INFLUENCE OF MACROPORES AND SOIL MOISTURE CONTENT ON THE RAPID MOVEMENT OF BROMIDE AND IODIDE TO THE SATURATED ZONE

By

PATTI LYNN ZIETLOW

Bachelor of Science

University of Wisconsin-Oshkosh

Oshkosh, Wisconsin

1987

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1992



-

Ĵ

Oklahoma State Univ. Library

INFLUENCE OF MACROPORES AND SOIL MOISTURE CONTENT ON THE RAPID MOVEMENT OF BROMIDE AND IODIDE TO THE SATURATED ZONE

Thesis Approved:

Wayne a litty Thesis Advis okn Attomsen

Dean of the Graduate College

#### ACKNOWLEDGMENTS

The support, help and love of many outstanding people made this research project possible. I am forever indebted to Dr. Pettyjohn for the generous use of his cheerful back yard as a research site. Dr. Pettyjohn's thought provoking questions, gentle suggestions, and enthusiasm for this project helped keep things on track. Dr. Carter is owed a huge thank you for all the hours spent in research discussion offering ideas and advice. His wonderful sense of humor buoyed enthusiasm up during the long hours spent in the field running the tracer tests. Much appreciation goes to Dr. Hounslow whose door was always open for guidance on geochemical matters. His patience in explaining things was endless.

Special thanks go to Dale Froneberger, Randall Ross and Mark Savoca for showing the "newcomer" the ropes in the field. Dale's instruction in running the ion chromatograph and chats on the research site were invaluable. I am especially grateful for the warm friendship and generous help of Phil Ward and Steve Alspach. Phil and Steve spent many long days assisting in set up of the tracer tests and in actually running them. They also provided stimulating discussion on the research that helped bring things into focus. Many of the graphs in this text would not have been

iii

possible without the help of Dave Myhre and Fritz Heck. They are due much gratitude for the generous loan of their computer systems and help in running the graphics programs. Thanks to Tom Nunamaker for his patience and assistance in writing a computer program to convert depth to water to feet above sea level for the monitoring wells.

The love and support of my in-laws, Harland and Kate Zietlow, throughout this project was invaluable. Big hugs go to both them and to my parents Bill and Jean Doell. Mom and Dad's never-ending love and support both morally and financially through my bachelors degree helped me obtain the knowledge necessary to tackle this project. Their continued faith in me through graduate school helped me keep going during the frustrating times. Much appreciation goes to Pebbles, who spent many long hours out in the field keeping me company.

To my wonderful husband Jim, I give to you, above all others, my deepest thanks. Thank you for help in the field collecting water samples, inputing data into the computer, proofreading, photocopying, and flying the plane for the aerial shots of the site. Most of all, thank you for always being their for me throughout this project no matter how grumpy I got. This work is dedicated to you.

i v

# TABLE OF CONTENTS

| Chaptei    | <b>,</b> , , , , , , , , , , , , , , , , , ,                                                                                                           | Page                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Ι.         | INTRODUCTION                                                                                                                                           | 1                                                       |
| Π.         | LITERATURE REVIÈW                                                                                                                                      | 3                                                       |
|            | Previous Studies at the Site<br>Macropores<br>Classification<br>Water Transport<br>Solute Transport<br>Groundwater Tracer Testing<br>Bromide<br>Iodide | 3<br>4<br>5<br>6<br>6<br>7<br>7                         |
| ΙΙ.        | SITE DESCRIPTION                                                                                                                                       | 9                                                       |
|            | Location<br>Topography<br>Site Features<br>Buildings and Roads<br>Utilities<br>Flora<br>Instrumentation<br>Climate<br>General Geologic Setting         | 9<br>10<br>12<br>12<br>12<br>12<br>12<br>14<br>16<br>16 |
| IV.        | SURFACE WATER HYDROLOGY                                                                                                                                | 18                                                      |
|            | Drainage<br>Surface-Water Ground-Water Relationships                                                                                                   | 18<br>20                                                |
| <b>v</b> . | HYDROGEOLOGY                                                                                                                                           | 21                                                      |
|            | Aquifer Material<br>Mineralogy<br>Recharge and Discharge<br>Recharge<br>Discharge<br>Unsaturated Zone Characteristics<br>Thickness<br>Moisture Content | 21<br>23<br>23<br>23<br>24<br>24<br>24<br>25            |

v

Chapter

|       | Ground-Water Movement                  | 25        |
|-------|----------------------------------------|-----------|
|       | Direction of Flow                      | 25        |
|       | Rate of Flow                           | 27        |
|       | Aquifer Test Results                   | 28        |
|       | Cradient                               | 20        |
|       |                                        | 29        |
|       | Permeability and Porosity              | 29        |
| VI.   | METHODS OF DATA COLLECTION             | 31        |
|       | Meteorological Data                    | 31        |
|       | Denth to Cround-Water                  | 21        |
|       | Coil Unicture Unecurements             | 22        |
|       | Soli moisture measurements             | 32        |
|       | Ground-Water Quality                   | 32        |
|       | Monitoring Wells                       | 32        |
|       | Sample Collection                      | 35        |
|       | Field Parameters                       | 37        |
|       | Sample Preparation                     | 38        |
|       | Analytical Methods                     | 20        |
|       | Analytical Methods                     | 20        |
|       |                                        | 39        |
|       | Possible Sources of Error              | 39        |
|       | Nitrate                                | 39        |
| VII.  | GROUND-WATER QUALITY                   | 43        |
|       | Data Analysis                          | 1.3       |
|       |                                        | 4.2       |
|       |                                        | 43        |
|       | water Quality                          | 43        |
|       | Factors Affecting Ground-Water Quality | 46        |
|       | Fertilizer, Vegetation and Cement      | 46        |
|       | Sewer Pipes                            | 49        |
|       | Cation Exchange                        | 49        |
|       | Redox Reactions                        | 53        |
|       | Downspout                              | 53        |
|       |                                        | 55        |
|       |                                        | 22        |
| VIII. | EVIDENCE OF MACROPORES                 | 56        |
|       | Soil Structure                         | 56        |
|       |                                        | 56        |
|       |                                        | 50        |
|       | ROOTS                                  | 56        |
|       | Faunal Channels                        | 57        |
|       | Recharge Rate                          | 57        |
| \$    | Hydraulic Conductivities               | 59        |
|       | Geochemical Evidence                   | 60        |
| IX.   | TRACER TESTING                         | 63        |
|       | Selection of Tracers                   | 63        |
|       | Bromide                                | 62        |
|       |                                        | د o<br>بر |
|       |                                        | 64        |
|       | Bromide Versus Iodide                  | 64        |

# Page

| erimental Set Up              | 65  |
|-------------------------------|-----|
| Set Up                        | 65  |
| Procedure                     | 68  |
| mide Tracer Test Results      | 72  |
| lide Tracer Test Results      | 77  |
| cussion                       | 78  |
| AND CONCLUSIONS               | 86  |
| gestions for Further Research | 88  |
| ;D                            | 90  |
|                               | 98  |
| A - PRECIPITATION             | 99  |
| ( B - WATER LEVELS            | 103 |
| C - WATER QUALITY DATA        | 107 |
| D - STATISTICS                | 179 |

# LIST OF TABLES

| Table   |                                                                             | Page |
|---------|-----------------------------------------------------------------------------|------|
| ,<br>I. | Aquifer Parameters                                                          | 29   |
| ΙΙ.     | Well Specifications                                                         | 36   |
| III.    | Ranges in Ion Concentration                                                 | 46   |
| IV.     | Estimated Rates of Tracer Movement                                          | 79   |
| ν.      | Br- and I- Test Results                                                     | 80   |
| VI.     | Wells Showing Geochemical Evidence of Rapid<br>Contamination via Macropores | 89   |

# LIST OF FIGURES

| Figu | re                                          | Page |
|------|---------------------------------------------|------|
| 1.   | Location of Study Aquifer                   | 9    |
| 2.   | Aerial Photograph of Site                   | 10   |
| 3.   | Topographic Map                             | 11   |
| 4.   | Location of Utilities                       | 13   |
| 5.   | Tree Types Along the Site's Southern Border | 14   |
| 6.   | Site Instrumentation                        | 15   |
| 7.   | Geologic Cross Section                      | 17   |
| 8.   | Aerial Photograph Showing Tributary         | 19   |
| 9.   | Soil Profile                                | 22   |
| 10.  | 1985-1986 Hydrograph Well A4                | 27   |
| 11.  | Wells and Soil Profile                      | 33   |
| 12.  | Wells, Lysimeters and Soil Profile          | 34   |
| 13.  | NO3 - Concentration Well A4                 | 41   |
| 14.  | Average Siz Concentration                   | 44   |
| 15.  | Maximum and Minimum SO4 = Concentration     | 45   |
| 16.  | Average SO4 = Concentration                 | 45   |
| 17.  | Average K+~Concentration                    | 48   |
| 18.  | Average NO3 - Concentration                 | 48   |
| 19.  | Average HCO3– Concentration                 | 50   |
| 20.  | Average Conductivity                        | 50   |
| 21.  | Average Cl <sup>-</sup> Concentration       | 51   |
| 22.  | Maximum and Minimum Cl- Concentration       | 51   |

| 23. | Average Ca++ Concentration                                                   | 52 |
|-----|------------------------------------------------------------------------------|----|
| 24. | Average Na <sup>+</sup> Concentration                                        | 52 |
| 25. | Average Fe <sup>++</sup> Concentration                                       | 54 |
| 26. | Average Mn++ Concentration                                                   | 54 |
| 27. | Cl <sup>-</sup> Concentration vs Time Well D <sub>2</sub>                    | 55 |
| 28. | Water Table Response to Rain                                                 | 58 |
| 29. | NO3 - Data D Wells                                                           | 61 |
| 30. | Tracer Test Set Up                                                           | 66 |
| 31. | Photographs of Test Set Up                                                   | 67 |
| 32. | Initial Soul-Moisture Profile                                                | 69 |
| 33. | Water Level Map I- Tracer Test                                               | 70 |
| 34. | Water Level Map Br- Tracer Test                                              | 71 |
| 35. | Distribution of Br <sup>-</sup> and I <sup>-</sup> in D Wells                | 73 |
| 36. | K <sup>+</sup> and Br <sup>-</sup> Concentration vs Time Well D <sub>2</sub> | 74 |
| 37. | K <sup>+</sup> and Br <sup>-</sup> Concentration vs Time Well D4             | 75 |
| 38. | Br– and Conductivity vs Time Well D4                                         | 75 |
| 39. | Depth to Water vs Time Well D5                                               | 77 |
| 40. | I - Concentration vs Time Wells D1 and D2                                    | 79 |
| 41, | Br- Concentration vs Time Well D2 I- Tracer Test.                            | 82 |
| 1   |                                                                              |    |

ς.

х

# NOMENCLATURE

| Br-    | bromide                  |
|--------|--------------------------|
| Ca++   | calcium                  |
| C1-    | chloride                 |
| F-     | fluoride                 |
| gpd/ft | gallons per day per foot |
| HCO3 - | bicarbonate              |
| I -    | iodide                   |
| К      | hydraulic Conductivity   |
| K+     | potassium                |
| Mg++   | magnesium                |
| Na+    | sodium                   |
| NO3 -  | nitrate                  |
| S      | storativity              |
| SO4 =  | sulfate                  |
| т      | transmissivity           |

#### CHAPTER I

#### INTRODUCTION

Shallow ground-water systems pose one of the greatest challenges to hydrogeologists because their nearness to the land surface renders them highly susceptible to contamination from a wide range of sources. Despite years of research, the mechanisms governing pollutant movement to shallow aquifers are only partially understood.

It is generally assumed that overlying silt and clay provide a degree of natural protection to shallow aquifers owing to their low hydraulic conductivity. For example, the drainage characteristics of these soils make them attractive as landfill sites. According to Noble they "allow moisture from the landfill to percolate slowly through the soil structure before reaching the ground-water system" (1976, p. 31). In addition, the presumed ability of silt and clay to absorb and retain water has made such soils desirable as sites for the land application of waste water (Tennyson, 1980).

Preliminary results from the study of a silt and clay aquifer in Payne County, Oklahoma, however, indicate that the low hydraulic conductivity may be far more apparent than real. Rapid changes in both water quality and water

level can occur within hours of a rain event. Rapid fluid movement through macropores deprives the shallow aquifer of the natural protection that the soil should provide.

The objective of this research is to document and explain why a shallow silt and clay aquifer can be contaminated by surface-applied pollutants in just a matter of hours. A further objective is to determine how soilmoisture conditions affect this process.

 $\frac{1}{2}$ 

## CHAPTER II

#### LITERATURE REVIEW

Previous Studies at the Site

With the installation of 16 monitoring wells during August 1985, Hagen (1986) launched the original investigation of the site. During the first year research focused primarily on basic site characterization. Hagen (1986) and Hoyle (1987) monitored water-table fluctuations, ground-water quality, and conducted several aquifer tests in order to determine hydraulic characteristics. Both investigators documented considerable variation in water quality with respect to both time and space. They attributed fluctuations in water quality and water level to rapid recharge through macropores.

Acre (1989) and Ross (1988), who studied the unsaturated zone, installed eight soil-water suction lysimeters and four neutron probe access tubes. Ross discovered significant short term water-quality variations in the unsaturated zone. Variations in soil-moisture content also led Acre to conclude that macropores influence infiltration.

Froneberger (1989) examined water movement through the unsaturated zone by means of surface applied bromide and

chloride tracers. He found that large spikes of the tracers appeared in the lysimeters after a short time, and he attributed this phenomenon to the vertical movement of water through macropores.

Nelson (1989) addressed water-table fluctuations and the change in the direction of ground-water flow, amounting to as much as 125 degrees, which had been reported by Hoyle (1987) and Hagen (1986). He suggested that this shift is due to a seasonal limitation of ground-water discharge areas.

Melby (1989) measured hydraulic conductivity of the aquifer using constant rate, slug, and lab permeameter tests. Values of hydraulic conductivity based on permeameter tests were several orders of magnitude less than those determined by field methods, which lead Melby to theorize that macropores account for a significant part of the aquifer transmissivity.

#### Macropores

The idea that macropores could affect water and solute flow through soil was being considered as early as the mid 1800's. Schumacher (1864) and Lawes and others (1882) noted that macropores control infiltration, moving rainwater to considerable depths with little change in composition. Since that time, work on the macropore theory has abounded, and this has resulted in extensive literature on the topic.

#### <u>Classification</u>

The literature contains many systems for classifying macropores. Brewer (1964) categorized them on the basis of size, using macro to mean pores that are at least 100 micrometers in diameter. Luxmoore (1981), who expanded Brewer's work, described three classes of macropore sizes. Skopp (1981) refined size classification by incorporating function in the definition of macroporosity. Techniques for measuring macropore size include timing and measuring water flow through cores, tracing visible voids, staining with methylene blue, and scanning soil photographs with an image analyzer (Smettem, 1987; Louren and others, 1988; Radulovich and others, 1989; Edwards and others, 1988). Beven and others (1982) group macropores on the basis of type (ie. cracks and fissures, soil fauna, plant roots).

#### Water Transport

Researchers, such as Cheng (1988), Hoogmoed (1980), Beven and German (1981), Armstrong and Arrowsmith (1986), and McIntrye and Sleeman (1982) demonstrated the importance of macropores in the infiltration of rainwater. Bouma and others (1978) described this process of rapid flow through macropores as "short circuiting".

Rogowski and Simmons (1988) verified that macropores cause field measured hydraulic conductivities to be greater than the nature of aquifer material or lab calculated values might indicate. Further substantiation of this

exists in the works of Rogowski and Richie (1984) and Heard and others (1988).

## <u>Solute Transport</u>

A considerable number of articles document the fact that macropores enhance chemical migration through the soil. Quisenberry and Phillips (1976) found that macropores caused water laced with chloride to percolate through a silt loam aquifer with very little change in composition. In a similar study, Priebe and Blackmer (1989) observed the same behavior using oxygen-18 labeled water and nitrogen-15 labeled urea. Other studies utilizing tritium, chloride, and lime provide further evidence for enhanced chemical migration (Edwards and others 1988; Minhas and Khosla, 1986; Blake and others, 1973).

## Ground-Water Tracer Testing

Roughly 2,000 years ago, Phillip, the tetrarch of Trachonitis, pioneered the art of tracer testing by noting the migration of chaff tossed into Ram Crater Lake, which is located in the Middle East (Mazor, 1976). In the years that followed, tracer testing has grown into an important tool in the understanding of water flow and contaminant transport. The use of salts as tracers is documented as early as 1869 in Europe (Davis and others, 1985). In Germany, Adolph Thiem, in 1889, used a sodium chloride tracer to measure ground-water flow rates in a sandstone aquifer (Davis and others, 1985).

#### <u>Bromide</u>

There are numerous examples of the use of bromide tracers to evaluate the effect of macropores on infiltration and ground-water recharge, and contaminant transport. Chan and Mead (1989), who tracked the migration of bromide laced "rain" into the soil by taking core samples, concluded that macropores significantly decreased Zachman and others (1987) used bromide to show runoff. that worm burrow-formed macropores increase infiltration to a considerable depth. The fact that macropores cause field measured values of hydraulic conductivity to be greater than those measured in the lab was demonstrated by Tennyson and Settergren (1980) using bromide. Germann and others (1984) employed bromide to verify that water infiltrates deeper into soils containing macropores. Other similar studies include Gerritse and Singh (1988), Smith and Davis (1974), Onken and others (1977), LeBlanc and Garabedian (1986), and D'Lugsoz (1976).

### <u>lodide</u>

Although not as popular as bromide, iodide has proven to be a reliable ground-water tracer. A study by Haaser (1978) demonstrated that iodide can be used successfully as a tracer in shallow soil systems. Osmin (1977) used iodide

to determine hydraulic conductivity and ground-water flow direction. Bradbury and Green (1985) measured matrix diffusion with an iodide tracer. In 1965, Rowe and others traced water circulation in underground hot springs and geysers with iodide. Leap and Sun (1987) utilized iodide in tracer tests in southern Nevada. Soil extracts were analyzed for iodide tracer ions by Bowman (1984).

# CHAPTER III

# SITE DESCRIPTION

# Location

Research was conducted in a residential area in Stillwater, Payne County, Oklahoma (figure 1). The 26,000 square foot site is bordered by streets on the north and east and by adjacent yards to the south and west (figure 2). An unnamed tributary to Boomer Creek lies just west of the property.



Figure 1. Location of Study Aquifer (after Hagen, 1986)



Figure 2. Aerial Photograph of site

# Topography

Lying on Boomer Creek's floodplain, the nearly flat study area is approximately 886 feet above sea level. Total relief across the site is less than half a foot.

About 250 feet to the east, shale crops out, rising nearly 14 feet higher than the site. Approximately 400 feet westward, the elevation declines to 880 feet above sea level on the bank of the tributary (figure 3).



Figure 3. Topographic Map (USGS, 1979)

#### Site Features

## **Buildings and Roads**

Nearly 27 percent of the yard is covered by concrete driveways, walkways, and one-story buildings that are built on concrete foundation slabs (Froneberger, 1989). Downspouts draining the buildings discharge onto the lawn. The bordering streets have curbs and drains that prevent storm runoff from entering the yard.

#### <u>Utilities</u>

Underground sewer, water, gas, and telephone lines service the buildings (figure 4). Lying at a depth of five feet is an 8-inch diameter sewer line that trends across site's southern boundary, while a 15-inch diameter sewer eight feet below the surface parallels the western boundary. In the southwestern corner of the yard, the 8inch pipe discharges into the 15-inch pipe. A water main, 6 inches in diameter, lies between the property line and Wildwood Drive (Hoyle, 1987). Submerged roughly three feet, a telephone cable skirts the site's southern border. A direct hook-ups to the house is located in the southern half of the plot.

## Flora

The yard's southern border and much of the western border are outlined by a variety of trees (figure 5). Tree





Figure 4. Location of Utilities

1.1

types include hackberry, pecan, redbud and pear. The trunks vary from 3 to 48 inches in diameter with dripline diameters ranging from 10 to 86 feet (Nelson, 1989). Flower beds and ornamental shrubs outline the house and garage. The lawn consists primarily of bermuda grass.



Figure 5. Tree Types Along the Site's Southern Border (after Hoyle, 1987)

#### Instrumentation

The site is equipped with 43 ground-water monitoring wells, 8 soil-water suction lysimeters, and 5 soil moisture neutron probe access tubes. An on site lab houses equipment for meteorological monitoring and measurement of ground-water field parameters (figure 6).





Figure 6. Site Instrumentation

#### Climate

Central Oklahoma is characterized by warm, humid summers and moderate winters. While summer temperatures average 80° F, temperatures in excess of 100° F during July and August are not uncommon (SCS, 1987). Rains in the form of high intensity, short duration convective thunderstorms mainly occur during spring and early summer. Most of the region's annual 34 inches of rain falls during this period (Pettyjohn and others, 1983).

Winter temperatures average 39°F and snowfall averages 6 inches per year (Pettyjohn and others, 1983). The occasional snows melt in a day or two. Low intensity, steady rains from cyclonic storm systems are typical during the fall and winter.

About 30 inches of water per year is lost due to evapotranspiration (Pettyjohn and others, 1983). The rate of evapotranspiration is highest during the dry summer months. Runoff for the region averages 4.5 inches per year. The mean effective regional ground-water recharge rate is 1 inch per year (Pettyjohn and others, 1983).

Precipitation at the research site totaled 28.9 inches in 1989, 30.9 inches in 1990, and 3.94 inches from January to 5 May 1991.

#### General Geologic Setting

The research site lies on Late Quaternary alluvial deposits that fill a valley cut into the Doyle Shale, which

is Pennsylvanian in age (figure 7). The unconsolidated alluvium extends to a depth of 43 feet where it lies unconformably on the shale (Ross, 1988). Beneath the alluvium, 5000 feet of Paleozoic strata, consisting of shale, limestone and dolomite, lie unconformably on granitic basement rock (Shelton and others, 1985).



| Quaternary | Pennsylvanian                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------|
| — Alluvium | <ul> <li>Herring Limestone</li> <li>Enterprise Shale</li> <li>Doyle Shale</li> <li>Fort Riley Limestone</li> </ul> |

Vertical Exaggeration: 10x

Horizontal Scale: | 100 ft

Figure 7. Geologic Cross Section (after Shelton and others, 1985)

#### CHAPTER IV

#### SURFACE-WATER HYDROLOGY

#### Drainage

Flowing sluggishly from northwest to the southeast, Boomer Creek and its tributaries dominate the area (figure While Boomer Creek flows year round, the tributaries 8). are commonly dry during the summer (Hagen, 1986). The tributary lying approximately 200 feet west of the site, which has a drainage areas that is slightly less than two square miles, is dammed near its confluence with Boomer Creek and forms a small, peanut shaped pond, which is known as Chiquita Lake (figure 3). The pond contains water throughout the year (Ross, 1988). Downstream from the confluence of Boomer Creek and its tributary, several pumps remove water from the creek for lawn irrigation during the spring and summer (Nelson, 1989). Nelson (1989) installed gaging staffs in Chiquita Lake and Boomer Creek and made periodic water-level measurements. The pond's maximum stage is controlled by a spillway, which has an elevation of 880.6 feet (Nelson, 1989).



Figure 8. Aerial Photograph Showing Tributary

Surface runoff in the study area is low, attributable to the nearly flat surface of the flood plain. Concrete driveways, streets and sidewalks affect runoff by directing water into city drains. During periods of heavy rain, water may pond on the surface of the site when the infiltration capacity of the soil is exceeded. Even after an hour of ponding, the infiltration rate is approximately one inch per hour.

#### Surface-Water/Ground-Water Relationships

Withdrawal of water by the pumps installed in Boomer Creek do not appear to affect the water table at the research site. However, the stage of Chiquita Lake may have a significant influence on the direction of groundwater flow (Nelson 1989). The dammed tributary and the alluvial aquifer appear to be hydrologically connected when the water table is less than 7.5 feet below land surface. This results in a west-southwesterly flow of ground water from the yard to the tributary. When the water table drops below the base of the tributary, ground water flow shifts to the southeast, as the tributary changes from a gaining stream to a losing stream, and Boomer Creek becomes the major line of ground-water discharge (Froneberger, 1989).

#### CHAPTER V

### HYDROGEOLOGY

# Aquifer Material

Wells at the research site tap a fine grained, silty clay alluvial aquifer that is 43 feet thick (figure 9). The lower 8.5 feet of the aquifer consists of a clay-rich lag gravel that grades upward into very fine sand. The gravel lies on weathered Doyle Shale. The upper 35.5 feet of the aquifer consists of a clay, silt, and very fine sand mixture that contains soil characteristics. The upper four feet belong to the Ashport series (SCS, 1987). Two buried soil horizons have been identified. The first, located at a depth of 4 to 27.5 feet, is approximately 1300 ± 70 years B.P. old. Dated at  $10,600 \pm 170$  years B.P., the second horizon lies at a depth of 27.5 to 29.5 feet (Ross, 1988). Textural classes present include loam, silt loam, silty clay loam, silty clay, and clay loam. A weak to moderate, medium, subangular blocky structure dominates, and soil peds and root casts are present. Bulk density, in the first five feet of the profile, range from 1.50 to 1.75 gm soil/cm<sup>3</sup> (Ross, 1988).

SOIL PROFILE



Figure 9. Soil Profile (Ross, 1988)

# Mineralogy

The sand and silt is composed largely of quartz grains, with feldspar making up 3 to 5 percent of the grains. Kaolinite, smectite, illite, and mixed layer illite-smectite constitute the clay fraction of the aquifer. Calcite concretions, composed of very finegrained calcite, are present in the profile. Black nodules, which occur throughout the aquifer, consist of silica, aluminum, iron, and manganese oxides and hydroxides. Cyclic deposition of clays and ferromangans is indicated by concentric coatings of iron and manganese oxide and hydroxide stains on pore walls (Ross, 1988).

#### Recharge and Discharge

#### <u>Recharge</u>

Precipitation is the primary source of recharge to the aquifer. Most recharge occurs from March to June and in September, which are traditionally the wettest months of the year. Hagen (1986), estimated that the total amount of recharge equals roughly 47 percent of the total amount of precipitation. This high rate of recharge is most likely due to the flat nature of the area, which favors ponding, and to the presence of macropores. Periodic watering of the lawn during the summer months also contributes to recharge.

## <u>Discharge</u>

Evapotranspiration and underflow are the primary sources of discharge from the aquifer. Nelson (1989), found that transpirative losses were greatest from March to August. A small amount of discharge also occurs as resulting of pumping of the wells. On site, wells are pumped regularly for ground-water sample collection and occasionally for aquifer testing. Well F1 may be pumped for short periods during the summer months for lawn watering. A well that may tap the aquifer is located approximately 800 feet south of the D site. This well is also pumped for irrigation purposes. Nelson (1989), however, determined that this off-site well does not affect water levels at the site. During periods of high water table, ground water appears to discharge into the tributary located west of the study site and at other times underflow is southwest toward Boomer Creek (Froneberger, 1989).

## Unsaturated Zone Characteristics

# <u>Thickness</u>

The thickness of the unsaturated zone varies seasonally from about 3 to 12.5 feet below surface. Ross (1988) estimated that the capillary fringe for the silt loam aquifer rises roughly 2.5 feet above the water table; Froneberger (1989) estimates a rise of 6 feet.
### Moisture Content

Soil-moisture levels, on a volume basis, typically range from .11 to .35 cm<sup>3</sup> H<sub>2</sub>O/cm<sup>3</sup> soil (Ross, 1988; Froneberger, 1989). The position of the water table, amount of precipitation, and rate of evapotranspiration have a combined effect on the moisture profile. When the water table is high, moisture levels tend to be relatively uniform with depth. Precipitation will commonly cause soil moisture to increase in the lower portion of the unsaturated zone, but little affect has been recorded in the upper 2 feet, except during and immediately following a rain (Froneberger, 1989). When the water table is low, moisture levels tend to show greater variation with depth. During these intervals, generally June through September, precipitation may cause a significant fluctuation in moisture content in the upper 2 feet of the unsaturated zone, while having little effect on moisture content deeper in the unsaturated zone (Froneberger, 1989). Soil-moisture levels are typically lowest along the site's tree dominated southern boundary (Hagen, 1986).

### Ground-Water Movement

#### **Direction of Flow**

The direction of ground-water flow vacillates between 145 and 225 degrees from true north (Ross, 1988). In general, flow is to the west-southwest when the water table

is high and to the southeast when the water table is low (Froneberger, 1989).

Hagen (1986) and Hoyle (1987) hypothesized that the shift in flow direction is due to evapotranspiration from large trees located along the site's southern border. Ground water is constantly discharging into Boomer Creek and, part of the time, into the unnamed tributary to the west. The direction of flow is controlled by the location of the discharge line. Evapotranspiration dewaters the aquifer at a rate of about .1 feet/day, in the absence of recharge. Consequently, evapotranspiration lowers the water table quite rapidly starting in the spring, which causes the water table to decline below the bottom of the unnamed tributary sometime in April, May, or June. Once this occurs, flow direction must change.

Hagen's (1986) 1985-1986 hydrograph (figure 10) shows almost no fluctuation during winter, even though the water table was quite high. This indicates that ground-water runoff was about equal to recharge. Only in the spring of 1986 did the water table begin to decline rapidly, reflecting evapotranspiration.

Froneberger (1989), as discussed in Chapter IV, attributes the shift in flow direction to the relationship between the ground water and the tributary located west of the site.



Figure 10. 1985-1986 Hydrograph for Well A4 (Hagen, 1986)

### Rate of Flow

Calculations performed by Hoyle (1987) and Froneberger (1989) indicate that the lateral ground-water velocity varies from 0.1 to 1.12 ft/day. Ground water moving at a rate of 0.1 ft/day would take 225 days to migrate beneath Wildwood Court to the research site and 560 days to pass beneath the house to the I wells (Froneberger, 1989). Assuming the velocity is 1.12 ft/day, travel time beneath the Wildwood Court and house decrease to 20 days and 50 days respectively.

Aquifer Test Results. Hagen (1986), Hoyle (1987), and Melby (1989) conducted several aquifer tests at the research site using slug and constant-rate pumping methods. Analysis of the data from these tests provided information on the aquifer parameters contained in Table I. Values of hydraulic conductivity estimated for the D and E wells tend to be high (>100 gpd/ft<sup>2</sup>). Hoyle (1987) attributed these higher values to an increase in aquifer material grain size in the vicinity of the D and E sites. Low values of storativity (10-4) were consistently calculated for the B well site by Melby (1989). These low values could be the result of short term pumping during which gravity drainage was not complete. Transmissivity appears to increase from west to east across the site due to increasing grain size and permeability. Within the well clusters, transmissivities are greater in the #5 wells, which penetrate a greater thickness of the aquifer.

Hoyle (1987) estimated a specific yield of 10 to 25 percent and a specific capacity of 0.11 to 1.5 gpm/ft, the latter occurring when the water table was within 5 feet of land surface.

| TΑ | B | L | E | I |
|----|---|---|---|---|
|    |   |   |   |   |

| Paramete     | er Minimum             | Maximum                 | Mean                   |
|--------------|------------------------|-------------------------|------------------------|
| к            | 27 gpd/ft <sup>2</sup> | 125 gpd/ft <sup>2</sup> | 67 gpd/ft <sup>2</sup> |
| , - <b>S</b> | .0001                  | . 370                   | .026                   |
| T            | 190 gpd/ft             | 4930 gpd/ft             | 2149 gpd/ft            |

### AQUIFER PARAMETERS

<u>Gradient.</u> The horizontal hydraulic gradient, as calculated from water-table elevation maps, typically varies from 0.003 to 0.009 ft/ft. Vertical gradients were estimated on the basis of head differences between individual wells in a cluster (usually 0 to 0.10 ft). Hoyle (1987), found that the upward hydraulic gradient ranged from .002 to .348 ft/ft. The vertical gradient is greatest during the summer months. Gradients at the tree dominated C and D clusters tend to be steeper than at the other well clusters (Hoyle, 1987). Fluctuations in the water table occur daily as a result of transpiration.

<u>Permeability and Porosity.</u> Effective porosity of the studied aquifer, estimated from volumetric soil-moisture content measurements, is approximately 33 percent (Froneberger, 1989). Fillable porosity varies from .11 to .27 (Nelson, 1989). A continuous series of precipitation events causes fillable porosity to decrease as soil moisture increases. Precipitation events of low volume, however, appear to have little effect on fillable porosity values (Nelson, 1989). Permeability appears to increase eastward across the site and with depth in the C and D wells. Hoyle (1987) suggests that this is due to increasing grain size brought about by an increase in the sand fraction.

### CHAPTER VI

### METHODS OF DATA COLLECTION

### Meteorological Data

Meteorological conditions were constantly monitored throughout the study in an on-site laboratory. A continuously recording aneroid barograph, accurate to  $\pm$  0.2 percent full scale, monitored of fluctuations in barometric pressure. Air temperature data were collected using a Springfield Instrument patio thermometer and a continuously recording thermogragh. A clear, cylindrical rain gauge with .01 inch graduations and a continuously recording tipping bucket rain gauge served to measure precipitation.

### Depth to Ground Water

Depth to ground water was determined by a weighted, chalked steel tape and two In-Site, Inc. Model SE1000 pressure transducers. Surveyed marks on the well casings served as measuring points. The transducers, installed in wells A5 and D5, recorded continuously at 1 hour intervals. Both the tape and the transducers produced measurements accurate to .01 feet. Water-table elevation for a given well was calculated by subtracting depth to water from the

altitude of the top of the well casing at the measuring point.

### Soil-Moisture Measurements

A Troxler model 3330 depth-moisture gauge was used to determine the soil-moisture content. Aluminum access tubes, installed by Acre (1989) at sites A,C,D and E, allowed the probe to be lowered into the soil down to a depth of 7 feet. Readings were taken by Alspach (in prep) every 6 inches to a depth of 78 inches. A standard count taken prior to sampling minimized error due to changes in field conditions.

### Ground-Water Quality

### Monitoring Wells

The site is monitored by 43 wells distributed among 10 sites designated as A through J. As illustrated in figures 11 and 12, the combination of lysimeters and the wells screen each of the 14 horizons located in the upper 15 feet of the soil profile. Sites G and H, located along the upgradient perimeter, provide information on the quality of water flowing into the property. Site I resides inside the house. Because of its unique location, site I provides information on the effect of a building (which prohibits recharge) on ground-water quality.

The wells are grouped in clusters to monitor water quality at discrete depths in the aquifer. Holes for wells



Figure 11. Wells and Soil Profile

WELLS



Figure 12. Wells, Lysimeters and Soil Profile

at sites A,C,D,E,G,H,I, and J were excavated by hand auger. A hollow stem auger was used to drill the holes for the wells at sites B and F. All wells except Bl1, Bl2, I3, and J1 were completed with hand-slotted polyvinyl chloride casing wrapped with nylon screen. Wells Bl1, I3, and J1 contain a stainless steel well point attached to the lower end of the casing. Well Bl2 has a Johnson PVC, 0.006 inch slot well screen (Melby, 1989). The filter pack in all wells is composed of medium-grained sand that extends several inches above the slotted interval. The annular space is filled with bentonite.

Wells B6 through B10 are installed in the same borehole as a nested cluster. Bentonite seals separate each well screen interval. Well pairs F1 and F2, and B12 and B13 share the same hole (Melby, 1989). Specifications for each well are listed in Table 2.

### Sample Collection

500 ml Nalgene plastic sample bottles were cleansed before each use following EPA approved procedures. The cleaning method involved washing with a nonphosphate, neutral detergent in hot water, rinsing with deionized distilled water, rinsing with .1 N hydrochloric acid, and rinsing once again with deionized distilled water. A cardboard box with a lid provided storage for the capped, laundered bottles. Prior to sampling, information on the static water level in each well, air temperature,

## TABLE II

| WELL                                                                                                                                                                                                                                                                                                   | TOTAL DEPTH<br>(ft. from<br>concrete pad)                                                                                                                                                                                                                                                                                                              | SCREENED<br>INTERVAL<br>(ft. from<br>concrete pad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIAMETER<br>(inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOP OF CASING<br>ELEVATION<br>(ft. above sea<br>level)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1<br>A2<br>A3<br>A4<br>A5<br>B1<br>B2<br>B3<br>B4<br>B5<br>B6<br>B7<br>B8<br>B10<br>B11<br>C2<br>C3<br>C4<br>D1<br>D2<br>D4<br>D5<br>E2<br>E4<br>E5<br>F12<br>G2<br>H12<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I11<br>I12<br>I12 | $\begin{array}{c} 8.5\\ 9.2\\ 10.3\\ 13.8\\ 14.0\\ 6.6\\ 9.3\\ 11.0\\ 13.2\\ 13.4\\ 11.3\\ 13.9\\ 18.7\\ 21.2\\ 25.7\\ 40.3\\ 8.3\\ 9.2\\ 10.6\\ 14.6\\ 14.0\\ 8.2\\ 9.3\\ 10.8\\ 14.2\\ 14.0\\ 8.2\\ 9.3\\ 10.8\\ 14.2\\ 14.0\\ 8.7\\ 9.7\\ 10.5\\ 14.1\\ 14.0\\ 8.7\\ 9.7\\ 10.5\\ 14.1\\ 14.0\\ 10.2\\ 13.9\\ 11.0\\ 14.5\\ 14.9\\ 12.5\end{array}$ | 8.0 - 8.2<br>8.7 - 8.9<br>9.9 - 10.1<br>13.3 - 13.6<br>7.0 - 14.0<br>6.1 - 6.4<br>8.8 - 9.1<br>10.5 - 10.8<br>12.7 - 13.0<br>4.4 - 13.2<br>11.0 - 11.2<br>13.6 - 13.8<br>18.4 - 18.6<br>20.9 - 21.1<br>25.4 - 25.6<br>38.4 - 40.0<br>7.9 - 8.1<br>8.9 - 9.1<br>9.9 - 10.4<br>14.2 - 14.4<br>7.0 - 14.0<br>8.0 - 8.2<br>9.0 - 9.2<br>9.9 - 10.4<br>14.2 - 14.4<br>7.0 - 14.0<br>8.0 - 8.2<br>9.0 - 9.2<br>9.9 - 10.4<br>13.6 - 13.9<br>7.0 - 14.0<br>8.3 - 8.5<br>9.3 - 9.5<br>10.1 - 10.3<br>13.6 - 13.9<br>7.0 - 14.0<br>8.3 - 8.5<br>9.3 - 9.5<br>10.1 - 10.3<br>13.6 - 13.9<br>7.0 - 14.0<br>10.0 - 40.0<br>10.0 - 40.0<br>10.0 - 40.0<br>10.0 - 40.0<br>10.0 - 14.3<br>10.4 - 10.8<br>14.0 - 14.3<br>10.0 - 14.4 | $\begin{array}{c} 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\$ | <pre>885.97<br/>885.97<br/>885.96<br/>885.94<br/>886.00<br/>886.01<br/>886.03<br/>886.04<br/>885.99<br/>885.92<br/>885.96<br/>885.94<br/>885.94<br/>885.94<br/>885.94<br/>885.94<br/>885.94<br/>885.75<br/>885.73<br/>885.70<br/>885.71<br/>885.71<br/>885.71<br/>885.74<br/>885.82<br/>885.82<br/>885.82<br/>885.82<br/>885.82<br/>885.80<br/>885.80<br/>885.80<br/>885.80<br/>886.08<br/>886.08<br/>886.08<br/>886.08<br/>886.08<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>885.80<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.03<br/>886.00<br/>886.00<br/>886.00<br/>886.03<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>886.00<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.30<br/>885.</pre> |

barometric pressure, and rainfall were collected. The peristaltic pump and Tygon tubing used in sample collection was bathed using the sample bottle cleaning method described earlier. Before taking samples, one well volume was purged from each well to ensure that fresh formation water was obtained. Hagen (1986) determined experimentally that one well volume achieved this purpose. The evacuated water was discharged 10 feet downgradient from the wells in order to avoid ground-water recharge in the vicinity of the well. Sample bottles received a rinse of water from the well before being filled. The passage of deionized distilled water and at least 200 ml of formation water through the pump and tubing before each sample collection aided in the prevention of cross contamination between wells.

### Field Parameters

An on-site laboratory equipped with a digital thermometer, pH meter, Hach digital titrator, and a temperature compensating electrical conductivity meter provided for the measurement of field parameters immediately after sample collection. The instruments were calibrated prior to each sampling event and thoroughly cleansed with deionized distilled water. Continued equipment rinsing between samples prevented cross contamination. Titration of 100 ml of each sample to a pH 4.5 color end-point with 2N HCl furnished bicarbonate

concentrations.

### Sample Preparation

After the measurement of field parameters, the samples were pressure filtered through .2 micrometer Gelman acetate filters using a hand syringe and then were split into two portions. One portion was acidized with HNO3 to pH<2 for cation analysis. The prepared, filtered samples were stored in a refrigerator set at approximately 4° Celsius in clean, 60 ml Nalgene plastic bottles.

### Analytical Methods

A Dionex 2000i ion chromatograph was used to measure F-, CI-, Br-,  $NO_3$ -,  $SO_4$ =, and I- concentrations. The chromatograph was calibrated using standards prepared by the dilution of 1000 ppm stock solutions of each of the anions. The eluent consisted of .00170 m NaHCO3 and the regenerant of .025 N H<sub>2</sub>SO<sub>4</sub>. The analyses were conducted in the Noble Center chromotography lab at Oklahoma State University, Stillwater, Oklahoma.

Agronomic Services, a laboratory located at Oklahoma State University, determined Ca<sup>++</sup>, Mg<sup>++</sup>, Na<sup>+</sup>, K<sup>+</sup>, total Fe, and silica concentrations using inductively coupled plasma atomic emission spectroscopy.

### Quality Control

Cleanliness of a batch of bathed sample bottles was verified by filling a test bottle with deionized distilled water and subjecting the water to the same analyses as the ground-water samples. Field duplicates tested the precision of both field and laboratory analyses. Performance of the ion chromatograph was documented by frequent analysis of duplicate samples, calibration standards, and Dionex test standards. Further checks on the data included cation-anion balances, which were calculated by the computer program WATEVAL (Hounslow, 1989), and comparison with data collected by past researchers at the site.

## Possible Sources of Error

Hydrogen, unrelated to moveable water in clay and organic matter rich soils, may cause the neutron probe to read too high a soil-moisture level (Hillel, 1980). Use of the peristaltic pump may have caused water samples to lose dissolved gasses while gaining atmospheric gas. This could result in a lowering of pH and HCO<sub>3</sub>- values. Because of oxidation, Fe++ and Mn++ concentrations could have been erroneously lowered by the peristaltic pump and/or by sample filtering (Griffin and others, 1981).

### <u>Nitrate</u>

Nitrate values determined by Ross (1988) and Froneberger (1989) are roughly 36 times higher then those measured by Hagen (1986), Hoyle (1987), and the author (figure 13). This discrepancy is most likely due to analytical error. Hagen and Hoyle measured NO3- levels in the field with a ion sensitive electrode. Ross. Froneberger, and the author used an ion chromatograph. Personal communication with Froneberger and Ross revealed that the nitrate stock solution and the calibration solutions were stored in plastic bottles at room temperature. New calibration standards were not mixed before each analytical session. Storage at room temperature in plastic bottles probably resulted in the breakdown of NO3-. During calibration, for example, the chromatograph may have been standardized with a  $5 \text{ mg/l NO}_3$ solution that in fact was only 1 mg/l. This resulted in the chromatograph reading 1 mg/l as 5 mg/l, hence creating erroneously high NO3 - values.

The discrepancy in nitrate values also may be due to a change in fertilizer. A liquid fertilizer, much more mobile than the pellet type applied from 1988 to present, was used when Hagen (1986) and Hoyle (1987) did their work. The data, however, do not support this theory for elevated nitrate levels. If the switch to solid fertilizer caused the increase in nitrate values, than concentrations recorded by the author should have matched those recorded by Ross (1988) and Froneberger (1989). Furthermore, sample collection by Ross (1988) and Hoyle (1987) overlapped for a period from January 1987 to April 1987. Hoyle (1987),



Month and Year

Figure 13. NO3- Concentration Well Au

however, makes no mention of a sudden increase in nitrate concentration.

Another possible explanation for the elevated nitrate levels recorded by Ross (1988) and Froneberger (1989) is an upgradient change in water quality during their sampling period. In addition, the site had not been fertilized for several years prior to the time Hagen began sampling.

### CHAPTER VII

### GROUND-WATER QUALITY

### Data Analysis

### <u>Methods</u>

Geochemical data for all 41 monitoring wells was compiled from the start of research in 1985 to May 1991. Statistical analysis of the data (appendix D) served to identify maximum, minimum, and average values in ion concentrations over the past 6 years. Graphs of the data aided in the identification of water-quality trends.

### Water Quality

Ground water at the research site is classified as high bicarbonate, mixed calcium-magnesium-sodium type (Hoyle, 1987). The geochemical environment is neutral, with pH ranging from 6.4 to 7.8. Hagen (1986), Hoyle (1987), Ross (1988), and Froneberger (1989) established that water quality varies considerably with respect to both time and space. Ion concentrations vary considerably across the yard from well site to well site and with depth. The only exception to this appears to be the Siz ion, which, as illustrated in figure 14, shows little variation



Figure 14. Average Siz Concentration

in concentration. Ion levels for a given well also fluctuate considerably. An example of this is a bar graph of the maximum and minimum SO4 = values of each well (figure 15). Distinct yearly trends in geochemistry are difficult to discern from the compiled data. This is mainly because most of the data collection occurred during the spring and early summer months. Few data are available for fall and early winter. Ranges in ion concentration for the ground water are displayed in Table III. The following sections discuss possible explanations for these ranges.





Figure 15. Maximum and Minimum SO<sub>4</sub>= Concentration

## Average SO4= Concentration



Figure 16. Average SOs Concentration

| Ion    | Maximum<br>(mg/l) | Minimum<br>(mg/l) |
|--------|-------------------|-------------------|
| Ca++   | 190.1             | 16.3              |
| Fe++   | 15.1              | 0.001             |
| K+ _   | 4.4               | 0.03              |
| Mg++   | 112.0             | 14.7              |
| Mn++   | 4.6               | 0.001             |
| Na+    | 179.8             | 10.8              |
| Si2    | 19.9              | 4.7               |
| C1-    | 163.0             | 3.5               |
| HCO3 - | 1341.0            | 198.0             |
| NO3 -  | 113.2             | 0.01              |
| SO4 =  | 180.1             | 7.9               |

### RANGES IN ION CONCENTRATION

Factors Affecting Ground-Water Quality

## Fertilizer, Vegetation, and Concrete

Fertilizer, vegetation, and the presence of concrete greatly affect K<sup>+</sup>, NO<sub>3</sub><sup>-</sup>, and SO<sub>4</sub><sup>=</sup> concentrations in the ground water. Fertilizer applied to the lawn in the spring and fall provides a source for the three ions. According to Reasors Lawn Service, Stillwater, Oklahoma, it is typically applied as:

|                          | •                                      |                                                                | , |
|--------------------------|----------------------------------------|----------------------------------------------------------------|---|
| P2 O5 0                  | .16 lb/100                             | 00 ft <sup>2</sup>                                             |   |
| K <sub>2</sub> O 0       | .24 16/100                             | 00 ft²                                                         |   |
| S 0                      | .40 16/100                             | 00 ft <sup>2</sup>                                             |   |
| P2 O5 0<br>K2 O 0<br>S 0 | .16 lb/100<br>.24 lb/100<br>.40 lb/100 | 00 ft <sup>2</sup><br>00 ft <sup>2</sup><br>00 ft <sup>2</sup> |   |

Rises in NO<sub>3</sub>- and SO<sub>4</sub> = concentration in many of the monitoring wells following fertilizer application is documented in the works of the previous site researchers Examination of the compiled data suggests that K<sup>+</sup> concentrations also rise in response to fertilization. Wells A3, A4, C4, D3, and D4 reached their peak K<sup>+</sup> concentrations in April 1988 after spring fertilization.

Vegetative cover, or lack of it, also greatly affects water quality. K<sup>+</sup>, NO3<sup>-</sup>, and SO4<sup>±</sup> are essential elements for sustaining plant life (Hem, 1985). As such, they are removed by roots, thus reducing concentrations in the soil. Inspection of Figures 16, 17, and 18 illustrate this point. Well sites A, B, C, D, E, and F, which are located near abundant flora, exhibit relatively low average K<sup>+</sup>, NO3<sup>-</sup>, and SO4<sup>±</sup> concentrations. In sites G, H, I, and J however, concentrations of the three ions are at their highest. Sites G, H, I, and J are located immediately down gradient of a concrete road, the house, and a concrete driveway respectively (figure 6). Since no vegetation is present to remove the ions, and recharge cannot occur to dilute the ground water, the ions are present in elevated concentrations.

Vegetation further affects water quality by providing a source of ions. Decay of vegetation during the fall and winter months produces a source of NO<sub>3</sub>- and K<sup>+</sup> that can be leached into the ground water (Hem, 1985). Plant root respiration produces CO<sub>2</sub>, which increases the HCO<sub>3</sub>concentrations. Bicarbonate concentrations are greatest in the C and D sites where extensive tree root systems dominate the site (figure 19), but the concentration



Figure 17. Average K<sup>+</sup> Concentration

## Average NO3- Concentration



Figure 18. Average NO3 - Concentration

decreases with depth (from well #1 to well #5) as do the number of plant roots. Since plants affect HCO<sub>3</sub>concentrations in the aquifer, they also indirectly influence electrical conductivity. Bicarbonate compromises roughly half of the total ions measured in the water, giving the ion control over measured electrical conductivity. The graphs of average conductivity and HCO<sub>3</sub>concentration (figures 19 and 20) are virtually identical.

## Sewer Pipes

Leakage from the 5 foot deep 8 inch diameter sewer line that occurs along the site's southern border appears to affect Cl- concentrations in the C and D well sites. As illustrated in figures 21 and 22, these two sites possess the most variation in and the highest average Clconcentrations. Cl- contamination from the sewer appears to reach its maximum when the water table drops below the line. Vertical gradients shift from upward to downward indicating that water is flowing out of the sewer line into the ground water (Hoyle, 1987).

#### Cation Exchange

Clay particles in the aquifer may affect water quality by exchanging Na<sup>+</sup> ions for Ca<sup>++</sup> ions. In well clusters A, B, D, G, H, and I, average Ca<sup>++</sup> concentrations decrease with depth while Na<sup>+</sup> concentrations increase, thus suggesting exchange. This is illustrated in figures 23 and





Figure 19. Average HCO3- Concentration

# Average Conductivity



Figure 20. Average Conductivity



Figure 21. Average Cl- Concentration

## Maximum and Mimimum Cl- Concentration





Figure 23. Average Ca++ Concentration

## Average Na+ Concentration



Figure 24. Na<sup>+</sup> Concentration

24. Ca++ concentrations decrease from the shallow #1 wells to the deeper #5 wells, while Na+ concentrations increase.

### Redox Reactions

Variation in redox potential may be responsible for the elevated Fe<sup>++</sup>, Mn<sup>++,</sup> and SO<sub>4</sub> = concentrations at the B site. As illustrated in figures 16, 25, and 26, levels of these ions are much higher at B than at the other sites. According to Bricker (1982), the geochemical behavior of these elements is dependent on redox potential. The source of Fe<sup>++</sup> and Mn<sup>++</sup> is most likely the iron-manganese nodules that appear throughout the soil profile (Ross, 1988).

#### Downspout

Water quality at the E cluster is significantly affected by an adjacent downspout. Hagen (1986), Hoyle (1987), and Froneberger (1989) found that ion levels decreased significantly at this site following precipitation events. Rain water that discharges from the downspout apparently quickly infiltrates and dilutes the ground water.

### <u>Precipitation</u>

Samples taken during and after rain events show that precipitation has a significant impact on water quality. Ion concentrations rise as contaminants are flushed from the surface and unsaturated zone into the ground water. In





## Average Mn++ Concentration



Figure 26. Average Mn++ Concentration

addition, the rising water table dissolves water-soluable compounds in the soil matrix. Changes in water quality due to rain occur very quickly, as illustrated in figure 27. Cl- levels quadrupled in D<sub>2</sub> in response to a 1 March 1991 simulated rain falling at the rate of 1 inch/hour. This effect is in part due to macropore flow, as discussed in detail in chapter 8.



Figure 27. Cl- Concentration vs Time Well D2

### CHAPTER VIII

### EVIDENCE OF MACROPORES

### Soil Structure

### <u>Cracks</u>

Desiccation crack macropores are very effective at transporting precipitation rapidly through the unsaturated zone (Pettyjohn, 1982; Blake and others, 1973; Buol and others, 1980; Hoogmoed and Bouma, 1980). Such cracks, with surface openings as much as a half inch wide, commonly form at the site during prolonged dry periods. Cracks between ped faces also may contribute to macropore flow (Beven, and Germann 1982). Hagen (1986) and Ross (1988) noted the existence of such pathways in the study aquifer.

### <u>Roots</u>

Tubular macropores, associated with both live and decayed roots, provide avenues for rapid water transit through the unsaturated zone (Beven and others, 1982). Renyolds (1966) showed that a significant amount of rain water percolates down tree trunks.

Root macropores are abundant at the research site. The earth materials are characterized by deep root zones,

which are typical of Ashport soils (SCS, 1986). Large trees with extensive root systems line the site's southern border (figure 5). Root casts are prevalent throughout soil profile (Ross, 1988).

## Faunal Channels

Macropores formed by burrowing organisms, such as earthworms and gophers, are effective in conducting water to appreciable depths (Wild and others, 1976; Ehlers, 1975; 1982; Edwards and others, 1988; Zachmann and others 1987). Earthworm channels typically range from 2 to 10 mm in diameter, while those formed by gophers may exceed 50 mm (Beven and others, 1982). Macropores formed by burrowing organisms may play a role in water transport at the study site. Tunneling earthworms were observed in soil cores obtained by use of a Giddings probe.

### Recharge Rate

Macropores may cause an aquifer to have a higher vertical infiltration rate than normally expected (Beven and others, 1982). Such is the case at the field site, providing further proof of the significance of macropore flow. Hagen (1986) estimated that 47 percent of total annual precipitation reached the water table as recharge. This value, which is unusually high for such fine-grained material, is indicative of macropore flow. Precipitation, water-table elevation, and soil-moisture data collected by Hagen (1986), Ross (1988), Nelson (1989), and Froneberger (1989) indicate that ground-water recharge occurs even when soil-moisture levels are well below field capacity. The rapid response of the water table to a short lived but intense 3.76 inch rainfall is illustrated in figure 28. In this case, nearly all of the rain fell within an hour at a time when the water table was about 7.5 feet below land surface. The water table began to rise within a half hour of the start of the rain. This implies that movement of water through the dry unsaturated zone occurs at a rate of 15 feet per hour. Flow through macropores was the probable cause of this rapid recharge.



Water Table Response to Rain 14 July 1989

Figure 28. Water Table Response to Rain

Additional evidence of macropore flow is provided by a comparison of horizontal and vertical flow rates. The horizontal flow rate, as determined by hydrograph analyses, is around 1 ft/day. The vertical flow rate, however, is about 5 ft/day (Hoyle, 1987).

### Hydraulic Conductivity

Hydraulic conductivity determined by field tests is commonly greater than expected in aquifers with macropores (Rogowski and Simmons, 1988). This also is the case at the study site, where hydraulic conductivity values calculated from aquifer tests are higher than published data for silt loams (Hoyle, 1987). The 27 to 125 gpd/ft<sup>2</sup> range seems high considering the fine grained nature of the alluvium. For a silty clay loam, values around 4 gpd/ft<sup>2</sup> are commonly expected (Li and others, 1976 in Clapp and Hornberger, 1978).

Where macropores play a role in fluid flow, hydraulic conductivities measured in the lab commonly will be much lower than those measured in the field (Olsen and others, 1981; Pollock and others, 1983; Keller and others, 1986). Melby (1989) found this to be the case at the study site. According to Melby (1989), hydraulic conductivity values determined by permeameter tests were three to six orders of magnitude lower than values obtained from aquifer tests. Regardless of the care exercised by Melby, the unconsolidated cores, which were obtained by hollow-stem auger, were compacted during drilling and during permeameter preparation, and the compaction destroyed the secondary openings.

## Geochemical Evidence

Rapid variations in water quality frequently occur in aquifers recharged through macropores (Gerhart, 1986; Thomas and Phillips, 1979; Pettyjohn, 1971, 1976, 1982). Rapid change in ground-water quality is characteristic of the research site. Changes in the concentration of a given ion may occur in the deeper #4 and #5 wells, while the shallower #1, #2, and #3 wells remain unaffected. Examination of the nitrate data for the D wells illustrates this point (figure 29). Nitrate concentrations in D4 peaked in April in response to rainfall events occurring after nitrate based fertilizer has been applied to the yard. Nitrate concentrations in the shallower D1, D2, and D3 wells for April remained unchanged.

Hoyle (1987), attributed dilution of ground water at the E well site to the rapid infiltration of downspout water via macropores. Hoyle also credited infiltration through macropores for causing wells C4 and E4 to become undersaturated with respect to calcite (diluted), while calcite saturation in other wells remained unchanged.

The effect of macropores on water quality also is evidenced by geochemical data from lysimeters. Ross (1988) reported an order of magnitude increase in nitrate in


lysimeter L4 following fertilizer application to the yard, while nitrate concentrations in shallower lysimeters showed little to no change. Ross (1988) attributed this phenomenon to the vertical movement of nitrate-enriched water though macropores.

Bromide and chloride tracer testing of the unsaturated zone by Froneberger (1989) indicated preferential movement along macropores. Froneberger (1989) reported the presence of bromide in lysimeters L6B and L7 just one day after application of the tracer to the land surface. He theorized that short circuiting via macropores enabled the tracer to reach these lysimeters. The distribution of a surface applied chloride tracer in an 8-foot long soil core obtained from the tracer plot provided Froneberger (1989) with further evidence of macropore flow. Froneberger (1989) recorded a chloride peak of 42.1 mg/l at the 28 to 32 inch depth interval, indicating preferential movement to this depth.

# CHAPTER IX

### TRACER TESTING

# Selection of Tracers

Bromide and iodide were selected as tracers for this experiment because they met the following criteria. Both move with the infiltrating water, interacting very little with the aquifer material. They are inexpensive tracers and are easily detected with the Geology Department's Dionex ion chromatograph. Background concentrations of bromide and iodide are low to none. Work done by other researchers has helped define the chemical and physical behavior of bromide and iodide in ground water, proving they are effective ground-water tracers (Davis and others, 1985).

# <u>Bromide</u>

Background levels of bromide in the study aquifer are less than 1 mg/l. It is biologically stable and does not tend to precipitate (Davis and others, 1985). Some sorption of Br- by plants, organic material in soils and certain soil minerals may occur, however, this tendency of sorption is weak (Bowman, 1983; Smith, 1974). Bromide is easily detected by ion chromatography in concentrations as

low as 50 ppb (Stezenbach and Thompson, 1983). A number of potential sources could contribute to the background bromide levels, although none are likely at the research site. Wheat farmers may fumigate their soils with methyl bromide (Trent and others, 1989). Bromine is present in the atmosphere, and in oil-field brines typical of Oklahoma (Faiq and others, 1988; Hem, 1985). Rain and snow commonly contain bromine in concentrations ranging from 5 to  $150 \mu g/1$  (Hem, 1985).

#### <u>lodide</u>

Background levels of iodide in the study aquifer are below the set detection limits of the ion chromatograph. Muramatsu and others (1990), found that iodide was not well sorbed by clay minerals or quartz sand. Iodide may be affected by microbiological activity (Davis and others, 1985). The ion chromatograph is capable of detecting iodide at levels ranging from 0 to 10  $\mu$ g/l (Ubom and Tsuchiya, 1988).

#### Bromide Versus Iodide

Bromide and iodide differ slightly in their behavior as tracers. The iodide ion, with a radius of 2.19 Å, is slightly larger than the bromide ion, whose radius is 1.96 Å (Brown, 1981). Because of its larger size, the iodide ion may migrate more slowly than the bromide ion. Iodide may be sorbed to a greater extent than Br- thereby reducing

its concentration in the ground water (Davis, 1978; Leap, 1978).

Experimental Methods

#### <u>Set Up</u>

The D site was selected for the tracer study because it is the only site in which there is a large, unobstructed area upgradient of the wells. This area allowed for easy installation of the tracer plot and ready accesses by a truck mounted Gidding's probe. The test plot encompassed an area approximately 25 ft x 23 ft. Plastic landscape border, buried 1 inch deep, partitioned off two 4 ft x 4 ft areas and a 6 ft x 10 ft area for tracer application (figure 30). The intentional location of these plots away from the wells and buried utilities prevented the tracer solution from flowing down the well casings, sewer pipe and utility cables. Drip irrigation tubing, with 6 inch spacing, surrounded the tracer application plots (figure Based on work done by Bouwer (1986), tap water 30). flowing from the tubing served to minimize lateral flow of the tracer during the experiment.

Preparation of the tracer solutions involved adding a calculated amount of oven dried KI and KBr salt to deionized distilled water. Five 30 gallon containers and one 22 gallon container held the prepared tracer solution in the field (figure 31). The containers were bathed with nonphosphate, neutral detergent in hot water and given a





Figure 30. Tracer Test Set Up



Figure 31. Photographs of Test Set Up

deionized distilled water rinse before being used. The tracer water flowed by gravity through Tygon tubing from the elevated containers (figure 31).

#### <u>Procedure</u>

The bromide tracer test was conducted on March 1, 1991 under initially "dry" (.093 cc/cc at 30 inches) soilmoisture conditions. The iodide tracer test was performed on April 29, 1991, when "wetter" (.185 cc/cc at 30 inches) soil-moisture conditions prevailed. The difference in initial soil-moisture content between the two tests is illustrated in figure 32. Measurements of soil moisture were made in order to compare the effect of the initial soil-moisture content in the I- test was two times higher than the Br- test at the 30 inch depth (figure 32).

In both tracer tests, a 3 inch rain event, falling at the rate of 1 inch/hour, was simulated over the entire tracer plot area. Ground-water samples were taken approximately every 5 minutes for the first five hours of the experiment, and then every 10 to 15 minutes for the remainder of the test. Alspach (in prep.) measured soil moisture in 6-inch depth increments, and also took soil cores from the 6 ft x 10 ft tracer application area. The holes left by the coring were immediately packed with bentonite to prevent the tracer solution from flowing down them. Water levels measured prior to testing verified ground water flow toward the D wells (figures 33 and 34). A pressure transducer in well D5 continuously measured depth to water during the bromide experiment.



Figure 32. Initial Soil-Moisture Profile



Figure 33. Water-Level Map I- Tracer Test



Figure 34. Water-Level Map Br- Tracer Test

#### Bromide Tracer Test Results

Bromide appeared in two wells, D<sub>2</sub> and D<sub>4</sub>, during the experiment (figure 35). Desiccation cracks were present on the land surface prior to the start of the test. A summary of the estimated rates of Br<sup>-</sup> movement are given in Table IV.

The bromide tracer appears to have reached a depth of 9 feet in the soil profile between 125 minutes and 485 minutes after application of the tracer. As seen in figure 36, Br- concentrations for well D<sub>2</sub>, which is screened from 9 to 9.2 feet, gradually increased, peaked at 335 minutes, and then declined to background levels during this time period. Potassium concentrations also peaked during this interval, providing further evidence that the KBr tracer reached this well (figure 36). Bromide concentrations at the 9 foot depth increased from .289 mg/1 to .798 mg/1 during this period. It was not possible to explicitly indentify the arrival time of Br- at this depth, however, the arrival of the tracer at 9 feet between 125 and 485 minutes indicates the rate of movement of bromide to be somewhere between 1.11 ft/hr and 4.32 ft/hr.

Bromide levels dramatically peaked in well D4, which is screened at a depth of 13.6 to 13.9 feet, 285 minutes after application of the tracer. Concentrations of both Br- and K<sup>+</sup> hovered near natural background levels, suddenly peaked, then immediately dropped back to background level as illustrated in figure 37. Further evidence that this



.....

Figure 35. Distribution of Br- and I- in D Wells

peak represented tracer solution is provided by the conductivity data for well D4. The peak in Br- and K<sup>+</sup> levels in the well was accompanied by a sharp drop in conductivity (figure 38). The tracer solution had a lower conductivity, 880 µmhos/cm, than the background ground water, which had a conductivity of 1180 µmhos/cm.



Figure 36. K<sup>+</sup> and Br<sup>-</sup> Concentration vs Time Well D2







Figure 38. Br- and Conductivity vs Time Well D4

The data for well D4 suggest that the tracer moved through the upper 13.9 feet of the soil within 4.75 hours. Bromide levels increased from a background level of .144 mg/1 to 2.04 mg/1 in 285 minutes, indicating a rate of Brmovement at 2.86 ft/hour. In order to verify the Br- peak of 2.04 mg/1, another portion of the sample was taken from the original collection bottle, filtered, and analyzed. In repeated analyses done on different days, the Brconcentration remained at 2 mg/1.

Little change appeared to occur in the elevation of the water table during the bromide test (figure 39). The sharp peaks in the graph correspond to times the well was pumped for sample collection, thus quickly dropping depth to water in the well. There are two reasons why the expected rise in the elevation of the water table did not occur. First, the simulated 3 inch tracer "rain" fell on only a small 23 ft x 25 ft area. The 3.76 inch natural rain that produced the dramatic water-table rise discussed in Chapter VIII fell over several square miles, thereby providing a much greater volume of infiltrating water. The larger area also provided access to a greater number of macropores, increasing the amount of water reaching the water table. Secondly, any water-table rise from the tracer "precipitation" in the monitored well was cancelled out by the continuous withdrawal of water for sampling.



# Figure 39. Depth to Water vs Time Well D5

#### Iodide Tracer Test Results

Considerable ponding occurred during the iodide test in which the initial soil-moisture level was high (.185 vs .093 cc/cc at 30 inches during the Br- test). Because of the higher moisture levels, the soil rapidly became saturated at the surface causing the infiltration rate to decrease and ponding to occur. During this test, plastic landscape border surrounding the application plots prevented surface runoff of the tracer solution. A summary of the estimated rates of I- movement are shown in Table IV. No depth to water data were collected due to transducer failure.

Breakthrough curves for the I<sup>-</sup> tracer test are shown in figure 40. The arrival of the tracer in well D<sub>1</sub> (screened from 8.0 to 8.2 feet) at 350 minutes after the start of tracer application indicates the rate of movement of I<sup>-</sup> to be around 1.41 feet per hour. Concentrations of I<sup>-</sup> ranged from .233 to .994 mg/l. After its initial appearance at 350 minutes, I<sup>-</sup> continued to be present in the well throughout the remainder of the experiment.

I- reached a depth of 9 feet 280 minutes after the tracer was applied to the surface, thus indicating a rate of I- movement of around 1.93 ft/hour. As seen in figure 40, I- in well D<sub>2</sub> (screened from 9 to 9.2 feet), first appeared at 280 minutes, peaked at 3.23 mg/l, leveled out at around 1 mg/l, and persisted throughout the remainder of the study.

### Discussion

The I- and Br- tracer tests showed that the applied solution did not move as a steady, even front through the soil profile, but rather moved erratically due to shortcircuiting through macropores. Both tracer tests used the same site, soil profile, tracer volume, and application rate, but varied in initial soil-moisture content. The initial soil-moisture content appeared to affect the depth, rate, and volume of tracer movement. A summary of the test



Figure 40. I - Concentration vs Time Wells D1 and D2

# TABLE IV

|  | ESTIMATED | RATES | OF | TRACER | MOVEMEN |
|--|-----------|-------|----|--------|---------|
|--|-----------|-------|----|--------|---------|

| Weli # | Tracer | Depth<br>(feet) | Time of Arrival<br>(minutes) | Rate<br>(ft/hour) |
|--------|--------|-----------------|------------------------------|-------------------|
| <br>D1 | I -    | 8.2             | 350                          | 1.41              |
| D2     | I -    | 9.0             | 280                          | 1.93              |
| D2     | Br-    | 9.0             | 125-485                      | 1.11-4.32         |
| D4     | Br-    | 13.9            | 285                          | 2.93              |

# TABLE V

# BROMIDE AND IODIDE TEST RESULTS

|                                                                                          | Bromide Test  | Iodide Test |
|------------------------------------------------------------------------------------------|---------------|-------------|
| Initial Depth to Water (feet)                                                            | 8.36          | 7.83        |
| Tracer Water pH (units)                                                                  | 5.90          | 6.22        |
| Tracer Water Conductivity<br>(µmhos/cm)                                                  | 880           | 540         |
| Initial Soil Moisture Content<br>at 30 inches (cc/cc)                                    | .093          | .185        |
| Background Concentration of<br>Tracer (mg/l)                                             | .192          | 0           |
| Time from Start of Tracer<br>Application to First<br>Breakthrough of Tracer<br>(minutes) | around<br>200 | 280         |
| Wells Tracer Appeared In                                                                 | D2, D4        | D1, D2      |
| Concentration of Tracer<br>Detected in Ground-Water<br>(mg/l)                            | .798-2.04     | .233-3.23   |

The 1.11 to 4.32 ft/hour rates of tracer movement calculated for the Br- and I<sup>-</sup> tests are much higher than the 3 x 10-7 to 2 x 10-4 ft/hour saturated hydraulic conductivities measured in the lab by Melby (1989). This indicates that the tracer moved through the soil at least 2 x 104 times faster than it would have moved had macropores not been present.

With fast flow rates (around 3 ft/hour) the anions flowing through macropores had little time to associate with the resident soil water before passing through the profile to the wells. The macropores acted like a straw, limiting lateral dispersion of the tracer, and favoring downward vertical dispersion and movement. This enabled slugs of the tracer, such as the 2.04 mg/l slug detected in well D4, to reach depth at such high concentrations. When the flow rate was slower (around 1.1 ft/hour), however, the tracer solution had more time to mix with the resident water. This diluted the tracer solution causing it to be present in lower concentrations at depth (.798 mg/l Br<sup>-</sup> in D2 for example).

Tracer ions appeared in deeper wells before they were detected in the shallower wells during both studies. Iodide appeared first in well D<sub>2</sub>, and then arrived at well D<sub>1</sub> 70 minutes later. During the Br- experiment, tracer levels peaked at the 13.6 foot depth (well D<sub>4</sub>) 50 minutes before the shallower 9 foot depth (well D<sub>2</sub>). In both

cases, the tracer moved to the deeper wells first by way of root channels and other types of macropores in the profile, as discussed in Chapter VIII.

An increase in Br<sup>-</sup> concentration occurred in well D2 during the I<sup>-</sup> tracer test (figure 41). As the I<sup>-</sup> tracer water moved into the soil profile it displaced some of the residual soil solution containing Br<sup>-</sup> from the previous experiment. The displacement of the Br<sup>-</sup> enriched water could have significance in terms of the leaching of mobile toxins.



Figure 41. Br- Concentration Well D2 I- Tracer Test

The amount of water pumped from each well during both tests was kept at a low value in order to reduce any effect of drawdown on increasing the rate of flow from the water table to the well screen. Less than 500 ml was withdrawn each time a sample was collected. The effort appeared to be successful as illustrated in figure 39. With the exception of the peaks caused by pumping of the well D5 for sample collection, no significant decline in depth to water occurred. The position of the water table remained fairly constant throughout the experiment.

The time it took for the tracer to first appear in the saturated zone remained the same for the two tests (table IV). In both experiments the tracers were first detected roughly 4 hours after the tracer solution was first applied to the land surface.

Data indicate that the initial soil-moisture content affected the depth of tracer movement, although the depth to water differed by 0.53 feet (8.36 during the Br- test versus 7.83 feet duing the I- test). The tracer penetrated the soil profile the farthest when the initial soilmoisture content was lower. The greatest recorded depth reached by a tracer was 13.6 ft in well D4 during the Brexperiment. In this experiment, the initial soil-moisture content was only half that of the I- test, and desiccation cracks abounded on the soil surface. For comparison, the greatest depth reached by the I- test was only 9 feet

(figure 35). Perhaps the period of drying prior to the Brtest enlarged the macropores to depth allowing the tracer to move further. When higher initial soil-moisture conditions prevailed, as in the I<sup>-</sup> test, macropore flow affected the shallower D1 and D2 wells. Tracer movement seemed to be slowest when the initial soil-moisture content The data suggest that the tracer traveled 1.5 was higher. times slower during the I- test than during the Br- test, when the initial soil-moisture content was highest (table IV). The infiltration capacity was exceeded much more quickly during the I<sup>-</sup> test, resulting in considerable ponding of the tracer on the surface. As a result, it took a longer period of time for the tracer to infiltrate. The variation in travel time between the two tests also may be due, in part, to the presence of more surface desiccation crack macropores were during the Br- test. The greater number of desiccation cracks perhaps served to increase the infiltration rate (Beven and Germann, 1982). Another factor that may have slowed the rate of tracer movement under "wetter" initial soil-moisture conditions is the expansion of clays. The clay fraction of the aquifer contains smectite, an expanding clay (Ross, 1988). Swelling of the smectite under the "wet" conditions perhaps narrowed or closed some flow pathways reducing the rate of tracer flow.

It appears that a greater volume of tracer migrated into the saturated zone during the I- test, in which the initial soil-moisture content was twice as high as the Brstudy and the fillable porosity was smaller. Iodide appeared in two wells and continued to be present in both of them for the remainder of the experiment (figure 40). In the Br- test, however, the tracer appeared once as a slug in the D4 well, and for approximately 360 minutes in well D2. Unlike the I-, Br- did not persist throughout the experiment. Perhaps the high levels of ponding reached during the I- experiment increased cumulative vertical infiltration. Because the initial soil-moisture content was higher, the soil did not adsorb as much water, hence more of the tracer flowed through. Once in the ground, the rate of loss of tracer water from saturated macropores to the surrounding "wet" micropores slowed. During the Brstudy, the dryer upper few feet of the soil accepted most of the tracer solution. Much of the tracer entering through cracks on the surface may have moved from the macropores to the unsaturated matrix due to capillarity. Therefore, less Br- solution was available for shortcircuit flow.

## CHAPTER X

#### SUMMARY AND CONCLUSIONS

Tracer testing confirmed that surface-applied pollutants may quickly migrate through silt and clay to the ground water via macropores. In both the Br- and I- tests, it took only a little over four hours for the tracer to reach the saturated zone. The rate of tracer movement was 2 x 10<sup>4</sup> times faster than the rate measured in the lab by Melby (1989). The tracer experiments showed that some of the applied water moved through the soil profile without displacing much of the resident water. The tracer solution did not move as a steady front through the soil, but rather moved erratically due to short-circuiting through macropores.

Initial soil-moisture content appeared to affect the depth, rate, and volume of tracer movement. The tracer penetrated the soil profile the farthest when the initial soil-moisture content was lower, the unsaturated zone thicker, and fillable porosity larger. Tracer movement seemed to be 1.5 times slower when the initial soilmoisture content was higher. Apparently, a greater volume of tracer migrated to the saturated zone during the Itest, in which the initial soil-moisture was twice as high

as the Br– study.

The quantity of tracer reaching the ground water, relative to the total input, is easy to dismiss as insignificant. Applied to the surface at a concentration of 500 mg/l, the tracers appeared at depth at a level of only 0.798 to 3.23 mg/l. This may not seem like a significant amount of pollutant, but had the contaminant been a toxin, such as TEPP, it would have been considered high enough to pose a potential health risk. Detected at these levels, a hazardous waste facility would be required to notify the EPA and perhaps enter into corrective action. In addition, storage in the unsaturated zone may be measured in months or years, but it is the short term, concentrated mass released during a period of infiltration that determines the rate of leaching.

Considering the total amount of tracer applied at the surface, the amount actually reaching the water table also may seem negligible. On the other hand, if the tracer had been applied over a large area instead of over a small one the total mass reaching the ground-water reservoir would have been significant. The evidence (water-table rise in response to precipitation illustrated in figure 28) indicates that cumulative macropore flow could add up to allow a significant volume of pollutant to reach the ground water, enough to even cause the water table to rise.

This research illustrates the danger in assuming that silt and clay-rich soils provide shallow ground water

protection from surface applied pollutants. Siting a landfill or land treatment unit on a soil of this type, especially if recharge is affected by macropores, may no more guard the aquifer then if the facility were situated a more coarse-grained material. Hazardous chemical spills or waste water applied on silt and clay may migrate more quickly to ground water than previously realized. As a result, this research highlights the necessity of taking macropore contaminant flow into account when developing protection plans for shallow, silt and clay aquifer systems.

#### Suggestions For Further Research

More research at the study site needs to be done in order to develop a better understanding of contaminant migration to the saturated zone. The 13.6 foot interval appears to be most susceptible to contamination from the surface (table 5). Geochemical evidence for this is discussed in Chapter VIII. Coring of the soil at least to this depth and measurement of macropore size may shed some light on this phenomenon. Another interesting experiment would be to see how different application rates affect tracer movement. Tracer migration may occur differently if the rate of application were slow enough to prohibit ponding, or if the tracer were applied as a solid to the land surface and moved into the aquifer via natural rain events.

| IADLE VI | Т | A | B | L | Е | V | I |  |
|----------|---|---|---|---|---|---|---|--|
|----------|---|---|---|---|---|---|---|--|

| WELLS | SH  | iO₩ | ING  | GEC | )CF | IEM I | CAL | ΕV | IDENCE  | OF |
|-------|-----|-----|------|-----|-----|-------|-----|----|---------|----|
| RAP   | [D] | CO  | NTAM | INA | TI  | ON    | VIA | MA | CROPORE | ES |

| Well | Start of Screen<br>(ft below surface) | Soil Horizon<br>Screened |
|------|---------------------------------------|--------------------------|
| D4   | 13.6                                  | 2BC2                     |
| E4   | 13.6                                  | 2BC2                     |
| C4   | 14.2                                  | 2BC3                     |

## REFERENCES CITED

- Acre, T.J., 1989. The Influence of Macropores on Water Movement in the Unsaturated Zone. Unpublished M.S. Thesis, Oklahoma State University, 84 p.
- Alspach, S., in prep. Movement of Bromide Through Soil to an Aquifer. Unpublished M.S. Thesis, Oklahoma State University.
- Armstrong, A.C., and Arrowsmith, R., 1986. Field evidence for a bi-porous soil water regime in clay soils. Agricultural Water Management, v. 11, pp. 117-125.
- Beven, K., and German, P., 1981. Water flow in soil macropores II. A combined approach. Journal of Soil Science, v. 32, pp. 15-29.
- Beven, K., and Germann, P., 1982. Macropores and water flow in soil. Water Resoures Research, v. 18, pp. 1311-1325.
- Blake, G., Schlichting, E., and Zimmerman, V., 1973. Water recharge in a soil with shrinkage cracks. Soil Science Society of America Proceedings. N. 37, pp. 669-672.
- Bowman, R.S., 1983. Evaluation of some new tracers for soil water studies. Agronomy Abstracts, p. 139.
- Bowman, R.S., 1985. Analysis of soil extracts for inorganic and organic tracer anions via high performance liquid chromatography. Journal of Chromatography, v. 285, pp. 467-477.
- Bouma, J., Dekker, W., and Wosten, J.H.M., 1978. A case study on infiltration into dry clay soil: physical measurements. Geoderma, v. 20, pp. 41-51.
- Bouwer, H., 1986. Intake rate: cylinder infiltrometer. in Methods of Soil Analysis Part 1 - Physical and Mineralogical Methods Second Edition, American Society of Agronomy Inc. and Soil Science Society of America Inc., Madison, Wisconsin, pp. 825-845.

- Bricker, O.P., 1982. Redox potential: its measurement and importance in water systems. in Water Analysis Volume 1, Academic Press, pp. 55-76.
- Bradbury, M.H., and Green, A., 1985. Measurement of important parameters determining aqueous diffusion rates through crystalline rock matrices. Journal of Hyrology, v. 82, pp. 39-55.
- Brewer, R., 1964. Fabric and Mineral Analysis of Soils. John Wiley and Sons Inc., New York, 470 p.
- Brown, T.B., and LeMay, H.E., 1981. Chemistry the Central Science, 2nd Edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 840 p.
- Buol, S.W., Hole, F.D., and McCracken, R.J., 1980. Soil Genesis and Classification, 2nd Edition. Iowa State University Press, Ames, Iowa, 404 p.
- Chan, K.Y., and Mead, J.A., 1989. Water movement and macroporosity of an Australian alfisol under different tillage and pasture conditions. Soil Tillage and Research, v. 14, pp. 301-310.
- Cheng, J.D., 1988. Subsurface stormflows in the highly permeable forested watersheds of southwestern British Columbia. Journal of Contaminant Hydrology, v. 3, pp. 171-191.
- Davis, S.N., Campbell, D.J., Bentley, H.W., and Flynn, T.J., 1985. An Introduction to Ground-Water Tracers. U.S. Environmental Protection Agency, EPA/600/2-85/022, 201 p.
- D'Lugsoz, J.J., 1976. Degradation of water quality by salt water infiltration in east-central Oklahoma. Geological Society of America Abstracts of Programs, v. 8, pp. 837-838.
- Edwards, W.M., Shipitalo, M.J., Norton, L.D., 1988. Contribution of macroporosity to infiltration into a continuous corn no-tilled watershed: implications for contaminant movement. Journal of Contaminant Hydrology, V. 3, pp. 193-205.
- Edwards, W.M., Norton, L.D., and Redmond, C.E., 1988. Characterizing macropores that affect infiltration into nontilled soil. Soil Science Society of America Journal, v. 52, pp. 483-487.
- Ehlers, W., 1975. Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science, v. 119, pp. 242-249.

- Faiq, S.Y., and Al-Taie, F.A., 1988. Atmospheric lead and bromine levels in downtown Baghdad. Water, Air and Soil Pollution, v. 42, pp. 153-158.
- Froneberger, D.F., 1989. Influence of Prevailing Hydrologic Conditions on Variation in Shallow Groundwater Quality. Unpublished M.S. Thesis, Oklahoma State University, 153 p.
- Gerhart, J.M., 1986. Groundwater recharge and its effects on nitrate concentration beneath a manured field site in Pennsylvania. Ground Water, v. 24, pp. 237-244.
- Germann, P., and Beven, K., 1981. Water flow in soil macropores I. An experimental approach. Journal of Soil Science, v. 32, pp. 1-13.
- Germann, P.F., Edwards, W.M., and Owens, L.B., 1984. Profiles of bromide and increased soil moisture after infiltration into soils with macropores. Soil Science Society of America Journal, v. 48, pp. 237-244.
- Gerritse, R.G., and Singh, R., 1988. The relationship between pore water velocity and longitutindal dispersivity of Cl-, Br-, and D<sub>2</sub>O in soils. Journal of Hydrology, v. 104 pp. 173-180.
- Griffin, R.A., Gibbs, J.P., and Schuller, R.M., 1981. Procedure for the Collection of Representative Water Quality Data From Monitoring Wells. Cooperative Groundwater Report 7, Champaign, Illinois, Illinois State Water Survey.
- Haaser, F.G., Jester, W.A., Heald, W.R., Rogowski, A.S., and Pionke, H.B., 1978. Use of Neutron Activatable Tracers for Simulating Water and Chemical Flow Through Porous Media. Research Project Technical Completion Report, Pennsylvania State University, OWRT A-046-PA(2), 14-34-0001-6039.
- Hagen, D.J., 1986. Spatial and Temporal Variability of Ground Water Quality in a Shallow Aquifer in Northcentral Oklahoma. Unpublished M.S. Thesis, Oklahoma State University, 191 p.
- Heard, J.R., Kladivko, E.J., and Mannering, J.V., 1988. Soil macroporosity, hydraulic conductivity and air permeability of silty soils under long term conservation tillage in Indiana. Soil Tillage and Research, v. 11, pp. 1-18.

- Hem, J.D., 1985. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hillel, D., 1971. Soil and Water, Physical Principles and Processes. Academic Press, New York, 288 p.
- Hoogmoed, W.B., and Bouma, J., 1980. A simulation model for predicting infiltration into cracked clay soil. Soil Sci. Soc. Am. J., v. 44, pp.458-461.
- Hounslow, A.W., 1989. WATEVAL: A Non-Thermodynamic Computer Model for Water Quality Interpretation. School of Geology, Oklahoma State University.
- Hoyle, B.L., 1987. Suburban Hydrogeology and Ground-water Geochemistry of the Ashport Silt Loam, Payne County, Oklahoma. Unpublished M.S. Thesis, Oklahoma State University, 277 p.
- Keller, C.K., Van Der Kamp, G., and Cherry, J.A., 1986. Fracture permeability and groundwater flow in clayey till near Saskatoon, Saskatchewan. Canadian Geotechnical Journal, V. 23, pp. 229-240.
- Lawes, J.B., Gilbert, J.H., and Warington, R., 1882. On the Amount and Composition of the Rain and Drainage Water Collected at Rothamsted. Williams, Clowes and Sons Ltd., London.
- Leap, D.I., and Sun, R.J., 1978. Iodide and Bromide Tracer Studies in Carbonate Rock. U.S. Geological Survey Professional Paper 1100, p. 223.
- LeBlanc, D.R., and Garabedian, S.P., 1986. Preliminary results of a natural gradient aquifer test in a sand and gravel aquifer, Cape Cod, Massachusetts. EOS, v. 67, p. 286.
- Li, E.A., Shanholtz, V.O., and Carson, E.W., 1976. Estimating saturated hydraulic conductivity and capillary potential at the wetting front: Deparment of Agricultural Engineering, Virginia Polytechnical Institute and State University, Blacksburg, in Clapp, R.B., and Hornberger, G.M., 1978. Empirical equations for some soil hydraulic properties. Water Resources Research, v. 14, pp. 601-604.
- Louren, J.G., Wagenet, R.J., Bouma, J., and Wosten, J.M., 1988. Variability of saturated hydraulic conductivity in a glossaquic hapludalf with macropores. Soil Science, v. 145, pp. 20-28.

- Luxmoore, R.J., 1981. Micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal, v. 45, pp. 671-672.
- Mazor, E., 1976. The Ram Crater Lake, a note on the revival of a 2,000 year old ground-water tracing experiment. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, IAEA, Vienna, pp. 179-181.
- McIntyre, D.S., and Sleeman, J.R., 1982. Macropores and hydraulic conductivity in a swelling soil. Australian Journal of Soil Research, v. 20, pp. 251-254.
- Melby, J.T., 1989. A Comparitive Study of Hydraulic Conductivity Determinations for a Fine Grained Alluvium Aquifer. Unpublished M.S. Thesis, Oklahoma State University, 79 p.
- Minhas, P.S., and Khosla, B.K., 1986. Solute displacement in a silt loam soil as affected by the method of water application under different evaporation rates. Agricultural Water Management, v. 12, pp. 63-74.
- Muramatsu, Y., Uchida, S., Sriyotha, P., and Sriyotha, K., 1990. Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water, Air and Soil Pollution, v. 49, pp. 125-138.
- Nelson, M.J., 1989. Cause and Effect of Water Table Flucuations in a Shallow Aquifer System. Unpublished M.S. Thesis, Oklahoma State University, 95 p.
- Noble, G., 1976. Sanitary Landfill Design Handbook. Technomic Publishing Company, Westport, Connecticut.
- Olsen, R.E., and Daniel, D.E., 1981. Measurement of the hydraulic conductivity of fine grained soils. In T.F. Zimmie and C.O. Riggs (Eds.), Permeability and Groundwater Contaminant Transport, ASTM STP 746, American Society for Testing and Materials, pp. 18-64.
- Onken, A.B., Wendt, C.W., Hargrove, R.S., and Wilke, O.C., 1977. Relative movement of bromide and nitrate in soils under three irrigation systems. Soil Science Society of America Journal, v. 41, pp. 50-52.
- Osmin, W.L., 1977. Groundwater Tracing with Post Sampling Activation Analysis Using Bromide and Iodide Ions Injected Simultaneously into a Shallow Well System. M.S. Thesis, Pennsylvania State University, 132 p.

- Pettyjohn, W.A., 1982. Cause and effect of cyclic changes in ground-water quality. Ground Water Monitoring Review, v. 2, pp. 43-49.
- Pettyjohn, W.A., and Miller, A., 1982. Preliminary Estimates of Effective Ground-Water Recharge Rates in Central Oklahoma. Final Report Submitted to the Oklahoma Water Resources Board, Dept. of Geology, Oklahoma State University, Stillwater, Oklahoma, 32 p.
- Pettyjohn, W.A., White, H., and Dunn, S., 1983. Water Atlas of Oklahoma. University Center for Water Research, Oklahoma State University, Stillwater, 72 p.
- Pettyjohn, W.A., 1971. Water pollution by oil-field brines and related industrial wastes in Ohio. Ohio Journal of Science, v. 71, pp. 257-269.
- Pettyjohn, W.A., 1976. Monitoring cyclic fluctuations in ground-water quality. Ground Water, v. 14, pp. 472-480.
- Pollock, C.R., Robbins, G.A., and Mathewson, C.C., 1983. Groundwater monitoring in clay rich strata techniques difficulties, and potential solutions. In Proceedings of the 3rd National Symposium on Aquifer Restoration and Groundwater Monitoring, National Water Well Association, Dublin, Ohio.
- Priebe, D.L., and Blackmer, A.M., 1989. Preferential movement of oxygen-18-labeled water and nitrogen-15labeled urea through macropores in a Nicollet soil. Journal of Environmental Quality, v. 18, pp. 66-71.
- Quisenberry, V.L., and Phillips, R.E., 1976. Percolation of surface applied water in the field. Soil Science Society of America Journal, v. 40, pp. 484-489.
- Radulovich, R., Soloranzo, E., and Sollins, P., 1989. Soil macropore size distribution from water breakthrough curves. Soil Science Society of America Journal, v. 53, pp. 556-559.
- Reynolds, E.R.C., 1966. The percolation of rainwater through soil demonstrated by fluroescent dyes. Journal of Soil Science, v. 17, pp. 127-132.
- Roogowski, A.S., and Richie, E.B., 1984. Relationship of laboratory and field determined hydraulic conductivity in compacted clay soils. In Toxic and Hazardous Wastes. Technomic Publishing Company, Lancaster, PA, pp. 520-533.

- Rogowski, A.S., Simmons, D.E., 1988. Geostatistical analysis of field hydraulic conductivity in compacted clay. Mathematical Geology, v. 20, pp. 423-445.
- Ross, R.R., 1988. Temporal and Vertical Variability of the Soil and Ground-water Geochemistry of the Ashport Silt Loam, Payne County, Oklahoma. Unpublished M.S. Thesis, Oklahoma State University, 116 p.
- Rowe, J.J., Fournier, R.O., and Morey, G.W., 1965. Use of Sodium Iodide to Trace Underground Water Circulation in Hot Springs and Geysers of the Daisy Geyser Group, Yellowstone National Park. U.S. Geological Survey Professional Paper 525-B, pp. B184-B186.
- Shelton, J.W., Ross, J.S., Garden, A.J., and Franks, J.L., 1985. Geology and Mineral Resources of Payne County, Oklahoma. Oklahoma Geological Survey Bulletin 137, 85 p.
- Skopp, J., 1981. Comment on micro-, meso-, and macroporosity of soil. Soil Science Society of America Journal, v.45, p. 1246.
- Smettem, K.R.J., 1987. Characterization of water entry into a soil with contrasting textural class: spatial variability of infiltration parameters and influence of macroporosity. Soil Science, v. 144, pp. 167-174.
- Smith, S.J., and Davis, R.J., 1974. Relative movement of bromide and nitrate through soils. Journal of Environmental Quality, v. 3, pp. 152-155.
- Soil Conservation Service, 1987. Soil Survey of Payne County, Oklahoma. U.S. Department of Agriculture, 268 p.
- Stetzenbach, K.J., and Thompson, G.M., 1983. A new method for simultaneous measurement of C1-, Br-, NO<sub>3</sub> -, SCN-, and I- at sub-ppm levels in ground water. Ground Water. v. 21, pp. 36-41.
- Tennyson, L.C., and Settergren, C.D., 1980. Percolate water and bromide movement in the root zone of effluent irrigation sites. Water Resources Bulletin, v. 16. pp. 433-437.
- Thomas, G.W., and Phillips, R.E., 1979. Consequences of water movement in macropores. Journal of Environmental Quality, v. 8, pp. 149-152.
- Trent, J.D., Svejcar, T.J., and Christiansen, S., 1989. Effects of fumigation on growth, photosynthesis, water relations and mycorrhizal development of winter wheat in the field. Canadian Journal of Plant Science, v. 69, pp. 535-540.
- Ubom, G.A., and Tsuchiya, Y., 1988. Determination of iodide in natural water by ion chromatography. Water Resources, v. 22, pp. 1455-1458.
- U.S. Geological Survey, 1979. Topographic Map of Stillwater North Quadrangle, Oklahoma, 7.5 Minute Series.
- Wild, A., and Babiker, I.A., 1976. The assymetric leaching pattern of nitrate and chloride in a loamy sand under field conditions. Journal of Soil Science, v. 27, pp. 460-466.
- Zachmann, J.E., Linden, D.R., and Clapp, C.E., 1987. Macroporous infiltration and redistribution as affected by earthworms, tillage and residue. Soil Sci. Soc. Am. J., v. 51, pp. 1580-1586.

۰. ۱

ς

۰ ۰

. .

ę.

ñ

\*

1.C.F.

#### APPENDIXES

r

# APPENDIX A

v

# PRECIPITATION

99

INCHES OF PRECIPITATION 1989

| Day  | Jan. | Feb. | Nar., | .Apr. | May    | June | July   | Aug. | Sept. | Oct. | Nov. | Dec  |
|------|------|------|-------|-------|--------|------|--------|------|-------|------|------|------|
| I    | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.84 | 0.00   | ŧ    | 0.57  | 0.00 | 0.00 | 0.00 |
| 2    | 0.00 | 0.00 | 0.00  | 0.00  | 0.97   | 0.32 | 0.46   | ÷    | 0.00  | 0.00 | 0.02 | 0.3  |
| 3    | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.68 | 0.00   | 5    | 0.00  | 0.00 | 0.00 | 0.0  |
| 4    | 0.36 | 0.00 | 0.00  | 0.00  | 0.46   | 0.38 | 0.00   | ŧ,   | 1.80  | 0.00 | 0.00 | 0.00 |
| 5    | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | ŧ    | 0.00  | 0.00 | 0.00 | 0.00 |
| 6    | 0.00 | 0.20 | 0.00  | 0.00  | 0.00   | 0.02 | 0.00   | ¥    | 0.00  | 0.77 | 0.00 | 0.00 |
| 7    | 0.00 | 0.25 | 0.00  | 0.00  | 0.00   | 0.02 | 0.00   | ÷    | 0.00  | 0.00 | 0.00 | 0.00 |
| 8    | 0.03 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 9    | 0.00 | 0.04 | 0.00  | 0.02  | 0.00   | 0.00 | 0.00   | 0.00 | 0.02  | 0.01 | 0.00 | 0.00 |
| 10   | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00-; | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 11   | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.13 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 12   | 0.01 | 0.45 | 0.00  | 0.00  | ŧ      | 0.38 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 13   | 0.00 | 0.00 | 0.00  | 0.00  | ¥ -    | 0.78 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 14   | 0.12 | 0.00 | 0.00  | 0.00  | ŧ      | 0.00 | 3.76   | 1.16 | 0.00  | 0.00 | 0.00 | 0.00 |
| 15   | 0.00 | 0,00 | 0.00  | 0.00  | ŧ      | 0.00 | 0.00   | 0.48 | 0.00  | 0.00 | 0.00 | 0.00 |
| 16   | 0.00 | 0.00 | 0.00  | 0.00  | *      | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 17   | 0.00 | 0.00 | 0.00  | 0.00  | 0.32   | 0.00 | 0.01   | 0.00 | 0.00  | 0.00 | 0.00 | 0.0  |
| 18   | 0.00 | 0.00 | 0.00  | 0.00  | 0.02   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 19   | 0.00 | 0.14 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 20   | 0.00 | 0.00 | 0.00  | 0.09  | 0.00   | 0.00 | 0.00   | 0.02 | 0.00  | 0.00 | 0.00 | 0.00 |
| 21   | 0.00 | 0.00 | Ò.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.25 | 0.00  | 0.00 | 0.00 | 0.00 |
| 22   | 0.00 | 0.00 | 0.00  | 0.00  | 2.04   | 0.56 | 0.32   | 0.24 | 0.00  | 0.00 | 0.00 | 0.00 |
| 23   | 0.00 | 0.10 | 0.00  | 0.00  | 0.00   | 0.58 | 0.24   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 24   | 0.00 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 25   | 0.42 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 26   | 0.00 | 0.12 | 0.00  | 0.00  | 0.04   | 0.00 | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| 27   | 0.50 | 0.00 | 1.44  | 0.00  | 0.00   | 0.54 | 0.00   | 0.00 | 0.00  | 0.02 | 0.00 | 0.00 |
| 28   | 0.89 | 0.00 | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 0.00  | 0.16 | 0.00 | 0.06 |
| 29   | 0.00 |      | 0.00  | 0.00  | - 0.00 | 0.00 | ŧ      | 0.00 | 0.00  | 1.31 | 0.00 | 0.00 |
| 30   | 0.00 |      | 0.34  | 0.00  | 0.00   | 0.00 |        | 0.01 | 0.00  | 0.00 | 0.00 | 0.00 |
| 31   | 0.00 | l.   | 0.00  |       | 0.00   |      | ŧ      | 0.00 |       | 0.00 |      | 0.00 |
| otal | 1.53 | 1.30 | 1.78  | 0.11  | 3.85   | 5.23 | 4.91   | 2.16 | 4.59  | 2.27 | 0.02 | 0.44 |

\* Data unavailable due to equipment failure.

| Παν   | Tan      | Fab   | llar          | lar  |            | Tuno  | Inty | Lug  | Sent | Oct  | Nov  | Dec  |
|-------|----------|-------|---------------|------|------------|-------|------|------|------|------|------|------|
|       | J & II . |       | <b>M</b> di . |      | <b>a</b> y | 34110 | 5419 |      |      |      |      |      |
| 1     | 0.00     | 0.38  | 0.00          | 0.00 | 0.14       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | 0.02     | 0.00  | 0.00          | 0.00 | 1.74       | 0.32  | 0.00 | 0.44 | 0.00 | 0.84 | 0.00 | 0.02 |
| 3     | 0.00     | 0.00  | 0.00          | 0.00 | 0.02       | 0.00  | 0.00 | 1.80 | 0.00 | 0.00 | 0.30 | 0.00 |
| i,    | 0.00     | 0.02  | 0.00          | 0.00 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 |
| 5     | 0.00     | 0.00  | 0.12          | 0.01 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 6     | 0.00     | 0.00  | 0.40          | 0.00 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 7     | 0.00     | 0.00  | 0.14          | 0.00 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 |
| 8     | 0.00     | 0.00  | 0.00          | 0.00 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.12 | 0.26 | 0.00 |
| 9     | 0.00     | 0.02  | 0.00          | 0.70 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 10    | 0.00     | 0.00  | 2.36          | 0.20 | 0.00       | 0.00  | 0.00 | 0.06 | 1.34 | 0.00 | 0.00 | 0.00 |
| 11    | 0.00     | 0.00  | 0.86          | 0.00 | 0.34       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 12    | 0.00     | 0.00  | 0.04          | 0.00 | 0.00       | 0.00  | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 13    | 0.00     | 0.00  | 0.62          | 0.40 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 14    | 0.00     | 0.06  | 0.06          | 0.00 | 0.00       | 0.00  | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 |
| 15    | 0.00     | 0.00  | 0.00          | 0.00 | 0.10       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16    | 0.06     | 0.18  | 0.00          | 1.34 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 |
| 17    | 0.06     | 0.06  | 0.00          | 0.00 | 0.00       | 0.00  | 0.00 | 0.04 | 0.23 | 0.00 | 0.00 | 0.56 |
| 18    | 0.04     | 0.00  | 0.00          | 0.06 | 0.64       | 0.00  | 0.00 | 0.04 | 0.41 | 0.00 | 0.00 | 0.00 |
| 19    | 0.97     | 0.00  | 0.00          | 0.00 | 0.00       | 0.00  | 0.32 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 |
| 20    | 0.00     | 0.00  | 0.00          | 0.08 | 0.00       | 0.00  | 0.00 | 0.00 | 0.66 | 0.01 | 0.00 | 0.00 |
| 21    | 0.00     | 0.56  | 0.00          | 0.00 | 0.00       | 0.52  | 0.08 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 |
| 22    | 0.00     | 0.52  | 0.00          | 0.02 | 0.00       | 0.00  | 0.52 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 23    | 0.00     | 0.00  | 0.09          | 0.00 | 0.00       | 0.00  | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 |
| 24    | 0.00     | 0.00  | 0.00          | 0.34 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25    | 0.00     | 0.00  | 0.00          | 0.02 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 26    | 0.00     | 0.00  | 0.08          | 0.64 | 0.00       | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 27.   | 0.00     | 0.18  | 0.23          | 0.24 | 0.00       | 0.18  | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 28    | 0.00     | 1.16  | 0.10          | 0.00 | 0.00       | 0.00  | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
| 29    | 0.00     |       | 0.12          | 0.00 | 0.28       | 0.00  | 0.31 | 0.00 | 1.37 | 0.00 | 0.00 | 0.00 |
| 30    | 0.00     |       | 0.18          | 0.00 | 0.00       | 0.00  | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 31    | 0.00     |       | 0.00          |      | 0.00       |       | ŧ    | 0.00 |      | 0.00 |      | 0.02 |
| Total | 1.15     | 3.14  | 5.40          | 4.29 | 3.26       | 1.02  | 1.61 | 3.31 | 4.53 | 1.19 | 1.20 | 0.75 |
| Total | Annual:  | 30.85 | ;             |      |            |       |      |      |      |      |      |      |

INCHES OF PRECIPITATION 1990

INCHES OF PRECIPITATION 1991

| Da                | ay Jan.        | Feb. | War. | Apr. | Kay  | June |
|-------------------|----------------|------|------|------|------|------|
| 2                 | 0 0 0          | 0 00 | 0 00 | 0 00 | 0 00 |      |
|                   | 2 0.00         | 0 00 | 0.02 | 0 00 | 0.00 |      |
|                   | 3 0 00         | 0 00 | 0 00 | 1 43 | 0 00 |      |
| l                 | 0.00           | 0.00 | 0.00 | 0 00 | 0 15 |      |
|                   | 5 0.14         | 0.00 | 0.00 | 0.00 | 0.00 |      |
|                   | 5 0.00         | 0.00 | 0.00 | 0.00 |      |      |
| -                 | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| <i>с</i> <b>{</b> | 3 0.00         | 0.00 | 0.00 | 0.00 |      |      |
| , s               | 0.02           | 0.00 | 0.00 | 0.00 |      |      |
| 10                | 0.01           | 0.00 | 0.00 | 0.00 |      |      |
| 11                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 12                | 2 0.00         | 0.00 | 0.00 | 0.00 |      |      |
| 13                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 14                | 0.08           | 0.00 | 0.00 | 0.00 |      |      |
| 15                | 5 <b>0.0</b> 5 | 0.00 | 0.00 | 0.00 |      |      |
| 16                | 5 0.00         | 0.00 | 0.00 | 0.00 |      |      |
| 17                | 0.00           | 0.00 | 0.27 | 0.00 |      |      |
| 18                | 8 0.00         | 0.00 | 0.00 | 0.00 |      |      |
| 19                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| - 20              | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 21                | 0.00           | 0.00 | 0.00 | 0.08 |      |      |
| 22                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 23                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 24                | 0.00           | 0.02 | 0.00 | 0.55 |      |      |
| 25                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 26                | 0.00           | 0.00 | 0.00 | 0.16 |      |      |
| 27                | 0.00           | 0.00 | 0.06 | 0.00 |      |      |
| 28                | 0.00           | 0.00 | 0.00 | 0.00 |      |      |
| 29                | 0.00           |      | 0.19 | 0.00 |      |      |
| 30                | 0.00           |      | 0.00 | 0.00 |      |      |
| 31                | 0.00           |      | 0.00 |      |      |      |
| Tota              | 1 0.30         | 0.02 | 0.54 | 2.22 | 0.86 |      |

### APPENDIX B

, ,

# WATER LEVELS

WATER TABLE ELEVATION (Feet Above Sea Level) 1989

Month and Day

| WELL             | 4-12           | 4-23             | 5-3    | 5-11   | 5-17             | 5-31             | 6 - 1                     |
|------------------|----------------|------------------|--------|--------|------------------|------------------|---------------------------|
| A1               | 878.37         | 879.04           | 878.78 | 878.51 | 878.75           | 878.81           | 878.92                    |
| A2               | 878.85         | 879.06           | 878.78 | 878.51 | 878.80           | 878.80           | 878.92                    |
| A3               | 878.88         | 879.07           | 878.78 | 878.52 | 878.83           | 878.81           | 878.96                    |
| A4               | 878.89         | , 879.09         | 878.79 | 878.53 | 878.83           | 878.82           | 878.94                    |
| A5               | 878.88         | 879.09           | 878.80 | 878.24 | 8/8.8/           | 8/8.82           | 8/8.9/                    |
| BZ               | 878.50         | 879.17           | 878.98 | 878.69 | 8/8.90           | 8/8.92           | 878.09                    |
| B3<br>D4         | 878.52         | 879.19           | 878.89 | 8/8.64 | 878.76           | 8/8.92           | 878.95                    |
| B4<br>D5         | 8/3.23         | 879.20           | 878.90 | 8/3.63 | 8/8.9/<br>070 02 | 070 01           | 879.11<br>9 <b>7</b> 9.13 |
| B)<br>D(         | 878.94         | 070 22           | 070 02 | 879.70 | 373.UZ<br>970 92 | 879.01           | 879.13                    |
| БО<br>р <b>7</b> | 070 53         | 079.22<br>079.21 | 878 91 | 878 65 | 878.95           | 878 98           | 879.05                    |
| B9               | 878 54         | 879 22           | 878 93 | 878.05 | 879 05           | 878.98           | 879.00                    |
| B Q              | 878 52         | 879 19           | 878 89 | 878.00 | 879 08           | 878 97           | 879.06                    |
| B10              | 878.57         | 879.19           | 878.94 | 878.67 | 879.10           | 879.01           | 879.17                    |
| C1               | 879.51         | 879.15           | 878.79 | 878.51 | 878.63           | 878.77           | 878.90                    |
| C2               | 878.51         | 879.16           | 878.80 | 878.51 | 878.83           | 878.79           | S7S.92                    |
| C3               | 878.47         | 879.14           | 878.79 | 878.49 | 878.76           | 878.76           | 878.88                    |
| C4               | 878.46         | 879.15           | 878.79 | 878.49 | 878.83           | 878.77           | 878.93                    |
| C5               | 878.47         | 879.13           | 878.78 | 878.50 | 878.84           | 878.78           | 878.90                    |
| D1               | 879.77         | 879.44           | 878.95 | 878.64 | 878.78           | 879.06           | 879.02                    |
| D2               | 878.79         | 879.46           | 878.96 | 878.67 | 878.79           | 879.07           | 879.15                    |
| D3               | 877.78         | 879.43           | 878.92 | 878.65 | 878.70           | 879.07           | 879.01                    |
| D4               | 877.7 <i>5</i> | 879.39           | 878.97 | 878.65 | 878.88           | 879.02           | 879.11                    |
| D5               | 877.77         | 879.41           | 878.96 | 878.68 | 878.88           | 879.0 <i>5</i>   | 879.04                    |
| E1               | 879.38         | 879.53           | 879.08 | 878.82 | 879.38           | 879.28           | 879.39                    |
| E2               | 879.87         | 879.52           | 879.99 | 878.82 | 879.28           | 879.25           | 879.37                    |
| E3               | 878.90         | 879.50           | 879.39 | 878.83 | 879.61           | 879.2S           | 879.45                    |
| E4               | 878.88         | 879.51           | 879.10 | 878.82 | 879.12           | 879.25           | 879.36                    |
| E5               | 878.89         | 879.52           | 879.03 | 878.83 | 879.14           | 879.26           | 879.39                    |
| F1               | 878.04         | 879.23           | 879.92 | 878.63 | 878.95           | 878.96           | 879.10                    |
| F2               | 878.04         | 879.24           | 878.91 | 878.65 | 879.01           | 878.96           | 879.12                    |
| Gl               | 879.83         | 879.49           | 879.36 | 879.07 | 879.32           | 879.60           | 879.53                    |
| G2               | 879.81         | 879.47           | 879.24 | 879.07 | 879.31           | 879.41           | 879.52                    |
| HI               | 879.25         | 879.77           | 879.44 | 879.30 | 879.27           | 880.13           | 879.98                    |
| HZ               | 8/8.15         | 879.75           | 879.49 | 879.30 | 8/9.43           | 879.83           | 8/9./4                    |
|                  |                | 879.34           |        |        |                  | 879.13           |                           |
| 12               |                | 3/9.33<br>970 20 |        |        |                  | 3/9.10           |                           |
| כו<br>דו         | 870 02         | 879.30           | 070 20 | 070 00 | o <b>7</b> 0 22  | 8/9.UJ<br>870 /0 | 879 hE                    |
| JI               | 019.05         | 3/9.00           | 019.28 | 0/0.99 | 019.22           | 017.47           | 0/7.40                    |

\_\_\_\_

#### WATER TABLE ELEVATION (Feet Above Sea Level) 1989 - 1990

Month and Day

| WELL     6-12     6-14     6-20     10-6     11-7     1-11     6-11       A1     \$\$79.23     \$\$79.59     \$\$78.99     \$\$77.39     \$\$77.42     \$\$77.42     \$\$77.55     \$\$77.52     \$\$79.04       A3     \$\$79.23     \$\$79.57     \$\$\$77.55     \$\$77.55     \$\$77.54     \$\$79.04       A3     \$\$79.23     \$\$79.59     \$\$79.00     \$\$77.57     \$\$77.54     \$\$79.07       A4     \$\$79.25     \$\$79.50     \$\$79.03     \$\$77.01     \$\$77.57     \$\$77.54     \$\$79.07       A4     \$\$79.25     \$\$79.50     \$\$79.03     \$\$77.01     \$\$77.57     \$\$77.56     \$\$79.29       B5     \$\$79.42     \$\$79.76     \$\$79.15     \$\$77.16     \$\$77.66     \$\$79.20     \$\$77.67     \$\$77.66     \$\$79.20     \$\$77.67     \$\$77.66     \$\$79.25     \$\$79.38     \$\$79.79     \$\$79.20     \$\$77.67     \$\$77.66     \$\$79.25     \$\$79.25     \$\$79.38     \$\$79.79     \$\$79.20     \$\$77.67     \$\$77.66     \$\$77.65     \$\$79.25     \$\$79.26     \$\$77.66     \$\$77.29     \$77.24 |            |                | ٠              | 1989    | `,     | <u></u>              | 19             | 90             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|---------|--------|----------------------|----------------|----------------|
| A1   S79.23   S79.59   S78.99   S77.39   S77.42   S77.42   S79.06     A2   S79.23   S79.57   S78.99   S76.97   S77.55   S77.52   S79.04     A3   S79.21   S79.59   S79.00   S77.01   S77.57   S77.54   S79.07     A4   S79.24   S79.50   S79.00   S77.01   S77.57   S77.56   S79.07     A4   S79.25   S79.50   S79.03   S77.01   S77.57   S77.56   S79.09     B1   S79.25   S79.50   S79.13   S77.15   S77.66   S79.21   S79.39     B2   S79.36   S79.72   S79.15   S77.16   S77.67   S77.66   S79.21     B4   S79.38   S79.79   S79.15   S77.16   S77.67   S77.66   S79.25     B5   S79.38   S79.79   S79.18   S77.17   S77.67   S77.66   S79.26     B79.39   S79.79   S79.18   S77.17   S77.76   S77.66   S79.26     B79.39   S79.79   S79.20   S77.37   S77.43   S77.43                                                                                                                                                                                                                                                                                              | WELL       | 6-12           | 6-14           | 6-20    | 10-6   | 11-7                 | 1 - 1 1        | 6-11           |
| A2   879.23   879.57   878.99   876.97   877.55   877.52   879.04     A3   879.21   879.59   879.00   877.01   877.57   877.52   879.07     A4   879.24   879.58   879.00   876.56   876.56   876.52   879.07     A5   879.25   879.50   879.03   877.01   877.59   877.56   879.09     B1   879.36   879.72   879.15   877.15   877.66   877.66   879.21     B4   879.36   879.75   879.15   877.16   877.67   877.66   879.22     B3   879.38   879.79   879.15   877.16   877.67   877.66   879.26     B5   879.42   879.78   879.17   877.17   877.67   877.65   879.25     B6   879.38   879.79   879.18   877.17   877.76   877.65   879.26     B79.39   879.79   879.17   877.15   877.67   877.65   879.26     B79.39   879.79   879.17   877.15   877.67   877.67                                                                                                                                                                                                                                                                                              | A1         | 879.23         | 879.59         | 878.99  | 877.39 | 877.42               | 877.42         | 879.06         |
| A3   879.21   879.99   879.00   877.01   877.57   877.57   877.54   879.07     A4   879.24   879.58   879.00   876.56   876.56   877.56   879.00     B1   879.25   879.06   879.03   877.01   877.56   879.06     B2   879.36   879.76   879.13   877.49   877.66   877.66   879.21     B3   879.36   879.75   879.15   877.16   877.67   877.66   879.21     B4   879.38   879.77   879.17   877.16   877.67   877.66   879.26     B5   879.37   879.79   879.20   877.17   877.67   877.66   879.25     B6   879.38   879.79   879.17   877.15   877.67   877.66   879.25     B7   879.38   879.79   879.17   877.15   877.67   877.66   879.25     B7   879.38   879.79   879.17   877.15   877.67   877.67   877.65   879.25     B7   879.38   879.79   879.17 <td< td=""><td>A2</td><td>879.23</td><td>879.57</td><td>878.99</td><td>876.97</td><td>877.55</td><td>877.52</td><td>879.04</td></td<>                                                                                                                                                                | A2         | 879.23         | 879.57         | 878.99  | 876.97 | 877.55               | 877.52         | 879.04         |
| A4   879.24   879.58   879.00   876.56   876.56   876.52   879.06     A5   879.25   879.50   879.03   877.01   877.59   877.56   879.09     B1   879.36   879.72   879.13   877.49   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   879.22     B4   879.36   879.72   879.15   877.16   877.66   877.66   877.65   879.22     B4   879.38   879.79   879.17   877.15   877.67   877.66   879.25     B5   879.38   879.79   879.17   877.15   877.67   877.65   879.25     B6   879.38   879.79   879.17   877.15   877.67   877.63   879.26     B79.38   879.79   879.17   877.15   877.67   877.63   879.26     B79.28   879.66   879.00   877.37   877.43   879.14     C3   879.26   879.63   879.00   876.71   877.37   877.43                                                                                                                                                                                                                                                                                   | A3         | 879.21         | 879.59         | 879.00  | 877.01 | 877.57               | 877.54         | 879.07         |
| A5   879.25   879.50   879.03   877.01   877.59   877.56   879.09     B1   S79.30   S79.92   S79.39   S79.39   S79.39     B2   879.36   S79.72   879.15   S77.49   S77.66   S77.66   S79.22     B3   S79.36   S79.72   S79.15   S77.16   S77.66   S77.66   S79.22     B4   879.38   S79.75   S79.15   S77.16   S77.67   S77.66   S77.66   S79.26     B5   S79.42   S79.79   S79.17   S77.15   S77.69   S77.65   S79.25     B6   S79.38   S79.79   S79.17   S77.15   S77.67   S77.63   S79.25     B7   S79.38   S79.79   S79.17   S77.15   S77.67   S77.63   S79.24     B10   S79.42   S79.79   S79.00   S77.38   S77.37   S77.44   S79.26     S79.26   S79.61   S79.00   S76.74   S77.37   S77.42   S79.13     C3   S79.47   S79.77   S79.27   S76.68   S77.28   S77.42                                                                                                                                                                                                                                                                                                 | A4         | 879.24         | 879.58         | 879.00  | 876.99 | 876.56               | 876.52         | 879.06         |
| B1   379.92   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.66   877.67   877.66   877.67   877.66   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.67   877.63   879.25   879.38   879.77   879.17   877.17   877.77   877.75   879.26   879.20   877.17   877.67   877.63   877.63   879.26   879.20   877.38   877.63   877.63   879.26   879.20   877.37   877.43   879.14   879.14   879.14   879.20   877.37   877.43   877.43   879.24   879.26   879.00   876.73   877.37   877.43   879.14   879.14   879.14   879.13   877.44   879.13   877.44   879.13   875.44   879.13   877.44                                                                                                                                                                                                                   | A5         | 879.2 <i>5</i> | 879.50         | 879.03  | 877.01 | 877.59               | 877.56         | 879.09         |
| B2   879.36   879.76   879.13   877.49   877.66   877.65   879.22     B3   879.36   879.72   879.15   877.16   877.66   877.66   877.66   879.21     B4   879.38   879.79   879.15   877.16   877.67   877.66   877.66   879.22     B5   879.42   879.79   879.17   877.16   877.67   877.65   879.25     B6   879.37   879.78   879.17   877.15   877.67   877.66   879.25     B7   879.38   879.79   879.17   877.15   877.67   877.63   879.26     B9   879.39   879.79   879.17   877.15   877.67   877.63   879.24     B10   879.42   879.79   879.17   877.15   877.67   877.43   879.24     B10   879.42   879.79   879.00   877.38   877.40   879.26     C2   879.26   879.61   879.00   876.73   877.37   877.41   879.14     C3   879.26   879.67   877.25   <                                                                                                                                                                                                                                                                                                | B1         |                | 879.92         |         |        |                      |                | 879.39         |
| B3   879.36   879.72   879.15   877.15   877.66   877.66   877.66   877.66   877.66   879.21     B4   879.38   879.75   879.15   877.16   877.67   877.66   879.26     B5   879.37   879.79   879.20   877.20   877.67   877.65   879.25     B6   879.37   879.78   879.17   877.15   877.69   877.65   879.25     B7   879.38   879.79   879.17   877.15   877.67   877.63   879.25     B8   879.38   879.79   879.17   877.15   877.67   877.63   879.26     B9   879.28   879.79   879.20   877.29   877.67   877.67   877.63   879.26     C1   879.28   879.66   879.00   876.73   877.37   877.43   879.14   879.16     C3   879.26   879.61   879.00   876.73   877.37   877.41   879.16     C4   879.47   879.77   879.27   876.68   877.25   877.42   879.53                                                                                                                                                                                                                                                                                                    | B2         | 879.36         | 879.76         | 879.13  | 877.49 | 877.66               | 877.65         | 879.22         |
| B4   879.38   879.75   879.15   877.16   877.67   877.66   879.26     B5   879.42   879.79   879.20   877.20   877.67   877.65   879.27     B6   879.37   879.78   879.17   877.15   877.69   877.65   879.25     B7   879.38   879.79   879.18   877.15   877.67   877.66   879.25     B8   879.38   879.79   879.17   877.15   877.67   877.66   879.26     B9   879.39   879.79   879.17   877.15   877.67   877.66   879.26     B10   879.28   879.79   879.20   877.30   877.43   879.24     B10   879.29   879.66   879.00   877.38   877.43   879.14     C2   879.27   879.63   879.00   876.71   877.37   877.41   879.13     C5   879.26   879.77   879.27   876.69   877.25   877.42   879.53     D1   879.47   879.77   879.27   876.69   877.25   877.42   <                                                                                                                                                                                                                                                                                                | B3         | 879.36         | 879.72         | 879.15  | 877.15 | 877.66               | 877.66         | 879.21         |
| B5   879.42   879.79   879.20   877.20   877.67   877.67   877.65   879.27     B6   879.37   879.78   879.17   877.15   877.69   877.65   879.25     B7   879.38   879.79   879.17   877.17   877.67   877.65   879.25     B8   879.38   879.79   879.17   877.15   877.67   877.66   877.20     B10   879.39   879.79   879.17   877.15   877.67   877.63   879.26     B10   879.42   879.79   879.20   877.38   877.43   879.24     B10   879.42   879.79.79   879.00   877.38   877.43   879.24     B10   879.26   879.64   879.00   876.73   877.37   877.43   879.16     C2   879.26   879.63   879.00   876.73   877.37   877.43   879.16     C4   879.27   879.63   879.00   876.73   877.25   877.42   879.13     C5   879.26   879.61   879.00   876.75   877.25                                                                                                                                                                                                                                                                                               | B4         | 879.38         | 879.7 <i>5</i> | 879.15  | 877.16 | 877.67               | 877.66         | 879.26         |
| B6   879.37   879.78   879.17   877.15   877.69   877.65   879.25     B7   879.38   879.79   879.18   877.17   877.70   877.75   879.25     B8   879.38   879.79   879.17   877.15   877.69   877.66   877.66   879.26     B9   879.39   879.79   879.17   877.15   877.67   877.63   879.24     B10   879.42   879.79   879.20   877.38   877.67   879.24     B10   879.28   879.66   879.00   877.38   877.43   879.14     C3   879.26   879.63   878.98   876.71   877.38   877.41   879.16     C4   879.26   879.61   879.00   876.73   877.41   877.41   879.13     C5   879.26   879.77   879.27   876.68   877.25   877.42   879.53     D3   879.47   879.77   879.27   876.75   877.28   877.46   879.53     D3   879.47   879.79.77   879.27   876.75   877.28                                                                                                                                                                                                                                                                                                 | B <i>5</i> | 879.42         | 879.79         | 879.20  | 877.20 | 877.67               | 877.68         | 879.27         |
| B7   879.38   879.79   879.18   877.17   877.70   877.75   879.25     B8   879.38   879.78   879.17   877.15   877.69   877.66   879.26     B9   879.39   379.79   879.17   877.15   877.67   877.63   879.26     B10   879.28   879.79   879.20   877.29   877.80   877.75   879.28     C2   879.29   879.64   879.00   877.38   877.43   879.14     C3   879.26   879.63   878.98   876.71   877.37   877.43   879.16     C4   879.27   879.63   879.00   876.73   877.37   877.42   879.13     C5   879.26   879.61   879.00   876.74   877.37   877.42   879.13     D2   879.47   879.77   879.27   876.68   877.25   877.42   879.53     D3   879.47   879.81   879.27   876.77   877.33   877.42   879.53     D4   879.51   879.72   876.75   877.28   877.42 <t< td=""><td>B6</td><td>879.37</td><td>879.78</td><td>879.17</td><td>877.15</td><td>877.69-</td><td>877.65</td><td>879.25</td></t<>                                                                                                                                                                | B6         | 879.37         | 879.78         | 879.17  | 877.15 | 877.69-              | 877.65         | 879.25         |
| B8   879.38   879.78   879.17   877.15   877.69   877.66   879.26     B9   879.39   879.79   879.17   877.15   877.67   877.63   879.24     B10   879.42   879.79   879.20   877.29   877.80   877.75   879.36     C1   879.28   879.64   879.00   877.38   877.37   877.43   879.14     C3   879.26   879.64   879.00   876.73   877.38   877.44   879.14     C3   879.26   879.63   879.00   876.73   877.38   877.41   879.13     C4   879.27   879.63   879.00   876.74   877.37   877.42   879.13     C5   879.26   879.61   879.00   876.75   877.28   877.42   879.53     D2   879.47   879.77   879.27   876.69   877.25   877.42   879.53     D3   879.47   879.81   879.27   876.77   877.33   877.42   879.53     D4   879.51   879.87   879.88   879.27 <t< td=""><td>B7</td><td>879.38</td><td>879.79</td><td>879.18</td><td>877.17</td><td>877.70</td><td>877.7<i>5</i></td><td>879.2<i>5</i></td></t<>                                                                                                                                                   | B7         | 879.38         | 879.79         | 879.18  | 877.17 | 877.70               | 877.7 <i>5</i> | 879.2 <i>5</i> |
| B9   879.39   879.79   879.17   877.15   877.67   877.63   879.24     B10   879.42   879.79   879.20   877.29   877.80   877.75   879.36     C1   879.28   879.66   879.00   877.38   879.20   877.37   877.43   879.28     C2   879.29   879.64   879.00   876.73   877.37   877.43   879.14     C3   879.26   879.63   879.00   876.73   877.38   877.42   879.13     C5   879.26   879.61   879.00   876.73   877.37   877.42   879.13     C5   879.26   879.61   879.00   876.74   877.37   877.42   879.13     C5   879.47   879.77   879.27   876.68   877.25   877.42   879.53     D3   879.47   879.77   879.27   876.75   877.28   877.46   879.54     D4   879.51   879.87   879.26   877.02   877.33   877.42   879.53     D5   879.47   879.88   879.26 <t< td=""><td>B8</td><td>879.38</td><td>879.78</td><td>879.17</td><td>877.15</td><td>877.69</td><td>877.66</td><td>879.26</td></t<>                                                                                                                                                                 | B8         | 879.38         | 879.78         | 879.17  | 877.15 | 877.69               | 877.66         | 879.26         |
| B10879.42879.79879.20877.29877.80877.75879.36C1879.28879.66879.00877.38877.37877.43879.28C2879.29879.64879.01876.73877.37877.43879.14C3879.26879.63878.98876.71877.34877.40879.16C4879.26879.63879.00876.74877.37877.41879.16C5879.26879.61879.00876.74877.37877.41879.16D1879.47879.77879.27876.68877.25877.42879.53D3879.47879.77879.27876.69877.25877.42879.53D4879.51879.86879.27876.75877.33877.42879.53D5879.49879.88879.26876.75877.33877.42879.53D5879.49879.88879.26877.02877.34877.43879.52E1879.71880.09879.51877.08877.54877.59879.74E3879.71880.08879.53877.06877.57877.58879.73E4879.68880.09879.51877.69877.57877.58879.72F1879.38879.77879.18877.69877.57877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880                                                                                                                                                                                                                                                                                                                            | B9         | 879.39         | 879.79         | 879.17  | 877.15 | 877.67               | 877.63         | 879.24         |
| C1   879.28   879.66   879.00   877.38   877.37   877.43   879.14     C2   879.29   879.64   879.01   876.73   877.37   877.43   879.14     C3   879.26   879.63   878.98   876.71   877.34   877.40   879.16     C4   879.27   879.63   879.00   876.73   877.38   877.42   879.16     C5   879.26   879.61   879.00   876.73   877.37   877.41   879.16     D1   879.47   879.77   879.27   876.68   877.25   877.42   879.13     D2   879.47   879.77   879.27   876.69   877.25   877.42   879.53     D3   879.47   879.81   879.26   876.77   877.33   877.42   879.53     D4   879.51   879.86   879.27   876.77   877.33   877.42   879.53     D5   879.49   879.88   879.26   877.02   877.34   877.53   879.53     D4   879.72   880.09   879.51   877.08 <td< td=""><td>B10</td><td>879.42</td><td>879.79</td><td>879.20</td><td>877.29</td><td>877.80</td><td>877.75</td><td>879.36</td></td<>                                                                                                                                                               | B10        | 879.42         | 879.79         | 879.20  | 877.29 | 877.80               | 877.75         | 879.36         |
| C2   879.29   879.64   879.01   876.73   877.37   877.43   879.14     C3   879.26   879.63   878.98   876.71   877.34   877.40   879.16     C4   879.27   879.63   879.00   876.73   877.38   877.42   879.13     C5   879.26   879.61   879.00   876.74   877.37   877.41   879.16     D1   879.47   879.77   879.27   876.68   877.25   877.42   879.53     D3   879.47   879.77   879.27   876.69   877.25   877.42   879.54     D4   879.51   879.81   879.26   876.75   877.33   877.42   879.53     D5   879.49   879.88   879.26   877.02   877.34   877.43   879.52     E1   879.71   880.09   879.51   877.02   877.34   877.53   879.53     E2   879.71   880.08   879.50   877.02   877.54   877.53   879.73     E4   879.68   80.09   879.51   877.06                                                                                                                                                                                                                                                                                                       | C1         | 879.28         | 879.66         | 879.00  | 877.38 |                      |                | 879.28         |
| C3   879.26   879.63   878.98   876.71   877.34   877.40   879.16     C4   879.27   879.63   879.00   876.73   877.38   877.42   879.13     C5   879.26   879.61   879.00   876.74   877.37   877.41   879.13     D1   879.47   879.77   879.27   876.68   879.13     D2   879.47   879.77   879.27   876.68   877.25   877.42   879.53     D3   879.47   879.78   879.27   876.69   877.25   877.42   879.53     D3   879.47   879.81   879.26   876.77   877.33   877.42   879.53     D4   879.51   879.86   879.27   876.77   877.34   877.43   879.53     D5   879.49   879.88   879.26   877.02   877.34   877.43   879.53     D4   879.71   880.09   879.51   877.02   877.54   877.53   879.53     E1   879.71   880.08   879.50   877.06   877.57   877.58 <td< td=""><td>C2</td><td>879.29</td><td>879.64</td><td>879.01</td><td>876.73</td><td>877.37</td><td>877.43</td><td>879.14</td></td<>                                                                                                                                                                | C2         | 879.29         | 879.64         | 879.01  | 876.73 | 877.37               | 877.43         | 879.14         |
| C4   879.27   879.63   879.00   876.73   877.38   877.42   879.13     C5   879.26   879.61   879.00   876.74   877.37   877.41   879.16     D1   879.47   879.77   879.27   876.68   879.13     D2   879.47   879.77   879.27   876.69   877.25   877.42   879.53     D3   879.47   879.81   879.27   876.75   877.28   877.46   879.54     D4   879.51   879.86   879.27   876.77   877.33   877.42   879.53     D5   879.49   879.88   879.26   877.02   877.34   877.43   879.52     E1   879.72   880.09   879.51   877.09   877.54   877.53   879.73     E2   879.71   880.08   879.50   877.06   877.54   877.58   879.73     E4   879.68   880.09   879.51   877.06   877.54   877.58   879.72     F1   879.38   879.77   879.18   877.69   877.57   877.58 <td< td=""><td>C3</td><td>879.26</td><td>879.63</td><td>878.98</td><td>876.71</td><td>877.34</td><td>877.40</td><td>879.16</td></td<>                                                                                                                                                                | C3         | 879.26         | 879.63         | 878.98  | 876.71 | 877.34               | 877.40         | 879.16         |
| C5   879.26   879.61   879.00   876.74   877.37   877.41   879.16     D1   879.47   879.77   879.27   876.68   879.13     D2   879.47   879.77   879.27   876.69   877.25   877.42   879.53     D3   879.47   879.81   879.26   876.75   877.28   877.42   879.54     D4   879.51   879.86   879.27   876.77   877.33   877.42   879.53     D5   879.49   879.88   879.26   877.02   877.34   877.43   879.52     E1   879.72   880.09   879.51   877.08   877.54   877.53   879.73     E2   879.71   880.08   879.50   877.06   877.54   877.53   879.73     E4   879.68   880.09   879.51   877.06   877.54   877.58   879.72     F1   879.38   879.77   879.18   877.66   877.57   877.58   879.72     F1   879.40   879.78   879.18   877.69   877.58   877.92 <td< td=""><td>C4</td><td>879.27</td><td>879.63</td><td>879.00</td><td>876.73</td><td>877<sup>.</sup>.38</td><td>877.42</td><td>879.13</td></td<>                                                                                                                                                    | C4         | 879.27         | 879.63         | 879.00  | 876.73 | 877 <sup>.</sup> .38 | 877.42         | 879.13         |
| D1879.47879.77879.27876.68879.13D2879.47879.77879.27876.69877.25877.42879.53D3879.47879.81879.26876.75877.28877.46879.54D4879.51879.86879.27876.77877.33877.42879.53D5879.49879.88879.26877.02877.34877.43879.52E1879.72880.09879.51877.08877.51877.53879.53E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.06877.57877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.69877.58879.28879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.2711879.86879.83879.75879.99879.99879.9912879.86879.83879.75879.99879.                                                                                                                                                                                                                                                                                                                            | C5         | 879.26         | 879.61         | 879.00  | 876.74 | 877.37               | 877.41         | 879.16         |
| D2879.47879.77879.27876.69877.25877.42879.53D3879.47879.81879.26876.75877.28877.46879.54D4879.51879.86879.27876.77877.33877.42879.53D5879.49879.88879.26877.02877.34877.43879.52E1879.72880.09879.51877.02877.54877.53879.53E2879.71880.08879.48877.09877.54877.63879.73E4879.71880.08879.50877.06877.54877.58879.73E5879.75880.12879.53877.06877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.72F2879.40879.78879.18877.69877.58879.28879.28G1879.94880.15879.92877.66877.94877.87880.28H1880.19880.31880.20877.69877.91877.86880.2711879.94880.31880.15879.30877.91877.86880.2711879.83879.83879.83879.83879.99879.9931879.91880.25879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                          | D1         | 879.47         | 879.77         | 87,9.27 | 876.68 |                      |                | 879.13         |
| D3879.47879.81879.26876.75877.28877.46879.54D4879.51879.86879.27876.77877.33877.42879.53D5879.49879.88879.26877.02877.34877.43879.52E1879.72880.09879.51877.08877.51877.53879.53E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.06877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.69877.57877.58879.28G1879.94880.09879.70877.69877.94877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94880.25879.75879.30877.91877.86880.27J1879.86879.83879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2         | 879.47         | 879.77         | 879.27  | 876.69 | 877.2 <i>5</i>       | 877.42         | 879.53         |
| D4879.51879.86879.27876.77877.33877.42879.53D5879.49879.88879.26877.02877.34877.43879.52E1879.72880.09879.51877.02877.34877.53879.53E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.06877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.92879.31G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.69877.94877.87880.28H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.86879.83879.83879.83879.91879.95879.75J1879.91880.25879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                | D3         | 879.47         | 879.81         | 879.26  | 876.75 | 877.28               | 877.46         | 879.54         |
| D5879.49879.88879.26877.02877.34877.43879.52E1879.72880.09879.51877.08877.51877.53879.53E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.06877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.69877.94877.87880.28H1880.19880.31880.20877.69877.91877.86880.27I1879.94879.86879.30877.91877.86880.27I1879.86879.83879.83879.75879.99J1879.91880.25879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D4         | 879.51         | 879.86         | 879.27  | 876.77 | 877.33               | 877.42         | 879.53         |
| E1879.72880.09879.51877.08877.51877.53879.53E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.08877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.83879.83879.75879.99J1879.81880.25879.75879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D5         | 879.49         | 879.88         | 879.26  | 877.02 | 877.34               | 877.43         | 879.52         |
| E2879.71880.08879.48877.09877.54877.59879.74E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.08877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.2711879.94879.8331879.83879.79879.9931879.91880.25879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E1         | 879.72         | 880.09         | 879.51  | 877.08 | 877.51               | 877.53         | 879.53         |
| E3879.71880.08879.50877.06877.54877.63879.73E4879.68880.09879.51877.08877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.83879.83879.75879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E2         | 879.71         | 880.08         | 879.48  | 877.09 | 877.54               | 877.59         | 879.74         |
| E4879.68880.09879.51877.08877.54877.58879.73E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.83879.83879.91879.75879.99J1879.91880.25879.75879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E3         | 879.71         | 880.08         | 879.50  | 877.06 | 8,77.54              | 877.63         | 879.73         |
| E5879.75880.12879.53877.06877.57877.58879.72F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.8331879.83879.99879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E 4        | 879.68         | 880.09         | 879.51  | 877.08 | 877.54               | 877.58         | 879.73         |
| F1879.38879.77879.18877.06877.57877.58879.74F2879.40879.78879.18877.69877.58877.58879.28G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.83879.83879.83879.91880.25879.75879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E <i>5</i> | 879.7 <i>5</i> | 880.12         | 879.53  | 877.06 | 877.57               | 877.58         | 879.72         |
| F2   879.40   879.78   879.18   877.69   877.58   877.58   879.28     G1   879.94   880.09   879.70   877.70   878.11   877.92   879.31     G2   879.96   880.15   879.92   877.68   878.08   877.93   879.68     H1   880.19   880.31   880.20   877.69   877.94   877.87   880.28     H2   880.31   880.49   880.15   879.30   877.91   877.86   880.27     I1   879.94   879.83   879.83   879.83   879.89   879.75   879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F1         | 879.38         | 879.77         | 879.18  | 877.06 | 877.57               | 877.58         | 879.74         |
| G1879.94880.09879.70877.70878.11877.92879.31G2879.96880.15879.92877.68878.08877.93879.68H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94879.83879.83879.83879.91879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F2         | 879.40         | 879.78         | 879.18  | 877.69 | 877.58               | 877.58         | 879.28         |
| G2   879.96   880.15   879.92   877.68   878.08   877.93   879.68     H1   880.19   880.31   880.20   877.69   877.94   877.87   880.28     H2   880.31   880.49   880.15   879.30   877.91   877.86   880.27     H1   879.94   879.86   879.83   879.83   879.83   879.91   879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G1         | 879.94         | 880.09         | 879.70  | 877.70 | 878.11               | 877.92         | 879.31         |
| H1880.19880.31880.20877.69877.94877.87880.28H2880.31880.49880.15879.30877.91877.86880.27I1879.94I2879.86I3879.83J1879.91880.25879.75879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G2         | 879.96         | 880.15         | 879.92  | 877.68 | 878.08               | 877.93         | 879.68         |
| H2   880.31   880.49   880.15   879.30   877.91   877.86   880.27     I1   879.94   879.86   879.86   879.83   879.83   879.91   879.99     J1   879.91   880.25   879.75   879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H1         | 880.19         | 880.31         | 880.20  | 877.69 | 877.94               | 877.87         | 880.28         |
| I1 879.94   I2 879.86   I3 879.83   J1 879.91 880.25 879.75   879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H2         | 880.31         | 880.49         | 880.15  | 879.30 | 877.91               | 877.86         | 880.27         |
| I 2     879.86       I 3     879.83       J1     879.91     880.25     879.75     879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I 1        |                | 879.94         |         |        |                      |                |                |
| I 3     879.83       J1     879.91     880.25     879.75     879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I 2        |                | 879.86         |         |        |                      |                |                |
| J1 879.91 880.25 879.75 879.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13         |                | 879.83         |         |        |                      |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J1         | 879.91         | 880.25         | 879.75  |        |                      |                | 879.99         |

## WATER TABLE ELEVATION (Feet Above Sea Level) 1991

Month and Day

| WELL       | 2-7        | 3-1    | 4-29    |
|------------|------------|--------|---------|
| AI         | 877.17     | 877.64 | 878.05  |
| AZ<br>A 2  | 8//.26     | 8//.62 | 878.05  |
|            | 876 58     | 876 67 | 373.03  |
| A 5        | 877.63     | 877 73 | 878 04  |
| B2         | 877.69     | 877.81 | 878.14  |
| B3         | 877.69     | 877.80 | 878.15  |
| B4         | 877.72     | 877.81 | 878.17  |
| B5         | 877.72     | 877.82 | 878.17  |
| B6         | 877.72     |        |         |
| B7         | 877.73     |        |         |
| B8         | 877.73     |        |         |
| B9         | 877.7.2    |        |         |
| B11        |            | 877.83 |         |
| C1         | 877.46     | 877.57 | 877.92  |
| C2         | 877.45     | 877.58 | 877.95  |
| C3         | 877.43     | 877.57 | 877.91  |
| C4         | 8//.45     | 8//.58 | 877.93  |
|            | 8//.45     | 8//.5/ | 877.92  |
| D1<br>D2   | 877 37     |        | 877 94  |
| D3         | 877.37     |        | 877.92  |
| $D_{4}$    | 877.39     |        | 877.97  |
| D5         | 877.39     | 877.44 | 877.97  |
| E1         | 877.56     | 877.75 | 878.15  |
| E2         | 877.56     | 877.74 | 878.13  |
| E3         | 877.55     | 877.75 | 878.12  |
| E4         | 877.61     | S77.72 | 878.11  |
| E <i>5</i> | 877.63     | 877.73 | 878.13  |
| F1         | <i>J</i> . |        | 878.06  |
| F2         | 877.62     | 877.74 | 87,8.09 |
| G1         | 878.17     | 878.10 | 878.49  |
| G2         | 878.11     | 878.07 | 878.38  |
| HI         | 877.85     | 877.85 | 8/8.44  |
|            | 8//.9/     | 8//.04 | 3/8.46  |
| JI         | 0//./3     | 011.00 | 3/9.20  |

# APPENDIX C

,

ţ

# WATER QUALITY DATA

| WATER QUAL     | ITY DATA    |
|----------------|-------------|
| Date Of Sample | Collection: |
| 12 Aprıl       | 1989        |

Well 🖡

|                             | Åı     | A2     | A3     | A.     | A5     |
|-----------------------------|--------|--------|--------|--------|--------|
| Ca**<br>(mg/i)              | 80.25  | •      |        | 23.16  |        |
| Mg**<br>(mg/l)              | 37.76  | - 3    |        | 43.56  |        |
| Na*<br>(mg/l)               | 18.50  |        |        | 44.56  |        |
| 'C1-<br>(mg/l)              | 30.373 | 18.182 | 15.283 | 12.596 | 14.758 |
| NO3 - (mg/l)                | 57.680 | 31.174 | 23.781 | 24.115 | 25.723 |
| SO4=<br>(mg/l)              | 54.757 | 33.975 | 27.582 | 24.031 | 24.018 |
| pH<br>(units)               | 6.97   | 6.86   | 6.67   | 6.90   | 6.69   |
| Temperature<br>(°C)         | . 15.2 | 14.9   | 15.1   | 15.5   | 15.5   |
| Hardness<br>(mg/l HCO3)     | 450    | 476    | 633    | 410    | 564    |
| Conductivity<br>(µmhos/cm)  | 900    | 832    | 985    | 873    | 897    |
| Cation/Anion<br>Balance (%) | -8.42  |        |        | -6.18  |        |

|                            |        | ♥ell # |        |             |        |
|----------------------------|--------|--------|--------|-------------|--------|
|                            | Åt     | A2     | A3     | Å <b>k</b>  | As     |
| Cl-<br>(mg/l)              | 22.572 | 20.783 | 17.535 | 16.269      | 16.554 |
| NO3-<br>(mg/l)             | 26.017 | 27.675 | 25.615 | 25.771      | 26.554 |
| SO4=<br>(mg/l)             | 37.843 | 33.642 | 28.181 | 26.824      | 26.161 |
| pH<br>(units)              | 6.44   | 6.66   | 6.68   | 6.68        | 6.71   |
| Temperature<br>(°C)        | 21.0   | 18.0   | 17.2   | 18.2        | 18.2   |
| Hardness<br>(mg/l HCOj)    | 587    | 598    | 657    | 642         | 651    |
| Conductivity<br>(µmhos/cm) | 958    | 932    | 980    | 95 <b>0</b> | 926    |

WATER QUALITY DATA Date Of Sample Collection: 23 April 1989

| VAT     | ER QUALITY | DATA     |
|---------|------------|----------|
| Date Of | Sample Col | lection: |
|         | 5 May 1989 |          |

| <b>₩</b> e | 11 7                                                                                |                                                                                                                                                                               |                                                                                                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Å1         | A2                                                                                  | A3                                                                                                                                                                            | Åŧ                                                                                                                                                                                                                                      |
| 21.050     | 20.705                                                                              | 17.515                                                                                                                                                                        | 17.515                                                                                                                                                                                                                                  |
| 22.380     | 25.703                                                                              | 25.338                                                                                                                                                                        | 23.338                                                                                                                                                                                                                                  |
| 35.217     | 32.644                                                                              | 28.208                                                                                                                                                                        | 28.208                                                                                                                                                                                                                                  |
| 6.57       | 6.55                                                                                | 6.89                                                                                                                                                                          | 6.72                                                                                                                                                                                                                                    |
| 18.1       | 17.5                                                                                | 16.7                                                                                                                                                                          | 16.8                                                                                                                                                                                                                                    |
| 638        | 629                                                                                 | 645                                                                                                                                                                           | 640                                                                                                                                                                                                                                     |
| 954        | 960                                                                                 | 987                                                                                                                                                                           | 953                                                                                                                                                                                                                                     |
|            | A1       21.050       22.380       35.217       6.57       18.1       638       954 | NI     Az       A1     Az       21.050     20.705       22.380     25.703       35.217     32.644       6.57     6.55       18.1     17.5       638     629       954     960 | N1     N2     N3       21.050     20.705     17.515       22.380     25.703     25.338       35.217     32.644     28.208       6.57     6.55     6.89       18.1     17.5     16.7       638     629     645       954     960     987 |

.

| WATER QUALITY DATA         |
|----------------------------|
| Date Of Sample Collection: |
| 17 May 1989                |

|                            | -A1<br>1020 | Å1<br>1240 | A1<br>2145 | A2<br>1050 | A2<br>1245 | A2<br>2155 |
|----------------------------|-------------|------------|------------|------------|------------|------------|
| Cl-<br>(mg/l)              | 96.263      | 72.202     | 61.404     | 28.863     | 27.178     | 26.616     |
| NO3 -<br>(mg/l)            | 14.871      | 17.115     | 15.899     | 26.109     | 24.827     | 24.635     |
| SO4=<br>(mg/i)             | 57.678      | 48.278     | 43.816     | 32.887     | 32.895     | 32.708     |
| pH<br>(units)              | 6.56        | 6.40       | 6.66       | 6.36       | 6.44       | 6.64       |
| Temperature<br>(°C)        | 17.3        | 17.7       | 17.3       | 17.1       | 17.3       | 17.1       |
| Hardness<br>(mg/l HCO3)    | 452         | 496        | 528        | 565        | 593        | 589        |
| Conductivity<br>(µmhos/cm) | 1011        | 1002       | 991        | 914        | 908        | 961        |

¶ell # and Time Of Collection (24 hour clock)

NOTE: Samples were taken during a rainstorm.

.

#### WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

|                            | A3<br>1105 | A3<br>1 300 | Å3<br>2205 | As<br>1115 | As<br>1315 | As<br>2215 |
|----------------------------|------------|-------------|------------|------------|------------|------------|
| C1-<br>(mg/1)              | 21.188     | 20.537      | 19.869     | 30.214     | 17.773     | 17.935     |
| NO3 -<br>(mg/1)            | 26.081     | 26.988      | 27.320     | 24.155     | 28.336     | 29.010     |
| SO4=<br>(mg/l)             | 30.306     | 30.404      | 30.657     | 33.238     | 29.914     | 30.932     |
| pH<br>(units)              | 6.49       | 6.51        | 6.77       | 6.57       | 6.51       | 6.78       |
| Temperature<br>(°C)        | 17.0       | 17.2        | 17.1       | 17.3       | 17.1       | 17.3       |
| Hardness<br>(mg/l HCOj)    | 625        | 610         | 594        | 593        | 603        | 581        |
| Conductivity<br>(µmhos/cm) | 950        | 940         | 975        | 994        | 896        | 904        |

Well # and Time Of Collection (24 hour clock)

NOTE: Samples were taken during a rainstorm.

### WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

| ı                          | A5-<br>1325 | A5<br>2225 |
|----------------------------|-------------|------------|
| C1-<br>(mg/l)              | 17.869      | 17.991     |
| NO3 -<br>(mg/1)            | 29.088      | 28.763     |
| SO4=<br>(mg/l)             | 29.124      | 29.301     |
| pH<br>(units)              | 6.52        | 6.71       |
| Temperature<br>(°C)        | 17.1        | 17.0       |
| Hardness<br>(mg/1 HCO3)    | 587         | 599        |
| Conductivity<br>(µmhos/cm) | 884         | 884        |

Well # and Time Of Collection (24 hour clock)

NOTE: Samples were taken during a rainstorm.

| ,                          | Well # |         |        |        |        |        |  |  |  |
|----------------------------|--------|---------|--------|--------|--------|--------|--|--|--|
| •                          | Bz     | Bj      | °B⊧ ,  | ( Bs   | Bé     | B7     |  |  |  |
| CI-<br>(mg/1)              | 16.872 | 17.629  | 11.408 | 15.137 | 12.394 | 10.427 |  |  |  |
| NO3 -<br>(mg/l)            | 6.411  | 16.284  | 5.953  | 6.841  | 5.834  | •      |  |  |  |
| SO4=<br>(mg/l)             | 84.163 | 153.416 | 26.016 | 32.878 | 25.689 | 29.463 |  |  |  |
| pH<br>(units)              | 6.64   | 6.61    | 6.77   | 6.70   | 6.60   | 6.90   |  |  |  |
| Temperature<br>(°C)        | 19.1   | 19.0    | 19.2   | 18.8   | 19.9   | 19.7   |  |  |  |
| Hardness<br>(mg/l HCO3)    | 667    | 732     | 639    | 515    | ŧ      | 882    |  |  |  |
| Conductıvity<br>(µmhos/cm) | 1076   | 1172    | 874    | 811    | 1226   | 1131   |  |  |  |

WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

\* Concentration below detectable limit.

# Not enough sample to perform field test.

| WATER QUALITY (     | DATA     |
|---------------------|----------|
| Date Of Sample Col  | lection: |
| 17 <b>W</b> ay 1989 |          |

<sup>∎</sup>ell #

|                             | B:     | B9     | B1 0   | Cı      | C2     | C3     |
|-----------------------------|--------|--------|--------|---------|--------|--------|
| Ca++<br>(mg/l)              | ·      |        |        |         | 57.15  |        |
| ₩g**<br>(mg/i)              |        |        |        |         | 62.86  |        |
| Na+<br>(mg/l)               |        |        |        |         | 105.60 |        |
| C1-<br>(mg/l)               | 17.683 | 15.853 | 17.405 | 139.956 | 59.329 | 73.330 |
| NO3 -<br>(mg/l)             | 4.389  | 27.282 | 4.739  | 7.486   | 5.729  | 12.809 |
| SO4=<br>(mg/l)              | 82.993 | 23.534 | 32.605 | 119.537 | 63.092 | 78.626 |
| pH<br>(units)               | 6.64   | 6.68   | 6.82   | 6.76    | 6.83   | 6.56   |
| Temperature<br>(°C)         | 18.5   | 18.4   | 18.5   | 15.7    | 15.8   | 15.4   |
| Hardness<br>(mg/l HCO3)     | 793    | 552    | 526    | 755     | 637    | 805    |
| Conductivity<br>(µmhos/cm)  | 1176   | 823    | 792    | 1583    | 1127   | 1405   |
| Cation/Anion<br>Balance (%) |        |        |        |         | -3.18  |        |

|                            | Well # |        |        |        |        |        |  |
|----------------------------|--------|--------|--------|--------|--------|--------|--|
|                            | C.     | C 5    | Dļ     | Dz     | Dı     | Dŧ     |  |
| F-<br>(mg/l)               | 1.554  | 1.247  | 1.233  | 2.153  | 1.008  | 1.437  |  |
| Ci-<br>(mg/i)              | 45.781 | 78.394 | 74.205 | 80.610 | 80.691 | 22.766 |  |
| NO3 -<br>(mg/l)            | 24.849 | 17.676 | 4.681  | ¥      | 5.149  | 29.786 |  |
| SO4≃<br>(mg/l)             | 45.704 | 92.053 | 53.328 | 42.921 | 35.833 | 34.163 |  |
| pH<br>(units)              | 6.68   | 6.59   | 7.18   | 6.82   | 7.00   | 7.00   |  |
| Temperature<br>(°C)        | 15.8   | 14.8   | 17.1   | 16.2   | 15.9   | 15.5   |  |
| Hardness<br>(mg/l HCO3)    | 653    | 766    | 729    | 749    | 770    | 654    |  |
| Conductivity<br>(µmhos∕cm) | 1118   | 1415   | 1062   | 1088   | 1160   | 1042   |  |

WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

\* Concentration below detectable limit.

| -                           | Well # |        |        |        |            |        |  |  |  |
|-----------------------------|--------|--------|--------|--------|------------|--------|--|--|--|
|                             | D5 -   | Eí     | Ez     | . Ез   | Eŧ         | Es     |  |  |  |
| Ca**<br>(mg/l)              | a      | 62.53  |        | 41.33  | 22.46      |        |  |  |  |
| K+<br>(mg/l)                |        | . 3809 |        | 1.744  | . <b>f</b> |        |  |  |  |
| Mg++<br>(mg/i)              |        | 19.47  |        | 16.74  | 51.57      |        |  |  |  |
| Na+<br>(mg/1)               |        | 2.944  |        | 4.181  | 36.29      |        |  |  |  |
| Ci-<br>(mg/i)               | 28.228 | 3.616  | 3.504  | 3.798  | 8.793      | 6.635  |  |  |  |
| NO3 -<br>(mg/1)             | 24.957 | 8.530  | 7.008  | 10.416 | 22.546     | 19.490 |  |  |  |
| SO4=<br>(mg/l)              | 34.730 | 14.325 | 13.045 | 13.065 | 29.535     | 25.218 |  |  |  |
| pH<br>(units)               | 7.03   | 6.75   | 6.62   | 7.03   | 6.90       | 6.89   |  |  |  |
| Temperature<br>(°C)         | 15.2   | 17.8   | 17.3   | 16.9   | 16.7       | 16.3   |  |  |  |
| Hardness<br>(mg/l HCO3)     | 641    | 272    | 253    | 198    | 458        | 402    |  |  |  |
| Conductivity<br>(µmhos/cm)  | 1053   | 463    | 378    | 313    | 643        | 640    |  |  |  |
| Cation/Anion<br>Balance (%) |        | -0.01  |        | 0.58   | -9.32      |        |  |  |  |

### WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

\* Concentration below detectable limit.

### WATER QUALITY DATA Date Of Sample Collection: 17 May 1989

Tell #

|                              | Fı     | F2     | Gi     | Gz     | Hı     | Iı     |
|------------------------------|--------|--------|--------|--------|--------|--------|
| Ca**<br>(mg/1)               |        |        |        | 45.15  |        |        |
| Mg**<br>(mg/l)               |        |        |        | 53.65  |        |        |
| Na+<br>(mg/l)                |        |        |        | 77.37  |        |        |
| C1-<br>(mg/1)                | 16.691 | 18.320 | 17.122 | 23.015 | 21.084 | 22.056 |
| NO3 -<br>(mg/l)              | 18.123 | 14.252 | 55.812 | 27.336 | 52.348 | 61.455 |
| SO4=<br>(mg/l)               | 43.682 | 41.840 | 51.540 | 29.734 | 83.281 | 86.614 |
| pH<br>(units)                | 6.63   | 6.61   | 6.87   | 6.91   | 6.87   | 6.68   |
| Temperature<br>(°C)          | 17.8   | 18.2   | 18.6   | 17.0   | 19.0   | 19.3   |
| Hardness<br>(mg/l HCO3)      | 545    | 551    | 616    | 664    | 639    | 595    |
| Conductıvıty<br>(µmahos∕cm.) | 845    | 857    | 1028   | 1033   | 1048   | 1137   |
| Cation/Anion<br>Balance (%)  |        |        |        | -9.55  |        |        |

|                            |        | Vell # |       |        |           |
|----------------------------|--------|--------|-------|--------|-----------|
|                            | 12     | JI     | Rain  | Puddle | Downspout |
| Cl-<br>(mg/l)              | 15.390 | 17.560 | •     | *      | ŧ         |
| NO3 -<br>(mg/l)            | 81.606 | 33.508 | •     | ٠      | •         |
| <b>SO4</b> =<br>(mg/l)     | 49.863 | 36.192 | 6.560 | 8.536  | 9.818     |
| pH<br>(units)              | 6.75   | 6.88   | 6.57  | 6.56   | 6.88      |
| Temperature<br>(°C)        | 18.5   | 17.1   | 20.3  | 19.6   | 19.3      |
| Hardness<br>(mg/i HCO3)    | 477    | 648    | 35    | 48     |           |
| Conductivity<br>(µmhos/cm) | 920    | 1050   | 14    | 76     | 10        |

|      | <b>I</b> ATE | ER QU | ALITY | DATA      |
|------|--------------|-------|-------|-----------|
| Date | Of           | Samp  | ie Co | llection: |
|      |              | 17 Ma | y 198 | 9         |

\* Concentration below detectable limit.

### WATER QUALITY DATA Date Of Sample Collection: 31 Way 1989

¶ell #

|                             | Aı ,   | Az     | - Å3A  | Å      | Å 5    | Tap     |
|-----------------------------|--------|--------|--------|--------|--------|---------|
| Ca**<br>(mg/i)              |        |        | м<br>г | x      |        | 29.35   |
| K+<br>(mg/l)                |        |        |        | c      | -      | 4.798   |
| <b>M</b> g**<br>(mg/l)      |        |        | ×      |        |        | 15.45   |
| Na+<br>(mg/l)               |        |        |        |        |        | 150.8   |
| F-<br>(mg/i)                | .095   | .185   | . 386  | . 307  | . 332  | 1.342   |
| Cl-<br>(mg/l)               | 50.682 | 31.440 | 22.683 | 16.689 | 17.294 | 224.049 |
| Br-<br>(mg/l)               | .913   | .579   | . 429  | . 334  | . 295  | . 253   |
| NO3 -<br>(mg/1)             | 3.915  | 4.448  | 4.747  | 5.293  | 5.925  | . 351   |
| SO4=<br>(mg/1)              | 42.826 | 32.682 | 29.742 | 28.823 | 28.777 | 117.267 |
| pH (units)                  | 6.64   | 6.56   | 6.94   | .6.44  | 6.50 - | 8.54    |
| Temperature<br>(°C)         | 20.3   | 20.0   | 19.5   | 19.6   | 19.0   | 21.1    |
| Hardness<br>(mg/l HCO3)     | 429    | 578    | 609    | 593    | 580    | 53      |
| Conductivity<br>(µmhos/cm)  | 1026   | 986    | 1058   | 987    | 982    | 1085    |
| Cation/Anion<br>Balance (%) |        |        |        |        |        | -1.11   |

|                            | Well # |        |        |        |        |  |
|----------------------------|--------|--------|--------|--------|--------|--|
|                            | A      | Å2     | A3     | A.     | A 5 A  |  |
| F <sup>-</sup><br>(mg/l)   | .123   | .162   | . 356  | . 342  | . 333  |  |
| Cl-<br>(mg/l)              | 42.565 | 25.845 | 22.646 | 17.431 | 15.908 |  |
| Br-<br>(mg/l)              | .816   | .542   | .462   | .364   | . 353  |  |
| NO3 -<br>(mg/l)            | 3.473  | 4.717  | 4.756  | 5.466  | 5.481  |  |
| SO4=<br>(mg/l)             | 39.812 | 30.649 | 29.593 | 30.374 | 29.373 |  |
| pH<br>(units)              | ķ      | Ł      | ę      | ş      | ķ      |  |
| Temperature<br>(°C)        | 18.7   | 18.2   | 18.1   | 18.5   | 18.1   |  |
| Hardness<br>(mg/l HCO3)    | 523    | 531    | 596    | 569    | 566    |  |
| Conductivity<br>(µmhos/cm) | 956    | 924    | 1010   | 973    | 973    |  |

WATER QUALITY DATA Date Of Sample Collection: 1 June 1989

& Unable to measure pH due to field equipment failure.

,

|                            | Vell #       |        |        |        |        |  |  |
|----------------------------|--------------|--------|--------|--------|--------|--|--|
|                            | Aı           | Å2     | A3     | As     | Å5 A   |  |  |
| F-<br>(mg/l)               | .074         | . 193  | . 356  | .316   | . 309  |  |  |
| C1-<br>(mg/1)              | 25.764       | 20.670 | 19.415 | 14.956 | 16.028 |  |  |
| Br-<br>(mg/i)              | . 897        | .377   | .443   | . 293  | . 286  |  |  |
| NO3-<br>(mg/i)             | 4.635        | 4.647  | 4.742  | 5.311  | 5.700  |  |  |
| SO4=<br>(mg/l)             | 35.382       | 30.034 | 29.623 | 29.946 | 29.741 |  |  |
| pH<br>(units)              | 6.32         | 6.25   | 6.32   | 6.33   | 6.33   |  |  |
| Temperature<br>(°C)        | 20.4         | 20.5   | 20.2   | 21.4   | 20.1   |  |  |
| Hardness<br>(mg/1 HCO3)    | 615          | 554    | 590    | 589    | 567    |  |  |
| Conductivity<br>(pmhos/cm) | 9 <b>9</b> 5 | 946    | 996    | 992    | 965    |  |  |

WATER QUALITY DATA Date Of Sample Collection: 12 June 1989

~

| Well #                      |        |                |        |                   |         |  |  |
|-----------------------------|--------|----------------|--------|-------------------|---------|--|--|
|                             | Dı     | Dz             | D3     | D                 | D5      |  |  |
| Ca**<br>(mg/l)              | 13.1   | 26.2           | 27.6   | 13.3              | 18.9    |  |  |
| <b>M</b> g**<br>(mg/l)      | 48.7   | 53.1           | 51.7   | 39.6 <sup>°</sup> | 41.6    |  |  |
| Na*<br>(mg/l)               | 134.6  | 104.8          | 116.3  | 119.1             | 114.4   |  |  |
| F-<br>(mg/l)                | . 636  | .608           | . 631  | . 571             | . 577 - |  |  |
| C1-<br>(mg/1)               | 64.820 | <b>\$2.307</b> | 48.943 | 19.970            | 20.010  |  |  |
| Br-<br>(mg/1)               | .631   | .466           | .462   | . 255             | . 224   |  |  |
| NO3 -<br>(mg/1)             | .411   | . 341          | 1.629  | 7.038             | 6.074   |  |  |
| SO4=<br>(mg/i)              | 42.378 | 32.421         | 30.171 | 29.686            | 30.344  |  |  |
| pH<br>(units)               | 6.92   | 6.73           | 6.68   | 6.82              | 6.76    |  |  |
| Temperature<br>(°C)         | 18.5   | 17.6           | 17.1   | 16.0              | 15.8    |  |  |
| Hardness<br>(mg/l HCO3)     | 776    | 567            | 555    | 613               | 485     |  |  |
| Conductıvıty<br>(µmhos/cm)  | 1284   | 1169           | 1165   | 1005              | 986     |  |  |
| Cation/Anion<br>Balance (%) | -19.0  | -4.25          | -1.88  | -10.48            | 0.73    |  |  |

WATER QUALITY DATA Date Of Sample Collection: 14 June 1989

| 1    | AT | R  | QUAL | ITY | DATA      |
|------|----|----|------|-----|-----------|
| Date | 0f | Sa | mple | Col | llection: |
|      | 1  | 0  | June | 198 | 39        |

|                            |        | well w |        |        |        |
|----------------------------|--------|--------|--------|--------|--------|
|                            | Aı     | Å2     | A3     | A4     | A 5 A  |
| F-<br>(mg/l)               | .094   | . 172  | . 327  | . 316  | .310   |
| C1-<br>(mg/1)              | 22.532 | 19.064 | 17.895 | 15.274 | 15.239 |
| Br-<br>(mg/1)              | . 895  | . 583  | .460   | .316   | . 27 5 |
| NO3 -<br>(mg/1)            | 4.602  | 4.821  | 4.561  | 5.200  | 5.549  |
| SO4=<br>(mg/l)             | 34.116 | 29.993 | 29.977 | 30.635 | 30.892 |
| pH<br>(units)              | 6.21   | 6.23   | 6.38   | 6.22   | 6.26   |
| Temperature<br>(°C)        | 21.2   | 21.8   | 20.4   | 21.1   | 20.2   |
| Hardness<br>(mg/i HCO3)    | 453    | 586    | 609    | 589    | 587    |
| Conductivity<br>(µmhos/cm) | 1023   | 1050   | 1039   | 1013   | 1007   |

.

Tell #

#### WATER QUALITY DATA Date Of Sample Collection. 6 October 1989

|                              | Vell #  |         |         |        |         |         |  |
|------------------------------|---------|---------|---------|--------|---------|---------|--|
| e.                           | A2      | Å3      | As      | B1 ¢   | Bii     | B6      |  |
| Ca**<br>(mg/l)               | 118.100 | 118.200 | 110.300 | 73.210 | 16.310  | 135.700 |  |
| Fe**<br>(mg/l)               | 0.163   | 0.096   | 0.048   | 1.116  | 0.459   | 15.140  |  |
| K•<br>(mg/l)                 | 0.236   | 0.497   | 0.119   | 2.286  | 2.142   | 4.356   |  |
| <b>ii</b> g**<br>(mg/l)      | 29.710  | 48.510  | \$6.780 | 33.310 | 14.730  | 33.550  |  |
| Mn**<br>(mg/l)               | 0.013   | 0 088   | 0.006   | 0 942  | 0.566   | 3.550   |  |
| Na**<br>(mg/l)               | 18.600  | 33.860  | 36.730  | 45.950 | 151.400 | 76.870  |  |
| S12<br>(mg/l)                | 10.510  | 14.070  | 14.760  | 13.110 | 4.661   | 12.530  |  |
| F-<br>(mg/l)                 | 0.130   | 0.366   | 0.362   | 0.499  | 0.964   | 0.370   |  |
| C1-<br>(mg/1)                | 12.638  | 19.797  | 18.443  | 17 317 | 39.22\$ | 8.483   |  |
| Br-<br>( <b>a</b> g/1)       | 0.556   | 1.353   | 1.122   | 0.287  | 0.212   | 0.714   |  |
| NO3 -<br>(mg/1)              | 1,452   | 2.105   | 3.013   | 2.660  | 0.022   | 0.352   |  |
| SO4=<br>(mg/l)               | 22.647  | 25.738  | 25.988  | 15.879 | 26.008  | 7.905   |  |
| pH<br>(units)                | 6.34    | 6.49    | 6.41    | 6.83   | 7.95    | 6.83    |  |
| Temperature<br>(°C)          | 17.9    | 192     | 18.4    | 17.9   | 17.7    | 22.0    |  |
| Hardness<br>(mg/i HCO3)      | 1108    | 473     | 624     | 342    | 517     | 552     |  |
| Conductivity<br>(pmhos/cm)   | 832     | 1184    | 1147    | 945    | 1050    | 974     |  |
| Cation/Anion<br>Balance (\$) | -34.95  | -12.50  | -1.51   | 13.62  | -7.75   | 15.76   |  |

#### WATER QUALITY DATA Date Of Sample Collection: 6 October 1989

Vell #

|                           | Ba       | B9     | Dz      | Dı     | Dı      |
|---------------------------|----------|--------|---------|--------|---------|
| Ca''<br>(mg/l)            | 108.300  | 95.660 | 91.610  | 82.920 | 66.980  |
| Fe**<br>(mg/i)            | 5.501    | 0.093  | 0.627   | 0.079  | 0 039   |
| K+<br>(mg/l)              | 1.244    | 0.326  | 0 308   | 0 101  | 0 089   |
| Mg''<br>(mg/l)            | 35.820   | 37.870 | \$3.190 | 42 680 | 33,770  |
| Wn**<br>(mg/l)            | 4.621-   | 0.223  | 0.179   | 0.024  | •       |
| Na**<br>(mg/l)            | 79.670   | 36.980 | 86.300  | 96.380 | 105 800 |
| S12<br>(mg/1)             | 14.380   | 16.650 | 9.816   | 10.360 | 10.290  |
| F-<br>(mg/l)              | 0.490    | 0.354  | 0.607   | 0.622  | 0.690   |
| Cl-<br>(mg/l)             | 13 940 ; | 15.261 | 32.935  | 24.917 | 22.664  |
| Br<br>(mg/1)              | 0 575    | 0.368  | ۲       | 0.267  | 0.243   |
| NO3 -<br>(mg/i)           | 1.025    | 5.822  | 0.034   | 1.121  | 6.351   |
| SO4=<br>(mg/1)            | 54.232   | 20.165 | 24.402  | 22.875 | 29.313  |
| pH<br>(units)             | 6.60     | 6.44   | 7.01    | 6.90   | 7.03    |
| Temperature<br>(°C)       | 20.5     | 19.4   | 16.0    | 15.8 - | 15.3    |
| Hardness<br>mg/l HCO3)    | 674      | 384    |         | 676    | 488     |
| onductivity<br>anhos/cm}  | 1285     | 1068   | 1271    | 1248   | 1224    |
| ation/Anion<br>alance (%) | -2.95    | 14.19  |         | -1.72  | 7.40    |

,

# Not enough sample to perform field test.

#### VATER QUALITY DATA Date Of Sample Collection 7 November 1989

|                              | A2     | A)      | . As    | 810    | Bti     | 8.      |
|------------------------------|--------|---------|---------|--------|---------|---------|
| Ca**<br>(mg/l)               | 96.490 | 109.900 | 108.000 | 73.980 | 27.920  | 117.400 |
| Fe**<br>(mg/l)               | 0.158  | 0 075   | 0.094   | 1.185  | 0.433   | 3.080   |
| K+<br>(mg/,1)                | 0.246  | 0.157   | 0.463   | 2 210  | 2.358   | 0.423   |
| <b>Hg**</b><br>(mg/1)        | 33.140 | 44.960  | 45.710  | 33.260 | 18.320  | 28 970  |
| ¥n**<br>(meg/l)              | •      | 0.032   | 0.024   | 0 874  | 1.549   | 1 003   |
| Na**<br>(mg/l)               | 21.260 | 31.390  | 35.900  | ¥6 350 | 166.200 | 23.830  |
| Siz<br>(mg/1)                | 10.600 | 12.990  | 14.420  | 13.290 | 6.299   | 13.500  |
| F<br>(mg/1)                  | 0.227  | 0.589   | 0.615   | 0.622  | 0.961   | 0.248   |
| C1-<br>(mg/1)                | 21.459 | 21.229  | 18.632  | 17 722 | 34.716  | 14.991  |
| Br-<br>(mg/1)                | 1,083  | 1,891   | 1.386   | 0.268  | 0.181   | 0.585   |
| NO3-<br>(mg/l)               | 2.213  | 3.652   | 4.037   | 2.639  | 0.027   | 0.699   |
| SO4=<br>(mg/1)               | 28.939 | 26.433  | 25 024  | 15.552 | 70.604  | 21.609  |
| pH<br>(anıts)                | 6.35   | 6.74    | 6.73    | 6.80   | 7.84-   | 6.65    |
| Temperature<br>(°C)          | 15.7   | 16.5    | 17 1    | 17.2   | 17.7    | 19.1    |
| Hardness<br>(mg/I HCO3)      | 639    | 639     | 611     | 348    | 398     | 490     |
| Conductivity<br>(pmhos/cm)   | 1184   | 1185    | 1118    | 931    | 1193    | 1125    |
| Cation/Anion<br>Balance (\$) | -13.84 | -\$.82  | -1.59   | 13.13  | 6.35    | 2.12    |

,

\* Concentration below detectable limit.

#### WATER QUALITY DATA Date Of Sample Collection: 7 November 1989

| - |     |  |
|---|-----|--|
|   | - 1 |  |
|   | PI  |  |
|   | ~ 4 |  |

|                              | 86      | 81      | 8,     | Dz     | D3     | De      |
|------------------------------|---------|---------|--------|--------|--------|---------|
| Ca++<br>(mg/i)               | 129.600 | 106.600 | 95.110 | 99.410 | 83.660 | 70.420  |
| Fe**<br>(mg/1)               | 5.744   | 5.493   | 0.054  | 1 038  | 0.067  | 0.026   |
| K*<br>(mg/l)                 | 3.600   | 1.141   | 0.483  | 0.186  | 0.122  | 0.134   |
| lig**<br>(mg/1)              | 33.410  | 35.460  | 37.270 | 49.120 | 43.890 | 35.230  |
| ¥in**<br>(nag/l)             | 2.869   | 4.459   | 0.259  | 0.055  | 0.055  | •       |
| Na**<br>(mg/i)               | 71.560  | 83.040  | 37.410 | 91.270 | 98.680 | 110.700 |
| S12<br>(mg/l)                | 13.450  | 14.440  | 13.750 | 11.520 | 10.530 | 10.670  |
| F-<br>(mg/l)                 | 0.576   | 0.445   | 0.427  | 0.699  | 0.703  | 0.783   |
| C1-<br>(mg/l)                | 18.764  | 13.338  | 16.179 | 33.953 | 24.139 | 20.788  |
| 8r-<br>(mg/1)                | 0.899   | 0.602   | 0.299  | 0.471  | 0.345  | 0.235   |
| NO3 -<br>(mg/l)              | 0.368   | 0.859   | 5.684  | 0.095  | 1.197  | 6.326   |
| SO4=<br>(mg/l)               | 13.328  | 57.670  | 19.352 | 28.137 | 24.392 | 30.765  |
| pH<br>(anıts)                | 7.12    | 6.84    | 6.78   | 7.06   | 6.83   | 7.05    |
| Temperature<br>(°C)          | 20.4    | 21.2    | 18.5   | 15.6   | 15.6   | 15.1    |
| Hardness<br>(mg/1 HCO3)      | 622     | 688     | 403    | 671    | 612    | 537     |
| Conductıvıty<br>(µmhos/cm)   | 1330    | 1263    | 1035   | 1431   | 1287   | 1190    |
| Cation/Anion<br>Balance (\$) | 6.06    | -3.94   | 11.75  | 1.71   | 3.70   | 5.66    |

.

\* Concentration below detectable fimit.

| 1    | IATI | ER QUALITY DATA   |
|------|------|-------------------|
| Date | Of   | Sample Collection |
|      | 11   | January 1990      |

|    | 1 |   |   |
|----|---|---|---|
| 16 | 1 | 1 | Ŧ |

| _,                      | A3            | A <b>a</b>       | B1 6   | 811     | ₿6      | Bı      |
|-------------------------|---------------|------------------|--------|---------|---------|---------|
| Ca**<br>(mg/l)          | 116.600       | 105 600          | 74.260 | 25.580  | 130.500 | 111.300 |
| Fe**<br>(mg/1)          | 0.053         | 0.037            | 0.913  | 0.508   | 7.138   | 4.126   |
| K*<br>(mg/l)            | 0.312         | 0.320            | 1.264  | 3.178   | 2.767   | 1.228   |
| <b>∐g''</b><br>(mg∕i)   | 46.380        | <b>\$\$</b> .170 | 33.740 | 18.420  | 32 960  | 36.540  |
| ₩n**<br>(mg/i)          | 0.024         |                  | 0.754  | i.292   | 2.483   | 3.811   |
| Na**<br>(mg/1)          | 31.530        | 34.910           | 47.370 | 170.100 | 69.440  | 70.290  |
| S12<br>(mg/1)           | 12 000        | 13.270           | 13.450 | 6.027   | 11.930  | 14.150  |
| F-<br>(mg/l)            | 0.640         | 0.480            | 0.634  | 0.868   | 0.448   | 0.\$26  |
| Cl-<br>(mg/l)           | 19.483        | 15.929           | 18.269 | 38.164  | 11.521  | 12.115  |
| 8r<br>(mg/1)            | 1 514         | 0.784            | 0.267  | 0.174   | 0.815   | 0.525   |
| NO3 -<br>(mg/1)         | <b>4</b> .537 | 5.736            | 2.904  | 3.399   |         | 2.857   |
| SO4=<br>(mg/l)          | 26.089        | 23.900           | 15.618 | 75.590  | 15.828  | 43.280  |
| pH<br>(units)           | 6.69          | 6.75             | 6.90   | 7.88    | 6.64    | 6.80    |
| emperature<br>(°C)      | 11.9          | 13.3             | 15.0   | 14.3    | 11.1    | 13.7    |
| Hardness<br>g/l HCO3)   | •             | ٠                | •      | •       | ٠       | ٠       |
| nductivity<br>nhos/cm)  | 1175          | 1090             | 913    | 1150    | 1330    | 1161    |
| tion/Anion<br>lance (%) |               |                  |        |         |         |         |

\* Hardness data unavailable due to field equipment failure

#### WATER QUALITY DATA Date Of Sampie Collection 11 January 1990

| IC. |  |
|-----|--|

|                              | By     | Dz      | Dı     | Dŧ      |
|------------------------------|--------|---------|--------|---------|
| Ca**<br>(mg/l)               | 94.660 | 107.400 | 85.100 | 72.120  |
| Fe**<br>(mg/1)               | 0.044  | 0.312   | 0.039  | 0.026   |
| K•<br>{mg/1}                 | 0.354  | 0 082   | 0 053  | 0.077   |
| Ng**<br>(mg/l)               | 36.530 | 52.900  | 44.410 | 36.210  |
| ¥n**<br>(mg/l)               | 0.275  | 0.055   | 4      |         |
| Na++<br>(mg/1)               | 37.010 | 97.450  | 97.800 | 112.000 |
| S12<br>-(mg/1)               | 13.610 | 11.320  | 9.616  | 10.290  |
| F-<br>(mg/l)                 | 0.530  | 0.559   | 0.705  | 0.646   |
| C1<br>(mg/1)                 | 15.931 | 32 542  | 24.460 | 20.400  |
| Br-<br>(mg/l)                | 0.288  | 0.399   | 0.298  | 0.207   |
| NO3-<br>(mg/1)               | 5.328  | 2.584   |        | 8.347   |
| SO4=<br>{mg/1}               | 18.207 | 27.567  | 20.464 | 31.970  |
| pH<br>(units)                | 6.70   | 6.86    | 6.90   | 7.00    |
| Temperature<br>(°C)          | 15.6   | 10.9    | 11.1   | 12.2    |
| Hardness<br>(mg/l HCO3)      | •      | •       | •      | × #     |
| Conductivity<br>(pmhos/cm)   | 976    | 1533    | 1346   | 1225    |
| Cation/Anion<br>Balance (\$) |        |         |        |         |

- .

\* Hardness Data unavailable due to field equipment failure.

### WATER QUALITY DATA Date Of Sample Collection: 7 February 1991

|                                    |        | wert • |        |        |        |
|------------------------------------|--------|--------|--------|--------|--------|
|                                    | , Az   | A3     | As,    | As     | Asq    |
| Ca++                               | 96.41  | 92.02  | 52.40  | 69.79  | 64.31  |
| (mg/l)<br>K <sup>+</sup><br>(mg/l) | . 3764 | . 2161 |        | ،<br>• | •      |
| ₩g++<br>(mg/l)                     | 53.68  | 50.81  | 42.86  | 40.15  | 40.27  |
| Na•<br>(mg/i)                      | 26.55  | 35.97  | 49.85  |        |        |
| F-<br>(mg/l)                       | . 442  | .617   | .618   | . 599  | .605   |
| C1-<br>(mg/1).                     | 17.931 | 11.937 | 14.618 | 15.335 | 15.234 |
| Br-<br>(mg/l)                      | .774   | .490   | . 326  | .264   | . 299  |
| NO3 -<br>(mg/l)                    | 2.243  |        | 2.862  | 2.946  | 2.849  |
| SO4=<br>(mg/l)                     | 26.638 | 22.193 | 22.082 | 18.179 | 18.178 |
| pH<br>(units)                      | 6.65   | 6.64   | 6.83   | 6.64   | 6.67   |
| Temperature<br>(°C)                | 10.7   | 12.4   | 13.2   | 13.2   | 13.2   |
| Hardness<br>(mg/l HCO3)            | 671    | 622    | 529    | 510    | 505    |
| Conductivity<br>(µmhos/cm)         | 1120   | 950    | 880    | 900    | 900    |
| Cation/Anion<br>Balance (%)        | -7.42  | -3.05  | -6.53  | -14.94 | -16.42 |

\* Concentration below detectable limit.

### WATER QUALITY DATA Date Of Sample Collection: 7 February 1991

| ł                           | Dz     | D3     | Di     | Ds     | TAP     | Cs     |
|-----------------------------|--------|--------|--------|--------|---------|--------|
| Ca++<br>(mg/l)              | 28.42  | 37.28  | 54.22  | 47.22  | 38.84   | 70.04  |
| K+<br>(mg/l)                | . 533  | ŧ      | *      | •      | 5.683   | . 219  |
| Mg**<br>(mg/1)              | 59.92  | 47.96  | 41.57  | 43.32  | 17.44   | 60.95  |
| Na*<br>(mg/l)               | 105.9  | 107.8  | 124.0  | 121.6  | 153.3   | 56.01  |
| F-<br>(mg/l)                | .641   | . 672  | .733   | .737   | 1.279   | .758   |
| C1-<br>(mg/1) -             | 32.225 | 31.638 | 13.599 | 15.38  |         | 27.666 |
| Br-<br>(mg/l)               | . 399  | . 341  | .184   | . 207  | . 255   | . 374  |
| NO3 -<br>(mg/l)             |        | ,      | 5.626  | 4.53   | 5       | 5.53   |
| SO4=<br>(mg/l)              | 11.114 | 19.766 | 32.257 | 32.664 | 107.659 | 33.426 |
| pH<br>(units)               | 6.66   | 6.9    | 6.72   | 6.70   | 7.42    | 6.55   |
| Temperature<br>(°C)         | 11.6   | 11.8   | 11.9   | 11.5   | 7.1     | 11.4   |
| Hardness<br>(mg/l HCO3)     | · 841  | 670    | 665    | 659    | 87      | 586    |
| Conductivity<br>(µmhos/cma) | 1280   | 1120   | 1120   | 1020   | 1040    | 1000   |
| Cation/Anion<br>Salance (%) | -15.8  | -7.86  | -1.85  | -3.05  | -47.0   | 559    |

.

₩eil #

\* Concentration below detectable limit.
# WATER QUALITY DATA Date Of Sample Collection: 28 February 1991

| · · ·                       | Dz     | D3     | Dŧ     | Ds     |
|-----------------------------|--------|--------|--------|--------|
| Ca**<br>(mg/l)              | 50.15  | 60.07  | 45.22  | 50.07  |
| K+<br>(mg/l)                | . 8500 | . 3108 | .3014  | . 2996 |
| Mg++<br>-(mg/l)             | 59.68  | 47.16  | 40.77  | 42.84  |
| Na+<br>(mg/l)               | 110.90 | 107.90 | 122.90 | 121.50 |
| F-<br>(mg/l)                | .814   | .788   | .836   | .851   |
| C1-<br>(mg/l)               | 31.453 | 30.042 | 12.587 | 13.903 |
| Br-<br>(mg/l)               | . 410  | .403   | . 194  | .218   |
| NO3 -<br>(mg/l)             | .034   | . 641  | 5.682  | 4.854  |
| SO4=<br>(mg/l)              | 12.499 | 20.709 | 31.600 | 32.029 |
| pH<br>(units)               | 7.10   | 6.74   | 6.83   | 6.90   |
| Temperature<br>(°C)         | 15.5   | 12.5   | 12.5   | 12.1   |
| Hardness<br>(mg/1 HCO3)     | 761    | 664    | 680    | 667    |
| Conductivity<br>(µmhos/cm)  | 1240   | 1040   | 1040   | 1080   |
| Cation/Anion<br>Balance (%) | -5.26  | -2.45  | -5.16  | -2.9   |

Veli #

|                            |        | Vell # | -      |            |        |
|----------------------------|--------|--------|--------|------------|--------|
|                            | Aı     | -A2    | A3     | Å <b>s</b> | Åt Ó   |
| F-<br>(mg/l)               | . 399  | . 318  | .513   | .544       | . 608  |
| C1-<br>(mg/l)              | 16.599 | 17.228 | 14.720 | 13.675     | 14.069 |
| Br-<br>(mg/i)              | 1.019  | .666   | . 375  | . 220      | . 222  |
| NO3 -<br>(mg/1)            | 4.595  | 6.142  | 7.780  | 10.424     | 10.284 |
| SO4=<br>(mg/i)             | 25.752 | 26.440 | 27.166 | 27.611     | 28.292 |
| pH<br>(units)              | 6.34   | 6.51   | 6.75   | 6.86       | 6.83   |
| Temperature<br>(°C)        | 19.5   | 19.0   | 17.7   | 19.4       | 19.8   |
| Hardness<br>(mg/l HCO3)    | 584    | 555    | 534    | 491        | 491    |
| Conductivity<br>(µmhos/cm) | 904    | 978    | 915    | 895        | 897    |

WATER QUALITY DATA Date Of Sample Collection: II June 1990

,

| ١    | ATE | R QUAL | ITY DATA    |
|------|-----|--------|-------------|
| Date | Of  | Sample | Collection: |
|      | 1   | l June | 1990        |

|        | •                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B6     | Ba                                                                            | By                                                                                                                                                                                                                                                                               | Bio                                                                                                                                                                                                                                                                                                                                                                                                                 | Bii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .318   | . 431                                                                         | . 449                                                                                                                                                                                                                                                                            | . 496                                                                                                                                                                                                                                                                                                                                                                                                               | . 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10.129 | 12.398                                                                        | 18.902                                                                                                                                                                                                                                                                           | 20.339                                                                                                                                                                                                                                                                                                                                                                                                              | 33.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| . 559  | . 519                                                                         | . 314                                                                                                                                                                                                                                                                            | . 298                                                                                                                                                                                                                                                                                                                                                                                                               | .179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .386   | 1.929                                                                         | 6.896                                                                                                                                                                                                                                                                            | 4.864                                                                                                                                                                                                                                                                                                                                                                                                               | . 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15.599 | 38.019                                                                        | 24.361                                                                                                                                                                                                                                                                           | 24.347                                                                                                                                                                                                                                                                                                                                                                                                              | 81.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.81   | 6.81                                                                          | 6.90                                                                                                                                                                                                                                                                             | 6.92                                                                                                                                                                                                                                                                                                                                                                                                                | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24.2   | 20.3                                                                          | 17.7                                                                                                                                                                                                                                                                             | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 586    | 920                                                                           | 725                                                                                                                                                                                                                                                                              | 572                                                                                                                                                                                                                                                                                                                                                                                                                 | 581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1015   | 1051                                                                          | 977                                                                                                                                                                                                                                                                              | 938                                                                                                                                                                                                                                                                                                                                                                                                                 | 1041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | B6<br>.318<br>10.129<br>.559<br>.386<br>15.599<br>6.81<br>24.2<br>586<br>1015 | B6         B1           .318         .431           10.129         12.398           .559         .519           .386         1.929           15.599         38.019           6.81         6.81           24.2         20.3           586         920           1015         1051 | B6         B8         B9           .318         .431         .449           10.129         12.398         18.902           .559         .519         .314           .386         1.929         6.896           15.599         38.019         24.361           6.81         6.81         6.90           24.2         20.3         17.7           586         920         725           1015         1051         977 | B6         B10           .318         .431         .449         .496           10.129         12.398         18.902         20.339           .559         .519         .314         .298           .386         1.929         6.896         4.864           15.599         38.019         24.361         24.347           6.81         6.81         6.90         6.92           24.2         20.3         17.7         18.2           586         920         725         572           1015         1051         977         938 |

~

Tell #

# WATER QUALITY DATA Date Of Sample Collection: 11 June 1990

Well #

· • '

.

|                            | Dt     | Dz     | , D3    | Dŧ     |
|----------------------------|--------|--------|---------|--------|
| F-<br>(mg/l)               | .560   | . 593  | . 589   | .759   |
| C1-<br>(mg/1)              | 26.824 | 25.792 | 25.871  | 39.915 |
| Br-<br>(mg/l)              | . 367  | . 355  | . 332   | . 347  |
| NO3 -<br>(mg/1)            | 1.623  | .746   | , 1.551 | 8.416  |
| SO4=<br>(nag/1)            | 28.908 | 21.518 | 18.884  | 26.827 |
| pH<br>(units)              | 6.74   | 6.88   | 7.08    | 7.04   |
| Temperature<br>(°C)        | 17.6   | 19.1   | 19.2    | 14.7   |
| Hardness<br>(mg/l HCO3)    | 702    | 799    | 747     | 638    |
| Conductivity<br>(µmhos/cm) | 1100   | 1230   | 1128    | 1028   |

|                              | D2<br>0909 | D3<br>0912 | D#<br>091# | Ds<br>0915 | Dz<br>0952 | D3<br>0955 |
|------------------------------|------------|------------|------------|------------|------------|------------|
| Ca**<br>(mg/l)               | 69.95      | 53.53      | 51.18      | 54.39      | 58.35      | 85.37      |
| K+<br>(mg/i)                 | . 5068     | . 2555     | . 2602     | . 3707     | . 4062     | . 2256     |
| Mg''<br>(mg/i)               | 59.77      | 47.03      | 41.40      | 42.96      | 58.41      | 50.24      |
| Na*<br>(mg/l)                | 115.0      | 105.5      | 124.1      | 120.6      | 109.8      | 108.9      |
| F-<br>(mg/l)                 | .721       | .714       | .765       | .730       | .716       | .729       |
| Cl-<br>(mg/l)                | 30.581     | 30.803     | 12.904     | 14.124     | 30.937     | 31.396     |
| Br <sup>-</sup><br>(mg/1)    | . 401      | .362       | .144       | .186       | . 347      | . 358      |
| NO3 -<br>(mg/l)              | . 220      | .647       | 5.699      | 4.805      | .023       | .660       |
| SO4=<br>(mg/l)               | 16.466     | 16.664     | 32.634     | 31.719     | 20.942     | 16.933     |
| pH<br>(units)                | 6.89       | 6.85       | 7.08       | 6.97       | 7.11       | 6.77       |
| Temperature<br>(°C)          | 16.8       | 14.4       | 15.1       | 14.9       | 14.7       | 11.8       |
| Hardness<br>(mg/l HCO3)      | 842        | 708        | 683        | 688        | 805        | 711        |
| Conductivity<br>(µmahos/cma) | 1 3 2 0    | 1190       | 1180       | 1180       | 1340       | 1130       |
| Cation/Anion<br>Balance (%)  | -5.57      | -7.03      | -3.70      | -3.49      | -30.45     | .94        |

♥ell # and Time Of Collection (24 hour clock)

| •                           | and t      |            | 11001100   | (24 11041  | CIUCK      |            |
|-----------------------------|------------|------------|------------|------------|------------|------------|
|                             | D4<br>0958 | Ds<br>1000 | D2<br>1007 | D3<br>1009 | De<br>1013 | Ds<br>1015 |
| Ca''<br>(mg/l)              | 27.73      | 51.53      | 36.73      | 47.59      | 70.85      | 40.43      |
| K+<br>(mg/l)                | •          | . 2883     | 5072       | . 2396     | . 3707     | . 3145     |
| Mg++<br>(mg/1)              | 39.87      | 42.30      | 53.93      | 49.36      | 41.96      | 42.24      |
| Na*<br>(mg/1)               | 117.0      | 118.0      | 105.3      | 108.6      | 124.8      | 118.1      |
| F-<br>(mg/l)                | .708       | .730       | .652       | .725       | .815       | .867       |
| CI-<br>(mg/1)               | 13.223     | 14.124     | 28.616     | 29.958     | 12.993     | 15.829     |
| Br-<br>(mg/1)               | .177       | .186       | .367       | . 328      | .175       | . 1 8 1    |
| NO3 -<br>(mg/1)             | 5.365      | 4.805      | . 641      | . 789      | 5.139      | 4.383      |
| SO4=<br>(mg/1)              | 31.939     | 31.719     | 25.065     | 17.928     | 32.030     | 33.091     |
| pH<br>(units)               | 7.04       | 6.98       | 7.73       | 6.98       | 7.08       | 7.02       |
| Temperature<br>(°C)         | 14.5       | 16.7       | 14.4       | 16.3       | 12.3       | 13.7       |
| Hardness<br>(mg/l HCO3)     | 682        | 685        | ł          | 722        | 676        | 693        |
| Conductivity<br>(pmhos/cm)  | 1180       | 1160       | 1140       | 1220       | 1100       | 1160       |
| Cation/Anion<br>Balance (%) | -11.21     | -4.66      |            | -7.79      | 1.27       | -8.02      |

Vell # and Time Of Collection (24 hour clock)

Concentration below detectable limit.

|                            | ° D3<br>1,030 | De<br>1035 | Ds<br>1040 | Dz<br>1050 | D1<br>1055 | D&<br>1100 |
|----------------------------|---------------|------------|------------|------------|------------|------------|
| Ca++<br>(mg/l)             | 72.59         | 48.23      | 65.69      | 27.91      | 81.72      | 48.43      |
| K+<br>(mg/l)               | ,             | . 2621     | . 3875     | . 5586     | •          | . 3108     |
| Hg**<br>(mg/1)             | 48.94         | 41.03      | 43.57      | 55.87      | 48.51      | 41.06      |
| Na+<br>(mg/i)              | 108.9         | 123.1      | 122.4      | 108.9      | 107.5      | 123.1      |
| F-<br>(mg/l)               | .710          | . 815      | . 815      | .733       | .728       | . 812      |
| C1-<br>(mg/1)              | 29.838        | 12.796     | 15.561     | 30.134     | 29.798     | 12.878     |
| Br-<br>(mg/1)              | .346          | . 173      | .214       | . 355      | . 350      | .169       |
| NO3-<br>(mg/1)             | .910          | 5.439      | 4.259      | . 243      | .929       | 5.311      |
| SO#=<br>(mg/l)             | 18.115        | 32.313     | 32.532     | 25.184     | 18.415     | 32.312     |
| pH<br>(units)              | 6.84          | 7.12       | 7.01       | 7.20       | 6.92       | 7.06       |
| Temperature<br>(°C)        | 11.8          | 13.4       | 12.7       | 15.7       | 13.5       | 12.6       |
| Hardness<br>mg/1 HCO3)     | 00            | 532        | 665        | ŧ          | 696        | 676        |
| conductivity<br>pmhos/cm}  | 1120          | 1100       | 1100       | 1080       | 1120       | 1100       |
| ation/Anion<br>alance (\$) | -1.22         | 6.65       | .75        |            | .45        | -4.12      |

Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

|                             | Ds<br>1105 | D2<br>1115 | D3<br>1120 | Da<br>1125 | Ds<br>1130 | Dz<br>1140 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca**<br>(mg/1)              | 46.33      | 52.63      | 59.91      | 45.24      | 42.07      | 64.15      |
| K+<br>(mg/i)                | . 3220     | . 3913     | . 2707     | . 2003     | . 2584     | .5606      |
| Mg**<br>(mg/l)              | 42.62      | 55.92      | 48.53      | 40.76      | 42.44      | 54.21      |
| Na**<br>(mg/l)              | 121.4      | 109.8      | 110.8      | 121.1      | 119.1      | 111.1      |
| F-<br>(mg/l)                | .796       | .755       | .736       | .800       | .727       | .787       |
| C1-<br>(mg/i)               | 15.987     | 29.531     | 28.463     | 12.770     | 15.168     | 27.740     |
| Br-<br>(mg/l)               | .217       | . 381      | . 335      | .176       | . 211      | . 289      |
| NO3-<br>(mg/1)              | 4.593      | . 424      | .950       | 5.364      | 4.677      | .900       |
| SO4=<br>(mg/l)              | 33.198     | 26.078     | 18.244     | 31.982     | 32.983     | 27.103     |
| pH<br>(units)               | 7.02       | 7.43       | 7.00       | 7.08       | 7.00       | 7.34       |
| Temperature<br>(°C)         | 16.2       | 16.1       | 14.8       | 15.9       | 16.3       | 21.1       |
| Hardness<br>(mg/l HCO3)     | 711        | ŧ          | 709        | 638        | 662        | ŧ          |
| Conductıvity<br>(µmhos/cm)  | 1160       | 1240       | 1140       | 1140       | 1140       | 1320       |
| Cation/Anion<br>Balance (%) | -7.06      |            | -4.04      | -2.68      | -5.22      |            |

Well # and Time Of Collection (24 hour clock)

|                              | D3<br>1145 | D4<br>1150 | . Ds<br>1455 | D2<br>1 2 0 5 | D3<br>1210 | Da<br>1215 |
|------------------------------|------------|------------|--------------|---------------|------------|------------|
| Ca**<br>(mg/l)               | 54.32      | 54.24      | 42.65        | 67.70         | 58.00      | 50.82      |
| K.<br>(mg/l)                 | . 2509     | . 2509     | . 3295       | . 4665        | ۲          | . 2621     |
| Mg++<br>(mg/l)               | . 49.77    | 41.61      | \$2.67       | 56.94         | 48.33      | 40.70      |
| Na''<br>(mg/l)               | . 111.3    | 121.6      | 120.8        | 113.8         | 107.4      | 121.6      |
| F-<br>(mg/l)                 | .732       | .830       | . 800        | . 771         | 765        | .779       |
| C1-<br>(mg/1)                | 28.702     | 12.519     | 15.445       | 37.350        | 29.478     | 13.432     |
| Br-<br>(mg/l)                | . 308      | .144       | . 212        | . 425         | . 345      | . 207      |
| NO3 -<br>(mg/i)              | .863       | 5.419      | 4.734        | .049          | .982       | 5.624      |
| SO4=<br>(mg/l)               | 18.559     | 32.404     | 32.925       | 31.565        | 19.377     | 31.675     |
| pH<br>(units)                | 6.93       | 7.08       | 7.04         | 7.11          | 6.94       | 7.08       |
| Temperature<br>(°C)          | 16.6       | 15.7       | 15.0         | 17.6          | 16.2       | 15.7       |
| Hardness<br>(mg/l HCO3)      | 685        | 662        | 682          | , <b>#</b>    | 668        | 662        |
| Conductivity<br>(µmhos/cm)   | 1180       | 11,20      | 1100         | 1320          | 1160       | 1120       |
| Cation/Anion<br>Balance (\$) | -3.20      | -1.94      | -6.02        |               | -2.70      | -3.07      |

ť

Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

|                             | Ds<br>1220 | 02<br>1230 | D3<br>1235   | Da<br>1240 | Os<br>1245 | Dz<br>1255 |
|-----------------------------|------------|------------|--------------|------------|------------|------------|
| Ca++<br>(mg/l)              | 48.81      | 82.77      | 65.88        | 40.32      | 53.21      | 80.81      |
| . K+<br>(mg/l)              | . 2546     | . 4 5 8 4  | . •          | .2546      | . 2509     | . 4665     |
| ₩g*_*<br>(mg/l)             | 41.96      | 57.31      | <b>99.14</b> | 40.44      | 42.03      | 53.67      |
| Na++<br>(mg/l)              | 117.6      | 132.1      | 109.2        | 122.3      | 117.9      | 129.8      |
| F-<br>(mg/l)                | . 832      | .949       | .730         | .770       | .833       | . 822      |
| C1-<br>(mg/1)               | 15.#33     | 88.645     | 28.961       | 13.565     | 15.862     | 112.039    |
| Br-<br>(mg/l)               | .215       | . 678      | . 293        | . 202      | . 263      | .772       |
| NO3 -<br>(mg/l)             | 4.662      | .158       | . 921        | 5.764      | 4.842      | . 269      |
| SO4=<br>(mg/l)              | 32.970     | 59.827     | 18.628       | 31.925     | 33.257     | 67.519     |
| pH<br>(unīts)               | 6.96       | 7.04       | 6.88         | 7.06       | 7.02       | 7.07       |
| Temperature<br>(°C)         | 16.6       | 16.4       | 15.4         | 19.6       | 14.6       | 16.4       |
| Hardness<br>(mg/l HCO3)     | 657        | 699        | 688          | 700        | 699        | ł          |
| Conductivity<br>(µmhos/cm)  | 1160       | 1420       | 1140         | 1130       | 1090       | 1420       |
| Cation/Anion<br>Balance (%) | -3.85      | -2.01      | -1.63        | -8.00      | -5.6       | 6          |

## Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

| -                            | D3<br>1300 | De<br>1305 | Ds<br>1310 | Dz<br>1 3 2 0 | D3<br>1 325 | Da<br>1330 |
|------------------------------|------------|------------|------------|---------------|-------------|------------|
| Ca**<br>(mg/1)               | 62.85      | 47.34      | 37.30      | 95.22         | 65.61       | 50.54      |
| K+<br>(mg/l)                 | •          | . 2996     | . 3707     | .6826         | , ¥         | .2584      |
| ₩g***<br>(mg/1.),            | 49.02      | 41.17      | 41.79      | 53.80         | 49.47       | 41.04      |
| Na**<br>(mg/1)               | 109.3      | 122.6      | 118.0      | 136.7         | 110.2       | 122.9      |
| F-<br>(mg/l)                 | .743       | .803       | .736       | . 878         | .789        | .749       |
| C1-<br>(mg/1)                | 26.061     | 13.503     | 13.618     | 125.749       | 29.625      | 12.922     |
| Br-<br>(mg/1)                | . 332      | .169       | .183       | .779          | . 316       | .167       |
| NO3-<br>(mg/1)               | .871       | 5.692      | 5.405      | . 295         | .741        | 5.720      |
| SO4=<br>(mag/l)              | 18.515     | 32.269     | 31.849     | 69.659        | 18.530      | 32.038     |
| pH<br>(units)                | 6.97       | 7.03       | 7.07       | 7.08          | 6.97        | 7.13       |
| Temperature<br>(°C)          | 15.6       | 14.8       | 14.6       | 17.2          | 17.0        | 17.4       |
| Hardness<br>(mg/l HCO3)      | 726        | 644        | 625        | 741           | 761         | 679        |
| Conductivity<br>(µmhos/cm)   | 1140       | 1080       | 1090       | 1440          | 1180        | 1160       |
| Cation/Anion<br>Balance (\$) | -4.40      | -2.28      | -3.91      | -6.29         | -6.03       | -3.89      |

Well # and Time Of Collection (24 hour clock)

|                             | Ds<br>1335 | D1<br>1340 | D2<br>1345 | D3<br>1350 | D4<br>1355 | D5<br>1400 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca''<br>(mg/l)              | 90.76      | 57.08      | 75.15      | 53.30      | 26.61      | 51.73      |
| K+<br>(mg/1)                | . 2771     | . 2012     | . 4665     | Ŧ          | . 2509     | . 3183     |
| ₩g**<br>(mg/1)              | 40.55      | 44.46      | 52.58      | 50.00      | 40.01      | 42.62      |
| Na*<br>(mg/l)               | 118.7      | 136.2      | 132.7      | 111.1      | 120.6      | 120.1      |
| F-<br>(mg/l)                | .762       | .798       | .842       | .730       | . 627      | .761       |
| Cl-<br>(mg/l)               | 15.095     | 19.182     | 119.871    | 32.025     | 13.321     | 13.597     |
| Br-<br>(mg/l)               | . 225      | . 186      | .745       | . 386      | .197       | .157       |
| NO3 -<br>(mg/l)             | 4.667      | 1.953      | . 288      | . 835      | 5.819      | 5.347      |
| SO4=<br>(mg/1)              | 32.839     | 37.652     | 67.665     | 20.490     | 32.071     | 31.758     |
| pH<br>(anits)               | 7.07       | 7.68       | 7.19       | 6.95       | 7.18       | 7.11       |
| Temperature<br>(°C)         | 17.4       | 16.1       | 18.3       | 17.5       | 17.5       | 16.8       |
| Hardness<br>(mg/1 HCO3)     | 682        | ŧ          | 728        | 726        | 665        | 722        |
| Conductivity<br>(pmhos/cm)  | 1160       | 1040       | 1460       | 1220       | 1160       | 1160       |
| Cation/Anion<br>Balance (%) | 2.94       |            | -9.36      | -6.54      | -9.49      | -6.44      |

Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

|                             | D1<br>1405 | Dz<br>1410 | D3<br>1415 | Da<br>1420 | Ds<br>1 \$ 2 5 | D1<br>1430 |
|-----------------------------|------------|------------|------------|------------|----------------|------------|
| Ca++<br>(mg/l)              | 27.82      | 86.86      | 59.87      | 54-, 33    | 29.15          | 33.28      |
| K+<br>(mg/l)                | •          | .4665      | •          | .9698      | . 2172         | ٠          |
| Mg**<br>(mg/l)              | 42.28      | 53.08      | 35.10      | 42.18      | 41.65          | 42.68      |
| Na**<br>(mg/l)              | 126.0      | 134.7      | 77.67      | 122.6      | 118.0          | 121.6      |
| F-<br>(mg/l)                | .742       | . 897      | . 443      | . 813      | .775           | .720       |
| C1-<br>(mg/l)               | 17.175     | 117.703    | 26.618     | 14.115     | 16.728         | 14.921     |
| Br-<br>(mg/l)               | . 201      | .756       | . 269      | 2.040      | .216           | .166       |
| NO3 -<br>(mg/l)             | 2.987      | . 302      | . 597      | 5.557      | 4.782          | 4.680      |
| SO4=<br>(mg/l)              | 34.524     | 66.165     | 16.166     | 31.935     | 33.474         | 32.971     |
| pH<br>(units)               | ŧ          | 7.20       | 7.10       | 7.08       | 7.15           | ŧ          |
| Temperature<br>(°C)         | 17.2       | 18.7       | 18.6       | 15.9       | 18.4           | 18.7       |
| Hardness<br>(mg/i HCO3)     | +          | 708        | 767        | 664        | 723            | *          |
| Conductivity<br>(pmhos/cm)  | ł          | 1420       | 1220       | 1060       | 1100           | 990        |
| Cation/Anion<br>Balance (%) |            | -5.60      | -19.22     | -1.73      | -13.02         |            |

Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

|                             | Dz<br>1435 | D3<br>1440 | Da<br>1445 | Ds<br>1450 | Dı<br>1500 | D2<br>1510 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca**<br>(mg/l)              | 30.73      | 50.58      | 51.67      | \$8.67     | 20.39      | 88.98      |
| K+<br>(mg/l)                | .2180      | . 3203     | . 2509     | . 3744     | . 2609     | .4658      |
| ₩g <sup>++</sup><br>(mg/l)  | 15.89      | 49.16      | 41.00      | \$2.72     | 40.24      | 53.89      |
| Na**<br>(mg/l)              | 38.17      | 7 111.7    | 121.4      | 121.1      | 116.1      | 139.9      |
| F-<br>(mg/l)                | .169       | . 697      | .777       | 1.790      | .768       | .881       |
| C1-<br>(mg/l)               | 26.379     | 37.934     | 14.377     | 14.629     | 17.144     | 116.027    |
| Br-<br>(mg/l)               | .173       | . 388      | . 223      | .184       | . 179      | .798       |
| NO3 -<br>(mg/l)             | .144       | .889       | 5.233      | 5.486      | 3.802      | . 384      |
| SO4=<br>(mg/l)              | 14.827     | 22.951     | 32.201     | 31.649     | 31.286     | 66.578     |
| pH<br>(units)               | 7.24       | 7.16       | 7.13       | 7.08       | ŧ          | 7.17       |
| Temperature<br>(°C)         | 17.8       | 19.7       | 18.6       | 17.9       | 20.1       | 15.6       |
| Hardness<br>(mg/l HCO3)     | 694        | 714        | 647        | 691        | ŧ          | 679        |
| Conductivity<br>(µmhos/cm)  | 1440       | 1200       | 1110       | 1080       | 980        | 1360       |
| Cation/Anion<br>Balance (%) | -46.77     | -7.35      | -i.87      | -4.98      |            | -2.66      |

Well # and Time Of Collection (24 hour clock)

|                             | D3<br>1520 | Da<br>1530 | Ds<br>1540 | D1<br>1550 | D2<br>1600 | D3<br>1610 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca''<br>(mg/l)              | 76.18      | 32.40      | 48.33      | 23.66      | 77.24      | 49.34      |
| K•<br>(mg/1)                | . 3775     | •          | . 2509     | . 2007     | . 4053     | . 2996     |
| Mg**<br>(mg/i)              | 49.65      | 40.38      | 42.25      | 41.08      | 52.72      | 49.66      |
| Na**<br>(mg/l)              | 113.4      | 120.8      | 119.2      | 116.0      | 128.6      | 112.1      |
| F<br>(mg/l)                 | .708       | .719       | . 849      | . 575      | . 866      | .793       |
| C1-<br>(mg/l)               | 34.775     | 13.860     | 16.422     | 15.292     | 99.283     | 32.747     |
| Br-<br>(mg/l)               | . 379      | .199       | .218       | .166       | .676       | . \$63     |
| NO3 -<br>(mg/l)             | .915       | 5.341      | 4.776      | 4.037      | . 298      | 1.165      |
| SO4=<br>(mg/1)              | 21.699     | 32.668     | 33.461     | 32.489     | 59.127     | 22.562     |
| pH<br>(units)               | 7.03       | 7.14       | 7.14       | ŧ          | 7.21       | 7.03       |
| Temperature<br>{°C}         | 17.5       | 17.2       | 17.1       | 19.6       | 18.0       | 16.4       |
| Hardness<br>(mg/i HCO3)     | 760        | 667        | 635        | ŧ          | 635        | 729        |
| Conductıvity<br>(pmhos/cm)  | 1140       | 1080       | 1080       | 1020       | 1360       | 1130       |
| Cation/Anion<br>Balance (%) | -3.97      | -8.15      | -2.16      |            | -2.28      | -7.71      |

Well # and Time Of Collection (24 hour clock)

\* Concentration below detectable limit.

|                             | ell # and T | ime Of Co  | llection   | (24 hour o | clock)     |            |
|-----------------------------|-------------|------------|------------|------------|------------|------------|
|                             | Da<br>1620  | Ds<br>1630 | Dz<br>1650 | D3<br>1700 | Da<br>1710 | Ds<br>1720 |
| Ca++<br>(mg/l)              | 46.65       | 28.90      | 58.88      | ¥7.76      | 47.66      | 48.78      |
| K+<br>(mg/l)                | .,2546      | .2677      | . 5072     | . 2958     | . 2808     | . 2771     |
| Mg++<br>(mg/l)              | 41.16       | 41.86      | 54.38      | 49.94      | 41.05      | 42.40      |
| Na++<br>(mg/l)              | 122.7       | 119.1      | 123.4      | 112.2      | 122.6      | 119.8      |
| F-<br>(mg/l)                | .786        | .787       | . 824      | .700       | .801       | . 863      |
| C1-<br>(mg/i)               | 14.247      | 14.444     | 75,110     |            | 13.634     | 15.128     |
| Br-<br>(mg/i)               | . 199       | .188       | .546       | . 488      | .197       | . 174      |
| NO3 -<br>(mag/l)            | 5.309       | 5.665      | .178       | . 876      | 5.339      | 4.810      |
| SO4=<br>(mg/l)              | 32.520      | 33.177     | 48.089     | 21.724     | 32.649     | 33.51      |
| pH<br>(units)               | 7.22        | 7.19       | 7.16       | 6.99       | 7.08       | 7.0        |
| Temperature<br>(°C)         | 17.9        | 16.0       | 15.6       | 17.7       | 16.6       | 16.        |
| Hardness<br>(mg/i HCO3)     | 676         | 670        | 734        | 740        | 709        | 69         |
| Conductivity<br>(µmhos/cm)  | 1080        | 1060       | 1280       | 1140       | 1090       | 106        |
| Cation/Anion<br>Balance (%) | -4.74       | -9.06      | -8.44      | -5.01      | -6.68      | -5.7       |

|                             | Di<br>1730 | Dz<br>1740 | D1<br>1750 | De<br>1800 | Ds<br>1810 | Dz<br>1830 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca'++<br>(mg/l)             | 16.28      | 73.87      | 70.16      | 48.02      | 53.46      | 65.17      |
| K*<br>(mg/l)                | •          | . 4550     | . 3775     | . 2883     | .3145      | . 3442     |
| Mg**<br>(mg/1)              | \$1.86     | 55.63      | 49.64      | 40.94      | 43.29      | 55.51      |
| Na**<br>(mg/l)              | 116.2      | 118.1      | 113.5      | 122.6      | 122.5      | 111.8      |
| F-<br>(mg/l)                | . 637      | .789       | . 693      | . 816      | .733       | .770       |
| C1-<br>(mg/l)               | 13.889     | 56.868     | 34.723     | 15.248     | 13.479     | \$7.922    |
| Br-<br>(mg/i)               | . 181      | . 455      | . 372      | . 282      | . 183      | . 425      |
| NO3 -<br>(mg/l)             | 5.130      | .081       | .920       | 6.113      | 5.486      | .067       |
| SO4=<br>(mg/1)              | 31.396     | 40.194     | 21.322     | 32.848     | 31.872     | 36.551     |
| pH<br>(units)               | ŧ          | 7.04       | 6.97       | 7.03       | 7.04       | 7.02       |
| Temperature<br>(°C)         | 17.9       | 16.8       | 17.1       | 10.8       | 14.3       | 15.3       |
| Hardness<br>(mg/l HCO3)     | ŧ          | 772        | 709        | 680        | 680        | 771        |
| Conductivity<br>(µmhos/cm.) | ~ <b>†</b> | 1360       | 1170       | 1080       | 1070       | 1250       |
| Cation/Anion<br>Balance (%) |            | -5.90      | -2.00      | -4.94      | -2.62      | -7.56      |

Well # and Time Of Collection (24 hour clock)

<sup>#</sup> Concentration below detectable limit.

| ,<br>,                      | D3<br>1840 | D.<br>1850 | Ds<br>1900 | Dz<br>1930 | D3<br>1945 | D.<br>2000 |
|-----------------------------|------------|------------|------------|------------|------------|------------|
| Ca**<br>(mg/l)              | 52.11      | 52.65      | 44.99      | 50.65      | 38.65      | 40.51      |
| K+<br>(mg/l)                | <b>£</b> . | .2602      | . 3707     | . 4385     | . 3707     | . 2434     |
| Mg**<br>(mg/1)              | 49.49      | 41.72      | 43.11      | 54.42      | 50.22      | 40.63      |
| Na**<br>(mg/l)              | 110.3      | 122.3      | 121.9      | _110.3     | 112.6      | 121.8      |
| F-<br>(mg/l)                | .776       | .771       | .768       | . 813      | .661       | .769       |
| C1-<br>(mg/l)               | 33.337     | 14.574     | 14.578     | 44.642     | 33.321     | 13.347     |
| Br-<br>(mg/l)               | . 373      | . 197      | .218       | .448       | . 391      | . 199      |
| NO3 -<br>(mg/l)             | .892       | 5.401      | 4.892      | .095       | .782       | 5.862      |
| SO4=<br>(mg/l)              | 21.365     | 32.802     | 33.465     | 35.761     | 21.724     | 32.348     |
| pH<br>(units)               | 6.82       | 7.04       | 7.05       | 6.97       | 7.03       | 7.02       |
| Temperature.<br>(°C)        | 14.8       | 13.9       | 13.2       | 13.0       | 13.3       | 12.7       |
| Hardness<br>(mg/l HCO3)     | 683        | 680        | 632        | 743        | 705        | 661        |
| Conductivity<br>(µmhos/cm)  | 1160       | 1080       | 1070       | 1260       | 1130       | 1080       |
| Cation/Anion<br>Balance (%) | -4.62      | -3.61      | -1.61      | -9.11      | -8.28      | -5.39      |

Well # and Time Of Collection (24 hour clock)

| ·                            |            |            |            |            |            |
|------------------------------|------------|------------|------------|------------|------------|
|                              | Ds<br>2015 | Dz<br>2045 | D3<br>2100 | Ď.<br>2115 | Ds<br>2130 |
| Ca''<br>(mg/l)               | 43.03      | 65.70      | 24.62      | 47.21      | 51.89      |
| K+<br>(mg/l)                 | . 2883     | . 4995     | . 2546     | ł          | . 2659     |
| ₩g**<br>(mg/l)               | 42.07      | 53.85      | 48.95      | 41.54      | 42.44      |
| Na**<br>(mg/1)               | 118.9      | 109.0      | 111.1      | 122.3      | 119.2      |
| F-'<br>(mg/l)                | .851       | .772       | .646       | .748       | . 839      |
| Cl-<br>(mg/l)                | 16.427     | 42.652     | 32.925     | 13.533     | 15.977     |
| Br-<br>(mg/l)                | .214       | . 432      | . 383      | . 193      | . 212      |
| NO3-<br>(mg/l)               | 5.012      | .063       | .798       | 5.359      | 4.898      |
| SO4=<br>(mg/l)               | 34.335     | 34.899     | 21.662     | 32.538     | 31.180     |
| pH<br>(units)                | 6.98       | 6.93       | 6.87       | 6.99       | 7.02       |
| Temperature<br>(°C)          | 12.2       | 11.5       | 11.6       | 10.9       | 10.6       |
| Hardness<br>(mg/l HCO3)      | 670        | 783        | , 719      | 674        | 711        |
| Conductivity<br>(µmhos/cm)   | 1080       | 1260 -     | 1170       | 1090       | 1110       |
| Cation/Anion<br>Balance (\$) | -5.98      | -8.45      | -13.20     | -4.37      | -6.16      |

| Vell | ŧ | and | ĩime | Of | Collection | (24 | hour | clock) |  |
|------|---|-----|------|----|------------|-----|------|--------|--|
|------|---|-----|------|----|------------|-----|------|--------|--|

# WATER QUALITY DATA Date Of Sample Collection: 2 Warch 1991

r

Vell ≇

|                              | Dz      | D3      | Du      | Ds      | Tap     |
|------------------------------|---------|---------|---------|---------|---------|
| Ca++<br>(mg/1)               | 53.950  | 56.700  | 77.480  | 58.360  | 37.510  |
| K* (mg/1)                    | 0.380   |         |         | •       | 5.810   |
| Mg++<br>(mg/l)               | 58.020  | 50.830  | 42.020  | 43.160  | 16.220  |
| Na+<br>(mg/1)                | 110.600 | 112.500 | 123.600 | 119.300 | 151.600 |
| F <del>.</del><br>(mg/1)     | 0.755   | 0.701   | 0.762   | 0.726   | 1.319   |
| C1-<br>(mg/1)                | 40.617  | 31.723  | 13.312  | 13.245  | 224.005 |
| Br                           | 0.441   | 0.335   | 0.180   | 0.173   | 0.356   |
| NO3 -<br>(mg/l)              | 1.400   | ¥       | 5.965   | 5.813   | 0.217   |
| SO4=<br>(mg/i)               | 34.726  | 20.259  | 32.856  | 32.160  | 106.992 |
| pH<br>(units)                | 7.01    | 7.08    | 6.92    | 6.98    | 11.27   |
| Temperature<br>(°C)          | 3.9     | 5.5     | 8.8     | 7.8     | 15.8    |
| Hardness<br>(mg/l HCO3)      | 841     | 734     | 676     | 659     | 82      |
| Conductivity<br>(µmuhos/cma) | 1230    | - 1040  | 1060    | 890     | 1100    |
| Cation/Anion<br>Balance (%)  | -12.05  | -5.71   | 2.26    | -0.80   | 0.30    |

# WATER QUALITY DATA Date Of Sample Collection: 4 March 1991

Well #

| ·····                       | Dz      | D3      | Dŧ      | Ds      |
|-----------------------------|---------|---------|---------|---------|
| _Ca++<br>(mg/l)             | 59.100  | 91.030  | 78.490  | 63.360  |
| K+<br>(mg/l)                | 0.693   | ¥       | ï       | ŧ       |
| Mg**<br>(mg/l)              | 59.840  | 50.730  | 42.020  | 43.320  |
| Na+<br>(mg/l)               | 112.100 | 113.800 | 125.200 | 121.700 |
| F-<br>(mg/l)                | 0.762   | 0.686   | 0.765   | 0.735   |
| C1-<br>(mg/i)               | 38.814  | 30.611  | 12.365  | 13.205  |
| Br-<br>(mg/1)               | 0.433   | 0.365   | 0.182   | 0.210   |
| NO3 -<br>(mg/1)             | 0.046   | 0.925   | 6.180   | 4.878   |
| SO4=<br>(mg/l)              | 31.060  | 19.521  | 32.221  | 32.049  |
| pH<br>(units)               | 6.98    | 6.89    | 6.95    | 6.93    |
| Temperature<br>(°C)         | 12.8    | 12.1    | 12.2    | 12.1    |
| Hardness<br>(mg/i HCO3)     | ŧ       | 723     | 706     | 683     |
| Conductivity<br>(µmhos/cm)  | 1400    | 1210    | 1160    | 1140    |
| Cation/Anion<br>Balance (%) |         | 2.04    | 0.90    | -0.89   |

\* Concentration below detectable limit.

## WATER QUALITY DATA Date Of Sample Collection: 6 March 1994

Vell 🛔

|                             | Dz      | D3      | Dı      | D5            |
|-----------------------------|---------|---------|---------|---------------|
| Ca++<br>(mg/1)              | 83.690  | 87.360  | 68.260  | 79.300        |
| K+<br>(mg/i)                | 0.314   | . 272   | •       | <b>*</b><br>, |
| Mg++<br>(mg/l)              | 58.400  | 51.000  | 42.530  | 43.850        |
| Na+<br>(mg/l)               | 112.000 | 115.600 | 125.500 | 121.900       |
| F-<br>(mg/l)                | 0.796   | 0.710   | 0.763   | 0.781         |
| Cl-<br>(mg/l)               | 38.465  | 29.320  | 12.229  | 13.365        |
| Br-<br>(mg/i)               | 0.433   | 0.344   | 0.169   | 0.189         |
| NO3 -<br>(mg/l)             | 0.072   | 0.919   | 5.654   | 4.953         |
| SO4=<br>(mg/l)              | 32.402  | 20.112  | 32.151  | 32.760        |
| pH<br>(units)               | 7.01    | 6.99    | 7.03    | 7.07          |
| Temperature<br>(°C)         | 10.1    | 9.9     | 10.9    | 10.6          |
| Hardness<br>(mg/l HCO3)     | ŧ       | 738     | 682     | 679           |
| Conductivity<br>(µmhos/cm)  | 1260    | 1140    | 1130    | 1060          |
| Cation/Anion<br>Balance (%) | -       | 0.92    | 0.70    | 2.71          |

\* Concentration below detectable limit.

# WATER QUALITY DATA Date Of Sample Collection: 10 March 1991

Vell #

1

*,* ?

.

|                             | Dz      | D3      | Dŧ      | Ds      |
|-----------------------------|---------|---------|---------|---------|
| Ca**<br>(mg/l)              | 94.250  | 88.530  | 77.710  | 77.500  |
| K+<br>(mg/l)                | 0.359   | •       | •       | 0.222   |
| Mg++<br>(mg/l)              | 59.140  | 50.250  | 41.700  | 44.510  |
| Na+<br>(mg/l)               | 113.800 | 112.500 | 124.200 | 125.700 |
| F-<br>(mg/l_)               | 0.755   | 0.681   | 0.739   | 0.758   |
| C1-<br>(mg/1)               | 39.090  | 29.730  | 12.491  | 13.162  |
| Br-<br>(mg/l)               | 0.419   | 0.337   | 0.166   | 0.175   |
| NO3 - (mg / 1 )             | 0.025   | 0.833   | 5.815   | 4.698   |
| SO4=<br>(mg/l)              | 29.376  | 19.791  | 31.768  | 31.462  |
| pH<br>(units)               | 7.01    | 6.98    | 7.02    | 7.01    |
| Temperature<br>(°C)         | 13.4    | 12.7    | 12.2    | 12.3    |
| Hardness<br>(mg/l HCO3)     | 685     | 722     | 682     | 670     |
| Conductivity<br>(µmhos/cm)  | 1340    | 1140    | 1100    | 1080    |
| Cation/Anion<br>Balance (%) | 5.78    | 1.36    | 2.08    | 3.98    |

■ Concentration below detectable limit.
# Not enough sample to perform field test.

# WATER QUALITY DATA Date Of Sample Collection: 13 March 1991

Veli ≢

|                             | Dz      | D3       | De      | D5      |
|-----------------------------|---------|----------|---------|---------|
| Ca**<br>(mg/l)              | 96.470  | 86.050   | 79.840  | 78.570  |
| K+<br>(mg/l)                | 0.462   | <b>,</b> | ٠       | •       |
| Mg**<br>(mg/l)              | 60.160  | 49.890   | 42.280  | 43.320  |
| Na*<br>(mg/l)               | 117.600 | 110.000  | 125.300 | 120.000 |
| F-<br>(mg/i)                | 0.778   | 0.696    | 0.781   | 0.789   |
| C1-<br>(mg/1)               | 37.600  | 29.308   | 12.699  | 13.768  |
| Br-<br>(mg/1)               | 0.408   | 0.313    | 0.141   | 0.175   |
| NO3 -<br>(mg/i)             | 0.029   | 0.785    | 5.631   | 4.869   |
| SO4=<br>(mg/l)              | 26.777  | 19.603   | 32.846  | 31.720  |
| pH<br>(units)               | 7.01    | 6.99     | 7.03    | 7.03    |
| Temperature<br>(°C)         | 6.7     | 8.9      | 9.9     | 9.6     |
| Hardness<br>(mg/l HCO3)     | ŧ       | 699      | 661     | 697     |
| Conductivity<br>(µmhos/cm)  | 1290    | 1050     | 1140    | 1140    |
| Cation/Anion<br>Balance (%) |         | 1.90     | 4.18    | .92     |

\* Concentration below detectable limit.

# WATER QUALITY DATA Date Of Sample Collection: 17 March 1991

Vell #

|                             | Dz      | D3       | Dı      | D5      |
|-----------------------------|---------|----------|---------|---------|
| Ca++<br>(mg/1_)             | 99.010  | 88.900   | 77.540  | 62.950  |
| K+<br>(mg/l)                | 0.555   | ۲.<br>۲. | •       | •       |
| Mg++<br>(mg/l)              | 60.760  | 50.750   | 42.240  | 43.590  |
| Na⁺<br>(mg/l)               | 115.400 | 112.600  | 124.400 | 121.200 |
| F-<br>(mg/l)                | 0.762   | 0.722    | 0.780   | 0.777   |
| CI-<br>(mg/l)               | 35.002  | 27.735   | 11.937  | 12.741  |
| Br-<br>(mg/l)               | 0.371   | 0.327    | 0.159   | 0.173   |
| NO3 -<br>(mg/l)             | 0.015   | 0.825    | 5.708   | 4.597   |
| SO4=<br>(mg/l)              | 21.408  | 19.636   | 32.132  | 31.785  |
| pH<br>(anits)               | 7.17    | 7.19     | 7.15    | 7.14    |
| Temperature<br>(°C)         | 8.8     | 8.2      | 10.2    | 9.9     |
| Hardness<br>(mg/I HCO3)     | 857     | 741      | 673     | 697     |
| Conductivity<br>(µmhos/cm)  | 1260    | 920      | 1120    | 980     |
| Cation/Anion<br>Balance (%) | -1.66   | .64      | 2.90    | -1.82   |

\* Concentration below detectable limit.

,

.

| 1    | AT | er quai | LITY  | DATA     |
|------|----|---------|-------|----------|
| Date | 0f | Sample  | e Col | lection: |
|      | 24 | March   | 1991  |          |

|            | 11 |     |
|------------|----|-----|
| <b>v</b> e | 11 | L F |

|                           | Dz      | D3      | Dŧ      | D5      |
|---------------------------|---------|---------|---------|---------|
| Ca**<br>(mg/l)            | 99.460  | 87.370  | 80.450  | 77.610  |
| K+<br>(mg/l)              | 0.451   | ٠       | •       | •       |
| <b>M</b> g**<br>(mg/l)    | 58.970  | 48.840  | 42.140  | 43.430  |
| Na+<br>(mg/l)             | 111.700 | 111.200 | 125.600 | 121.800 |
| F-<br>(mg/l)              | 0.846   | 0.697   | 0.752   | 0.778   |
| Cl-<br>(mg/l)             | 36.656  | 26.994  | 11.885  | 12.847  |
| Br-<br>(mg/l)             | 0.367   | 0.312   | 0.156   | 0.167   |
| NO3 -<br>(mg/l)           | 0.081   | 0.899   | 5.986   | 4.459   |
| SO4=<br>(mg/i)            | 18.926  | 19.819  | 32.441  | 31.521  |
| pH<br>(units)             | 7.14    | 7.18    | 7.28    | 7.23    |
| Temperature<br>(°C)       | 17.8    | 17.1    | 17.1    | 17.3    |
| Hardness<br>mg/l HCO3)    | 856     | 714     | 696     | 697     |
| onductivity<br>µmhos/cm)  | 1260    | 990     | 1040    | 1020    |
| ation/Anion<br>alance (%) | -2.56   | 1.30    | 2.08    | 1.20    |

\* Concentration below detectable limit.

)

# WATER QUALITY DATA Date Of Sample Collection: 13 April 1991

Vell #

| -                          | Dı      | Dz           | D3      | Dŧ      | D5      |
|----------------------------|---------|--------------|---------|---------|---------|
| Ca''<br>(mg/l)             | 76.320  | 106.700<br>J | 81.770  | 81.890  | 80.540  |
| K+<br>(mg/l)               | 0.321   | 0.458        | ٠       | ¥       | ¥       |
| Mg++<br>(mg/l)             | 45.910  | 58.360       | 47.470  | 42.100  | 43.600  |
| Na+<br>(mg/l)              | 129.900 | 113.100      | 109.500 | 126.000 | 123.100 |
| F-<br>(mg/l)               | 0.863   | 0.896        | 0.714   | 0.782   | 0.787   |
| Ci-<br>(mg/i)              | 15.734  | 35.619       | 24.477  | 13.474  | 14.040  |
| Br-<br>(mg/l)              | 0.245   | 0.421        | 0.308   | 0.182   | 0.140   |
| NO3 -<br>(mg/l)            | 0.103   | 0.018        | 1.284   | 5.472   | 4.543   |
| SO4=<br>(mg/l)             | 24.642  | 15.146       | 20.511  | 31.370  | 30.36   |
| pH<br>(units)              | 7.46    | 7.25         | 7.27    | 7.36    | 7.38    |
| Temperature<br>(°C)        | 8.5     | 23.5         | 23.6    | 32.4    | 37.5    |
| Hardness<br>mg/l HCO3)     | 775     | 863          | 728     | 683     | 696     |
| onductıvity<br>µmnhos/cma) | 1020    | 1170         | 1020    | 1030    | 1020    |
| ation/Anion<br>alance (\$) | -1.54   | -1.34        | -1.17   | 3.18    | 2.07    |

|                            |            |             | ilection ( | 27 11041   | UIUUKJ     |            |
|----------------------------|------------|-------------|------------|------------|------------|------------|
|                            | D1<br>0953 | Di<br>1 200 | Di<br>1225 | D1<br>1250 | Di<br>1315 | Di<br>1340 |
| -<br>(mg/l)                | ,          |             |            |            |            |            |
| F-<br>(mg/l)               | 1.369      | .948        | .765       | .657       | . 632      | .614       |
| Ci-<br>(mg/i)              | 15.868     | 16.337      | 17.943     | 16.993     | 36.612     | 17.272     |
| Br-<br>(mg/l)              | . 261      | . 258       | . 220      | . 226      | .218       | . 189      |
| NO3<br>(mg/l)              | .083       | .016        | . 307      | .935       | 1.250      | .946       |
| SO4=<br>(mg/l)             | 12.951     | 15.640      | 17.874     | 21.693     | 23.287     | 21.459     |
| pH<br>(units)              | 7.42       | • 7.49      | 8.42       | 8.25       | 8.29       | 8.52       |
| Temperature<br>(°C)        | 14.2       | 14.6        | 16.6       | 16.9       | 17.4       | 17.3       |
| Hardness<br>(mg/l HCO3)    | 767        | ŧ           | ŧ          | ŧ          | ŧ          | ŧ          |
| Conductivity<br>(µmhos/cm) | 1080       | 980         | 970        | 830        | 1010       | 900        |
|                            |            |             |            |            |            |            |

Well # and Time Of Collection (24 hour clock)

|                            | Di<br>1405 | Dı<br>1430 | D1,-<br>- [1455 | Dı.<br>1520 | Di<br>1545 | Dı<br>1610 |
|----------------------------|------------|------------|-----------------|-------------|------------|------------|
| [-<br>(mg/l)               |            | -          | - I             | -           |            |            |
| F-<br>(mg/l)               | .672       | . 588      | . 594           | . 634       | . 687      | . 692      |
| Cl-<br>(mg/l).             | 16.958     | 16.187     | 17.1435         | 15.853      | 16.817     | 17.273     |
| Br-<br>(mg/l)              | . 203      | .197       | . 191           | . 220       | . 227      | . 226      |
| NO3 -<br>(mg/1)            | 2.325      | 1.551      | .622            | 1.209       | . 594      | . 624      |
| SO4=<br>(mg/l)             | 25.319     | 23.620     | 21.400          | 24.083      | 23.886     | 25.069     |
| pH<br>(units)              | 8.36       | 8.29       | 8.42            | 7.90        | 7.85       | 7.86       |
| Temperature<br>(°C)        | 19.3       | 19.8       | 20.0            | 20.2        | 19.7       | 19.6       |
| Hardness<br>(mg/l HCO3)    | ŧ          | ŧ          | ŧ               | ŧ           | ŧ          | ł          |
| Conductivity<br>(µmhos/cm) | 970        | 1010       | 920             | 1040        | 1040       | 1000       |

Well # and Time Of Collection (24 hour clock)

|                            |            |            |            | • • • • •  |            |            |
|----------------------------|------------|------------|------------|------------|------------|------------|
|                            | Di<br>1635 | Di<br>1700 | Di<br>1725 | Di<br>1750 | D1<br>1815 | Dı<br>1840 |
| -<br>(mg/l)                | . 246      | . 4 3 1    | . 376      | . 399      | . 300      | . 378      |
| F-<br>(mg/l)               | .769       | .723       | .739       | .683       | .619       | . 622      |
| C1-<br>(mg/l)              | 18.845     | 19.710     | 27.033     | 20.864     | 20.029     | 17.966     |
| Br-<br>(mg/l)              | . 220      | .206       | . 215      | . 214      | .210       | .178       |
| NO3 -<br>(mg/l)            | .653       | 1.048      | 1.564      | 1.828      | 2.440      | 3.057      |
| SO4 =<br>(mg/l)            | 26.692     | 28.677     | 29.014     | 30.204     | 31.462     | 31.132     |
| pH<br>(units)              | 7.73       | 7.71       | 7.99       | 8.06       | 8.11       | 8.14       |
| Temperature<br>(°C)        | 19.3       | 19.5       | 19.6       | 19.3       | 19.2       | 19.0       |
| Hardness<br>(mg/l HCO3)    | *          | ' <b>#</b> | ŧ          | ŧ          | ŧ          | ŧ          |
| Conductıvîty<br>(µmhos/cm) | 1030       | 1040       | 1020       | 1010       | 1000       | ŧ          |

**Well #** and Time Of Collection (24 hour clock)

|                            | D1<br>1905 | Dı<br>1930  | D1<br>2000 | Dı<br>2055 | Barrel | Tap     |
|----------------------------|------------|-------------|------------|------------|--------|---------|
| ]-<br>(mg/l)               | . 413      | ł           | .233       | . 994      | 6.73   |         |
| F-<br>(mg/l)               | . 606      | . 619       | . 608      | .759       |        | 1.110   |
| C1-<br>(mg/l)              | 18.667     | 14.539      | 17.506     | 21.020     | .676   | 247.440 |
| Br-<br>(mg/l)              | . 196      | .143        | .192       | . 209      |        | . 217   |
| NO3 -<br>(mg/1)            | 2.992      | 5.378       | 3.526      | 1.604      |        | . 528   |
| SO4=<br>(mg/l)             | 31.689     | 33.637      | 31.584     | 31.219     | 31.600 | 132.072 |
| pH<br>(units)              | 8.22       | 8.17        | 8.13       | 7.77       | 6.22   | 8.46    |
| Temperature<br>(°C)        | 18.6       | 17.9        | 17.0       | 15.5       | 18.8   | 17.5    |
| Hardness<br>(mg/l HCO3)    | ŧ          | ·, <b>#</b> | ŧ          | ŧ          | 61     | 49      |
| Conductivity<br>(µmhos/cm) | 940        | 960         | 970        | 1010       | 540    | 1040    |

Well # and Time Of Collection (24 hour clock)

| Well # and Time Of Collection (24 hour clock) |             |              |            |               |               |              |  |
|-----------------------------------------------|-------------|--------------|------------|---------------|---------------|--------------|--|
|                                               | D2-<br>1021 | Dz<br>1 20 5 | Dz<br>1230 | D2<br>1 2 5 5 | Dz<br>1 3 2 0 | Dz<br>1 34 5 |  |
| i-<br>(mg/i)                                  |             |              | ,<br>,     |               |               | -            |  |
| F- (mg/l)                                     | 1.302       | 1.184        | . 527      | . 575         | 1.182         | . 554        |  |
| C1-<br>(mg/1)                                 | 37.053      | 35.474       | 35.299     | 35.219        | 35.766        | 35.234       |  |
| Br-<br>(mg/i)                                 | . 369       | . 382        | . 344      | . 370         | . 380         | . 347        |  |
| NO3 -<br>(mg/i)                               | .008        | .030         | .029       | . 0 3 9       | .036          | .035         |  |
| SO4=<br>(mg/l)                                | 12.355      | 26.359       | 27.501     | 30.181        | 30.701        | 30.809       |  |
| pH<br>(units)                                 | 7.22        | 7.09         | 7.99       | 7.27          | 7.27          | 7.29         |  |
| Temperature<br>(°C)                           | 14.7        | 14.8         | 16.5       | 15.7          | 16.3          | 16.9         |  |
| Hardness<br>(mg/1 HCO3)                       | 819         | 822          | ŧ          | 763           | 747           | ŧ            |  |
| Conductivity<br>(µmahos/cma)                  | 1230        | 1160         | 1080       | 1140          | 1180          | 1180         |  |

# Not enough sample to perform field test.

.

.

|                            | Dz<br>1410 | Dz<br>1435 | Dz<br>1500 | Dz<br>1525 | D2<br>1550 | Dz<br>1615 |
|----------------------------|------------|------------|------------|------------|------------|------------|
| [-<br>(mg/l)               | ι.         | ×          |            | 1.319      | 1.759      | 2.938      |
| F-<br>(mg/l)               | 1.241      | . 600      | .615       | . 636      | .652       | .776       |
| C1-<br>(mg/l)              | 37.104     | 35.851     | 36.489     | 40.452     | 51.630     | 59.672     |
| Br–<br>(mg/l)              | . 366      | . 374      | . 386      | . 375      | .405       | . 378      |
| NO3 -                      | .045       | .044       | .036       | .044       | .067       | .125       |
| (mg/l)<br>SO4-<br>(mg/l)   | 32.580 -   | 31.863     | 33.440     | 36.129     | 41.289     | 43.935     |
| pH<br>(units)              | 7.31       | 7.28       | 7.26       | 7.22       | 7.23       | 7.20       |
| Temperature<br>(°C)        | 18.1       | 18.5       | 18.0       | 18.4       | 18.2       | 18.0       |
| Hardness<br>(mg/l HCO3)    | 860        | 648        | 801        | 805        | 775        | 729        |
| Conductivity<br>(µmhos/cm) | 1180       | 1180       | 1180       | 1180       | 1190 .     | 1200       |
|                            |            |            | 5          |            |            |            |

Well # and Time Of Collection (24 hour clock)

| ve                         | II # and I | ime oi co  | llection   | (24 nour   | CIOCK)        |            |
|----------------------------|------------|------------|------------|------------|---------------|------------|
|                            | Dz<br>1640 | Dz<br>1705 | D2<br>1730 | Dz<br>1755 | Dz<br>1 8 2 0 | Dz<br>1845 |
| 1-<br>(mg/l)               | 3.227      | 3.090      | 2.417      | 2.239      | 1.647         | 1.003      |
| F-<br>(mg/i)               | .793       | 1.167      | 1.189      | 1.199      | 1.201         | 1.217      |
| C1-<br>(mg/1)              | 66.541     | 69.572     | 62.881     | 62.520     | 63.074        | 56.455     |
| Br-<br>(mg/l)              | .404       | .460       | .463       | . 419      | .413          | . 399      |
| NO3 -<br>(mg/1)            | .103       | .103       | .082       | .066       | .057          | .060       |
| SO4=<br>(mg/l)             | 46.542     | 47.171     | 45.220     | 45.189     | 44.536        | 41.242     |
| pH<br>(units)              | 7.22       | 7.24       | 7.26       | 7.28       | 7.24          | 7.30       |
| Temperature<br>(°C)        | 17.5       | 18.2       | 17.8       | 17.6       | 17.7          | 17.6       |
| Hardness<br>(mg/l HCO3)    | 722        | 723        | 747        | 726        | 792           | 776        |
| Conductivity<br>(µmhos/cm) | 1210       | 1220       | 1220       | 1220       | 1180          | 1200       |
|                            |            |            |            |            |               |            |

Well # and Time Of Collection (24 hour clock)

| •••                        |            |            |            | .,         |            |            |
|----------------------------|------------|------------|------------|------------|------------|------------|
|                            | Dz<br>1910 | Dz<br>1935 | Dz<br>2010 | Dz<br>2110 | D3<br>1042 | D3<br>1210 |
| 1-<br>(mg/1)               | 1.136      | .926       | 1.217      | . 858      |            |            |
| F-<br>(mg/1)               | 1.231      | 1.199      | .134       | 1.191      | .739       | .788       |
| C1-<br>(mg/1)              | \$8.876    | 44.583     | 45.682     | 45.632     | 24.881     | 24.874     |
| Br-<br>(mg/l)              | .409       | . 397      | . 398      | . 357      | .218       | . 273      |
| NO3 -<br>(mg/l)            | .056       | .069       | .059       | .052       | 1.722      | 1.642      |
| SO4=<br>(mg/i)             | 37.566     | 35.630     | 36.267     | 36.848     | 24.286     | 21.869     |
| pH<br>(units)              | 7.32       | 7,31       | 7.25       | 7.20       | 7.24       | 7.11       |
| Temperature<br>(°C)        | 17.5       | 16.7       | 15.7       | 14.6       | 15.0       | 14.9       |
| Hardness<br>(mg/l HCO3)    | 796        | 786        | 821        | 780        | 699        | 683        |
| Conductivity<br>(µmhos/cm) | 1190       | 1170       | 1180       | 1160       | 1040       | 1040       |
|                            |            |            |            |            |            |            |

Vell # and Time Of Collection (24 hour clock)

| D3         D3 <thd3< th="">         D3         D3         D3<!--</th--><th colspan="8">Vell # and Time Of Collection (24 hour clock)</th></thd3<> | Vell # and Time Of Collection (24 hour clock) |            |             |            |            |            |            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-------------|------------|------------|------------|------------|--|
| I-<br>(mg/l)         F-<br>(mg/l)         C1-<br>(mg/l)         C1-<br>(mg/l)         Br-<br>(mg/l)         Br-<br>(mg/l)         NO3-<br>(mg/l)         NO3-<br>(mg/l)         SO4=<br>(mg/l)         21.656         21.792         21.740         22.561         22.708         (mg/l)         pH<br>(units)         Temperature<br>(*C)         14.9       15.3         15.8       16.2         16.6         (*C)         Hardness<br>(mg/l HCO3)         705         030         1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | D3<br>1235 | D3<br>1 300 | D3<br>1325 | D3<br>1350 | D3<br>1415 | D3<br>1440 |  |
| F-<br>(mg/1)       .708       .755       .750       .773       .791         C1-<br>(mg/1)       23.087       23.829       24.204       24.694       258.242         (mg/1)       .234       .275       .238       .279       .266         (mg/1)       .03-<br>(mg/1)       1.712       1.702       1.667       1.801       1.769         NO3-<br>(mg/1)       1.712       1.702       21.656       21.792       21.740       22.561       22.708         SO4=<br>(mg/1)       21.656       21.792       21.740       22.561       22.708         pH<br>(units)       7.12       7.16       7.15       7.16       7.08         Temperature<br>(*C)       14.9       15.3       15.8       16.2       16.6         Hardness<br>(mg/1 HCO3)       715       712       734       743       705         Conductivity       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                             | [-<br>(mg/l)                                  | ,          |             |            | r<br>1     |            |            |  |
| C1-<br>(mg/1)       23.087       23.829       24.204       24.694       258.242         Br-<br>(mg/1)       .234       .275       .238       .279       .266         NO3-<br>(mg/1)       1.712       1.702       1.667       1.801       1.769         SO4=<br>(mg/1)       21.656       21.792       21.740       22.561       22.708         pH<br>(units)       7.12       7.16       7.15       7.16       7.08         Temperature<br>(*C)       14.9       15.3       15.8       16.2       16.6         Hardness<br>(mg/1 HCO3)       715       712       734       743       705         Conductivity       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F-<br>(mg/i)                                  | .708       | .755        | .750       | .773       | .791       | .783       |  |
| Br-<br>(mg/1)       .234       .275       .238       .279       .266         NO3-<br>(mg/1)       1.712       1.702       1.667       1.801       1.769         SO4=<br>(mg/1)       21.656       21.792       21.740       22.561       22.708         pH       7.12       7.16       7.15       7.16       7.08         (units)       Temperature       14.9       15.3       15.8       16.2       16.6         (*C)       Hardness       715       712       734       743       705         Conductivity       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1-<br>(mg/1)                                 | 23.087     | 23.829      | 24.204     | 24.694     | 258.242    | 24.825     |  |
| NO3-<br>(mg/1)       1.712       1.702       1.667       1.801       1.769         SO4=<br>(mg/1)       21.656       21.792       21.740       22.561       22.708         pH       7.12       7.16       7.15       7.16       7.08         (units)       15.3       15.8       16.2       16.6         Hardness       715       712       734       743       705         Conductivity       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Br-<br>(mg/1)                                 | . 234      | . 275       | . 238      | . 279      | . 266      | . 275      |  |
| SO4=<br>(mg/1)       21.656       21.792       21.740       22.561       22.708         pH<br>(units)       7.12       7.16       7.15       7.16       7.08         Temperature<br>(*C)       14.9       15.3       15.8       16.2       16.6         Hardness<br>(*C)       715       712       734       743       705         Conductivity       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO3 -<br>(mg/l)                               | 1.712      | 1.702       | 1.667      | 1.801      | 1.769      | 1.756      |  |
| pH       7.12       7.16       7.15       7.16       7.08         (units)       Temperature       14.9       15.3       15.8       16.2       16.6         (°C)       Hardness       715       712       734       743       705         Hardness       715       712       734       743       705         (mg/1 HCO3)       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SO4=<br>(mg/l)                                | 21.656     | 21.792      | 21.740     | 22.561     | 22.708     | 22.795     |  |
| Temperature       14.9       15.3       15.8       16.2       16.6         (°C)       Hardness       715       712       734       743       705         Hardness       715       712       734       743       705         (mg/1 HCO3)       970       990       1030       1040       1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH<br>(units)                                 | 7.12       | 7.16        | 7.15       | 7.16       | 7.08       | 7.11       |  |
| Hardness         715         712         734         743         705           (mg/1 HCO3)         Conductivity         970         990         1030         1040         1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temperature<br>(°C)                           | 14.9       | 15.3        | 15.8       | 16.2       | 16.6       | 17.7       |  |
| Conductivity 970 990 1030 1040 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hardness<br>(mg/1 HCO3)                       | 715        | 712         | 734        | 743        | 705        | 815        |  |
| (panos/ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conductıvity<br>(µmhos/cm.)                   | 970        | 990         | 1030       | 1040       | 1050       | 1040       |  |
### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Jodide Tracer Test

|                            | Vell # and | Time Of    | Collection | (24 hou    | r clock)   |            |
|----------------------------|------------|------------|------------|------------|------------|------------|
|                            | D3<br>1505 | D3<br>1530 | D3<br>1555 | D3<br>1620 | D3<br>1645 | D3<br>1710 |
| i-<br>(mg/1)               |            |            |            |            | ,          |            |
| F-<br>(mg/l)               | .775       | .780       | .729       | .714       | . 822      | .753       |
| Cl-<br>(mg/i)              | 25.094     | 24.883     | 26.119     | 26.612     | 26.675     | 27.275     |
| Br-<br>(mg/l)              | . 281      | . 277      | . 280      | . 284      | . 284      | . 236      |
| NO3 -<br>(mg/l)            | 1.710      | 1.722      | 1.581      | 1.707      | 1.606      | 1.700      |
| SO4-<br>(mg/l)             | 22.968     | 23.033     | 23.959     | 23.509     | 24.530     | 24.572     |
| pH<br>(units)              | 7.13       | 7.12       | 7.15       | 7.16       | 7.10       | 7.13       |
| Temperature<br>(°C)        | 17.5       | 17.9       | 18.1       | 17.8       | 17.8       | 17.6       |
| Hardness<br>(mg/1 HCO3)    | 714        | 755        | 720        | 918        | 859        | 728        |
| Conductivity<br>(µmhos/cm) | 1030       | 1050       | 1050       | 1050       | 1050       | 1050       |
|                            |            |            |            |            |            |            |

#### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 lodide Tracer Test

|                           | ♥ell # and | Time Of (    | Collection   | (24 hour   | clock)     |            |
|---------------------------|------------|--------------|--------------|------------|------------|------------|
| ,                         | D3<br>173  | D3<br>5 1801 | D3<br>0 1825 | D3<br>1850 | D3<br>1915 | D3<br>1940 |
| -<br>(mg/l)               |            | n.           |              | *          |            |            |
| F-<br>(mg/l)              | .741       | .76          | 9.751        | .783       | .764       | .717       |
| C1-<br>(mg/1)             | 27.40      | 27.39        | 8 27.647     | 27.621     | 26.781     | 27.344     |
| Br-<br>(mg/1)             | . 272      | . 28         | 5.228        | . 227      | . 295      | . 291      |
| NO3 -<br>(mg/l)           | 1.700      | 1.67         | 8 1.72       | 9 1.730    | 1.754      | 1.674      |
| SO4=<br>(mg/l)            | 25.435     | 25.22        | 6 25.684     | 25.791     | 25.360     | 25.495     |
| pH<br>(units)             | 7.18       | 7.1          | 3 7.12       | 7.07       | 7.16       | 7.13       |
| Temperatur<br>(°C)        | e 17.3     | 17.          | 7 17.5       | 17.2       | 16.7       | 16.5       |
| Hardness<br>(mg/l HCO3)   | 715        | 70           | 5 781        | 743        | 747        | 722        |
| Conductivit<br>(µmhos/cm) | y 1040     | 105          | 0 1050       | 1050       | 1040       | 1060       |

170

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Iodide Tracer Test

Well # and Time Of Collection (24 hour clock)

|                            | D3<br>2020 | D3 -<br>2125 | D.<br>1052 | De<br>1215 | D4<br>1240 | Da<br>1305 |
|----------------------------|------------|--------------|------------|------------|------------|------------|
| I-<br>(mg/l)               |            |              | ,          |            | 3          | ŧ          |
| F-<br>(mg/l)               | .772       | . 803        | . 816      | · .852     | . 822      | . 823      |
| C1-<br>(mg/l)              | 28.195     | 27.572       | 12.143     | 12.114     | 12.138     | 12.230     |
| Br-<br>(mg/l)              | . 245      | . 269        | .122       | .133       | .145       | .148       |
| NO3 -<br>(mg/1)            | 1.631      | 1.490        | 7.101      | 4.762      | 5.935      | 6.067      |
| SO4=<br>(mg/l)             | 25.830     | 24.940       | 35.654     | 36.156     | 36.025     | 36.370     |
| pH<br>(units)              | 7.15       | 7.21         | 7.18       | 7.26       | 7.30       | 7.30       |
| Temperature<br>(°C)        | 15.4 -     | 14.3         | 14.7       | 15.1       | 15.6       | 15.8       |
| Hardness<br>(mg/l HCO3)    | 755        | 761          | 661        | 642        | 746        | 699        |
| Conductivity<br>(µmhos/cm) | 1050       | 1050         | 1030       | 1010       | 1020       | 1020       |

i

ι

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 lodide Tracer Test

|                            | D#<br>1330 | D.<br>1355 | D4<br>1420 | D4<br>1445 | D4<br>1510 | D4<br>1535 |
|----------------------------|------------|------------|------------|------------|------------|------------|
| -<br>(mg/l)                |            | J          |            | ·          |            |            |
| F-<br>(mg/l)               | . 873      | .819       | .863       | .919       | . 867      | . 886      |
| C1-<br>(mg/1)              | 12.429     | 12.289     | 12.124     | 12.982     | 12.329     | 12.247     |
| Br-<br>(mg/l)              | . 1 50     | . 1 2 6    | . 145      | .126       | .120       | . 1 50     |
| NO3 -<br>(mg/l)            | 6.635      | 6.848      | 7.063      | 6.833      | 7.034      | 7.075      |
| SO4=<br>(mg/l)             | 36.928     | 36.585     | 37.703     | 36.595     | 37.506     | 37.153     |
| pH<br>(units)              | 7.28       | 7.31       | 7.28       | 7.30       | 7.27       | 7.26       |
| Temperature<br>(°C)        | 16.0       | 16.9       | 17.7       | 17.5       | 17.7       | 17.5       |
| Hardness<br>mg/l HCO3)     | 697        | 712        | 659        | 700        | 657        | 705        |
| Conductivity<br>(µmhos/cm) | 1000       | 1020       | 1020       | 1000       | 1020       | 1020       |
|                            |            |            |            |            |            |            |

Well # and Time Of Collection (24 hour clock)

#### VATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Iodide Tracer Test

|                            | D#<br>1600 | D4<br>1625  | D4<br>1650 | D&<br>1715 | Da<br>1740 | Ds<br>1805 |
|----------------------------|------------|-------------|------------|------------|------------|------------|
| l-<br>(mg/l)               |            | ų           | 1          | ۲.<br>۱    |            |            |
| F-<br>(mg/l)               | .860       | .885        | .907       | . 884      | .933       | . 875      |
| C1-<br>(mg/1)              | 12.975     | 12.966      | 13.607     | 13.079     | 13.971     | 13.313     |
| Br-<br>(mg/l)              | .149       | .145        | .136       | .134       | .144       | .134       |
| NO3 -<br>(mg/l)            | 7.345      | 7.579       | 7.740      | 7.710      | 7.812      | 7.875      |
| SO4=<br>(mg/l)             | 37.415     | 38.175      | 39.051     | 39.661     | 39.352     | 39.551     |
| pH<br>(units)              | 7.28       | 7.25        | 7.25       | 7.27       | 7.29       | 7.27       |
| Temperature<br>(°C)        | 18.1       | 17.7        | 17.6       | 17.4       | 17.1       | 17.3       |
| Hardness<br>(mg/l HCO3)    | 834        | <b>70</b> 3 | 744        | 708        | 665        | 657        |
| Conductivity<br>(µmhos/cm) | 1020       | 1010        | 1010       | 1000       | 1000       | 1000       |

**Vell # and Time Of Collection (24 hour clock)** 

-

.

~

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Iodide Tracer Test

|                            |                    |            | ```        |            | •          |            |
|----------------------------|--------------------|------------|------------|------------|------------|------------|
|                            | D <b>s</b><br>1830 | D.<br>1855 | D.<br>1920 | D4<br>1945 | D4<br>2030 | D4<br>2140 |
| 1-<br>(mg/1)               |                    |            |            |            |            |            |
| F-<br>(mg/l)               | .957               | .978       | .899       | . 924      | .996       | .908       |
| C1-<br>(mg/1)              | 13.689             | 14.136     | 13.484     | 13.670     | 14.018     | 13.413     |
| Br-<br>(mg/l)              | .138               | .138       | .139       | .139       | .117       | .130       |
| NO3 -<br>(mg/l)            | 7.875              | 7.807      | 7.744      | 8.207      | 7.785      | 7.706      |
| SO4=<br>(mg/l)             | 39.532             | 39.236     | 38.901     | 41.274     | 41.164     | 39.193     |
| pH<br>(units)              | 7.24               | 7.26       | 7.25       | 7.29       | 7.32       | 7.30       |
| Temperature<br>(°C)        | 17.3               | 17.1       | 16.6       | 16.2       | 15.2       | 14.7       |
| Hardness<br>(mg/l HCO3)    | 683                | 665        | 665        | 657        | 676        | 670        |
| Conductivity<br>(pmhos/cm) | 1000               | 1010       | 1000       | 990        | 980        | 990        |
|                            |                    |            |            |            |            |            |

Well # and Time Of Collection (24 hour clock)

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 lodide Tracer Test

|                           | Ds<br>1 100 | Ds<br>1220 | Ds<br>1245 | Ds<br>1310 | Ds<br>1335 | Ds<br>1400 |
|---------------------------|-------------|------------|------------|------------|------------|------------|
| -<br>(mg/l)               |             | ~          |            |            |            |            |
| F-<br>(mg/l)              | .740        | .739       | .734       | .737       | .733       | .736       |
| C1-<br>(mg/l)             | 12.544      | 11.703     | 11.690     | 12.732     | 12.601     | 11.52      |
| Br <sup>-</sup><br>(mg/l) | . 1 37      | .130       | .111       | .136       | . i 37     | .13        |
| NO3 -<br>(mg/l)           | 4.692       | 5.360      | 5.932      | 6.005      | 6.043      | 5.9        |
| SO4=<br>(mg/l)            | 31.335      | 32.213     | 34.567     | 34.672     | 35.197     | 34.3       |
| pH<br>(units)             | 7.05        | 7.24       | 7.29       | 7.29       | 7.28       | 7.         |
| Temperature<br>(°C)       | 14.4        | 15.4       | 15.6       | 15.8       | 15.8       | 17         |
| Hardness<br>mg/l HCO3)-   | 697         | 677        | 695        | 703        | 696        | 6          |
| onductivity<br>µmahos/cm) | 1000        | 990        | 1030       | 1020       | 920        | 10         |
|                           |             |            | ,          |            |            |            |

▼ell # and Time Of Collection (24 hour clock)

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Iodide Tracer Test

|                            | lell 🖡 and T | ime Of Co  | llection   | (24 hour   | clock)     |            |
|----------------------------|--------------|------------|------------|------------|------------|------------|
|                            | Ds<br>1425   | Ds<br>1450 | Ds<br>1515 | Ds<br>1540 | Ds<br>1605 | Ds<br>1630 |
| 1-<br>(mg/1)               |              |            |            |            |            |            |
| F-<br>(mg/l)               | .736         | .749       | .748       | .765       | . 791      | .774       |
| C1-<br>(mg/l)              | 12.492       | 11.902     | 11.736     | 11.878     | 12.032     | 11.816     |
| Br-<br>(mg/l)              | .108         | .138       | .107       | .129       | .125       | .125       |
| NO3 -<br>(mg/l)            | 6.157        | 6.089      | 6.224      | 6.291      | 6.334      | 6.158      |
| SO4=<br>(mg/l)             | 35.190       | 34.909     | 35.369     | 35.560     | 35.437     | 35.645     |
| pH<br>(units)              | 7.27         | 7.26       | 7.26       | 7.28       | 7.29       | 7.24       |
| Temperature<br>(°C)        | 17.9         | 17.6       | 18.1       | 17.6       | 18.2       | 17.7       |
| Hardness<br>(mg/1 HCO3)    | 796          | 694        | 719        | 702        | 674        | 679        |
| Conductivity<br>(µmhos/cm) | 1020         | 1020       | 1020       | 1000       | 1020       | 1010       |

## WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 lodide Tracer Test

|                            | ell # and T | ime Of Co   | llection   | (24 hour     | clock)     |            |
|----------------------------|-------------|-------------|------------|--------------|------------|------------|
|                            | Ds<br>1655  | Ds<br>1720  | Ds<br>1745 | Ds ,<br>1810 | Ds<br>1835 | Ds<br>1900 |
| l-<br>(mg/l)               |             |             |            |              |            |            |
| F-<br>(mg/i)               | .790        | .776        | .758       | .771         | .795       | .758       |
| Ci-<br>(mg/i)              | 11.986      | 11.757      | 11.834     | 11.689       | 11.890     | 11.595     |
| Br-<br>(mg/i)              | . 133       | .133        | .134       | . 138        | .131       | .137       |
| NO3 -<br>(mg/l)            | 6.356       | 6.433       | - 6.369    | 6.420        | 6.480      | 6.446      |
| SO4=<br>(mg/l)             | 36.008      | 36.377      | 35.716     | 35.869       | 36.381     | 35.617     |
| pH<br>(units)              | 7.24        | 7.26        | 7.27       | 7.26         | 7.26       | 7.26       |
| Temperature<br>(°C)        | e 17.7      | 17.6        | 17.5       | 17.5         | 17.3       | 17.2       |
| Hardness<br>(mg/l HCO3)    | 693         | 68 <b>6</b> | 676        | 711          | 668        | 642        |
| Conductivity<br>(µmhos/cm) | y 1010      | 1000        | 1000       | ) 1000       | 1000       | 1000       |

### WATER QUALITY DATA Date Of Sample Collection: 29 April 1991 Iodide Tracer Test

| e Of Collec | tion (24                                                                         | hour clock)                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ds<br>1925  | Ds<br>1950                                                                       | Ds<br>2040                                                                                                                                                             |
| ×           |                                                                                  | 4                                                                                                                                                                      |
| .740        | .752                                                                             | .743                                                                                                                                                                   |
| 12.916      | 12.578                                                                           | 11.324                                                                                                                                                                 |
| . 137       | .135                                                                             | .131                                                                                                                                                                   |
| 6.415       | , 6.667                                                                          | 6.373                                                                                                                                                                  |
| 35.578      | 35.612                                                                           | 35.710                                                                                                                                                                 |
| 7.25        | 7.26                                                                             | 7.29                                                                                                                                                                   |
| 16.6        | 16.2                                                                             | 15.1                                                                                                                                                                   |
| 664         | 700                                                                              | 674                                                                                                                                                                    |
| 1000        | 1000                                                                             | 1000                                                                                                                                                                   |
|             | .740<br>.740<br>12.916<br>.137<br>6.415<br>35.578<br>7.25<br>16.6<br>664<br>1000 | e 01 Collection (24<br>Ds Ds<br>1925 1950<br>.740 .752<br>12.916 12.578<br>.137 .135<br>6.415 6.667<br>35.578 35.612<br>7.25 7.26<br>16.6 16.2<br>664 700<br>1000 1000 |

· · · · · ·

Vell # and Time Of Collection (24 hour clock)

### APPENDIX D

~

### STATISTICS

e.t =

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 179.4             | 38.9              | 113.8          | 38.5                  | 25                   |
| A2   | 144.1             | 22.1              | 106.4          | 31.3                  | 28                   |
| A3   | 118.8             | 44.4              | 92.5           | 20.4                  | 28                   |
| A4   | 190.1             | 29.5              | 88.4           | 26.2                  | 30                   |
| A5   | 93.1              | 41.0              | 75.9           | 19.4                  | 5                    |
| B6   | 135.7             | 129.6             | 131.9          | 2.7                   | 3                    |
| B8   | 111.3             | 106.6             | 108.7          | 1.9                   | 3                    |
| B9   | 95.7              | 94.7              | 95.2           | 0.41                  | 3                    |
| B10  | 74.3              | 73.2              | 73.8           | 0.45                  | 3                    |
| B11  | 27.9              | 16.3              | 23.3           | 5.0                   | 3                    |
| C1   | 74.0              | 64.0              | 68.5           | 4.1                   | 3                    |
| C2   | 80.3              | 65.0              | 73.1           | 5.5                   | 4                    |
| C3   | 99.7              | 68.0              | 80.9           | 13.0                  | 6                    |
| C4   | 103.4             | 81.0              | 91.9           | 10.2                  | 7                    |
| C5   | 154.0             | 70.0              | 94.0           | 27.9                  | 6                    |
| D1   | 127.0             | 76.3              | 106.4          | 21.8                  | 3                    |
| D2   | 137.7             | 28.4              | 89.9           | 27.7                  | 18                   |
| D3   | 112.0             | 37.3              | 82.8           | 18.6                  | 19                   |
| D4   | 109.0             | 45.2              | 73.5           | 14.3                  | 20                   |
| D5   | 80.5              | 47.2              | 67.8           | 11.3                  | 15                   |
| E1   | 63.3              | 32.0              | 50.1           | 13.2                  | 3                    |
| E2   | 67.6              | 58.0              | 61.7           | 3.6                   | 4                    |
| E3   | 81.0              | 59.1              | 67.8           | 8.7                   | 6                    |
| E4   | 87.1              | 55.0              | 69.4           | 11.7                  | 7                    |
| E5   | 71.9              | 55.0              | 61.5           | 6.5                   | 4                    |
| G1   | 104.9             | 100.2             | 102.6          | 3.3                   | 2                    |
| G2   | 95.9              | 93.8              | 94:9           | 1.5                   | 2                    |
| H1   | 102.3             | 101.1             | 101.7          | 0.85                  | 2                    |
| H2   | 62.5              | 59.9              | 61.2           | 1.8                   | 2                    |
| I 1  | 118.3             | 112.2             | 115.3          | 4.3                   | 2                    |
| I 2  | 88.1              | 82.2              | 85.2           | 4.2                   | 2                    |

,

# DESCRIPTIVE STATISTICS FOR Ca++

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| Al   | 0.08              | 0.002             | 0.01           | 0.24                  | 10                   |
| A2   | 0.16              | 0.002             | 0.04           | 0.06                  | 11                   |
| A3   | 0.10              | 0.002             | 0.03           | 0.04                  | 12                   |
| A4   | 0.10              | 0.001             | 0.02           | 0.04                  | 12                   |
| B6   | 15.10             | 5.700             | 9.30           | 5.07                  | 3                    |
| B8   | 5.50              | 4.100             | 5.03           | 0.81                  | 3                    |
| B9   | 0.09              | 0.044             | 0.06           | 0.02                  | 3                    |
| B10  | 1.19              | 0.922             | 1.08           | 0.14                  | 3                    |
| B11  | 0.51              | 0.433             | 0.47           | 0.04                  | 3                    |
| D2   | 1.04              | 0.312             | 0.66           | 0.37                  | 3                    |
| D3   | 0.08              | 0.039             | 0.06           | 0.02                  | 3                    |
| D4   | 0.04              | 0.026             | 0.03           | 0.01                  | 3                    |

# DESCRIPTIVE STATISTICS FOR Fe++

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 1.70              | 0.06              | 0.35           | 0.35                  | 20                   |
| A2   | 0.38              | 0.08              | 0.22           | 0.09                  | 23                   |
| A3   | 1.30              | 0.10              | 0.30           | 0.25                  | 22                   |
| A4   | 1.40              | 0.03              | 0.27           | 0.27                  | 22                   |
| B6   | 4.40              | 2.80              | 3.60           | 0.65                  | 3                    |
| B8   | 1.23              | 1.14              | 1.19           | 0.64                  | 3                    |
| B9   | 0.48              | 0.35              | 0.39           | 0.06                  | 3                    |
| B10  | 2.29              | 1.26              | 1.92           | 0.47                  | 3                    |
| B11  | 3.20              | 2.14              | 2.58           | 0.45                  | 3                    |
| C4   | 1.40              | 0.24              | 0.91           | 0.49                  | 3                    |
| C5   | 0.22              | 0.18              | 0.19           | 0.02                  | 2                    |
| DI   | 0.34              | 0.32              | 0.33           | 0.01                  | 2                    |
| D2   | 0.85              | 0.08              | 0.42           | 0.20                  | 15                   |
| D3   | 1.40              | 0.05              | 0.42           | 0.51                  | 9                    |
| D4   | 1.40              | 0.08              | 0.46           | 0.56                  | 8                    |
| D5   | 0.37              | 0.29              | 0.34           | 0.04                  | 2                    |
| E3   | 1.60              | 1.30              | 1.45           | 0.15                  | 2                    |
| E4   | 1.30              | 1.10              | 1.20           | 0.10                  | 2                    |
| G1   | 1.40              | 1.20              | 1.30           | 0.14                  | 2                    |
| G2   | 1.40              | 1.20              | 1.30           | 0.14                  | 2                    |
| H1   | 1.40              | 1.20              | 1.30           | 0.14                  | 2                    |
| H2   | 1.40              | 1.10              | 1.25           | 0.21                  | 2                    |
| I 1  | 2.70              | 2.60              | 2.65           | 0.07                  | 2                    |
| I 2  | 1.40              | 1.40              | 1.40           | 1.40                  | 2                    |

ŧ

DESCRIPTIVE STATISTICS FOR K+

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 49.2              | 41.0              | 44.6           | 25.0                  | 25                   |
| A3   | 58.8              | 43.8              | 47.3           | 2.9                   | 28                   |
| A4   | 55.0              | 42.9              | 46.0           | 2.2                   | 30                   |
| A5   | 43.8              | 40.2              | 41.6           | 1.2                   | 5                    |
| B6   | 33.6              | 32.9              | 33.3           | 0.29                  | 3                    |
| B8   | 36.5              | 35.5              | 35.9           | 0.42                  | 3                    |
| B9   | 37.9              | 36.5              | 37.2           | 0.57                  | 3                    |
| B10  | 33.7              | 33.3              | 33.4           | 0.19                  | 3                    |
| B11  | 18.4              | 14.7              | 17.1           | 1.7                   | 3                    |
| C1   | 112.0             | 96.3              | 102.4          | 6.9                   | 3                    |
| C2   | 70.0              | 64.0              | 67.8           | 2.5                   | 4                    |
| C3   | 66.8              | 48.0              | 57.9           | 7.7                   | 6                    |
| C4   | 56.6              | 49.0              | 52.3           | 2.7                   | 7                    |
| C5   | 60.9              | 51.0              | 55.8           | 3.8                   | 6                    |
| D1   | 69.2              | 45.9              | 59.7           | 9.9                   | 3                    |
| D2   | 75.4              | 43.2              | 59.5           | 6.9                   | 18                   |
| D3   | 63                | 42.7              | 50.8           | 5.3                   | 19                   |
| D4   | 47.7              | 33.8              | 41.3           | 3.3                   | 18                   |
| D5   | 48.3              | 42.0              | 43.6           | 1.4                   | 15                   |
| E1   | 28.8              | 23.0              | 25.6           | 2.4                   | 3                    |
| E2   | 39.0              | 31.0              | 36.1           | 3.1                   | 4                    |
| E3   | 38.0              | 30.5              | 33.6           | 2.9                   | 6                    |
| E4   | 68.3              | 55.0              | 61.2           | 5.8                   | 7                    |
| E5   | 60.4              | 52.0              | 56.1           | 3.1                   | 4                    |
| G1   | 52.4              | 51.7              | 52.1           | 0.49                  | 2                    |
| G2   | 52.7              | 51.8              | 52.3           | 0.64                  | 2                    |
| H1   | 46.8              | 45.5              | 46.2           | 0.92                  | 2                    |
| H2   | 52.0              | 49.9              | 50.9           | 1.5                   | 2                    |
| I 1  | 67.9              | 65.4              | 66.7           | 1.8                   | 2                    |
| I 2  | 56.2              | 55.6              | 55.9           | 0.42                  | 2                    |

2

k

# DESCRIPTIVE STATISTICS FOR Mg++

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 0.040             | 0.001             | 0.014          | 0.012                 | 10                   |
| A2   | 0.013             | 0.001             | 0.006          | 0.003                 | 10                   |
| A3   | 0.088             | 0.003             | 0.020          | 0.024                 | 11                   |
| A4   | 0.024             | 0.004             | 0.011          | 0.006                 | 10                   |
| B6   | 3.550             | 2.500             | 2.980          | 0.430                 | 3                    |
| B8   | 4.600             | 3.800             | 4.300          | 0.360                 | 3                    |
| B9   | 0.275             | 0.223             | 0.252          | 0.020                 | 3                    |
| B10  | 0.942             | 0.754             | 0.857          | 0.080                 | 3                    |
| B11  | 1.500             | 0.566             | 1.120          | 0.400                 | 3                    |
| D2   | 0.179             | 0.055             | 0.096          | 0.072                 | 3                    |
| D3   | 0.055             | 0.024             | 0.039          | 0.022                 | 3                    |

# DESCRIPTIVE STATISTICS FOR Mn++

| Well       | Maximum<br>(mg/l) | Minimum<br>(mg/1) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1         | 27.4              | 10.8              | 20.3           | 3.6                   | 23                   |
| A2         | 45.7              | 18.6              | 30.4           | 5.7                   | 26                   |
| A3         | 47.0              | 27.5              | 35.2           | 4.0                   | 26                   |
| A4         | 55.0              | 34.9              | 43.8           | 5.2                   | 30                   |
| A5         | 43.5              | 42.0              | 42.9           | 0.5                   | 4                    |
| B6         | 76.9              | 69.4              | 72.6           | 3.1                   | 3                    |
| B8         | 83.0              | 70.3              | 77.7           | 5.4                   | 3                    |
| B9         | 37.4              | 36.9              | 37.1           | 0.22                  | 3                    |
| B10        | 47.4              | 45.9              | 46.6           | 0.61                  | 3                    |
| B11        | 170.1             | 151.4             | 162.6          | 8.1                   | 3                    |
| C1         | 158.0             | 116.1             | 141.0          | 18.0                  | 3                    |
| C2         | 179.8             | 171.0             | 176.5          | 3.3                   | 4                    |
| C3         | 177.0             | 115.5             | 144.9          | 23.3                  | 6                    |
| C4         | 61.8              | 47.4              | 54.0           | 5.5                   | 7                    |
| C5         | 98.0              | 49.0              | 74.6           | 20.0                  | 6                    |
| DI         | 139.7             | 129.9             | 136.2          | 4.5                   | 3                    |
| D2         | 128.0             | 86.3              | 112.1          | 11.4                  | 18                   |
| D3         | 115.6             | 93.2              | 105.5          | 7.4                   | 19                   |
| D4         | 126.0             | 102.0             | 116.3          | 9.0                   | 20                   |
| D5         | 123.1             | 97.4              | 114.6          | 9.9                   | 15                   |
| E1         | 20.3              | 12.0              | 15.1           | 3.7                   | 3                    |
| E2         | 15.0              | 9.7               | 12.2           | 2.4                   | 4                    |
| E3         | 17.0              | 8.7               | 12.8           | 3.0                   | 6                    |
| E4         | 110.0             | 57.3              | 85.5           | 24.0                  | 7                    |
| E <i>5</i> | 100.0             | 41.4              | 56.6           | 38.1                  | 4                    |
| Gl         | 60.8              | 60.3              | 60.6           | 0.35                  | 2                    |
| G2         | 74.9              | 74.3              | 74.6           | 0.42                  | 2                    |
| H1         | 89.4              | 88.6              | 89.0           | 0.57                  | 2                    |
| H2         | 130.0             | 128.3             | 129.2          | 1.2                   | 2                    |
| 11         | 35.6              | 34.7              | 35.2           | 0.64                  | 2                    |
| 12         | 45.6              | 45.1              | 45.4           | 0.36                  | 2                    |

.

# DESCRIPTIVE STATISTICS FOR Na+

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 19.9              | 11.9              | 13.7           | 2.08                  | 15                   |
| A2   | 13.7              | 10.5              | 12.6           | 0.88                  | 17                   |
| A3   | 14.1              | 10.3              | 12.7           | 1.06                  | 15                   |
| A4   | 14.8              | 11.4              | 13.5           | 0.94                  | 16                   |
| B6   | 13.5              | 11.9              | 12.6           | 0.81                  | 3                    |
| B8   | 14.4              | 14.2              | 14.3           | 0.12                  | 3                    |
| B9   | 13.8              | 13.6              | 13.7           | 0.10                  | 3                    |
| B10  | 13.5              | 13.1              | 13.3           | 0.20                  | 3                    |
| B11  | 6.3               | 4.7               | 5.7            | 0.88                  | 3                    |
| D2   | 11.5              | 8.2               | 10.9           | 0.93                  | 3                    |
| D3   | 10.6              | 9.6               | 10.2           | 0.54                  | 3                    |
| D4   | 10.7              | 10.3              | 10.4           | 0.22                  | 3                    |

DESCRIPTIVE STATISTICS FOR Siz

| Well    | Maximum     | Minimum<br>(µmhos/cm) | Mean     | Standard<br>Deviation | Number of<br>Samples |
|---------|-------------|-----------------------|----------|-----------------------|----------------------|
| <br>A 1 | 1210        | 584                   | 1018     | 108.9                 | 88                   |
| A2      | 1280        | 832                   | 1038     | 75.9                  | 102                  |
| A3      | 1455        | 902                   | 1029     | 76.1                  | 120                  |
| A4      | 1160        | 840                   | 978      | 65.2                  | 172                  |
| A5      | 1165        | 803                   | 985      | 68.1                  | 77                   |
| B4      | 1125        | 874                   | 999      | 125.5                 | 2                    |
| B6      | 1341        | 974                   | 1186     | 160.5                 | 7                    |
| B7      | 1270        | 1131                  | 1196     | 49.5                  | 4                    |
| B8      | 1479        | 1051                  | 1277     | 152.9                 | 7                    |
| B9      | 1068        | 864                   | 986      | 66.2                  | 7                    |
| B10     | 990         | 793                   | 916      | 60.9                  | 7                    |
| B11     | 1193        | 848                   | 1056     | 133.4                 | 5                    |
| C1      | 1979        | 1411                  | 1673     | 130.7                 | 53                   |
| C2      | 1768        | 1127                  | 1502     | 136.5                 | 57                   |
| C3      | 1800        | 990                   | 1335     | 162.9                 | 93                   |
| C4      | 1208        | 862                   | 1025     | 57.1                  | 140                  |
| C5      | 1486        | 933                   | 1138     | 134.4                 | 68                   |
| DI      | 1881        | 1020                  | 1479     | 210.8                 | 46                   |
| D2      | 1879        | 1169                  | 1504     | 172.6                 | 73                   |
| D3      | 1904        | 920                   | 1271     | 148.9                 | 99                   |
| D4      | 1329        | 1004                  | 1134     | 63.5                  | 156                  |
| D5      | 1302        | 890                   | 1123     | 76.6                  | 79                   |
| E1      | 720         | 437                   | 611      | 64.4                  | 55                   |
| E2      | 879         | ,255                  | 613      | 143.8                 | 68                   |
| E3      | 87 <i>5</i> | 284                   | 595      | 144.1                 | 87                   |
| E4      | 1433        | 407                   | 986      | 228.8                 | 138                  |
| E5      | 1333        | 481                   | l., 1060 | 173.3                 | 68                   |
| Gl      | 1104        | 936                   | 1050     | 43.0                  | 20                   |
| G2      | 1169        | 981                   | 1078     | 48.0                  | 29                   |
| H1      | 1136        | 970                   | 1068     | 47.0                  | 15                   |
| H2      | 1274        | 1147                  | 1121     | 29.0                  | 29                   |
| I 1     | 1171        | 86 <i>5</i>           | 1063     | 98.0                  | 14                   |
| 12      | 991         | 839                   | 934      | 30.0                  | 29                   |
| I 3     | 960         | 825                   | 895      | 55.3                  | 3                    |
| J       | 1077        | 1026                  | 1054     | 18.6                  | 4                    |

#### DESCRIPTIVE STATISTICS FOR CONDUCTIVITY

| Well       | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1         | 96.3              | 14.4              | 24.9           | 12.7                  | 51                   |
| A2         | 49.2              | 12.6              | 22.9           | 6.1                   | 62                   |
| A3         | 32.4              | 13.8              | 20.3           | 4.7                   | 76                   |
| A4         | 33.7              | 12.6              | 20.4           | 5.2                   | 108                  |
| A5         | 38.4              | 14:6              | 23.7           | 5.9                   | 58                   |
| B4         | 14.9              | 11.4              | 13.2           | 1.8                   | 2                    |
| B6         | 18.8              | 8.4               | 12.4           | 3.3                   | 7                    |
| B7         | 16.5              | 10.4              | 14.6           | 2.4                   | 4                    |
| B8         | 23.0              | 12.1              | 15.9           | 4.3                   | 7                    |
| B9         | 21.0              | 15.1              | 17.4           | 2.3                   | 7                    |
| B10        | 21.2              | 15.8              | 18.5           | 1.8                   | 7                    |
| B11        | 39.2              | 33.8              | 36.8           | 2.4                   | 5                    |
| C1         | 139.9             | 18.4              | 47.8           | 28.0                  | 25                   |
| C2         | 59.3              | 17.0              | 29.1           | 10.9                  | 29                   |
| C3         | 73.3              | 618.7             | 35.4           | 16.8                  | 48                   |
| C4         | 45.8              | 16.3              | 26.4           | 5.6                   | 82                   |
| C5         | 78.4              | 18.1              | 29.8           | 8.6                   | 51                   |
| D1         | 144.3             | 15.7              | 53.5           | 27.1                  | 20                   |
| D2         | 163.0             | 25.8              | 51.9           | 31.2                  | 42                   |
| D3         | 162.7             | 24.1              | 50.4           | 31.6                  | 61                   |
| D4         | 72.0              | 11.9              | 32.5           | 10.2                  | 97                   |
| D5         | 51.2              | 11.7              | 32.8           | 10.6                  | 62                   |
| E1         | 14.8              | 3.6               | 8.9            | 2.9                   | 26                   |
| E2         | 22.3              | 3.5               | 12.2           | 3.9                   | 30                   |
| E3         | 26.3              | 3.8               | 12.1           | 5.9                   | 47                   |
| E4         | 44.4              | 4.4               | 25.3           | 9.8                   | 80                   |
| E <i>5</i> | 42.4              | 6.64              | 27.2           | 8.7                   | 50                   |
| G1         | 20.3              | 12.1              | 16.9           | 2.5                   | 20                   |
| G2         | 24.0              | 14.8 🔅            | 19.9           | 2.5                   | 29                   |
| H1         | 27.6              | 12.9              | 20.1           | 4.6                   | 15                   |
| H2         | 32.9              | 27.5              | 30.5           | 1.6                   | 29                   |
| I 1        | 28,.8             | 18.7              | 24.0           | 2.5                   | 14                   |
| 12         | 17.1              | 12.6              | 14.9           | 1.4                   | 29                   |
| I 3        | 15.9              | 14.0              | 14.7           | .85                   | 3                    |
| J          | 18.4              | 11.9              | 16.0           | 2.5                   | 4                    |

# DESCRIPTIVE STATISTICS FOR C1-

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| Al   | 802               | 429               | 606            | 69.6                  | 47                   |
| A2   | 1108              | 476               | 615            | 78.4                  | 60                   |
| A3   | 781               | 473               | 612            | 52.9                  | 76                   |
| A4   | 653               | 410               | 577            | 42.7                  | 105                  |
| A5   | 732               | 497               | 581            | 35.2                  | 55                   |
| B4   | 639               | 490               | 564            | 105.4                 | 2                    |
| B7   | 882               | 757               | 809            | 57.9                  | 4                    |
| B8   | 920               | 674               | 773            | 99.2                  | 5                    |
| B9   | 725               | 384               | 552            | 1-34.1                | 6                    |
| B10  | 592               | 342               | 484            | 111.5                 | 6                    |
| B11  | 581               | 398               | 509°           | 78.3                  | 4                    |
| C1   | 1137              | 755               | 1041           | 98.1                  | 20                   |
| C2   | 1341              | 638               | 996            | 119.2                 | 26                   |
| C3   | 1028              | 686               | 838            | 101.2                 | 47                   |
| C4   | 691               | 551               | 613            | 24.7                  | 78                   |
| C5   | 868               | 568               | 687            | 84.8                  | 48                   |
| DI   | 982               | 639               | 808            | 94.4                  | 15                   |
| D2   | 1016              | 516               | 86 <i>5</i>    | 99.9                  | 37                   |
| D3   | 1056              | 555               | 743            | 61.2                  | 59                   |
| D4   | 742               | 488               | 651            | 28.5                  | 92                   |
| D5   | 796               | 485               | 657            | 33.4                  | 53                   |
| E1   | 414               | 271               | 345            | 38.9                  | 18                   |
| E2   | 497               | 232               | 369            | 69.9                  | 30                   |
| E3   | 491               | 198               | 359            | 64.2                  | 46                   |
| E4   | 690               | 237               | 5 <b>7</b> 8   | 116.3                 | 77                   |
| E5   | 79 <i>5</i>       | 254               | 571            | 96.9                  | 47                   |
| G1   | 690               | 584               | 633            | 32.0                  | 20                   |
| G2   | 683               | 623               | 657            | 15.0                  | 29                   |
| H1   | 633               | 583               | 612            | 16.0                  | 14                   |
| H2   | 662               | 573               | 629            | 26.0                  | 29                   |
| 11   | 659               | 39 <b>7</b>       | 562            | 80.0                  | 14                   |
| I 2  | 50 <i>5</i>       | 458               | 479            | 13.0                  | 29                   |
| I 3  | 500               | 424               | 474            | 43.0                  | 3                    |
| J    | 675               | 648               | 661            | 11.9                  | 4                    |

### DESCRIPTIVE STATISTICS FOR HCO3 =

,

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 57.7              | 3.5               | 21.9           | 10.8                  | 58                   |
| A2   | 41.8              | 1.5               | 18.3           | 12.3                  | 67                   |
| A3   | 53.4              | 2.1               | 18.3           | 16.2                  | 85                   |
| A4   | 65.6              | 1.8               | 19.6           | 18.9                  | 120                  |
| A5   | 44.5              | 2.7               | - 10.5         | 10.3                  | 33                   |
| B4   | 5.95              | .7                | 3.3            | 3.7                   | 2                    |
| B6   | 5.0               | . 4               | 2.2            | 2.5                   | 5                    |
| B7   | 7.1               | 4.4               | 5.3            | 1.5                   | 3                    |
| B8   | 6.5               | .9                | 3.1            | 2.2                   | 7                    |
| B9   | 30.4              | 5.3               | 14.7           | 11.2                  | 7                    |
| B10  | 29.6              | 2.6               | 11.4           | 10.8                  | 7                    |
| B11  | 3.4               | .02               | 0.89           | 1.7                   | 4                    |
| C1   | 9.1               | .95               | 2.5            | 1.9                   | 29                   |
| C2   | 9.8               | 1.9               | 3.3            | 1.4                   | - 31                 |
| C3   | 31.6              | 1.3               | 6.5            | 6.5                   | 54                   |
| C4   | 35.5              | .1.8              | 13.5           | 11.8                  | 89                   |
| C5   | 31.5              | 5.5               | 20.7           | 9.9                   | 5                    |
| D1   | 8.6               | .08               | 1.7            | 1.6                   | 29                   |
| D2   | 4.4               | .01               | 0.99           | .9                    | 45                   |
| D3   | 7.4               | 0.3               | 2.3            | 1.9                   | 63                   |
| D4   | 39.7              | 3.2               | 12.8           | 10.5                  | 104                  |
| D5   | 30.0              | 3.4               | 8.6            | 6.2                   | 37                   |
| E1   | 19.9              | 2.7               | 4.9            | 3.1                   | 31                   |
| E2   | 19.9              | 1.4               | 5.6            | 3.6                   | 38                   |
| E3   | 24.7              | 0.7               | 8.9            | 7.2                   | 51                   |
| E4   | 40.9              | 4.4               | 16.9           | 10.2                  | 90                   |
| E5   | 37.2              | 4.5               | 13.1           | 7.3                   | 25                   |
| Gl   | 77.9              | 40.7              | 57.6           | 14.4                  | 20                   |
| G2   | 60.8              | 21.1              | 43.4           | 11.5                  | 29                   |
| H1   | 63.9              | 49.2              | 54.4           | 4.2                   | 15                   |
| H2   | 43.5              | 34.2              | 38.7           | 3.1                   | 29                   |
| I 1  | 60.9              | 27.0              | 51.6           | 11.0                  | 14                   |
| 12   | 113.2             | 74.5              | 92.9           | 13.5                  | 29                   |
| 13   | 80.5              | 67.7              | 72.6           | 6.9                   | 3                    |
| J    | 46.4              | 33.5              | 38.3           | 5.7                   | . 4                  |

# DESCRIPTIVE STATISTICS FOR NO3 =

| Well | Maximum<br>(mg/l) | Minimum<br>(mg/l) | Mean<br>(mg/l) | Standard<br>Deviation | Number of<br>Samples |
|------|-------------------|-------------------|----------------|-----------------------|----------------------|
| A1   | 57.7              | 23.4              | 31.3           | 8.2                   | 32                   |
| A2   | 41.9              | 22.6              | 27.7           | 3.79                  | 38                   |
| A3   | 34.7              | 18.0              | 27.5           | 2.82                  | 47                   |
| A4   | 35.0              | 19.0              | 28.9           | 3.3                   | 64                   |
| A5   | 32.1              | 18.2              | 26.4           | 4.1                   | 15                   |
| B4   | 26.0              | 21.6              | 23.8           | 3.1                   | 2                    |
| B6   | 35.2              | 7.9               | 20.1           | 9.74                  | 7                    |
| B7   | 69.3              | 20.1              | 41.9           | 21.8                  | 4                    |
| B8   | 172.8             | 38.0              | 89.9           | 55.4                  | 7                    |
| B9   | 42.9              | 18.2              | 25.6           | 8.9                   | 7                    |
| B10  | 27.7              | 15.6              | 20.5           | 5.4                   | 7                    |
| B11  | 81.0              | 18.0              | 54.2           | 29.8                  | 5                    |
| C1   | 119.5             | 48.4              | 82.1           | 32.5                  | 5                    |
| C2   | 88.8              | 42.0              | 57.8           | 16.7                  | 6                    |
| C3   | 91.0              | 33.8              | 64.2           | 20.2                  | 19                   |
| C4   | 50.8              | 27.0              | 37.5           | 5.2                   | 35                   |
| C5   | 92.0              | 30.1              | 43.6           | 18.9                  | 10                   |
| D1   | 64.7              | 13.0              | 39.9           | 18.9                  | 7                    |
| D2   | 52.7              | 11.1              | 27.6           | 11.7                  | 21                   |
| D3   | 42.0              | 16.7              | 28.8           | 7.7                   | 35                   |
| D4   | 54.6              | 26.8              | 34.1           | 5.2                   | 51                   |
| D5   | 50.0              | 30.3              | 34.2           | 5.2                   | 21                   |
| E 1  | 41.3              | 14.3              | 22.8           | 12.5                  | 4                    |
| E2   | 41.0              | 13.0              | 23.0           | 10.0                  | 6                    |
| E3   | 36.0              | 13.1              | 20.7           | 5.7                   | 19                   |
| E4   | 58.3              | 18.0              | 37.8           | 8.0                   | 35                   |
| E5   | 65.0              | 21.7              | 41.5           | 14.5                  | 8                    |
| G1   | 41.3              | 33.2              | 36.3           | 2.3                   | 20                   |
| G2   | 36.8              | 31.9              | 34.9           | 1.3                   | 29                   |
| H1   | 78.8              | 46.7              | 59.2           | 9.8                   | 15                   |
| H2   | 180.1             | 88.7              | 124.8          | 29.1                  | 29                   |
| I 1  | 145.6             | 93.9              | 115.8          | 15.3                  | 14                   |
| I 2  | 48.3              | 43.0              | 45.5           | 1.6                   | 29                   |
| 13   | 49.6              | 43.7              | 46.3           | 3.0                   | 3                    |
| J    | 40.4              | 31.9              | .35.6          | 3.7                   | 4                    |

### DESCRIPTIVE STATISTICS FOR SO4 =

#### VITA

#### Patti Lynn Zietlow

Candidate for the Degree of

Master of Science

Thesis: INFLUENCE OF MACROPORES AND SOIL MOISTURE CONTENT ON THE RAPID MOVEMENT OF BROMIDE AND IODIDE TO THE SATURATED ZONE

Major Field: Hydrogeology

Biographical:

Personal Data: Born in Appleton, Wisconsin, April 4, 1965, the daughter of Wilbur O. and Jean Doell.

- Education: Graduated from Appleton East, Appleton Wisconsin, in June 1983; received Bachelor of Science Degree in Geology from the University of Wisconsin at Oshkosh in August, 1987; completed requirements for the Master of Science degree at Oklahoma State University in December, 1992.
- Professional Experience: Teaching Assistant, Department of Geology, University of Wisconsin Oshkosh, September 1986, to May, 1987. Research Assistant, Department of Geology, Oklahoma State University, January 1990 to August 1990.