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PREFACE 

Triangulation of a simple polygon is an important part 

of the application of geometry problems in computer graph­

ics. A conventional triangulation algorithm runs in O(n2). 

Faster tringulation methods have been developed but these 

methods are more complicated. A simpler triangulation 

method was developed by Fournier and Montuno, which runs in 

O(n log n). The modified triangulation algorithm presented 

here compares favorably with the Fournier and Montuno's 

triangulation algorithm and is simpler in the sense of 

elimination of recursion. The Fournier and Montuno's trian­

gulation algorithm and the modified triangulation algorithm 

are implemented using c. The performance of the two algo­

rithms is analyzed using various data. 
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CHAPTER I 

INTRODUCTION 

1.1 Problem Background 

In computational geometry problems, as in other 

contexts, it is desirable to decompose a complex structure 

into simpler structures. several authors have developed 

algorithms as tools to simplify complex structures: the 

decomposition of a simple polygon into convex parts [CD79, 

K85, S78], the decomposition of a simple polygon into star 

polygons [AT81], the trapezoidization of a simple polygon 

[L81, W70, FM84], triangulation of a set of points [L77, 

S75], triangulation of a planar region [K83], and triangula­

tion of a simple polygon [FM84, GJPT78, HM83, TV88]. 

The problem of triangulation of a simple polygon is the 

focus of this work and has the following applications in the 

field of computer graphics: 

- speed and simplicity of hardware implementation (which 

is essential in shading and scan conversion) [FR82], 

- two dimensional function interpolation (the result 

being independent of the orientation of the triangles) 

and evaluating functions by interpolation [FS73, M76], 

-closest point problem [LP77], etc. 

The resulting triangulation algorithm should be effi-

1 
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cient and as simple as possible. Several methods have been 

developed to triangulate a simple polygon. Some authors 

claim that the problem of triangulation is less complex than 

the problem of sorting [TV88]. The triangulation algorithm 

presented in this thesis is a modification of the Fournier 

and Montuno triangulation algorithm [FM84]. The modified 

triangulation algorithm is simpler in the sense that recur­

sion is eliminated. It is also as efficient as the original 

Fournier and Montuno triangulation algorithm, and runs 

faster in implementation. 

1.2 Definitions 

Left Edge of the Current Vertex: the left side edge of the 

current vertex as viewed from the polygon interior. 

Right Edge of the Current Vertex: the right side edge of the 

current vertex as viewed from the polygon interior. 

Trapezoid (trp): a trapezoid having horizontal parallel 

edges. A trapezoid is said to be "complete" if it has 

(see Figure 1): 

1. a top vertex (VT) which defines the top parallel edge 

2. a bottom vertex (VB) which defines the bottom parallel 

edge 

3. a left side edge (EL) 

4. a right side edge (ER} 

If the top or bottom parallel edge is zero in length, the 

trapezoid is actually a triangle (a triangle is consid­

ered to be a special form of a trapezoid}. 
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Trapezoid Diagonal: an edge that connects a top vertex of a 

trapezoid {VT) and a bottom vertex of a trapezoid {VB) 

{see Figure 1). 

External Diagonal: a trapezoid diagonal that has the same 

edge either the left side edge of a trapezoid (EL) or the 

right side edge of a trapezoid {ER) (see Figure 1). 

Internal Diagonal: a trapezoid diagonal that has different 

edge from either the left side edge of a trapezoid (EL) 

or the right side edge of a trapezoid (ER) (see Figure 

1) • 

UB 
UT 

~--- --.- ---~ 
UB i,----~ 

UB 
In-ternal Diagonal Ex-ternal Diagonal 

Figure 1. Complete Trapezoids. 

Monotone Polygon (mp): a polygon that has n vertices labeled 

v 0 , v1 , ... , vn_1 in clockwise order, such that v0 and vi 

have the maximum and minimum y-coordinates of all ver-

tices in the polygon, and v0 , v1 , ••• , vi are decreasing 

monotonically in y-coordinates and vi, ••. , vn_1 , v 0 are 

increasing monotonically in y-coordinates (see an example 

in Figure 2). 

Uni-Monotone Polygon (ump): a polygon that has n vertices 
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labeled v0 , v1 , ••• , vn_1 either in clockwise or counter­

clockwise order, such that v 0 and vn_1 are the maximum 

and minimum y-coordinates of all vertices in the polygon, 

and v0 , ••. , vn_1 are monotonically decreasing in y­

coordinates (see an example in Figure 3}. 

u8 a u5 : 

..._,.._ a •lniMu• 
y-coordln&i:ea uer1:ex 

lnc:reaalnw ~~K>no-tonlca lly 
y-coordina-tea uer-tlc-

z uB. u1. uz• ua• u4. us: 
decrea.alng 11100no-ton ica lly 
y-cool'dlnatea uer-tlcea 

Figure 2. An Example of a Monotone Polygon. 

Va•va: 
11\aX i1111.1.• a IIIII in imu• 
y-coord I nate uer1:ex 

decreasing ooonoton ically 
y-cool'dinatea uerticos 

Figure 3. An Example of a Uni-Monotone Polygon. 

Simple Polygon (SP}: a polygon in which no edges cross each 

other, which has a unique y-coordinates on each vertex, 

and for which there are no holes inside the polygon (see 



Figure 4). 

HOT Si"'ple Polygons S U.p le Po l!,I!Jon 

Figure 4. Examples of Non-Simple Polygons 
and a Simple Polygon. 

5 

Trapezoidized Polygon (TrP): a simple polygon that is divid-

ed into trapezoids by adding an internal horizontal edge 

originating at each vertex other than vertices of type 

IIb or Ilia vertices (as described on Section 3.1), so 

that between one vertex and another, a trapezoid will be 

formed {see an example in the Appendix A). 

Monotonized Polygon {MP): a simple polygon that is 

divided into monotone polygons. 

Uni-Monotonized Polygon {UMP): a simple polygon that is 

divided into uni-monotone polygons (see an example in 

appendix A) . 

Triangulated Polygon {TP): a simple polygon that is divided 

into triangles {tps) {see an example in appendix A). 

Simple Polygon Diagonal: a line segment joining two non-
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adjacent vertices of a simple polygon (GJPT78]. 

Triangulation: the process of triangulating a simple polygon 

of n vertices (i.e., the process of finding n-3 simple 

polygon diagonals which intersect neither each other nor 

the boundary of the simple polygon and which divide the 

interior of the simple polygon into n-2 triangles 

(GJPT78]). 

SP_TrP: a procedure that transforms a simple polygon into a 

trapezoidized polygon. 

SP TrP UMP TP: a procedure that transforms a simple polygon 

into a trapezoidized polygon, into a uni-monotonized 

polygon, and then into a triangulated polygon. 

TrP UMP TP: a procedure that transforms a trapezoidized 

polygon into a uni-monotonized polygon, and then into a 

triangulated polygon. 

UMP TP: a procedure that transforms a uni-monotonized poly­

gon into a triangulated polygon. 



CHAPTER II 

TRIANGULATING A SIMPLE POLYGON 

A simple polygon of n vertices can be partitioned into 

no fewer than (n-2) triangles with (n-3) diagonals [TV88]. 

Conventional triangulation algorithms runs in O(n2), but 

several more complicated methods have been developed to run 

faster, at O(n log n), or even at O(n log log n). 

In 1978, Garey, Johnson, Preparata, and Tarjan first 

proposed an O(n log n) triangulation algorithm [GJPT78]. In 

1984, Fournier and Montuno presented a triangulation algo­

rithm that runs in O(n log n) and claimed that their algo­

rithm was simpler than other currently available algorithms 

[FM84]. Then in 1988, Tarjan and VanWyk proposed a O(n log 

log n) triangulation algorithm [TV88]. 

2.1 Garey, Johnson, Preparata, and Tarjan's 

Triangulation Algorithm 

This algorithm is composed of two steps (see Figure 5): 

1. Regularization, which transforms the simple polygon (SP) 

into a monotonized polygon (MP). 

2. Triangulation of a monotonized polygon, which transforms 

the MP into a Triangulated Polygon (TP). 

The following is the outline of what happens in each 

7 
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step. 

Figure 5. Sequence of the Algorithm. 

Regularization 

This step tries to build monotone polygons from a 

simple polygon; it is based on a property of monotone poly­

gons, that a monotone polygon is a simple polygon in which 

no vertex is an interior cusp [GJPT78]. A vertex of a 

simple polygon is an interior cusp vertex if the internal 

angle at the vertex is more than 180° and the two vertices 

adjacent to the vertex on the boundary of the simple polygon 

either both have larger y-coordinates than the vertex or 

both have smaller y-coordinates than the vertex [GJPT78] 

(see Figure 6). This step requires a O(n log n) time 

[GJPT78]. The detail of this step can be seen in Lee and 

Preparata's work. 

Triangulation of a Monotone Polygon 

This step initially creates a list of sorted vertices 

in descending order of their y-coordinates. Then a stack is 

created initially containing the first two vertices from the 

sorted vertices list. The third vertex in the sorted list 

is designated as the current vertex. 



M Cuep , 

Interior 
Cuap 

' ' . 
' . 
' ' • \ 

' ' \ . 

Figure 6. Interior Cusp Vertices 
of a Simple Polygon. 
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The current vertex is processed in one of the following 

ways: 

1. If the current vertex is adjacent to the vertex at the 

bottom of the stack, but not to the vertex at top of the 

stack, then add diagonals between the current vertex and 

all vertices in the stack (except the vertex at the 

bottom of the stack). The stack contents are replaced by 

the vertex at the top of the stack and the current ver-

tex. Then the next one of the sorted vertices on the 

list is designated as the current vertex. 

2. If the current vertex is adjacent to the vertex at the 

top of the stack, but not to the vertex at the bottom of 

the stack, then repeat the following until one vertex is 

left in the stack or the internal angle of the vertex at 

the top of the stack is more than or equal to 180°: 

add diagonals between the current vertex and the 

second vertex at the top of the stack; delete the 
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vertex at the top of the stack (pop operation). 

The current vertex is added to the top of the stack (push 

operation). Then the next one of the sorted vertices on 

the list is designated as the current vertex. 

3. If the current vertex is adjacent to both the vertex at 

the bottom of the stack and the vertex at the top of the 

stack, then add diagonals between the current vertex and 

all vertices in the stack (except the vertex at the 

bottom of the stack and the vertex at the top of the 

stack) and stop. 

This step requires a O(n) time. Thus, the entire algorithm runs 

in O(n log n) time. 

2.2 Fournier and Montuno's Triangulation 

Algorithm 

This algorithm will be explained in detail in Chapter 

III; it is composed of three steps (see Figure 7): 

11~-H~ 
Figure 7. Execution Sequence of the Algorithm. 

1. Trapezoidization of a simple polygon, which transforms 

the simple polygon (SP) into a trapezoidized polygon 

(TrP) . 

2. Composition of uni-monotone polygons from trapezoid 

structures, which transforms the TrP into a uni-monoto-
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nized polygon (UMP) . 

3. Triangulation of a uni-monotone polygon, which transforms 

the UMP into a triangulated polygon {TP). 

This algorithm uses 2-3 tree for searching, insertion, 

and deletion of the trapezoid structures. 

This algorithm is significant in combining both sim­

plicity and speed. It requires a O{n log n) time (FM84]. 

2.3 Tarjan and VanWyk's Triangulation 

Algorithm 

The starting point for this algorithm is a reduction of 

the triangulation problem to the problem of computing visi­

bility information (in the horizontal direction) (TV88]. A 

vertex-edge visible pair is a vertex and an edge that can be 

connected by an horizontal line segment that lies entirely 

inside the polygon [TV88]. An edge-edge visible pair is a 

pair of edges that can be connected by an horizontal line 

segment that lies entirely inside the polygon [TV88]. 

The second point of this algorithm relies on the intimate 

connection between visibility computation and the Jordan 

sorting problem (TV88]. Jordan sorting is a sorting of the 

intersection points of boundary polygon and a horizontal 

line by x-coordinate [TV88, HMRT86]. 

This algorithm uses a finger search tree for the data 

structure operation [TV88]. 

Overall this algorithm runs in o {n log log n) [TV88], 

but it is complex. 
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2.4 Advantages and Disadvantages 

A faster algorithms gives a better run-time complexity, 

but is usually complicated and hard to understand. 

A simpler algorithm can be implemented more easily and 

is generally easier to understand, but is usually slower in 

terms of run-time complexity. 

It is obviously desirable to choose an algorithm which 

is simple to understand and also runs fast. Fournier and 

Montuno claim that their triangulation algorithm has these 

characteristics. The modified triangulation algorithm 

presented here is simpler than the Fournier and Montuno's 

triangulation algorithm and runs as fast. 



CHAPTER III 

FOURNIER AND MONTUNO'S TRIANGULATION 

ALGORITHM 

This algorithm is divided into three steps: 

1. Transform a Simple Polygon {SP) into a Trapezoidized 

Polygon {TrP); 

2. Transform the TrP into a Uni-Monotonized Polygon 

{UMP); and 

3. Transform the UMP into a Triangulated Polygon {TP). 

After the SP is divided into trapezoids {TrP), it is 

transformed into one or more uni-monotone polygons {UMP). 

After each uni-monotone polygon is completed, it is further 

divided directly into triangles. 

Figure 8 illustrates the execution sequence of the 

algorithm. Figure 9 illustrates a polygon with lines indi­

cating the three phases. 

Now each of the steps of the algorithm will be de­

scribed individually. 

3.1 Transform the Simple Polygon into 

a Trapezoidized Polygon 

It is assumed that a simple polygon already exists. 

Each vertex of the simple polygon has two edges leading from 

13 
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it. These two edges are categorized as follows [FM84] (see 

Figure 10): 

---------.r 

.___sP _ ___.H rrP ·H ... ~ ·1 .. I i 
I I 

L---------------J 

Figure 8. Execution Sequence of Fournier 
and Montuno's Algorithm. 

---SP 
--- lli1P 

----- TP 

Figure 9. Three Phases of the Triangulation Algorithm 
(SP, UMP, and TP). 

I lla lib Ilia lllb 
Regular Stala.g•l"te Sulac"tl"te 

Figure 10. Different Vertex Types. 

a. Type I (Regular), where one edge slants diagonally upward 

and the other edge slants diagonally downward. 

b. Type II {Stalagmite), where both edges slant diagonally 
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downward. Vertices of this type can be more specifically 

classified into the following sub-categories: 

- Type IIa, if the polygon interior {shaded area) is 

above the polygon boundary; and 

- Type IIb, if the polygon interior {shaded area) is 

below the polygon boundary. 

c. Type III {Stalactite), where both edges slant diagonally 

upward. Vertices of this type can be more specifically 

classified into the following sub-categories: 

Type IIIa, if the polygon interior {shaded area) is 

above the polygon boundary; and 

Type IIIb, if the polygon interior (shaded area) is 

below the polygon boundary. 

This part of the Fournier and Montuno triangulation 

algorithm is shown in Figure 11. 

The first step begins by sorting the vertices of the 

simple polygon by their y-coordinates from highest to low­

est. Then each vertex {in sorted order) is processed to be 

transformed into trapezoids. 

A trapezoid is considered complete if it has all infor­

mation about VT {Top Vertex), VB {Bottom Vertex), EL {Left 

Edge), and ER {Right Edge). As trapezoids are built, they 

may have only VT, EL, and ER information, but no VB. These 

incomplete trapezoids are kept in a 2-3 tree. An incomplete 

trapezoid is completed after VB information is added, and is 

then removed {deleted) from the 2-3 tree. The vertex ID 

{i.e., v0 , v1 , etc.) of the top vertex of the incomplete 
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trapezoids is the key for searching, insertion, and dele-

tion. 

Inpu~: n uer~lcea <uo. v1, .•.• vn-1) or a al•ple polygon 
Ou~pui;: k -tr iang 1- -1 
Ha~e: where k = i~ kt and • = IIWIII'ber of Ull'l-

ul - curren~ vertex 
eL - left edge of ~he current vertex (vl) 
eR - rl~h~ edge or -the curran~ V.rtex (vi) 
UT - top vertex ot ~he ~rapezoid structure 
UB - bot~a. vertex of the ~rapezoid •~ruc~e 
EL - let~ edge of ~he trapezoid s~ruc~ure 
ER - rlgh~ edge or .-the ~rapezold .-truc~ure 
Trapz ·ID - ID of Trapezoid searched 

Algori~J.: SP_TrP() 
aor~ all uer~ice. (In y-caordlnate. -X ~a •ln) 
tar each uer~ex <ln ~he order of sort) 
( 

} 

switch (vertex type of current vertex (vi>> 
< 

} 

ca.ae J: 
S&arch_Ed~e at vi in Z-3 tree <A~raPZID. eL. eR) 
Colltple~e ~he ~rapezoid wl~h vi as botto• vertex 

(TrapzJD) 
Jleoooove trapezoid f':rDIIII Z-3 ~- <TrapziD) 
Insert new ~rapezoid in~o Z-3 tree Cvl. EL. eR> 

case 11: 
Search vl location in Z-3 ~- carrapsJD) 
It vl l• within an active trapezoid (type Ila) 
{ 

} 

Cottplete ~he trapezoid with vi as bo~~o• vertex 
<TrapziD) 

Re•ove trapezoid f'rooo Z-3 ~rea <TrapziD) 
lnaert new trapezoid ln~o Z-3 ~- (vi. EL. eL) 
Insert new Trapezoid Into Z-3 tree (vi. eR. ER> 

Elae (~ype lib> 
Insert new trapezoid ln~o Z-3 tree (vi. eL. eR> 

case II I: 
Search Ed!re of vi in Z-3 tree CATr&pzlD. eL. eR) 
If' eL and eR belong to the -- ~rapezoid <Ilia) 
{ 

} 

Cottplete the ~apezold with vl aa bo~tooo vertex 
(TrapziD> 

Reoooue trapezoid f'~ Z-3 tree <TrapziD> 

Cottplete ~he trapezoid wl~h vi •• bot~o• vertex 
(TrapziD1) 

Cottplete the trapezoid wi~h vi aa botto• vertex 
<TrapziDZ) 

Reooove trapezoid f'rooo Z-3 ~ <TrapziD1) 
Re•ave ~rapezoid f'ro• Z-3 ~rae <TrapziD2> 
Insert new ~rapezoid Into Z-3 ~ree (ul. EL''• ER") 

Figure 11. Algorithm to Transform the SP 
into a TrP (FM84]. 

This transformation process always starts with a vertex 

of type IIb (the highest y-coordinate vertex) to initiate 

the first incomplete trapezoid. As each vertex is proc-

essed, incomplete trapezoids may be completed and new trape-
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zoids may be started. An incomplete trapezoid can only be 

completed if the current vertex lies on one of its side 

edges. 

The following is a detailed explanation of what happens 

to vertices of each type: 

Type I: 

This vertex type indicates the completion of one trape-

zoid a.nd the beginning of a new trapezoid. The comple-

tion of one trapezoid is accomplished by completing an 

upper adjacent trapezoid (of this vertex) with the 

current vertex as its bottom vertex. The beginning of 

a new trapezoid is accomplished by beginning a new 

trapezoid with the current vertex (vi) as its top 

vertex. Either the left edge of the trapezoid just 

completed and the right edge of the current vertex or 

the left edge of the current vertex and the right edge 

of the trapezoid just completed are the left and the 

right edges, respectively, of the new trapezoid (see 

Figure 12). 

Figure 12. Vertex Type I Process. 

Type IIa: 

This vertex type indicates the completion of one trape-
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zoid and the beginning of two new trapezoids. The 

completion of one trapezoid is accomplished by complet­

ing an upper adjacent trapezoid (of this vertex) with 

the current vertex (vi) as its bottom vertex. The 

beginning of two new trapezoids are accomplished by 

beginning two new trapezoids with the current vertex as 

their top vertex. The left edge of the trapezoid just 

completed and the left edge of the current vertex are 

the left and the right edges, respectively, of one of 

the new trapezoids. The right edge of the current 

vertex and the right edge of the trapezoid just com-

pleted are the left and the right edges, respectively, 

of the other new trapezoid (see Figure 13). 

Figure 13. Vertex Type IIa Process. 

Type IIb: 

The vertices adjacent to a type IIb vertex must have 

lower y-coordinates than that vertex, and the interior 

of the polygon (shaded area) will be below the vertex 

(see Figure 14). A type IIb vertex indicates the 

beginning of a new trapezoid with the current vertex as 

its top vertex. The left and the right edges of the 

current vertex are the left and the right edges, re-



19 

spectively, of the new trapezoid (see Figure 14). 

Figure 14. Vertex Type lib Process. 

Type Ilia: 

This vertex. type indicates the completion of one trape­

zoid which is accomplished by completing an upper 

adjacent trapezoid (of this vertex) with the current 

vertex (vi) as its bottom vertex (see Figure 15). 

Figure 15. Vertex Type Ilia Process. 

Type IIIb: 

This vertex type indicates the completion of two trape-

zoids and beginning of one new trapezoid. The comple­

tion of two trapezoids is accomplished by completing 

two upper adjacent trapezoids (of this vertex) with the 

current vertex (vi) as their bottom vertex. The begin­

ning of one new trapezoid is accomplished by beginning 

a new trapezoid with the current vertex as its top 

vertex. The left edge of one of the trapezoid just 
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completed and the right edge of the other trapezoid 

just completed are the left and the right edges, re­

spectively, of the new trapezoid (see Figure 16). 

~eL eR/~ 
> + 

\ 

:~· 

Figure 16. Vertex Type IIIb Process. 

3.2 Transform the Trapezoidized Polygon into 

a Uni-Monotonized Polygon 

When this second step begins, all trapezoids have 

already been completed. Trapezoids are processed to form 

uni-monotone polygons which will then be triangulated. This 

portion of the algorithm is shown in Figure 17. 

This step will divide the simple polygon into uni­

monotone polygons using the information provided by the 

trapezoidized polygon. 

There are two kinds of trapezoids [FM84) (see Figure 

18) : 

1. Class A: two vertices share an edge of a trapezoid; and 

2. Class B: two vertices do not share an edge of a trape­

zoid. 

For class B, the two vertices create one of the trian-

gle edges {this is illustrated by the dotted lines in Figure 

18). This process finally creates uni-monotone polygons. 



Input: 
n vert icea of a Polygon, whe:re 
r irst is -the r ira-t uer-tex ID ot a polygon 
las-t •• -the las-t vertex Il) or a polygon 

Output: •-1 
k -triangles (T:rP), whe:re k =~ k 1 and • = -be:r of unl-.onotone polygons 

Algorith.:[FM84l 1=8 
TrP_~P_TP(flrst. last) 
< 

} 

curren-t_ue:rtex = fl:rat 
while no-t current_uertex.done do 
< 

> 

cu:r:ren-t_ue:rtex.done = TRUE 
botto._ue:rtex = dlagonal(cu:r:rent_uertex) 
if bo-tta._uertex not HULL t.ben 
< 

.. ve_next = next(current_uertex) 
-ve_p:reu = p:reu(bo-tta._ue:rtex) 
next(cu:rrent_uertex) = botta._uertex 
preu(current_ver-tex) = cu:r:rent_uertex 
trapeaold(cur:rent_uertex) = HULL 
T:rP_~P_TP(botta._uertex. current_uertexl 
cur:rent_ue:rtex.done = FALSE 
bott0110_uer-tex. done = FALSE 
next(current_uertex> = .. ua_next 
prev(botto•_uertex> = saue_preu 
next(botto._uertex) = cu:r:rent_uertex 
prev(cu:rrent_uer"tex) = botto._uertex 
TrP_~_TP(current_uer-tex. botta._uertex) 
:return 

> 
el•e 

current_uertex next(cu:r:rent_uertex) 

UKP_TP(flrct. last) 

Figure 17. Algorithm to Transform the TrP into 
a UMP then into a TP [FM84]. 

Cla•• B 

Figure 18. Two Classes of Trapezoids. 

Implementation Detail 
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Diagonal() is a function (with a vertex input) which 

returns the value of: 

Bottom vertex of the trapezoid (which its top vertex is 

vertex input), if top and bottom vertices do not share an 

edge of the trapezoid. 
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NULL, if top and bottom vertices share an edge of the 

trapezoid or if there is no trapezoid pointed at by the 

vertex input [FM84]. 

When this process calls for the TrP_UMP() function with 

the input of a polygon, that polygon is actually a uni-

monotone polygon. 

3.3 Transform the Uni-Monotonized Polygon into 

a Triangulated Polygon 

The part of the Fournier and Montuno's triangulation 

algorithm that transforms the Uni-Monotonized Polygon into a 

Triangulated Polygon is shown in Figure 19. 

Input;: 1 U"P (conU..ine nl ver-ticee). where 8 <= i < -1 and M =nuMber or UJIIPS 

Output;: kt"lrlanglee (where each triangle contains uertex1. 
vertexz. and uer-tex3) 

~t;e: 

ver-tex.prev - prevloue vertex 
uer~ex.curr - current uertex 
ver-tex.nex-t - next yertex 
ver-tex.s-tack[l - vertex on the stack 

Algorith.: U~_~p() 

vertex.current = vertex (the second highest vertex in U"P) 
wh lle (nuMber or vertex >= 3 > 
{ 

it angle ot (uer"lex.prev. ver"lex.curr. vertex.nex-t) <= 188• 
< 

Build ~rianglo (uertex.prov. vertex.curr. ver-tex.next) 
re.oue uertex.curr 
decreaee nuMber of vertex hy 1 
if (nuMber of a-tack vertex ) 8) 

uertex.curr = uertex.sta.ck[--nu•ber of a-tack vertex] 
elao 

uertox.curr = uer-tex.noxt 
)­

alee 
{ 

uertex.stack[++nu•ber or stack uertexl = uortex.curr 
uertex.curr = uer-tex.next 

Figure 19. Algorithm to Transform the UMP 
into a TP [FM84]. 

A uni-monotone polygon contains n vertices labeled u 0 , 

The uni-monotone polygon is divided into: 
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- the highest y-coordinate vertex (u0) and the lowest y­

coordinate vertex (un_1); the edge between this two 

vertices is called MainEdge. 

- Intermediate vertices (all vertices except those that 

have the highest and lowest y-coordinates) denoted as 

ui, where 1 <= i <= n-2. 

Only the intermediate vertices of the uni-monotone 

polygon are processed, so this process must start from the 

second highest vertex(u1) and continue through the second 

lowest vertex (un_2). 

The internal angle of each vertex is checked; the 

internal angle is defined by the adjacent edges of the 

current vertex (i.e., the angle that is formed by the previ­

ous vertex, the current vertex, and the next vertex). If 

the angle is less than or equal to 180°, then a triangle is 

built with those vertices (the previous vertex, the current 

vertex, and the next vertex), the current vertex is removed, 

and the next vertex is processed. If the angle is greater 

than 180°, then the current vertex is put in a stack to be 

processed later. The previous vertex, the current vertex, 

and the next vertex cannot build a triangle, if the internal 

angle is greater than 180°, because the triangle will be 

outside of the boundary of the uni-monotone polygon. The 

uni-monotone polygon is processed until it is broken up into 

a collection of one or more triangles. 



CHAPTER IV 

MODIFIED TRIANGULATION ALGORITHM 

4.1 Transform the Simple Polygon into 

a Trapezoidized Polygon 

This algorithm is almost the same as the algorithm 

which transforms the Simple Polygon into a Trapezoidized 

Polygon in the Fournier and Montuno's Triangulation algo-

24 
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rithm. The difference lies in handling the completion of a 

trapezoid. 

~--------------------------, 

I I : r---------------1 1 

SP ·: i - I 2 i ~ UHP ~ 3 1 .. I i i 
I I I I I L_ _______________ J I 

I I L_ ________________________ _j 

Figure 20. Execution Sequence of the 
Modified Algorithm. 

In the Fournier Montuno's triangulation algorithm, 

after all trapezoids are completed, the process of trans-

forming the Trapezoidized Polygon into a Uni-Monotonized 

Polygon begins (see Figure 11). 

In the modified triangulation algorithm each completion 

of a trapezoid is directly transformed to build Uni-Monotone 

Polygons (see Figure 21, with sign*>· 

4.2 Transform the Trapezoidized Polygon into 

a Uni-Monotonized Polygon 

Every time one trapezoid structure is completed, this 

step is executed by beginning a uni-monotone polygon based 

on the information of the completed trapezoid or appending 

the completed trapezoid to an existing uni-monotone polygon. 

The algorithm for this step is shown in Figure 22. 



Input: n ue~ticea Cuo, u1, ••• , un-1) or a ai•ple polygon 
Ou-tpu-t: Jc -t~ iang' lea ...-1 

tlo-te: 
whe~e Jc = i-z:=8 Jc 1 and • = nuJither of' UJIOp8 

ul cu~rent uertex 
eL - left edge or the cu~~nt uertex Cui) 
eR - righ-t edge of' -the cu~en-t uer-tex Cui) 
UT - top uertex of' the t~apezold atruc-ture 
UB - bottOM vertex or the trapezoid a-tructure 
EL - left edge or the trapezoid structure 
ER right edge of' the t~apezold atructu~e 
Trap• ID - ID or T~apezoid searched 

Algo~ithM: SP_TrPC> 
aort all uerticoa (ln ~-coordinate. RaX to •In) 
f'o~ each uertex ( 1 n the order of' sort) 
{ 

switch (uer-tex type of' current vertex <ui>) 
{ 

case I: 
Search_Ed~e or ui In 2-3 tree CAJraJ>ZID, eL. eR) 
c.-plete -the t.rapezoid wit.h ui aa bot-tooo ver-tex 

CTrapzJD) 
•----------TrP _UI1P _TP CTrapsiD) 

Jlelltoue tll"apeaold 1'1'01111 2-3 tll"ee CTI"apziD) 
Insert. new t~apezoid in-to 2-3 tree (ui, EL, eR) 

ca .. II: 
Search ul location in 2-3 tree CATI"apziD> 
If' ul Ia within an active trapezoid (t~pe lla) 
{ . 

Cooople-te the trapezoid with ui •• bottooo uer-tex 
(TrapaiD) 

* -------TrP lJI1P TP (TraJ>ZID) 

> 

Reoooue trapeaoid J'rooo 2-3 tree CTrapziD) 
Insert. new trapezoid into 2-3 tree Cui, EL, eL) 
Insert. new Trapezoid into 2-3 t.ree Cui, eR, EJI) 

Else (type I lb) 
Insert. new trapezoid into 2-3 tree Cui, eL. eR) 

ca- III: 
Search Edge of' vi In 2-3 -tree CATrapziD, eL. eR) 

IJ' eL and eR belong t.o t.he ....- trapezoid <Ilia) 
{ 

C:O.plete the t.rapezold wit.h ui as bot.to• uertex 
(TrapziD) 

•-------TrP _UI1P _TP CTrapzJD) 
Reoooue trapezoid frooo 2-3 tree CTrapziD) 

> 
Else <type I Jib) 
{ 

Ca .. plete the t.rapeaoid with ul aa botta. vertex 
CTrap:o:ID1) 

•-----------TrP _UI1P _TP <TrapziD1) 
Co•ple-te the trapezoid with ui as bot.t.ooo vertex 

(TrapaiD2) 
•-------------TrP _UttP _TP <TrapziD2) 

} 

> 

Reoooue trapezoid J'rooo 2-3 t.ree CTrap:o:ID1) 
Re .. oue trapezoid J'ro• 2-3 t.roe Ctrap:o:ID2) 
Insert. new trapezoid into 2-3 tree Cui, EL". ER") 

Figure 21. Algorithm to Transform SP into a TrP, 
into a UMP, and then into a TP. 
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The choices of beginning a uni-monotone polygon or 

appending to an existing uni-monotone polygon depend on the 

type of the top vertex (VT) of the completed trapezoid 

(i.e., I, IIa, IIb, Ilia, or IIIc) and the type of the 

diagonal of the completed trapezoid (i.e., internal diagonal 

or external diagonal). See Section 1.2 for the definitions 



of these terms. 

input: Trapezoid (VT, VB, KL, KH) 
output: Jci trlanglea, where 8 <= I <= -1 and oo = nuoober o£ Wltp• 
Algorlthoo: 

TrP_UHP_TP (TrapziD) 
< 

> 

Switch (edge UT-VB) 
< 

> 

ca•e EXTERHAL_EDGE: 
If current uertex type = Il'b 

llu.ild_UHP (the longer one bet-en EL and ER in Y-ccx>rdinate) 
Append_UHP CEL or ER, UT-\JB) 

ca•e IHTERHAL_EDGE: 
if current uertex type = lib 
< 

> 

llu.lld_UHP <EL) 
Bulld_UHP CER> 

Append_UHP CEL, UT-UB> 
Append_UHP CER, UT-VB> 

Append_UHP (vertex, MainEdge) 
< 

> 

Search_HainEdge_Location in Z-3 tree CUHP_ID, uertex) 
If UHP _ID = HULL 
< 

Bu 1 ld_UHP ( uertex) 
Append_UI1P (vertex, Ha I nEdge) 

> 
el•e 

Attach vertex to UHP_ID 
if CUHP I• ca.plete) 

UHP_TP C> 

Figure 22. Algorithm to Transform TrP into a UMP, 
and then into a TP. 

If the trapezoid just completed has: 
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1. a top vertex of type IIb and an external diagonal, 

begin a new uni-monotone polygon with the left or 

right side edge of the trapezoid as the main edge of 

the uni-monotone polygon. 

2. a top vertex of type IIb and an internal diagonal, 

begin two new uni-monotone polygons with the left and 

right side edge of the trapezoid as the main edge of 

the uni-monotone polygons. 

3. a top vertex of type I, IIa, IIIa, or IIIb and an 

external diagonal, append the trapezoid's top vertex 

as an intermediate vertex to an existing uni-monotone 
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polygon that has a main edge equal to the left or 

right side edge of the trapezoid. If no such uni­

monotone polygon exists, begin a new uni-monotone 

polygon with the left or right side edge of the trape­

zoid as the main edge of the uni-monotone polygon. 

4. a top vertex of type I, IIa, IIIa, or IIIb and an 

internal diagonal, append the trapezoid's top vertex 

as an intermediate vertex to two existing uni-monotone 

polygons such that: 

a. one of the uni-monotone polygons has a main edge 

equal to the left side edge of the trapezoid. If 

no such uni-monotone polygon exists, begin a new 

uni-monotone polygon with the left side edge of the 

trapezoid as the main edge of the uni-monotone 

polygon. 

b. another uni-monotone polygon has a main edge equal 

to the right side edge of the trapezoid. If no 

such uni-monotone polygon exists, begin a new uni­

monotone polygon with the right side edge of the 

trapezoid as the main edge of the uni-monotone 

polygon. 

If the top vertex of the trapezoid being processed is 

also the bottom vertex of the main edge of the uni-monotone 

polygon, then that uni-monotone polygon is complete and 

should be triangulated immediately. 

Based on the definition of a uni-monotone polygon (see 

Scetion 1.2), the vertex types on the uni-monotone polygon 
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can be identified: 

- v 0 (the highest y-coordinate vertex) must be of vertex 

type IIb 

- vn_1 (the lowest y-coordinate vertex) must be of vertex 

type IIIa 

- vi, where 1 <= i <= n-2, (the intermediate vertices) must 

be of vertex type I, never of type II or type III. Also 

the y-coordinate of vi is always higher than y-coordinate 

of vi+1 . 

To build a uni-monotone polygon, at least three ver­

tices (two vertices as a main edge, and at least one vertex 

as an intermediate vertex) are needed. The main edge must 

have the maximum and minimum y-coordinate of that uni-mono­

tone polygon. 

4.3 Transform the Uni-Monotonized Polygon into 

a Triangulated Polygon 

This algorithm is analogous to the algorithm which 

transforms the Uni-Monotonized Polygon into a Triangulated 

Polygon of Fournier and Montuno's Triangulation algorithm. 



CHAPTER V 

COMPARISON OF FOURNIER AND MONTUNO'S AND 

THE MODIFIED TRIANGULATION ALGORITHMS 

In the previous chapters, the Fournier amd Montuno's 

and the modified triangulation algorithms were discussed 

separately. This chapter examines the differences between 

the two algorithms by comparing the processing flows of the 

algorithms, their simplicities, and their run-time complex­

ities. 

5.1 Processing Flow of the Algorithms 

The following is a comparison of the processing flows 

of the Fournier and Montuno's triangulation algorithm and 

the modified triangulation algorithm. Figure 23 outlines 

the processing flows of the two algorithms (see Section 1.2 

for the explanation of the notations). 

Up to the point where BuildTrapz() is invoked, both the 

Fournier and Montuno's and the modified triangulation algo­

rithms are the same. After that, they take two different 

directions, because the Fournier and Montuno's triangulation 

algorithm creates uni-monotone polygons after all trapezoids 

are completed, while the modified triangulation algorithm 

creates uni-monotone polygons after each trapezoid is com-
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pleted. 

Fournier and Montuno's 
Triangulation Algorithm 

main() 
{ 

} 

SP = read SP () 
sort SP {SP) 
TrP = SP TrP {SP) 
TP = TrP_UMP_TP {TrP) 

SP_TrP {SP) 
{ 

} 

for i = 1 to n 
trp = BuildTrapz 

{vertex) 

TrP_UMP_TP {TrPl) 
{ 

} 

TrP UMP TP {TrP2) 
TrP-UMP-TP {TrP3) 
tps-= uMP_TP {ump) 

Notation: 

Modified 
Triangulation Algorithm 

main{) 
{ 

SP = read_SP{) 
sort SP {SP) 
TP = SP TrP UMP - -

} 

SP TrP UMP TP (SP) - - -{ 
for i = 1 to n 
{ 

TP {SP) -
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trp = BuildTrapz {vertex) 
if {trp = Compl.Trapz) 

tps = TrP_UMP=TP {trp) 
} 

} 

TrP_UMP_TP (trp) 
{ 

} 

ump = BuildUmp {trp) 
if (ump = ComplUmp) 

tps = UMP_TP (ump) 

n means number of vertices in SP 
BuildTrapz () means SP TrP which is an algorithm to 

transform SP into a TrP. 
BuildUMP () means an algorithm to transform the TrP into 

a UMP. 

Figure 23. The Processing Flow of Fournier and Montuno's 
and the Modified Triangulation Algorithms. 

The TrP_UMP_TP() procedure of each algorithm takes a 

different approach in transforming a TrP to a UMP. Fournier 

and Montuno's triangulation algorithm uses recursion, while 

the modified triangulation algorithm avoids the use of 

recursion. The details will be explained in the next sec-

tion. 
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5.2 Simplicity 

The TrP_UMP_TP() procedure in Fournier and Montuno's 

triangulation algorithm is executed recursively. A recur­

sive procedure (i.e., a procedure that calls itself) can be 

complex and difficult to understand. Moreover, in the 

actual algorithm this procedure calls itself twice. This 

factor makes the algorithm harder to understand and to 

follow. 

The modified triangulation algorithm avoids the use of 

recursion; thus it is simpler than the Fournier and 

Montuno's triangulation algorithm. 

5.3 Run-Time Complexity 

In the following discussion, the run-time complexities 

of both algorithms are analyzed. 

Both algorithms assume that the Simple Polygon is 

already provided, so the run-time complexity of read_SP() 

procedure is of no concern. 

Fournier and Montuno's Triangulation Algorithm 

This algorithm executes the sort_SP(), SP_TrP(), and 

TrP_UMP_TP() procedures~ 

The sort SP() procedure can be done in 0 (n log n) 

[FM84]. 

The SP TrP() procedure runs in O(n log n). The main 

'for' loop is executed n times. Each of its steps processes 
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the BuildTrapz() procedure which uses a 2-3 tree to store 

(search and insert) and delete trapezoids. These operations 

each take O(log r), where r is the number of leaves in the 

tree. Because r <= n, the whole loop is O(n log n) (FM84]. 

The TrP_UMP_TP() procedure runs in O{n) [FM84]. The 

UMP_TP() procedure runs in O(m), where m is the number of 

vertices of a uni-monotone polygon. Because m <= n, the 

TrP_UMP_TP() procedure runs in O(n) [FM84]. 

Therefore the run-time complexity is O(n log n + n log 

n + n), which asymptotically is the same as O{n log n). 

Thus the entire Fournier and Montuno's triangulation algo­

rithm runs in O(n log n) time [FM84]. 

The full analysis of this algorithm is provided by 

Fournier and Montuno (FM84]. 

The Modified Triangulation Algorithm 

This algorithm executes the sort_SP() and SP_TrP_UMP_TP() 

procedures. 

Sorting has a run-time complexity of O(n log n), so the 

sort_SP() procedure is O(n log n). 

The SP_TrP_UMP_TP() procedure runs in O(n log n). The 

main 'for• loop is executed n times. Each of its steps 

executes the BuildTrapz() procedure and in certain condition 

also executes TrP_UMP_TP(} procedure. 

The BuildTrapz() procedure uses 2-3 tree to store 

(search and insert) and delete trapezoids. These operations 

each take O(log r), where r is the number of leaves in the 
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tree. Because r <= n, the BuildTrapz() procedure runs in 

O(log n). 

The TrP_UMP_TP() procedure runs in O(log n). It exe-

cutes BuildUmp() procedure and in one condition also exe-

cutes UMP_TP() procedure. 

The BuildUmp() is the same run-time complexity as the 

BuildTrapz() procedure which runs in O(log n). 

The UMP_TP() runs in 0(1). Assume that the run time of 

this procedure in a loop is zi. Then the run time of 

SP_TrP_UMP_TP() procedure is 

n-1 
~ (log n + log n + zi) 

i=O 

n-1 
The possible value of ~ zi = 

i=O 

1. o + o + .•• + o + n = n, that means the simple polygon is 

a uni-monotone polygon. 

2. 0 + 0 + 3 + 3 + ..• + 3 + 3 = 3(n-2), that means all uni­

monotone polygons are triangle. 

3. zi never be n more than one, so ~ zi != n2 • On each loop 

(each vertex) can be used by at most three uni-monotone 

polygons, therefore each vertex is processed at most 

three times, thus~ zi = 0(3n). 

The zi is a constant, and the UMP_TP() runs in 0(1). 

Therefore the TrP_UMP_TP() procedure runs in O(log n) + 

0(1), which in the worst case becomes O(log n). The 

SP_TrP_UMP_TP() procedure runs in O(n(log n +log n)), which 

in the worst case becomes O(n log n). Thus the entire 
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Modified triangulation algorithm runs in O(n log n). 

Comparison 

From the above run-time complexity analysis of both 

algorithms, the Fournier and Montuno's triangulation algo-

rithm has the same order run-time complexity to the modified 

triangulation algorithm. But in implementation the modified 

triangulation algorithm is faster, though not significantly; 

they only differ by a multiplicative constant (see Appendix 

C) . The implementation uses various data which are input to 

both algorithms, and the run times of both algorithms are 

analyzed. 
• 

There are some possible reasons about the result imple-

mentation test of run time unit of both algorithms, where 

the modified triangulation algorithm runs faster than the 

Fournier and Montuno's triangulation algorithm: 

1. Like the analysis above, both algorithms runs in the same 

big 'Oh' run-time complexity (i.e., O(n log n)), but they 

are different by multiplicative constant). 

2. Implementation algorithm on modified triangulation algo­

rithm is the better implementation; implementation algo­

rithm on Fournier and Montuno's triangulation algorithm 

is not the good implementation. 

3. The Fournier and Montuno's triangulation algorithm uses 

recursive function on one part of the algorithm, while 

the modified triangulation algorithm avoid using recur­

sive function. Two algorithms that has the same time 
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complexity, but one using recursive function and the 

other using iteration, the one that use iteration will 

runs in the same order as (or slower in detail than) the 

one that use recursive function in analysis, but will 

runs faster in implementation (S81]. 



CHAPTER VI 

SUMMARY AND FUTURE WORK 

Triangulation algorithm should be simple and run fast. 

The modified triangulation algorithm presented here is 

simpler (it avoids using recursion) and runs faster (though 

not significantly) than Fournier and Montuno's triangulation 

algorithm. 

Possible future work on the triangulation algorithm: 

1. Try to reduce the run-time complexity. It is conjec­

tured that the run-time complexity of the triangula­

tion algorithm could be O(n), where n is the number of 

vertices in a simple polygon. That means that the 

triangulation algorithm is faster than a typical 

efficient sorting algorithm [TV88]. 

2. Use parallel computing methods. Ideally, in a paral­

lel environtment, the algorithm should run faster by a 

factor of m, where m is the number of processors. If 

m >= n, the algorithm should run faster by a factor of 

n. 

3. Find a connection between the problem of triangulation 

of a simple polygon and determination of edge-vertex 

visibility [FM84, TV88]. 

4. Find the intersection of two n-gons [TV86]. 
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APPENDIX A 

DETAILS OF THE MODIFIED TRIANGULATION 

ALGORITHM 

This is a sample run of the modified triangulation 

algorithm from creating a simple polygon to modifying the 

simple polygon into a triangulated polygon. 

Create a Simple Polygon 

A simple polygon is created with 12 vertices in a batch 

input data file (see Appendix C for the actual batch input 

data file and Appendix B for explanation how to run the 

program). A vertex is identified by its x and y-coordi­

nates. The type of each vertex is then identified (see 

Figure 24). The simple polygon is shown in Figure 25. 
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Vertex 
ID 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Figure 24. 

(X,Y) Vertex 
coordinates Type 

( 8,20) II 
{10,16) III 
{12,18) II 
{14,12) III 
{18,14) I 
{16,15) I 
{22,17) II 
(18,10) I 
(20, 4) III 
( 10, 8) II 
{ 2, 6) III 
( 6,11) I 

The Vertices of a Simple 
Polygon. 

¥--coord. 

za'~'--------f- H 
___ L_ ____ j _______ __L_ 

I I I 
I I I 

: I 
I 

I 
I 
I 
I 
I 
I 

15 -----T-

s 

8 

1 
I 
I 
I 
: 

,a 
I 
I 
I 
I 

-~------------':::---- l---> X-coord. 
S 18 15 Z8 

Figure 25. A Simple Polygon. 

Transform the Simple Polygon into 

a Trapezoidized Polygon 
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After a simple polygon is created, each vertex (in y­

coordinate descending order) is processed to transform the 
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simple polygon into a trapezoidized polygon. 

Notation on Figures 26a, 26b, and 26c: 

- the left part identifies the current vertex being proc­

essed (marked with a circle) with its previous and its 

next vertices. 

- the middle part represents the 2-3 tree containing the 

current incomplete trapeozids. The notation on the inte­

rior node is (Diagonal Edge), where Diagonal Edge means 

the diagonal edge of the trapezoid. The notation on the 

leaf node is (Diagonal Edge, ID), where Diagonal Edge 

means the same as the above definition and ID means the ID 

of the trapezoid. 

- the right part represents a list of all incomplete and 

complete trapezoids processed so far. Complete trapezoids 

are marked with an * in front of them. The notation is 

(ID) (EL, ER, VT_VB), where ID means the ID of the trape­

zoid, EL and ER mean the left side edge and the right edge 

of the trapezoid, respectively, VT-VB means the diagonal 

edge of the trapezoid that connects the top vertex and the 

bottom vertex of that trapezoid. 

The following is the outline of what happens to each 

vertex (Figures 26a, 26b, and 26c). 



Vertex 0: 

Vertex 2: 

Vertex 6: 

Vertex 1: 

Vertex 5: 

5 

Vertex 4: 

5 6 

3~P?y,' 
7 f:~ 3 11-

~ ... 11.3 

(9) C11-9t 9-1• 9- l 

nn (11-9, 9-1, 9- 1 
(1) ( 1-2, 2-3, 2- ) 

(9) (11-Q, 9-1, 9- ) 
(1) ( 1-2, 2-3, 2- ) 
(2) (5-6, G-7, G- ) 

* (9) (11-9, 9-1, 9-U 
* (1) ( 1-2, 2-3, 2-1) 

(2) ( 5-&, 6-7, 6- ) 
(3) (11-9, 2-3, 1- ) 

* (9) (11-Q, 9-1, 9-1) 
* (1) ( 1-2, 2-3, 2-D 
* (2) ( S-6, &-7, &-51 

C3 l <U-9, 2-3, 1- ) 
(4) ( 4-5, &-7. 5- ) 

* (9) (11-9, 9-1 I 9--1) 
* (1) ( 1-2, 2-3, 2-D 
* (2) ( S-6, &-7 I 6-5) 

(3) (11-Q, 2-3, 1- ) 
* (4) ( 4-5, &-7, 5-4) 

(S) ( 3-4, &-7, 4- ) 
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Figure 26a. The Transformation of a Simple Polygon 
into a Trapezoidized Polygon. 



Vertex 3: 

~ 
11 7 

Vertex 11: 

8 G 

1~~ 
7 

Vertex 7: 

11~£. 

19~8 

Vertex 9: 

11w· 
18 8 

Vertex 10: 

*(8) (11-8. 9-1, 9-1) 
tf(l) ( 1-2, 2-3, 2-ll 
* C2l ( 5-G, G-7, G-5) 
tf(J) (11-9, 2-3. 1-3) 
*(4)(4--5. 6-7, 5-4) 
* (5) ( 3-4, G-7, 4-3) 

<6> C11-B• 6-7, 3- ) 

*(9) <11-9, B-1, 9-1) 
*(1) ( 1-2. 2-3, 2-ll 
*(2) (5-6. 6-7, fr-5) 
if(3) (11-8. 2-3. 1-3) 
if (4) ( 4-5, G-7, 5-4) 
if (5) ( 3-4. 6-7 J 4--3) 
*(6) (11-8. 6-7,3-11) 

(7) (19-11, 6-7,11- ) 

• (9) <ll-9, B-1, 8-U 
if(l) ( 1-2. 2-3, 2-ll 
* (2) ( 5-6, 6-7 J fr-5) 
* (3) (11-9, 2-3, 1-3) 
* (4) ( 4-S, 6-7, S-4) 
tf(5) ( 3-4, 6-7, 4-31 
•(£.) U1-9, 6-7,3-11) 
•<7> U&-11, 6-7,11-?l 

CBl (19-11, 7-91 7- ) 

if (9) (11-B, 9-1, 9-U 
* (1) ( 1-2. 2-3, 2-ll 
if (2) < 5-G, 6-7, 6-5> 
if (3) (11-9, 2-3, 1-3) 
* (4) ( 4-5, G-7, 5-4) 
* (5) ( 3-4. 6-7, 4-3) 
if (£,) (11-8, 6-7,3-11) 
if (?) (19-11, 6-7,11-7) 
* (8) (19-11, 7-8, 7-9) 

(9) ( ?-8, B-9, 9- ) 
(19) (9-19.19-11. 9- ) 

* (9) (11-8, 9-1, 9-1) 
* (1) ( 1-2, 2-3, 2-ll 
• (2) (5-6. 6-?, 6--5) 
• (3) <11-B, 2-3, 1-3) 
* (4) ( 4-5, 6-7, 5-4) 
• (5) (J-4, 6-7, 4-3) 
* (£,) (11-8, 6-7 J 3-11) 
* (7) (19-11, 6-?,11-7) 
* (9) UB-11, 7-0, 7-9) 

(9) ( 7-B, 8-9, 9- ) 
tf(lQ) (9-19,18-11,9-19) 
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Figure 2Gb. The Transformation of a Simple Polygon 
into a Trapezoidized Polygon 



Vertex 8: 
* (9) Cll-9, 9-1 1 9-1) 
* (1) ( 1-2, 2-3, 2-1) 
* (2) ( !i--6, 6-7 J 6-5) 
* (]) (11-9, 2-3, 1-3) 
* (4) ( 4-!it &--7. 5-1) 
* (!i) ( 3-4, 6-? J 4-3) 
* (6) (11-9, 6-?,3--11) 
* (?) (19-11, 6-7 ,11-7) 
* CB) UH-11, ?-9, ?-9) 
* (9) ( ?-0, 8-9, 9-8) 
*(19) eJ-19,19-11,9-19) 
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Figure 26c. The Transformation of a Simple Polygon 
into a Trapezoidized Polygon 

In Figure 26c, vertex 8 (the last vertex to be proc-

essed, in y-coordinate sorted order) contains a list of all 

resulting trapezoids, as illustrated in Figure 27. 

Figure 27. The Trapezoidized Polygon 



Transform the Trapezoidized Polygon into 

a Uni-Monotonized Polygon 
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The next step is processing each completed trapezoid to 

transform it into uni-monotone polygons. 

Notation on Figures 28a and 28b: 

- the left part represents the current complete trapezoid 

now being processed. The notation is the same as the 

notation for the right part in the previous section. 

- the middle part represents the 2-3 tree containing 

presently existing uni-monotone polygons. The notation on 

the interior node is (Main Edge), where Main Edge means 

the main edge of the uni-monotone polygon. The notation 

on the leaf node is (Main Edge, ID), where Main Edge means 

the same as the above definition and ID means the ID of 

the uni-monotone polygon. 

- the right part represents a list of all incomplete and 

complete uni-monotone polygons processed so far. Complete 

uni-monotone polygons are marked with an * in front of 

them. The notation is (ID) (Main Edge, Intermediate 

vertices), where ID means the same as the above defini­

tion, Main Edge means the same as the above definition, 

and Intermediate Vertices means the intermediate vertices 

of the uni-monotone polygon. 

The following is the outline of what happens to each 

trapezoid (Figure 28a and 28b). 



Trapezoid 0: 

(9) (11-91 9-1 1 8-1) 

Trapezoid 1: 

(1) ( 1-21 2-3~ 2-D 

Tra ezoid 2: 

(2) ( S-6, 6-? I 6-5) 

Trapezoid 4: 

(4) ( 4-S, 6-? I 5-4) 

Trapezoid 3: 

(3) (11-91 2-31 1-3) 

Trapezoid 5: 

(5) ( 3-41 &-71 4-3) 

Trapezoid 6: 

(6) (11-9, 6-713-11) 

Trapezoid 7: 

(?) (19-11, 6-7111-7) 

(9) (11-B, 1- ) 

(9) (11-B, 1- ) 
(1) ( 2-3, 1- ) 

(9) (11-BI 1- 1 
(1) ( 2-3, 1- ) 
<21 < r.-1, s- 1 

(9) (11-B, 1- l 
(1) ( 2-31 1- ) 
(2) ( 6-?1 S-4- l 

(9) (11-B, 1-3- ) 
*(U ( 2-3, U 

(21 (6-?,S-4- l 

(9) (11-B, 1-3- l 
*U) ( 2-3, 1) 

<21 ( 6-?, S-4-3- l 

*<Bl (11-B, 1-31 
*(U ( 2-3, 1) 

(2) ( 6-? I S- 4-3-11- ) 

*(9) (11-9, 1-3) 
*(1) ( 2-31 1) 
*(2) ( 6-7, S-4-3-11) 

(3) UB-1l1 7- l 
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Figure 28a. The Transformation of a Trapezoidized Polygon 
into a Uni-Monotonized Polygon. 



Trapezoid 8: 

(8) (19-11, 7-B, 7-9) 

Trapezoid 10: 

Trapezoid 9: 

(9) ( 7-0, 8-9, 9-8) 

*(9) (11-9, 1-3) 
*<1) ( 2-3. 1) 
*(Zl C &-7, 5-4-3-11) 

(3) Cl.B-11, 7-9- ) 
(4) ( 7-8. 9- ) 

*(9) (11-B, 1-3) 
*(1) ( 2-3. 1) 
*(2) C &-7, S-4-3-11) 
*(3) Cl.B-11, 7-9) 

(4) ( 7-8. 9- ) 

*CB) CU-B, 1-3) 
*(U C Z-3, 1l 
*(2) C &-7, S-4-3-1U 
*(3) Cl.B-11, 7-9) 
•C4) ( 7-8, 9) 
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Figure 28b. The Transformation of a Trapezoidized Polygon 
into a Uni-Monotonized Polygon. 

In Figure 28b, trapezoid 9 (the last trapezoid to be 

processed) contains a list of all resulting uni-monotone 

polygons, as illustrated in Figure 29. 

Figure 29. The Uni-Monotonized Polygon. 



Transform the Uni-Monotonized Polygon 

into a Triangulated Polygon 

This step processes each completed uni-monotone 

polygon to form triangles. 

Notation on Figure 30: 

50 

- the left part (Uni-Monotone Polygon colomn) represents the 

uni-monotone polygon being processed. The notation is the 

same as the notation for the right part in the previous 

section. 

- the Main Edge column represents the main edge of the uni­

monotone polygon being processed. 

- the Available Vertex column represents a list of all 

vertices (of the uni-monotone polygon being processed) 

that are not yet deleted from that uni-monotone polygon. 

- the Current Vertex column represents an intermediate 

vertex (of a uni-monotone polygon being processed) that 

are now being processed. 

- the Previous Vertex column represents a vertex (of a uni­

monotone polygon being proc4assed) that is located before 

the current vertex (in the sorted sequence of Y­

coordinates). 

- the Next Vertex column represents a vertex (of a uni­

monotone polygon being processed) that is located after 

the current vertex (in the sorted sequence of Y­

coordinates). 

- the "< 7r 11 column represents a flag that indicates whether 

the angle between the Previous Vertex, the Current Vertex, 
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and the Next Vertex is less than 180°. 

- the Tri ID column represents a triangle ID. 

- the Stack Vertex column represents the vertices that have 

been processed whose interior angle between the Previous 

Vertex, the Current Vertex, and the Next Vertex is more 

than 180°. These vertices will be processed again in the 

next process. 

The following is an outline of what happens to each 

uni-monotone polygon (Figure 30). 

Un l-l'bno-tone Kain Auai lable U•n·tex <• Tri Stack 
Palwan Edge Vertex Cu:rrent P:reuiou11 Hext IJ) Vertex 

*U) ( 2-3, 1) 2-3 2.1.3 1 2 3 y 8 -
*(9) Ul-9, 1-3) U-8 8.1.3.11 1 8 3 " 1 

8.1.3.11 3 1 11 y 1 1 
8.1.11 1 8 11 y :z -

*C2) ( 6-7, 5-4-3-lD r.-7 r..s.-t.3.11.7 5 r. " y 3 -
6.4.3.11.7 " 6 3 " 4 
6.4.3.11.7 3 4 11 " 3.4 
6.4.3.11.7 11 3 7 y 4 3.4 
6.4.3.7 3 4 7 y 5 4 
6.4.7 4 6 7 y 6 -

*(3) QH-11. 7-9) 18-11 11.7,9.18 7 11 9 y 7 -
11.9.18 9 11 18 y 8 -

•(4) ( 7-BJ 9) 7-8 7.9.8 9 7 8 y 9 -

Figure 30. The Processing Transformation from Uni­
Monotone Polygon to a Triangulated 
Polygon. 

Figure 31. The Triangulated Polygon. 



APPENDIX B 

IMPLEMENTATION 

Introduction 

The program is called "TRIALG" (TRiangulation ALGo­

rithm). This program implements the Fournier and Montuno's 

and Modified triangulation algorithms. The output of this 

program supports the correctness of the analysis in the 

previous chapters. The program is developed using Borland's 

Turbo C++ compiler, version 1.0, on a 16 megahertz IBM 

Personal System 2/30-80286 with an IBM 8512 color display 

monitor. The program is also developed using the c compiler 

on a VAXstation Model 5500 with 12S megabytes of memory, 2.5 

gigabytes of disk storage, rated at 28 mips (million in­

structions per second) which utilize RISC (Reduces Instruc­

tion Set Computer). 

The program displays the logo of TRIALG, then after any 

key is pressed, the program prompts the user to enter sever­

al input items. 

Input 

The values that the user is prompted for are: 

1. Input mode: 

52 
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a. batch file input mode -- the user provides the name 

of a file that contains the description of a Simple 

Polygon. The correctness of this data will not be 

checked by the program, so the batch file must have 

the correct format and produce simple polygon(s). 

The batch input file can contain one or more simple 

polygons. The correct format is outlined in Figure 

32. 

-<na- at 1:he ab•ple palyvan> (......,her at -the -r-tlcea> 
(~DOll"> <y-caar> 
(x-cDOlll"> <y-caaa-> --<na~ at 1:he ahople palyvan> (......,her at -the -r-tlcea> 
<x-coDlll"> <y-caaa-> 
(x-cDOlll"> (y-caar> -
•<na- at -the al111ple palyvan> (NUII'belll" at -the -r-tlcea> 
<x-caar> (y-caor> 
<x-caar> <y-caaa-> --

Figure 32. Correct Input Format. 

b. interactive mode -- the user types the description 

of a Simple Polygon. The correctness of this data 

will not be checked by the program, so the input 

data must have the correct format and produce simple 

polygon(s). The correct input format is outlined in 

Figure 32 (i.e., the same as the batch file input 

format). 

c. random Simple Polygon generator -- the program 

generates the description of a Simple Polygon and 

checks if the vertices created are valid. The 

system will prompt the user for : 
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- the number of simple polygons, 

- the maximum x and y coordinate vertex, 

- the minimum x and y coordinate vertex, and 

- how the number of vertices for each Simple Polygon 

will be specified: 

. the user specifies them one by one, 

• the user specifies the starting number and the 

incremental number, or 

. the user specifies the range number by typing in 

the maximum and the minimum number (the program 

will generate the number of vertices randomly 

between minimum and maximum number specified). 

2. The choice of the algorithm: 

a. Fournier and Montuno's Triangulation Algorithm, 

b. Modified Triangulation Algorithm, or 

c. Both Algorithms. 

3. The choice of output files to be produced: 

a. give warnings before overwriting files? (Yes or No) 

b. the input data file (InpData.x), which contains all 

vertices information of simple polygons created (Yes 

or No) 

c. the debug file (debug.x), which contains the flow 

sequence of the program (Yes or No) 

d. the 2-3 tree debug operation file (debug.x), this 

question will appear only if the user say Yes on 

creating debug.x file (question c). 

e. the comparison triangles statistics file (TPstat.x), 
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which contains the triangles results of the algo­

rithms (Yes or No) 

f. the comparison time statistics file (Timestat.x), 

which contains the bios run time of the algorithms 

(Yes or No) 

g. the vertices result file (OutData.x), which contains 

all vertices of Simple Polygon, Uni-Monotone Poly­

gon, and the Triangulated Polygon? (Yes or No) 

4. The choices displayed: 

a. dispiay the all elements polygons in detail (Yes or 

No), that is showing Simple Polygon, showing all 

uni-monotone polygons inside uni-monotonized polygon 

one by one, and showing triangles inside the uni­

monotone polygon one by one. If the user say Yes 

the question b, c, d, e, and f will be skipped. 

This question (a) will not appear if the time com­

plexity is to be analyzed (i.e., Timestat.x file 

exists). 

b. display the simple polygon (Yes or No). 

c. display the uni-monotone polygons inside the uni­

monotonized polygon one by one (Yes or No). This 

question will not appear if the time complexity is 

to be analyzed. If the user say Yes the question d 

will be skipped. 

d. display the uni-monotonized polygon (Yes or No). 

e. display the triangles inside the triangulated poly­

gon one by one (Yes or No). This question will not 
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appear if the time complexity is to be analyzed. If 

the user say Yes the question f will be skipped. 

f. display the triangulated polygon (Yes or No). 

g. display run times of algorithms on a table (Yes or 

No). This question will appear if the time complex­

ity is to be analyzed. 

h. display the run times of algorithms on a chart (Yes 

or No). This question will appear if the time 

complexity is to be analyzed. 

After all inputs are entered, the program processes all 

inputs (using the Fournier and Montuno's Triangulation Algo­

rithm orfand the Modified Triangulation Algorithm) and 

produce the output results, using graphics to show the 

triangulation process as it progresess (optional). 

Output 

The output of the program depends on the inputs en­

tered, especially the part of the input on what will be 

displayed, either the result of the triangulated polygon and 

the performance data (run-time comparison) of the algo­

rithms. 

The run-time chart depicts the number of vertices of 

the simple polygons entered in increasing order ex­

coordinate). It also averages the run times on the simple 

polygons that have the same number of vertices (y-coordi­

nate). The run-time unit uses bios time (processor clock) 



57 

which is 18.2 units per second in PS-2/30-80286 IBM computer 

and 16.667 units per millisecond in DEC VAXStation 5500 (the 

bios run time of DEC VAXStation 5500 is displayed in run-

time chart by multiples of 1000, so that the bios run time 

displayed is 16.667 units per second). Data from the 

clock(} routine on the VAXStation 5500 are quantized in 

multiples of 10. The vertical scale for the run-time unit 

value will be displayed with tick labels numbered by the 

largest relevant power of 10 {i.e., 1, 10, 100, or 1000}. 

Figure 33 shows the method how to find the displayed numbers 

of run-time unit. 

l!bfJ C.ax- 8 >J 
degree= 18 
IIWIIber _cliapla~ ;: ""'x / degree 
tor- (f: 8; i (: nuMber_clfapla!,lecl: i++) 

cllap Ia !:I U • dewree) 

where •ax = IIIWUCi....,. nu .. ber oF run_t.~ unit. 
IIWIIber _d lap Ia~ = the IIUIIIber oF ua lue will be d l•p Ia !,IIed 
cli!OSP'ee = the level nuMbe., (8, 18, 188, 1888, 18888, ••• ) 

Figure 33. The Displayed Run-Time 
Unit Value Formula. 

If simple polygons in input data have the same number 

of vertices then the run-time chart will display the result 

of all simple polygon run time and also the program will 

display the normal distribution, the mean {average}, and the 

standard deviation of simple polygons run time. 

The flow-chart of the whole process is shown in Figures 

34a and 34b. 
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L-------~-==-=--:::t==-=-~-------~---------~-------_J 

L----------------------J----------------~ I 
OUTPUT FILES ? 

(lnp:Da't.& .x) ? 

Debug algol'ltm rJow (Debug.x)? 

Debug the 2-3 t:ree ope:ration (Debug .x) ? 

ec-parl..,.. ata-t.iatlc of" t .. l&na'l- :reault 
or both alsr • <TP.-t.at .x > ? 

Statistic or running ti.a ca.plexlty 

or both a Ig. n 1-s1:.a-t .x > ., 

Du .. p output clata rue COutDa'f:.&.x)? 

I 
I 

1) Only for Interactive 
and Randorl input PIOde 

2) Only for ''Both" 
choice algorlthlt type 

Figure 34a. The Process Sequence Flow Chart. 
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DISPLAY? 

2r-----------------~--------------~--, Statiatlc o£ Running ti- C010plexlty ln a table 7 

PROCESS 

OUTPUT 

Figure 34b. The Process Sequence Flow Chart. 



APPENDIX C 

SAMPLE EXECUTION 

The program always start with a logo and information 

about the program to the user (see Figure 35). 

three samples with different approaches. 

lliriAlg • 
Triangulation Algorit~ 

Th t a plf'09'r- iiiiiP leooent. : 
'An AlgoritJw. to Triangulate a Sbtple Pol!,I!Jon• 

It r~uirea lnputa: 
1. How lnpu~ datA ia road. 

- Interactive 
- Batch 
- u- Rand.o. Gener&~Ol' 

2. What algorithooo ia to be u-cl. 

There are 

- Fournier A 11ontuno triangulation aliJorltJt. 
- noclltied triangulation algorlt'-

3. lolha:t to dlaplay (option 11- ancl Ito) 

Figure 35. The Logo and Information 
about the Program. 
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sample #1 

This sample analyzes a simple polygon with detail 

display of each uni-monotone polygon and each triangle 

formed on the Fournier and Montuno's Triangulation Algorithm 

and the Modified Triangulation Algorithm. This sample uses 

the same input data as the sample flow of the program in 

Appendix B. Figure 36 shows the input data {1 simple poly-

gon with 12 vertices). Figure 37 shows the input prompted 

by the program. Figure 38 shows the simple polygon to be 

triangulated. Figure 39 and Figure 40 show the sequence of 

formation of uni-monotone polygons and triangles by the two 

algorithms {Fournier and Montuno's and Modified Triangula-

tion Algorithms respectively). 

*batch12 12 
8 20 
10 16 
12 18 
14 12 
18 14 
16 15 
22 17 
18 10 
20 4 
10 8 
2 6 
6 11 
*** 

Figure 36. Input Data of Sample #1 
{DATA\B.12). 



HoM !IOU will build the input? 
~.Preas 'i' or 'I' f'or Interactive input 
2, Preas 'b' or 'B' f'or Batch f'ile Input 
3. Pre•• •II'• Oil' •a• f'or Randole Input rll'.,.. coooputer 
4. Pre•• ••• or •s• f'or displaying the statistic or II'Unti.a rile 
S. Preas • q• Oil' • Q' f'or QUIT 

choice = B 
1'ype In the 1wt.tch input rue 1\ilNB = DATA,B.~Z 
otEW SC:REEH> 
Uhat algorltM you want to use: 

~. Preas •r• oil' •r• 
lr you want to use FOU:RHIER and ..OHTUNO triangulation algoritM z. Press •a• or •A• 
if' you want to .. _ ltoclif'ied triangoalation algoritM 

3. Press 'b' Dll' 'B' 
if' you want to oaae both algorith.a 

Chao- ••• B 
otEW SCJU:EH> 
Pre•• • y• -Yea and • H' -Ho f'or the- opt Ions 
========================================== 
Ana lysell' r u- will be CII'Bated? 
Displayed reaul~? 

De'ta il pa lygon on each sequence 

n 
y 
y 

Figure 37. The Input Prompted by the Program. 

Figure 38. A Simple Polygon. 
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Figure 39a. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (FM alg.). 
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Figure 39b. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (FM alg.). 
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Figure 40a. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (MO alg.). 
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71 
/ 

Figure 40b. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (MO alg.). 
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Sample #2 

This sample analyzes seven simple polygons with 3, 4, 

5, 10, 15, 20, and 25 number of vertices respectively and 

show the run-time table and chart of the algorithms. Figure 

41 shows the input data for the sample #2 (7 simple polygons 

with 3, 4, 5, 10, 15, 20, 25 vertices respectively). Figure 

42 shows the input prompted by the program. Figure 43 shows 

the sequence of formation of uni-monotone polygons and 

triangles. Figure 44a shows the run-time table, and Figure 

44b shows the run-time chart for the algorithms. 

*RAND#O 3 305 2733 353 1106 7518 7497 
7986 7708 632 7452 8522 7091 4400 1140 
1661 2998 490 1874 6547 6442 4286 37 
4938 9233 1340 7912 5939 6116 493 30 
** ** 4896 4994 1779 6751 
*RAND#1 4 *RAND#4 15 6818 6403 819 440 
8200 7095 5500 9384 7386 6651 1678 766 
6527 612 1701 6523 4440 4596 1003 989 
5414 3051 2534 7411 4068 5682 2207 6845 
2359 841 1037 6535 9009 7261 1800 9274 
** 8121 5402 1195 477 1450 7690 
*RAND#2 5 6095 5288 3809 739 1273 9199 
5516 7068 7359 1386 1134 274 943 7169 
6712 6263 775 1052 1350 1227 847 6340 
5129 1881 6504 2082 1267 951 630 6938 
1018 3434 5620 4784 24 1012 828 3387 
1218 4584 5667 2279 796 6267 1392 7764 
** 5518 5412 173 7132 1753 6817 
*RAND#3 10 4588 4422 ** 659 1116 
1914 9730 4811 1969 *RAND#6 25 63 9370 
8550 3038 642 6858 6108 9572 *** 
3374 2601 ** 2452 7974 
6287 2447 *RAND#5 20 2181 420 
7207 587 1350 9364 3388 3486 
602 787 1132 5290 4143 958 

Figure 41. Input Data of Sample #2 
(DATA\B.U25). 



How you wlll build the input? 
1. Pre•• •t• or 'I' For Interactive Input 
z. Press 'h' or 'B' For Batch File Input 
3. Pre•• •r• ol!' • R' For Rand01111 input Froot cOII'Iputer 
4. Pre•• '•' or •s• tor dl•playln8 the •tati•tic at run tiRe tile 
5. Pre•• ·~· or 'Q' tor QUIT 

choice = B 
Type in the hatch Input l'lle na- = DATA,B.3_P 
<HEW SCREEH> 
What algorlt~ you want to u••= 

1. Press •r• or 'F' 
IF you want to u- FOURHIER and 110ttl'U'IO triangulation algor it~ 

2. Preaa ~.• or •A• 
lF you want to uae Koditled tlr'langulation algorit~ 

3. Press •b• or •a• 
11' you want to u .. hath ;algorit~• 

Chao•• ••• B 

otEW SCREEH> 
Presa • Y' -Ye• or • N' -Ito For t...,_ opt ion• 
========================================== 
Analyser File• will he created? n 

Ciave ....-ning to overwrite tll .. ? n 
Debu11 For the Flow at the algorltM (DebuiJ.x) n 
Trlan81•• •tatlstlc or hath alsrortl~ <TP•tat .x) n 
St;atletlc ol' the II'Un tl- unit <TIRBStat.x) Y 
The r-lt oJ' the SP, TrP, UKP, and TP vertlcee (OutData.x) Y 

Dl•played results? y 
The Sl•ple Pol~on y 
The detail oJ' each Un l-I'IOnotone Po l~on• n 
The Whole Uni-l'lonotonl:zed. Pol~on y 
The detAil at each Trla1>frlee n 
The Whole Trlangul;ated Yolygon y 
The t;ahle at -tlMt run tiRe on procesaln8 each SU..ple Pol~on y 
The chart or the duration on processing each Sinple Polygon y 

Figure 42. The Input Prompted by the Program. 
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The Sequence Formation of Uni-Monotone 

Polygons and Triangles (3 Vertices}. 
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Figure 43b. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (4 Vertices). 
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The Sequence Formation of Uni-Monotone 

Polygons and Triangles (5 Vertices). 

Figure 43d. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (10 Vertices). 
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Figure 43e. The Sequence Formation of Uni-Monotone 

Polygons and Triangles (15 Vertices). 
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Figure 43f. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (20 Vertices). 

\ A~ \ tV\~ 
\ ~I') /If/)! 
\1f/ I VH/ 
\ ( !; ~~~\ I \ff; 

II V ff 
I f> I L_1 I =====~ 

Figure 43g. The Sequence Formation of Uni-Monotone 
Polygons and Triangles (25 Vertices). 



71 

- FOURHIER-nOHTUHO ALG. - nODIFID ALG. -IIIIIIIIIIIIIJIJIIIIIIIIIIIIIIIIIIIIIIIItiiiiiiiiiiUIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIUIIIMIIiiiiiUIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIMMIIIIIIIIIIIIIIIIIIIIII 

I SlnPLE I • .. SP -to TrP -to UltP -to TOTAL .. SP -to TrP -to UltP -to TOTAL .. 
I POL. HA"E I UER - TrP urtP TP .. TrP urtP TP -............................................................................................................................................... 

RAHD8 3 - 8 8 8 8 .. 8 8 8 8 -RAHD1 4 .. 8 8 1 1 .. 8 8 8 8 .. 
RAHD2 s - 8 8 1 1 - 8 8 1 1 -RAHD3 18 - 8 8 1 1 - 8 8 1 1 -RAHD4 1S - 1 8 2 3 - 1 8 z 3 -RAHDS 28 .. z 8 3 5 .. 2 8 2 4 .. 
RAHD6 2S .. 2 1 4 7 .. 1 8 s 6 .. 

IIIIIIIIIIIIMIIIIMMMMIUIMM .. MifiiiiMMMMIIIIIIMMMIIIIIIIIIIIIIIIINIIIIIIIIIIIIIIIIIIIIMMMIIIIIIIIIIIIMMIINIIIIIIIIMIIMMMIIIIIIIIIIIIII 

bios-tiMe 

5 

Figure 44a. Run-Time Table. 

Algorithm Run Times <11ULTIPLD 
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Figure 44b. Run-Time Chart. 
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Sample #3 

This sample analyzes 50 different simple polygons on 

each so, 100, 150, 200, 250, 300, 350, 400, 450, and 500 

vertices simple polygon. These simple polygons are analyzed 

on DEC VAXSt.ation 5500. Figures 45a and 45b show the run­

time distribution information on 50 vertices and 1000 ver­

tices, respectively (represent the sequence on the number of 

vertices of the simple polygons). Figure 46a and 46b show 

the run-time chart of all simple polygons, with each simple 

polygon that has the same number of vertices are averaged. 

This sample shows that the modified triangulation 

algorithm actually faster than the Fournier and Montuno's 

Triangulation Algorithm. 
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StOe[f"Ml = 7.t7 
StDe[MOJ = 6.08 

~. 
(50 YY~o 

50 SiMplg PolyQon 

Figure 45a. Distribution Infomation on 50 Vertices 
of 50 Simple Polygons. 
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Figure 45b. Distribution Information on 1000 Vertices 
of 50 Simple Polygons. 
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Figure 46a. Run-Time Chart of All 
Simple Polygons. 
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bios-til'te Algorithm Run Times muLTIDLD 
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Figure 46b. Run-Time Chart of All 
Simple Polygons (Enlargement). 
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