 ~g/g of soil) became 

rhizosphere competent. The mutants affected Pythium spp., increased seed 

germination, enhanced plant growth, and reduced pre-emergence damping-off 
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compared to the non-rhizosphere competent parent strains. Population 

densities of two RC mutants of T. harzianum were higher than wild-type strains. 

Further investigation by Ahmad and Baker (1987, c) indicated that 

competitive saprophytic ability (CSA) of two RC mutants of T. harzianum (T-95 

and T-12B) was higher than wild type Trichoderma spp. Besides benomyl 

tolerance, mutants of T. harzianum. were more efficiently able to utilize 

substrates found on the rhizoplane or root surtace and produced higher 

biomass in the presence of certain single or complex sugars compared to wild 

types (Ahmad and Baker, 1987, d). These studies on Trichoderma spp. support 

the hypothesis that RC of mutants can be explained by their ability to utilize 

cellulose substrate on or near the rhizoplane (Ahmad and Baker, 1988). 

Based on the theoretical speculations, many mechanisms might be 

involved in RC: 1) A diffusible growth factor might be induced to increase the 

rate of plant emergence. This factor could be absorbed by the rhizosphere 

competent organisms at the root tip where population densities of these 

organisms were growing (Ahmad and Baker, 1987, b). 2) Rhizosphere 

competent mutants may act as biocontrol agents against minor pathogens and 

higher emergence of seeds treated with mutants may occur (Ahmad and Baker, 

1987,d). 3) Highe_r biomass of the biocontrol agent has ecological importance 

due to the improvement of RC (Ahmad and Baker, 1988). 4) Mutations increase 

enzyme activity which results i11 higher CSA, compared to fungal pathogens 

(such as Pythium), for possession of cellulose substrate near the rhizoplane. 

Therefore, higher efficiency of cellulose degradation acts as a key factor 

increasing rhizosphere competent microorganisms. Greater enzyme production 

is directly related to CSA and efficient utilization of cellulose substrate in the 

rhizosphere or the rhizoplane (Ahmad and Baker, 1987, d). 



Problems Involved with Selection of P. cepacia 

as Biocontrol Agent. 

13 

Only Bacillus subtillis (Quantum 4000 Gustafson, Inc.) has been 

commercialized as a seed inoculant for field crops to produce healthy plants, to 

increase yield, and to control many diseases. Many rhizobacteria did not have 

consistency during field tests (Knudsen, et al., 1987). Genes regulating toxin, 

antibiotic, enzyme, and plant growth hormone production have been identified 

from soil bacteria but genes responsible for RC have not been cloned or 

identified in non-rhizobacteria. Therefore, extensive investigations on bacterial 

recombinant DNA technology should be performed to identify rhizosphere 

competent bacteria, to insert or amplify certain genes into these organisms so 

they may be developed into seed inoculants. This approach was used when 

the insecticidal delta-toxin gene of Bacillus turingiensis sub sp. kurstaki was 

transferred into Pseudomonas fluorescens strains which colonized corn roots 

(Knudsen, et al., 1987). 

One of the major problems in the development of biocontrol agents is the 

lack of correlation between laboratory and field results. There are several 

reasons for this. The initial selection of candidate isolates is based on bacterial 

antagonism toward plant pests in Yitr.Q.. The best way to screen bacterial 

isolates is based on their ability to inhibit other common rhizosphere 

microorganisms and their ability as root colonizers. Therefore, screening 

methods should be designed and developed in a way that both inhibition and 

RC characteristics can be evaluated (Juhnke, et al., 1987). Establishment of 

bacteria coated onto seeds (spermosphere competence) should be studied. 

When abundant amounts of carbohydrates and amino acids are released 

during the seed germination, bacteria will be attracted and a zone 
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{spermosphere) of increased microbial growth will be formed. After 

incorporation of bacteria at a relatively low population, any successful 

spermosphere colonizer should compete with indigenous soil microorganisms 

and colonize the root. Studies on spermosphere colonization by fluorescent 

pseudomonads shows spermosphere competence is strain specific and can be 

used to select for superior spermosphere-colonizing bacteria in field soil 

{Kloepper, et al., 1985). Another major problem for introducing biocontrol 

agents is that it is very difficult to induce a non-rhizosphere organism to become 

a part of the rhizosphere population through seed infestation {Kawamoto and 

Lorbeer, 1972, a). Selection of candidate biocontrol agents is difficult. Only 

10% of the total rhizosphere bacteria have the potential to be effective. In fact, 

there is no general relationship between the ability of a selected bacterium to 

inhibit a pathogen in mm in a laboratory experiment and suppress the disease 

caused by that pathogen in vivo in the field. Good performance of one strain on 

media by producing a large inhibition zone does not necessarily mean the best 

biocontrol agent was chosen; therefore, the relationships between irud.tm and 

in YiYQ tests should be investigated {Weller, 1988). 

Formulation of a bacterial biocontrol material is a critical factor which will 

be discussed later. The threshold population of bacteria on planting material or 

soil is important. Any reduction in the establishment and maintenance of these 

bacteria inhibit biological control. In addition, several soil edaphic factors such 

as temperature, soil moisture, pH, 'and clay content interfere with their survival 
\ 

and interaction with the pathogen {Weller, 1988). 

Pseudomonads are one of the major groups of root-colonizing bacteria 

and are dominant in the rhizosphere or rhizoplane. Recently, Pseudomonas 

spp. have shown potential as biocontrol agents. P. fluorescens and P. putida 

were applied to seeds in order to improve yield of potato, sugar beet, radish, 
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and other crops. These bacteria were named Plant Growth Promoting 

Rhizobacteria (PGPR) due to their ability to colonize roots and suppress a 

majority of plant pathogens (Weller, 1988). Pseudomonas spp. may perform 

inconsistently because they lose their ability to compete and survive naturally 

(ecological competence) in the rhizosphere. After the first isolation, bacteria are 

surrounded by a capsular exopolysaccharide (EPS), but EPS-deficient mutants 

may lose survival ability because they are predominant and fast-multiplier. In 

the case of biocontrol agents, such as fluorescent pseudomonads, repeated 

culturing can cause loss of field efficacy due to changes in cell and colony 

morphology, loss of cell surface structures or reduction in antibiotic and 

siderophore production (Weller, 1988). All these factors must be evaluated for 

P. cepacia. Researchers do not recommend onion seed infestation by f.. 

cepacja to improve seedling stand. At this point, there is more speculation than 

investigation about the mechanism by which this bacterium protects the 

seedling (Kawamoto and Lorbeer, 1976). P. cepacia is able to colonize 

adventitious root meristem. Root tips, root-stem zone and germinating seeds 

are three areas where the greatest root exudation and microbial activity occurs. 

P. cepacia may interfere with fungal pathogens either by the fungistatic effect on 

a plant pathogenic fungus such as Fusarium oxysporum f.sp. cepae or by 

antagonism. Therefore, the bacterium can have an indirect or direct action 

upon the fungus (Kawamoto and Lorbeer, 1976). Although the mechanisms of 

antibiotic production and competition of P. cepacia were reported, there is no 

evidence to prove whether or not this bacterium is capable of producing a 

phytotoxin. Phytotoxin producing biocontrol agents can not be used even 

though they may be able to produce strong antibiotics, or are highly competitive 

or are hyperparasites. 
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Production of Antibiotics by P. cepacia 

Pyrro!njtrin 

Fluorescent pseudomonads are commonly isolated from plant 

rhizospheres. Howell and Stipanovic (1979) determined that the antagonistic 

activity of a strain of fluorescent Pseudomonas was due to production of 

pyrrolnitin. Pyrrolnitrin is a product of tryptophane metabolism. Phenylpyrroles 

are also produced by this metabolic pathway (Mahoney, et a!., 1990). This 

antibiotic acts as a chemical seed treatment to prevent damping-off of cotton 

seedlings by Rhizoctonia so/ani and to inhibit the growth of several other fungi 

(e.g. Pythium ultimum) causing disease complexes (Howell and Stipanovic, 

1980). One of the advantages of this antibiotic is that it is an effective inhibitor 

without phytotoxicity, and displaces deleterious minor pathogens (Eiad and 

Chet, 1987). 

Investigations in France showed that when 47 maize seedling plants 

from two varieties were initially colonized by a small number of rhizobacteria 

including P. cepacia, population densities reached up to 1 o8 cfu/g of root. 

Among rhizobacteria, 32 isolates demonstrated antifungal activity against major 

maize pathogens. Four of these strains were P. cepacia with ability to produce 
J 

pyrrolnitrin as well as another unknown antifungal compound (Lambert, et a!., 

1987). Another strain of P. cepacia from apple leaves, capable of producing 

these antibiotic was reported by Janisiewicz and Roitman (1988). During an 

agar diffusion test, 1 mg/L of pyrrolnitrin was able to inhibit conidial germination 

of blue mold and gray mold of pears and apples. Production of the powerful 

and broad spectrum antifungal compound pyrrolnitrin, by P. cepacia, enhances 

the P.ossible commercial aspects of this biocontrol agent against postharvest 



17 

diseases of various fruits. 

Pyoluteorin 

Further studies indicated the existence of another antifungal compound, 

pyoluteorin, which was effective against P. ultimum but not R. so/ani. 

Pyoluteorin is also an effective seed protectant that may be responsible for loss 

of mobility and activity of fungi by a chelating reaction between pyoluteorin and 

soil metals. Loss of antibiotic production by fluorescent Pseudomonas spp. is 

correlated to 'the loss of their effectiveness as' plant growth promoters (Howell 

and Stipanovic, 1980). 

Pyrrole and the Derivatives 

Recently, several antibiotics derivatives produced by P. cepacia were 

isolated and characterized: pyrrole, aminopyrrolnitrin, isopyrrolnitrin, 

monodechloropyrrolnitrin, oxyprrolnitrin, 2-chloropyrrolnitrin, 3-(2-amino-3-

chlorophenyl)pyrrole, 2,3-dichloro-4-(2-amino 3-chlorophenyl)pyrrole. These 

compounds have lower antifungal activities than pyrrolnitrin. Separation and 

quantitative analysis of all phenylpyrroles were done by high-performance 

liquid chromatographic (HPLC) (Mahoney, et al., 1990). 

Altercidins 

Cepacin A (2-(2-heptanyl)-3-methyl-4-quinolinol) and cepacin B (2-(2-

nonenly)-3-methyl-4-quinolinol): were also produced by P. cepacia strains 

(Homma, et al., 1989). Altercidins antibiotics are considered to play an 

important role in the suppression or inhibition of many soilborne 

microorganisms (Homma and Suzui, 1989). 
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Xylocandjn 

Xylocandin is an antifungal cyclic peptide containing glycine, serine, 

asparagine, and an unusual amino acid, beta-hydroxytyrosine which has been 

isolated from P. cepacia strain ATCC 39277 (Bisacchi, et al., 1987). Xylocandin 

displayed anticandidal and antidermatophytic activities in~ (Meyers, et al., 

1987). 

Antibiotic production by P. cepacia is a great advantage for this 

microorganism. The variety of antibiotics produced gives a unique 

characteristic to this bacterium to be strongly antagonistic against a majority of 

plant pathogens. In addition to antibiotics, the effect of bacteriocin, 

siderophores and the possible production of plant growth regulators should be 

considered as the most important attributes of P. cepacia (Homma and Suzui, 

1989). 

Production of Bacteriocin 

Among 34 strains of P. cepacia isolated from clinical sources 'and the 

rhizosphere of plants, 6 strains were highly active bacteriocin (cepaciacin) 

producers and 20 strains had the capacity to synthesize cepaciacins of new 

types (Dodatko, et al., 1989). If P. cepacia produces cepaciacin in the 

rhizosphere of plants, in addition to other antimicrobial compounds will be more 

effective against a larger number of pathogens (Smirrov, et al., 1982). 

Production of Siderophores by P. cepacia 

A group of bacterial strains called Pseudomonas fluorescens-putida are 

able to produce iron-chelating siderophores which play important roles in 

biological control. Essentially, the siderophores are capable of complexing 
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fe+3 and making iron unavailable for competing pathogens. When iron 

chelating agents are present in the growth media, only microorganisms that can 

compete for the available iron are able to grow. The majority of these isolates 

are Pseudomonas spp., which produce a yellowish fluorescent pigment in the 

presence of high concentration of these chelators (Park, et al., 1988; Simeoni, 

et al, 1987). The siderophore-producing pseudomonads are able to colonize 

roots in high populations. This is one of the fundamental characteristics 

important for an effective biological control bacterium. Root colonization can be 

divided into two phases: the "early attraction and interaction" of bacteria with the 

roots; then, the "persistent phase", when they can utilize root exudates, multiply , 

and survive. Thus, the siderophore-producing bacteria are supported on the 

root surface because they utilize nutrients and excrete siderophores (Park, et 

al., 1988). The mechanism of biological control for the suppression of Fusarium 

wilt is due to the activity of a siderophore-producing P. putida. Iron competition 

is affected by soil minerals, pH, iron levels, siderophere production, and the 

plant root. Therefore, knowledge of these interactions and the fe+3 activity is 

very necessary for optimal biological control. By adjusting the proper iron level 

during selection of potential biocontrol agents, prediction of biological 

suppression will be possible if all other factors are known. (Park, et al., 1988). 

Cepabactin 

Siderophore producing P. cepacia ATCC 25416 produces a siderophere 

in iron-deficiency conditions. Cepabactin is a new siderophere with low 

molecular mass which is a heterocyclic analogue of catechol (Meyer, et al., 

1989). 
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Pyocheljn 

Pyrochelin is another siderophere produced by P. cepacia and clinical 

isolates which is unrelated to pyoverdine. P. fluorescens produces pyoverdine; 

therefore, it can not be produced by the siderophore system of non-fluorescent 

P. cepacia (Meyer, et al., 1989). 

Recently, Smirov, et al. (1990) studied 46 strains of P. cepacia against 

phytopathogenic fungi. The antifungal effect of the bacteria was dependent on 

the presence of Fe+3 and crude yellow and violet pigments. Addition of FeCI3 

(1 00 mg/ml) to the medium decreased the biosynthesis of these violet and 

yellow pigments. Therefore, pigments of P. cepacia have a participating role in 

iron transportation. In addition, P. cepacia strains showed a resistance to the 

synthetic iron chelating agents such as hydroxyethylene diphosphonic and 

diethylene diamino penta acetic acids. The conclusion was that a high Fe+3_ 

binding constant was involved in P. cepacia siderophore production. The 

existence of antibiotics, siderophore and other antimicrobial compounds found 

in P. cepacia increase the potential of this organism as a biocontrol agent. 

Possible Production of Volatile(s) by P. cepacia 

According to Schippers, et al., (1982) volatiles are only secondary 

products to the main mechanism of soil mycostasis. Any manipulation of these 

volatiles has potential for restricting the activity and survival of many pathogenic 

soilborne fungi (Schippers, et al., 1982). Volatiles play an important role in 

spermosphere ecology. These compounds are stimulants for the germination of 

spores, sclerotia, and the growth of bacteria and fungi as well as attractants of 

germ tubes or hyphae (Nelson, 1987). The production of volatile metabolites by 

Pseudomonas strains including P. aeruginosa, P. maltophilia and P. cepacia 
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was investigated by using an automated headspace concentrator incorporating 

a gas chromatography technique. The results showed that P. aeruginosa and 

related species produce characteristic profiles of headspace metabolites when 

the growth and analytical conditions remained constant. Automated volatile 

analysis provides a rapid detection for the identification of pseudomonads since 

conventional bacteriological tests require at least 24 hours or more for reliable 

result (Zechman and Labows, 1985). 

The function of volatile exudates in the initial host-pathogen interactions 

have been largely overlooked. Many researchers reported the stimulation of 

fungal spore germination and hyphal growth by these volatiles. Among 

varieties of volatile compounds (ethane, acetaldehyde, methanol, ethanol,and 

acetone) collected from the head space of germinating cotton seeds, only two 

major volatiles, acetaldehyde and ethanol stimulate the germination of Pythium 

ultimum sporangia. Ethanol is very important in establishing rapid infection of 

seeds and seedlings by Pythium spp. (Nelson, 1987). When volatile 

compounds are released either from plant tissues or from germinating seeds, 

they stimulate germination of propagules or increase growth of fungi. They 

induce two mechanisms: chemotactic or chemotrophic, which can be either 

stimulatory or inhibitory of fungi. Many volatiles are stimulatory at low 

concentration (nanogram/milliliter), moderate, or inhibitory at high 

concentrations (Punja, et al., 1984). 

There. is an evidence that P. cepacia is capable of producing volatile 

compound. Various volatile sulfur compounds stimulate the oviposition of onion 

maggot Hylemya antique. Onion flies can lay eggs in the presence of sulfur 

odor. , When P. cepacia (Burkholder, 1940) colonizes either untreated or 

sterilized onion seedling, it does not increase the attractiveness as oviposition 

sites. Therefore, P. cepacia reduces damage by the onion maggot producing 
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an inhibitory stimulant and has the potential to be a biocontrol agent of onion 

maggot and a related species, H. planura (Hough, et al., 1981 ). 

The identity of the volatile can be speculated to be ethylene, cyanide, or 

ammonia. "Ethylene" is one of the most important volatile mycostatic agent in 

soil even though it is not directly responsible for the inhibition of conidial 

germination. Ethylene can induce the microbial production of allyl alcohol 

which is a mycostatic compound (Schippers, et al., 1982). 

Some Pseudomonads, known as the deleterious group, produce 

"cyanide". These bacteria are usually nonfluorescent and are found in the soil 

with continuous cultivation of potatoes (Campbell, 1989). About 50% of 

Pseudomonas sp. isolates are deleterious due to cyanide production, which 

requires iron. Plant growth promoting rhizobacteria (PGPR) compete with the 

cyanide producers to reduce or inhibit toxicity in the root (Campbell, 1989). 

Hydrogen cyanide can inhibit cytochrome oxidase respiration in potato roots at 

least 40%. PGPR such asP. fluorescens spp. do not produce cyanide (Bakker, 

et al., 1987). P. fluorescens NCIB 11764 can catalyze the conversion of 

cyanate to ammonia by using the enzyme,"cyanate aminohydrolase". This 

organism utilizes cyanate (OCN) as a sole source of nitrogen for growth. 

Therefore, any cyanide induced by deleterious Pseudomonas spp. can be 

reduced in soil by P. fluorescens (Kunz and Nagappan, 1989). 

One of the static volatiles in the soil atmosphere is "ammonia". This 

compound is derived as a byproduct of microbial metabolism of bacteria and is 

responsible for the inhibition of germinating spores and the regulation of fungal 

activities in soil (Schippers, et al., 1982). Recently, Howell, et al. (1988), 

indicated a volatile compound was involved in the biological control of Pythium 

pre-emergence damping-off by Enterobacter cloacae. The presence of 

antibiotic production or hyperparasitic activity by this bacterium was not 
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detected. In fact, after inhibition, there was no physical contact between 

bacteria and fungi (Pythium ultimum and Rhizoctonia so/am). The inhibitory 

volatile was identified as ammonia, an antifungal byproduct, resulting from, 

ammonification of amino acids and acid amines in soil. Ammonia was very 

toxic to P. ultimum at low concentrations. _ E. cloacae produced ammonia in the 

spermosphere as a part of inhibitory mechanism against Pythium (Howell, et at., 
/ 

1988). 

Several volatiles such as methane, isopropanethiols, methyl ketones and 

secondary alcohols were also produced by Pseudomonads (e.i. P. tragi and P. 

fluorescens biotype 1 at 6 C) (Campbell, 1989)~ Although the production of 

volatile can not compete with those ot antimicrobial compounds, the penetration 

of a volatile may reach to areas where antibiotic(s) or siderophore(s) can not 

perform efficiently. Therefore, identification and determination of the role of 

volatiles in biological should always be considered. 

Genetic Investigation on Phytopathogenic P. cepacia 

Based on the prediction of a computer stimulation model, the dynamics of 

survival and conjugation of P. cepacia carrying the transmissible recombinant 

plasmid R388:tn 1721 was tested with a non-recombinant recipient strain in a 

simple rhizosphere and phyllosphere microcosm. Donor and recipient 

populations (106-108 cfu/g) on plant or in soil were applied on radish and bean 

leaves in petri dishes or used in a test tubes with a peat-vermiculite solution 

(Knudsen, et al.,1988). After one day, transconjugant populations of 101 to 104 

were observed. Also, the initial numbers of transconjugants increased rapidly 

and declined subsequently in the rhizosphere and on the leaf. The computer 

model predicted all aspects of these transmissions correctly (Knudsen, et at., 
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1988). 

P. cepacia has the unusual ability to use penicillin as a source of carbon 

and energy. Lysine auxotrophic mutant derivatives of several strains have lost 

their multiple functions including utilization of penicillin (lys- strains). Alteration 

of plasmid WB1 indicated that the same region of plasmid was affected 

(Beckman, et al., 1982). By a gene replacement technique, the metabolite 

hydrogen cyanide, was produced by P. fluorescens to suppress black root rot of 

tobacco caused by Thielaviopsis basicola (Voisard, et al., 1989). Similar 

methods can be applied if P. cepacia produces certain volatiles. It is necessary 

to evaluate the ability of introduced microorganisms to transfer genetic materials 

when releases into the environment. _ 

, Recent research was performed to detect conjugal DNA plasmid transfer 

under various environmental conditions. Donor P. cepacia containing 

pR388::Tn1721 and P. cepacia recipients were coincubated in soil slurries 

containing autoclaved or natural soil. Highest numbers of transconjugants, 

1.5x1 0 7 cfu/ml soil slurry, were observed when enriched nutrient suppliment 

was added to the soil whereas these numbers were low, 103 cfu/ml soil slurry, 

under low nutrient or pH Stress. This system of investigation estimates the 

effects of changing environmental factors on plasmid transfer rates and on the 

survival of recombinant microorganisms (Walter, et al., 1989). 

-
P. cepacia as a Promoter of Plant Growth 

Four strains of P. cepacia promoted nodulation of the actinorhizal plants 

Alnus rubra when co-inoculated with several other bacteria including infective 

Frank.Ja spp. Under nonsterile conditions, non-endophytic bacteria were not 

detected within nodule tissue. There was no evidence to suggest these "helper" 
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bacteria in rhizosphere enter the host tissue but the effect of the "helper'' was at 

the surface of the root hair (Knowlton, et al., 1980). 

Distinction between Phytopathogenic and Clinical 

Strains of P. cepacia 

Despite taxonomic changes, the question remained whether isolates of 

P. cepacia originating from 'plants were equivalent to the bacterial strains 

isolated from clinical sources. Gonzalez and Vidaver, (1979) tested 22 strains 
\ 

of P. cepacia from both plant and clinical sources using conventional 

biochemical tests and antibiotic sensitivity patterns. They concluded that P. 

cepacia, P. kingii, and P. mutivorans are synonymous. Differentiation of plant 

pathogenic and clinical strains are based on the following tests: a) biochemical 

Tests, b) onion maceration test, (Gonzalez and Vidaver, 1979), c) hydrolysis of 

low pH pectate agar (Gonzalez and Vidaver, 1979, Urlich, 1975), d) pattern of 

bacteriocin, e) LD5o In mice, f) minimal inhibitory concentration of antibiotics, g) 

plasmid analysis of strains (Gonzalez and Vidaver, 1979). 

Production of Enzymes by P. cepacia 

Production of pectolytic enzymes by pathogens are known to be 

important in plant diseases. Virulence of many plant pathogenic strains is 

associated with the ability to secrete pectinases. These enzymes include: (a) 

Polygalacturonase (PG) (Exo- and Endo-). The optimum activity .of these 

enzymes are from pH 4.4 to 4.6. The difference between these two enzymes is 

the way each one splits the pectin molecules in the middle and viscosity 

reduction. The pectin molecules were isolated and purified from the macerated 

tissues of onion. (PG) penetrates into the middle lamella and cell wall (Ulrich, 
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1975). (b) Pectin Methylestrase (PME), PME of P. cepacia is different from 

those of P. marginalis (Ulrich, 1975). (c) Polygalacturonate trans-eliminase 

(PGTE): The enzyme isolated from diseased onion is similar to those reported 

for P. marginalis (Ullrich, 1975). Clinical strains of P. cepcia have the ability to 

produce extracellular prod~cts and 70% of selected strains had the ability to 

produce lipase, protease, and lecithinase but hemolysin was produced by 4% 

of opportunistic pathogens of P. cepacia (Nakazawa, et al., 1987). 

An unexplained phenomenon has been observed in some of 

Pseudomonads. These bacteria can survive or grow better in buffered or 

chlorinated water distribution system. Eventhough iodine (12) and hyiodic acid 

(HOI) are germicidally active, P. cepacia was isolated from water system of the 

NASA shuttle orbiters. The rate of increase in iodinated P. cepacia was greater 

than comparable cultures of P. aeruginosa. There are several possibilities that 

explain this rate of increase. Disinfection with iodine may cause a physiological 

change in cell surviving iodination that recover from injury better than untreated 

cells. This may be due to the proteins produced as the result of starvation or 

oxidative agents. Also, this process makes them more readily available as a 

nutrient; therefore, disinfection of water may stimulate the growth of surviving 

Pseudomonads in weak phosphate water and permit these bacteria to multiply 

during the storage and distribution after disinfection. If these bacteria are 

pathogenic, there would be significance health risk (Pyle and Me Feters, 1990). 

Both plant pathogens and clinical strains of P. cepacia have already 

been exposed to the environment, causing different diseases but the potential 

of transferring genes from one cell to another one is not always a rare 

possibility. EPA has always stressed biohazard agents and has emphasized 

"worst case scenarios" especially about gene manipulated biocontrol agent. 

Although differences among phytopathogenic and clinical strains are more than 
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their similarities, our strain of P. cepacia should be investigated to assure that 

this bacterium does not damage the environment or does not harm human 

health. Certainly, differentiation of plant or soil isolates from clinical strains 

should be a part of extensive investigation on a candidate biocontrol agent such 

as P. cepacia. 

Formulation of P. cepacia 

Formulation of Pseudomonas spp. as biocontrol agents has many 

problems due to the fact that these gram negative organisms are very sensitive 

to drying and heat. A granular peat formulation of P. fluorescens (Dagger G, 

Ecogen Inc.) has shown satisfactory control of cotton seedling pathogens. Also, 

a dried formulation of PGPR strains mixed with Xanthin gum and talc was 

introduced for potato (Weller, 1988). Formulation of a product has potential to 

compensate for certain natural "deficiencies" of a biocontrol agent. Addition of a 

nutrient source into pellets or micro-capsules may allow the biocontrol agent to 

compete more effectively against indigenous microorganisms (Mukerji and 

Gary, 1988). Survival of biocontrol agents in hostile environments is important. 

An appropriate formulation of a bacterial product using techniques such as 

pelletization, microencapsulation, desiccation, and ultraviolet radiation can 

improve the shelf life of these products for several months (Knudsen and Spurr, 

1985). 

P. cepacia can be stored as a wettable powder of lyophilized cells of 

bacteria at room temperature and can be applied easily to peanut foliage using 

spray equipment for control of Cercospora leaf spot disease (Knudsen and 

Spurr, 1988). The persistence and efficacy of five lyophilized bacteria against 

Cercospora leaf spot of peanut were tested in the field. Bacteria were applied 
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at biweekly intervals as aqueous suspension of wettable powders or as a dust, 

to peanut cultivars. Population density of each bacterial strain recovered on 

leaflets declined from 1 o4 to 1 o3 cfu/leaflet over most two week intervals. 

Survival of Bacillus spp. formulated as wettable powder was less variable than 

P. cepacia with the same formulation, even though P. cepacia was a nonspore

former. Log populations of the P. cepacia were higher on the leaflet and 

controlled the disease more effectively than Bacillus spp. (Knudsen and Spurr, 

1987). 

Population dynamics of P. cepacia (L-22-64) were determined against 

Botrytis cinerea and Penicillium expansum on wounded apples over a 30 days 

period. Application of a bacterial suspension was either in water or mixed with 

Ortho-X 77 as a surfactant. During the first ten days, a rapid increase (1 00-1000 

fold) in population was followed by a small decline after which the bacteria 

populations became stable. Even application of the antioxidant diphenylamine 

at concentrations of 2000 ppm had little reduction on viable numbers of P. 

cepacia (Janiseiwicz, 1987, b). 

An expert systems model was designed that couples a computer 

stimulation of peanut Cercospora leaf spot development with population models 

for applied antagonistic bacteria such as P. cepacia and Bacillus thuringensis. 

This model assumed the mortality of P. cepacia vegetative cells was very high 

(95%) on the day they were applied as an aqueous suspension of lyophilized 

vegetative cells. The results indicated that under high relative humidity (>95%) 

a slower exponential increase in the rate of growth would occur. The model for 

Bacillus thuringensis assumed a simple exponential decline over time. This 

model was reasonably accurate for field observations of P. cepacia because it 

provides an evaluation method to improve field performance even though the 

field results are unpredictable. This system helped investigators understand the 
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survival of biocontrol agents and their interactions with pathogens in a dynamic 

environment, to optimize spray timing or dosage, and predicted the field results. 

Disease progress could be predicted and correlated to functions of weather, 

pathogen characteristics, plant growth and biocontrol agent (Knudsen and 

Spurr, 1985). 

The antagonistic effect of P. cepacia against Pythium aphanidermatum 

was tested in~- Populations of bacteria in soil were assayed with a selective 

medium. One week after the addition of nutrient solution to a sandy loam soil, 

the population increased from 0.7 to 55.4x1 o4 cfu/g soil but then declined. P. 

cepacia performed better at pH 5.6 than 6.6, at 20 C than 30 C, and at -0.3 bars 

(high moisture) than at 5.0 bars (low moisture): Populations of P. cepacia 

increased rapidly in nonsterile soil with dried organic matter from 0.23 to 

3. 78x1 0 7 cfu/g soil fo.llowed by addition of corn, cotton, and bean tissues. 

Populations were high up to one month on alfalfa and bean tissue. After 

addition of corn, bean, and cotton into soil, populations increased from 

nondetectable to 4.5x1 o4 indicating a dynamic behavior for P. cepacia survival 

in soil (Lumsden, 1982). 

Proliferation of biocontrol agents can be enhanced by substitution of food 

additives which are non-toxic to non-target microorganisms (Fravel, et al., 

1985). The use of CaCI2 as the ge.lling agent for pe.llet formation with P. 

cepacia was not successful and only 0.9% of the ce.lls survived in Ca-gluconate. 

Bacteria were viable for two weeks in pe.llets ge.lled in calcium gluconate 

(Fravel, et al., 1985). 

Any attempt to improve formulation or delivery systems for biocontrol 

agents wi.ll enhance their potential as commercial products. To summarize this 

discussion, ge.lling agents are used to maintain the initial population as well as 

to improve the survival of biocontrol agents under environmental condition. 
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Best performance of P. cepacia will depend on appropriate formulations. 

Wettable powders of lyophilized cells were applied to foliar parts of plants but it 

is not well known whether this kind of preparation can improve the survival of 

the bacteria in soil under low humidity or pH changes. 

Selective Media for Isolation of P. cepacia 

A selective medium was used to identify and count P. cepacia in mixed 

populations from soil and mature tobacco roots. Water extracts were prepared 

and aliquots were spread on agar media. After incubation, the total pure 

bacteria extracted from soil was 1 o3-1 o5 cfu, 0.4-2.6% of the population and the 

concentration of bacteria isolated from tobacco roots was 1 o5-1 o7 cfu/cm2 of 

root surface area. The density of P. cepacia was 1 o2-1 o4 cfu or 0.1-1% of the 

population (Spurr and Sasser, 1982). Another selective medium for P. cepacia 

(PCAT) performed successfully for plant and soil strains of P. cepacia (Burbage 

and Sasser, 1982). A highly selective medium consisting of glucose as the sole 

source of carbon and asparagine as the sole of nitrogen was formulated. A 

combination of Trypan blue (TB) and tetracycline (T) was added to this medium 

(TB-T) at pH 5.5. Crystal violet, nystatin or both were used as inhibitors of 

molds. The defined formation of this medium allow the recovery of P. cepacia 

strains (76 to 86%) from low soil dilution (101 to 103) (Hagedorn, et al., 1987). 

Influence of Environmental Factors on P. cepacia 

One of the majors problem for plant growth promoting rhizobacteria is 

their inconsistency as the result of environmental factors. Poor colonization of 

these bacteria along the length of roots will result in poor control of soilborne 

plant pathogens. Plant regulating substances and optimum physical conditions 
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are possible factors involved in bacterization to improve plant growth but the 

microbial interaction in the rhizosphere and on the rhizoplane play a major role 

in colonization (Davis and Whitebread, 1989). Any manipulation in either the 
' 

biotic or abiotic environments can interfere with the populations along the root 

system. Factors such as soil moisture, water movement, soil microflora, 

temperature, and soil types are required to enhance plant growth (Davis and 

Whitebread, 1989). It is not really known how to optimize conditions for 

colonizing bacterial populations of P. cepacia. Therefore, part of this research 

includes the complex interaction of environmental factors affecting this 

biocontrol agent as well as methods of application. 

Recently, Conway, et al., (1989) isolated a new strain of P. cepacia from 

soil in Washington, Oklahoma. This isolate inhibited many important fungal 

pathogens on potato dextrose agar (PDA) including: Macrophomina 

phaseolina, Rhizoctonia so/ani, Fusarium oxysporum, Pythium irregulare, and 

the biocontrol agent Laetisaria arvalis. On King's Medium B (KMB), this 

bacterial strain exhibited strong inhibition toward Sclerotium rolfsii but not on 

PDA medium indicating the possible involvement of a siderophore in addition to 

antibiotic production. 

Finally, seeds of cotton cv Del Cerro were submerged for 1 hour into 

suspensions of log 4, 6, and 8 cfu/ml of P. cepacia. Populations of P. cepacia, 

on the cotton root system, increased logarthmically during the first seven days 

indicating that this isolate was rhizosphere competent (Delgado and. Conway, 

1989). Unfortunately, seed germination was reduced at higher concentrations 

especially at 2.1 x1 0 7 cfu/ seed. It was speculated that the strain produced a 

toxic substance causing reduction of germination particularly during the early 

stages of germination. After this period, higher bacterial populations did not 

affect root elongation. In some cases, the growth of cotton root was enhanced 
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compared to untreated cotton plants (Delgado and Conway, 1989). 

Statement of Thesis Problem 

My research involved the continuation of studies on this strain of P. 

cepacia isolated from soil at Washington, OK. and two additional strains of P. 

cepacia isolated from soil planted with squash at Plant Pathology farm, OSU, 

Stillwater, OK. 

The purpose of the first part of this study is to determine whether 

Pseudomonas cepacia is rhizosphere competent on selected hosts. 

This research is only focused on the RC ability of the biocontrol candidate(s). 

Another objective is to determine whether Pseudomonas cepacia can 

be effective against selected pathogens. Thus, the ability of the 

biocontrol candidates to produce antimicrobial compou~ds such as antibiotics, 

siderophore and other substances has been investigated. The effects of P. 

cepacia on host and/or pathogen are not well understood; therefore, the last 

objective of this study is to evaluate the mechanism(s) involved in 

Pseudomonas cepacia I host I pathogen interaction. 
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ABSTRACT 

Three strains of Pseudomonas cepacia, isolated from soil in Oklahoma, 

were not pathogens on onion bulbs compared to the pathogenic strain. These 

isolates showed moderate amounts of pectolytic enzyme production and the 

levels of siderophore production varied among strains. Production of 

antimicrobial compounds was tested against selected pathogenic fungi and 

strains of bacteria. Selected isolates of P. cepacia, strains OK-1, OK-2, and OK-

5, were identified as soil inhabitants. Strain OK-2 was inhibitory to germination 

of peanut seed, whereas the germination of cowpea was delayed. Strain OK-2 

colonized the rhizosphere of vinca when applied to seed. Population densities 

were near log 7 colony formihg unit (cfu/cm) of the root. Doubling time for 

bacterial populations was from 4.0 to 4.9 h when the initial density was log 2 

cfu/ml of bacterial suspension. This strain of P. cepacia was tested against 
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Rhizoctonia so/ani OK-330 (AG-4), causing damping-off of radish, using three 

methods of application including; drenching soil with a suspension of log 6 

cfu/ml, soaking seeds in bacterial suspension (log 6 cfu/ml) and sticking 

bacteria onto the seed with carboxymethyl cellulose. Only the drenching 

method was slightly inhibitory to the fungal pathogen. 

INTRODUCTION 

P. cepacia has been used as a successful biocontrol agent against foliar 

and post-harvest diseases (Janiseiwicz, 1988; Janiseiwicz and Reitman, 1988; 

Janiseiwicz, Yourman, Reitman, and Mahony, 1991; Wilson and Chalutz, 1989). 

Mechanisms of action were determined as production of antibiotics such as 

pyrrolnitrin, pyoluteolin (Janiseiwicz and Reitman, 1988, Janisieiwicz, et al., 

1991) and siderophores such as cepabactin. Certain strains of P. cepacia, 

isolated from the caryopsis of grass plants had the ability to produce antifungal 

compounds suppressive to many phytopathogens (Jawaswal, Fernandez, and 

Scherder, 1990). P. cepacia ,has also been reported to be an antagonist of 

soilborne pathogens as well as having deleterious effects on host plants 

(Conway, Foor, Malvick, and Bender, 1989). 

In some cases, the beneficial affects of biocontrol agents have failed due 

to poor root colonization and lack of optimum conditions for physico-chemical 

and biological factors (Parke, 1991 ). In spite of numerous organisms evaluated 

each year as potential biocontrol agents, formulation is the key for their 

successful use. These organisms must be handled carefully to insure 

maintenance of viability throughout processing, storage and application 

(Connick, 1989). One of the major problems associated with biological control 

agents is the field variability that limits their agronomic application. This 
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variability is due to any factor interfering with either the population size of a 

biocontrol agent or its expression of activity. The key characteristics 

contributing successs as a biocontrol organism as well as physico-chemical 

factors which determine success are not well known (Loper, 1988). 

Another strain of P. cepacia isolated from rhizosphere of rice, reduced 

the weight and the length of seedlings. These effects were due to the 

accumulation of nitrite by P. cepacia (Asanuma, Tanaka, and Yatazawa, 1980). 

Treatment of pea seeds with a low initial concentration of P. cepacia 

successfully suppressed the preemergence damping-off caused by Pythium 

ultimum and P. sylvaticum. The severity of Aphanomyces root rot was reduced 

when pea seeds were treated with P. cepacia and yield of pea was also 

increased in a natural infested soil containing Aphanomyces euteiches and 

Pythium spp. In addition, doubling time of P. cepacia was shortest (3.1 h) when 

the initial concentration on the seed was low whereas high population densities 

applied on pea seeds greatly increased doubling times (Parke, 1990). 

Information about factors involved in rhizosphere competence (RC) is 

limited. Certain bacteria contribute specific characteristics for successful root 

colonization and the prediction of RC of bacteria along the root is important 

(Hozore and Alexander, 1991 ). In order to further evaluate these strains of P. 

cepacia as potential biocontrol agents, we characterized P. cepacia strains 

based on their pathogenicity, production of antimicrobial compounds, enzyme 

activity and investigated the root colonization of isolates, methods of application 

of the bacterium to seeds and soil, and production of several compounds that 

may determine success as a biological control agent. 
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MATERIALS ~ND METHODS 

Description of P. cepacia Strains. Five isolates of P. cepacia: OK-1 (Wild 

type}, isolated from soil at the State Forest Nursery in Washington, OK.; OK-2, 

an antibiotic selection from OK-1 with antibiotic markers 0.12 mg/ml nalidixic 

acid and 0.8 mg/ml chloramphenicol; Pathogenic strain of P. cepacia 945 or 

OK-3 from the National Collection of Plant Pathogenic Bacteria, Harpenden, 

England, with several antibiotic markers (carbenicillin 1 Jlg/ml, streptomycin 200 

Jlg/ml, tetracycline 50 Jlg/ml, neomycin 200 Jlg/ml, and penicillin 200 Jlg/ml}; OK-

4 isolated from fruit by W.J. Janisiewicz; and OK-5 isolated from soil in 

Stillwater, OK. 

Preparation of Bacterial Inoculum. Isolates of P. cepacia were streaked 

on King's Medium B (KMB) and incubated for 48 hrs at 28-30 C. Bacterial 

suspensions were prepared by removing the colonies from the media using a 

sterile solution of 0.85% sodium chloride. The concentration of bacterial 

suspensions was standardized to approximately log 8 colony forming units 

(cfu)/ml using a Spectronic 20 at an absorbance value of 0.1 at 660 nm. Other 

concentrations (log 2 to log 6 cfu/ml) were prepared by appropriate dilutions 

with sterile 0.85% sodium chloride. 

Pathogenicity Test of Strains of P. cepacia on Onion. Suspensions of log 

8 cfu/ml were prepared from the fresh cultures of five strains of P. cepacia (OK-1 

to OK-5) in 250 ml sterile flasks. Several cottage cheese containers and lids 

were soaked in 95% ethanol and 0.525% clorox solution (50%/50% v/v) for 1 h 

and washed with sterile water. Clean tissue papers were placed inside each 

container and were moistened with 5 ml sterile distilled water. For each strain 

of P. cepacia, two fresh onions were selected. Scales were removed and the 
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surface of each onion was cleaned with 95% ethanol. Two inoculation 

techniques were used for each isolate. In first method, 0.5 ml of log 8 cfu/ml 

suspension of each bacterial strain was injected into the onion bulb at three 

locations at different depths. A covering scale was placed back at the original 

position to protect the injected area from drying and contaminating organisms. 

For the control, onions were injected with 0.5 ml distilled water. The second 

method involved the removal of small triangular pieces of the onion flesh. Cells 

of P. cepacia from colonies were transferred in mass into the depth of each 

triangle cut. Control onions were cut in a similar manner but no bacteria were 

applied. Onions were kept in closed containers and incubated at 27 C for one 

week. The experiment was repeated once. 

Petri Dish Assay for Fungal Inhibition. Agar blocks (2mm diam.) from 

fresh cultures of Fusarium oxysporum, Macrophomina phaseolina, Sclerotium 

rolfsii, Rhizoctonia so/ani, and Pythium ultimum were separately tested in a dual 

culture on PDA and KMB media against P. cepacia (OK-2 and OK-5) and P. 

aeruginosa (B-4) for inhibition of growth. All cultures were incubated at 27 C for 

72 h. The experiment was repeated once. 

Production of Siderophore(s) by P. cepacia and P. aeruginosa. Dilutions 

(control, from 0.1 to 1.0, 100, 500, and 1000 JlM) of ferric chloride (FeCI3) were 

prepared by addition into KMB. Dual cultures were prepared by using fresh 

cultures of S. rolfsii, P. cepacia (OK-1 to OK-5) and P. aeruginosa (B-4). A block 

(3mm diam.) of S. rolfsii was placed on the agar 1 em from the margin of the 

petri dish and a loopful of a bacterial suspension was streaked opposite on the 

medium. All cultures were incubated for 72 h at 27 C. All treatments were 

replicated three times. 
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Production of Pectolytic Enzymes by P. cepacia and P. aeruginosa. For 

detection of polygalacturonase (PG) and pectate lyase (PL), a highly modified 

medium was prepared at two pH levels: pH 5 for PG and at pH 7 for PL (Hankin 

and Anagonstakis, 1975; Gonzalez and Vidaver, 1979). Fresh cultures of P. 

cepacia and P. aeruginosa (positive control) were used with different 

inoculation methods such as zigzag, streak, and 0.2 ml drops to observe the 

halo zone of enzyme activity after addition of the reagent. All cultures were 

incubated for 5 days at 27 C. After five days of incubation, a fresh solution of 

1% aqueous hexadecyclotrimethyl ammonium bromide (HMAB) was prepared 

and gently poured on the entire surface of media to cover all colonies (Hankin 

and Anagnotakis, 1975,; Durrands and Cooper, 1988). The experiment was 

repeated three times. 

Inoculation of Seed by Antagonistic Bacteria. Vinca seeds were 

disinfected with 0.525% NaCI03 and 95% ethanol (50%/50% v/v) for 1 min. and 

immediately rinsed several times with distilled water. Seeds were dried in a 

forced air horizontal hood for 12 h. Seeds were submerged for 1 · h in four 

concentrations of bacterial suspensions (log 2, 4, 6, and 8 cfu/ml) were 

prepared to determine the number of bacteria per seed. Initial densities of 

bacteria on seeds were determined by placing 10 vinca seeds into 5 ml of 

0.85% NaCI solution for 1 hr. Seeds were shaken for 30 sec every 10 min 

during this period to facilitate release of the bacteria from the seed coat. 

Dilutions of the suspensions were plated in 1% potato dextrose agar (PDA) and 

incubated at 27 C for 72 h. Bacterial colonies were counted, using a 

Gallenkamp colony counter, to determine cfu/seed. Twenty seeds of vinca, 

peanut and cowpea were immersed in suspensions (log 2, 4, 6, and 8 cfu/ml) of 

P. cepacia. Twenty untreated, clean seeds were used as control. Seeds were 
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placed on sterile moisten filter paper and seed germination was recorded daily 

for a 7 day period. Each treatment was replicated five times. 

Direct Bioassay of P. cepacia on Seed Germination. Five groups of vinca 

seed, each containing 20 seeds, were disinfected and rinsed with distilled 

water. Four different suspensions (log 2, 4, 6, and 8 cfu/ml) of P. cepacia strains 

OK-1 to OK-5, were adjusted using a spectrophotometer. Seeds were 

submerged into a bacterial suspension for 1 h, removed and dried under 

aseptic condition for 2 h. The last group of seeds was soaked in distilled water 

as control for each concentration and five replications were prepared. Sterile 

filter paper was placed in petri dishes and moistened daily with distilled water. 

Control seeds and treated seeds were set on the surface of the paper 

equidistance (2.5 em) from each other. Numbers of germinated seeds were 

recorded daily from all petri dishes up to eleven days. 

Effect of P. cepacia Concentration on Seed Germination. Eighty peanut 

seeds were disinfected using a mixture of clorox and 95% ethanol solution 

(50%/50% v/v) and washed several times with distilled water. Seeds were 

separated into eight groups of 10 seeds each. Fifty ml of bacterial suspensions 

of log 2, 4, 6, and 8 cfu/ml of P. cepacia (OK-2) were prepared in 250 ml sterile 

flasks. The first group of seeds was submerged into 50 ml distilled water for 30 

min, removed, dried, and used as a control. Other groups were submerged into 

each bacterial suspension for 30 min and dried under aseptic condition. Ten 

seeds of each concentration were placed equidistant in sand contained in pots 

and 50 ml distilled water was poured gradually on the sand surface. All 

containers were placed under fluorescent light for 10 days at room temperature. 

Similar procedures were also conducted with cowpea seeds. 
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Determination of Root Colonization Ability of P. cepacia. Plastic 

centrifuge tubes (50 ml) were cut longitudinally into two halves, washed 

carefully in clorox and soap for 1 h, dried, microwaved for 90 sec. and wrapped 

with parafilm. One hundred tubes were filled with 25 g of Redi-Earth (RE) (W.R. 

Grace, Inc.) were moistened to 15% water holding capacity. Germinated vinca 

seeds, with radicles of 1 mm in length, were placed 1 em below the surface of 

the RE and 0.1 ml of polysurf C gel (modified hydroxyethyl cellulose, Hercules, 

Inc.) was placed on top of the seed. Seeds were covered by RE. Sets of 

germinated seeds were submerged into either log 2, 4 or 6 cfu/ml suspension of 

P. cepacia OK-2 for 30 min and dried for 1 h before placing them into the RE 

and covering with gel in each tube. Tubes were incubated in a growth chamber 

adjusted to 27 C day/30 C night, 12/12 h cycle. No additional water was added 

during the experiment. 

Shoots emerged after 3 days, and 3 tubes per concentration level were 

split and soil was gently removed. Roots and rhizosphere soil were weighed, 

and sectioned into 3 equal parts. A 1 em length from each section was removed 

and separately ground in 1 ml distilled water with a sterilized mortar and pestle. 

This suspension was used to prepare a 1 0-fold dilution series with 1% PDA and 

plated. Cultures were incubated at 27 C for 48 h. The number of colonies were 

counted and densities were determined from each root segment. Agar medium 

for dilutions was later modified due to contaminating microorganisms by 

amending Pseudomonas F agar (Difco) with 0.12 g nalidixic acid and 0.8 g 

chloramphenicol (dissolved in 5 ml ethanol). 

Determination of Doubling Time of P. cepacia OK-2. Doubling time (T d) 

for P. cepacia during the first 48 h after planting was determined for the three 

initial densities on vinca seed according to the formula: 
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(log Nt -log N0 ) I 0.301 t = 1 I Td 

where N0 = Original cfu/seed, Nt = final cfu/seed and roots, t = time in h (Parke, 

1990). 

Antagonistic Effect of P. cepacia OK-2 against R. solani OK-330 (AG-4). 

Inoculum of R. so/ani was prepared in a sand-cornmeal-medium, dried, and 

stored in a paper bag at room temperature. R. so/ani was added to RE at a 

predetermined rate equivalent to LD5o value for vinca. Sixty cottage cheese 

containers were soaked in 10% clorox, washed with soap, rinsed with water, 

and dried. RE was microwaved for 90 sec to kill contaminating fungi (Ferriss, 

1984) and R. so/ani was added to RE as 0.1 g of inoculum /100 g RE and mixed 

in a twin-shell blender (Bison Gear and Engineering Corp.) for 15 min. 

Approximately 50 g of non-infested RE was added to each container and an 

additional 50 g of infested RE was layered on top. Similar series of containers 

were prepared with non-infested RE. Suspensions of log6 cfu/ml from the fresh 

cultures of P. cepacia OK-2 were prepared and vinca seeds were soaked in the 

suspensions for 30 min and dried. Ten seeds were placed into the top layer of 

RE just below the surface using a small template and an additional covering 

layer of non-infested RE was added. Distilled water was sprayed on each 

container every day when containers were removed from the incubator (27 C) 

for observation. All containers were randomly arranged and there were 10 

replicants per treatment. Treatments included containers with/without R. so/ani 

and combinations with/without P. cepacia OK-2, and controls contained no 

bacterial or fungal inocula. Germination and incidence of damping-off were 

recorded daily. 

A second set of experiments investigated if the method of application of 

P. cepacia would have an effect on control of R. so/ani. Ten vinca seeds were 
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placed on the surface of RE, and 8 g of additional RE with or without R. so/ani 

(0.01 g/1 00 g RE) was added to cover seeds. P. cepacia OK-2 was applied 

using three different methods: soak, seed treatment with carboxmethylcellulose 

(CMC) and drenching. For the soak treatment, disinfected vinca seeds were 

soaked in a bacterial suspension of log 6 cfu/ml for 1 h and dried at room 

temperature. For the CMC seed treatment, vinca seeds were covered with a 

suspension of P. cepacia OK-2 (log 6 cfu/ml) in sterile 1% CMC and dried. The 

drench treatment utilized P. cepacia OK-2 (log 6 cfu/ml) at a rate of 118 

ml/232 cm2, an equal amount of distilled water was applied to controls. The 

fourth treatment was used as a control without addition of bacteria. There 

were 10 seeds per container and each treatment was replicated 8 times. All 

containers were randomly placed inside an incubator at (27 C) with 12 h 

dark/12 h light. 

Drenching Method Using Different Concentrations of P. cepacia OK-2. 

Similar to the previous procedure, 10 radish seeds were grown in plastic 

containers and bacteria were applied using the soil drench method. 

Suspensions of log 2, 4 and 6 cfu/ml of P. cepacia OK-2 were prepared and 

applied to each container at a rate of 118 ml/232 cm2. An equal amount of 

distilled water was poured on the control seeds. Treatments were replicated 

four times. Treatments were arranged in a random order in an incubator set at 

27 C, 12 h/12 h light cycle. Percent germination of radish was recorded for 1 

week. 

RESULTS 

Pathogenicity Test of Strains of P. cepacia on Onion. Strain OK-3 

produced the largest macerated area on onions, whereas strains OK-5 
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exhibited the least damage. Isolates from soil (OK-1, OK-2 and OK-5) caused 

less damage that the plant isolate OK-3. 

Petri Dish Assay for Fungal Inhibition by Strains of P. cepacia. Inhibition 

zones were observed against selected fungi on KMB and PDA (Table 1 ). P. 

cepacia OK-1 inhibited all fungi except S. rolfsii when grown on PDA medium 

but the growth of this fungus was inhibited on KMB. Also, P. cepacia OK-5 

inhibited the growth of Macrophomina phaseolina and Pythium ultimum on KMB 

but not on PDA. In addition, P. aeruginosa B-4 inhibited only the growth of P. 

ultimum when on KMB and PDA. F. oxysporum was only inhibited by P. 

aeruginosa on PDA medium. 

Production of Siderophore(s) by P. cepacia and P. aeruginosa. Strains 

of P. cepacia could inhibit the growth of S. rolfsii in concentrations with lesser 

amounts of FeCI3 in the medium. Lower amount of FeCI3 in the medium had a 

definite effect on the size of the zones of inhibition indicating the production of 

siderophore under iron deficiency conditions. Each strain varied in production 

of siderophores with OK-1, OK-2, and OK-3 showing activity below 0.1 to 0.4 

~M/ml and OK-5 showing no activity (data not presented). 

Production of Pectotytic Enzymes by P. cepacia and P. aeruginosa. Halo 

zones appeared around all colonies in some media and indicated that strains 

OK-4 and OK-5 showed weak PG and PL activities. Other strains of P. cepacia 

(OK-1 and OK-2) and P. aeruginosa (positive control) exhibited moderate PG 

and PL activities (data not presented). 

Direct Bioassay of P. cepacia on Seed Germination. There was a delay 

(p=0.05) in seed germination directly related to seed treatment with P. cepacia 
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(OK-1 to OK-5) compared to the control (Table 2). Greatest delay was observed 

during the early days (1-2) of germination. However, by day 7 and 11, 

germination in treated and control seeds was similar. After two days of 

incubation, strains OK-1, OK-2 and OK-3 reduced germination of vinca seeds 

greater (p=0.05) than other isolates and the control. In a few cases, high initial 

concentrations of P. cepacia on the seed reduced germination compared to 

lower concentration but there was no significant effect due to the increased 

concentration for all strains. On the other hand, peanut seeds were very 

sensitive to seed treatment with isolates of P. cepacia since they did not 

germinate at any concentrations (data not presented). All control seeds 

germinated and produced healthy shoots. In the case of cowpea, there was a 

delay in germination (data not shown) but all seed treatments had similar 

growth rates compared to non-treated seeds. 

Determination of Root Colonization Ability of P. cepacia. Population 

dynamics of P. cepacia on roots of vinca over a 17 day period are presented in 

Figures 1-3. Regardless of the initial concentrations of P. cepacia on vinca 

seeds, the population densities usually increased rapidly for the first 3 days and 

were maintained near log 6 cfu/cm for the 17 day period. High initial 

concentrations of bacteria on seeds declined for the first 3 days at the top and 

tip of the root, but increased to log 8 cfu/cm by the fifth day. 

Determination of Doubling Time of P. cepacia OK-2. Doubling time for P. 

cepacia during the first 48 h was shorter for the lower initial concentrations. 

Doubling time for log 2 cfu/ml ranged from 4.0 to 4.9 h for all three sections of 

roots. Times increased for log 4 cfu/ml to 6.3 to 8.0 h. Bacterial densities on 

roots of seeds treated with log 6 cfu/ml decreased at the tip and upper root 



53 

segments but had a doubling time of 6.25 h for the middle sections. 

Antagonistic Effect of P. cepacia against R. so/ani 330 (AG-4). There was 

a reduction in germination rate of vinca seeds in all treatments with P. cepacia 

and R. so/ani compared to the non-infested control (Table 3). Root length was 

reduced (P=0.05) when seeds were soaked in suspensions of P. cepacia and 

planted into RE amended with R. so/ani compared to planting into non-infested 

RE and the non-infested control. Seed treatment with bacteria generally 

reduced the germination rate but had no effect on root length in non-R. so/ani

infested RE. Only when P. cepacia was used as a drench was length and 

precent germination greater, but not significantly, in the presence of the 

pathogen compared to non-infested RE. In a second experiment under more 

disease pressure, there was a reductino in the number of vinca seedlings when 

P. capacia was applied by any method in the absence of R. so/ani compared to 

the control (P=0.05) (Figure 4). Applying bacteria to seeds with CMC resulted in 

a greater stand (P=0.05) than soaking seeds in a bacterial suspension. When 

these seeds were placed into Rhizoctonia-infested soil, there was a greater 

stand (LSD=0.05) in the CMC treatment compared to the control. 

Drenching Method Using Different Concentrations of P. cepacia OK-2. 

There was no difference in mean stand of radish seedlings due to P. cepacia 

compared to the control in the absence of R. so/ani. However, stand of radish 

seedlings was reduced (P=0.05) by P. capacia in Rhizoctonia amended soil 

when drenched at concentrations of log 2 and 4 cfu/ml compared to drenching 

with log 8 cfu/ml but was not different than stand in the control. Stand was 

reduced (P=0.05) in Rhizoctonia amended soil in drench treatments of log 2 

and log 6 cfu/ml and in the control compared to stand in the same treatment of 
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non-amended soil (Table 4). 

DISCUSSION 

Only P. cepacia OK-3 was identified as a plant pathogenic strain using 

the onion puncture test. The limited maceration of onion suggested that the 

other strains were not pathogenic. P. cepacia could not be reisolated from the 

macerated tissue. In previous investigations (Omidiji and Ehimidu, 1990), 

inoculation of purple onion bulbs with P. cepacia resulted in the death of 80% of 

bacterial cells 3 days after the inoculation of the tissue and an increase in 

phenolic concentration up to 5 days after inoculation. 

P. cepacia and P. aeruginosa produce antibiotic(s) and siderophore(s), 

although these products were not identified. However, others have indicated 

that compounds such as pyrrolnitrin and pyoluteolin are commonly produced by 

P. cepacia (Lievens, Rijsbergen, Leyns, Lambert, Tanning, Swing, and Joos, 

1989; Meyer, Hohnadel, and Halle', 1989). According to Ulrich (1975), endo

polygalacturonase produced by P. cepacia and associated with a severe stem 

and bulb rot of onion, influenced the virulence of this disease. The optimum pH 

for the activity of PG produced by P. cepacia was between 4.4 and 4.6 which is 

lower than those reported for Erwinia spp. 

Seeds differ in their sensitivity to P. cepacia, in the case of peanut and 

onion seeds, germination was almost completely inhibited. Other seeds may 

exhibit a delay in germination or may have a reduction in root elongation. 

There is evidence that so~e strains of P. cepacia enhance root elongation of 

wheat (de Freitas and Germida, 1990; Homma, and Suzui, 1989). Scanning 

Electron Microscopy (SEM) of inoculated wheat roots revealed that P. cepacia 

had significant enhancing effect on lateral root and root hair elongation. There 
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is no evidence to indicate that our isolate of P. cepacia had any enhancing 

effect since microscopic observation showed the lateral vinca root were 

reduced and root hairs were poorly grown. 

Volatile ammonia produced by P. cepacia has been implicated as one of 

the factors affecting seed germination and root elongation (Baligh, Conway, and 

Delgado, 1990, 1991 ). SEM observations of P. cepacia in the rhizosphere of 

radish revealed bacteria along the junction of epidermal cells of young root 

immediately after seed emergence. These rod-shaped bacteria adhered to the 

surface of root cells with fine threads or were embedded in mucilaginous 

materials. Thus, P. cepacia multiplied in radish seed spermosphere and 

colonized along the surface of young root emerged from coated seed (Homma 

and Suzui, 1989, Homma, Sato, Hirayama, Konno, Shrahama, and Suzui, 

1989). Among various bacteria from different crops, Pseudomonas spp. were 

very aggressive colonizers of the rhizosphere of several plants and proved to 

have a broad-spectrum biological activity against soilborne phytopathogenic 

fungi. In fact, these rhizobacteria are not different from other soilborne bacteria 

in the production of antifungal compounds but they do differ in their ability to 

colonize many different crops compared to other soil bacteria (Lievens, et al., 

1989). 

Recently, specific characteristics of some root colonizing bacteria have 

been evaluated (Horzore and Alexander, 1991 ). Six traits including: growth 

rate, extent of growth on root exudates, chemotaxis to root exudates and 

tolerance of low osmotic potentials are essential for a successful root 

colonization. P. cepacia OK-2 strain inoculated on vinca seed increased 

population densities and colonized roots. Comparison of bacterial populations 

distributed among three sections of root (top, middle, and tip) indicated that 

there are stable numbers of bacteria along all parts. Eventually populations 
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stabilize and were maintained near log 6 cfu/cm of root for a 17 day period. 

Investigations conducted by Delgado and Conway (1990) indicated that P. 

cepacia was able to maintain population densities on cotton roots up to log 1 0 

cfu/g. 

The doubling time of P. cepacia OK-2 was shortest when the initial 

concentration was low on vinca seed. Populations of indigenous bacteria 

associated with the seeds in natural soil may be reduced due to antibiotic 

production of P. cepacia. In spite of strong antibiotic and siderophore 

production, drenching suspensions of P. cepacia OK-2 at concentrations 

ranging from log 2 to log 6 cfu/ml failed to protect host plants against infection 

by R. so/ani compared to the infested control. However, the drench treatment 

of P. cepacia at log 8 cfu/ml reduced the loss of radish seedlings in Rhizoctonia

infected soil vs. non-amended soil compared to other drench treatment and 

control treatment. Even though doubling times are shorter for the lower 

concentrations, they may not reach population densities needed to effectively 

control R. so/ani. Population densities greater than log 8 cfu/ml in drenches 

may provide for greater control of R. so/ani, but also may adversely affect stand. 

Concentrations of P. cepacia (log 6 cfu/ml) used as a drench method were 

deleterious to vinca root elongation. 

According to Homma and Suzui (1989), bacterization of the planting 

materials such as seeds or roots of the host plants with P. cepacia successfully 

restricted soilborne pathogens. When radish seeds were submerged into three 

different concentrations of P. cepacia, root diseases were controlled by rapid 

colonization of the bacteria in the rhizosphere of the host plant. Colonization of 

the rhizosphere changed the quantity and quality of the rhizosphere microflora, 

and suppressed the pathogen in the infection court on seed surface or young 

root by producing antibiotics or siderophores. 
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In our experiments, P. capacia reduced the number of vinco seedlings 

compared to the control in non-amended soil, however, under severe disease 

pressure (>90% reduction in the control) the stand of vinca was increased when 

P. cepacia was applied to the seeds using a CMC sticker~ Improved 

formulations and methods of applying this bacterium to seeds in soil should 

greatly improve its efficacy as a biological control for Rhizoctonia damping-off 

diseases. Another example is the formulation of a mixture of Trichoderma 

harzianum and P. cepacia into granule and/or powder using sodium alginate, 

zeolite or diatomaceous earth. Both organisms are antagonistic to 

Phytophthora capsaci, causing blight of red pepper. An amendment of rice in 

the alginate formation increased the viability of P. cepacia. It is interesting to 

know that suppression of the disease on red pepper was significant when P. 

cepacia was applied to soil as a pellet compared to direct drenching (Park, 

Jang, Kim, and Lee, 1989). 

In addition, lyophilized formulations of P. cepacia were also successful 

for control of foliar diseases (Knudsen and Spurr, 1987). A commercialized 

preparation of P. cepacia has been introduced in 1989 by Blue Circle Inoculant, 

Stine Seed Farm, Adel, lA. This strain failed to control Heterodera glycines and 

diseases of maize and soybean (Noel, 1990). Perhaps a combination of 

genetic manipulation and formulation technology will allow the potential of this 

bacterium to be exploited as a biocontrol agent on a reasonable scale (Jutsum, 

1988). 



TABLE 1 

COMPARISON OF INHIBITION CAUSED BY ANTIBIOTIC PRODUCTION 
BY STRAINS OF PSEUDOMONAS CEPACIA OK-1 AND OK-5, 

AND P. AERUGJNOSA B-4 AGAINST SELECTED 
FUNGI ON KMBX AND PDA Y MEDIA 

BACTERIAL FUNGAL 
STRAIN K M B P D A STRAIN 

B-4 + Fusarium 
OK-1 + + oxysporum 
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B-4 Macrophomina 
OK-1 + + phaseolina 
OK-5 + 

B-4 Sclerotium 
OK-1 + rolfsii 

B-4 Rhizoctonia 
OK-1 + + so/ani 

B-4 + + Pythium 
OK-1 + + ultimum 
OK-5 + 

x King's Medium B Y Potato Dextrose Agar 

+ Inhibition zone was observed around P. cepacia colonies after 72 h 
incubated at 27 C. 

- No inhibition zone was observed around P. cepacia colonies after 72 h 
incubated at 27 C. 
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TABLE 2 

EFFECT OF INOCULUM DENSITY OF STRAINS OF PSEUDOMONAS 
CEPACIA ON PERCENT GERMINATION OF VINCA SEEDS 

OVER AN ELEVEN DAY PERIOD 

STRAIN INITIAL PERCENT GERMINATION 
DENSITY DAYS OF INCUBATION 2 
Log cfu/ml 2 7 11 

OK-1 2.0 1 9 66 66 
4.0 10 66 67 
6.0 17 68 68 
8.0 11 59 60 

OK-2 2.0 18 57 58 
4.0 8 66 66 
6.0 6 62 63 
8.0 12 66 66 

OK-3 2.0 24 76 77 
4.0 13 62 63 
6.0 13 67 67 
8.0 12 62 62 

OK-4 2.0 25 68 69 
4.0 22 73 75 
6.0 24 .. 78 81 
8.0 20 75 75 

OK-5 2.0 27 76 77 
4.0 16 74 74 
6.0 22 66 67 
8.0 20 73 74 

CONTROL 50 71 74 

LSD (0.05) 11.27 16.60 15.85 
SE 5.67 8.35 7.97 

1 Solution was prepared from a 48 hrs culture of each strain by diluting the 
suspension {log 8 cfu/ml) adjusted at 0.1 on spectrophotometer at 660 nm. 

2 Incubation temperature was adjusted at 27 C. Number of seeds were 20 
per petri dish, replicated 4 times. 



E 
u -... 

::J 
u.. 
£ 
Ol 
0 

...J 

>-
;;; 
c: ., 

0 
c: 
2 

"' :; 
c. 
0 
a.. 

E 
u -::J 

u.. 
£ 
01 
0 

....J 

>--Ill 
c: ., 

0 

c: 

8 
"' :; 
c. 
0 
a.. 

E 
u -... 

::J 
u.. 
£ 
Ol 
0 

....J 

~ 
Ill 
c: ., 

0 
c: 

8 
"' :; 
c. 
0 
a.. 

Figures 1-3 

60 

8 

7 

6 

5 

Root Top 

3 0 102 cfu/ml 

Fig. 1 • 10• cfu/ml 
2 • 10s cfu/ml 

3 5 7 9 11 13 15 17 

DAYS 

8 

7 o-o-o-o----<>~ 

:::=:;::,--:::::::::::::::::•::::::::...._ ---·--· 
6 . ·"""'"'-==·-·-· 
5 

Root Middle 

0 102 cfu/ml 
3 • 104 cfu/ml 

2 Fig. 2 • 108 cfu/ml 

3 5 7 9 11 13 15 17 

DAYS 

8 

.--=~~ 
7 ~~-~~ 6 g_ -· • • 
5 

Root Tip 
4 

102 cfu/ml 0 

3 • 10• cfu/ml 

2 Fig. 3 • 108 cfu/ml 

3 5 7 9 11 13 15 17 

DAYS 

Rhizosphere Colonization of Pseudomonas cepacia OK-2 on 
Three Sections of Vinca Root for a 20 Days Period. Fig. 1 Top 
Third of Root. Fig. 2 Middle Third of Root. Fig. 3 Bottom Third 
of root. Initial Inoculum on Seed Was Log 2, 4, and 6 cfu/seed. 



TABLE 3 

AVERAGE ROOT LENGTH OF VINCA SEEDLINGS TREATED BY 
P. CEPACIA OK-2 USING FOUR DIFFERENT METHODS OF 

INOCULATION WITH AND WITHOUT THE ADDITION OF 
RH/ZOCTONIA SOLAN/ (AG-4) 330 TO 

THE SOIL SYSTEM 
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TREATMENT 6 ROOT 
LENGTH 

(em) 1 

PERCENT 
GERMINATION 2 

Control with R. so/ani 
Control without R. so/ani 
Soaking3 with R. so/ani 
Soaking without R. so/ani 
Drenching4 with R. so/ani 
Drenching witho.ut R. so/ani 
CMC5 with R. so/ani 
CMC without R. so/ani 

5.0 ab 
6.3 a 
4.4 b 
6.6 a 
5.6 ab 
5.0 ab 
4.6 ab 
5.9 ab 

73.3 
90 
65.5 
71.1 
77.7 
63.3 
57.7 
74.4 

1 Root length and percent germination were calculated from 10 
seeds/container. 

2 Letters are significantly different (P=0.05), One way ANOVA randomized 
complete design. 

3 Soaking in bacterial suspension of log 6 cfulml for 60 min. of log 6 cfu/ml. 

4 Drenching with 118 mV232 cm2 from bacterial suspension of log 6 cfulml. 

5 Carboxymethylcellulose 1% (CMC) used as a sticker and mixed with log 8 
cfulml of bacterial suspension. 

6 Treatements were replicated 9 times. 



TABLE 4 

MEAN STAND RADISH SEEDLING DRENCHED a WITH FOUR 
CONCENTRATIONS (LOG 2, 4, 6, AND 8 CFU/ML) OF 

PSEUDOMONAS CEPACIA (OK-2) IN THE PRESENCE 
OR ABSENCE OF RHIZOCTONIA SOLAN/ 

CONCENTRATION 
(log cfu/ml) 

2 
4 
6 
8 
CONTROL 

OK-330 (AG-4). 

MEAN STAND b 
Rhizoctonia so/ani 
(-) (+) 

6.75 a*C 
5.00 a 
8.25 a•d 
7.00 a 
8.25 a* 

3.50 b 
3.25 b 
5.00 ab 
6.50 a 
5.25 ab 

a Data were collected 8 days after drench treatment (118 ml/ 
232 cm2). 

b Number of seeds per container were 10 with four 
replications. Experiment was conducted in a completely 
randomized design. 

c Mean followed by different letters are significantly different. 
Student-Newman-Keuls Test (p=0.05). 

d *- indicates significant differences within treatments between 
Rhizotonia amended (+)and non-amended (-)treatments. 
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CHAPTER IV 

PRODUCTION OF AMMONIA BY PSEUDOMONAS CEPACIA 

AND PSEUDOMONAS AERUGINOSA: QUANTIFICATION 

AND EFFECT ON HOST AND PATHOGEN 

Baligh, M., Conway, K. E., and Delgado, M. A., Graduate Research Assistant, 

Professor, Department of Plant Pathology, Oklahoma State University, 

Stillwater, OK 74078-9947 and Visiting Research Scientist, Universidad 

Nacional de Piura, Piura, Peru 

ABSTRACT 

Different concentrations of P. cepacia were applied to vinca and other 

seeds as a biological seed treatment to control soilborne diseases. Direct and 

indirect contact of bacteria with seeds delayed seed germination and reduced 

root elongation especially at high inoculum concentrations. When P. cepacia 

and seeds were incubated in separate sections of a split-half petri dish, 

germination was delayed suggesting the existence of a volatile compound(s). 

This was confirmed when pH indicator papers suspended over bacterial 

cultures showed a pH change from 7 to 8. The volatile was collected in water 

traps connected to cultures grown in Czapek's broth with and without 20 g/1 of 

peptone. The volatile was identified as ammonia using an EM Quanta 

Ammonia Kit, a calorimetric processes using a Lachet instrument and by mass 

spectral analysis. Production of ammonia varied among strains of P. cepacia 

and P. aeruginosa and depended on the amount of peptone or amino acids 
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added to the media. Production of ammonia by each bacterial strain was 

quantified by comparison to known concentrations of ammonia (NH40H) in a 

bioassay system and resultant inhibition of selected fungi. Among fungi, 

Sclerotium rolfsii was the most sensitive being completely inhibited by <3 IJ.g/ml, 

while Trichoderma harzianum was stimulated at this concentration. Production 

of ammonia varied among bacterial strains but was equivalent to NH40 H 

concentrations ranging from 6 to 18 IJ.g/ml. Volatiles produced by rhizobacteria 

should be considered as additional factors involved in the inhibition of 

pathogens in the rhizosphere and/or spermosphere of host plants. 

INTRODUCTION 

Previous investigations concerning P. cepacia indicated that this 

biocontrol candidate interfered with seed germination and root elongation of 

host plants (Baligh, Conway, and Delgado, 1990; Delgado and Conway, 1989). 

It was not clear whether this retardation was due to the direct phytotoxicity of P. 

cepacia or due to the release of a volatile compound produced by this 

bacterium in the spermosphere and/or the rhizosphere of host plants. In 

addition, a preliminary experiment indicated that ammonia might be involved in 

this process and the volatile component should be investigated. 

The roles of antibiotics and siderophores produced by P. cepacia have 

been extensively investigated (Homma and Suzui, 1989; Janiseiwicz and 

Reitman, 1988; Janiseiwicz, Yourman, Reitman, and Mahony, 1991). The 

existence of these antimicrobial compounds were detected and the ability to 

colonize the rhizosphere was confirmed on vinca and other small seeds 

(Baligh, et al., 1990). In some investigations the involvement of volatile 

compounds in the host, pathogen, and biocontrol agent interaction has been 
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noted (Punja, Jenkins, and Grogan, 1984}. Sources of volatiles in the 

spermosphere and rhizosphere can be either from plant tissues or exudates 

from germinating seeds and roots. The response of soilborne fungi to volatiles 

at low concentrations is stimulatory but almost all are inhibitory at high 

concentrations. Many volatiles which are released from plant tissues and 

germinated seeds stimulate germination of fungal propagules. Compounds 

such as methanol, ethanol, and butanol induce chemotactic or chemotropic 

responses of fungi but can be inhibitory at high concentrations. Sources of 

organic volatiles in soil include "primary" compounds derived from plants or 

organisms, or "secondary" materials resulting from microbial transformation 

(Stotzky and Schenick, 1975}. 

Recently, an additional mechanism of P. putida strain NIR against 

Pythium ultimum was investigated by Paulitz, (1991 }. Although this bacterium 
' 

did produce antibiotics and was deficient in siderophore production, it was still 

able to control pre-emergence and post-emergence damping-off and root rot of 

vegetable crops. In this process, P. putida rapidly metabolizes volatile seed 

exudates and suppressed the stimulation of sporangia of P. ultimum and 

reduced darning-off of soybean and pea seeds. Volatile exudates, such as 

ethanol and acetaldehyde, are an early germination signal and nutrient source 

that are released from seeds prior to the release of water soluable exudates. It 

is essential to know how a volatile affects seeds or roots of a host plant as well 

as to understand the reaction of a pathogen, especially when a volatile is 

released by a biocontrol candidate. In addition, production of phenylalanine 

ammonia lyase (PAL} by P. cepacia was shown to suppress spore germination 

and inhibit fungal pathogens (Huang, Deverall, and Morris, 1991 ). The present 

study focuses on the detection and identification of a volatile compound(s) 

which may inhibit seed germination. The positive and negative effects of this 
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volatile on host plants and pathogens were evaluated. Preliminary reports of 

this work have appeared elsewhere (Baligh, Conway, and Delgado, 1991 ). 

MATERIALS AND METHODS 

Characteristics of P. cepacia Strains. There were five strains of P. 

cepacia used in this study: OK-1 (the wild type), isolated from soil at the State 

Forest Nursery in Washington, OK.; OK-2, an antibiotic selection from strain OK-

1 with two antibiotic markers, 120 Jl.g/ml nalidixic acid and 80 Jl.g/ml 

chloramphenicol; P. cepacia 945 or OK-3 from the National Collection of Plant 

Pathogenic Bacteria, Harpenden, England, isolated from onion tissue and with 

five antibiotic markers, carbenicillin 1 Jl.g/ml, streptomycin 200 Jl.g/ml, 

tetracycline 50 Jl.g/ml, neomycin 200 Jl.g/ml, and penicillin 200 Jl.g/ml from the 

National Collection of Plant Pathogenic Bacteria; OK-4 ,isolated from fruit by 

W.J. Janiseiwicz, and OK-5, isolated from soil in Stillwater, OK. Two isolates of 

P. aeruginosa, B-2 and B-4 from Peru were also used in this study. 

Indirect Effect of P. cepacia on Seed Germination. P. cepacia OK-1 or 

OK-2 were inoculated into split-half petri dishes with potato dextrose agar (PDA) 

on one side. The other half of the petri dish was lined with moist sterile filter 

paper and 20 surface sterilized vinca (Catharanthus roseus L.), sage (Salvia 

officialis L.) or onion (AIIuim cepa L.) seeds were separately placed on the filter 

paper. All seeds were incubated for 48 h at 28 C. This experiment was 

repeated twice. 

Detection and Identification of Volatile Compound(s). The following 

broths were prepared and adjusted to pH 7.0: Nutrient (NB), potato dextrose 

(PDB), King's 8 (KBB) and Czapek's (CZB). Each broth (1 00 ml) was poured 
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into each of five-250 ml flasks. Four sterile strips of pH paper (1 0 em length) 

with different pH ranges were hung from the neck of each flask. A 0.5 ml aliquot 

from suspensions (log 8 cfu/ml) of five strains of P. cepacia (OK-1 to OK-5) was 

each inoculated into one of the broth cultures except the control. All flasks were 

incubated on a shaker (84 rpm, Eberbach 115 volt, 60 cycle) at room temprature 

so that strips of the pH papers did not touch the media. 

Further tests were conducted using CZB amended with 20 g/1 peptone 

(CZPB). Another series of 250 ml flasks containing either CZB or CZPB were 

inoculated with strains (OK-1, OK-2, OK-3, OK-4, OK-5) of P. cepacia and 

incubated on a rotary shaker at room temperature. Sterile filtered air was 

passed over cultures of P. cepacia and the controls in the flasks and was 

trapped in a water blank. The initial bacterial suspension (0.5 ml of log 8 cfu/ml) 

was added after adjusting the media to pH 7.0. After 72 h of incubation, water 

samples were tested using an EM Quanta Ammonia Test Kit (EM Science Co., 

Gibbtown, N.J.). In addition, similar samples were prepared and tested at the 

Oklahoma State University, Soil and Water Quality Testing Laboratory on a 

Lachet instrument, which uses a calorimetric process to measure the quantity of 

ammonia in water. Samples were also prepared for analysis by mass 

spectrometry (MS). 

Volatile compound(s) were similarly collected using 20 ml absolute 

ethanol instead of water in the traps. Ethanol traps were surrounded by ice 

inside an ice chest. Valves between the bacterial cultures and the water traps 

were opened 36 h after incubation of P. cepacia strains and P. aeruginosa (B-4) 

in CZPB or CZB (300 ml). Ethanol traps were disconnected and plugged after 

72 h for analysis with a VG-11-250 integrated mass spectrometer. The mass 

range was initially monitored over a mass-to-charge ratio (M/Z) of 16 to 20 and 

then expanded from 17 to 18 to improve accuracy. Software peak matching 
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was used to determine the accuracy of the mass of the suspected peak (Howell, 

et al., 1988). All tests were conducted three times. 

Effect of Volatile Compound(s) on Seed Germination, and Root 

Elongation of Vinca Seeds and Growth of Selected Fungi. Ten grams of moist 

sterilized sand were added to each of two opposite sections of quadrad portion 
-, 

petri dishes. Five surface sterilized vinca seeds were placed on each of these 

sections. The other two sections of the petri dishes were filled with 5 ml of either 

Czapek's Agar (CZA) or CZA amended with peptone (20 g/1) (CZPA). After 

placing vinca seeds on the surface of moist sand, 0.5 ml of log 8 cfu/ml 

suspension of P. cepacia strains (OK-1 to OK-5) were added to the surface of 

the agar media. All petri dishes were sealed with parafilm and masking tape 

and incubated at 28 C. All treatments were replicated five times. Numbers of 

germinated seeds and the length of roots were recorded after a week. 

In another experiment, two opposite sections of quadrad petri dishes 

were filled with 5 ml of CZPA. A suspension of strain OK-2 was spread on the 

agar surface in the two quarters of the petri dishes. The other agar sections was 

filled with 5 ml of trypticase soy agar (TSA) medium and were inoculated with a 

small block of a selected pathogenic fungus. Tested fungi included 

Macrophomina phaseolina (M-9, OK-98, and OK-342), Rhizoctonia so/ani (OK-

337), Fusarium oxysporum (OK-209, OK-97), Pythium ultimum (OK-288), P. 

aphanidermatum (OK-317), Phytophthora cactorum (OK-316), and Sclerotium 

rolfsii (OK-315). All petri dishes were sealed with parafilm and masking tape 

and incubated at 28 C. 

Another variation of the experiment evaluated the effect of peptone on 

volatile production by comparing CZPA and CZA. P. cepacia strains (OK-1 to 

OK-5) were streaked on the surface of quadrad of either CZPA or CZA. The 
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radial growth of fungal colonies was measured after 18, 24, and/or 48 h, 

depending on the growth rate of each fungal pathogen. A similar experiment 

was conducted using non-sterilized seeds. Numbers of germinated seeds and 

the length of the root were measured after one week. 

Suppressive Effect of Volatile Compound(s) on Selected Plant 

Pathogenic Fungi. Fresh cultures of eight pathogenic fungi including Pythium 

aphanidermatum, Fusarium oxysporum (OK-209 and OK-97), Macrophomina 

phaseolina (M-9 and OK-98), Phytophthora cactorum, Rhizoctonia so/ani (OK-

330), and Sclerotium rolfsii (OK-64) were prepared. Three drops of log 8 cfu/ml 

suspensions from a 24 h culture of either P. cepacia (OK-2), P. aeruginosa (8-2, 

B-4), or Bacillus subtilis (B-6) were separately added to the surface of two 

opposite sections of quadrad portion petri dishes containing CZPA medium. 

After 24 h incubation, two small blocks of each selected fungus were placed on 

the surface of the other two quarters containing TSA medium. All petri dishes 

were sealed with parafilm and masking tape and incubated at 28 C. Treatments 

were replicated five times. The radial growth of two opposite fungal colonies 

were measured from each petri dish, depending on their growth rate, after a 18, 

24, or 48 h period. 

Development of a Bioassay for Ammonia Production. Five ml of CZPA 

was added to each one of two opposite sections of quadrad petri dishes. The 

other two sections were filled with 5 ml TSA, which has a nitrogen source but 

not in the form of an ammonium salt for culturing the selected fungi. One half ml 

of each bacterial suspension (log 8 cfu/ml) was added to the entire area of two 

sections of CZPA except in the control petri dishes. Twenty four hours after the 

incubation of the bacteria at 27 C, a 2 mm diameter block of a fungus was 
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placed at the center of each one of two opposite sections of TSA. All petri 

dishes were sealed with parafilm and masking tapes and placed inside an 

incubator at 27 C. 

In a second part of the experiment, various amounts of ammonia from 3 

J.LI to 54 J.LI in 1 J.LI increments were prepared by addition of ammonium hydroxide 

(NH40H) to 1 ml aliquot of sterile water. These dilutions, 0.5 mVsection, were 

placed into the empty opposite sections of quad-petri dishes. A block of fungus 

was placed on each one of the two TSA media sections. All petri dishes were 

sealed immediately with parafilm and masking tape and incubated at 27 C. 

Depending on the rapidity of fungal growth, the incubation period ranged from 

18 to 72 h. The radial growth of fungi was measured and compared with the 

untreated control and to fungal growth in the presence of strains of P. cepacia 

(OK-1 to OK-5) and P. aeruginosa (B-2 and B-4). Data on germination was 

recorded at 18, 24, and 48 h depending on growth rate of the fungus. This 

experiment was repeated once. 

RESULTS 

Indirect Effect of P. cepacia on seed germination. Previous studies 

indicated that when vinca seeds were soaked in suspensions (log 2, 4, 6, and 8 

cfu/ml) of P. cepacia strains (OK-1 to OK-5), there was a delay in germination of 

seeds compared to the non-treated control seeds (Baligh, et al., 1990). This 

delay mostly occurred during the early stage of germination due to direct 

contact with P. cepacia. However, after 11 days, germination rates of seeds 

were similar to the control. The indirect bioassay indicated that germination of 

sage, vinca and onion was also reduced by the volatile produced by P. cepacia 

OK-1 and OK-2. Among selected seeds, onion seemed to be more sensitive to 
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the volatile than the other seeds (Data not presented). Both strains of P. 

cepacia produced similar effects on germinating seeds. 

Detection and Identification of Volatile Compound(s). Color changes of 

pH papers suspended above cultures of P. cepacia were compared to the color 

standards for each paper. Maximum pH detected was 8.2 above NB and KMB, 

but only a slight change in pH was noted for cultures grown in PDB. No color 

changes were observed in control flasks. Greatest changes of pH occurred 

when P. cepacia was grown in CZB amended with peptone. The volatile 

compound was detected and identified as ammonia using the EM Quanta 

Ammonia test kit and the Lachet calorimetric apparatus. The greatest amount of 

ammonia was detected from strain OK-3 which consistently had the highest 

values for ammonia production in three different tests (Table 1 ). The OSU Soil 

and Water Quality Laboratory also detected ammonia using calorimetric 

changes with the Lachet apparatus but indicated much smaller quantities were 

produced by each strain (Table 2). 

According to the EM Quanta test kit, the range of ammonia produced was 

5 to 60 ppm. On the other hand, the Lachet instrument indicated that the range 

was 0.05 to 8.93 ppm in the presence of peptone. When these tests were 

repeated, both methods showed variable quantities of ammonia were produced 

by each strain. According to the EM Quanta method higher quantities of 

ammonia were produced by strain OK-3, whereas the Lachet test indicated that 

strain OK-5 and OK-3 produced more ammonia compared to the other strains of 

P. cepacia. 

Volatile ammonia was not detected in ethanol traps connected to the 

control. Mass spectral analysis (Table 3 and Figures 1-4 and Figures 5-1 0) 

indicated that the only major difference in the spectra occurred near the mass to 
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charge ratio of 17.0265. This compared favorably to the calculated amount for 

NH3:17.0266 and to a standard calibration for ammonia. The ammonia peak 

from the bacterial cultures only occurred in ethanol samples connected to CZPB 

samples but not from CZB. Comparison of the M/Z 17.0265 peak areas of 

strains of P. cepacia and P. aeruginosa indicated strain P. aeruginosa B-4 

produced the greatest amount of ammonia. The soil strain P. cepacia OK-3 had 

the smallest peak compared to OK-1, -OK-2, and OK-4. No ammonia was 

detected from strain OK-5 using MS technique. No other peak(s) was detected 

between the ammonia and the OH peaks except an additional unidentified peak 

from strain OK-4. 

Effect of Volatile Compound(s) on Seed Germination and Root 

Elongation of Vinca Seeds and Growth of Selected Fungi. Results of three 

experiments were analyzed to determine whether or not the addition of peptone 

to CZA had any effect on the mean root length and/or percent germination of 

vinca seeds. In general, none of the P. cepacia strains, except strain OK-4, had 

an effect on the root length compared to the control (Table 4). In two out of the 

three tests, only strain OK-4 significantly reduced mean root length compared to 

the control when grown on CZA. Strain OK-4 produced an unknown volatile 

without addition of peptone into CZA medium. Therefore, none of CZA media 

had any effect on ammonia production by other strains of P. cepacia (OK-1, OK-

2, OK-3, OK-5) to reduce mean root length compared to the control. 

Addition of peptone to CZA media activated most strains of P. cepacia to 

release volatile ammonia. In general volatilization of ammonia by strain OK-3, 

known as the pathogenic strain, significantly reduced mean of root length 

compared to the control in all three tests. The effect of volatile ammonia 

produced by strains OK-1, OK-2, and OK-5 on mean root length of vinca varied 
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but differed from the control. The mean root length of vinca varied when 

germinated in the presence of P. cepacia (OK-1 to OK-5) strains growing on 

CZA medium, but did not differ from the control. Root length of vinca was 

reduced (LSD=0.05) due to the volatile produced when P. cepacia (OK-1, OK-2, 

OK-3 and OK-5, excluding OK-4 during test 2 was grown on CZPA compared to 

CZA. Strain OK-3 produced the greatest reduction among all P. cepacia strains. 

During the experiments, strain OK-4 grown on CZA reduced mean of root length 

compared to CZPA (Tables 4). There was a significant reduction (LSD=0.05) of 

root length by strain OK-4 on CZPA. 

On the other hand, percent germination of vinca seeds in the presence of 

bacterial strains varied among isolates and media. Only strain OK-3 reduced 

percent germination when grown on CZPA medium. The results also showed 

that percent germination of seeds varied when volatile ammonia was released 

by the other strains grown on either CZA or CZP A. 

Among selected pathogenic fungi, the radial growth of S. rolfsii (OK-315), 

F. oxysporum (OK-209), and P. cactorum (OK-316) were reduced (p=0.05) 

whereas this suppression varied among other selected pathogenic fungi. 

Some of the selected fungi such as Trichoderma harzianum, Fusarium 

oxysporum tolerated or were slightly stimulated by the volatile. 

Suppressive Effect of Volatile Compound(s) on Selected Plant 

Pathogenic Fungi. Bacterial isolates growing on CZPA differed in their effects 

on the growth of various pathogenic fungi (Figures 5-8). During the first 18 h 

period, the radial growth of Pythium aphanidermatum was suppressed (P=0.05) 

due to the volatile produced by P. aeruginosa (8-2 and 8-4) compared to the 

control. The radial growth of R. so/ani colonies, measured after 24 h incubation, 

was suppressed (P=0.05) by the volatile(s) released by P. aeruginosa (8-2) 
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compared to the control. None of the bacterial strains were able to reduce the 

growth of either isolate of M. phaseolina during this period of time. P. 

aeruginosa (8-2, 8-4), and B. subtilis suppressed the radial growth of 

Phytophthora cactorum (p=0.05), compared to the control when measured after 

48 h incubation. Among selected fungi, Sclerotium rolfsii was the most 

sensitive fungus and was suppressed by volatile(s) produced by all bacteria 

except B. subtilis. 

Development of Bioassay for Ammonia Production. The sensitivity of 

selected fungi to produce volatile ammonia varied (Table 5}. The most sensitive 

fungus, Sclerotium rolfsii, was inhibited by <3.0 j.J.I/ml. Among bacterial isolates, 

P. aeruginosa (B-2 and 8-4) produced higher amounts of ammonia compared 

to strains of P. cepacia. Values indicating total inhibition (LC1 oo} of each 

fungus as well as 50% (LCso) and 90% inhibitions (LCgo) of selected fungi 

were determined. The ability of each bacterial strain to produce ammonia was 

compared to these values. Among selected fungi, Fusarium oxysporum, 

Pythium myriotylum and R. so/ani had the highest tolerance to volatile ammonia 

produced by Pseudomonas spp.. Among bacterial strains, only P. aeruginosa 

B-4 produced sufficient ammonia (equivalent or above LCso values} to 

suppress M. phaseolina, F. oxysporum, P. myriotylum, P. aphanidermatum, and 

S. rolfsii. None of the bacterial strains produced sufficient amounts of volatile, 

equvalent to LCso values, to inhibit R. so/ani, P. cactorum, and T. harzianum. In 

addition, ammonia equivalent values varied among P. cepacia strains OK-1 to 

OK-5. Figures 15-18 (photos) demonstrate the bioassay for Trichoderma 

harzianum, Macrophomina phaseolina, Fusarium oxysporumand Sclerotium 

rolfsii. 
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DISCUSSION 

Information about the effect of volatile compound(s) produced by 

microorganisms against soilborne pathogens is limited. The efficacy of a 

biocontrol agent can be enhanced by the production of volatiles on the 

spermosphere, rhizosphere, or rhizoplane of a host plant where the 

antagonistic biocontrol agent encounters the pathogen. Previous studies 

indicated that direct contact of P. cepacia with the seed or seedling interfered 

with germination and root elongation (Baligh, et al., 1990). Both direct and 

indirect contact of P. cepacia with seeds had similar effects on the delay in 

germination and reductions in root elongation. These observations suggested 

that volatile compounds produced by P. cepacia have phytotoxic effects on the 

metabolism of host plants. Some strains of P. cepacia enhanced root 

elongation (De Freitas and Germida, 1990). Our strains reduce root elongation 

but they are successful root colonizers on selected host plants (Delgado and 

Conway, 1989). 

Although the use of sterile pH paper was not an accurate detection 

method, the change of pH produced above NB, PDB, and KBB containing P. 

cepacia indicated that a volatile compound was released from these media and 

the degree of alkalinity was directly correlated to the source of nutrients added 

to the broth. 

During this study several techniques, such as the EM Quanta ammonia 

kit and the Lachet analytical system with a Quical II calibration, were used to 

identify and quantify the volatile ammonia. Even though these methods 

identified ammonia, there were large discrepancies between the two methods. 

The EM kit recorded a range of 5 to 60 J.Lg/ml and indicated that the amounts 

varied among the water samples used to trap volatiles, while the Lachet system 
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recorded a range of 1.4 to 8.93 J.lg/ml when peptone was present in the culture 

media. Both methods indicated that the addition of peptone to CZB increased 

the amount of ammonia released compared to when bacteria were grown in 

CZB alone. MS analysis could detect and quantify ammonia but the results 

varied amo!lg samples from each bacterial strain. In the first attempt to use MS 

analysis, strain OK-3 produced the lowest quantity (3600 Abs.Ht.) of ammonia 

among all Pseudomonas strains (Table 3). However, during subsequent 

analyses, strain OK-3 had higher ammonia peak than those of OK-2 (Figures 1-

4 and Figures 5-1 0). 

Many other methods have been introduced for ammonia determination 

including formation of blue color indophenol compound with sodium salicylate 

(Yerdouw, Van Echteld, and Dekkers, 1988), the modified calorimetric method 

of Kjeldahl digestion based on the sensitivity color reaction between NH4+ and 

a weakly alkaline mixture of sodium salicylate and dichloroisocyanurate (Cooke 

and Simpson, 1971 ), Nessler's reagent, and an ammonia gas sensitive 

electrode (Underhill, 1990). Indeed, all above methods have some difficulties. 

Modification of the water trapping system for collecting the volatile allowed the 

use of an EM Quanta Ammonia test kit to determine the amount of ammonia. 

The Lachet analytical system quantified and identified the volatile as ammonia 

but none of these techniques could quantify ammonia directly. Results of these 

tests for the same strain of P. cepacia were variable. In order to better quantify 

the amount of ammonia produced by bacterial isolates, a bioassay system was 

developed that relied on comparisons to the volatilization of ammonia from a 

series of solutions of ammonium hydroxide. 

The bioassay technique determined that all strains of P. cepacia were 

able to produce volatile ammonia to suppress individual fungal pathogens. The 

amount of ammonia produced by strains of Pseudomonas varied. Comparison 
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of P. cepacia (OK-1 to OK-5), P. aeruginosa (B-2 and B-4) and Bacillus subtilis 

(B-6) for production of volatile compound(s) indicated that the amounts of 

ammonia produced by each strain was generally less than LCso values. 

Comparison of ammonia equivalent values (AEV) of each bacterial strain to 

LC5o. LC9o. and LC1 oo values of the same fungus indicated how much 

inhibition of mycelial growth was possible, under ideal conditions, by volatile 

ammonia. Values of AEV varied among all strains of P. cepacia and P. 

aeruginosa. Among selected pathogenic fungi mycelial growth of S. rolfsii was 

the most sensitive and Pythium aphanidermatum the most tolerant to ammonia. 

Tolerance of fungi to ammonia varied and indicated that production of 

ammonia, by bacteria will not completely control pathogens. However, 

suppression of fungal pathogens by ammonia can be effective when mycelial 

growth toward germinating seeds is retarded allowing for additional growth of 

the seedling. 

According to Chun, Filonow, and Lockwood, (1984), low concentrations 

of ammonia were not toxic to sclerotia of M. phaseolina. Other studies (Tabak 

and Bridge Cook, 1968) indicated that NH3, produced as byproduct of 

organisms, reduces or inhibits the sporulation of Fusarium spp. in closed dishes 

or on media containing nitrogenous compounds that releases ammonia. 

However, Leffler, van Dongen, and Schippers, (1986) have shown that low 

concentration of NH3 (15 ~g/ml) stimulated the formation of chlamydospore by 

Fusarium spp. in both germinated and ungerminated conidia, but higher 

concentrations of NH3 (150 ~g/ml) had inhibitory effects. Also, low 

concentrations of NH3 (1 0 ~g/ml) had stimulatory effects on conidial 

germination whereas higher concentration (> 150 J.Lg/ml) had inhibitory effects 

(Palvica, Hera, Bradshaw, Skogerboe, and Baker, 1978). In our experiment, 

mycelial growth of all fungi tested was completely inhibited by 30 ~g/ml of 
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ammonia. Variability in reactions of pathogens to NH3 may limit the potential of 

NH3 on a field scale basis (Smiley, Cook, and Papendick, 1972). Therefore, it 

is important to know at what stage of the life cycle, a pathogen is most sensitive 

to the volatile produced by a biocontrol agent. It is expected that the tolerance of 

various propagules (e.g. zoospore, chlamydospore, mycelia) are different 

(Zakaria, Lockwood, and Filonow, 1980, Leffler, et al., 1986, Leach and Davey, 

1935). Our bioassay can be modified to evaluated such effects. 

All selected strains of Pseudomonas demonstrated total inhibition of 

mycelial growth of Sclerotium rolfsii since more than 3 tJ.I/ml of volatile ammonia 

were produced by all strains. According to Leach and Davey (1935), aqueous 

solutions of ammonia of less than 50 ppm, were lethal to the mycelium of S. 

rolfsii after a 24 h exposure and at 150 ppm within 2 h. Minimum concentrations 

needed to kill resistant sclerotia within 24-72 h was 250 ppm {Fang and Lui, 

1988). 

According to Howell, Deverall, and Morris, (1988) low concentrations of 

ammonia produced by Enterobacter cloacae in the spermosphere were highly 

toxic to Pythium ultimum causing pre-emergence damping-off of cotton. Our 

strains of Pythium were highly tolerant to ammonia up to 27 tJ.I/ml and at low 

concentrations, ammonia was somewhat stimulatory. Other researchers 

reported that low concentrations of ammonia had fungistatic effects and 

populations of P. ultimum and M. phaseolina slowly declined (Chun, et al., 

1984). All strains P. cepacia and P. aeruginosa suppressed the growth of P. 

aphanidermatum similar to the LCso level (13.4 tJ.g/ml) but were not as 

inhibitory of mycelial growth of Phytophthora cactorum. Zoospore germination 

of P. cinnamoni was completely inhibited by 17 Jlg/ml ammonia in buffer 

solution after 24 h (Lockwood and Filonow, 1981, Gilbert, Hanelsman, and 

Parke, 1989). Thus, the effect of ammonia produced by P. cepacia may have 



83 

similar activity against zoospore of Pythium spp. and Phytophthora spp. 

Stimulatory effects of volatile ammonia produced by P. cepacia at low 

concentrations were observed for Trichoderma harzianum, although P. 

aeruginosa (B-2 and B-4) strains had inhibitory effects on this fungus. The 

efficacy of Trichoderma spp. as biocontrol agent may be limited by the 

concentration of ammonia in soil (Linderman and Gilbert, 1969). The bioassay 

system indicated this fungus was completely inhibited at 15 J.!Vml. Information 

about factors involved in inhibition and/or stimulation are important since it is 

essential to understand or interpret the behavior of pathogen at the site of 

infection. 

There is evidence that ammonia is involved in the pathogenicity by 

bacteria. For example, Pseudomonas tomato, causing bacterial speck of 

tomato, produces ammonia that increases tissue necrosis. In addition to 

chlorosis and necrosis, electrolyte leakage occurred which coincided with 

ammonia accumulation (Bashan, Okan, and Henis, 1980). Similar observations 

were reported in diseased plants infected by P. coronafaciens (Trabulsi, 

Whitebread, and Duckett, 1978). Pseudomonas fluorescens, P. aeruginosa and 

several other Pseudomonads produce ammonia when they are grown on yeast 

peptone (Bashan, et al., 1980). Ammonium is not toxic to the host in 

concentrations of approximately 1 00 J.Lg/ml whereas ammonia has a necrotic 

effect at this concentration. P. tabaci produces tabtoxin, which is responsible for 

water soaking and subsequently dark-brown necrosis due to an increase in pH 

and the formation of ammonia gas in the infected tissues (Lovrekovich, 

Lovrekovich, and Goodman, 1969). According to Fazzolari (1990), formation of 

ammonia is during the late log phase of the growth cycle and accounts for 50% 

of the initial nitrate N content at the end of incubation. Accumulation of 

ammonia results in the consequent loss of glutamine synthetase activity. 
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Therefore, the metabolic activity of bacteria grown in the inoculated tissue 

contributes to the accumulation of ammonia and the increase in pH of the lesion 

tissue (Turner, 1981 ). Also, ammonia is involved in the tissue necrosis in the 

wildfire disease caused by Erwinia herbicola and the stem tissue of twig blight 

of apple caused by E. amylovora (Sasser, Stall, and Cook, 1968). 

Saxena and Karan (1985) studied the effect of ammonia solutions on 14 

different fungi that were isolated from 20 samples of pea seeds, species of 

Alternaria, Aspergillus, Cephalosporium, Penicillium, Mucor, and Fusarium 

were among these fungi. Ammonia solutions had a strong effect on the 

mycofloral growth but the germination of pea seeds was retarded. Similar 

effects were observed by strains of P. cepacia when non-disinfected vinca 

seeds were tested during the indirect bioassay. Volatile ammonia had 

inhibitory effects on most seed contaminating fungi such as Mucor sp., 

Aspergillus sp. and Rhizopus sp. growing on seeds (personal observation). 

Volatiles produced by strain OK-3 on CZPA media greatly reduced root 

length of vinca. The existence of an unknown volatile compound for OK-4 was 

confirmed by mass spectral analysis when an additional peak was detected 

between the ammonia and -OH- group peaks. This suggested an additional 

mechanism other than ammonia may be involved in inhibition of germination 

and/or root length. Mass spectra analysis was the most accurate and reliable 

technique to detect and identify ammonia but problems exist with quantification. 

The application of a buffer substance or other microorganisms to the 

rhizoplane of the host plant may prevent the harmful effect of ammonia 

production while the volatile itself may protect the root from invasive soilborne 

pathogens around the rhizosphere. For instance, the weight and length of 

seedlings of rice cultured, used as padding treatment, was depressed by P. 

cepacia (2.6 x1 o6 cfu/ml) but not when Bacillus spp. (3. 7x1 o6 cfu/ml) were 
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applied. Plants treated with P. cepacia had shorter root length in padding soil 

suspension (PSS) but many lateral roots were formed in the vicinity of the root 

apices. It was also found that P. cepacia can form nitrite (N02-). Rice seedlings 

are sensitive to nitrite produced by P. cepacia but not Bacillus sp. Therefore, 

retardation of rice roots might be caused by nitrite accumulation (Krieg, Walker, 

Senaratna, and Me Kersiae, 1984). 

According to Mac Millan (1956), ammonia readily penetrates the cells of 

many organisms by passive diffusion of its undissociated molecules. Under 

suitable conditions, ammonia equilibrates rapidly and accumulates in the cells 

at a concentration greater than that of the external medium. Ammonia has a 

disruptive action causing membrane deterioration. The toxicity of NH3 is 

different than NH4+. Ammonium ion toxicity is the result of the initial reaction of 

the gas when it enters the cell regardless of the final ionic form of the molecule 

(Rush and Lyda, 1982). If the ratio of NH4+-N/NOa--N can be manipulated 

when P. cepacia starts to establish its population on the rhizoplane or in the 

rhizosphere, the toxicity of volatile ammonia may be eliminated. In this regard, 

the use of certain compounds or microorganisms to convert harmful NH4+-N 

into Noa--N would be helpful. The form of nitrogen can be influenced by the pH 

of the rhizosphere soil. This is significant if toxic NH3 produced by P. cepacia 

can be converted to nontoxic NH4 + in rhizosphere. Perhaps this conversion 

would suppress damage caused by NH3 and allow the bacteria to continue to 

produce antibiotics and siderophores. 

Ammonia production by bacterial biocontrol agents has two important 

functions. Suppression or inhibition of the mycelial growth of soilborne 

pathogens is a positive attribute. On the other hand, interference with the seed 

germination and root elongation constitutes a negative aspect. Therefore, it is 

necessary to evaluate ammonia production by P. cepacia and to determine how 
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quantities of ammonia can be manipulated to allow for control of pathogenic 

fungi but yet cause no harm to the developing seedling. There are many factors 

involved in the complex environment of soil that interfere with the level of 

volatile produced by a biocontrol agent. In fact, the rhizopshere of a plant is not 

a closed system and volatiles may penetrate beyond the active area of 

antibiotics or siderophores and suppress or inhibit certain indigenous, minor 

and/or pathogenic soilborne microorganisms. The release of volatile ammonia 

is one of the factors in suppression or inhibition of pathogens. 



TABLE 1 

PRODUCTION OF AMMONIA BY PSEUDOMONAS CEPACIA STRAINS 
DETECTED BY EM QUANTA AMMONIA TEST KIT 1 

STRAIN AND SOURCE AMMONIA (ppm) 
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Test 1 Test 2 Test 3 

OK-1 
Soil, Washington, OK. 10 10 12 

OK-2 
Selection from OK-1 5 15 10 

OK-3 
Onion 20 55 60 

OK-4 
Apple 10 30 40 

OK-5 
Soil, Stillwater ,OK. 5 5 8 

1 Amounts of ammonia present in water blanks was determjned by 
comparing a color change on a test strip to a standard color chart. 
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TABLE 2 

PRODUCTION OF AMMONIA (PPM) BY PSEUDOMONAS CEPACIA 
DETECTED BY LACHET INSTRUMENT 1. 

Strains 

OK-1 
OK-2 
OK-3 
OK-4 
OK-5 
Control 

Test 1 
cze2 

0.10 
0.17 
0.05 

0.024 

Test 1 Test 2 
czpe3 CZB2 

1.87 0.10 
5.82 2.16 
8.06 

1.40 

1 Lachet Instrument operated by OSU Soil and Water Laboratory. 
2 CZB : Czapek-Dox Broth 
3 CZPB: Czapek-Dox Broth + 20 g/L Peptone 

Test 2 
czpe3 

7.35 
1.04 
8.89 
4.24 
8.93 
2.06 
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TABLE 3 

DETECTION AND IDENTIFICATION OF VOLATILE AMMONIA BY STRAINS OF 
PSEUDOMANAS CEPACIA (OK-1 TO OK-5) AND P. AERUGINOSA 

{B-4) USING MASS SPECTRA ANALYSIS A 

STRAIN MASS MASS ABS. HT. ABS. HT. HT. NH3/ % Base 
OH NH3 OH NH3 HT. OH 

OK-1 17.007 17.045 131000 9200 0.070 0.25 

OK-2 17.007 17.035 340000 9600 0.028 0.23 

OK-3 17.008 17.032 552400 3600 0.0065 0.08 

OK-4 17.009 17.038 680100 6400 0.0094 0.16 

OK-5 b 

B-4 17.002 17.032 821000 10000 0.1218 0.30 

CONTROL 17.009 303700 9.85 

a Samples were prepared by collecting air above bacterial cultures in 
ethanol traps. 0.5 Jll of each sample was injected into the apparatus. 

b No ammonia was detected from strain OK-5 during this experiment. 
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Figures 1-4. Detection of Ammonia Produced by Two Strains of Pseudomonas 
cepacia (OK-2 and OK-3) Using Mass Spectra Analysis: The 
large peak represents hydroxyl (OH) group of either ethanol or 
water. Small peak represents ammonia production. Fig. 1. 
Control. Note: Small peak on the control sample is the transfer 
of volatilized trace of ammonia due to the presence of peptone 
in CZPB; Fig. 2 Peak of ammonia from 40% ammonium 
hydroxyde; Fig. 3. P. cepacia Strain OK-2; Fig. 4 P. cepacia 
strain in the presence of peptone in CZPB. 
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Figures 5-10. Calibration and Detection of Ammonia from Hydroxide Compared 
to Pure Ethanol and Three Strains of Pseudomonas. Note: The amounts of 
ammonia production varied among three strains. Fig. 5. Peak of ammonia from 
40% ammonium hydroxide. Fig. 6. Test for calibration indicating ammonia 
peak between 17 to 18. Fig. 7. Control. Fig. 8. P. cepacia strain OK-2. Fig. 9. 
P. cepacia strain OK-3. Fig. 1 0. P. cepacia strain OK-4. 
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TABLE 4 

EFFECTS OF VOLATILES PRODUCED BY STRAINS OF PSEUDOMONAS 
CEPACIA OK-1 TO OK-5) GROWN ON TWO DIFFERENT MEDIA 1, AFTER 

ONEWEEK, ON GERMINATION AND ROOT LENGTH OF VINCA 

STRAIN 

OK-1 
OK-2 
OK-3 
OK-4 
OK-5 
CONTROL 

MEAN ROOT LENGTH2 % GERMINATION 
CZA CZPA LSD3 CZA CZPA 

1.661 0.985 0.365 78 54 
1.477 1.047 0.342 70 76 
1.445 0.141 0.392 66 48 
0.445 1.164 0.467 30 56 
1.451 0.818 0.368 62 64 
1.358 1.266 0.344 72 72 

0.808 0.816 

1 CZA- Czapek's Agar, CZPA- 20 g/1 peptone added. 

2 Means are from 50 observations and number of replications were 5. 

3 LSD (0.05) values were calculated among the number of germinated 
seeds. 

4 LSD (0.05) values were calculated between two groups of CZA and CZPA 
media. 
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Figures 11-14. Suppression of Fungal Pathogens Affected by Volatile 
Compound(s) Produced by Strains of P. cepacia OK-2 (11 ), P. aeruginosa (8-2, 
8-4) (12, 13), and Bacillus subtilis (8-6) (14). Alphabets represent selected 
fungi at different time periods: A. Pythium aphanidermatum OK-317 (18 h, LSD 
(0.05)= 0.3990), B. Macrophomina phaseolina M-9, C. M. phaseolina OK-98, D. 
Rhizoctonia so/ani 330 (AG-4) (24 h, LSD (0.05)= 0.8905), E. Fusarium 
oxysporum OK-209, F. F. oxysporum OK-97, G. Phytophthora cacturom OK-316, 
H. Sclerotium rolfsii OK-64 (48 h (0.05)= 0.1558). * Represents significant effect. 
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TABLE 5 

QUANTIFICATION OF AMMONIA PRODUCTION BY STRAINS OF 
PSEUDOMONAS CEPACIA,PSEUDOMONAS AERUGJNOSA 
BY COMPARING INHIBITION OF GROWTH OF SOILBORNE 

FUNGIX IN THE PRESENCE OF THE BACTERIA TO 
INHIBITION CAUSED BY AMMONIARELEASED 

FROM SOLUTIONS OF NH40H 

AMMONIA EQUIVALENT VALUES (J.LGIML) FOR INHIBITION Y 

SELECTED P. cepacia P. aeruginosa 

FUNGI LC50 LC90 LC100 OK-1 OK-2 OK-3 OK-4 OK-5 B-2 B-4 

Macrophomia 10.6 17.2 18.0 8.3 8.7 9.0 9.3 8.9 9.3 10.6 
phaseolina 

Fusarium 18.7 28.7 30.0 13.8 16.3 16.3 16.3 17.3 17.5 1 9.2 
oxysporum 

Sclerotium <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 
rolfsii 

Rhizoctonia 17.2 20.2 21.0 7.2 15.0 16.1 17.8 7.6 N.A.Z 17.1 
so/ani 

Pythium 12.4 22.8 27.0 13.0 12.8 12.6 12.9 12.8 <3.0 13.3 
myriotylum 

Pythium 13.4 16.6 18.0 13.9 13.7 13.4 13.2 13.6 14.0 13.9 
aphanidermatum 

Phytothora 12.8 14.6 5.0 7.2 8.2 7.8 8.2 6.4 7.2 9.0 
cactorum 

Trichoderma 11.1 14.1 15.0 6.3 6.3 8.0 3.0 3.8 9.1 9.1 
harzianum 

x Fungi were grown on trypticase soy agar (TSA). 
Y Ammonia equivalents determined by comparing growth of fungi in the 

presence of volatile produced by Pseudomonas spp. to growth of fungi 
exposed to solutions of NH40H. 

z Data not available. 
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Figure 15. Bioassay System Used to Compare the Inhibition of Trichoderma 
harzianum by Ammonium to Inhibition Caused by Strains of Pseudomonas spp. 

Figure 16. Bioassay System Used to Compare the Inhibition of Macrophomina 
phaseolina by Ammonium to Inhibition Caused by Strains of Pseudomonas spp. 
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Figure 17. Bioassay System Used to Compare the Inhibition of Fusarium 
oxysporum by Ammonium to Inhibition Caused by Strains of Pseudomonas spp. 

Figure 18. Bioassay System Used to Compare the Inhibition of Scterotium rolfii 
by Ammonium to Inhibition Caused by Strains of Pseudomonas spp. 
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During the past few years, P. cepacia has been recognized as a 

successful biocontrol agent for the control of foliar diseases of plants. However, 

the use of this bacterium for the control of soilborne pathogens has not 

progressed as rapidly. Soilborne diseases are more difficult to control with 

biocontrol agents rather than chemicals because of the complexity of the soil 

environment. Certain fungicides are very effective but are being withdrawn from 

use because of their risks to the environment and to human health. The 

exclusive use of certain chemicals may lead to the development of resistant 

pathogens (Parke, J.L., 1990). Therefore, in some cases, the alternative choice 

would be new biocontrol candidates such as P. cepacia. To answer whether or 

not P. cepacia is a beneficial organism, several characteristics of this bacterium 

should be evaluated and many aspects about the application of this organism 

should be considered. 

Advantages of P. cepacia 

P. cepacia is a gram negative, non-sporing rod which is nutritionally 

versatile and it is stimulated by root exudates comparing to gram positive rods 

and coccoids. Strains of P. cepacia are rhizosphere competent on the root 
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systems of certain host plants, especially small seeds. P. cepacia has several 

mechanisms that may control pathogens such as the production of antibiotics, 

siderophores, enzymes, and volatile ammonia. Therefore, it may be usefully 

applied against many diseases due to its diverse metabolic productions which 

may overcome a majority of soilborne pathogens. This investigation indicated 

that P. cepacia OK-1, OK-2, and two strains of OK-5 are colonizing the 

rhizosphere of vinca and they produce antimicrobial compounds. These are the 

most important characteristics required for P. cepacia to be a biocontrol agent. 

In addition, the production of ammonia by this biocontrol candidate was 

demonstrated against selected fungi and the its significance was evaluated by 

the bioassay technique. Indeed, volatile production against fungi is not a rare 

phenomenon. Production of volatile ammonia by P. cepacia is a mediated 

mechanism of antibiosis. This additional mechanism suppresses or iflhibits 

many seed-contaminating and pathogenic fungi. Volatile ammonia may act 

beyond the territory of direct action of antimicrobial compounds in the 

rhizosphere. If P. cepacia is characterized as a pathogen, host range is limited 

to onion and Allium species (Hayward, 1988). Strains of P. cepacia are mildly 

pathogenic on host plants and cannot be transferred to a non-host plants. P. 

cepacia strains can suppress or inhibit numerous pathogens (Table 1) 

indicating that P. cepacia is a biocontrol agent or beneficial bacterium. 

-

Disadvantages of P. cepacia 

Strains of P. cepacia cause delay in seed germination and interfere with 

root elongation, specially when the initial density of the bacteria is high. Volatile 

ammonia, produced by P. cepacia is harmful to the root of host plant, especially 

during the early stages of seed germination and root elongation. If harmful 
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effects .of the volatile produced by P. cepacia in the rhizosphere or rhizoplane 

cannot be prevented by manipulation of genes involved in ammonia production, 

there are chances that special formulations can convert the toxic NH3 into 

NH4+-N or N02--N forms by the use of biotic or abiotic agents. Therefore, 

simply because ammonia reduces potential of P. cepacia as a biocontrol agent, 

it does not mean that this unique organism should be ignored. 

Knowledge of the antagonistic mechanism is necessary for EPA to 

register a new biocontrol agent. When an organism produces non-target toxic 

metabolites, EPA will never approve it. Our strain does not have such products 

and it is a well known industrial bacterium which degrades many wasteful 

compounds in the environment. P. cepacia as an opportunistic human 

pathogen which only infects patients with immune deficiency and it has already 

been exposed to the environment. This means an optimistic view for further 

investigation as long as EPA does not restrict any progress in the area of 

biotechnology. This policy may would improve the opportunities required for a 

biocontrol agent to compete with chemicals (Jutsun, A.A., 1988). 

Unfortunately, this research did not investigate the effect of 

environmental factors in the performance of P. cepacia. The point is that if P. 

cepacia does not perform properly in petri dishes or growth chambers, it will not 

be a wise decision to go to the next step of formulation or commercialization. 

Application of P. cepacia should not have any legal problem as long as it is not 

genetically manipulated. The efficacy of P. cepacia is one of the major 

problems since moisture, temperature, sunlight and pH for optimum growth of 

this biocontrol is not known. There are many questions about application 

methods which needed to, be answered. It is not clear whether or not 

lyophilized forms, mixture with diamaceous earth or powdered of glass beads 

(Homma and Suzui, 1989) can applied to our strains. Mixture with Trichoderma 
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harzianum or nitrogen fixing bacteria are other choices. 

Future plan should emphasize three aspects of P. cepacia studies: 

1) determination of factors that can prevent the deleterious effects of ammonia 

production, 2) manipulation of genes involved in the production of antimicrobial 

compounds, using biotechnology to enhance the stability of the biocontrol 

candidate, 3) development of new formulations and application methods. 
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TABLE 1 

LIST OF THE DISEASES CONTROLLED BY APPLICATION 
OF P. CEPACIA 

DISEASE PATHOGEN REFERENCE 

Tobacco Alternaria- Alternaria sp. Janiseiwicz 
Leaf Spot 1988 

Southern Leaf Blight Bipolaris maydis Janiseiwicz 
1988 

Gray Mold of Apple Botrytis cinerea Janiseiwicz 
1988 

Peanut Leaf Spot Cercospora Knudsen 
arachidicola 1987 

Fusarium-Wilt of Onion Fusarium oxysporum Kawamoto and 
t.sp. cepae Lorbeer 1988 

Fusarium-Wilt of China Fusarium Oxysporum Cavillar 
Aster t.sp. callestephi 1984 

Fusarium-Wilt of Tomato Fusarium oxysporum Hommaand 
t.sp. lycopersici Suzui 1989 

Onion Maggot Hylemy antiqua Hough et al., 
& H. planta 1981 

Brown Rot of Nectarines Monilia fructicola Smilanick, et 
at., 1989 

Blue Mold of Apple Penicillium expansum Janiseiwicz 
1988 

Rots on Citrus Fruit Penicillium italicum Uevens, et al., 
& P. digitatum 1989 

Damping-off of Bean,Pepper, Pythium aphanidermatum Elad and Chet, 
Melon, Tomato, and Cotton 1987 

Damping-off of Cucumber Pythium ultimum " 

Damping-Off of Radish Rhizoctonia so/ani Hommaand 
Suzui, 1989 

Glume Blotch of Wheat Septaria nodorum Jones, et al., 
1981 

Verticillium-Wilt of Verticillium dahliae Hommaand 
Egg Plant Suzui 1989 
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