
MODIFICATION OF FOURNIER AND MONTUNO'S

TRIANGULATION ALGORITHM FOR

SIMPLE POLYGONS

By

SOEHADI ADI
J;

Bachelor of Science

in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July 1991

MODIFICATION OF FOURNIER AND MONTUNO'S

TRIANGULATION ALGORITHM FOR

SIMPLE POLYGONS

Thesis Approved:

--
Dean of the Graduate College

ii

1398394

PREFACE

Triangulation of a simple polygon is an important part

of the application of geometry problems in computer graph

ics. A conventional triangulation algorithm runs in O(n2).

Faster tringulation methods have been developed but these

methods are more complicated. A simpler triangulation

method was developed by Fournier and Montuno, which runs in

O(n log n). The modified triangulation algorithm presented

here compares favorably with the Fournier and Montuno's

triangulation algorithm and is simpler in the sense of

elimination of recursion. The Fournier and Montuno's trian

gulation algorithm and the modified triangulation algorithm

are implemented using c. The performance of the two algo

rithms is analyzed using various data.

I wish to express my sincere gratitude first to God,

second I wish to thank my main adviser, Dr. Blayne E. May

field, for his intelligent guidance, inspiration, and inval

uable help, I am also grateful to the other committee mem

bers, Drs. Mansur Samadzadeh and David Miller, for their

advice during the course of this project.

I would like to express my gratitude to my parents Mr.

and Mrs. Sindu Rahardjo, my wife Selvia P. Suniman, my son

Jonathan T. Adi, and my pastor Harminto Ongko, for their

support and encouragement during my course work.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

1.1
1.2

Problem Background .
Definitions. • . .

Page

1

1
2

II. TRIANGULATION OF A SIMPLE POLYGON. 7

2.1 Garey, Johnson, Preparata, and Tarjan's
Triangulation Algorithm. • • . 7

2.2 Fournier and Montuno's Triangulation
Algorithm. • • • . . . • . • . . • 10

2.3 Tarjan and VanWyk's Triangulation
Algorithm. • . . • . . . • 11

2.4 Advantages and Disadvantages • . .• 12

III. FOURNIER AND MONTUNO'S TRIANGULATION ALGORITHM .. 13

IV.

3.1 Transform the Simple Polygon into
a Trapezoidized Polygon . • • . . 13

3.2 Transform the Trapezoidized Polygon into
a Uni-Monotonized Polygon. • • . 20

3.3 Transform the Uni-Monotonized Polygon into
a Triangulated Polygon • • 22

MODIFIED TRIANGULATION ALGORITHM • . • • 24

4.1 Transform the Simple Polygon into
a Trapezoidized Polygon. • . . • • • • • . 24

4.2 Transform the Trapezoidized Polygon into
a Uni-Monotonized Polygon. • . • • • • • • 25

4.3 Transform the Uni-Monotonized Polygon into
a Triangulated Polygon 29

V. COMPARISON OF FOURNIER AND MONTUNO 1 S AND THE
MODIFIED TRIANGULATION ALGORITHMS. • • . • . . • 30

5.1
5.2
5.3

Processing Flow of the Algorithms. . • • •
Simplicity . • . . • • . • . . • .
Run-Time Complexity .•••......••

iv

• 30
. 32
. 32

Chapter

VI. SUMMARY AND FUTURE WORK.

REFERENCES.

APPENDIXES .•

APPENDIX A - DETAILS OF THE MODIFIED
TRIANGULATION ALGORITHM •

APPENDIX B - IMPLEMENTATION ••

APPENDIX C - SAMPLE EXECUTION.

v

Page

• 37

• 38

• • • 40

• 43

52

• • • 60

LIST OF FIGURES

Figure

1. Complete Trapezoids. • .

2. An Example of a Monotone Polygon •

3. An Example of a Uni-Monotone Polygon

4. Examples of Non-Simple Polygons
and a Simple Polygon • •

5. Sequence of the Algorithm .•..

6.

7.

8.

Interior Cusp Vertices of a Simple Polygon

Execution Sequence of the Algorithm.

Execution Sequence of Fournier and
Montuno's Algorithm ••••.•.

9. Three Phases of the Triangulation Algorithm

Page

3

4

4

5

8

9

. • • 10

• • . • 14

(SP 1 UMP 1 and TP) • . • . • • • . • • . . • 14

10. Different Vertex Types . . 14

11. Algorithm to Transform the SP into a TrP . • • 16

12. Vertex Type I Process. . . 17

13. Vertex Type IIa Process. • • • 18

14. Vertex Type IIb Process .. . 19

15. Vertex Type IIIa Process • . • 19

16. Vertex Type IIIb Process • . 20

17. Algorithm to Transform TrP into a UMP then
into a TP. . . • • . • . . • • 21

18. Two Classes of Trapezoids. • 21

19. Algorithm to Transform the UMP into a TP • • •• 22

20. Execution Sequence of the Modified Algorithm • • 25

vi

Figure Page

21. Algorithm to Transform SP into a TrP,
into a UMP, and then into a TP 26

22. Algorithm to Transform TrP into a UMP,
and then into a TP 27

23. The Processing Flow of Fournier and Montuno's and
the Modified Triangulation Algorithms. • . . . 31

24. The Vertices of a Simple Polygon 42

25. A Simple Polygon • • • • • 42

26a. The Transformation of a Simple Polygon into a
Trapezoidized Polygon 44

26b. The Transformation of a Simple Polygon into a
Trapezoidized Polygon. 45

26c. The Transformation of a Simple Polygon into a
Trapezoidized Polygon. . . . • . . 46

27. The Trapezoidized Polygon. . . . 46

28a. The Transformation of a Trapezoidized Polygon
into a Uni-Monotonized Polygon . • • • • • • • • . 48

28b. The Transformation of a Trapezoidized Polygon
into a Uni-Monotonized Polygon . . . • • •

29. The Uni-Monotonized Polygon. . • • .

30. The Processing Transformation from Uni-Monotone

• • 49

• 49

Polygon to a Triangulated Polygon. • • • 51

31. The Triangulated Polygon

32. The Correct Input Format

33. The Displayed Run-Time Unit Value Formula ••

34a. The Process Sequence Flow Chart. •

34b. The Process Sequence Flow Chart. • .

35. The Logo and Information about the Program •

36. Input Data of Sample #1 (DATA\B.12} •.

37.

38.

The Input Prompted by the Program.

A simple Polygon •

vii

51

• 53

57

58

• • • 59

60

. 61

• • • 62

. • 62

39a. The Sequence Formation of Uni-Monotone Polygons
and Triangles (FM alg.). 63

39b. The sequence Formation of Uni-Monotone Polygons
and Triangles (FM alg.). 64

40a. The Sequence Formation of Uni-Monotone Polygons
and Triangles (MO alg.). 65

40b. The Sequence Formation of Uni-Monotone Polygons
and Triangles (MO alg.). 66

41. Input Data of Sample #2 (DATA/B.3_P) 67

42. The Input Prompted by the Program. 68

43a. The Sequence Formation of Uni-Monotone Polygons
and Triangles (3 Vertices) 68

43b. The Sequence Formation of Uni-Monotone Polygons
and Triangles (4 Vertices) 69

43c. The Sequence Formation of Uni-Monotone Polygons
and Triangles (5 Vertices) 69

43d. The Sequence Formation of Uni-Monotone Polygons
and Triangles (6 Vertices) 69

43e. The Sequence Formation of Uni-Monotone Polygons
and Triangles (7 Vertices) 70

43f. The Sequence Formation of Uni-Monotone Polygons
and Triangles (25 Vertices). 70

43g. The Sequence Formation of Uni-Monotone Polygons
and Triangles (25 Vertices). 70

44a. Run-Time Table • • • 71

44b. Run-Time Chart • • . • 71

45a. Distribution Information on 50 Vertices
of 50 Simple Polygons. . • • • • • 73

45b. Distribution Information on 1000 Vertices
of 50 Simple Polygons. • • • • . . • • • • . • 73

46a. Run-Time Chart of All Simple Polygons .• . . • • 74

46b. Run-Time Chart of All Simple Polygons
(Enlargement). • • • . • • • . . . • . • • 75

viii

CHAPTER I

INTRODUCTION

1.1 Problem Background

In computational geometry problems, as in other

contexts, it is desirable to decompose a complex structure

into simpler structures. several authors have developed

algorithms as tools to simplify complex structures: the

decomposition of a simple polygon into convex parts [CD79,

K85, S78], the decomposition of a simple polygon into star

polygons [AT81], the trapezoidization of a simple polygon

[L81, W70, FM84], triangulation of a set of points [L77,

S75], triangulation of a planar region [K83], and triangula

tion of a simple polygon [FM84, GJPT78, HM83, TV88].

The problem of triangulation of a simple polygon is the

focus of this work and has the following applications in the

field of computer graphics:

- speed and simplicity of hardware implementation (which

is essential in shading and scan conversion) [FR82],

- two dimensional function interpolation (the result

being independent of the orientation of the triangles)

and evaluating functions by interpolation [FS73, M76],

-closest point problem [LP77], etc.

The resulting triangulation algorithm should be effi-

1

2

cient and as simple as possible. Several methods have been

developed to triangulate a simple polygon. Some authors

claim that the problem of triangulation is less complex than

the problem of sorting [TV88]. The triangulation algorithm

presented in this thesis is a modification of the Fournier

and Montuno triangulation algorithm [FM84]. The modified

triangulation algorithm is simpler in the sense that recur

sion is eliminated. It is also as efficient as the original

Fournier and Montuno triangulation algorithm, and runs

faster in implementation.

1.2 Definitions

Left Edge of the Current Vertex: the left side edge of the

current vertex as viewed from the polygon interior.

Right Edge of the Current Vertex: the right side edge of the

current vertex as viewed from the polygon interior.

Trapezoid (trp): a trapezoid having horizontal parallel

edges. A trapezoid is said to be "complete" if it has

(see Figure 1):

1. a top vertex (VT) which defines the top parallel edge

2. a bottom vertex (VB) which defines the bottom parallel

edge

3. a left side edge (EL)

4. a right side edge (ER}

If the top or bottom parallel edge is zero in length, the

trapezoid is actually a triangle (a triangle is consid

ered to be a special form of a trapezoid}.

3

Trapezoid Diagonal: an edge that connects a top vertex of a

trapezoid {VT) and a bottom vertex of a trapezoid {VB)

{see Figure 1).

External Diagonal: a trapezoid diagonal that has the same

edge either the left side edge of a trapezoid (EL) or the

right side edge of a trapezoid {ER) (see Figure 1).

Internal Diagonal: a trapezoid diagonal that has different

edge from either the left side edge of a trapezoid (EL)

or the right side edge of a trapezoid (ER) (see Figure

1) •

UB
UT

~--- --.- ---~
UB i,----~

UB
In-ternal Diagonal Ex-ternal Diagonal

Figure 1. Complete Trapezoids.

Monotone Polygon (mp): a polygon that has n vertices labeled

v 0 , v1 , ... , vn_1 in clockwise order, such that v0 and vi

have the maximum and minimum y-coordinates of all ver-

tices in the polygon, and v0 , v1 , ••• , vi are decreasing

monotonically in y-coordinates and vi, ••. , vn_1 , v 0 are

increasing monotonically in y-coordinates (see an example

in Figure 2).

Uni-Monotone Polygon (ump): a polygon that has n vertices

4

labeled v0 , v1 , ••• , vn_1 either in clockwise or counter

clockwise order, such that v 0 and vn_1 are the maximum

and minimum y-coordinates of all vertices in the polygon,

and v0 , ••. , vn_1 are monotonically decreasing in y

coordinates (see an example in Figure 3}.

u8 a u5 :

..._,.._ a •lniMu•
y-coordln&i:ea uer1:ex

lnc:reaalnw ~~K>no-tonlca lly
y-coordina-tea uer-tlc-

z uB. u1. uz• ua• u4. us:
decrea.alng 11100no-ton ica lly
y-cool'dlnatea uer-tlcea

Figure 2. An Example of a Monotone Polygon.

Va•va:
11\aX i1111.1.• a IIIII in imu•
y-coord I nate uer1:ex

decreasing ooonoton ically
y-cool'dinatea uerticos

Figure 3. An Example of a Uni-Monotone Polygon.

Simple Polygon (SP}: a polygon in which no edges cross each

other, which has a unique y-coordinates on each vertex,

and for which there are no holes inside the polygon (see

Figure 4).

HOT Si"'ple Polygons S U.p le Po l!,I!Jon

Figure 4. Examples of Non-Simple Polygons
and a Simple Polygon.

5

Trapezoidized Polygon (TrP): a simple polygon that is divid-

ed into trapezoids by adding an internal horizontal edge

originating at each vertex other than vertices of type

IIb or Ilia vertices (as described on Section 3.1), so

that between one vertex and another, a trapezoid will be

formed {see an example in the Appendix A).

Monotonized Polygon {MP): a simple polygon that is

divided into monotone polygons.

Uni-Monotonized Polygon {UMP): a simple polygon that is

divided into uni-monotone polygons (see an example in

appendix A) .

Triangulated Polygon {TP): a simple polygon that is divided

into triangles {tps) {see an example in appendix A).

Simple Polygon Diagonal: a line segment joining two non-

6

adjacent vertices of a simple polygon (GJPT78].

Triangulation: the process of triangulating a simple polygon

of n vertices (i.e., the process of finding n-3 simple

polygon diagonals which intersect neither each other nor

the boundary of the simple polygon and which divide the

interior of the simple polygon into n-2 triangles

(GJPT78]).

SP_TrP: a procedure that transforms a simple polygon into a

trapezoidized polygon.

SP TrP UMP TP: a procedure that transforms a simple polygon

into a trapezoidized polygon, into a uni-monotonized

polygon, and then into a triangulated polygon.

TrP UMP TP: a procedure that transforms a trapezoidized

polygon into a uni-monotonized polygon, and then into a

triangulated polygon.

UMP TP: a procedure that transforms a uni-monotonized poly

gon into a triangulated polygon.

CHAPTER II

TRIANGULATING A SIMPLE POLYGON

A simple polygon of n vertices can be partitioned into

no fewer than (n-2) triangles with (n-3) diagonals [TV88].

Conventional triangulation algorithms runs in O(n2), but

several more complicated methods have been developed to run

faster, at O(n log n), or even at O(n log log n).

In 1978, Garey, Johnson, Preparata, and Tarjan first

proposed an O(n log n) triangulation algorithm [GJPT78]. In

1984, Fournier and Montuno presented a triangulation algo

rithm that runs in O(n log n) and claimed that their algo

rithm was simpler than other currently available algorithms

[FM84]. Then in 1988, Tarjan and VanWyk proposed a O(n log

log n) triangulation algorithm [TV88].

2.1 Garey, Johnson, Preparata, and Tarjan's

Triangulation Algorithm

This algorithm is composed of two steps (see Figure 5):

1. Regularization, which transforms the simple polygon (SP)

into a monotonized polygon (MP).

2. Triangulation of a monotonized polygon, which transforms

the MP into a Triangulated Polygon (TP).

The following is the outline of what happens in each

7

8

step.

Figure 5. Sequence of the Algorithm.

Regularization

This step tries to build monotone polygons from a

simple polygon; it is based on a property of monotone poly

gons, that a monotone polygon is a simple polygon in which

no vertex is an interior cusp [GJPT78]. A vertex of a

simple polygon is an interior cusp vertex if the internal

angle at the vertex is more than 180° and the two vertices

adjacent to the vertex on the boundary of the simple polygon

either both have larger y-coordinates than the vertex or

both have smaller y-coordinates than the vertex [GJPT78]

(see Figure 6). This step requires a O(n log n) time

[GJPT78]. The detail of this step can be seen in Lee and

Preparata's work.

Triangulation of a Monotone Polygon

This step initially creates a list of sorted vertices

in descending order of their y-coordinates. Then a stack is

created initially containing the first two vertices from the

sorted vertices list. The third vertex in the sorted list

is designated as the current vertex.

M Cuep ,

Interior
Cuap

' ' .
' .
' ' • \

' ' \ .

Figure 6. Interior Cusp Vertices
of a Simple Polygon.

9

The current vertex is processed in one of the following

ways:

1. If the current vertex is adjacent to the vertex at the

bottom of the stack, but not to the vertex at top of the

stack, then add diagonals between the current vertex and

all vertices in the stack (except the vertex at the

bottom of the stack). The stack contents are replaced by

the vertex at the top of the stack and the current ver-

tex. Then the next one of the sorted vertices on the

list is designated as the current vertex.

2. If the current vertex is adjacent to the vertex at the

top of the stack, but not to the vertex at the bottom of

the stack, then repeat the following until one vertex is

left in the stack or the internal angle of the vertex at

the top of the stack is more than or equal to 180°:

add diagonals between the current vertex and the

second vertex at the top of the stack; delete the

10

vertex at the top of the stack (pop operation).

The current vertex is added to the top of the stack (push

operation). Then the next one of the sorted vertices on

the list is designated as the current vertex.

3. If the current vertex is adjacent to both the vertex at

the bottom of the stack and the vertex at the top of the

stack, then add diagonals between the current vertex and

all vertices in the stack (except the vertex at the

bottom of the stack and the vertex at the top of the

stack) and stop.

This step requires a O(n) time. Thus, the entire algorithm runs

in O(n log n) time.

2.2 Fournier and Montuno's Triangulation

Algorithm

This algorithm will be explained in detail in Chapter

III; it is composed of three steps (see Figure 7):

11~-H~
Figure 7. Execution Sequence of the Algorithm.

1. Trapezoidization of a simple polygon, which transforms

the simple polygon (SP) into a trapezoidized polygon

(TrP) .

2. Composition of uni-monotone polygons from trapezoid

structures, which transforms the TrP into a uni-monoto-

11

nized polygon (UMP) .

3. Triangulation of a uni-monotone polygon, which transforms

the UMP into a triangulated polygon {TP).

This algorithm uses 2-3 tree for searching, insertion,

and deletion of the trapezoid structures.

This algorithm is significant in combining both sim

plicity and speed. It requires a O{n log n) time (FM84].

2.3 Tarjan and VanWyk's Triangulation

Algorithm

The starting point for this algorithm is a reduction of

the triangulation problem to the problem of computing visi

bility information (in the horizontal direction) (TV88]. A

vertex-edge visible pair is a vertex and an edge that can be

connected by an horizontal line segment that lies entirely

inside the polygon [TV88]. An edge-edge visible pair is a

pair of edges that can be connected by an horizontal line

segment that lies entirely inside the polygon [TV88].

The second point of this algorithm relies on the intimate

connection between visibility computation and the Jordan

sorting problem (TV88]. Jordan sorting is a sorting of the

intersection points of boundary polygon and a horizontal

line by x-coordinate [TV88, HMRT86].

This algorithm uses a finger search tree for the data

structure operation [TV88].

Overall this algorithm runs in o {n log log n) [TV88],

but it is complex.

12

2.4 Advantages and Disadvantages

A faster algorithms gives a better run-time complexity,

but is usually complicated and hard to understand.

A simpler algorithm can be implemented more easily and

is generally easier to understand, but is usually slower in

terms of run-time complexity.

It is obviously desirable to choose an algorithm which

is simple to understand and also runs fast. Fournier and

Montuno claim that their triangulation algorithm has these

characteristics. The modified triangulation algorithm

presented here is simpler than the Fournier and Montuno's

triangulation algorithm and runs as fast.

CHAPTER III

FOURNIER AND MONTUNO'S TRIANGULATION

ALGORITHM

This algorithm is divided into three steps:

1. Transform a Simple Polygon {SP) into a Trapezoidized

Polygon {TrP);

2. Transform the TrP into a Uni-Monotonized Polygon

{UMP); and

3. Transform the UMP into a Triangulated Polygon {TP).

After the SP is divided into trapezoids {TrP), it is

transformed into one or more uni-monotone polygons {UMP).

After each uni-monotone polygon is completed, it is further

divided directly into triangles.

Figure 8 illustrates the execution sequence of the

algorithm. Figure 9 illustrates a polygon with lines indi

cating the three phases.

Now each of the steps of the algorithm will be de

scribed individually.

3.1 Transform the Simple Polygon into

a Trapezoidized Polygon

It is assumed that a simple polygon already exists.

Each vertex of the simple polygon has two edges leading from

13

14

it. These two edges are categorized as follows [FM84] (see

Figure 10):

---------.r

.___sP _ ___.H rrP ·H ... ~ ·1 .. I i
I I

L---------------J

Figure 8. Execution Sequence of Fournier
and Montuno's Algorithm.

---SP
--- lli1P

----- TP

Figure 9. Three Phases of the Triangulation Algorithm
(SP, UMP, and TP).

I lla lib Ilia lllb
Regular Stala.g•l"te Sulac"tl"te

Figure 10. Different Vertex Types.

a. Type I (Regular), where one edge slants diagonally upward

and the other edge slants diagonally downward.

b. Type II {Stalagmite), where both edges slant diagonally

15

downward. Vertices of this type can be more specifically

classified into the following sub-categories:

- Type IIa, if the polygon interior {shaded area) is

above the polygon boundary; and

- Type IIb, if the polygon interior {shaded area) is

below the polygon boundary.

c. Type III {Stalactite), where both edges slant diagonally

upward. Vertices of this type can be more specifically

classified into the following sub-categories:

Type IIIa, if the polygon interior {shaded area) is

above the polygon boundary; and

Type IIIb, if the polygon interior (shaded area) is

below the polygon boundary.

This part of the Fournier and Montuno triangulation

algorithm is shown in Figure 11.

The first step begins by sorting the vertices of the

simple polygon by their y-coordinates from highest to low

est. Then each vertex {in sorted order) is processed to be

transformed into trapezoids.

A trapezoid is considered complete if it has all infor

mation about VT {Top Vertex), VB {Bottom Vertex), EL {Left

Edge), and ER {Right Edge). As trapezoids are built, they

may have only VT, EL, and ER information, but no VB. These

incomplete trapezoids are kept in a 2-3 tree. An incomplete

trapezoid is completed after VB information is added, and is

then removed {deleted) from the 2-3 tree. The vertex ID

{i.e., v0 , v1 , etc.) of the top vertex of the incomplete

16

trapezoids is the key for searching, insertion, and dele-

tion.

Inpu~: n uer~lcea <uo. v1, .•.• vn-1) or a al•ple polygon
Ou~pui;: k -tr iang 1- -1
Ha~e: where k = i~ kt and • = IIWIII'ber of Ull'l-

ul - curren~ vertex
eL - left edge of ~he current vertex (vl)
eR - rl~h~ edge or -the curran~ V.rtex (vi)
UT - top vertex ot ~he ~rapezoid structure
UB - bot~a. vertex of the ~rapezoid •~ruc~e
EL - let~ edge of ~he trapezoid s~ruc~ure
ER - rlgh~ edge or .-the ~rapezold .-truc~ure
Trapz ·ID - ID of Trapezoid searched

Algori~J.: SP_TrP()
aor~ all uer~ice. (In y-caordlnate. -X ~a •ln)
tar each uer~ex <ln ~he order of sort)
(

}

switch (vertex type of current vertex (vi>>
<

}

ca.ae J:
S&arch_Ed~e at vi in Z-3 tree <A~raPZID. eL. eR)
Colltple~e ~he ~rapezoid wl~h vi as botto• vertex

(TrapzJD)
Jleoooove trapezoid f':rDIIII Z-3 ~- <TrapziD)
Insert new ~rapezoid in~o Z-3 tree Cvl. EL. eR>

case 11:
Search vl location in Z-3 ~- carrapsJD)
It vl l• within an active trapezoid (type Ila)
{

}

Cottplete ~he trapezoid with vi as bo~~o• vertex
<TrapziD)

Re•ove trapezoid f'rooo Z-3 ~rea <TrapziD)
lnaert new trapezoid ln~o Z-3 ~- (vi. EL. eL)
Insert new Trapezoid Into Z-3 tree (vi. eR. ER>

Elae (~ype lib>
Insert new trapezoid ln~o Z-3 tree (vi. eL. eR>

case II I:
Search Ed!re of vi in Z-3 tree CATr&pzlD. eL. eR)
If' eL and eR belong to the -- ~rapezoid <Ilia)
{

}

Cottplete the ~apezold with vl aa bo~tooo vertex
(TrapziD>

Reoooue trapezoid f'~ Z-3 tree <TrapziD>

Cottplete ~he trapezoid wl~h vi •• bot~o• vertex
(TrapziD1)

Cottplete the trapezoid wi~h vi aa botto• vertex
<TrapziDZ)

Reooove trapezoid f'rooo Z-3 ~ <TrapziD1)
Re•ave ~rapezoid f'ro• Z-3 ~rae <TrapziD2>
Insert new ~rapezoid Into Z-3 ~ree (ul. EL''• ER")

Figure 11. Algorithm to Transform the SP
into a TrP (FM84].

This transformation process always starts with a vertex

of type IIb (the highest y-coordinate vertex) to initiate

the first incomplete trapezoid. As each vertex is proc-

essed, incomplete trapezoids may be completed and new trape-

17

zoids may be started. An incomplete trapezoid can only be

completed if the current vertex lies on one of its side

edges.

The following is a detailed explanation of what happens

to vertices of each type:

Type I:

This vertex type indicates the completion of one trape-

zoid a.nd the beginning of a new trapezoid. The comple-

tion of one trapezoid is accomplished by completing an

upper adjacent trapezoid (of this vertex) with the

current vertex as its bottom vertex. The beginning of

a new trapezoid is accomplished by beginning a new

trapezoid with the current vertex (vi) as its top

vertex. Either the left edge of the trapezoid just

completed and the right edge of the current vertex or

the left edge of the current vertex and the right edge

of the trapezoid just completed are the left and the

right edges, respectively, of the new trapezoid (see

Figure 12).

Figure 12. Vertex Type I Process.

Type IIa:

This vertex type indicates the completion of one trape-

18

zoid and the beginning of two new trapezoids. The

completion of one trapezoid is accomplished by complet

ing an upper adjacent trapezoid (of this vertex) with

the current vertex (vi) as its bottom vertex. The

beginning of two new trapezoids are accomplished by

beginning two new trapezoids with the current vertex as

their top vertex. The left edge of the trapezoid just

completed and the left edge of the current vertex are

the left and the right edges, respectively, of one of

the new trapezoids. The right edge of the current

vertex and the right edge of the trapezoid just com-

pleted are the left and the right edges, respectively,

of the other new trapezoid (see Figure 13).

Figure 13. Vertex Type IIa Process.

Type IIb:

The vertices adjacent to a type IIb vertex must have

lower y-coordinates than that vertex, and the interior

of the polygon (shaded area) will be below the vertex

(see Figure 14). A type IIb vertex indicates the

beginning of a new trapezoid with the current vertex as

its top vertex. The left and the right edges of the

current vertex are the left and the right edges, re-

19

spectively, of the new trapezoid (see Figure 14).

Figure 14. Vertex Type lib Process.

Type Ilia:

This vertex. type indicates the completion of one trape

zoid which is accomplished by completing an upper

adjacent trapezoid (of this vertex) with the current

vertex (vi) as its bottom vertex (see Figure 15).

Figure 15. Vertex Type Ilia Process.

Type IIIb:

This vertex type indicates the completion of two trape-

zoids and beginning of one new trapezoid. The comple

tion of two trapezoids is accomplished by completing

two upper adjacent trapezoids (of this vertex) with the

current vertex (vi) as their bottom vertex. The begin

ning of one new trapezoid is accomplished by beginning

a new trapezoid with the current vertex as its top

vertex. The left edge of one of the trapezoid just

20

completed and the right edge of the other trapezoid

just completed are the left and the right edges, re

spectively, of the new trapezoid (see Figure 16).

~eL eR/~
> +

\

:~·

Figure 16. Vertex Type IIIb Process.

3.2 Transform the Trapezoidized Polygon into

a Uni-Monotonized Polygon

When this second step begins, all trapezoids have

already been completed. Trapezoids are processed to form

uni-monotone polygons which will then be triangulated. This

portion of the algorithm is shown in Figure 17.

This step will divide the simple polygon into uni

monotone polygons using the information provided by the

trapezoidized polygon.

There are two kinds of trapezoids [FM84) (see Figure

18) :

1. Class A: two vertices share an edge of a trapezoid; and

2. Class B: two vertices do not share an edge of a trape

zoid.

For class B, the two vertices create one of the trian-

gle edges {this is illustrated by the dotted lines in Figure

18). This process finally creates uni-monotone polygons.

Input:
n vert icea of a Polygon, whe:re
r irst is -the r ira-t uer-tex ID ot a polygon
las-t •• -the las-t vertex Il) or a polygon

Output: •-1
k -triangles (T:rP), whe:re k =~ k 1 and • = -be:r of unl-.onotone polygons

Algorith.:[FM84l 1=8
TrP_~P_TP(flrst. last)
<

}

curren-t_ue:rtex = fl:rat
while no-t current_uertex.done do
<

>

cu:r:ren-t_ue:rtex.done = TRUE
botto._ue:rtex = dlagonal(cu:r:rent_uertex)
if bo-tta._uertex not HULL t.ben
<

.. ve_next = next(current_uertex)
-ve_p:reu = p:reu(bo-tta._ue:rtex)
next(cu:rrent_uertex) = botta._uertex
preu(current_ver-tex) = cu:r:rent_uertex
trapeaold(cur:rent_uertex) = HULL
T:rP_~P_TP(botta._uertex. current_uertexl
cur:rent_ue:rtex.done = FALSE
bott0110_uer-tex. done = FALSE
next(current_uertex> = .. ua_next
prev(botto•_uertex> = saue_preu
next(botto._uertex) = cu:r:rent_uertex
prev(cu:rrent_uer"tex) = botto._uertex
TrP_~_TP(current_uer-tex. botta._uertex)
:return

>
el•e

current_uertex next(cu:r:rent_uertex)

UKP_TP(flrct. last)

Figure 17. Algorithm to Transform the TrP into
a UMP then into a TP [FM84].

Cla•• B

Figure 18. Two Classes of Trapezoids.

Implementation Detail

21

Diagonal() is a function (with a vertex input) which

returns the value of:

Bottom vertex of the trapezoid (which its top vertex is

vertex input), if top and bottom vertices do not share an

edge of the trapezoid.

22

NULL, if top and bottom vertices share an edge of the

trapezoid or if there is no trapezoid pointed at by the

vertex input [FM84].

When this process calls for the TrP_UMP() function with

the input of a polygon, that polygon is actually a uni-

monotone polygon.

3.3 Transform the Uni-Monotonized Polygon into

a Triangulated Polygon

The part of the Fournier and Montuno's triangulation

algorithm that transforms the Uni-Monotonized Polygon into a

Triangulated Polygon is shown in Figure 19.

Input;: 1 U"P (conU..ine nl ver-ticee). where 8 <= i < -1 and M =nuMber or UJIIPS

Output;: kt"lrlanglee (where each triangle contains uertex1.
vertexz. and uer-tex3)

~t;e:

ver-tex.prev - prevloue vertex
uer~ex.curr - current uertex
ver-tex.nex-t - next yertex
ver-tex.s-tack[l - vertex on the stack

Algorith.: U~_~p()

vertex.current = vertex (the second highest vertex in U"P)
wh lle (nuMber or vertex >= 3 >
{

it angle ot (uer"lex.prev. ver"lex.curr. vertex.nex-t) <= 188•
<

Build ~rianglo (uertex.prov. vertex.curr. ver-tex.next)
re.oue uertex.curr
decreaee nuMber of vertex hy 1
if (nuMber of a-tack vertex) 8)

uertex.curr = uertex.sta.ck[--nu•ber of a-tack vertex]
elao

uertox.curr = uer-tex.noxt
)

alee
{

uertex.stack[++nu•ber or stack uertexl = uortex.curr
uertex.curr = uer-tex.next

Figure 19. Algorithm to Transform the UMP
into a TP [FM84].

A uni-monotone polygon contains n vertices labeled u 0 ,

The uni-monotone polygon is divided into:

23

- the highest y-coordinate vertex (u0) and the lowest y

coordinate vertex (un_1); the edge between this two

vertices is called MainEdge.

- Intermediate vertices (all vertices except those that

have the highest and lowest y-coordinates) denoted as

ui, where 1 <= i <= n-2.

Only the intermediate vertices of the uni-monotone

polygon are processed, so this process must start from the

second highest vertex(u1) and continue through the second

lowest vertex (un_2).

The internal angle of each vertex is checked; the

internal angle is defined by the adjacent edges of the

current vertex (i.e., the angle that is formed by the previ

ous vertex, the current vertex, and the next vertex). If

the angle is less than or equal to 180°, then a triangle is

built with those vertices (the previous vertex, the current

vertex, and the next vertex), the current vertex is removed,

and the next vertex is processed. If the angle is greater

than 180°, then the current vertex is put in a stack to be

processed later. The previous vertex, the current vertex,

and the next vertex cannot build a triangle, if the internal

angle is greater than 180°, because the triangle will be

outside of the boundary of the uni-monotone polygon. The

uni-monotone polygon is processed until it is broken up into

a collection of one or more triangles.

CHAPTER IV

MODIFIED TRIANGULATION ALGORITHM

4.1 Transform the Simple Polygon into

a Trapezoidized Polygon

This algorithm is almost the same as the algorithm

which transforms the Simple Polygon into a Trapezoidized

Polygon in the Fournier and Montuno's Triangulation algo-

24

25

rithm. The difference lies in handling the completion of a

trapezoid.

~--------------------------,

I I : r---------------1 1

SP ·: i - I 2 i ~ UHP ~ 3 1 .. I i i
I I I I I L_ _______________ J I

I I L_ ________________________ _j

Figure 20. Execution Sequence of the
Modified Algorithm.

In the Fournier Montuno's triangulation algorithm,

after all trapezoids are completed, the process of trans-

forming the Trapezoidized Polygon into a Uni-Monotonized

Polygon begins (see Figure 11).

In the modified triangulation algorithm each completion

of a trapezoid is directly transformed to build Uni-Monotone

Polygons (see Figure 21, with sign*>·

4.2 Transform the Trapezoidized Polygon into

a Uni-Monotonized Polygon

Every time one trapezoid structure is completed, this

step is executed by beginning a uni-monotone polygon based

on the information of the completed trapezoid or appending

the completed trapezoid to an existing uni-monotone polygon.

The algorithm for this step is shown in Figure 22.

Input: n ue~ticea Cuo, u1, ••• , un-1) or a ai•ple polygon
Ou-tpu-t: Jc -t~ iang' lea ...-1

tlo-te:
whe~e Jc = i-z:=8 Jc 1 and • = nuJither of' UJIOp8

ul cu~rent uertex
eL - left edge or the cu~~nt uertex Cui)
eR - righ-t edge of' -the cu~en-t uer-tex Cui)
UT - top uertex of' the t~apezold atruc-ture
UB - bottOM vertex or the trapezoid a-tructure
EL - left edge or the trapezoid structure
ER right edge of' the t~apezold atructu~e
Trap• ID - ID or T~apezoid searched

Algo~ithM: SP_TrPC>
aort all uerticoa (ln ~-coordinate. RaX to •In)
f'o~ each uertex (1 n the order of' sort)
{

switch (uer-tex type of' current vertex <ui>)
{

case I:
Search_Ed~e or ui In 2-3 tree CAJraJ>ZID, eL. eR)
c.-plete -the t.rapezoid wit.h ui aa bot-tooo ver-tex

CTrapzJD)
•----------TrP _UI1P _TP CTrapsiD)

Jlelltoue tll"apeaold 1'1'01111 2-3 tll"ee CTI"apziD)
Insert. new t~apezoid in-to 2-3 tree (ui, EL, eR)

ca .. II:
Search ul location in 2-3 tree CATI"apziD>
If' ul Ia within an active trapezoid (t~pe lla)
{ .

Cooople-te the trapezoid with ui •• bottooo uer-tex
(TrapaiD)

* -------TrP lJI1P TP (TraJ>ZID)

>

Reoooue trapeaoid J'rooo 2-3 tree CTrapziD)
Insert. new trapezoid into 2-3 tree Cui, EL, eL)
Insert. new Trapezoid into 2-3 t.ree Cui, eR, EJI)

Else (type I lb)
Insert. new trapezoid into 2-3 tree Cui, eL. eR)

ca- III:
Search Edge of' vi In 2-3 -tree CATrapziD, eL. eR)

IJ' eL and eR belong t.o t.he- trapezoid <Ilia)
{

C:O.plete the t.rapezold wit.h ui as bot.to• uertex
(TrapziD)

•-------TrP _UI1P _TP CTrapzJD)
Reoooue trapezoid frooo 2-3 tree CTrapziD)

>
Else <type I Jib)
{

Ca .. plete the t.rapeaoid with ul aa botta. vertex
CTrap:o:ID1)

•-----------TrP _UI1P _TP <TrapziD1)
Co•ple-te the trapezoid with ui as bot.t.ooo vertex

(TrapaiD2)
•-------------TrP _UttP _TP <TrapziD2)

}

>

Reoooue trapezoid J'rooo 2-3 t.ree CTrap:o:ID1)
Re .. oue trapezoid J'ro• 2-3 t.roe Ctrap:o:ID2)
Insert. new trapezoid into 2-3 tree Cui, EL". ER")

Figure 21. Algorithm to Transform SP into a TrP,
into a UMP, and then into a TP.

26

The choices of beginning a uni-monotone polygon or

appending to an existing uni-monotone polygon depend on the

type of the top vertex (VT) of the completed trapezoid

(i.e., I, IIa, IIb, Ilia, or IIIc) and the type of the

diagonal of the completed trapezoid (i.e., internal diagonal

or external diagonal). See Section 1.2 for the definitions

of these terms.

input: Trapezoid (VT, VB, KL, KH)
output: Jci trlanglea, where 8 <= I <= -1 and oo = nuoober o£ Wltp•
Algorlthoo:

TrP_UHP_TP (TrapziD)
<

>

Switch (edge UT-VB)
<

>

ca•e EXTERHAL_EDGE:
If current uertex type = Il'b

llu.ild_UHP (the longer one bet-en EL and ER in Y-ccx>rdinate)
Append_UHP CEL or ER, UT-\JB)

ca•e IHTERHAL_EDGE:
if current uertex type = lib
<

>

llu.lld_UHP <EL)
Bulld_UHP CER>

Append_UHP CEL, UT-UB>
Append_UHP CER, UT-VB>

Append_UHP (vertex, MainEdge)
<

>

Search_HainEdge_Location in Z-3 tree CUHP_ID, uertex)
If UHP _ID = HULL
<

Bu 1 ld_UHP (uertex)
Append_UI1P (vertex, Ha I nEdge)

>
el•e

Attach vertex to UHP_ID
if CUHP I• ca.plete)

UHP_TP C>

Figure 22. Algorithm to Transform TrP into a UMP,
and then into a TP.

If the trapezoid just completed has:

27

1. a top vertex of type IIb and an external diagonal,

begin a new uni-monotone polygon with the left or

right side edge of the trapezoid as the main edge of

the uni-monotone polygon.

2. a top vertex of type IIb and an internal diagonal,

begin two new uni-monotone polygons with the left and

right side edge of the trapezoid as the main edge of

the uni-monotone polygons.

3. a top vertex of type I, IIa, IIIa, or IIIb and an

external diagonal, append the trapezoid's top vertex

as an intermediate vertex to an existing uni-monotone

28

polygon that has a main edge equal to the left or

right side edge of the trapezoid. If no such uni

monotone polygon exists, begin a new uni-monotone

polygon with the left or right side edge of the trape

zoid as the main edge of the uni-monotone polygon.

4. a top vertex of type I, IIa, IIIa, or IIIb and an

internal diagonal, append the trapezoid's top vertex

as an intermediate vertex to two existing uni-monotone

polygons such that:

a. one of the uni-monotone polygons has a main edge

equal to the left side edge of the trapezoid. If

no such uni-monotone polygon exists, begin a new

uni-monotone polygon with the left side edge of the

trapezoid as the main edge of the uni-monotone

polygon.

b. another uni-monotone polygon has a main edge equal

to the right side edge of the trapezoid. If no

such uni-monotone polygon exists, begin a new uni

monotone polygon with the right side edge of the

trapezoid as the main edge of the uni-monotone

polygon.

If the top vertex of the trapezoid being processed is

also the bottom vertex of the main edge of the uni-monotone

polygon, then that uni-monotone polygon is complete and

should be triangulated immediately.

Based on the definition of a uni-monotone polygon (see

Scetion 1.2), the vertex types on the uni-monotone polygon

29

can be identified:

- v 0 (the highest y-coordinate vertex) must be of vertex

type IIb

- vn_1 (the lowest y-coordinate vertex) must be of vertex

type IIIa

- vi, where 1 <= i <= n-2, (the intermediate vertices) must

be of vertex type I, never of type II or type III. Also

the y-coordinate of vi is always higher than y-coordinate

of vi+1 .

To build a uni-monotone polygon, at least three ver

tices (two vertices as a main edge, and at least one vertex

as an intermediate vertex) are needed. The main edge must

have the maximum and minimum y-coordinate of that uni-mono

tone polygon.

4.3 Transform the Uni-Monotonized Polygon into

a Triangulated Polygon

This algorithm is analogous to the algorithm which

transforms the Uni-Monotonized Polygon into a Triangulated

Polygon of Fournier and Montuno's Triangulation algorithm.

CHAPTER V

COMPARISON OF FOURNIER AND MONTUNO'S AND

THE MODIFIED TRIANGULATION ALGORITHMS

In the previous chapters, the Fournier amd Montuno's

and the modified triangulation algorithms were discussed

separately. This chapter examines the differences between

the two algorithms by comparing the processing flows of the

algorithms, their simplicities, and their run-time complex

ities.

5.1 Processing Flow of the Algorithms

The following is a comparison of the processing flows

of the Fournier and Montuno's triangulation algorithm and

the modified triangulation algorithm. Figure 23 outlines

the processing flows of the two algorithms (see Section 1.2

for the explanation of the notations).

Up to the point where BuildTrapz() is invoked, both the

Fournier and Montuno's and the modified triangulation algo

rithms are the same. After that, they take two different

directions, because the Fournier and Montuno's triangulation

algorithm creates uni-monotone polygons after all trapezoids

are completed, while the modified triangulation algorithm

creates uni-monotone polygons after each trapezoid is com-

30

pleted.

Fournier and Montuno's
Triangulation Algorithm

main()
{

}

SP = read SP ()
sort SP {SP)
TrP = SP TrP {SP)
TP = TrP_UMP_TP {TrP)

SP_TrP {SP)
{

}

for i = 1 to n
trp = BuildTrapz

{vertex)

TrP_UMP_TP {TrPl)
{

}

TrP UMP TP {TrP2)
TrP-UMP-TP {TrP3)
tps-= uMP_TP {ump)

Notation:

Modified
Triangulation Algorithm

main{)
{

SP = read_SP{)
sort SP {SP)
TP = SP TrP UMP - -

}

SP TrP UMP TP (SP) - - -{
for i = 1 to n
{

TP {SP) -

31

trp = BuildTrapz {vertex)
if {trp = Compl.Trapz)

tps = TrP_UMP=TP {trp)
}

}

TrP_UMP_TP (trp)
{

}

ump = BuildUmp {trp)
if (ump = ComplUmp)

tps = UMP_TP (ump)

n means number of vertices in SP
BuildTrapz () means SP TrP which is an algorithm to

transform SP into a TrP.
BuildUMP () means an algorithm to transform the TrP into

a UMP.

Figure 23. The Processing Flow of Fournier and Montuno's
and the Modified Triangulation Algorithms.

The TrP_UMP_TP() procedure of each algorithm takes a

different approach in transforming a TrP to a UMP. Fournier

and Montuno's triangulation algorithm uses recursion, while

the modified triangulation algorithm avoids the use of

recursion. The details will be explained in the next sec-

tion.

32

5.2 Simplicity

The TrP_UMP_TP() procedure in Fournier and Montuno's

triangulation algorithm is executed recursively. A recur

sive procedure (i.e., a procedure that calls itself) can be

complex and difficult to understand. Moreover, in the

actual algorithm this procedure calls itself twice. This

factor makes the algorithm harder to understand and to

follow.

The modified triangulation algorithm avoids the use of

recursion; thus it is simpler than the Fournier and

Montuno's triangulation algorithm.

5.3 Run-Time Complexity

In the following discussion, the run-time complexities

of both algorithms are analyzed.

Both algorithms assume that the Simple Polygon is

already provided, so the run-time complexity of read_SP()

procedure is of no concern.

Fournier and Montuno's Triangulation Algorithm

This algorithm executes the sort_SP(), SP_TrP(), and

TrP_UMP_TP() procedures~

The sort SP() procedure can be done in 0 (n log n)

[FM84].

The SP TrP() procedure runs in O(n log n). The main

'for' loop is executed n times. Each of its steps processes

33

the BuildTrapz() procedure which uses a 2-3 tree to store

(search and insert) and delete trapezoids. These operations

each take O(log r), where r is the number of leaves in the

tree. Because r <= n, the whole loop is O(n log n) (FM84].

The TrP_UMP_TP() procedure runs in O{n) [FM84]. The

UMP_TP() procedure runs in O(m), where m is the number of

vertices of a uni-monotone polygon. Because m <= n, the

TrP_UMP_TP() procedure runs in O(n) [FM84].

Therefore the run-time complexity is O(n log n + n log

n + n), which asymptotically is the same as O{n log n).

Thus the entire Fournier and Montuno's triangulation algo

rithm runs in O(n log n) time [FM84].

The full analysis of this algorithm is provided by

Fournier and Montuno (FM84].

The Modified Triangulation Algorithm

This algorithm executes the sort_SP() and SP_TrP_UMP_TP()

procedures.

Sorting has a run-time complexity of O(n log n), so the

sort_SP() procedure is O(n log n).

The SP_TrP_UMP_TP() procedure runs in O(n log n). The

main 'for• loop is executed n times. Each of its steps

executes the BuildTrapz() procedure and in certain condition

also executes TrP_UMP_TP(} procedure.

The BuildTrapz() procedure uses 2-3 tree to store

(search and insert) and delete trapezoids. These operations

each take O(log r), where r is the number of leaves in the

34

tree. Because r <= n, the BuildTrapz() procedure runs in

O(log n).

The TrP_UMP_TP() procedure runs in O(log n). It exe-

cutes BuildUmp() procedure and in one condition also exe-

cutes UMP_TP() procedure.

The BuildUmp() is the same run-time complexity as the

BuildTrapz() procedure which runs in O(log n).

The UMP_TP() runs in 0(1). Assume that the run time of

this procedure in a loop is zi. Then the run time of

SP_TrP_UMP_TP() procedure is

n-1
~ (log n + log n + zi)

i=O

n-1
The possible value of ~ zi =

i=O

1. o + o + .•• + o + n = n, that means the simple polygon is

a uni-monotone polygon.

2. 0 + 0 + 3 + 3 + ..• + 3 + 3 = 3(n-2), that means all uni

monotone polygons are triangle.

3. zi never be n more than one, so ~ zi != n2 • On each loop

(each vertex) can be used by at most three uni-monotone

polygons, therefore each vertex is processed at most

three times, thus~ zi = 0(3n).

The zi is a constant, and the UMP_TP() runs in 0(1).

Therefore the TrP_UMP_TP() procedure runs in O(log n) +

0(1), which in the worst case becomes O(log n). The

SP_TrP_UMP_TP() procedure runs in O(n(log n +log n)), which

in the worst case becomes O(n log n). Thus the entire

35

Modified triangulation algorithm runs in O(n log n).

Comparison

From the above run-time complexity analysis of both

algorithms, the Fournier and Montuno's triangulation algo-

rithm has the same order run-time complexity to the modified

triangulation algorithm. But in implementation the modified

triangulation algorithm is faster, though not significantly;

they only differ by a multiplicative constant (see Appendix

C) . The implementation uses various data which are input to

both algorithms, and the run times of both algorithms are

analyzed.
•

There are some possible reasons about the result imple-

mentation test of run time unit of both algorithms, where

the modified triangulation algorithm runs faster than the

Fournier and Montuno's triangulation algorithm:

1. Like the analysis above, both algorithms runs in the same

big 'Oh' run-time complexity (i.e., O(n log n)), but they

are different by multiplicative constant).

2. Implementation algorithm on modified triangulation algo

rithm is the better implementation; implementation algo

rithm on Fournier and Montuno's triangulation algorithm

is not the good implementation.

3. The Fournier and Montuno's triangulation algorithm uses

recursive function on one part of the algorithm, while

the modified triangulation algorithm avoid using recur

sive function. Two algorithms that has the same time

36

complexity, but one using recursive function and the

other using iteration, the one that use iteration will

runs in the same order as (or slower in detail than) the

one that use recursive function in analysis, but will

runs faster in implementation (S81].

CHAPTER VI

SUMMARY AND FUTURE WORK

Triangulation algorithm should be simple and run fast.

The modified triangulation algorithm presented here is

simpler (it avoids using recursion) and runs faster (though

not significantly) than Fournier and Montuno's triangulation

algorithm.

Possible future work on the triangulation algorithm:

1. Try to reduce the run-time complexity. It is conjec

tured that the run-time complexity of the triangula

tion algorithm could be O(n), where n is the number of

vertices in a simple polygon. That means that the

triangulation algorithm is faster than a typical

efficient sorting algorithm [TV88].

2. Use parallel computing methods. Ideally, in a paral

lel environtment, the algorithm should run faster by a

factor of m, where m is the number of processors. If

m >= n, the algorithm should run faster by a factor of

n.

3. Find a connection between the problem of triangulation

of a simple polygon and determination of edge-vertex

visibility [FM84, TV88].

4. Find the intersection of two n-gons [TV86].

37

[AT81]

[CD79]

[FM84]

REFERENCES

Avis, D. and G. T. Toussaint. "An Efficient
Algorithm for decomposing a polygon into star
shaped polygons." Pattern Recogn., Vol. 13, No.
6 (1981), pp. 395-398.

Chazelle, B. and D. Dobkin. "Decomposing a
Polygon into Its Convex Parts." Proceedings of
the 11th Symposium on Theory of Computing, ACM,
New York, 1979, pp. 38-48.

Fournier, A. and D. Y. Montuno. "Triangulating
simple Polygons and Equivalent Problems." ACM
Trans. on Graphics, Vol. 3, No. 2 (April 1984),
pp. 153-174.

[FR82] Fussel, D. and B. D. Rathi. 11A VLSI-Oriented
architecture for Real-Time Raster Display of
Shaded Polygons." Proceedings of Graphics Inter
face 1 82, National Research Council of Canada,
Toronto, ontario, 1982, pp. 373-380.

[FS73] Fix, G. and G. Strang. An Analysis of the Finite
Element Method Prentice-Hall, Englewood Cliffs,
New Jersey, 1973.

[GJPT78] Garey, M. R., D. s. Johnson, F. P. Preparata, and
R. E. Tarjan. "Triangulating a Simple Polygon."
Info. Processing Letter, Vol. 7, No. 4 (June
1978), pp. 175-180.

[HM83] Hertel, S. and K. Mehlhorn. "Fast Triangulation
of Simple Polygons." Proceedings of the 1983
International Conference on the Foundations of
Computer Science, IEEE, Los Angeles, 1983, pp.
207-218.

[HMRT86] Hoffman, Kurt, Kurt Mehlhorn, Pierre Rosenstiehl,
and R. E. Tarjan. "Sorting Jordan Sequences in
Linear Time Using Level Linked Search Trees."
Information and Control, Vol. 68 (1986), pp. 170-
184.

[M76] McLain, D. H. "Two-Dimensional Interpolation
from Random Data." Computer Journal, Vol. 19
(1976), pp. 178-181.

38

(K83]

[K85)

[L77]

(L81]

(LP77]

[S75]

(S78)

(S81)

[TV88]

[W70)

39

Kirkpatrick, D. G. "Optimal Search in Planar
Subdivisions." SIAM~ Computing, Vol. 12, No. 1
(February 1983), pp. 28-35.

Keil, J. Mark. "Decomposing a Polygon into
Simpler Components." SIAM~ Computing, Vol. 14,
No. 4 (November 1985), pp. 799-817.

Lloyd, E. L. "On Triangulations of a Set of
Points in the Plane." Proceedings of the 18th
Annual Symposium on the Foundations of Computer
Science, IEEE, Los Angeles, 1977, pp. 228-240.

Lee, D. T. "Shading of Regions on Vector Display
Devices." ACM Computer Graphics, Vol. 15, No. 3
(July 1981), pp. 34-44.

Lee, D. T. and F. P. Preparata. "Location of a
Point in a Planar Subdivision and Its Applica
tions." SIAM~ Computing, Vol. 6, No. 3 (Sep
tember 1977), pp. 594-606.

Shames, M. I. "Geometric Complexity." Proceed
ings of the 7th Annual Symposium on Theory of
Computing, ACM, New York, 1975, pp. 224-233.

Schachter, B. "Decomposition of Polygons into
Convex Sets." IEEE Trans. Comput., Vol. C-27,
No. 11 (November 1978), pp. 1078-1082.

Sahni, Sartaj. Concepts in Discrete Mathematics
The Camelot Publishing Company, Fridley, Minneso
ta, 1981.

Tarjan, R. E. and c. J. Van Wyk. "An O(nloglogn)
Time Algorithm for Triangulating a Simple Poly
gon." SIAM ~ Computing, Vol. 17, No. 1 (Febru
ary 1988), pp.l43-178.

Watkins, G. S. "A Real-Time Visible Surface
Algorithm." Technical Report UTEC-CSc-70-101,
Computer Science Department, Univ. of Utah 1970,
NTIS AD-762 004.

APPENDIXES

40

APPENDIX A

DETAILS OF THE MODIFIED TRIANGULATION

ALGORITHM

This is a sample run of the modified triangulation

algorithm from creating a simple polygon to modifying the

simple polygon into a triangulated polygon.

Create a Simple Polygon

A simple polygon is created with 12 vertices in a batch

input data file (see Appendix C for the actual batch input

data file and Appendix B for explanation how to run the

program). A vertex is identified by its x and y-coordi

nates. The type of each vertex is then identified (see

Figure 24). The simple polygon is shown in Figure 25.

41

Vertex
ID

0
1
2
3
4
5
6
7
8
9

10
11

Figure 24.

(X,Y) Vertex
coordinates Type

(8,20) II
{10,16) III
{12,18) II
{14,12) III
{18,14) I
{16,15) I
{22,17) II
(18,10) I
(20, 4) III
(10, 8) II
{ 2, 6) III
(6,11) I

The Vertices of a Simple
Polygon.

¥--coord.

za'~'--------f- H
___ L_ ____ j _______ __L_

I I I
I I I

: I
I

I
I
I
I
I
I

15 -----T-

s

8

1
I
I
I
:

,a
I
I
I
I

-~------------':::---- l---> X-coord.
S 18 15 Z8

Figure 25. A Simple Polygon.

Transform the Simple Polygon into

a Trapezoidized Polygon

42

After a simple polygon is created, each vertex (in y

coordinate descending order) is processed to transform the

43

simple polygon into a trapezoidized polygon.

Notation on Figures 26a, 26b, and 26c:

- the left part identifies the current vertex being proc

essed (marked with a circle) with its previous and its

next vertices.

- the middle part represents the 2-3 tree containing the

current incomplete trapeozids. The notation on the inte

rior node is (Diagonal Edge), where Diagonal Edge means

the diagonal edge of the trapezoid. The notation on the

leaf node is (Diagonal Edge, ID), where Diagonal Edge

means the same as the above definition and ID means the ID

of the trapezoid.

- the right part represents a list of all incomplete and

complete trapezoids processed so far. Complete trapezoids

are marked with an * in front of them. The notation is

(ID) (EL, ER, VT_VB), where ID means the ID of the trape

zoid, EL and ER mean the left side edge and the right edge

of the trapezoid, respectively, VT-VB means the diagonal

edge of the trapezoid that connects the top vertex and the

bottom vertex of that trapezoid.

The following is the outline of what happens to each

vertex (Figures 26a, 26b, and 26c).

Vertex 0:

Vertex 2:

Vertex 6:

Vertex 1:

Vertex 5:

5

Vertex 4:

5 6

3~P?y,'
7 f:~ 3 11-

~ ... 11.3

(9) C11-9t 9-1• 9- l

nn (11-9, 9-1, 9- 1
(1) (1-2, 2-3, 2-)

(9) (11-Q, 9-1, 9-)
(1) (1-2, 2-3, 2-)
(2) (5-6, G-7, G-)

* (9) (11-9, 9-1, 9-U
* (1) (1-2, 2-3, 2-1)

(2) (5-&, 6-7, 6-)
(3) (11-9, 2-3, 1-)

* (9) (11-Q, 9-1, 9-1)
* (1) (1-2, 2-3, 2-D
* (2) (S-6, &-7, &-51

C3 l <U-9, 2-3, 1-)
(4) (4-5, &-7. 5-)

* (9) (11-9, 9-1 I 9--1)
* (1) (1-2, 2-3, 2-D
* (2) (S-6, &-7 I 6-5)

(3) (11-Q, 2-3, 1-)
* (4) (4-5, &-7, 5-4)

(S) (3-4, &-7, 4-)

44

Figure 26a. The Transformation of a Simple Polygon
into a Trapezoidized Polygon.

Vertex 3:

~
11 7

Vertex 11:

8 G

1~~
7

Vertex 7:

11~£.

19~8

Vertex 9:

11w·
18 8

Vertex 10:

*(8) (11-8. 9-1, 9-1)
tf(l) (1-2, 2-3, 2-ll
* C2l (5-G, G-7, G-5)
tf(J) (11-9, 2-3. 1-3)
*(4)(4--5. 6-7, 5-4)
* (5) (3-4, G-7, 4-3)

<6> C11-B• 6-7, 3-)

*(9) <11-9, B-1, 9-1)
*(1) (1-2. 2-3, 2-ll
*(2) (5-6. 6-7, fr-5)
if(3) (11-8. 2-3. 1-3)
if (4) (4-5, G-7, 5-4)
if (5) (3-4. 6-7 J 4--3)
*(6) (11-8. 6-7,3-11)

(7) (19-11, 6-7,11-)

• (9) <ll-9, B-1, 8-U
if(l) (1-2. 2-3, 2-ll
* (2) (5-6, 6-7 J fr-5)
* (3) (11-9, 2-3, 1-3)
* (4) (4-S, 6-7, S-4)
tf(5) (3-4, 6-7, 4-31
•(£.) U1-9, 6-7,3-11)
•<7> U&-11, 6-7,11-?l

CBl (19-11, 7-91 7-)

if (9) (11-B, 9-1, 9-U
* (1) (1-2. 2-3, 2-ll
if (2) < 5-G, 6-7, 6-5>
if (3) (11-9, 2-3, 1-3)
* (4) (4-5, G-7, 5-4)
* (5) (3-4. 6-7, 4-3)
if (£,) (11-8, 6-7,3-11)
if (?) (19-11, 6-7,11-7)
* (8) (19-11, 7-8, 7-9)

(9) (?-8, B-9, 9-)
(19) (9-19.19-11. 9-)

* (9) (11-8, 9-1, 9-1)
* (1) (1-2, 2-3, 2-ll
• (2) (5-6. 6-?, 6--5)
• (3) <11-B, 2-3, 1-3)
* (4) (4-5, 6-7, 5-4)
• (5) (J-4, 6-7, 4-3)
* (£,) (11-8, 6-7 J 3-11)
* (7) (19-11, 6-?,11-7)
* (9) UB-11, 7-0, 7-9)

(9) (7-B, 8-9, 9-)
tf(lQ) (9-19,18-11,9-19)

45

Figure 2Gb. The Transformation of a Simple Polygon
into a Trapezoidized Polygon

Vertex 8:
* (9) Cll-9, 9-1 1 9-1)
* (1) (1-2, 2-3, 2-1)
* (2) (!i--6, 6-7 J 6-5)
* (]) (11-9, 2-3, 1-3)
* (4) (4-!it &--7. 5-1)
* (!i) (3-4, 6-? J 4-3)
* (6) (11-9, 6-?,3--11)
* (?) (19-11, 6-7 ,11-7)
* CB) UH-11, ?-9, ?-9)
* (9) (?-0, 8-9, 9-8)
*(19) eJ-19,19-11,9-19)

46

Figure 26c. The Transformation of a Simple Polygon
into a Trapezoidized Polygon

In Figure 26c, vertex 8 (the last vertex to be proc-

essed, in y-coordinate sorted order) contains a list of all

resulting trapezoids, as illustrated in Figure 27.

Figure 27. The Trapezoidized Polygon

Transform the Trapezoidized Polygon into

a Uni-Monotonized Polygon

47

The next step is processing each completed trapezoid to

transform it into uni-monotone polygons.

Notation on Figures 28a and 28b:

- the left part represents the current complete trapezoid

now being processed. The notation is the same as the

notation for the right part in the previous section.

- the middle part represents the 2-3 tree containing

presently existing uni-monotone polygons. The notation on

the interior node is (Main Edge), where Main Edge means

the main edge of the uni-monotone polygon. The notation

on the leaf node is (Main Edge, ID), where Main Edge means

the same as the above definition and ID means the ID of

the uni-monotone polygon.

- the right part represents a list of all incomplete and

complete uni-monotone polygons processed so far. Complete

uni-monotone polygons are marked with an * in front of

them. The notation is (ID) (Main Edge, Intermediate

vertices), where ID means the same as the above defini

tion, Main Edge means the same as the above definition,

and Intermediate Vertices means the intermediate vertices

of the uni-monotone polygon.

The following is the outline of what happens to each

trapezoid (Figure 28a and 28b).

Trapezoid 0:

(9) (11-91 9-1 1 8-1)

Trapezoid 1:

(1) (1-21 2-3~ 2-D

Tra ezoid 2:

(2) (S-6, 6-? I 6-5)

Trapezoid 4:

(4) (4-S, 6-? I 5-4)

Trapezoid 3:

(3) (11-91 2-31 1-3)

Trapezoid 5:

(5) (3-41 &-71 4-3)

Trapezoid 6:

(6) (11-9, 6-713-11)

Trapezoid 7:

(?) (19-11, 6-7111-7)

(9) (11-B, 1-)

(9) (11-B, 1-)
(1) (2-3, 1-)

(9) (11-BI 1- 1
(1) (2-3, 1-)
<21 < r.-1, s- 1

(9) (11-B, 1- l
(1) (2-31 1-)
(2) (6-?1 S-4- l

(9) (11-B, 1-3-)
*(U (2-3, U

(21 (6-?,S-4- l

(9) (11-B, 1-3- l
*U) (2-3, 1)

<21 (6-?, S-4-3- l

*<Bl (11-B, 1-31
*(U (2-3, 1)

(2) (6-? I S- 4-3-11-)

*(9) (11-9, 1-3)
*(1) (2-31 1)
*(2) (6-7, S-4-3-11)

(3) UB-1l1 7- l

48

Figure 28a. The Transformation of a Trapezoidized Polygon
into a Uni-Monotonized Polygon.

Trapezoid 8:

(8) (19-11, 7-B, 7-9)

Trapezoid 10:

Trapezoid 9:

(9) (7-0, 8-9, 9-8)

*(9) (11-9, 1-3)
*<1) (2-3. 1)
*(Zl C &-7, 5-4-3-11)

(3) Cl.B-11, 7-9-)
(4) (7-8. 9-)

*(9) (11-B, 1-3)
*(1) (2-3. 1)
*(2) C &-7, S-4-3-11)
*(3) Cl.B-11, 7-9)

(4) (7-8. 9-)

*CB) CU-B, 1-3)
*(U C Z-3, 1l
*(2) C &-7, S-4-3-1U
*(3) Cl.B-11, 7-9)
•C4) (7-8, 9)

49

Figure 28b. The Transformation of a Trapezoidized Polygon
into a Uni-Monotonized Polygon.

In Figure 28b, trapezoid 9 (the last trapezoid to be

processed) contains a list of all resulting uni-monotone

polygons, as illustrated in Figure 29.

Figure 29. The Uni-Monotonized Polygon.

Transform the Uni-Monotonized Polygon

into a Triangulated Polygon

This step processes each completed uni-monotone

polygon to form triangles.

Notation on Figure 30:

50

- the left part (Uni-Monotone Polygon colomn) represents the

uni-monotone polygon being processed. The notation is the

same as the notation for the right part in the previous

section.

- the Main Edge column represents the main edge of the uni

monotone polygon being processed.

- the Available Vertex column represents a list of all

vertices (of the uni-monotone polygon being processed)

that are not yet deleted from that uni-monotone polygon.

- the Current Vertex column represents an intermediate

vertex (of a uni-monotone polygon being processed) that

are now being processed.

- the Previous Vertex column represents a vertex (of a uni

monotone polygon being proc4assed) that is located before

the current vertex (in the sorted sequence of Y

coordinates).

- the Next Vertex column represents a vertex (of a uni

monotone polygon being processed) that is located after

the current vertex (in the sorted sequence of Y

coordinates).

- the "< 7r 11 column represents a flag that indicates whether

the angle between the Previous Vertex, the Current Vertex,

51

and the Next Vertex is less than 180°.

- the Tri ID column represents a triangle ID.

- the Stack Vertex column represents the vertices that have

been processed whose interior angle between the Previous

Vertex, the Current Vertex, and the Next Vertex is more

than 180°. These vertices will be processed again in the

next process.

The following is an outline of what happens to each

uni-monotone polygon (Figure 30).

Un l-l'bno-tone Kain Auai lable U•n·tex <• Tri Stack
Palwan Edge Vertex Cu:rrent P:reuiou11 Hext IJ) Vertex

*U) (2-3, 1) 2-3 2.1.3 1 2 3 y 8 -
*(9) Ul-9, 1-3) U-8 8.1.3.11 1 8 3 " 1

8.1.3.11 3 1 11 y 1 1
8.1.11 1 8 11 y :z -

*C2) (6-7, 5-4-3-lD r.-7 r..s.-t.3.11.7 5 r. " y 3 -
6.4.3.11.7 " 6 3 " 4
6.4.3.11.7 3 4 11 " 3.4
6.4.3.11.7 11 3 7 y 4 3.4
6.4.3.7 3 4 7 y 5 4
6.4.7 4 6 7 y 6 -

*(3) QH-11. 7-9) 18-11 11.7,9.18 7 11 9 y 7 -
11.9.18 9 11 18 y 8 -

•(4) (7-BJ 9) 7-8 7.9.8 9 7 8 y 9 -

Figure 30. The Processing Transformation from Uni
Monotone Polygon to a Triangulated
Polygon.

Figure 31. The Triangulated Polygon.

APPENDIX B

IMPLEMENTATION

Introduction

The program is called "TRIALG" (TRiangulation ALGo

rithm). This program implements the Fournier and Montuno's

and Modified triangulation algorithms. The output of this

program supports the correctness of the analysis in the

previous chapters. The program is developed using Borland's

Turbo C++ compiler, version 1.0, on a 16 megahertz IBM

Personal System 2/30-80286 with an IBM 8512 color display

monitor. The program is also developed using the c compiler

on a VAXstation Model 5500 with 12S megabytes of memory, 2.5

gigabytes of disk storage, rated at 28 mips (million in

structions per second) which utilize RISC (Reduces Instruc

tion Set Computer).

The program displays the logo of TRIALG, then after any

key is pressed, the program prompts the user to enter sever

al input items.

Input

The values that the user is prompted for are:

1. Input mode:

52

53

a. batch file input mode -- the user provides the name

of a file that contains the description of a Simple

Polygon. The correctness of this data will not be

checked by the program, so the batch file must have

the correct format and produce simple polygon(s).

The batch input file can contain one or more simple

polygons. The correct format is outlined in Figure

32.

-<na- at 1:he ab•ple palyvan> (......,her at -the -r-tlcea>
(~DOll"> <y-caar>
(x-cDOlll"> <y-caaa-> --<na~ at 1:he ahople palyvan> (......,her at -the -r-tlcea>
<x-coDlll"> <y-caaa->
(x-cDOlll"> (y-caar> -
•<na- at -the al111ple palyvan> (NUII'belll" at -the -r-tlcea>
<x-caar> (y-caor>
<x-caar> <y-caaa-> --

Figure 32. Correct Input Format.

b. interactive mode -- the user types the description

of a Simple Polygon. The correctness of this data

will not be checked by the program, so the input

data must have the correct format and produce simple

polygon(s). The correct input format is outlined in

Figure 32 (i.e., the same as the batch file input

format).

c. random Simple Polygon generator -- the program

generates the description of a Simple Polygon and

checks if the vertices created are valid. The

system will prompt the user for :

54

- the number of simple polygons,

- the maximum x and y coordinate vertex,

- the minimum x and y coordinate vertex, and

- how the number of vertices for each Simple Polygon

will be specified:

. the user specifies them one by one,

• the user specifies the starting number and the

incremental number, or

. the user specifies the range number by typing in

the maximum and the minimum number (the program

will generate the number of vertices randomly

between minimum and maximum number specified).

2. The choice of the algorithm:

a. Fournier and Montuno's Triangulation Algorithm,

b. Modified Triangulation Algorithm, or

c. Both Algorithms.

3. The choice of output files to be produced:

a. give warnings before overwriting files? (Yes or No)

b. the input data file (InpData.x), which contains all

vertices information of simple polygons created (Yes

or No)

c. the debug file (debug.x), which contains the flow

sequence of the program (Yes or No)

d. the 2-3 tree debug operation file (debug.x), this

question will appear only if the user say Yes on

creating debug.x file (question c).

e. the comparison triangles statistics file (TPstat.x),

55

which contains the triangles results of the algo

rithms (Yes or No)

f. the comparison time statistics file (Timestat.x),

which contains the bios run time of the algorithms

(Yes or No)

g. the vertices result file (OutData.x), which contains

all vertices of Simple Polygon, Uni-Monotone Poly

gon, and the Triangulated Polygon? (Yes or No)

4. The choices displayed:

a. dispiay the all elements polygons in detail (Yes or

No), that is showing Simple Polygon, showing all

uni-monotone polygons inside uni-monotonized polygon

one by one, and showing triangles inside the uni

monotone polygon one by one. If the user say Yes

the question b, c, d, e, and f will be skipped.

This question (a) will not appear if the time com

plexity is to be analyzed (i.e., Timestat.x file

exists).

b. display the simple polygon (Yes or No).

c. display the uni-monotone polygons inside the uni

monotonized polygon one by one (Yes or No). This

question will not appear if the time complexity is

to be analyzed. If the user say Yes the question d

will be skipped.

d. display the uni-monotonized polygon (Yes or No).

e. display the triangles inside the triangulated poly

gon one by one (Yes or No). This question will not

56

appear if the time complexity is to be analyzed. If

the user say Yes the question f will be skipped.

f. display the triangulated polygon (Yes or No).

g. display run times of algorithms on a table (Yes or

No). This question will appear if the time complex

ity is to be analyzed.

h. display the run times of algorithms on a chart (Yes

or No). This question will appear if the time

complexity is to be analyzed.

After all inputs are entered, the program processes all

inputs (using the Fournier and Montuno's Triangulation Algo

rithm orfand the Modified Triangulation Algorithm) and

produce the output results, using graphics to show the

triangulation process as it progresess (optional).

Output

The output of the program depends on the inputs en

tered, especially the part of the input on what will be

displayed, either the result of the triangulated polygon and

the performance data (run-time comparison) of the algo

rithms.

The run-time chart depicts the number of vertices of

the simple polygons entered in increasing order ex

coordinate). It also averages the run times on the simple

polygons that have the same number of vertices (y-coordi

nate). The run-time unit uses bios time (processor clock)

57

which is 18.2 units per second in PS-2/30-80286 IBM computer

and 16.667 units per millisecond in DEC VAXStation 5500 (the

bios run time of DEC VAXStation 5500 is displayed in run-

time chart by multiples of 1000, so that the bios run time

displayed is 16.667 units per second). Data from the

clock(} routine on the VAXStation 5500 are quantized in

multiples of 10. The vertical scale for the run-time unit

value will be displayed with tick labels numbered by the

largest relevant power of 10 {i.e., 1, 10, 100, or 1000}.

Figure 33 shows the method how to find the displayed numbers

of run-time unit.

l!bfJ C.ax- 8 >J
degree= 18
IIWIIber _cliapla~ ;: ""'x / degree
tor- (f: 8; i (: nuMber_clfapla!,lecl: i++)

cllap Ia !:I U • dewree)

where •ax = IIIWUCi....,. nu .. ber oF run_t.~ unit.
IIWIIber _d lap Ia~ = the IIUIIIber oF ua lue will be d l•p Ia !,IIed
cli!OSP'ee = the level nuMbe., (8, 18, 188, 1888, 18888, •••)

Figure 33. The Displayed Run-Time
Unit Value Formula.

If simple polygons in input data have the same number

of vertices then the run-time chart will display the result

of all simple polygon run time and also the program will

display the normal distribution, the mean {average}, and the

standard deviation of simple polygons run time.

The flow-chart of the whole process is shown in Figures

34a and 34b.

I
I
I
I
I

58

L-------~-==-=--:::t==-=-~-------~---------~-------_J

L----------------------J----------------~ I
OUTPUT FILES ?

(lnp:Da't.& .x) ?

Debug algol'ltm rJow (Debug.x)?

Debug the 2-3 t:ree ope:ration (Debug .x) ?

ec-parl..,.. ata-t.iatlc of" t .. l&na'l- :reault
or both alsr • <TP.-t.at .x > ?

Statistic or running ti.a ca.plexlty

or both a Ig. n 1-s1:.a-t .x > .,

Du .. p output clata rue COutDa'f:.&.x)?

I
I

1) Only for Interactive
and Randorl input PIOde

2) Only for ''Both"
choice algorlthlt type

Figure 34a. The Process Sequence Flow Chart.

59

DISPLAY?

2r-----------------~--------------~--, Statiatlc o£ Running ti- C010plexlty ln a table 7

PROCESS

OUTPUT

Figure 34b. The Process Sequence Flow Chart.

APPENDIX C

SAMPLE EXECUTION

The program always start with a logo and information

about the program to the user (see Figure 35).

three samples with different approaches.

lliriAlg •
Triangulation Algorit~

Th t a plf'09'r- iiiiiP leooent. :
'An AlgoritJw. to Triangulate a Sbtple Pol!,I!Jon•

It r~uirea lnputa:
1. How lnpu~ datA ia road.

- Interactive
- Batch
- u- Rand.o. Gener&~Ol'

2. What algorithooo ia to be u-cl.

There are

- Fournier A 11ontuno triangulation aliJorltJt.
- noclltied triangulation algorlt'-

3. lolha:t to dlaplay (option 11- ancl Ito)

Figure 35. The Logo and Information
about the Program.

60

61

sample #1

This sample analyzes a simple polygon with detail

display of each uni-monotone polygon and each triangle

formed on the Fournier and Montuno's Triangulation Algorithm

and the Modified Triangulation Algorithm. This sample uses

the same input data as the sample flow of the program in

Appendix B. Figure 36 shows the input data {1 simple poly-

gon with 12 vertices). Figure 37 shows the input prompted

by the program. Figure 38 shows the simple polygon to be

triangulated. Figure 39 and Figure 40 show the sequence of

formation of uni-monotone polygons and triangles by the two

algorithms {Fournier and Montuno's and Modified Triangula-

tion Algorithms respectively).

*batch12 12
8 20
10 16
12 18
14 12
18 14
16 15
22 17
18 10
20 4
10 8
2 6
6 11

Figure 36. Input Data of Sample #1
{DATA\B.12).

HoM !IOU will build the input?
~.Preas 'i' or 'I' f'or Interactive input
2, Preas 'b' or 'B' f'or Batch f'ile Input
3. Pre•• •II'• Oil' •a• f'or Randole Input rll'.,.. coooputer
4. Pre•• ••• or •s• f'or displaying the statistic or II'Unti.a rile
S. Preas • q• Oil' • Q' f'or QUIT

choice = B
1'ype In the 1wt.tch input rue 1\ilNB = DATA,B.~Z
otEW SC:REEH>
Uhat algorltM you want to use:

~. Preas •r• oil' •r•
lr you want to use FOU:RHIER and ..OHTUNO triangulation algoritM z. Press •a• or •A•
if' you want to .. _ ltoclif'ied triangoalation algoritM

3. Press 'b' Dll' 'B'
if' you want to oaae both algorith.a

Chao- ••• B
otEW SCJU:EH>
Pre•• • y• -Yea and • H' -Ho f'or the- opt Ions
==
Ana lysell' r u- will be CII'Bated?
Displayed reaul~?

De'ta il pa lygon on each sequence

n
y
y

Figure 37. The Input Prompted by the Program.

Figure 38. A Simple Polygon.

62

t\
IV\~ I \ I

\ I
I I """ ____ ;

\
\
\

63

Figure 39a. The Sequence Formation of Uni-Monotone
Polygons and Triangles (FM alg.).

64

Figure 39b. The Sequence Formation of Uni-Monotone
Polygons and Triangles (FM alg.).

t\ '
I \\/Vl~UMPO I \ I

\ I
I I

I I

I \
\
\

r\ /\ I \

I'<\ ~
1-V I J---- I

I I
\
\
\

A
1 v)_..TPO

I \
I

I

I

I
I

I
\
\
\

I

I
I

I
\
\
\

65

Figure 40a. The Sequence Formation of Uni-Monotone
Polygons and Triangles (MO alg.).

66

71
/

Figure 40b. The Sequence Formation of Uni-Monotone
Polygons and Triangles (MO alg.).

67

Sample #2

This sample analyzes seven simple polygons with 3, 4,

5, 10, 15, 20, and 25 number of vertices respectively and

show the run-time table and chart of the algorithms. Figure

41 shows the input data for the sample #2 (7 simple polygons

with 3, 4, 5, 10, 15, 20, 25 vertices respectively). Figure

42 shows the input prompted by the program. Figure 43 shows

the sequence of formation of uni-monotone polygons and

triangles. Figure 44a shows the run-time table, and Figure

44b shows the run-time chart for the algorithms.

*RAND#O 3 305 2733 353 1106 7518 7497
7986 7708 632 7452 8522 7091 4400 1140
1661 2998 490 1874 6547 6442 4286 37
4938 9233 1340 7912 5939 6116 493 30
** ** 4896 4994 1779 6751
*RAND#1 4 *RAND#4 15 6818 6403 819 440
8200 7095 5500 9384 7386 6651 1678 766
6527 612 1701 6523 4440 4596 1003 989
5414 3051 2534 7411 4068 5682 2207 6845
2359 841 1037 6535 9009 7261 1800 9274
** 8121 5402 1195 477 1450 7690
*RAND#2 5 6095 5288 3809 739 1273 9199
5516 7068 7359 1386 1134 274 943 7169
6712 6263 775 1052 1350 1227 847 6340
5129 1881 6504 2082 1267 951 630 6938
1018 3434 5620 4784 24 1012 828 3387
1218 4584 5667 2279 796 6267 1392 7764
** 5518 5412 173 7132 1753 6817
*RAND#3 10 4588 4422 ** 659 1116
1914 9730 4811 1969 *RAND#6 25 63 9370
8550 3038 642 6858 6108 9572 ***
3374 2601 ** 2452 7974
6287 2447 *RAND#5 20 2181 420
7207 587 1350 9364 3388 3486
602 787 1132 5290 4143 958

Figure 41. Input Data of Sample #2
(DATA\B.U25).

How you wlll build the input?
1. Pre•• •t• or 'I' For Interactive Input
z. Press 'h' or 'B' For Batch File Input
3. Pre•• •r• ol!' • R' For Rand01111 input Froot cOII'Iputer
4. Pre•• '•' or •s• tor dl•playln8 the •tati•tic at run tiRe tile
5. Pre•• ·~· or 'Q' tor QUIT

choice = B
Type in the hatch Input l'lle na- = DATA,B.3_P
<HEW SCREEH>
What algorlt~ you want to u••=

1. Press •r• or 'F'
IF you want to u- FOURHIER and 110ttl'U'IO triangulation algor it~

2. Preaa ~.• or •A•
lF you want to uae Koditled tlr'langulation algorit~

3. Press •b• or •a•
11' you want to u .. hath ;algorit~•

Chao•• ••• B

otEW SCREEH>
Presa • Y' -Ye• or • N' -Ito For t...,_ opt ion•
==
Analyser File• will he created? n

Ciave-ning to overwrite tll .. ? n
Debu11 For the Flow at the algorltM (DebuiJ.x) n
Trlan81•• •tatlstlc or hath alsrortl~ <TP•tat .x) n
St;atletlc ol' the II'Un tl- unit <TIRBStat.x) Y
The r-lt oJ' the SP, TrP, UKP, and TP vertlcee (OutData.x) Y

Dl•played results? y
The Sl•ple Pol~on y
The detail oJ' each Un l-I'IOnotone Po l~on• n
The Whole Uni-l'lonotonl:zed. Pol~on y
The detAil at each Trla1>frlee n
The Whole Trlangul;ated Yolygon y
The t;ahle at -tlMt run tiRe on procesaln8 each SU..ple Pol~on y
The chart or the duration on processing each Sinple Polygon y

Figure 42. The Input Prompted by the Program.

I
I

I
I

I

68

I I
I

I
I

Figure 43a.

I
I

I

I
The Sequence Formation of Uni-Monotone

Polygons and Triangles (3 Vertices}.

I
I

I

~I
v

69

1 A /fj
// I

/I I
A 11 /j I

/
/; I

, I I I

'" / I I
I
I
I
I

\ I
\ I v

/ // /
/ I
\ I

,. \ I
/ \ I

/ \' / I
/ \ I

\ I
\ I v

Figure 43b. The Sequence Formation of Uni-Monotone
Polygons and Triangles (4 Vertices).

I
I

I
/~

/------------- I
~--- I I

I
I

I

I
I

Figure 43c.

\

I I
I I

I I
' I

I
I
I
I

I
I

i I
The Sequence Formation of Uni-Monotone

Polygons and Triangles (5 Vertices).

Figure 43d. The Sequence Formation of Uni-Monotone
Polygons and Triangles (10 Vertices).

~\

70

\
\\ \
\\ \

~
Figure 43e. The Sequence Formation of Uni-Monotone

Polygons and Triangles (15 Vertices).

~
II / jl /
I I /~
~

Figure 43f. The Sequence Formation of Uni-Monotone
Polygons and Triangles (20 Vertices).

\ A~ \ tV\~
\ ~I') /If/)!
\1f/ I VH/
\ (!; ~~~\ I \ff;

II V ff
I f> I L_1 I =====~

Figure 43g. The Sequence Formation of Uni-Monotone
Polygons and Triangles (25 Vertices).

71

- FOURHIER-nOHTUHO ALG. - nODIFID ALG. -IIIIIIIIIIIIIJIJIIIIIIIIIIIIIIIIIIIIIIIItiiiiiiiiiiUIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIUIIIMIIiiiiiUIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIMMIIIIIIIIIIIIIIIIIIIIII

I SlnPLE I • .. SP -to TrP -to UltP -to TOTAL .. SP -to TrP -to UltP -to TOTAL ..
I POL. HA"E I UER - TrP urtP TP .. TrP urtP TP -...

RAHD8 3 - 8 8 8 8 .. 8 8 8 8 -RAHD1 4 .. 8 8 1 1 .. 8 8 8 8 ..
RAHD2 s - 8 8 1 1 - 8 8 1 1 -RAHD3 18 - 8 8 1 1 - 8 8 1 1 -RAHD4 1S - 1 8 2 3 - 1 8 z 3 -RAHDS 28 .. z 8 3 5 .. 2 8 2 4 ..
RAHD6 2S .. 2 1 4 7 .. 1 8 s 6 ..

IIIIIIIIIIIIMIIIIMMMMIUIMM .. MifiiiiMMMMIIIIIIMMMIIIIIIIIIIIIIIIINIIIIIIIIIIIIIIIIIIIIMMMIIIIIIIIIIIIMMIINIIIIIIIIMIIMMMIIIIIIIIIIIIII

bios-tiMe

5

Figure 44a. Run-Time Table.

Algorithm Run Times <11ULTIPLD

I
I

/

J1
I

I

i
I

i

I

/"

i
I

/

-ri~--~re-7-------------I~o------------~I~s------------+~o-------------~5

,_FH&HO vertices

Figure 44b. Run-Time Chart.

72

Sample #3

This sample analyzes 50 different simple polygons on

each so, 100, 150, 200, 250, 300, 350, 400, 450, and 500

vertices simple polygon. These simple polygons are analyzed

on DEC VAXSt.ation 5500. Figures 45a and 45b show the run

time distribution information on 50 vertices and 1000 ver

tices, respectively (represent the sequence on the number of

vertices of the simple polygons). Figure 46a and 46b show

the run-time chart of all simple polygons, with each simple

polygon that has the same number of vertices are averaged.

This sample shows that the modified triangulation

algorithm actually faster than the Fournier and Montuno's

Triangulation Algorithm.

Run-Time Distribution
33

~
~
~
~
~
~ IS

)X 02'

~ t1

K

,?<.

~
't

.. o ••• JI ... l=t'
l=t'

31 '4
_ 50 U9rtic;gs

1_

50

73

StOe[f"Ml = 7.t7
StDe[MOJ = 6.08

~.
(50 YY~o

50 SiMplg PolyQon

Figure 45a. Distribution Infomation on 50 Vertices
of 50 Simple Polygons.

Run-Time Distribution

~
2

8 8
~
;
; ~ ;

.~
~

~ ~
~HIIR > 'X

'X
~

5(10 1 1 [)(21
bO Q,vv

50 SiMplg PolyQon

Mean[f"Ml = 2312
MG!Oan[MOl = t 878

e
E ~ ~ 7

~
:

5 :
:X::
:X:: ~~ : ~

.2~ 10 31

E
E

St0e[FMJ = 731.29
St0e[t10J = 557.85

3

k
%<

0
3b y v y"'4ooo

Figure 45b. Distribution Information on 1000 Vertices
of 50 Simple Polygons.

bios-tiMe Algorithm Run Times (MULTIPLD

I
I

ft
I

I r--- -------·-------- ----------------~1
t
t
I
I
I
I

:5o
' I
' ' t

Figure 46a. Run-Time Chart of All
Simple Polygons.

I

I
p

74

I
I

I

vertices

75

bios-til'te Algorithm Run Times muLTIDLD

65 p
I

60

55

45

35

0--·Fn o-Ho r-FH&t10 vertices

Figure 46b. Run-Time Chart of All
Simple Polygons (Enlargement).

7

VITA

Soehadi Adi

Candidate for the Degree of

Master of Science

Thesis: MODIFICATION OF FOURNIER AND MONTUNO'S
TRIANGULATION ALGORITHM FOR SIMPLE POLYGONS

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangsri, Indonesia, June 16,
1965, the son of Sindu Rahardjo and Sri Suwandini.

Education: Graduated from Kebon Dalem Senior High
School, Semarang, Indonesia, in May 1983; received
Bachelor of Science Degree in Electrical Engineer
ing from Oklahoma State University in May 1988;
completed requirements for the Master of Science
degree in Computer Science at Oklahoma State
University in July, 1991.

Professional Experience: Programmer, Department of
Agriculture Economic Extension, Oklahoma State
University, October, 1989 to August, 1990.

