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CHAPTER 1
INTRODUCT ION

Shallow ground-water systems pose one of the greatest
challenges to hydrogeologists because their nearness to the
land surface renders them highly susceptible to
contamination from a wide range of sources. Despite years
of research, the mechanisms governing pollutant movement to
shallow aquifers are only partially understood.

It is generally assumed that overlying silt and clay
provide a degree of natural protection to shallow aquifers
owing to their low hydraulic conductivity. For example,
the drainage characteristics of these soils make them
attractive as landfill sites. According to Noble they
"allow moisture from the landfill to percolate slowly
through the soil structure before reaching the ground-water
system" (1976, p. 31). 1In addition, the presumed ability
of silt and clay to absorb and retain water has made such
soils desirable as sites for the land application of waste
water (Tennyson, 1980).

Preliminary results from the study of a silt and clay
aquifer in Payne County, Oklahoma, however, indicate that
the low hydraulic conductivity may be far more apparent

than real. Rapid changes in both water quality and water



level can occur within hours of a rain event. Rapid fluid
movement through macropores deprives the shallow aquifer of
the natural protection that the soil should provide.

The objective of this research is to document and
explain why a shallow silt and clay aquifer can be
contaminated by sﬁrface-applied pollutants in just a matter
of hours. A further objective is to determine how soil-

moisture conditions affect this process.



CHAPTER 11
LITERATURE REVIEW
Previous Studies at the Site

With the installation of 16 monitoring wells during
August 1985, ﬁagen (1986) launched the original
investigation of the site. During the first year research
focused primarily on basic site characterization. Hagen
(1986) and Hoyle (1987) monitored water-table fluctuations,
ground-water quality, and cpnducted several aquifer tests
in order to determine hydraulic characteristics. Both
investigators documented considerable variation in water
quality with respect to both time and space. They
attributed fluctuations in.water quality and water level to
rapid recharge throughimacropores.

Acre (1989) aﬁd Roés’(l988), who studied the
unsaturated zone, installed eight soil-water suction
lysimeters and four neutron probe access tubes. Ross
discovered significant short term water-quality variations
~in the unsaturated zone. Variations in soil-moisture
;ontent also led Acre to conclude that macropores influence
infiltration.

Froneberger (1989) examined water movement through the

unsaturated zone by means of surface applied bromide and



chléride tracers. He found that large spikes of the
tracers appeared in the lysimeters after a short time, and
he attributed this phenomenon to the vertical movement of
water through macropores.

Nelson (1989) addressed water-table fluctuations and
the change in the directioﬁ“df ground-water flow, amounting
to as mﬁch(as i25 deéfees,\which had been reported by Hoy}e
(1987) and Hagen (1986). He suggested that this shift is
due to a Seasonal limitation of ground-water discharge
areas.

Melby (1589) measured hydraulic conductivity of the
aquifer using,constant rate, slﬁg,\and lab permeameter
tests. Values of hydraulic conductivity based on
permeameter tests were several orders of magnitude less
than those dete;mined'by field methods, which lead Melby to
theorize that maCrépores account for‘a significant

part of the aquifer transmissivity.
Macropores

The idea that macropores could affect water and solute
flow through soil was being considered as early as the mid
1800's. Schumacher (1864) and Lawes and others (1882)
noted that macropores control infiltration, moving
rainwater to considerable depths with little change in
composition. Since that tihe, work bnlthe macropore theory
has abounded, and this has resulted in extensive literature

on the topic.



Classification

The literature contains many systems for classifying
macropores. Brewer (1964) categorized them on the basis of
size, using macro to mean pores that are at least 100
micrometers in diameter. Luxmoore (1981), who expanded
Brewer's work, described three classes of macropore sizes.
Skopp (1981) rgfined size classification by incorporating
function in the definition of macroporosity. Techniques
for measuring macropore size’include timing and measuring
water flow through cores, tracing visible voids, staining
with methylene blue, and scanning soil photographs with an
image analyzer (Smettem, 1987; Louren and others, 1988;
Radulovich and others, 1989; Edwards and others, 1988).
Beven and others (1982) group macropores on the basis of

type (ie. cracks and fissures, soil fauna, plant roots).

Water Transport

Researchers, such as Cheng (1988), Hoogmoed (1980),
Beven and German (1981), Armstrong and Arrowsmith (1986),
and McIntrye and Sleeman (1982) demonstrated the importance
of macropores in the infiltration of rainwater. Bouma and
others (1978) described this process of rapid flow through
macropores as 'short circuiting"”.

Rogowski and Simmons (1988) verified that macropores
cause field measured hydraulic conductivities to be greater
than the nature of aquifer material or lab calculated

values might indicate. Further substantiation of this



exists in the works of Rogowski and Richie (1984) and Heard

and others (1988).

Solute Transport

A consider;ble numbgr\bf articles document the fact
that macropores enhancé'cheﬁfdal migration through the
soil. Quisenberry and Phillips (1976) found that
macropores caused water laced with chloride to percolate
through a silt loam gquifer with very little change in
composition; In a similar study, Priebe and Blackmer
(1989) observed the Same behavior uéing oxygen-18 labeled
water and nitﬁogen—lS labeled urea. Other studies
utilizing triti#m, chloride, and lime provide further
evidence for enhanced chemical migration (Edwards and
others 1988; Minhas and Khosla, 1986; Blake and others,

1973).
Grouhd—Water Tracer Testing

Roughly 2,000 years ago, Phillip, the tetrarch of
Trachonitis, pioneered the art of tracer testing by noting
the\migration of chaff tossed into Ram Crétér Lake, which
is located in the Middle East (Mazor, 1976). In the years
that followed, tracer testing has gfown into an important
tool in the understénding of water flpw and contaminant
transport. The use of salts as tracers is documented as
early as 1869 in Europe (Davis and others, 1985). 1In

Germany, Adolph Thiem, in 1889, used a sodium chloride



tracer to measure ground-water flow rates in a sandstone

aquifer (Davis and others, 1985).

Bromide

There are nuﬁerous examples éi ihe use of bromide
tracers to evaluate the effeét of macropores on
infiltration and ground-water rechafge, and contaminant
transport. éhan aﬁd Mead (1989), who tracked the migration
of bromide laced "rain"” into the soil by taking core
samples, concluded that macropofes significantly decreased
runoff. Zachman and others (1987) used bromide to show
that worm burrow-formed macropores increase infiltration to
a considerable depth. The fact that macropores cause field
measured values of hydrauliq conductivity to be greater
than those measured in the lab was demonstrated by Tennyson
and Settergren (1980) Qsing bromide. Germann and others
(1984) empioyed b;omide to verify that water infiltrates
deeper into soils containing ma;ropores. Other similar
studies include Gerritse and Singh (1988), Smith and Davis
(1974), Onken and others (1977), LeBlanc and Garabedian

(1986), and D'Lugsoz (1976).
lodide

Although not as popular as bromide, iodide has proven
to be a reliable ground-water tracer. A study by Haaser
(1978) demonstrated that iodide can be used successfully as

a tracer in shallow soil systems. Osmin (1977) used iodide



to determine hydraulic conductivity and ground-water flow
direction. Bradbury and Green (1985) measured matrix
diffusion with an iodide tracer. In 1965, Rowe and others
traced water circulation in underground hot springs ahd
geysers with iodide. Leap ;nd Sun (1987) utilized iodide
in tracer tests in southerhVNeQada. Soil extracts were

analyzed for iodide tracer ions_.by Bowman (198%4).



CHAPTER 111
SITE DESCRIPTION
Location

Research was conducted in a residential area in
Stillwater, Payne County, Oklahoma (figure 1). The 26,000
square foot site is bordered by streets on the north and
east and by adjacent yards to the south and west (figure
2). An unnamed tributary to Boomer Creek lies just west of

the property.

Figure 1. Location of Study Aquifer (after Hagen, 1986)
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Figure 2. Aerial Photograph of site

Topography

Lying on Boomer Creek's floodplain, the nearly flat
study area is approximately 886 feet above sea level. Total
relief across the site is less than half a foot.

About 250 feet to the east, shale crops out, rising
nearly 14 feet higher than the site. Approximately 400
feet westward, the elevation declines to 880 feet above sea

level on the bank of the tributary (figure 3).



SPILLWAY
ELEV 913

LI
n..‘p.l
] . sswes
cupusendw e
[ Y
. '.|q‘p
ls :--.- -.:,'
L -
L ssqgs
4| s eean
«—h®
-
=1 Seh
(X ~
= @
O ESKRI
o C':J...,"-
"
>
W

Figure 3.

Topographic Map (USGS,

wsll * o

1979)

11



12

Site Features

Buildings and Roads

Nearly 27 percent of the yard is covered by concrete
driveways, walkways, and one-story buildings that are built
on concréte foundation slabs (Froneberger, 1989).
Downspouts draining the buildings discharge onto the lawn.
The bordering streets have curbs and drains that prevent

storm runoff from entering the yard.
Utilities

Underground sewer, water, gas, and telephone lines
service the buildings (figure 4). Lying at a depth of five
feet is an 8—incﬁ diameter sewer line that trends across
site's southern boundary, while a 15-inch diameter sewer
eight feet below the surface parallels the western
boundary. 1In the southwegtern corner of the yard, the 8-
inch pipe discharges iﬁto the 15-inch pipe. A water main,
6 inches in diameter, lies between the property line and
Wildwood Drive (Hoyle, 1987). Submerged roughly three
feet, a telephone cable skirts the site's southern border.
A direct hook-ups to the house is located in the southern

half of the plot.
Flora

The yard's southern border and much of the western

border are outlined by a variety of trees (figure 5). Tree



WILDWOOD COURT

;

JAIYA TQOOMATIM

d

KEY
e WELL CLUSTER
15 INCH SEWER PIPE

8’ BELOWGROUND

8 INCH SEWER PIPE
5’ BELOWGROUND

6 INCH WATER PIPE

 TELEPHONE CABLE
~— 8’ BELOWGROUND

Figure 4. Location of Utilities

13



14

types include‘hackberry, pecan, redbud and pear. The
trunks vary from 3 to 48 inches in diameter with dripline
diameters ranging from 10 to 86 feet (Nelson, 1989).
Flower beds and ornamental shrubs outline the house and

garage. The lawn consists primarily of bermuda grass.

Hackberry

Redbud Pecan

L0y

C Wells

Figure 5. Tree Types Along the Site's Southern Border
(after Hoyle, 1987)

Instrumentation

The site is equipped with 43 ground-water monitoring
wells, 8 soil-water suction lysimeters, and 5 soil moisture
neutron probe access tubes. An on site lab houses
equipment for meteorological monitoring and measurement of

ground-water field parameters (figure 6).
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Climate

Central Oklahoma is characterized by warm, humid
summers and moderate winters. While summer temperatures
average 80° F, temperatures in excess of 100° F during July
and August are not uncommon (SCS,.1987). Rains in the form
of high—intensity, short duration convective thunderstorms
mainly occur during spring and early summer. Most of the
region's annual 34 inches of rain falls during this period
(Pettyjohn and others, 1983);

Winter teﬁperatures average 39;F and snowfall averages
6 inches per year (Pettyjohn and othérs, 1983). The
occasional snows melt in a day or two. Low intensity,
steady rains from cyclonic storm systems are typical during
the fall and winter.

About 30 iAches of water per year is lost due to
evapotranspiration (Pettyjohn and others, 1983). The rate
of- evapotranspiration is highest during the dry summer
months. Runoff for the region averages 4.5 inches per
year. The mean effective regional ground-water recharge
rate is 1 inch per year (Pettyjohn and others, 1983).

Precipitation at the reseérch site totaled 28.9 inches
in- 1989, 30.9 inches in 1990, and 3.94 inches from January

to 5 May 1991.
General Geologic Setting

The research site lies on Late Quaternary alluvial

deposits that fill a valley cut into the Doyle Shale, which



is Pennsylvanian in age (figure 7). The unconsolidated
alluvium extends to a depth of 43 feet where it lies
unconformably on the shale (Ross, 1988). Beneath the
alluvium, 5000 feet of Paleozoic strata, consisting of
shale, limestone and dolomite, lie unconformably on

granitic basement rock (Shelton and others, 1985).

Boomer Creek Study Ares

|

KEY
Quaternary Pennsylvanian
Vertical Exaggeration: 10x
Alluvium | - Herring Limestone
— Enterprise Shale 100 1t
— Doyle Shale Horizontal Scale: F—
= Fort Riley Limestone

Figure 7. Geologic Cross Section (after Shelton
and others, 1985)
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CHAPTER 1V
SURFACE-WATER HYDROLOGY
Drainage

Flowing sluggishly from northwest to the southeast,
Boomer Creek and its tributaries dominate the area (figure
8). While Boomer Creek flows year round, the tributaries
are commonly dry during the summer (Hagen, 1986). The
tributary lying approximately 200 feet west of the site,
which has a drainage areas that is slightly less than two
square miles, is dammed near its confluence with Boomer
Creek and forms a small, peanut shaped pond, which is known
as Chiquita Lake (figure 3). The pond contains water
throughout the year (Ross, 1988). Downstream from the
confluence of Boomer Creek and its tributary, several pumps
remove water from the creek for lawn irrigation during the
spring and summer (Nelson, 1989). Nelson (1989) installed
gaging staffs in Chiquita Lake and Boomer Creek and made
periodic water-level measurements. The pond's maximum
stage is controlled by a spillway, which has an elevation

of 880.6 feet (Nelson, 1989).

18
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Figure 8. Aerial Photograph Showing Tributary

Surface runoff in the study area is low, attributable
to the nearly flat surface of the flood plain. Concrete
driveways, streets and sidewalks affect runoff by directing
water into city drains. During periods of heavy rain,
water may pond on the surface of the site when the
infiltration capacity of the soil is exceeded. Even after
an hour of ponding, the infiltration rate is approximately

one inch per hour.
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Surface-Water/Ground-Water Relationships

Withdrawal of water by the pumps installed in Boomer
Creek do not appear to affect the water table at the
research site. However, the stage of Chiquita Lake may
have a significant influence on the direction of ground-
water flow (Nelsoﬁ 1989). The dammed tributary and the
alluvial aquifer appear to be hydrologically connected when
the water table is less than 7.5 feet below land surface.
This results in a west-southwesterly flow of ground water
from the yard to the tributary. When the water table drops
below the base of the tributary, ground water flow shifts
to the southeast, as the tributary changes from a gaining
stream to a losing stream, and Boomer Creek becomes the

major line of ground-water discharge (Froneberger, 1989).



CHAPTER V
HYDROGEOLOGY
Aquifer Material

Wells at the research site tap a fine grained, silty
clay alluvial aquifer that is 43 feet thick (figure 9).
The lower 8.5 feet of the aquifer consists of a clay-rich
lag gravel that grades upward into very fine sand. The
gravel lies on weathered Doyle Shale. The upper 35.5 feet
of the aquifer consists of a clay, silt, and very fine sand
mixture that contains soil characteristics. The upper four
feet belong to the Ashport series (SCS, 1987). Two buried
soil horizons have been identified. The first, located at
a depth of 4 to 27.5 feet, is approximately 1300 + 70 years
B.P. old. Dated at 10,600 + 170 years B.P., the second
horizon lies at a depth of 27.5 to 29.5 feet (Ross, 1988).
Textural classes present include loam, silt loam, silty
clay loam, silty clay, and clay loam. A weak to moderate,
medium, subangular blocky structure dominates, and soil
peds and root casts are present. Bulk density, in the
first five feet of the profile, range from 1.50 to 1.75 gm

soil/cm3 (Ross, 1988).

21
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Mineralogy

The sand and silt is composed largely of quartz
grains, with feldspar making up 3 to 5 percent of the
grains. Kaolinite, smectite, illite, and mixed layer
illite-smectite constitute the clay fraction of the
aquifer. Calcite concretions, composed of very fine-
grained calcite, are present in the profile. Black
nodules, which occur throughout the aquifer, consist of
silica, aluminum, iron, and manganeée oxides and
hydroxides. Cyclic deposition of clays and ferromangans is
indicated by concentric coatings of iron and manganese

oxide and hydroxide stains on pore walls (Ross, 1988).
Recharge and Discharge

Recharge

Precipitation is the primary source of recharge to the
aquifer. Most recharge occurs from March to June and in
September, which are traditionally the wettest months of
the year. Hagen (1986), estimated that the total amount of
recharge equals roughly 47 percent of the total amount of
precipitation. This high rate of recharge is most likely
due to the flat nature of the area, which favors ponding,
and to the presence of macropores. Periodic watering of
the lawn during the summer months also contributes to

recharge.
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Discharge

Evapotranspiration and underflow are the primary
sources of discharge from the aquifer. Nelson (1989),
found that transpirative losses were greatest from March to
August. A small amount of discharge also occurs as
resulting of pumping of the welis. On site, wells are
pumped regularly for ground-water sample collection and
occasionally for aquifer testing. Well Fl may be pumped
for short periods during the summer months for lawn
watering. A well that may tap the aquifer is located
approximately 800 feet south of the D site. This well is
also pumped for irrigation purposes. Nelson (1989),
however, determined that this off-site well does not affect
water levels at the site. During periods of high water
table, ground water appears to discharge into the tributary
located west of the study site and at other times underflow

is southwest toward Boomer Creek (Froneberger, 1989).
Unsaturated Zone Characteristics
Thickness

The thickness of the unsaturated zone varies
seasonally from about 3 to 12.5 feet below surface. Ross
(1988) estimated that the capillary fringe for the silt
loam aquifer rises roughly 2.5 feet above the water table;

Froneberger (1989) estimates a rise of 6 feet.
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Moisture Content

Soil-moisture levels, on a volume basis, typically
range from .11 to .35 cm3 H20/cm3 soil (Ross, 1988;
Froneberger, 1989). The position of the water table,
amount of precipitation, and ra}é of evapotranspiration
have a combined effect on the moisture profile. When the
water table is high, moisture levels tend to be relatively
uniform with depth. Precipitation will commonly cause soil
moisture to increase in the lower portion of the
unsaturated zone, but little affect has been recorded in
the upper 2 feet, except during and immediately following a
rain (Froneberger, 1989). When the water table is low,
moisture levels tend to show greater variation with depth.
During these intervals, generally June through September,
precipitation may cause a significant fluctuation in
moisture content in theyupper 2 feet of the unsaturated
zone, while having little effect on moisture content deeper
in the unsaturated zone (Fr&neberger, 1989). Soil-moisture
levels are typically lowest along the site's tree dominated

southern boundary (Hagen, 1986).

Ground-Water Movement

Direction of Flow

The direction of ground-water flow vacillates between
145 and 225 degrees from true north (Ross, 1988). In

general, flow is to the west-southwest when the water table
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is high and to the southeast when the water table is low
(Froneberger, 1989).

Hagen (1986) and Hoyle (1987) hypothesized that the
shift in flow direction is due to evapotranspiration from
large trees located along'fhe site's southern border.
Ground water is cohstantly dischargihg into Boomer Creek
and, part of thé time, into the unnamed tributary to the
west. The direction of flow is controlled by the location
of the discharge line. Evapotranspfration dewaters the
aquifer at a rate of about .1 feet/day, in the absence of
recharge. Consequently, evapotranspiration lowers the
water table quite rapidly starting in the spring, which
causes the water table to decline below the bottom of the
unnamed tributary sometime in April, May, or June. Once
this occurs, flow direction must change.

Hagen's (1986) 1985-1986 hydrograph (figure 10) shows
almost no fluctuation duriﬁg winter, even though the water
table was quite high. Thié indicates that ground-water
runoff was about equal to recharge. Only in the spring of
1986 did the water table begin to decline rapidly,
reflecting evapotranspifatién.

Froneberger (1989), as discussed in Chapter 1V,
attributes the shift in flow direction to the relationship
between the ground water and the tributary located west of

the site.
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Figure 10. 1985-1986 Hydrograph for Well A4 (Hagen, 1986)

Rate of Flow

Calculations performed by Hoyle (1987) and Froneberger
(1989) indicate that the lateral ground-water velocity
varies from 0.1 to 1.12 ft/day. Ground water moving at a
rate of 0.1 ft/day would take 225 days to migrate beneath
Wildwood Court to the research site and 560 days to pass
beneath the house to the I wells (Froneberger, 1989).
Assuming the velocity is 1.12 ft/day, travel time beneath
the Wildwood Court and house decrease to 20 days and 50

days respectively.
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Aquifer Test Results. Hagen (1986), Hoyle (1987),
and Melby (1989) conducted several aquifer tests at the
research site using slug and constant-rate pumping methods.
Analysis of the data from these tests provided information
on the~aquife;‘parameters contained in Table I. Values of
hydraulic conductivity estimated for the D and E wells tend
to be high (>100 gpd/ft2). Hoyle (1987) attributed these
higher values to an increase in aqﬁifer material grain size
in the vicinity of the D and E sites. Low values of
storativity (10-%) were consistently calculated for the B
well site by Melby (1989). These low values could be the
result of short term pumping during which gravity drainage
was not complete.» Transmissivity appears to increase from
west to east across the site due to increasing grain size
and permeability. Within the well clusters,
transmissivities are gréater in the #5 wells, which
penetraté a greater thickness of the aquifer.

Hoyle (1987) estimated a specific yield of 10 to 25
percent and a specific cépacity of 0.11 to 1.5 gpm/ft,
the latter occurring when the water table was within 5 feet

of land‘gurface.
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TABLE 1

AQUIFER PARAMETERS

Parameter Minimum Max imum Mean
K 27 gpd/ft2 125 gpd/ft2 67 gpd/ft2
S .0001 . .370 .026
T 190 gpd/ft 4930 gpd/ft 2149 gpd/ft
Gradient. The horizontal! hydraulic gradient, as

calculated from water-table elevation maps, typically
varies from 0.0b} to 0.009 ft/ft. Vertical gradients were
estimafed on the basis of ﬁead differences between
individual wells dn‘a cluster (usually 0 to 0.10 ft).
Hoyle (1987), found that thé upward hydraulic gradient
ranged from .002 to .348 ft/ft. The vertical gradient is
greatest during the summer'ﬁonths. Gradients at the tree
dominated C and D clustg}s tend to be steeper than at the
other well clusters (Hoyie, 1987). Fluctuations in the

water table occur daily as a result of transpiration.

Perﬁeability and Porosity. Effective porosity of the
studied aquifer, estimated from volumetric soil-moisture
content measurements, is approximately 33 percent
(Froneberger, i989): Fillable porosity varies from .1! to
.27 (Nelson, 1989). A continuous series of precipitation

events causes fillable porosity to decrease as soil
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moisture increases. Precipitation events of low volume,
however, appear to have little effect on fillable porosity
values (Nelson, 1989). Permeability appears to increase
eastward across the site and with depth in the C and D
wells. Hoyle (1987) suggests that this is due to increasing

grain size brought about by an increase in the sand

fraction.



CHAPTER VI
METHODS OF DATA COLLECTION
Meteorological Data

Meteorological conditions were constgntly monitored
throughout the study in an on-site laboratory. A
continuously recording aneroid barograph, accurate to
+ 0.2 percent full scale, monitored of fluctuations in
barometric pressure. Air temperéture data were collected
using a Springfield Instrument patio thermometer and a
continuously recording thermogragh. A clear, cylindrical
rain gauge with .0l inch graduations and a continuously
recording tipping bucket rain gauge served to measure

precipitation.
Depth to Ground Water

Depth to.ground water was determined by a weighted,
chalked steel tape and two In-Site, Inc. Model SE1000
pressure transducers. Surveyed marks on the well casings
served as measuring points. The transducers, installed in
wells A5 and D5, recorded continuously at | hour intervals.
Both the tape and the transducers produced measurements
accurate to .0l feet. Water-table elevation for a given

well was calculated by subtracting depth to water from the

31
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altitude of the top of the well casing at the measuring

point.
Soil-Moisture Measurements

A Troxler model 3330 &epth—moisture gauge was used to
determine the soil-moisture content. Aluminum access
tubes, installed by Acre (1989) at sites A,C,D and E,
allowed the probe to be lowered into the soil down to a
depth of 7 feet. Readings were taken by Alspach (in prep)
every 6 inches to a depth of 78 inches. A standard count
taken prior to sampling minimized error due to changes in

field conditions.

Ground-Water Quality

Monitoring Wells

The site is monitored by 43 wells distributed among 10
sites designated as A through J. As illustrated in figures
11 and 12, the combination of lysimeters and the wells
screen each of the 14 horizons located in the upper 15 feet
of the\soil‘préfile. Sites'C and H, located along the
upgradient perimeter, provide information on the quality of
watef flowing into the property. Site I resides inside the
house. Because of its unique location, site I provides
information on the effect of a building (which prohibits
recharge) on ground-water quality.

The wells are grouped in clusters to monitor water

quality at discrete depths in the aquifer. Holes for wells
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at sites A,C,D,E,G,H,I, and J were excavated by hand auger.
A hollow stem auger was used to drill the holes for the
wells at sites B and F. All wells except B11, B12, I3, and
J1 were completed with hand-slotted polyvinyl chloride
casing wrapped with nylon screen. Wells Bil, 13, and 31
contain a stainless steel well point attached to the lower
end of the casing. Well B12 has a Johnson PVC, 0.006 inch
slot well screen (Melby, 1989). The filter pack in all
wells is composed of medium-grained sand that extends
several inches above the slotted intefval. The annular
space is filled with bentonite.

Wells B6 through Bl0 are installed in the same
borehole as a nested cluster. Bentonite seals separate
each well screen interval. Well pairs Fl1 and F2, and Bl2
and B13 share the same hole (Melby, 1989). Specifications

for each well are listed in Table 2.

Sample Collection

500 ml Nalgene piastic sample bottles were cleansed
before each use following EPA approved procedures. The
cleaning method involvea washing with a nonphosphate,
neutral detergent in hot water, rinsing with deionized
distilled water, rinsing with .1 N hydrochloric acid, and
rinsing once again with deionized distilled water. A
cardboard box with a 1lid providéd storage for the capped,
laundered bottles. Prior to sampling, information on the

static water level in each well, air temperature,
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TABLE 11

WELL SPECIFICATIONS

WELL TOTAL DEPTH SCREENED DIAMETER TOP OF CASING
: INTERVAL ) ELEVATION
(ft. from (ft. from (inches) (ft. above sea
concrete pad) concrete pad) level)
Al 8.5 8.0 - 8.2 2.00 885.97
A2 9.2 8.7 - 8.9 2.00 885.97
A3 10.3 9.9 - 10.1 2.00 885.96
AL 13.8 13.3 - 13.6 . 2.00 885.94
A5 14.0 7.0 - 14.0 2.00 886.00
Bl 6.6 6.1 - 6.4 .75 886.01
B2 9.3 8.8 - 9.I 2.00 885.99
B3 11.0 10.5 - 10.8 2.00 886.10
B4 13.2 12.7 - 13.0 2.00 886.03
B5 13.4 4.4 - 13.2 6.00 886.04
B6 11.3 11.0 - 11.2 .50 885.92
B7 13.9 13.6 - 13.8 .50 885.96
B8 18.7 18.4 - 18.6 .50 885.94
B9 21.2 20.9 - 21.1 .50 885.94
B10 25.7 25.4 - 25,6 .50 885.96
Bl1l 40.3 38.4 - 40.0 1.25 886.19
Cl ‘ 8.3 7.9. - 8.1 2.00 885.75
- C2 9.2 8.9 - 9.1 2.00 885.73
Cc3 10.6 9.9 - 10.4 2.00 885.70
Ch4 14.6 14.2 - 14.4 2.00 885.71
C5 14.0 7.0 - 14.0 2.00 885.74
D1 8.2 8.0 - 8.2 2.00 885.82
D2 9.3 9.0 - 9.2 2.00 885.82
D3 10.8 9.9 - 10.4 2.00 885.84
D4 14.2 13.6 - 13.9 2.00 885.80
D5 14.0 7.0 - 14.0 2.00 885.80
El 8.7 - 8.3 - 8.5 2.00 886.08
E2 9.7 9.3 - 9.5 2.00 886.08
E3 10.5 10.1 - 10.3 2.00 886.06
E4 14.1 13.6 - 13.9 2.00 886.05
E5 14.0 7.0 - 14.0 2.00 886.03
Fi 40.0 10.0 - 40.0 4.00 886.41
F2 40.0 10.0 - 40.0 2.00 886.29
Gl 10.3 9.7 - 10.1 1.00 885.07
G2 14.0 13.5 - 13.8 1.00 884 .92
H1 10.2 9.6 - 10.0 1.00 885.35
H2 13.9 13.4 - 13.7 1.00 : 885.38
Il 11.0 10.4 - 10.8 1.00 886.00
12 14.5 14.0 - 14.3 1.00 886.01
I3 14.9 10.0 - 14.4 2.00 885.99
J1 13.5 11.6 - 13.2 1.25 885.63
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barometric pressure, and rainfall were collected. The
peristaltic pump and Tygon tubing used in sample collection
was bathed using the sample bottle cleaning method
described eariief.‘sBefore‘tgking samples, one well volume
was purged from each well is.Ensure that fresh formation
water was obt#ineq. Hagen (1986) detérmined experimentally
that one well volume achieved this purpose. The evacuated
water was dischgrggd 10 feet downgradient from the wells in
order to avoid ground-water recharge in'the vicinity of the
well. Samplé bottles received a rinse of water from the
well before being filled. The passage of deionized
distilled water and at least 200 ml of formation water
through the pump and tubing before each sample collection
aided in the prevéntion of cross contamination between

wells.

Field Parameters

An on-site laboratory equipped with a digital
thermometer, pH mete;, Hach’digital titrator, and a
temperature compensating electrical conducti#ity meter
provided for the medsuremeﬁt of field parameters
immediately after sample collection. The instruments were
calibrated prior to each sampling event and thoroughly
cleansed with deionized distilled water. Continued
equipment rinéing between samples prevented cross
contamination. Titration of 100 ml of each sample to a pH

4.5 color end-point with 2N HCl furnished bicarbonate
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concentrations.

Sample Preparation

After the measurement of field parameters, the samples
were pressure filtered through .2 micrometer Gelman acetate
filters using a hand syringé and then were split into two
portions. One portion was acidized with HNO3 to pH<2 for
cation analysis. The prepared, filtered samples were
stored in a refrigerator set at approximétely 4° Celsius in

clean, 60 ml Nalgene plastic bottles.

Analytical Methods

A Dionex 2000i ion chromatograph was used to measure
F-, Cl-, Br- ,‘N03' , SO4= , and I- concentrations. The
chromatograph was calibrated using standards prepared by
the dilution of 1000 ppm stock solutions of each of the
anions. The eluent consisted of .00170 m NaHCO3 and the
regenerant of .025 N H2SO4, The analyses were conducted in
the Noble Center chromotography lab at Oklahoma State
University, Stillwater, Oklahoma.

Agronomic Services, a laboratory located at Oklahoma
State University, determined Cat*+ , Mg+t , Na*t , K+ , total
Fe, and silica concentrations using inductively coupled

plasma atomic emission spectroscopy.
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Quality Control

Cleanliness of a batch of bathed sample bottles was
verified by filling a test bottle with deionized distilled
water and subjecting the water to the same analyses as the
ground-water samples. Fieldlduplicates tested the precision
of both field and—laboratory analyses. berformance of the
ion chromatograph was documented by frequent analysis of
duplicate samples, calibration standards, and Dionex test
standards. Further checks on the data included cation-anion
balances, which were calculated by the computer program
WATEVAL (Hounslow, 1989), and comparison with data

collected by past researchers at the site.
Possible Sources of Error

Hydrogen, unrelated to moveable water in clay and
organic matter rich soils, may cause the neutron probe to
read too high a soil-moisture level (Hillel, 1980). Use of
the peristaltic pump may have caused water samples to lose
dissolved gasses while gaining atmospheric gas. This could
result in a lowering of pH and HCO3- values. Because of
oxidation, Fe++ and Mn++ concentrations could have been
erroneously lowered by the peristaltic pump and/or by

sample filtering (Griffin and others, 1981).

Nitrate

Nitrate values determined by Ross (1988) and

Froneberger (1989) are roughly 36 times higher then those
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measured by Hagen (1986), Hoyle (1987), and the author
(figure 13). This discrepancy is most likely due to
analytical error. Hagen and Hoyle measured NO3- levels in
the field with a ion sensitive electrode. Ross,
Froneberger, and the author used an ion chromatograph.
Personal communication with Froneberger and Ross revealed
that the nitrate stock solution and the calibration
solutions were stored in plastic bottleé at room
temperature. New calibration standards were not mixed
before each analytical session. Storage at room
temperature in plastic bottles probably resulted in the
breakdown of NO3-. During calibration, for example, the
chromatograph may have been standardized with a 5 mg/1 NO3-
solution that in fact was only | mg/l. This resulted in
the chromatograph reading 1 mg/l as 5 mg/l, hence creating
erroneously high NO3- values.

The discrepancy in nitrate values also may be due to a
change in fertilizer. yA‘Liquid fertilizer, much more
mobile than the pellet type applied from 1988 to present,
was used when Hagen (1986) and Hoyle (1987) did their work.
The data, howe?er, do not support this theory for elevated
nitrate levels. [If the switch to solid fertilizer caused
the increase in nitrate values, than concentrations
recorded by the author should have matched those recorded
by Ross (1988) and Froneberger (1989). Furthermore, sample
collection by Ross (1988) and Hoyle (1987) overlapped for a

period from January 1987 to April 1987. Hoyle (1987),
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however, makes no mention of a sudden increase in nitrate
concentration.

Another possible explanation for the elevated nitrate
levels recorded by Ross (1988) and Froneberger (1989) is an
upgradient cﬁange in water quality during their sampling
period. In addition, the site had not been fertilized for

several years prior to the time Hagen began sampling.



CHAPTER VII
: GROUND—WAfEkLQUALITY
Daté Analysis
Methods

Geochemical data for all 41 moﬁitoring\wells was
compiled from the start of research in 1985 to May 1991.
Statistical analysis of the data (appendix D) served to
identify maximgm; minimum, and average values in ion
concentrations ovér the past 6 years. Graph§ of -the data

aided in the identification of water-quality trends.

Water Quality

Ground water at thg ;esearch site is classified as
high bicarbonate, mixe& qalcium—magnesium—sodium type
(Hoyle, 1987). The geochemical environment is neutral,
with pH rénging frﬁm G.M}to f.%. Hageﬁ (1986), Hoyle
(1987), Ross (1988), and Froneberger (1989) established
that water quality varies considerably with respect to both
time and space. Ion concentrations vary considerably
across the yard from well site to well site and with depth.
The only exception to this appears to be the Si2 ion,

which, as illustrated in figure 14, shows little variation
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TABLE 111

RANGES IN ION CONCENTRATION

Ion Max imum Minimum
(mg/1) (mg/1)
Ca++ , 190.1 16.3
Fet++ 15.1 0.001
K+ - Co 4.k 0.03
Mg++ 112.0 14.7
Mn++ h.6 ' 0.001
Na+ 179.8 10.8 .
Si2 19.9 h.7
Cl- 163.0 3.5
+ HCO3 - 1341.0 198.0.
NO3 - "113.2 0.01
SOy = 180.1 7.9

Factors Affecting Ground-Water Quality

Fertilizer, Vegetation, and Concrete

Fertilizer, vegetafibh,;and the presence of concrete
greatly affect K+, N03-; and SOs= concentrations in the
ground water. Fertilizér apblied to the lawn in the spring
and fall provides a source for the three ions. According
to Reasors Lawn(Service,“Stiilwater? Oklahoma, {f is

typically applied as:

Nitrogen 1 1b/1000 ft2 as methyl urea
P20s 0.16 1b/1000 ft2
K20 0.24 1b/1000 ft2

s . , 0.40 1b/1000 ft2
Rises in NO3; and SO4 = concentration in many of the
monitoring wells following fertilizer application is

documented 'in the works of the previous site researchers
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Examination of the compiled data suggests that K¢
concentrations also rise in response to fertilization.
Wells A3, Ay, Cy4, D3, and Dy reached their peak k*
concentratioﬁs’in April l98§«ajte; spring fertilization.

Vegetative cover, .or lackfoj it, also greatly affects
water quality;‘ K+, NO3-, and~SCu= are essential elements
for sustaining plant life kHém,,l985)u As such, they are
removed by rbots, thus reducing concentrations in the soil.
Inspection éf Figures 16, 17, aﬁd ig;illustrate this point.
Well sites A, B, C, D, E, énd F, which .are located near
abundant flora, exhibit relafively low average K+, NO3-,
and SOu= concehtrations. In sites G, H, I, and J however,
concentrations of the three ions are at their highest.
Sites G, H, I, and J are located immediately down’gradient
of a concrete road, fhe hodge, and a concrete driveway
réspectively (figure 6). »éince no vegetation is present to
remove the ions, and feéﬁérée cannot occur to dilute the
ground water, the ionSAare bresent in elevated
concentrations.

Vegetation fupther,affécts watér'quality by providing
a source of ions. Decay of vegetation during the fall and
winter months produces a source of NO3- and K+ that can be
leached into the ground water (Hem, 1985). Plant root
respiration pr6duces CO2, which increases the HCO3-
concgntrations. Bicarbonate concentrations are greatest
in the C and D sites where extensive tree root systems

dominate the site (figure 19), but the concentration
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decreases with depth (from well #1 to well #5) as do the
number of plant roots. Since plants affect HCO3 -
concentrations in the aquifer, they also iﬁdirectly
influence electrical conductivity. Bicarbonate compromises
roughly half Qf\the totgl ions'ﬁeasured in the water,
giving the’ion control over mea%ured electrical
conductivity. - The graphs of average conductivity and HCO3-

concentration (figures 19 and 20) are virtually identical.

Sewer Pipes

Leakage from the 5 foot deep 8 inch diameterxsewer
line that occurs along the site's southern border appears
to affect Cl- concentrationé in the C and D well sites. As
illustrated in figgrés 21 aﬁd 22, these two siteé possess
the most variation in and the highest average Cl- '
concentéations. Cl- contamination from the sewer appears
to reach its maximﬁm when thé water table drops below the
line. Vertical grédients shift from upward to downward
indicating that water ié flowing out of the sewer line into

the ground water (Hoyle, 1987).

Cation Exchange

Clay ?articles<in the aquifer may affect Qater quality
‘by exchanging Nat ions for Cat* ions. In well clusters A,
B, D; G, H, and I, average Cat* concentrations decrease
with depth while Na*+ concentrations increase, thus

suggesting exchange. This is illustrated in figures 23 and
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Average Cl- Concentration

Q- Conpantration (mg/)
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Average Cat++ Concentration
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24, Cat*+ concentrations decrease from the shallow #1 wells

to the deeper #5 wells, while Nat+ concentrations increase.

Redox Reactions

Variationvin ﬁeﬂox:potentiél may be responsible for
thg elevated Fet+, Mn**+, and SO4= concéntrations at the B
site. As illustrated in figufes 16, 25, and 26, levels of
these ions are much higherrat B fhan at the other sites.
According fo Bricker (1982), th; ggocpemicél behavior of
these elements is dependent on redox potential. The source
of Fet*+ and Mnt+* is most likely the iron-manganese nodules

that appear throughout the soilkprofile’(Ross, 1988).

Downspout

Water quali%& at the E cluster is significantly
affected by an adjabent downspout. Hagen (1986), Hoyle
(1987), and Froneberger (1989) found that ion levels
decreased significantly at this site following
precipitation events. Rain water that discharges from the
downspout apparently quickly infiltrates and dilutes the

ground water.

Precipitation

Samples taken during and aiter rain events show that
precipitation has a significant impact on water quality.
Ion concentrations rise as contaminants are flushed from

the surface and unsaturated zone into the ground water. In
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addition, the rising water table dissolves water-soluable
compounds in the soil matrix. Changes in water quality due
to rain occur very quickly, as illustrated in figure 27.
Cl- levels quadrupled in D2 ln‘response to a | March 1991
simulated rain falling at the rate of 1 inch/hour. This
effect is in part due to macropore flow, as discussed in

detail in chapter 8.
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Figure 27. Cl- Concentration vs Time
Well D2



CHAPTER VII1
EVIDENCE OF MACROPORES
Soil Structure
Cracks

Desiccation crack macropores are very effective at
transporting p}ecipitation rapidly through the unsaturated
zone (Pettyjohn, 1982; Blake and others, 1973; Buol and
others, 1980; Hoogmoed and Bouma, 1980). Such cracks, with
surface openings as much as a half inch wide, commonly form
at the site during prolonged dry periods. Cracks between
ped faces also may contribute to macropore flow (Beven, and
Germann 1982). Hagen (1986) and Ross (1988) noted the

existence of such pathways in the study aquifer.
Roots

Tubular macropores, associated with both live and
decayed roots, provide avenues for rapid water transit
through the unsaturated zone (Beven and others, 1982).
Renyolds (1966) showed that a significant amount of rain
water percolates down tree trunks.

Root macropores are abundant at the research site.

The earth materials are characterized by deep root zones,
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which are typical of Ashport soils (SCS, 1986). }Large
trees with extensive root systems line the site's southern
border (figure 5). Root casts are prevalent throughout

soil profile (Ross, 1988).

Faunal Channels

Macroborés*formed by bﬁrrowing organiSms, such as
earthworms’andvgophers, are effective in conducting water
to appreciable\debths (wild énd'others, 1976; Ehlers, 1975;
1982; Edwards and others, 1988; Zachmann and others 1987).
Earthworm channels typically range from 2 to 10 mm in
diametér, while those formed by gophers may exceed 50 mm
(Beven and others, 1982). Macrbpores formed by burrowing
organisms may play a role in water transport at the study
site. Tunneling earthworms were observed in soil cores

obtained by use of‘a Giddings probe.
Recharge Rate

Macropores may cauéé‘én aquifer to have a higher
vertical %nfiltration rate than normally expected (Beven
and others, 1982). Such is the case at the field site,
providing further p(oof of the significance of macropore
flow. Hagen (l986)keStimated that 47 percent of total
annual precipifation reached. the water table as recharge.
This value; which is unusually high for such fihe—grained
material, is indicative of macropore flow. Precipitation,

water-table elevation, and soil-moisture data collected by
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Hagen (1986), koss (1988), Nelson (1989), and Froneberger
(1989) indicate that ground-water rechérge occurs e?en when
soil-moisture levels are well below field capacity. "The
rapid response of the water table to a short lived but
iﬁtense‘3.76 inch rainfall is @llustrated in figure 28. In
this case, néar1§ qll §f the’rain fell within an hour at a
time when the water table was about 7.5 feet below land
surface. wfhé water\table began to fise within a half hour
of the start of the rain. This impiiés that movement of
water through‘ihe dry unsaturated zone occurs at a rate of
15 feet per héun. Flow through mécropores was the probable

cause of this rapid recharge. -

Weter Table Response to Rain 14 July 1389

8.‘1 + 3
824
8 4 25
7.8 - JLz
c 76 ¢ §
= 74 S
-3 15'6
= 721 g
g 7 1 41 =
68 +
8.8 4 + 0.5
6.4 1
8.2 0

Figure 28. Water Table Response to Rain
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Additional evidence of macropore flow is provided by
a comparison of horizontal and vertical flow rates. The
horizontal flow rate, as determined by hydrogréph analyses,
is around 1 ft/day. The vertical flow rate, however, is

about 5 ft/day (Hoyle, 1987). . |
Hydraulic Conductivity

Hydraulic conductivity determined by field tests is
common{y greater fhan expecfed ié aquiférs with macropores
(Rogowski and Simmons, 1988). This\also.is the case at the
study site, whefe hydraulic conductivity values calculated
from aquifer tests are higher than published data for silt
loams (Hoyle, 1987). The Zf‘to 125 gbd/ft2 range seems
high considering the fine grained nature of the alluvium.
For a'silty clay léam,,values around & gpd/fti aré commonly
expected (Li and éthErs, 1976 in Clapp and Hornberger,
1978).

Where macropores pla&ya roie in fluid flow, hydraulic
conductivities measured in the lab commonly will be much
lower than those measured in the field (Olsen and others;
1981; Pollock and others, 1983; Keller and others, 1986).
Melby (1989) found this to be the‘case at the study site.
According to Melby (1989), hydraulic conductivity values
determined by peymeameier tests were three to six orders-of
magnitude lower thaﬁ values obtained from aquifer tests.
Regardless of the care exercised by Melby, the

unconsolidated cores, which were obtained by hollow-stem
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auger, were compacted during drilling and during
permeameter preparation, and the compaction destroyed the

secondary openings.
Geochemical Evidence

Rapid‘variatiéns‘Ln wafer quality fréquently occur
in aquiferg recharged through macropores (Gerhart, 1986;
Thomas andLPhillips, 1979; Pettyjohnp 1971, 1976, 1982).
Rapid changevin ground—wate} quality is characteristic of
the researchlsite. Changes‘in the concentration of a given
ion may occur in the deeper-#h and #5 wells, while the
shallower #1, #2, and {3 we[{s remain unaffected.
Examination of the nitrate data for the.D wells illusfrates
this point (figure’29). Nitrate concent;ations in D&
peaked in April in response to rainfall events occurring
after nitrate based fertilizer has been applied to the
yard. Nitrate cohéentnatidns in the shallower D1, D2, and
D3 wells for April ;emained gnchanged,

Hoyle (1987), attributed dilution of ground water at
the E well site to the rapid infiltration of downspout
’wafer via macropores. Hoyle aiso creditéd infiltration
through macropores for causing wells C4 and E4 to become
undersaturated with respect to calcite (diluted), while
calcite saturation in other wells remained unchanged.

The effect of macropores on water quality also is
evidenced by geochemical‘data from 1&simeters. Ross (1988)

reported an order of magnitude increase in nitrate in
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lysimeter L4 following fertilizer application to the yard,
while nitrate concentrations in shallower lysimeters showed
little to no change. Ross (1988) attributed this
phenomenon to the vertical movement of nitrate-enriched
water though macropores.

Bromide and chloride tracer testing of the unsaturated
zone by Froneberger (1989) indicated preferential movement
along macropores. Froneberger (1989) reported the presence
of bromide in lysimeters L6B and L7 just one day after
application of the tracer to the land surface. He
theo;ized that short circuiting via macropores enabled the
tracer to reach these lysimeters. The distribution of a
surface applied chloride tracer in an 8-foot long soil core
obtained from the tracer plot provided Froneberger (1989)
with further evidence of macropore flow. Froneberger
(1989) recorded a chloride peak of 42.1 mg/l at the 28 to
32 inch depth interval, indicating preferential movement to

this depth.



CHAPTER 1IX
- TRACER TESTING
Selection of Tracers

Bromide and iodide were selected aé tracers for this
experiment because they met the folléwing criteria. Both
move with the infiltrating water, interacting very little
with the aquifer material. They are inexpensive tracers
and are easily detected with thé Geolog§ Department's
Dionex ion chromatograph. Background concentrations of
bromide and iodide‘afe low to none. Work done by other
researchers has helped defiﬁe the chemical and physical
behavior of bromide and iodide in ground water, proving
they are effective ground—wéter tracers (Davis and others,

1985).
Bromide

Background levels of bromide in the study aquifer are
less than | mg/l. It is biologically stable and does not
tend to precipitate (Davis and others, 1985). Some
sorption of Br- by plants, organic material in soils and
certain soil minerals may occur, however, this tendency of
sorption is weak (Bowman, 1983; Smith, 1974). Bromide is

easily detected by ion chromatography in concentrations as
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low as 50 ppb (Stezenbach and Thompson, 1983). A number of
potential sources could contribute to the background
bromide levels, although none are likely at the research
site. Wheat farmers may fumigate their soils with methyl
bromide (freht and others, 1989); Bromine is present in
the atmosphere, andrin oil—fié[d brines typical of Oklahoma
(Faiq and ofhers, 1988 Hem,‘l985). Réiﬁ and.snow commonly
contain brqﬁine in concentrations ranging from 5 to

150 pg/l (Hem, 1985).
lIodide

Background levels of iodide in the study aquifer are
below the set deteciion limits of the ion chromatograph.
Muramatsu and others (1990), found that iodide was not well
sorbed by clay minerals or quartz sand. Iodide may be
affected by microbiological activity (Davis and others,
1985). The ion chromatoéraph is capable of detecting
iodide at levels rénging from 0 to 10 pg/1l (Ubom and

Tsuchiya, 1988).

Bromide Versus Iodide

Bromide and iodide differ slightly in their behavior
as tracers. The iodidetion, with a radius of 2.19 A, is
slightly larger than the bromide ion, whose radius is 1.96
A (Brown, 1981). éééause of its larger size, the iodide
ion may migrate more slowly than the bromide ion. Iodide

may be sorbed to a greater extent than Br- thereby reducing
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its concentration in the ground water (Davis, 1978; Leap,

1978).
Experimental Methods

Set Up

t

The-D site was sélected for the tracer study because
it is the only site in which there is a iarge, unobstructed
area upgradient of the wells. This area allowed for easy
installation,of the tracer plot and ready accesses by a
truck mounted Gidding's probe. The test plot encompassed
an area approximately 25 ft x 23 ft. Plastic landscape
border, buried 1 inch deep, parfitioned off two 4 ft x 4 £t
areas and a 6 ft x 10 ft area for tracer application
(figure 30). The intentional location of these plots away
from the wells and buried utilities prevented the tracer
solution from flowing down the well casings, sewer pipe and
utility cables. Drip irrigation tubing, with 6 inch
spacing, surrounded the tracer application plots (figure
30). Based on work done by Bouwer (1986), tap water
flowing from the tubing served to minimize lateral flow of
the tracer during the experiment.

Preparation of the tracer solutions involved adding a
calculated amount of oven dried KI and KBr salt to
deionized distilled water. Five 30 galloﬁ containers and
one 22 gallon container held the prepared tracer solution
in the field (figure 31). The containers were bathed with

nonphosphate, neutral detergent in hot water and given a
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Photographs of Test Set Up

Figure 31.
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deionized distilled water rinse before being used. The
tracer water flowed by gravity through Tygon tubing from

the elevated containers (figure 31).
Procedure

The‘bromide tracer;test was conducted on March 1, 1991
under initially "dry" (.093 cc/cc at 30 inches) soil-
moisture conditions. The iodidg tracer test was performed
on April 29, 1991, when "wetter" (.185‘cc/cc at 30 inches)
soil-moisture conditions prevailed. The difference in
initial soil-moisture content between the two tests is
illustrated in figure 32. Measurements of soil moisture
were made in order to compare the effect of the initial
soil-moisture content on solute movement. The initial
soil-moisture content in the I- test was two times higher
than the Br- test at the 30’inch depth (figure 32).

In both tracer tesfs,ﬁa 3 inch rain event, falling at
the rate of 1 inch/hour, was simulated over the entire
tracer plot area. Ground-water samples were taken
approximately every 5 minutes for the first five hours of
the experiﬁent, and then every 10 to 15 minutes for the
remainder of the test. Alspach (in prep.) measured soil
moisture in 6-inch depth increments, and also took soil
cores from the 6 ft x 10 ft tracer applidation area. The
holes left by the coring were immediately packed with
bentonite to prevent the tracer/golution from flowing down

them. Water levels measured prior to testing verified



ground water flow toward the D wells (figures 33 and 3%4).

A pressure transducer in well D5 continuously measured

depth to water during the bromide experiment.
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Bromide Tracer Test Results

Bromide appeared in two wells, D2 and Dy, during the
experiment (figure 35). Desiccation cracks were present on
the land surface prior to the start of the test. A éummary
of the eétimafed'rates’of Br: movement are given in Table
IV, |

"~ The bromide tracer appears to havewreached a depth of
9 feet in the soil profile between i25 minutes and 485
minutes after application of the tracer. As seen in figure
36, Br- concentrations for well Dz, which is screened from
9 to 9.2 feet, gradualiy in;reased, peaked at 335 minutes,
and then declined to background levels during this time
period. Potassium concentrafions also peaked during this
interval, providing further evidence that the KBr tracer
‘reached this wellv(figure*36). Bromide concentrations at
the 9 foot depth increased from .289 mg/l to .798 mg/l
during this period. It,wés,not possible to explicitly
indentify the arrival time of Br- at this depth, however,
the arrival of the tracer at 9 feet between 125 and 485
minutes indicétes the rate of movement of bromide to be
somewhere bet@een i.ll ft/hr and 4.32 ft/hr.

Bromide levels dramatically peaked in well Dy, which
is screened at a depth of 13.6 to 13.9 feet, 285 minutes
after application of the tracer. Céncentrations of both
Br- and K+ hovered near natural background levels, suddenly
peaked, then immediately dropped back to background level

as illustrated in figure 37. Further evidence that this
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peak represented tracer solution is provided by the
conductivity data for well Dy. The peak in Br- and K+
levels in the well was accompanied by a sharp drop in
conductivity (figure 38). The tracer solution had aﬂlower
conductivity, 880 pmhos/cm, fhén the background ground

water, which had a conductivity of 1180 pmhos/cm.
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The data for well Dy suggest that the tracer moved
through the upper 13.9 feet of the soil within 4.75 hours.
Bromide levels increased from a background level of .14L4
mg/l to 2.04 mg/l in 285 mihutes, indicating a rate of Br-
movement at 2.86 ft/hqur."~f; order to verify the Br- peak
of 2.04 mg/l{ an&ther portion of the sample was taken from
the original collection bottle, filtered, and analyzed. In
repeated ;naiyses done on differenf days, the Br-
concentration remained at 2 mg/1l.

Little change appeared to occur in the elevation of
the water table during the bromide te;t (figure 39). The
sharp peaks in the graph correspond to times the well was
pumped for sample collection, thus quickly dropping depth
to water in the ‘well. There are two reasons why the
expected rise in'the elevation of the water table did not
occur. First, the simulated 3 inch tracer "rain" fell on
only a small 23 ft x 25 ft area. The 3.76 inch natural
rain that produced the dramdtic water-table rise discussed
in Chapter VIII fell ovér several square miles, thereby
providing a much greater volume of ;nfiltrating water. The
larger ‘area also provided access to ; greater number of
macropores, increasing the amount of water reaching the
water table. Secondly, any water-table rise from the
tracer "precipitation" in the monitored well was cancelled

out by the continuous withdrawal of water for sampling.
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Figure 39. Depth to Water vs Time Well D5

lodide Tracer Test Results

Considerable ponding occurred during the iodide test
in which the initial soil-moisture level was*highb(.185 vs
.093 cc/cc at 30 inches auring tﬁe Br- test). Because of
the higher moisture levels, the soil rapialy became
saturated at the surface causing the infiltration rate to
decrease and psndiﬁg to‘occur.( Dﬁring this test, plastic
landscape border surrounding the application plots
prevented surface runoff of the tracer solution. A summary

of the estimated rates of I- movement are shown in Table
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IV. No depth to water data were collected due to
transducer failure.

Breakthrough curves for the I- tracer test are shown
in figure 40. The arrival 6f the tracer in well Di
(screened from 8.0 to 8.2:feet) at BSb minutes after the
start of tracer\appl@cafion indicates the rate of movement
of I- to be around 1.41 feet per hour. Concentrations of
I- ranged fro@‘.ZBg to .994 mg/l. After its initial
appearance at 350 minutes, I- continued to be present in
the well througﬁout the remainder of the experiment.

I- reached a dEpth of 9’feej 280 minutes after the
tracer was applied to the surface, thus indicating a rate
of:I- movement of'around 1.93 ft/hour. As seen in
figure 40, I- in well D2 (screened from 9 to 9.2 feet}),
first appeared at 280 minutes, peaked at 3.23 mg/l, leveled
out at around 1! mg/f, and bersisted throughout the

7

remainder of the study.
Discussion

The I- and Br-vtracer tests showéd that the épplied
solution did not move as a steady, even front through the
soi} profile, but ra&her moved erratically due to short-
circuiting through macropores. Both tracer tests used the
same site, soil profile, tracer volume, and application
rate, but varied in initial soil-moisture content. The
initial soil-moisture content appeared to affect the depth,

rate, and volume of tracer movement. A summary of the test



results is given in Tables IV and V.
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Figure 40. 1I-

Concentration vs Time

Wells DI and D2

TABLE 1V

ESTIMATED RATES OF TRACER MOVEMENT

Well # Tracer Depth Time of Arrival Rate
(feet) (minutes) (ft/hour)

D1 I- 8.2 350 1.41

D2 I- 9.0 280 1.93
D2 Br- 9.0 125-485 1.11-4.32

Dy Br- 13.9 285 2.93
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TABLE V

BROMIDE AND IODIDE TEST RESULTS

80

" Bromide Test

lodide Test

~Initial Depth to Water (feet) .

Tracer Water pH (units)

Tracer Water Conductivity
(umhos/cm)

Initial Soil Moisture Content
at 30 inches (cc/cc)

Background Concentration of
Tracer (mg/l)

Time from Start of Tracer
Application to First
Breakthrough of Tracer
(minutes)

Wells Tracer Appearéd In

Concentration of Tracer
Detected in Ground-Water

(mg/1)

8.36
5.90
880

.093 .
192

around
200

D2, D4

.798-2.04

7.83
6.22

540

.185

280

D1, D2

.233-3.23
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The 1.11 to &4.32 ft/hour rates of tracer movement
calculated for the Br- and I- tests are much higher than
the 3 x 10-7 to 2 x 10-% ft/hour saturated hydraulic
conductivities measured in the lab by Melby (1989). This
indicates that ;he tracer moved through the soilyat least
2 x 10% times faster than it would have moved had
macropores not been present.

With fast flow rates (around 5 ft/hour) the anions
flowing through macropores had little time to associate
with the resident soil water before passing through the
profile to the wells. The macropores acted like a straw,
limiting lateral dispersion of the tracer, and favoring
downward vertical dispersion and movement. This enabled
slugs of the tracer, such as the 2.04 mg/l slug detected in
well Dy, to reach depth at such high concentrations. When
the flow rate was slower. (around 1.1 ft/hour), however, the
tracer solution had more time to mix with the resident
water. This diluted the tracer solution causing it to be
present in lower concentrations at depth (.798 mg/!l Br- in
D2 for example). F

Tracer ions appeared in deeper wells before they were
detected in the shallower wells during both studies,.
lodide appeared first in well D2, and theﬁ arrived at well
D1 70 minutes later. During the Br- experiment, tracer
levels peaked at the 13.6 foot depth (well Diy) 50 minutes

before the shallower 9 foot depth (well D2). In both



cases, the tracer moved
root channels and other
as discussed in Chapter

An increase in Br-

D2 during the I- tracer
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to the deeper wells first by way of
types of macropores in the profile,
VIII.

concentration occurred in well

test‘(fngre 41). As the 1- tracer

water moved into the séil profile it displaced some of the

residual soil solution containing Br- from the previous

experiment. The displacement of the Br- enriched water

could have significance

toxins.

in terms of the leaching of mobile

047
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Time from Start of Tracer Test (minutes)
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Figure 41. Br- Concentration Well D2 I- Tracer Test
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The amount of water pumped from each well during both
tests was kept at a low value in order to reduce any effect
of drawdown on increasing the rqte,of flow from the water
table to the well screen. Leééfthan 500 ml was withdrawn
each time a sa&pie was collected. The effort appeared to
be successful‘as illustfated in figuré“39. With the
exception of the peaks caused‘by pumping of the well Ds for
sample collection, no significant decline in depth to water
occurred. The position of the water téble remained fairly
constant throughout the expériment.

The time it took for the tracer to first appear in the
saturated zone remained the.same for the two tests (table
iv). In both egperiments tﬁe tracers were first detected
roughly & héurs after the tracer solution was first applied
to the land surface. |

Data indicate\that thé initial soil-moisture content
affected the depth of tracgf movement, although the depth
to wéter differed by 0.53 feet (8.36 during the Br- test
versus 7.83 fegt duing the I- test). The tracer penetrated
the soil préfifé the farthest when the initial soil-
moisture content was lowér. The greatest récorded depth
reached by a tracer‘was 13.6 ft in well Dy during the Br-
experiment. In this experiment, the iﬁitial soil-moisture
content was only half that of the I- test, and desiccation
cracks abounded on the soil surface. For comparison, the

greatest depth reached by the I- test was only 9 feet
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(figure 35}. Perhaps the period of drying prior to the Br-
\

test enlaréed the macropores to depth allowing the tracer

|
to move further. When higher initial soil-moisture
conditionskprevailed, as in the I- test, macropore flow

affected tﬂe shallower D1 and Di wells. Tracer movement

seemed to be slowest when the initial soil-moisture content

was higher|
\

The data suggest that the tracer traveled 1.5

times slowér during the I- test than during the Br- test,

whén the iqitial soil-moisture content was highest (table
IV). The Jnffltration capacityywas exceeded much more
quickly duringvthe I- test, resultiﬁg in considerable
ponding of ([the tracer on the surface. As a result, it took

a longer period of time for the tracer to infiltrate. The

variation in travel tiﬁe between the two tests. also may be
due, in paqt, to thé presence of more surface desiccation
crack macr4pores were during the Br- test. The greater
number of desiccation cracks perhaps served to increase the
infiltration rate (Beven and Germann, 1982). Another
factor that may have slowed the raté of tracer movement
under "wetter" ini£ia1 soil-moisture conditions is the
expansion of clays. The clay fraction of the aquifer
contains smectite, an expanding clay .(Ross, 1988).

Swelling of the smectite under the "wet" conditions perhaps

narrowed or clésed some flow pathways reducing the rate of

tracer flow.

It appears that a greater volume of tracer migrated

into the saturated zone during the I- test, in which the

|
\
|
\
|
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initial soil-moisture content was twice as high as the Br-
study and Fhe fillable porosity was smaller. [odide

appeared j* two wells and continued to be present in both

i

of them fof“the remainder of the experiment (figure 40).

In the Br-?test, howevér, the tracer appeared once as a
|
slug in thé Dy well, and for approximately 360 minutes in

well D2. ¢nlike the I-, Br- did not persist throughout the

experiment. Perhaps the high levels of ponding reached

during thelI- experiment increased cumulative vertical
|

infiltration. Because the initial soil-moisture content
|

was higher; the soil did not adsorb as much water, hence

more of the tracer flowed through. Once in the ground, the

\
rate of lo§s of tracer water - from saturated macropores to

|

the surrouﬁding "wet" micropores slowed. During the Br-

i
study, theidryer upper few feet of the soil accepted most

of the tra%er solution. Much of the tracer entering

through cracks on the surface may have moved from the
macropores  to the unsaturated matrix due to capillarity.
Therefore,%less Br- solution was available for short-

i

circuit flow.



CHAPTER X
SUMMARY AND CONCLUSIONS

Tracer testing confirmed tﬁét surface-applied
pollutants may’quickly migrate through silt and clay to the
ground water via macropores. in both the Br- and I- tests,
it took only a little over fouf’hburs fop.the tracer to
reach the saturated zone. The rate of tracer movement was
2 x 10% times fagter than the raté measured in the lab by
Melby (1989). The tracer ekperiments showed that some of
the applied water moved through the soil profile without
displacing much §f the resident water. The tracer soluiion
did not move as a steady front through the soil, but ratﬁer
moved erratically due to short-circuiting through
macropores.

Initial soil—mbistﬁre content appeafed to affect the
depth, rate, and volume of tracer movement. The tracer
penetrated the soil profile the farthest‘when\the initial
soil-moisture content was lower, the unsaturated zone
thicker, 'and fillable porosity larger. Tracer movement
seemed to be 1.5 times slower when the initial soil-
moisture content was higher. Apparently, a greater volume
of tracer migrated to the saturated zone during the I-

test, in which the initial soil-moisture was twice as high

86
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as the Br- study.

The quantity of tracer reaching the ground water,
relative to the total input, is easy to dismiss as
insignificant. Apélied to the surface at a concentration
of 500 mg/l, the tracers appeared at depth at a level of
only 0.798 to 3.23 mg/l!l. Thi; may nofkseem like a
significant amount of pollutant, Sut had the contaminant
been a toxin, such as TEPP, it would\have been considered
high enough to bose a potential health ri§k. Detected at
these levels, .a hazardous waste facility would be required
to notify the EPA and perhaés enter into corrective action.
In addition, storaée in the Pngaturated zone may be
measured in months or years, Sut it is the short term,
concentrated mass released during a period of infiltration
that determines the rate of leaching.

Considering the total amount of tracer applied at the
surface, the amount actually reaching the water table élso
may seem negligible. iOn the other hand, if the tracer had
been applied over a large area instead of over a small one
the tota@ mass’reaching the ground-water reservoir would
have beén significant. The evidence (wafer—table rise in
response to precipitation illustrated in figure 28)
indicates that cumulative macropore flow could add up to
allow a significant volume of pollutant to reach the ground
water, enough to even cause the water table to rise.

This research illustrates the danger in assuming that

silt and clay-rich soils provide shallow ground water
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protection from surface applied pollutants. Siting a
landfill or land treatment unit on a soil of this type,
especially if recharge is affected by maéropores, may no
more guard the aquife; then if the ﬁacility were situated a
more coarée—grained material. Hazardous chemical spills or
waste water épplied on silt énd clay may migrate more
quickly to groﬁnd‘wéter than préviousl; realized. As a
result, this research highlights the 6ecessity of taking
macropore contamjnant flow into accbunt when developing
protection plans for shallow, silt and ;1ay aquifer

systems.
Suggestions For Further Research

More reseafch'at the study site needs to be done
in order to develob a better understanding of contaminant
migration to the géfuratéd zone. The 13.6 foot interval
"appears to be most susceptible to contamination from the
surface (table 5).J Geochemical evidence for this is
discussed in Chapter VIII. Coring of the soil at least to
this depth and measurement of macropore size may sbed some
light on this>phenomenon. Another interesting experiment
would be to see how different application rates affect
tracer movement. Tracer migration may occur differently if
the rate of application were slow enough to prohibit
ponding, or if the tracer were applied as a solid to the
land surface and moved into the aquifer via natural rain

events.
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TABLE VI

WELLS SHOWING GEOCHEMICAL EVIDENCE OF
RAPID CONTAMINATION VIA MACROPORES

Well Start of Screen Soil Horizon
(ft below surface) Screened
Ds 13.6 2BC2
Eu 13.6 2BC2

Cu 14.2 2BC3
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INCHES OF PRECIPITATION 1989

‘Hay

Dec.

Nov.

Sept. Oct.

“June July *Aug.

.. Apr.

3.95 5.23 4.91

.16 4.5% 2.27 0.00 0.44

* Data unavailable due to equipment failure.
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Total Annual: 28.91
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[NCHES OF PRECIPITATION 19930

Dec.

Nov.

Sept. Oct.

July Aug.

Jan. Feb. War. Apr. May June

Day

1,3v 0.00 0.00 0.00
0.00 0.00 90.00

1.80 0.00 0.00 0.30 0.00

1.76 0.32 0.00 0.84 0.00 0.8 0.00 0.02

00 0.00 0.00 0.00 0.02 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00

0 0.00 0.12 0.01
.00 0.00 0.%0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.00 0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.26 0.00

0 0.02 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 0.00 2.36 0.20 0.00 0.00 0.00 0.06
.00 0.00 0.% 0.00 0.3% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.00 0.00 0.0 0.00 0.00 0,00 0.16 0.00 0.00 0.00 0.00 0.00
.00 0.00 0.62 0.%¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 0.06 0.06 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00
0 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.18 0.00
6 0.06 0.00 0,00 0.00 0.00 0.00 0.0% 0.23 0.00 0.00 0.56

4 0.00 0.00 0.06 0.64 0.00 0.00 0.0 0.1
7 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.36 0.00 0.00 0.00

0 0.00 0.00 0.08 0.00- 0.00 0.00 0.00 0.66 0.01

.00 6.38 0.00 0.00 O0.i% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.02 0.00 0.00 0.00

0.00 0.00

1.37 6.00 0.00 0.00

.13 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00

.16 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.12 0.00 0.22 0.00 0.31 0.00

0 0.52 0.00 0.02 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.69 0.00 0.00 0.00 0.00 0.38 0,00 0.00 0.00 0.00
.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.00 0.00 0.08 0.6% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
.00 0.18 0.23 0.2% 0.00 0.1%8 0.02 0.00 0.00 0.00 0.00 0.00

0 0.56 0.00 0.00 0.00 0.52 0.08 0.00 0.15 0.00 0.00 0.00

0.02

0.00

0.00

0.00 0.00 ¢

0
0
0
0
0
0
0
0
0
0
0
0
0
0
A
b}
0
0
0
0
0
0
0
0
00
.00
00
00
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O OO O O O O O OO OO OOE O OO O OO OO O0OOoO
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120 8.75

161 331 .53 L1

1,02

LIS 3006 5.60 4,29 3.26

Total

30.85

Total Annual:
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INCHES OF PRECIPITATION 1991

“Jan. Feb. Mar. Apr. May June

Day

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.62 0.00 0.71

1.43 0.00
0.00 0.00 0.00 0.00 0.15
0.1% 0.00 0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00

0.19 0.00
0.00

0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.27 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.02 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.08 0.00 0.00 0.00
0.05 0.00 0.00 0.00
0.00 0.00 0.00 0.00
©0.00 0.00 0.00 0.00
0.00 0.00 0.00 o0.08
0.00 0,00 0.00 0.00
0.00 0.02 0.00 0.55
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.16
0.00 0.00 0.06 0.00
0.00 0.00 0.00 0.00

0.00
0.00
0.00

i
n
13
1
15
26
1
18
19
30
3

— et et et o oot vt ot et e

0.30 0.02 0.56 2.22 0.36

Total

3.94

Total To Date:
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WATER TABLE ELEVATION

(Feet Above Sea Level)
1989

Month and Day

104

WELL L-12 4-23 5-3 5-11 5-17 5-31 6-1
Al 878.37 879.04 878.78 878.51 878.75 878.81 878.92
A2 878.85 879.06 878.78 878.51 878.80 878.80 878.92
A3 878.88 879.07 878.78 873.52 878.83 878.81 878.96
AL 878.89 .,879.09 878.79 878.53 878.83 878.82 878.94
A5 878.88 879.09 878.80 878.54 878.87 878.82 878.97
B2 875.50 879.17 878.98 873.69 878.95 878.95 878.09
B3 878.52 879.19 878.89 878.64 878.76 878.95 878.93
B4 878.53 879.20 878.90 878.63 878.97 878.98 &879.1!
B5 878.54 879.23 879.02 879.70 879.02 3879.01 879.13
B6 878.56 879.22 878.93 878.66 878.93 879.00 879.01
B7 878.53 879.21 878.94 878.65 879.09 878.98 879.05
B8 878.54 879.22 878.93 878.66 879.05 878.98 879.00
B9 878.52 879.19 878.89 878.64 879.08 878.97 879.06
B10O 878.57 879.19 878.94 878.67 879.10 879.01 379.17
Cl 8§79.51 879.15 878.79 878.51 878.63 878.77 3785.90
Cc2 878.51 879.16 878.80 878.51 873.83 878.79 878.9.2
C3 373.47 879.14 878.79 878.49 §878.76 878.76 873.88
Ch 878.46 879.15 878.79 878.49 878.83 878.77 §878.93
C5 878.47 879.13 878.783 878.50 878.84 3878.78 878.90
D1 879.77 879.44 878.95 878.64 878.78 879.06 879.02
D2 878.79 879.46 §78.96 878.67 878.79 879.07 379.15
D3 877.78 879.43 878.92 878.65 878.70 879.07 879.01
D4 877.75 879.39 878.97 878.65 878.88 879.02 879.11
D5 877.77 879.41 878.96 878.68 878.88 879.05 879.04
El 879.38 879.53 879.08 878.82 879.38 879.28 879.39
E2 879.87 879.52, 879.99 878.82 879.28 879.25 879.37
E3 878.90 879.50 879.39 878.83 879.61 879.2S8 879.45
E&4 878.88 879.51 879.10 878.82 879.12 879.25 879.36
E5 8§78.89 879.52 879.03 878.83 879.14 879.26 879.39
Fl 878.04 879.23 879.92 878.63 878.95 878.96 8§79.10
F2 878.04 879.24 878.91 878.65 879.01 878.96 879.12
Gl 879.83 879.49 879.36 879.07 879.32 879.60 879.53
G2 879.81 879.47 879.24 879.07 879.31 879.41 879.52
H1 879.25 879.77 879.44 879.30 879.27 880.1i3 879.98
H2 878.15 879.75 879.49 879.30 879.43 879.83 879.74
It 879.34 879.13

12 879.33 879.10

I3 879.30 , 879.05

J1 879.03 879.65 879.28 878.99 879.22 879.49 879.46
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WATER TABLE ELEVATION
(Feet Above Sea Level)
1989 - 1990

Month and Day

1989 . 1990
WELL  6-12  6-14 6-20 10-6 11-7 1-11 6-11
Al 879.23 879.59 878.99 877.39 877.42 877.42 879.06
A2 879.23 879.57 878.99 876.97 877.55 877.52 879.04
A3 879.21 879.59° 879.00 877.01 877.57 877.54 879.07
Al 879.24 879.58 879.00  876.99 876.56 876.52 879.06
A5 879.25 879.50 879.03 877.01 877.59 877.56 879.09
B1 879.92 x 879.39
B2 879.36 879.76 879.13 877.49 877.66 877.65 879.22
B3 879.36 879.72 879.15 877.15 877.66 877.66 879.21
B4 879.38 879.75 879.15 877.16 877.67 877.66 879.26
B5 $79.42 879.79 879.20 877.20 877.67 877.68 879.27
B6 879.37 879.78 879.17 877.15 877.69. 877.65 879.25
B7 879.38 879.79 879.18 877.17 877.70 877.75 879.25
B8 879.38 879.78 879.17 877.15 877.69 877.66 879.26
B9 $79.39 879.79 879.17 877.15 877.67 877.63 879.24
BIO  879.42 879.79 879.20 877.29 877.80 877.75 879.36
cl 879.28 879.66 879.00 877.38 879.28
c2 879.29 879.64 879.01 876.73 877.37 877.43 879.1u
C3 879.26 879.63 878.98 876.71 877.34 877.40 879.16
Ch 879.27 879.63 879.00 876.73 877.38 877.42 879.13
o 879.26 879.61 879.00 876.74 877.37 877.41 879.16
D1 879.47 879.77 879.27 876.683 879.13
D2 879.47 879.77 879.27 876.69 877.25 877.42 879.53
D3 879.47 879.81 879.26 876.75 877.28 877.46 879.54
D4 879.51 879.86 879.27 876.77 877.33 877.42 879.53
D5 879.49 879.88 879.26 877.02 877.34 877.43 879.52
El 879.72 880.09 879.51 877.08 877.51 877.53 879.53
E2 879.71 880.08 879.48 877.09 877.54 877.59 879.74
E3  879.71 880.08 879.50 877.06 877.54 877.63 879.73
E4  879.68 880.09 879.51 877.08 877.54 877.58 879.73
ES 879.75 880.12 879.53 877.06 877.57 877.58 879.72
F1 879.38 879.77 879.18 877.06 877.57 877.58 879.74
F2 879.40 879.78 879.18 877.69 877.58 877.58 879.28
Gl 879.94 880.09 879.70 877.70 878.11 877.92 879.31
G2 879.96 880.15 879.92 877.68 878.08 877.93 879.68
H1 880.19 880.31 880.20 877.69 877.94 877.87 880.28
H2 880.31 880.49 880.15 879.30 877.91 877.86 880.27
11 879.94
12 879.86
13 1879.83
1 879.91 880.25 879.75 879.99




WATER TABLE ELEVATION
(Feet Above Sea Level)

1991

Month and Day

WELL 2-7 3-1 4-29

Al 877..17 877.64 878.05
A2 877.56 877.65 .878.05
A3 877.61 877.68 878.03
Ak 876.58 876.67 878.01
A5 877.63 877.73 878.04
B2 877.69 877.81 878.14
B3 877.69 877.80 878.15
B4 877.72 . 877.81 878..17
B5 877.72 877.82 878.17
B6 877.72

B7 877.73

B8 877.73

B9 877.72

B11 . 877.83

Cl1 877 .46 877.57 877.92
c2 - 877 .45 877.58 877.95
C3 877 .43 877.57 877.91
Ch 877 .45 877.58 877.93
C5 877 .45 877.57 877.92
DI 877.90
D2 877.37 877 .94
D3 877.37 877.92
D4 877 .39 877.97
D5 877.39 877.44 877.97
El 877 .56 877.75 878.15
E2 877.56 877.74 878.13
E3 877.55 877.75 878.12
E4 877.61 S77.72 878.11
E5 877.63 877.73 878.13
Fl : 878.06
F2 877.62 877.74 878.09
Gl 878.17 878.10 878.49
G2 878.11 878.07 878.38
HI1 877.85 877.85 878.4b
H2 877.97 877.04 878.46
J1 877.73 877.85 879.25
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WATER QUALITY DATA

Date Of Sample Collection:

12 April 1989

Vell §
At ko b A As
Cat+ 80.25 23.16
(mg/1)
Mgt 37.76 43.56
(mg/1) .
Nat 18.50 by, 56
(mg/!)
Cl- 30373 18,182 15.283  12.596  14.758
(mg/1)
NO3- 57.680 31,176 23,781 24,115 25,703
(mg/l)
S04 56,757 33,975 17.582  24.031  24.018
(mg/1)
pH 6.97 6.6 §.67 6.90 §.69
(untts)
Temperature . 15.1 14.9 15.1 15.5 15.5
("C)
Hardness 450 k76 633 §10 564
(mg/1 HCO3)
Conductivity 300 831 935 873 897
{pmhos/cm)
Cation/Anion -8.42 -6.18

Balance (%)
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FATER QUALITY DATA
Date Of Sample Collection:
23 April 1989

Yell #
A NN M As
Cl- 22,572 ° 20,783 - i7.535  16.269  16.5%4
(mg/1)
NO3 - 26,017 27.675  25.615  25.771  26.55h
(mg/1)
S04: 37.843  33.642 28.181  26.82%  26.161
(mg/1)
H 6.44 6.66 6.68 §.63 §.71
(units)
Temperature 1.0 18.0 17.2 18.1 13.2
{'¢)
Hardness 587 598 657 642 651
(mg/l HCO3)
Conductivity 958 932 980 950 926

(pmhos/cm)
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WATER QUALITY DATA
Date Of Sample Collection:

5 May 1989
Tell ¢
A A A3 A
Cl- 11,050 20.705  17.515  17.515
(mg/1)
NO; - 22,380 25.703  25.33%  13.318
(mg/1)
§06: 35,07 32.64F 28,208 28.208
(mg/1) ’
pH 6.57 6.55 6.89 6.72
{units)
Temperature 18.1 17.5 16.7 16.3
("C)
Hardness 638 629 645 640
(mg/t HCO3)
Conductivity 954 360 937 953

(pmhos/cm)
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FATER QUALITY DATA
Date Of Sample Collection:
17 May 1989

Yell # and Time Of Collection (24 hour clock)

At A A A k

A
1020 1240 2145 1050 1245 155
1 ©96.163 71200 61.806  28.863  17.178  26.616
(mg/1)
NO3 - 14.871 17115 15.899 26,109  24.827  24.635
(mg/1) (
S04: ST.678 43278 43816 32,887 32,895 32.708
(mg/1)
i 6.56 6.40 6.66 §.36 6,44 §.64
(units)
Temperature 17.3 17.7 17.3 17.1 17.3 17.1
("¢
Hardness 452 496 528 565 593 589
{mg/l HCO3)
Conductivity 1011 1002 991 914 903 961

(pmhos/cm)

NOTE: Samples were taken during a rainstorm.
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TATER QUALITY DATA
Date 0f Sample Collection:
17 May 1939

Tell & and Time Of Collection (24 hour clock)

A3 A3 5 A A A
1105 1300 2205 115 1315 1215
Cl- 20,188 20,537 19.869 30.214 17.773  17.935
(mg/1)
NO3 - 26.081 16,988 27.320 24,155  28.336  29.010
(mg/1)
§04: 30.306  30.406  30.657  33.238  29.914  30.932
(mg/1)
pH 6.49 6.51 6.77 6,57 6,51 6.78
(units)
Temperature 17.0 17.1 17.1 17.3 i7.1 17.3
("C)
Hardness 625 610 594 593 603 581
(mg/1 HCO3)
Conductivity 950 940 975 994 396 904
(pmhos/cm)

NOTE: Samples were taken during a raitnstorn.



JATER QUALITY DATA
Date Of Sample Collection:
17 Kay 1989

Well # and Time Of Collection (24 hour clock)

As’ As
1325 21215
Cl- 17.869 17.991
(mg/1)
NO3 - 19.038 18.763
(mg/1)
S04 29124 29.1301
(mg/!)
pH 6.52 6.71
(un1ts)

Temperature  17.1 17.0
("c)

Hardness 587 599

(mg/1 HCO3)
Conductivity 834 384

(pmhos/cm)

NOTE: Samples were taken during a rainstorm.



VATER QUALITY DATA
Date 0f Sample Collection:

17 Hay 1989
Tell t
By B kB By b
Cl- 16,872 17.629 11.408 15.137 12,39  10.427
(mg/1) ‘ :
NO3 - 6.611  16.28%  5.953  6.841 5.8 ¢
(mg/1) '
504+ 84163 153,416 26.016 32,878  25.689  29.43
(mg/l)
o 6.66 6.6  6.77 670 6.60  6.90
(units)
Temperature 1.1 9.0 192 188 199 197
("c)
Hardness 667 132 639 515 H 882
(mg/1 HCO3)
Conductivity 1076 1172 8§76 811 1226 1131
{pmhos/cm) .

* Concentration below detectable Limit.
§ Not enough sample to perform field test.

114



JATER QUALITY DATA
Date 0f Sample Collection:

17 Hay 1989
Tell #
By ﬁq Bio (1 ¥} Gy
Catt 57.]5
(mg/1)
Mg 62.36
(mg/1)
Na+ 105.60
(mg/1)
1 17.683 15,853 17.405 139,956 59.329 73.330
(mg/1)
NO3 - 5,389 27,282 4739 7886 5.729  12.809
(mg/1)
504: 82.993  23.53%  32.605 !119.537  63.092 78.626
(mg/1)
pH 6.64 §.68 §.82 6.76 6.83 6.56
{units)
Temperature  18.5 18.4 8.5 15.7 15.8 15.4
("C)
Hardness 793 552 526 755 637 305
(mg/1 HCOy)
Conductivity 1176 823 792 1583 127 1405
(pmhos/cm)
Cation/Anion -3.18

Balance (%)
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WATER QUALITY DATA
Date 0f Sample Collection:

[7 May 1939
Yell
Ca Cs D D D3 D
F- 1.554 1,247 1.133 1.153 1.003 1.437
(mg/1)
Cl- 45,781 78.396 74,205 80.610  80.691 22.766
(mg/1)
NO3- 24,849 17,676 4,681 ¥ 5.149  29.78%
(mg/1)
§04: §5.704 92.053  33.328 42,921  35.833 34,163
(mg/1)
pH 6.63 6.59 7.18 6.82 7.00 7.00
{units)
Temperature  15.8 s 1t 162 159 15.5
(‘c)
Hardness 653 766 79 789 770 654

(mg/1 HCO3)

Conductivity 1118 1415 1062 1088 1160 1042
(pmhos/cm)

* Concentration below detectable limit,



WATER QUALITY DATA

Date Of Sample Colfection:

17 Hay 1939
Tell &
R TN 3 B Es
Cat? 62.53 §1.33 0 22.46
(yms/l)
Kt 3809 1,784 '
(mg/1)
Mgt 19.47 16.74 51.57
(mg/1)
Nat 2,944 b, 181 36.29
(mg/l)
Cl- 18,218 3.616 3.504 1.798 §8.793 6.635
(mg/1)
NO3 - 14,957 §.530 7.008  10.416  22.546 19,490
(mg/1)
S04: 34,730 14,325 13,045 13.065 29.535 15.21%
(ng/1) , '
pH 7.03 ‘ 6.75 6.62 7.03 6.90 6.89
{units)
Temperature  15.1 7.8 17.3 16,9 16.7 16.3
("C)
Hardness 641 7 253 193 458 402
{mg/! HCO3)
Conductivity 1053 463 378 313 643 640
(pmhos/cm)
Cation/An1on -0.01 0.58  -9.32

Balance (%)

¥ Concentration below detectable limit.



JATER QUALITY DATA
Date 0f Sample Collection:

17 May 1989
Tell
F1 F1 Gi G2 Hi It
Catt §5.15
(mg/1)
g+t 53.65
(mg/1)
Nat 17.37
(mg/1)
Cl- 16.691 18,320 17.122 23.005 21.08% 22.056
(mg/1)
NO3 - 18,123 14,252 55.812  27.336 52.348  61.455
(mg/1)
NILE 43,632 41,860 51.540 29.73%  83.281  86.61¢
(mg/1)
pH 6.63 6.61 6.87 6.91 6.87 6.68
{units)
Temperature 17.8 18.2 18.6 17.0 19.0 19.3
("c)
Hardness 545 551 616 664 639 595
(mg/1 HCO3)
Conductivity 845 857 1028 1033 1048 1137
{pmhos/cm)
Cation/Anion -9.55

Balance (%)




WATER QUALITY DATA
Date Of Sample Collection:

17 May 1939
Pell #
Iz I Rain  Puddle Downspout
Cl- 15.390  17.560 ' ¥ '
(mg/1)
NO3 - 81.606  33.508 ' ¥ '
(mg/1)
§04- 49.863  36.192  6.560  3.536  9.818
(mg/1)
pH §.75 6.38 6.57 6.56 6.88
(units)
Temperature 13.5 17.1 20.3 19.6 19.3
("c)
Hardness 477 643 35 43
(mg/1 HCO3)
Conductivity 920 1050 1% 76 10

(pmhos/cm)

* Concentration below detectable limit.



WATER QUALITY DATA

Date Of Sampie Collection:

120

31 May 1989
Yell #
A A . X}A ‘As As Tag
Can 2935
(mg/1)
o §.798
(mg/1)
“gu 15‘15
(mg/1)
Nat 150.8
(mg/1)
F- 095 185 .386 307 332 1,342
(ng/1) A
cl- 50,682  31.440 22.633 16.689 [7.294  224.049
(mg/1)
Br- 913 579 529 334 .295 253
(mg/1)
NO3 - 3.915 . h.3h8 b.747 5,293 5.925 .31
(mg/1)
§04: 52,826 32,682 29.762 28.823 28,777 117.267
(mg/1)
. pH . 6.64 6.56 6.9% 6.4k 6.50 8.5
" (units) o ' :
Temperature  20.3 20.0 19.5  19.6 19.0 .1
(‘)
Hardness 9 578 609 593 580 53
(mg/! HCO3)
Conductivity 1026 986 1058 987 982 1085
(pmhos/cm)
Cation/Anion -1 11

Balance (%)




WATER QUALITY DATA

Date Of Sample Collection:

121

| June 1989
Yell
At A A3 A Asa
F- A 162 356 382 333
(mg/1)
Cl- 42,565  25.8345 22.646  17.431  15.908
(mg/1)
Br- 816 J5h 462 364 353
(mg/1)
NO3 - 3473 b, 717 6,756 5.466 5,481
(mg/1)
S04= 39.312 ‘30.6h9 29.593  30.374  29.373
(mg/1)
pH & & & & &
{units)
Temperature 18.7 18.2 18.1 18.5 18.1
(*C)
Hardness 513 531 596 569 566
(mg/1 HCO3)
Conductivity 956 924 1010 973 973
(pmhos/ca)

& Unable to measure pH due to fireld equipment failure.



WATER QUALITY DATA
Date 0f Sample Collection:
17 June 1989

Tell #

A A A A Asa

F.
(mg/1)

cl-
(mg/1)

Br-
(mg/1)

NO3 -
(mg/1)

504
(mg/1)

pH
(units)

Temperature
(‘c)
Hardness

(mg/1 HCO3)

Conductivity
(pmhos/ca)

074 193 .356 316 .309

25.766  20.670 19.415 14.956 16.028

897 Sn 543 293 .286

b.635 b.667  B.762 5311 5.700

35,382 30.036 29.623 29.946 29.741

6.32 6,25 632 6.33 6.33

20.4 20.5 20.2 2.4 20.1

615 554 %0 589 567

995 946 996 992 965
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WATER QUALITY DATA
Date 0f Sample Collection:
14 June 1939

Tell ¢

Dt ' Dy D Ds

Catt

(mg/1)

llg“
(mg/1)

Na+
(mg/1)
F.
(mg/1)

Cl-
(mg/1)

Br- -
(mg/l)

NO3-
(mg/1)

504:
(mg/1)

pH
{un1ts)

Temperature
(*C)
Hardness

(mg/1 HCO3)

Conductivity
(pmhos/cm)

Cation/An1on
Balance (%)

3.0 262 .6 133 189
W1 S ST 396 b
13.6 ,mu.a 6.3 19.1 114
636 608 631 5T LSTT
60820 §2.307 B8.983 19.970  20.010
631 466 LB61 255 Ll
b1 61629 7.0%8 6,074
BLIT8 LA 0ATL 29.686 30364
6.92 | 673 6.68  6.82  6.76
3.5 1.6 1.1 16.0 158
176 567 555 613 W8S
1284 169 1165 1005 986

-19.0 -6 -1.88 <1088 0.73




WATER QUALITY DATA
Date Of Sample Collection:
20 June 1989

Yell #
A Ak A3 A AsA
F- 094 AT 310 316 310
(mg/1)
Cl- 12.531 19.068 17.895 15.276  15.239
(mg/1) :
Br- .895 513k 460 316 275
(mg/1)
NO3 - b.602 §.82] b.561 5.200 5.549
(mg/1)
S04- 35,116 29.993  29.977 30.635 30.892
(mg/1)
pH 6.21 6.23 6.38 6.22 6.26
(untts)
Temperature .1 1.8 20.4 1.1 0.2
(*C)
Hardness 453 58 609 589 587
(mg/1 HCO3)
Conductivity 1023 1050 1039 1013 1007

(wmhos/cm)
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WATER QUALITY DATA
Date Of Sample Collection.
6§ October 1939

Tell }

A A A Bie Bit B¢

Cat

(mg/1)

Fet¢

(mg/1)

Ko
(ag/1)

"‘00
(mg/1)

Hnte

{mg/1)

Nat¢
(mg/1)

Sz
(mg/t)
F.
{mg/1)

cl-
{mg/1)

Br-
{ag/1)

NO3-
(ng/1)

$04:
(ng/1)
o
(un1ts)
Temperature
(*C)
Hardness

(mg/! HCOy)

Conductivity
{pmhos/ca)

Cation/Anion
Balance (%)

118100 118.200 110300 73.210 16.310 135.700
0163 009 0.0 LII6 0.459 15.180
IO A R E U A A
D710 W50 6T D10 T 3355
0.013 0088 0.006 092 0.5  3.550
18.600  33.860 36.730  45.950 151,400 76.870
10510 16070 16760 13010 w661 12,530
0.130 0366 0362 0.499  0.36h  0.370
1,638 19.797 1803 07 317 39.104 B4
0.55 1353 1112 0.287 0.2 071
D41 2005 3013 L.660  0.022  0.35
22,647 15738 25.988 15879 26.008  7.905
6.3 69 6l 683 795 6.83
1.9 192 186 19 a1 e
1108 YR} w5 552

in Hey 1147 95 1050 74

-36.95 <1050 -1.50 13.62 -T75 0 15.76




FATER QUALITY DATA

Jate 0Of Sample Collection:
6 October 1989

Vel 4
Bs By M )} Dy

Care 108300 '95.660 91.610 §2.920  66.980
(mg/1)

Fert 5.500 0.093  0.627  0.079 0039
(mg/1)

K 1,260 0,326 0308 0101 0089
© (mg/1)

Mg 35,920 37.870 43.190 42 680 33.770
{mg/1)

ke e 06200 0.223 0.179 0.0 ¢
(ng/1)

Nar! 79670 36,930 36.300  96.380 105 800
{mg/1)

S12 . [4.330  16.650  9.816 10.360 10.290
(mg/!)

F- 0.490 035  0.607  0.620  0.690
{mg/1)

¢l 13980, 15.261 32.935  24.917  22.664
(2g/1]

Bt 0575  0.368 ¢ 0.267 0.2
(mg/1) ,

NO3- 1,025 5.812 0.03%  1.121 6.5
{mg/1)

S04 58,232 20,165 24.802 22.375 29.3113
(mg/1) '

pH . 6.60 B0 700 690 1.03
{units)

Temperature 0.5 19.4% 16.0 15.8 - 15.3
{"¢)

Hardness 674 1% i 676 538
(mg/! HCOY)
Conductivity 1285 1068 1271 1248 1124
{pmhos/cm)
Cation/Anion -1.95 1419 -1.7 7.40

Balance (%)

I Not enough sample to perform field test

126



127

WATER QUALITY DATA
Date Of Sample Collection
7 November 1989

Tell ¢
A A A Bio Bii B
Ca* 96.490 109.900 108.000 73.980 27.920 117.400
(mg/1) o ‘
Fee? 0.158 0075  0.096 1185  0.433  3.080
(mg/1)
< 0.266  0.157 0.163 2210 2.358 0813
(mg/1)
"1 330160 65,960  45.710  33.260 13.320 28 970
_ (mg/1)
Un*+ ' 0.032  0.026 0876  1.589 1003
(mg/1)
Nat* 21,260 31.390 35.900 86 350 166.200 23.830
(mg/1)
Siz 10600 12.990 14520 13290  6.299  13.500
(mg/1) ‘
F 0.227  0.589  0.615  0.622  0.961  0.28
(mg/1) ‘
Cl- 0.659 20,229 18.632 17722 .Ti6 1a.991
(ag/1)
Br- 1.083 [.891 1.386  0.268  0.181  0.585
{mg/1)
NO3 - 2.113 3.652  4.037  2.639  0.027 0.6
(mg/1)
§04: 28.93%  26.433 25 026 15.552 70.604  21.609 .
(mg/1) ,
pH 6.35 6.7 6.73 6.30 1.8 6.65
(an1ts)
Temperature 15.7 16.5 171 7.1 17.7 19.1
("c)
Hardness 639 639 611 348 398 490
(mg/1 HCO3 )
Conductivity 1184 1185 1118 931 1193 115
(pmhos/ca)
Cation/Anion -15.84 -4.82  -1.59 13.13 6.35 1.1

Balance (%)

* Concentration below detectable limit.
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VATER QUALITY DATA
Date Of Sample Collection:
7 November 1989

Yell }

B¢ 81 By D: ] b

Car

(mg/1)

Fe‘.

(mg/1)

K¢
(mg/1)

Hgoo
(ng/1)

Knte

(ag/l)

Nas+

{mg/1)

i
{mg/1)

F.
(mg/t)

o O
(mg/1)

Br-
(mg/1)

NO3 -
{ng/l)

S04
(mg/1)

pH
(units)

Temperature
{"c)
Hardness

(mg/1 HCO3)

Conductivity
(pahos/ca)

Cation/Anion
Balance (%)

129.600 106.600 95.110 99.410 33.660 70.420
S.7eh 5493 005 1038 0.067  0.026
3,600 1180 0483 0.186 0,122 0.13
13610 35.860 37.270  89.120 - 43.890  35.230
2869 4459 0,259 0.055  0.055 ¢

71.560  83.060 37ﬂ|0 91.270  98.630 110.700
13,850 16640 13.750 11.520 10.530 10.670
0.576  0.W5  0.027  0.699  0.703  0.783
18,766 13.338 16079 33.953  26.139  20.788
0.399  0.602 0.299 0471 0385 0.235
0.368  0.859 5.68%  0.095  1.197  6.326
13.328 57,670 19.352 28.137 28392 30.765
7.12 680 678 1.06 683 1.05
20.4 W2 185 156 5.6 15.1
622 688 403 671 612 537
1330 1263 1033 g 190

6.06 -39 1175 LTI 3.70 5.66

* Concentration below detectable [1mit.
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WATER QUALITY DATA
Date Of Sample Collection
Il January 1990

Vell ¢
A A Bre Bt B¢ Bt

Cat* 116.600 105 600 74.260 25.580 130.500 111.300
(mg/l

Fet* 10.053 0.037 0.913 0.508 1.138 V126
(mg/1)

K 0.312 0.320 1.264 3,178 1.767 1.228
(ng/1) :

Ng' 86,330 84,170 33,780 13,420 32 960  36.540
(mg/1)

nt 0.02 0.75 1,291 2483 3811
(ng/1)

Na+* 31,530 34.910 47.370 170.100 69.¥40 70.290
(mg/1)

S 12000 13.270 13.450 6.027  11.930 14,150
(mg/1)

F- 0.640 0.830  0.63% 0.368 0.548 0.526
(mg/1)

Cl-
(mg/1) 19.483  15.929 18.269 38.16¢ I1.521 12.115
Br 1L 0.78 0.267 0.174 0.815  0.525
(mg/1)

NO3- b.537 ’ 5.736  1.904 3.399 1.857
{mg/1)

S04: 16.089 13.900 [5.618 75.590 15.828 43.280
(mg/1)

pH 6.69 6.75 6.90 7.88 6.6k 6.30
(units)

Temperature 1.9 13.3  15.0 14.3 11.1 13.7
(c)

Hardness ' ' ' ¢ ¥ ¢
(mg/! HCO3)

Conductivity 1175 1090 913 1150 1330 1161
(pohos/ca)

Cation/Anion
Balance (%)

* Hardness data unavailable due to field equipment failure
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WATER QUALITY DATA
Date Of Sampie Collection
11 January 1990

Tell §
By ] )} D

Ca* 95,660 107.800 85.100 72.120
(mg/l) :

Fet+ 0.068  0.312 0,039  0.026
(wg/1)

K 0.356 0082 0053 0.077
{mg/1)

g 36,530 52.900  s4.410 36.210
(ag/1)

nt+ 0.275 0,055

(mg/1)

Na++ 37.010  97.450  97.800 112.000
(mg/1) :

S 13,610 11.320 9.616 10.290
(mg/1)

F- 0.530 0.559 0.705  0.646
(mg/1) '

Cl 15,931 32 582 14.460 20.400
{mg/1) ' '

Br- © 0,288 0.399 0.298 0.207
{mg/1)

NO3 - 5,328 1.584 8,347
(mg/1)

S04 18.207 27.567  20.464 31.970
(mg/1)

oH 6.70 6.86 6.90 7.00
(units)

Temperature 15.6 10.9 .1 121
("¢)

Hardness * ' L
(mg/1 HCOy)
Conductivity 976 1533 1366 1225
(pmhos/cm)
Cation/Anion

Balance (%)

* Hardness Data unavailable due to field equipment failure.
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WATER QUALITY DATA
Date Of Sample Collection:
7 February 1991

Yell ¢
A b A As Asq
Cat? 96T 9202 S0 69.79  6h.31
(mg/l) ,
LR 766260 v
(mg/1)
Mg - 53.68 50,81 52,86 80.15 40.27
(mg/1)
Na* 26.55 35.97  49.85
(mg/1)
F- N1y 617 618 599 605
(mg/1)
Cl- 17.930  11.937 14,618 15,335 15.234
(mg/1)
Br- 74 490 316 264 299
(mg/1)
NO3 - 2,243 2.862 1.946 1.349
(mg/1)
504 26.638 - 22.193 721.082 18.17% 18.17%
(mg/l) '
pH 6.65 6.6b 6.33 6.64 6.67
(units)
Temperature 10.7 1.4 13.2 13.1 13.2
("c)
Hardness 671 622 529 510 505
{mg/1 HCO3)
Conductivity 1120 950 330 900 900
(wmhos/cm) ’

Cation/Anion  -7.82  -3.05  -6.53  -18.9% -16.42
Balance (%)

* Concentration below detectable limit.



WATER QUALITY DATA

Date Of Sample Collection:

7 Februeary 1991

Tell #

D

D Dy ) Ds

TAP

Cs

Catt

{mg/1)

Kt
- (mg/1)

Hg"
(mg/1)

Nat
(mg/1)

F.
(mg/1)

cl-
(mg/l) -

Br-
(mg/1)

NO3 -
(mg/1)

504-
(mg/1)

pH
{units)

Temperafure
(*C)
Hardness

{mg/1 HCO3)

Conductivity
{pmhos/ca)

Cation/Anion
Balance (%)

2841

533
59.92
105.9
113
32,125

399

1114
.66
1.6
31

1280

-15.8

3.8 5K 1.2

47.96 §LL5T 4332

107.3 1260 121.6

672 133 J37

31,638 13.59%  15.38

341 134 207

5.626 §.535

19.766 32.257  32.666

6.9 6.72 6.70

1.8 1.9 1.5

670 665 659

1120 1120 1020

-1.86 -1.85 -3.05

38.84

5.683

17,44

153.3

1.27%

155

107.659
7.42
1.1

87

1040

70,06
219
6&55
56.01
158
17.666
374
5.53
33.426
6.55
1.4
586

1000

-47.05 -.59

* Concentration below detectable limit.



WATER QUALITY DATA
Date 0f Sample Collection:
18 February 1991

133

Balance (%)

Yell §
D2 D3 Dy Ds
Ca*+ 50,15 60.07 85.22 30.07
(mg/t) :
K+ ,8500 L3108 3018 . 2996
(mg/1)
T 5968 47.16  80.77  B2.3%
- (mg/1)
Nat 110,90 107.90 " 122,90 121.50
~ (mg/1)
F- SITRRYE S ST I U]
(mg/1)
Cl- 31,453 30.082  12.587  13.903
(mg/1)
Br- 410 .403 196 18
(mg/1)
NO3- 03 ekl 5.682  b.854
(mg/1)
\ILE 12,699 20.709  31.600  32.029
(mg/1)
oH 7.0 676 683 6.90
{un1ts) ‘
Temperature 15.5 12.5 12,5 12.1
("c)
Hardness 761 664 680 667
(mg/1 HCO3)
Conductivity 1240 1040 1060 1080
{pmhos/cm)
Cation/Anion -5,26 -85 -5.16  -1.91




JATER QUALITY DATA
Date 0f Sample Collection:

Il June 1990

134

Yell ¢
A Y A A Asg
F- 399 318 13 17 .608
(mg/1)
Cl- 16.599  17.228  14.720  13.675  14.069
(mg/1)
Br- 1.019 .666 375 220 A
(mg/1)
NO3- §.595 6.142 7.780 10,424  10.284
(mg/1)
NILE 25,750 26.40  27.166 27.611 23.2%2
(mg/1)
pH 6.34 6.51 6.75 6.86 6.83
(un1ts)
Temperature  19.5 19.0 17.7 19.4 19.8
("c)
“Hardness 584 555 534 591 491
(mg/1 HCO3)
Conductivity 904 978 915 895 397

(pmhos/cm)
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JATER QUALITY DATA
Date Of Sample Collection:
1T June 1990

Tell #

B¢ By By Bio Bit

F.
(mg/1)

cl-
(mg/1)

Br-
(mg/1)

NO3 -
(mg/1)

Sb:
(mg/1)

pH
(un1ts)

Temperature
(‘C)
Hardness

(mg/1 HCO3)

Conductivity
(pmhos/ca)

SUNRU I W% a9
0.1 12398 18902 20339 33751
559519 3 298 L7
386 1919 6896 b6k 137
15,599 38.019 26361 26.37  81.003
6.8 681 690 697 7.48
w1 03 17 182 10,3
86 910 115 511 S8l

1015 1051 977 938 1041




WATER QUALITY DATA
Date Of Sample Collection:
I1 June 1990

Vell ¢
Dt D M D
F- 60 L9 8y LT
(mg/1)
cl- 26.826 25,792 25.871 39.915
(mg/1)
Br- 367 355 3L 347
(mg/1) |
"~ NO3- 1.623 186 1,551 8.416
(mg/1)
S04 23,908 21,518 18,8808 26.827
(mg/1)
pH 6.74 6.88 7.08 7.04
(untts)
Temperatur‘e 17.6 19.1 19.1 4.7
(*C)
Hardness - 702‘ 799 747 638
(mg/1 HCO3)
Conductivity 1100 1230 1128 1023

(pmhos /cm)
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FATER QUALITY DATA
Date Of Sample Collection:
| Harch 1991
Bromide Tracer Test

Vell # and Time Of Collection (24 hour clock)

137

03
0955

Catt

(mg/1)

K#
(mg/1)

ﬂg“
(mg/1)

Nat
(mg/1)

F-
(mg/1)

cl-
(mg/!)

Br-
(mg/1)

NO3 -
(mg/1)

504:
(mg/1)

pH
{units)

Temperature
("c)
Hardness

(mg/l HCO3)

Conductivity
(pmhos/ca)

Cation/Anion
Balance (%)

D D3 Ds Ds 01
0909 0912 0915 0915 0952
§9.95 5353 SIS Sh3Y 5835
5068 L2555 L2602 L3707 L4062
59.77 8703 6180 6296 53.41
5.0 1055 126.1 1206 109.8
TR TS 11 SR £ N 1
30581 30.803 12,906 16126 30,937
N RS Y7 N TT SRR T T S 17
210 6T 5699 8805 023

16,666 16.668 32.63% 31,719 20.9%2
6.89 6.35 7.08 6.97 7.1
16.8 5.4 15.1 14.9 1.7

842 708 683 633 805
1320 1190 1180 | 1130 | 1340

-5.51 -1.03  -3700 -39 -30.45

§5.37

1256

50,24

108.9

29

31.396

.358

660

16.933

677

11.3

711

1130

9%
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WATER QUALITY DATA
Date Of Sample Coilection:
| March 1991

Bromide Tracer Test

Yell ¥ and Time Of Collection (24 hour clock)

Ds Ds - b D3 D Ds
0958 1000 1007 1009 1013 015

Catt 27,73 51.53 0 3673 b7.59 70.85  40.83
(mg/1)
< ' L1883 072 .2396 3707 L3145
(mg/1)
Mgt 39.87 82,30 53.93 69.36 6196 4.k
(mg/1)
Nat . [17.0 118.0  105.3  108.6 [26.8 118.1
(mg/1)
F- 108 130 651 115 15 867
(mg/1)
Cl- 13.223 14,120 28.616  29.958 12.993 15.32%
(ng/1)
Br- AT .}86 367 YL 75 181
(mg/1)
NO3 - 5.365 §.305 64l 789 5.119 §.383
(mg/1)
S04: 3,939 31,719 25.065  17.928  32.030  33.091
(mg/1)
pH 7.06 6.98 .13 6.98 7.08 7.02
(units)

Temperature 18,5 16.7 1h.4 16.3 1.3 13.7
(*c)

Hardness 682 635 ] 12y 676 693
(mg/1 HCOy) :

Conductivity 1180 1160 1140 1220 1100 1160
(pmhos/ca)

Cation/Anrton  -11.21 -4.66 -1.79 1.2 -3.02
Balance (%)

* Concentration below detectable limit.
§ Not enough sample to perform field test.



WATER QUALITY DATA
Date Of Sample Collection:
| March 1991
Bromide Tracer Test

Well ¥ and Time Of Collection (24 hour clock)

i O Ds )T D
1030 -1035 1050 1050 1055 1100
© Cat .59 M. 6560 1091 L7248
(mg/1)
Y ' Q620 3875 5586 v L3108
(mg/!) A -
' 8895 6103 6357 S5.87 ARSI 41.06
(ag/1) ‘
Na* 108.9 1231 116 108.9 107.5 123.1
(mg/1)
F- S AT S V1 S SN0 55 NN 41 B TV
(mg/1). :
cl- 29.838  12.796 15.561 30.134  29.798 12.878
(mg/1)
Br- 1 TSN & TS RS 1 SRS {1 1
(mg/1) ’ '
NO3- 9100 5639 8259 L2830 929 530
(mg/1) “
S04 18,115 32,313 32.531 25.1%%  18.415  32.312
(mg/1) ‘
pH 6.8 7.2 7.00 1.0 692 7.06
(units) ‘ s
Temperature 1.8 3.0 127 157 1.5 1L
("C) :
Hardness 00 532 665 t 696 676
(mg/1 HCO3) ‘
Conductinty 1120 1100 1100 1080 1120 1100
(pmhos/ca)
Cation/An1on -1.22 6.65 5 45 -4.12

Balance (%)

* Concentration below detectable limit.
¥ Not enough sample to perform field test.
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TATER QUALITY DATA
Date Of Sample Collection:
| March 1991
Bromide Tracer Test

Well ¥ and Time Of Collection (24 hour clock)

Ds 0 D3 Ds Ds Yl
1105 1115 1120 1125 1130 1140

Catt §6.33  52.63 5991 k5,24 62,07 6h.15
(mg/l)

< A2000 3913 L2707, 2003 L2586 5606
(mg/l)

Mg+ + §2.60  55.92  48.53  k0.76  b2.b4 54,11
(mg/l)

Nat 20,6  109.8  110.8 1200 119.1 111.1
(mg/1)

F- 196 155 36,300 8T
(mg/1)

Cl- 15.987  29.531  18.863 12.770 15.168 27.740
(mg/1) ,

Br- 217 81335 176 211 .189
(mg/1)

NO3 - 5593 YL 950 5.364 4,677 .900
(mg/1)

504: 33,198 26.078  18.24h  31.982 32.983  27.103
(mg/1)

pH 700 7.3 700 7.08  T.00 7.3
(units)

Temperature 16.2 16.1 14.3 15.9 16.3 .1
(*0)

Hardness 111 ] 709 638 662 H
(mg/1 HCO3)

Conductivity 1160 1240 1140 1140 1140 1320
{pmhos/cm)

Cation/Anion -7.06 -5.08  -2.68 -5.12
Balance (%)

¥ Not enough sample to perform field test.
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JATER QUALITY DATA
Date Of Sample Collection:
| March 1991
Bromide Tracer Test

Vell # and Time Of Collection (2% hour c¢lock)

03 Dy s ) D3 Dy
1145 1150 1155 1205 120 125

Cat+ 56,31 SE.26 8265 67.70 $8.00  50.82

(mg/1)

< G509 L2509 L3295 Leees v L2610
(mg/1)

' 977 BLEL L6769 3.3 h0.70
(mg/1) :
Na' ! COMLY 1206 12008 1138 1076 1216
(ng/1)-

B I3 4300 800 77 765 .19
(mg/1)

cl- 20702 12519 155 373500 29478 13432
(mg/1)

Br- 308 e 201 S s
(mg/1)

NO3- A63 0 SH19 W3 089 982 5.6
(mg/1)

S04: 18,559  32.80h  32.925 31.565 19.377  31.675
(mg/1) :

pH 6.93 7.0 .08 .1 6.9 T.08
(units)

Temperature  16.6 157 150 17.6 162 157
('e) '

Hardness 635 662 681 | 668 662
(mg/1 HCO3)

Conductivaty 180 1120 1100 1320 1160 1120
(pahos/ca) ‘

Cation/Anion -3.200 -1.9%  -6.02 -0 -0
Balance (%)

¢ Concentratjon below detectable limt.
¥} Not enough sample to perform field test.



VATER QUALITY DATA

Date Of Sample Collection:

| Harch 1991
Bromide Tracer Test

Vell ¥ and Time Of Collection (24 hour clock)

I R

Balance (%)

Ds D:
1220 1230 1235 10 1285 1255
Care §3.3 .07 6588 8032 51 80.81
(mg/1) ‘
K 506 kS8E ¢ 1566 L2509 L6665
(mg/1)
T 61,96 5731 99.016  0.8b 52,03 53.67
(mg/1) : »
Nat* 17.6  132.1-- 109.2 12,3 17.9 129.8
(mg/1) :
F- 33 949 300 .10 833 .8l
(mg/1) |
cl- 15433 88,645 18961 13.565 15.861 112.039
(mg/1)
Br- 205 678 293 L2000 263 .
(mg/1) ~
NO3- 6662 158 921 5.6k 6381 L2689
(mg/1)
IE 3970 59.827 18.628 31925 33.257  61.519
(mg/1)
pH 6.96  7.06  6.38  7.06 .00 1.07
(units) ’
Temperature  16.6 166 156 196 166 16.b
("c)
Hardness 657 699 633 700 699 f
(mg/1 HCO3)
Conductivity 1160 1420 1140 1130 1090 1820
(pmhos/ca)
Cation/Anion -3.85 -2.01 -1.63  -3.00  -5.66

¥ Concentration belov detectable limit.
¥ Not enough sample to perfora field test.
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WATER QUALITY DATA

Date 01 Sample Collect
| Harch 1991

Bromide Tracer Test

jon:

Yell # and Time Of Collection (26 hour clock)

D3 s Ds D1 D3 Ds
1300 1305 ,Xl310 1320 1325 1330
Cart 6.5 1.3 330 95.20 65.61 5054
_(mg/1)
K P99 3707 L6826 - ¢ 158
(mg/1)
g+ B9.00 KLIT LTS 51800 4947 410k
(mg/1),
Na+ ¢ 109.3 12,6 118.0 1367 1102 1209
(mg/1)
F- %! 303 736 378 NI IT ]
(mg/1) ’ ‘
cl- 26.061  13.503  13.618 125.789 29.625 12.922
(mg/1) '
Br- 5 VAR 4 TN £3 NS 1 NS 1 SN 11
{mg/1) ‘
N0 - A70 0 5,692 5,405 295 L Thl 5.720
{mg/1) :
S04: [8.515  32.269  31.84%  69.659 18.530 32.038
(mg/1)
pH 6.97 7.03 1.07 7.08 6.97 1.13
{units) :
~ Temperature 15.6 14.8 14.6 i7.2 17.0 17.4
("¢)
Hardness 716 644 625 741 761 679
(mg/1 HCO3)
Conductivity 1140 1080 1090~ 1440 11380 1160
(pmhos/ca) '
Cation/Anion  -4.80 -2.28  -3.91  -6.29  -6.03  -3.89
Balance ($)
* Concentration below detectable limit.
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WATER QUALITY DATA

Date Of Sample Collection:

| March 1991

Bromide Tracer Test

Tell # and Time Of Collection (2§ hour clock)

Ds Dy ) D3 D Ds
1335 1340 1345 1350 1355 1400
Ca** 90.76 57.08  75.15 53.30 26.61  51.73
(mg/1) '
K 2071 L2012 4665 21509 L3183
(mg/1)
g'* §0.55 b4.46 52.58 50.00 50.01 42.62
(mg/1)
Na¢ 118.7 136.2 132.7 I 12006 12001
(mg/1)
F- 162 798 .382 130 Y3 761
(mg/1)
Cl- 15,095 19.182 119.871 32,025 13.321 13.597
(mg/1)
Br- L2125 186 45 386 197 157
(mg/1)
NO3 - §.667 1.953 288 435 5,819 5.347
(mg/1)
S04: 32.839  37.651 67.665 20.490  32.071 31.758
(mg/1)
pH 1.07 7.63 1.19 6.95 7.13 1.11
(units)
Temperature 7.4 16,1 183 (1.5 115 168
(c) '
Hardness 682 i 128 126 665 m
(mg/1 HCO3)
Conductivity 1160 1040 1460 1220 1160 1160
{pmhos/ca)
Cation/Anion 2.9% -9.36 -6.54 -9.49 6.4

Balance (%)

* Concentration below detectable limit.
§ Not enough sample to perform field test.
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WATER QUALITY DATA
Date Of Sample Collection:
| March {991
Bromide Tracer Test

Tell ¢ and Time Of Collection (28 hour clock)

01 D1 D3 Dy Ds D1t
1405 1810 1415 1620 1425 1430
Catt 17.812 86.36 59.87 56,33 29.15 1318
(mg/1)
K ' b665 : 3698 .2N2 ¢
(mg/1)
g+ §2.28 53.08 35.10 §2.18  41.65  42.63
(mg/!)
Na*+ 126.90 134.7 77.67  121.6  118.0  121.6
(mg/1)
F- Ny 897 b43 13 75 710
(mg/1)
Cl- 17.175 117.703 26,613 14,115  16.728 14.92]
(mg/1)
Br- 201 156 269 2,080 206 166
(mg/1)
N0 - 1,987 .302 597 5557 w781 h.680
(mg/1)
504: 38,526 66,165 16.166  31.935 33474 32.971
(mg/1)
pH § 7.10 .10 7.08 1.15 §
(un1ts)
Temperature 17.2 18.7 1.6 15.9 184 187
("c) ‘
Hardness i 708 167 664 13 §
{mg/1 HCO3)
Conductivity ] 1420 1220 1060 1100 99¢
{pmhos/ca) -
Cation/Anion -5.60  -19.22  -1.73 -13.02

Balance (%)

* Concentration below detectable limit.
 Not enough sampie to perform field test.
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WATER QUALITY DATA
Date Of Sample Collection:
| Karch 1991
Bromide Tracer Test

Vell ¥ and Time 0f Collection (24 hour clock)

D D " Ds Dt D;
1435 1640 1545 1450 1500 1510

Cat! 30,73 5058 5167 48.67 20,39 83.98
(mg/1)

K+ 21800 L3203 L2509 L3TeE L2609 L4658
(mg/1)

ug 15.89  69.16 6100 §2.707 40.26  53.89
(mg/1) |

Nat 3817 10T 1206 2L 1161 1399
(mg/1)

F- 169 697 JIT 1790 768 881
(mg/1)

Cl- C26.379 0 37.93% 16377 16,629 17046 116.027
(mg/1)

Br- A7 .388 123 184 179 798
(mg/1)

NO3 - kb 889 5,133 5.e86 3.302 .38%
(mg/1)

504- [6.827 22,951 32200 31.649 31.286  §6.578
(mg/1)

pH .0 T6 113 7.08 t 1.17
(units)

Temperature  17.8  19.7  18.6  17.9  20.1  15.6
("C)

Hardness 694 114 647 691 } 679
(mg/1 HCO3)

Conductivity 1540 1200 1110 1080 930 1360
(pmhos/cm) :

Cation/Anion -46.77 -7.35 -1.87 -6.93 -2.66
Balance (%)

¥ Not enough sample to perform field tfest.
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WATER QUALITY DATA
Date Of Sampie Collection:
| March 1991
Bromide Tracer Test

Vell # and Time Of Collection (24 hour clock)

D3 D Ds ]| D: D3
1520 1530 1540 1550 1600 1610

Ca* 76.18 32,60 88.33 23.66  77.26  49.34

(mg/1)

Kt 3775 ' L1509 L2007 L8053 2996
(mg/1) )

Mg §9.65 8038 K2.25  41.08 5171 49.66
(mg/1)

Nart 3.6 1208 119.2 1160 128.6 112.1
(mg/1)

F 708 TS 889 575 866 .793
(ng/1)

Cl- 3,775 13.860  16.822  15.2927  99.183 32.747
(mg/1)

Br- 379 199 28 166 676 563
(mg/1)

NO3 - 15 5.3 RT76 0 6.037 0 .298  1L165
(mg/1)

504: 20,699 32.663  33.861  32.489  59.127  22.562
(mg/1)

pH 703 7.8 1. i 7.0 1.03
(units)

Temperature 17.5 17.1 17.1 19.6 18.0 16.4
(*c)

Hardness 760 667 635 t 635 129
(mg/1 HCOy) ‘

Conductivity 1140 1080 1080 1020 1360 1130
*(pmhos/ca)

Cation/Anion -39 -80S -1.16 -1, -1.71
Balance (%)

* Concentration below detectable limit.
§ Not enough sample to perform field test.



VATER QUALITY DATA

Date Of Sample Collection:

I Warch 1991

Bromide Tracer Test

Bell # and Time Of Collection (24 hour clock)

Dy Ds 0 D3 Dy Ds
1620 1630 1650 1700 1710 1720
Cat? b6.65 23.90 58.38 v B7.76  47.66 b8.78
(mg/1)
K WL5h6 2677 5072 L2958 L2808 L2771
(mg/1)
Mg+ bI.16 b1.86 54,38 49,94 41.05  42.40
(mg/1)
Nat+ 122.7 119.1 123.4 112.2  122.6 119.8
(mg/1)
F- 136 137 A1b 700 301 863
(mg/1)
Cl- 15,267 1h.b44 75,110 13,634 15,128
(mg/1) '
Br- 199 183 L5866 488 A97 ATh
(mg/1)
NO3 - 5.3098 5.665 T8 876 5.339 4,816
(mg/1)
S04- 32,520 33,177  48.08% 21.72%  32.689  33.511
(mg/1)
pH- 71.11 1.19 1.16 6.99 7.08 71.07
(un1ts)
Temperature 17.9 16.0 15.6 17.7 16.6 16.3
("C)
Hardness 676 670 734 740 709 696
(mg/1 HCO3)
Conductivity 1030 1060 1280 1140 1090 1060
(pmhos/ca)
Cation/Anion -4 76 -9.06  -3.86  -5.01 -6.68  -5.75

Balance (%)
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WATER QUALITY DATA

Date 0f Sample Collection:
| March 1991

Bromide Tracer Test

Tell ¥ and Time Of Collection (2% hour clock)

D )] D Ds Ds 0
1730 1740 1750 1800 1810 1830
Cat 1628 73.87  70.16  #8.00 5346 65.17
(mg/1) ] \
K* ' 4550 775 L2883 L3145 .38
(mg/1)
'T4R §1.86 55.63  k9.6%  50.96 43,29 55.51
(ua/})
Nat+ 116.2 113.1 113.5 122.6 122.5 111.8
(mg/1) '
F- 837 788 693 816 33 10
(ng/1) ‘
Cl- 13.889  56.868 }h.723 15.248  13.479  47.921
(mg/1)
Br- 181 455 N 182 133 425
(mg/1)
NO; - 5.130 081 .920 6,113 5.486 067
(mg/1)
S04- 31,396 50,198 21.3227  32.848  31.871  36.551
(mg/1)
pH f 7.06 697 7.0 1.0 7.02
(units) 4
Temperature 17.9 l6.§ 17.1 10.8 14.3 15.3
(c)
Hardness i 112 709 680 630 m
(mg/1 HCO3)
Conductivity i 1360 1170 1080 1070 1250
(pmhos/ca)
Cation/Anion -5.90 -2.00 -5.94 -1.62  -1.56

Balance (%)

* Concentration below detectable [imit.
f Not enough sample to perform field test.
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FATER QUALITY DATA
Date 0f Sample Collection:
| March 1991
Bromide Tracer Test

Tell  and Time 0f Collection (2% hour clock)

03 Dy Ds Y} 03 Dy
1360 1850 1900 1930 1945 2000

Cat S1UL S2.65 64,99 50.65  33.65  40.5I
(mg/1)

34 foo2600 L3707 B335 3707 L2434
(mg/1)

Mg 8949 8172 301 Sk 50,22 40.63
(mg/l)

Nat+ 110.3 1223 120.9  110.3 112.6 121.8
(mg/1)

F- 776 O 768 813 66l LT69
(mg/1)

e 33,337 16576 18,578 Bb.6b2 33.320 13,387
(mg/1)

Br- 3713 097 U8 s 39 199
(mg/1)

NO3 - 892 5.800  5.892  .095 782 5.862
(mg/1) i

506 21.365 32.8’\02 13,665 35.761  21.716  32.348
(mg/1) ‘ ‘

pH .82 .06 .05 697 7.03 .02
(units)

Temperature, 1.8 139 131 13.0. 133 LT

(‘c) ‘

Hardness 633 630 632 743 705 661
(mg/1 HCO3) : ,
Cwonductivity [160 1080 1070 1260 1130 1080
(pmhos/cm)
Cation/Anion  -b.62 -3.61  -1.61  -9.11  -3.28  -5.39

Balance (%)

¥ Concentration below detectable limit.
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WATER QUALITY DATA
Date Of Sample Collection:
| March 1991
Bromide Tracer Test

Vell ¥ and Time Of Collection (2% hour clock)

Ds Y 03 D Ds
2015 2085 - 2100 15 1130

Care $3.03 6570 U882 | §7.21  51.89

{mg/1)
K 2883 K995 L2546 689
(mg/1)
Kg §2.07  53.85  88.95  G1.5K 2.4
(mg/l)
Nat+ 18,9 109.0 1.1 12,3 119.2
(ng/1) N
P 451 an 646 748 339
(mg/1)
- 16,427 §2.6502  32.913  13.533  15.977
(mg/1)
Br- il 432 .383 193 A1
{mg/1)
NO3 - 5.012 063 J98 0 5.359 4,898
(mg/1) .
504- 3,335 30,899 11.662 32,538 31.180
(mg/1)
pH §.98 §.93  6.87 6939  7.02
{un1ts)

Temperature 12.1 1S 1.6 10.9 ; 10.6
(*c)

Hardness 670 783119 674 111
{mg/1 HCO3) ‘

Conductivity 1080 1260 - 1170 1090 110
(pmhos/ca)

Cation/An1on -5.98  -3.85 -13.200 837 -6.16
Balance (%)

¥ Concentration below detectable limit.



152

WATER QUALITY DATA
Date Of Sample Collection:
1 March 1991

Yell ¢

0 D D Ds Tap
Cat? 53.950 56.709 77.480  58.360  137.510
(mg/1) ‘
'C ) 0.380 ¢ ' Y5810
(mg/1) :
Mgt 58.020  50.330 42.020 43.160  16.220
(mg/1)
Nat 110.600 112,500 123.600 119.300 151.600
(mg/l1)
F: 0.755  0.701  0.762  0.726  1.313
(mg/l) ‘
Cl- 500617 31723 13.312 13.245 22.005
(mg/1)
Br-- 0.861  0.335  0.130  0.173  0.356
{mg/1)
NO3- [.k00 ¢ 5.965  5.813  0.217
(mg/1) (
S04: » 35.726 20,259 32.856 32.160 106.992
(mg/1) ~ .
pH 7.01 7.08 691 698 1107
(units)

Temperature 3.9 5.5 3.8 1.8 15.8
(‘c)

Hardness 81 T 676 659 8
(mg/! HCO3) ;

Conductivity 1230 - 1040 1060 390 1100
{pmhos/cm)

Cation/Anion -12.05 -5.71 .16 -0.80  0.30
Balance (%)

* Concentration below detectable limit.
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WATER QUALITY DATA
Date 0f Sample Collection:
§ March 1991

Yell §

D2 D3 D Ds

Catt

(mg/1)

Ko
(mg/!)

Hgn
(mg/1)

Na!
(mg/1)
F.
(mg/1)

Cl-
(mg/1)

Br-
(mg/1)

NO3-
(mg/1)

504:
(mg/1)

pH
{un1ts)

Temperature

("C)

Hardness
(mg/1 HCO3)

Conductivity

(pmhos/ca)

Cation/Anion
Balance (%)

59.100  91.030 78.490  63.360
0.693 ' ' t
59.840  50.730 bi.OZO ’h3.320
112,100 113.300 125.200 121.70?
0.762  0.686° 0.765  0.735
38,806 30,611 [2.365  13.205
0.433  0.365  0.182  0.210
0.046 0,925  6.180  4.878
31.060  19.521 32,221 32.049
6.93 6.89 6.95 6.93
12.8 12.1 12.1 12.1
i 113 106 683
1400 1210 1160 1140

.06 090 -0.89

¥ Concentration below detectable limit.
¥ Not enough sample to perform field test.
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WATER QUALITY DATA
Date Of Sample Collection:
6 March 1991

Tell §
1] D3 Ds Ds
Catt 83.690 87.360 63.260 79.300
(mg/l) .
K 03 :
(mg/1)
gt 58,400  51.000 42.530 b3.$50
(mg/1)
Na; 112.000 115.600 125.500 121.900
(mg/l)
F- 0.796 0.710 0.763 0.781
(mg/1)
Cl- 18,865 29.320  12.229  13.365
(mg/l)
Br- 0,633 006 0169 0.189
(mg/1)
Nb:' 0.072 0.919 5.654 §.953
(mg/1)
SOb: 32,402 200112 32,151 32,740
(mg/1)
pH 7.01 6.99 7.03 1.07
(anits)
Temperature 10.1 9.9 10.9 10.6
(c)
Hardness } 738 632 679"
(mg/1 HCO3)
Conductivity 1260 1140 1130 1060
{pmhos/ca)
Cation/Anion 0.92 0.70 .11

Balance (%)

* Concentration below detectable limit.
§ Not enough sample to perform field test.



WATER QUALITY DATA .
Date Of Sample Collection:
10 March 1991

Yell #

D2 D3 D Ds

Caoo
(mg/1)

K+
 (mg/1)

ugoo
(mg/1)

Na+
(mg/l)
F.
(mg/1)

cl-
(mg/1)

Br-
(mg/1)

NO3-.
(mg/1)

504:
(mg/l}

pH
{units)

Tempefature

(")

Hardness
{mg/1 HCO3)

Conductivity
{pmhos/cm)

Cation/Anion
Balance (%)

0150 98530 7710 77,500
0.359 ' 0.222
S.040 50250 BLT00 86510
113.800 112.500 125.200 125.700
0.755  0.681 0739 0.758
39.090  19.730 11491 13.162
0.619 0337 0166 0.175
0.025  0.833  5.815 4,698
199760 19,991 31768 30462
7.017 698 .02 7.0l
34 1.7 1103
65 T e 6
1340 m 1100 1080

5.18 1,36 .08 3.98

¥ Concentration below detectable limit.
¥ Not enough sample to perform field test,
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WATER QUALITY DATA
Date Of Sample Collection:
13 Harch 1991

Yell #

D2 D3 Ds Ds

Catt
(mg/1)

Ko
(mg/1)

"goo
(mg/1)

Na*
(mg/1)
F.
(mg/1)

Cl-
(mg/1)

Br-
(mg/1)

NO3-
(mg/1)

504-
(mg/1)

phH
(units)

Temperature
(c)
Hardness

(mg/1 HCO3)

Conductivity
(pmhos/cm)

Cation/Anion
Balance (%)

96.470  86.050 79.840 78.570
0.462 b ¢ '
60.160  49.890  42.280 43.320
[17.600 110.000 125.300 120.000
0.778  0.6%  0.781  0.789
37.600  29.108 ‘12.699 13.768
0.608  0.313  0.181  0.175
0.029  0.785  5.631  4.869
26:777 19.603 32.346 31.720
7.01 6.9§ 7.03. 7.03
6.7 8.9 9.9 9.6
! 699 661 897
1290 1050 1140 1140

190 618 .92

* Concentration below detectable limit.
# Not enough sample to perform field test.



FATER QUALITY DATA
Date Of Sample Collection:

17 Karch 1991

157

Balance (%)

Yell #
D; D3 Dy Ds
Cat! 99.010 88.900 77.540 62.950
(mg/1)
K 0.555 ¢ ' '
(mg/1)
lg 60.760 §0.750 §2.260  §3.590
(mg/1)
Na¢ 115.800 112.600 124.400 121.200
(mg/1)
F- 0.762 0.722 0.780 0.777
(mg/1)
Cl- 35.002  27.735  11.937  12.741
(mg/1)
Br- 0.371 8.3 0.159 0.173
(mg/1)
N0y - 0.013 0.825 5.708 §.597
(mg/1)
S04- 2[.#58 19.636 32.132  31.785
(mg/1)
pH 7.7 1.8 7.15 7.14
{units)
Temperature §.8 8.1 10.2 9.9
()
" Hardness 857 741 673 697
(mg/1 HCO3)
Conductivity 1260 920 1120 980
{pmhos/cm)
Cation/Anion -1.66 N1 1.90 -1.82

* Concentration below detectabie limit.



WATER QUALITY DATA
Date Of Sample Collection:
24 Narch 1991

Tell

D1 D3 Ds Ds

Catt

(mg/1)

Ko
(mg/1)

ugo [}
(mg/l)

Nat
(mg/1)

F.
(mg/1)

cl-
(mg/l)

Br-
(mg/l)

NO3 -
(mg/1)

508-
(mg/1)

pH
(units)

Temperature
(*C)
Hardness

(mg/! HCO3)

Conductivity
(pmhos/cm)

Cation/Anion
Balance (%)

99.460  87.370  80.450 77.610
o.m S '

58.970  48.840 42,180 43.430
[11.700 111.200 125.600 121.800
0.846  0.697 0752 0.778
36.656 26,996 11.885 12,847
0.367 0312 0.156  0.167
0.081  0.899  5.986  4.459
18.926 19.819 32441 31.521
AU IS T R 0%F T V5
7.8 1.0 11 113
856 Mh 6% 697
1260 990 1080 1020

-1.56 1,30 .08 1.20

¥ Concentration below detectable limit.
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JATER QUALITY DATA
Date Of Sample Collection:
13 Apral 1991

Vell §

D D D3 Dy Ds
Catt 76.320 106.700 81,770 81.890 80,540
(mg/1) -
Kt 0.321  0.458 ¢ ' '
(mg/1)
Mgt §5.910  58.360  47.470  2.100  43.600
(mg/1)
Na+ [29.900 1[13.100 109.500 126.000 123.100
(mg/1)
F- 0.363 0.896 0.714 0.782 0.737
(mg/1)
cl- 15,736 35,619 26.477 13876 14.040
(mg/1)
Br- 0.265  0.621  0.308  0.182  0.146
(mg/1)
NO3 - 0.103  0.018 “1.28%  5.472  §.542
(mg/1)
504 26,662 15186 20.5011 31.370  30.368
(mg/1)
pH 746 7.5 1.1 136 1.38
{un1ts)

Temperature 8.5 13.5 3.6 3Ty 31.5
(*C)

Hardness 175 863 7128 683 696
(mg/1 HCO3)

Conductivity 1020 170 1020 1030 1020
(pmhos/ca)

Cation/Anion -5 -1.3% -1 3.8 L.
Balance (%)

¥ Concentration below detectable limit,



TATER QUALITY DATA

Date Of Sample Collection:
29 April 1991
lodide Tracer Test

Well # and Time Of Collection (25 hour clock)

160

]| Dt ]| Dy Dy Di
0953 1200 1225 1250 1315 1340
l.
(mg/1)
F- [.369 988 U765 65T 632 .6l
(mg/1)
Cl- 15,868  16.337 17.943 16.993 36.612 17.172
(mg/1)
Br- .261 258220 226 218 189
(mg/1)
NO3 .083 016 J307 935 1,250 946
(mg/1)
§504: 12.951 15,660 17.87% 21.693 23.287  21.4%9
(mg/1) '
pH 7.42 T.49 8.42 8.5 8.29 8.52
(units)
Temperature 5.2 14.6 16.6 16.9 17.4 17.3
(*C)
Hardness 767 t i i ] H
(mg/1 HCO7)
Conductivity 1080 930 970 830 1010 900
(pmhos/cm)

} Not enough sample to perform field test.



Vell # and Time Of Collection (24 hour clock)

VATER QUALITY DATA
Date Of Sample Collection:
19 April 1991

lodide Tracer Test

161

Di
1610

i}
1405
[-
~ (mg/1)
F- 872
(mg/l)
Ci- 16,958
(mg/l).
Br- T
(mg/l) h
NO3 - 1.325
(mg/l)
$04: 25.319
(mg/1)
pH 8.36
{units)

Temperature 19.3
(*C)

Hardness i
(mg/l HCOy)

Conductivity 970
(pmhos/cm)

692
17.273
226
62
25.069
1.86

19.6

1000

§ Not enough sample totperform field test.



FATER QUALITY DATA
Date 0f Sample Coliection:
19 April 1991

lodide Tracer Test

Vell ¥ and Time Of Collection (24 hour clock)

162

Dy Dt D Dy D1 D
1635 1700 1725 1750 1815 1840
I- 246 431 760 0399 300 373
(mg/1)
F-- 769 123 J39 .$33 619 NYY!
(mg/1)
Cl- 18.845 19710 27.033 20,364 20.029 17.96¢
(mg/1)
Br- 220 . 206 25 At L0 T8
(mg/1)
NO3 - 653 1.048 1.564 1.828  2.440 3.057
(mg/l)
S04- 26.692 28,677 29.01% 30.206 31.862 31.i32
(mg/1)
pH 7.73 1.71 7.99 3.06 .11 .14
{units) ‘
Temperature 19.3 19.5 19.6 19.3 19.2 19.0
("C)
Hardness H ] ] H } }
(mg/! HCO3)
Conductivity 1030 © 1040 1020 1010 1000 i
(pmhos/cm)

¥ Not enough sample to perform field test.



WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell # and Time Of Collection (24 hour clock)

Dy ]| Dy D Barrel  Tap
1905 1930 2000 2055

I 413 ' S 9% 6.1

(mg/1)

F- 606 619 608 759 1.110
(mg/1) ‘
cl- 18.667 15.539 17.506 21.020  .676 247.440
(mg/1)

Br- 196 Jd63 190 .20 217
(mg/1)

NO3 - 2,992 5378 3526 1.604 528
(mg/1)

S04: 31,689 33.637 3158k 31.219  31.600 132.072
(mg/1)

ol 8.1 817 %13 LT 611 846
(un1ts)

Temperature  18.6  17.9 1.0 155 188 17.5

(‘C)

Hardness } " ] } } 61 b9
(mg/1 HCO3 )
Conductivity 940 960 970 1010 500 1060
(pmhos/ca) ‘

} Not enough sample to perform field test.
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TATER QUALITY DATA
Date 0f Sample Collection:

29 Apral 1991

lodide Tracer Test

Vell ¥ and Time Of Collection (26 hour clock)

164

i 0 "0 02 Y} Y}
1021 1205 130 1255 1320 1345
[.
(mg/1)
- 1300 I8k .50 515 1182 55
(mg/1)
Cl- 37.053  35.876 35,299 35.219  35.766  35.234
(mg/1)
Br- 369 82 e 370 380 LW
(mg/1)
NO3 - 003 030 029 039 036 035
(mg/1)
$04: 12,355 26.359 27.500 30.181 30.701  30.809
(mg/1)
pH 7.1 7.0 1.9 1.7 118
(units) '
Temperature  14.7 6.8 16.5 157 16.3  16.9
("c)
Hardness 819 312 } 763 747 i
(mg/1 HCO3)
Conductivity 1230 160 1080 1160 1180 1180
(pmhos/cm)

§ Not enough sample to perform field test.



FATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Wel! ¥ and Time Of Collectron (2% hour clock)
D ) 0 ) D 0
1410 IQJS 1500 1525 1550 1615
|- 1.319 1.75¢ 2,938
(mg/1)
F- 1.2k1 600 615 636 .652 J76
(mg/1)
Cl- - 37.106 35,851  36.489 40.852 51.630  59.6712
(mg/1)
Br- 66 a6 a5 s
(mg/1)
NO3- 065 064 036 064 067 25
(mg/1)
S04- 32.580 - 31.863  33.440 36,123 41,289  43.935
(mg/1)
pH 1.31 7.8 1.26 7.1 7.23 7.0
(units) '
Temperature  18.1 18.5 18.0 13.4 13.2 18.0
('c) o
Hardness 860 643 801 805 175 729
(mg/1 HCO3)
Conductivity 1180 1130 1180 1180 1190 1200

{pmhos/ca)
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WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell ¥ and Time 0f Collection (24 hour clock)

0: D )] D: ) 0
1640 1705 1730 1755 1820 1845

I- 3.127 3.090 1.417 2.13% 1.647 1.003
(mg/1)

F- J93 1.167 1,139 1.199 1.0 1y
(mg/1)
Cl- 66.561  69.572 62.831 62.520 63.07%  56.455
(mg/l)
Br- R 1l 60 463 b9 A1 399
(mg/1)
NO3 - 103 103 032 066 057 060
(mg/1)
S04: 46,542 B7.171 45,220 45.189  bh.536  41.242
(mg/1)

pH 7.1 1.2 1.16 1.18 7.2 7.30
{units)

Temperature 17.5 18.1 17.3 17.6 17.7 17.6
(*C)

Hardness 111 123 747 116 791 176
(mg/1 HCO3)

. Conductivity 1210 1220 1220 1220 1130 1200
(pmhos/cm)
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WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Yell # and Time Of Collection (2% hour clock)

D ) S D 03 03
1910 1935 1010 U0 1082 1210

I- [.136 926 1.7 858

(mg/1)

F- 1231 199 .13 1191 39788
(mg/1)

cl- ¥3.876  b4.583 45,682 45.632  24.881 24.87% .
(mg/1)

B Y I T AR 1T W U B T WP 13
{mg/1)

NO3 - 056 069 059 052 1712 1.6k
(mg/1)

504: 37.566  35.630  36.267 36.848  26.236  21.369
(mg/1)

pH 7.3 (% TR OV T O [ R OV LR I 1
(units)

Temperature 17.5 16.7 15.7 14.6 15.0 15.9
(*c) -

Hardness 796 786 8§21 780 699 683
(mg/1 HCO3)

Conductivity 1190 170 1180 1160 1040 1040
(pmhos/ca)




168

WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell # and Time Of Collection {24 hour clock)

D3 D3 D§ D3 03 D3
1235 1300 1325 1350 1415 1440

I.
(mg/1)

F- 708 155 150 173 191 183
(mg/1)

Cl- 23.087  23.829 ib.ZUb 26,694 258,242 24,825
(mg/1)

Br- L2134 275 138 279 266 175
(mg/1)

NO3- 1.712 1.702 1.667 1.801  1.769 1,756
(mg/1) '

S04- 21.656 21,792 11.760 22.561 22,708 212.795
(mg/1)

pH 1.11 7.16 7.15 7.16 7.08 1.11
(units)

Temperature 14.9 15.3 15.8 16.2 16.6 17.7
(c)

Hardness 115 112 734 743 705 815
(mg/1 HCO3)

Conductivity 970 990 1030 1040 1050 ‘ 1040
(pmhos/ca)




WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Fell # and Time Of Collection {24 hour clock)

D3 j] D3 ’ 03 D3 1j]
1505 1530 1555 1620 1445 1710
I.
(mg/1)
F- 75 800 729 LTI 820153
(mg/1)
Cl- 25.095 26.883 26.119 26.612 26.675 27.275
(mg/i)
Br- 181 211300 L8 28 2%
(mg/1)
NOs - L7100 1722 1581 1,707 1.606  1.700
(mg/1)
504 22.968  23.033  23.959  23.509 24.530 24,571
(mg/1)
pH 743 2 145 1.6 0 113
{units)
Temperature 17.5 17.9 18.1 17.8 17.8 17.6
('C) .
Hardness 114 7535 720 918 859 18
(mg/1 HCO3)
Conductivity 1030 1050 1050 1050 1050 1050

{pmhos/cm)
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WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell ¥ and Time Of Collection (24 hour clock)

03 D3 ] D3 D3 D3
173§ 1800 1825 1850 1915 1940

l.
(mg/l)

F- T4l 76951 183 NITEEN Y
(mg/1)

cl- 27606 27.398  27.67 27.621  26.781 27.3hs
(mg/l)

B An 285 .28 227 295 .91
(mg/1}

NO3 - L7000 1.678 1729 L7300 1786 1.67%
(mg/1) :

504 25.835 25,226 25.68%  25.791 25.360  25.495
(mg/1)

pH 7.13 7.3 1 1.0 16 1.3
(units)

Temperature 17.3 17.7 17.5 17.1 16.7 16.5
(*C)

Hardness 715 705 181 743 747 Iy
(mg/1 HCO3)

Conductivity 1040 1050 1050 1050 1060 1060
(pmhos/ce)




WATER QUALITY DATA

Date Of Sample Collection:

29 April 1991

lodide Tracer Test

Vell # and Time Of Collection (24 hour clock)

171

D

D3 Dy Dy D D
2020 2125 1052 1215 1260 1303
e
(mg/l)
F-oo N .803 A16 852 A1 8
(mg/1)
- 28.195 27,571 12183 12,006 12,138 12.130
(mg/1)
Br- .45 .69 22 133 145 148
(mg/1)
NO3 - 1.631 1.490 7100 B.762  5.935  6.067
(mg/1)
K 25.830 26,950 35.656  36.156  36.025 36.370
(mg/1)
pH 7.15 7.1 7.18 1.26 730 7.30
(units)
Temperature  15.4 - 14,3 4.7 15.1 15.6  15.8
("C)
Hardness 755 761 661 642 746 §99
(mg/1 HCO3)
Conductivity 1050 1050 1030 1010 1020 1020

{pmhos/cm)
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WATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell # and Time Of Collection (2% hour clock)

Dy Dy Ds Da Dy Ds
1330 1355 1420 1885 1510 1535

l.
(mg/1)

F- 473 819 363 919 867 836
(mg/1) S

Cl- 12,629 12,289 12.126 12,982 12.32% 12.47
(mg/1)

Br- 50 26 ‘.lh5 126 A0 150
(mg/1)

NO3 - 6.635 6.343 7.063 6.833  7.034 1.075
(mg/1)

S04 36.928 36.585 37.703  36.595 37.506 37.153
(mg/1) ‘

pH 128 1.31 7.8 7.30 1.2 7.26
(units)

Temperature 16.0 16.9 17.7 17.5 17.7 17.5
(*C)

Hardness 697 112 659 700 657 705
(mg/1 HCO3)

Conductivity 1000 1020 1020 1000 1020 1020
(pmhos/cm)




WATER QUALITY DATA

Date Of Sample Collection:
19 April 1991

lodide Tracer Test

Vell ¥ and Time Of Collection (26 hour clock)

173

D Ds Ds Dy Ds Ds
1600 1625 1650 1715 1740 1805
l.
(mg/1)
‘Ff\ .360 885 907 384 933 75
(mg/1)
Cl- 12,975  12.966 i3.607 13,079 13.971  13.313
(mg/1)
Br- ' - 149 145 136 A3 b A3
(mg/1)
NO3 - 7.345 1.519 7.780  7.710 7.812 1.375
(mg/l)
S04- , 37.415 38,175 39.051  39.661  39.352  39.551
(mg/1)
pH ) 7.28 7.25 7.25 1.21 7.29 7.21
(units)
Temperature 13.1 17.7 17.6 17.4 17.1 17.3
("c)
Hardness 83 703 744 708 665 657
(mg/1 HCO3)
Conductivity 1020 1010 1010 1000 1000 1000

. (pmhos/ca)
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JATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
Todide Tracer Test

Vefl ¥ and Time Of Collection (24 hour clock)

Dy D4 Ds Dy Dy Dy
1830 1855 1920 1965 2030 2140

(mg/1)
P LTR899 9% .90
(mg/1)
Cl- 13,689 14,136 13.88% 13.670 14.008 13.813
(mg/1)
Br- A3 .38 L3 3% LT 0
(mg/1)
H03 - 7875 1.807 1.4k 8207 1.185  7.706
(mg/1)
504: 39,531 39236 38.901 k1276 bL.16h 39,193
(mg/1)
oH 18 1.6 1.5 19 L 10
(units)

Temperature 17.3 171 16.6 16.2 15.1 18,7
(*C) ’

Hardness 683 669 665 657 676 670
(mg/1 HCO3)

Conductivity 1000 1010 1000 990 930 999
{pmhos/cm)




WATER QUALITY DATA

Date Of Sample Collection:
29 April 1991

lodide Tracer Test

Pell ¥ and Time Of Collection (24 hour clock)

175

Ds Ds Us D¢ Ds Ds
1100 1220 ‘ 1285 1310 1335 1400
I.
(mg/1)
F- 740 139 13h NEY 133 136
(mg/1)
Cl- 12.566  11.703  11.690 12.732 12.601 11.521
(mg/1) ' .
Br- A3 130 1 136 37 34
(mg/1)
NO3 - 5.692 5.360 5,932 6.005  6.043  5.962
(mg/1)
NILE 31.335 32,213 34,567 34.672  35.197 34,336
(mg/1)
pH 7.05 , 7.4 7.29 1.9 1.28 7.28
(units)
Temperature 4.4 5.4 15.6 15.3 15.8 17.0
("C)
Hardness 697 677 695 103 696 679
(mg/1 HCO3 )
Conductivity 1000 990 1030 1020 920 1020

(pmhos/cm)
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JATER QUALITY DATA
Date Of Sample Collection:
29 April 1991
lodide Tracer Test

Vell I and Time Of Collection (2% hour clock)

Ds Ds Ds Ds Ds Ds
1525 1450 1515 1560 1605 1630

I.
(mg/1)

F- 136 89 743 765 791 v
(mg/1)
Cl- _ 12,492 11,902 11.736 11.878 12.032 11.816
(mg/1)

Br- 108 38 107 129 25 25
(mg/1)
NO3 - 6.157 6.089 6.226  6.291 6.334 6.158
(mg/1)
S04: 35.190 38,909  35.369  35.560 35.437  35.64)
(mg/l)

pH 7.7 1.26 7.26 7.28 7.29 7.2
(anits)

Temperature 17.9 17.6 18.1 17.6 18.2 17.7
("c) ’

Hardness 796 694 719 702 674 679
(mg/1 HCO3)

Conductivity 1020 1020 1020 1000 1020 1010
(pmhos/cm)
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FATER QUALITY DATA
Date Of Sample Collection:
19 April 1991
lodide Tracer Test

Vell § and Time Of Collection (24 hour clock)

Ds Ds Ds Ds | Ds Ds
1655 1720 1745 1810 1835 1900

l.
(mg/1)

F- .790 76 758 71 95158
(mg/1)

Cl- {1,986 11.757 11.83% 11.68% 11.890 11.595
(mg/1)

Br- 133 133 134 138 131 137
(mg/1)

NO3 - 6.356  6.433  -6.369  6.520 6.480  6.b46
(mg/1)

504 "36.008 36377 35.716  35.869  36.381 35.617
(mg/1)

pH 7.2 7.6 1.7 .6 1.6 1.6
(units)

Temperature  17.7  17.6 1.5 11.5  11.3 11.1
("c)

Hardness 693 636 676 111 668 642
(mg/1 HCO3)

Conductivity 1010 1000 1000 1000 >1000 1000
(pmhos/cm)




WATER QUALITY DATA

Date Of Sample Collection:

Yell # and Time Of Collection {24 hour clock)

29 April 1991
fodide Tracer Test

Ds Ds Ds
1925 1950 2040
l- .
(mg/1)
F- 740 752 43
(mg/1)
Cl- 12,916 12578 11,324
(mg/1)
Br- 1375 .l
(mg/1)
NO3 - 6.415  6.667  6.373
(mg/1)
504: 35,578 35,612 35710
(mg/1)
pH 7.15 7.16 1.29
{units)
Temperature 16.6 16.2 15.1
(‘c)
Hardness 664 700 674
(mg/1 HCO3)
Conductivity 1000° 1000 1000

(pmhos/cm)

178



APPENDIX D

STATISTICS
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DESCRIPTIVE STATISTICS FOR

180

Ca++
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 179.4 38.9 113.8 38.5 25
A2 144.1 22.1 106.4 31.3 28
A3 118.8 Ly .4 92.5 20.4 28
Al 190.1 29.5 88.4 26.2 30
A5 93.1 41.0 . 75.9 19.4 5
B6 135.7 129.6 131.9 2.7 3
B8 111.3 106.6 - 108.7 1.9 3
B9 95.7 94.7 95.2 0.41 3
B10 74.3 ©73.2 73.8 '0.45 3
Bll 27 .9 16.3 23.3 5.0 3
Cl 74.0 64.0 68.5 .1 3
Cc2 80.3 65.0 73.1 5.5 4
C3 99.7 68.0 80.9 13.0 6
Ch 103.4 81.0 91.9 10.2 7
C5 154.0 70.0 94.0 27 .9 6
D1 127.0 76.3 106.4 21.8 3
D2 137.7 28.4 89.9 27 .7 18
D3 112.0 37.3 82.8 18.6 19
D4 109.0 L5,.2 73.5 14.3 20
D5 80.5 47 .2 67.8 11.3 15
El 63.3 32.0 50.1 13.2 3
E2 67.6 58.0 61.7 3.6 L
E3 81.0 59.1 67.8 8.7 6
E4 87.1 55.0 " 69.4 11.7 7
E5 71.9 55.0 61.5 6.5 L
Gl 104.9 100.2 102.6 3.3 2
G2 95.9 93.8 94.9 1.5 2
Hl 102.3 101.1 101.7 0.85 2
H2 62.5 59.9 61.2 1.8 2
I 118.3 112.2 115.3 4.3 2
12 88.1 82.2 85.2 4.2 2




DESCRIPTIVE STATISTICS FOR
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Fe++
Well Max imum Minimum Mean Standard Number of
) (mg/1) (mg/1) (mg/1) Deviation Samples
Al 0.08 0.002 0.01 0.24 10
A2 0.16 0.002 0.04 0.06 11
A3 0.10 0.002 0.03 0.04 12
AL 0.10 0.001 0,02 0.04 12
B6 5.10 5.700 9.30 5.07 3
BS 5.50 4.100 5.03 0.81 3
B9 0.09 -0.044 0.06 0.02 3
B1O 1.19 0.922 1.08 0.14 3
B1l1 0.51 0.433 0.47 0.04 3
D2 1.04 0.312 0.66 0.37 3
D3 0.08 0.039 0.06 0.02 3
D4 0.04 0.026 0.03 - 0.01 3
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K+
Well Ma x imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 1.70 0.06 0.35 0.35 20
A2 0.38 0.08 0.22 0.09 23
A3 1.30 0.10 0.30 0.25 22
Al 1.40 0.03 - 0.27 0.27 22
B6 L4 .40 2.80 3.60 0.65 3
B8 1.23 1.14 1.19 0.64 3
B9 0.48 0.35 0.39 0.06 3
B10 2.29 1.26 1.92 0.47 3
Bll 3.20 2.14 2.58 0.45 3
Ch 1.40 0.24 0.91 0.49 3
C5 0.22 0.18 0.19 0.02 2
Dl 0.34 0.32 0.33 0.01 2
D2 0.85 0.08 0.42 0.20 15
D3 1.40 0.05 0.42 0.51 9
D4 1.40 0.08 0.46 0.56 8
D5 0.37 0.29 0.34 0.04 2
E3 1.60 1.30 1.45 0.15 2
E4 1.30 1.10 1.20 0.10 2
Gl 1.40 1.20 1.30 0.14 2
G2 1.40 1.20 1.30 0.14 2
H1 1.40 1.20 1.30 0.14 2
H2 1.40 1.10 1.25 0.21 2
I1 2.70 2.60 2.65 0.07 2
12 1.40 1.40 1.40 1.40 2
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Mg++
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 49.2 41.0 4i .6 25.0 25
A3 58.8 43.8 47.3 2.9 28
Al 55.0 42.9 46.0 2.2 30
A5 43.8 “40.2 . h1.6 1.2 5
B6 33.6 32.9 "33.3 0.29 3
B8 36.5 35.5 35.9 0.42 3
B9 37.9 36.5 37.2 0.57 3
B10O 33.7 33.3 33.4 0.19 3
Bll 18.4 14.7 17.1 1.7 3
Cl 112.0 96.3 102.4 6.9 3
Cc2 70.0 64.0 67.8 2.5 4
C3 66.8 48.0 57.9 7.7 6
Ch 56.6 49.0 52.3 2.7 7
C5 60.9 51.0 55.8 3.8 6
D1 69.2 5.9 59.7 9.9 3
D2 75.4 43.2 59.5 6.9 18
D3 63 L2.7 50.8 5.3 19
D4 47.7 33.8 41.3 3.3 18
D5 48.3 42.0 43.6 1.4 15
El 28.8 23.0 25.6 2.4 3
E2 39.0 31.0 36.1 3.1 L
E3 38.0 30.5 33.6 2.9 6
EL 68.3 55.0 61.2 5.8 7
E5 60.4 52.0 56.1 3.1 4
Gl 52.4 51.7 52.1 0.49 2
G2 52.7 51.8 52.3 0.64 2
H1 6.8 45.5 46.2 0.92 2
H2 52.0 49.9 50.9 1.5 2
11 67.9 65.4 66.7 1.8 2
12 56.2 55.6 55.9 0.42 2
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Mn++
Well Max imum Minimum Mean Standard Number of
{(mg/1) (mg/1) (mg/1) Deviation Samples
Al 0.040 0.001 0.014 0.012 10
A2 0.013 0.001 0.006 0.003 10
A3 0.088 0.003 0.020 0.024 11
AL 0.02¢4 0.004 0.011 0.006 10
B6 3.550 2.500 2.980 0.430 3
B8 4,600 3.800 4.300 0.360 3
B9 0.275 .0.223 0.252 0.020. 3
BiO 0.942 0.754 0.857 0.080 3
Bil 1.500 0.566 1.120 0.400 3
D2 0.179 0.055 0.096 0.072 3
D3 0.055 . 0.024 0.039 0.022 3
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Na+
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 27 .4 10.8 20.3 3.6 23
A2 45.7 18.6 30.4 5.7 26
A3 47.0 27.5 35.2 4.0 26
A 55.0 34,9 43.8 5.2 30
A5 43.5 42.0 42.9 0.5 L
B6 76.9 69.4 72.6 3.1 3
B8 83.0 . . 70.3 77.7 5.4 3
B9 37 .4 36.9 23701 0.22 3
Bi0 L7 .4 45.9 L46.6 0.61 3
Bll 170.1 151.4 162.6 8.1 3
Cl1 158.0 116.1 141.0 18.0 3
Cc2 179.8 171.0 176.5 3.3 L
C3 177.0 115.5 144 .9 23.3 6
Ch 61.8 L7 .4 54.0 5.5 7
C5 98.0 49.0 74.6 20.0 6
D1 139.7 129.9 136.2 4.5 3
D2 128.0 86.3 112.1 11.4 18
D3 115.6 93.2 105.5 7.4 19
D4 126.0 102.0 116.3 9.0 20
D5 123.1 297 .4 114.6 9.9 15
El 20.3 12.0 15.1 3.7 3
E2 15.0 9.7 12.2 2.4 4
E3 17.0 8.7 12.8 3.0 6
E4 110.0 57.3 85.5 24.0 7
E5 100.0 41.4 56.6 38.1 L
Gl 60.8 60.3 60.6 0.35 2
G2 74.9 74.3 74.6 0.42 2
H1 89.4 88.6 89.0 0.57 2
H2 130.0 128.3 129.2 1.2 2
Il 35.6 34.7 35.2 0.64 2
12 L5.6 45.1 45,4 0.36 2
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Si2
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 19.9 11.9 13.7 2.08 15
A2 13.7 10.5 12.6 0.88 17
A3 14.1 10.3 12.7 1.06 15
Ab 14.8 11.4 13.5 0.9¢4 16
B6 13.5 11.9 12.6 0.81 3
B8 14.4 14.2 14.3 0.12 3
B9 13.8 13.6 13.7 0.10 3
B10 13.5 13.1 13.3 0.20 3
Bll 6.3 4.7 5.7 0.88 3
D2 11.5 8.2 10.9 0.93 3
D3 10.6 9.6 10.2 0.54 3
D4 10.7 10.3 10.4 0.22 3
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CONDUCTIVITY
Well Max imum Minimum Mean Standard Number of
(pmhos/cm) Deviation Samples
Al 1210 584 1018 108.9 88
A2 1280 832 1038 75.9 102
A3 1455 902 1029 76.1 120
Ak 1160 840 978 - 65.2 172
A5 1165 803 985 68.1 77
B4 1125 874 999 125.5 2
B6 134] 974 1186 160.5 7
B7 1270 1131 1196 ©49.5 4
B8 1479 1051 1277 152.9 7
B9 1068 864 986 66.2 7
B1O 990 793 916 60.9 7
Bil 1193 848 1056 133.4 5
Cl1 1979 1411 1673 130.7 53
C2 1768 1127 1502 136.5 57
C3 1800 990 1335 162.9 93
Ch 1208 862 1025 57.1 140
C5 1486 933 1138 134 .4 68
Di 1881 1020 1479 210.8 L6
D2 1879 1169 1504 172.6 73
D3 1904 920 1271 148.9 99
D4 1329 1004 1134 63.5 156
D5 1302 890 1123 76.6 79
El 720 437 611 64 .4 55
E2 879 255 613 143.8 68
E3 875 284 595 144.1 87
E4 1433 407 986 228.8 138
E5 1333 481 <. 1060 173.3 68
Gl 1104 936 -1050 43.0 20
G2 1169 981 1078 48.0 29
Hl 1136 970 1068 47.0 15
H2 1274 1147 1121 29.0 29
Il 1171 865 1063 98.0 14
12 991 839 934 30.0 29
I3 960 825 895 55.3 3
J 1077 1026 1054 18.6 L
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Cl-
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) {mg/1) Deviation Samples
Al 96.3 14.4 24 .9 12.7 51
A2 49.2 12.6 22.9 6.1 62
A3 32.4 13.8 20.3 h.7 76
Al 33.7 12.6 20.4 5.2 108
A5 38.4 14:.6 23.7 5.9 58
B4 14.9 11.4 i3.2 1.8 2
B6 18.8 8.4 12.4 3.3 7
B7 16.5 10.4 14.6 2.4 L
B8 23.0 12.1 15.9 L.3 7
B9 21.0 15.1 17 .4 2.3 7
B10O 21.2 "15.8 18.5 1.8 7
Bll 39.2 33.8 36.8 2.4 5
Cl 139.9 18.4 47 .8 28.0 25
Cc2 59.3 ~17.0 29.1 10.9 29
C3 73.3 18.7 35.4 16.8 48
Ch 45.8 16.3 26.4 5.6 82
C5 78.4 . 18.1 29.8 8.6 51
D1 144.3 15.7 53.5 27.1 20
D2 163.0 25.8 51.9 31.2 42
D3 162.7 24 .1 50.4 31.6 61
D4 72.0 11.9 32.5 10.2 97
D5 51.2 11.7 32.8 10.6 62
El 14.8 3.6 8.9 2.9 26
E2 22.3 3.5 12.2 3.9 30
E3 26.3 . 3.8 12.1 5.9 47
E4 Ly, 4 L. 4 25.3 9.8 80
E5 42.4 6.64 27 .2 8.7 50
Gl 20.3 12.1 "16.9 2.5 20
G2 24 .0 14.8 19.9 2.5 29
HI 27.6 12.9 20.1 4.6 15
H2 32.9 27.5 30.5 1.6 29
I 28.8 18.7 24.0 2.5 14
12 17.1 12.6 14.9 1.4 29
I3 15.9 14.0 14.7 .8 3
J 18.4 11.9 16.0 2.5 L
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HCO3 =
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 802 429 606 69.6 47
A2 1108 476 615 78. 4 60
A3 781 473 612 52.9 76
Al 653 410 577 S k2.7 105
A5 732 497 581 35.2 55
B4 639 490 564 105.4 2
B7 882 757 809 57.9 L
B8 920 674 773 99.2 5
B9 725 384 552 1-34.1 6
B10 592 342 L84 111.5 6
Bll 581 398 509 78.3 L
Cl 1137 755 1041 98.1 20
Cc2 1341 638 996 119.2 26
C3 1028 686 838 101.2 L7
Ch 691 551 613 24.7 78
C5 868 568 687 84.8 48
D1 982 639 808 94.4 15
D2 1016 516 865 99.9 37
D3 1056 555 743 61.2 59
D& 742 488 651 28.5 92
D5 796 485 657 33.4 53
El Ll4 271 345 38.9 18
E2 497 232 369 69.9 30
E3 491 198 359 64.2 L6
EL4 690 . 237 578 116.3 77
E5 795 . 254 571 96.9 L7
Gl 690 584 633 32.0 20
G2 683 623 657 15.0 29
H1 633 583 612 16.0 14
H2 662 573 629 26.0 29
11 659 397 562 80.0 14
12 505 458 479 13.0 29
13 500 L24 474 43.0 3
J 675 648 661 11.9 L
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NO3 =
Well Maximum  Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples

Al 57.7 3.5 21.9 10.8 58
A2 41.8 1.5 18.3 12.3 67
A3 53.4 2.1 18.3 16.2 85
AL 65.6 1.8 19..6 18.9 120
A5 Ly -5 2.7 - 10.5 10.3 33
B4 5.95 .7 3.3 3.7 2
B6 5.0 b4 2.2 2.5 5
B7 7.1 L.h 5.3 1.5 3
B& 6.5 .9 3.1 2.2 7
B9 30.4 5.3 14.7 11.2 7
B10 29.6 2.6 11.4 10.8 7
Bl1l 3.4 .02 0.89 1.7 4
Cl 9.1 .95 2.5 1.9 29
C2 9.8 1.9 3.3 1.4 - 31
C3 31.6 1.3 6.5 6.5 54
Clb 35.5 1.8 13.5 11.8 89
C5 31.5 5.5 20.7 9.9 5
D1 8.6 .08 1.7 1.6 29 -
D2 L.4 .01 0.99 .9 b5
D3 7.4 0.3 2.3 1.9 63
D4 39.7 3.2 12.8 10.5 104
D5 30.0 3.4 8.6 6.2 37
El - 19.9 2.7 4.9 3.1 31
E2 19.9 1.4 5.6 3.6 38
E3 24.7 0.7 8.9 7.2 51
E4 40.9 L., 16.9 10.2 90
E5 37.2 4.5 13.1 7.3 25
Gl 77.9 40.7 57.6 14.4 20
G2 60.8 21.1 43.4 11.5 29
H1 63.9 49.2 54.4 4.2 15
H2 43.5 34.2 38.7 3.1 29
It 60.9 -27.0 51.6 11.0 14
12 113.2 . 74.5 92.9 13.5 29
I3 80.5 67.7 72.6 6.9 3
J 4é6.4 - 33.5 38.3 5.7 L
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SOy =
Well Max imum Minimum Mean Standard Number of
(mg/1) (mg/1) (mg/1) Deviation Samples
Al 57.7 23.4 31.3 8.2 32
A2 41.9 22.6 27 .7 3.79 38
A3 34.7 18.0 27 .5 2.82 47
Al 35.0 19.0 28.9 . 3.3 64
A5 32.1 18.2 26.4 L.1 15
B4 26.0 21.6 23.8 3.1 2
B6 35.2 7.9 20.1 " 9.74 7
B7 69.3 20.1 41.9 21.8 4
B8 172.8 38.0 89.9 55.4 7
B9 42.9 18.2 25.6 8.9 7
BiO 27.7 15.6 20.5 5.4 7
B! 81.0 18.0 54.2. 29.8 5
Cl 119.5 8.4 82.1 32.5 5
Cc2 88.8 42.0 57.8 16.7 6
C3 91.0 33.8 64.2 20.2 19
Ch 50.8 27.0 37.5 5.2 35
C5 92.0 30.1 43.6 18.9 10
D1 64.7 13.0 39.9 18.9 7
D2 52.7 11.1 27 .6 11.7 21
D3 42.0 16.7 28.8 7.7 35
D4 54.6 26.8 34.1 5.2 51
D5 50.0 30.3 34.2 5.2 21
E1l 41.3 14.3 22.8 12.5 L
E2 41.0 13.0 23.0 10.0 6
E3 36.0 13.1 20.7 5.7 19
E4 58.3 18.0 37.8 8.0 35
E5 65.0 21.7 1.5 14.5 8
Gl 41.3 33.2 36.3 2.3 20
G2 36.8 31.9 34.9 1.3 29
Hl 78.8 46.7. 59.2 9.8 15
H2 180.1 88.7 124.8 29.1 29
Il 145.6 93.9 115.8 15.3 14
12 48.3 43.0 45.5 1.6 29
I3 49.6 43.7 46.3 3.0 3
J Lo. 4 31.9 .35.6 .7 L
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