THE EFFECT OF IRON DEFICIENCY

ON THE ROOT DEVELOPMENT
OF SORGHUM

By
GORDON ONYANGO ABAYO
Bachelor of Science
University of Nairobi
Nairobi, Kenya
1983

Submitted to the Faculty of the
Graduate College of the
OkTahoma State University
in partial fulfillment of
the requirements of
the Degree of
MASTER OF SCIENCE
May, 1991

Oklahoma State Univ. Library

THE EFFECT OF IRON DEFICIENCY
ON THE ROOT DEVELOPMENT
OF SORGHUM

Thesis Approved:

ACKNOWLEDGEMENTS

I wish to thank the Agronomy Department of Oklahoma State University, the Corn and Sorghum Testing Program, and the Extension Agents or Area Agronomists in Texas, Harper, and Ellis Counties for the use of their facilities and materials as well as in their aide to identify the farmers fields in which this study was conducted.

To my major adviser, Dr. Stephen Hawkins, and his family for their advise, supervision and moral encouragement throughout my entire study and research and thesis preparation; my other committee members, Dr. Robert L. Westerman and Dr. Lowell Busman for their guidance and critical analysis of this manuscript. It was Dr. Westerman's advise and prudent guidance when Dr. Hawkins left for Purdue University that gave this manuscript the credibility it enjoys. And it was Dr. Brian Carter's (who became my committee member, when Dr. Busman left for Minnesota) wizardry in soil identification and nomenclature that assisted me in classifying the soils used in this study. To them all thank you very much.

The technical field and laboratory support I got from Gary Strickland, Agriculturist, working under Dr. Hawkins; John Sloan, Michael Jojola, both Senior Research Specialists; and Debbie L. McElreath, Senior Agriculturist; all working under Dr. Westerman, provided me not only with valuable data for my thesis but also
sufficient experience in field and laboratory techniques. To them "God bless you always".

I sincerely will always remember the unswerving assistance of the support staff, Robert Scott and Ben Steven, during the field and laboratory data collection. I wish them the best of luck in their future academic and professional endeavors.

To all my friends, including Dr. Sam Geleta and his wife Nomsa Mncadi, and the rest of African students who socially and morally gave me a sense of belonging during my entire stay in U.S.A., I am very grateful.

To the Kenya Government, generally, and the Kenya Agricultural Research Institute (KARI), specifically, for selecting me to pursue this M.S. course and the USAID for providing the necessary funds "my heartfelt regards to them all."

I also extend my gratitude to my very understanding and constantly praying father and mother, Fanuel and Doris Abayo; brothers, Dixon, Barack, Amos, and David; and sisters, Tabitha, Milka, and Sabina. May God rest my father's soul, who passed away on March 14, 1991, in eternal peace and life.

To my father- and mother-in-law, John and Dolphine Otieno, and their very loving children whose patience developed a self confidence in me, I am candidly grateful.

It is my pleasure to dedicate this thesis to my loving and caring wife, Grace Onyango-Abayo, and very sweet daughter, Dolphine "Dolly" Berryl Onyango-Abayo for their patience, prayers, and continuous support during the entire two and a half years of my stay away from home.

TABLE OF CONTENTS

Chapter Page
I. ABSTRACT 1
II. LITERATURE REVIEW 3
III. MATERIALS AND METHODS 9
Sampling Methods 10
Plant Shoot Measurements 17
Chlorophyll Analysis 17Nutrient Composition, Uptakeand Yield of the Shoot17
Statistical Analysis 18
IV. RESULTS AND DISCUSSION 19
Soil Chemical Properties 19
Root Growth Parameters 24
Above Ground Yield, Chlorophyll Content, and Nutrient Concentration 41
v. CONCLUSION 51
REFERENCES 53
APPENDICES 57

LIST OF TABLES

Table Page
I. The Crops, Sampling Depth and Soil Types Used in Western Oklahoma for the Study of Fe Deficiency on Root Development 11
II. Outline of the Root Data Analysis Site ${ }^{-1}$ Year $^{-1}$ 12
III. Selected Soil Analyses of the Soils Studied for Fe deficiency on the Root Development of Sorghum 20
IV. The 1989 Mean Number of Roots, Root Length Density and Root Area Density Averaged Over All Depth Intervals 26
V. The 1990 Mean Number of Roots, Root LengthDensity and Root Area Density Averaged OverAll Depth Intervals29
VI. Grain Sorghum Root Distribution with Depth in Site 1, 1989 34
VII. Sudangrass Root Distribution With Depth in Site 2, 1989 35
VIII. Sudangrass Root Distribution With Depth in Site l, 1990 36
IX. Sudangrass Root Distribution With Depth in Site 2, 1990 37
X. Grain Sorghum Root Distribution With Depth in Site 3, 1990 38
XI. Grain Sorghum Root Distribution With Depth in Site 4, 1990 39
XII. Mean Above-Ground Dry Matter Yield for the 1990 Fe Deficiency Study 42
Table Page
XIII. Amount of Total Chlorophyll (ch_{T}) in $\mu \mathrm{g} \mathrm{cm}^{-2}$ in Leaves of Grain Sorghum and Sudangrass Studied in 1989 43
XIV. Amount of Total Chlorophyll ($\mathrm{chl}_{\mathrm{T}}$) in $\mu \mathrm{g} \mathrm{cm}^{-2}$ in Leaves of Grain Sorghum and Sudangrass Studied in 1990 44
XV. Above-Ground Nutrient Concentrations for the 1989 Fe Deficiency Study 46
XVI. Above Ground Plant Nutrient Concentrations for the 1990 Fe Deficiency Study 47
XVII. Above-Ground Plant Nutrient Uptake for the 1990 Fe Deficiency Study 48

LIST OF FIGURES

Figure Page

1. Sampling Scheme Used for Both the Trench Profile and Core Methods 14
2. Grain Sorghum Root Number, Length and Area with Depth (1989) 27
3. Sudangrass Root Number, Length and Area With Depth (1989) 28
4. Sudangrass Root Number, Length and Area with Depth (1990) 30
5. Sudangrass Root Length and Area With Depth (1990) 31
6. Grain Sorghum Root Length and Area With Depth (1990) 32
7. Grain Sorghum Root Length and Area With Depth (1990) 33

CHAPTER I

ABSTRACT

Iron (Fe) chlorosis is a mineral deficiency disorder that is mostly associated with crops grown in arid, calcareous soils. Grain and forage sorghum types have susceptible varieties to this deficiency. The high buffer capacity, solubility, and basicity of CaCO_{3} influence the incidence of Fe chlorosis in this and other crop plants in the Southern Great Plains and Mid-Western U.S., where 90% of sorghum production is grown in calcareous soils. In addition such soil chemical properties as $\mathrm{HCO}_{3}^{-}, \mathrm{Mg}, \mathrm{N}, \mathrm{P}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Mn}$ and $0 . \mathrm{M}$. (organic matter) contents, pH , soil-water content, and compaction have been implicated as either reducing or enhancing the absorption, translocation, and/or metabolism of Fe in plants.

In this study a two-year field study was conducted in 1989 and 1990 in western Oklahoma to determine: (i) effect of Fe deficiency in the number of roots, root length, and root area of grain sorghum and sudangrass, (ii) soil chemical properties that cause the deficiency and (iii) how such deficiencies affect above ground dry matter yield, nutrient content, and leaf chlorophyll content. The roots were sampled in a 100 cm soil profile in both sites in 1989 and 1 site in 1990 and in a 60 cm soil profile in 3 other sites in 1990. Replicated samples were collected in Fe deficient (-Fe) and Fe sufficient (+Fe) soil forms.

A trench-profile method was used to assess the number of roots; while a core method, hydropneumatic elutrition, and digital image analysis were used to determine the root length and area. Additional soil samples were collected in the same replications for the analyses of soil chemical properties.

Root parameters were generally significantly greater for grain sorghum and sudangrass which were grown in the +Fe soils than in the -Fe soils (P < 0.05). Above ground dry matter yield, leaf chlorophyll content and tissue $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu uptake were similarly significantly higher for both crops grown in +Fe soils compared to -Fe soils. The concentration of the 6 elements in the shoot tissue were, however, significantly higher in the -Fe than the +Fe soil types. The latter observation was partly attributed to ion balance, dilution effect, and probable tissue contamination by the soil aluminosilicates. The soil pH level, $\mathrm{NO}_{3}-\mathrm{N}, \mathrm{P}, \mathrm{Ca}, \mathrm{Mg}$, and CaCO_{3}-equivalent contents were consistently higher in the -Fe than the +Fe soil types while soil HCO_{3}, DTPA-extractable $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Cu}$, and OM contents were consistently higher in the +Fe than in the -Fe soil types. Iron deficiency had similar detrimental effects on the roots and shoots of grain sorghum and sudangrass in these soils.

CHAPTER II

LITERATURE REVIEW

Iron-deficiency (Fe) chlorosis is a mineral deficiency disorder that may be associated with crops grown on acid or alkaline soils but is especially prevalent in arid calcareous soils (Loeppert, 1986). According to Chen and Barak (1982) and Dudal (1977) calcareous soils cover over 30% of the earth's land surface and within these areas are found most of the Fe deficiency in plants. Iron-deficiency chlorosis may occur either uniformly across major tracts of land or as a localized chlorosis of variable extent and at soil depths of 15 cm to over 100 cm below the soil surface (Cihacek, 1988; Loeppert et al., 1984; Loeppert, 1986).

Sorghum (Sorghum bicolor (L.) Moench) is an important grain and forage crop in the Southern Great Plains and Mid-Western U. S. due to its drought tolerance. However, its growth and production is limited in this region because 90% of it is grown in calcareous soils and so commonly associated with Fe stress (Clark, 1982; McCaslin et al., 1987). Calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has a dominating influence on any system in which it is present due to its properties of high solubility, high buffer capacity, and basicity (Loeppert, 1986). At the pH of an oxidizing calcareous soil, 7.4 to 8.5 , the equilibrium activity of total dissolved Fe (III) is approximately $10^{-10} \mathrm{M}$, which is considerably less
than the 10^{-8} which is required for optimum growth of plants in nutrient culture (Lindsay, 1979; Lindsay and Schwab, 1982). However, not all soils high in CaCO_{3} guarantee the incidence of Fe-deficiency chlorosis in all crop species or in some varieties within a species nor correlate well with Fe chlorosis within a given calcareous soil field (Burau, 1963; Loeppert et al., 1984). Consequently other soil factors such as $\mathrm{HCO}_{3}{ }^{-}, \mathrm{Mg}, \mathrm{N}, \mathrm{P}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Mn}$, and OM contents, as well as the soil pH , soil-water content, and compaction have been implicated as either reducing or enhancing the absorption, translocation, and/or metabolism of Fe in plants (Chaney, 1984; Chen and Barak, 1982; Loeppert and Hallmark, 1985; Morris et al., 1990; Yen et al., 1988). In addition genetic differences among plant species and within the same species have also been reported to influence the susceptibility of plants to Fe deficient environments (Mortvedt and Kelsoe, 1988; Yen, 1987; Yen et al., 1988). High concentration of $\mathrm{HCO}_{3}{ }^{-}$due to increased partial pressure of $\mathrm{CO}_{2}\left(\mathrm{pCO}_{2}\right)$, especially in soils with a high water content and compaction, was reported to cause reduction in total chlorophyll contents $\left(\mathrm{chl}_{\mathrm{T}}\right)$ and total above ground yield in soybean (Glycine max (L.) Merr.) (Inskeep and Bloom, 1987; Morris et al., 1990) but not in sorghum (Loeppert and Hallmark, 1985; Yen et al., 1988). Fleming et al. (1984) attributed the inhibition influence of $\mathrm{HCO}_{3}{ }^{-}$to the differences in the stress response mechanisms of the two crops. Soybean releases H^{+}and 'reductants' from their root tips into the rhizosphere with the resultant pH reduction and increased Fe availability. Sorghum secretes natural chelates called phytosiderophores which complex and translocate

Fe to the root surface for absorption with no appreciable pH reduction in the rhizosphere (Marschner et al., 1986).

Lindsay and Norvel (1978) and Loeppert et al. (1988) found that diethylenetriaminepentaacetic acid (DTPA)-extractable Fe, an acceptable soil test for $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu contents, was negatively correlated with visual chlorosis ratings and total stover yield of sorghum ($r=-$ $0.60)$; and that $4.5 \mathrm{mg} \mathrm{Fe} \mathrm{kg}^{-1}$ soil was optimum for correction of Fe chlorosis in sorghum. Cihacek (1988) showed that DTPA-extractable Fe was correlated more with grain than total above ground yield. He also reported that only 3.2 mg Fe kg^{-1} soil sufficed to ameliorate the deficiency in grain sorghum.

The presence of $O M$ has been reported to minimize the incidence of Fe chlorosis in sorghum and soybean in calcareous soils. Loeppert and Hallmark (1985) and Morris et al. (1990) observed that this was due to the ability of $O M$ to adsorb and stabilize the amorphous Fe-oxide phase and make Fe be more available for the plants. Total and Walkley Black C fractions were more significantly correlated with the deficiency amendment than the more resistant humic fraction of the $O M$.

Inskeep and Bloom (1987) reported increased concentrations in the plant tissue of $\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Mn}$, and Fe with Fe stress in soybean. They attributed these results to ion balance, concentration of the elements in the stunted plants (dilution effects) and, probably, contamination of the chlorotic tissue by the soil aluminosilicates.

Previous researchers noted a positive correlation of incidence of Fe chlorosis in sorghum (Loeppert et al., 1984) and soybean (Inskeep and Bloom, 1984 ; 1986) with soil solution Mg content and/or Mg content of the CO_{3} phase. Loeppert and Hallmark (1985) observed a positive
relationship between $\mathrm{H}_{2} \mathrm{O}$-extractable $\mathrm{Mg} /(\mathrm{Ca}+\mathrm{Mg})$ mole ratios and Fe chlorosis in sorghum. Presence of Mg may influence the solubility and/or kinetics of dissolution of the CO_{3} phase, itself a consequence of induced alkalinity. Furthermore, in high Mg soils the Mg content is considerably higher than the Fe content and so could compete with Fe for the binding sites on the phytosiderophores and absorptive root surfaces.

Reduced chlorophyll of the leaves, leaf area, plant height, grain and forage yield, rooting volume of sorghum and/or soybean have been observed to occur under Fe deficiency, in which incidence of total necrosis have not been uncommon (Cihacek, 1988; Clark et al., 1988; Datin and Westerman, 1982; Fehr, 1983; Gildersleeve and Ocumpaugh, 1989; Inskeep and Bloom, 1987; Kinkaid, 1986; Meppe, 1988; Mortvedt and Kelsoe, 1988; Williams et al., 1986; Yen et al., 1988; Morris et al., 1990). Morris et al. (1990) further noticed that roots of soybean grown on Fe chlorotic soils were non-nodulated. In earlier study Kannan (1983) and Bates (1982) had made observation that Fe deficiency was more severe in susceptible plants as Fe participates in the N-fixation, oxidative phosphorylation, and electron transport in most of the plants metabolic processes. Inskeep and Bloom (1987) noticed low chl T_{T} and yield reduction between 35 to 40% in soybeans grown in Fe deficient soils with chlorosis ratings between 2.5 and 5 .

Mortvedt (1986) reported that probably the best method to control Fe chlorosis will be a combination of Fe-efficient cultivars with the best management practices and effective Fe fertilizers. His findings concurred with those by Datin and Westerman (1982), Mortvedt and Kelsoe (1988), Yen (1987) and Yen et al. (1988). They reported that band or spot application of ammonium polyphosphate (APP) with or without Fe
fertilizer in calcareous soils ameliorated incidence of Fe chlorosis with increased absorption of Fe in the sorghum. This in turn increased chlorophyll contents and dry matter production. However, rate of P uptake was negatively correlated with Fe uptake (Yen et al., 1988) and plant tissues with high P accumulated Fe in the inactive Ferretin or FePO_{4} forms (Brown and Jones, 1975).

In another study Taylor and Goubran (1976) showed that P deficiency led to an increase in root length of apple (Malus sp) tree and that the plant adapted to the stress by developing an exploratory type of root system. Schenk and Barber (1979) showed that low P soil resulted in smaller root radius for corn seedlings than did the same soil with higher P. The thinner roots at low P resulted in more root surface area (RSA) g^{-1} of roots with an increased absorptive surface for P, other mineral nutrients and soil moisture. Phosphorus and K move in the soil primarily by diffusion (Hallmark and Barber, 1983) just as Fe moves (Tisdale et al., 1985), hence the greater the RSA the higher the opportunity for these nutrients to reach the root. Tisdale et al. (1985), furthermore, demonstrated that the solubility product of Fe , 10^{-39}, at normal soil $\mathrm{pH}, 6.6$, and aeration shows that very little fe is available for transport to the root surface by mass flow.

It is evident from the above observations that the availability of Fe and its effects on above ground plant development depends on the rhizosphere chemistry (i.e., interaction of labile soil Fe [capacity factor], solution Fe [intensity factor], and surface area of the roots). To our knowledge most of the research has been quantitatively reported for the Fe chlorosis on grain yield, total dry matter production, chlorophyll content of the leaves and other above-ground vegetative and
reproduction growth traits. However, the morphological aspects of the roots as affected by the Fe deficiency has been lacking in scope, partly due to unavailability of simple inexpensive equipment to undertake rhizographical study, high labor input and often not very accurate data (Bohn, 1979).

The objectives of this study were to determine (i) the relative number of roots per soil area, length of roots per soil volume (length density, $\mathrm{cm} \mathrm{cm}^{-3}$), and area of roots per soil volume (area density, cm^{2} cm^{-3}) of grain sorghum and sudangrass (Sorghum sudanense L.) as affected by Fe deficiency under field conditions, (ii) which soil chemical
properties affect root growth under the two soil Fe conditions, and (iii) to relate the root growth parameters and such above ground growth traits as total leaf chlorophyll content, dry matter yield, and Ca, Mg, $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu contents in the two soil conditions.

CHAPTER III

MATERIALS AND METHODS

A two-year field survey was conducted in August 1989 and 1990 in western Oklahoma to determine the influence of Fe deficiency on the root development of grain sorghum and sudangrass. This survey was preceded with the site selection in mid-May in the two years, two weeks after planting. The study was conducted at two sites in 1989 and four sites in 1990 known to exhibit Fe-deficiency chlorosis in sorghum (Hawkins, personal communication) (Table I). Iron chlorosis, initially observed in a two-week old plant, is an intervenial chlorosis in the newly grown leaves with older leaves remaining green as a result of immobility of Fe within the plant (Williams et al., 1986). The chlorosis symptom starts near the mid-rib and spreads to the margin of the leaf. This differentiates it from Zn deficiency symptom where the chlorosis starts from the margin to the mid-rib; N deficiency where the chlorosis first shows in the older tissue with younger leaves being green as N is mobile in the plant; and S deficiency, partially immobile, where the deficiency is in the whole plant tissue. The visual scores in plant tissue was used to partition six pairs, two pairs in 1989 and four pairs in 1990, of soil types into deficient in available $\mathrm{Fe}(-\mathrm{Fe})$ and sufficient in available $\mathrm{Fe}(+\mathrm{Fe})$. These visual scores were confirmed at anthesis during root sampling. Further soil classifications were given by Cole
et al. (1961), Menders et al. (1961), and Nance et al. (1960) (Table I). At every site in both years the two soil types were about 100 m apart. Plant root, shoot and soil data were collected in each pair of soil types in a randomized complete block design (RCBD) with four replications.

Replications were confounded in the soil types and so would have been more appropriately referred to as sampling units. However, replication is used in this study to simplify the analysis of variance (ANOVA) (Table II).

Sampling Methods

At each replication, two destructive root sampling methods as described by Bohn (1979) and Vepraskas and Hoyt (1988) were used to take root samples in a 2-day period. On the first day five soil cores spaced 20 cm apart, the third one adjacent to and 15 cm from the study plants in each replication, were taken across the rows with the study plants to a depth of 100 cm in 1989 and 100 or 60 cm in 1990 (Table I) using a truck-mounted Giddings hydraulic soil coring machine (Giddings Manufacturing Co., Fort Collins, CO) and 5 cm dia. acetate liners (Fig. 1). The 60 cm soil depth sampling was decided upon after the 1989 root data analysis showed that 60 cm was sufficient to supply as much information as the 100 cm depth. Furthermore, this reduced the time spent per site, thus allowing for more sites being sampled. The cores were kept cool, so as to maintain sampled roots in their natural state before analyses, using ice bags and cold storage until ready for root extraction. The acetate liners were then divided into five $20-\mathrm{cm}$ and ten or six $10-\mathrm{cm}$ sections in 1989 and 1990, respectively. From each section roots were separated from the soil using a hydropneumatic

TABLE I
THE CROPS, SAMPLING DEPTH AND SOIL TYPES USED IN WESTERN OKLAHOMA FOR THE STUDY OF FE DEFICIENCY ON ROOT DEVELOPMENT.

Site number	Site name	Crop grown	Sampling depth
$\frac{1989}{1}$	Texas County	Grain sorghum	Soil type

TABLE II

OUTLINE OF THE ANOVA FOR ROOT DATA ANALYSIS SITE ${ }^{-1}$ YEAR ${ }^{-1}$.

Source of variation

DF

Treatment
Replication (treatment)
Position
Treatment x Position
Position x replication (treatment) Depth
Treatment x depth
Treatment x depth x position
Errar
Total
$(t-1)=1$
$(6-1)(t)=6$
$(P-1)=4$
$(\mathrm{t}-1)(\mathrm{p}-1)=4$
$(\mathrm{P}-1)(\mathrm{b}-1)(\mathrm{t})=24$
$(\mathrm{d}-1)=4$
$(\mathrm{t}-1)(\mathrm{d}-1)=4$
(t-1) $(\mathrm{d}-1)(\mathrm{p}-1)=32$
(tbpd-1)- rest $=120$
tbpad-1 $=199$

```
Note: Treatment = +Fe and -Fe soil types
        Replications = Number of sampling units within treatments
        Positions = Distances of cores or grid squares from
                        stalk of the study plants
    Depth = Depth intervals sampled in the soil
                        profile
```

elutrition device similar to that described by Smucker et al. (1982). The roots were collected in a sieve of 0.42 mm pore size, and any above ground plant debris especially in the two upper depth intervals were removed using a pair of forceps. The extracted roots were stained by placing them in a petri-dish which contained 10 mL of de-ionized distilled water 2 mL of alconox fungicide, and 1 mL of thymol violet 2B solution. The thymol solution was prepared by dissolving 1 g of thymol 2B granules in 100 mL ethyl alcohol. The root samples were kept stained for 24 h in a refrigerator at $40^{\circ} \mathrm{F}$ to ensure complete and uniform staining. The root samples were then spread in a $15 \mathrm{~cm} X 15 \mathrm{~cm}$ petridish to minimize root overlap during scanning to measure the relative total root length and area. Such apparent overlaps would have underestimated the length and area of roots as the scanner would treat smaller toot fibers as one. These two parameters were measured using a digital image analysis system Macro-processor (BioScan OPTIMAS Inc., Edmonds, WA) similar to a system described by Harris and Campbell (1989). This system, with the computer control, scans all root fibers and gives total area and length.

Twenty four hours after taking the soil cores, pits measuring 100 cm long $\times 50 \mathrm{~cm}$ wide $\times 100 \mathrm{~cm}$ deep were dug in the same replications as those used for the core method using a backhoe in both sites in 1989 and site 1 in 1990 to determine the relative number of roots of grain sorghum and sudangrass. One pit wall was smoothed to within 15 cm of the study plants (Fig. 1). A $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ grid divided into 100-10 cm^{2} squares was placed on the smoothed surface. After removing about 2.5 cm of soil from each square with an awl, all visible live roots

Interrrow spacing $=75 \mathrm{~cm}$ for grain sorghum. 30 cm for sudangrass

Figure 1. Sampling scheme used for both the trench profile and core methods.
were counted and recorded. Live roots were identified as whitish to separate them from the dark brown to black OM.

On the days the soil cores were taken, five extra cores were taken to the same depth in each replication. These cores were sectioned into $20-\mathrm{cm}$ and $10-\mathrm{cm}$ segments in 1989 and 1990, respectively. Depthequivalent core segments were then composited, air-dried and ground to pass through a $2-\mathrm{mm}$ pore size. Samples drawn from these prepared soils were used to determine soil $\mathrm{pH}, \mathrm{NO}_{3}-\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Mn}$, HCO_{3}, total alkaline earth CO_{3}, and OM , following the methods described by McElreath and Johnson (1990). Soil pH was determined in a deionized water at a soil weight to solution ratio of 15 g to 15 mL . Samples were stirred with a teflon rod, mixing soil and water completely, and allowed to stand for 30 min , prior to determining pH with a Fisher 825 MP pH meter.

Nitrate-N was determined by mixing 10 g of soil with 25 mL CaSO 4 extracting solution. The mixture was shaken for 30 min on a rotary shaker and filtered. The filtrate was transferred to a Lachat Injection Flow System for $\mathrm{NO}_{3}-\mathrm{N}$ analysis. Available soil $\mathrm{P}, \mathrm{K}, \mathrm{Ca}$, and Mg were determined by mixing 2 g of soil and 20 mL of Mehlich III extracting solution and shaking for 5 min . The mixture was then filtered and the filtrate analyzed for K, Ca, and Mg with the Perkin-Elmer 2380 Atomic Absorption (AA) spectrophotometer, with Ca and Mg samples having 2% lanthanum chloride added prior to AA analysis. Available soil P in the extracts was analyzed using the Lachat.

The DTPA-extractable soil $\mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}$, and Mn were determined by mixing 10 g of soil with 10 mL of DTPA-extracting solution and shaking the mixture at a high speed for 2 h . The mixture was filtered through
number 42 Whatman paper and the four micronutrients analyzed using the AA.

Soil HCO_{3} content was determined by mixing 20 g of soil with 20 mL of deionized water, agitating the mixture and allowing to settle for 4 h. The mixture was then filtered using a number 2 Whatman filter paper. A 5 mL aliquot of the filtrate was titrated with $0.025 \mathrm{~N}_{2} \mathrm{SO}_{4}$ using methyl orange as the indicator.

Total alkaline earth $\mathrm{CO}_{3}\left(\mathrm{CaCO}_{3}\right.$ or $\left.\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}\right)$ was determined by the titration method. To 10,5 or 2 g , for slightly moderately or strongly calcareous soils, respectively, based on the effeverscent test with an acid, was added 100 mL deionized water and 25 mL of standardized $0.5024 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and warmed in a bath for 3 min . The mixture was filtered through a number 2 Whatman paper and titrated with standardized 0.2241 N NaOH using phenolphthalein as indicator. Total alkaline earth CO_{3} was calculated using the following equation:
$\frac{(N \text { acid } X \mathrm{~mL} \text { acid })-(N \text { base } X \mathrm{~mL} \text { base }) \times 5}{\text { Weight of soil }}=\% \mathrm{CaCO}_{3}$ equivalent

The potassium dicromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ oxidation procedure was used to determine Walkley-Black OM. A 0.5 g air-dried soil was mixed with 10 mL of $1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 15 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and slowly heated to $160^{\circ} \mathrm{C}$. After cooling 100 mL of deionized water was added to the mixture and excess $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ titrated using $0-2 \mathrm{~N}$ ferrous ammonium sulfate solution, before calculating \% C and \% OM.

Plant Shoot Measurements

Chlorophyl1 Analysis

During the root sampling procedures five $0.24 \mathrm{~cm}^{2}$ leaf discs were taken from the top three fully developed leaves from the study plants for chlorophyll (chl.) content determination. The discs were put in transparent tubes with 3.5 mL of N, N-dimethylformamide. The tubes were then placed on horizontal trays and refrigerated for 48 h for complete extraction of the chlorophyll from the leaf discs. The samples were brought to room temp. $\left(15^{\circ} \mathrm{C}\right)$ and absorbance readings were taken at 664.5 and 647 nm wavelengths with a Bausch and Lomb Model Spectronic 710 spectrophotometer. Chlorophyll a, b, and total ($\mathrm{ch} \mathrm{l}_{\mathrm{T}}$) contents were calculated using equations described by Inskeep and Bloom (1985):

Ch1. a $\left(\mu \mathrm{g} \mathrm{cm}^{-2}\right)=12.7$ * abs 664.5-2.79* abs 647.
Ch1. $\mathrm{b}\left(\mu \mathrm{g} \mathrm{cm}^{-2}\right)=19.9 *$ abs $647-4.62 *$ abs 664.5.
$\mathrm{Chl}_{\mathrm{T}} \quad\left(\mu \mathrm{g} \mathrm{cm}^{-2}\right)=\mathrm{Ch} . \mathrm{a}+\mathrm{b}$.

Nutrient Composition, Uptake and Yield of the Shoot

In each replication above ground plant samples were collected from a 1 m row length and dried for 24 h in an oven. After taking the dry weights from the samples they were finely ground to pass through 0.2 mm and analyzed for $\mathrm{Fe}, \mathrm{Zn}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Mg}$, and Ca concentrations. About 0.25 g of the finely ground plant samples were digested using the Digesdahl Digestion Apparatus and colorimetric analysis procedures (Hach Co., Ames, IA). The six cations were analyzed using the AA. After determining the nutrient concentration in the above ground plant parts,
the nutrient uptake was calculated for each Fe soil condition by multiplying dry matter yield and concentration.

Statistical Analysis

The relative mean number of roots $\mathrm{per} \mathrm{cm}^{2}$ of soil, root length and root area per cm^{3} of soil were compared between the -Fe and +Fe soil types for each year and site separately using the statistical analysis of variance procedure SAS Inst. (1979) (Table II). For each root parameter within each soil type variation with depth, sampling distance from the study plant were calculated using the least significant difference (LSD) procedure as described by Steel and Torrie (1980). A simple linear regression was also performed to determine whether depth or distance were in anyway associated with the observed root growth differences between the two Fe conditions.

Similar ANOVA procedure was used to determine the above ground dry matter yield (1990 only), chosen nutrient concentrations, nutrient uptake, and chlorophyll concentration.

Pooled statistical analyses were not performed due to differences in soil types and crop species between the sites and years.

CHAPTER IV

RESULTS AND DISCUSSION

Soil Chemical Properties

Chemical properties of the soils examined in this study are shown in Table III. All +Fe and -Fe soil types had soil solution pH ranges between 7.6 and 8.3 , Ca content ranges between 70 and $260 \mathrm{~g} \mathrm{~kg}^{-1}$, and HCO_{3} content ranges between 119 and $247 \mathrm{mg} \mathrm{kg}^{-1}$ in the surface 20 cm soil depth. The soil pH and Ca contents were consistently higher in the -Fe than the +Fe soil types while the $\mathrm{HCO}_{3}{ }^{-}$content was the reverse. There was also a consistently, and significantly higher DTPA-extractable Fe in the +Fe soil types than the -Fe soil types in all sites. Total alkaline earth carbonates determined as $\% \mathrm{CaCO}_{3}$ equivalent were significantly higher for the -Fe than the +Fe soil types.

Similar observations have been made by other research scientists. For example, Loeppert and Hallmark (1985) observed that the Fe stress response in sorghum is not affected by high $\mathrm{HCO}_{3}{ }^{-}$content of the rhizosphere. Yen et al. (1988) provided evidence that high HCO_{3} contents were not correlated with Fe chlorosis in sorghum. Inskeep and Bloom (1987) and Morris et al. (1990), however, made observations that high HCO_{3} content was positively correlated with the incidence of Fe chlorosis in soybean. Fleming et al. (1984) explained that this

TABLE III
SELECTED SOIL ANALYSES OF THE SOILS STUDIED FOR FE DEFICIENCY ON THE ROOT DEVELOPMENT OF SORGHUM.*

[^0]occurrence is due to HCO_{3} ability to neutralize the H^{+}released as an Fe stress response by soybean roots. Sorghum in contrast does not always reduce the rhizosphere pH appreciably as an Fe stress response mechanism (Marschner et al., 1986).

High Ca^{2+} activity in calcareous soils reacts with and consequently maintains lower values of HCO_{3}. Moreover, high buffering capacity, basicity and solubility of CaCO_{3} dominates the reactivity and kinetics of any system where it is present (Loeppert, 1986). Lindsay (1979) and Lindsay and Schwab (1982) provided evidence that the equilibrium activity of total dissolved Fe (III), $10^{-10} \mathrm{M}$, in an oxidizing calcareous soil with a pH between 7.4 and 8.5 , is considerably less than $10^{-8} \mathrm{M}$ which is required for optimum growth of plants in nutrient culture. Loeppert et al. (1984) observed that calcareous soils with CaCO_{3} equivalents above $300 \mathrm{~g} \mathrm{~kg}^{-1}$ showed no Fe chlorosis in grain sorghum while those with CaCO_{3} equivalents below $100 \mathrm{~g} \mathrm{~kg}^{-1}$ showed such symptoms in the crop. They however reported that chlorotic soils had consistently higher mean carbonate levels and pH values ($175.0 \mathrm{~g} \mathrm{~kg}^{-1}$ and 7.98) than adjacent non-chlorotic soils ($13.0 \mathrm{~g} \mathrm{~kg}^{-1}$ and 6,93), respectively.

Lindsay and Norvell (1978) and Loeppert et al. (1988) reported that 4.5 mg DTPA $-\mathrm{Fe} \mathrm{kg}^{-1}$ soil is critical for amelioration of Fe deficiency in sorghum. But Cihacek (1988) clearly indicated that a level of $3.2 \mathrm{mg} \mathrm{kg}^{-1}$ soil was sufficient to curtail the Fe deficiency incidence in sorghum. Both results contrast with the findings in this study in which values ranging between 5 and $15 \mathrm{mg} \mathrm{Fe} \mathrm{kg}^{-1}$ soil still resulted in the incidence of Fe deficiency effects on the root
development of grain sorghum and sudangrass. Partly it can be said that DTPA - Fe result is not the only criterion of judging Fe availability in soils in this study. Furthermore, the critical level of DTPAextractable Fe to amend Fe chlorosis in different Sorghum spp. could also be specific for site, year, and crop growth stages. There are possibilities that other indigenous soil, environmental, microbial, and nutritional factors as well as the sorghum genotypes may influence the Fe chlorosis in Sorghum spp. in calcareous soils (Loeppert and Hallmark, 1985; Morris et al., 1990).

Magnesium (Mg) concentrations were consistently higher in -Fe soils than +Fe soils at each site which occurrence inversely corresponded with number of roots, root length density, and root area density of the two crops. This supports the observations made by Loeppert et al. (1984) and Loeppert et al. (1988) who gave evidence that a positive significant correlation existed between the incidence of Fe chlorosis in sorghum, with soil solution Mg content. Magnesium could cause Fe deficiency by influencing CO_{3} solubility kinetics and/or competing with Fe for the binding sites on the root surfaces or chelates of grain sorghum and sudangrass.

Total $\mathrm{NO}_{3}-\mathrm{N}$ in the soil was not significantly different between the -Fe and +Fe soil types (although generally consistently higher in the Fe then + Fe soil types) and so was not significantly related with Fe deficiency effect on the number of roots, root length density and root area density in the six sites (Table III). Soil extractable P was generally higher, but not significantly so, in the -Fe than the +Fe soil types. The high P could be attributed to high accumulations of fertilizer P in -Fe soils due to stunted plant growth (Loppert et al.,
1984). High P could also have detrimental effects on absorption of soil Fe by rendering Fe inactive within the plant tissue (Brown and Jones, 1975; Yen et al., 1988).

Yen (1987) reported that lower $\mathrm{NO}_{3}-/ \mathrm{NH}_{4}^{+}$ratio increased total soluble Fe in sorghum and stimulated root growth with enhanced total Fe uptake probably due to reduced pH in the rhizosphere. Inskeep and Bloom (1987) observed that high NO_{3}^{-}may contribute to an Fe-uptake problem in soybean by causing an excess anion uptake which requires either more anion excretion or corresponding cation uptake to maintain cation-anion balance. Either consequence might reduce the ability of the plant to excrete H^{+}as part of the Fe stress response mechanism.

Yen et al. (1988) made observations that high P concentration induces Fe chlorosis in sorghum, while Mortvedt (1986) reported decreased Fe chlorosis with band application of APP. The APP was believed to not only lower the rhizosphere pH , but also chelate Fe and thus enable the element to be available for absorption by the plant roots. Datin and Westerman (1982) critically observed that APP alleviates Fe deficiency problems in sorghum in the Great Plains when banded adjacent to the seed furrows.

The other soil micronutrients, Zn, Mn and Cu , were not appreciably affected by the Fe deficiency in the soil (Table III). The high pH of these calcareous soils could contribute to this lack of difference between the two soil types. Westfall and Hanson (1985) observed increased levels of DTPA-extractable Fe and Zn occur in a moderately acid (pH 6.6) soil but not in a calcareous (pH 7.8) soil. Mortvedt and Kelsoe (1988), however, provided evidence that high levels of available Fe in the soil antagonized Mn and Zn uptake.

The Walkley-Black C component of OM was consistently higher but not significantly so in the +Fe than in the -Fe soil types (Table III). As such it had no evident influence in the incidence of the observed Fe deficiency on the root development of grain sorghum and sudangrass used in this study. Soil organic matter fractions form stable complexes with Fe^{3+} in acid systems but not at pH 8.0 , although the organic fraction may influence stabilization of the poorly crystalline Fe oxide phase at this high pH level (Loeppert et al., 1984). Morris et al. (1990) reported that for each soybean cultivar they studied, the chlorophyll concentration was positively correlated with OM, with total organic C and Walkley-Black C fractions being more correlated with the ability to solubilize and mobilize Fe within the soil system than the more recalcitrant humic fraction. Loeppert and Hallmark (1985) showed that visual evaluation vs. OM parameters of total organic $C(r=-0.638)$, Walkley-Black C $(r=-0.606)$, humic C $(r=-0.521)$, and Na pyrophosphate extractable C $(r=-0.621)$, were all highly correlated. In all cases tendency towards chlorosis decreased with increasing OM content, suggesting that $O M$ may stabilize $F e$ in a form which is more readily available to the sorghum plant.

Root Growth Parameters

Results of the mean number of roots, root length density, and root area density of grain sorghum and sudangrass grown in the -Fe and +Fe soil types in the two sites in 1989 are shown in Figs. 2 and 3 and Table IV. The three parameters decreased similarly with depth to the 100 cm depth interval in both soil types (Figs. 2 and 3). But the grain sorghum and sudangrass mean number of roots, root area density, and root
length density, respectively, were generally significantly greater, with CV\% range between 10.6 and 32.2 , in the + Fe soils (0.6 and $0.59 ; 0.94$ and $0.26 \mathrm{~cm}^{2} \mathrm{~cm}^{-3}$; and 14.68 and $3.73 \mathrm{~cm} \mathrm{~cm}^{-3}$) than in the -Fe soils (0.36 and $0.27 ; 0.47$ and $0.15 \mathrm{~cm}^{2} \mathrm{~cm}^{-3}$; and 7.03 and $3.02 \mathrm{~cm} \mathrm{~cm}^{-3}$) with p-values of 0.008 and $0.01 ; 0.0001$ and 0.04 ; and 0.0002 and 0.3 (Table IV). The generally higher p-levels for the sudangrass than the grain sorghum root parameters were partly attributed to the stage of growth (regrowth) at which the former crop was sampled. Grain sorghum on the other hand was sampled at the late bloom stage. At this stage sorghum has been reported to have attained peak root growth (Hallmark and Barber, 1984).

The mean number of roots, root area, and length of grain sorghum and sudangrass under the +Fe and -Fe soil conditions for the 1990 sites are shown in Table V and Figs. 4, 5, 6, and 7. Similar trends were observed in this year's sites as was in the 1989 ones for both crops. Thus there was significantly greater root activity in the +Fe than -Fe soil types except the mean number of roots for sudangrass in site 1. The lack of significant differences in this site could possibly be due to the high plant population density that was observed in this site with a resultant intraspecific root competition. Such influence could probably have masked the effects of Fe deficiency on the root number of sudangrass in this site.

The percentage root distribution with depth under the two soil types in both 1989 and 1990 sites are shown in Tables VI, VII, VIII, IX, X, and XI. In both soil types over 60% of the root distribution was within the top 20 cm (plow layer) of the soil profile with sudden decrease as 100 cm depth interval was approached. These results were

TABLE IV
THE 1989 MEAN NUMBER OF ROOTS, ROOT LENGTH DENSITY AND ROOT AREA DENSITY AVERAGED OVER ALL DEPTH INTERVALS.

*Values followed by the same letter are not significantly different at $P<0.05$

Figure 2. Grain sorghum root number, length and area with depth.

TABLE V
THE 1990 MEAN NUMBER OF ROOTS, ROOT LENGTH DENSITY AND ROOT AREA DENSITY AVERAGED OVER ALL DEPTH INTERVALS.

Crop	Soil type	Number of roots	Root length density	Root area density
		cm^{-2}	$\mathrm{cm} \mathrm{cm}{ }^{-3}$	$\mathrm{cm}^{2} \mathrm{~cm}^{-3}$
Sudangrass	Richfield (+Fe)	$0.06 a^{*}$	3.05a	0.20a
	Ulysses (-Fe)			0.12b
Sudangrass	$\begin{aligned} & \text { Potter (}+\mathrm{Fe} \text {) } \\ & \text { Mansker }(-\mathrm{Fe}) \end{aligned}$	--	$\begin{aligned} & 6.22 a \\ & 3.47 a \end{aligned}$	$\begin{aligned} & 0.43 a \\ & 0.23 a \end{aligned}$
Grain sorghum	Carey (+Fe) Woodward (-Fe)	--	$\begin{aligned} & 7.43 a \\ & 1.84 b \end{aligned}$	$\begin{aligned} & 0.51 a \\ & 0.11 b \end{aligned}$
Grain sorghum	$\begin{aligned} & \text { Potter }(+\mathrm{Fe}) \\ & \text { Mansker }(-\mathrm{Fe}) \end{aligned}$	--	$\begin{aligned} & 4.56 a \\ & 0.25 b \end{aligned}$	$\begin{aligned} & 0.32 a \\ & 0.02 b \end{aligned}$

*Values followed by the same letter are not significantly different at $\mathrm{P}<$ 0.05 .

Figure 4. Sudangrass root number, length and area with depth.

1990 Site 2 (Texas)

1990 Site 3 (Harper)

Figure 6. Grain sorghum root length and area with depth.

1990 Site 4 (Ellis)

Figure 7. Grain sorghum root length and area with depth.

TABLE VI
GRAIN SORGHUM ROOT DISTRIBUTION WITH DEPTH IN SITE $1,1989$.

| | Richfield (+Fe) soil | | | Ulysses (-Fe) soil | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Depth | Number | Area | Length | | | |
| | | | | | | |

TABLE VII
SUDANGRASS ROOT DISTRIBUTION WITH DEPTH IN SITE 2, 1989.

Depth	Pratt (+Fe) soil			Mansker (-Fe) soil		
	Number	Area	Length	Number	Area	Length
- cm -						
0-20	44	44	44	51	46	47
20-40	34	26	26	21	23	25
40-60	14	17	18	19	23	20
60-80	05	09	08	05	08	05
80-100	03	04	04	04	00	03

TABLE VIII
SUDANGRASS ROOT DISTRIBUTION WITH DEPTH IN SITE 1, 1990.

Depth	Richfield (+Fe) soil			Ulysses (-Fe) soil		
	Number	Area	Length	Number	Area	Length
- cm -						
0-10	32	49	49	40	50	45
10-20	25	18	18	17	22	22
20-30	13	10	10	10	10	09
30-40	10	08	08	09	05	07
40-50	06	07	07	06	05	05
50-60	04	04	05	05	02	04
60-70	04	03	03	04	02	03
70-80	02	01	01	04	02	02
80-90	02	00	00	03	01	02
90-100	02	00	00	02	01	01

TABLE IX
SUDANGRASS ROOT DISTRIBUTION WITH DEPTH IN SITE 2, 1990.

Depth	Potter (+Fe) Soil		Mansker (-Fe) soil	
	Area	Length	Area	Length
- cm -				
0-10	64	61	65	56
10-20	13	13	11	12
20-30	10	12	09	10
30-40	06	07	06	09
40-50	05	05	05	07
50-60	02	02	04	06

TABLE X
GRAIN SORGHUM ROOT DISTRIBUTION WITH DEPTH IN SITE 3, 1990.

Depth	Carey (+Fe) soil		Woodward (-Fe) soil	
	Area	Length	Area	Length
- cm -				
0-10	36	35	50	51
10-20	17	16	30	27
20-30	11	10	11	12
30-40	13	14	06	06
40-50	12	13	02	03
50-60	11	12	01	01

TABLE XI
GRAIN SORGHUM ROOT DISTRIBUTION WITH DEPTH IN SITE 4, 1990.

Depth	Potter (+Fe) Soil		Mansker (-Fe) soil	
	Area	Length	Area	Length
- cm -				
0-10	44	45	31	33
10-20	25	26	21	23
20-30	22	18	18	17
30-40	05	05	12	10
40-50	03	05	09	09
50-60	01	01	09	08

consistent for the two years and all sites irrespective of the crop considered. It is thus apparent that Fe deficiency limits root growth to near the soil surface. The development of root systems nearer to the surface has been reported under other mineral nutrient and water stress circumstances. Such exploratory root activity was reported in corn seedlings by Schenk and Barber (1979) under low P, K, and moisture. Not only was root development restricted near the surface but an increase in root radius and surface area was also evident at low P. Taylor and Goubran (1976) showed that P deficiency led to an increase in root length of apple trees. These results essentially contrast with the findings of our study in which under supposedly Fe sufficient soil conditions number of roots, root area, and root length were greater than under Fe deficient soil conditions.

Reduced root development in -Fe soil type could further be explained by the lack of active Fe element in the plant (Brown and Jones, 1975). The need for Fe for oxidative phosphorylation, electron transport and nitrogen fixation was reported by Bates (1982) and Kannan (1983). They provided evidence that under Fe deficiency conditions plant growth is affected and root growth is reduced due to the requirement of Fe in plants for these metabolic processes.

Morris et al. (1990) observed that Fe deficiency reduced rooting volume in soybean. This concurs with the findings in this study as the soil volume explored by the grain sorghum and sudangrass roots in -Fe soils was smaller than that explored by +Fe soils. Essentially this also shows that extent of mineral nutrient, water and other soil resources absorption region in the soil is reduced under - Fe conditions. As Tisdale et al. (1985) reported, Fe is relatively immobile in soil and
so diffusion is the main absorptive mechanisms for this element. Deficiency symptoms are likely to occur, then, under such reduced rooting volume as was noticed in -Fe soil types in this study.

Above Ground Yield, Chlorophyll content, and Nutrient Concentration

The total dry matter yield was significantly and consistently greater in grain sorghum and sudangrass which were grown in +Fe soil types than those which were grown in -Fe soil types in 1990 (Table XII). The yields were at least 50% greater in +Fe than in -Fe soil types. Although no direct correlation could be made between these results and those found for the root parameters it can be seen that both the root and shoot systems were similarly affected by the Fe deficiency in these soils. In other words root and shoot development are intimately associated such that if an abnormality occurs in one part the other is likewise affected. This relationship could possibly explain the similar effects on the yield and the three root parameters.

Significantly higher $\mathrm{chl}_{\mathrm{T}}$, a weighted mean of chl a and b , were observed in the third top young leaves of the grain sorghum and sudangrass which were sampled from the +Fe soils than from the -Fe soils (Tables XIII and XIV). Although chlorosis scores, leaf areas, and plant heights are not reported in this study, these growth traits were noticed to be reduced in those plants which were grown in the -Fe soils than those plants which were grown in the +Fe soils. Furthermore, in site 1 , 1989, while the grain sorghum plants in the non-chlorotic plots were in their late bloom to soft dough stages of development those plants in the chlorotic plots were in the vegetative stage (personal observation).

TABLE XII
MEAN ABOVEGROUND DRY MATTER YIELD FOR THE 1990 FE DEFICIENCY STUDY.

Soil type	Sudangrass	Sudangrass	Grain sorghum	Grain sorghum
			$\mathrm{kg} \mathrm{ha}^{-1}$	
Fe Sufficient (+Fe)	$550 \mathrm{a}^{*}$	980 a	4605 a	2780a
Fe deficient (-Fe)	280 b	355 b	590 b	465b

*Values followed by the same letter are not significantly different at $\mathrm{P}<0.05$.

AMOUNT OF TOTAL CHLOROPHYLL (CHL ${ }_{\mathrm{T}}$) IN mg cm ${ }^{-2}$ IN LEAVES OF GRAIN SORGHUM AND SUDANGRASS STUDIED IN 1989.

Soil type	Grain sorghum	Sudangrass
Fe Sufficient (+Fe)	$20.46 \mathrm{a}^{*}$	$\mu \mathrm{~g} \mathrm{~cm}^{-2}$
Fe deficient (-Fe)	5.37 b	14.17 a

*Values followed by the same letters are not significantly different at the $P<0.05$.

TABLE XIV

AMOUNT OF TOTAL CHLOROPHYLL ($\mathrm{chl}_{\mathrm{T}}$) IN $\mu \mathrm{g} \mathrm{cm}^{-2}$ IN LEAVES OF GRAIN SORGHUM AND SUDANGRASS STUDIED IN 1990.

Soil type	Sudangrass	Sudangrass	Grain sorghum	Grain sorghum
	$\mu \mathrm{g} \cdot \mathrm{cm}^{-2}$			
Fe-sufficient (+Fe)	$5.62 \mathrm{a}^{*}$	19.25a	12.94a	18.09a
Fe-deficient (-Fe)	0.39b	4.27b	1.96 b	2.52b

These anomalies together with reduced ch_{T} could possibly explain the above ground dry matter yield reductions observed in this study. Generally there were significantly higher concentrations ($\mathbf{m g} \mathrm{kg}^{-1}$) of plant tissue $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu grown in -Fe soils than in + Fe soils (Tables XV and XVI). Plant nutrient uptake (mg kg ${ }^{-1}$), a function of yield and nutrient concentration, for the same six elements are shown in Table XVII. The results here show the reverse of those found in Tables XV and XVI, that is, plants grown in the +Fe soils had significantly more nutrient uptake than the ones grown in the -Fe soils. There are several possible reasons for such ion concentrations in the chlorotic plant tissue. First, chlorotic plants were generally stunted and much smaller than their healthy counterparts. This could result in a concentration effect where similar amounts of plant uptake result in greater tissue concentrations when determined on a dry-weight basis. Secondly, while there is no conclusive evidence of Fe stressed grain sorghum, sudangrass and other graminaceous plants response by deprotonation, there is a possibility this could occur in some situations. If the roots of these crops release H^{+}as an Fe stress response to lower the rhizosphere pH , the same plants will require to maintain the cytoplasmic and tonoplastic cation-anion balance. The increased absorption of more cations such as $\mathrm{K}^{+}, \mathrm{Ca}^{2+}$, or Mg^{2+} would thus occur. These results corroborate those reported by Inskeep and Bloom (1987). They found that high levels of Mn, Zn , and Cu were associated with Fe chlorosis. Burau (1963) also noticed that it was not the total concentration of Fe and other micronutrients that was important but rather the amount of active proportions. He further found

TABLE XV

ABOVE GROUND PLANT NUTRIENT CONCENTRATIONS FOR THE 1989 FE DEFICIENCY STUDY.

| Crop
 type | Ca | Mg | Fe | Cu | Mn | Zn |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*Values followed by the same letter are not significantly different at $P<0.05$.

TABLE XVI
ABOVE GROUND PLANT NUTRIENT CONCENTRATIONS FOR THE 1990 FE DEFICIENCY STUDY.

Crop	Soil type	Ca	Mg	Fe	Cu	Mn	Zn
		$\mathrm{mg} \mathrm{kg}{ }^{-1}$					
Sudangrass	Richfield (+Fe)	1380.8a*	3167.9b	184.1a	42.5a	75.8a	17.6a
	Ulysses (-Fe)	753.0 b	5547.9a	240.4a	26.2b	61.4b	10.5 b
Sudangrass	Potter (+Fe) Mansker (-Fe)	$\begin{aligned} & 1107.2 b \\ & 1706.7 a \end{aligned}$	$\begin{aligned} & 3670.7 a \\ & 3141.5 b \end{aligned}$	$\begin{aligned} & 114.5 \mathrm{~b} \\ & 230.5 \mathrm{a} \end{aligned}$	$\begin{aligned} & 26.1 b \\ & 34.7 a \end{aligned}$	$\begin{array}{r} 61.1 b \\ 102.4 a \end{array}$	$\begin{aligned} & 22.3 \mathrm{~b} \\ & 27.9 \mathrm{a} \end{aligned}$
Grain sorghum	Carey (+Fe) Woodward (-Fe)	$\begin{aligned} & 1166.1 b \\ & 1571.1 \mathrm{a} \end{aligned}$	$\begin{aligned} & 6555.8 a \\ & 4570.6 b \end{aligned}$	$\begin{aligned} & 439.3 a \\ & 218.8 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 29.2 a \\ & 16.7 b \end{aligned}$	$\begin{aligned} & 115.4 a \\ & 127.2 a \end{aligned}$	$\begin{aligned} & 27.3 b \\ & 37.3 a \end{aligned}$
Grain sorghum	$\begin{aligned} & \text { Potter }(+\mathrm{Fe}) \\ & \text { Mansker }(-\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & 1598.1 \mathrm{~b} \\ & 2034.8 \mathrm{a} \end{aligned}$	$\begin{aligned} & 6033.6 a \\ & 6397.1 a \end{aligned}$	$\begin{aligned} & 305.7 \mathrm{~b} \\ & 508.3 \mathrm{a} \end{aligned}$	$\begin{aligned} & 23.1 a \\ & 24.4 a \end{aligned}$	$\begin{aligned} & 108.5 b \\ & 137.4 a \end{aligned}$	$\begin{aligned} & 22.4 b \\ & 42.9 a \end{aligned}$

[^1]
TABLE XVII

ABOVE GROUND PLANT NUTRIENT UPTAKE* FOR THE 1990 FE DEFICIENCY STUDY.

Crop	Soil type	Ca	Mg	Fe	Cu	Mn	Zn
		$\mathrm{mg} \mathrm{kg}{ }^{-1}$					
Sudangrass	Richfield	$0.76 \mathrm{a}^{+}$	1.74a	0.10a	0.02a	0.04a	0.01a
	Ulysses	0.21 b	1.55b	0.07b	0.01 b	0.02b	0.03b
Sudangrass	Potter Mansker	$\begin{aligned} & 1.08 \mathrm{a} \\ & 0.60 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 3.60 \mathrm{a} \\ & 1.11 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 0.11 a \\ & 0.08 b \end{aligned}$	$\begin{aligned} & 0.02 a \\ & 0.01 b \end{aligned}$	$\begin{aligned} & \text { 0.06a } \\ & 0.04 b \end{aligned}$	$\begin{aligned} & 0.02 \mathrm{a} \\ & 0.01 \mathrm{~b} \end{aligned}$
Grain sorghum	Carey Woodward	$\begin{aligned} & 5.37 a \\ & 0.93 b \end{aligned}$	$\begin{array}{r} 30.19 a \\ 2.70 \mathrm{~b} \end{array}$	$\begin{aligned} & 2.02 \mathrm{a} \\ & 0.13 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 0.13 a \\ & 0.01 b \end{aligned}$	$\begin{aligned} & 0.53 a \\ & 0.07 b \end{aligned}$	$\begin{aligned} & 0.12 a \mathrm{a} \\ & 0.02 b \end{aligned}$
Grain sorghum	Potter Mansker	$\begin{aligned} & 4.44 a \\ & 0.94 b \end{aligned}$	$\begin{array}{r} 16.77 a \\ 2.97 b \end{array}$	$\begin{aligned} & 0.85 a \\ & 0.24 b \end{aligned}$	$\begin{aligned} & 0.06 \mathrm{a} \\ & 0.01 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 0.30 a \\ & 0.06 b \end{aligned}$	$\begin{aligned} & 0.08 \mathrm{a} \\ & 0.02 \mathrm{~b} \end{aligned}$

*Yield * concentration = nutrient uptake
${ }^{+}$Values followed by the same letter are not significantly different at $\mathbf{P}<0.05$
that Fe chlorotic plants accumulated high levels of Fe in inactive Ferretin forms while the non-chlorotic plants had free active Fe^{2+} in the plant tissue. There was also possible plant tissue contamination with soil aluminosilicates as the test was done on total above ground tissue and not top fully developed leaves as has been suggested by Martens and Lindsay (1990).

Reduced $\mathrm{chl}_{\mathrm{T}}$ and yields due to Fe deficiency have been reported in grain sorghum and soybean in greenhouses, growth chambers, and field situations. Fehr (1983) observed that yields of soybean were reduced by 20% for each degree of chlorosis rating; while recently a decrease of $750-950 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ yield for each degree of chlorosis score was noticed in commercial soybean (Kinkaid, 1986). Both researchers reported that these decreases occurred consistently over several sites and several years. Inskeep and Bloom (1987) in another study noticed low $\mathrm{chl}_{\mathrm{T}}$ and 35 to 40% yield reductions in soybean grown in Fe deficient soils. Meanwhile, Clark et al. (1988) made the observations that grain yield h^{-1} of sorghum decreased by 32% per unit increase of chlorosis rating and that these were a manifestation of reduced plant height, leaf area and number, and delay in flowering. In yet another study to screen clover (Trifolium spp. L.) cultivars for Fe chlorosis tolerance, Gildersleeve and Ocumpaugh (1989) reported that chlorosis scores and leaf chlorophyll contents were inversely related $\left(r^{2}=0.69\right)$. Yen et al. (1988) provided evidence that an addition of $11.2 \mathrm{~kg} \mathrm{Fe} \mathrm{ha}^{-1}$ as $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ with different P sources increased $\mathrm{ch} \mathrm{l}_{\mathrm{T}}$, dry matter and Fe tissue concentration and Fe uptake with a decrease in tissue P concentration and chlorosis scores. These results amplified the
findings by Datin and Westerman (1982) and Mortvedt (1982) that an application of Fe with a P source to calcareous soils reduced Fe chlorosis, and improved growth and dry matter production of sorghum. Meppe (1988) noticed that while vegetative growth of 10 cultivars of grain sorghum were not appreciably affected by Fe deficiency, a 50\% reduction in grain yield ha ${ }^{-1}$ occurred in all the 10 Fe-deficient genotypes screened for Fe chlorosis resistance. He further elucidated that there occurred a significant negative correlation between yield and chlorosis ratings and $\mathrm{chl}_{\mathrm{T}}$.

CHAPTER V

CONCLUSION

Grain sorghum and sudangrass species which were grown in -Fe soil types had fewer number of roots and less developed root length and area than in the +Fe soils types. The same crops also had significantly lower total above ground dry matter yield, chlorophyll content and tissue $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu uptake in the -Fe soil types than in the +Fe soil types. However, $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu concentrations in the whole above ground tissue was higher in the Fe deficient than in the Fe sufficient soil types in this study. This latter oddity was probably due to either ion balance, dilution effect or plant tissue contamination by the soil aluminosilicates. The contamination was possible because the plant tissue which was tested for the nutrient content was not washed as has been suggested by Martens and Lindsay (1990).

There were consistently higher soil pH level and $\mathrm{NO}_{3}-\mathrm{N}, \mathrm{P}, \mathrm{Ca}, \mathrm{Mg}$, and CaCO_{3} equivalent contents in the -Fe soil types than in the +Fe soil types. Soil HCO_{3}, DTPA-extractable $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$, and Cu as well as 0 M were, however, consistently higher in the +Fe soil types than in the -Fe soil types. These observed chemical soil properties incidentally are consistent with the effects observed in the root and shoot growth parameters between the -Fe and +Fe soil types. In other words those
factors that reduce root number, length, and area of grain sorghum andsudangrass, in this study, also reduced total above ground dry matter yield, chlorophyll content, and nutrient uptake. These two plant system developments were similarly influenced by -Fe and +Fe soil types.

Future research needs to be conducted to confirm some of the observations made in this study. In particular more extensive research should be conducted to determine more directly the relationship between effects of Fe deficiency on the root number, area, and length and leaf chlorophyll contents and both forage and grain yield of grain sorghum and sudangrass. There is also a need to reevaluate the critical DTPAextractable Fe level in the soil and associate this information with specific field or more controlled greenhouse study, and different sorghum species or varieties.

For further root ecological studies as influenced by Fe deficiency, soil depth profile of 60 cm suffices, as hardly any root growth was found below this depth under the Fe deficient soil conditions in this study.

REFERENCES

Bates, G. W. 1982. Parallels in plant and human nutrition. J. Plant Nutr. 5:269-276.

Bohn, W. 1979. Methods of studying root systems. Springer-Verlag Berlin Heidelberg New York.

Brown, J. C., and W. E. Jones. 1975. Phosphorus efficiency as related to iron inefficiency in sorghum. Agron. J. 67:468-472.

Burau, R. G. 1963. An investigation of soil factors in iron deficiency chlorosis of soybean. Ph. D. diss. University of Minnesota, St Paul (Diss. Abstr. 65-07833).

Chaney, R. L. 1984. Diagnostic practices to identify iron deficiency in higher plants. J. Plant Nutr. 7:47-67.

Chen, Y., and P. Barak. 1982. Iron nutrition in calcareous soils. Adv. Agron. 35:217-240.

Cihacek, L. J. 1988. DTPA-extractable iron soil test correlation with hybrid sorghum production on gypsum affected soils. J. Plant Nutr. 11:1533-1544.

Clark, R. B. 1982. Iron deficiency in plants grown in the Great Plains of the U.S. J Plant Nutr. 5:251-268.

Clark, R. B., E. P. Williams, W. M. Ross, G. M. Herron, and M.D. Witt. 1988. Effects of iron deficiency chlorosis on growth and yield components traits of sorghum. J. Plant Nutr. 11:747-754.

Cole, E.H.L., A. J. Conradi, and C. E. Rhoads. 1961. USDA-SCS, Soil survey investigation. Rep. No. 6, U.S. Gov. Print. Office, Washington, DC.

Datin, C. L., and R. L. Westerman. 1982. Effects of Phosphorous and iron on grain sorghum. J. Plant Nutr. 5:703-714

Dudal, R. 1977. Inventory of the major soils of the world with special reference to mineral hazards. p 3-13. In: M. J. Wright (Ed). Plant adaptation to mineral stress in problem soils. Proc. workshop, Beltsville, MD. 1976. Cornell University, Ithaca, NY.

Fehr, W.R. 1983. Modification of mineral nutrition in soybeans by plant breeding. J. Res. 57:393-407.

Fleming, A. L., R. L. Chaney, and B. A. Coulombe. 1984. Bicarbonate inhibits Fe-stress response and Fe uptake-translocation of chlorosis-susceptible soybean cultivars. J. Plant Nutr. 7:699-714.

Gildersleeve, R. R., and W. R. Ocumpaugh. 1989. Greenhouse evaluation of subterranean clover species for susceptibility to iron-deficiency chlorosis. Crop Sci. 29:949-951.

Hach Company. 1987. Feed and forage analysis manual. Literature code \# 3116. Ames, IA.

Hallmark, W. B., and S. A. Barber. 1984. Root growth and morphology, nutrient uptake, and nutrient status of soybeans as affected by soil K and bulk Density. Agron. J. 73:779-782.

Harris, E. A., and G. S. Campbell. 1989. Automated quantification of roots using a simple image analyzer. Agron. J. 81:935-938.

Inskeep, W. P., and P. R. Bloom. 1984. A comparative study of soil solution chemistry associated with chlorotic and non chlorotic soybean in Western Minnesota. J. Plant Nutr. 7:513-531.

Inskeep, W. P., and P. R. Bloom. 1985. Extinction coefficients of chlorophy11 a and b in N, N-Dimethylformamide and 80\% acetone. Plant Physiol. 77:483-485.

Inskeep, W. P., and P. R. Bloom. 1986. Effects of soil moisture on soil pCO_{2}, soil solution bicarbonate, and iron chlorosis in soybeans. Soil Sci. Soc. Amer. J. 50:946-952.

Inskeep, W. P., and P. R. Bloom. 1987. Soil Chemical factors associated with soybean chlorosis in Calciaquolls of Western Minnesota. Agron. J. 79:779-786.

Kannan, S. 1983. Cultivar differences for tolerance to Fe and Zn deficiency: A comparison of two hybrids and their parents. J. Plant Nutr. 6:333-337.

Kinkaid, B. D. 1986. Varietal and soil effects on lime-induced chlorosis of soybeans [Glycine max (L.) Merr.]. Master Thesis, University of Nebraska, Lincoln.

Lindsay, W. L. 1979. Chemical equilibria in soils. Wiley-Inter Science, New York.

Lindsay, W. L., and A. P. Schwab. 1982. The Chemistry of iron in Soil and its availability to plants. J. Plant Nutr. 5:821-840.

Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Amer. J. 42:421-428.

Loeppert, R. H. 1986. Reaction of Fe and carbonates in calcareous soils. J. Plant Nutr. 9:195-214.

Loeppert, R. H., S. C. Geiger, R. C. Hartwig, and D. E. Morris. 1988. A comparison of indigenous of soil factors influencing the Fe deficiency chlorosis of sorghum and soybean in the calcareous soils. J. Plant Nutr. 11:1481-1492.

Loeppert, R. H., and C. T. Hallmark. 1985. Indigenous soil properties influencing the availability of iron in calcareous soils. Soil Sci. Soc. Amer. J. 49:597-603.

Loeppert, R. H., L. R. Hossner, and M. A. Chmielowski. 1984. Indigenous soil properties influencing the availability of Fe in calcareous hot spots. J. Plant Nutr. 7:135-149.

Marschner, H., V. Romheld, and M. Kissel. 1986. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9: 695-713.

Martens, D.C., and W. L. Lindsay. 1990. Testing soils for copper, iron, manganese, and zinc. In R. L. Westerman: Soil Testing and Plant Analysis. Third Edition. SSSA Book Series. No. 3., Madison, WI.

McCaslin, B. D., J. G. Davis, L. Cihecek, and L. A. Schluter. 1987. Sorghum yield and soil analysis from sludge amended calcareous iron-deficient soil. Agron. J. 79:204-209.

McElreath, D. L., and G. V. Johnson. 1990. Oklahoma State University Soil, Water, and Forage Analytical Laboratory. Laboratory Procedures Manuals. AGRON 90-1

Menders, H. C., M. Mitchell, E. S. Grover, and J. W. Frie. 1961. USDA-SCS, Soil survey investigation. Rep. No. 38, U.S. Gov. Print. Office, Washington, DC.

Meppe, F. 1988. Response of sorghum genotypes to iron deficiency in calcareous soil and nutrient solution. Master Thesis. Agronomy Dept. Oklahoma State Univ., Stillwater.

Morris, D. R., R. H. Loeppert, and T. J. Moore. 1990. Indigenous soil factors influencing iron chlorosis of soybean in calcareous soils. Soil Sci. Soc. Amer. J. 54:1329-1336.

Mortvedt, J. J. 1986. Iron sources and management practices for correcting iron chlorosis problems. J. Plant Nutr. 9:961-974.

Mortvedt, J. J., and J. J. Kelsoe. 1988. Grain sorghum response to banded acid type fertilizers in iron deficient soil. J. Plant Nutr. 6:1297-1310.

Nance, E. C., J. D. Nichols, H. L. Kollmorgen, R. E. Daniell, H. L. Costilow, and T. Lofton. 1960. USDA-SCS, Soil survey investigation. Rep. no. 8, U.S. Gov. Print. Office, Washington, DC.

Roder, W., S. C. Mason, M.D. Clegg, and K. R. Kniepp. 1989. Crop root distribution as influenced by grain sorghum-soybean rotation and fertilization. Soil Sci. Soc. Amer. J. 53:1464-1470.

SAS Institute. 1979. SAS User's Guide 1979 Edition. SAS Institute, Inc. P. O. Box 10066, Raleigh, N. C. 27605.

Schenk, M.K., and S.A. Barber. 1979. Root characteristics of cron genotypes as related to phosphorus uptake. Agron. J. 71:921-924.

Smucker, A. J. M., S. L. McBurney, and A. K. Srivastava. 1982. Quantitative separation of roots from compacted soil profiles by hydropneumatic elutrition system. Agron. J. 74:500-503.

Steel, R. G. D., and J. H. Torrie, 1980. Principles and procedures of statistics- a biometrical approach. 2nd ed. McGraw. Hill Book Company, Inc., New York.

Taylor, B. K., and F. H. Goubran. 1976. effects of phosphates and pH stress on the growth and fuction of apple roots. Plant Soil. 44:149-162.

Tisdale, S. L., W. L. Nelson, and J. D. Beaton, 1985. Micronutrient and other beneficial elements in soils and fertilizers. Soil Fertility and Fertilizers. Fourth ed. MacMillan Publishing Co., Inc., New York

Vepraskas, M. J., and G. D. Hoyt. 1988. Comparison of the trenchprofile and core methods for evaluating root distributions in tillage studies. Agron. J. 80:161-172.

Westfall, D. G., and R. L. Hanson. 1985. Phosphorus, iron, and zinc availability in dual N and P and acid-based fertilizer injection zones. J. Fert. Issues. 2:42-26.

Williams, E. P., W. M. Ross, R. B. Clerk, G. M. Herron, and M.D. Witt. 1986. Iron deficiency chlorosis: Its heritability and effects on agronomic traits in a sorghum population. J. Plant Nutr. 9:423-433.

Yen, P. Y. 1987. Effects of soil moisture, phosphorus, and iron fertilization on iron chlorosis of sorghum. Master Thesis in Agronomy. Oklahoma State Univ., Stillwater.

Yen, P. Y., W. P. Inskeep, and R. L. Westerman. 1988. Effects of soil moisture and phosphorus fertilization on iron chlorosis of sorghum. J. Plant Nutr. 11:1517-1531.

APPENDICES

GRAIN SORGHUM AND SUDANGRASS ROOT DATA COLLECTED IN 1989.

Site*	Soil types ${ }^{+}$	Replications	Distances	Depth	No. of roots	Lgth. of roots	Area roots
			- cm	- cm -		- Cm	$-\mathrm{cm}^{2}-$
1	1	1	1	1	135	3187.394	217.923
1	1	1	1	2	69	1330.690	86.716
1	1	1	1	3	40	1436.574	84.456
1	1	1	1	4	13	1032.023	71.830
1	1	1	1	5	13	1190.020	75.131
1	1	1	2	1	134	5314.912	335.232
1	1	1	2	2	55	2344.575	127.231
1	1	1	2	3	41	543.666	68.570
1	1	1	2	4	15	254.551	37.695
1	1	1	2	5	4	286.422	20.131
1	1	1	3	1	167	3240.681	178.730
1	1	1	3	2	53	1685.488	147.897
1	1	1	3	3	28	776.712	71.475
1	1	1	3	4	13	385.221	53.794
1	1	1	3	5	8	294.528	15.070
1	1	1	4	1	147	4087.464	223.056
1	1	1	4	2	67	1977.096	103.607
1	1	1	4	3	59	750.125	51.423
1	1	1	4	4	21	701.727	43.034
1	1	1	4	5	9	303.257	19.882
1	1	1	5	1	171	2669.312	175.267
1	1	1	5	2	50	1552.797	96.707
1	1	1	5	3	42	766.769	46.703
1	1	1	5	4	29	325.745	28.928
1	1	1	5	5	12	162.112	10.596
1	1	2	1	1	153	4089.169	265.154
1	1	2	1	2	48	2888.081	113.176
1	1	2	1	3	47	640.917	41.757
1	1	2	1	4	21	277.186	23.000
1	1	2	1	5	12	237.264	14.264
1	1	2	2	1	117	4550.432	278.176
1	1	2	2	2	34	2069.311	107.189
1	1	2	2	3	43	801.229	41.844
1	1	2	2	4	18	585.724	35.331
1	1	2	2	5	6	446.887	26.843
1	1	2	3	1	111	2918.108	180.834
1	1	2	3	2	34	2034.358	148.718
1	1	2	3	3	26	1229.087	74.680
1	1	2	3	4	21	508.066	28.460
1	1	2	3	5	12	635.014	37.063

134	2533.021	194.621
46	1486.779	81.025
27	1070.975	80.086
15	578.672	40.404
1	649.690	44.013
135	2043.497	187.412
59	1579.711	94.990
32	1274.176	56.802
10	728.383	29.000
10	226.978	15.247
135	3114.972	174.706
66	1275.480	77.314
46	1016.772	63.256
34	524.040	34.987
16	443.029	28.556
154	3999.456	238.416
76	1501.739	90.566
48	1151.090	72.271
41	507.815	31.079
28	157.714	10.102
160	4630.366	251.207
78	1006.000	115.079
58	993.697	56.578
30	541.604	37.159
22	225.659	14.104
162	2009.850	181.619
74	1182.817	82.127
53	730.644	46.748
24	607.168	38.099
11	665.275	41.948
188	2510.306	182.213
83	1511.387	116.020
47	911.748	66.673
44	979.468	71.676
17	758.633	62.711
148	4065.696	248.888
69	1814.125	108.963
64	582.455	63.301
41	488.409	27.845
24	472.201	29.133
109	4791.008	304.000
53	1077.433	141.447
76	796.989	50.665
41	1257.225	75.515
22	1339.303	80.666
117	4015.245	198.641
96	1764.611	89.429
80	1726.775	89.453
44	1059.865	62.793
25	672.735	40.130
125	4307.616	271.104
107	1425.456	124.087
61	734.724	51.840
32	1219.112	70.990

17
124
98
71
41
22
97
49
15
1
1
77
26
19
2
1
78
38
20
5
1
100
55
11
2
2
85
45
6
783.311
2813.392
1203.063
1186.451
781.870
757.167
51.463
188.106
73.939
77.563
48.432
47.328
124.300
57.484
11.151
1.063
0.791
231.334
124.344
12.450
4.291
4.401
1764.025
121.299
721.111
290.458
90.498
31.666
3249.728
959.937
317.594
69.652
13.529
3.163
1.415
203.536
59.879
19.792
26.345
1.470
21.312
1914.937
1269.611
331.052
137.932
81.095
21.414
22.238 3.171
6.713
2154.251
127.382
1194.501
77.444
19.276
66.402
4.428
19.107
1.039
25.104
65.248
41.795
12.135
3.301
17.111
117.111
74.451
39.153
1.364
1.212
76.144
64.523
14.232
3.207
3.207
2.344
103.504 93.573
26.793

NNてい

66.746	3.819
109.627	5.997
1374.577	121.237
1706.007	103.452
808.659	48.763
138.755	7.654
18.840	1.196
1338.336	122.111
929.991	58.259
207.947	11.577
40.499	2.385
24.340	1.247
1324.268	122.700
864.357	48.167
131.673	7.788
36.253	2.040
12.148	1.150
905.530	91.035
255.341	41.046
169.553	9.994
59.277	3.495
27.827	1.543
1101.648	88.318
584.776	38.279
908.326	23.552
326.435	19.399
207.025	12.446
1983.991	157.861
1036.296	82.884
268.570	17.121
75.987	4.732
97.832	5.997
3130.224	276.496
2032.511	137.330
759.681	59.396
432.366	25.847
80.126	4.906
2202.328	103.820
1221.179	34.284
694.339	36.073
78.457	4.393
27.245	1.567
3647.936	246.368
1177.887	76.392
1819.736	53.713
84.891	6.129
79.528	5.717
1979.682	126.195
1568.413	79.025
562.012	34.956
161.164	9.777
68.680	5.072
790.189	36.288
213.861	27.257

~~N~N 2

3	56
4	28
5	15
1	196
2	110
3	38
4	20
5	23
1	166
2	125
3	45
4	17
5	20
1	178
2	121
3	56
4	9
5	13
1	215
2	114
3	67
4	26
5	16
1	95
2	114
3	85
4	28
5	8
1	117
2	86
3	49
4	15
5	8
1	104
2	71
3	22
4	9
5	3
1	106
2	68
3	13
4	7
5	9
1	108
2	79
3	26
4	35
5	2
1	113
2	120
3	35
4	11
5	2
1	105

125.781	9.741
87.089	1.319
20.141	1.217
661.470	50.095
236.128	34.103
69.446	23.271
30.090	1.959
15.115	0.111
874.530	85.164
354.245	41.609
220.500	13.306
126.459	6.964
20.711	1.127
772.991	71.516
273.793	56.397
141.296	57.466
55.323	39.768
6.131	3.314
832.485	52.914
597.941	40.918
718.073	51.344
109.191	10.532
8.870	0.567
692.271	42.904
631.502	36.664
270.307	16.228
174.564	3.717
58.986	3.055
830.269	68.566
637.533	35.026
329.438	15.946
136.390	7.324
4.779	0.216
732.562	39.038
510.020	24.571
187.775	8.792
170.913	7.691
77.740	4.423
628.019	57.106
450.221	33.696
346.836	24.823
199.332	15.030
33.854	2.303
920.145	59.887
556.626	33.229
232.011	13.700
80.727	4.820
11.289	0.014
454.338	26.843
329.247	18.884
136.218	8.731
46.503	2.820
8.080	0.413
422.889	28.204

147
56
4
4
89
156
56
1
6
159
126
59
11
5
145
142
50
23
27
108
65
15
12
14
114
56
25
19
15
116
63
341.420
327.335
123.794
33.854
707.788
680.381
799.301
286.757
151.277
20.753
19.609
8.367
1.691
38.744
32.298
38.452
13.202
6.975
49.820
22.876
18.249
1.728
2.579
1020.857
70.608
24.984
20.572
6.154
307.085
6.154
1.008
107.047
41.670
21.509
9.639
15.118
79.057
55.409
42.566
47.967
38.222
44.547
18.731
27.433
27.860
18.408
60.789
47.917
47.917
36.199
14.728
4.483
84.710
29.616
55.714
28.195
28.195
18.678
6.109
6.120
7.073
0.878
0.612
18.711
2.254
4.937
1.918
1.918
1.415

101
34
32
2
1
128
43
25
8
1
107
20
26
1
1
86
16
47
7
1
78
33
33
1
1
74
36
48
10
4

1754.541	23.004
901.070	8.264
281.693	12.342
24.083	1.557
78.048	3.950
1123.709	12.925
858.557	13.918
866.906	2.804
613.353	0.392
50.389	0.002
271.577	17.065
14.881	0.866
29.662	1.685
2.806	0.179
0.791	0.006
586.832	32.106
568.603	30.878
684.797	39.180
175.457	12.674
19.586	1.452
486.853	38.482
62.393	33.073
49.917	10.317
36.109	3.321
35.455	2.435
754.775	35.285
387.029	18.695
432.606	21.548
131.167	0.113
19.649	0.805
522.255	43.543
364.177	24.248
259.691	18.212
25.814	4.343
10.331	1.212
1354.719	83.298
380.392	24.112
476.266	29.793
10.673	0.629
10.029	0.518
566.475	28.800
183.501	10.503
317.631	20.935
12.153	11.378
4.976	4.116
586.997	53.964
322.236	19.296
308.358	19.877
242.397	15.906
421.989	1.375
670.334	31.462
157.700	8.408
419.714	21.395
49.181	3.167

2				5	23	21.137	1.571
2	2	3	3	1	61	579.548	32.219
2	2	3	4	2	31	179.865	8.991
2	2	3	4	3	38	316.762	17.907
2	2	3	4	4	12	44.638	1.675
2	2	3	4	5	2	47.702	2.001
2	2	3	5	1	44	772.303	45.075
2	2	3	5	2	36	168.032	11.683
2	2	3	5	3	25	412.144	25.469
2	2	3	5	4	11	12.119	0.374
2	2	3	5	5	1	11.903	0.807
2	2	3	1	1	28	494.516	28.770
2	2	3	1	2	26	281.220	17.101
2	2	3	1	3	12	201.108	15.274
2	2	3	1	4	1	1.798	0.930
2	2	3	1	5	1	557.389	0.367
2	2	4	2	1	45	524.397	50.626
2	2	4	2	2	36	421.989	32.135
2	2	4	2	3	13	18.517	30.263
2	2	4	2	4	5	6.000	1.200
2	2	4	2	5	3	771.000	0.918
2	2	4	3	1	27	361.258	47.293
2	2	4	3	2	8	415.310	22.850
2	2	4	3	3	6	250.303	13.300
2	2	4	3	4	1	31.467	5.421
2	2	4	3	5	1	4.887	2.000
2	2	4	4	1	30	577.726	36.336
2	2	4	4	2	21	175.525	10.261
2	2	4	4	3	9	150.020	10.314
2	2	4	4	4	2	30.141	1.623
2	2	4	4	5	4	3.179	1.114
2	2	4	5	1	28	577.726	36.336
2	2	4	5	2	22	175.525	10.261
2	2	4	5	3	33	150.020	10.314
2	2	4	5	4	5	30.141	1.623
2	2	4	5	5	3	3.179	1.114

$* 1=$ Texas, $2=$ Harper
$+1=+\mathrm{FE}, 2=-\mathrm{FE}$

Depth $\quad 1=0-20 \mathrm{~cm}$
$2=20-40 \mathrm{~cm}$
$3=40-60 \mathrm{~cm}$
$4=60-80 \mathrm{~cm}$
$5=80-100 \mathrm{~cm}$

APPENDIX B

GRAIN SORGHUM AND SUDANGRASS ROOT DATA COLLECTED IN 1990.
A) ROOT AREA AND LENGTH FOR SITE 1.

Soil* types	Replications	Distance	Depth	Area of roots	Length of roots
		- cm -	- cm -	- cm^{2} -	- cm -
1	1	1	1	88.957	1223.916
1	1	1	2	57.803	815.137
1	1	1	3	21.933	311.895
1	1	1	4	33.087	478.553
1	1	1	5	16.244	244.013
1	1	1	6	10.920	109.795
1	1	1	7	10.156	30.139
1	1	1	8	0.981	8.377
1	1	1	9	0.339	6.415
1	1	1	10	0.114	3.111
1	1	2	1	49.712	759.824
1	1	2	2	24.798	411.094
1	1	2	3	19.010	320.202
1	1	2	4	13.639	237.768
1	1	2	5	8.222	142.489
1	1	2	6	2.002	34.604
1	1	2	7	0.894	15.371
1	1	2	8	0.513	9.354
1	1	2	9	0.031	1.057
1	1	2	10	0.002	0.987
1	1	3	1	55.365	784.402
1	1	3	2	22.215	390.682
1	1	3	3	20.655	298.107
1	1	3	4	20.142	295.559
1	1	3	5	21.864	320.164
1	1	3	6	9.590	131.282
1	1	3	7	1.373	22.725
1	1	3	8	0.681	12.545
1	1	3	9	0.161	3.131
1	1	3	10	0.003	0.993
1	1	4	1	66.418	954.882
1	1	4	2	51.091	734.525
1	1	4	3	14.910	338.549
1	1	4	4	12.905	218.153
1	1	4	5	8.049	137.516
1	1	4	6	9.170	153.802
1	1	4	7	5.029	83.334
1	1	4	8	1.005	20.056
1	1	4	9	0.083	1.673

0.005	1.013
66.729	1009.794
29.099	432.825
14.399	245.965
10.613	140.835
7.456	116.382
5.118	85.503
1.863	29.166
0.902	15.659
0.416	6.775
0.101	2.116
78.993	1125.048
17.910	322.384
10.604	201.697
15.821	258.730
6.956	133.026
2.224	41.641
0.263	6.125
0.330	6.643
0.201	2.586
0.100	2.003
71.632	1040.835
61.419	851.864
24.277	371.440
34.803	466.590
16.464	245.946
4.118	66.988
0.853	16.920
0.801	14.442
0.325	6.517
0.143	3.105
43.871	677.282
26.129	300.002
18.872	268.150
23.464	317.371
5.719	75.300
0.677	10.824
0.013	1.524
0.113	1.618
0.100	1.511
0.003	0.814
93.004	1415.253
42.192	588.469
13.806	212.671
11.638	180.495
2.201	36.687
0.418	6.207
0.042	0.761
0.082	1.714
0.061	1.213
0.051	1.006
52.011	841.834
33.282	551.601
17.245	136.555

13.887	270.924
21.979	305.274
1.214	21.985
0.411	0.671
0.333	0.436
0.126	0.427
0.109	0.321
110.345	1627.478
21.346	318.569
15.953	224.843
13.796	190.116
24.286	336.126
7.536	110.172
1.849	27.096
0.523	8.211
0.352	50.32
0.105	0.331
126.365	2031.800
27.528	553.229
18.304	367.855
17.268	243.766
6.832	116.511
6.122	87.278
4.598	75.714
3.775	59.312
0.104	2.440
0.655	11.588
131.712	2160.564
31.234	422.078
14.092	216.677
13.574	191.653
14.421	207.878
19.589	274.920
12.188	189.228
10.743	166.386
2.449	37.852
1.331	11.321
122.658	1799.562
40.249	555.737
25.876	391.471
11.225	210.659
10.930	201.809
3.228	50.231
0.265	6.413
0.103	3.561
0.005	1.210
0.040	2.818
102.732	1695.246
33.572	484.605
13.860	222.696
13.341	217.750
18.820	280.750
19.478	310.763
11.774	184.726

ஈॅ○

5.544	86.347
0.477	7.554
0.231	5.213
116.184	1795.584
36.618	531.542
25.989	362.439
16.244	223.200
10.920	152.347
10.156	142.863
6.981	114.426
2.339	4.956
0.271	1.543
0.091	1.276
140.490	2232.900
44.804	840.112
31.669	577.045
15.932	284.141
15.755	253.535
21.445	315.801
8.190	125.007
3.639	26.762
0.143	1.213
0.113	0.993
166.942	2617.110
46.498	724.767
28.157	423.327
22.548	323.923
21.145	296.025
19.118	175.202
12.140	268.302
4.141	33.437
0.121	2.695
0.032	1.209
177.485	2840.644
32.844	337.530
19.744	285.654
12.334	187.084
12.132	185.293
14.094	183.415
11.502	20.311
5.138	67.006
1.409	26.247
1.278	22.531
55.598	399.338
32.779	501.745
19.285	303.867
4.907	89.542
3.564	71.532
2.759	51.376
0.954	17.985
2.084	37.899
0.884	17.930
0.439	10.135
46.675	390.775

19.762	313.670
12.496	197.264
6.702	104.995
9.767	175.022
6.386	92.748
2.514	44.156
0.487	10.600
0.307	6.262
1.083	23.122
50.082	797.583
20.748	351.060
7.304	136.389
13.019	226.449
9.057	151.493
5.208	94.102
5.778	87.297
2.463	44.412
0.956	17.932
1.258	20.061
40.997	673.347
21.609	270.520
13.217	220.064
4.458	80.450
3.889	76.515
3.358	70.503
1.387	28.355
1.093	20.691
2.473	48.312
0.550	13.492
61.975	1431.765
25.688	410.535
6.562	116.377
2.247	97.767
2.686	49.050
0.560	12.333
2.640	51.768
1.989	36.309
0.266	4.973
0.114	2.315
64.982	533.975
18.345	291.204
6.563	115.522
4.965	85.694
2.087	46.047
3.953	70.666
2.893	48.424
1.323	29.254
2.949	55.298
0.396	8.368
63.393	899.730
27.606	695.814
11.519	188.541
8.800	139.658
4.518	76.146

2.442
3.154
2.059
3.134
0.727
74.820
28.391
7.896
6.208
2.286
2.798
0.671
1.530
0.060
1.099
79.715
25.165
9.979
10.295
3.959
1.124
4.679
1.277
1.616
1.371
67.585
21.374
11.563
6.769
4.895
6.490
7.455
4.538
4.471
0.196
78.980
32.361
3.669
6.759
3.587
5.123
1.502
2.587
1.223
1.812
79.460
28.511
9.615
4.114
3.202
1.389
0.965
2.774
4.124
49.661
53.472
39.051
58.007
15.016
1112.035
404.993
116.150
97.304
33.972
46.078
12.295
28.288
1.053
16.305
1253.315
411.611
176.087
190.144 80.225 23.580
83.632
26.113
32.262
23.084
988.185
315.234
196.718
104.481
84.831
117.050
127.568
73.097
75.364
4.457
565.841
561.877
66.069
133.010
75.523
85.774
31.802 60.199 23.342 35.304
1162.870
331.674
145.956 74.018
53.658
26.066
21.758
46.284
73.646

2.292
36.936
1227.710
693.649
212.967
106.226
167.943
244.342
40.856
19.557
12.645
59.514
1233.585
350.844
306.221
234.341
68.733
78.727
31.477
61.534
41.298
20.645
637.370
433.521
230.329
124.604
228.472
104.751
67.805
12.787
12.524
724.980
231.358
66.676
34.208
16.420
6.863
19.326
23.023
7.786
12.472
430.045
343.852
71.246
109.03?
109.33
46.731
89.293
37.846
19.488
304.505
267.097
171.948

2	4	4	4	4.358	74.274
2	4	4	5	4.949	81.862
2	4	4	6	4.017	67.481
2	4	4	7	2.333	37.359
2	4	4	8	0.853	15.836
2	4	4	9	2.261	39.915
2	4	4	10	1.213	19.720

Distances 1 and 5 @ $40-50 \mathrm{~cm}$ from plant stalk
2 and 4 @ 20-30 cm from plant stalk
3 @ Adjacent to plant stalk
Depth

1	$=0-10 \mathrm{~cm}$	6	$=50-60 \mathrm{~cm}$
2	$=10-20 \mathrm{~cm}$	7	$=60-70 \mathrm{~cm}$
3	$=20-30 \mathrm{~cm}$	8	$=70-80 \mathrm{~cm}$
4	$=30-40 \mathrm{~cm}$	9	$=80-90 \mathrm{~cm}$
5	$=40-50 \mathrm{~cm}$	10	$=90-100 \mathrm{~cm}$

B) NUMBER OF ROOTS FOR SITE 1.

Repli- cations	Soil types	Distances	Depth	No. roots

$\begin{array}{r}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ \hline\end{array}$
11
5
3
1
1
4
1
1
1
1
1
1
9
13
9
2
2
5
1
1
1
1
1
1
15
15
4
4
3
2
1

NNNロ

Voை

1

${ }^{*} 1=+\mathrm{Fe}, \quad 2=-\mathrm{Fe}$

C) ROOT AREA AND LENGTH FOR SITES 2-4.

Sites*	Soil ${ }^{+}$ types	Replications	Depth	Area of roots	Lgth. of roots
			- cm -	- cm -	- cm -
2	1	1	1	189.810	2728.210
2	1	1	2	40.650	640.702
2	1	1	3	27.273	430.529
2	1	1	4	19.113	326.289
2	1	1	5	11.735	192.541
2	1	1	6	7.042	112.649
2	1	2	1	171.650	2414.955
2	1	2	2	30.272	466.652
2	1	2	3	30.481	523.886
2	1	2	4	14.252	241.107
2	1	2	5	15.199	241.683
2	1	2	6	3.614	71.908
2	2	1	1	127.830	1875.695
2	2	1	2	19.441	273.511
2	2	1	3	8.993	148.456
2	2	1	4	8.866	178.524
2	2	1	5	7.529	152.628
2	2	1	6	9.545	186.860
2	2	2	1	163.368	1474.438
2	2	2	2	34.088	440.374
2	2	2	3	29.299	446.687
2	2	2	4	18.995	331.569
2	2	2	5	18.316	280.114
2	2	2	6	8.745	165.972
3	1	1	1	71.525	1094.723
3	1	1	2	36.002	536.161
3	1	1	3	32.746	417.490
3	1	1	4	28.401	380.045
3	1	1	5	23.451	333.847
3	1	1	6	36.206	505.779
3	1	2	1	112.765	1544.380
3	1	2	2	47.453	678.564
3	1	2	3	24.272	345.299
3	1	2	4	41.395	682.300
3	1	2	5	37.211	596.252
3	1	2	6	22.032	354.491
3	2	1	1	92.320	1491.660
3	2	1	2	33.863	494.651
3	2	1	3	18.389	303.919
3	2	1	4	11.162	172.543
3	2	1	5	6.420	95.731
3	2	1	6	2.122	33.743
3	2	2	1	45.631	628.504
3	2	2	2	45.839	628.139
3	2	2	3	12.440	198.154

3	2	2	4	6.213	95.692
3	2	2	5	0.561	9.355
3	2	2	6	0.936	17.221
4	1	1	1	85.501	1110.664
4	1	1	2	46.073	687.964
4	1	1	3	36.403	722.932
4	,	1	4	8.835	111.030
4	1	1	5	11.548	37.280
4	1	1	6	3.333	11.450
4	1	2	1	84.207	1374.420
4	1	2	2	52.919	713.435
4	,	2	3	50.940	256.679
4	1	2	4	7.001	173.335
4	1	2	5	2.293	217.328
4	1	2	6	0.765	56.968
4	2	1	1	2.434	40.837
4	2	1	2	2.332	38.097
4	2	1	3	2.665	38.537
4	2	1	4	0.239	3.361
4	2	1	5	0.948	14.440
4	2	1	6	1.601	17.986
4	2	2	1	3.502	56.846
4	2	2	2	1.924	30.664
4	2	2	3	0.600	11.851
4	2	2	4	1.887	24.491
4	2	2	5	0.839	15.861
4	2	2	6	0.277	3.838
*Sites:	$2=$ Texas County 3 = Harper County 4 = Ellis County		${ }^{+}{ }_{1}=+\mathrm{Fe}$		
			$2=-\mathrm{Fe}$		

APPENDIX C

PLANT NUTRIENT CONTENTS FOR THE 1989 AND 1990 SITES.

Sites*	Soil ${ }^{+}$ types	Replications	Cu	Fe	Mn	Zn	Ca	Mg
				-	--mg	-1		
A) 1989 Sites								
		1	14.4	200.8	84.4	18.8	2052.0	1772.0
1	1	2	14.0	213.2	84.0	17.2	2576.0	2692.0
1	1	3	12.0	218.8	82.8	15.3	2376.0	2476.0
1	1	4	13.2	220.8	82.4	13.6	2080.0	2256.0
1	2	1	10.4	482.0	116.0	20.4	3584.0	3080.0
1	2	2	11.2	468.0	120.8	25.2	3988.0	2920.0
1	2	3	10.0	445.6	116.8	19.2	3735.0	3328.0
1	2	4	12.8	461.6	115.6	19.2	3456.0	3340.0
2	1	1	16.0	229.2	93.2	24.0	2060.0	3992.0
2	1	2	16.0	206.0	91.2	23.6	2020.0	3668.0
2	1	3	18.4	217.2	92.8	24.4	1876.0	2960.0
2	1	4	18.8	232.8	94.8	23.6	2076.0	2424.0
2	2	1	16.0	304.0	88.4	18.4	2748.0	5692.0
2	2	2	15.2	294.8	86.0	18.4	3000.0	4308.0
2	2	3	14.4	316.0	91.6	21.2	3241.0	4867.0
2	2	4	16.0	304.4	89.2	22.4	2652.0	4280.0

B) 1990 Sites

1	1	1	42.8	281.7	76.6	19.8	1295.2	3223.8
1	1	2	40.6	208.0	73.3	15.5	1369.3	3259.0
1	1	3	44.0	231.6	77.6	17.6	1478.0	3020.8
1	2	1	26.4	167.6	62.4	9.2	740.4	5902.4
1	2	2	24.7	191.2	57.8	12.7	780.1	5061.3
1	2	3	27.6	193.6	64.0	9.6	738.4	5680.0
2	1	1	27.6	114.4	62.0	21.6	1072.8	3763.2
2	1	2	24.9	108.7	60.5	21.7	1110.3	3650.6
2	1	3	25.9	120.3	60.9	23.5	1138.6	3598.4
2	2	1	32.8	223.2	103.6	29.2	1621.6	3100.8
2	2	2	36.5	219.8	100.0	25.4	1916.7	3152.4
2	2	3	34.7	248.6	103.6	29.1	1581.7	3171.3
3	1	1	30.5	390.9	123.0	28.2	1211.1	6271.4
3	1	2	28.3	428.7	113.5	27.9	1198.4	6605.6
3	1	3	28.9	498.4	109.6	25.7	1088.7	6790.4
3	2	1	19.2	220.0	126.4	36.0	1582.0	4584.0
3	2	2	16.1	211.8	122.8	36.2	1524.4	4713.4
3	2	3	14.7	224.7	132.3	39.8	1606.8	4414.3
4	1	1	22.5	314.1	107.2	27.3	1576.7	5776.7

4	1	2	22.5	289.9	112.4	32.1	1620.1	6208.8
4	1	3	24.4	313.2	106.0	28.8	1597.6	6115.2
4	2	1	22.4	580.4	139.2	42.8	1975.2	5929.6
4	2	2	23.2	481.5	138.6	42.5	2029.9	6686.6
4	2	3	27.7	463.1	134.5	43.3	2099.2	6575.1

INCOMPLETE ANOVA FOR FE EFFECTS ON ROOT DEVELOPMENT OF SORGHUM
A. (i) 1989, SITE 1 GROWN TO GRAIN SORGHUM.

Dependent Variable	source of Variation	DF	F-Value	$\operatorname{Pr}>\mathrm{F}^{* *}$	CV\%
Number	Treatment	1	15.50	0.0077	18.1
Length	Treatment	1	64.44	0.0002	12.4
Area	Treatment	1	89.61	0.0001	10.1

(ii) 1989, SITE 2 GROWN TO SUDANGRASS.

Dependent source of Variable Variation

DF F-Value
$\operatorname{Pr}>\mathrm{F}^{* *} \quad \mathrm{CV} \%$

Number	Treatment	1	11.64	0.0143	30.7
Length	Treatment	1	1.00	0.3566	29.5
Area	Treatment	1	6.47	0.0439	32.2

B. (i) 1990, SITE 1 GROWN TO SUDANGRASS.

Dependent source of

Variable Variation	DF	F-Value	$\operatorname{Pr}>\mathrm{F}^{* *}$	CV\%	
Number	Treatment	1	0.14	0.7151	110.3
Length	Treatment	1	7.21	0.0363	27.1
Area	Treatment	1	7.76	0.0317	26.6

(ii) 1990, SITE 2 GROWN TO SUDANGRASS

Dependent Variable	source of Variation	DF	F-Value	$\operatorname{Pr}>\mathrm{F}^{\star *}$	CV\%
Length	Treatment	1	18.19	0.0508	8.0
Area	Treatment	1	1.23	0.3823	18.8

(iii) 1990, SITE 3 GROWN TO GRAIN SORGHUM

Dependent source of Variable	Variation	DF	F-Value	$\operatorname{Pr}>\mathrm{F}^{* *}$	CV\%
Length	Treatment	1	316.54	0.0031	6.8
Area	Treatment	1	1860.68	0.0005	3.0

(iv) 1990, SITE 4 GROWN TO GRAIN SORGHUM

Dependent source of Variable	Variation	DF	F-Value	Pr $>\mathrm{F}^{* *}$	CV\%
Length	Treatment	1	2164.47	0.0005	3.9
Area	Treatment	1	3209.46	0.003	3.2

* + Fe soil types were taken as treatment 1.
** -Fe soil types were taken as treatment 2.
** Values greater than 0.0500 showed no significant differences between treatments on the number, length or area of the grain sorghum or sudangrass.

APPENDIX E

STANDARDIZATION OF THE DIGITAL IMAGE ANALYSIS (DIAS) USED TO ESTIMATE THE ROOT LENGTH AND AREA OF GRAIN SORGHUM AND SUDANGRASS.
A. ESTIMATES OF LENGTH AND AREA OF WIDE (0.24 cm) AND NARROW $(0.08 \mathrm{~cm})$ DIAMETER WIRES USING A DIAS.

Rec. \#	Replications	Size	Orientation	Lgth. of roots	Area
				- Cm -	-cm-
1	1	1	1	47.11	12.70
2	1	1	2	47.33	12.02
3	1	1	3	47.89	12.32
4	2	1	1	46.93	12.49
5	2	1	2	46.94	12.19
6	2	1	3	49.24	12.32
7	3	1	1	46.77	12.47
8	3	1	2	46.93	11.96
9	3	1	3	48.45	12.17
10	4	1	1	46.70	12.44
11	4	1	2	47.01	12.03
12	4	1	3	47.86	12.19
13	1	2	1	55.69	6.13
14	1	2	2	56.02	5.59
15	1	2	3	58.17	5.84
16	2	2	1	55.46	5.96
17	2	2	2	55.88	5.21
18	2	2	3	57.59	5.57
19	3	2	1	55.39	5.80
20	3	2	2	55.87	5.17
21	3	2	3	57.56	5.60
22	4	2	1	55.06	5.88
23	4	2	2	55.85	5.23
24	4	2	3	58.27	5.57

Field Name Field Description
Size: Size of wires: $1=0.24 \mathrm{~cm} ; 2=008 \mathrm{~cm}$ diameters.
Orientation: Orientation of wires: $1=$ vertical; 2 = horizontal; 3 = diagonal to screen
Length: Length of all wires size ${ }^{-1}$.
Area: \quad Area of all wires size ${ }^{-1}$.

* Number of wide (0.24 cm) wires $=5$

Number of narrow (0.08 cm) wires $=7$
B. COMPARISON OF MEAN LENGTH AND AREA OF WIDE AND NARROW WIRES USING A CALIPPER AND A DIAS.

Size of Wires	Calipper Estimate Calipper Estimate	DIAS Estimates		
		Vertical	Horizontal	Diagonal
	-----	----- 1	cm	
Wide Narrow	48.14	46.88	47.05	48.36
	55.53	55.40	55.91	57.90
		---- a		
Wide Narrow	11.74	12.53	12.05	12.25
	4.51	5.94	5.30	5.65

* Calipper area estimates formulae used:
(i) Area of cylinder $=2 \pi r h+2 \pi r^{2}$;
(ii) Area of a rectangle $=L \times B$, where
$\pi=3.142$
$r=$ radius of wires
L and $h=$ mean length of wires
$B=$ diameter of wires
Formula (ii) gave closer estimates to those given by DIAS. Therefore DIAS estimated area of roots using formula (ii).
C. ESTIMATES OF LENGTH AND AREA OF ROOTS OF GRAIN SORGHUM AND SUDANGRASS USING A DIAS. (TEST OF REPEATABILITY).
(i) AREA ESTIMATES

		Sample size	
Replication			
	Small	Medium	Large
I	4.825	18.303	20.433
III	4.417	19.698	20.586
IV	4.005	19.300	20.170
V	4.379	19.195	21.061
VI	4.079	17.200	21.943
VII	3.974	17.353	21.465
VIII	4.119	16.940	22.531
IX	4.049	16.776	21.765
X	4.390	17.539	21.037
Mean	4.343	17.688	20.978
CV\%	4.258	17.999	21.197
	6.59	5.88	3.46

(ii) LENGTH ESTIMATES (cm)

	Sample size		
Replication	Sma11	Medium	Large
I	97.621	238.088	313.558
	95.413	260.477	316.449
III	89.056	270.734	310.305
IV	95.712	242.181	330.673
V	90.579	233.579	341.859
VI	88.875	235.142	333.908
VII	94.821	233.339	350.089
IX	99.345	231.338	341.859
X	93.914	241.946	332.870
Mean	92.606	240.602	331.955
CV\%	3.49	242.744	330.353
		5.29	3.98

[^2]
VITA
 Gordon Onyango Abayo
 Candidate for the Degree of
 Master of Science

Thesis: THE EFFECT OF IRON DEFICIENCY ON THE ROOT DEVELOPMENT OF SORGHUM
Major field: Agronomy
Biographical:
Personal Data: Born in Kisumu, Kenya, February 27, 1958, the son of Fanuel and Doris Abayo.

Education: Received Certificate of Primary Education from Taito Full Primary School, Kenya, in December 1972; received Kenya Certificate of Education from Uasin Gishu Secondary School, Kenya, in December 1976; received certificate of Kenya Certificate of advanced Education from Cardinal Otunga High School, Kenya, in December 1978; graduated with a B. S. (Botany and Zoology) from the University of Nairobi, Kenya, in December 1983; and completed the requirements for the Master of Science degree at Oklahoma State University, U. S. A., in May 1991.

Professional Experience: Assistant Agricultural Officer from November 1983 to January 1988; Agricultural Officer from January 1988 to date with the Ministry of Agriculture, Scientific Research Division and later Ministry of Research, Science, and Technology, Kenya Agricultural Research Institute (KARI), Kenya. Trainee in crop production for six months at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India, from May to November 1987.

Awards: Received a Jerry Grant Scholarship Award for outstanding graduate student at the College of Agriculture, Oklahoma State University, in March 1990.

Membership: American Society of Agronomy, Soil Science Society of America, and Crop Science Society of America, 1990; Kappa Phi, Kappa, 1991.

[^0]: *Soils sampled at 20 cm (8") depth at time of root data collection.

[^1]: ${ }^{*}$ Values followed by the same letter are not significantly different at $\mathrm{P}<0 . .05$.

[^2]: * Replications sample size ${ }^{-1}$ were repeated estimates of each sample size with varying the spread of the root fibers.

