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Abstract

Correction for rain attenuation is an important data quality issue when using data col-

lected by radars operating at attenuating wavelengths, specifically C and X bands.

Such issues are especially important for quantitative use of the data, such as rain-

fall estimation, where a 3dB error in reflectivity factor can result in more than 60%

error in the rainfall estimate. In this work, the errors from several different attenua-

tion correction techniques are examined. To test the corrections, simulated time-series

dual-polarization radar data are used. The basis for the simulations is the use of a dis-

cretized radar pulse, where each pulse element generates the appropriately calculated

stochastic value to give realistic radar time series data. In addition to providing for a

sufficient number of elements to generate statistically meaningful data, this discretized

pulse model also enables the simulation of spatial sampling aspects of the radar beam,

allowing for differential attenuation and phase shift across the radar beam.

These simulated data are used to quantify the performance of several rain attenua-

tion correction algorithms: linear ΦDP , ZPHI, and Self-Consistent, as well as a modi-

fied version of the Self-Consistent algorithm. Using the simulated data and respective

truth fields, the performance of the algorithms is examined in detail across a variety

of scattering and microphysics configurations, to study the impact of the assumptions

made on the quality of algorithm performance. A wide array of radar spatial sampling

strategies are also examined to identify the impacts on algorithm performance.
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Chapter 1

Introduction

1.1 Motivation

Radar-based Quantitative Precipitation Estimation (QPE) has been an active area of re-

search since the advent of radar meteorology (Marshall et al. 1947; Stout and Mueller

1968). In fact, QPE is one of the primary missions of the National Weather Services

(NWS) Weather Surveillance Radar 1988-Doppler (WSR-88D) network (Crum and

Alberty 1993; Klazura and Imy 1993). Traditional radar-based estimation of precipita-

tion relies on reflectivity (Z) only, which roughly depends on the sum of the 6th power

of the diameters of all scattering particles (rain drops). This results in a non-unique

relation between the volume of water in the sampling volume of the radar pulse and

the reflectivity estimated by the radar—the relation depends on the actual distribution

of droplet sizes (Stout and Mueller 1968). Additionally, high reflectivity values are of-

ten associated with the hail cores of severe storms, resulting in severe over-estimation

of rain in those areas. Non-meteorological echoes (e.g. ground clutter, insects, birds,

chaff, etc.) can also cause an automatic algorithm to estimate rain when none is falling.

Other problems include beam-blockage and attenuation, which causes rainfall under-

estimation due to the relation between Z and absolute returned power. Similarly, cali-

bration of the radar is also important and is a non-trivial problem (Atlas 2002).
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To address these shortcomings, many radars now transmit and receive electromag-

netic radiation at two orthogonal polarizations (i.e., horizontal and vertical). Since

electromagnetic scattering is related to the size of the particle in the direction of wave

polarization, having these two channels gives much more information about the shape

and orientation of the scatterers within the volume. For instance, liquid water drops

are increasingly deformed by aerodynamic stresses as their diameter increases. This

effect gives them a larger radar cross section (RCS) for horizontally polarized waves

than for vertically polarized. Thus, by comparing the amount of power returned in the

vertical and horizontal channels, ZDR, one can estimate to what extent the raindrops

are deformed from spheres; this allows some inferences about the sizes of the drops to

be made. Additionally, the non-spherical raindrops will result in a different effective

index of refraction along the radar propagation path. This difference results in a phase

shift (φDP ) between the channels; the range derivative of this parameter, KDP , can be

related to rain amounts along the path (Bringi and Chandrasekar 2001). Using KDP

and ZDR, regions with larger water drops can be differentiated from those with only

small (and mostly spherical) drops. There are also applications for detecting ice crys-

tals, hail, and non-meteorological echoes (see for example Straka et al. 2000; Jameson

1983; Giuli et al. 1991; Hubbert et al. 1993). Utilizing this increased information,

dual-polarization radar data has been shown to yield an improvement in radar-based

QPE. This improvement, combined with the ability to classify the radar echoes, has

demonstrated sufficient gains in utility that the WSR-88D network has been upgraded

with dual-polarization capabilities (Ryzhkov et al. 2005b,c; Doviak et al. 2000).

As promising as they seems, there are significant challenges remaining in using

dual-polarization data for radar-based QPE. Careful calibration of the radar is still
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important, and for dual polarization measurements, two separate channels need to be

calibrated. Also, the meteorological range of ZDR is much less than that of Z, so the

relative calibration of the two channels must be an order of magnitude more precise

than the absolute calibration of a single channel (Ryzhkov et al. 2005a).

1.2 Attenuation Correction

At a wavelength in S-band (nominally 10 cm), attenuation is small and usually ne-

glected; however, in heavy rain, one can still see attenuation up to 0.04 db/km (Bringi

et al. 1990). At wavelengths in C-band and X-band (nominally 5 cm and 3 cm, respec-

tively), attenuation can be significant, up to 0.3 dB/km for C-band and 2 dB/km for

X-band (Bringi et al. 1990). Therefore, data at these wavelengths must be corrected

for attenuation before being used quantitatively. With only reflectivity data from a

single channel available, however, trying to correct attenuation is unstable (Hitschfeld

and Bordan 1954; Hildebrand 1978).

With the advent of dual-polarization radars, additional possibilities emerged for

correcting attenuation of reflectivity. This also brought the new problem of correcting

for differential attenuation. Bringi et al. (1990) laid the theoretical framework for such

corrections by computing KDP , attenuation (AH), and differential attenuation (ADP )

at S-, C-, and X-bands for a range of gamma DSD parameters. Linear regressions

through the resulting scatter of points showed promise in terms of producing linear

relationships between KDP and both AH and ADP , which could be used to estimate

attenuation and correct for it. Aydin et al. (1989) instead proposed a correction pro-

cedure for dual-polarization data that used an empirical relationship between AH/ZH
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and ZDR. Gorgucci et al. (1996) modified this procedure to use a more straightfor-

ward formulation of AH and ADP in terms of ZH and ZDR. Gorgucci et al. (1998)

performed a comparison between the methods proposed by Hildebrand (1978); Aydin

et al. (1989); Bringi et al. (1990) at C-band. The corrections using only Z and ZDR

were found to perform much better than corrections using only KDP . This is likely be-

cause KDP , as the range derivative of φDP , is a difficult parameter to estimate robustly

in all conditions (Gorgucci et al. 2000). However, the (ZH , ZDR) method relies upon

having a properly calibrated radar, which is difficult to achieve and maintain (Ryzhkov

et al. 2005a), especially operationally; conversely, calibration is not required to use

KDP .

Scarchilli et al. (1993), working at C-band, introduced a simple method based

on Bringi et al. (1990) that calculates AH and ADP as linearly proportional to KDP ;

this implies that the path integrated (differential) attenuation is linearly related to the

change in φDP up to that point. The method then uses the corrected ZDR data to es-

timate backscatter differential phase (δ), which can then be removed from the φDP

data. This procedure is iterated until the differences in the φDP data between iterations

became small.

Ryzhkov and Zrnić (1995) applied the linearAH−φDP andADP−φDP relations as

well, but took the step of using an empirical procedure to estimate the proportionality

constants at S-band. These constants were estimated by looking at how a subset of the

ZH data (based on the corresponding KDP values) changed as a function of the total

φDP change; the slope of this scatter plot gave the appropriate AH − φDP . A similar

procedure was performed for ZDR to estimate ADP . This technique was applied by

Carey et al. (2000) at C-band to correct rainfall estimates in tropical convection. Carey
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et al. (2000) also noted the spread in published coefficients at the time and attributed

the variation to the dependence on a considerable amount of theoretical assumptions:

temperature, drop size distribution (DSD), and drop shape model. The study found

that an advantage of empirical estimates was its ability to find coefficients appropriate

for the actual observed conditions.

Matrosov et al. (2002) extended this same approach to X-band, but slightly mod-

ified the technique so that the drop shape factor, used to calculate the coefficient of

proportionality between AH and KDP , is calculated from ZH and ZDR (initially cor-

rected with a stock shape factor). The proportionality constants between AH or ADP

and KDP are calculated from this shape factor. Anagnostou et al. (2006a) extended

this slightly to calculate the proportionality constant between ADP and KDP as well.

Anagnostou et al. (2006a) differs in that they find a “best” fit shape factor for the whole

case, where “best” was determined based on consistency of corrected data with rain-

drop spectra. These methods attempt to explicitly adjust for the dependence of the

relationship between attenuation and KDP on the actual drop shapes.

Smyth and Illingworth (1998) proposed a scheme that used as a constraint the

total path differential attenuation, estimated from the negative ZDR values in a distant

stratiform region; this constraint assumes that the intrinsic ZDR value for such a region

is 0 dB. This attenuation (ADP ) was distributed among all gates with sufficient KDP

magnitude based on the value of KDP relative to the total φDP change. The values

of KDP and ADP were combined to retrieve the DSD, and from there the value of

AH . Having the values of both AH and ADP at all gates, corrected fields of ZH and

ZDR were then generated. While the use of a region with an intrinsic ZDR of 0 dB

can be robust for estimating the path integrated differential attenuation, automating
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the process of identifying such regions is extremely difficult, making the technique

difficult to implement operationally. Additionally, this procedure offered no solution

for scenarios without a distant stratiform region to act as a constraint.

Testud et al. (2000), based on a “rain-profiling” method used for satellite-based

radar rainfall retrievals, used φDP as a constraint for correcting ZH for attenuation, us-

ing both φDP and ZH to estimate AH (hence being commonly referred to as the ZPHI

method). The estimated AH profile is then used to correct ZH . Using the obtained spe-

cific attenuation, values for normalized intercept parameter (N0) were obtained, which

were combined with specific attenuation to estimate rainfall. Separate sets of power

law constants were given for the horizontal and vertical polarizations, which could be

used together to correct ZDR for differential attenuation. Alternatively, Testud et al.

(2000) also provided a relation for calculating ADP from AH and N0. Anagnostou

et al. (2004) applied this method to X-band, but the increased dependence of attenua-

tion and KDP on microphysical parameters (N0, etc.) led to the estimation over sets

of range intervals within a radial. These intervals defined regions over which N0 was

held fixed, and the procedure was iterated to find the optimal set of coefficients for the

interval, increasing the stability of the correction. From these corrected data, rainfall

estimates using ZH , ZDR, and KDP were found to be superior to those using only ZH

at X-band.

Bringi et al. (2001) extended the ZPHI approach with a “self-consistent” method-

ology that dynamically estimates the constant of proportionality between KDP and

AH , α. The procedure is iterative, using the radial profile of ZH and the change in

φDP over the radial to estimate a radial profile of AH . This profile of AH is inte-

grated using α to calculate an estimated change in φDP . The difference between the
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calculated and measured values is used to adjust α and the procedure is iterated until

convergence is achieved. Because the relationship between ADP and KDP is not as

linear at C-band, an estimate of the intrinsic ZDR at a far range is used to provide a

constraint on the maximum ADP , similar to Smyth and Illingworth (1998). In this

work, however, an empirical relationship is used to estimate an average ZDR value

from the corrected ZH data. Park et al. (2005a,b) extended this method to X-band in

a straightforward fashion, only updating various coefficients and empirical relations to

ones appropriate for the wavelength. These updates came from a detailed evaluation of

scattering simulations. Liu et al. (2006) extends the approach slightly for ZH by using

the Levenberg-Marquardt solver to improve convergence when solving for α. Liu et al.

(2006) also modified the approach by running the same technique, using different co-

efficients, to correct ZV data and combining corrected ZH and ZV to obtain corrected

ZDR.

Gorgucci et al. (2006) corrected for attenuation and differential attenuation using a

self-consistent approach at X-band as well, but with important differences. Instead of

extending ZPHI to adaptively estimate the coefficient relating AH and φDP , Gorgucci

et al. (2006) utilized the full self-consistency of ZH , ZDR, KDP , and AH . Again, due

to the challenges of working with KDP , an estimated profile of φDP was calculated

from corrected estimates of ZH , ZDR, and AH (combined using a power-law). Differ-

ences between the observed and calculated φDP profile were used to adjust a constant,

which yielded a new estimate of AH , and hence new profiles of ZH and ZDR. This

procedure was iterated until the value of the constant converged; initial values were

obtained from the procedure of Bringi et al. (2001). In this method, ADP was esti-

mated using the same procedure (with different coefficients), but in a separate set of
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steps and convergence. Gorgucci and Baldini (2007) (working at C-band) modified

this to simultaneously estimate AH and ADP , making use of the approximately linear

relationship between the two variables. The unified approach was found to have re-

duced errors over the separated approach. The validation of the technique was based

on C-band profiles reconstructed from S-band data.

Beyond these main trees of approaches, there have been several novel techniques

tried, with varying degrees of success. Vulpiani et al. (2005) used an artificial neural

network to approximate the non-linear relationship for calculating attenuation fromZH

and ZDR. This algorithm worked iteratively, like Hitschfeld and Bordan (1954), run-

ning from the furthest range inward, constraining the total attenuation correction using

φDP , as in Bringi et al. (2001). This approach was demonstrated to have less error than

the ZPHI approach, but training the neural network makes the approach challenging

from an operational implementation standpoint. Vulpiani et al. (2008) attempted to

address the issue of spatial variability in the coefficients relating attenuation to radar

observables by using a Bayesian classifier. The classifier, using ZH , ZDR, KDP , and

ρHV , identified regions as one of four classes (large drops or light, medium, or heavy

rain); the results of the classification were used to select an appropriate set of coeffi-

cients for estimating AH and ADP from φDP . Using intrinsic values of ZDR at long

ranges, they demonstrated slightly reduced root mean square error in comparison with

ZPHI.

Gourley et al. (2007) introduced a novel approach that advects cells between radar

scans using a cross-correlation analysis. The decreases in ZH and ZDR for individual

cells were matched to increases in φDP , which was used to retrieve the coefficients

relating φDP to AH and ADP . The technique relied on the fact that the mean change
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in intrinsic ZH and ZDR over the whole radar coverage area for several hours was

approximately zero (i.e., no mean intensity changes).

A subject of much recent research are the so called “hot spot” regions, as identi-

fied by Ryzhkov and Zrnić (1995). These are regions of anomalously high attenuation

caused by the presence of anomalously large scatterers (compared with the sizes nor-

mally assumed for rain drop size distributions). Tabary et al. (2009) and Borowska

et al. (2011) attribute the cause of such areas to be wet ice particles, likely from melt-

ing hail. Because such regions differ greatly from the surrounding areas in terms of the

size distribution of scatterers, attenuation from the areas are not properly corrected us-

ing mean profiles generated from most scattering simulations (Carey et al. 2000). Gu

et al. (2011) proposed a correction method that identifies “hot spot” regions using ZH

and ρHV ; after identification, these regions were corrected for attenuation using coef-

ficients adjusted from their “background” values, as estimated in Ryzhkov and Zrnić

(1995).

1.3 Simulation

Given all of the challenges and advances in radar-based QPE, one natural way to eval-

uate the relative quality of different methods is through simulation. Recent advances

in numerical modeling have made it possible to simulate convective storms at very fine

scales over a broad range of environmental conditions (e.g. Wicker and Wilhelmson

1995; Lewellen et al. 1997; Jung et al. 2010). Coupling a software radar simulator

with high-resolution numerical simulations, one can generate large sets of simulated
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radar data that span a wide range of radar operating characteristics. These simulated

datasets can be used to provide truth data for objective evaluation of algorithms.

Many approaches have been taken previously in simulating radar data, varying in

sophistication from simple time series simulation (Zrnić 1975) to moment calculation

(Chandrasekar and Bringi 1987; Krajewski et al. 1993; Gosset 2004) or full simula-

tion of radar returns from each pulse (Capsoni and DAmico 1998; Capsoni et al. 2001;

Muschinski et al. 1999). Zrnić (1975) generated simulated time series radar data and

Doppler spectra using an assumed Gaussian distribution of velocities within the reso-

lution volume. Chandrasekar and Bringi (1987) looked at the variation of simulated

reflectivity values as a function of raindrop size distribution parameters. Similarly,

Krajewski et al. (1993) calculated values of reflectivity factor and differential reflec-

tivity using rainfall rates from a numerical model combined with an assumed drop size

distribution. Neither of these studies was concerned with Doppler velocity or the im-

pacts of scanning strategies. Jung et al. (2010) used detailed scattering calculations to

generate reflectivity, differential reflectivity, differential propagation phase, and copo-

lar cross-correlation data from a numerical simulation. These data were used to look

at the effects of different numerical model microphysics schemes. Wood and Brown

(1997) evaluated the effects of WSR-88D (Crum and Alberty 1993) radar scanning

strategies on the sampling of mesocyclones and tornadoes. The effects of the scanning

strategy were accounted for by using an effective beamwidth for the radar, which was

used to scan an analytic vortex with a uniform reflectivity field. Gosset (2004) used

analytic fields to calculate dual-polarization moments in order to analyze the effect

of non-uniform beam-filling on moment estimates. As mentioned previously, Zahiri

et al. (2008) calculated polarimetric radar data from 1 km numerical simulation output
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interpolated onto a polar grid; these simulated data included error by adding normally

distributed noise terms. Berne and Uijlenhoet (2005) simulated reflectivity data using a

sophisticated statistical model. Using stochastic, auto-regressive range-profiles of rain

distribution parameters, they examined errors in the attenuation correction method of

Hitschfeld and Bordan (1954), as applied to satellite data. Beyond the sophisticated

statistical model, however, the radar simulation was simplistic, and did not include any

beam-weighting or azimuthal gradients.

Capsoni and DAmico (1998) simulated the pulse-to-pulse time series of radar

data by combining the simulated returns from individual representative hydrometeors

within a radar volume (Monte Carlo Sampling). This work was extended to generate

polarimetric signatures by Capsoni et al. (2001). Due to the computational require-

ments of this approach, the radar data were generated for only a single range gate only,

and thus many aspects of the scanning radar were not simulated. A similar approach

was presented by Cheong et al. (2008) for general use in generating simulated radar

signals (IQ data) at a single polarization from the output of numerical storm models.

Muschinski et al. (1999) used a different scheme for simulating time series data for a

wind profiler from a large eddy simulation. It relied on using a fixed grid of scattering

centers which return appropriate phase shifts; when combined with a random initial

phase, this procedure yielded realistic radar signals.

The work presented herein describes a radar simulator designed to simulate the

returns from a scanning Doppler radar on a pulse-to-pulse basis, based on the radar

configuration and scanning strategy used. This work extends that of May et al. (2007),

which demonstrated that the simulator is capable of simulating several radar data
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characteristics including: range resolution, azimuthal over- and under-sampling, non-

standard (anomalous) propagation, Rayleigh attenuation, antenna sidelobes, velocity

aliasing, and range aliasing. Starting with output from a high-resolution numerical

simulation, the simulator generates both time-series and volume-averaged moments

for H and V polarizations in the linear basis. Time series data are generated using the

method demonstrated by Muschinski et al. (1999). This approach is combined with

that of Galati (1995) to add appropriate correlation between the horizontal and ver-

tical channels. These polarimetric capabilities will be demonstrated for a variety of

wavelengths and scattering models.

1.4 Application

In developing methods for attenuation correction and radar-based QPE, validation is a

frequent challenge. Many validation methods rely on simple simulation, such as gen-

erating X-band profiles from S-band data. These have the benefit of removing some

DSD variability, but rely upon many assumptions about scattering processes in order

to relate radar observables at one band to those at another. For attenuation correc-

tion, another method is to compare co-located radars, with one operating at a non-

attenuating wavelength, such as S-band (Anagnostou et al. 2006b; Snyder et al. 2010).

This requires careful calibration of two radars and has errors due to slightly differ-

ent locations, different observation paths, as well as differences in the intrinsic values

due to resonance regime effects. Another validation approach, especially for QPE,

is to compare point measurements of rain from gauges (or full DSD measurements

from disdrometers) to radar data, but this approach has problems due to the inherent
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difference in scale between point measurements and the volume averaging involved in

remote sensing. Additionally, at longer ranges from the radar, the remotely sensed data

can be more than a km above the point measurement, introducing significant variance

into the comparison.

Many of these previous shortcomings in validation can be addressed using a so-

phisticated radar simulation, such as that described previously. In this work, errors

inherent in attenuation correction at multiple wavelengths (C- and X-band) are quan-

tified and analyzed to identify specific sources of these errors. In the process, several

different techniques will be evaluated; of particular interest are the effects of tem-

perature and non-uniform beam-filling, including down-range impacts of differential

attenuation across the radar beam. Because the simulation includes full propagation

effects as well as a discretized radar pulse that can be filled with a heterogeneous field,

the effects of non-uniform beam-filling are also taken into account. Also, because the

simulator contains all relevant truth data, calculating errors in retrieved attenuation

profiles is straightforward. Since the simulation is stochastic in nature, simulated data

replicate the variability seen in real data, including the effects of low signal to noise

ratio; this implies that error estimates will reflect those of real world data.
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Chapter 2

Radar Simulator

2.1 Design

Since the performance and accuracy of the simulation of radar data is critical to the

validity of the work that will follow, a large section of this work is dedicated to a

detailed description of the radar simulator used, which is an extension of the work

done by May et al. (2007). The extensions can be summarized as:

• Inclusion of new scattering models for polarimetric variables

• Extension for model input which includes two-moment microphysics schemes

• Expansion to enable the generation of time series data in additional to simple

volume average-based moments

• Generation of additional diagnostic fields to help identify regions where the

pulse is non-uniformly filled.

The flow of the program is as follows (with the details covered in subsequent sections):

• Read configuration

• Calculate radar variables from model input fields

• As the radar scans:
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– Interpolate model fields to discretized radar resolution volume

– Generate a sample from the pulse

– As appropriate, generate a radial of data from the samples

2.1.1 Simulator configuration and input

The behavior of the radar simulator is controlled by specifying radar characteristics and

scanning strategy (Table 2.1). Note that the antenna beamwidth, gain, and wavelength

are treated independently to allow for simulation of antennas with different classes of

performance. The actual form of the antenna pattern is fixed based on the analytic

function discussed later. It should also be noted that the polarization of the radar is

fixed to simultaneous horizontal and vertical transmission. This is an implementa-

tion detail rather than a limitation, as adding transmit polarization flexibility would be

straightforward. The minimum detectable signal is used as a threshold for the calcu-

lated moments and also as a noise power value for the time series simulation. The pulse

repetition time and pulse length are given independently, but in reality they are usually

constrained by the duty cycle of the transmitter. Enforcement of a duty cycle is up to

the user when creating the configuration. The antenna pointing angles can be specified

for either full or sector plan-position indicator (PPI) scans, or range-height indicator

(RHI) scans. The simulator allows for overlapped sampling in both azimuth (or ele-

vation for RHI scans) and in range. In addition to the radar configuration parameters,

the drop shape model, canting angle distribution width (for T-matrix), and scattering

model can be specified at runtime. This simplifies the evaluation of the impacts of the

use of these different models.
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Radar Parameters Scanning Parameters Simulation Parameters

Location PRT Input simulation

Antenna beamwidth Pulse length Scattering model

Antenna gain and sidelobes Antenna rotation rate Drop shape model

Wavelength Pulses per radial Canting distribution width

Transmit power Radar gate spacing PRNG seed

Range to first gate Scan fixed angle

Minimum detectable signal Start and end angles

Table 2.1: Simulator control parameters.

The input data to the radar simulator are three-dimensional gridded fields that de-

scribe the state of the atmosphere. Wind components and the appropriate variables

describing the hydrometeor content (depending on the microphysics scheme used) are

required fields. Water vapor, temperature, and pressure are also needed for calculat-

ing the atmospheric index of refraction, which is used for determining the propagation

path of the radar beam. Temperature is also used in determining the dielectric constant

for the hydrometeors.

2.1.2 Calculation of Radar Variables

2.1.2.1 Scattering

The simulator supports several different scattering assumptions: Rayleigh, Rayleigh-

Gans, Mie, and T-matrix (Mishchenko et al. 1996; Bringi and Chandrasekar 2001;

Doviak and Zrnić 1993; Waterman 1971). For Rayleigh-Gans and T-matrix scattering,
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there are options to use either spheres or oblate spheroids as the assumed shape for hy-

drometeors. It should be noted that using sphere as the shape for T-matrix or Rayleigh-

Gans scattering produces identical results to Mie and Rayleigh, respectively. When

using oblate spheroids for raindrops, by default the axis ratio (r) for the spheroids is

calculated using the polynomial form of Brandes et al. (2002):

r = 0.9951 + 0.0251D− 0.036 44D2 + 5.303× 10−3D3− 2.492× 10−4D4 (2.1)

whereD is the equivolume diameter of the rain drop in mm. It should be noted that the

coefficient of the cubic term above, 5.303× 10−3, is not the value given by Brandes

et al. (2002). Both Brandes et al. (2002) and Brandes et al. (2004) give a value of

5.030× 10−3. However, this value results in a curve that does not match the plot given

in Brandes et al. (2004), as shown in Figure 2.1; the value of 5.303× 10−3, however,

does produce a matching plot. In addition to this relation, it is also possible to specify

the use of the raindrop axis ratio relation introduced by Pruppacher and Beard (1970):

r = 1.030− 0.062D (2.2)

where D is again in mm.

Another required parameter for performing the scattering calculations is the re-

fractive index (m) for water. The equations given by Ray (1972) are used to calculate

the complex dielectric constant (εr + iεi) as a function of temperature (T , ◦C) and

wavelength (λ, cm):

εr = ε∞ +
(εs − ε∞)[1 + (λs/λ)(1−α) sin (απ/2)]

1 + 2(λs/λ)(1−α) sin (απ/2) + (λs/λ)2(1−α)
(2.3)

εi =
(εs − ε∞)(λs/λ)(1−α) cos (απ/2)

1 + 2(λs/λ)(1−α) sin (απ/2) + (λs/λ)2(1−α)
+

σλ

18.8496× 1010 (2.4)
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Figure 2.1: Left: As in Brandes et al. (2004) “Raindrop axis ratio as a function of drop

equivalent volume diameter derived from measurements. The curved solid line shows

an empirical fit [Eq. (21)]; the dashed line shows the linear relation of Pruppacher and

Beard (1970); and the dashdot lines show the computational domain of Gorgucci et al.

(2000)” Right: Comparison of drop axis ratio relations using the coefficients published

in Brandes et al. (2004) (dashed) and with the corrected value (solid).
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where ε∞ is the high-frequency dielectric constant, εs is the static dielectric con-

stant, λs is the relaxation wavelength, α is a spread parameter, and σ is a frequency-

independent conductivity. These values are calculated as a function of temperature

as:

εs = 78.54[1.0− 4.579× 10−3(T − 25.0)

+ 1.19× 10−5(T − 25.0)2 − 2.8× 10−8(T − 25.0)3] (2.5)

ε∞ = 5.271 37 + 0.021 647 4T + 0.001 311 98T 2 (2.6)

α =
−16.8129

T + 273
+ 0.060 926 5 (2.7)

λs = 0.000 338 36 exp
2513.98

T + 273
(2.8)

σ = 12.5664× 108 (2.9)

The index of refraction is found by taking the complex square root:

m =
√
εr + iεi (2.10)

The use of these equations allow the simulator to capture the wavelength and temper-

ature dependence of the index of refraction, avoiding the use of lookup tables with

interpolation between fixed values for wavelength and temperature. This permits cal-

culation of scattering using the temperature at each individual model grid point. Also,

by having the wavelength dependence captured in a functional form, the simulator can

be used at arbitrary wavelengths and not just be constrained to operating at general

wavelengths appropriate to a given band (such as 3 cm for X-band).
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All of the scattering calculations start from the scattering matrices in the forward

(Sf ) and backward(Sb) scattering directions, given as:

Sf (D) =

SfHH(D) SfHV (D)

SfV H(D) SfV V (D)

 (2.11)

Sb(D) =

SbHH(D) SbHV (D)

SbV H(D) SbV V (D)

 (2.12)

where D is diameter and H and V in the subscript represent the polarization for the

incident and scattered wave. The calculation of the scattering matrices depends on the

scattering model used.

Rayleigh The Rayleigh approximation to the scattering from a dielectric sphere is

the simplest, and the most familiar, method of calculating radar observables. Its inclu-

sion within the simulator facilitates the use of the simulator as a teaching tool and also

permits evaluation of the impacts of making the assumption that Rayleigh scattering is

the dominant effect. The Rayleigh approximation is relatively accurate for scatterers

whose size is small compared to the wavelength (Doviak and Zrnić 1993). Under this

assumption, the effects of scattering are obtained by treating the sphere as a radiating

dipole. This gives the following expressions for backscatter (σb), total scatter (σs), and

absorption (σa) cross-sections:

|K|2 =

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 (2.13)

σb =
π5

λ4
|K|2D6 (2.14)

σs =
2

3
σb (2.15)

σa =
π2

λ
Im−KD3 (2.16)
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H and V are omitted since Rayleigh scattering assumes spherical scatterers, and thus

these scattering properties are identical for the two polarizations. For consistency with

the other scattering calculations, these efficiencies are converted to their respective

terms in the (Sf ) and backward(Sb) scattering matrices:

SbHH(D) =

√
σb

4π
(2.17)

SbV V (D) = SbHH(D) (2.18)

ReSfHH(D) = ReSbHH(D) (2.19)

ReSfV V (D) = ReSbV V (D) (2.20)

ImSfHH(D) =
σs + σa

2λ
(2.21)

ImSfV V (D) = ImSfHH(D) (2.22)

The expressions for the forward scattering matrices, while not fully correct (for the

real part of the complex scattering matrix), allow the extinction cross-section to be

calculated in accordance with optical theorem (Ishimaru 1991). This allows all of the

different scattering models to use common code for obtaining relevant radar param-

eters from the scattering matrices in the forward and backward directions. The real

portion of the forward scattering matrix would be used to obtain a propagation phase;

since the differential between H and V polarizations is the quantity of interest, such a

calculation is senseless with the Rayleigh approximation.

Rayleigh-Gans Rayleigh-Gans scattering extends Rayleigh scattering theory to non-

spherical scatterers. This is achieved by adjusting the polarizability of the scatterer

based on the orientation of the spheroid (prolate or oblate) and the polarization of the

21



incident wave (Bringi and Chandrasekar 2001). This theory gives the backscattering

matrix as:

Sb(D) =
π2D3(m2 − 1)

6λ2

Λ 0

0 Λz

 (2.23)

Λx,y,z =
1

(m2 − 1)λx,y,z + 1
(2.24)

Λ = Λx = Λy (2.25)

λx = λy =
1− λz

2
(2.26)

where λx,y,z is the so-called depolarizing factor (Bringi and Chandrasekar 2001) in the

x, y, z direction. These factors depend on the shape of the scatterer, and are given for

oblate spheroids and spheres as:

λz(sphere) =
1

3
(2.27)

λz(oblate) =
1 + f 2

f 2

(
1− 1

f
tan−1 f

)
(2.28)

f 2 =
1

e2
− 1 (2.29)

where e is the eccentricity of the spheroid. It can be shown that λz for the sphere can be

obtained by taking the limit as e goes to∞. Using the value for a sphere, one obtains

an identical expression as that given by unmodified Rayleigh theory.

Rayleigh-Gans theory gives the same matrix for the forward scatter direction as

in the backscatter direction, with the exception of a flipped sign on the SHH term.
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However, as before, it is modified so that the proper extinction coefficients are obtained

using optical theorem (Ishimaru 1991). In this case:

Kh =
m2 − 1

(m2 − 1)λx + 1
(2.30)

σsh =
2π5

3λ4
|Kh|2D6 (2.31)

σah =
π2

λ
Im−KhD

3 (2.32)

Kv =
m2 − 1

(m2 − 1)λz + 1
(2.33)

σsv =
2π5

3λ4
|Kh|2D6 (2.34)

σav =
π2

λ
Im−KhD

3 (2.35)

These are used to adjust the forward scattering matrix as:

ImSfHH(D) =
σsh + σah

2λ
(2.36)

ImSfV V (D) =
σsv + σav

2λ
(2.37)

Mie The Mie (1908) solution to the scattering problem is a relatively straightforward

solution to the boundary value problem for the Laplace equation (see e.g Bringi and

Chandrasekar 2001). This involves solving:

ε0∇2ψ = ~∇ · ~P (2.38)

subject to the boundary conditions:

n̂1 × ~Ein
T + n̂2 × ( ~Ei + ~Es) = 0 (2.39)

n̂1 × ~Bin
T + n̂2 × ( ~Bi + ~Bs) = 0 (2.40)
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where

n̂1 = r̂ (2.41)

n̂2 = −r̂ (2.42)

where ~E and ~B are the electric and magnetic fields, respectively, the superscript i

and s denote the incident and scattered fields, respectively, and the superscript in and

subscript T denote the total internal field. The solution proceeds by expanding the

scattered field in terms of vector spherical harmonics:

~Es(k0r, θ, φ) = 2πE0

∞∑
n=1

(−ı)nγ1/2
1n

~X1n (2.43)

~X1n =
[
αo1n ~Mo1n(k0r, θ, φ) + ıβe1n ~Ne1n(k0r, θ, φ)

]
(2.44)

γ1/2
mn =

√
(2n+ 1)(n−m)!εm

4π(n+m)!
(2.45)

εm =


2 m > 0

1 m = 0

(2.46)

where k0 is the free-space wavenumber, k is the wavenumber within the sphere, and

~M and ~N are the vector spherical wave functions (also called multipoles). The Rg

notation denote wave functions which are modified to be regular (finite) at the origin.

The o and e subscripts denote represent whether the function is even or odd as a way of
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eliminating the use of complex harmonics. The expansion coefficients, αo1n and βe1n,

found using the boundary conditions, are:

αo1n =
ρjn(ρ)[ρ0jn(ρ0)]′ −√εrρ0jn(ρ0)[ρjn(ρ)]′

√
εrρ0h

(2)
n (ρ0)[ρjn(ρ)]′ − ρjn(ρ)[ρ0h

(2)
n (ρ0)]′

(2.47)

βe1n =
ρ0jn(ρ0)[ρjn(ρ)]′ −√εrρjn(ρ)[ρ0jn(ρ0)]′

√
εrρjn(ρ)[ρ0h

(2)
n (ρ0)]′ − ρ0h

(2)
n (ρ0)[ρjn(ρ)]′

(2.48)

ρ0 = k0a (2.49)

ρ = ρ0

√
εr (2.50)

[ρzn(ρ)]′ =
dρzn(ρ)

dρ
(2.51)

where jn and h(2)
n are the spherical Bessel and (second kind) Hankel functions, respec-

tively. Combining (2.46) and (2.51) gives the following expressions for the scattering

matrices (Bringi and Chandrasekar 2001):

S =

 i cosφs
k0

S1(θs)
−i sinφs

k0
S1(θs)

i sinφs
k0

S2(θs)
i cosφs
k0

S2(θs)

 (2.52)

S1(θs) =
∞∑
n=1

2n+ 1

n(n+ 1)

[
αo1n

P 1
n(cos θs)

sin θs
+ βe1n

dP 1
n(cos θs)

dθs

]
(2.53)

S2(θs) =
∞∑
n=1

2n+ 1

n(n+ 1)

[
αo1n

dP 1
n(cos θs)

dθs
+ βe1n

P 1
n(cos θs)

sin θs

]
(2.54)

where Pm
n (cos θ) are the associated Legendre functions, and θs and φs define the scat-

tering direction. For our purposes, φs is 0◦ and θs is 0 or π for forward scatter or

backscatter, respectively. The actual implementation is a Python-based port of Matlab

code written by Matzler (2002).

T-Matrix The extended boundary condition, or T-Matrix, method was first proposed

to solve electromagnetic scattering problems by Waterman (1971). The approach is

similar to that for Mie scattering, in that the incident and scattered fields are expanded
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into various multipole terms, solving for coefficients of vector spherical wave func-

tions. However, the T-matrix method is applicable to non-spherical scatterers which

do not have a simple form in spherical coordinates. In such cases the boundary con-

ditions do not lend themselves to a direct relation between the expansion coefficients

of the incident field and those of the scattered field. Due to the linearity of Maxwell’s

equations and the boundary conditions themselves, the two sets of expansion coeffi-

cients can be related through a set of linear equations and matrix of coefficients.

In theory, this “transition” matrix (or T-matrix) is infinite in size; in practice, the

procedure is iterated, increasing the number of terms until the results converge. The

radar simulation code relies on the FORTRAN implementation from Mishchenko et al.

(1996), which calculates the T-matrix for a fixed orientation; this has been wrapped in

Python for convenience purposes. The reader is referred to Mishchenko et al. (1996)

and the references therein for the lengthy theoretical derivation.

Canting Angle Distribution For T-matrix scattering calculations, the simulator has

the option of including a non-zero canting angle distribution width. While the mean

canting angle is assumed to be zero (a common assumption and a crucial one for the

NEXRAD dual-polarization upgrade (Doviak et al. 2000)), the width of the distribu-

tion of angles can be changed to account for some random hydrometeor orientation

due to turbulence. The simulation uses the axial distribution (Mardia 1972), which can

be used to describe the distribution of a two-dimensional orientation angle in which
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one of the components is fixed at 90◦. Such a distribution is given by (Bringi and

Chandrasekar 2001):

gA(θ) = b(κ) exp(−κ cos2 θ) sin θ (2.55)

b(κ) =
1

2
∫ 1

0
exp(−κt2) dt

(2.56)

where κ is the parameter that controls the width of the distribution. Figure 2.2 shows

the axial probability density function for various values of κ.

To include the effects of the orientation angle distribution in the calculation of radar

observables, all expected values are converted from single integrals over the drop size

distribution to double integrals over both the DSD and the angular distribution. That

is, integrals of the form:

A =

∫
f(D)N(D) dD (2.57)

become:

A =

∫∫
f(D, θ)N(D)gA(θ) dD dθ (2.58)

Radar Observables By integrating various terms of these scattering matrices with

respect to the drop size distribution, at each model grid point the relevant radar pa-

rameters can be calculated: reflectivity (η), backscatter differential phase shift (δ),
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wavenumber perturbation (∆k, due to propagation through the medium), and expected

cross-correlation coefficient (|ρhv|) (Bringi and Chandrasekar 2001, chap. 3 and 4):

ηH = 4π

∫ Dmax

0

|SbHH(D)|2N(D) dD (2.59)

ηV = 4π

∫ Dmax

0

|SbV V (D)|2N(D) dD (2.60)

δ = arg(

∫ Dmax

0

Sb∗HH(D)SbV V (D)N(D) dD) (2.61)

∆kH = λ

∫ Dmax

0

SfHH(D)N(D) dD (2.62)

∆kV = λ

∫ Dmax

0

SfV V (D)N(D) dD (2.63)

|ρHV | =
|
∫ Dmax

0
SfHH(D)Sf∗V V (D)N(D) dD|√∫ Dmax

0
|SfHH(D)|2N(D) dD

∫ Dmax

0
|SfV V (D)|2N(D) dD

(2.64)

While it is customary for such analytic forms to integrate from 0 to ∞, this is not

realistic, as there is a maximum size, Dmax, above which drops will break up due to

aerodynamic forces (Magarvey and Taylor 1956). A value of 1.0 cm is chosen here,

which allows for a small number of large drops (depending on the actual drop size

distribution). This limit both keeps the scattering calculation computationally tractable

and eliminates contributions from non-realistic drops.

All of these calculations are performed for various values of temperature and mi-

crophysics parameters and written into lookup tables. This allows the calculations to

be performed over the entire model domain much more rapidly than by calculating the

scattering matrices at each grid point, especially in the case of T-matrix, which is the

most computationally intensive of the scattering models. It should also be noted that

one significant limitation is that the scattering calculations do not include mean cant-

ing at all–this includes the orientation of the particle relative to the radar beam as the

radar points away from horizontal. To do this well would require adding the angle of
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incidence of the radar beam relative to the axis of symmetry of the particles as another

dimension for the lookup tables. This would make the memory requirements much

larger as well as make the interpolation process take longer. While this is a significant

limitation for simulating dual-polarization variables at high elevation angles, this is not

significant for simulating data at low elevations, such as those used in radar QPE.

From the complex wavenumber perturbation, both the propagation phase shift (K)

and attenuation (A) per unit range can be calculated:

KH = 2 Re ∆kH (2.65)

AH = 4 Im ∆kH (2.66)

KV = 2 Re ∆kV (2.67)

AV = 4 Im ∆kV (2.68)

Each value has a factor of 2 that converts it to a quantity representing the change over

the two-way path. The attenuation terms have an additional factor of 2 that converts

the attenuation from representing amplitude loss to representing a loss of power.

Drop Size Distributions Three different forms for drop-size distribution are per-

mitted for calculating the integrals of (2.58) above: the (MP, Marshall and Palmer

1948) exponential distribution, the modified gamma distribution Ulbrich (1983), and

the gamma distribution as used by Ziegler (1985). The choice of these distributions is

motivated by the numerical simulation output that has been used to date. In order to

generate the proper scattering fields, the drop size distribution needs to be calculated
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at each model grid point, using the appropriate hydrometeor field. The MP distribution

is given by:

N(D) = N0 exp(−ΛD) (2.69)

where N0 is the intercept parameter and has a value of 8000 m−3 mm−1, D is the

diameter in m, and Λ is the slope parameter in m−1. Λ can be calculated from the

model field rain concentration qr:

Λ = 4

√
1000πρlN0

qr
(2.70)

where ρl is the density of liquid water (1000 kg m−3) and the factor of 1000 converts

N0 to m4.

The modified gamma distribution Ulbrich (1983) is given by:

N(D) = N0D
µ exp(−ΛD) (2.71)

where µ is the so-called shape parameter. Note that in this case that N0 has units that

depend on µ and are different from those of the intecept parameter for the exponential

distribution.

The gamma distribution of Ziegler (1985), henceforth called volume gamma, is

given as follows:

N(V ) =
N(ν + 1)ν+1

V0Γ(ν + 1)

(
V

V0

)ν
exp

[
−(ν + 1)

V

V0

]
(2.72)

where ν is the shape parameter with a value of −0.8, V0 is the mean drop volume, Γ

is the Gamma function, and N is the number concentration, which is given by the nu-

merical simulation. This can also be converted to terms of diameter instead of volume,

making it more applicable to radar calculations:

N(D) =
3N(ν + 1)ν+1

D0Γ(ν + 1)

(
D

D0

)3ν+2

exp

[
−(ν + 1)

(
D

D0

)3
]

(2.73)
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whereD0 is the mean drop diameter, rather than volume. The mean volume and diame-

ter can be calculated from the simulation number concentration and rain concentration

fields as:

V0 =
qr
ρlN

(2.74)

D0 = 3

√
6 qr
πρlN

(2.75)

Note that while this latter distribution is provided to maintain consistency with the nu-

merical simulation input, its use in the calculation of radar observables is problematic.

Figure 2.3 compares the volume gamma distribution with a modified gamma distri-

bution, an exponential distribution, and a Marshal-Palmer distribution, all having the

same total liquid water content, qr. Additionally, with the exception of the Marshal-

Palmer distribution, all have the same total number concentration. The volume gamma

distribution shows a significant excess in the number of small drops, a lack of larger

drops, and an overall character which does not match typical drop size distribution

patterns. This has ramifications when calculating radar observables, especially ZDR–

the overabundance of small drops and lack of large drops would tend towards 0dB

more than other distributions. This departure from a typical distribution shape results

from its original formulation in terms of volume, which causes the cube of diameter

to appear in the exponential; no set of coefficients for the modified gamma family of

distributions for diameter can match this shape. The abundance of small drops, tending

towards infinity as drop volume approaches 0, also creates problems when performing

numerical integration of the distribution.
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Figure 2.3: Comparison of drop size distributions as a function of diameter, D:

Marshall-Palmer, dotted black line; Exponential, black dashed line; Volume Gamma,

black solid line; Modified Gamma with fixed shape 1.8102, red solid line.
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In order to address these shortcomings but also stay as consistent as possible with

the original DSD shape used by the model (more complex shape than a simple expo-

nential distribution), several attempts were made to fit the modified gamma distribution

to the available parameters, N and qr, which can be expressed in terms of the zeroth

and third moments of the distribution, respectively. Starting from the expression for

the moments of the modified gamma distribution:

∫ ∞
0

N0D
ne−ΛDdD = N0Γ(n+ 1)Λ−(n+1) (2.76)

and substituting for the zeroth and third moments yields:

N = D0 (2.77)

= N0Γ(1 + µ)Λ−(µ+1) (2.78)

qr =
ρlπ

6
D3 (2.79)

=
ρlπN0

6
Γ(4 + µ)Λ−(µ+4) (2.80)

By taking the ratio of N and qr the complex Γ functions (as well as N0) can be elimi-

nated:

qr
N

=
ρlπ

6
(µ+ 3)(µ+ 2)(µ+ 1)Λ−3 (2.81)

In order to reduce this expression further, a set of constraints is needed to be able to

calculate a unique set of distribution parameters from the model prognostic variables

(this is an under-determined problem otherwise since there are three parameters but

only two model variables).
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One option for the constraint is the constrained gamma distribution of Zhang et al.

(2001). This work demonstrated, using empirical data, that the value of shape of the

distribution, µ, largely can be predicted using the slope, Λ:

µ = −0.016Λ2 + 1.213Λ− 1.957 (2.82)

By substituting this into (2.81) above, a sixth order polynomial in Λ is obtained:

−4.096× 10−6Λ6 + 9.315 84× 10−4Λ5 − 0.070 592 688Λ4 + 1.779 763 33Λ3

+0.205 717 849Λ2 − 1.206 271 49Λ− 0.042 920 493 0 =
6

ρlπ

qr
N

Λ3

(2.83)

Solving this polynomial is problematic, since it potentially has six roots for a given

qr and N pair; fortunately, in practice, there are only up to two real, positive roots.

This still leaves a problem of picking between one of two physically valid solutions.

One possible strategy is to pick the value closest to a moderate value of Λ; we choose

10 mm−1 for illustration here, but others options tested include: maximum Λ, mini-

mum Λ, closest to 10 mm−1, and closest to µ of 2, using (2.82). The value of 2 was

chosen to reflect a representative value, chosen from the empirical data shown in Zhang

et al. (2001).

Figure 2.4 shows the consequences of solving the sixth order polynomial to find

the Λ value. While the other distributions (exponential, modified gamma with fixed

shape, and volume gamma) show nearly identical distributions of radar reflectivity

factor (calculated using a sample set of model liquid water content and number con-

centration), the constrained gamma distribution shows instead two distinct bands. It is

likely that each of the two bands represent one of the families of roots being chosen

from the two possible physical solutions to (2.83). This behavior is carried across all
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Figure 2.4: Comparison of radar reflectivity values calculated at X-band for different

drop size distributions, using the same number concentration and liquid water content

taken from sample model output. These distributions are: exponential distribution,

upper left; volume gamma, upper right; modified gamma with fixed shape, lower left;

gamma constrained, lower right.
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Figure 2.5: As in 2.4, but for calculated ZDR.

of the moments: ZDR (Figure 2.5), KDP (Figure 2.6), AH (Figure 2.7), and AD (Fig-

ure 2.8). This behavior of two distinct bands of behavior is present regardless of the

method used to choose between the two solutions, though the details of the bands do

vary based on the method.

In light of the problems of using the Λ − µ relation of Zhang et al. (2001) to con-

strain the distribution, we chose instead to use the conservation of the sixth moment

of the diameter distribution as the necessary constraint to allow calculating all three

parameters of the distribution. This was chosen both because the combination of the

zeroth, third, and sixth moments allows the math to be tenable and because conserv-

ing the sixth moment of the distribution is approximately the same as conserving the
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Figure 2.6: As in 2.4, but for calculated KDP .
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Figure 2.7: As in 2.4, but for calculated horizontal attenuation, AH .
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Figure 2.8: As in 2.4, but for calculated differential attenuation, AD.

equivalent radar reflectivity factor (under the Rayleigh approximation). These three

moments of the modified gamma distribution can be expressed as:

D0 = N0Γ(µ+ 1)Λ−(µ+1) (2.84)

D3 = N0Γ(µ+ 4)Λ−(µ+4) (2.85)

D6 = N0Γ(µ+ 7)Λ−(µ+7) (2.86)

In order to eliminate N0 and Λ, these moments can be combined into a unitless ratio:

D3
2

D0D6
=

Γ(µ+ 4)Γ(µ+ 4)

Γ(µ+ 1)Γ(µ+ 7)
(2.87)

=
(µ+ 3)(µ+ 2)(µ+ 1)

(µ+ 6)(µ+ 5)(µ+ 4)
(2.88)
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In order to find a value for the left hand side of (2.88), we start by noting the following

relation between the moments of the diameter distribution and the moments of the

volume distribution

V n =
(π

6

)n
D3n (2.89)

The relevant moments of the volume distribution from (2.72) above are:

V 0 = N (2.90)

V 1 = NV0 (2.91)

V 2 = NV 2
0

ν + 2

ν + 1
(2.92)

Combining these with (2.89) yields the desired left hand side of (2.88):

D3
2

D0D6
=

(
6
π

)2
(NV0)2

N(
(

6
π

)2
NV 2

0
ν+2
ν+1

)
(2.93)

which simplifies to:

D3
2

D0D6
=
ν + 1

ν + 2
(2.94)

Since ν is specified by the model (−0.8 here), this reduces (2.88) to a simple polyno-

mial:

5

6
µ3 +

7

2
µ2 − 4

3
µ− 14 = 0 (2.95)

This polynomial, fortunately, has only a single real root, 1.810 283 293 877 15. Us-

ing this value for the shape parameter of the modified gamma distribution yields a dis-

tribution that matches the number concentration, liquid water content, and Rayleigh

approximation radar reflectivity factor of the distribution of the model. Figure 2.9

provides evidence that this procedure works by comparing the liquid water content
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Figure 2.9: Comparison of liquid water content calculated from the fit modified gamma

distribution with that of the original model. All values lie along the 1-1 line, indicative

that the procedure works to conserve water content.

calculated from the fit distribution against that which was present in the original model

output. All values lie along the 1-1 correspondence line, indicating that value used to

calculate the parameters of the distribution are able to be retrieved again.

The improvement in the shape of the distribution obtained by using the modified

gamma distribution is clear in Figure 2.3. By using this modified gamma distribution,

the number of drops as a function of diameter has a subjectively better shape (c.f.

Figure 2 in Ulbrich (1983)); the abundance of small drops is addressed, as is the lack

of larger drops. Looking at the calculated dual-pol parameters, these changes to the

distribution manifest in subtle ways. First, as shown in Figure 2.5, there is a 0.5 dB

difference in peak ZDR values; this is likely the product of shifting liquid water mass

from small spherical drops to larger, aspherical drops. Both AH (Figure 2.7) and KDP
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(Figure 2.6) have smaller values when using the modified gamma distribution as well.

ZH and AD are relatively unaffected by changes between these distributions. Overall,

this points to a sensitivity of the calculated moments to the drop size distribution;

while not surprising, this does emphasize the importance of using a distribution that

best matches real world observations. In this case, reality much better reflects the

modified gamma distribution for diameter rather than the volume gamma distribution.

2.1.2.2 Atmospheric refractive index

To allow ray tracing of the radar pulse propagation path, the index of refraction is

calculated from the model temperature, T , water vapor pressure, e, and air pressure, p,

using the relation (Bean and Dutton 1966, chap. 1)

n =

(
Cdp

T
+
Cw1e

T
+
Cw2e

T 2

)
× 10−6 + 1 (2.96)

where Cd, Cw1, Cw2, have values 0.776 K Pa−1, 0.716 K Pa−1, and 3.7× 103 K2 Pa−1,

respectively.

2.1.2.3 Radial velocity

To simplify calculations and reduce run-time memory requirements, the u, v, and w

wind components are reduced to a radial velocity value based on the known location

of the radar relative to the model grid. The radial velocity, Vr, is calculated by the

projection of the total wind velocity vector onto the radar beam:

Vr = (u sin θ + v cos θ) cosφ+ (w − wt) sinφ (2.97)

where u is the x-component of the wind, v is the y-component of the wind, w is the

z-component of the wind, wt is the average terminal fall speed for the hydrometeors, θ
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is the azimuth angle measured clockwise from north, and φ is the elevation angle. The

average hydrometeor terminal fall speed for the grid box is calculated as a backscatter

cross-section-weighted average given by:

wt = η−1

∫ Dmax

0

σb(D)Vt(D)N(D) dD (2.98)

where η is the total reflectivity at the grid point, σb(D) is the backscatter cross-section,

and Vt(D) is the terminal fall speed as a function of diameter, which is calculated using

the fit of Brandes et al. (2002):

wt(D) = −0.1021 + 4.932D−0.9551D2 + 0.079 34D3−2.362× 10−3D4 (2.99)

By using a backscatter cross-section-weighted mean, the terminal velocity better re-

flects that which would be observed by the radar.

2.1.3 Sampling of input fields

To sample the virtual model atmosphere, the simulator calculates radar observables

along the path of individual pulses at the interval specified by the pulse repetition

time (PRT). This allows the input model fields, as well as the state of the radar (such

as antenna pointing angle) to change for individual pulses. While the simulator is

currently configured for a mechanically scanning antenna, pulse-by-pulse calculation

can be used to simulate measurements for a phased-array radar as well. The pulse

generated within the simulator defines the volume of space that contributes to a sample

taken along the radar beam. It is bound in elevation and azimuth by a fixed multiple of

the half-power beamwidth. This multiple is chosen based on the number of sidelobes

that are desired for simulation in the antenna pattern. The pulse is bound in range
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by the specified pulse length. This volume of space is subdivided into individual pulse

elements, such that, at the maximum range from the radar, the dimensions of each pulse

element are ten percent smaller than the model grid voxel at that range–ensuring that

the pulse element spacing is always finer than the model grid spacing in any direction.

The pulse itself is propagated through the numerical grid using a ray-tracing tech-

nique. For each range gate, the height of each horizontal slice of pulse elements is

determined separately by taking into account the atmospheric index of refraction expe-

rienced by that particular ray element. This allows for differential propagation across

the vertical plane of the radar beam. Since any part of the pulse that encounters the

ground stops propagating, this allows for partial beam blockage. This is more useful

if terrain data are available rather than the uniform ground level present in most model

simulations. The change in the height above ground, ∆h, and change in range from

the radar (along the surface of the Earth), ∆r, can be calculated from the incremental

change in range along the path, ∆s, as

∆h =

√
h2 + ∆s2 + 2h∆s

√
1− C2

n2h2
(2.100)

∆r = a arcsin (
C∆s

nh(h+ ∆h)
) (2.101)

C = n0a cosφ (2.102)

where a is the radius of the earth, h is the previous height of the element above ground,

n is the index of refraction at height h, n0 is the index of refraction at the radar, and

φ is the initial elevation angle of the element (Doviak and Zrnić 1993). The element’s

range from the radar along the surface of the earth is then converted to standard two-

dimensional Cartesian coordinates, which are used to determine the location of the

element on the model grid.
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The pulse volume is allowed to propagate through the environment as far as twice

the unambiguous range, Ra,

Ra =
cTs
2

(2.103)

where Ts is the PRT and c is the speed of light. Allowing the pulse to propagate 2Ra

from the radar means that after one PRT from the time the radar is started there are

two pulses propagating through the model field at any given instant. When a sample

is taken, the returns from both pulses are assigned to the gate, producing the effects of

range aliasing.

During propagation, each pulse element is assigned values of attenuation, propaga-

tion phase shift, reflectivity, and backscatter phase shift for both horizontal and vertical

polarizations, as well as values for radial velocity and co-polar cross-correlation coef-

ficient. These values correspond to the grid point nearest to the element’s location in

space. Nearest neighbor sampling is chosen over trilinear (or other more sophisticated)

interpolation to improve the computational efficiency of the simulator. Since the pulse

elements are generally much smaller than the grid cells, this sampling method pro-

vides sufficient accuracy. The entire pulse volume is stepped forward in range while

keeping track of the total attenuation and propagation phase shift along the path, for

both polarizations. This running total is kept for each pulse element, which allows for

the calculation of differential (in a geometric sense, not polarimetric) attenuation and

phase shift across the pulse.
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2.1.4 Sampling the pulse

As the pulse is propagated through the model grid of the simulated atmosphere, it is

periodically sampled at an interval in range dictated by the specified gate spacing. This

allows for the gate and pulse lengths to be independent. When a pulse sample is taken,

two main processes happen: time series data are generated and pulse averaged values

are calculated.

2.1.4.1 Time series generation

Time series data are generated by combining the approaches used by Muschinski et al.

(1999) and Galati (1995); Torres and Zrnić (2003). The core of the procedure is to

simulate radar returns for a volume of space by treating each element of the discretized

pulse as a “scattering center” Muschinski et al. (1999) and assigning it a random,

complex signal value.

The complex values from every pulse element are summed together and added to a

complex random noise value to generate a single IQ sample (V ) for the range gate for

both horizontal and vertical polarization:

Vh,v = ANe
−jθN +

∑
k

Ak(h,v) (2.104)

where AN is the noise amplitude, θN is the noise phase, and Ak is the complex signal

amplitude of the kth pulse element. AN is calculated as the square root of a random

value of noise power, which is generated from an exponential distribution with an

expected value equal to the configured radar noise power (chosen to be the same as the

minimum detectable signal). θN is randomly generated uniformly between [0, 2π].
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To control the correlation between the two polarizations, the value of the co-polar

cross-correlation coefficient for the pulse element is used. This value is used as the

expected value for the cross-correlation between the horizontal and vertical channels,

and is used to combine two independent samples, w1 and w2, from a white, complex

Gaussian distribution Galati (1995):

Akh =
√
Pkhw1ke

−jθk (2.105)

Akv =
√
Pkv

(
ρHV kw1k +

√
1− ρ2

HV kw2k

)
e−jθk (2.106)

θk = θnk + δk + φk (2.107)

θnk = θn−1
k +

4πVrkTs
λ

(2.108)

θ0
k = 0 (2.109)

where Pkh and Pkv are the horizontal and vertical power, θnk is the initial phase for

the current pulse n, δk is the backscatter phase shift, φk is the propagation phase shift,

and the term involving Vrk (the radial velocity for the pulse element) represents the

Doppler phase shift (due to moving scatterers). δk and φk are those appropriate for the

pulse element being calculated. The phase of w1 and w2 for each pulse element is kept

constant. This allows each individual pulse element to have a uniformly distributed

random initial phase and to track the total phase shift due to the motion of scatterers

(Muschinski et al. 1999). This approach for controlling the correlation of the horizontal

and vertical channels assumes that each polarization has the same sample-time auto-

correlation function and that the cross-correlation function is just the cross-correlation

coefficient times the autocorrelation.
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The horizontal and vertical powers are calculated as:

Pk =
Ptg

2λ2f 4(θk, φk)|W (r0, r)|2ηk
(4π)3l2k(r)r

2
∆r sinφk ∆φ∆θ (2.110)

where Pt is the transmitted power, g is the system gain, λ is the wavelength, r is range

from the radar, l2k is the two-way attenuation factor, f 2 is the normalized, one-way

antenna pattern, θk is the azimuth angle relative to the beam center, φk is the elevation

angle relative to beam center, ηk is the reflectivity (backscattering cross section per

unit volume), and W is the range weighting function. ∆r, ∆φ, and ∆θ represent the

spacing between pulse elements in range, elevation, and azimuth, respectively. This

expression comes from making a discrete approximation to the integrand given by

Doviak and Zrnić (1993), where the power, P , for a sample taken at range r0 is given

by:

P (r0) =

∫∫∫
V

η(r)I(r0, r) dV (2.111)

where

I(r0, r) =
Ptg

2λ2f 4(θ, φ)|W (r0, r)|2

(4π)3l2(r)r4
(2.112)

dV = r2 drsin(φ) dφ dθ (2.113)

All random values are generated using the Mersenne Twister pseudorandom num-

ber generator (Matsumoto and Nishimura 1998). This generator is chosen because it

produces high-quality pseudorandom numbers with good run time performance and

has readily available source code.

The simulator assumes a Gaussian range weighting function and a normalized an-

tenna pattern with the following form (Doviak and Zrnić 1993, chap. 3)

f 2(θ) =

(
8J2((πDa sin θ)/λ)

((πDa sin θ)/λ)2

)2

(2.114)
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Figure 2.10: Simulator antenna pattern for a one-degree half-power beamwidth radar.

where J2 is the second-order Bessel function of the first kind, θ is the angular offset

from boresight and Da is the diameter of the antenna. Da for (2.114) above can be

calculated from the half-power beamwidth, θ1, as

Da =
1.27λ

θ1

(2.115)

where λ is the wavelength. Doviak and Zrnić (1993) state that (2.114) describes the

antenna pattern for the first few sidelobes quite well for a parabolic antenna. However,

it is limited in that it gives sidelobes of a fixed level and location (c.f. Figure 2.10),

prohibiting configuration of sidelobes with arbitrary magnitude.

2.1.4.2 Pulse averaged values

Pulse averaged values are a way to generate a single data value for the pulse to rep-

resent a radar observable. These averages include the antenna and range weighting

functions, as well as reflectivity weighting where appropriate. These are useful for

inter-comparison with the time series data, as they are not contaminated with noise or
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other artifacts that occur with IQ-based estimates. Consequently, they are useful for

generating moments for use as truth fields representing the best case for radar observa-

tions. They are also useful if time-series data generation is not desired and the simpler

averages give sufficient realism for the application.

Several values are calculated currently: power (P , both horizontal and vertical),

power-weighted average radial velocity (Vr), power-weighted radial velocity variance

(σvr), power-weighted average KDP , and power-weighted differential backscatter ph-

ase (δhv). The power-weighting for the latter two variables only include antenna and

range weighting. KDP is treated differently because it is a propagation-based variable.

δhv is so weighted because its use is not intended as true moment data, but rather as

a diagnostic tool to see what areas might be impacted by its presence. Thus, only a

representative average is needed. The power-weightings are performed over all of the

pulse elements as follows, where Pk is as in (2.110):

P =
∑
k

Pk (2.116)

Vr =

∑
k PkVrk

P
(2.117)

σvr =

∑
k PkV

2
rk

P
− Vr

2
(2.118)

KDP =

∑
k f

4(θk, φk)|W (r0, r)|2(KHk −KV k)∑
k f

4(θk, φk)|W (r0, r)|2
(2.119)

δhv =

∑
k f

4(θk, φk)|W (r0, r)|2(δHk − δV k)∑
k f

4(θk, φk)|W (r0, r)|2
(2.120)

where quantities with the k subscript represent those for the kth pulse element.
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2.1.5 Moment calculation

The sampling of model data is repeated for the number of pulses that are to be averaged

for a radial of data, as specified by the scanning strategy. Moment data (horizontal

and vertical power, Doppler velocity, Doppler spectrum width, specific differential

phase, and backscatter differential phase) are then generated at each range gate along

the radial. Power, specific differential phase, and backscatter differential phase are

calculated as the average of all their respective samples for the specified number of

pulses at that range gate. Radial velocity is calculated as the power-weighted average

of all velocity samples (one per pulse) at that range gate. To simulate velocity aliasing,

this average is restricted to a value within the Nyquist interval and is given by:

Va = Vr + 2nVNY Q (2.121)

where

n =



0 for |Vr| <= VNY Q

VNY Q−Vr
2VNY Q

− 1 for Vr > VNY Q

1− VNY Q+Vr
2VNY Q

for Vr < −VNY Q

(2.122)

where Va is the aliased velocity value, Vr is the original (unaliased) radial velocity,

VNY Q is the Nyquist (or aliasing) velocity, and n, an integer, is the number of Nyquist

intervals by which the Va differs from Vr. One advantage of simulated data is that

the unaliased Doppler velocity is known and can be output as well. This is useful for

testing dealiasing algorithms or when one wishes to eliminate velocity aliasing from

the problem under consideration.

Spectrum width is calculated as the square root of the power-weighted average

of the variance for each sample, which is the variance of all velocity values within
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the pulse. Initial attempts at simulating spectrum width used only the variance of the

individual velocity samples that were themselves an average over the entire pulse. That

approach yielded unreasonably low spectrum width values. By taking into account the

variance of all velocity values within all pulses, the spectrum width reflects the effects

of antenna rotation and wind shear across the radar beam; however, the sub-grid scale

atmospheric turbulence is neglected. Moreover, since this method does not use a true

power spectrum at each range gate, this simulated spectrum width does not take into

account a limited Nyquist interval. This option exists as a holdover from an earlier

version and it is recommended to use spectrum width values generated from time-

series data as they will be much more representative of real-world behavior.

In addition to the moments above, equivalent reflectivity factor (Ze) is calculated

from the average power using:

Ze =
210 ln 2λ2r2Pr

π3Ptg2θ2
1cτ |KW |2

(2.123)

where τ is the pulse duration.

To estimate moments from time series data, the standard autocorrelation-based

methods are used. The single polarization moments, power (P̂ ), mean Doppler veloc-

ity (V̂r), and Doppler spectrum width (σ̂v) are calculated as (Bringi and Chandrasekar

2001, chaps. 5 and 6):

R̂(l) =
N−l−1∑
n=0

V (n+ l)V ∗(n) (2.124)

P̂ = R̂(0) (2.125)

V̂r =
−λ

4π Ts
arg R̂(1) (2.126)

σ̂v =
λ

2π Ts
√

2

[
ln

∣∣∣∣∣R̂(0)

R̂(1)

∣∣∣∣∣
] 1

2

(2.127)

52



where R̂(l) is the autocorrelation at lag l. The dual-polarization moments are estimated

as (Bringi and Chandrasekar 2001, chaps. 5 and 6):

R̂v,h(l) =
N−l−1∑
n=0

Vv(n+ l)V ∗h (n) (2.128)

ẐDR =
P̂h − N̂h

P̂v − N̂v

(2.129)

|ρ̂co| =
|R̂v,h(0)|√
P̂hP̂v

(2.130)

φ̂DP = arg R̂v,h(0) (2.131)

where R̂v,h(l) is the co-polar cross-correlation and N̂h and N̂v are noise power esti-

mates for the horizontal and vertical channels, respectively. The simulator’s config-

ured noise power is used for these values, which represents a best case scenario. In

addition, KDP is calculated as:

K̂DP (r) =
φ̂DP (r + ∆r)− φ̂DP (r −∆r)

2 ∆r
(2.132)

which is a centered-difference approximation to the 1st derivative of φ̂DP . This ap-

proach is chosen purely for ease of implementation to demonstrate the generation of

K̂DP data. Such estimates are not used in practice (and will not be used in future work)

because the discrete difference amplifies the noise in the original data.

2.2 Demonstration

Simulated data were generated for different radar characteristics to illustrate the simu-

lator’s capabilities to simulate dual-polarization radar data as a function of radar wave-

length. The source simulation used as input is a COMMAS model simulation of multi-

cell convection. The COMMAS model is a storm-scale model that includes prognostic
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Figure 2.11: Rain water content, shaded contours, and horizontal wind, vectors, for

the COMMAS simulation used to produce the sample datasets.

equations for momentum, pressure, potential temperature, and turbulent kinetic energy

(Wicker and Wilhelmson 1995). This particular simulation was run on a grid with a

uniform spacing of 100 m in x, y, and z, initialized using a series of buoyancy per-

turbations. The microphysics are a modified version of those described by Ziegler

(1985), but include only liquid-phase hydrometeors. The simulated data here rely on

a single time step 3600 s from the start of the simulation. A plot of the winds and rain

concentration from 350 m AGL is shown in Figure 2.11.

Note that all radar simulations that follow were run using the same random num-

ber seed, 4346. This reduces variations due to different realizations of the sequence

of random numbers in the Monte Carlo simulation. In fact, if the same number of
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Antenna gain 45.5 dB

Peak power 250 kW

First range gate 500 m

Noise power −113 dBm

Elevation 0.5◦

PRT 0.667 ms

Rotation Rate 20 ◦ s−1

Pulses per radial 75

Gate length 125 m

Antenna Limits Main-lobe only

Table 2.2: Radar and scanning parameters common to the example simulations.

Experiment C CBW CRW S X

Wavelength 5 cm 5 cm 5 cm 10 cm 3.21 cm

Beamwidth 1.0◦ 2.0◦ 2.0◦ 1.0◦ 1.0◦

Radial Spacing 1.0◦ 1.0◦ 2.0◦ 1.0◦ 1.0◦

Table 2.3: Parameters of note for the example simulations

random numbers are used (affected by number of pulses and number of sub elements

in a pulse), there are no differences in the simulated output due to the Monte Carlo

simulation. Table 2.2 lists the common parameters used to define the radar and scan-

ning strategy for the examples that will be shown. The capabilities highlighted here

focus on broad scale changes to radar capabilities: wavelength, beamwidth, antenna

pattern, and radial size. The parameters varying across these examples are outlined

in Table 2.2. The following sections examine the results from these simulations and
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highlight features that capture effects observed in real-world data.

2.2.1 Wavelength

The experiments S, C, and X highlight the differences at these different respective

wavelengths. The base configuration is for a typical radar with a 1.0◦ two-way 3 dB

beamwidth, transmitting 250 kW of peak power.

At S-band, the horizontal reflectivity factor (ZH) in Figure 2.12 shows a mutli-

cell storm complex. The Doppler velocity field shows two distinct areas of surface

divergence, evidenced by the couplets of in-bound, and then out-bound, velocities as

one moves down the radial away from the radar. Looking at the PPI of horizontal

attenuation, there is a peak in total attenuation of about 2.5 dB. Turning to the dual-

polarization moments in Figure 2.13, the ZDR field agrees well with that of ZH , with

higher values of ZDR, indicative of more oblate drops, co-located with higher reflectiv-

ity values. For most of the area of weather signal, the values of ZDR range from 0 dB

to 2.5 dB. At the far range from the radar (along 0◦ azimuth), there are some negative

values of ZDR; these are not representative of intrinsic values from the precipitation

particles, but rather are caused by differential attenuation. This is validated by panel

(d) in Figure 2.13, where the AD field shows a peak value of approximately 0.5 dB

of attenuation. Along with the ZDR field, the ρHV and ΦDP fields look as typical for

weather. The ρHV values are very close to 1.0 for the weather, with small departures,

as low as 0.99. The ΦDP field shows an overall monotonic increase with range from

the radar.

Figure 2.14, for comparison, shows the same fields as Figure 2.12, but for a radar

operating at C-band. Since the wind field in this multi-cell complex is relatively weak,
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Figure 2.12: Plan Position Indicators (PPI) of the basic moment data for the base S

experiment: (a) Horizontal Reflectivity Factor (ZH) (b) horizontal Doppler velocity

(VRH) (c) horizontal Doppler spectrum width (σvH) (d) horizontal attenuation (AH)
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Figure 2.13: Plan Position Indicators (PPI) of the dual-polarization moment data for

the S experiment: (a) Differential Reflectivity Factor (ZDR) (b) differential phase

(ΦDP ) (c) co-polar cross-correlation coefficient (ρHV ) (d) differential attenuation (AD)
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Figure 2.14: As in Figure 2.12, but for the C experiment.
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Figure 2.15: As in Figure 2.13, but for the C experiment.
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the Doppler fields show no significant differences from those at S-band. However,

the reflectivity field at C-band shows a pronounced decrease in intensity with range

when compared to that for S-band. This is an effect of attenuation, which panel (d)

in Figure 2.14 shows is over 20 dB. For the dual polarization moments, shown in

Figure 2.15, the most prominent difference is the presence of differential attenuation,

which is over 5 dB for a significant portion of the data around 0◦ azimuth. This greatly

degrades the quality of the ZDR data, which now drops to negative values beyond

10 km range. The ρhv field also shows some differences, with values around 0.98

within the weather. Much of this decrease is caused by noise biasing the ρhv estimates

where attenuation has decreased the signal intensity. The PPI of ΦDP also shows the

impact of changing wavelength, where the peak values have doubled from 100◦ at

S-band to 200◦ at C-band, which is consistent with scattering theory.

At X-band, the single polarization moments (Figure 2.16) show very large differ-

ences from S-band due to the effects of attenuation. The PPI of ZH shows a swath of

data along 0◦ azimuth where the signal is completely extinguished; the calculated at-

tenuation in this region is up to 100 dB. As a result, the Doppler velocity and spectrum

width moment data in this same region are unavailable, with only noise being detected.

In Figure 2.17, the dual-polarization moment data also show the effects of increased

attenuation. The field of ZDR is almost entirely negative, owing to differential attenu-

tion, which has a peak value of 16 dB. The field of ΦDP , where the signal has not been

extinguished, shows a peak of 250◦.
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Figure 2.16: As in Figure 2.12, but for the X experiment.
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Figure 2.17: As in Figure 2.13, but for the X experiment.
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2.2.2 Antenna

To demonstrate the impacts of changing antenna configuration, the configuration de-

scribed as CBW in Table 2.3 changes the configured width of the mainlobe to 2◦, while

keeping the azimuthal sampling interval of the data at 1◦.

Figure 2.18 shows the impact of this configuration change on the single polariza-

tion data, which is to smear the data across radials. This effect is most visible at the

edges of the mutli-cell complex, where the change in beamwidth causes the apparent

azimuthal extent of the complex to increase. One can also see areas of weak reflectivity

in the original data (Figure 2.14) that are filled with larger values in the data taken with

a larger beamwidth. The dual-polarization moments (Figure 2.19) show similar effects

with regard to smearing. The ρhv data also show values with decreased magnitude as

a result of the larger sampling volume.

2.2.3 Sampling

The last of the demonstration cases considered here examines changing the azimuthal

sampling interval, independent of beamwidth, as specified by the CBW experiment.

This experiment modifies the sampling width by just doubling the number of sam-

ples used to calculate the data for a radial, from 75 to 150; this changes the azimuthal

sampling interval from 1.0◦ to 2.0◦. For this configuration, the 2◦ beamwidth from

the CBW experiment has been kept, so that these data have matching sampling inter-

val and beamwidth. Figure 2.20 shows the single-polarization moment data for this

configuration, while Figure 2.21 shows the dual-polarization data. Compared to the

data for the CBW experiment shown in the previous section, these data generally look
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Figure 2.18: As in Figure 2.12, but for the CBW experiment.
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Figure 2.19: As in Figure 2.13, but for the CBW experiment.
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Figure 2.20: As in Figure 2.12, but for the CRW experiment

blurred, with features showing much less distinction. This makes sense since each

radial in this data is the combination of two radials from the CBW data.

67



Figure 2.21: As in Figure 2.13, but for the CRW experiment
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2.2.4 Time Series

As an example of time series data generation capabilities, Figure 2.22 shows the IQ

data and power spectral density (PSD), for both the horizontally and vertically polar-

ized channels, from an area around the main updraft of the storm for the S experiment.

This region is chosen to give strong returns and moderate velocity. The PSD is calcu-

lated from the IQ data using the periodogram (Harris 1978) with a Hanning window

and data padded to 128 samples. The PSD shows a distinct peak around 7 m s−1 with

a shape around that peak that generally resembles a Gaussian distribution. The hori-

zontal and vertical channels are slightly different in this case, with the vertical channel

having slightly less power at all velocities, due to the intrinsic ZDR. The fact that this

occurs at all velocities is a consequence of the power from the main signal leaking into

the other frequencies. This effect is not seen in Figure 2.23, which shows a similar

plot for a region that does not contain any weather signal. Instead, the H and V chan-

nels show little correlation in the PSD, and there is no systematic bias between the

channels.
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Figure 2.22: Plots of time series information for the S-band example. These data are

from the main core of the storm at 355.5◦ azimuth and 25.5 km range. (a) Horizontal IQ

data, (b) Vertical IQ data, (c) Power spectra for horizontal (blue) and vertical (green)

channels.
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Figure 2.23: As in Figure 2.22, but at 342.5◦ azimuth, corresponding to an area devoid

of weather echo, showing data for pure noise.
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Chapter 3

Attenuation Correction

While significant research effort has been put into radar-based QPE, especially using

dual-polarization radar data, there are still significant problems. Attenuation is an im-

portant problem in the use of dual-polarization radar data at any wavelength for QPE.

Even at S-band, where attenuation of a single channel may not be significant, differen-

tial attenuation can significantly bias the calculation of differential reflectivity. When

biased differential reflectivity values are fed into a power-law-based QPE algorithm,

this bias is exacerbated. With the increasing use of radar systems at attenuating wave-

lengths (such as C- and X-band), the problem of correcting data for attenuation has

been an area of active research.

3.1 Techniques

The basis for most radar rain attenuation correction schemes is in estimating the attenu-

ation using other radar observables, such as reflectivity factor or, for dual-polarization

radars, differential propagation phase. In this work, we examine several correction

algorithms: Linear, ZPHI, Self-Consistent, and Modified Self-Consistent.
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3.1.1 Linear

The Linear method, put forth by Bringi et al. (1990), is the most straight-forward of

the attenuation-correction methods. This method uses a direct relationship between

specific differential phase, KDP , and both specific horizontal attenuation, AH , and the

specific differential attenuation, AD:

AH = γHK
βH
DP (3.1)

ADP = γDK
βD
DP (3.2)

The coefficients in these relations are found by calculating the radar observables, com-

bining theoretical scattering calculations and measured drop size distributions. For this

algorithm, AH and ADP are regressed against KDP , resulting in values for βH and βD

that are close to 1.0, though not exact. By prescribing a value of 1.0 for the exponents

in these relations, not only are the relations simplified, but the need to calculate KDP

is entirely removed. Then simple integration of (3.1) and (3.2) above results in the

following set of equations:

aH(r) = γHΦDP (r) (3.3)

aD(r) = γDΦDP (r) (3.4)

Thus, (3.3) (and (3.4)) above describes a completely linear relation between the path

integrated (differential) attenuation, aH (and aD) at a range, r, and the measured dif-

ferential phase, ΦDP , at that range. By eliminating the use of KDP , the problem of

estimating a derivative from noisy data is avoided. For this technique, there is one free

parameter in each equation, γ, that relates attenuation (or differential attenuation) to

ΦDP ; this parameter is empirically determined by a power-law regression on theoreti-

cal scattering calculations performed using drop size distribution data.
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This technique has several shortcomings. First, the exponent in the best fit curve

is not necessarily 1.0; by prescribing such a value, errors are necessarily introduced

(albeit in the name of simplicity and operational robustness of the technique). Second,

while KDP calculation is avoided, with all its inherent challenges, the ΦDP data can

still be contaminated by effects of non-uniform beam-filling and differential back-

scatter phase. Quality control must be performed on the data to ensure that such effects

do not result in anomalous attenuation correction. Finally, the relationship between

attenuation and ΦDP is sensitive to the assumptions made in the scattering calculations.

If the actual atmospheric conditions and processes differ from those assumed (e.g.

temperature or drop shapes), the Linear technique will be unable to compensate for

these differences and thus yield less accurate results.

3.1.2 ZPHI

To address shortcomings in the Linear ΦDP algorithm, Testud et al. (2001) proposed

the ZPHI technique, based on an algorithm to correct for attenuation in satellite pro-

files. The core relation in this technique is between reflectivity and attenuation, as

described by Hitschfeld and Bordan (1954). The Hitschfeld and Bordan (1954) algo-

rithm is improved upon by providing a constraint for the total path attenuation. For
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satellites, this is provided by the ground; for terrestrial radar applications, this con-

straint is provided by estimating the total path attenuation from the total change in

ΦDP along the path. The full technique is described by the following set of equations:

I(r, r0) = 0.46b

∫ r0

r

Zb
a(s) ds (3.5)

A(r0) =
Zb
a(r0)

I(r1, r0)
{100.1bγ∆Φ − 1} (3.6)

A(r) =
Zb
a(r)

I(r1, r0) + {100.1bγ∆Φ − 1}I(r, r0)
× {100.1bγ∆Φ − 1} (3.7)

Essentially, the technique works by calculating the total attenuation from the total

path change in ΦDP , and distributing the total attenuation along the path based on

the (attenuated) reflectivity values. It should be noted that the process of relating the

total path-integrated attenuation to ΦDP implicitly makes use of the same assumptions

as the Linear ΦDP algorithm. To correct for differential attenuation, the horizontal

and vertical reflectivities can be corrected for attenuation separately; then corrected

differential reflectivity can be calculated from the individual reflectivities.

This technique has several strengths versus the Linear ΦDP algorithm. By relying

on the relationship between reflectivity and attenuation, the ZPHI algorithm is much

less sensitive to assumptions made about the scattering process. This dependence is

captured by b, which is a free parameter that is empirically determined from scattering

calculations. Also, by using ΦDP only to calculate the total path attenuation, the prob-

lems of non-uniform beam-filling and differential backscatter phase are limited; only

the total change in ΦDP is needed, nominally reducing the requirements to two good

values of ΦDP .
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However, the technique is not immune to the problems of invalid scattering as-

sumptions. The γ above is the same as that for the linear ΦDP algorithm; the same sen-

sitivity to assumptions is present in estimating the total attenuation from ΦDP . Thus,

depending on actual atmospheric conditions, the total attenuation may be under- or

over-estimated.

3.1.3 Self-Consistent

The self-consistent attenuation correction algorithm was introduced by Bringi et al.

(2001) as an improvement on ZPHI. As the name suggests, this method relies on the

internal consistency of the data, in particular attenuation and ΦDP . This method itera-

tively performs the ZPHI correction to try to find an optimal value for the γ coefficient,

attempting to address the sensitivity to scattering processes. The “optimal” value of γ

is found by minimizing the mean absolute difference between the true profile of ΦDP

and a calculated profile of ΦDP ; this profile is calculated from the algorithm’s esti-

mated profile of attenuation using an inverted form of the Linear ΦDP relation with the

value of γ being tested. The procedure is explicitly defined as:

φcDP (r; γ) = 2

∫ r

r0

Ah(s; γ)

γ
ds (3.8)

γmin ≤ γ ≤ γmax (3.9)

Error =
N∑
j=1

∣∣∣Φfilt
DP (rj)− Φc

DP (rj; γ)
∣∣∣ (3.10)

The advantage of this technique is its ability to address the sensitivity of the al-

gorithms to assumptions about scattering processes; however, only the γ coefficient

(relating attenuation to ΦDP ) is optimized. The b coefficient (relating attenuation and

reflectivity) remains fixed; while this coefficient is much less sensitive to scattering
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assumptions, this is a limitation to the adaptiveness of the technique. Additionally, by

using the linear ΦDP relation, there is still the assumption that the power in the power

law relation between KDP and attenuation is 1.0; such an assumption is a limitation

to the attenuation model prescribed by the equations and cannot be addressed by the

adaptive procedure. Also, while this technique is robust in theory, in our testing we

have observed that the technique can have convergence problems, especially on rays

with limited data. Such problems are not limited to individual rays, unfortunately, but

extend across small regions. For such rays, the procedure is not truly converging, but

is stopping at the bounds prescribed by the algorithm’s optimization procedure.

3.1.4 Modified Self-Consistent

In the course of examining the behavior and performance of the self-consistent method,

some artifacts were observed. One problem was that for rays with little data coverage

(and small total attenuation and ΦDP ), the errors were drastically larger. The poor

performance for these rays comes as a result of the optimization procedure not being

able to converge to a value within the specified bounds for γ; consequently, an anoma-

lously large or small value for γ results. The second problem observed was that the

algorithm showed an oscillating pattern as a function of azimuth, alternating between

slightly greater and slightly less than true attenuation for several rays at a time. Fig-

ure 3.1 shows the values of the optimized γ as a function of azimuth. Comparing the

estimated values to true values calculated from simulated data, the rays with bad (non-

converged) values are clearly visible. One can also see changes in the converged value

of γh that do not correspond to changes in the true optimal value of γh.

77



40 20 0 20 40
Azimuth

0.00

0.05

0.10

0.15

0.20

0.25

B
e
st

 

Raw
True
Median

Figure 3.1: Distribution of γh values as a function of azimuth. Values obtained from

optimization in the self-consistent algorithm are in blue, while true values are in green.

The median of the optimized values is given by the dashed black line.
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Figure 3.2: Scatter plots of estimated specific attenuation for self-consistent (left) and

modified Self-Consistent (right) versus true specific attenuation values.

To address these shortcomings and increase the robustness of the Self-Consistent

algorithm, we introduce a Modified Self-Consistent algorithm. In this version, the

optimal values of γh from all rays is collected and the median γh value is calculated.

This median is used then as the optimal value of γh for all rays. As an example, the

median for the γh values given in Figure 3.1 is plotted as a horizontal line. While

this value is clearly greater than the true value in places (and less in others), it has the

beneficial behavior of removing outlier values as well as producing smoother results.

Figure 3.2 compares the estimates of specific attenuation for horizontal attenuation

(at C band) for both the modified and un-modified Self-Consistent algorithms. The

modified method shows a tighter clustering of values, due to the reduction in outlier

points. It also appears that the modified procedure introduces a slight negative bias,

with more points below the one-to-one correspondence line.
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The performance of this algorithm versus that of the unmodified Self-Consistent

method will be discussed further in later chapters.

3.2 Finding Coefficients

All of the algorithms described previously rely on free parameters to relate attenua-

tion to radar observables (i.e., reflectivity and ΦDP ). The original works (Bringi et al.

(1990), Testud et al. (2000), and Bringi et al. (2001)) determined these coefficients

empirically using regression on calculated radar observables. However, there are two

obstacles to the use of these values here. First, the scattering calculations used to gen-

erate these parameters were based on datasets of drop size distributions; because these

data would not match the prescribed drop size distribution that underlies the model

simulation, their use could introduce errors in the attenuation correction. While cer-

tainly such errors exist in real world applications of these techniques, the goal here is to

provide a best-case scenario for these techniques. As such, differences in assumptions

between the algorithms and the radar data simulation are minimized where possible.

The second challenge is that the original works have differing, or even undocumented,

assumptions regarding their scattering calculations; it is difficult to create a set of radar

simulation parameters that is known to completely match those assumptions made by

several different works.

The challenges with using exiting published coefficients necessitates the develop-

ment of a procedure for calculating a new set of regression parameters. This procedure

has the benefit of creating parameters that represent a best case scenario for algo-

rithm performance; since the assumptions used in generation of the parameters can be
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matched exactly in the process of radar data simulation, resulting errors are inherent

to the attenuation correction algorithm itself. Having such coefficients with precisely

known assumptions also allows for systematic testing of how violating these assump-

tions affects algorithm performance; this is the subject of the next chapter.

3.2.1 Scattering Calculations

To generate empirical fits between radar observables (i.e., KDP and reflectivity) and

(differential) attenuation values, we start with a set of scattering matrices calculated

using the T-matrix method, as outlined in the previous chapter. The relevant assump-

tions for the scattering calculations are given in Table 3.1. Using these assumptions,

the scattering matrices are calculated across a range of diameters from 0.01 to 8 mm.

Wavelength 5.5 cm, 3.21 cm

Temperature 283 K

Canting Angle Distribution Width 10

Shape Model Brandes et al. (2004)

Table 3.1: Parameters used in scattering calculations for regression coefficients

To turn the scattering matrices into KDP , reflectivity, attenuation, and differential

attenuation, we use equations (2.58) and (2.68), just as in the radar simulation. The

model simulation grid, which gives a set of rain water concentration (qr) and number

concentration (N0) values, functions as a set of relevant DSD data. Even when the

grid is thresholded to contain measurable rain (qr > 0.5 kg m−3 and N0 > 100 m−3),

there are still too many points to work with; as a result, we arbitrarily subset those

points by a factor of 100. In Figure 3.3 the resulting subset of the data is shown. These
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Figure 3.3: Scatter plot of rain water parameters used for regressions. Rain water

content (g m−3) is plotted along the x-axis and number concentration (m−3) is plotted

logarithmically along the y-axis.

data represent a wide spread of number concentration values, with the higher rainwater

content values clustered around a number concentration of 10 000 m−3. To turn these

two parameters into actual drop size distributions, a modified gamma distribution, as

described previously, is prescribed. Using the model-appropriate fixed shape parame-

ter of 1.81, we have sufficient information to generate a unique drop size distribution

for each rain content-number concentration pair.
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3.2.2 Regressions

For the attenuation correction techniques described previously, the following set of

empirical relations are required:

AH = γHKDP (3.11)

AV = γVKDP (3.12)

AH = aHZ
bH
H (3.13)

AV = aVZ
bV
V (3.14)

γH,V and bH,V are the empirical coefficients that need to be determined through regres-

sions on sets of AH,V , ZH,V , and KDP provided by the scattering calculations (aH,V

are unused in the algorithms). γH,V can be found in a straightforward fashion using

linear regression, while the bH,V can be found by using logarithms to transform the

power law regression into a linear regression problem. Figure 3.4 shows the results of

the regression (for both C- and X-bands) between reflectivity factor (ZH) and specific

attenuation (AH) at horizontal polarization. Qualitatively, the resulting fit does not ap-

pear to capture well the relationship between ZH and AH , especially at C-band; the

increasing error with increasing values of AH confirms this. Figure 3.5 shows simi-

lar problems with the fit for vertical polarization. Figures 3.6 and 3.7 show the same

analysis, but for the regression between specific differential phase (KDP ) and specific

attenuation at horizontal and vertical polarizations, respectively. The results here are

much less problematic; overall the curves seem to fit the raw values relatively well,

though for horizontal polarization the slope of the line looks, qualitatively, to be too

small.
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Figure 3.4: Results of applying regression on scattering data for C-band (left) and X-

band (right). The top panels show the raw calculated specific attenuation (AH) values

(red), as well as those calculated from the regression (blue), as a function of reflectivity

factor (ZH), for horizontal polarization. The bottom panels show the resulting error as

a function of the true specific attenuation values.

84



Figure 3.5: As in Figure 3.4, but for vertical polarization.
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Figure 3.6: Results of applying regression on scattering data for C-band (left) and

X-band (right). The top panels show, for horizontal polarization, the raw calculated

specific attenuation (AH) values (red), as well as those calculated from the regression

(blue), as a function of specific differential phase (KDP ). The bottom panels show the

resulting error as a function of the true specific attenuation values.
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Figure 3.7: As in Figure 3.6, but for vertical polarization.
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There are two main reasons for the poor regression fits. First, the set of points used

in the regression is dominated by points corresponding to low attenuation values; this

is a direct consequence of using the model grid’s precipitation fields as the source of

DSD data, as most of the model field that has precipitation is only filled with light

rain. Combined with the mathematics of linear regression, the curve that minimizes

the RMS error fits, for the most part, the numerous points at low attenuation values.

The errors from the lack of fit at high attenuation value are more than countered by the

fact that the line fits many points at low values. This particular problem affects both

the regressions using KDP and ZH,V .

The second problem, which only affects the regressions on ZH,V , come from the

reformulation of the power law fit as a linear regression. The logarithmic transforma-

tion of the data (to make it a linear problem), changes the measurement of errors. The

deviations of the regression curve from the data (i.e., subtraction between points) in

logarithmic space, actually represent ratios in the space of the original points being fit

with a power law. Effectively, the regression is minimizing the RMS of relative error

rather than that of absolute error. This has the effect of reducing the error contribution

of points at higher attenuation values. This effect explains why the regressions for

ZH,V were, qualitatively, less good than those for KDP .

One method to try to improve these fits would be to resample the model DSD fields

to remove the over-represented low attenuation values. To do so objectively would not

be simple; more importantly, this would not address all of the problems for the power

law regressions. Instead, we have chosen to use weighted linear regression, using the
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Figure 3.8: As in Figure 3.4, but for weighted regression.

square of the attenuation value as the weights. Doing so makes the larger attenua-

tion values have a greater impact on the regression, countering both the problems of

numerous low values and the logarithmic scaling.

Figure 3.8 shows the results when weighting is applied in the regression between

specific attenuation and reflectivity factor at horizontal polarization. Qualitatively, the

resulting curves do a much better job of capturing the relationship between AH and

ZH , especially at C-band. Quantitatively, the errors for high attenuation values are

greatly reduced, without greatly increasing the errors for small values of AH . The

results for vertical polarization (Figure 3.9) show similar improvements. Figures 3.10

and 3.11 do not show the same clear gains for the regression between KDP and AH ,

though there do appear to be slight improvements. Overall, the effect of weighting in
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Figure 3.9: As in Figure 3.5, but for weighted regression.
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Figure 3.10: As in Figure 3.6, but for weighted regression.
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Figure 3.11: As in Figure 3.7, but for weighted regression.
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the regression has been to create fits to the data that provide useful estimates for the

parameters needed in (3.14) above; the weighted regressions appear to capture well

the relationships between the radar observables. The final values for these parameters,

which will be used in the later chapters, are presented in Table 3.2.

C-band X-band

βH 0.770 618 335 0.621 43

βV 0.812 085 167 0.681 336 195

γH 0.100 147 590 397 957 04 0.331 560 153 770 154 5

γV 0.073 427 838 671 551 96 0.278 886 861 638 882 65

Table 3.2: Final parameter values from regression.
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Chapter 4

Modeling Errors in Attenuation Correction

The goal here is to examine and quantify the sensitivity of the previously described

algorithms to the assumptions made in calculating the coefficients used in those tech-

niques. Thus, it explores the impact of errors in modeling the relationships between the

radar variables. Such sensitivity of radar parameters has previously been demonstrated

by Aydin et al. (1989), Bringi et al. (1990), and Carey et al. (2000), among others. The

work here, carries the study of such sensitivity further by using fully-simulated radar

data as well as full algorithm implementations.

To perform this study, the radar data simulation procedure described previously is

used to generate data using different sets of assumptions. For each of these sets, the

attenuation correction algorithms are run to generate estimates of the attenuation field,

which are compared against the true attenuation field, as calculated by the radar simu-

lation. These comparisons are done for both C- and X-band, which permits exploration

of any differences between the two bands.

Table 4.1 lists the parameters common across all of the experiments involved in

studying the effects of modeling errors. To limit the impact of radar sampling geometry

on the results, the radar and scanning configuration is chosen to produce very high-

resolution data, higher than usually is encountered in real data; the effects of sampling

will be explored later. These parameters give radials with a spacing of 0.25◦, matching

the 3 dB beamwidth.
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Antenna gain 45.5 dB

Antenna 3 dB Beamwidth 0.25◦

Antenna Limits Main-lobe only

Peak power 250 kW

First range gate 500 m

Noise power −113 dBm

Elevation 0.5◦

PRT 0.667 ms

Rotation Rate 15 ◦ s−1

Pulses per radial 25

Gate length 100 m

Table 4.1: Radar and scanning parameters common to the simulations

Experiment Wavelength Canting Width Temperature Shape Model

Control 5.5 cm, 3.21 cm 10 283 K Brandes

Canting 5.5 cm, 3.21 cm 20 283 K Brandes

Shape 5.5 cm, 3.21 cm 10 283 K Pruppacher

Temperature 5.5 cm, 3.21 cm 10 Grid (295 K) Brandes

Wavelength 5.0 cm, 3.0 cm 10 283 K Brandes

Combined 5.0 cm, 3.0 cm 20 Grid (295 K) Pruppacher

Table 4.2: Parameters differing between different experiments

95



Table 4.2 lists the parameters for the various experiments that are examined here.

The Control experiment serves as the baseline of performance for the algorithms,

where the assumptions used in simulating the radar data match those used to find the

coefficients for the algorithms; as such, it also represents a best case for performance.

The other experiments, Canting, Shape, Temperature, and Wavelength, are chosen to

systematically test how algorithm performance varies as assumptions involving these

aspects of scattering are varied. The final experiment, Combined, is essentially the

opposite of the Control experiment, in that all of the assumptions are violated; as such,

it might be considered to represent, theoretically, a worst case scenario for algorithm

performance.

To frame the results from the experiments, Figures 4.1 and 4.2 show plots of at-

tenuation as a function of both reflectivity factor and specific differential phase, for

both horizontal and vertical polarizations. These plots give some expectation of the

results of the experiments, while making a simplifying assumption of a Marshall et al.

(1947) drop size distribution; this implies that they do not reflect completely the re-

sults from the full simulation (using a modified gamma distribution). For reference,

the curve corresponding to the regression coefficients (for the correction algorithms)

is also plotted.

In Figure 4.1, it is apparent that at C-band the relationship between reflectivity

factor and attenuation, for both polarizations, is relatively immune to the assumptions

made; the biggest change comes from switching the wavelength. It is also seems from

these plots that the regression coefficient between reflectivity and attenuation captures

the various relationships relatively well. The relationship between specific differential

phase and attenuation, however, varies much more with changing assumptions. Again,
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Figure 4.1: Top Left: Specific attenuation as a function of reflectivity factor for hor-

izontal polarization. Top Right: Specific attenuation at horizontal polarization as a

function specific differential phase. Bottom Left: Specific attenuation as a function of

reflectivity factor for vertical polarization. Bottom Right: Specific attenuation at ver-

tical polarization as a function of specific differential phase. All calculations assume a

C-band wavelength.
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the greatest impact seems to come from switching wavelength, though the effect is

even greater than for reflectivity factor. It should also be noted that the effect of chang-

ing wavelength was of the opposite sign to the effects of changing every other assump-

tion. Consequently, the curve for the Combined experiment lies very close to that of

Control, a result of the errors for changing the various assumptions canceling out. The

regression coefficient curve in this case is well below the others, as well. This hints

that calculating attenuation using differential phase may result in underestimation; or

it may just be a product of using the Marshall et al. (1947) drop size distribution here,

while the coefficient was optimized for a modified gamma distribution. The results of

the individual experiments answer this question.

At X-band, in Figure 4.2, the relationship between reflectivity factor and attenu-

ation seems to be more sensitive to the assumptions made than at C-band. Also, the

regression coefficient curve in this case seems to be noticeably different than the other

curves; again, this could be caused by the difference in the drop size distribution used.

Looking at the relations between attenuation and specific differential phase, it is ap-

parent that the assumptions made greatly impact the result. As before, for the case

of the Combined experiment the errors seem to cancel out, leaving the Control and

Combined curves very close. For horizontal polarization, the regression curve is right

along the Control (and Combined); at vertical polarization the regression curve is not

as good a match for Control. The results from the experiments with the full simulation

are needed to see whether this is an artifact of the drop size distribution difference.
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Figure 4.2: As in Figure 4.1, but for X-band.

4.1 Control

As mentioned previously, the Control experiment is designed to represent a best case

for algorithm performance, where the parameters used to simulate the radar data match

the assumptions made when calculating the coefficients for the attenuation correction

algorithms. The parameters include fairly routine assumptions, such as fixed tempera-

ture (283 K) and the Brandes et al. (2002) shape model (as described in (2.1)). Given

the matching assumptions and the high resolution data, any errors here reflect funda-

mental limitations of the algorithms due to the assumptions made about power law

relationships between the variables, as well as any errors introduced by the radar’s

sampling process.

4.1.1 C band

Figure 4.3 shows the fields of horizontal attenuation that result from running the var-

ious algorithms, as well as the true field of attenuation. Overall, all algorithms show
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good agreement. The greatest values of attenuation are found at the far range due

north from the radar. Here, the Linear and ZPHI algorithms have noticably higher val-

ues compared to the truth field; the Modified Self-Consistent (MSC) algorithm, on the

other hand, underestimates the attenuation values. The Self-Consistent (SC) algorithm

appears to capture the true attenuation almost perfectly.

These observations are largely corroborated by Figure 4.4, which shows the output

from the algorithms with the true attenuation field subtracted, aiding in highlighting

the areas that differ. The differences for Linear and ZPHI are in the range of 2 dB too

high in the core, while MSC only shows a slight low bias of approximately 0.5 dB. SC

shows fluctuations of some rays with low values and some with high, with the magni-

tude of the differences on the order of 1 dB; overall, the output field from SC appears

unbiased. As mentioned before, the radial-to-radial variation for SC is a consequence

of the independent optimization for γ that is applied to each radial, and is the impetus

for the development of the MSC. In this case, MSC does not show the oscillatory be-

havior, but still manages to show an overall field that appears unbiased with regards to

estimates of attenuation.

Figures 4.5 and 4.6 show similar analyses for vertical polarization. Here, all of

the algorithms, overall, demonstrate accuracy in estimating the amount of attenuation.

The Linear and ZPHI algorithms yield an overall overestimate of attenuation, up to

1 dB. MSC, conversely, shows an overall slight underestimation of attenuation, on the

order of about 0.5 dB. SC displays changes on a per radial basis; while the mean of

its field appears that it could be comparable to the others, the individual radials show

errors larger than the other algorithms.
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2D histograms of the specific attenuation at horizontal and vertical polarizations,

shown in Figures 4.7 and 4.8, respectively, help to examine the algorithm performance

better by focusing on the accuracy on a gate by gate basis. At horizontal polarization,

the bias in the Linear algorithm is evidenced by the ribbon of largest values being

located above one-to-one line. This is also true for ZPHI, though in this case, the

algorithm shows two distinct maximal bands in specific attenuation, and the one-to-

one line goes between them; the band with the highest counts sits above the line,

indicating a slight high bias. SC and MSC also demonstrate this two-banded structure;

however, for these algorithms, especially MSC, the band of highest point counts lies

along the one-to-one line. It should also be mentioned that all of the ZPHI-based

algorithms (ZPHI, SC, MSC) show a universal underestimation of higher values of

specific attenuation, though these values are less common. At vertical polarization,

all of the histograms tighten up, showing less overall spread. All of the algorithms

have greater concentrations of points along the one-to-one line, reinforcing the notion

that all of the algorithms have decreased errors for vertical polarization. These results

are reflected in Table 4.3, which shows that SC and MSC have the lowest biases at

horizontal polarization, while all algorithms show lower values of mean squared-error

(MSE) at vertical polarization.

Based on these results, it is also instructive to look at the results for differential

attenuation, since it is more directly related to biases in ZDR. Figures 4.9 and 4.10

show PPIs of differential attenuation and its difference from the true value, respec-

tively. Here the Linear algorithm shows a clear high bias, of approximately 1.2 dB,

which would be a significant bias for ZDR. ZPHI shows a decreased bias with respect
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to this, though the errors still approach 1.0 dB. The SC algorithm again shows an over-

all unbiased field, with significant spatial variability in the errors. MSC appears to

smooth this out well, though it is still showing errors of approximately 0.5 dB outside

of the core, where there are slightly negative errors. The 2D histogram of specific dif-

ferential attenuation, Figure 4.11, shows these same patterns of biases, including the

negative biases of SC and MSC at higher values. Again, the calculated bias and MSE

values (Table 4.3) favor the results of the SC and MSC algorithms.

Overall, all of the algorithms perform relatively well when the coefficients used

agree with the nature of the data. Linear begins to show some problems correcting

differential attenuation, as the resulting bias is high relative to the magnitude of ZDR.

It should also be noted that, given its better performance at vertical polarization, the

problem stems from its bias at estimating horizontal attenuation. The Control experi-

ment also demonstrates that the optimization procedure for SC does well at reducing

the bias from the ZPHI algorithm, and subsequently the MSC does well at smoothing

out the results from SC.
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Figure 4.3: Plan Position Indicators (PPIs) of attenuation for horizontal polarization

at C-band for the Control experiment from various sources: (a) True field calculated

from model (b) Linear algorithm (c) ZPHI algorithm (d) Self-Consistent algorithm (e)

Modified Self-Consistent algorithm. Range rings are plotted every 10 km from the

radar.
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Figure 4.4: Plan Position Indicators (PPIs) for the Control experiment of the difference

between the true horizontal attenuation values (from the model) at C-band and those

calculated by algorithms: (a) Linear algorithm (b) ZPHI algorithm (c) Self-Consistent

algorithm (d) Modified Self-Consistent algorithm. Range rings are plotted every 10 km

from the radar.
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Figure 4.5: As in Figure 4.3, but for vertical polarization.

Figure 4.6: As in Figure 4.4, but for vertical polarization.
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Figure 4.7: 2D histograms for the C-band Control experiment of true specific hori-

zontal attenuation (x-axis) and calculated specific horizontal attenuation (y-axis) for:

(a) Linear algorithm (b) ZPHI algorithm (c) Self-Consistent algorithm (d) Modified

Self-Consistent algorithm.
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Figure 4.8: As in Figure 4.7 but for vertical polarization.

Figure 4.9: As in Figure 4.3 but for differential attenuation.
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Figure 4.10: As in Figure 4.4 but for differential attenuation.

Figure 4.11: As in Figure 4.7 but for specific differential attenuation.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0310 0.0047 0.9612

ZPHI 0.0281 0.0070 0.9233

SC 0.0074 0.0070 0.9173

MSC -0.0009 0.0059 0.9305

Vertical

Linear 0.0095 0.0020 0.9639

ZPHI 0.0071 0.0033 0.9240

SC -0.0027 0.0042 0.9061

MSC -0.0087 0.0034 0.9257

Differential

Linear 0.0410 0.0023 0.9021

ZPHI 0.0287 0.0019 0.8291

SC 0.0091 0.0012 0.8315

MSC 0.0064 0.0009 0.8896

Table 4.3: Bias, mean squared-error, and r2 for the specific attenuation results for the

Control experiment at C-band.
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4.1.2 X band

At X-band, the pattern of horizontal attenuation looks similar to that at C-band, as

shown by the PPIs in Figure 4.12. One difference is that the core of highest attenuation

values (now peaking around 100 dB) is in the area of missing data for the algorithms,

since the actual data are completely attenuated here; the signal is well below the noise.

As a result, the algorithms have no chance of matching truth here. For the ZPHI

algorithms, it is also clear that they are not able to match the high values calculated by

the Linear algorithm. From Figure 4.13 it is apparent, based on the differences when

the true attenuation values are subtracted, that the Linear algorithm is doing much

better than the other algorithms in this area along the outside of the core. This is likely

caused by ZPHI’s reliance on reflectivity data, which while above the noise threshold,

are still heavily contaminated by the amount of attenuation incurred. Even outside

these regions, the Linear algorithm appears to be doing the best job, though the other

algorithms demonstrate more reasonable performance outside the heavily attenuated

area. Once again, the radial-to-radial variations are clear in the differences for SC,

which are eliminated by the MSC algorithm.

At vertical polarization, similar behavior is exhibited by the algorithms’ base re-

sults (Figure 4.14) and the differences (Figure 4.15), though the errors (outside of the

heavy attenuation zone) are reduced in magnitude. Looking at the 2D histograms of

specific attenuation for both horizontal and vertical polarization in Figures 4.16 and

4.17, respectively, it is clear that the Linear algorithm matches the true attenuation

values very well, with only slight underestimation at the highest values. For the ZPHI-

based algorithms, again the two-banded structure is evident, with one band on either

side of the one-to-one line.
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Figure 4.12: As in Figure 4.4 but for X-band.

The computed bias and MSE values for this experiment (Table 4.4) agree with

these observations. While the Linear algorithm does not have the lowest bias, it is

comparable to that of the other algorithms. The MSE for the Linear algorithm, is

the lowest of all algorithms. It should also be noted that the difference in r2 values

between the Linear and ZPHI-based algorithms reflects the two-band structure present

in the specific attenuation results.

For differential attenuation, the results in Figure 4.18 look very similar to those

for the individual polarizations. In the differences from the true field (Figure 4.19),

the zone where the ZPHI algorithms have problems has increased slightly in size; it

now starts at 20 km range. Outside of this area, all of the algorithms look comparable,

exhibiting a high bias in the estimated attenuation, with peak errors around 1.2 dB.

In the 2D histograms for specific differential attenuation in Figure 4.20, these high
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Figure 4.13: As in Figure 4.3 but for X-band.

Figure 4.14: As in Figure 4.12 but for vertical polarization.
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Figure 4.15: As in Figure 4.13 but for vertical polarization.

Figure 4.16: As in Figure 4.7 but for X-band.
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Figure 4.17: As in Figure 4.16 but for vertical polarization.

Figure 4.18: As in Figure 4.12 but for differential attenuation.
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Figure 4.19: As in Figure 4.13 but for differential attenuation.

biases are clearly evident, with all of the algorithms having most of the values above

the one-to-line.

Overall, for the Control experiment, the Linear algorithm shows the most success

estimating attenuation at X-band, as its sole reliance on differential phase makes it

more robust than the ZPHI-based algorithms, at least in this case. It should also be

noticed that the performance of these latter algorithms were all very similar. This is

unsurprising since SC and MSC do not need to optimize away from the base value;

this value is already optimal for the assumptions used to simulate the data.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0237 0.0722 0.9708

ZPHI -0.0327 0.2279 0.9058

SC 0.0151 0.2200 0.9082

MSC 0.0079 0.1985 0.9157

Vertical

Linear -0.0004 0.0500 0.9712

ZPHI -0.0414 0.1607 0.9071

SC 0.0036 0.1533 0.9098

MSC -0.0115 0.1418 0.9160

Differential

Linear 0.0384 0.0044 0.9561

ZPHI 0.0063 0.0120 0.8136

SC 0.0106 0.0118 0.8197

MSC 0.0216 0.0117 0.8201

Table 4.4: Bias, mean squared-error, and r2 for the specific attenuation results for the

Control experiment at X-band.
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Figure 4.20: As in Figure 4.16 but for specific differential attenuation.

4.2 Canting

The Canting experiment modifies the Control experiment by changing the prescribed

width of the canting angle distribution (κ in (2.56)) for the simulation from 10 to 20,

changing the standard deviation of canting angles from 13.2◦ to 9.2◦. There still is

no mean canting, only a narrower range of orientations distributed around 0◦. The

effect of this decreased spread is to make the scatterers appear less isotropic to the

radar, slightly increasing the magnitude of the dual-polarization signatures. Previously,

Aydin et al. (1989), with an assumed Gaussian distribution of canting angles, found a

6 % error in KDP resulted when increasing the standard deviation of canting angle

from 0◦ to 10◦.
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4.2.1 C band

In the Canting experiment, the horizontal attenuation estimates (Figure 4.21) show

markedly higher values for the Linear and ZPHI algorithms, while SC and MSC show

practically identical output compared to the Control experiment. The same is also true

at vertical polarization (Figure 4.23). With the narrower distribution of angles, the

intrinsic values of KDP , and hence ΦDP increase, causing the Linear and ZPHI algo-

rithms to estimate more total path attenuation. The SC and MSC algorithms, however,

by virtue of the optimization procedure, adjust their internal γ coefficient to account

for the change in canting.

The impacts of this change are quite evident in the difference fields for horizontal

(Figure 4.22) and vertical (Figure 4.24) polarizations. For the Linear and ZPHI algo-

rithms, the errors increase to 3 dB, gaining around 1 dB in error from a simple change

in canting; SC and MSC, conversely, show the same pattern of errors as in Control.

These errors are also reflected in the histograms of specific attenuation at horizontal

and vertical polarizations (Figures 4.25 and 4.26, respectively). Here the points for

the Linear and ZPHI algorithms shift upwards, indicating a more pronounced positive

bias. In contrast, the SC and MSC algorithms show qualitatively the same spread of

points as in the Control experiment. The computed bias values (Table 4.5) for the

SC and MSC algorithms are much lower for both polarizations; this decrease in bias

comes with comparable (SC), or even slightly better (MSC), values for MSE.

For differential attenuation, Figure 4.27 shows an increase in attenuation as well,

though this time the increase is for all algorithms, as well as the truth field. This

increase in differential attenuation was likely concealed by the larger range of values

at the individual polarizations. The differences from truth ( Figure 4.28), show that
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Figure 4.21: As in Figure 4.3 but for the Canting experiment.

Figure 4.22: As in Figure 4.3 but for the Canting experiment.
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Figure 4.23: As in Figure 4.21 but for vertical polarization.

Figure 4.24: As in Figure 4.22 but for vertical polarization.
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Figure 4.25: As in Figure 4.7 but for the Canting experiment.

Figure 4.26: As in Figure 4.25 but for vertical polarization.
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Figure 4.27: As in Figure 4.21 but for differential attenuation.

Figure 4.28: As in Figure 4.22 but for differential attenuation.
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Figure 4.29: As in Figure 4.25 but for specific differential attenuation.

this increase in differential attenuation was well captured by all the algorithms. SC and

MSC show only minor changes; Linear and ZPHI show slight increases in errors, on

order of 0.2 dB, maintaining their overall positive bias. It should be noted, though, that

this is not a negligible bias for ZDR. The histogram of specific differential attenuation

agrees with this, showing no shifts in the distributions of points. However, there are

appreciable increases in the spread of points away from the one-to-one ratio line for

the Linear and ZPHI algorithms; this indicates an overall reduction in accuracy for

these algorithms.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0465 0.0068 0.9612

ZPHI 0.0432 0.0094 0.9136

SC 0.0082 0.0071 0.9165

MSC -0.0009 0.0060 0.9306

Vertical

Linear 0.0243 0.0032 0.9642

ZPHI 0.0214 0.0041 0.9173

SC -0.0024 0.0042 0.9037

MSC -0.0096 0.0034 0.9254

Differential

Linear 0.0430 0.0026 0.9035

ZPHI 0.0304 0.0024 0.8030

SC 0.0098 0.0013 0.8336

MSC 0.0077 0.0010 0.8916

Table 4.5: As in Table 4.3, but for the Canting experiment.
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4.2.2 X band

The results at X-band mirror those for C-band, following from the same increase in

differential phase due to the decrease in spread of canting angles. At both horizontal,

Figure 4.30, and vertical, Figure 4.32, polarizations, the Linear and ZPHI algorithms

show an increase in the calculated attenuation, while the SC and MSC algorithms

show no perceptible changes; more importantly, the true attenuation does not change

perceptibly. The difference fields in Figure 4.31 clarify this, showing that both Linear

and ZPHI have a positive bias in their estimates of horizontal attenuation, with errors

on the order of 3 dB. This is a marked change from the Control experiment where

both of these algorithms had results that were closer to being unbiased. There is an

especially large change for the Linear algorithm due north from the radar, where the

change is approximately 5 dB. This same pattern is evident for vertical polarization in

Figure 4.33, though the change for the Linear algorithm is more stark given the mini-

mal errors that were present in its output for the Control experiment. The histograms

for specific attenuation at horizontal, Figure 4.34, and vertical, Figure 4.35, polariza-

tions show a shift in points upwards for the Linear and ZPHI algorithms, agreeing with

the observed increase in bias. The histograms for the SC and MSC show no qualitative

changes, which is also in agreement with the PPIs of attenuation; the computed bias

values (Table 4.6) change much more for the Linear and ZPHI algorithms than for the

SC and MSC algorithms.

The results for differential attenuation also agree with those at C-band. While

the actual differential attenuation values in Figure 4.36 show moderately larger value

across the board, the difference from the true values in Figure 4.37 show no appreciable

difference from the results for the Control experiment. The results for ZPHI show
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Figure 4.30: As in Figure 4.21 but for X-band.

Figure 4.31: As in Figure 4.22 but for X-band.
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Figure 4.32: As in Figure 4.30 but for vertical polarization.

Figure 4.33: As in Figure 4.31 but for vertical polarization.
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Figure 4.34: As in Figure 4.25 but for X-band.

Figure 4.35: As in Figure 4.34 but for vertical polarization.
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Figure 4.36: As in Figure 4.30 but for differential attenuation.

Figure 4.37: As in Figure 4.31 but for differential attenuation.

129



Figure 4.38: As in Figure 4.34 but for specific differential attenuation.

some changes in the highest core of attenuation, but this is on the fringes of the fully-

extinguished signal, so values here are likely sensitive to the signal-to-noise ratio. This

change does produce a difference in the histogram of specific differential attenuation,

in Figure 4.38. Here the ZPHI algorithm has noticeably shifted many points from

well below the one-to-one line to above, and the core bands have shifted upwards as

well; this is likely a reflection of moving some of the anomalously low points closer to

their true values. The effect of this change is an increase in the net bias for the ZPHI

algorithm (Table 4.6); this increase is the largest of any of the algorithms.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0960 0.0862 0.9709

ZPHI 0.0330 0.1882 0.9200

SC 0.0185 0.2225 0.9080

MSC 0.0096 0.1977 0.9167

Vertical

Linear 0.0716 0.0597 0.9713

ZPHI 0.0250 0.1284 0.9219

SC 0.0066 0.1530 0.9091

MSC -0.0102 0.1392 0.9166

Differential

Linear 0.0404 0.0049 0.9564

ZPHI 0.0182 0.0120 0.8322

SC 0.0107 0.0129 0.8219

MSC 0.0220 0.0129 0.8216

Table 4.6: As in Table 4.4, but for the Canting experiment.
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4.3 Shape

The Shape experiment modifies the Control experiment by changing the prescribed

shape model (i.e., the relationship between drop axis ratio and size) from the Brandes

et al. (2002) polynomial model to the Pruppacher and Beard (1970) model. Given that

both models are empirical fits to data, neither one represents a guaranteed match to

natural processes. Instead, this experiment is designed to highlight the sensitivity of

the algorithms (through the coefficients) to the chosen drop shape model by examining

how performance changes when the assumption is violated.

4.3.1 C band

In the Shape experiment, the results for horizontal attenuation in Figure 4.39 for the

Linear and ZPHI algorithms show very pronounced increases from the values in the

Control experiment. These values are well excess of those shown by the true attenu-

ation field. The SC algorithm shows only a minor increase over the results from the

Control experiment, while the MSC algorithm actually shows a decrease. For verti-

cal polarization, in Figure 4.41, the results are similar. For the difference from the

true values of horizontal attenuation, Figure 4.40 shows that the errors for Linear and

ZPHI have increased to almost 6 dB (from initial errors around 1 dB). For SC, while

the errors of individual rays have changed, the overall error field remains unbiased,

with a slight increase in the amount of negative departure for some rays. The MSC

algorithm now shows a negative bias, with the peak of errors now approaching 1 dB,
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Figure 4.39: As in Figure 4.3 but for the Shape experiment.

in contrast with errors very close to 0 dB for the Control experiment. For vertical po-

larization (Figure 4.42), the results are qualitatively identical, though the magnitudes

of the errors are slightly smaller.

Looking at the histograms of specific attenuation for horizontal and vertical po-

larizations, in Figures 4.43 and 4.44, respectively, the pronounced bias for the Linear

algorithm is clearly visible. For the ZPHI algorithm, not only is the increase in bias

visible, but the points are much more spread out. The SC algorithm does not show

any significant changes, though there is a small region of points that now extend above

the main core of points; this was not present in the Control experiment. For the MSC

algorithm, the curve of points now slopes slightly further down, agreeing with the

observation of the increase in negative bias.

The results at horizontal and vertical polarizations lead to a similar pattern of re-

sults for differential attenuation. The PPIs of the raw data in Figure 4.45 show the
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Figure 4.40: As in Figure 4.4 but for the Shape experiment.

Figure 4.41: As in Figure 4.39 but for vertical polarization.
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Figure 4.42: As in Figure 4.40 but for vertical polarization.

Figure 4.43: As in Figure 4.7, but for the Shape experiment.
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Figure 4.44: As in Figure 4.43, but for vertical polarization.

Figure 4.45: As in Figure 4.39, but for differential attenuation.
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Figure 4.46: As in Figure 4.40, but for differential attenuation.

Figure 4.47: As in Figure 4.43 but for specific differential attenuation.
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same large increase in values for the Linear and ZPHI algorithms, as well as a slight

decrease in differential attenuation calculated by the MSC algorithm. Looking at the

differences from truth in Figure 4.46, it is clear that the Linear algorithm has a large

area where the bias in differential attenuation is well over 2 dB. For ZPHI, the errors

are less but have increased to 1.5 dB. While the SC algorithm’s results are mostly un-

changed from the Control experiment, the MSC algorithm now has a large negative

bias around 1 dB. The histogram of specific differential attenuation in Figure 4.47 is

consistent with the PPIs, and matches what was seen for specific attenuation for the

individual polarizations, including the large increase in the spread of points for the

ZPHI algorithm.

Overall, changing the shape model from the Brandes et al. (2002) model to the

Pruppacher and Beard (1970) model drastically increased the errors for the algorithms

using fixed coefficients at C-band. Since the Pruppacher and Beard (1970) model

yields more oblate drops, this change increases the magnitude of the polarimetric vari-

ables; consequently, this increases the magnitude of the ΦDP data without an increase

in the reflectivity field. Together, this leads the Linear and ZPHI algorithms to in-

creased estimations of attenuation. The SC algorithm, as in the Canting experiment, is

able to compensate for this through its optimization procedure. The MSC also benefits

from this optimization, but the changes made to filter the optimized coefficients have

introduced a significant negative bias.

The computed bias and MSE values (Table 4.7) show that the SC and MSC algo-

rithms are clearly the best performers, having the lowest values for both columns. Be-

tween the two algorithms, neither demonstrates consistently better performance across

all polarizations. For r2 values, while the SC and MSC are not able to produce values
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higher than those of Linear, the differences are decreased over those in the Control

experiment.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1191 0.0251 0.9560

ZPHI 0.1171 0.0379 0.8265

SC 0.0170 0.0079 0.9083

MSC -0.0088 0.0070 0.9279

Vertical

Linear 0.0819 0.0128 0.9621

ZPHI 0.0803 0.0167 0.8616

SC 0.0070 0.0040 0.9055

MSC -0.0074 0.0034 0.9273

Differential

Linear 0.0683 0.0056 0.8986

ZPHI 0.0535 0.0082 0.5224

SC 0.0087 0.0012 0.8437

MSC -0.0082 0.0014 0.8586

Table 4.7: As in Table 4.3, but for the Shape experiment.
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4.3.2 X band

At X-band the results are similar to those at C-band. The PPIs of both horizontal

and vertical attenuation, Figures 4.48 and 4.50, respectively, show very large increases

in the estimated attenuation for the Linear and ZPHI algorithms. Again, this comes

from the increased differential phase that results from using the Pruppacher and Beard

(1970) shape model. Looking at the differences from the true values in Figures 4.49

and 4.51, the errors for the Linear algorithm have increased to well over 10 dB, while

ZPHI has errors peaking at 10 dB. The SC and MSC see increases in errors as well,

though these increases are much less drastic; the MSC algorithm increases to around

3 dB (from around 1 dB). The SC algorithm’s estimate of attenuation, overall, shows

no net increase; however, there are now some individual areas that have errors up to

5 dB. Indeed, it was this problem with some rays showing larger errors that motivated

the development of MSC. The histograms of specific attenuation values, for both po-

larizations in Figures 4.52 and 4.53, match those at C-band.

For differential attenuation, Figure 4.54 shows that for the Shape experiment, dif-

ferential attenuation increases for all, including the true values. Looking at the dif-

ference from truth (Figure 4.55), the errors for Linear and ZPHI increase as well; for

Linear the errors are now up to 2 dB (up from 1 dB), and ZPHI has errors up to 1.5 dB,

which is an increase from around 0.5 dB for the Control experiment. This is discount-

ing the area where extinction of the signal is causing problems. As at the individual

polarizations, SC shows an increase in errors for some rays, but no systematic increase,

while MSC shows an overall increase in its positive bias, though of much less mag-

nitude than Linear and ZPHI. Figure 4.56 shows the histogram of specific differential

phase, which matches well those from horizontal and vertical polarizations.
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Figure 4.48: As in Figure 4.39, but for X-band.

Figure 4.49: As in Figure 4.40, but for X-band.
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Figure 4.50: As in Figure 4.48, but for vertical polarization.

Figure 4.51: As in Figure 4.49, but for vertical polarization.

143



Figure 4.52: As in Figure 4.43, but for X-band.

Figure 4.53: As in Figure 4.53, but for vertical polarization.
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Figure 4.54: As in Figure 4.48, but for differential attenuation.

Figure 4.55: As in Figure 4.49, but for differential attenuation.
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Figure 4.56: As in Figure 4.52, but for specific differential attenuation.

In terms of bias and MSE, the SC and MSC algorithms stand out from the other

algorithms (Table 4.8). Between the two algorithms, in this experiment, the results

from the MSC algorithm appear slightly better, as they yield a smaller MSE while

having comparable biases.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.4642 0.4232 0.9667

ZPHI 0.3904 0.9875 0.7668

SC 0.0334 0.2623 0.8933

MSC 0.0360 0.2282 0.9066

Vertical

Linear 0.4093 0.3313 0.9678

ZPHI 0.3619 0.9809 0.7046

SC 0.0232 0.1687 0.8981

MSC 0.0090 0.1530 0.9078

Differential

Linear 0.0841 0.0116 0.9537

ZPHI 0.1683 0.3639 0.3179

SC 0.0116 0.0172 0.7968

MSC 0.0259 0.0169 0.8008

Table 4.8: As in Table 4.4, but for the Shape experiment.
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4.4 Temperature

The Temperature experiment is designed to explore the sensitivity of the algorithms

to changes in temperature; such sensitivity arises from the use of a fixed temperature

when calculating the regression coefficients. In this experiment, instead of prescribing

a fixed temperature for simulating the radar data, the temperature from the model grid

is used. Figure 4.57 shows the actual field of temperatures that is used; the field of tem-

peratures is generally around 295 K, though there is some spatial variability. However,

this variability is smaller than the magnitude of the change from the fixed temperature

of 283 K that was used to generate the regression coefficients.

Temperature sensitivity of the relationship between attenuation and differential

phase was previously mentioned by Bringi et al. (1990), and its impact on attenua-

tion correction was briefly described by Carey et al. (2000) and Aydin et al. (1989).

The aim here is to quantify this effect within the context of actual algorithms run on

(simulated) data.
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Figure 4.57: Temperature near the surface of the model grid used to simulate radar

data.
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4.4.1 C band

For the Temperature experiment at C-band, the PPIs of attenuation for horizontal, Fig-

ure 4.58, and vertical, Figure 4.60, show clear decreases in attenuation in both SC and

MSC algorithms, as well as the true attenuation, that result from the increase in tem-

perature. Subtracting out the true values, the corresponding differences in Figures 4.59

and 4.61 show that the decrease in SC and MSC capture well the real change in intrin-

sic attenuation, as they show no significant increase in errors; MSC shows a small

increase in its negative bias, on order of 0.1 dB, while SC shows some rays that in-

crease the magnitude of their errors by a similar amount, with no systematic changes.

The attenuation estimates from Linear and ZPHI, however, now show almost 5 dB of

error. The histograms of specific attenuation for both polarizations, in Figures 4.62

and 4.63, show clearly the biases of Linear and ZPHI, as the bands of most points shift

noticeably upwards above the one-to-one ratio line. For SC and MSC, the change be-

tween the Control and Temperature experiments is to drastically shorten the maximum

range of values, but there is no observable change in terms of shifts relative to the

one-to-one line; there is a clear negative bias at higher values of specific attenuation,

though this is consistent between the experiments.

Looking at differential attenuation now, the PPIs for the Temperature experiment

in Figure 4.64 do not show significant changes. The true values exhibit only a small

decrease, which from this figure appears to be matched by all algorithms, with the

exception of a slight increase in the differential attenuation estimated by the Linear

algorithm. Consequently, this causes the Linear algorithm to show the greatest increase

in errors when comparing the differences from truth in Figure 4.65 to the results from

the Control experiment. The Linear algorithm’s error has increased from around 1.2 dB
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Figure 4.58: As in Figure 4.3, but for the Temperature experiment.

Figure 4.59: As in Figure 4.4, but for the Temperature experiment.
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Figure 4.60: As in Figure 4.58, but for vertical polarization.

Figure 4.61: As in Figure 4.59, but for vertical polarization.
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Figure 4.62: As in Figure 4.7, but for the Temperature experiment.

Figure 4.63: As in Figure 4.62, but for vertical polarization.
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Figure 4.64: As in Figure 4.58, but for differential attenuation.

Figure 4.65: As in Figure 4.59, but for differential attenuation.
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Figure 4.66: As in Figure 4.62, but for specific differential attenuation.

to 1.5 dB. The ZPHI algorithm’s errors, in comparison with the Control experiment

also show an increase. Conversely, the SC algorithm shows almost no change in errors,

while the MSC shows only a minor increase in its positive bias by around 0.1 dB.

In Figure 4.66, the histograms of specific differential attenuation largely match these

minor changes, with a few notable exceptions. For the Linear algorithm, the band of

points shifts upwards, giving the positive bias. Conversely, the band for ZPHI develops

a negative bias that increases with increasing values of specific differential attenuation;

this is countered by an increase spread of points above the one-to-one line, resulting in

the net increase in positive bias seen in the PPIs of integrated attenuation. The SC and

MSC algorithms also show the same increase in negative bias at larger values.
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Overall, again the fixed coefficient algorithms at C-band show significant increases

in errors in estimating attenuation for individual polarizations. The adaptive algo-

rithms, SC and MSC, are able to adjust well for these changes with only minor in-

creases in errors. It is worth noting that while the errors for the polarizations greatly

increase for Linear and ZPHI, the increase in errors for differential attenuation is not

nearly as great. This is because the changes in intrinsic horizontal and vertical at-

tenuation were close in magnitude, resulting in only small changes to the differential

attenuation. In this experiment, the difference between the algorithms is quite pro-

nounced. The biases for the SC and MSC algorithms (Table 4.9) are almost an order

of magnitude less than those of the Linear and ZPHI algorithms; this is achieved while

also having a smaller MSE.

156



Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1009 0.0191 0.9554

ZPHI 0.0968 0.0230 0.8453

SC 0.0087 0.0062 0.8974

MSC -0.0009 0.0050 0.9235

Vertical

Linear 0.0727 0.0111 0.9617

ZPHI 0.0689 0.0112 0.8652

SC -0.0022 0.0036 0.8695

MSC -0.0135 0.0028 0.9175

Differential

Linear 0.0540 0.0037 0.8869

ZPHI 0.0392 0.0043 0.6153

SC 0.0081 0.0013 0.8099

MSC 0.0118 0.0010 0.8850

Table 4.9: As in Table 4.3, but for the Temperature experiment.
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4.4.2 X band

At X-band, increasing the temperature increases the intrinsic attenuation at both polar-

izations, seen in Figures 4.67 and 4.69, as opposed to decreases as observed at C-band.

The corresponding differences from the intrinsic value, in Figures 4.68 and 4.70, show

a significant increase in the errors for the Linear algorithm, with pronounced negative

bias around 5 dB. All of the ZPHI-based algorithms, conversely, do not show signifi-

cant increases in errors. ZPHI and MSC do show increases in magnitude to about 1 dB,

but these increases occur in both positive and negative directions, leaving their respec-

tive fields unbiased. These observations match the histograms for specific attenuation

at horizontal and vertical polarizations, shown in Figures 4.71 and 4.72, respectively.

The Linear algorithm shows an increased negative bias for higher attenuation values,

versus the results from the Control experiment. This agrees with not only the large

negative value for the path through the core of reflectivity, but also with the fact that

the negative bias vanishes for smaller attenuation values along the edges of the storms.

The ZPHI-based algorithms show increases in the spread of points, but no significant

shifts in the bands of points, with the ZPHI and MSC algorithms showing the greatest

spread. The computed values of bias and MSE (Table 4.10) agree with this obser-

vation. Here, the values for the Linear algorithm show the greatest change from the

Control experiment, with the other algorithms’ error statistics remaining much more

stable.

For differential attenuation, the PPIs in Figure 4.68 show only small increase across

the board, with the exception of a small decrease for the Linear algorithm. The differ-

ences in Figure 4.74 show that this results in an increased negative bias for the Linear
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Figure 4.67: As in Figure 4.58, but for X-band.

Figure 4.68: As in Figure 4.59, but for X-band.
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Figure 4.69: As in Figure 4.67, but for vertical polarization.

Figure 4.70: As in Figure 4.68, but for vertical polarization.
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Figure 4.71: As in Figure 4.62, but for X-band.

Figure 4.72: As in Figure 4.71, but for vertical polarization.
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Figure 4.73: As in Figure 4.67, but for differential attenuation.

Figure 4.74: As in Figure 4.68, but for differential attenuation.
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Figure 4.75: As in Figure 4.71, but for specific differential attenuation.

algorithm, similar to what was observed for the individual polarizations. The ZPHI-

based algorithms remain largely unchanged in regards to errors, with only a small

decrease in the errors for the ZPHI algorithm. The histograms of specific differen-

tial phase in Figure 4.75 show that the increase in negative bias, as well as ZPHI’s

decreased errors, are a result of a negative bias for larger values of attenuation.

4.5 Wavelength

The Wavelength experiment examines the impact of changing the wavelength while

staying within the same band. While attenuation is clearly a function of wavelength,

evidenced by the definitive changes going from S- to C- to X-band, within these bands
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear -0.0239 0.1073 0.9682

ZPHI -0.0773 0.3614 0.8760

SC 0.0174 0.2654 0.9053

MSC 0.0178 0.2546 0.9081

Vertical

Linear -0.0363 0.0770 0.9687

ZPHI -0.0767 0.2473 0.8821

SC 0.0064 0.1798 0.9101

MSC -0.0043 0.1772 0.9114

Differential

Linear 0.0215 0.0039 0.9565

ZPHI -0.0067 0.0166 0.7636

SC 0.0086 0.0148 0.7909

MSC 0.0184 0.0151 0.7834

Table 4.10: As in Table 4.4, but for the Temperature experiment.
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changes in attenuation are often neglected. This experiment aims to quantify the ef-

fect of this assumption by changing the wavelength from the Control values, 5.5 cm

and 3.21 cm for C- and X-bands, to 5.0 cm and 3.0 cm, respectively. These represent

changes of only 10 %.

4.5.1 C band

In the Wavelength experiment, the PPIs of attenuation at horizontal and vertical po-

larization, in Figures 4.76 and 4.78, respectively, exhibit large increases in the amount

of attenuation. The change in the intrinsic attenuation due to the decrease in wave-

length appears to be captured well by the SC and MSC algorithms. The Linear and

ZPHI algorithms do increase as well, though the magnitude of their increase is much

less than the intrinsic values. This is reflected in Figures 4.77 and 4.79, which show

the differences from truth at horizontal and vertical polarizations, respectively. For

both polarizations, the Linear and ZPHI algorithms show significant negative biases

of around 5 dB; this is a large change from the smaller 1 dB positive bias shown in

the Control experiment. Conversely, the SC and MSC algorithms show no significant

biases, nor any significant changes from the Control experiment. The histograms of

specific attenuation at these two polarizations, in Figures 4.80 and 4.81, show large

shifts down in the main band(s) of points, compared to the Control experiment for the

Linear and ZPHI algorithms; this is a reflection of the negative bias in the Wavelength

experiment. SC and MSC, show no perceptible shift, but only an expansion of the

set of points out to larger values, due to the overall increase in attenuation with lesser

wavelength.
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Figure 4.76: As in Figure 4.3, but for the Wavelength experiment.

Figure 4.77: As in Figure 4.4, but for the Wavelength experiment.
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Figure 4.78: As in Figure 4.76 but for vertical polarization.

Figure 4.79: As in Figure 4.77, but for vertical polarization.
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Figure 4.80: As in Figure 4.7, but for the Wavelength experiment.

Figure 4.81: As in Figure 4.80, but for vertical polarization.
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Figure 4.82: As in Figure 4.76, but for differential attenuation.

Figure 4.83: As in Figure 4.77, but for differential attenuation.

169



Figure 4.84: As in Figure 4.80, but for specific differential attenuation.

For differential attenuation, the same large increase in attenuation is observable for

all PPIs in Figure 4.82 in comparison with the Control experiment. In contrast to the

results for the individual polarizations, here the Linear and ZPHI match much better

the intrinsic results as well as the performance of the SC and MSC algorithms. The

difference from the true values, shown in Figure 4.83, show that with the exception of

SC, all of the algorithms exhibit a pattern of a small positive bias along the edges of

the reflectivity structure (smaller intrinsic differential attenuation), with a small nega-

tive bias in the middle of the reflectivity (larger intrinsic differential attenuation). For

MSC, this represents an increase in the negative bias by about 0.5 dB. For the Lin-

ear and ZPHI algorithms this is a much greater change; before these algorithms had

positive biases of approximately 1 dB, but now show negative biases. The SC algo-

rithm shows no change in its overall bias, but individual rays show increases in errors

170



in both directions. The histograms of specific differential attenuation, Figures 4.84

reflect these changes in bias. The ZPHI and Linear algorithms show large downward

shifts in the main bands of points; however, since the results for the Control experi-

ment had a pronounced positive bias, the downward shift brings the results closer to

the one-to-one ratio line, at least for lower attenuation values. The plot for the Linear

algorithm shows a significant downward tilt at higher values of specific differential

attenuation, which results in the negative bias in the core of reflectivity. For ZPHI,

there is no noticeable curve to the points, but rather there is an overall increase in the

number of points below the one-to-one line. The SC and MSC algorithms show no

appreciable shift, but only an expansion to larger values.

The stark contrast in performance between the SC and MSC algorithms is likely a

reflection of the limits of how attenuation is modelled in the ZPHI algorithm. In the

SC approach, when the γ coefficient can vary on a per ray basis, the algorithm can

compensate for the change between the high and low attenuation regimes better; this

comes at the cost of more radial-to-radial variation. In the MSC approach, having a

fixed coefficient across the field limits the ability of the algorithm to adjust between

regimes, and instead the results show regions with both positive and negative biases.

Overall, the change in wavelength within C-band has a large impact on the results.

Again, the SC and MSC algorithms’ optimization procedure largely compensates for

this effect, yielding lower biases and MSE values (Table 4.11). Linear and ZPHI,

on the other hand show large changes, with especially large errors at calculating the

attenuation for individual polarizations, which are reflected in the much greater biases

for specific attenuation.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear -0.0629 0.0171 0.9596

ZPHI -0.0641 0.0259 0.9002

SC 0.0076 0.0123 0.9304

MSC 0.0013 0.0117 0.9351

Vertical

Linear -0.0704 0.0125 0.9627

ZPHI -0.0701 0.0191 0.8922

SC -0.0020 0.0074 0.9244

MSC -0.0063 0.0069 0.9318

Differential

Linear 0.0124 0.0015 0.9129

ZPHI 0.0010 0.0019 0.8474

SC 0.0099 0.0018 0.8652

MSC 0.0068 0.0014 0.8895

Table 4.11: As in Table 4.3, but for the Wavelength experiment.
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4.5.2 X band

At X-band, the results of changing the wavelength are similar to those observed at C-

band. The PPIs of horizontal attenuation in Figure 4.85 show a large increase in the

intrinsic attenuation. The algorithms show some changes from the results in the Con-

trol experiment, but in these images it is difficult to tell the exact nature due to the area

of completely extinguished signal. Results at vertical polarization, Figure 4.87, are

similar. The corresponding PPIs of the difference from truth, shown in Figures 4.86

and 4.88, show large changes for the Linear and ZPHI algorithms and minimal changes

in the errors for the SC and MSC algorithms. The Linear algorithm fares very badly

in changing the wavelength at X-band, with errors approaching 8 dB at both polariza-

tions before the signal completely extinguishes; this is an exceedingly large change in

performance given that this algorithm shows the least errors (nearly 0 dB) of all the

algorithms in the Control experiment. ZPHI also shows a large increase in errors, with

errors approaching 5 dB (discounting the fringes around the areas of extinguished sig-

nal). SC and MSC show no significant changes in the errors in these same areas, in

comparison with the Control experiment. The histograms for specific attenuation (in

Figures 4.89 and 4.90 for horizontal and vertical polarizations, respectively), show that

for the Linear algorithm, the band of points has rotated to the right of the one-to-one ra-

tio line. ZPHI develops a large area of points below the one-to-one line in comparison

with the Control experiment results. These effects cause both the bias and MSE for the

algorithm (Table 4.12) to increase greatly from their respective values in the results for

the Control experiment; these results are also in agreement with the observed changes

in the PPIs of attenuation. For the SC and MSC algorithms, there are no significant

changes other than the expanded range due to larger values of attenuation; there are
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Figure 4.85: As in Figure 4.76, but for X-band.

no changes relative to the one-to-one line. There are, however, modest changes to the

computed bias and MSE values for the algorithms (Table 4.12).

In comparison with the results at the individual polarizations, the results for dif-

ferential attenuation are much less drastic. The PPI of the intrinsic attenuation in

Figure 4.91 shows that the Wavelength experiment has slightly increased intrinsic dif-

ferential attenuation in comparison with the Control experiment. The differences from

the true values, in Figure 4.83, show that the only algorithm that experiences any

significant change from the Control experiment is the Linear algorithm. The Linear

algorithm, as in the Wavelength experiment at C-band, exhibits a decrease in errors in

estimating differential attenuation in comparison with results for the Control experi-

ment, with peak errors decreasing from 1.0 dB to 0.5 dB. The histogram of specific

differential attenuation (Figure 4.93) shows that this decrease is the result from a small
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Figure 4.86: As in Figure 4.77, but for X-band.

Figure 4.87: As in Figure 4.85, but for vertical polarization.
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Figure 4.88: As in Figure 4.86, but for vertical polarization.

Figure 4.89: As in Figure 4.80, but for X-band.
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Figure 4.90: As in Figure 4.89 but for vertical polarization.

Figure 4.91: As in Figure 4.85, but for differential attenuation.
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Figure 4.92: As in Figure 4.86, but for differential attenuation.

Figure 4.93: As in Figure 4.89, but for specific differential attenuation.
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shift in the band of points, such that more of the band lies along the one-to-one ratio

line, with a small negative bias at the highest values of specific differential attenuation.

4.6 Combined

Based on the all of the previous experiments, the Combined experiment examines a

kind of “worst-case” scenario; whereas the previous experiments systematically probe

the effects of violating individual assumptions, this experiment simultaneously violates

all of the assumptions. By combining all of the effects, the experiment seeks to identify

how errors may increase further with more incorrect assumptions. In considering this

a “worst-case”, this implicitly assumes that the errors stack together; as will be shown,

it is just as possible that errors are of opposite sign and cancel.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear -0.1385 0.1323 0.9726

ZPHI -0.1923 0.5343 0.8485

SC 0.0003 0.2619 0.9178

MSC -0.0077 0.2398 0.9233

Vertical

Linear -0.1521 0.1064 0.9727

ZPHI -0.1931 0.4143 0.8389

SC -0.0081 0.1994 0.9123

MSC -0.0267 0.1900 0.9161

Differential

Linear 0.0220 0.0040 0.9585

ZPHI -0.0168 0.0211 0.7163

SC 0.0009 0.0167 0.7992

MSC 0.0109 0.0163 0.7970

Table 4.12: As in Table 4.4, but for the Wavelength experiment.
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4.6.1 C band

In the Combined experiment, the base field of horizontal attenuation, in Figure 4.94,

shows large increases across the board. Visually, the increase in intrinsic attenuation

seems to be best matched by the SC algorithm. The Linear and ZPHI algorithms

show large increases, much higher than the intrinsic values, while the MSC algorithm

does not appear to increase enough. These results are mirrored at vertical polariza-

tion, shown in Figure 4.96. These observations are confirmed in the differences from

the intrinsic values for horizontal and vertical polarizations, shown in Figures 4.95

and 4.97, respectively. Linear shows the greatest amount of error, around 5 dB. ZPHI

follows closely with errors of the same magnitude but showing less total area with

that magnitude. The results from MSC, unlike the others, show the development of a

pronounced negative bias, around 2 dB at both polarizations, in the core of the reflec-

tivity structure. Since SC does not show any such bias, this is likely a result of a fixed

coefficient across the domain being unable to match well the intrinsic relationships

between radar observables and attenuation. The histograms of specific attenuation for

both polarizations, in Figures 4.98 and 4.99, show the upward shift of the points for

both Linear and ZPHI, which causes the observed positive bias. These histograms also

show a slight difference between the SC and MSC algorithms; while the histogram

of points for SC is balanced around the one-to-one ratio line, the MSC algorithm has

more points below, as well as a band of points curving away from this line at higher

values of specific attenuation. All of these effects contribute to the observed negative

bias for MSC. This behavior is not evident, however, in the bias and MSE values for

the experiment (Table 4.13), which are not significantly changed from the values for
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Figure 4.94: As in Figure 4.3, but for the Combined experiment.

MSC in the Control experiment. The bias values for the ZPHI and Linear algorithms

are much larger.

For differential attenuation, the PPIs across the board show an increase in magni-

tude in Figure 4.100. The relative size of the increase matches those from the indi-

vidual polarizations, with SC visually matching the intrinsic values best, Linear and

ZPHI being too high, and MSC being not high enough. The differences from truth

in Figure 4.101 quantify these errors. Here, the MSC algorithm shows the biggest

errors as well as the biggest change; the pronounced negative bias of approximately

1.3 dB represents a large change from the almost 0 dB error observed in the same re-

gion in the Control experiment. Again, this is different from the SC algorithm, where

the only change is slight increases to the magnitude of errors in individual rays but

no change in overall bias. The Linear algorithm also shows an increase in its posi-

tive bias, changing from approximately 1 dB in the Control experiment to 1.5 dB here.
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Figure 4.95: As in Figure 4.4, but for the Combined experiment.

Figure 4.96: As in Figure 4.94, but for vertical polarization.
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Figure 4.97: As in Figure 4.95, but for vertical polarization.

Figure 4.98: As in Figure 4.7, but for the Combined experiment.
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Figure 4.99: As in Figure 4.98, but for vertical polarization.

Figure 4.100: As in Figure 4.94 but for differential attenuation.
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Figure 4.101: As in Figure 4.95, but for differential attenuation.

Figure 4.102: As in Figure 4.98, but for specific differential attenuation.
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The ZPHI shows a two-fold change in its behavior. Along the edges of the reflectivity

structure, where attenuation is less, the positive bias increases from around 0.5 dB to

approximately 1.0 dB. In the core of the storm, the bias switches from slightly positive

to slightly negative. This behavior is reflected in the histogram of specific differential

attenuation shown in Figure 4.102. In comparison with the same histogram for the

Control experiment, the ZPHI algorithm here shows a much larger region of points

above the one-to-one line for small attenuation values, while an increase in negative

bias for larger values. For the Linear algorithm, the histogram shows the shift in points

corresponding to the increased positive bias. Conversely, the MSC algorithm shows an

increase in the area of points below the line, a change not observed in the plot for SC;

this corresponds to the increasing negative bias for MSC in the Combined experiment.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1335 0.0302 0.9418

ZPHI 0.1311 0.0478 0.8375

SC 0.0221 0.0132 0.9128

MSC -0.0104 0.0143 0.9202

Vertical

Linear 0.1050 0.0187 0.9512

ZPHI 0.1027 0.0259 0.8402

SC 0.0107 0.0063 0.9085

MSC -0.0093 0.0065 0.9221

Differential

Linear 0.0512 0.0044 0.8924

ZPHI 0.0375 0.0063 0.7293

SC 0.0119 0.0025 0.8605

MSC -0.0088 0.0029 0.8465

Table 4.13: As in Table 4.3, but for the Combined experiment.
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4.6.2 X band

At X-band, the Combined experiment shows, in Figures 4.103 and 4.105, a pronounced

increase in attenuation over the Control results for both polarizations. For the Linear

algorithm, the differences from true attenuation for the Combined experiment (Fig-

ures 4.104 and 4.106 for horizontal and vertical polarizations, respectively) exhibit a

very large increase; here the errors have increased to a peak magnitude of 10 dB, up

from around 1 dB for the Control experiment. The ZPHI algorithm results also show

a large, although lesser, increase, with errors now approaching almost 7.5 dB. The

SC and MSC algorithms show smaller increases, with errors near 0 dB for the Control

experiment now approaching 2 dB. These large increases in error are reflected in the

histograms of specific attenuation for both polarizations in Figures 4.107 and 4.108;

here the results for Linear and ZPHI both show large shifts in points upwards above the

one-to-one ratio line, consistent with the large positive biases exhibited. The computed

bias values for these two algorithms in this experiment are over ten times as large as

those for the Control experiment (Table 4.14). Another feature of these histograms is

a bulge in some points upwards in the results for the SC algorithm. These are a reflec-

tion of degraded results for some of the rays. MSC, through its use of smoothing the

optimized coefficients, is able to avoid such rays.

Figure 4.109 shows that the results for differential attenuation are similar, with an

increase in differential attenuation across the board, both intrinsic and calculated. The

PPIs of the differences from the true values, in Figure 4.110, show that SC, having the

lowest overall errors, does the best job of capturing these changes. The MSC and ZPHI

algorithms are close, but they show increases in errors along the edges of the storms;

here the errors have increased to over 1.2 dB, up from less than 1 dB in the Control
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Figure 4.103: As in Figure 4.94, but for X-band.

Figure 4.104: As in Figure 4.95, but for X-band.
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Figure 4.105: As in Figure 4.103, but for vertical polarization.

Figure 4.106: As in Figure 4.104, but for vertical polarization.
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Figure 4.107: As in Figure 4.98, but for X-band.

Figure 4.108: As in Figure 4.107, but for vertical polarization.
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Figure 4.109: As in Figure 4.103, but for differential attenuation.

Figure 4.110: As in Figure 4.104, but for differential attenuation.
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Figure 4.111: As in Figure 4.107, but for specific differential attenuation.

experiment. Linear shows errors up to 1.5 dB, though it should be noted that the other

algorithms do not produce usable data in these regions. The histograms of specific

differential attenuation, given in Figure 4.111, show pronounced shifts in the bands

for the Linear and ZPHI algorithms, which correspond to the increases in positive bias

of the estimates. The SC and MSC algorithms do not show such pronounced shifts,

though they do appear to have increased numbers of points above the one-to-one line.

4.7 Conclusion

This chapter examines the results of running several attenuation correction techniques,

Linear, ZPHI, Self-Consistent, and Modified Self-Consistent using simulated radar

data. The focus here is on the impacts of the assumptions made in developing these

194



Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.3420 0.2691 0.9653

ZPHI 0.2355 0.4268 0.8988

SC -0.0041 0.4510 0.8867

MSC -0.0144 0.4748 0.8811

Vertical

Linear 0.3115 0.2088 0.9659

ZPHI 0.2453 0.3956 0.8777

SC 0.0033 0.2802 0.8933

MSC -0.0330 0.3185 0.8815

Differential

Linear 0.0499 0.0082 0.9565

ZPHI 0.0419 0.0287 0.7810

SC -0.0011 0.0298 0.7549

MSC 0.0081 0.0296 0.7458

Table 4.14: As in Table 4.4, but for the Combined experiment.
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techniques and how the violation of these assumptions impacts algorithm performance.

The baseline of performance is established using the Control experiment, where all as-

sumptions made in obtaining the coefficients used in the algorithms are matched in the

simulation procedure. At C-Band, Self-Consistent and Modified Self-Consistent prove

most successful, thought Linear and ZPHI algorithms yielded useful results provided

small biases are acceptable for a given application. At X-band, the Linear algorithm

actually shows the least error, though the rest of the algorithms produced results that

were only slightly worse. Overall, the algorithms all worked quite well in the Control

experiment.

In the other experiments, when these assumptions were systematically violated,

the Linear and ZPHI techniques, because they rely upon fixed coefficients, yielded

much higher errors than the Self-Consistent and Modified Self-Consistent algorithms,

at both X- and C-band. In almost all cases these latter algorithms were able to deliver

reasonable results. While the biases for individual polarizations from these algorithms

could still be in the range of 1 dB to 2 dB, this was much more usable than the errors

for the Linear and ZPHI algorithms in most cases.

Differential attenuation proved challenging for the algorithms in most cases, which

is attributed to a collection of causes. Primarily, the challenge for correcting differ-

ential attenuation is that ZDR is smaller, and thus its acceptable bias is an order of

magnitude less than that for horizontal (or vertical) reflectivity. The other problem

is that while the algorithms demonstrate very good results for calculating attenuation

for individual polarizations, using the difference between the results exacerbates any

errors.
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In terms of sensitivity to assumptions, changing any one of them (canting, shape

model, temperature, or wavelength), yielded pronounced changes, both in terms of

the resulting attenuation field and in the results of the algorithms. This implies that

successful use of these techniques depends upon carefully making assumptions that

match nature. For physical processes (i.e., canting and shape model), this implies the

need for good data and parameterizations of the microphysical processes involved. For

something like temperature, which varies greatly, this implies a greater challenge. For

fixed coefficient techniques, though, the biases introduced are significant, so making

use of any temperature data available could yield significant gains in reducing the bias

in reflectivity due to under- or over-correction for attenuation.

Most important of all effects, was the sensitivity to wavelength within the band.

Changing the wavelength by only 10 % introduced at least 5 dB of error in the attenu-

ation estimates by the Linear and ZPHI algorithms; this runs counter to the common

wisdom that one can use coefficients for these algorithms that are appropriate to a given

band. It is possible, then, to gain algorithm performance by simply tuning coefficients

to the true operating wavelength of a given radar system. While the Self-Consistent

algorithms were able to largely compensate for all of the violated assumptions, includ-

ing wavelength, the best algorithm performance occurred for the Control experiment.

Therefore, It is important to all algorithms to take care in making accurate assump-

tions; using the true wavelength of the radar, rather than some general waveband, is

one of the simplest ways to eliminate errors.
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Chapter 5

Sampling Errors in Attenuation Correction

Whereas the previous chapter focuses on the assumptions underlying the physical

model used for scattering calculations, here the focus is on the impact of radar op-

erating parameters on attenuation correction, specifically those parameters that impact

the spatial sampling of the data. This includes hardware effects, such as the beamwidth

or antenna sidelobes, as well as the data spacing.

One source of error arising from spatial sampling is integration within the reso-

lution volume. The regressions underlying the attenuation correction coefficients fit

radar observables calculated from a single drop size distribution; however, radar reso-

lution volumes can contain scatterers spread across many different distributions. How

integration of these scattering processes transforms into the actual measured radar data

has profound implications for the performance of attenuation correction techniques.

Another potential impact of spatial sampling is non-uniform beam-filling (NBF). NBF

specifically refers to the idea that gradients in precipitation amount and/or type across

the radar beam can cause artifacts in data, especially ΦDP . Since ΦDP is a critical

variable in the process of correcting for attenuation, NBF poses a significant problem

for robust attenuation correction.

As in the previous chapter, the impacts of spatial sampling are tested here with sim-

ulated data created using the previously described simulation procedure. Sets of data

are generated, for both C- and X-band, using radar and scanning configurations that

198



explore different aspects of radar spatial sampling. The results of the different atten-

uation correction algorithms (Linear, ZPHI, SC, and MSC) are compared to the truth

field, calculated using the same spatial sampling, to see how algorithm performance

changes.

The base radar and simulation configuration is given in Table 5.1. The parame-

ters here match closely those used previously, with the exception that the antenna is

rotating more quickly at 20 ◦ s−1; this value was chosen to more naturally achieve the

larger radial spacing used here without modifying the PRT. The parameters of the scat-

tering model (canting width, wavelength, temperature, and shape model) are selected

to match those used to generate the regression coefficients used in the correction al-

gorithms, as was done in the Control experiment in the modeling chapter. This gives

a best case scenario for algorithm performance and helps to ensure that any resulting

errors are attributable to spatial sampling.

The individual experiments are listed in Table 5.2. The Control experiment here

establishes baseline performance with a common radar configuration, 1◦ beamwidth

with matched radial sampling. The other experiments systematically modify this con-

figuration to explore the effects of sidelobes, increased beamwidth, radial sampling

interval, and range resolution. Radial spacing is controlled by modifying the number

of pulses used to create a radial of data; 75 and 150 pulses are used to create 1◦ and

2◦ radials, respectively. Also, pulse width is matched to gate width, such that a 0.8 µs

pulse is used with the 125 m gate spacing and a 1.6 µs pulse is used with the 250 m gate

spacing.
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Antenna gain 45.5 dB

Peak power 250 kW

First range gate 500 m

Noise power −113 dBm

Elevation 0.5◦

PRT 0.667 ms

Canting Width 10

Wavelength 5.5 cm, 3.21 cm

Temperature 283 K

Shape Model Brandes

Rotation Rate 20 ◦ s−1

Table 5.1: Radar and scanning parameters common to the simulations

Experiment Radial Spacing Beamwidth Antenna Limits Gate Width

Control 1◦ 1◦ Main-lobe only 125 m

Sidelobe 1◦ 1◦ 1 Side-lobe 125 m

Beamwidth 1◦ 2◦ Main-lobe only 125 m

Radial Width 2◦ 2◦ Main-lobe only 125 m

Range Resolution 1◦ 1◦ Main-lobe only 250 m

Table 5.2: Parameters differing between different experiments
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5.1 Control

The Control experiment establishes the reference point for the other experiments, with

a scanning strategy that yields 1.0◦ radial spacing, matched to the 3 dB beamwidth.

This differs from the Control experiment in the previous chapter by using both larger

gates (125 m versus 100 m), as well as larger beamwidth and radial spacing (1.0◦ versus

0.25◦). These parameters are selected to form a baseline around a more reasonable

(in comparison with standard real-world operations) spatial sampling than that of the

modeling study, which is configured specifically to minimize the effects of spatial

sampling.

5.1.1 C band

At C-band, the PPIs of horizontal attenuation for the Control experiment, shown in

Figure 5.1, show that the Linear and ZPHI algorithms produce the highest estimates

for horizontal attenuation, higher than the intrinsic values. The SC and MSC algo-

rithms are much closer to the intrinsic values, though they each are slightly higher and

lower, respectively, than the intrinsic values. When the intrinsic attenuation values are

subtracted from the algorithm results, in Figure 5.2, the positive bias for the Linear and

ZPHI algorithms exhibits maxima in the core of the reflectivity, with a value around

2 dB. The SC algorithm overall seems to be unbiased, but individual rays appear to

have errors of approximately 0.5 dB of either sign. The MSC algorithm, on the other

hand, does well to smooth out these errors and produces a field that seems to be un-

biased and has only small errors. Histograms of horizontal specific attenuation, in

Figure 5.5, show how these errors stack up on a gate-by-gate basis. Both the ZPHI and

201



Linear algorithms show that the bands of the highest numbers of points are slightly

above the one-to-one line, which causes the observed positive bias. Conversely, both

the SC and MSC algorithms have their bands of the greatest numbers of points right

along the one-to-one line. The results for MSC also show a tighter clustering of points,

which is why the algorithm exhibits less errors than the SC algorithm.

At vertical polarization, the results are similar. The PPIs of vertical attenuation in

Figure 5.3 show that Linear and ZPHI again have the highest values, though visually

they appear much closer to the intrinsic values. The MSC and SC algorithms are, at

least visually, difficult to distinguish from the intrinsic results. The differences from

the intrinsic values, shown in Figure 5.94, show that indeed the differences for Linear

and ZPHI are less; only a positive bias of up to 1 dB is observed here. SC, on the

other hand, appears to have developed a slight negative bias; while errors still change

from radial to radial, the magnitude of negative errors (approaching 1 dB) are greater

than the positive errors (less than 0.5 dB). MSC, again, smooths out these errors and

produces a field with no apparent bias and small errors. The histograms of vertical

specific attenuation, in Figure 5.6, explain the sources for these behaviors. For the

Linear and ZPHI algorithms, the bands of most points sits just above the one-to-one

line, yielding a small positive bias. For the SC algorithm, while the main band of

points is along the one-to-one line, there are still significant numbers of points below

this line, yielding the small negative bias. The MSC algorithm, on the other hand, has

a tighter grouping of points and thus does not have the significant area of points below

the line. This observed behavior yields the best bias and MSE values (Table 5.3) while

still giving an r2 value that is comparable to that of the Linear algorithm.
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For the PPIs of results, at both polarizations neither the raw results nor the dif-

ferences from the intrinsic values display any significant deviation from the Control

experiment in the modeling study. While the change in resolution is clearly visible,

the structure of the errors is unchanged between the two experiments. However, the

histograms of specific attenuation do show an interesting change between the experi-

ments. In the modeling study, which had a higher resolution, the results for all of the

ZPHI-based algorithms showed a pronounced structure with two bands along which

most points lay; one band was situated above the one-to-one line and one below. In

this Control experiment, with 1.0 degree radial spacing, the two bands have collapsed

to a single band that follows the one-to-one line. Also, all algorithms show tighter

clustering of points in the lower-resolution data. This effect extends to the computed

r2 values, which have increased for all of the ZPHI algorithms versus the values for

the modeling study.

For differential attenuation, the PPIs of the base values, in Figure 5.97, show that

both Linear and ZPHI have values that are much larger, while SC and MSC appear to

be closer, but too large and too small, respectively. The PPIs of the differences from

intrinsic values, in Figure 5.7, show that the Linear algorithm has the most error, with a

bias approaching 1.25 dB. ZPHI has a slightly smaller positive bias, only approaching

1.0 dB. SC shows errors fluctuating significantly from radial to radial, with errors of

0.5 dB in either direction. While the MSC algorithm smooths out this behavior, this

smoothing yields a significant negative bias in the middle of the field, with a magnitude

approaching 0.5 dB; this is a change from the behavior for the individual polarizations.

Histograms of the specific differential attenuation values (Figure 5.9) show that both

Linear and ZPHI’s points are shifted above the one-to-one line, causing the observed
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Figure 5.1: Plan Position Indicators (PPIs) of attenuation for horizontal attenuation

at C-band for the Control experiment from various sources: (a) True field calculated

from model (b) Linear algorithm (c) ZPHI algorithm (d) Self-Consistent algorithm (e)

Modified Self-Consistent algorithm. Range rings are plotted every 10 km from the

radar.
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Figure 5.2: Plan Position Indicators (PPIs) for the Control experiment of the difference

between the true horizontal attenuation values (from the model) at C-band and those

calculated by algorithms: (a) Linear algorithm (b) ZPHI algorithm (c) Self-Consistent

algorithm (d) Modified Self-Consistent algorithm. Range rings are plotted every 10 km

from the radar.
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Figure 5.3: As in Figure 5.1, but for vertical polarization.

Figure 5.4: As in Figure 5.2, but for vertical polarization.
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Figure 5.5: 2D histograms for the C-band Control experiment of true specific hori-

zontal attenuation (x-axis) and calculated specific horizontal attenuation (y-axis) for:

(a) Linear algorithm (b) ZPHI algorithm (c) Self-Consistent algorithm (d) Modified

Self-Consistent algorithm.
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Figure 5.6: As in Figure 5.5, but for vertical polarization.

Figure 5.7: As in Figure 5.1, but for differential attenuation.
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Figure 5.8: As in Figure 5.2, but for differential attenuation.

Figure 5.9: As in Figure 5.5, but for specific differential attenuation.
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positive biases. The core band of points for the SC algorithm lies along the one-to-

one line, though having significant spread. The MSC algorithm, conversely, has tilted

away from the one-to-one line at higher attenuation values, causing the negative bias

in the core of the reflectivity structure. This agrees with the computed bias values in

Table 5.3, which show that SC and MSC have the lowest values, as well as the lowest

values for MSE. For the first time, the MSC has the best values of r2; the spatial

smoothing removes artifacts that had caused MSC’s variance to increase, and hence

decrease the r2 value.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0314 0.0030 0.9789

ZPHI 0.0286 0.0036 0.9629

SC 0.0059 0.0035 0.9573

MSC -0.0025 0.0026 0.9705

Vertical

Linear 0.0101 0.0011 0.9820

ZPHI 0.0079 0.0014 0.9665

SC -0.0031 0.0021 0.9493

MSC -0.0055 0.0014 0.9686

Differential

Linear 0.0407 0.0020 0.9380

ZPHI 0.0285 0.0014 0.8904

SC 0.0079 0.0007 0.8911

MSC -0.0014 0.0005 0.9453

Table 5.3: Bias, mean squared-error, and r2 for the specific attenuation results for the

Control experiment at C-band.
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5.1.2 X band

At X-band, due to the extinguished signal in the core of the reflectivity, it is more

difficult to evaluate the performance of the algorithms using the PPIs of horizontal

attenuation in Figure 5.10. The differences from the intrinsic values shown in Fig-

ure 5.11 show that all of the algorithms have similar performance, with positive biases

(ignoring the regions of low-signal for the ZPHI algorithms) around 2 dB. ZPHI ap-

pears to be slightly better than the rest, while MSC slightly worse. The histograms of

specific attenuation, in Figure 5.14, show some very subtle results behind these biases.

For the Linear and ZPHI algorithms, the main bands of points lie along the one-to-one

line. However, the spread of points is uneven, with more points above the one-to-one

line. For the ZPHI and SC algorithms, the spread is more even, but at lower attenuation

values, the core of very many points lies above the line, causing the small bias. While

these may seem like small effects, it is important to keep in mind that the observed

biases are a few dB on top of calculated values on order 60 dB. A small bias in specific

attenuation values in the range of 1 dB/km is easily sufficient to yield the observed

biases.

The results for vertical polarization are similar, with PPIs of the base attenuation

values shown in Figure 5.12. The differences from the intrinsic values, shown in Fig-

ure 5.13, show that all algorithms have an overall positive bias. Here, ZPHI performs

best, with the errors having a magnitude around 2 dB. The other algorithms have larger

errors that approach 4 dB. Looking at the histograms of vertical specific attenuation

in Figure 5.15, the cause of the differences is subtle. The ZPHI algorithm exhibits

slightly less spread in the points, lessening the overall positive bias.
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Figure 5.10: As in Figure 5.1, but for X-band.

Figure 5.11: As in Figure 5.2, but for X-band.
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Figure 5.12: As in Figure 5.10, but for vertical polarization.

Figure 5.13: As in Figure 5.11, but for vertical polarization.
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Figure 5.14: As in Figure 5.5, but for X-band.

Figure 5.15: As in Figure 5.14, but for vertical polarization.
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Figure 5.16: As in Figure 5.10, but for differential attenuation.

Figure 5.17: As in Figure 5.11, but for differential attenuation.
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Figure 5.18: As in Figure 5.14, but for specific differential attenuation.

For differential attenuation, it is challenging to evaluate algorithm performance

from the base PPIs in Figure 5.16. The differences from the intrinsic values, in Fig-

ure 5.17, make the picture clear that ZPHI and SC perform the best of all here. Both

algorithms have biases less than 1 dB which, while significant, are much better than

the 1.25 dB positive bias for the Linear algorithm. MSC, on the other hand, demon-

strates a breakdown in performance, with errors over 2 dB. Such performance is un-

expected given the performance of SC and ZPHI and is likely due to a poor choice

in “smoothed” coefficient. The histograms of specific differential attenuation in Fig-

ure 5.18 show clear shifts for all of the algorithms, which yield the observed biases.

Here, the MSC algorithm also shows a large spread of points above the line, which cre-

ates the exceptionally bad algorithm performance. This is reflected in the computed
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bias values for MSC (Table 5.4), which are the highest for the horizontal polarization

and differential cases.

Unlike at C-band, the X-band Control experiment here at a azimuthal spacing of

1.0◦ displays some interesting differences from the Control experiment of the modeling

study at 0.25◦ azimuthal spacing. The histograms display similar changes as at C-

band, with the bands of points clustering more tightly and the multiple bands for the

ZPHI-based algorithms collapsing down to a single band. However, the attenuation

results for the individual polarizations all show larger errors here than for the higher

resolution data. It is interesting to note that the increase in errors is not reflected in the

differential attenuation results, with the exception of the anomalous performance of

the MSC algorithm. That the change in errors with the change in spacing from 0.25◦

to 1.0◦ is only observed at X-band, and not C-band, is likely a consequence of the

much higher attenuation values observed at X-band.

5.2 Sidelobe

The purpose of the Sidelobe experiment is to test the effects of antenna sidelobes on

the accuracy of attenuation correction techniques. This is achieved by modifying the

Control experiment to include the first antenna sidelobes, which have peaks around

25 dB below the mainlobe level. This experiment tests the impact of the smearing

effect of sidelobes on the accuracy of the correction techniques without modifying the

inherent azimuthal resolution of the radar antenna.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0530 0.0501 0.9789

ZPHI -0.0034 0.1266 0.9453

SC 0.0365 0.1244 0.9468

MSC 0.0991 0.1105 0.9526

Vertical

Linear 0.0254 0.0335 0.9793

ZPHI -0.0131 0.0789 0.9518

SC 0.0260 0.0774 0.9529

MSC 0.0152 0.0670 0.9580

Differential

Linear 0.0394 0.0031 0.9752

ZPHI 0.0098 0.0087 0.8600

SC 0.0098 0.0085 0.8637

MSC 0.1006 0.0364 0.7057

Table 5.4: Bias, mean squared-error, and r2 for the specific attenuation results for the

Control experiment at X-band.
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5.2.1 C band

At C-band, the PPIs of horizontal attenuation in Figure 5.19 show minimal differences

from those in the Control experiment. The only observable differences are a couple

of anomalous rays in the ZPHI algorithms and a slight increase in the estimated atten-

uation for the MSC algorithm. The PPIs with the intrinsic values subtracted, shown

in Figure 5.20, demonstrate that the change for MSC is very minor, on the order of

0.1 dB. At vertical polarization, the PPIs of the attenuation values (in Figure 5.21)

show no visual differences from Control. Even the differences from the intrinsic val-

ues in Figure 5.22 show no discernable difference from the Control experiment, outside

of the extra spurious ray in the ZPHI-based algorithms.

Consequently, the histograms of specific attenuation for both polarizations, in Fig-

ures 5.23 and 5.24, show almost no change between the Control and Sidelobe exper-

iment. The exception is that the MSC algorithm, for horizontal specific attenuation,

shows a slight upward shift for the Sidelobe experiment, bringing its core band of val-

ues into better alignment with the one-to-one line. This corresponds to a slight change

in the bias computed for horizontal polarization (Table 5.5), from −0.0025 dB/km to

0.0015 dB/km. This change is a consequence of a better-matching coefficient being

selected as the median, possibly a consequence of the bad rays. This highlights that

despite goals to the contrary, the selection of the coefficient in the MSC algorithm can

be sensitive to the data being processed. As opposed to in the modeling study, this

sensitivity is likely more pronounced here because of the decreased number of radials

of data.
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Figure 5.19: As in Figure 5.1, but for the Sidelobe experiment.

Figure 5.20: As in Figure 5.2, but for the Sidelobe experiment.
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Figure 5.21: As in Figure 5.19, but for vertical polarization.

Figure 5.22: As in Figure 5.20, but for vertical polarization.
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Figure 5.23: As in Figure 5.5, but for the Sidelobe experiment.

Figure 5.24: As in Figure 5.23, but for vertical polarization.
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Figure 5.25: As in Figure 5.19, but for differential attenuation.

Figure 5.26: As in Figure 5.20, but for differential attenuation.
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Figure 5.27: As in Figure 5.23, but for differential attenuation.

Given the lack of changes for the individual polarizations, it is unsurprising that

PPIs of both the base differential attenuation fields and the differences from the intrin-

sic values, shown in Figures 5.25 and 5.26, respectively, exhibit no significant changes.

The only exception is the MSC algorithm, which shows a decrease in its bias in esti-

mating differential attenuation, a consequence of the change observed at horizontal

polarization. This is reflected in the histograms of specific differential attenuation in

Figure 5.27, which only change for MSC, showing the same shift to better agreement

with the one-to-one line.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0314 0.0030 0.9789

ZPHI 0.0286 0.0036 0.9630

SC 0.0059 0.0035 0.9573

MSC 0.0015 0.0025 0.9706

Vertical

Linear 0.0101 0.0011 0.9820

ZPHI 0.0079 0.0014 0.9665

SC -0.0032 0.0021 0.9493

MSC -0.0055 0.0014 0.9687

Differential

Linear 0.0407 0.0020 0.9380

ZPHI 0.0285 0.0014 0.8903

SC 0.0080 0.0007 0.8910

MSC 0.0053 0.0005 0.9530

Table 5.5: As in Table 4.3, but for the Sidelobe experiment.
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5.2.2 X band

At X-band, the changes from the Control experiment are still minimal, though greater

than at C-band. The PPIs of the base results for both horizontal and vertical polariza-

tions, shown in Figures 5.28 and 5.30, respectively, exhibit no qualitative changes. For

the Linear algorithm, the results look completely identical. The differences from the

intrinsic values of horizontal attenuation, in Figure 5.29, show some small fluctuations,

likely due to small changes in the data near the low-signal region. The MSC algorithm

shows some slightly larger changes, due to the aforementioned sensitivity. The PPIs of

differences for vertical polarization, in Figure 5.31, show some small changes as well,

but much fewer than observed at horizontal polarization. The histograms of specific

attenuation for both horizontal and vertical polarizations, in Figures 5.32 and 5.33, re-

spectively, show that the only meaningful change from the Control experiment is for

the MSC algorithm; here, the values shift closer to the one-to-one line, in agreement

with the observed decrease in bias in the difference PPI.

For differential attenuation, the results reflect the lack of change for the individual

polarizations. The PPIs of differential attenuation in Figure 5.34 show no qualitative

changes for the Linear, ZPHI, and SC algorithms. However, the MSC algorithm does

show a noticeable increase in value, a consequence of its increase in calculated hori-

zontal attenuation for the Sidelobe experiment. These changes do help to resolve the

anomalously high differences from intrinsic values that were observed for the MSC

algorithm in the Control experiment, yielding much improved computed values for

the bias in Table 5.6. Figure 5.35 shows that these differences have decreased from
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Figure 5.28: As in Figure 5.19, but for X-band.

Figure 5.29: As in Figure 5.20, but for X-band.
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Figure 5.30: As in Figure 5.28, but for vertical polarization.

Figure 5.31: As in Figure 5.29, but for vertical polarization.
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Figure 5.32: As in Figure 5.23, but for X-band.

Figure 5.33: As in Figure 5.32, but for vertical polarization.

230



Figure 5.34: As in Figure 5.28, but for differential attenuation.

Figure 5.35: As in Figure 5.29, but for differential attenuation.
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Figure 5.36: As in Figure 5.32, but for specific differential attenuation.

over 2 dB to around 1.25 dB. The histograms of specific differential attenuation in Fig-

ure 5.36 show that the values for MSC are now much more tightly clustered around

the one-to-one line, in agreement with the observed improvement in performance.

5.3 Beamwidth

The Beamwidth experiment examines the impact of the antenna’s 3 dB beamwidth,

and hence azimuthal resolution, on the accuracy of attenuation corrections. Here, the

azimuthal spacing is kept at 1.0◦, so the data sampling interval is no longer matched to

the resolution. This experiment, combined with the Radial Width experiment, helps to

separate the two effects at play when determining azimuthal smearing in data.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0531 0.0501 0.9789

ZPHI -0.0029 0.1206 0.9482

SC 0.0372 0.1187 0.9495

MSC 0.0545 0.0986 0.9562

Vertical

Linear 0.0254 0.0336 0.9793

ZPHI -0.0162 0.0898 0.9444

SC 0.0230 0.0884 0.9452

MSC 0.0167 0.0760 0.9516

Differential

Linear 0.0394 0.0031 0.9752

ZPHI 0.0067 0.0103 0.8333

SC 0.0060 0.0100 0.8412

MSC 0.0388 0.0102 0.8509

Table 5.6: As in Table 4.4, but for the Sidelobe experiment.
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5.3.1 C band

In the Beamwidth experiment, the results for horizontal attenuation, in Figure 5.37,

show only minor differences from those in the Control experiment. Based on the PPIs

of the difference from intrinsic values, in Figure 5.38, the only substantive change

at horizontal polarization is that for the MSC algorithm the negative bias in the core

of the reflectivity is gone; however, this has been replaced by positive differences

of a similar magnitude on either side. Overall this likely represents a shift in the

optimized coefficient obtained by the algorithm. The histograms of horizontal specific

attenuation in Figure 5.41 show no significant changes, other than a slight shift upward

for the band of points for the MSC algorithm. This brings the points into slightly better

alignment with the one-to-one line, reflecting the shift in bias from −0.0025 dB/km to

0.0065 dB/km (Table 5.7).

At vertical polarization, there is even less change, compared to the Control results,

with no visible differences in the PPIs shown in Figure 5.39. The differences from the

intrinsic values, in Figure 5.40, do not show much change either; the exception is that

the pronounced negatively biased rays in the results for the SC algorithm show reduced

errors. The histograms of vertical specific attenuation (Figure 5.42) do not show any

qualitative changes from the results in the Control experiment; the reduction in errors

for the few rays of the SC algorithm’s results is too small to be clear in the histogram.

For differential attenuation, the PPIs in Figure 5.43 show that the only change is a

substantial increase in the differential attenuation calculated using the MSC algorithm,

a direct consequence of the increase in its estimated horizontal attenuation. The PPIs

of the difference from the intrinsic values, in Figure 5.44, show that this increase has

turned a pronounced negative bias within the core of the reflectivity structure into an

234



Figure 5.37: As in Figure 5.1, but for the Beamwidth experiment.

Figure 5.38: As in Figure 5.2, but for the Beamwidth experiment.
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Figure 5.39: As in Figure 5.37, but for vertical polarization.

Figure 5.40: As in Figure 5.38, but for vertical polarization.
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Figure 5.41: As in Figure 5.5, but for the Beamwidth experiment.

Figure 5.42: As in Figure 5.41, but for vertical polarization.
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Figure 5.43: As in Figure 5.37, but for differential attenuation.

Figure 5.44: As in Figure 5.38, but for differential attenuation.
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Figure 5.45: As in Figure 5.41, but for specific differential attenuation.

overall positive bias around 0.5 dB; this positive bias is still less than that of the ZPHI

algorithm. The histograms of specific differential attenuation in Figure 5.45 show that

only MSC shows a substantive change, with an upward shift in its band of points; this

is in agreement with the increase in bias shown in Table 5.7.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0322 0.0029 0.9808

ZPHI 0.0293 0.0035 0.9631

SC 0.0049 0.0032 0.9582

MSC 0.0065 0.0022 0.9712

Vertical

Linear 0.0115 0.0011 0.9829

ZPHI 0.0091 0.0013 0.9668

SC -0.0037 0.0020 0.9514

MSC -0.0063 0.0013 0.9694

Differential

Linear 0.0403 0.0019 0.9456

ZPHI 0.0278 0.0014 0.8880

SC 0.0072 0.0007 0.8975

MSC 0.0148 0.0006 0.9478

Table 5.7: As in Table 4.3, but for the Beamwidth experiment.
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5.3.2 X band

At X-band, the effect of changing beamwidth is much more pronounced, evidenced

by the PPIs of horizontal attenuation shown in Figure 5.46. Here, all the ZPHI-based

algorithms show increases in the amount of calculated attenuation, versus their results

from the Control experiment. Similar increases are observed for vertical polarization,

shown in Figure 5.48. Taking the differences from the intrinsic attenuation, shown

in Figures 5.47 and 5.49, it is clear that all of the algorithms, including Linear, have

increased positive biases in their calculated attenuation fields at both polarizations.

The histograms of specific attenuation for horizontal and vertical polarization, shown

in Figures 5.50 and 5.51, respectively, show that these increases in bias are not due to

any shift in the main bands of points. Rather, it is due to an increase in the spread of

points above the one-to-one ratio line. These are reflected by increases in not only the

computed biases, but in the MSE values as well (Table 5.8).

For differential attenuation, the changes are more minor. The PPIs of differential

attenuation, in Figure 5.52, show that the most significant changes come from filling

in area around the low-signal area. All of the ZPHI-based algorithms show significant

changes here, especially the MSC algorithm; outside this region, the Beamwidth ex-

periment results for differential attenuation are consistent with those for the Control

experiment. The differences from the intrinsic values, shown in Figure 5.53, confirm

these observations. Outside of the areas that were discussed, the only other changes

observed here are that a few radials from the output of the SC algorithm changed

their relative bias. Their proximity to the low signal region makes such data suspect.

The histograms for specific differential attenuation, in Figure 5.54, show that there

are no major changes to the character of the results for differential attenuation in the
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Figure 5.46: As in Figure 5.37, but for X-band.

Figure 5.47: As in Figure 5.38, but for X-band.
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Figure 5.48: As in Figure 5.46, but for vertical polarization.

Figure 5.49: As in Figure 5.47, but for vertical polarization.
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Figure 5.50: As in Figure 5.41, but for X-band.

Figure 5.51: As in Figure 5.50, but for vertical polarization.
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Figure 5.52: As in Figure 5.46, but for differential attenuation.

Figure 5.53: As in Figure 5.47, but for differential attenuation.
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Figure 5.54: As in Figure 5.50, but for specific differential attenuation.

Beamwidth experiment. None of the main bands of points show any shift; there are

changes in outlier points, but these are not systematic. The fact that the individual po-

larizations show significant changes, while differential attenuation remains relatively

unchanged between the two experiments, indicates that the changes experienced by

the two polarizations are very consistent.

5.4 Radial Width

The Radial Width experiment is the counterpart to the previous Beamwidth experi-

ment. The beamwidth from the previous experiment is maintained at 2.0◦, while the

radial spacing is increased to match. Effectively, two radials from the Beamwidth ex-

periment will be combined into one in the Radial Width experiment. Comparisons
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1009 0.0974 0.9596

ZPHI 0.0454 0.1231 0.9415

SC 0.0687 0.1277 0.9413

MSC 0.2072 0.3123 0.8805

Vertical

Linear 0.0730 0.0762 0.9537

ZPHI 0.0303 0.0921 0.9389

SC 0.0574 0.0974 0.9371

MSC 0.0909 0.1060 0.9334

Differential

Linear 0.0407 0.0030 0.9776

ZPHI 0.0129 0.0135 0.7606

SC 0.0075 0.0115 0.7927

MSC 0.1524 0.1543 0.3618

Table 5.8: As in Table 4.4, but for the Beamwidth experiment.
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between the two will reflect the impacts of this averaging on the correction techniques.

Also, comparing against the Control baseline, which has sampling matched between

beamwidth and radial spacing at 1.0◦, will explore how the overall change in resolution

volume impacts the corrections.

5.4.1 C band

For the Radial Width experiment, the PPIs of attenuation at horizontal and vertical

polarizations, in Figures 5.55 and 5.57, respectively, show no significant changes in

comparison with the results of the Beamwidth experiment, in regards to the amount

of attenuation; clearly different is the coarseness of the data, which is expected based

on the change to the radial spacing. The PPIs of the difference between the algorithm

calculation and the intrinsic values, in Figures 5.56 and 5.58, confirm the lack of sig-

nificant differences. The MSC algorithm does show some small changes from small

negative errors to small positive errors, but no significant changes to the magnitude

of errors. This is likely another reflection of the sensitivity of MSC. The histograms

of specific attenuation, in Figures 5.59 and 5.60, show no significant changes from

the results in the Beamwidth experiment (other than an expected decrease in the total

number of points). This is also reflected in the lack of significant changes to the bias

and MSE values in Table 5.9.

For differential attenuation, the results are similar. The PPIs of the base attenua-

tion fields in Figure 5.61 show no significant changes, except that the MSC algorithm

appears to have produced less total differential attenuation. This is confirmed in Fig-

ure 5.62, which shows that the differences from the intrinsic values of differential at-

tenuation have changed from an overall, small positive bias to a negative bias, around
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Figure 5.55: As in Figure 5.1, but for the Radial Width experiment.

Figure 5.56: As in Figure 5.2, but for the Radial Width experiment.
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Figure 5.57: As in Figure 5.55, but for vertical polarization.

Figure 5.58: As in Figure 5.56, but for vertical polarization.
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Figure 5.59: As in Figure 5.5, but for the Radial Width experiment.

Figure 5.60: As in Figure 5.59, but for vertical polarization.
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Figure 5.61: As in Figure 5.55, but for differential attenuation.

Figure 5.62: As in Figure 5.56, but for differential attenuation.
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Figure 5.63: As in Figure 5.59, but for specific differential attenuation.

0.25 dB in the core of the reflectivity structure, as well as small positive biases on ei-

ther side. The errors for the other algorithms show no significant changes with respect

to the Beamwidth experiment. The histograms of specific differential attenuation, in

Figure 5.63, show that the core band of points for the MSC algorithm has shifted down,

putting the band of points along the one-to-one line for small values; for higher values,

the band now curves below the one-to-one line. This yields the observed lessened bias

for smaller attenuation along the edge of the reflectivity structure and pronounced neg-

ative bias for the higher values of attenuation in the middle of the structure. Overall,

this value dependent bias reflects a failure of the algorithm to effectively capture the

relationship between radar observables and attenuation.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0334 0.0030 0.9806

ZPHI 0.0306 0.0036 0.9622

SC 0.0071 0.0031 0.9584

MSC 0.0035 0.0022 0.9716

Vertical

Linear 0.0121 0.0011 0.9832

ZPHI 0.0099 0.0013 0.9665

SC -0.0019 0.0018 0.9527

MSC -0.0007 0.0012 0.9693

Differential

Linear 0.0398 0.0019 0.9479

ZPHI 0.0274 0.0014 0.8851

SC 0.0069 0.0006 0.8937

MSC 0.0002 0.0004 0.9461

Table 5.9: As in Table 4.3, but for the Radial Width experiment.
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5.4.2 X band

At X-band, the PPIs of horizontal and vertical attenuation, in Figures 5.64 and 5.66,

respectively, show no observable changes in magnitude between the Beamwidth and

Radial Width experiments. The differences from the intrinsic values, shown in Fig-

ures 5.65 and 5.67, confirm that there are no significant changes in the structure of the

errors of the algorithms. The histograms of specific attenuation, in Figures 5.68 and

5.69, also exhibit no shifts or tilts that would indicate a change in performance. It is

worth noting that the histograms for the Radial Width experiment show significantly

fewer points at the higher values of specific attenuation; this is a reflection of how the

larger azimuthal spacing smooths the data and reduces peaks. Also, at both polariza-

tions, the ZPHI algorithms develop a collection of outlier points around a value of true

specific attenuation of 1.5 dB/km; these points contribute to an increase in the bias and

MSE (Table 5.10) but are otherwise insignificant compared to the core band of points.

For differential attenuation, the results are similarly stable between the Beamwidth

and Radial Width experiments. The PPIs of the base fields, in Figure 5.70, show no sig-

nificant changes in the algorithms, outside of the low-signal region which is expected

to be dependent on the sensitivity of the radar. The differences from the intrinsic val-

ues, in Figure 5.71, show that the errors have not changed outside of the low-signal

region. The anomalous regions in the MSC algorithm have had the magnitude of er-

rors greatly reduced, though the values are still anomalously high. The histograms of

the points, in Figure 5.72, also show no significant changes to the core bands of points.

For the ZPHI-based algorithms, many of the outlier points are better clustered around

the one-to-one line, especially for the MSC algorithm. This is another consequence of

the smoothing effect of the larger radial spacing.
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Figure 5.64: As in Figure 5.55, but for X-band.

Figure 5.65: As in Figure 5.56, but for X-band.
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Figure 5.66: As in Figure 5.64, but for vertical polarization.

Figure 5.67: As in Figure 5.65, but for vertical polarization.
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Figure 5.68: As in Figure 5.59, but for X-band.

Figure 5.69: As in Figure 5.68, but for vertical polarization.
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Figure 5.70: As in Figure 5.64, but for differential attenuation.

Figure 5.71: As in Figure 5.65, but for differential attenuation.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1331 0.1477 0.9379

ZPHI 0.0743 0.1567 0.9216

SC 0.0910 0.1521 0.9264

MSC 0.1697 0.2799 0.8775

Vertical

Linear 0.0969 0.1074 0.9340

ZPHI 0.0514 0.1131 0.9215

SC 0.0750 0.1187 0.9199

MSC 0.1016 0.1394 0.9095

Differential

Linear 0.0416 0.0030 0.9782

ZPHI 0.0127 0.0169 0.6911

SC 0.0046 0.0106 0.7978

MSC 0.0779 0.0694 0.4196

Table 5.10: As in Table 4.4, but for the Radial Width experiment.
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Figure 5.72: As in Figure 5.68, but for specific differential attenuation.

5.5 Range Resolution

While all previous experiments explored aspects of azimuthal sampling, the Range

Resolution experiment looks at how the resolution in the alternate direction, along

the range, impacts the attenuation corrections. Given that all of the algorithms rely

on range integrals of various forms, range resolution and spacing is a very relevant

consideration for the operation of attenuation correction techniques.

5.5.1 C band

The PPIs of the base attenuation fields for the Range Resolution experiment are given

in Figures 5.73 and 5.75, for horizontal and vertical polarizations, respectively. These

fields exhibit no significant differences from the results for the Control experiment.
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Figure 5.73: As in Figure 5.1, but for the Range Resolution experiment.

This consistency with the Control experiment also extends to the differences from the

intrinsic values, shown in Figures 5.74 and 5.76. This lack of change is reflected in

the histograms for specific attenuation, shown in Figures 5.77 and 5.78, for horizontal

and polarizations, respectively. The only significant change is that all algorithms show

fewer points with high values of specific attenuation, a consequence of the smoothing

due to the larger pulse and gate spacing. However, the histograms have no observable

changes with regards to the accuracy of the correction algorithms. This is reflected

in the computed biases and MSE values as well (Table 5.11) which show only minor

changes from the values for the Control experiment.

For differential attenuation, the results largely follow those for the individual po-

larizations. The PPIs of the base differential attenuation results, in Figure 5.79, show

that the MSC algorithm is the only one that changes magnitude versus the results from

the Control experiment. The differences from the intrinsic values, in Figure 5.80, show
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Figure 5.74: As in Figure 5.2, but for the Range Resolution experiment.

Figure 5.75: As in Figure 5.73, but for vertical polarization.
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Figure 5.76: As in Figure 5.74, but for vertical polarization.

Figure 5.77: As in Figure 5.5, but for the Range Resolution experiment.
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Figure 5.78: As in Figure 5.77, but for vertical polarization.

Figure 5.79: As in Figure 5.73, but for differential attenuation.
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Figure 5.80: As in Figure 5.74, but for differential attenuation.

Figure 5.81: As in Figure 5.77, but for specific differential attenuation.
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that the effect of this change is to reduce the negative bias in the core of the reflectivity

structure from 0.5 dB to 0.25 dB. The remainder of the algorithms show no change in

the structure of their errors versus the Control experiment. The histograms of specific

differential attenuation, in Figure 5.81, show that the change in the results for the MSC

algorithm result from a band at higher values being pulled into the main cluster rather

than extending below the one-to-one line. The other algorithms show only a reduction

of high values, similar to that observed for the individual polarizations.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0313 0.0063 0.9356

ZPHI 0.0284 0.0038 0.9590

SC 0.0021 0.0035 0.9548

MSC -0.0054 0.0027 0.9690

Vertical

Linear 0.0101 0.0029 0.9368

ZPHI 0.0078 0.0014 0.9642

SC -0.0065 0.0022 0.9467

MSC -0.0114 0.0016 0.9677

Differential

Linear 0.0392 0.0023 0.8609

ZPHI 0.0280 0.0015 0.8741

SC 0.0073 0.0007 0.8822

MSC 0.0034 0.0005 0.9445

Table 5.11: As in Table 4.3, but for the Range Resolution experiment.
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5.5.2 X band

The horizontal attenuation results for X-band in the Range Resolution experiment, in

Figure 5.82, show larger attenuation values for all of the ZPHI-based algorithms. The

differences from the intrinsic values, shown in Figure 5.83, show that these increases

are constrained, at least for ZPHI and SC, to the region of low-signal. The areas that

are expected to be more stable show no changes versus the Control experiment. The

MSC algorithm is the lone exception and shows an overall decrease in its positive bias,

from 5 dB to around 3 dB. Given that this change is not reflected by the ZPHI and SC

algorithms, it is a consequence of a different coefficient being obtained by the opti-

mization process of the algorithm. The Linear algorithm exhibits the development of

an area with negative bias near the radar, with values moving from near 0 dB to around

1 dB. The histograms for horizontal specific attenuation, in Figure 5.86, show no sig-

nificant changes from the Control experiment, at least in regards to biases. The MSE

value for the Linear algorithm (Table 5.12) do reflect a large increase over the results

of the Control experiment and are likely related to the increase in errors observed ear-

lier; none of the other algorithms exhibit this increase. All of the algorithms do reflect

a shrinking of the overall range of values, a reflection of the smoothing process due to

the increases in pulse width and gate size in the Range Resolution experiment.

For vertical polarization, the results are similar. The base fields of attenuation

in Figure 5.84 show increases in estimated attenuation in the region of low-signal.

Outside of these areas, the only significant changes to the structure of the errors shown

in Figure 5.85 are for the Linear algorithm near the radar, where a small negative bias

around 1 dB develops. The histograms of vertical specific attenuation in Figure 5.87
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Figure 5.82: As in Figure 5.73, but for X-band.

show no significant changes other than the loss of points at higher values of specific

attenuation.

For differential attenuation, the results are largely the same as at the individual

polarizations. The base field of differential attenuation, in Figure 5.88, shows no sig-

nificant changes in magnitude, and this is also reflected by no significant changes in

the errors from intrinsic values, shown in Figure 5.89. The one exception to the lack

of changes is that the modifications to the range resolution has helped improve the

results for MSC around the area of low signal; this is likely just a consequence of

the technique’s sensitivity. The histograms of specific differential attenuation, in Fig-

ure 5.90, show some notable differences. For the ZPHI-based algorithms, the points

are better clustered in the Range Resolution experiment, versus the Control experi-

ment; the MSC algorithms points have especially lost some spread, an outcome that
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Figure 5.83: As in Figure 5.74, but for X-band.

Figure 5.84: As in Figure 5.82, but for vertical polarization.
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Figure 5.85: As in Figure 5.83, but for vertical polarization.

Figure 5.86: As in Figure 5.77, but for X-band.
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Figure 5.87: As in Figure 5.86, but for vertical polarization.

Figure 5.88: As in Figure 5.82, but for differential attenuation.
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Figure 5.89: As in Figure 5.65, but for differential attenuation.

Figure 5.90: As in Figure 5.86, but for specific differential attenuation.
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drives the observed improvement to the previously anomalous results. The Linear al-

gorithm shows a greater spread in points.

5.6 Combined

The Combined experiment is separate from the others, as it does not involve explor-

ing sampling directly. Instead, this experiment, like in the previous modeling study,

looks at the impact of the violation of assumptions made about scattering. Here the

radar simulation is performed with the baseline sampling parameters (1.0◦ beamwidth

and radial spacing, 125 m gate spacing) so that sampling effects are also included. For

the violated assumptions, this case is designed to be reasonable and representative, so

only the shape model and temperature assumptions are violated; this uses the Prup-

pacher and Beard (1970) shape model (as opposed to Brandes et al. (2002)) and the

model simulation temperatures (approximately 295 K as opposed to 283 K). These as-

pects are chosen because they are both important and challenging to address (from the

standpoint of natural variability) when obtaining coefficients for the algorithms. Over-

all, this experiment is designed to reflect a real-world set of sampling intervals along

with a reasonable set of modeling errors.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.0507 0.1286 0.9425

ZPHI -0.0048 0.1114 0.9504

SC 0.0258 0.1136 0.9500

MSC 0.0264 0.0966 0.9560

Vertical

Linear 0.0237 0.0900 0.9424

ZPHI -0.0190 0.0859 0.9455

SC 0.0114 0.0869 0.9448

MSC 0.0037 0.0751 0.9513

Differential

Linear 0.0378 0.0056 0.9295

ZPHI 0.0085 0.0092 0.8442

SC 0.0051 0.0105 0.8192

MSC 0.0187 0.0099 0.8321

Table 5.12: As in Table 4.4, but for the Range Resolution experiment.
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5.6.1 C band

The base attenuation fields for the Combined experiment at C-band are presented in

Figures 5.91 and Figure 5.93, for horizontal and vertical polarizations, respectively;

these PPIs show the impact of the modifications to the scattering model. The intrinsic

attenuation has decreased for both polarizations, and this decrease is matched fairly

well by the SC and MSC algorithms. The Linear and ZPHI algorithms, however, show

a significant increase between the Control and Combined experiments. With the intrin-

sic values subtracted, the PPIs in Figures 5.92 and 5.94 show that this change greatly

increases the biases for the Linear and ZPHI algorithms, though Linear has a larger

area of peak errors. At horizontal polarization, this changes the errors from around

2 dB to 10 dB; for vertical the change is slightly smaller, from 1 dB to almost 8 dB.

Conversely, the SC and MSC algorithms only exhibit minors changes in the structure

of their errors between the experiments. The histograms of specific attenuation for

horizontal, Figure 5.95, and for vertical, Figure 5.96, polarizations show very large

upward shifts in the points for both the Linear and ZPHI algorithms, causing the pos-

itive bias. These correspond to greater than an order of magnitude increase in the

computed values of bias and MSE (Table 5.13). An additional problem for the ZPHI

algorithm is that the distribution of points changes from being tightly clustered around

the one-to-one line to being very spread out; this poor fit represents a very poor match

of ZPHI’s internal scattering model to the data. The points from the SC and MSC

algorithms, conversely, show no significant shifts between the Control and Combined

experiments. While the computed bias values increase a little, the MSE values stay the

same; more importantly, the bias values for SC and MSC are an order of magnitude

smaller than those of the Linear and ZPHI algorithms (Table 5.13). This is evidence
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Figure 5.91: As in Figure 5.1, but for the Combined experiment.

that the optimization of a single coefficient is sufficient to correct the problems ob-

served by ZPHI.

For differential attenuation, the PPIs in Figure 5.97 show that the Linear and ZPHI

algorithms have the most trouble with the changes between the Control and Com-

bined experiments. The differences from the intrinsic values, in Figure 5.98, show

that for these two algorithms, their positive biases have increased from around 1 dB

to well over 2 dB. As in the individual polarizations, the histograms of the points, in

Figure 5.99, show that the Linear and ZPHI algorithms experience large shifts in the

points between the Control and Combined experiments. The SC and MSC algorithms

experience no such shift.
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Figure 5.92: As in Figure 5.2, but for the Combined experiment.

Figure 5.93: As in Figure 5.91, but for vertical polarization.
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Figure 5.94: As in Figure 5.92, but for vertical polarization.

Figure 5.95: As in Figure 5.5, but for the Combined experiment.
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Figure 5.96: As in Figure 5.95, but for vertical polarization.

Figure 5.97: As in Figure 4.94, but for differential attenuation.
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Figure 5.98: As in Figure 5.92, but for differential attenuation.

Figure 5.99: As in Figure 5.95, but for specific differential attenuation.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.1911 0.0564 0.9661

ZPHI 0.1877 0.0823 0.7022

SC 0.0172 0.0043 0.9294

MSC 0.0035 0.0028 0.9629

Vertical

Linear 0.1445 0.0339 0.9759

ZPHI 0.1419 0.0416 0.7687

SC 0.0079 0.0019 0.9240

MSC -0.0028 0.0012 0.9644

Differential

Linear 0.0843 0.0079 0.9179

ZPHI 0.0653 0.0141 0.2917

SC 0.0062 0.0009 0.8761

MSC 0.0022 0.0007 0.9411

Table 5.13: As in Table 4.3, but for the Combined experiment.
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5.6.2 X band

At X-band, the PPIs of horizontal and vertical attenuation, in Figures 5.100 and 5.102,

show that the effect of the Combined experiment is to increase the intrinsic attenuation.

Unlike C-band, the SC and MSC algorithms appear to decrease, while the Linear and

ZPHI algorithms increase. The differences from intrinsic values, in Figures 5.101 and

5.103, show that the net result is to increase errors across the board. The SC and MSC

algorithms have smaller changes, increases on the order of 1 dB. For the Linear and

ZPHI algorithms, this change is from 1 dB to well-over 10 dB at both polarizations.

This is reflected in the histograms of specific attenuation, shown in Figures 5.104 and

5.105, which show large shifts for both the Linear and ZPHI algorithms. The Linear

algorithm exhibits a shift of its entire band of points above the one-to-one ratio line,

which results in the extremely large positive bias, approaching 0.5 dB/km (Table 5.14).

The effect on ZPHI is slightly smaller, in that the shift only occurs for smaller atten-

uation values; the larger values still lie along the one-to-one line. This still results in

much larger computed values for bias and MSE, with the bias approaching 0.4 dB/km.

For ZPHI, the spread of points also changes, from having a few outliers below the

one-to-one line, to having many more outliers, almost all of which are above that line.

For differential attenuation, the PPIs in Figure 5.106 show increases across the

board, both for the intrinsic values and the algorithms. The differences from the intrin-

sic values, in Figure 5.107, show that Linear and ZPHI have the largest increases in

errors, as was the case for the individual polarizations. The Linear algorithm’s positive

bias increases from approximately 1 dB to over 2 dB. The ZPHI algorithm, outside of

the low-signal region, has its positive bias increase from around 0.5 dB to over 1 dB.

Conversely, the SC algorithm exhibits no significant changes in errors between the
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Figure 5.100: As in Figure 5.91, but for X-band.

Figure 5.101: As in Figure 5.92, but for X-band.
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Figure 5.102: As in Figure 5.100, but for vertical polarization.

Figure 5.103: As in Figure 5.101, but for vertical polarization.
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Figure 5.104: As in Figure 5.95, but for X-band.

Figure 5.105: As in Figure 5.104, but for vertical polarization.
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Figure 5.106: As in Figure 5.100, but for differential attenuation.

Figure 5.107: As in Figure 5.101, but for differential attenuation.
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Figure 5.108: As in Figure 5.104, but for specific differential attenuation.

Control and Combined experiments, while the MSC algorithm reduces its errors, as

some of its anomalously bad results are corrected. These changes are reflected by the

histograms of specific attenuation, in Figure 5.108, which show a large shift for the

results of the Linear algorithm above the one-to-one ratio line. The ZPHI algorithm

shows an increase in the spread of its points, with the spread being biased above the

one-to-one line.
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Algorithm Bias (dB/km) MSE (dB2/km2) r2

Horizontal

Linear 0.4650 0.3601 0.9675

ZPHI 0.3973 0.7653 0.8163

SC 0.0551 0.1962 0.9300

MSC 0.0690 0.1902 0.9322

Vertical

Linear 0.4151 0.2852 0.9677

ZPHI 0.3743 0.8375 0.7451

SC 0.0455 0.1177 0.9376

MSC 0.0374 0.1245 0.9343

Differential

Linear 0.0705 0.0076 0.9709

ZPHI 0.1441 0.2471 0.3742

SC 0.0129 0.0170 0.8062

MSC 0.0252 0.0195 0.7740

Table 5.14: As in Table 4.4, but for the Combined experiment.
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5.7 Conclusion

This chapter examined the effects of running several different attenuation correction

algorithms, Linear, ZPHI, Self-Consistent, and Modified Self-Consistent on radar data

with different spatial sampling characteristics. These configurations explored azimu-

thal effects, including sidelobes, mainlobe beamwidth, and radial spacing, as well as

the range resolution effect of changing pulse width and gate spacing. Remarkably, the

algorithms overall showed very little sensitivity to these changes. The initial Control

experiment, which started with matched beamwidth and radial spacing of 1.0◦ showed

no significant differences from the modeling study. The lack of sensitivity to sampling

continued through the remainder of the experiments that only tested aspects of spatial

sampling.

One effect revealed by this study is that the Modified Self-Consistent algorithm

can be sensitive to the data. By virtue of its single optimized value, any spuriously

obtained coefficient can bias all of the results. The method of choosing the median

value originally was chosen to try to smooth the results from the Self-Consistent algo-

rithm in a way that is less sensitive to outliers. However, these results reveal that when

few radials of data are available, as occurred when moving from the 0.25◦ spacing of

the modeling study to the 1.0◦ (or even 2.0◦) used here, the ranking of coefficients

can be sensitive to bad radials, degrading algorithm performance. When the algorithm

performs well, the results are indeed azimuthally more smooth and more robust than

Self-Consistent itself; this lends credence to the concept of smoothing coefficients

from the Self-Consistent algorithm. However, the choice of median is not sufficiently

robust for operational applications.
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The Combined experiment, which used both a 1.0◦ spacing as well as violating

the assumed temperature and drop shape model, demonstrates the sensitivity of the

fixed-coefficient algorithms (Linear and ZPHI) to the validity of the assumed scatter-

ing model for standard resolution data (lower than that of the modeling study); these

methods had up to 10 dB of errors with the multiple violated assumptions. This high-

lights the need to use more sophisticated methods, like Self-Consistent, that can auto-

matically tune coefficients to yield the best results for the data at hand. In the results

shown here, these algorithms (SC and MSC) resulted in an order of magnitude less

bias in estimates of specific attenuation at the individual polarizations.
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Chapter 6

Conclusion

This work examines the practical aspects of performing correction for rain-induced

attenuation in dual-polarization radar data. Given the large biases in reflectivity data

that are caused by attenuation at C- and X-band, correction for this effect is important

for many radar applications, including QPE.

6.1 Simulator

This study of attenuation is conducted through the use of simulated radar data. The

simulation procedure builds on the work of May et al. (2007), and extends it to pro-

duce dual-polarization time series data. The dual-polarization aspect of the simula-

tion is accomplished by the inclusion of full T-matrix based scattering calculations

(Mishchenko 1993), as well as supporting the use of the output from two-moment

model microphysics schemes (Ziegler 1985). These calculations form the foundation

for calculating radar intrinsic variables, like reflectivity factor, specific attenuation, and

specific differential phase shift. By feeding these starting variables into the path inte-

gration procedure of May et al. (2007), the path-integrated attenuation and differential

phase are properly simulated, including differential effects across the radar antenna.

The time-series simulation is based upon a combination of the work of Muschinski
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et al. (1999) and Galati (1995); together, these form the basis of using the radar scat-

tering parameters to generate stochastic time series data. This stochastic data allows

the simulation to accurately capture the errors in the radar data due to both intrinsic

variability and the procedure of moment estimation; this ensures that errors identified

using simulated data represent those experienced by real-world radar systems.

The use of simulated data is vital to this study. Previous studies of the accuracy of

radar attenuation algorithms, such as Carey et al. (2000) and Gorgucci et al. (1998),

rely upon indirect comparisons, either to rain gauge data (to examine changes to biases

in QPE) or to data from a separate, non-attenuated, radar system. The benefit of using

simulated data is that the true, non-attenuated reflectivity fields are known and can

serve as a direct truth field in any analysis.

6.2 Algorithms

The attenuation correction techniques examined consist of two broad families: Linear

(Bringi et al. 1990) and ZPHI (Testud et al. 2000). The ZPHI family, in additition to the

ZPHI algorithm itself, also includes the Self-Consistent algorithm (Bringi et al. 2001).

This work also tests a proposed Modified Self- Consistent technique, which attempts

to address shortcomings in the robustness of the standard Self-Consistent algorithm.

All of the aforementioned techniques require empirically determined coefficients

that represent the relations between radar observables and attenuation. To maximize

the potential algorithm performance and because different algorithms used differing

assumptions for coefficients, this work calculates its own set of “optimal” coefficients.
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This ensures the coefficients accurately reflect the known assumptions used in the sim-

ulation of data, as well as reflect the drop size distribution used in the underlying

numerical weather simulation.

6.3 Modeling Errors

The first study conducted examined the sensitivity of the algorithms to assumptions

made in calculating the coefficients, such as wavelength, temperature, shape model,

etc. The baseline of performance is established using a Control experiment, where the

radar data are simulated using a set of assumptions that match those used to obtain

the coefficients for the algorithms. Overall, all algorithms worked well at both C- and

X-bands in the Control experiment.

In the other experiments, when these assumptions were systematically violated,

the Linear and ZPHI techniques, because they rely upon fixed coefficients, yielded

much higher errors than the Self-Consistent and Modified Self-Consistent algorithms,

at both X- and C-band. In almost all cases these latter algorithms were able to deliver

reasonable results. While the biases for individual polarizations from these algorithms

could still be in the range of 1 dB to 2 dB, this was much more usable than the errors

for the Linear and ZPHI algorithms in most cases.

In terms of sensitivity to assumptions, changing any one of them (canting, shape

model, temperature, or wavelength), yielded pronounced changes, both in terms of

the resulting attenuation field and in the results of the algorithms. This implies that

successful use of these techniques depends upon carefully making assumptions that

match nature. For physical processes (i.e., canting and shape model), this implies the
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need for good data and parameterizations of the microphysical processes involved. For

something like temperature, which varies greatly, this implies a greater challenge. For

fixed coefficient techniques, though, the biases introduced are significant, so making

use of any temperature data available could yield significant gains in reducing the bias

in reflectivity due to under- or over-correction for attenuation.

Most important of all effects was the sensitivity to wavelength within the band.

Changing the wavelength by only 10 % introduced at least 5 dB of error in the atten-

uation estimates by the Linear and ZPHI algorithms; this runs counter to the com-

mon wisdom that one can use coefficients for these algorithms that are appropriate

to a given band. It is possible, therefore to gain algorithm performance by simply

tuning coefficients to the true operating wavelength of a given radar system. While

the Self-Consistent algorithms were able to largely compensate for all of the violated

assumptions, including wavelength, the best algorithm performance occurred for the

Control experiment. Therefore, It is important to all algorithms to take care in making

accurate assumptions; using the true wavelength of the radar, rather than some general

waveband, is one of the simplest ways to eliminate errors.

6.4 Spatial Errors

The second study examined the effects of the spatial sampling characteristics of the

radar data on algorithm performance. This includes azimuthal effects (sidelobes, main-

lobe beamwidth, and radial spacing), as well as the range resolution effect of changing

pulse width and gate spacing. Remarkably, the algorithms overall showed very lit-

tle sensitivity to these changes. The initial Control experiment, which started with
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matched beamwidth and radial spacing of 1.0◦ showed no significant differences from

the modeling study. The lack of sensitivity to sampling continued through the remain-

der of the experiments that only tested aspects of spatial sampling.

One effect that was revealed by this study is that the Modified Self-Consistent

algorithm can be sensitive to the data. By virtue of its single optimized value, any

spuriously obtained coefficient can bias all of the results. While the Modified Self-

Consistent technique does at times show improved, smoother results, the sensitivity is

a problem to its robustness. Further work is necessary to adjust the technique and find

a method that better smooths its coefficients to produce results that are consistently

better than the regular Self-Consistent technique.

The spatial study also performed an experiment that combined standard spatial

sampling (1.0◦ azimuthal spacing) with violating the assumed temperature and drop

shape model. This experiment demonstrates the sensitivity of the fixed-coefficient

algorithms (Linear and ZPHI) to the validity of the assumed scattering model for stan-

dard resolution data (lower than that of the modeling study); these methods had up to

10 dB of errors with the multiple violated assumptions. This highlights the need to use

more sophisticated methods, like Self-Consistent, that can automatically tune coeffi-

cients to yield the best results for the data at hand; these algorithms, in the cases studied

here, result in an order of magnitude less bias in estimates of specific attenuation.
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siderations for Polarimetric Upgrades to Operational WSR-88D Radars. Journal of
Atmospheric and Oceanic Technology, 17 (3), 257–278.
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