SOFTWARE METRICS FOR
PARALLEL PROGRAMS

By
IMTIAZ AHMAD
Bachelor 0} Science
University of the Punjab
Lahore, Pakistan

1981

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1991

s
N \ﬁ. .
f
Paan it
At i
Gt B, T
o4 w
)
o i
P\kwr»i vh‘ T, o .
d AR
et From s
AL R P &3
3 ot
- o -
‘h&k&wxﬂwﬂs o

SOFTWARE METRICS FOR
PARALLEL PROGRAMS

Thesis Approved:

M T?WW\«%?/{ %/me/(& 'Zi —# .

ﬁesis Adviser

(\% C Ao 7 I
o 7 e A
/WM/N» WMW«%&‘*

Dean of the Graduate College

ii

1338355

ACKNOWLEDGEMENTS

First I would like to thank my thesis advisor, Dr. Mansur H. Samadzadeh for
his continuous guidance, dedication, and valuable instruction throughout my
research work. Without his encouragement and motivation, completion of this
thesis would not have been possible. |

Special thanks are due to Dr. Keith A. Teague for providing access to the
hardware necessary for this work, ahd to Dr. Gary B. Lamont for providing his
compendium of parallel programs used as a testbed in this thesis. I also wish to
thank Drs. P. Larry Claypool and William L. Woodall for helping me in the
selection of statistical tests.

I would also like to thank Drs. John P. Chandler and George E. Hedrick for
their suggestions and advice while serving on my thesis committee. In addition, I
would like to thank my supervisor ét the University Computer Center, Larry P.
Watkins, for allowing me to follow a flexible work schedule during my thesis
research.

Finally, I wish to thank my family. It was their continuous support that gave

me the motivation and inspiration to complete my graduate studies.

iii

TABLE OF CONTENTS

Chapter Page
L INTRODUCTION ... i 1
1L PARALLELISM: HISTORY AND HARDWARE 4
2.1 Definition of Parallel Processing 5

22 TypesofParallelism.......... 5

2.3 Intel’s iPSC Concurrent Supercomputers 5

11 SOFTWARE METRICS i 9
3.1 Types of Software Metrics 9

3.1.1 Size Metricscoii i, 10

3.1.2 Token Count Metrics 11

3.1.3 McCabe’s Cyclomatic Complexity Metric 12

3.1.4 Residual Complexity Metrics 12

3.1.5 Proposed Metrics L. 13

3.1.5.1 Message Send Metrics 13

3.1.5.2 Message Receive Metrics 14

Iv. EXPERIMENTAL PROCEDURE...................... . 15
4.1 Experimental Definition 15

42 ExperimentPlanning 16

43 Experiment Operationc.veuuunn... 16

43.1 Design of the Questionnaire 17

43.2 Software Used to Gather the Data 18

V. ANALYSIS OF THE MEASUREMENTS 34
5.1 Choice of a Statistical Test 34

52 Inter-metric Correlations 35

5.3 Analysis of the Subjective Ratings 40

54 Proposed Modelsol 45

VL EPILOGUE AND FUTUREWORK 51
REFERENCES i 54
APPENDICES ... 59
APPENDIX A - ASAMPLEPROGRAM 60

iv

Chapter
APPENDIX B -

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F -
APPENDIX G -
APPENDIX H -

APPENDIX I -

THE QUESTIONNAIRE AND
THE EXPERTS REPLIES

PC-METRIC REPORTS AND THE LISTING
OF RESERVED AND NON-EXECUTABLE
WORDS ...

PARALLEL PROGRAM TO COLLECT
SIZE MEASUREMENTS

PSEUDO CODE, FILE LISTING, ‘
AND MAKEFILE

PARALLEL PROGRAM TO COLLECT
COMMUNICATION MEASUREMENTS

INTER-METRIC CORRELATION

ANALYSES ...uiuiinianiineaniannensn,

VARIABLES USED. IN THE REGRESSION
ANALYSES

REGRESSION ANALYSES

Page

67

76

80

91

- LIST OF TABLES

Table | Page
L >A General Categorization of the Parallel Programs Used
intheStudy i 3
IL Experts’ Education and Experience Level 18
III. Cyclomatic Complexity Measurementsc.ooeo... 24
IV. Software Science Mee—lsurements 25
V. Size Measurementsuuieiinnenennneennnnnn.. 29
VL Communication Complexity Measurements 30
VIL Residual Complexity Measurements 32
VIIL Extracted Size Measurementscooiiinnaan... 36
IXa. Important Correlations Among the Experts’ Replies 42
IXb. Q9 vs The Size Metricsooiiiiiiiiiiinenna.. 43
IXc. Q9 vs The Softwaré Science Metrics 44
IXd. Q9 vs The Cyclomatic Complexity Metrics 44
IXe. Q9 vs The Communication Metrics 45
IXf. Q9 vs The Residual Metricscooviiiiiiin.. 45

vi

LIST OF FIGURES

Figure Page
L. QUESTIONS 5§ THROUGH 10 OF THE QUESTIONNAIRE. 41
2. SAMPLE PC-METRIC REPORT BY PROCEDURE 71
3. SAMPLE PC-METRIC REPORT BY COMPLEXITY

METRICS ... 78

vii

CHAPTER 1
INTRODUCTION

We have all encountered various types of failures or collapses. For instance,
generally speaking, a building can collapse because of engineering defects and an
automobile can collapse because of engine failure. In computer science, software
fails not just because of hardware failure, but most of the time because of the lack of
due consideration to the field of software engineering while developing that
particular software.

The field of software engineering has existed for the past three decades
[Goldberg86] and has been defined by Boehm [Boehm81] as,

the application of science and mathematics by which the
capabilities of computer equipment are made useful to man via
computer programs, procedures, and associated documentation.

"
.

Conte et al. [Conte86] summarized the goal of software engineering as: "... to
produce higher quality software at lower cost."

Software engineering has several fields. One of these fields is the study of
static measurements of programs as indicators of repairability, clarity, complexity,
reliability, number of faults, productivity, quality, etc. These measurements are
expressed by using the concept of metrics. In general, metrics can beTapph'ed to
many different levels of a computer system in both software and hardware areas.

Generally speaking, software complexity can be perceived as clarity,

understandability, or ease of modifying and debugging programs. Software

complexity metrics thus attempt to objectively measure the difficulty involved in

developing and maintaining programs. Several metrics have been proposed and
evaluated for sequential programs. Parallel software, despite its rapid growth,
currently lacks software complexity metrics.

One way to begin to address the question of the complexity of parallel

programs is by exploring the parallel aspects of the software complexity issue. ' The

~—

purpose of this thesis is to apf)ly the existing software metrics to parallel programs
and construct new metrics specifically suited for parallel programs.

Several parallel machines are available commercially with different types of
architectures. Each machine has a different oberating system and hence different
applications software. The programs that were analyzed as part of this thesis were
made available, upon a request by the author, by Dr. G. B. Lamont of Air Force
Institute of Technology (AFIT), Dayton, Ohio. These programs had been written
specifically for the Intel’s iPSC family of supercomputers [Intel88]. TABLE I gives a
general overview of the parallel programs in the compendium in terms of their size,
hardware used, Lines of Code, and McCabe’s V(G) (discussed in Section 3.1.3).
Intel’s iPSC was chosen for this study because of its existence on Oklahoma State
University (OSU) campus and availability to graduate students.

Chapter 2 of this thesfs gives a brief review of the history of parallelism and
software metrics used in this study. Chapter 3 includes a discussion of the metrics
considered for this study. Chapter 4 discusses the experimental methodology
utilized. ~Analysis of the measurements is included in Chapter 5. Chapter 6

summarizes the main conclusion and elucidate some possible areas of future work.

TABLE 1

A GENERAL CATEGORIZATION OF THE PARALLEL

PROGRAMS USED IN THE STUDY

Hardware

Philosophers

Number
Application 1=iPSC/1 of . McCabe’s
Type 2=iPSC/2 | Programs LOC Range V(G)

Ring 1&2 2 225 - 275 10-12
Simulation
Mesh Network 1 4 150 - 300 10-30
Simulation
Sorts (Bitonic 1&2 7 600 - 1200 60 - 110
Odd-Even,Radix)
Heap Sort 1&2 6 225 - 500 20-60
Neural Network 1 2 500 - 1000 35-130
Travelling 1 2 1150 - 1250 130 -135
Salesman
Set Covering 2 3 4000 - 14000 250-1200
Problem
Partial 1 1 700 70
Differential
Graph Search 1 1 800 50
Assignmgpt 1 1 1300 160
Problem

- Matrix 1 1 525 40
Multiplication
& Inversion
Dining 1 2 600 - 725 30 -60

* Here LOC represents the total length of a parallel program in terms of lines of
code including blank and comment lines

** A parallel implementation of the Assignment Problem using the Hungarian
Method [Compendium80]

CHAPTER 1II
PARALLELISM: HISTORY AND HARDWARE

Concurrent or parallel architectures are not new. Even John von Neumann,
whose ideas lead to the development of the sequential architecture that is used in
most computers today, preferred the parallel approach [Rattner85]. However, the
technological barriers of the time, such as unreliability of vacuum tubes, distanced
the idea from its practical implementation.

In late 1960s several parallel machines were introduced, including the 64-
processor ILLIAC IV [Hayes88] at the University of Illinois. The ILLIAC IV’s
limited memory and expensive hardware kept it away from commercial use. The.
evolution of the cost-effective Very Large Scale Integrated (VLSI) technology .in
1970s [Hayes88] stimulated interest in developing parallel computers for
commercial use. In 1980s several vendors introduced parallel machines with
different architectures and topologies. Each of them has some advantages and
disadvantages over others. Some of the better known parallel computers are:
Butterfly GP1000 of BBN Advanced Computers Incorporation with local or shared
memory and switch interconnection topology [BBN89], Multimax 520 of ENCORE
Computers with shared memory and bus topology [Encore89)], and iPSC/2 of Intel
Scientific Computers with local (distributed) memory and hypercube
interconnection topology [iPSC88 and Intel88]. Programs chosen to study in this

thesis were exclusively written for Intel’s iPSC family of computers.

- 2.1 Definition of Parallel Processing

In most of the available literature, the terms concurrent and parallel have
generally been used interchangeably. Fox [Fox88] defined concurrent processing as:
the use of several working entities (either identical or
heterogeneous), working together toward a common goal.
In concurrent computation, Fox considers the working entities as computers and the

goal as a large computation problem, such as weather prediction.

2.2 Types of Parallelism

Stone [Stone87] discusses two types of parallelism: coarse-grain and fine-
grain. He states that in general the performance benefits of a multiprocessor
machine strongly depend on the ratio R/C, where R is the length of a run-time
quantum and C is the length of the communication overhead incurred during that
quantum. Stone uses the ratio R/C as a measure of task granularity and states that
in coarse-grain parallelism R/C is relatively high, such that each run-time quantum
generates a relatively small amount of communication overhead. On the other
hand, in fine-grain parallelism, R/C is very low, hence it causes a relatively large
amount of communication overhead during each run-time quantum.

In this thesis we are not putting any emphasis on the dynamic aspects of
application programs. Instead we are taking the source code that is running

correctly, and analyzing it in a number of different ways that are described later.

2.3 Intel’s iPSC Concurrent Supercomputers

The first version of Intel’s iPSC Concurrent Supercomputer was introduced

in mid 1980s and was named iPSC. This first version (later known as iPSC/1) was

based on the hypercube architecture [Seitz85] and had Intel’s 80286 microprocessor
with the XENIX! operating system. In the late 1980s, Intel introduced its new
version and named it iPSC/2. The new version has a 80386 microprocessor and a
number of added features over iPSC/1, such as SX scalar processor, UNIX V.3
operating system [UNIX86], and the Direct-Connect Module (DCM) [Nugent88].
DCM is a specialized hardware that controls the message passing system and is
attached to each hypercube node.

The iPSC/2 system consists of compute nodes, I/O nodes, and a front-end
processor called host. Each node is a processor-memory pair, with distinct memory
from host and other nodes. Each node runs its own copy of NX/2 [Pierce88]
operating system. The NX/2 operating system is written almost entirely in C and
can manage up to 20 processes per node. It also manages the numeric coprocessors
for each process on a node. The front-end processor is called the System Resource
Manager (SRM) or the local host. SRM runs the UNIX operating system. The
host program executes in the UNIX environment and provides the user interface
and, if needed, loads the node program to each node. It also provides true 32-bit
node architecture performance [Close88].

In both. iPSC/1 and. iPSC/2, concurrency is achieved by grouping loosely-
coupled independent processing elements executing portions of a larger
computational problem simultaneously. All parallel application programs run over
an iPSC consist of at least two modules. One module runs on the front-end SRM
and the other runs on each participating node. In general, a module running on a
local host is known as a host module and a module running on nodes is known as a
node module.

The following is an example of solving a sequential problem with a parallel

algorithm on an iPSC machine. Example 1 shows how developing a parallel

1 XENIX is a registered trademark of Microsoft Corporation.

algorithm for a problem is in general more complex in terms of logic design and
program writing than developing a sequential algorithm for the same problem. The

program for Example 1 appears in Appendix A.

Example 1: Given a parallel machine such as iPSC/2, we need to sum the numbers
from 1 to 100 on its p processors. Suppose p=1, that is, we have a one-processor
machine to sum the integers from 1 to 100. Assuming that adding two integers takes
one time unit, to sum the integérs from 1 to 100 would take 99 time units. On a
uniprocessor platform, a parallel algorithm to sum the integers from 1 to 100 would
take almost the same number of time units as a sequential algorithm.

Now suppose we have two processors (p=2) to sum the integers from 1 to
100. We can assign half of all the integers involved in the summation to each
processor, that is, in the case of the integers from 1 to 100, each processor will get 50
integers to sum. In this way, generally speaking, integers from 1 to 100 can be
summed in approximately half of the time that it would take to sum them on one
processor. Hence, in terms of processing time or speed-up, we can achieve almost a
100% gain. But to achieve this gain we have to change our parallel algorithm such
that the range can be divided by the number of processors available. This change in
the algorithm may increase its complexity.

Now consider p=3. Obviously in this case we cannot divide 100 integers
(from 1 to 100) into 3 equal ranges. We have to change our parallel summation
algorithm again to get the optimal processing time. In the case of three processors,
our algorithm should be able to assign 33 integers to two of the three processors,
and 34 integers to the third processor. Developing an algorithm that could handle
this uneven assignment of the ranges to processors may take some extra effort and
may also make the programming task more difficult and complex in terms of the

lines of code and time spent in writing it.

From the above example, the following observation can be made: the static
complexity of software involved in parallel processing probably has more
dimensions or aspects than the static complexity of software on conventional
(sequential) computers, even though the basic issues (i.e., understandability, quality,

maintainability, efc.) are the same.

CHAPTER III
SOFTWARE METRICS

Because of the intuitive relationship between conceptual complexity and
software quality, several studies have focused attention on the development and
validation of a set of quantitative metrics to measure the complexity of software.
Intuitively speaking, parallel software is more difficult to understand than sequential
software. This is in general true because of the differences in the programming
languages, programming environments, and specially the architectures of sequential
and parallel machines, and the difficulty of visualizing parallel execution. Also,
since sequential and parallel programs can be considered different as far as
understandability is concerned, it is not advisable to use metrics developed for
sequential programs on parallel programs without first validating them for

suitability. This spawned the need to develop parallel software metrics.

\ 3.1 Types of Software Metrics

Several metrics have been developed and studied for measuring the
complexity of sequential software as well as hardware for different machines and
languages. Some of the metrics developed for software are cyclomatic complexity
[McCabe76], software science metrics [Halstead77], and information flow metrics
[Henry79]. However, none of the software metrics or analyses have been carried
out for the C programming language on iPSC machines. The performance

evaluation of parallel systems from the hardware aspect has also been the subject of

10

several studies [Zuberek85]. Work done by Haban and Wybranietz [Haban89] on
monitoring and measuring parallel systems can be noted here.

Conte et al. [Conte86] discussed several types of metrics, such as Size, Data
structure, Logic structure, Software Science, Effort, and Cost. They indicated that
program complexity increases with size and that large programs are generally more
difficult to understand and write, contain relatively more errors, and are more
difficult to debug. To reduce this complexity, software designers have increasingly
turned to program modularization and structured design methodologies. The
advantages of program modularization are typically expressed in terms of
comprehensibility, manageability, efficiency, error reduction, and reduced
maintenance effort. Conte ef al. state that not all computer scientists agree on these
advantages and some consider program modularization a disadvantage because the
need for proper interfacing among the rﬁodules increases as the number of modules

Zrows.

3.1.1 Size Metrics

The size of a program is a well-known and widely-accepted measure and is
still considered a basic measure for some models of software development, and cost
and schedule estimation. The size metric can be calculated in several ways. One
way is by counting the number of lines of code and another is by counting the
tokens.

Size metric measured in terms of lines of code may not be satisfactory for
modern programming languages because not all lines in a program may have the
same level of difficulty in their production. Some of the lines in a program may
have fewer tokens and hence be in general less difficult to produce than other lines

in the same program. However, lines of code (LOC) is still the most widely-used

11

size metric. Lines of code is defined by Conte et al., as the sum of all non-

commented and non-blank lines. This definition is used in this thesis for size metric.

3.1.2 Token Count Metrics

Halstead [Halstead77] viewed a program as a sequence of tokens, which
could be either operands representing data or operators manipulating the operands.
Halstead’s four basic counts are as follows.

nq : Number of unique operators

ny : Number of unique operands

N1 : Total occurrences of operators

N> : Total occurrences of operands
There is no general agreement among researchers regarding exactly which tokens in
a given language are operators and which are operands. This makes a general
consensus regarding token counting hard to reach. Conte et al. suggested that the
classification of a token as operators or operands should be determined by the
programmer who is developing the counting tool.

Halstead defined various metrics based on these four basic counts, some of
them are listed below.

The vocabulary n is defined as n = ny + np
The program length N is given by N = N1 + Np
The estimated program length is defined as

Nest = n * log(n) + np * log(ny)

(All logarithms are base 2 unless explicitly stated otherwise.)

12

3.1.3 McCabe’s Cyclomatic Complexity Metric

McCabe [McCabe76] suggested a metric to measure the maintenance
difficulty of a program based on the number of different independent paths through
it. These independent paths through a program add to the complexity of testing a
program, as experienced by programmers. He suggested a control flow metric,
based on the number of conditidns (such as the "if" statements in a program) which
he called the cyclomatic complexity. The cyclomatic complexity is defined as

V(G)=e-n+2p
where e is the number of edges, n is the number of nodes, and p is the number of
connected components in the control flow graph of a program. An alternative
formulation of the cyclomatic complexity is

V(G) =Pr +1
where Pr is the number of predicates in the program. V(G) can be easily calculated

using this alternate form.

3.1.4 Residual Complexity Metrics

Samadzadeh and Edwards [Samadzadeh88] proposed a metric called the
residual complexity which measures the remaining complexity in a software
document after some attempt has been made to understand it by conceptually
subdividing or chunking it. They argue that a software document can be thought of
as a set of tokens of different types. In an abstract view of the classification part of
the comprehension process, a user trying to understand a software document
examines individual tokens and finds the class to which each token belongs. Each
classification represents a level of understanding and refinement of a classification

or partition signifies an improvement in understanding. After all the tokens have

13

been classified at a certain level of comprehension, the as yet uncovered portion of
the software complexity can be represented as

R =Njp*log(N1) + N2 *log (N2) + ... + Ng * log (Ng)
where R is the residual complexity metric and Nj, i=1, 2, ..., q, is the number of

tokens in the ith class or block of the current partition.

3.1.5 Proposed Metrics

In an attempt to modify the cyclomatic complexity for a parallel algorithm,
we can consider all message passing/receiving commands as virtual conditional
statements. This assumption can be intuiltively supported by the argument that for
any message passing/receiving command the program control jumps to another
location, thus increasing the difficulty of comprehending the program.

The following are some of the metrics proposed. specifically for parallel

programs.

. 3.1.5.1 Message Send Metrics

Three types of "Send" metrics can be-identified:

i. Host Send metric;

ii. Node Send metric; and

iii. Total Send metric.
Host Send metric (Hg) is the sum of all message send commands appearing in the
host program of an application, which may or may not have a corresponding
message receive command in the same application. Node Send metric (N) is the
sum of all message send commands appearing in a node program of an application,

which may or may not have a corresponding message receive command in the same

14

application. Finally, Total Send metric (Tg) is the sum of all message send

commands in an application, Tg = Hg + Nq.

3.1.5.2 Message Receive Metrics

The definitions of Message Receive Metrics are analogous to those of the

Message Send Metrics. Three types of "Receive" metrics can be identified:

i. Host Receive metric;

ii. Node Receive metric; and

iii. Total Receive metric.
Host Receive metric (Hy) is the sum of all message receive commands appearing in
the host program of an application, which may or may not have a corresponding
message send command in the same application. The node Receive metric (Ny) is
the sum of all message receive commands appearing in a node program of an
application, which may or may not have a corresponding message send command in
the same application. Total Receive Metric (T}) is the sum of all message receive

commands in an application, Ty = H; + N|.

CHAPTER IV
EXPERIMENTAL PROCEDURE

This chapter describes the experimental methodology used in the design of
this study including the framework adopted for experimentation, data collection
methodology, and the static metrics gathered and their analyses. Models derived
based on both the experts’ perceptions and the static metrics are also discussed.

The framework of experimentation defined by Basili et al. [Basili86] was used
in the design of this study. This choice was made because of the wide acceptance of
their framework in the field of software engineering and related research areas.
According to Basili ef al.’s framework, there are four stages in the experimentation
process: 1) definition, 2) planning, 3) operation, and 4) interpretation. The
definition, planning, and operation stages are described below. The fourth category,

interpretation, will be discussed in the following chapter.

4.1 Experiment Definition

This study was devised to understand (motivation) the parallel aspects of
software complexity. The purpose of the study was to conduct an exploratory
empirical study of academic programs (domain) written in iPSC/2-C [Green89] on
Intel’s iPSC family of concurrent supercomputers. Initially, over 35 programs
written by eight graduate students of a particular graduate level class were
evaluated, both by using metrics and from the perspective of a number of experts in
parallel programming. Nineteen parallel programs written by eight graduate

students were chosen for final evaluation. The reasons for the exclusion of some

15

16

programs and the criteria for the inclusion of the programs selected for final analysis
is discussed in Section 4.3.1. There were four subjects who ranked the programs
based on the questions asked, according to their best judgement. The subjects had
considerable experience in the field of parallel programming specially on the iPSC

family of concurrent computers.

4.2 Experiment Planning

Only the syntactically correct and properly running programs were included
in the study. An objective as well as subjective assessment of static measurements in
a multivariate design was proposed. The programs were to be evaluated based on
the metrics described in Chapter 3. A non-parametric test was chosen for
correlation analysis in consultation with Dr. P. Larry Claypool, Professor of
Statistics, at Oklahoma State University, and Dr. William L. Woodall, Professor of
Statistics, at the University of Alabama. This choice was made because limited data
were available and distributional assumptions could not be met. The data consisted
of both objective as well as subjective measurements. The correlation analysis was
used to study the possible relationships between static metrics and the experts’

ratings of the complexity of programs.

4.3 Experiment Operation

The next two subsections explain the design of a questionnaire to glean and
compile the experts’ judgements and the software tools that were developed and/or
used to collect the metrics. Some of the problems encountered are also described

briefly.

17

4.3.1 Design of the Questionnaire

A questionnaire (Appendix B.1) was devised to capture the experts’
subjective perception of the relative complexity of the 37 programs included in the
study. In the questionnaire, each application was mentioned with its complete
directory path in the compendium. The quéstionnaire‘ had 10 questions. The first
four questions were included to judge the particir;ants’ expertise and experience
level. This was necessary to make sure that the participants had enough experience
in the field of parallel processing to judge parallel programs. Questions 5 through
10 were designed to elicit the judgement of the participants regarding the programs
used in the study. In fact Questions 1 through 4 serve as a pretest and Questions 5
through 10 serve as a posttest [Conte86]. Some of the questions asked in the
questionnaire were redundant. This was done intentionally to compare the
consistency in the participants’ replies. For instance, question 9 asks to rate the
overall complexity of an application whereas in questions 5 and 6 the
understandability of the host and the node programs were requested to be rated.
Intuitively speaking, the replies should be in the form of opposite ranking, e.g., if
three applications A, B, and C are ranked as 1, 2, and 3 by questions 5 and 6. then
the same applications should be ranked as 3, 2, and 1 by question 9. The above
expectation was met when correlation analysis was done on the experts’ replies (see
Section 5.3, TABLE IXa).

It was expected that not all the participants in the study would be familiar
with each of the application included in the study. Hence, in the questionnaire, the
participants were requested to record their judgement only for those applications
with which they were familiar. This instruction was to give the participants a feeling

that they were not obliged to rate each application for every question. As a general

18

rule, this also helps restrict the outliers. Thus the ratings across the application
names that were left blank, were assumed to be unanswered.

Participation in the study was voluntary. Out of the original 10 experts
targeted in this study, four replied. All four participants had adequate experience
and education. Their education and experience in the field of parallel processing is
given in TABLE II. Among the 37 application originally included in the study, 19
were judged by all the participants. One application, i.e.,
"project/beard/src/thesis/parallel", was found to be an outlier even though it was
rated by all the participants. This particular application has approximately 14,000
lines of code. Although the Spearman Rank Correlation Coefficient test (discussed
in Section 5.1) takes care of bad outliers, it was dropped from the study because the

above application was affecting the mean values drastically.

TABLE 11
EXPERTS EDUCATION AND EXPERIENCE LEVEL

Number of Highest Academic - Parallel Processing
Participants Degree ' Experience
1 Ph. D. 5 Years
2 M.S. 2 Years
1 B.S. 2 Years

4.3.2 Software Used to Gather the Data

Among the three pre-written software packages [Bishop87, Graham§3, and
PCMETRIC90] initially thought to be useful in collecting various static

measurements, the commercially available tool PC-METRIC was chosen to collect

19

some of the data because of its availability on campus. The rest of the data
collection was achieved through the programs developed on the iPSC/2 concurrent
supercomputer.

PC-METRIC is a microcomputer-based software tool that runs under the
Disk Operating System (DOS) [DOS87]. It expects as input any syntactically correct
and compilable C program and generates a report. The report contains a set of two
complexity metrics: the Software Science family of metrics and the cyclomatic
complexity metrics.

An advantage of using PC-METRIC was that it considers a C source code
file as a series of tokens. All of the reserved and non-executable words used in an
input C source file can be defined in an external file which is used by the tool at run
time. Thus it does not matter which flavor of the C programming language is used
for the analyses. The author of this study took advantage of this facility and used
PC-METRIC to extract static measures from the parallel programs written in the
iPSC/2-C programming language [Green89].

There is an exception to the flexibility of PC-METRIC. Programs written in
the Pascal programming language style cannot be analyzed using PC-METRIC even

if they are syntactically correct and properly compilable programs (see Example 2).

Example 2:
#define BEGIN {
#define END)
main()
BEGIN
END

(Source: User’s Guide for C, PC-METRIC, ver. 1.0, Set Laboratories,
Inc., Mulino, Oregon, pp 3-12, 1990.)

20

This is because PC-METRIC uses braces or curly brackets (i.e., "{" and "}") as
delimiters of the body of the executable code.

If most of the source code is written in the Pascal style, the PC-METRIC’s
User’s Guide recommends that the source file should be run through a preprocessor,
which is a utility program available on thé iPSC/2, to avoid spurious results. Empty

procedures such as

procedureX()
{

may also produce spurious results, and should be taken out prior to the final analysis
of an input source code file.

Before using PC-METRIC, some issues had to be resolved. As mentioned
above, the tool is a PC-based software, thus all the programs in the compendium
had to be down-loaded onto a floppy disk in ASCII (American Standard Code for
Information Interchange) format prior to évaluation. Each application was given
the same path and name as it had in the compendium except.when it was prohibited
by the DOS naming conventions.

PC-METRIC can be executed in four modes: Interactive, Command Line,
Indirect, and Batch [PCMETRIC90]. The interactive mode was found to be the
most convenient and was chosen for the source code analyses.

The normal output of PC-METRIC consists of two files <filename>.RPT
and <filename>.EXP. The file with extension .RPT contains a complexity analysis
report on a procedure by procedure basis and a complexity summary for the entire

file. The file with extension .EXP contains the listing of all procedures which

21

exceed predefined complexity standards [PCMETRIC90]. Another file with the
extension .ERR is created if errors are encountered. Figures C.2 and C.3, in
Appendices C.1 and C.2, depict a sample output report generated by this software
tool.

A few other points are also worth to mentioning here about PC-METRIC.

For instance, if a statement such as

#define symb

encountered, then symb will be defined through the analysis of all the files or until a

#undef symb statement is encountered. Contrary to this, a statement such as

#define FALSE 0

is not considered as a definition of a symbol (in this case FALSE) that is, any time
the symbol is assigned a value, it is ignored. The header (.h) file or files must be
entered or selected first among the source files to be analyzed so that all the
definitions can be picked up..

Another point found interesting was the way PC-METRIC handles the
occurrences of parentheses. In C, parentheses are used for three purposes: after a
control statement, after a procedure call, or to changé the default ordering of
arithmetic operations. To differentiate between these uses, three different types of
parenthesis have been defined in the reserved-word file (Appendix C.3). These
three types were represented as ’(c’, ’(p’, and ’(’, respectively. Similarly, asterisk **’
and ampersand ’&’ each have two uses and hence are defined separately in the

reserved-word file. Asterisk **’ is used to indicate the multiplication sign and "*p’ to

22

indicate a pointer. Similarly, ampersand '&’ is used to indicate the unary AND and
’&p’ to indicate the address operator.

The cyclomatic complexity was considered for this study because it counts the
operators '&&’ and ’| |’, as well as the regular decision operators such as ’if, and
‘while’. The counting strategy adopted in PC-METRIC was a modified form of the
counting strategy discussed by Conte et al. [Conte86] for Pascal programs and
implemented by Moll and Samadzadeh [Moll89] (refer to [PCMETRIC90] for a
complete counting strategy used to collect the measurements).

The following two paragraphs describes the data collection procedure used
to extract static measures from the parallel programs.

As mentioned above, that all the parallel programs included in the final
analyses were ported to a microcomputer. Subsequently, the available tool was used
to collect some of the Software Science metrics and McCabe’s cyclomatic
complexity metrics. However, before generating any report, the files for reserved-
words and non-executable words were checked to make sure that all reserved and
non-executable words are defined in the appropriate files.

As explained in Section 2.3, parallel programs for the iPSC/2 are each
divided into two modules. One which runs on the host processor and- the other
which runs on the node processors. Each module may or may not contain more
than one file. Halstead’s Software Science metrics and McCabe’s cyclomatic metrics
were extracted from the programs. For Halstead’s metrics, n1, np, N1, Np, and the
Effort E were collected for the host as well as for the node programs by feeding the
files related to each module to the available tool as input. Token count for the
whole application was measured by adding the operators and operands of each
module instead of inputting all the files in the host and the node modules to the

available tool. This was because -each module was a separate entity, and a variable

23

used in a program related to the host module had no relation with a variable used in

the node module with the same name as shown in Example 3.

Example 3: *
Host Program (host.c) Node Program (node.c)
main() main()
'result =1 .result = 2;
if (result ==1) if (result == 2)
} }

In the above example, suppose the programs host.c and node.c were input
together to PC-METRIC, then it would consider the variable ’resulf’ as a.single
unique operand. Intuitively speaking, the variable ’resulf’ in the programs host.c and
node.c constitutes two separate operands, and hence should be counted as two
unique operands.

The above approach was adopted in measuring McCabe’s cyclomatic
complexity metrics also, even though for this metric the files involved in both
modules could be input together to the tool. TABLES III and IV contain the static
measurements for selected McCabe’s cyclomatic metrics and Halstead’s Software

Science metrics, respectively.

TABLE III
CYCLOMATIC COMPLEXITY MEASUREMENTS

Apl# Host V(G) Node V(G) Total V(G)
1 4 6 10
2 2 12 14
3 16 65 81
4 47 62 109
5 46 107 153
6 28 30 58
7 33 40 73
8 4 17 21
9 4 17 21

10 11 25 36
11 8 15 23
12 12 138 150
13 4 29 33
14 6 127 133
15 6 127 133
16 5 42 47
17 6 152 158
18 18 27 45

For application names see Appendix B 2

TABLE 1V
SOFTWARE SCIENCE MEASUREMENTS

Host Metrics

T

Node Metrics

Overall Apphication Metrics

Apl# nq n2 N1 N2 Effort nq n2 N1 N2 Effort ni n2 N1 N2 Effort
1 25 33 123 62 254510 30 29 151 80 56230 0 55 62 274 142 180012 4
2 23 19 69 36 12337 0 27 37 230 144 1179010 50 56 299 180 258964 8
3 38 31 223 136 1827940 51 77 1049 645 25329150 89 108 1272 4781 5035564 1
4 60 106 701 359 7942920 45 90 1068 647 19631170 105 196 1769 1006 6156799 3
5 61 113 827 446 11405900 73 190 1993 1169 5708385 0 134 303 2820 1615 13892220 6
6 50 68 583 316 7188410 47 60 532 294 641207 0 97 128~ 1115 610 3115386 6
7 54 88 737 416 10521910 49 75 781 445 1239374 0 103 163 1518 éG1 5213123 2
8 28 34 201 105 787740 29 26 274 166 235497 0 57 60 V 475 271 659753 2
9 29 40 218 121 908300 30 31 359 217 358691 0 59 71 577 338 902370 8
10 30 38 210 108 82527 0 44 64 483 249 4232250 74 102 693 357 1014296 2
1 30 37 195 100 72547 0 28 33 285 157 174600 0 58 70 480 257 549286 1
12 45 59 327 189 249198 0 62 124 1539 1010 4852372 0 107 183 1866 1199 8788218 1
13 29 42 138 86 40900 0 39 49 540 355 8167410 68 91 678 441 13483257
14 36 57 279 151 1340800 56 102 1847 1278 8007307 O 92 159 2126 1429 11715881 3

ST

SOFTWARE SCIENCE MEASUREMENTS

TABLE 1V (continued)

Host Metrics

Node Metrics

Overall Application Metrics

Apl# nq n2 N1 N2 Effort nq no N1 N2 Effort nq no N1 N2 Effort
15 35 56 239 131 98573 0 53 97 1714 1188 6808561 0 88 163 1953 1319 9820970 9
16 35 60 334 199 203246 0 49 78 957 622 2155954 0 84 138 1291 821 4113304 3
17 32 53 259 156 125266 0 50 87 2565 1608 13686523 0 82 140 2824 1764 18474018 9
18 36 72 438 281 3411880 39 54 593 379 869898 0 75 126 1031 660 25413787

For application names see Appendix B 2

9¢

27

Since the available tool did not produce the extended size metrics (i.e., the
number of blank and commented lines) and the communication metrics, two
separate programs were developed to measure these metrics. For size metrics, a
parallel program was developed (Appendix D) on the iPSC/2. The pseudocode of
the program to collect size metrics is depicted-in Appendix E.1. (because the same
algorithm also was used in the program that collects the communication metrics).

The program colleéting the size measures expects a syntactically correct
parallel program as an input aﬁd prdduces as output four measures: the number of
executable lines; the number of blank lines; the number of commented lines; and
number of total lines in the input file. The size metric was divided into the above
four categories so that analyses could be made‘ to find out which metric or
combination of metrics had more influence in terms of the comprehensibility of the
parallel programs.

The program to extract the size measures is itself a parallel program. [t has
the capability to accept any number of files as input as there are nodes (processors)
available on the system. The program processes all the input files at the same time
(in a parallel fashion). However, since the iPSC/2 available on campus has 32
nodes, the program accepts a maximum of 32 files-as input at one time and process
them in parallel. The host module acts as a driver of the application and does the
job of allocating a source code file to each node to extract the measurements. The
host module is given access to a file that has a complete path listing of all the files
that need to be processed (Appendix E.2). As soon as a node finishes extracting
measurements from the file it was working on, it sends a message to the host with its
node number and the collected metrics. The host receives the packet, saves the
message and sends a new source file path to the same node. This process continues

until all source files are processed.

28

Another program was developed to collect the proposed communication
metrics (Appendix F) on the iPSC/2. This program uses the same algorithm
(Appendix E.1) as developed for the program collecting several size metrics. Again,
the host module works as a driver and allocates files to each node whenever the
nodes are free and in return collects communication measurements.

A makefile [Green89] was written to compile the newly developed tools
(Appendix E.3). The outputs ggnerated by the parallel programs used for gathering
the size and the communication metrics were then manually added for the host and

the node modules and are depicted in TABLES V and VI, respectively.

29

TABLE V
SIZE MEASUREMENTS
Host # of Lines Node # of Lines Total # of Lines

Apl# Exec Blank Comnt Exec Blank Comnt Exec Blank Comnt Appl Length

1 41 12 73 58 29 64 99 41 137 277

2 29 8 22 79 19 74 108 27 96 231

3 159 42 168 439 114 600 566 140 721 1427

4 244 48 169 454 79 321 687 122 479 1288

5 253 50 182 448 87 356 691 131 517 1339

6 196 38 212 175 36 328 371 74 540 985

7 244 56 233 235 43 378 479 99 611 1189

8 66 25 56 102 31 71 168 56 127 351

9 70 26 65 102 32 84 172 58 149 379
10 45 9 60 116 16 113 161 25 193 379
11 52 14 57 76 12 71 128 26 128 282
12 138 48 151 349 110 442 487 158 593 1238
13 62 26 22 150 55 246 212 81 268 561
14 95 29 43 501 146 348 596 175 391 1162
15 100 35 60 497 151 364 589 182 411 1182
16 102 39 69 250 128 433 352 167 502 1021
17 89 84 20 795 228 73 884 312 93 1289
18 147 37 45 177 43 75 324 80 120 524

For application names see Appendix B 2

30

TABLE VI
COMMUNICATION COMPLEXITY MEASUREMENTS

Host Communication Mesgs | Node Communication Mesgs | Total Communication Mesgs
Apl# Send Receive Send Receive Send Receive Total
1 1 2 4 3 5 5 10
2 0 1 3 2 3 3 6
3 3 2 2 2 5 4 9
4 9 3 10 16 19 19 38
5 9 3 10 16 19 19 38
6 6 3 9 12 15 15 30
7 6 3 9 12 15 15 30
8 5 2 7 10 12 12 24
9 5 2 7 10 12 12 24
10 5 2 10 10 15 12 27
11 5 2 5 8 10 10 20
12 2 3 10 9 12 12 24
13 1 1 3 5 4 6 10
14 2 5 12 10 14 15 29
15 2 5 11 10 13 15 28
16 4 4 12 10 16 14 30
17 3 2 ‘ 32 33 35 35 70
18 9 2 4 12 13 14 27

For application names see Appendix B 2

As defined in Section 3.1.5, residual complexity is based on the notion that

the understandability of a software document that can be modeled by a token

31

categorization process. In this study the classification schemes considered were
based on Halstead’s operator-operand token classification. The following three
residual complexity classifications schemes were considered for this study:

1. Operator and Operand tokens;

2. Host and Node tokens; and

3. Host Operator, Host Operand, Node Operator, and Node Operand
tokens.

Also, as mentioned in Section 3.1.5, after classifying the tokens into ’q’ equivalence
classes, the residual complexity R, is computed as

R = Njp*Log(N1) + Np *Log(Np) + ... + Nq * Log (Nq)
where Nj is the number of tokens in the jth set for 1 <= j <= q. Two definitions
used in this study for N j were: ‘

i) count of the number of unique token in equivalence class j; and

ii) count of the total occurrences of tokens in equivalence class j.

This spawned 6 sets of measures, two for each of the three classification schemes
defined above. Thus, for the kth (1 <= k <= 3) classification scheme¢ two
definitions namely Ry and Ryypjq were defined, where Ry was defined in terms of
the total occurrences of tokens, and Ryypjg was defined in terms of the unique
occurrences of tokens.

Since Halstead’s basic token counts (ng, n, N1, Np) were already measured
for each of the application used for the final analysis, they were ported to another
directory on a microcomputer, and LOTUS 1-2-3 [LOTUS83] was used to compute
the residual complexity by simpiy embedding the formulas in LOTUS. The fesulting

residual complexity measures are depicted in TABLE VIL

TABLE VII

RESIDUAL COMPLEXITY MEASUREMENTS

32

Classification |

Classification |i

Classification Ili

R1U R1T RaU R2T R3U R3T
1 687 1 32341 686 8 32070 5706 28218
2 607 4 3807 5 6104 39015 505 8 34445
3 13058 20622 7 1317 4 212173 11248 192498
4 2197 4 291195 21796 290787 1898 9 26460 1
5 34445 495329 3409 3 49893 1 30225 45698 3
6 1536 1 169310 1533 4 16825 0 13116 15208 3
7 1886 5 24436 7 1877 5 24305 8 16214 22059 4
8 686 8 64138 687 1 6390 5 5706 5685 9
9 7837 81319 7832 81312 654 5 72620
10 11400 9566 9 11434 9608 9 9708 8637 9
11 7688 63327 7682 6304 6 6410 5617 1
12 296 7 32538 3 2099 1 33493 5 1825 6 30635 2
13 1006 1 10250 7 10050 10524 9 848 6 94425
14 17629 38477 6 1762 1 400418 1524 3 36589 9
15 1678 8 35020 9 1676 5 36537 8 1448 5 333580
16 1517 9 212898 15117 21604 4 1299 3 19569 0
17 1519 4 51397 0 1517 2 53797 3 1306 3 49387 7
18 1346 3 165019 13376 16470 1 1147 2 14838 3

For application names see Appendix B 2
Legend R1U, R1T stands for residual complexity measurements calculated for the two cases of Unique and Total
occurrences of tokens in the Operator/Operand classification

R2U, R2T same as above except for the tokens in the Host/Node classification

R3U, R3T same as above except for the tokens in the Host Operators, Host Operands, Node Operators and
Node Operands, respectively

33

Other techniques for collecting static measurement specifically for parallel
programs, as discussed in the literature [Zuberek85 and Haban89], were also
considered. But those techniques were more detailed and hardware oriented than
what was needed for this study, hence they were dropped from further

consideration.

CHAPTER V
ANALYSIS OF THE MEASUREMENTS

This chapter describes the mefhodology used in the analysis of static code
measurements including a discussion on inter-metric correlations and correlations
among static metrics and the experts’ judgements‘. Also, six models derived based
on the experts’ perceptions and static metrics are discussed. Tables are used
generously to elucidate the discussion. All data analyses were done on the IBM1
mainframe (IBM 3090/200S) [IBM3090-89] using the SAS statistical package
[SAS90a]. Standard statistical methods were used (e.g., as described by Conte et al.
[Conte86]). |

5.1 Choice of a Statistical Test

In comparison studies especially for small samples and whenever there is any
doubt about assumptions, a nonparametric test is found to be more. powerful and
desirable than a parametric test [Gibbons71]. Conte et al. support Gibbons’
statement and add that most nonparametric tests can be applied to data from
ordinal scale effectively. Generally, speaking nonparametric statistics require fewer
assumptions than their counterpart parametric tests where more restrictions are
applied, because nonparametfic statistics use the ranks of the observations in the
sample and ignore the actual data. One important point to mention is that
nonparametric statistics are a kind of transformation, since each measure is

transformed into its own rank and hence helps eliminate undesirable outliers.

1 IBM is a registered trademark of International Business Machine Corporation.

34

35

In this study each software complexity metric measures complexity on a
potentially different scale and the best way to compare them is by using their
ranking in the sample data rather than their actual values.

Selection of a statistical test was not an easy job for this study, as is the case
for similar studies such as [Moll89] and [Nandakumar89]. Conover [Conover71]
describes it as frustrating, since the process of experimentation does not always lay
bare the "truth”. He adds that: "One experiment, with one set of observations, may
lead two scientists to two different conclusions”.

Several nonparametric test such as Friedman, Spearman, and Kendall can be
found in the literature (see, e.g., [Conover71], [Daniel78], and [Gibbons71]). The
nonparametric statistical test chosen for this study for correlation analysis is the
Spearman Rank Correlation Coefficient test. This was done after consulting with
Dr. P. Larry Claypool, Professor of Statistics, at Oklahoma State University, and Dr.
William L. Woodall, Professor of Statistics, at the University of Alabama. As
mentioned in Section 4.2, the choice of this nonparametric test was made especially
because of two reasons: first, limited data was available and distributional
assumptions, e.g., that a distribution is normal could not be made, for a parametric
test; second, the author was interested in. checking the monotonicity among the
observations and hence among the selected metrics rather than just in checking their

linear correlations.

5.2 Inter-metric Correlations

Inter-metric correlations using the Spearman Rank Correlation Coefficient
statistical test [SAS90b] are included in Appendix G. Variable names used in the
correlation coefficient analysis and the variable names used in the regression

analysis are included in the Appendix H with their short descriptions. Some of the

36

important correlations within a metric type and among the metrics are discussed

below. As a result of these correlations analyses, several interesting points came to

surface which are discussed in the following sections.

As explained in Section 3.1.1, the size metric is widely accepted and

considered as a basic measure for some models of software development. TABLE

VIII represents some of the interesting figures from among the static metric

correlations included in Appendix G.

EXTRACTED SIZE MEASUREMENTS

TABLE VIII

Approximate

Metric Mean Percentage Std Dewviation
Host Executable Lines 118 44 30 78.80
Host Commented Lines 94 83 28 69.95
Node Executable Lines 277 94 70 20474
Node Commented Lines 24672 72 170 11
Total Executable Lines 393.00 - 23923
Total Commented Lines 337.55 - 21293
Host Cyciomatic Complexity 14 44 20 14 45
Node Cyclomatic Complexity 57 66 80 49 41
Total Cyclomatic Compiexity
(Host and Node) 7211 53 19
Total Host Communication Complexity
(Message Sends and Receives) - 27
Total Node Communication Complexity
{(Message Sends and Receives) - 73

Generally speaking, a host module on a loosely-coupled distributed memory

parallel machine (such as the iPSC/2), acts as a driver for an application.

It

manages the distribution of work for the nodes participating in the execution of an

37

application. This fact was supported by this study too. Notice that in the Mean
column of TABLE VIII only 30% of the total executable code bélongs to the host
modules and the rest belongs to the node modules. Both the host and the node
modules were found to be comparably proportional as far as the executable lines of
code and the documentation lines are concerned.

An interesting point to mention here is that a host module runs on a single
processor whereas a node module runs on several processors. Is it then appropriate
to divide 70% of the code by the total number of nodes that participated in the
application execution in order to find out the Mean of the executable lines of code
for each node (or processor)? Intuitively speaking, the answer is negative, because a
node may be executing only 10% of the executable code which may consist of & loop
statement (such as a ’for’ loop that counts numbers from 1 to 1 million), whereas its
neighboring node could be doing a relatively simple work such as assigning and
initializing a number of variables and that code may be 20% of the executable code.

Steep standard deviation values of executable code for the host and the node
modules are an evidence of variation in their sizes. Correlations between the
executable lines of code and the documentation (that is, commented lines) of the
host modules were better than the correlations between the executable lines of code
and the commented lines of code of the node modules. This could be interpreted as
more consistency in the proportion of the executable code and the documentation in
the host‘modules than in the node modules. Strong, positive correlations were
found between the host and the node executable lines of code, and Halstead’s E of
the overall application and the node efforts, respectively, even though the sizes of
the modules vary considerably. The significance levels in the above two correlations
were less than 0.01

Another interesting point was that even though the Mean executable lines of

code of the host was 30%, it contained only 20% of the cyclomatic complexity. Does

38

it mean that the host modules are less complex than the node modules? The answer
is affirmative as far as the parallel programs used in this study are concerned.
However, more research needs to be done to support the above answer. Strong,
positive correlation exist between the executable lines of code of the node modules
and the cyclomatic complexity; more so than between the executable lines of code
and the cyclomatic complexity of the host modules.

Approximately 27% of message send or receive statements were found in the
host modules and 73% were found in the node modules. This again supports the
general fact regarding distributed-memory parallel machines such as the iPSC/2,
that the host module acts as a driver of an application and the node module do all
the complex computations. Another observation is that there was more
communication going on among the nodes than beiween the host and the nodes or
vice versa. Relatively weak correlation exist between communication statements and
the executable lines of code (mostly at significance levels of 0.05 or less). This was
expected, because communication in parallel programs is, in general, indepeadent
of the size of a program.

Residual complexity schemes, in which total occurrences of tokens were
considered, correlated better with the executable lines of code of the node modules
and the overall application’s lines of code metrics than when unique occurrences of
tokens were considered. On the other hand correlation between the lines of code of
the host modules and the residual complexity metrics was higher when unique
occurrence of tokens were considered. The significance levels in both cases (unique
or total occurrences) was much less than 0.01.

In Halstead’s token count no matter what counting strategy is used, the
number of unique operators (n1) should be less than or at most equal to the number
of unique operands (np) in a source code file (because there can be no operators

without at least one operand). This was verified by the operator and operand counts

39

for both the host and the node modules. It was noticed that the correlation between
the node effort and the total effort was significantly higher than the correlation
between the host effort and the total effort, at approximately the same significance
levels (less than 0.01). Within the host as well as the node modules, total operators
(N1) and operands (Np) correlate slightly better than the unique operators and
operands with the respective efforts of the host or the node modules.

Both the cyclomatic complexity of the node and the host modules correlate
positively with their respective effort measurements at significance levels of less
than 0.01. However, correlation between the cyclomatic complexity and the effort
of the node modules was stronger than the correlation between the cyclomatic
complexity and effort of the host modules.

Residual complexity metrics correlated with Halstead’s metrics in the same
manner as they correlated with the size metrics described above. Residual
complexity schemes, in which total occurrences of tokens were considered;
correlated better with the node’s and each overall application’s Software Science
metrics than when unique occurrences of tokens were considered. But the Software
Science metrics for the host modules correlated better with the residual complexity
when unique occurrences of tokens were considered. The significance levels in both
cases (unique or total occurrences) was much less than 0.01.

Weaker correlations were found between the cyclomatic complexity and the
communication metrics, suggesting that the two are not dependent on each other
(that they measure different dimensions of software complexity). Correlations
between the cyclomatic complexity and residual complexity metrics of the host
modules were weaker than the correlations between the cyclomatic complexity and
residual complexity metrics of the node modules at significance levels of less than
0.05. This was due to the fact that the node modules have more operators and

operands than the host modules.

40

The proposed communication metrics were not found to correlate
significantly with residual metrics at significance levels of 0.05, suggesting that the
communication metrics are independent of the six token classification measures
considered in this study. Residual metric may need to be divided into further
classifications, such as the host and the node communication statements, to find
better correlations with the communication metrics.

Finally, the six measurements considered for residual complexity metrics
were found to correlate to each other strongly and positively at significance levels

much less than 0.01.

5.3 Analysis of the Subjective Ratings

As discussed in Section 4.3.1, a questionnaire (Appendix B.1) was devised to
correlate the perceived complexity of a number of experts to the five metrics
considered in this study. The questionnaire was mailed electronically to the original
compiler of the compendium of parallel programs used in this study
[Compendium90], Dr. G. B. Lamont of the Air Force Institute of Technology
(AFIT). Prior to the design of the questionnaire, the author of this thesis made a
personal trip to AFIT in Dayton, Ohio, to discuss several aspects of this study with
Dr. Lamont [Lamont90].

A problem had to be resolved after receiving the replies to the
questionnaires but prior to the use of the Spearman Rank Correlation Coefficient
test. This problem was how to merge the experts’ rating of each application in the
questionnaire. This issue was solved after consultation with Dr. P. Larry Claypool,
Professor of Statistics at Oklahoma State University, by adding the individual ratings
for questions S through 9 (see Figure 1) in the questionnaire separately. For

instance, if the experts’ replies to question S were 4, 4, 3, and 4, then the total for

41

question 5 would be the sum of the above four ratings, that is, 15. For question 10
(see Figure 1), the ratings were converted into numeric ratings and then added
together. Appendix B.2 includes the individual ratings and their sums. As a
different approach, accumulated rating could have been divided by the total number
of experts who participated in the study in order to normalize the results. But this
was avoided because it would not have helped in the analyses and was considered

jUSt an extra unnecessary step.

Q #5 How would you rate the UNDERSTANDABILITY of the HOST program(s)
of the following applications on a scale of 1 to 5?

(Assume 1 indicates the poorest level and 5 the highest level for questions
5 through 9)

Q #6° How would you rate the UNDERSTANDABILITY of the NODE program(s)
of the following applications on a scale of 1 to 5?

Q #7 How would you rate the documentation of the HOST program(s) of the
following applications on a scale of 110 5?

Q #8. How would you rate the documentation of the NODE program(s) of the
following applications.on a scale of 1 t0 5?

Q #9 How would you rate the overall perceived or conceptual COMPLEXITY
(different from computational complexity) of the following applications on
a scale of 1to 57

Q #10. If the following applications had been developed as sequential programs,
do you think they would have taken less/more/same amount of time and
effort?

Figure 1 QUESTIONS 5 THROUGH 10 OF THE QUESTIONNAIRE

42

Once the above problem was resolved, the Spearman test was applied to find
out the correlations between the experts’ perceived complexity ratings and the static
measurements (Appendix G).

Some of the more important correlations at significance levels of less than or
equal to 0.05 are depicted in TABLES IXa through IXf and are discussed below. As
mentioned earlier, short descriptions of all the variable names used in the

correlations are included in Appendix H.

TABLE IXa
IMPORTANT CORRELATIONS AMONG THE EXPERTS’ REPLIES

Q5 Q6 Q7 Q8 Q10
Q5 100 0.87 088 091 070
Q7 088 099 100 0.96 091
Q9 -0.83 -0.87 -0.89 -0.94 -0.91

This paragraph interprets the correlations shown in TABLE IXa. Strong,
positive correlations between questions S and 6, and also between questions 7 and 8,
suggest that the replies were consistent with respect to the understandability and
documentation of the host and the node modules. Negative correlations between
question 9 and questions S, 6, 7, and 8 were expected. The reason for the
anticipated negative correlations, as discussed in Section 4.3.1, was the nature of the
redundancy embedded in the questions asked to compare the consistency in the
participants’ replies. Strong, negative correlation between questions 9 and 10

suggested that parallel programs with relatively less conceptual complexity might

43

have taken relatively more effort if they had been rewritten as sequential programs.
This was a surprise to the author too.

TABLES IXb through IXf depict the correlations between the subjective
ratings of the perceived complexity of the applications with the five static
measurements considered in this study. Weak correlations (weaker than expected)
were found at the significance levels of 0.05. Expérts’ judgements regarding the
perceived complexity of the applications correlates better with the executable lines
of code of each application than with the total lines of code in the applications.
However, the executable lines of code 6f the node modules correlated better among

the three measures shown in TABLE IXb.

TABLE IXb
Q9 VS THE SIZE METRICS
Node | Application Total
Executable Lines Executable Lines Lines
Qg 062 055 050

With Halstead’s measurements, question 9 (that is, the experts’ perceived
complexity rating) correlated with the effort of the overall application quite
satisfactorily (TABLE IXc). However, a higher correlation was found between
question 9 and the effort of the node modules than the effort of the overall
application. Notice that none of the host metrics correlated with the experts’
perceived complexity ratings at the significance levels of 0.05 or less (See Appendix

G). This was a little unusual and unexpected.

44

TABLE IXc
Q9 VS THE SOFTWARE SCIENCE METRICS

Node Node Node Node Node

n1 n2 N1 N2 Effort

Qo 0.56 0.53 0.67 0.70 0.72

Application Application Application Application Application
n2 N1 N2 N1+N2 Effort
Q9 0.46 0.63 0.65 0.65 0.63

The cyclomatic complexity of the node modules correlated better with
question 9 than each overall application’s cyclomatic complexity at the significance
level of much lesser than 0.05 (TABLE IXd). With the communication metrics, only
the message sends metric of the node modules correlated, although weekly, with
question 9 at the significance level of less than 0.02 (TABLE IXe). It was also
observed that the residual comple)ﬁity metrics correlated to a fair degree with the
perceived complexity. Notice that, at the significance levels of 0.05 or less, only
those residual metrics which were based on total occurrences of tokens were

adequately correlated to the experts’ perceived complexity (TABLE IXf).

TABLE IXd
Q9 VS THE CYCLOMATIC COMPLEXITY METRICS

Node V(G) Application V(G)

Qo 073 0.61

45

TABLE 1Xe
Q9 VS THE COMMUNICATION METRICS

Node Message Sends

Q9 0.57

TABLE IXf
Q9 VS THE RESIDUAL METRICS

R1T R2T R3T

Q9 065 065 065

5.4 Proposed Models

To study the relationships between the chosen metrics and the experts’
perception of relative comprehensibility of parallel programs (question 9), the
Stepwise Linear Regression Analysis [SAS90b] was used. For this purpose, six
Stepwise Linear Regressions, one against each metric and one by including all
possible combinations of five static measures, were run. The following are the
resulting six models. For each model presented below, the submetrics chosen were
based on the author’s intuition and best judgement. Since question 9 represents the
perceived complexity by the experts, the acronym PC is used in the following
models. In each model, first full model is presented followed by the proposed
model. The standard error for each independent variable and residuals for each
observation are included 1n Appendix I. Detailed descriptions of variable names

used in the following models are included in Appendix H.

46

In the proposed models, all variables left in the models are significant at the
0.15 level, which is also a default level for Stepwise Linear Regressions analysis used
in the SAS package. The coefficient values with one standard error are presented in
the following format in each model:

(parameter value © one standard error)

1. A model considering the size measurements:
Full model:
PC = a; + a1 * HEXELNS + ap * HCMTLNS + a3 *
NEXELNS + a4 * NCMTLNS + a5 * TEXELNS + ag
* TCMTLNS + e

where e (read as epsilon) stands for residual error.

Proposed model:

PC = (8.49 £ 1.02) + (0.0086 £ 0.0030) * NEXELNS + ¢

where NEXELNS stands for the executable lines of code of the
node modules. The sum of squared residuals is 103.10 and the

R-square is equal to 0.33.

2. A model considering the Software Science measurements:
Full model:
PC = a5 + a1 * HUN1 + ap * HUN2 + a3 * + a4 HCAPN1

+ HCAPN2 + a5 * HEFRT + ag * NUNI1+ a7 *
NUN2 + ag * NCAPN1 + ag * NCAPN2 + aqqg *
NEFRT + a1 * TUN1 + aqp * TUN2 + a3 *
TUNIN2 + ayq * TCAPN1 + a5 * TCAPN2 + ajg *
TCAPNIN2 + ay7 * TEFRT + e

where e (read as epsilon) stands for residual error.

Proposed model:
PC = (58 ¥ 14) + (0.0132 I 0.0048) * NCAPN1 +

(0.00000141 £ 0.00000064) * TEFRT + e
where NCAPN1 and TEFRT stand for the total operators of
the node module and the overall effort, respectively, of each
application. The coefficient of TEFRT has six significant digits
after the decimal point, this is because the data was not been
normalized (see TABLE IV). The sum of squared residuals is
69.59 and the R-square is equal to 0.55.

3. A model considering cyclomatic complexity measurements:
Full model:
PC = ag + a1 * HOSTVG + ap * NODEVG + a3 * TOTVG
+e

where e (read as epsilon) stands for residual error.

Proposed model:

PC = (8.58 T 0.86) + (0.04 £ 0.01) * NODEVG + e

where NODEVG stands for the cyclomatic complexity of the
node module of each application. The sum of squared

residuals is 89.04 and R-square is equal to 0.42.

4, A model considering the communication complexity measurements:

Full model:

47

48

PC = a, + a1 * HMSGSND + aj * HMSGREC + a3 * NMSGSND
+ a4 * NMSGREC + a5 * TMSGSND + ag * TMSGREC +
a7 * TCOMMSG + e ‘

where e (read as epsilon) stands for residual error.

Proposed model:

PC = (8.56 * 1.02) + (0.262 ¥ 0.093) * NMSGSND + ¢
where NMSGSND stands for the message send statements of
the node module of each application. The sum of squared

residuals is 104.13 and R-square is equal to 0.33.

S. A model considering the residual complexity measurements:
Full model:
PC =ay + a1 * R1U + ap * RIT + a3 * R2U + a4 * R2U +
a5 *R3U + ag *R3T + e

where e (read as epsilon) stands for residual error.

Proposed model:
PC = (4.52 T 2.07) - (0.0033 £ 0.0012) * R1T + (0.0238 *
0.0090) * R2T - (0.0223 + 0.0091) * R3T + e

where R1T, R2T, and R3T stand for the sizes of classes (in the
case where the total occurrences of tokens are considered) in
the classifications schemes defined in Section 3.1.4. The sum

of squared residual is 61.26 and the R-square is equal to 0.60.

6. A model. considering selected submetrics among the five static

measurements:

49

Full model:

PC = a5 + a; * TEXELNS + ap * TCMTLNS + ag *
TOTLNS + a4 * TUN1 + a5 * TUN2 + ag *
TUNIN2+ ay * TCAPN1 + ag * TCAPN2 + ag *
TEFRT + ajg * TOTVG + ay] * TMSGSND + ajp *
TMSGREC + a13 * TCOMMSG + a4 *R1U + a5 *
RIT + a16 * R2U + a17 * R2T + a1 * R3U + a9 *
R3T + e |

where e (read as epsilon) stands for residual error.

Proposed model:
PC = (49 £ 14) + (0.037 £ 0.0114) * TCAPN2 + (0.182

0.105)+ * TMSGSND - (0.00118 0.00396) * R1T + ¢
where TCAPN2 stands for the total operands in each
application, TMSGSND stands for the total message send
statements in each application, and R1T stands for the residual
complexity calculated for the case of total occurrences of token
when tokens were classified as operators and.operands. The
sum of squared residuals is 58.37 and the R-square is equal to

0.62.

The R-square value (Appendix I), also called the coefficient of
determination, is the square of the correlation between dependent variables and the
predicted values. The significaﬁce probability, Prob>F (Appendix I), is the
probability of getting a greater F statistic [SAS90b] than that observed if the
hypothesis is true. The steady increase of the R-square value in the Stepwise.

Regression Analysis indicates the appropriateness of the models presented.

50

Another sign of the appropriateness of the above six models is the significance
probability, i.e., the Prob>F levels, which in these cases are much less than 0.01.
Notice that almost all the models are heavily dependent on the nodes’ tokens. The
intercept and other coefficients’ values are given in Appendix 1.

Other statistical methods such as Nonlinear Regression Analysis [SAS90b]
were considered for this study. However because of the small sample size it was

decided that the results of these methods would not be very reliable.

CHAPTER VI
EPILOGUE AND FUTURE WORK

There are many ways to measure the performance of a parallel system.
Several studies conducted by the researchers [Zuberek8S, Haban89, and Karp90]
are mostly from the hardware point of view measuring, among other things, the
inter-processor communication or parallel processors performance. This author
found a lack of literature discussing the relationship between conceptual complexity
and structural complexity of parallel programs and hence decided to explore this
area.

Before discussing the. conclusions, two points need to be mentioned: 1)
since this was the first study of its kind, the. conclusions of this study should be
interpreted as observations, and 2) the final analysis and the proposed models
should be construed as general templates for hypotheses in future studies.

On the average, 20% of the cyclomatic complexity and 27% of the
communication complexity were found in the host module that had an average 30%
of the executable lines of code of the épplications considered in this study. This was
expected, as the host modules are generally considered as drivers of applications
and are relatively less complex than their counterpart, the node modules. Another
reason why the host module carries less percentage of the code is the fact that the
host program runs on a single processor whereas the node module splits the code
among several processors on a parallel machine such as iPSC/2.

In this study five sets of metrics were investigated incluciing the proposed

communication metrics. Almost all five static metrics, at different significance

51

52

levels, were found to be strongly correlated to each other. This supports the use of
the metrics, which were originally proposed for sequential programs, to measure the
structural complexity of parallel programs.

Residual complexity, that attempts to quantify the understanding process of a
software document by dividing it into different classes of tokens, correlates strongly
and positively with the size metric. However, residual complexity correlates better
when the classifications are based on the total occurrences of tokens as opposed to
the classifications based on the set of unique tokens. To get higher correlations
with residual complexity, further token classifications need to be described.

Weaker correlation between the cyclomatic complexity and the
communication metrics suggested that the two are not directly dependent on each
other and perhaps they measure different dimensions of the structural complexity of
software. The same situation was found in the cases of correlations between the
cyclomatic complexity and the communication complexity with residual complexity
metrics.

It is evident from the data that there is very little discrimination among the
experts’ replies. For instance, consider the replies number 1 through 11 (Appendix
B.2), the total number of participants who replied to question 5 (column-labeled
"Q5") is 14. This predicts that either the question was too general, i.e., it was not
specific enough so that a participant could reply differently or the sample data was
too little to obtain some reliable Stepwise Regression analysis and hence present a
meaningful model.

The R-square (or coefficient of determination) and the significance
probability (Prob>F levels) are the two major values to be considered to probe the
healthiness of a model. The six models presented in Section 5.4 showed the
significance probabilities less than 0.01. The R-square values for the models varied

between good to moderate, as the models accounted for the variation from

53

approximately 62% to 32%. As explained earlier, since the sample size was small,
these models may not represent truly their respective populations. The models
given in Section 5.4 provide a reasonable approximation that could be considered as
hypotheses for future research and tested empirically on a larger set of programs
and/or with a larger population of participants with varying levels of expertise.

The compendium of parallel brograms used in this study has lot to be
exploréd (either as future work related to this thesis or unrelated to this thesis).

This study was specific to parallel programs written on Intel iPSC family of
concurrent supercomputers. Future studies may address some of the issues that
were not discussed in this study. An issue that can be investigated is to find out the
distribution of the code that resides on the node modules among the nodes
participating in the execution of an application.. Another topic for future study is to
consider the programs that belong to some specific categories, such as sorting or
simulation programs, and find out which program is an optimal solution to the
problem (in terms of being least complex) and why, or what is the optimal size of a
sorting program. Other future work may involve the comparison or correlation of
the growth of the host modules and/or node modules with respect to complexity
metrics. Also more refined and/or different classification schemes for residual
complexity metrics could be defined to find better correlations between residual
complexity metrics and perceived complexity. Programs in the compendium could
also be used to evaluate the effort needed to write the same application on other
parallel machines such as the Sequent [Sequent89], a tightly-coupled, shared-
memory parallel machine. Control flow in the parallel program using graph theory
could also be constructed and quantified to be compared with other structural

metrics.

REFERENCES

[Basili86]
V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Trans. Software Eng., vol. SE-12, pp. 733-743, July 1986.

[BBN89]
BBN Advanced Computers Inc., Cambridge, MA, 1989.

[Bishop87]
M. Bishop, "Profiling under UNIX by Patching," Software--Practice &
Experience, vol. 17, pp. 729-739, Oct. 1987.

[Boehm81]
B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[Close88]
Paul Close, "The iPSC/2 Node Architecture," The Third Conference on
Hypercube Concurrent Computers and Applications, Pasadena, California, vol.
I, pp. 43-50, January 1988.

[Compendium90]
G. B. Lamont and R. A. Beard, Compendium of Parallel Programs for the Intel
iPSC Computers, vol. 1,2,3, ver. 1.4, Dept. of Electrical and Comp. Eng.,
_School of Eng., Air Force Inst. of Tech., Wright-Patterson AFB, Dayton, OH,
October 1990.

[Conover71]
W. J. Conover, Practical Nonparametric Statistics, John Wiley & Sons Inc.,
New York, NY, 1971.

[Conte86]
S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics
and Models, Bengamin/Cummings, Menlo Park, CA, 1986.

[Daniel78] .
W. W. Daniel, Applied Nonparametric Statistics, Houghton Mifflin Company,
Boston, MA, 1978.

[DOS87]
International Business Machines Corporation, P.O. Box 1328-W, Boca Raton,
FL, 1987.

[Encore89]
Encore Computer, Marlborough, MA, 1989.

54

55

[Fox88]
G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving

I;ﬁoblgigév on Concurrent Processors, vol. 1, Prentice-Hall, Englewood Cliffs,
, 1988.

[Gibbons71]
J. D. Gibbons, Nonparametric Statistical Inference, McGraw-Hill Book
Company, New York, NY, 1971.

[Goldberg86]
R. Goldberg, "Software Engineering: An Emerging Discipline," IBM Syst. J.,
vol. 25, nos. 3 & 4, pp. 334-353, 1986.

[Graham83]
S. L. Graham, P. B. Kessler, and M. K. McKusick, "An Execution Profiler for
Modular Programs," Software--Practice & Experience, vol. 13, pp. 671-685,
1983.

[Green89]
Green Hills Software, Inc., iPSC/2 - C Language Reference Manual, Green
Hills Software, Inc., CA, 1989.

[Haban89]
D. Haban and D. Wybranietz, "Monitoring and Measuring Parallel Systems
Using a Non-Intrusive, Rule-Based Evaluation System," Technical Report
TR-88-007, ICSI, Berkeley, CA, March 1989.

[Halstead77]
M. H. Halstead, Elements of Software Science, Elsevier Nort-Holland, Inc.,
New York, NY, 1977.

[Hayes88]
J. P. Hayes, Computer Architecture and Organization, McGraw-Hill Inc., New
York, NY, 1988.

[Henry79]
S. M. Henry, "Information Flow Metrics for the Evaluation of Operating
Systems’ Structure," Ph.D Dissertation, Iowa State Univ., Ames, 1A, 1979.

[IBM3090-89]
"3090 Processors Complex - Functional Characteristics," International Business
Machine Corporation, Publication number SA22-7121-8, Seventh Edition,
Poughkeepsie, NY, 1989.

[Intel88]
Intel Scientific Computers, Beaverton, Oregon, 1988.

[iPSC88]
The iPSC/2 User’s Guide, Intel Scientific Computers, Beaverton, OR, 1988.

[Karp90]
A. H. Karp and H. P. Flatt, "Measuring Parallel Processor Performance,"
Communications of the ACM, vol. 33, no. 5, pp. 539-543, May 1990.

56

[Kernighan78]
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs, NJ, 1978. '

[Lamont90] ‘
G. B. Lamont, Private Communication, Dept. of Electrical and Comp. Eng,.,
School of Eng., Air Force Inst. of Tech., Wright-Patterson AFB, Dayton, OH,
October 1990.

[LOTUSS83]
Lotus Development Corporation, User’s Manual, Release 2, 161 First Street,
MA, 1983.

[McCabe76] (
T. J. McCabe, "A Complexity Measure," IEEE Trans. Software Eng., vol. SE-2,
pp- 308-320, December 1976.

Moli89] ‘

[K. E. Moll and M. H. Samadzadeh, "An Empirical Study of the Relationship
Between Static Software Complexity Metrics and Dynamic Measurements of
Pascal and C Programs," Proceedings of the 1989 ACM South Central Regional
Conference, Tulsa, OK, pp. 150-157, November 1989.

[Nandakumar89]
C. K. Nandakumar, "Quantifying the Software Maintenance Task: An
Empirical Study of Complexity Metrics Across Versions," Masters Thesis,
Computer Science Department, Oklahoma State University, Stillwater, OK,
May 1989.

[Nugent88]
S. F. Nugent, "The iPSC/2 Direct-Connect Communications Technology,"
The Third Conference on Hypercube Concurrent Computers and Applications,
Pasadena, CA, vol. I, pp. 51-60, January 1988.

[PCMETRIC90]
Set Laboratories, Inc., PC-METRIC, ver. 1.0, Mulino, OR, 1990.

[Pierce88]
Paul Pierce, "The NX/2 Operating System," The Third Conference on

Hypercube Concurrent Computers and Applications, Pasadena, CA, vol. 1, pp.
384-390, January 1988.

[Rattner85]
J. Rattner, "Concurrent Processing: A New Direction in Scientific
Computing," AFIPS Conference Proceedings, Chicago, IL, vol. 54, pp. 157-166,
July 1985.

[Samadzadeh88]
M. H. Samadzadeh and W. R. Edwards, Jr., "A Classification Model of
Software Comprehension," 2Ist Hawaii Int. Conf. on System Sciences
(HICSS21), HI, 1988.

57

[Sequent89]
Sequent Computer System, Inc., "Guide to Parallel Programming - On Sequent
Computer Systems," Editor: Anita Osterhaug, Printice-Hall, Englewood Cliffs,
NJ, 1989.

[SAS90a]
SAS/STAT User’s Guide, ver. 6, Fourth Edition, vol. 1, SAS Inst., Cary, NC,
1990.

[SAS90b]
SAS/STAT User’s Guide, ver. 6, Fourth Edition, vol. 2, SAS Inst., Cary, NC,
1990.

[Seitz85]
C. L. Seitz, "The Cosmic Cube," Communications of the ACM, vol. 28, no. 1,
pp. 22-33, January 1985.

[Stone87]
H. S. Stone, High-Performance Computer Architecture, Addison-Wesley
Publishing Company, Reading, MA, 1987.

[UNIX86]
The UNIX System V User’s Manual, AT&T, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[Zuberek85]
W. M. Zuberek, "Performance Evaluation of Concurrent Systems Using
Timed Petri Nets," Proc. ACM Computer Science Conference, Denver, CO,
pp. 326-329, March 198S.

APPENDICES

59

APPENDIX A

A SAMPLE PROGRAM

60

/* .
/* */
/* File host ¢ (Host program) */
/* Author intel Corporation, June 1989 */
/* Modified by Imtiaz Ahmad, February 10, 1990 */
/* Class ECEN 5303 (Parallel Processing) */
/* Assignment # 1 */
/* Purpose To learn about programming on the iPSC/2 concurrent */
/* computer */
/* */
/* */
/* */
/* Problem *
/* Write a program on the iPSC/2 to sum integers from integerato b */
/* */
/* *
/* */
/* This program sums the numbers that exist between two limits The user provides */
/* input in the form of lower and upper limits, with the number of processorstobe */
/* used To calculate sum, the program uses parallel processing and clocks the */
/* solution time */
/* */
/* The performance results are stored in an output file named OUTPUT Input */
/* data comes from the INPUT file in the form of the number of processors needed */
/* and the lower and upper limits of the range */
/* */
/* Calied by None */
/* Calling print_header() (internal function) */
/* user_input() (external function) */
/* print report() (internal function) */
/* - */
/* Message sending to user_input() (external function) */
/* Message receiving from user_input() (external function) */
/* N .
/* MAIN LOGIC AND SOURCE CODE WAS COPIED FROM THE DIRECTORY */
/* /usr/ipsc/examples/c */
/* */
/* */

#include <stdio h>
#include <cube h>

#define INPFILE "input” /* input data file name */

#define OUTFILE "output” /* input data file name */

#define HOST_PID 100 /* process id of the host process */
#define NODE_PID 0 /* process id for node processes*/

#define INIT_TYPE 0 /* type of initialization message*/

#define SIZE_TYPE 2 /* type of size message */

#define PART_TYPE 10 /* type of partial summation message */
#defineALL_ NODES -1 /* symbol for all nodes */

#define ALL_PIDS -1 /* symbol for all processes */

struct msg_type { /* structure for parameters of summation */

double a, /* lower limit of summation */

61

b, /* upper limit of summation */

long points, /* number of points in quadrature rule*/
b
struct msg_type msg, /* pointer to summation structure */
int size, /* number of working nodes */
double Ihimit, ulimit, /* stores lower and upper imits */
long tms, ms, tsec, /* time calculation variables */
sec, min,
FILE *inp, *out, *fopen(), /* pointer to input and output files */
main()
{ /* Host main */

/* open input and output file and print header */

inp = fopen(INPFILE, "r"),

out = fopen(OUTFILE, "w"), ‘

getcube (', "32", ", 0), /* allocate given number of nodes */

setpid(HOST_PID), ’
print_header(), /* print report header */

/* Load all nodes with pid NODE_PID */
load ("node", ALL_NODES, NODE_PID),

for () { /* Infinite loop */

/* Get user input from a file */
if ('user_input(&msg, &size)) break,

llimit = msg a, /* saving lower limit */
ulimit = msg b, /* saving upper hmit */

/*
* Send message containing number of working nodes to all nodes

*

csend(SIZE_TYPE, &size, sizeof(size), ALL_NODES, NODE_PID),

/*

* Send message containing the integration parameters to all nodes */
*/

csend(INIT_TYPE, &msg, sizeof(msg), ALL NODES, NODE_PID),

/*

* Wait to recelve message containing the summation resuit and */
* process execution time

*/

crecv(PART_TYPE, &msg, sizeof(msg)),

/* Calculate the time interval */
tms = msg points,

63

ms = tms % 1000,

tsec = (tms - ms) / 1000,
sec = tsec % 60,

min = (tsec - sec) / 60,

print_report(size, llimit, ulimit, msg.b, min, sec, ms, msg a),
} /* End infinite loop */
killcube(ALL_NODES, ALL PIDS),
relcube(), ; /* release attached cube*/
close (inp, out),

printf("Normal termination of the program \n"),
} /* End host main */

/* */

/* This function prints the performance report header (*/
/* */
/* Called by main() (internal function) */
/* Calling None */
/* ____*/
print_header()
{ ,
: fprintf(out, "\t Following is the performance report for the given data\n"),
fprintf(out, "\t \n"),
fprintf(out, "# of Lower Upper Basic Elapsed-Time\n"),
fprintf(out, "pres limit limit Range slices minsec ms SUM\n"),
fprintf(out, " \n",
}
/* y
/* This function prints the performance report >/
/* */
/* Called by main() (internal function) */
/* Calling None */
/* -k/
print_report(siz, llim, uhm, bs, m, se, ms, tot)
int *siz,

double llim, ulim, bs, tot,
long m, se, ms,
{
double lim,
lim = ulim - llim + 1;
fprintf(out, "%3d %6 0f %11 Of %11 Of %11 Of %3ld %3Id %4ld %20 0f\n", siz, Ihm, ulim, im,
bs, m, se, ms, tot); '

}

double partial_sum, /* holds partial sum */

64

/* */
/* * /
/* File node ¢ (Node program) */
/* Author Intel Corporation, June 1990 */
/* Modified by Imtiaz Ahmad, February 10, 1990 */
/* */
/* This program sums the numbers within a given range with parallel processing, */
/* and clocks the solution time */
/* * /
/* The user selects the number of processors and the number of points to be */
/* summed, and put them in an input file By selecting and timing different */
/* cube sizes, a measure of the speedup for completely perfectly parallel programs */
/* can be obtained */
/* *x /
/* All nodes */
/* 1) Receive the message specifying the number of working nodes */
/* 2) Recelve the message containing the integration parameters */
/* 3) Participate in the global sum operation (gdsum) which sums */
/* the partial integrals Non-working nodes contribute a 0 value >/
J* Lox/
/* Each working node calculates a partial integral */
/* *’/
/* Root node */
/* 1) Calculates elapsed execution time */
/* 2) Sends the summation result and execution time back to host */
/* *’/
/* MAIN LOGIC AND SOURCE CODE WAS COPIED FROM THE DIRECTORY */
/* /usr/ipsc/examples/c directory */
/* */
/* Called by main() (external function) */
/* Calling f() (internal function) */
/* * /
/* Message sending to main() (ext func -- host ¢) */
/* Message receiving from user input() (external function) */
/* - */
/* *‘/
#include <cube h>
#define HOST_PID 100 /* process id of the host process */
#define INIT_TYPE 0 /* type of initialization message */
#define SIZE TYPE 2 /* type of size message */
#define PART_TYPE 10 /* type of partial sum message */
#define ROOT 0 /* root node id */
int work_nodes, /* number of hodeé which will work on problem */
my_pid, /* process id of the nodes */
my_node, /* node id of each node */
long m, /* mininum number of slices to be given each node */
extra_slices, /* remainder of the range after even distribution */
starttime, /* start time of calculation */

work,
my a, /* local lower imit of summation range */
my b, /* local upper limit of summation range */
struct msg_type { /* structure for parameters of summation */
double a, /* lower limit of summation */
b, /* upper limit of summation */
long points; ' /* number of rounded points in the range */

h

struct msg_type sum,

main()

{ /* node main */

long f();

int j,
my_pid = mypid(), /* get process id */
my_node = mynode(), /* get node number*/
for (,.) { /* Infinite loop */

partial_sum = 00,

/* receive message containing number of working * nodes */
crecv(SIZE_TYPE, &work_nodes, sizeof(work_nodes)),

/* receive message containing the summation * parameters */
crecv(INIT_TYPE, &sum, sizeof(sum)),

if (my_node < work_nodes) { /* Ifl am a working node */
starttime = mclock(), /* Get inttial clock value */
/* calculate size of summation slice. * /
m = f(sum points , work_nodes),
extra_slices = sum points - (m * work_nodes),
/* calculate lower and upper limits for each node */
my a = suma + m* my_node,
if (my node = = (work_nodes -1))
my b =my a+ m-1 + extra_slices;
else \
my b=my a+m-1,

/* calculate partial sum on the sub-interval */
/* by using the formula (b™2-a"2 + b +a) */

partial_sum =((my_b * my_b)-(my_a* my_a)+my b+my_a)/2,
} /* end if | am working node */

gdsum(&partial_sum, 1, &work), /* Sum the partial-sum */

65

/* If | am the root node, calculate the elapsed time and
* send the summed partial sum and the time to the host */
if (mynode() == ROOT) {
suma = partial_sum,
sum.b = m,
sum points = mclock() - starttime,
csend(PART_TYPE, &sum, sizeof(sum), myhost(), HOST PID),

}
} /* End infinite loop */

} /* End node main */

/* */
/* This function calculates and returns the range of integers to be summed on */
/* each processor ‘ */
/ * * /
/* Called by main() (internal function) */
/* Calling None ' */
/* ‘ */
long f(x, y)
long X,
inty,
{
longz =0,

for (, y<=X,z++)X = X-y,

if (z==0) return (1),

else return(z),
}

Example: Source code of the example given in Section 2 3

66

APPENDIX B

THE QUESTIONNAIRE AND THE EXPERTS’ REPLIES

67

68

APPENDIX B.1: DETAILED QUESTIONNAIRE

MASTERS THESIS RESEARCH
QUESTIONNAIRE

Dear Patrticipant

| am a Masters student at Oklahoma State University (OSU) and | am currently doing my
thesis on "Software Metrics for Parallel Programs”. Would you please take a few minutes to help
me with my research by filling out and returning the following questionnaire Your participation is
voluntary. \

Thank you

SUBJECTIVE EVALUATION OF PARALLEL PROGRAMS
DEVELOPED ON THE IPSC FAMILY OF COMPUTERS

This questionnaire will take about 10 minutes to complete No detailed answers are
required. After completing the questionnaire, kindly mail it to me (e-mail or US mail) Please try to
fill out and return the questionnaire to me within one week Your help is extremely appreciated

Graduate Student Name: Imtiaz Ahmad
Office Address. 113 Math Sciences Building
University Computer Center
Oklahoma State University
Stillwater, OK 74078

Phone# Home (405) 744-2648
Office (405) 744-6701

+ +
E-mait Address' | ahmad@d cs okstate.edu |
+ +

This questionnaire is designed for experts who are well versed in parallel programming
theoretically or have had sufficient hands-on experience in parallel programming, so that they can
subjectively evaluate parallel programs developed for Intel’s iPSC/1 or iPSC/2 concurrent
computer. While answering the questions, please feel free to add any comments that you might
have Also, if you do not wish to answer a question, please leave it blank or, if possible, contact
me by telephone or through e-mail for clarification All questions could be answered by marking
the given spaces (dashed lines) by any character such as “x"

The term UNDERSTANDABILITY, which is used in this questionnaire is defined below

Code possesses the characteristic understandability to the extent that its purpose is clear
to the inspector This implies that variable names or symbols are used consistently,
modules of code are self-descrnptive, and the control structure is simple or in accordance
with a prescribed standard

69

-

KKK KKK KKK KKK K IR KA KRR KKK I KKK KRR KRR KRR AR KRR KRR KRKIRAKRKA AR AR R kAR Rk Ak hhkkkkkkhkk

Questions 1 through 4 assess the expertise level of the person who is evaluating the
applications (i e, programs) considered in this study

Q #1 Highest academic degree

Q #2 Experience in computer programming
less than 2-5 years more than
2 years 5 years

Q #3: Experience (hardware and/or software) in parallel processing:
less than 2-5 years more than
2 years ‘ 5 years

Q #4 Experience (hardware and/or software) with Intel's iPSC family
of computers (iPSC/1 and IPSC/2)
less than 1-2 years more than
1 year 2 years

In questions 5 through 9 below please rate the 37 applications (or THE ONES THAT YOU
ARE FAMILIAR WITH) used in this study. IF YOU ARE NOT FAMILIAR WITH AN APPLICATION,
PLEASE LEAVE IT BLANK

All the applications reside under the "tex/programs" directory of the compendium except
the last one which resides in the “tex/compendium" directory. This collection of application
programs were made available to me by Dr Lamont of the Air Force Institute of Technology,
Dayton, Ohio The directory paths shown below represent the application category, author(s)
name, etc. The appropriate machine name is also given in front of each application’s path

Q#5 How would you rate the UNDERSTANDABILITY of the HOST program(s) of the following
applications on a scale of 1 to 5?
Assume 1 indicates the poorest level and 5 the highest Ievel of understandablhty

rings/beard (iPSC/1) | B -5
rings/huson/c . (IPSC/1) 1m0 - -5
rings/proicou (iPSC/1) 1 - -5
meshs/beard . . (iPSC/1) 1ee - -5
meshs/fife (IPSC/1) 1 - ~5
meshs/harding . (IPSC/1)) PR -5
meshs/huson (iPSC/1) 1em e -5
meshs/proicou (IPSC/1) 1 -5
sorts/Beard (iPSC/1) | B -5
sorts/Beard_Koch/cube386 . (IPSC/2) [— -5
sorts/Beard_Koch/mem_cube - (iPSC/1) | P -5
sorts/Fife_Proicou/cube386 (iPSC/2) [— -5

sorts/Fife_Proicou/mem_cube
sorts/Harding_Rottman/cube386
sorts/Harding_Rottman/mem_cube
sorts/Huson .
heaps/Beard_Koch/cube386
heaps/Beard_Koch/mem_cube
heaps/Fife_Proicou/cube386
heaps/Fife_Proicou/mem_cube
heaps/Harding_Rottman/cube386
heaps/Harding_Rottman/mem_cube
heaps/Huson
projects/NeuralNets/conway
projects/NeuralNets/simmers
projects/TSP/rottman .
projects/TSP /sawyer
projects/beard/src/Thesis/parallel
projects/beard/src/Thesis/serial
projects/beard/src/Version1
projects/fife /src

projects/harding
projects/huson/src/new_stuft
projects/koch/src
projects/proicou/dinephil1
projects/proicou/dinephil2 .

(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/2)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)

tex/compendium/projects/SCPArchive (iPSC/2)

70

Q#6 How would you rate the UNDERSTANDABILITY of the NODE program(s) of the following

applications on a scale of 1 to 5?
Assume 1 indicates the poorest level and 5 the highest level of understandability

rings/beard

rings/huson/c .

rings/proicou

meshs/beard . .

meshs/fife

meshs/harding .

meshs/huson

meshs/proicou .

sorts/Beard
sorts/Beard_Koch/cube386
sorts/Beard_Koch/mem_cube
sorts/Fife_| Proicou,/cube386
sorts/Fife_Proicou/mem_cube
sorts/Harding_ Rottman/cube386
sorts/Harding_Rottman/mem_cube
sorts /Huson

heaps/Beard Koch/cube386
heaps/Beard_Koch/mem_cube
heaps/Fife_Proicou/cube386
heaps/Fife_Proicou/mem_cube
heaps/Harding_Rottman/cube386

(IPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)

{omn
1---
{eme
-
{eme
{ee-
{ome
{emn
1
1
{eme

e

1-m-
1---
1emm
1---
1---
1
1
1{ee-
1-e-

heaps/Harding_Rottman/mem_cube (iPSC/1) | PE— -5
heaps/Huson (iPSC/1) [-5
projects/NeuralNets/conway (iPSC/1) | -5
projects/NeuralNets/simmers (iPSC/1) [— —-5
projects/TSP /rottman (iPSC/1) [-5
projects/TSP /sawyer (iPSC/1) 1--- -5
projects/beard/src/Thesis/parallel (IPSC/2) . -5
projects/beard/src/Thesis/serial (iPSC/2) 1--- -5
projects/beard/src/Version1 , (iPSC/2) | S — -5
projects/fife/src (iPSC/1) 1--- -5
projects/harding (iPSC/1) 1--- -5
projects/huson/src/new_stuff (IPSC/1) 1--- -5
projects/koch/src (iPSC/1) e -5
projects/proicou/dinephil1 (iPSC/1) 1--- -5
projects/proicou/dinephil2 (iPSC/1) 1--- - - -5
tex/compendium/projects/SCPArchive (iPSC/2) 1--- -5

Q #7° How would you rate the documentation of the HOST program(s) of the following
applications on a scale of 1 to 5?
Assume 1 indicates the poorest level and 5 the best and most informative level of

documentation.
rings/beard (iPSC/1) 1ome -5
rings/huson/c : (iPSC/1) 1 - -5
rings/proicou (iPSC/1) 1 - ~5
meshs/beard . (iPSC/1) | S -5
meshs /fife (IPSC/1) 1o ~5
meshs/harding (iPSC/1) [— -5
meshs/huson (iPSC/1) 1ome - -5
meshs/proicou . (iPSC/1) 1 -5
sorts/Beard (iPSC/1) 1 - -5
sorts/Beard_Koch/cube386 (iPSC/2) 1 -5
sorts/Beard_Koch/mem_cube . (IPSC/1)) P — -5
sorts/Fife_Proicou/cube386 (iPSC/2) PR -5
sorts/Fife_Proicou/mem_cube (iPSC/1) | R — ~-5
sorts/Harding_Rottman/cube386 (iPSC/2) | — -5
sorts/Harding_Rottman/mem_cube (iPSC/1) [-5
sorts/Huson . (iPSC/1) Toee -5
heaps/Beard_Koch/cube386 (iPSC/2) 1ee - -5
heaps/Beard_Koch/mem_cube (IPSC/1) s -5
heaps/Fife_Proicou/cube386 (iPSC/2) PR -5
heaps/Fife_Proicou/mem_cube (iPSC/1) [— —5
heaps/Harding_Rottman/cube386 (iPSC/2) [-5
heaps/Harding_Rottman/mem_cube (iPSC/1) | -5
heaps/Huson (IPSC/1) 1 - -5
projects/NeuralNets/conway (iPSC/1) [— -5
projects/NeuralNets/simmers (iPSC/1) [-5
projects/TSP /rottman . (iPSC/1) 1--- -5
projects/TSP /sawyer (iPSC/1) | -5
projects/beard/src/Thesis/parallel (iPSC/2) 1--- -5

projects/beard/src/Thesis/serial (iPSC/2) 1--- -5

72

projects/beard/src/Version1 (iPSC/2) 1--- -5
projects/fife/src (iPSC/1) | E— -5
projects/harding . (iPSC/1) S PO -5
projects/huson/src/new_stuff (iPSC/1) 1--- -5
projects/koch/src . (iPSC/1) | R -5
projects/proicou/dinephil1 (iPSC/1) 1--- -5
projects/proicou/dinephil2 (iPSC/1) v -5
tex/compendium/projects/SCPArchive (iPSC/2) L [, -5
K=============S==S=S=S=S====S==S=S===Z======================>
Q #8: How would you rate the documentation of the NODE program(s) of the following
applications on a scale of 1 to 5?
Assume 1 indicates the poorest level and 5 the best and most informative level of
documentation
rings/beard (iPSC/1) 1o - —5
rings/huson/c . (iPSC/1) 1--- -5
rings/proicou (iPSC/1) | P -5
meshs/beard (PSC/1) 1--- - -5
meshs/fife (IPSC/1) 1 -5
meshs/harding (iPSC/1) 1 - -5
meshs/huson (iPSC/1) 1me - ~-5
meshs /proicou . (IPSC/1) 1ee - -5
sorts/Beard (iPSC/1) 1o - -5
sorts/Beard_Koch/cube386 . (iPSC/2) 1--- -5
sorts/Beard_Koch/mem_cube (iPSC/1) 1— - -5
sorts/Fife_Proicou/cube386 (iPSC/2) [-5
sorts/Fife_Proicou/mem_cube (iPSC/1) [P — -5
sorts/Harding_Rottman/cube386 (IPSC/2) | P -5
sorts/Harding_Rottman/mem _cube (iPSC/1) 1o - 5
sorts/Huson (iPSC/1) 1o - 5
heaps/Beard_Koch/cube386 (iPSC/2) foee eme -5
heaps/Beard_Koch/mem_cube . (iPSC/1) | - -5
heaps/Fife_Proicou/cube386 (iPSC/2) [- -5
heaps/Fife_Proicou/mem_cube (iPSC/1) 1es - — -5
heaps/Harding_Rottman/cube386 (iPSC/2) 1--- -5
heaps/Harding_Rottman/mem_cube . (iPSC/1) 1om -5
heaps/Huson (iPSC/1) 1 - -5
projects/NeuralNets/conway (iPSC/1) [— -5
projects/NeuralNets/simmers (iPSC/1) P — -5
projects/TSP /rottman (iPSC/1) L [-5
projects/TSP /sawyer (iPSC/1) [-5
projects/beard/src/Thesis/parallel (IPSC/2) 1-- -5
projects/beard/src/Thesis/serial (IPSC/2) 1--- -- -5
projects/beard/src/Version1 (iPSC/2) 1 -5
projects/fife/src (IPSC/1) 1-- - —5
projects/harding (iPSC/1) 1--- -5
projects/huson/src/new_stuff (iPSC/1) 1o e -5
- projects/koch/src . (iPSC/1) 1 - —-5
projects/proicou/dinephil1 (iPSC/1) 1o - —-5
projects/proicou/dinephil2 (iPSC/1) | S -5
tex/compendium/projects/SCPArchive (iPSC/2) 1em - -5

73

=== =SS =SS TS S === ST S S CSCS =SS ST =SS =S=S=S===S=========== ==

Q #9: How would you rate the overall perceived or conceptual COMPLEXITY (different frorn
computational complexity) of the following applications on a scale of 1 to 5?

Assume 1 indicates a lowest level and 5 the highest level of complexity

rings/beard

rings/huson/c

rings/proicou

meshs/beard

meshs/fife

meshs/harding .

meshs/huson

meshs/proicou .

sorts/Beard
sorts/Beard_Koch/cube386
sorts/Beard_Koch/mem_cube
sorts/Fife_Proicou/cube386
sorts/Fife_Proicou/mem_cube
sorts/Harding_Rottman/cube386
sorts/Harding_Rottman/mem_cube
sorts/Huson
heaps/Beard_Koch/cube386
heaps/Beard_Koch/mem_cube
heaps/Fife_Proicou/cube386
heaps/Fife_Proicou/mem_cube .
heaps/Harding_Rottman/cube386
heaps/Harding_Rottman/mem_cube
heaps/Huson
projects/NeuralNets/conway
projects/NeuralNets/simmers
projects/TSP /rottman
projects/TSP /sawyer
projects/beard/src/Thesis/parallel
projects/beard/src/Thesis/serial
projects/beard/src/Versiont .
projects/fife/src

projects/harding .
projects/huson/src/new_stuff
projects/koch/src .
projects/proicou/dinephil1
projects/proicou/dinephil2

(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(IPSC/2)
(iPSC/2)
(iPSC/2)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)
(iPSC/1)

tex/compendium/projects/SCPArchive (iPSC/2)

. 1 —

1---
1-e-
-
{em-
1-m-
e
1emn
1emn
1emn
1{emn
1ee-
1
1een
1t
1
1ees
1ee-
1ee-
{emm
1em-
{emm
1emm
1em-
1emm
1em
{eme
1emn
1o
1---
1{ee-
1---
{emm
1emn
1emn
1
1eme

Q #10° If the following applications had been developed as sequential programs, do you think
they would have taken less/more/same amount of time and effort?

Don’t
Less More Same Know

rings/beard (iPSC/1)
rings/huson/c . . (iPSC/1)
rings/proicou (iPSC/1)
meshs/beard (iPSC/1)
meshs /fife - (iPSC/1) T
meshs/harding (iPSC/1)
meshs/huson (iPSC/1)
meshs/proicou (iPSC/1)
sorts/Beard , (iPSC/1)
sorts/Beard_Koch/cube386 (iPSC/2)
sorts/Beard_Koch/mem_cube (iPSC/1)
sorts/Fife_Proicou/cube386 '~ (iPSC/2)
sorts/Fife_Proicou/mem_cube (IPSC/1)
sorts/Harding_Rottman/cube386 (iPSC/2)
sorts/Harding_Rottman/mem_cube (IPSC/1)
sorts/Huson (iPSC/1)
heaps/Beard_Koch/cube386 (iPSC/2)
heaps/Beard_Koch/mem_cube (iPSC/1)
heaps/Fife_Proicou/cube386 (iPSC/2)
heaps/Fife_Proicou/mem_cube (iPSC/1)
heaps/Harding_Rottman/cube386 (iPSC/2) -
heaps/Harding_Rottman/mem_cube (iPSC/1)
heaps/Huson (iPSC/1)
projects/NeuralNets/conway . (iPSC/1)
projects/NeuralNets/simmers (iPSC/1)
projects/TSP /rottman (iPSC/1)
projects/TSP /sawyer (iPSC/1)
projects/beard/src/Thesis/parallel (iPSC/2)
projects/beard/src/Thesis/serial (iPSC/2)
projects/beard/src/Version1 (iPSC/2)
projects/fife/src " (IPSC/1) —
projects/harding (iPSC/1)
projects/huson/src/new_stuff (iPSC/1)
projects/koch/src. (iPSC/1)
projects/proicou/dinephil1 (iPSC/1)
projects/proicou/dinephil2 (iPSC/1)

tex/compendium/projects/SCPArchive (iPSC/2) ---

75

APPENDIX B.2: APPLICATION NAMES AND ACCUMULATED TOTAL

NUMBER OF EXPERTS’ REPLIES TO THE QUESTIONS

IN THE QUESTIONNAIRE.

Api# APLNAME ' Q5 Q6 Q7 Qs Q9 Q10
1 nngs/beard 14 15 16 16 5 8
2 meshs/beard 14 15 16 16 5 8
3 sorts/Beard 14 14 15 15 10 4
4 sorts/Beard_Koch/cube386 14 14 15 15 10 4
5 sorts/Beard_Koch/mem_cube 14 14 15 15 10 4
6 sorts/Fife_Proicou/cube386 14 14 15 15 10 4
7 sorts/Fife_Proicou/mem_cube 14 14 15 15 10 4
8 heaps/Beard Koch/cube386 14 14 15 15 10 4
9 heaps/Beard_Koch/mem_cube 14 14 15 15 10 4

10 heaps/Fife_Proicou/cube386 14 14 15 15 10 4

11 heaps/Fife_Proicou/mem_cube 14 14 15 15 10 4

12 projects/NeuralNets/conway 10 10 12 12 15 3

13 projects/NeuralNets/simmers 10 10 12 12 15 3

14 projects/TSP/rattman 11 12 14 13 13 4
15 projects/TSP/sawyer 13 14 15 14 13 4
16 projects/harding 12 11 13 12 14 3

17 projects/huson/src/new_stuff 12 11 13 12 16 3

18 projects/koch/src 12 11 14 13 10 4

"Q5" to "Q10" represents the Question 5 through Question 10 in the Questionnaire (Appendix B 1)

APPENDIX C

PC-METRIC REPORTS AND THE LISTING OF
RESERVED AND NON-EXECUTABLE WORDS

76

APPENDIX C.1: SAMPLE PC-METRIC REPORT BY PROCEDURE

10/22/1990
Page: 1

PC-METRIC (C) Version 2.4
Complexity Report by Procedure for: C:\SAMPLE.C

77

main

get_tok
token_ type
print stable
print_ctable

VG1 VG2 LOC

6 6 59
15 15 76
9 9 22
3 3 10
3 3 13

<;>
19
26

9

6

7

S

P

R = W~

N2 N
44 150
66 188
33 109
15 41
16 43

Figure C.2

29256
29529
5553
1796
2455

78

APPENDIX C.2: SAMPLE PC-METRIC REPORT BY COMPLEXITY

10/22/1990
PC-METRIC (C) Version 2.4
Summary Complexity Report for: C:\SAMPLE.RPT

Unique Operators (nl): 39
Unique Operands (n2): 64
Total Operators (N1): 357
Total Operands (N2): 174

Software Science Length (N): ‘ | 531
Estimated Software Science Length (N*): 590
Purity Ratio (P/R): 1.11

Software Science Volume (V): 3551
Software Science Effort (E): 188234

Estimated Errors using Software Science (B"): 1
Estimated Time to Develop, in hours (T"): 3

Cyclomatic Complexity (VG1): 32
Extended Cyclomatic Complexity (VG2): 32
Average Cyclomatic Complexity: 6
Average Extended Cyclomatic Complexity: 6

Lines of Code (LOC): 282

Number of Procedures/Functions: 5
Number of Executable Semi-colons (<;>): 67

Figure C3

79

APPENDIX C.3: iPSC/2-C RESERVED AND NON-EXECUTABLE WORDS

&&
(p

++

default
if
I

auto
FILE
signedstatic

volatile

do
return

| =

char
float

struct

RESERVED WORDS
" % % =
&p ’ (
* * = *D
/ /=
<<= <= =
> > >>= ?
N= break case
else entry for
sizeof switch while
!I } ~

NON-EXECUTABLE WORDS

const double enum
int long register
typedef union unsigned

-

[

continue

goto

{

extern
short

void

APPENDIX D

PARALLEL PROGRAM TO COLLECT
SIZE MEASUREMENTS

80

#include <stdio h>
#include <cube h>

#define TOTNODES

File
Author.
Purpose

Description

Caution

host ¢

(Host program)

Imtiaz Ahmad, November 1990

To collect Size metrics

Counts the number of lines of code in a C source file
Generates a report with number of executabie lines, number
number of blank lines, number of comment lines, and number
of total lines in a source file

Program assumes that the input file 1s syntax error free

*/
x/
*/
*/
*/
*
*/
*/
*/
*/
*/
*/
*/
*/
*/

#define HOST PID

#define NODE PID

#define INIT TYPE

#define RSLT_TYPE
#define ALL_ NODES

#define ALL PIDS

#define MAX FILES

#define PATHLEN

struct stat {

|3

int n_bl_hnes,
n_com_lines,
loc,

struct info {

h

int nodenum,

int pathnum,

char filepath[PATHLEN],
struct stat LOC,

struct info initinfo,

struct info initinfo1 [MAX_FILES],

char in_file[PATHLEN],

32
100

10
-1
-1
200
81

char f_ name[PATHLEN],

/* total node - must be < or = to alioc nodes */
/* process id of the host process */

/* process id for node processes */

/* type of initialization message */

/* type of partial summation message */

/* symbol for all nodes */

/* symbol for all processes */

/* max files that can be evaluated */

/* max characters in a file path */

/* saves frequency of different type of LOCs */

/* structure used to send and recv messages */

/* store collected metric */

*/

FILE *fp,

/* */

/* main() */

/* */
Allocate cube, load node programs to all nodes Send a packet */

/*

Logic .

81

/* to each node with file for which metrics needs to be collected

*/
/* Receives a packet from each node with computed metrics and */
/* stores it in an array of structures for later printing */
/* *:/
/* Caution. Make sure that full pathname of a file has been passed to nodes */
/* */
main()
{ /* Host main */
inti, j, k, - /*temporary variables */
fileread, /* number of files read from input file */
filecomp, /* number of files received by host after
collecting the metric */
node_avalil, /* node number to process next data file */
getcube (™, "32", ™, 0), /* getcube with given number of nodes */
setpid(HOST_PID); , /* set the pid of host process */
load ("node", ALL_NODES, NODE_PID), /* load nodes with node progs */
open_file(),
flecomp = fileread = node_avall = 0,
/* reads file names from user's given input file until end of file */
while(fgets(f_name, PATHLEN, fp) '= NULL)
{
fileread + +,
/* Initialize structure */
init_msg(f_name, strien(f_name), node_avalil, fileread),
/* This if statment will be true for the first n file paths, where n i1s the '*/

/* number of nodes available in the cube through TOTNODES variable */
if (fileread <= TOTNODES) {

csend(INIT_TYPE, &initinfo, sizeof(initinfo), node_avail, NODE_PID),

node_avail+ +,

}
else {
crecv (RSLT_TYPE, &nitinfo, sizeof(initinfo)),
flecomp + +,
store_result(initinfo pathnumy,
node_avail = initinfo nodenum,
init_msg(f_name, strlen(f_name), node_avall, fileread),
csend(INIT_TYPE, &initinfo, sizeof(initinfo), node_avail, NODE_PID),
}

} /*while fgets*/

82

/* This if statment checks whether all activated files are received by the host or node */

if (fileread ! = filecomp) {
for (j=filecomp, j< fileread, |+ +) {

crecv (RSLT_TYPE, &inttinfo, sizeof(initinfo)),

/* store result in an array of stuctures */
store_result(inttinfo pathnum),

}

/* print results on screen */
print_result(fileread),

fclose(fp), /* close input file */
killcube(ALL_NODES, ALL PIDS), /* kill cube */
relcube(), /* release cube */

printf("Normal termination of the program \n"),

} /* End host main */

/* */
/* open_file() */
/* - */
/* Purpose Prompts for user input User must enter the file name that */
/* contains the complete pathname of the files for which metrics */
/* needs to be calculated */
/* Ky
open_file()
{

printf("Enter input file name \n\n"),

gets(in_file),

if (fp=fopen(in_file, "r')) = = NULL)

{

printf("Can not open file containing path names in host \n"),
exit(0),

}

printf(" Bink Com Tot\n"),

printf("Input File Name (with complete path) LOC Lns Lns Lns\n"),

printf(" \n"),
}
/* !/
/* init._ msg() */
/* - */
/* Purpose Inttialize the structure before sending it to a node */
/* */
init_msg(fn, 1, n, f)
char fn[],
inti, n, f,
{

int j,

for(j=0,j<80,j+ +)
initinfo filepath{j] = '\0’,

83

initinfo nodenum = n, /* node number to send */
initinfo pathnum = f, /* file number read */
strnepy(initinfo filepath, fn, i-1), /* i=length of file name */
initinfo.LOC n_bl_lines = -1, /* it LOC vars*/

intinfo.LOC.n_com_lines = -1,
initinfo LOC.loc = -1,

}
/* */
/* store_result() */
/* *,/
/* Purpose To store computed metric in an array at subscript i */
/* ‘~ ! ; : */
store result() ' : ‘
int i,
{

initinfo1[i] nodenum = initinfo nodenum,

initinfo1[i] pathnum = initinfo pathnum,

strepy(initinfo1[1] filepath, initinfo filepath),

initinfo1[i] LOC n_bl_lines = initinfo LOC n_bl_lines,

initinfo1[i] LOC n_com_lines = nitinfo LOC n_com_lines,

initinfo1(i] LOC loc = initinfo LOC loc, -
}
/* * /
/* print_result() */
/* - */
/* Purpose To print the resultant array */
/* */
print_result(f)
int f,
{

int 1,

for (i=0,1< f, 1+ +) {

printf("%-58s %4d %4d %4d %4d\n\n", intinfo1[1+ 1] filepath,
initinfo1[i+ 1] LOC.n_bl_lines, initinfo1[i+ 1] LOC n_com_lines, initinfo1[i+ 1] LOC loc,
initinfo1[i+ 1) LOC.n bl llnes + initinfo1[i+1] LOC r n_com_lines + initinfo1[i+1] LOC.loc),
}
}

/*- ‘ End of host c Module *,

84

85

/* y
/* */
/* File: node ¢ (Node program) */
/* *:/
/* Author Imtiaz Ahmad, November 1990 */
/* *,/
/* Purpose To collect Size metrics */
/* ' *’/
/* Description Counts the number of lines of code In a C source file */
/* Sends collected metrics to host for final printing */
/* */
/* Caution Program assumes that the input file is syntax error free */
* */

;* *l/
#include <stdio h>
#include <cube h>
#define TRUE 1 /* assigning symbolic names to program constants */
#define FALSE 0
#define MAXLINE 150
#define BLANK '
#define SLASH A
#define STAR *
#define TOTNODES 32 /* total nodes - must be < or = to alloc nodes */
#define HOST_PID 100 /* process id of the host process */
#define NODE_PID 0 /* process id for node processes */
#define INIT_TYPE 0 , /* type of initialization message */
#define RSLT_TYPE 10 /* type of partial summation message */
#define ALL_NODES -1 ~/* symbol for all nodes */
#define ALL_PIDS -1 /* symbol for all processes */
#define MAX_FILES 200 /* max files that can be evaluated */
#define PATHLEN 81 /* max characters in a file path */
struct stat { /* saves frequency of LOCs */ !

intn_bl_lines,

n com lines,
loc,

})
struct info { /* structure used to send and recv messages */

int nodenum,

int pathnum,

char filepath[PATHLEN],
struct stat LOC, -

3

struct stat temp,
struct info initinfo,
struct info initinfo1 [MAX | FILES] /* store computed metric */

char in_file[PATHLEN],
char f name[PATHLEN]

FILE *fp,

/* */
/* main() */
/* */
/* Logic Runs an infinite loop .Receives a message from the host with file */
/* name to be processed Returns a structure to the host with */
/* collected metrics. */
/* */
/* Caution Program assumes that there is no syntax error in the input file */
/* */
main()
{ /* Node main */

char line[MAXLINE], /* buffer to hold a single line */

char *temp, /* temporary pointer */

FILE *fp, /* pointer to input file */

char in_file[PATHLEN], /* input file name */

char f_name[PATHLEN], /* file name with complete path */

intin_fd, /* input file descriptor */

int i,

for (,.) { /* infinite loop */

: /* wait to receive a message from host */
crecv(INIT_TYPE, &nitinfo, sizeof(initinfo)),

strcpy(in_file, initinfo filepath),
in_fd = open(in_file,0),

if (in_fd <= 0) {
close(in_fd),

/* sends a message to host without collecting any measure */
csend(RSLT_TYPE, &nitinfo, sizeof(intinfo), myhost(), HOST_PID),
}/*endif*/ .
else {
temp n_bl_lines = 0,
temp n_com_lines = 0,
temploc = 0,

while(readline(in_fd, line)) {
temp = line,

while(*temp = = BLANK))
temp+ +,

if (*temp '="\0") {
if (prec_com_match(temp))

find_end_comment(in_fd, temp),
else

temp loc+ +,

} /*endif */
else {

temp n_bl_lines+ +,

} /*endelse */

} /* End

WHILE GETLINE */

initinfo nodenum = mynode(),

intinfo LOC n_bl_lines = temp n_bl_lines,
initinfo LOC n_com_lines = temp n_com_lines,
initinfo LOC loc = temp loc,

csend(RSLT_TYPE, &nitinfo, sizeof(initinfo), myhost(), HOST_PID),

close(in_fd),

} /*end else */
} /* end infinite loop */

} /* end Node main */

/*
/*
/*
f

*/

readline()

Description To read the next line from the input file C source file

*/
*/
*/
*/

readline(fd, buffer)

int fd,

char *buffer,

{

int1, end_of line, rd_flag,
charc,
static |,

i=0,
end_of_line = FALSE,
rd_flag = read(fd,&c,1),

if (rd_flag'=1){

return(FALSE),
}
f(c=="\n") |
buffer[i] = "\0',
return(TRUE),
}

while(rd_flag = =1 && 'end_of_line) {

f(c=="\n)

{

end_of_lme' = TRUE,

]+ +,

87

}

else
buffer[i+ +] = c,

if ('end_of _line) {
rd_flag = read(fd,&c,1),

}
} /* end while */

buffer[i] = '\0’,
return(TRUE),

*/

*/
*'/
*I/

}
/*
/* prec_com_match() :
/* Description To check whether the current line has any comment lines
/* beginning in it .
/*
prec_com_match(line)
char *line,
{
int matched,

matched = FALSE,
while (*line ' = "\0' && 'matched) {

if (*ne == SLASH && *{line+1) == STAR)
matched = TRUE,
line+ +,
}/*endif*/
return(matched),

*/

*/

x
*/
*/
*/

}
/*
/* find_end_comment()
/* Description To find and stop at the position in the file where the
/* current comment ends
/*
find_end_comment(fd.line)
int fd,
char *line,
{
charc,
int matched,
int rd_flag;
int end_of line,
int code_line, /* turn flag on if line has code also */

matched = FALSE,
code_line = FALSE,

if ('open_comment (line)) {

temp loc+ +,
code_line = TRUE,
}

while (*line '="\0") {

if (*line == STAR && *(line+1) == SLASH)
matched = TRUE,

line+ +,
} /* end while */

if (matched) {
if ('code_line) {
temp n_com_lines+ +,
}

return,

}

if ('matched && 'code_line) {
temp n_com_lines+ +,
}
rd_flag = read(fd,&c,1),
end_of line = FALSE,
while(rd_flag = = 1 && 'matched) {
if(c=="\n") {
temp n_com_lines+ +,
end_of line = TRUE,
}/*endif */

if (end_of line) {

do {
rd_flag = read(fd, &c,1),
} while (rd flag ==18&8&(c==""||c=="\t")),

if(rd flag == 18&&c =="\n") {
temp n_bl_lines+ +,
}

end_of line = FALSE,
} /* end if end-of-line */

if (c == STAR) {
rd flag = read(fd, &c,1),
if (rd_flag==18&&c == SLASH) {
matched = TRUE,
rd_flag = read(fd, &c,1),
rd_flag = read(fd, &c,-2),

if (c =="\n" && 'matched) {
temp n_com_lines+ +,
}

} /*endifc==STAR */
if ('matched) {
rd_flag = read(fd,&c,1),
}
} /* end while */

temp n_com _lines+ +,

90

}
/* */
/* open comment() */
/* - */
/* Description To check If the current line has a begin comments */
/* o
open_comment(line)
char *line,
{

if (*hne == SLASH)

if (*(hne+1) == STAR)
return(TRUE),

return(FALSE),
}
/* End of node c Module */

APPENDIX E

PSEUDO CODE, FILE LISTING, AND MAKEFILE

91

92

APPENDIX E.1: PSEUDO CODE FOR THE PARALLEL PROGRAMS
DEVELOPED TO COLLECT THE SIZE AND THE
COMMUNICATION MEASUREMENTS.

h11: (Host) Getcube with n number of nodes (n=1,2,...32);
h2: (Host) Load node program to each node in the allocated cube;

h3: (Host) Prompt for input file that has data file names with their complete
paths; :

h4: (Host) Initialize flags and counters;
h5: (Host) Initialize filesread = filescompleted = O;

he: (Host) While (\EOF) {
read a file name to be processed

h7: (Host) filesread + +;
h8: (Host) initialize message packet;
h9: (Host) if (flesread < = Totalnodes)

send packet (message) to node_available;
node_available+ +;

n21: (Node) for (;;) { /* infinite loop */

receives a packet with filename to be processed;
n2: (Node) Initialize metric counters to zero;
n3: (Node) While (Valid Token) {

detect token type and increment the
~ appropriate counter,
} /* end of While loop started at n3: */

n4: (Node) send a packet back to host with collected metrics;
‘ } /* end of infinite loop on node started at n1: */
else {

receive a message from node that has just completed
the metrics from the file it was processing;
filescompleted + +;
store result;
update node available;
send new file hame to node _available;

} /* end of else statement */

h10: (Host) } /* end of while started at h6: */

1 "h" represents code running on the Host processor.
2 "n"represents code running on the Node processors.

h11:

h12:

(Host) if (filesread ! = filescompleted) {
for (j=filescompleted; j<filesread; j+ +) {

93

receive computed metrics from nodes;

store result;
} /* end of for loop */
} /* end if statement */
(Host) end of the Host program;

APPENDIX E.2: THE COMPLETE PATH OF SOURCE CODE FILES

USED IN THIS STUDY.

94

tex/programs/heaps/Beard Koch/cube386/heap.c
tex/programs/heaps/Beard_Koch/cube386/host.c

tex/programs/heaps/Beard Koch/mem cube/heap.c
tex/programs/heaps/Beard_Koch/mem cube/host.c

tex/programs/heaps/Fife_Proicou/cube386/HeapSort.c
tex/programs/heaps/Fife_Proicou/cube386/NodeHeap.c

tex/programs/heaps/Fife_Proicou/mem_cube/HeapSort.c
tex/programs/heaps/Fife_Proicou/mem_cube/NodeHeap.c

tex/programs/meshs/beard/h.c
tex/programs/meshs/beard/n.c

tex/programs/projects/NeuralNets/conway/host.c
tex/programs/projects/NeuralNets/conway/node.c

tex/programs/projects/NeuralNets/simmers/host.c
tex/programs/projects/NeuralNets /simmers/node.c

tex/programs/projects/TSP/rottman/control.c
tex/programs/projects/TSP/rottman/host.c
tex/programs/projects/ TSP /rottman/worker.c

tex/programs/pro
tex/programs/pro
tex/programs/pro
tex/programs/pro

ects/TSP/sawyer/control.c
ects/TSP/sawyer/host.c
ects/TSP/sawyer/node.h
ects/TSP/sawyer/worker.c

tex/programs/pro
tex/programs/pro
tex/programs/pro
tex/programs/pro

ects/harding/ben.c
ects/harding/host.c
ects/harding/q.h
ects/harding/queue.c

tex/programs/proj
tex/programs/pro
tex/programs/pro

ects/huson/src/new_stuff/host.c
ects/huson/src/new_stuff/parallel.c
ects/huson/src/new_stuff/serial.c

tex/programs/pro

tex/programs/pro

ects/koch/src/host.c
ects/koch/src/node.c

tex/programs/rings/beard/host.c
tex/programs/rings/beard/node.c

95

tex/programs/sorts/Beard/cmpf.c
tex/programs/sorts/Beard/local.h
tex/programs/sorts/Beard/msgio.c
tex/programs/sorts/Beard/msgtypes.h
tex/programs/sorts/Beard/parsorts.c
tex/programs/sorts/Beard/scpgbl.h
tex/programs/sorts/Beard/srlsorts.c

tex/programs/sorts/Beard Koch/cube386/bmerge.c
tex/programs/sorts/Beard” Koch/cube386/host.c
tex/programs/sorts/Beard_Koch/cube386/local.h
tex/programs/sorts/Beard Koch/cube386/merge.c
tex/programs/sorts/Beard_Koch/cube386/oddeven.c

tex/programs/sorts/Beard Koch/mem cube/bmerge.c
tex/programs/sorts/Beard_Koch/mem_cube/host.c
tex/programs/sorts/Beard”_Koch/mem _cube/local.h
tex/programs/sorts/Beard Koch/mem cube/merge.c
tex/programs/sorts/Beard_Koch/mem_cube/oddeven.c

tex/programs/sorts/Fife Proicou/cube386/Bitonic.c
tex/programs/sorts/Fife Proicou/cube386,/0ddEven.c
tex/programs/sorts/Fife” Proicou/cube386/Radix.c
tex/programs/sorts/Fife Proicou/cube386/msort.c
tex/programs/sorts/Fife_Proicou/cube386/sort.c

tex/programs/sorts/Fife Proicou/mem cube/Bitonic.c
tex/programs/sorts/Fife Proicou/mem cube/OddEven.c
tex/programs/sorts/Fife Proicou/mem cube/Radix.c
tex/programs/sorts/Fife” Proicou/mem”_cube/msort.c
tex/programs/sorts/Fife_Proicou/mem_cube/sort.c

APPENDIX E3:

*

* makefile
*

*

THE MAKE FILE USED TO COMPILE PROGRAMS

96

DEVELOPED FOR COLLECTING THE SIZE AND THE

COMMUNICATION MEASUREMENTS.

* This file is used to compile and link the host.c and node.c files for the parallel
* programs developed to measure size and communication metrics.
*

* The command "make all* causes compilation and linking.

*/
all: ‘ host node
SX: host nodesx
host: host.o
cc -0 host host.o -host
nodesx: node.c

cc node.c -0 node -sx -node

node: node.c

cc -0 node node.c -node -sx

clean:

- rm host node host.o

APPENDIX F

PARALLEL PROGRAM TO COLLECT
COMMUNICATION MEASUREMENTS

97

/* */‘
/* .
/* File hostc (Host program) */
/* */
/* Author Imtiaz Ahmad, December 1990 */
/* */
/* Purpose To collect the proposed Communication metrics */
/* */
/* Rule’ The Communication metrics are collected by counting the */
/* number of message-sent and message-receive statements in */
/* - the host and node programs */
/* i */
/* Caution- Program does not distinguish between different types or names */
/* of send or receive statments */
/* */
/* */

#include <stdio h>
#include <cube h>

#define TOTNODES 32
#define HOST_PID 100
#define NODE_PID 0
#define INIT_TYPE 0
#define RSLT_TYPE 10
#define ALL NODES -1
#define ALL_PIDS -1
#define MAX_FILES 200
#define PATHLEN 81

struct stat {
int msgsnd1,
int msgrevi,

I3

struct info {
int nodenum,
int pathnum,

char flepath[PATHLEN],

struct stat commsg1,

b

struct stat commsg,
struct info initinfo,
struct info initinfo1 [MAX_FILES],

char in_file[PATHLEN],
char f name{PATHLEN],

/* total node - must be < or = alloc nodes */
/* process id of the host process */

/* process id for node processes */ .

/* type of initiahization message */

/* type of partial summation message */

/* symbol for all nodes */

/* symbol for all processes */

/* max files that can be evaluated */

/* max characters in a file path */

/* saves frequency of communication messages */

/* structure used to send and recv messages */

/* store collected metric */

FILE *fp,

/* y
/* main() */
/* , */
/* Logic Allocate cube, load node programs to all nodes Send a packet */

98

/* to each node with file for which metrics needs to be collected */
/* Receives a packet from each node with computed metricsand */
/* stores it in an array of structures for later printing */
/* */
/* Caution Make sure that full pathname of a file has been passed to nodes */
/* “
main()
{ /* Host main */
inti, j, k, /* temporary variables */
fileread, . ./* number of files read from input file */
filecomp, ‘ /* number of files received by host after
collecting the metric */
node_avalil, /* node number to process next data file */
getcube (™, "32", ", 0), /* getcube with given number of nodes */
setpid(HOST_PID), /* set the pid of host process */
load ("node”, ALL_NODES, NODE_PID), /* load nodes with node progs */
open file(),
flecomp = fileread = node_avail = 0,
/* reads file names from user’s given input file until end of file */
while(fgets(f_name, PATHLEN, fp) ' = NULL)
{
fileread + +,
/* Initialize structure * /
init_msg(f_name, strlen(f_name), node_avalil, fileread),
/* This if statment will be true for the first n file paths, where n is the */

/* number of nodes available in the cube through TOTNODES variable */
if (fileread <= TOTNODES) {

csend(INIT_TYPE, &initinfo, sizeof(initinfo), node_avail, NODE_PID),

node_avail + +,

}
else {
crecv (RSLT_TYPE, &initinfo, sizeof(intinfo)),
filecomp+ +,
store_result(initinfo pathnum), ,
node_avail = initinfo nodenum,
init_msg(f_name, strlen(f_name), node_avalil, fileread),
csend(INIT_TYPE, &initinfo, sizeof(initinfo), node_avail, NODE_PID),
}

} /*while fgets*/

99

/* This if statment checks whether all activated files are received by the host or node */

if (fileread ! = filecomp) {
for (j=filecomp, < fileread, j+ +) {

crecv (RSLT_TYPE, &initinfo, sizeof(initinfo)),

/* store result in an array of stuctures */
store_result(initinfo pathnum),

}

/* print results on screen */
print_result(fileread),

fclose(fp), /* close input file */
killcube(ALL_NODES, ALL PIDS), /* kill cube */
relcube(), ’ /* release cube */

printf("Normal termination of the program \n"),
} /* End host main */ r (

/* */
/* print_info() */
/* B */
/* Purpose Used for debugging only It has no contribution in the actual */
/* execution of the program ' */
/* .
print_info(j)

int i,

{

printf("%4d %4d %4d %4d %s\n", initinfo1[i+ 1] nodenum, initinfo1[i+ 1] pathnum,
initinfot[i+ 1] commsg1 msgsnd1, initinfo1[1+ 1] commsg1 msgrcv1, initinfo1[1+ 1] filepath),

}

/* ‘ +/
/* open file() */
/* B */
/* Purpose. Prompts for user nput User must enter the file name that */
/* contains the complete pathname of the files for which metnics . */
/* needs to be calculated */
* */
open_file()
{

printf("Enter input file name \n\n"),
/* strcpy(in_file, "aa"), */
gets(in_file),

if ((fp="fopen(in_file, "r")) == NULL)

printf("Can not open file containing path names in host \n"),

exit(0),
}
/* strepy(in_file, in_file), */
printf(" Msg Msg Tot\n"),
printf("Input File Name (with complete path) send recv Msg\n"),

printf(* \n%),

100

init_msg()

Purpose

Initialize the structure before sending it to a node

*/
*/
*/
*/
*/

init_msg(fn, i, n, f)
char fnf],
inti, n,f,

{

int j,

for(j=0,j<80,j+ +)
initinfo filepath[j] = "\0',

initinfo nodenum = n;

initinfo pathnum = f,
strnepy(initinfo filepath, fn, i-1),
initinfo commsg1 msgsnd1 = -1,

/* node number to send */
/* file number read */

/* i=length of file name */
/* init msg vars*/

initinfo commsg1 msgrevt = -1,

*/

store_result()

Purpose’ To store computed metric in an array at subscript i

x/
*7
*’/

store_result(i)

inti,

{

}

initinfo1[i] nodenum = initinfo nodenum,

initinfo1[i] pathnum = initinfo pathnum,

strepy(initinfo1 [i] filepath, initinfo filepath),

initinfo1[i] commsg1 msgrcvl = initinfo commsgt.msgrevi,
initinfo1[i).commsgt msgsnd1t = initinfo commsgt msgsnd1,

*/

*/

/*
/*
/*
/*

print_result()

Purpose

To print the resultant array

*/
*I/
*'/

/*

print_result(f)

int f,
{

int i,

for (i=0,i< f, i+ +)

printf("%-63s %4d %4d %4d\n\n", initinfo1[i+ 1] filepath,
initinfo1[i+ 1] commsg1 msgsnd1, initinfo1[i+ 1] commsg1 msgrevi,
initinfo1[i+ 1].commsgt msgsnd1 +initinfo1[i+ 1] commsg1 msgrcvi),

End of host c Module

/*

101

/* */
/* .
/* File node ¢ (Node program) */
/* */
/* Author Imtiaz Ahmad, December 1990 */
/* *,
/* Purpose To collect Communication measures. */
/* */
/* Caution Program does not distinguish between different types or names */
/* of send or receive statements */

* *
/ /
/* */
#include <stdio.h>
#include <cube.h>
#include "node h" /* defines states, classes and state tables */
/* y
/* main() */
/* */
/* Logic Runs an infinite loop Receives a message from the host with file */
/* name to be processed Returns a structure to the host with */
/* collected metrics */
/* v
/* Caution It 1s assumed that there is no syntax error in the input file */
/* */
main()
{ /* Node main */

FILE *fp, /* file pointer */

char in_file[PATHLEN],

/* input file name */

f name[PATHLEN], /* file name */

token[200], /* token collected */

int 1, kK, /* temporary counters */
in_fd, /* input file descriptor */
msgsnd, /* total message send */
msgrcv, /* total message recv */

for (;,) { /* begining of infinite loop */

crecv(INIT_TYPE, &inttinfo, sizeof(initinfo)),
strcpy (in_file, initinfo filepath),
in_fd = open(in_file,0),

f (in_fd <= 0) {
close(in fd),

csend(R—SLT_TYPE, &nitinfo, sizeof(initinfo), myhost(), HOST_PID),

else {
msgsnd = 0,
msgrev = 0,

102

103

while (get_tok(in_fd, token) == VALID TOKEN) {
switch(kk=token_type (token)) {

case CSEND
msgsnd + +,
break,

case CRECV
msgrev+ +,
break,

default
break,

} /* end switch */
} /* end.while get_tok() */

/* save necessary info before sendmg it back to host */
initinfo nodenum = mynode(),

initinfo commsg1 msgsnd1 = msgsnd,

initinfo commsg1 msgrcvl = msgrev;

csend(RSLT_TYPE, &initinfo, snzeof(mltlnfo) myhost(), HOST_PID),
close(in_fd),
} /* end else */
} /* end infinite for loop */
} /* end Node main */

/* */
/* get_tok() */
/* - ‘ . */
/* Purpose To collect a basic token according to the rules set by state table */
/* */
get_tok(fd,token)
int fd,
char *token,
{

charc,

inti,

int curr_state,

int nxt_state,

int char_class,

intread_flag,

i=0,

token[i] = '\0’,

nxt_state = START,

while (nxt_state < ENDWORD) {
read_flag = read(fd,&c,1),
if (read_flag'= 1)

char_class = EOF1,
else

104

char_class = class_tbi[c],

curr_state = nxt_state,
nxt_state = state_tbi[curr_state][char_class],

switch (nxt_state) {

case WORD
token[i+ +] = c,
break,

case START
~ case FIRST_SLASH
case BEG_COM
case FIRST_ST.
break,

case FIRST_OR

case FIRST_AND
token[i+ +] = c,
break,

case ENDWORD
token[1] = "\0’,
break,

case ENDWORD_UG

tokenfi] = "\0',
Iseek(fd, -1L, 1), -
break,

case ENDWORD_CC
token[i+ +] = ¢,
token[i] = "\0’,
break,

case ERR
printf("\nError in state table - Metric calculations may be
effected ..node = %d, pathnum = %d\n", mynode(), initinfo pathnum),
break,

default
break,

} /*End SWITCH */
} /* End WHILE next stae < ENDWORD */

if (nxt_state '= STOP)

return({ VALID_TOKEN),
else

return(TOKEN_OVER),

token_type()
Purpose To classify the input token in one of the two types

Caution Assumed that only the following types of send or receive
message statements are used in the input file

*/
*/
*
*7
*y
*/
*/

token_type(token)
char *token;

{

}
/*

if (strcmp(token,"csend"”) == 0)
return(CSEND),

if (strcmp(token,"crecv') == 0)
return(CRECV),

if (strcmp(token,"sendmsg") ==0)
return(CSEND),

if (stremp(token,"recvmsg") == 0)
return(CRECV),

if (stremp(token,“send”) ==0)
return(CSEND),

if (strcmp(token,"recv') == 0)
return(CRECV),

if (strcmp(token,"sendw") == 0)
return(CSEND),

if (stremp(token,"recvw") == 0)
return(CRECV),

return(NONE),

*/

*/

/*
/*
/*
/'k

print_stable()

Purpose’ Prints the state table and is used anly for debugging purposses

x/
*/
*l/

priht_stable()

{

}

/*
/*
/*
/*
/*

ntij,
for (i=0, i<MAX_STATES, i+ +){
for (j=0, j<MAX_CLASSES, j+ +) {
printf(*%3d ", state_tbl[i][j]),

}
printf("\n"),

print_ctable()

Purpose Prints the class table and is used only for debugging purposses

*/
*/
*‘/
*I/

print_ctable()

{

105

106

inti, j,
j=0,
for (1=0,1<150, 1+ +) {
|+ +,
printf("%3d,", class_tbl[i]),
if j == 10) {
j=0,
printf("\n"),
}
}

/* End of node ¢ Module */

107

* *
- !
/* File node h (Node program) */
/* */
/* . Author Imtiaz Ahmad, December 1990 */
/* */
/* Purpose To define all common global variables */
/* */
/* Caution Must be included in the node c file */
/*) */
/* o
#define HOST_PID 100 /* Process id of the host process */

#define INIT_TYPE 0 /* Type of initialization message */
#define RSLT_TYPE 10 /* Type of message that stores result */
#define MAX_FILES 200 /* Files that can be analyzed */
#define PATHLEN 81 /* Complete file path length */
struct stat { /* Structure that saves the metric */
int msgsnd1,
int msgrevi,
|2
struct info { /* Structure that saves necessary info */
int nodenum, /* regarding metric */
int pathnum,
char filepath[PATHLEN],
struct stat commsgt,
}1
struct stat commsg,
struct info initinfo,
#define VALID TOKEN 1
#define TOKEN_OVER -1
#define MAX_STATES 12
#define MAX_CLASSES 9

* Token Types */
#define CSEND 0
#define CRECV 1
#define NONE 2
/* Character Classes */
#define AL 0 /* Alphanumeric Characters */

#define EOF1 1 /* End of file */

#define SL 2 /* Slash character */

#define ST 3 /* Star Character */

#define OR 4 /* Bitwise OR operator */

#define AND 5 /* Bitwise AND operator */

#define WH 6 /* Equivalent white space characters (For this program)

”ke 1+y,v_l‘1\nl‘1[v'1<l’etc , */

108

#define QN 7 /* Question mark */

#define ILL 8 /* lllegal characters */

/* States */
#define START 0 /* Start state, Begin to collect a token */

#define WORD 1 /* Collecting a token */

#define FIRST_SLASH 2 ' /* There is a slash, maybe this is a begin
comment mark */

#define BEG_COM 3 /* Yes This s a begin comment mark */
#define FIRST_ST 4 /* There is a star Maybe this Is the end
comment mark */
#define FIRST_OR 5 /* There i1s an OR operator. See if there is
one more OR operator to make it a token */
#define FIRST AND 6 ‘ /* There is an AND operator. See if there is
‘ one more AND operator to make it a token */
#define ENDWORD 7 ./* Collected a token */
#define ENDWORD UG8 /* Collected a token, Unget last char */
#define ENDWORD_CC9 /* Collected a token, Add the last character
read, to the token */
#define STOP 10 /* End of file reached */
#define ERR 11 /* Error in state table */
/* Character Class Table */

int class_tblf] = {

ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, WH,
WH, ILL, iLL, WH, ILL, ILL, iLL, ILL, iLL, ILL,
ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL,
ILL, ILL, WH, WH, WH, =~ WH, WH, WH, AND, WH,
WH, WH, ST, WH, WH, WH, WH, SL AL, AL,
AL, AL, AL, AL, AL, AL, AL, AL, WH, WH,
WH, WH, WH, QN, WH, AL AL, AL, AL, AL,
AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,
AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,
AL, WH, WH, WH, WH, WH, WH, AL AL, AL,
AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,
AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,
AL, AL, AL, WH, OR, WH, WH, ILL, iLL, ILL,
ILL, ILL, ILL, ILL, iLL, ILL, ILL, - ILL, ILL, iLL,
iLL, ILL, iLL, ILL, ILL, ILL, ILL, iLL, fLL, ILL,
ILL, ILL, ILL, ILL, ILL, iLL, ILL, ILL, iLL, ILL,
ILL, iLL, ILL, ILL, iLL, ILL, ILL, ILL, L, ILL,
iLL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL, iLL,
ILL, ILL, ILL, ILL, iLL, ILL, ILL, ILL, ILL, ILL,
ILL, ILL, ILL, ILL, ILL, iLL, ILL, ILL, ILL, ILL,
ILL, ILL, iLL, ILL, ILL, ILL, ILL, ILL, ILL, ILL,
ILL, ILL, iLL, ILL, iLL, ILL, ILL, ILL, ILL, ILL,
iLL, fLL, ILL, ILL, - ILL, ILL, ILL, ILL, ILL, ILL,
ILL, ILL, ILL, ILL, ILL, iLL, ILL, ILL, ILL, ILL,
ILL, ILL, fLL, ILL, ILL, ILL, ILL, ILL, iLL, ILL,
ILL, ILL, ILL, ILL, ILL

b

*

109

State Table */

int state_tbl[MAX_STATES][MAX_CLASSES] = {

/*

/* Class AL EOF1 SL ST

OR AND WH QN ILL */

/*Token*/

/*START*/ WORD, STOP, FIRST_SLASH, START,

FIRST_OR, FIRST_AND, START, ENDWORD_CC, ERR,

/*WORD*/ WORD, ENDWORD, FIRST_SLASH, ENDWORD,

ENDWORD_UG, ENDWORD_UG, ENDWORD, ENDWORD_UG, ERR,

/*FIRSTSLASH*/ ENDWORD_UG, ENDWORD, ENDWORD_UG, BEG_COM,

ENDWORD UG, ENDWORD_UG, ENDWORD UG, ENDWORD_UG, ERR,

/*BEG COM*/ BEG_COM, ERR, BEG_COM, FIRST_ST,

BEG COM, BEG COM, BEG_COM, BEG_COM, - ERR,

/*FIRST STAR*/ BEG_COM, ERR, ENDWORD, FIRST_ST,

BEG_COM, BEG_COM, BEG COM, BEG_COM, ERR,

/*FIRST OR*/ ENDWORD UG, ERR, ENDWORD_UG, ENDWORD_UG,

ENDWORD_CC, ENDWORD UG, ENDWORD_UG, ENDWORD_UG, ERR,

/*FIRST AND*/ ENDWORD_UG, ERR, ENDWORD_UG, ENDWORD_UG,

ENDWORD UG, ENDWORD CC, ENDWORD_UG, ENDWORD_UG, ERR
End of node h Module */

APPENDIX G

INTER-METRIC CORRELATION ANALYSES

110

10 WITH’
6 ‘VAR’

Variable

HEXELNS
HBLKLNS
HUMTLNS
NEXELNS
NBLKLNS
NCMTLNS
TEXELNS
TBLKLNS
TCMTLNS
TOTLNS
Qs

Qé

Q7

Q8

Q9

Q10

HEXELNS

HBLKLNS

HCMTLNS

NEXELNS

NBLKLNS

NCMTLNS

TEXELNS

TBLKLNS

TCMTLNS

Variables
Variables

Spearman Carrelation Coefficients / Prob >

Qs

-0 00707
0 9778

-0 22872
0.3613

0 45567
0 0574

-0 44777
0 0624

-0 61274
0 0069

-0 26513
0 2877

-0 31564
0 2020

-0 60301
0 0081

0 02120
0 9335

CORRELATIONS BETWEEN SUBJECTS'

HEXELNS
Qs

N

18
18
8
18
18
18
18
18
18
18
18
18
18
18
18
18

REPLIES AND SIZE MEASUREMENTS

Correlation Analysis

HBLKLNS HCMTLNS NEXELNS NBLKLNS NCMTLNS
Q6 Q7 Q8 Qio
Simple Statistics
Mean Std Dev Median
118 444444 73 807558 97 500000
34 777778 19 028015 36 000000
94 833333 69 959862 bz 500000
277 944444 204 744453 206 000000
75 500000 59 602852 49 000000
246 722222 170 113044 283 500000
393 000000 239 2353 361 500000
108 555556 73 533684 90 000000
337 555556 212 931975 329 500000
839 1111 446 659087 1003. 000000
t3 000000 1 455214 14 000000
13 055556 1 696787 14 000000
14 444444 1 199128 15 000000
14 166667 1 424574 15 000000
10 8BBBBY 3 027111 10 000000
4 222222 1 437136 4 000000

Q6

-0.22642
0 3663

-0 42803
0 0764

0 2B346
0 2544

-0 46080
0 0543

-0 55808
0 0161

-0 32541
0 1876

-0 39802
0 1019

-0 54927
0 0182

-0 09666
0 7028

Q7

-0.21364
0 3947

-0 43659
0 0701

0 28196
0 2570

-0 48182
0 0429

-0 58409
0.0109

-0 34091
0 1662

-0 41797
0 0843

-0 57697
0 0122

-0 11358
0 6536

|R| under Ho
Q8

-0 20220
0 4210

-0 43795
0 0691

0 32235
0 1920

-0 56770
0 0140

-0 68935
0 0016

-0 36328
0 1384

-0 47192
0 0480

-0 68178
0 0018

-0 08550
0 7359

TEXELNS

TBLKLNS

Minimum

29 000000
8 000000
20 060000
58 000000
12 000000
64 000000
99 000000
25 000000
93 000000
231 0000600
10 000000
10 000000
12 000000
12 000000
5 000000
3 000000

Rho=0 / N = 18

Q9

0 16694
0 5079

0 46359
0 0527

-0 27611
0 2674

0 62347
0 0057

0 73250
0 0005

0 39521
0 1045

0 54824
0 0185
0 73212
0 0006

0 15664
0 5348

09 25 Monday,

TCMTLNS

253
84
233
795
228
600
884
312
721
1427
14
15
16
16
16

8.

April 29,

TOTLNS

Ma x 1mum

000000
000000
000000
000000
000000
ooo0o000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

Q10

-0 23806
0 3415

-0 51854
0 0275

0 13025
0 6064

-0 45875
0 0555

-0 56538
0 0145

-0 38436
0.1153

-0 43621
0 0703

-0 56509
0 0145

-0 21067
0 4014

IT1

Variable

Q5
Q6
Q7
(0]]
Q9
Q10

Q5

Q6

Q7

Q8

Qo

Q10

CORRELATIONS BETWEEN SUBJECTS”

6 ‘WITH’ variables: Q5
6 ‘VAR' Variables: Q5

N Mean
18 13 000000
18 13 055556
18 14 444444
18 14 166667
18 10.888889
18 4.222222

Spearman Correlation Coefficients / Prob >

Q5 Q6
1.00000 0 87992
0.0 0 0001
0.87992 1.00000
0 0001 0.0
0.88141 0.99625
0.0001 0.0001
0.91240 0.96174
0.0001 0.0001
-0 83163 -0.87055
0 0001 0.0001
0 70430 0 89581
0 0011 0 0001

Correlation Analysis

Q6 Q7
Q6 Q7

Simple Statistics
Std Dev

455214
696787
199128
424574
027111
437136

W o -

Q7

0.88141
0 0001

0 99625
0.0001

1.00000
0.0

0.96787
0 0601

-0 B9944
0.0001

0.91652
0.0001

IR|

REPLIES 08.51
Q8 Q9 Q10
Q8 Q9 Q10
Median Miniymum
14 000000 10 000000
14 0600000 10.000000
15 000000 12 000000
15 000000 12 000000
10 000000 5.000000
4.000000 3 000000
under He: Rho=0 /7 N = 18
Q8 Q9
0 91240 -0 83163
0 0001 0 0001
0 96174 -0 87055
0.0001 0.0001
0.96787 -0 89944
0.0001 0 0001
1 00000 -0 94528
0.0 0.0001
-0.94528 1 00000
0.0001 0o
0 89603 -0 91594
0 0001 0.0001

Monday, Apral 29,

Ma x 1mum

14 000000
15 000000
16 000000
16 000000
16 000000
8 000000

Q10

0 70430
0.0011

0 89581
0 0001

0.91652
0.0001

0 89603
0.0001

-0 91594
0 0001

1.00000
0.0

1991

1

(AN

CORRELATIONS BETWEEN SUBJECTS® REPLIES AND SIZE MEASUREMENTS

Correlation Analysis

Spearman Correlation Coefficients / Prob > |[R| under Ho: Rho=0 / N = 18
Q5 Q6 Q7 Qs Q9
TOTLNS -0.23685 -0 38230 -0.40000 -0 41994 0 49742
0 3440 0 1174 0.1000 0.0827 0 0357

09.25 Monday,

April 29, 1991

Q10

-0 47611
0.0458

2

€11

17
6

‘WITH® Variables

‘VAR‘ Varaiables-

vVariable

HUN1
HUNZ
HCAPN1
HCAPN2
HEFRT
NUN1
NUN2
NCAPN1
NCAPN2
NEFRT
TUNI
TUN2
TUNIN2
TCAPNI
TCAPN2
TCAPNIN2
TEFRT
Qs

Q6

Q7

Q8

Q9

Qo0

HUN1

HUN2

HCAPN1

HCAPN2

HEFRT

NUN1

HUN1
TUNIN2

Q5

HUN2
TCAPN1

Q6

Spearman Correlation Coefficients / Prob >

Q5

-0 04308
0.8652

-0.22966
0.3593

-0 08009
0 7521

-0 06124
0 8092

-0 03180
0 9003

-0 40047
0 0996

N

18
18
18
18
18
18
18
18
18
18
18
18
18
18
8
18
18
18
18
18
18
18
18

SUBJECTS® REPLIES VS SOFTWARE SCIENCE MEASUREMENTS

Correlation Analysis

HCAPN1 HCAPN2 HEFRT NUN1 NUN2
TCAPN2 TCAPNIN2 TEFRT
Q7 Q8 Q9 Q10
Simple Statistics
Mean Std Dev Median
37 555556 11 642833 35 000000
55 B88B888Y 25 840891 54 500000
338 944444 225 123880 249 000000
188 777778 122.758757 143 500000
302424 362591 129673
44 .500000 12.701320 46 000000
72.388889 40 744742 69 500000
942,222222 710.268844 687 000000
591 833333 465.025521 412.000000
2813805 3679114 1054636
82,055556 22 367182 83.000000
128,277778 61 622003 127 000000
210 333333 83 223300 211 500000
1281.166667 808.642017 . 1193 500000
780.611111 $11.298478 720.500000
2061.777778 1317.423937 1889 .000000
5209993 5339407 3614345
13.000000 1.455214 14.000000
13.055556 1.696787 14 000000
14.444444 1.199128 15 000000
14 166667 1.424574 15 000000
10 888889 3.0271 10.000000
4,222222 1.437136 4.000000

Q6

-0.24102
0.3353

-0 39120
0 1084

-0 29112
D.2412

-Q 29567
0 2336

-0 26724
0 2837

-0 41117
0 0901

Q7

-0 23445
0.3490

-0.37708
0.1229

-0.28167
0 2575

-0.28622
0 2496

-0 25441
0 3083

-0 43454
0 0715

IR| under Ho
Q8

-0.21141
' 0.3997

-0 37420
0.1261

-0 27649
0.2667

' -0 27205
0.2748

-0 22985
0 3589

-0 48822
0 0398

NCAPN1

09.38 Mond

NCAPN2 NEFRT

Minimum

23 000000
19 ouo0OO
69 000000
36 000000
12337
27 000000
26.000000
151 000000
80 000000
56230

$0 000000 -
$6 000000
106 000000
274 000000
142.000000
416.000000
180012
10.000000
10 000000
12.000000
12.000000
$ 000000 _
3.000000

Rho=0 / N = 18

. Q9

0 19962
0 427

0.29966
0.2270

0 22134
0.3774

0.21793
0.3850

0 17367
0 4907

0 55761
0 0162

ay, Apral 29, 1991

TUN1 TUN2

Max ymum

61 000000
113 000000
827 000000
446.000000

1140590

73 000000

-190 000000
2565 000000
1608 000000

13686523

134 000000
303 000000
437 000000

2824.000000
1764.000000
4588 000000

18474019

14 000000

15 000000

16.000000

16.000000

16 000000

8.000000

Q10

-0.23843
0 3407

-0.33955
0 1680

-0 27759
0 2647

-0.29742
0 2307

-0 25776
0 3018

-0 43316
0 0725

1

711

NUN2

NCAPN1

NCAPN2

NEFRT

TUN1

TUN2

TUNINZ

TCAPN1

TCAPN2

TCAPNINZ2

TEFRT

Spearman
Q5

-0.40514
0 0953

-0 49112
0 0385

-0 52881
0.0240

-0 54765
0 0186

-0.18373
0 4655

-0 30268
0 2221

-0 26527
0.2874

-0.41810
0.0842

-0 46403
0.0524

-0.44519
0 0641

-0 42634
0.0777

SUBJECTS® REPLIES VS SOFTWARE SCIENCE MEASUREMENTS

Correlation Coefficients / Prob >

Q6

-0 39575
0.1040

-0 52993
0.0237

-0 54244
0 0200

-0 55950
0.0158

-0.32751
0.1846

-0 38892
0.1107

-0.36200
0.1399

-0.46739
0.0505

-0.50719
0.0317

-0.49013
0.0389

-0.47307
0.0474

Correlation Analysas

Q7

-0.41797
0.0843

-0 54972
0 0181

0 563435
U 0149

-0 58152
0.0114

-0.33619
0.1726

-0 39979
0 1002

-0 37065
0 1300

-0.49066
0.0387

-0.52700
0.0246

-0 51337
0.0293

-0 49520
0.0367

under Ho:

Q8

-0.47636
0.0457

-0 61738
0 0063

-0 64292
0 0040

-0 66401
0 0027

-0 32534
0.1877

-0 42750
0.0768

-0.39182
0.1078

-0 56075
0.0155

-0 59628
0 0090

-0.58184
0.0113

-0.56075
0 0155

Rho=0 / N

09:38 Monday,

18

Q9

0 53462
0.0223

0 67083
0 0023
0 69807
0 0u13

0 71509
0 0009

0 36436
0.13M

0 45970
0 0549

0 42268
0.0805

0.62996
0.0051

0.65039
0.0035

0.65039
0 0035

0 63337
0.0048

April 29,

Q10

-0.40647
0.0942

-0 53535
0 0220

-0 53535
0.0220

-0.55518
0.0168

-0 35690
0.1460

-0.39903
0.1009

-0 36843
0.1325

-0.49569
0.0364

-0.51552
0.0285

-0 51552
0 0285

-0 49569
0 0364

CTT

Variable

HOSTVG
NODEVG
TOTVG
Q5

Q6

Q7

Q8

Q9

Qo

HOSTVG

NODEVG

TOTVG

3
6

Spearman Correlation Coefficients / Prob >

Qs

0.16194
0.5209

-0.53053
0.023%5

-0.392589
0.107

‘VAR’

SUBJECTS’ REPLIES VS CYCLOMATIC

Correlation An

‘WITH’ Variables: HOSTVG NODEVG

variables: Q5 Q6

Simple Statis
Mean Std Dev
14.444444 14 455702
57.666667 49.413025
72 1111 53.198727
13 000000 1 455214
13.055556 1.696787
14.444444 1.199128
14.166667 1.424574
10.888889 3.0271 1
4.222222 1.437136

Q6 Q7
-0.09164 -0.06864
0.7176 0.7867
-0.55837 -0 58439
0.0160 0.0109
-0.46047 -0 47979
0.0545 0.0439

COMPLEXITY MEASUREMENTS
alysis

TOTVG
Q7 Q8 Q9

tics
Medi1an

7.000000
35.000000
52 500000
14 00000U
14.000000
15.000000
15.000000
10.000000

4.000000

|R| under Ho: Rho=0 / N
(o]:]

~-0.024861
0 9228

-0.65081
0.0034

-0.53409
0.0224

10.20 Monday,

Q10

M1nimum

2 006000
6 000000
10 000000
10 000000
10.000000
12.000000
12.000000
5.000000
3.000000

= 18

Q9

~-0.01029
0.9677

0.73288
0.0005

0 61016
0.0072

Apral 29,

Ma x ymum

47 000000

152 000000
158 000000

14.000000
15.000000
16.000000
16.000000
16.000000

8.000000

Q10

-0 08364
0.7414

-0.59545
0 0091

-0 49621
0.0362

1991

1

911

Variable

HMSGSND
HMSGREC
NMSGSND
NMSGREC
TMSGSND
TMSGREC
TCOMMSG
Qs

Q6

Q7

Q8

Q9

Q10

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

SUBJECTS® REPLIES VS COMMUNICATION COMPLEXITY MEASUREMENTS 10-21 Monday, Aprail 29, 1991 1

Correlation Analysis

7 ‘WITH’ Variables. HMSGSND HMSGREC NMSGSND NMSGREC TMSGSND TMSGREC TCOMMSG

6 'VAR’ Vvariables. Q5 Q6 Q7 Q8 Q9 Q10
Simple Statistics
N Mean Std Dev Median Minimum Max 1mum
18 4.2777178 2 B03476 4.500000 0 9 000000
18 2.611111 1 144752 2 000000 1.000000 5 000000
18 8.88888Y 6.641128 9 000000 2.000000 32 000000
18 10 555556 6.921596 10.000000 2.000000 33 000000
18 13 166667 7 270003 13.000000 3.000000 35.000000
18 13, 166667 7.196813 13.000000 3.000000 35.000000
18 26 333333 14.418126 27.000000 6 000000 70.000000
18 13 000000 1 455214 14,000000 10.000000 14.000000
18 13 055556 1.696787 14.000000 10.000000 15 000000
18 14.444444 1 199128 15.000000 12.000000 16.000000
18 14 166667 1.424574 15.000000 12.000000 - 16.000000
18 10 888889 3 027111 10.000000 5.000000 . 16.000000
18 4.222222 1 437136 4.000000 3.000000 - 8 000000
Spearman Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 18
Q5 Q6 Q7 Q8 Q9 Q10
0.39115 0.02127 0.05512 0.1139% -0.20484 0.00877
0.1085% 0.9332 0.8280 0.6526 0.4149 0.9724
-0.20030 -0.16569 -0.19015 -0.29062 N 0.33377 -0.18121
0.4255 0.5111 0.4498 0.2420 0.1759 0 4718
-0.33473 -0.34211 -0.38461 -0.48289 0 57827 -0.43963
0.1746 0.1646 0.1150 0.0424 0.0119 0.0679
-0.00120 ~-0.21963 -0.21355 -0.23658 0.22096 -0.24693
0.9962 0.3812 0.3949 0.3446 0.3783 0.3232
-0 02843 ~0.22931 -0 24673 -0.28477 0.31165 -0 33277
0.9108 0.3600 0 3236 0.2521 0.2081 0.1772
-0 14713 -0.26630 -0 27803 -0 34595 0.38407 -0.30336
0.5602 0 2855 0.2639 0.1597 0.1156 0.2211
-0 09535 -0.25905 -0.27643 -0.32665 0.35959 -0.34274
0.7067

0.2993 0.2668 0.1858 0.1427 0.1638

LT1

variable

R1U
RIT
R2U
R27
R3U
R3T
Qs
Q6
Q7
Q8
Q9
Q10

RI1U

RIT

R2U

R2T

R3U

R3T

SUBJECTS’ REPLIES VS RESIDUAL COMPLEXITY MEASUREMENTS 10.21
Correlation Analysis
6 ‘WITH' variables: RI1U RIT R2U R2T R3U R3T
6 ‘VAR’ Variables: Q5 Q6 Q7 Q8 Q9 Q10
Simple Statistics
N Mean Std Dev Median Minimum
18 1342 900000 732.644191 1326 050000 296 700000
18 21311 15218 18777 3234 100000
18 1439 194444 696 135651 1424 650000 610 400000
18 21741 15753 19021 3207.000000
18 1238 461111 624.101364 1223 250000 505.800000
18 19770 14487 17229 2821.,800000
18 13.000000 1.455214 14.000000 10.000000
18 13.055556 1.696787 14.000000 10.000000
18 14.444444 1.199128 15 000000 12.000000
18 14.166667 1.424574 15.000000 12.000000
18 10.888889 3.027111 10.000000 5.000000
18 4 222222 1.437136 4.000000 3.000000
Spearman Correlation Coefficients / Prob > |[R| under Ho: Rho=0 / N = 18
Q5 Q6 Q7 Q8 Q9
0.02002 -0.07278 -0.08178 -0.14768 0.17367
0.9371 0.7741 0.7470 0.5587 0.4907
-0.44519 -0.49013 -0.51337 -0.58184 0.65039
0.0641 0.0389 0.0293 0.0113 0.0035
-0.26499 -0.36845 -0.37708 -0.39752 0.43246
0.2879 0.1325% 0.1229 0.1023 0.0731
-0 44519 -0.49013 -0.51337 -0.58184 0 65039
0.0641 0.0389 0.0293 0.0113 0.0035
-0.26513 -0.36182 -0 37045 -0.39161 0.42587
0.2877 0.1401 0.1302 0.1080 0.0780
-0.44519 -0 49013 -0.51337 -0.58184 0.65039
0.0641 0.0389 0.0293 0.0113 0.0035

Monday, Aprail 29, 1991 1

Ma x 1mum

3444 500000
51397

3409 300000
53797
3022.500000
49388
14.000000
15.000000
16.000000
16.000000
16.000000
8.000000

Q10

-0.08675
0.7322

-0 51552
0.0285

-0.37673
0.1233

-0.515652
0.0285

-0.36824
0.1327

-0.51552
0.0285

811

HEXELNS

HBLKLNS

HCMTLNS

NEXELNS

NBLKLNS

NCMTLNS

TEXELNS

TBLKLNS

TCMTLNS

TOTLNS

10 "WITH'
10 VAR’

[+]
Variable

HEXELNS
HBLKLNS
HCMTLNS
NEXELNS
NBLKLNS
NCMTLNS
TEXELNS
TBLKLNS
TCMTLNS
TOTLNS

HEXELNS

1.00000
0.0

0.84599
0.0001

0.67907
0.0019

0.63120
0.0050

0.50981
0 0307

0.67562
0 oo

0.74342
0 0004

0 53485
0.0222

0 70418
0.0011

0 79029
0 0001

variables
Variables.

Spearman Correlation Coefficients / Prob >

HBLKLNS

0.84599
0.0001

1 00000
0.0

0 44623
0.0634

0.75917
0.0003

0 7049
0.0011

0.58191
0.0113

0.85124
0.0001

0 74070
0 0004

0 52996
0.0237

0 89664
0 0001

HEXELNS

HEXELNS

N

18 118
18 34
18 94
18 277
18 75
18 246
18 393
18 108
18 337
18 839

HCMTLNS

0 67907
0.0019

0 44623
0 0634

1.00000
0.0

0.08372
0.7412

-0 00413
0 96870

0.53333
0 0227

0.2252
0.3689

0 03616
0.8867

0 80475
0.0001

0 40052
0 0995

SIZE MEASUREMENTS VS SIZE MEASUREMENTS

Correlation Analysis

Mean

444444
777778
833333
944444
500000
722222
000000
5565556
555556
\RRRRE

NEXELNS

0 63120
0 0050

0 75917
0.0003

0 08372
0.7412

1 00000
00

0 91632
0 0001

0 59556
0 0091

0 96231
0.0001

0 91275
0 0001

0 37997
0 1199

0 87862
0 ooon

HBLKLNS HCMTLNS NEXELNS
HBLKLNS HCMTLNS NEXELNS

Simple Statistaics

Std Dev

73 807558
19 028015
69 959862
204 744453
69 602852
170.113044
239 235301
73.533684
212 931975
446 659087

NBLKLNS

0 50981
0.0307

0 70491
0.00V)

-0.00413
0.9870

0.91632
0.0001

1 00000
00

0 60744
0.0075

0 85493
0.0001

0 99226
0 0001

0 35829
0 1443

0 80062
0 0001

NBLKLNS NCMTLNS TEXELNS
NBLKLNS NCMTLNS TEXELNS
Median
97 500000
36 000000
62 500000
206 000000
49 000000
283.500000
361.500000
90 000000
329 500000
1003 000000 2
IR} under Ho Rho=0 / N
NCMTLNS TEXELNS
0 67562 0.74342
0.0021 0.0004
0 58191 0 85124
0.0113 0 0001
0 53333 0 22521
0.0227 0.3689
0.59556 0 96231
0.0091 0 0001
C 60744 0.85493
0.0075 0.0001
1.00000 0.57305
00 0 0129
0 57305 1 00000
0 0129 0o
0 61538 0 8617
0 0066 0.0001
0 88797 0 44066
0 0001 0.0672
0 71798 0 93030
0 0008 0 0001

29

-]
20
58
12
64
99

25,

93
31

09 42 Monday, April 29, 1991

TBLKLNS
TBLKLNS

Miniymum

000000
000000
00000u
000000
000000
000000
000000
000000
000000
000000

18

TBLKLNS

0 53485
0 0222

0 74070
0 0004

0 03616
0.8867

0.91275
0 0001

0 99226
0 0001

0 61538
0 0066

0 86171
0 0001

1 00000
00

0 37874
0 1212

0 80330
0 0001

TCMTLNS TOTLNS
TCMTLNS TOTLNS

Max 1mum

253 000000

84 000000
233 000000
795 000000
228 000000
600 000000
884 000000
312 000000
721 000000
1427 000000

TCMTLNS

0 70418
0 oon

0 52996
0 0237

0 80475
0 0001

0 37997
0 1199

0 35829
0 1443

0 88797
0 0001

0 44066
0 0672

0 37874
0 1212

1 00000
0o

0 63191
0 0049

TOTLNS

0 79029
0.000)

0.89664
0.0001

0.40052
0.0995

0.87862
0.0001

0.80062
0.0001

0.71798
0.0008

0 93030
0.0001

0 80330
0.0001

0.63191
0 0049

1 00000
0.0

1

611

17

10

‘WITH”®

‘VAR'

Variables

Variables:

Varaiable

HUN1
HUN2
HCAPN1
HCAPN2Z2
HEFRT
NUN1
NUN2
NCAPN1
NCAPN2
NEFRT
TUN1
TUN2
TUNIN2
TCAPN1
TCAPN2
TCAPNIN2
TEFRT
HEXELNS
HBLKLNS
HCMTLNS
NEXELNS
NBLKLNS
NCMTLNS
TEXELNS
TBLKLNS
TCMTLNS
TOTLNS

HUN1
TUNIN2

HEXELNS

HUNZ
TCAPN1

HBLKLNS

HCAPN1 HCAPN2 HEFRT NUN1
TCAPN2 TCAPNIN2 TEFRT
HCMTLNS NEXELNS NBLKLNS NCMTLNS
Simple Statistaics
Mean Std Dev
37 555556 11 642833
55.888889 25 840891
338 944444 225 123880
188 777778 122 758757
302424 362591
44 .500000 12 701320
72.388889 40.744742
942.222222 710.268844
591.833333 465 025521
.2813805 3679114
82.055556 22.367182
128 277778 61.622003
210.333333 83.223300
1281 166667 808.642017
780 611111 511 298478
2061.777778 1317.423937
5209993 5339407
118.444444 73.807558
34.777778 19 028015
94.833333 69.959862
277.944444 204.744453
75.500000 59.602852
246.722222 170 113044
393. 000000 239.235301
108.555556 73.533684
337.555556 212.931975
839 111 446.659087

Correlation Analysis

NUN2

TEXELNS

Median

35 000000
54 500000
249 000000
143.500000
129673
46.000000
69 500000
687 .000000
412.000000
1054636
83.000000
127 .000000
211.500000
1193.500000
720.500000
1889 000000
3614345
97.500000
36.000000
62.500000
206.000000
49.000000
283 500000
361.500000
90.000000
329.500000
1003.000000

SIZE MEASUREMENTS VS SOFTWARE SCIENCE MEASUREMENTS

NCAPN1

TBLKLNS

09.43 Monday,

NCAPN2

TCMTLNS

MIinimum

Z3 000000
19 000000
69 000000
36.000000
12337
27.000000
26 000000
151.000000
80 000000
56230
50.000000
56.000000
106 000000
274.000000
142.000000
416.000000
180012
29.000000
8.000000
20.000000
58.000000
12 000000
64.000000
99.000000
25.000000
93.000000
231.000000

NEFRT

TOTLN

April 29,

TUN1

S

Ma x 1 mum

61 000000
113 000000
827 .000000
446 000000

1140590

73.000000

190 000000
2565.000000
1608 000000

13686523

134 000000
303 000000
437 .000000

2824.000000
1764.000000
4588 000000

18474019

253 000000

84.000000
233.000000
795 000000
228.000000
600.000000
884.000000
312.000000
721 000000

1427.000000

1991

TUNZ

1

0c¢I

SI1ZE MEASUREMENTS VS SOFTWARE SCIENCE MEASUREMENTS 09-43 Mongay, Aprail 29, 1991 2

Corretlation Analysis

Spearman Correlation Coefficients / Prob > |R| under Ho. Rho=0 / N = 18

HEXELNS HBLKLNS HCMTLNS NEXELNS NBLKLNS NCMTLNS TEXELNS TBLKLNS TCMTLNS TOTLNS

HUN1 0 94775 0 80538 D 67029 0 66477 0 47750 0 69374 0 75802 0 50776 0 73320 0.79979
0 0001 0 0001 0.0023 0 0026 0 0451 0 0014 0.0003 0 0315 0 0005 0 0001

HUNZ 0 81156 0.70558 0 46074 0 55550 0 41507 0 45225 0 63055 0 450098 0 44272 0 55343
0 000 0 oo 0 0543 0 0167 0 0867 0 0595 0 0050 0 0603 U 0658 0.0172

HOAPNY 0 93340 0.82128 0 59711 0 63913 U 47909 U 58028 0 72343 U 51496 G 57276 0 70005
0 ooo 0 0001 0 0089 0 004y 0 0443 0 0116 0 0007 0 0287 0O 0130 0.0012

HCAPN2 0 93960 0 85021 0.60227 0 63500 0 47703 0 57202 0 72755 0 51084 0 56863 0 72277
0.0001 0.0001 0.0082 0.0046 0 0453 0 0131 0.0006 0 0303 0 0138 0.0007

HEFRT 0 96644 0.8347 0.66012 0 61642 0 45638 0 6319 0.713n 0 48813 0 64499 0.73929
0.0001 0.0001% 0.0029 0.0064 0.0569 0 0049 0.0009 0 0399 0 0038 0.0005

NUN1 0 66339 0.73047 0.35954 - 0 85471 0 81489 0 77766 0 84651 0 82377 0 65530 0.86712
0 0027 0.0006 0.1428 0.000 0 0000 0 oom 0 0001 0 0001 0 0032 0 oo

NUN2 0 62674 0 68905 D 26446 O 88487 0 77233 0 72070 0 85759 L 78535 0 54386 0 82912
0.0054 0.0016 0.2889 0.0001 0.0002 0 0007 0 0001 0.0001 0 0196 0.0001

NCAPN1 0 63810 0.79236 0.10537 0 96954 0 89623 0 60919 0 95666 0 90093 0 40144 0 89623
0 0044 0.0001 0.6773 0.0001 0.0001 0.0073 0 ooon 0 0001 0.0987 0.0001

NCAPN2 0 60712 0 76343 0.06302 0.98503 0 92308 0.60919 0 95046 0 92570 0 38493 0.87558
0.0075 0.0002 0.8038 0.0001 0 0001 0.0073 0.0001 0.000) 0 1147 0.0001

NEFRT 0.59060 0 78517 0 05269 0 97264 0 93753 0 63810 0 '92982 0 93808 0 39938 0.87145
0 0099 0.0003 0.8355 0 0001 0 0001 0 0044 0.0001 0 0001 0.1006 0.0001

TUNY 0 89004 0.81715 0 62397 - 0 75065 0 60093 0 77852 0 82250 0 63055 0 77915 0 85596
0.0001 0.0001 0.0056 0 0003 0 0084 0.0001 0.0001 0.0050 0 ooOn 0.0001

TUN2 0 81053 0.82541 0 46694 0 83015 0 68456 0 67424 0 86791 0 71930 0 60784 0 83738
0.0001 0.0001 0.0507 0.0001 0.0017 0 0022 0 0001 0 0008 0 0075 0.0001

TUNIN2 0 84134 0 80558 0 51706 0 80052 0.64393 0.69302 0 84917 + 0 67872 0 65186 0 81757
0.0001 0 0001 0.0280 0.0001 0.0039 0.0014 0.0001 0 0020 0.0034 0.0001

TCAPNY 0 66908 0 81095 0 18905 0 95509 0 84770 0 60919 0.95253 0 B6584 0 43240 0.87661
0.0024 0.0001 0.4525 0.0001 0 0001 0.0073 0.0001 0 o001 0 073 0.0001

TCAPN2 0 67321 0 82025 0 14979 0 96438 0 87558 0 60093 0 95872 0 89061 0 40764 0.87971
0.0022 0.0001 0.5530 0.0001 0 0001 0 0084 0 00O 0 0001 0 0931 0.0001

TCAPNIN2 0 67734 0.82231 0 17459 0 96231 0 87248 0 61125 0 96285 0 88854 0 43240 0 88384
0 0020 0 0001 0,4884 0 oom 0.0001 0 0070 0 oo 0 0001 0 073 0 0001

TEFRT 0 68353 0 82438 0.18079 0 96644 0 87042 0 61538 0 97110 0 88442 0 44272 0 90036
0 0018 0 0001 D 4728 0 0001 0 o001 0 0066 0.0001 0 0001 0 0658 0.0001

121

SIZE MEASUREMENTS VS CYCLOMATIC COMPLEXITY MEASUREMENTS 09:43 Monday, Apral 29, 1991 1
Correlatyon Analysis

3 ’WITH) Variables: HOSTVG NODEVG TOTVG
10 ‘VAR’ Variables: HEXELNS HBLKLNS HCMTLNS NEXELNS NBLKLNS NCMTLNS TEXELNS TBLKLNS TCMTLNS TOTLNS

Simple Statistics

Variable N Mean Std Dev . Median Minimum Max 1imum
HOSTVG 18 14 444444 14 455702 7 000000 2.000000 47 000000
NODEVG 18 57 666667 49 413025 35 000000 6.000000 152 000000
TOTVG 18 72 1111 53 198727 52.500000 10 000000 158 000000
HEXELNS 18 118 444444 73 B07558 97 500000 29 000000 253 000000
HBLKLNS 18 34 777778 19.028015 36 000000 8 000000 84 000000
HCMTLNS 18 94 833333 - 69.959862 62.500000 20.000000 233 000000
NEXELNS 18 277.944444 204.744453 206.000000 58 000000 795 000000
NBLKLNS 18 75.500000 59.602852 49 .000000 12.000000 228.000000
NCMTLNS 18 246.722222 170.113044 283.500000 64.000000 600.000000
TEXELNS 18 393.000000 239.235301 361.500000 99.000000 884.000000
TBLKLNS 18- 108 .555556 73 533684 90.000000 25.000000 312.000000
TCMTLNS 18 337.555556 212.931975 329.500000 93.000000 721.000000
TOTLNS 18 839.111111 446 659087 1003.000000 231.000000 1427 .000000

44!

HEXELNS

HOSTVG 0.83517
0 0001

NODEVG 0 60879
0 0073

TOTVG 0 68320
0 0018

Spearman Correlation Coefficients / Prob >

HBLKLNS

0.65974
0.0029

0 78645
0 0001

0 82265
0.0001

SIZE MEASUREMENTS VS CYCLOMATIC COMPLEXITY MEASUREMENTS

HCMTLNS

0.65610
0.0031

0 13289
0 5991

0 22182
0 3764

Correlation Analysis

NEXELNS

0 46803
0 0501

0 95401
0 0001

0 93540
0 0001

NBLKLNS

0.19969
0 4269

0 91163
0 0001

0 81654
0 0001

IR|

NCMTLNS

0.46959
0 0493

0 66925
0 0024

0 61447
0 0067

under Ho:

Rho=0 /
TEXELNS

0 57382
0.0128

0 93079
0 0001

0 94938
0 0001

09 43 Monday, Apral

18
TBLKLNS

0 22350
0 3727

0 92046
0 0001

0 B3368
0 0001

TCMTLNS

0.58110
0 0114

0 4721
0 0479

0 46591
0 0513

29, 1991

TOTLNS

0 64328
0 0040

0.89457
0 0001

0 90698
0 0001

2

€Tl

SIZE MEASUREMENTS VS COMMUNICATION COMPLEXITY MEASUREMENTS 09.44 Monday, April 29, 1991
Correlation Analysis

7 *WITH’ Variables: HMSGSND HMSGREC NMSGSND NMSGREC TMSGSND TMSGREC TCOMMSG
10 'VAR’ Variables: HEXELNS HBLKLNS HCMTLNS NEXELNS NBLKLNS NCMTLNS TEXELNS TBLKLNS TCMTLNS TOTLNS

Simple Statistics

Variable N Mean Std Dev Median M1ni1mum Ma x 1mum
HMSGSND 18 4 277778 2 803476 4.500000 0 9 000000
HMSGREC 18 2 611111 1 144752 2.000000 1 000000 5 000000
NMSGSND 18 8 B8B888HY 6 641128 9 000000 Z 000000 32 000000
NMSGREC - 18 10 555556 6.921596 10.000000 2 000000 33 0000600
TMSGSND 18 13 166667 7.270003 13.000000 3.000000 35 000000
TMSGREC 18 13.166667 7.196813 13.000000 3.000000 35.000000
TCOMMSG 18 26.333333 14.418126 27.000000 6 000000 70.000000
HEXELNS 18 118.444444 73.807558 97.500000 29.000000 253.000000
HBLKLNS 18 34.777778 19.028015 36.000000 8.000000 84.000000
HCMTLNS 18 94.833333 69.959862 62.500000 20.000000 233.000000
NEXELNS 18 277.944444 204.744453 206.000000 58.000000 795.000000
NBLKLNS 18 75.500000 59.602852 49 .000000 12.000000 228.000000
NCMTLNS 18 246.722222 170.113044 283.500000 64.000000 600.000000
TEXELNS 18 393.000000 239.235301 361.500000 99.000000 - 884 .000000
TBLKLNS 18 108.555556 73.533684 90.000000 25.000000 312 000000
TCMTLNS 18 337.555556 212.931975% 329.500000 93.000000 721 000000
TOTLNS 18 839.111111 446.659087 1003.000000 231.000000 1427 .000000

Z4

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

HEXELNS

0 64148
0.004)

0 60723
0.0075

0.28201
0 2569

0 61037
0.0071

0.58516
0.0107

0.64234
0.0040

0.62773
0.0053

Spearman Correlation Coefficients / Prob > |R| under Ho:

HBLKLNS

0 40524
0.0952

0.49260
0.0378

0.45498
0 0578

0 63655
0.0045

0.65092
0 0034

0.69649
0.0013

0.69403
0.0014

SIZE MEASUREMENTS VS COMMUNICATION COMPLEXITY MEASUREMENTS

HCMTLNS

0.49089
0.0386

0.47618
0.0458

0 04633
0.8551

0.22116
0.3778

0.29974
0.2269

0.22363
0.3724

0.28676
0.2486

Correlation Analysis

NEXELNS

0.12005
0.6352

0 63020
0 0051

0 67119
0 0023

0.53493
0.0222

0.62825
0 0052

0.72903
0.0006

0.66564
0.0026

NBLKLNS

~0.12579
0.6189

0 57386
0.0128

0 58170
0.0113

0.32708
0.1852

0.43355
0.0723

0 55042
0.0179

0.49378
0.0373

NCMTLNS

0.06159
0.8082

0.62145
0.0059

0 28565
0.2505

0.05961
0.8142

0.24611
0.3249

0.23239
0.3534

0.24922
0.3186

Rho=0 / N = 18

TEXELNS TBLKLNS
0.25980 -0 10851
0.2978 0 6682
0.60254 0.62003
0 0081 0.0061
0.61156 0 61156
0 0070 0 0070
0.62007 0 34800
0.0060 0.1570
0 66218 0.45045
0.0028- 0.0607
0.78084 0.57937
0.0001 0.0117
0.71407 0.52103
0.0009 0.0266

09:44 Monday, April

TCMTLNS

0 19302
0.4429

0 58504
0.0v08

0 13625
0 5898

0 04429
0 8615

_ 0.20447

0 4157

0.17851
0 4785

0 21277
0.3966

29, 1991

TOTLNS

0 25158
0.3139

0.50766
0.0315

0.44330
0.0654

0 46213
0.0535

0.55452
0.0169

0.59534
0.0091

0.56854
0.0138

2

14!

SIZE MEASUREMENTS VS RESIDUAL COMPLEXITY MEASUREMENTS 09:45 Monday, April 29, 1991
Correlation Analysis

-6 'WITH’ variables: R1U RIT R2U R2T R3U R3T
10 ‘VAR' Variables: HEXELNS HBLKLNS HCMTLNS NEXELNS NBLKLNS NCMTLNS TEXELNS TBLKLNS TCMTLNS TOTLNS

Simple Statistics

Variable N Mean Std Dev Median Minimum Max 1mum
R1U 18 1342.900000 732.644191 1326.050000 296 700000 3444 .500000
RIT 18 21311 . 15218 18777 3234 100000 51397
R2U 18 1439.194444 696.135651 1424 .650000 610.400000 3409.300000
R2T 18 21741 15753 19021 3207 000000 53797
R3U 18 1238.4611 11 624.101364 1223.250000 505.800000 3022.500000
R3T 18 19770 14487 17229 2821.800000 49388
HEXELNS 18 118.444444 73.807558 97 .500000 29.000000 253 .000000
HBLKLNS 18 34.777778. 19.028015 36.000000 8.000000 84.000000
HCMTLNS 18 94.833333 69.959862 62.500000 20 000000 233.000000
NEXELNS 18 277.944444 204.744453 206.000000 58.000000 795.000000
NBLKLNS 18 75.500000 59.602862 49 000000 12 000000 228.000000
NCMTLNS 18 246.722222 170.113044 283.500000 64.000000 600.000000
TEXELNS 18 393. 000000 239.235301 361.500000 99.000000 884 .000000
TBLKLNS 18 108.555556 73.533684 90.000000 25.000000 312.000000
TCMTLNS 18 337.555556 212.931975 329.500000 93.000000 721.000000
TOTLNS 18 839.1111 111 446.659087 1003.000000 231.000000 1427 .000000

9¢1

RI1T

R2U

R2T

R3U

R3T

HEXELNS

0.71864
0.0008

0.67734
0 0020

0 84151
0 0001

0 67734
0.0020

0.83781
0.0001

0.67734
0.0020

Spearman Correlation Coefficients / Prob >

HBLKLNS

0.61984
0 0061

0 82231
0.0001

0.81302
0 ooon

0 82231
0.0001

0 81137
0.0001

0 82231
0.0001

SIZE MEASUREMENTS VS RESIDUAL COMPLEXITY MEASUREMENTS

HCMTLNS

0.37190
0.1286

0.17459
0.4884

0.50000
0 0346

0.17459
0.4884

0.50646
0.0320

0.17459
0 4884

NEXELNS

0.70005
0.0012

0.96231
0.0001

0.81053
0.0001

0 96231
0 0001

0 80733
0.0001

0.96231
0.0001

Correlation Analysis

NBLKLNS

0.52142
0.0265

0.87248
0 o000

0.64739
0.0037

0.87248
0 0001

0.64669
0.0037

0 87248
0.0001

IR} under Ho: Rho=0 / N

NCMTLNS

0.42230
0 o808

0.61125
0 0070

0.68147
0.0018

0.61125
0.0070

0.68027
0 0019

0 61125
0.0070

TEXELNS

0.74200
0 0004

0.96285
0.0001

0 86171
0.0001

0.96285
0.0001

0 85803
0.0001

0 96285
0 0001

09:45 Monday, Apral

= 18
TBLKLNS

0.52322
0 0259

0 88854
0 0001

0 68215
0 0018

0.88854
0.0001

0.68147
0 0018

0.88854
0 0001

TCMTLNS

0.41176
0 0895

0.43240
0 0731

0 63674
0 0045

0 43240
0.0731

0 63913
0 0043

0 43240
0 0731

29, 1991

TOTLNS

0.64533
0.0038

0.88384
0.0001

0.82499
0.0001

0.88384
0.0001

0.82335
0.0001

0.88384
0.0001

2

L21

17

17

‘WITH’ Variables:

VAR’

Variables:

Variable

HUN1
HUNZ2
HCAPN1
HCAPN2
HEFRT
NUN1
NUN2
NCAPNI
NCAPN2
NEFRT
TUN1
TUN2
TUNIN2
TCAPN1
TCAPN2
TCAPNIN2
TEFRT

HUN1
TUNIN2
HUN1
TUNIN2

" HUNZ

TCAPNI
HUN2
TCAPN1

18

18
18
18
18
18
18
18
18
18
18
18
18
18

18

SOFTWARE SCIENCE VS SOFTWARE SCIENCE MEASUREMENT

HCAPN1 HCAPN2 HEFRT NUN1
TCAPN2 © TCAPNIN2 TEFRT
HCAPN1 HCAPN2 HEFRT NUN1
TCAPN2 TCAPNIN2 TEFRT
Simple Statistaics

Mean Std Dev
37.555556 11 642833
55.888889 25.840891
338.944444 225.123880
188.777778 122.758757
302424 362591
44.500000 12.701320
72.388889 40.744742
942.222222 710.268844
591.833333 465.025521
2813805 3679114
82.055556 22.367182
128.277778 61.622003
210.333333 83.223300
1281.166667 808.642017
780.611111 511.298478
2061.777778 1317.423937
5209993 5339407

Correlation Analysis

NUN2

NUN2

Median

35.000000
54.500000
249.000000
143.500000
129673
46.000000
69.500000
687.000000
412.000000
1054636
83.000000
127.000000
211.500000
1193.500000
720.500000
1889.000000
3614345

09:47 Monday, Apral 29,

NCAPN2

NCAPN2

Minimum

23 000000
19.000000
62.000000
36.000000
12337
27.000000
26.000000
151.000000
80.000000
56230
50.000000
56.000000
106.000000
274.000000
142.000000
416.000000
180012

NEFRT

NEFRT

TUN1

TUN1

Ma x ymum

61 000000
113.000000
827.000000
446.000000

1140590

73.000000

190.000000
2565.000000
1608 .000000

13686523

134.000000

303.000000

437 .000000
2824.000000
1764.000000
4588 .000000

18474019

1991

TUN2

TUNZ2

1

8¢1

SOFTWARE SCIENCE VS SOFTWARE SCIENCE MEASUREMENT 09 47 Monday, Apral 29, 1991

Correlation Analysis

Spearman Correlation Coefficients / Prob > |R| under Ho- Rhos=0 / N = 18

HUN1 HUN2 HCAPN1 HCAPN2 HEFRT NUN1 NUN2 NCAPN1 NCAPN2
HUNI 1 00000 0 81903 0.92451 0.92451 0 95450 0 73433 0.74561 0 69183 0 65357
0.0 0 0001 0 0001 0 0001 0 0001 0.0005 0 0004 0 0015 0.0033
HUN2 0 81903 1 00000 0 92776 0 90712 0 87616 0 55091 0 61404 0 59959 0 56656
0 0001 0.0 0 0001 0 0001 0 0001 0 0178 0 0067 0 0085 Q0 0142
HCAPN1 0 92451 0 92776 t 00000 0 99587 0 98555 0 65840 0 66770 0 65738 0 62642
0 0001 0 0001 00 0 0001 0 0001 0 0030 0 0025 0 0030) 0 0054
HCAPNZ2 0 92451 0.90712 0 99587 1 00000 0 98968 0 65013 0 65325 0 65531 0 62023
0 0001 0.0001 0.0001 00 0 0001 0 0035 0.0033 0 0032 0.0060
HEFRT 0.95450 0.87616 0.98555 0 98968 1 00000 0 66563 0 65531 0 63674 0 60165
0 0001 0.0001 0.0001 0 0001 00 0 0026 0 0032 0 0045 0 0083
NUN1 0 73433 0.55091 0 65840 0 65013 0 66563 1 00000 0 92300 0 90026 0.89199
0 -0005 0 0178 - 0 0030 0.0035 0 0028 00 0 0001 0.0001 0 0001
NUN2 0 74561 0 61404 0 66770 0 65325 0 65531 0 92300 1 00000 0 92363 0 90712
0 0004 0.0067 0.0025 0.0033 0 0032 0 o001 0.0 0 oo 0 0001
NCAPN1 0 69183 0 59959 0 65738 0 65531 0.63674 0.90026 0.92363 1 00000 0 99174
0 0015 0 0085 0.0030 0.0032 0.0045 0 0001 0.0001 00 0.000}
NCAPN2 0 65357 0.56656 0.62642 0.62023 0 60165 0 89199 0.90712 0 99174 1 00000

0 0033 0.0142 0.0054 0.0060 0 0083 0.0001 0 0001 0.0001 0o
NEFRT 0.62978 0.52735 0.60372 0 59959 0 58308 0.90749 0.89680 0 98555 0.99381
B - 0.0051 0.0245 - 0.0080 0.0085 0.0 0.0001 0.0001 B 0.0001 0.0001
TUN1 B 0.95864 0.79154 0 87822 0 87203 0 89886 0 85685 0 85552 0.78535 0.75851
0.0001 0.0001 0 0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003
TUN2 0 88728 0.84520 - 0 86791 0 85346 0 84727 0 85788 0 90918 0 B6997 0.84727
0 0001 0.0001 0 0001 0.0001 0.0001 0.0001 0 0001 0 0001 0.0001
TUNIN2 0 91667 0 86364 0.8894¢ 0.87180 0 87293 0 84635 0.88946 0 8347 0 81302
0.0001 0.0001 0.0001 0 oo 0 0001 0.0001 0 0001 0 ooo 0.0001
TCAPNI 0.73733 0.66357 0 72755 0 72136 0 69453 0 90749 0 93189 0 98142 0.97317
0 0005 0.0027 0 0006 0 0007 0.0014 0.0001 0 0001 0 000 0 0001
TCAPN2 0 71872 0.66770 0 72136 0 71517 0 68834 0 89923 0 91744 0 98762 0.98349
0 o008 0.0025 0 0007 0 0008 0 0016 0 0001 0 0001 0 0001 0.0001Y
TCAPNIN2 0 72596 0.66563 0 72343 0 71723 0 69040 0 90646 0 91950 0.98349 0 97936
0 0006 0 0026 0 0007 0.004a8 0.0015 0 0001 0 0001 0 o001 0.0001
TEFRT 0 73320 0 64293 0 71311 0 70898 0 68834 0 91163 0 91744 0 98555 0 98142
0 0o0o0s 0 0040 0 0009 0.0010 0 0016 0.0001 0 0001 0 0001 0.0001%

6¢C1

HUN1
HUN2
HCAPN1
HCAPN2
HEFRT
NUN1
NUN2
NCAPN1
NCAPN2
Neréi
TUN1
TUN2
TUNIN2
TCAPN1
TCAPN2
TCAPNIN2

TEFRT

NEFRT

0.62978
0.0051

0 52735
0 0245

0 60372
0.0080

0.59959
0.0085

0.58308
0.0111

0 90749
0.0001

0.89680
0.0001

0.98555
0.0001

0.99381
0.0001

1.00000 .

0.0

0.73787
0.0005

0.81631
0.0001

0 78099
0.0001

0 96285
0.0001

0.97317
0.0001

0 96904
0 0001

0 97110
0.0001

SOFTWARE SCIENCE VS SOFTWARE SCIENCE MEASUREMENT

Correlation Analysis

09.47 Monday, Apral

Spearman Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 18’

TUN1

0 95864
0.0001%

0 79154
0.0001

0.87822
0.0001

0 87203
0.0001

0.89886
0.0001

0.85685
0.0001

0.85552
0.0001

0.768535
0.0001

0.75851
0.0003

0.73787
0.0005

1.00000
0.0

0.94634
0.0001

0.96798
0.0001

0.82869
0.0001

0.81218
0.0001

0 82456
0.0001

0.82869
0.000)

TUN2

0,88728
0 0001

0.84520
0 0001

0 86791
0 0001

0 85346
0.0001

0.84727
0.0001

0.85788
0.0001

0.90918
0.0001

0.86997
0.0001

0.84727
0.0001

0.81631
0.0001

0.94634
0.0001

1.00000
0o

0 99277
0.0001

0.91125
0.0001

0.90299

0.000V

0 90506
0 0001

0 89886
0 0001

TUNIN2

0 91667
0.0001

0 86364
0 0001

0 88946
0 0001

0 87190
0.0001

0.87293
0.0001

0 84635
0.0001

0.88946
0.0001

0.83471
0.0001

0.81302
0.0001

0.78099
0.0001

0 96798
0.0001

0.99277
0.0001

1 00000
0.0

0.88430
0.0001

0 87293
0.0001

0.87913
0.0001

0 87397
0.0001

TCAPNI

0 73733
0.0005

0 66357
0.0027

0 72755
0 0006

0 72136
0 0007

0 69453
0 0014

0 90749
0.0001

0 93189
0.0001

0.98142
0.0001

0.97317
0.0001

0.96285
0.0001

0.82869
0.0001

0.91125
0 0001

0 88430
0.0001

1 00000
0.0

0 99381
0.0001

0 99587
0.0001

0.99381
0 0001

TCAPN2

0 71872
0 0008

0 66770
0 0025

0 72136
0 0007

0 71517
0.0008

0.68834
0.0016

0 89923
0.0001

" 0 91744

0.0001

0.98762
0.0001

0.98349
0.0001

0.97317
0.0001

0 81218
0.0001

0.90299
0 0001

0.87293
0.0001

0.99381
0.0001

1.00000
0.0

0.99794
0.0001

0 99587
0.0001

TCAPN1IN2

0 72596
0.0006

0 66563
0.0026

0 72343
0 0007

0 71723
0 0008

0 69040
0 0015

0 90646
0.0001

0.91950
0 o001

0.98349
0.0001

0 97936
0.0001

0 96904
~0.0001

0 82456
0.0001

0.90506
0 0001

0.87913
0 0001

0 99587
0.0001

0 99794
0 0001

1 00000
0o0

0 99794
0.0001

TEFRT

0 73320
0 0005

0 64293
0 0040

0 71311
0 0009

0 70898
0 0010

0 68834
0 0016

0 91163
0 0001

0.91744
0.0001

0.985585
0.0001

0.98142
0.0001

0 97110
0.0001

0 82869
0 0001

0.89886
0.0001

0 87397
0.0001

0.99381
0.0001

0 99587
0.0001

0 99794
0 0001

1 00000
00

29,

1991

3

0€T

3
17

‘WITH’ Varaiables.

‘VAR’

Variables.

Variable

HOSTVG
NODEVG
TOTVG
HUN1
HUN2
HCAPN1
HCAPN2
HEFRT
NUN1
NUN2
NCAPN1
NCAPN2
NEFRT
TUNI
TUN2
TUNIN2
TCAPN)
TCAPN2
TCAPN1IN2
TEFRT

HOSTVG
HUN1
TUNIN2

NODEVG
HUN2
TCAPN1

TOTVG
HCAPNI1
TCAPN2

Mean

14.444444
57 666667
72 111111
37.555556
55.888889

338.944444
188 777778
302424
44.500000
72.388889
942 222222
591.833333
2813805
82.055556
128.277778
210.333333
1281.166667
780.611111
2061.777778
5209993

HCAPN2
TCAPNIN2 TEFRT

Correlation Analysis

HEFRT

Simple Statistics

Std Dev

14 455702
49 413025
53 198727
11.642833
25.840891

225. 123880
122.758757
362591
12.701320
40.744742
710.268844
465.025521
3679114
22.367182
61.622003
83.223300

B0B.642017

511.298478

1317.423937

5339407

NUN1

SOFTWARE SCIENCE VS CYCLOMATIC COMPLEXITY MEASUREMENT

NUN2

Mediran

7 000000

35 000000
52 500000
35 000000
54 500000
249.000000
143.500000
129673

46 000000
69.500000
687.000000
412.000000
1054636
83.000000
127 .000000
211.500000
1193.500000
720.500000
1889.000000
3614345

09.51

NCAPN2

Minimum

416.

000000
000000
000000
000000
000000
000000
000000

12337
000000

.000000

000000

.000000

56230

.000000
.000000
.000000
.000000
.000000

000000
180012

Monday, Apral 29,

TUN1

Max 1mum

47 000000
152 000000
158 000000
61 000000
113.000000
827.000000
446 .000000
1140590

73 000000
190 000000
2565.000000
1608.000000
13686523
134.000000
303 000000
437 .000000
2824 .000000
1764 .000000
4588 000000
18474019

1991

TUN2

1

T€T

HOSTVG

NODEVG

TOTVG

HOSTVG

NODEVG

TOTVG

HUN1

0.92085
0.0001

0.66304
0 0027

0.76553
0.0002

NEFRT

0.41061
0.0905

0.97624
0.0001

0.94525
0.0001

SOFTWARE SCIENCE VS CYCLOMATIC COMPLEXITY MEASUREMENT

Correlation Analysis

Spearman Correlation Coefficirents / Prob > IR}

HUN2

0.71831
0.0008

0 52169
0 0264

0.61260
0 0069

TUN1

0.80979
0.0001

0.79029
0.0001

0.85021
0.0001

HCAPN1

0 B2123
0.0001

0 60641
0 0076

0 70145
0.001¢

TUN2

0.73079
0.0006

0.83574
0.0001

0.89360
0.0001

HCAPN2

0 83162
0.0001

0 60641
0 0076

0 70351
0 0011

TUNIN2

0.76276
0.0002

0.81024
0.0001

0.87332
0.0001

HEFRT

0 86489

0 0001

0 59814
0.0087

0 69318
0 0014

TCAPN1

0.55095
0.0178

0.95661
0.0001

0 97934
0 0001

under Ho: Rho=0 / N
NUN1

0 51901
0.0273

0 91930
0.0001

0 91412
0 0001

TCAPN2

0.51976
0.0270

0.95971
0 0001

0 97004
0.0001

09.51 Monday, April

= 18
NUN2

0 55823
0 0161

0 90703
0 0001

0 92975
0 0007

TCAPNINZ

0 52184
0.0263

0 96384
0 ooo

0 97417
0 0001

NCAPN1

0 49689
0 0359

0 96694
0o 0001

0 96901
0 0001

TEFRT

0.53640
0.0217

0.96798
0.0001

0 98037
0 0001

29,

1991 2

NCAPN2

0.44596
0.0636

0.97624
0.0001

0 95558
0 0001

AN

SOFTWARE SCIENCE VS COMMUNICATION COMPLEXITY MEASUREMENT 09:51 Monday, Apral 29, 1991 1
Correlation Analys s

7 ‘WITH’ variables- HMSGSND HMSGREC NMSGSND NMSGREC TMSGSND TMSGREC TCOMMSG

17 ‘VAR’ Variables. HUNI1 _HUNZ2 HCAPN1 HCAPN2 HEFRT NUN1 NUNZ2 NCAPNI1 NCAPN2 NEFRT TUN1 TUNZ
TUNIN2 TCAPN1 TCAPN2 TCAPNIN2 TEFRT
Simple Statistics
Variable N Mean Std Dev Mediran Minimum Ma x 1mum
HMSGSND 18 4 277778 2 803476 4 500000 ¢l 9 000000
HMSGREC 18 2 611111 1 144752 2 000000 1 0060000 5 000000
NMSGSND 18 8 888889 6.641128 9 000000 2 oouoGu 32 000000
NMSGREC 18 10.555556 6.921596 10 000000 2.000000 33 000000
TMSGSND 18 13.166667 7.270003 13 000000 3 000000 35.000000
TMSGREC 18 13.166667 7.196813 13.000000 3.000000 35 000000
TCOMMSG 18 26.333333 14.418126 27.000000 6.000000 70.000000
HUN1 18 37.555556 11.642833 35.000000 23.000000 61 000000
HUNZ2 18 55,888889 25.8400891 54.500000 19.000000 113.000000
HCAPN1 18 338.944444 225.123880 249 000000 69 000000 827 000000
HCAPN2 18 188.777778 122.758757 143.500000 36.000000 446 000000
HEFRT 18 302424 362591 129673 12337 1140590
NUN1 18 44 .500000 12.701320 46.000000 27.000000 73 000000
NUN2 18 72,388889 40.744742 69.500000 - 26.000000 190.000000
NCAPN1 18 942.222222 710.268844 687.000000 151.000000 2565 000000
NCAPN2 18 $91,833333 465 .025521 412.000000 80.000000 1608 000000
NEFRT 18 ‘2813805 3679114 1054636 56230 13686523
TUN1 18 82.055556 22.367182 83.000000 50.000000 134 000000
TUN2 18 128.277778 61.622003 127.000000 §6.000000 303.000000
TUNIN2 18 210.333333 83.223300 211.500000 106.000000 437 .000000
TCAPN1 18 1281,166667 808.642017 1193.500000 274.000000 2824 .000000
TCAPN2 18 780.611111 511.298478 720.500000 142.000000 1764 .000000
TCAPNIN2 18 2061.777778 1317.423937 1889 .000000 416.000000 4588 000060
TEFRT 18 5209993 5339407 3614345 180012 18474019

€€l

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

HUN1

0.59908
0.0086

0.65912
0.0029

0 37416
0 1261

0 58384
0.0110

0 62091
0.0060

0.65484
0 0032

0 64535
0.0038

NEFRT

0 05008
0.8436

0.62222
0.0058

0.67189
0.0023

0 46189
0.0536

0.57084
0.0134

0 66706
0.0025

0 60717
0 0075

SOFTWARE SCIENCE VS COMMUNICATION COMPLEXITY MEASUREMENT 09.51 Monday, April 29, 1991

Correlation Analysis

Spearman Correlation Coefficients / Prob > |R] under Ho Rho=0 / N = 18
HUN2 HCAPNI1 HCAPN2 HEFRT NUN1 NUN2 NCAPN1 NCAPN2
0 63958 0.69696 0 70740 0 69905 0.06792 0 10016 0 13668 0 08660
0 0043 0.0013 0 0010 0 0012 0.7889 0.6925 0 5886 0 7326
0 64956 0 69439 0 64628 0 63972 0 71300 0 70533 0 61019 0 62988
-0.0035 0.0014 0 0038 0 0042 0 0009 0 00N 0 0072 0 0051
0.51796 0 50860 0 48259 0 40355 0 61043 0 67709 0 67085 0 68749
0.0277 0.0311 0.0425% 0 0968 0.0071 0 0020 0 0023 0 0016
0.78458 0.77720 0 77825 0 70127) 0 36333 0.41233 0.52833 0.50829
0.0001 0.0001 0.0001 0 0012 0.1383 0.0891 0.0242 0.0313
0.74106 0.77842 0.78050 0 70370 0.52287 0 58745 0.62274 0 60094
0.0004 0.0001 0.0001 0 0011 0.0260 0.0104 0.0058 0.0083
0.80590 0.79755 0.78293 0 70986 0 57504 0.62739 0 71717 0 70986
0.0001 0.0001 0.0001 0.0010 0.0125 0 0053 0.0008 0.0010
0 80541 0.80956 0.80333 0.72238 0.54210 0 59887 0 65907 0 64246
0.0001 0.0001 0.0001 0.0007 0.0201 0.0086 0.0029 0.0040
TUNI TUN2 TUNIN2 TCAPNI1 TCAPN2 TCAPNIN2 TEFRT
0.42152 0.37665 0.41412 0 20450 . 0 19093 0 18572 0 18259
0 0815 0.1234 0.0875 0.4157 0.4479 0 4606 0 4683
0.72392 0.76001 0.77885 0 68893 0.66378 0 67799 0.65721
0.0007 0.0003 0.0001 0.0016 0.0027 0.0020 0.0030
0.50132 0.66045 0.63042 0.75197 0.72389 0.73429 0.70205
0.0341 0.0029 0.0050 0.0003 0.0007 0.0005 0.0012
0.53465 0.63589 0 63549 0 61374 0 61163 0 61163 0.59476
0.0223 0.0046 0.0046 0.0067 0.0070 0.0070 0.0092
0.61651 0.71719 0 70390 0 71511 0 68917 0.69643 0 67256
0.0064 0.0008 0.0011 0.0009 0.0016 0 0013 0.0022
0.66393 0.78502 0.77956 0.79859 0 79024 0 79650 0.77876
0.0027 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.64765 0 75870 0 75066 0 75248 0 73483 0 74417‘ 0.71926
0.0037 0 0003 0.0003 0.0003 0.0005 R 0.0004 0 0008

'

ReT

6 ‘WITH’

17

‘VAR’

Variables
Variables.

Varaiable

R1U
RIT
R2U
R2T
R3U
R3T
HUN1
HUN2
HCAPN1
HCAPN2
HEFRT
NUN1
NUN2
NCAPNI
NCAPN2
NEFRT
TUN1
TUN2
TUNIN2
TCAPN1
TCAPN2
TCAPNINZ
TEFRT

R1U
HUN1
TUNIN2Z

RIT
HUNZ2
TCAPNI

SOFTWARE SCIENCE VS RESIDUAL COMPLEXITY MEASUREMENT

R2U
HCAP
TCAP

1342
1439

1238

37.

55
338

188.

44

72.

942
591

o 82
128
210

1281
780
2061

R2T
N1 HCAPN2

Corretation Analysis

R3U R3T
NUN1

HEFRT

N2 TCAPNIN2 TEFRT

Mean

900000
21311
194444
21741
461111
19770
555556
888889
944444
777778
302424
500000
388889
.222222
833333
2813805
.055556
.277778
. 333333
166667
611111
.777778
5209993

Simple Statistics

Std Dev

732 644191
15218

696 135651
16753
624.101364
14487
11.642833
25 840891
225 123880
122.758757
362591

12 701320
40 744742
710.268844
465.025521
3679114
22.367182
61.622003
83.223300
808 642017
511.298478
1317 423937
5339407

NUN2

Median

1326 050000
18777

1424 650000
19021

1223 250000
17229
35.000000
54.500000
249.000000
143 500000
129673
46.000000
69 500000
687 000000
412 000000
1054636

83 000000
127.000000
211.500000
1193.500000
720.500000
1889.000000
3614345

N

296
3234
610
3207

2821

23.

19
69
36

27
26
151
80

50

106.

274
142
416

09:52 Monday, April 29,

CAPN2

Miynimum

700000
100000
400000
000000
800000
.800000
000000
000000
000000
.000000
12337
000000
000000
000000
000000
56230
000000
.000000
000000
.000000
.000000
000000
180012

TUNI

Max ymum

3444 500000

51397
3409.300000
53797
3022.500000
49388

61 000000

113.000000
827.000000
446 000000
1140590
73.000000
190.000000
2565.000000
1608 .000000
13686523
134.000000
303 000000
437.000000
2824 000000
1764.000000
4588 .000000
18474019

1991

TUN2

1

Gel

R1U

R1T

R2U

R2T

R3U

R3T

R1U

RIT

R2U

HUN1

0.73113
0 0006

0 72596
0.0006

0 91520
0.0001

0.72596
0 0006

0.91464
0.0000

0.72596
0.0006

NEFRT

0 62023
0.0060

0.96904
0.0001

0.78947
0.0001

0.96904
0.0001

0 78678
0 0001

0.96904
0.0001

SOFTWARE SCIENCE VS RESIDUAL COMPLEXITY MEASUREMENT

Caorrelation Analysis

Spearman Correlation Coefficients / Prob > IR}

HUN2

0 74200
0.0004

0 66563
0.0026

0 85965
0 0001

0.66563
0.0026

0.85906
0.0001

0.66563
0.0026

TUN1

0.68627
0.0017

0 82456
0.0001

0.96698
0.0001

0 B2456
0.0001

0 96644
0.0001

0 82456
0.0001

HCAPN1

0 76883
0.0002

0.72343
0 0007

0 88854
0 0001

0 72343
0,0007

0 88591
0.0001

0.72343
0.0007

TUN2

0.74613
0.0004

0.90506
0.0001

0.99174
0.0001

0.90506
0.0001

0.99329
0.0001

0.90506
0.0001

HCAPN2Z

0 75232
0.0003

0 71723
0 0008

0 87203
0 0001

0 71723
0.0008

0 86939
0.0001

0 71723
0.0008

TUNINZ

0.75103
0.0003

0.87913
0.0001

0.99897
0.0001

0 87913
0.0001

0 99948
0 0001

0 87913
0.0001

HEFRT

0 71930
0 ooo8

0 69040
0 0015

0 87203
0 o001

0 69040
0.0015

0.86939
0.0001

0 69040
0.0015

TCAPNI

0 71723
0.0008

0.99587
0.0001

0.89267
0.0001

0 99587
0.0001

0 89107
0 0001

0.99587
0.0001

under Ho. Rho=0 / N

NUNI

0 58398
0.0109

0 90646
0 0001

0 84548
0 0001

0 90646
0 0001

0 B4747
0.0001

0 90646
0 0001

TCAPN2

0.70485
0.001

0 99794
0.0001

0 88235
0.0001

0 99794
0.0001

0 87971
0 o001

0 99794
0.0001

N

09-52 Monday, Apral

= 18

NUN2

0 61610

0 0065

0 91950

0 0001

0 88854

0 0001

0 91950

0 0001

0 89004

0 0001

0 91950

0 0001

TCAPNIN2

0 71104

1

0.0009

00000
0 0001

0 88854

1

0 0001

00000
0 0001

0 88591

1

0 0001

ooooo
0 0001

NCAPN1

0 66770
0 0025

0 98349
0 0001

0 84314
0 ooo

0 98349
0 0001

0.84151
0 0001

0 98349
0 0001

TEFRT

0 70691
0.0010

0 99794
0.0001

0.88442
0 0001

0 99794
0 0001

0 B8178
0.0001

0 99794
0 0001

29,

1991

NCAPNZ2

0.64912
0.0036

0 97936
0.0001

0 82250
0 0001

0.979386
0.0001

0.81982
0.0001

0.97936
0.0001

2

9¢T

Variable

HOSTVG
NODEVG
TOTVG

CYCLOMATIC COMPLEXITY VS CYCLOMATIC COMPLEXITY MEASUREMENTS 09-54

Correlation Analysis

3 ‘WITH’ variables: HOSTVG NODEVG TOTVG
3 'VAR‘ Variables: HOSTVG NODEVG TOTVG

Simple Statistics

N Mean Std Dev Median
18 14 444444 14.455702 7.000000
18 57 666667 49 413025 35.000000
18 72 111111 53 198727 52 500000

Minimum
2 000000

6 000000
10 000000

Spearman Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 18

HOSTVG NODEVG
HOSTVG 1 00000 0.44642
00 0.0633
NODEVG 0 44642 1.00000
0 0633 00
TOTVG 0.60875 0 96691
0 0073 0.0001

TOTVG

0.60875
0.0073

0 966
0 0001

1.00000
0.0

Monday, April 29,

Ma x ymum

47 000000
152 000000
158 000000

1991

1

LET

7
3

Variable

HMSGSND
HMSGREC
NMSGSND
NMSGREC
TMSGSND
TMSGREC
TCOMMSG
HOSTVG
NODEVG
TOTVG

CYCLOMATIC COMPLEXITY VS COMMUNICATION COMPLEXITY MEASUREMENTS

‘WITH' Vvariables.
‘VAR’ Vvariables:

N

18
18
18
18
18
18
18
18
18
18

4.

2

8
10
13.
13.
26.
14.
87.
72.

HMSGSND HMSGREC NMSGSND NMSGREC TMSGSND

HOSTVG

Mean

277778
611111
888889
555556
166667
166667
333333
444444
666667
nman

Correlation Analysis

NODEVG

TOTVG

Simple Statistics

NNOO =N

14.
14.

49

63.

Std Dev

803476
144752
641128
921596
.270003
.196813
418126
455702
413025
198727

Median

4.500000
2 000000
9.000000
10.000000
13.000000
13.000000
27.000000
7.000000
35.000000
52.500000

-

Spearman Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

HOSTVG

0.73569
0.0005

0.45052
0.0606

0.22106
0.3780

0 58317
‘0.01M

0 58285
0.0y

0 56362
0.0149

D.56665
0.0142

NODEVG

0.03133
0.9018

0.62505
0.0055

0.66998
0.0023

0.44020
0 0675

0.55429
6.0170

0.64894
0.0036

0.59221
0.0096

TOTVG

0.19844
0.4299

0 62834
0.0052

0.66998
0.0023

0 55632
0.0165

0 64884
0.0036

0.73358
0.0005

0.67949
0.0019

TMSGREC

CONDWWNN =

09:53 Monday,

Minimum

0
000000
000000
000000

.000000
000000
000000

.000000

.000000

.000000

18

TCOMMSG

Apral 29,

Max 1mum

9

5
32
33
35
35.
70.
47
152
158.

000000

.000000

000000
000000

.000000

000000
000000

.000000

000000
000000

1991

1

6eT

Variable

R1U
RIT
R2U
R2T
R3U
R3T
HOSTVG
NODEVG
TOTVG

CYCLOMATIC COMPLEXITY VS RESIDUAL COMPLEXITY MEASUREMENTS 09.54

6 ‘WITH’ Variab

Correlation Analysis

les. R1U

3 ‘VAR‘ Variables: HOSTVG

N
18 1342
18
18 1439
18
18 1238
18
18 14
18 57
18 72

RI1T

R2U

NODEVG TOTVG

Simple Statistics

Mean

900000
2131
194444
21741
.4611 11
19770
444444
666667
IRRRAR

732

696

624.

14.
.413025
53.

49

Std Dev

644191
15218
135651
15753
101364
14487
455702

198727

Spearman Correlation Coefficients / Prob > |R}

RI1T

R2U

R2T

R3U

R3T

HOSTVG

0.64763
0.0037

0.52184
0.0263

0.76405
0 0002

0.52184
0.0263

0 76445
0.0002

0.52184
0 0263

NODEVG

0 55062
0.0179

0.96384
0.0001

0.82025
0.0001

0.96384
0.0001

0 81705
0 0001

0 96384
0.0001

R2T

1326.

1424,

1223

7

35.

52

Median

050000
18777
650000
19021
250000
17229
000000
000000
500000

under Ho R

R3U R3T

Minimum

296 700000
3234 100000
610 400000
3207 000000
505 800000
2821.800000
2 000000
6.000000
10.000000

ho=0 / N = 18

TOTVG

0 64153
0.0041

0.97417
0.0001

0.88430
0.0001

0.97417
0.0001

0.88217
0.0001

0.97417
0.0001

Monday, April 29, 1991 1

Max 1mum

3444 500000
51397

3409 300000
53797

3022 500000
49388

47 000000
152.000000
158.000000

6¢T

HMSGSND

HMSGREC

NMSGSND

NMSGREC

TMSGSND

TMSGREC

TCOMMSG

Variable

HMSGSND
HMSGREC
NMSGSND
NMSGREC
TMSGSND
TMSGREC
TCOMMSG

7
7

HMSGSND

1 00000
0.0

0.23659
0.3445

0.14459
0.5670

0.72819
0.0006

0.61176
0.0070

0.54512
0 0193

0.57976
0.0117

COMMUNICATION COMPLEXITY VS COMMUNICATION COMPLEXITY MEASUREMENTS

‘WITH’ Variables
‘VAR’ Varaiables

Spearman Correlation Coefficrents / Prob >

HMSGREC

0 23659
0.3445

1.00000
0.0

0.73290
0.0005

0.43412
0.0718

0.59169
0.0097

0 65817
0.0030

0 64338
0.0040

H

- 4.
2.

8
10.
13.
13.
26.

Correlation Analysis

HMSGSND HMSGREC
HMSGSND HMSGREC

Mean

277778
611111

.88888Y

555556
166667
166667
333333

NMSGSND NMSGREC
NMSGSND NMSGREC

Simple Statistics

NMSGSND

0 14459
0.5670

0.73290
0.0005

1.00000
0.0

0.62068
0.0060

0.80544
0.0001

0.78328
0.0001

0.80544
0.0001

Std Dev

.803476
144752
.641128
.921596
.270003
. 196813
.418126

IRl under Ho:

NMSGREC

0 72819
0.0006

0.43412
0.0718

4

2

9
10.
13.
13.
27

0.62068

0.0060

1.00000
0.0

0 90573
0.0001

0.93551
0.0001

0.93278
0.0001

TMSGSND TMSGREC TCOMMSG
TMSGSND TMSGREC TCOMMSG
Median Miniymum
500000 0
.000000 -1 000000
000000 2 000000
000000 2 000000
000000~ 3.000000
000000 3 000000
000000 6.000000
Rho=0 / N = 18
TMSGSND TMSGREC
0 61176 0 54512
0.0070 0 0193
0.59169 0 65817
0.0097 0 0030
0.80544 0 78328
0.0001 0.0001
0.90573 0.93551
0.0001 0.0001
1.00000 0.91445
g.0 0 0001
0.91445 1 00000
0.0001 00
0.97599 0.97114
0.0001 0.0001

10.00 Monday,

(AR
[AR SN {e]

35

35.

70

April 29, 1991

Ma x 1mum

000000
000000
000000
000000
000000
000000
.000000

TCOMMSG

0.57976
0.0117

0.64338
0 0040

0 80544-

0.0001

0.93278
0.0001

0.97599
0.0001

0.97114
0.0001

1.00000
0.0

1

071

RIU

RI1T

R2U

R27T

R3u

R3T

Variable

R1U
R1T
R2U
R2T
R3U
R3T

HMSGSND
HMSGREC
NMSGSND
NMSGREC
TMSGSND
TMSGREC
TCOMMSG

HMSGSND

0.52168
0.0264

0 18572
0 4606

0.42152
0 0815

0 18572
0 4606

0 41234
0.0890

0.18572
0 4606

COMMUNICATION COMPLEXITY VS RESIDUAL COMPLEXITY MEASUREMENTS 10:01

Correlation Analysis

6 ‘WITH’ Variables RI1U R1T

7 ‘VAR’ Variables HMSGSND HMSGREC

'

R2U R2T

Simple Statistics

NMSGSND NMSGREC

R3U
TMSG

R3T

Monday, Apral 29,

SND TMSGREC TCOMMSG

N Mean Std Dev Median M1ni1mum
18 1342.900000 732.644191 1326.050000 296.700000
18 213011 15218 18777 3234 100000
18 1439, 194444 696.135651 1424 650000 610 400000
18 2174 15753 19021 3207 000000
18 1238 461111 624 101364 1223 250000 $05.800000
18 19770 14487 17229 2821 B0OOOOO
18 4.277178 2.803476 4.500000 . 0
18 2.611111 1.144752 2.000000 1.000000
18 8.888889 6.641128 9.000000 2.000000
18 10.555556 6.921596 10.000000 2 000000
18 13.166667 7.270003 13.000000 3 000000
18 . 13.166667 7.196813 13.000000 3 000000
18 26.333333 14.418126 27.000000 6 000000
Spearman Correlation Coefficrents / Prob > IRI under Ho. Rho=0 / N = 18

HMSGREC NMSGSND NMSGREC TMSGSND

0 62988 0 51588 0.72553 0.75663

0.0051 0.0284 0.0007 0.0003

0.67799 0.73429 0.61163 0.69643

0.0020 0.0005 0.0070 0 0013_

0 76766 0.63444 0 65065 0.70992

0.0002 0 0047 0.0035 0.0010

0 67799 0.73429 0.61163 0.69643

0.0020 0.0005 0.0070 0.0013

- 13

0.76806 0.63165 0.64413 0 70666
0.0002 0.0049 0.0039 0.0010

0.67799 0 73429 0.61163 0.69643
0.0020 0.0005 0.0070 0.0013

Ma x 1 mum

3444 .500000
51397

3409 300000
53797

3022 500000
49388
9.000000

5 000000
32.000000
33.000000
35.000000
35.000000
70.000000

TMSGREC

0.81947
0 0001

0 79650
0 0001

0 79128
0 o000

0 79650
0 0001

0 78699
0 0001

0.79650
0 0001

1991

TCOMMSG

0 80437
0.0001

0 74417
0.0004

0.75767
0.0003

0.74417
0.0004

0.75442
0.0003

0 74417
0.0004

1

%1

vVariable

R1U
R1T
R2U
R2T
R3U
_R37

RIT

R2U

R2T

R3U

R3T

RESIDUAL COMPLEXITY VS RESIDUAL COMPLEXITY MEASUREMENTS

6 ‘WITH’ variables- R1U

6 ‘VAR’ Variables: R1U
N Mean
18 1342.900000
18 2131
18 1439 194444
18 21741
18 1238 461111
18 R 19770

Spearman Correlation Coefficients / Prob >

R1U "RAT
1.00000 0.71104
0.0 0.0009
0.71104 1.00000
0.0009 0.0
0.75026 0.88854
0.0003 0.0001
0.71104 1.00000
0.0009 0.0001
0.75168 0.88591
0.0003 0.0001
0 71104 1.00000
0.0009 0.0001

Correlation Analysis

RIT
RAT

Simple Statistaics

Std Dev

732.644191
15218
696.135651
16753
624.101364
14487

R2U

0 75026
0.0003

0.88854
0.0001

1.00000
0.0

0.88854
0.0001

0.99948
0.0001

0.88854
0,0001

10:05 Monday, Apral 29,

R2T R3U R3T
R2T R3U R3T
Mediran Mi1nImum
1326 050000 296 700000
18777 3234 100000
1424 650000 610 400000
19021 3207 000000
1223 250000 505.800000
17229 2821 800000
|[R| under Ho: Rho=0 / N = 18
R2T R3U
0.71104 0.75168
0.0009 0.0003"
1.00000 0.88591
0.0001 0.0001
0.88854 0.99948
0.0001 0.0001
1.00000 0.88591
0.0 0.0001
0.88591 1.00000
0.0001 0.0
1.00000 0.88591
0.0001 0.0001

Max ymum

3444 500000
51397
3409 300000
53797
3022 500000
49388

R3T

0 71104
0 0009

1.00000
0.0001

0.88854
0.0001

1.00000
0.0001

0.88591
0.0001

1.00000
0.0

1991

1

42

variable

R1U
RI1T
R2U
R27
R3U
R3T
Qs
Q6
Q7
Q8
Q9
Q10

R1U

RI1T

R2U

R27

R3U

R3T

Spearman Correlation Coefficients / Prob >

Q5

0.02002
0.9371

-0.44519
0.0641

-0.26499

0.2879

~-0.44519
0.0641

-0.26513
0.2877

-0.44519
0.06M

SUBJECTS®

6 ‘WITH’ Variables-

6 ‘VAR’ Variables: Q5
N Mean
18 1342 900000
18 21311
18 1439 194444
18 21741
18 1238 461111
18 19770
18 13.000000
18 . 13.055556
18 14.444444
18 14.166667 _
18 10.888889

18 4.222222

Q6

~-0.07278
0.7741

-0 49013
0.0389

-0.36845
0.1325

-0.49013
0.0389

-0.36182
0.1401

-0.49013
- 0.0389

R1U

RI1T
Q6

Std Dev

732.644191
15218
135651
15753
624.101364
14487
.455214
.696787
.199128
.424574
.027111
437136

696

—_) - - - -

Q7

-0.08178
0.7470

-0.51337
0.0293

~-0.37708
0.1229

-0.51337
0.0293

-0.37045
0 1302

-0.51337
0.0293

R2U

REPLIES VS RESIDUAL COMPLEXITY MEASUREMENTS

Correlation Analysis

Simple Statistics

09:32 Monday,

R2T R3U R3T
Q8 Q9 Q10
Median M1nimum
1326 050000 296.700000
18777 3234 100000
1424 650000 610 400000
19021 3207 000000
1223.250000 505.800000
17229 2821.800000
14.000000 10.000000
14.000000 10.000000
15.000000 12.000000
15.000000 12.000000
10.000000 5 000000
4 000000 3 000000
|R| under Ho Rho=0 / N = 18
Q8 Q9
-0.14768 0.17367
0.5587 0 4907
-0.58184 0.65039
0.0113 0.0035
-0 39752 0.43246
0.1023 0 0731
-0.58184 0.65039
0.0113 0.0035
-0.39161 0.42587
0.1080 0.0780
-0.58184 0 65039
0.0113 0.0035

Apral 29, 1991 1

Ma x ymum
3444 500000
51397
300000
53797
.500000
49388
14.000000
15.000000
16 000000
16.000000
16.000000
8.000000

3409

Q10

-0 08675
0 7322

-0 51552
0.0285

-0.37673
0 1233

-0.51552
0.0285

-0.36B24
0.1327

-0.51552
0.0285

enl

APPENDIX H

VARIABLES USED IN THE REGRESSION ANALYSES

144

VARIABLE NAMES WITH DESCRIPTIONS USED IN THE

REGRESSION ANALYSIS

VARIABLE NAME DESCRIPTION METRIC

APLNO Application Number None

APLNAME Application Name None

Qs Question 5 in the Questionnaire Subjective

Q6 Question 6 in the Questionnaire "

Q7 Question 7 in the Questionnaire "

Qs Question 8 in the Questionnaire

Q9 Question 9 1n the Questionnaire

Q10 Question 10 In the Questionnaire "

HEXELNS Host Executable Lines Size

HBLKLNS Host Blank Lines

HCMTLNS Host Commented Lines

NEXELNS Node Executable Lines "

NBLKLNS Node Blank Lines

NCMTLNS Node Commented Lines "

TEXELNS Total Executable Lines "

TBLKLNS Total Blank Lines

TCMTLNS Total Commented Lines

TOTLNS Total Lines in an Application "

HUN1 Host Unique Operators Software
Science

HUN2 Host Unique Operands

HCAPN1 Host Total Operators !

HCAPN2 Host Total Operands "

145

146

HEFRT Host Effort (E) "
NUN?1 Node Unique Operators "
NUN2 Node Unique Operands "
NCAPN1 Node Total Operators "
NCAPN2 Node Total Operands "
NEFRT Node Effort (E) "
TUN1 Total Unique Operators "
TUN2 Total Unique Operands
TUN1N2 Total Unique Operators & Operands "
TCAPN1 Total Operators "
TCAPN2 Total Operands "
TCAPN1N2 Total Operators & Operands "
TEFRT Total Effort (E)
HOSTVG Host Cyclomatic Complexity Cyclomatic
Complexity
NODEVG Node Cyclomatic Complexity "
TOTVG Total Cyclomatic Complexity "
HMSGSND Host Message Send statements Communication
Complexity
HMSGREC Host Message Recelve statements "
NMSGSND Node Message Send statements !
NMSGREC Node Message Receive stateménts !
TMSGSND Total Message Send statements "
TMSGREC Total Message Receive statements "
TCOMMSG Total Message statements (Send & Receive) "
R1U Unmique Operators + Unique Operands Residual
Complexity
R1T Total Operators + Total Operands !

R2U Host Unique Operators & Operands +

Node Unique Operators & Operands "
R2T Host Total Operators & Operands +

Node Total Operators & Operands
R3U Host Umique Operators + Host Unique Operands

+ Node Unique Operators + Node Unique Operands "
R3T Host Total Operators + Host Total Operands

+ Node Total Operators + Node Total Operands

147

APPENDIX 1

REGRESSION ANALYSES

148

PERCEIVED COMPLEXITY VS SIZE MEASUREMENTS 16 28 Saturday, May 25, 1991 1

Stepwise Procedure for Dependent Variable Q9

Step 1 Variable NEXELNS Entered R-square = 0.33814370 C(p) = 7 55116459
DF Sum of Squares Mean Square F Prob>F
Regression 1 52 67527364 52 67527364 8 17 0 014
Error 16 103 10250414 6 44390651
Total 17 155.77777778
Paramete! Standard Type 11
Variable Estimate Error Sum of Squares f Prob~>F
INTERCEP 8 49929118 1 02787937 44() 5B565215 68 37 0 0001
NEXELNS 0 00859739 0 00300703 ¢ €7527364 8 17 0 0114
Bounds on condition number . 1, 1
Step 2 Variable HCMTLNS Entered R-square = 0 37205845 C(p) = B 44684259
DF Sum of Squares Mean Square F Prob-f
Regression 2 67 9584388% 28 97921943 4 44 0 0305
Error 15 97 81933892 6 52128926
Total 17 155 777717778
Parameter Standard Type 11
Varaiable Estimate Error Sum of Squares F Prob>F
INTERCEP 9 17381289 1 27703908 336 53082011 51 60 0 6001
HCMTLNS -0.00801976 0.00891006 5 28316521 0 81 0 3823
NEXELNS 0.00890687 0.00304451 55 B1473936 8 56 0 0104
Bounds an condition number 1 01292, 4 051678

Step 3 Variable HCMTLNS Removed R-square = 0 33814370 C(p) = 7 55116459

DF Sum of Squares Mean Square F Prob>FfF
Regression 1 652 67527364 52 67527364 8 17 0 0114
Error 16 103 10250414 6 44390651
Total 17 185 77777778

Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 8 49929118 1 02787937 440 58565215 68 37 0 oo
NEXELNS 0 00859739 0 00300703 52 67527364 8 17 0 0114

Bounds on condition numbher 1, 1

All variables left 'n the model are significant at the U 1500 level
No other variable met the 0 5000 signmificance level for entry 'nto the model

691

PERCEIVED COMPLEXITY VS SIZE MEASUREMENTS

Summary of Stepwise Procedure for Dependent Variable Q9

Variable Number Parthal Model _
Step Entered Removed In R*%2 R%*2 C(p)
1 NEXELNS 1 0 3381 0 3381 7.5512
2 HCMTLNS 2 0 0339 0 3721 8 4468
3 HCMTLNS 1 0.0339 0 3381 7 5512

F

B 1744
0 8101
0 81

16 28 Saturday,

Prob>F

0.0114
0 3823
0 3823

May 25,

1991

2

061

Obs

CONDOMBEWN =

10
1M
12
13
14
16
16
17
18

Sum of Residuals

Dep Var
Q9

5 0000
5 0000
10 0000
10 0000
10 0000
10 0000
10 0000
10 0000
10 0000
10 0o0uo
10 0000
15 0000
15 0000
13 0000
13 0000
14 0000
16.0000
10.0000

Predict
value

8 9979
9 17885
12 2738
12 4025
12 3509
10 0038
10 5197
3762
3762
49660
1527
4998
7889
12.8066
12 7722
10 6486
15.3342
10 0210

1

O —-0WOY

Sum of Squared Residuals

Predicted Resid SS (Press)

Std Err
Predict

0.892
0 846
0 770
0.799
0 787
0.674
0 612
0 799
0 799
o 717
0 852
0.635
0711
0.899
0.890
0 604
1.666
0.671

103
125

Lower95%

7
10
10

-
[N N =]

1

DONNNV

10
10

9.

11

0
1025
5567

Mean

L1073

3849
6417
7089
6824
5757
2221
6831
6831
8612
3455
1529
2809
9012
8857
3678
8026
5988

PERCEIVED COMPLEXITY VS SIZE MEASUREMENTS

Upper95%
Mean

10 8886
10 89721
13 9054
14 0961
14 0194
11 4319
11 8173
11 0694
11 0694
11 1320
10 9599
12 8466
11 2969
14 7120
14 6587
11.9285
18.8659
11 4433

Lower95%
Predict

BOUNNDMDNOWWWHLIOODOWW

2942
5061
6502
7610
7169
4362
9841
7348
7348
8723
4760
9525
2003
0979
0698
1170
8975
4549

Upper95%
Predict

14.7017
14 8509
17.8968
18 0440
17 9850
15 §714
16 0552
15 0176
15 0176
15 1209
14 8294
17 047
15 3775
18 5183
18 4746
16 1803
21 7709
15.5871

Residual

-3 9979

4

1785

-2 2735
-2 4028
-2 3509
-0 00384

1

COoOWOoODVWOODO

¢]

5197
6238
6238
5034
8473
5002
211
1934
2278
3514
6658
0210

Std Err
Resdual

2 377
2 393
2 419
2 409
2 413
2 447
2 464
2 410
2 410
2 418
2 3N
2 458
2 437
2 374
2.377
2 466
1 915
2 448

16 28

Student
Residual

-1
-1
-0
-0
-0
-0
-0

0OO0O~0O0ON-~-QTO0O

682
746
940
997
974
002
21
259
259
208
454
424
139

.081

096
359
348
009

Saturday,

-2-1-0

X 2]
LE 22
*
*
*

May

12

* %
e E¥

LR

25,

1991

3

Cook’s

OCO0OO0O0O0OO0O0ODODOOOOOOOOO

D

199
180
045
055
050
000
001
004
004
002
008
o068
195
000
oo
055
046
000

161

The SAS System

Stepwise Procedure for Dependent Variable Q9

C(p) = -

Sum of Squares

64606356
13171422
777771778

Standara
Error

91149916
00122407

C(p) = -

Sum of Squares

87907323
89870454
777771778

Standard
Error

06093990
00510028
00000044

1 26424364
Mean Square

67.64606356
5.50823214

Type 11
Sum of Squares

462 26114097
67.64606356

1 46553862
Mean Square

41 43953662
4 85991364

Type 11
Sum of Squares

226.37678485
31 99726518
15 23300967

12 28

B4 9v
12 28

46.58
6 58
3 13

16 30 Saturday,

Prob>F

0 0029

Frob>F

0 0001
0 0029

Prob>F

0 0034

Prob>F

0 o001
0 0215
0 0970

May 25,

1991

1

C(p) =

Sum of Squares

Step 1 Variable NCAPN2 Enteréd R-~square = (.43424720
DF
Regression 1 67
Error 16 a8
Total 17 155
Parameter
Variable Estimate
. INTERCEP 8 35014180 0
R NCAPN2 0.00428963 0.
Bounds on condition number. 1, 1
Step 2 variable TEFRT Entered R-square = -0.53203399
DF
Regression 2 82
Error 18 72
Jotal ? 155
Parameter
Variable Estimate
INTERCEP 7.24089834 1
v NCAPN2 0 01308687 0
) TEFRT ~0.00000079 0.
Bounds on condition number 19.67711, 78 70846
Step 3 variable NCAPN1 Entered R-square = 0.55461989
DF
Regression 3 86
Error 14 69
Total 17 155.
Parameter
Variable Estimate
INTERCEP 6 01882945 1
NCAPN1 0.01075275 4]
NCAPN2 0 00276554 0
TEFRT -0 00000132 -0
Bounds on condition number 281 8324, 1416 923

39745469
38032309
77777778

Standard
Error

80315164
01276152
01328819
00000078

0 02602637
Mean Square

28.79915156
4 95573736

Type 11
Sum of Squares

55 21637037
3 51838145
0 21465335
14.28201509

11 14
o7
0.04
2 88

Prob>F

0 0085

Prob>F

0 0049
0 4136
0 8381
07

A

Step 4 Variable NCAPN2 Removed R-square = 0.55324195 C(p) = -1 94295446
DF Sum of Squares Mean Square
Regression 2 86.18280133 43 09140067
Error 15 69 59497644 4 63966510
Total 17 155 777177778
Parameter Standard Type 11
Variable Estimate Error Sum of Squares
INTERCEP 5 80278985 1 42659130 76 76463306
NCAPNI1 0 01320108 0 00478585 45 30099329
TEFRT -0 00000141 0 00000064 22 79685965
Bounds on condition number. 42 33763, 169.3505
Step S variable NUN2 Entered R-square = 0 60712685 C(p) = -1 15596661
DF Sum of Squares Mean Square
Regression 3 94 57687215 31 52562405
Error 14 61 20090563 4 37149326
Total 17 155 77777778
Parameter Standard Type 11
Variable Estimate Error Sum of Squares
INTERCEP 6 52465750 1 47949560 85.01937209
NUN2 -0 02857018 0 02061777 8 39407081
NCAPNI 0 01499220 0 00482195 42.25852159
TEFRT -0 00000148 0 00000062 24 81746324
Bounds on condition number 45 61534, 272 8355
Step 6 variable NUN2 Removed R-square = 0 55324195 C(p) = -1 94295446
DF Sum of Squares Mean Square
Regression 2 86 18280133 43 09140067
Error 15 69 59497644 4 63966510
Total 17 185 77777778
Parameter Standard Type 11
variable Estimate Error Sum of Squares
INTERCEP 5 80278985 1 42659130 76 76463306
NCAPN1 0 01320108 0 00478585 35 30099329
TEFRT -0 00000141 0 00000064 22 79685965
Bounds aon condition number 42 33763, 169 3505
All variables left in the model are significant at the 0 1500 level

The SAS System

No other variable met the O 5000 significance leve! for entry into the mode!

29

45
92

68

29

55
61
91

16 30 Saturday,

Probp>F

0 0024

Prob>F
0 0010

0 014¢
0 0425

Prob>F

0 0037

Prob>F
0 0006
0 1875

0 0077
0 0318

Prob>F

0 0024

Prob>F

0 0010
0 0146
0 0425

May 25,

1991

2

Gl

Summary of Stepwise Procedure for Dependent Variable Q9

Variable
Entered Removed

NCAPN2
TEFRT
NCAPNI
NCAPN2
NUN2
NUN2

Number
In

NWRWN -

The SAS System

Partial

[eNeReNoNN=)

Ree2

4342
0978
0226
0014
0539
0539

oDOoCODOO

Mode]
Re$*2

4342
5320
5546
5532
6071
§532

~1
-1

-1
-1
-1

C(p)

2642
4655
0260
9430
1560
9430

- =00 WN

2809
1344
7100
0433
9202
9202

16 30 Saturday,

Prob>F

ODDOOD

0029
0970
4136
8381
1875
1875

May 25,

1991

3

2!

Dep Var
Obs Q9

5.0000
5.0000
10.0000
10.0000
10 0000
10 0000
10 0000
10 0000
10 0000
10 10 0000
n 10 0000
12 15 0000
13 15 0000
14 13 0000
15 13 0000
16 14.0000
17 16 0000
18 10 0000

CENOMBWN =

Sum of Kesiduals

Predict
value

7.5421
8 4736
12 5446
11.2132
12 5081
8 4294
8 7562
8 4889
9 2686
10 7476
8 7900
13.7175
11 0286
13 6519
14 5703
12 6316
13 5933
10.0447

Sum of Squared Residuals

Predicted Resid SS (Press)

Std Err tLower895%
Predict Mean
0 942 5 5342
0 761 6 8519
0 802 10 8350
0.516 10 113
1.080 10 2058
0.847 6 6251
0 925 6 78B40
0 754 6 8816
0 665 7 8515
0.788 9 0675
0 715 7 2659
0.864 11 8759
0.809 9.,3039
0.848 11 8442
1.044 12 3448
0.921 10.6690
1 509 10.3780
0.571 8.8277

0

69.5950

112 8749

upper95%
Mean

9 5500
10 0953
14 2543
12 3133
14 8104
10 2337
10 7283
10 0961
10 6857
12 4276
10 3140
15 5591
12,7534
15 4597
16.7957
14 5942
16.8087
11 2616

The SAS System

Lower95%
Predict

NN NODOITLUDWWWNINWN

5312
6045
6455
4921
KY A
4965
7594
6246
4637
8587
9526
7708
1242
7177
4682
6386
9883
2950

Upper95%
Predict

12 5531
13 3427
17 4437
15 9342
17.6441
13 3623
13 7529
13 3531
14 0734
15 6364
13 6274
18 6642
15 8330
18 5661
19 6723
17 6246
19 1984
14 7943

Residual

-2
-3
-2
-1
-2

1 1
N e OWeo = OO0 = = =

|
(=}

5421
4736
5446
2132
5081
5706
2438
5111
7314
7476
2100
2825
9714
6519
5703
3684
4067
0447

Std

Err

Residual

Nt o=t oot s RNNRN = = et N N =

.937

015
999
091
864
981
945
018
049
0os
032
973
996
980
884
947
538
077

16 30

Student
Residual

-1 312
-1 724
-1 273
-0 580
-1 346
0 793
0 639
0 749
0 357
-0 373
0 596
0 650
1 989
-0 329
-0.833
0.703
1.565
-0 022

Saturday, May
-2-1-0 2
| %
s
L
*
**
*
»
*
*
*
ks
*
*
5

25,

1991

4

Cook's

CoocoOoOOOCOCTCOQOO0OOODO

136
141
087
007
203
038
031
026
oona
ou7?
015
027
217
007
071
037
786
000

GGI

The SAS System 16 3V Saturday, May 25, 1991 1

Stepwise Procedure for Dependent Variable Q9

Step 1 variable NODEVG Entered R-square = 0 42839393 C(p) = 2 17330924
DF Sum of Squares Mean Square F Prob>F
Regression 1 66.73425471 66 73425471 11 99 0 0032
Error 16 89 04352307 5 56522019
Total 17 155 77777778
Parameter Standard Type I1
variable Estimate Error Sum of Sguares F Prob-F
INTERCEP 8 57664654 0 86893077 542 18441332 97 4r 0 0001
NODEVG 0.04009669 0 01167911 66 73425471 11 89 0 0032
Bounds on condition number 1, 1
Step 2 variable HOSTVG Entered R-square = 0 46986168 C(p) = 3 00000000
DF Sum of Squares Mean Square F Prob>F
Regression 2 73 19400802 36 59700401 6 65 0 0086
Error 15 82 58376975 5 50558465
Total 17 155 777777178
Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 9.10640891 0 99304760 462.97506998 84.09 o oo
HOSTVG -0 04298327 0 03968197 6.45975332 1.17 0 2958
NODEVG 0 04167658 0 01160890 70 95870491 12.89 0 0027
Bounds on condition number 1 016039, 4 064155
Step 3 Variable HOSTVG Removed R-square = 0 42839393 C(p) = 2.17330924
DF Sum of Squares Mean Square F Prob>F
Regression 1 66 73425471 66 73425471 11 99 0 0032
Error 16 89 04352307 5 56522019 .
Total 17 1855 77777778
Parameter Stgndard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 8 57664654 0 B86B93077 542 18441332 97 42 0 0001
NODEVG 0 04009669 0 01157911 66 73425471 11.99 0 0032
Bounds on condition number 1, 1
A1)l variables left in the model are significant at the 0 1500 level

No other varyable met the 0 5000 significance level for entry into the model

9¢1

The SAS System

Summary of Stepwise Procedure for Dependent Variable Q9

variable Number Partial Model
Step Entered Removed in R%*2 R**2 C(p)
1 NODEVG 1 0 4284 0 4284 2 1733 1M
2 HOSTVG 2 0 0415 0 4699 3 0000 1
3 HOSTVG 1 0 0415 0.4284 2 1733 1

9913
1733
1733

16 31

Prob>F

0 0032
0 2958
0 2958

Saturday,

May 25,

1991

2

LCT

Obs

OCENONDBWN =

10
1M
12
13
14
i5
16
17
18

Sum of Residuals

Dep Var
Q9

5

5
10
10
10
10
10
10
10
10
10
15
15

13.

13
14

16.
10.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Predict

8
9
n
n
12
9
10
9
9
9
9
14
9
13
3
10
14
9

valtue

.8172
0578
1829
.0626
.8670
7798
1805
2583
2583
5791
1781
1100
. 7395
.6689
6689
2607
6713
.6593

Sum of Squared Restiduals

Predicted Resid SS (Press)

Std Err Lower95%
Predict Mean
0.817 7 0858
Qg 767 7 4312
0 562 9 9905
0 558 9 8791
0 797 1 1771
0 642 8 4192
0 592 8 9245
0.729 7 71137
0 729 7 7137
0 672 8 1534
0 744 7 6013
1.084 11 8126
0.648 8.3666
0.977 11.5987
0 977 11 5987
0.585 9 0208
1 226 12 0730
0 660 8.2607

4]

89.0435

109 4661

Upper95%

Mean

10 5487
10 6845
12 3753
12 2462
14 5569

11.

1

1399
4365

10 8029
10 8029

n

0047

10 7549
16 4073

1

1123

15 7392
15 73982

1.

5006

17 2697

n

0579

The SAS System

tower95%
Predict

3 5250
3.7989
6 0418
5 9235
7 5882
4 5968
§ 0242
4 0242
4 0242
4 3788
3 9344
8 6066
4.5535
8 2564
8 2564
5 1083
9 0356
4 4664

Upperss5%
Predict

14
14
16
16
18
14
15
14
14
14
14
19
14
19.
19
15
20
14.

1095
3167
3241
2018
1458
9623
3368
4924
4924
7793
4218
6134
9254
0815
0815
4131
3070
8521

Residual

-3 8172
-4 0578
-1 1829
-1 0626
-2 B670
0 2205
-0 1805
0 74y7
0 7417
0.4209
0 8219
0.8900
5 2605
-0 6689
-0.6689
3.7393
1 3287
0.3407

Std

Err

Residual

NONRNRNNNNRONRNRONRNNNNRNNNNN

213
2N
291
292
220
270
283
244
244
261
239
095
268
147
147
285
016
265

16 3t

Student
Resi1dual

oCco

CoO—-0OONDOCO

1
1
1]
0
1

725
819
516
464
29
097
079
331
331
186
367
425
319
3n
3N
636
659
150

Saturday,

~2-1-0
LE 2
sE¥

L

¥

May

12

LE RS 3

f¥¥

86T

Step 1 variable NMSGSND Entered

Regression
Error
Total

Variable

INTERCEP
NMSGSND

Bounds on condition number.

Step 2 variable HMSGREC Entered

Regression
Error
Jotal

Variable
INTERCEP

HMSGREC
NMSGSND

Bounds on condition number 1 090449,

Step 3 Variable HMSGREC Removed

Regression
Error
Total

vVariable

INTERCEP
NMSGSND

Bounds on condition number

All variables left 1n the model

No other variable met

The SAS System

Stepwise Procedure for Dependent Variable Q9

R-square = 0.331

DF

1
16
17

Parameter
Estimate

8 55601660
0.26244813

R-square = 0 372

DF

2
15
17

Parameter
Estimate

7.33957755
0.56061540
0.23461675

4 3617

R-square = 0.331

DF

1
16
17

Parameter
Estimate

8 55601660
0 26244813

the 0 5000 significance leve]

52328 C(p) = 0.98429269

Sum of Squares

Mean Square

51.64396035 51.64396035
104.13381743 6 50836359

185 77777778
Standard Type 11
Error Sum of Squares
1 02344210 454 87124703
0.09316861 51 64396035

1
74166 C(p) = 2 06035888

Sum of Squares

58 06486767

Mean Square

29 03243384

97 7129101 6.51419401
155.77777778 .
Standard Type 11
Error Sum of Squares
1.59674492 137 63590146
0.56467319 6 42090732
0.09733450 37 84818715
98
52328 C(p) = 0.98429269

Sum of Squares

Mean Square

51 64396035 51 64396035

104 13381743 6.50836359
165 77777778

Standard Type 11

Error Sum of Squares

1 02344210 454.87124703

0 09316861 51 64396035

are significant at the 0 1500 level

for entry 1nto the model

69 89
7 94

4.46

21 13
0 99
5.81

7 94

69 89
7.94

16 31

Prob>F

0 0124

Prob>FfF

0 0001
0 0124

Prob>F

0 0303

Prob>F
0.0003

0.3365
0 0292

Prob>F

0 0124

Prob>F

0 0001
0 0124

Saturaay,

May 25,

1991

1

661

The SAS System

Summary of Stepwise Procedure for Dependent Variable Q9

Variable Number Partial Model
Step Entered Removed In Re*2 Re*2 C(p)
1 NMSGSND 1 0 3315 0 3315 0.9843
2 HMSGREC 2 0.0412 0.3727 2 0604
3 HMSGREC 1 0.0412 0 3315 0.9843

F

7 9350
0 9857
0 9857

16 31

Prob>F

0 0124
0 3365
0 3365

Saturday,

May 25,

1991

2

091

Dep Vvar
Obs Q9

5 0000
5.0000
10.0000
10 0000
10 0000
10 0000
10 0000
10 0000
10.0000
10 0000
1 10 0000
12 16 0000
13 15 0000
14 13 0000
15 13 0000
16 14,0000
17 16 0000
18 10.0000

DUDNOUH WA —

Sum of Residuals

Predict
Value

9.6058
9 3434
9 0809
11 1805
11 1805
10 9180
10 9180
10 3932
10.3932
11 1805
9 8683
1 1805
9 3434
1 7054
1 4429
1 7054
6 9544
9 6058

Sum of Squared Residuals

Predicted Resid SS (Press)

Std

Err Lo

Predict

0
[¢]
0
0
0
(¢}
0
0

ONDOOOOODOODDO

754
.814
879
.810
610
. 601
601
.627
627
610
702
610
814
668 1
633 1
668 1
.236 1

-~
wn
'y

0
104 1338
140 8333

wer95%
Mean

8.0067
7 6178
2165
.8870
8870
6431
6431
0650
.0650
8870
3800
8870
6178
0.2903
0.1018
0 2903
2.2151
8 0067

NOODLOOLOOWO O

Upper95%
Mean

11.2050
11 0690
10 9454
12 4740
12 4740
12 1930
12 1930
11 7213
11 7233
12 4740
11 3565
12 4740
11 0690
13 1205
12 7841
13 1205
21 6936
11.2050

The SAS System

Lower95%
Predict

3 9662
3.6666
3.3604
5.6198
6.6198
3616
3616
8243
.8243
6198
2591
6198
6666
1152
8710
1152
7635
3.9662

COHNoOWNsNLbON

Upper95%
Predict

15 2455
15 0202
14.8014
16 7412
16.7412
16.4745
16 4745
15 9620
15 9620
16 7412
15 4775
16 7412
15 0202
17.2956
17.0149
17.2956
24 1453
15.2455

Residual

-4 6058
-4 3434
0 %9191
-1 1805
-1 1805
-0 9180
-0 9180
-0 3932
-0 3932
-1 180%
1317
8195
6566
2946
5571
2946
9544
0.3942

ON—- =L

Std

Err

Residuatl

N = RNNRNRNRNRNNRONRNNRONRONNONN

437
418
395
477
477
479
479
473
473
477
453
477
418
462
471

.462

229
437

16 31

Student
Res1dual

-1
-1

¢
-0
-0
-0
-0
-0
-0
-0

OO0 ON=-O

890
796
384
477
477
370
370
159
159
477
054
542
340
526
630
932
777
162

Saturday,

-2-1-0

L2 22
LR 2

May

12

L 2
S5

191

3

The SAS §

ystem

Stepwise Procedure for Dependent Variable Q9

Step 1 vVariable R2T Entered R-square = 0.34424671 C(p) =
OF Sum of Squares
Regression 1 63 62598723
Error 16 102.1517905%
Total 17 156.77777778
Parameter Standard
variable Estimate Error
INTERCEP 8.43771930 1 03441233
R2T 0 00011275 0 00003890
Bounds on condition number: 1, 1
Step 2 variable R1U Entered R-square = 0.48454134 C(p) =

Regression
Error
Total

Variable
INTERCEP

RI1U
R27

Bounds on condition number. 1.781157,

Step 3 Vvariable R3T Entered

Regression
Error
Total

Variable

INTERCEP
RI1UY
R2T
RAT

DF

2
15
17

Parameter
Estimate

9.82834273
-0 00206541
0.00017636

7.124629

DF

3
14
17

Parameter
Estimate

6 50429403
-0 00250758
0.01513110
-0 01624706

342506 9

Sum of Squares

75 48077246
80.29700532
165.77777778

Standard
Error

1 17082632
0 00102220
0.00004754

R-square = 0.59054829 Cip) =

Sum of Squares

91.99430002
63.78347776
1556.77777778

Standard
Error

2.05307476
0.00097120
0.00785518
0.00853385

5.56976302
Mean Square

53 62598723
6 38448691

Type I1
Sum of Squares

424 B0417165
53.62598723

3 38292532
Mean Square

37 74038623
6.35313369

Type 11
Sum of Squares

377.21045288
21 85478523
73.66705577

2,21934082
Mean Square

30.66476667
4.55596270

Type 11
Sum of Squares

45 72681605
30 37163707
16 90478138
16.51352756

8 40

66 54
8 40

7.06

70 47
4 08
13 76

6.73

10.04
6 67
3 7
3 62

16.31

Prob>F

0 0105

Prob>F

0 oom
Q 0105

Prob>F

0 0069

Prob>F
0 0001

0 0616
0 0021Y

Prob>F

0.0049

Prob>F

0 0068
0 0217
0.0746
0 0777

Saturday,

May 25,

1991

1

¢91

Step 4 Variabie R17T Entered

Regression
Error
Total

Variyable

INTERCEP
R1U
T
R2T
R3T

Bounds on conditiron number 84717 59,

DF

4
13
17

Parameter
Estimate

5 31019342
-0 00126333
-0 00210321

0 02135799
~0 02085151

629776

The SAS S

R-square = 0.62861921 C(p) =

Sum of Squares

6

97 92490391
57 85287387
156.77777778

Standard
Error

27755082
00144328
00182190
00945342
00932980

[~NeN=NalN]

ystem

3 08318

342

Mean Square

24 48122598

Sum

2

4 45022107

Type II
of Squares

4 19168466
3 40967621
5 93060389

22 71562703
22 22860275

5 44
0 77
1 33
5 10
4 99

16 31

Preb>F

0 0081

Prob>F

0365
3973
269
0417
0436

o000

Saturday,

May 25,

1991

2

Reyression
Error
Total

Variable

INTERCEP
RIT
R2T
R3T

Bounds on condition number. 77417 73,

DF

3
14
17

Parameter
Estimate

4 51955424
-0 00329415
0 02378698
-0 02228464

439059

R-square = 0 60673113 C(p) =

Sum of Squares

4

94 5162277
61 26255007
165.77777778

Standard
Error

07324682
00120151
.00896118
00910799

OCoOoON

1.73639

327

Mean Square

31.50507590

Sum

2
3
3
2

4 37589643

Type I1
of Squares

0.79487058
2.89256475
0.83299237
6 19587066

4 75
7 52
7 05
5 89

Prob>F

0 0037

Prob>F

0.0468
0 0159
0 0189
0 0282

All variables left i1n the model are significant at the O
Na other variable met the 0 5000 significance level

Summary of Stepwise Procedure for Dependent Variable Q9

Variabli

1 R2T
2 RIU
3 R3T
4 RIT
5

for entry

e Number
Step Entered Removed

RI1U

In

WHBWN -~

1500 level

Partial
Re#*2

3442
1403
1060
0381
0219

[of =N ol =N

Model
Re*2

0.3442
0.4845
0.5905
0.6286
0 6067

into the model

C{p)

5698
3829
2193
.0832
7364

wWwNnWW!m

O=Whuo

3994
0826

.6246

3327

.7662

Prob>F

0.0105
0.0616
0 0777
0 2691
0 3973

€91

Dep Var
Obs Q9

5 0000
§ 0000
10 0000
10 0000
10 0000
10 0000
10 0000
10.0000
10 0000
10 10 0000
1 10 0000
12 15.0000
13 15 0000
14 13 0000
15 13.0000
16 14 0000
17 16.0000
18 10 0000

CONONDWON =

Sum of Residuals

Predict
Value

7 2680
8 0226
12.3061
10 6364
9 7871
10 0509
10 5974
8 6940
9 3175
9 0790
8 451
13 5770
10 6852
14 8496
14.9086
12.2032
14 2987
11.2677

Sum of Squaread Residuals

Predicted Resid 5S (Press)

Std Err Lo
Predict
1.110
0.995
0 700 1
0.958
1.771
0.674
0.901
0.746
0.663
0 662
0.784
0.784 1
0.705
1.010 1
1.049 1
0.810 1
1.668 1
0.865
0
61 2626
108 2328

wer95%
Mean

4.8876
5 8883
0.8045
.5823
9877
6062
6640
0938
8965
6584
7692
1.89857
9.1740
2 6829
2.6579
0.4659
0 7208
9 4n17

MNNNDOND

Upper9s%
Mean

9 6485
10 1569
13 8076
12 6905
13.5865
11 4955
12 5307
10.2943
i0 7386
10 4997
10 1329
16 2583
12 1963
17.0162
17.1593
13.9405
17 8766
13 1237

The SAS System

Lower95%
Predict

6.4124

Upper95s5%
Predict

12.3470
12 9909
17 0372
15 5709
15 6663
14,7643
15.4828
13 4575
14 0238
13 7852
13 2425
18 3683
15 4194
19 8319
19.9281
17 0144
20.0372
16.1230

Residual

-2
-3
-2
-0

0
-0
-0

1

0
o
1
1

4
-1
-1

1
1
-1

.2680
0226
3061
6364
2129
0509
5974
3060
6825
9210
5489
4230
3148

.8496

.9086
7968
7013
2677

Std Err
Residual

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

773
840
.97
.860
13
.980
888
954
984
984
939
Q39
970
832
810
929
.262
.904

16:31

Student
Resdual

-1
-1
-1
-0

4]
-0
-0

0

0
0
0
0
2
=1,
-1
0

1
-0.

279
643
170
342
191
026
316
668
344
464
799
734
191
010
055
932
348
666

Saturday, May
-2-1-0 1 2
LE
5
%
L
*
-
LE X 2]
L
%
*
LR
»

25,

1991 3

Cook's

160

000D OO0DOOOOODOODOO0O
[=]
-
[«)]

%91

Step 1 variable TCAPN2 Entered

Regression
Error
Total

variable

INTERCEP
TCAPN2

Bounds on condition number. 1,

Step 2 variable RI1T Entered

Regression
Error
Total

vVariable
INTERCEP
TCAPN2
RIT

Bounds on condition number 121 9467,

Step 3 Variable TMSGSND Entered

Regression
Error
Total

Variable

INTERCEP
TCAPN2
TMSGSND
RI1T

Bpunds on condition number 147 B584,

The SAS System

Stepwise Procedure for Dependent Variabtle Q9

8
4]

6
0
-0

R-square = 0.37964

DF

1
16
17

Parameter
Estimate

04128646
00364791

R-square = 0.54426

DF

2
15
1?7

Parameter
Estimate

.41259601
.03006499
00089120

487 787

R-square = 0.62526937

DF

3
14
17

Parameter
Estimate

89730048
03680662
18184108
00117938

864 .4986

848 C(p) =
Sum of Squares

69.14079716
96 63698061
185 77777778

Standard
Error

1 07873453
0 00116§77

289 Cip) =
Sum of Squares

B84.78406343
70.99371435
1656.77777778

Standard
Error

1.18383402
0 01139595
0 00038287

C(p) =
Sum of Squares

97 40307327
$8.37470450
165.77777778

Standard
Error

1 41186382
0.01137668
0.10452681
0 00039571

Mean Square

59 14079716
6 03981129

Type 11
Sum of Squares

335 61802446
59.14079716

Mean Square

42 392031
4.73291429

Type 11
Sum of Squares

138.87202453
32 94199871
25.64326626

Mean Square

32 46769109
4.16962175

Type 11
Sum of Squares

60.16774049
43.64326223
12 61900984
37.03860181

9 79

55 57
9 79

29 34
6 96
5 42

7.79

12 03
10.47
3 03
8 88

16.32 Saturday,

Prob>F

0 0065

Prob>F

0 0001
0 0065

Prob>F

0 0028

Prob>F
0.0001

0 0186
0 0343

Prob>F

0 0027

Prob>F

0.0038
0 0060
0 1038
0 0099

May 25,

1991

1

691

The SAS System 16 32 Saturday, May 25, 1991 2

Step 4 variable TEXELNS Entered R-square = 0.63938286 C(p) = .

DF Sum of Squares Mean Square F Prob>F
Regression 4 99 60164170 24.90041042 5 76 0 0068
Error 13 56 17613608 4 32124124
Total 17 155.77777778

Parameter Standard Type 11
variable Estimate Errar Sum of Squares F Prob>F
INTERCEP 5 16563932 1 48572190 52 23740821 12 09 0 0u41
TEXELNS -0 00466248 0.00653659 2.19856842 0 51 0 4883
TCAPN2 0 03742320 0 01161389 44 86779216 10 38 0 0067
TMSGSND 0 18952761 0 10695455 13 56922320 3 14 0 0998
RIT ~-0.00113333 0.00040798 33.34573196 7 72 0 0157

Bounds on condition number: 151.6568, 1209.511

Step 5 variable TEXELNS Removed R-square = 0.62526937 Cip) =

DF Sum of Squares Mean Square F Prob>F
Regression 3 97 40307327 32.46769109 7.79 0.0027
Error 14 58.37470450 4.16962175
Total 17 165.77777778

Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 4.89730048 1 41186382 50 16774049 12 03 0 0038
TCAPN2 0 03680662 0 01137668 43.64326223 10.47 0 0060
TMSGSND 0 18184108 0 10452681 12 61900984 3.03 0 1038
RIT -0,00117938 0.0003957 37.03860181 8 88 0 0099

Bounds on condition number 147 8584, 864 4986

All variables left 'n the model are significant at the 0 1500 level.
No other variable met the 0.5000 significance level for entry into the model.

.

Summary of Stepwise Procedure for Dependent Variable Q9

Variable Number Partial Mode |
Step Entered Removed In R*e¢2 Res?2 C(p) F Prob>F
1 TCAPN2 1 0.3796 0.3796 . 9 7918 0.0065
2 RIT 2 0 1646 0.5443 5 4181 0.0343
3 TMSGSND 3 0.0810 0.6253 3 0264 0 1038
4 TEXELNS 4 0.0141 0 6394 0 5088 0.4883
5 TEXELNS 3 0.0141 0.6253 0 5088 0 4883

991

167

Dep var
Obs Q9
5.0000
5 0000
10.0000
10 0000
10 0000
10 0000
10 0000
10 0000
10.0000
10 10.0000
11 10 0000
12 15 0000
13 15.0000
14 13 0000
15 13 0000
16 14.0000
17 16.0000
18 10 0000

COINONDWN -

Sum of Residuals

Predict

7

7.
10.

"
9

10.
10.

9
9
9

8.
12.

9
14
14
12
15
12

Value

2188
5775
2305
0368
3768
1089
4952
4897
9294
4819
7063
8355
7669
6600
5062
9162
6720
0916

Sum of Squared Residuals

Predicted Res1d SS (Press)

Std

0

0.

4]

0.

0.

0

0.

1]
0

0.
0.

[+]
1

1.
0.
1.

0

Err Lower95%
Predict

905
907
916
692
774
619
556
786
732
855
736

5

5.
8.
9.

5

8.

9

7.

8
7
7

Mean

2771
6325
2651
5518
5713
7803
3028
8028
3597
6484
1280

839 11.0358

814

8.

0208

109 12.2812
09s 12 1587
796 11.2095
576 12.1926
734 10.5164

1]
58 3747
93.1659

Upperd5%
Mean

9.1605
9 5225
12 1958
12.5217
13 1823
11 4374
11 6876
11 1765
11 4992
11 3153
10 2846
14.6351
11.5130
17 0388
16.8536
14 6229
18 9513
13 6667

The SAS System

Lower95%
Predict

2.4281
2.7855
5.4301
6 4123
3 5748
5 5322
S 9562
4 7965
6.2770
4 7340
4.051
8 1006
5 0521
9 6761
9 5372
8 2158
10 0402
7 4374

Upper95%
Predict

12.0095
12.3696
15.0308
15,6612
15.1788
14 6855
15.0342
14 1829
14 5818
14.2297
13.3616
17.5704
14.4817
19.6439
19 4752
17.6166
21 1037
16 7458

Residual

-2

-2.

-0
-1
0
-0
-0
0

0
o
1
2
S
-1
-1
1

0
-2

2188
5775
230%
0368
6232
1089
4952
5103
0706
5181
2937
1645

.233

6600

.5062

0838
4280
0916

Std Err
Residual

1
1
1
1
1
1

830
830
825
921
on
946
265
884
906
854
805
.862
873
715
724
881
299
905

16:32 Saturday,

Student
Residual

-1.

-0.
-0.

0
-0
-0

0.

0
0
0
1
2
-0
-0
0
0
-1

212
409
126
540
617
056
252
27
037
279
679
163
794
968
874
576
330
o098

-2-1-0

s
%

*

%

May 25,

12

e
(22 X 22

1991 3

Cook ‘s
o]

090
122
001
009
293
000
001
003

0O00ODOO0OOOOCO0C0O00O0

VITA
Imtiaz Ahmad
Candidate for the Degree of

Master of Science

Thesis: SOFTWARE METRICS FOR PARALLEL PROGRAMS
Major Field: Computer Science
Biographical:

Personal Data: Born in Karachi, Pakistan, December 29, 1962, the youngest
son of Mr. & Mrs. K. M. Khan.

Education: Graduated from Federal Government Model School, Satellite
Town, Rawalpindi, Pakistan, in June 1976; received Bachelor of
Science degree in Mathematics from University of the Punjab,
Lahore, Pakistan, in November 1981; completed requirements for the
Master of Science degree at the Computer Science Department of
Oklahoma State University in July 1991.

Professional Experience: Graduate Research Assistant, University
Computer Center, Oklahoma State University, January 1989 to May
1991.

