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CHAPTER I 

INTRODUCTION 

Extensin is one member of a class of hydroxyproline-rich glycoproteins 

present in a wide variety of plants and algae [1]. Cell walls of higher plants 

usually contain small quantities of extensins. Their usually low level is strikingly 

increased in response to wounding [2,3,4], infection [5,6, 7], elicitor treatment 

[8,9], and under tissue culture conditions [1 0]. A number of reports,cited in [1 ], 

have suggested that this accumulation of the glycoprotein may act as a defense 

mechanism of the plant to disease. 

Isolation of extensins is a prerequisite to clearly understanding their roles. 

This step, however, is particularly difficult due to the high insolubility of the 

glycoprotein. Recent progress in the isolation has been accomplished either by 

direct elution of a precursor from carrot root and tomato cell walls with a salt 

solution [11 ,4] or by solubilizing intact extensins from a homogenate of potato 

tubers and tobacco callus at very acidic pH [12, 13]. In addition to 

hydroxyproline-rich glycoprotein (HRGP)-extensin precursors, these procedures 

have led to the solubilization of hydroxyproline-rich arabinogalactan proteins. 

The objectives of this research were as follows: 

1) To isolate extensins from callus cultures of susceptible and resistant cultivars 

of Gossypium hirsutum (cotton). 2) To determine several biochemical 

parameters such as amino acid content, hydroxyproline content and 

carbohydrate content. 3) To relate the differences in the biochemical 

parameters such as amino acid content and hydroxyproline content to the 

1 



resistance of the plant to the bacterial pathogen, Xanthomonas campestris pv . 

. malvacearum. 
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CHAPTER II 

LITERATURE REVIEW 

Plant Cell Wall Proteins 

Plant cell walls are comprised of cellulose, hemicelluloses, pectic 

compounds, lignin, suberin, proteins and water (14]. Cell walls contain several 

types of structural proteins as well as various enzymes. Among these is the 

family of hydroxyproline-rich glycoproteins (HRGP's) which to date is the best 

characterized class. Plants contain at least three classes of HRGP's: 1) certain 

lectins found in the Solanaceae [15, 16, 17], 2) the arabinogalactan proteins 

(AGP's) (15, 16, 17, 18,19 and 20], and 3) extensins [1, 10,14,20,21 and 22]. 

They are distinguished from one another by their chemical composition. The 

first class is a group of hemaglutinating lectins whose activity is specifically 

inhibited by di- and tri-N-acetyl glucosamine [15]. The potato lectin is a cell wall 

glycoprotein whose synthesis is increased upon wounding (17]. The second 

class is the AGP's,widely distributed in the plant kingdom. They are primarily 

located in the extracellular matrix and are freely soluble although they are 

sometimes associated with the plasma membrane, and are major components 

of plant gums and exudates [16]. The third class is the extensins, major 

components of the primary cell wall where they may play a structural role. 

Extensins are insoluble HRGP's within the primary cell wall; however, soluble 

forms of this protein class have been purified (22]. 

With the use of molecular biological techniques (isolation and sequencing 

3 
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of eDNA clones), some investigators have reported other structural cell wall 

proteins, like the glycine-rich proteins in petunia [23] , and bean [24], and the 

proline-rich proteins in carrot [25], and soybean [26,27,28]. Furthermore, a 28-

kD glycoprotein that accumulated in the cell wall of growing stems of soybean at 

low water potentials has been reported [29]. Moreover, a 70-kD protein was 

extracted from mature cell walls of soybean stems [29]. Although graminaceous 

monocots generally contain low levels of HRGP's, a threonine-rich HRGP, 

homologous with dicot extensins has been isolated from maize cell cultures 

[30,31]. HRGP's from unicellular alga Chlamydomonas reinhardtii, similar to 

dicot HRGP's, were recently characterized [32]. 

Detailed information about structural cell wall proteins has only begun to 

develop. Future studies on the characterization, localization and assembly of 

other cell wall components will provide further information on how wall proteins 

affect the growth, development and function of plant cells. 

Extensins 

Extensins are largely confined to the primary cell walls that are undergoing 

extension, hence the name extensin accorded them by Lamport [1 0]. So far, 

the best characterized extensin is the one isolated by salt-elution from carrot 

root cell walls [4]. The amino acid composition of the soluble carrot extensin is 

mostly Hyp, Ser, His, Tyr, Lys and Val. The abundance of Lys and low content 

of Glu contribute to the high isoelectric point observed in this molecule. This 

glycoprotein consists of 35% protein and 65% carbohydrate. Arabinose 

represents 97% of the sugar present and galactose only 3%. The arabinose is 

attached via an 0-glycosidic linkage to Hyp in short side chains of mainly four 

and three residues. Galactose is linked to serine in an 0-glycosidic linkage. 



This extensin has a highly repetitive pentapeptide sequence, Ser-(Hyp)4 

characteristic of the backbone of all extensins. 

5 

The secondary structure of soluble carrot, tomato and sycamore-maple 

extensins has been studied using electron microscopy [33,34,35] and circular 

dichroism [34]. Analysis by circular dichroism indicates that extensin is in the 

polyproline II conformation (an extended left-handed helix). Morever, it appears 

that the carbohydrate moiety of this glycoprotein stabilizes the helical 

conformation. The secondary structure of extensin is consistent with the 

information obtained from electron micrographs of the glycoprotein. The 

micrographs show thin rod-like molecules with an average length of 80-84 nm. 

True molecular weight of carrot and tobacco extensin was reported to be -90 

kD. 

Extensins have also been isolated from different plants and tissues, such 

as potato tuber [12], tobacco callus [13], tomato cell suspension cultures [11 ], 

and soybean seed coats [36]. In all these glycoproteins, Hyp is the major amino 

acid representing 33-42 mole % of the total amino acids. Other abundant 

amino acids are Ser, His, Lys, Tyr, Val and Pro. Arabinose and galactose are 

the only carbohydrates present in the protein [36, 12, 13]. In tomato cell 

suspension cultures, Hyp-tetra-arabinosides and Hyp-tri-arabinosides 

predominate in both extensins isolated [11]. In soybean seed coat extensin, 

arabinose is the major sugar mainly bound to Hyp in side chains of three 

arabinosyl residues [36]. 

Amino acid sequences of two different extensin monomers, labelled P1 

and P2 from tomato cell suspension cultures, have been reported [37]. The 

tryptic peptide maps show that both extensin precursors are highly periodic 

structures. P1 contains primarily two different peptide blocks: Ser-Hyp-Hyp-

Hyp-Hyp-Thr-Hyp-Val-Tyr-Lys and Ser-Hyp-Hyp-Hyp-Hyp-Vai-Lys-Pro-Tyr-His-
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Pro-Thr-Hyp-Vai-Tyr-Lys and P2 consists entirely of a single repeating 

decapeptide, Ser-Hyp-Hyp-Hyp-Hyp-Vai-Tyr-Lys-Tyr-Lys. These sequences of 

P1 and P2 show two different repeated domains, one of glycosylated Ser

(Hyp)4 sequences and the other non-glycosylated. Lamport proposed that the 

glycosylated domain is relatively rigid and the non-glycosylated one flexible, a 

structure that might allow the weaving of the cellulose microfibrils of the primary 

cell wall with an extensin network of defined porosity, the so called "warp-weft" 

model. 

It has been proposed that extensin is slowly insolubilized in the cell wall by 

covalent linkages (33, 11 ]. One proposed covalent link is the isodityrosine 

formed between two tyrosine residues from different extensin molecules (39,40]. 

To date, no intermolecular cross-link has been characterized. Thus, the 

insolubilization of extensin may not be the consequence of covalent linkages. 

Further analyses of the protein structure of extensins indicate that in sugar 

beet the Ser-(Hyp)4 blocks appear to be split, indicating an unusually high 

interspecific variability for a putative structural molecule (41]. 

In summary, all the extensins that have been characterized are highly 

basic molecules with high Hyp and Ara contents. Most of Hyp is found in the 

Ser-(Hyp)4 peptide sequences. The Hyp-Arabinosylation pattern varies from 

species to species, as does the content of non-Hyp amino acids. 

Arabinogalactan Proteins 

Arabinogalactan proteins (AGP's), as major components of plant exudates 

and secretions, have been studied extensively in terms of their chemistry 

[15, 16], but they are known to occur in all plant tissues and in organ-specific 

forms [42]. 
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AGP's contain a high proportion of carbohydrate and usually less than 

. 10% by weight of protein. The major polysaccharides are 0-galactopyranose 

and L-arabinofuranose with most samples containing more Gal than Ara. They 

may also contain smaller proportions of L-rhamnopyranose, 0-mannopyranose, 

0-xylopyranose, 0-glucopyranose, 0-glucuronic. acid and 0-galacturonic acid. 

The polysaccharides are comprised of a backbone of (1 ~ 3) -linked ~-0-

galactopyranosyl residues branched through positions 6 with (1 ~ 6) -linked ~-

0-galactopyranosyl side-chains which are substituted with arabinopyranosyl 

residues, and the less abundant monosaccharides often in terminal positions 

[15]. Using Smith-degradation procedures, it has been shown for many AGP's, 

that the ~-0-galactan framework contains blocks of galactopyranosyl residues 

which are interrupted at regular intervals by periodate-sensitive residues 

[43,44]. The blocks which remain resistant to Smith degradation consist largely 

of (1-->3) linked galactopyranosyl residues [15]. 

In contrast with the polysaccharide component, relatively little is known 

about the structure and organization of the protein core of the AGP's [20]. They 

are rich in hydroxyproline, serine, alanine and glycine. The nature of the 

carbohydrate-protein linkage has been demonstrated unequivocally only for the 

AG-peptide from wheat endosperm and involves galactopyranosyl residues 

linked 0-glycosidically to hydroxyprolyl residues [45,46]. However, the 

hydroxyproline of rice-bran proteoglycan is substituted with oligo-arabinosides 

[47], and alkali-stable arabinosyl-hydroxyproline linkages have been detected 

in an AGP from Timothy grass pollen [48]. In Cannabis sativa leaf, both 

galactosyl-serine and alkali-resistant linkages have been detected [49], and 

carbohydrate is attached to serine, threonine and hydroxyproline in the AGP 

from Phaseolus vulgaris [50]. A large proportion of the polysaccharide in radish 

leaf AGP may be linked to the protein through 3-0-0 galactosylserine [51]. 
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It is not clear if one or more polypeptides are present in the AGP molecule. 

Three N-terminal amino acids, ser, gly and ala, in molar proportions 1 :2:1 are 

found in Acer pseudoplatanus AGP [52], consistent with the presence of four 

peptide chains cross-linked in some way, each bearing several AG chains at 

Hyp sites. Attempts to sequence the peptides by the Edman procedure were 

thwarted by glycosylation of Hyp at residue 3 of the chain and by cross-linking 

of structures further into the polypeptide chain. The N-terminal amino acids in 

AGP's from Ipomea batatas, Daucus carota, Pisum sativum, Acica elata, Pinus 

taeda, and Pseudosuga menziessi are the same as in A. pseudoplatanus 

supporting the idea that the N-terminal amino acids of the AGP polypeptides are 

evolutionarily conserved [52]. 

The recent generation of monoclonal antibodies to the plasma membrane 

of plant cells has led to observations that glycoproteins associated with the 

plasma membrane contain carbohydrate components that also occur on soluble 

AGP proteoglycans [19,53]. Recently, it has been indicated that Ala-Hyp 

repeats are found in a ryegrass AGP [54]. 

In summary, AGPs are acidic molecules rich in hydroxyproline, alanine, 

serine and threonine. Arabinose and galactose are the main sugars in addition 

to uronic acids. Although there is a wealth of information on the structure of 

AGPs, their function remains obscure. It has been proposed that they might be 

involved in cell-cell recognition and/or interaction, however no one has reported 

any attempts to establish their function by direct experimentation. 

Molecular Biological Studies 

Although the repetitive segments of the primary sequences of two different 

extensins from tomato cell suspension cultures have been determined [37], 



completion of the sequence by protein chemical methods may prove difficult 

because of the presence of many imino acid residues and of many post

translational modifications. Nucleic acid studies offer the simplest means of 

determining the primary sequences of extensins. 

9 

Chen and Varner isolated and sequenced a partial eDNA clone for carrot 

root extensin, which provided a sequence of the carboxy-terminus [55). This 

eDNA clone encodes a peptide containing Ser-(Pro)4 repeats and Tyr-Lys-Tyr-

Lys [55] sequences also found in tomato extensin [56,37]. Using eDNA clones 

as probes, six different clones from carrot genomic libraries were isolated [57). 

One of the genomic clones was characterized and found to contain an open 

reading frame possibly encoding extensin, and a single intron in the 3'

noncoding region. The derived amino acid sequence contained a putative 

signal peptide, and 25 Ser-(Pro)4 sequences. Two different extensin RNA 

transcripts were found corresponding to the genomic clone with different 5' start 

sites. Both transcripts increase markedly upon wounding, which correlates with 

the extensin accumulatio'n seen in the cell wall after wounding in carrot roots 

[57,3,4]. 

A tomato extensin genomic clone has been isolated with the genomic 

clone for carrot extensin as a probe [58). The sequence of this clone encodes a 

polypeptide with numerous Ser-(Pro)4 repeats, which are usually followed by 

Val-His or Val-Ala. 

Three extensin transcripts of Phaseolus vulgaris have been sequenced 

[59]. Two of these transcripts code for proteins rich in repeats of Tyr-Tyr-Tyr

Lys-Ser-Pro-Pro-Pro-Pro-Ser-Pro-Ser-Pro-Pro-Pro-Pro, and the third for 

repeats of Tyr-Tyr-Tyr-His-Ser-Pro-Pro-Pro-Pro-Lys-His-Ser-Pro-Pro-Pro-Pro. 

One of the tobacco extensin transcripts has been sequenced [60]. It codes 

for 17 repeats of Ser-Pro-Pro-Pro-Pro, seven repeats of Ser-Pro-Pro-Pro-Pro-
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Thr-Pro-Val, and eight repeats of Ser-Pro-Pro-Pro-Pro-Lys-Lys-Pro-Tyr-Tyr-Pro

Pro-His-Thr-Pro-Val-Tyr-Lys. 

Rape extensin gene, extB, has been isolated [61] from an oilseed rape 

(Brassica napus L). It represents a sub-family of extensin genes different from 

the sub-family containing extA [62]. 

A eDNA clone from carrot root has been isolated [55] that encodes a 

proline-rich 33 kD protein, p33, containing three repeats of Pro-Pro-Vai-Tyr-Thr

Pro-Pro-Vai-His-Lys. Subsequent studies have shown that this proline-rich 

protein is present in the cell wall of carrot root [22]. A petunia gene encoding a 

protein that is 67% glycine has been characterized [23]; the bulk of the 

sequence consists of (Giy-X)n sequences in which X is frequently glycine. It has 

been proposed that the protein encoded by this gene is likely to function as a 

cell wall structural protein [23]. 

Another gene that encodes a proline-(Hyp)-rich protein has been isolated 

from soybean [26). The amino acid sequence deduced from the gene for the 

protein, designated SbPrP1, is composed primarily of 43 repeat units of Pro-

Pro-Vai-Tyr-Lys and a putative signal sequence of 26 amino acids. Recently a 

new proline-rich protein has been isolated from soybean seedlings [28]. This 

protein shows similarities in composition and sequence to that predicted for the 

carrot p33 protein and SbPrP1. 

Although the most-studied HRGP's, so far, have been those from dicot 

species, a maize HRGP has been characterized at the protein and genomic 

levels [30,31 ,63]. This maize HRGP has the main features of dicot extensins, 

although its main repeated motif is different from the dicot ones and it is very 

rich in threonine [63]. The sequence of a HRGP gene from sorghum [64] 

resembles maize HRGP gene (60% overall homology). 

As more genes that encode cell wall proteins are isolated and 



characterized, it will be possible to gain further information on their structure 

and function. 

Roles of Extensins 

Structurai-Eunctjonal Bole 

1 1 

Casab and Varner [21] demonstrated that extensin is most abundantly 

localized in cells that belong to the sclerenchymal tissue. The sclerenchymal 

cells act as the skeletal elements of the plant body. These cells enable the plant 

body to withstand various strains, such as stretching, bending, compression and 

tension [66]. Thus the presence of extensin in the sclerenchymal cell walls 

together with other wall components, may determine the unique characteristics 

of these cells. 

An extremely hydroxyproline-rich sulfated glycoprotein is expressed under 

strict developmental control in inverting Volvox colonies, which supports the 

idea of a functional role of HBGP in inversion [67]. 

Perhaps, the best example of a structural role for extensin in the wall 

comes from studies of Chlamydomonas cell walls in which several 

hydroxyproline-rich glycoproteins constitute the major structural components 

[68,69]. The structure and assembly of cell walls in Chlamydomonas reinhardtii 

have been analyzed in vitro. Each wall consists of chaotrope-insoluble (W1 
I 

W2) and chaotrope-soluble (W4, W6) layers. There are four major glycoproteins 

in the extracellular matrix of Chlamydomonas reinhardtii. Three of four are the 

hydroxyproline-rich glycoproteins that co-polymerize to form the W6 layer. The 

fourth is a glycine-rich glycoprotein apparently found within the W4 layer. 



Role of Extensjn jn Plant Defense 

Although the numerous reports on the biosynthesis and structure of 

extensin has been published, we still know very little about its role inside the 

cell wall. 
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Several studies suggest a role for extensins in plant defense. Extensins 

accumulate in the plant cell wall in response to infection, mechanical wounding, 

elicitor treatment, and under tissue culture conditions [65]. 

It has been demonstrated that hydroxyproline and thus HRGP's increased 

markedly in the cell walls of melon seedlings during infection by Colletotrichum 

lagenarium [70,5,6]. Although the accumulation of HRGP was first reported in 

melon in a susceptible reaction, it was later demonstrated that it accumulated 

earlier in melons in which resistance had been induced against the fungal 

pathogen [6]. In cucumber, cell wall Hyp levels increased more rapidly in 

resistant than in susceptible cultivars of cucumber infected by the fungus 

Cladosporium cucumerinum [71 ]. Since then, it has been shown that Hyp 

increases in the cell walls of other hosts infected by different parasites [71 ,72]. 

There is an accumulation of cell wall HRGP's in bean hypocotyls [8] 

following slicing (mechanical wounding). Similarly, wounded tomato stems 

have been shown to accumulate cell wall HRGP's and HRGP mANA [73]. 

Chrispeels eta/. [3] have shown that slicing and aeration enhance the synthesis 

and secretion of HRGP in carrot discs and suggested that this process may be 

involved in structural reformation of the wall or, perhaps, in disease resistance 

following wounding [3]. 

The earliest detectable event during plant-pathogen interaction is a rapid 

increase in ethylene biosynthesis [74]. It has been proposed that ethylene 

produced in response to biological stress is a signal for plants to activate 
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defense mechanisms against invading pathogens. It has been reported that 

extensin mANA's accumulated in response to ethylene. In carrot, two HAGP 

mANA's, 1.8 and 1.4 kb have been induced by ethylene [74]. Additionally, it has 

been found that treatment of melon plants with ethylene leads to induction of 1.4 

and 1.65 kb mANA's which hybridize to a genomic clone of HAGP from carrot. 

Treatment of melon and soybean hypocotyls with elicitors of fungal origin 

resulted in the stimulation of HAGP synthesis [8]. Also, elicitor treatment of bean 

cell cultures resulted in the accumulation of cell wall hydroxyproline [9], a direct 

sign of HAGP accumulation. 

All these works indicate that enrichment of the cell wall HAGP is a common 

response of plants to infection, and this response may be involved in the 

general defense reactions of plants. 

In summary, a precise role of extensins in the cell wall is not clear and may 

not be necessary, but they are assumed to play a role in the structure of plant 

cell walls and may therefore be important in controlling growth, development, 

and disease resistance. Further research is necessary to more clearly define 

their precise role. 



CHAPTER Ill 

MATERIALS AND METHODS 

Plant Materials 

Cotton Lines and Callus Cultures 

Two different tissue cultured cell lines were used in this research. They 

are cell cultures from cotton lines Acala 44 (Ac 44) and Immune 216 (lm 216). 

The cotton line Ac 44 (blight-susceptible) possesses no genes for 

resistance to Xanthomonas campestris pv. malvacearum (X. c. malvacearum) 

[75] and is completely susceptible to all North American races of the bacterial 

pathogen. Resistant line lm 216 (blight-immune) possesses homozygous 

resistance to X.c. malvacearum, having three major resistance genes 8 2, 83, b7 

and the polygenes [75,76,77 ]. It is resistant to all North American races of 

X.c.malvacearum. Ac 44 and lm 216 callus cultures were established in 1985 

(Janet Rogers, Dept. of Biochemistry, Oklahoma State University, OK) using the 

method of Ruyack et al. [78]. The callus cultures which were used in this 

research represent end of the log phase. 

HRGP Extraction 

HRGP's were extracted from cotton callus tissue according to a 

modification of the acid-ethanol procedure of Marinkovich [79] (Figure 1 ). The 

callus tissues (1 00 g fresh weight) were placed in 100 ml of a mixture of 

absolute ethanol:1.25 N HCI (3:1 v/v) to which 4 mM sodium metabisulfite had 

14 



f 
Pellet 
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Figure 1. Scheme for the Extraction of Cotton HRGPs by Acidic~Ethanol 
Method. 
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been added as antioxidant and homogenized with a Polytron Homogenizer at 

full speed. Homogenization was done at room temperature for two-minute 

bursts until the cells were completely broken (examined under the microscope). 

The homogenate was maintained under constant stirring for 48hr at 4oc before 

being filtered through cheese cloth. After centrifuging at 1 ,500xg for 20 min, the 

supernatant was recovered and the proteins were precipitated by addition of 

three volumes of cold acetone. The protein pellet was recovered by 

centrifugation (1 ,500xg for 20 min) after sitting for 24hr at 4°C and resuspended 

in 25 ml of a 0.1 M sodium acetate buffer (pH =3.8). The undissolved material 

was discarded after centrifugation (12,000xg for 10 min) and the resulting 

soluble crude extract was first dialyzed for 12hr against 2.5L of 0.05 M sodium 

acetate buffer (pH = 3.8) at 4oc. Second, the extract was dialyzed against 2.5L 

of water at 4oc. Dialysis solutions were changed every six hours. Following 

dialysis, the crude extract was lyophilized. The lyophilized samples were 

resuspended in half ml of 0.05 M sodium acetate buffer. 

Analytical Methods 

CM-Sepharose Chromatography 

The resuspended extract was applied to a column of CM-Sepharose (1.1 x 

1 0 em) equilibrated with 0.05 M sodium acetate buffer at pH =3.8. The column 

was eluted at 2ooc with 40 ml of the same buffer followed by 1 00 ml of a 0 to 2 

M NaCIIinear gradient in the same buffer. The elution profile was determined 

by measuring the absorbance at 280 nm of each fraction (2 ml) and the fractions 

corresponding to eluted material were pooled, dialyzed against water for 12hr, 

and lyophilized. 
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Gas-LiQuid Chromatography 

Sugar composition was determined by the method which allows for 

complete analysis of most sugars in a single procedure [80). A weighted dry 

sample (-50 J.Lg) was put into. a small screw cap vial containing 100 nanomoles 

of Inositol as an internal standard. A dry aliquot of sugar standards containing 

1 00 nanomoles of each sugar and 1 00 nanomoles of Inositol in a screw cap vial 

was prepared. Approximately 200 Jll of methanol in 1.5 M HCI was added to 

each vial; they were capped tightly and placed into a heating block at aooc 

overnight. In this methanolysis step, methyl glycosides are formed. After 16hr, 

vials were removed from the heating block and cooled. A few drops of t

butanol were added followed by evaporation under a stream of nitrogen at room 

temperature. The butanol co-evaporates with the HCI, helping to remove the 

HCI without degrading the sugars. Using a syringe, 25 Jll of a 1: 3 mixture of 

"Tri-Sil " concentrate:pyridine was added to each vial. The vials were capped 

and let stand for 15 min (this step adds trimethylsilyl groups to all free OH 

groups, making them more volatile). After 15 min, the samples were evaporated 

just barely to dryness under the stream of nitrogen at room temperature. With a 

syringe, 100 Jll of isooctane was added and swirled gently to dissolve all of the 

sample. One microliter (1 J.LI) of sample was injected into the gas chromatograph 

for analysis. The column was a DB-1 bonded-phase capillary column of 0.27-

mm inside diameter and 30 m long. The carrier gas was helium flowing about 

30 em/min. Initial column temperature was 1 osoc and immediately increased 

to 160°C following sample injection and remained at that temperature for 4 min. 

Then, the temperature was programmed to increase at 1 oc/min. Analysis of 

peaks was done on a Macintosh Microcomputer using Microsoft Excel. The 

sugar analysis program was written by Dr. Andrew Mort. The program provided 
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us nanomole, mole percent, relative mole, micrograms and weight percent of 

_each sugar present in the sample. By knowing the weight (micrograms) of the 

sample methanolyzed, carbohydrate content (weight percent) of each sample 

was calculated from total weight of sugar present in the sample divided by 

weight of the sample methanolyzed. The carbohydrate content of each peak 

was calculated in this way and expressed in the thesis. Only the second peak 

for glucose was used to calculate its abundance because a contaminant 

comigrated with the first peak. 

Amino Acid Analysis 

Amino acid analyses were done commercially by Dr.Kenneth Jackson, the 

Molecular Biology Resource Facility, Saint Francis Hospital of Tulsa Medical 

Research Institute. Approximately 1 mg dry samples were sent for analysis. 

They hydrolized the samples in 400-600 JJ.I of 6 N HCI for 24 hr at 11 ooc. Then 

resulting amino acids were evaporated to dryness and resuspended in 200 JJ.I 

0.01 N HCI. Two separate amino acid analyses were performed by that 

laboratory. One amino acid analysis was used to quantitate all amino acids 

except hydroxyproline. The second amino acid analysis was used to quantitate 

hydroxyproline. The two analyses were correlated by equating the glycine from 

each analysis. The second analysis was needed to separate hydroxyproline 

and aspartic acid by dropping the analysis temperature from 5ooc to 30°C for 

separation. In all analyses proline, hydroxyproline and glutamic acid were 

quantitated by absorbance at 400 nm, while all other amino acids were 

detected at 570 nm. Data analyses and peak integrations were performed using 

the Dionex D-500 data system and later the Beckman System Gold 

Chromatography software. 
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Gel Electrophoresis 

SDS-PAGE was performed by using the Laemnli buffer system [81 ]. An 

acrylamide to bisacrylamide ratio of 30/0.8 was used and the acrylamide 

concentrations in the running and stacking gels were 12 and 4% respectively. 

The samples (from each peak of both cultivars) were carefully weighed (on a 

Cann electrobalance) and they were directly suspended in SDS sample buffer 

and applied to the SDS-PAGE gels. The samples were run at 200 volts for 40-

45 min using Mini-Protean II Dual Slab Cell System. The gels were stained 

using the Bio-Rad silver staining method (Bio-Rad Laboratories, Richmond, 

CA). 

Western Blot Analysis 

The protein samples were run at 200 volts for 40-45 min using a Mini

Protean Dual Slab Cell System. After electrophoresis, the proteins were 

transferred to nitrocellulose filters at a current density of 2.5 rnA I em for 30 min 

using ABN Polyblot apparatus as described in the American Bionetics 

Instruction manual. The nitrocellulose papers (blots) were rinsed with 

phosphate buffered saline (PBS) once. The filters were placed in blocking 

solution (1 0% Inactivated Fetal Calf Serum) for 45 min to block non-specific 

antibody binding sites on the nitrocellulose papers The blots were incubated 

with the antibody to deglycosylated tomato extensin precursor,dP1, for 1 hr at 

room temperature and overnight at 4oc (dP1 antibodies and deglycosylated 

extensin precursors were kindly provided by Marcia Kielisiewski). Next day, 

the nitrocellulose filters were washed for 5 min with PBS once, PBS/ 0.5 % 

Tween 20 twice and PBS once.more. The filters were placed in the blocking 

solution for 5 min, followed by incubation for 2 hr with secondary antibody. After 
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2 hr, the filters were washed for 5 min with PBS once, PBS/ 0.5 % Tween 20 

twice and PBS twice. Into 30 ml of Tris-CI buffer (pH=9.5), 200f.11 Nitro Blue 

Tetrazolium and 1 OOf.ll 5-Bromo-4-Chloro-3-lndoyl Phosphate were added to 

prepare developing solution. Blots were developed in this solution (-3-4 min) 

and dried. 

Chemical Analysis 

Protein Determjnatjon 

The protein content of HRGP was measured according to Lowry eta/. [82]. 

Carbohydrate Determination 

The carbohydrate content was determined by the Gas-liquid 

chromatography and double checked by phenol-sulfuric acid method [83]. The 

carbohydrate and protein determinations do not account for all of the weight in 

the HRGP fractions and the rest of the material is not identified yet. 

HE Solyolysjs at OQ.Q 

HRGP's were deglycosylated with HE solvolysis at ooc following the 

procedure of Mort and Lamport [84]. Anhydrous HE is an effective and facile 

method for the chemical deglycosylation of glycoproteins [84]. The basic 

components of the apparatus are shown in Figure 2. 

In a typical experiment, the dried sample (-50 mg) and a stirring bar were 

placed in a Teflon reaction vessel. The whole apparatus was vacuum 

evacuated for 15 min and checked for leaks. Then, HE was transferred from an 

HE reservoir to the HE holding vessel. This was done by cooling the HE holding 

vessel in a dry-ice/acetone bath and allowing the HE to distill from the HE 



Figure 2. Schematic Representation of the Hydrogen Fluoride 
Solvolysis Apparatus. 1-8, 1 0, stopcocks; 9 
teflon needle valve; 11-16 Teflon and Kel-F 
vessel; 17, manometer; 18, hydrogen fluoride 
tank; 19-20, stirrer bars; 21, exit to the sink for 
pressure release, if necessary; 22, calcium oxide 
trap; 23, connection to the vacuum pump; 24, 3 mm 
to 6 mm adaptor; 25,heater I regulator; 26, 
immersion cooler; 27-28, stirrer bars; 29, insulated 
container; 30, 95% ethanol (Mort, A.J., P.Komalavilas., 
G.L.Rorrer and D.T.A.Lamport. (i 989) In Modern 
Methods of Plant Analysis, page 40). 
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reservoir to the HF holding vessel. After .... 20 ml HF was transferred, HF holding 

vessel and the reaction vessel containing the sample were cooled to ooc and 

maintained at that temperature dJring solvolysis using an ice bath. Next HF was 

transferred from the HF holding vessel to the reaction vessel by using slight 

nitrogen pressure. Then the solution in the reaction vessel was stirred for 30 

min to allow the reaction to continue. The reaction was stopped by adding cold 

(cooled by adding dry ice) ether (""300 ml) from the adjacent ether holding 

vessel. The cooling bath was removed and the quenched reaction mixture was 

allowed to stir for 30 min. After 30 min, the reaction mixture was filtered using a 

Teflon filter. To filter the reaction mixture, the reaction vessel was removed and 

an inline Teflon filter unit (containing preweighed filter paper) was attached to it. 

Upon filtering, the ether-insoluble residue (containing mainly protein) was 

collected on the filter paper whereas HF/Ether/sugar mixture (filtrate, which 

contains mainly monosaccharides and disaccharides as sugar) was collected in 

a Teflon container. The filter paper containing ether-insoluble residue was 

dried in vacuum oven over night. At the same time the HF/Ether-soluble extract 

(filtrate) was put into the reaction vessel and the reaction vessel was put into a 

warm water bath and stirred. The HF/Ether was evaporated from the reaction 

vessel and condensed in a cooled collection vessel. Sugars (mainly 

monosaccharides and some disaccharides) in the reaction vessel were 

dissolved in water (""1 ml) and freeze-dried. The freeze-dried sample (""20 mg) 

was saved, but no analysis was done to this sample. The HF/Ether complex in 

the collection vessel was allowed to come to room temperature and poored into 

solid calcium carbonate to neutralize it before disposal. The next day the dried 

filter paper was weighed and the dried sample (""500~g) was saved. Given the 

very low amount of sample, no water extraction was done, and portions of the 

sample were directly used for SDS-PAGE and Western blot analysis. 



CHAPTER IV 

PURIFICATION OF COTION HRGP'S 

Callus CultureJ>f Cotton Line AQM 

Acetone-insoluble material in the acidic-ethanol soluble extract was 

fractionated by column chromatography on CM-Sepharose. CI\Jl-Sepharose is 

a weak-cation exchanger which sepa.rates proteins on the basis of their charge. 

Two main peaks were obtained from CM-Sepharose chromatography of five 

extracts using Ac 44 Cotton callus. The first peak corresponds to acidic proteins 

and it came always as a single peak upon five extractions. The second peak 

corresponds to basic proteins and it came with a shoulder upon three 

extractions and as a single peak upon two extractions. Existence of a shoulder 

might be characteristic ot Acala cotton. Figure 3 shows the elution profile of the 

third extract of Acala 44 callus. Also total A2so's pooled for each peak for the 

five extracts of Ac 44 were determined and shown in Table I. 

.Qslllus Culture of f;otton line lm 216 

The elution profile for the acidic-ethanol extract of fm 216 callus gave two 

major peaks. The second peak in the profile did not show any extra peak or 

shoulder upon three extractions. Figure 4 shows the elution profile of the first 

extract of lm 216 callus. Total A2so's pooled for each peak for the three extracts 

of lm 216 were shown in Table I. 
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Figure 3. Elution prof1le of Acidic Extract from Ac 44 callus 
from a CM-Sepharose Column eluted with 
50 mM acetate buffer pH =3.8 followed by a 
0 to 2 M NaCI gradient in the same buff~r. The 
pooled fractions for peak-1 are 1 - 6 and th~ 
pooled fract1ons for peak-2 are 18 - 29. 
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,, TABLE I 

TOTAL ABSORBANCE 280 VALUES FOR 
EACH PEAK FOR ALL EXTRACTS 

OF AC 44 AND IM 216 
CALLUS 

Total A23o Total~so TotaiA2so TotalA2ro 
for Ac 44 for Ac 44 for lm 216 for lm 216 

paak-1 peak-2 peak-1 peak-2 

0.756 0.290 2.121 0.877 

0.734 0.231 2.004 0.864 

0.738 0.233 1.241 0.862 

1.018 0.344 

1.352 0.347 
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Figure 4. Elution profile of Acidic Extract from lm 216 callus 
from a CM-Sepharose Column eluted with 
50 mM acetate buffer pH =3.8 followed by a 
0 to 2 M NaCI gradient in the same buffer. The 
pooled fractions for peak-1 are 1 - 1 e- and the 
pooled fractions for peak-2 are 21- 31. 
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Chemical Characterization of Cotton HRGPs 

- Callus Culture of Cotton Line Ac 44 

The carbohydrate composition of peak-1 from cotton line Ac 44 was 

determined. Gas chromatogram of the trimethyl silyl (TMS) derivatives of 

sugars from this peak is shown in Figure 5. Peak-1 contained 38% 

carbohydrate, mainly galactose (68%) and arabinose (27%) (see Table II). The 

gas chromatogram of peak-1 also showed some glucose (2.8%). 

The protein content of peak-1 was about 13%. Hydroxyproline was the 

major amino acid (22%). Peak-1 was also rich in serine (19%), alanine (16%) 

and threonine (11 %) (Table Ill). As we see, the glycoprotein portion of peak-1 

was 75% carbohydrate and 25% protein. Having galactose and arabinose as 

main sugars and being rich in hydroxyproline, serine, alanine and threonine, 

peak-1 showed the characteristics of an AGP. It is not known yet whether the 

proteins in peak-1 are AGP's or not. Another possibility, some other materials 

which were in the acetone precipitate, and did not bind to the column, also 

eluted in peak-1. For the better identification of proteins in peak-1, 

electrophoretic and immunochemical analyses were done and will be 

discussed later. 

Carbohydrate analysis of peak-2 was completed. A gas chromatogram of 

the TMS derivatives of sugars is shown in Figure 6. The carbohydrate content 

(9 .1 %) of peak-2 was less than that of peak-1. Being rich in galactose (49%) 

and arabinose (28%), peak-2 does not show much difference from that of peak-

1 (Table IV). Peak-2 also contained considerable amounts of glucose (18%). 

Such a high amount of glucose had not been detected in the chromatograms 

done early in this research. The glucose looks like an artifact resulting from vial 

caps or dialysis tubing. Experiments to test the reason for high amounts of 
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Figure 5. Gas Chromatogram of the Trimethyl Silyl Derivatives 
of the Methyl Glycosides of Peak-1 from Ac 44 
Callus. Peaks are identified as follows: Ara, 
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TABLE II 

CARBOHYDRATE COMPOSITION OF PEAK -1 
FROM AC 44 CALLUS 

Carbohydrate 

Moietya 

Sugar Residuesb 

Ara 

Gal 

Glc 

aweight% 
bMole% 

38 

27 

68 

2 

29 



TABLE Ill 

AMINO ACID COMPOSITION OF 
PEAK-1 FROM AC 44 

CALLUS 

Protein Moietya 

Amino Acidb 

Hyp 
Ser 
Ala 
Thr 
Glx 
Gly 
Asx 
His 
Val 
Lys 
Pro 
Leu 
lie 
Phe 
Tyr 
Met 
Arg 

aweight% 
bMole% 

13 

22.1 
18.9 
16.4 
11.3 

5.5 
5.0 
4.7 
0.7 
3.1 
3.6 
2.6 
2.3 
1.7 
0.5 
0.4 
0.6 
0.5 
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Figure 6. Gas Chromatogram of the Trimethyl Silyl Derivatives 
of the Methyl Glycosides of Peak-2 from Ac 44 
Callus. Peaks are identified as follows: Ara, 
arabinose; Aha, rhamnose; Xyl, xylose; Gal, 
galactose; Glc, glucose; I.S, myo-inositol, the 
internal standard. 
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TABLE IV 

CARBOHYDRATE COMPOSITION OF PEAK-2 
FROM AC 44 CALLUS 

Carbohydrate 
Moietya 

Sugar Residuesb 

Ara 

Gal 

Glc 

Xyl 

Rha 

aweight% 
bMole% 

9 

28 

50 

19 

2 

1 

32 
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gluco~e will be done. Peak-2 also contained small amounts of xylose (2.2%), 

and rhamnose (0.9%). 

The protein content of peak-2 was about 9%. The abundant amino acids 

were serine (12%), alanine (11 %), glycine (9.9%), hydroxyproline (8.2%), 

glutamine/ glutamic acid (8.5%), lysine (7.5%) and proline (6.9%) (Table V). 

The glycoprotein portion of peak-2 was 50% carbohydrate and 50% protein. 

The amino acid composition of peak-2 differed from that of peak-1. Low levels 

of hydroxyproline in the peak-2 was one of the differences between two peaks. 

Peak-1 differed from peak-2 with low levels of arginine, tyrosine, histidine, 

proline, phenylalanine and leucine. Also, carbohydrate and protein portions of 

peak-2 were equal, whereas peak-1 contained three times as much 

carbohydrate as protein. As a result, Peak-2 does not show characteristics of 

an AGP having high amounts of l¥sine, proline, and glycine, rather it looked 

more like an extensin-like protein. But it differed from other extensins from 

melon (65), tomato (11 ), carrot (4), and potato (12), having lower amounts of 

hydroxyproline and tyrosine and having galactose as the major sugar. Low 

levels of hydroxyproline in peak-2 might be characteristic of cotton extensin. 

So, if peak-2 consists of cotton extensins, they definitely have very unique, 

unusual features. Another possibility is the existence of other basic 

glycoproteins together with extensins in peak-2. Electrophoretic and 

immunochemical analyses would give an answer to this question. 

The ratio of mole percents of Gai/Ara in peak-1 's of Ac 44 upon five 

extractions changed from 2.5 to2. 7 and mole percents of Hyp (as one of the 

most abundant amino acids) varied no more than 9%. The ratio of mole 

percents of Gai/Ara peak-2's of Ac 44 upon five extractions changed from 1.7 to 

1.8 and mole percents of Hyp varied no more than 2%. 



TABLE V 

AMINO ACID COMPOSITION OF 
PEAK-2 FROM AC 44 

CALLUS 

Protein Moietya 

AminoAdcP 

Hyp 
Ser 
Ala 
Thr 
Glx 
Gly 
Asx 
His 
Val 
Lys 
Pro 
Leu 
lie 
Phe 
Tyr 
Met 
Arg 

aweight o/o 
bMole o/o 

9 

8.2 
12.1 
10.6 
7.3 
8.5 
9.9 
7.5 
2.1 
4.4 
7.5 
6.9 
5.0 
2.3 
1.1 
2.3 
0.7 
3.7 
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Callus Culture of Cotton Line lm 216 

The carbohydrate composition of peak-1 was determined. A gas 

chromatogram of the TMS derivatives of sugars is shown in Figure 7. The 

carbohydrate content (63%) of peak-1 from lm 216 was more than that of peak-1 

from Ac 44. Like peak-1, of Ac 44, this peak contained galactose (53%) and 

arabinose (22%) as main sugars (Table VI). It also contained small amounts of 

glucuronic acid (9.5%), fucose (6.0%), glucose (4.6%), rhamnose (1.8%), and 

xylose (1.0%). The protein content was about 10%. The amino acid 

composition was rich in serine (19%), hydroxyproline (16%), alanine (15%), 

and threonine (9.5%) (Table VII). The amino acid composition of peak-1 from 

Ac 44 callus differed from that of peak-1 from lm 216 callus by having lower 

amounts of hydroxyproline and threonine, and higher amounts of arginine. With 

galactose and arabinose as main sugars and hydroxyproline, serine, alanine, 

and threonine as main amino acids, peak-1 looked like an AGP. As we see, the 

glycoprotein portion of peak-1 was 86% carbohydrate and 14% protein. At this 

point, the glycoprotein of peak-1 of lm 216 showed similarity to that of peak-1 of 

Ac 44 (75% carbohydrate and 25% protein). But we do not know yet peak-1 

contained AGP or not, or some other proteins. Electrophoresis and western blot 

analysis were done to find this. 

Carbohydrate analysis of peak-2 from lm 216 callus is shown in Figure 

8. It contained less carbohydrate (12%) than peak-1 of lm 216. Carbohydrate 

content of peak-2 of lm 216 differs from that of peak-1 of lm 216 having more 

arabinose (60%) than galactose (19%) (Table VIII). Peak-2 contained small 

amounts of glucose (9.8%), fucose (7.7%) xylose (2.3%), and rhamnose (1.3%). 

Protein content of peak-2 was about 6%, it contained hydroxyproline (18%), 

lysine (11 5), serine (9.9%), and proline (8.3%) as major amino acids (Table IX). 
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Figure 7. Gas Chromatogram of the Trimethyl Silyi Derivatives 
of the Methyl Glycosides of Peak-1 from lm 216 
Callus. Peaks are identified as follows: Ara, 
arabinose; Rha, rhamnose; Fuc, fucose; Xyl, 
xylose; Gal, galactose; Glc A, glucuronic acid; 
Glc, glucose; I.S, myo-inositol, internal standard. 
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TABLE VI 

CARBOHYDRATE COMPOSITION OF PEAK-1 
FROM IM 216 CALLUS 

Carbohydrate 
Moiety a 

Sugar Residuesb 

Gal 

Ara 

Glc 

GlcA 

Fuc 

Aha 

Xyl 

aweight% 
bMole% 

63 

53 

22 

5 

10 

6 

2 

1 
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TABLE VII 

AMINO ACID COMPOSITION OF 
PEAK-1 FROM IM 216 

CALLUS 

Protein Moietya 

Amino Acidb 

Hyp 
Ser 
Ala 
Thr 
Glx 
Gly 
Asx 
His 
Val· 
Lys 
Pro 
Leu 
lie 
Phe 
Tyr 
Met 
Arg 

aweight% 
bMole % 

10 

15.9 
18.5 
15.2 

9.5 
6.1 
6.6 
5.2 
1.0 
3.5 
3.8 
2.7 
2.7 
2.3 
0.6 
0.6 
0.7 
5.4 
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Figure 8. Gas Chromatogram of the Trimethyl Silyl Derivatives 
of the Methyl Glycosides of Peak-2 from lm 216 
Callus. Peaks are identified as follows: Ara, 
arabinose, Gal, galactose; Glc, glucose;I.S, 
myo-inositol, internal standard. 
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TABLE VIII 

CARBOHYDRATE COMPOSITION OF PEAK-2 
FROM IM 216 CALLUS 

Carbohydrate 
Moietya 

Sugar Residuesb 

Gal 

Ara 

Glc 

Fuc 

Xyl 

Aha 

aweight% 
bMole% 

12 

19 

60 

9 

8 

2 

1 
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TABLE IX 

AMINO ACID COMPOSITION OF 
PEAK-2 FROM IM 216 

CALLUS 

Protein Moietya 

Amino Acidb 

Hyp 
Ser 
Ala 
Thr 
Glx 
Gly 
Asx 
His 
Val 
Lys 
Pro 
Leu 
lie 
Phe 
Tyr 
Met 
Arg 

aweight o/o 
bMole o/o 

6 

18.3 
9.9 
5.8 
4.7 
9.9 
5.1 
4.4 
3.1 
4.3 

10.9 
8.3 
5.3 
3.0 
0.9 
3.3 
0.4 
2.2 
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The amino acid content of peak-2 of lm 216 callus showed differences from that 

of peak-1 of lm 216 callus. Peak-2 of lm 216 contained considerably more 

lysine, proline, histidine, and tyrosine. Peak-2 contained considerable less 

alanine, arginine, threonine, and serine. The amino acid composition of this 

peak differed from that of peak-2 of Ac 44 which was higher in alanine, serine, 

glysine, asparagine/ aspartic acid, and threonine and lower in hydroxyproline, 

lysine and proline. The glycoprotein portion of peak-2 from lm 216 was 67% 

carbohydrate and 33% protein. The carbohydrate and protein portions of peak-

2 from lm 216 differed from that of peak-2 of Ac 44. The amino acid and 

carbohydrate composition of peak-2 of lm 216 showed characteristics of an 

extensin. But electrophoretic and immunochemical analysis were done for 

better identification. 

The ratio of the mole percents of Gai/Ara in peak-1 's of lm 216 upon three 

extractions changed from 2.3 to 2.5 and mole percents of Hyp varied by no 

more than 5%.The ratio of the mole percents of Gai/Ara in peak-2's of lm216 

upon three extractions changed from 3.2 to 3.3 and mole percents of Hyp varied 

by no more than 1 .6%. 

Electrophoretic Analysis of Cotton HRGP's 

Callus Cultures of Cotton Line Ac 44 and lm 216 

For better characterization of the proteins found in peak-1 and peak-2 'of 

the Ac 44 extract, electrophoretic analyses were performed by using 1 0% 

SDS-PAGE. One electrophoretic analysis was done using glycosylated and 

deglycosylated proteins from peak-1 of Ac 44. Because of the very low recovery 

of the glycoproteins in peak-1 after each extraction, all peak-1 's obtained from 

five extractions were combined and used for HF oo C solvolysis. Results of the 



SDS-PAGE of the glycosylated and deglycosylated proteins are shown in 

Figure 9. 
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Deglycosylated peak-1 proteins (Figure 9, lane 2) showed a major band 

with apparent molecular weight of 57.5 kD and some minor bands. The major 

band does not follow molecular weight range of deglycosylated AGP's (-100 

kD). This led us to presume that AGP's in peak-1 failed to run on SDS-PAGE, 

as reported by other researchers. But no evidence of AGP's on the top of the 

gel is surprising and unexplained. The molecular weight of the major band was 

comparable to those obtained after SDS-PAGE by other researchers for 

deglycosylated extensins in melon (65), tomato (11) and potato (12), -55 kD. 

SDS-PAGE electrophoresis of glycosylated peak-1 proteins (lane 1, containing 

-1.2jlg protein) did not show much difference from that of deglycosylated peak-

1 proteins. The only difference was a band in lane 2 at 42.8 kD not detected in 

lane 1. So this may represent a glycoprotein in peak-1 that was deglycosylated. 

But this band does not follow molecular weight range of deglycosylated AGP's 

or extensins. No big difference in mobility of proteins in peak-1 upon 

deglycosylation is very unusual and it led us to assume that deglycosylation did 

not work. Also existence of some minor bands in both lanes raises the 

possibility of proteins which are not heavily glycosylated and therefore neither 

AGP's nor extensins. Western blot analysis was performed to obtain more 

information and is discusssed later. Because of the very low recovery of the 

proteins in the other peak's from both cultivars, no further HF analysis could be 

done. Also no further analysis of deglycosylated protein in peak-1 was done. 

Figure 10 shows SDS-PAGE electrophoresis of the glycosylated proteins 

in peak-1 and peak-2 from extract 3 of Ac 44 callus. Lane 2 contained ... 0.9Jlg 

protein from peak-1. Glycosylated peak-1 proteins showed a major band with 

apparent molecular weight of 57.5 kD. There were also some minor bands in 



- 97.4 kD 

-66.2 kD 

- 42.7 kD 

- 21.5 kD 

- 14.4 kD 

1 2 3 4 

Figure 9. 10% SDS-PAGE of the glycosylated 
~nd deglycosylated proteins from 
peak-1 of Ac 44 callus. Lane 1 
contained 7J.1g gfycosylated peak-1 
and lane 2 contained 7J.1g 
degJycosylated peak-1 . Lane 3 
contained 10J.1g high mw markers 
and lane 4 contained 1 OJ.1g low 
mw markers. Only one of the lanes 
of mw markers, lane 4, was identified 
(Phosphorylase B. 97.4 kD; BSA, 
66.2 kD; ovalbumin, 42.7 kD; 
soybean trypsin inhibitor, 21 .5 kD; 
lysozyme, 14.4 kD) and used for 
all calculations. 
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1 2 3 4 

Figure 10. 10% SDS-PAGE of the glycosylated 
proteins from peak-1 and peak-2 
of Ac 44 callus. Lane 1 contained 
7tJ.g peak-2 and lane 2 contained 
7J.Lg from peak-1 of Ac 44 callus. 
Lane 3 contained 1 OJ.tg high mw 
markers and lane 4 contained 1 OJ.tg 
low mw markers (as described in 
in figure 9). 
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addition to this major band. Glycosylated peak-2 proteins (lane 1, containing 

. -0.6 llg protein) showed only one major band with apparent molecular weight 

of 57.5 kD. The molecular weight of the major band in both peaks does not 

follow the molecular weight range of either glycosylated AGP's or extensins. 

Besides this, as observed by other researchers, usually AGP's or extensins do 

not enter SDS-PAGE gels, staining on top of the gel. But, unaccountably no 

proteins were observed on top of the gels in our case. For better identification 

of the proteins in both peaks, Western blot analysis was performed and is 

discussed later. 

Figure 11 shows SDS-PAGE electrophoresis of glycosylated proteins from 

peak-1 and peak-2 of extract 1 of lm 216 callus. Lane 2 contains -0.71lg 

glycosylated proteins from peak-1. Glycosylated peak-1 proteins showed a 

major band with apparent molecular weight of 57.7 kD and some minor bands. 

This protein band corresponds closely in molecular weight to the major band in 

peak-1 of Ac 44. Lane 1 containing -0.51lg glycosylated peak-2 proteins 

showed only a major band with apparent molecular weight of 57.7 kD, 

corresponding closely to that of the major band in peak-2 of Ac 44. As in Ac 44, 

the major band does not show characteristics of glycosylated AGP's or 

extensins. Therefore, for better identification of the proteins in both peaks, 

Western blot analysis was performed and is discussed later. 

Western Blot Analysis 

Callus Cultures of Cotton Line Ac 44 and lm 216 

Western blot analysis of the reactivities of the deglycosylated and 

glycosylated proteins from peak-1 of Ac 44 with polyclonal antibody against the 

deglycosylated tomato extensin precursor, dP1, was shown in Figure 12. 



---------
1 2 3 4 

Figure 11 . 10 o/o SDS·PAGE of the glycosylated 
proteins from peak-1 and peak-2 
of lm 216 callus. Lane 1 contained 
7J.J.g peak-2 and lane 2 contained 
7J.J.g peak-1 of lm 216 callus. Lane 3 
contained 1 OJ.J.g high mw markers 
and lane 4 contained 1 OJ.J.g low mw 
markers (as described in figure 9). 
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Figure 12. Western Blot Analysis 
of the reactivities of 
the glycosylated and 
deglycosylated proteins 
from peak-1 of Ac 44 
callus. Lanf;t 1 contained 
15)J.g glycosylated peak-1, 
lane 2 contained 15)J.g 
deglycosylated peak-1, 
lane 3 contained 0.2)J.g 
of the dP 1 and lane 4 
(.;()ntained O.f'5)J.g of the 
dP1, lane 5 contained 
1 OJ-19 low mw markers 
(as described in figure 9). 
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Deglyco~ylated peak-1 proteins (lane 2) showed reactivity with dP1 antibody. 

Glycosylkted peak-1 proteins (lane 1, containing -2.5J.Lg protein) also showed 

cross-reactivity with dP1 antibody. The cross-reactivity of the dP1 antibody 

against dther HRGP's such as AGP's has been studied in melon (65), and 

tomato (11 ). In both cases dP1 antibody did not cross react with AGP's. But in 

our case, there is some cross-reactivity in the low molecular weight standard 

lane. This brings the possibility of non-specific binding of other proteins to 

tomato extensin antibody, dP1. Under this circumtance, a test with pre-immune 

serum is the best thing to see if the binding in the sample lanes (lane 1 and lane 

2) is specific for the extensin antibody, dP1. 

Western blot analysis of the reactivities of the glycosylated proteins from 

peak-1 and peak-2 of Ac 44 with polyclonal antibody against the deglycosylated 

tomato extensin precursor, dP1 is shown in Figure 13. Lane 2 contained -2J.Lg 

glycosylated proteins from peak-1 and lane 1 contained -1.4J.Lg glycosylated 

proteins from peak-2. Proteins from both peak-1 and peak-2 reacted with dP1 

antibody. But also the low molecular weight standard lane showed reactivity 

with dP1 antibody, indicating non-specific binding (heavier binding than figure 

12). Again a pre-immune test is needed to decide if the binding in the sample 

lanes is specific for dP1 or not. 

Western blot analysis of the reactivities of the glycosylated proteins from 

peak-1 and peak-2 of lm 216 against dP1 is shown in Figure 14. Both 

glycosylated proteins from peak-1 (lane 2 containing -1.5J.Lg protein) and peak-

2 (lane 1 containing -0.9J.Lg protein) rea~ed with dP1 antibody as did a low 

molecular weight standard. 



1 2 3 4 

Figure 13. Western Blot Analysis of the reactivities 
of the glycosylated proteins from 
peak-1 and peak-2 of Ac 44 callus. 
Lane 1 contained 15~ glycosylated 
peak-2, lane 2 contained 15J.19 
glycosylated peak-1 . Lane 3 
contained O.OS~g of the dP1 ,lane 4 
contained 10~g low mw markers (as 
described in f~gure 9). 
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Figure 14. Western Blot Analysis of the reactivities 
of the glycosylated proteins from 
peak-1 and peak-2 of lm 216 callus. 
Lane 1 contained 15J,Lg glycosylated 
peak-2, lane-2 contained 15J.Lg 
glycosylated peak-1. Lane 3 
contained 0.05J,Lg of the dP1, lane 4 
contained 1 OJ.lg low mw markers (as 
described in figure 9). 
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CHAPTERV 

SUMMARY AND CONCLUSIONS 

A carbohydrate/protein fraction has been extracted from cotton callus 

from susceptible and resistant cultivars of cotton. These acidic-ethanol 

extractions have led us to solubilize HRGP's from both cultivars, and we have 

accumulated evidence for the presence of both arabinogalactan proteins and 

extensin-like proteins. 

The protein/carbohydrate moieties in the crude extract of Ac 44 and lm 

216 cultivars were separated by ion-exchange chromatography on CM

Sepharose. The glycoprotein portion of peak-1 from Ac 44 callus was 75% 

carbohydrate, 25% protein and the glycoprotein portion of peak-1 from lm 216 

callus was 86% carbohydrate and 14% protein. Comparison of carbohydrate 

portions of peak-1 from both Ac 44 and lm 216 callus showed that the extract 

from lm 216 callus was more heavily glycosylated. Both cultivars contained 

galactose and arabinose as major sugars. The extracts from both Ac 44 and lm 

216 callus were rich in hydroxyproline, serine, alanine, and threonine. This led 

us to think of the existence of AGP's in peak-1 from both cultivars. But SDS

PAGE and Western blot analyses indicated the presence of some discrete 

bands and this is not characteristics of AGP's. SDS-PAGE analyses of peak-1 's 

from both Ac 44 and lm 216 gave a major band with apparent molecular 

weights of 57.5 and 57.7 kD respectively. That weight is comparable to those 

obtained after SDS-PAGE by other researchers for deglycosylated extensins in 

other plants. However, deglycosylated and glycosylated peak-1 proteins did 
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not differ in their mobility in SDS-PAGE. This led us to conclude that the 

deglycosylation attempt was unsuccessful or that these proteins of peak-1 were 

not heavily glycosylated ones. Deglycosylated peak-1 of Ac 44 did show an 

additional band at 42.8 kD. 

Western blot analysis showed reactivity of the major bands on SDS-PAGE 

gels with the antibody against deglycosylated tomato extensin precursor in the 

case of peak-1 from both Ac 44 and lm 216. This result raised the possibility 

that peak-1 contained extensin-like proteins. But the existence of smaller-sized 

minor bands in both peak-1 's from the two cultivars showed us that peak-1 

contained some other proteins which were precipitated in acetone and did not 

bind to the Sepharose column and eluted in peak-1. Existence of extensin in 

peak-1 would be surprising as that would show that some extensin did not bind 

to the column and eluted in peak-1 with other unbound material. Presumably 

the majority of peak-1 was AGP that failed in SDS-PAGE. 

The glycoprotein portion of peak-2 from Ac 44 callus was 50% 

carbohydrate, 50% protein and the glycoprotein portion of peak-2 from lm 216 

callus was 67% carbohydrate, 33% protein. Both peak-2's contained smaller 

amounts of carbohydrate than peak-1 'sin two cultivars. Both peak-2's 

contained arabinose and galactose as main sugars, but peak-2 from lm 216 

was the only fraction that contained more arabinose than galactose. The amino 

acid composition of peak-2 from Ac 44 and lm 216 showed some differences. 

One of the major difference was the amount of the hydroxyproline. Peak-2 of lm 

216 callus contained considerably higher amounts of hydroxyproline than peak-

2 of Ac 44. Peak-2 of lm 216 also contained higher amounts of lysine, 

glutamine/glutamic acid and proline. Peak-2 of Ac 44 was higher in alanine, 

serine, glycine, asparagine/aspartic acid and threonine. SDS-PAGE of peak-2 

from both cultivars gave a major band with apparent molecular weights of 57.5 
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and 57.7 kD. Reactivity of the proteins from peak-2's with the specific antibody 

suggested that peak-2 contained extensin-like proteins in both cultivars. 

Although peak-2 from both Ac 44 and lm 216 appeared to contain extensins, 

differences in the amino acid composition of the two peaks were very clear, 

especially higher levels of hydroxyproline in peak-2 of the resistant cultivar, lm 

216, with respect to the susceptible cultivar, Ac 44. This higher level of 

hydroxyproline in the resistant cultivar might be related to the defense of the 

plant to pathogenic attack. 

Total A2ao's for peak-1 's were higher than those for peak-2's.Total A2ao's 

from peak-1 of lm 216 were usually higher than those of Ac 44, and total A2ao's 

from peak-2 of lm 216 were consistently higher than those from peak-2 of Ac 44. 

In summary, even though the precise role of extensin in the plants was not 

clear, this research showed some differences in amino acid composition of 

HRGP's from lm 216 and Ac 44 callus cultures which suggest that they might be 

related to disease resistance. Further experiments are neeeded to be more 

definitive. 
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