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CHAPTER I 

INTRODUCTION 

Shallow ground-water systems pose one of the greatest 

challenges to hydrogeologists because their nearness to the 

land surface renders them highly susceptible to 

contamination from a wide range of sources. Despite years 

of research, the mechanisms governing pollutant movement to 

shallow aquifers are only partially understood. 

It is generally assume~ that overlying silt and clay 

provide a degree of natural protection to shallow aquifers 

owing to their low hydraulic conductivity. For example, 

the drainage characteristics of these soils make them 

attractive as landfill sites. According to Noble they 

"allow moisture from the landfill to percolate slowly 

through the soil structure before reaching the ground-water 

system" (1976, p. 31). In addition, the presumed ability 

of silt and clay to absorb and retain water has made such 

soils desirable as sites for the land application of waste 

water (Tennyson, 1980). 

Preliminary results from the study of a silt and clay 

aquifer in Payne County, Oklahoma, however, indicate that 

the low hydraulic conductivity may be far more apparent 

than real. Rapid changes in both water quality and water 
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level can occur within hours of a rain event. Rapid fluid 

movement through macropores deprives the shallow aquifer of 

the natural protection that the soil should provide. 

The objective of this research is to document and 

explain why a shallow silt and clay aquifer can be 

contaminated by surface-applied pollutants in just a matter 

of hours. A further objective is to determine how soil­

moisture conditions affect this process. 



CHAPTER II 

LITERATURE REVIEW 

Previou~ Studies at the Site 

With the installation of 16 monitoring wells during 

August 1985, Hagen (1986) launched the original 

investigation of the site. During the first year research 

focused primarily on basic site characterization. Hagen 

(1986) and Hoyle (1987) monitored water-table fluctuations, 

ground-water quality, and conducted several aquifer tests 

in order to determine hydraulic characteristics. Both 

investigators docu~ented considerable variation in water 

quality with respect to both time and space. They 

attributed fluctuations in water quality and water level to 

rapid recharge through macropores. 

Acre (1989) and Ross (1988), who studied the 

unsaturated zone, installed eight soil-water suction 

lysimeters and four neutron probe access tubes. Ross 

discovered significant short term water-quality variations 

in the unsaturated zone. Variations in soil-moisture 

content also led Acre to conclude that macropores influence 

infiltration. 

Froneberger (1989) examined water movement through the 

unsaturated zone by means of surface applied bromide and 

3 
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chloride tracers. He found that large spikes of the 

tracers appeared in the lysimeters after a short time, and 

he attributed this phenomenon to the vertical movement of 

water through macropores. 

Nel.son (1989) add~essed water-table fluctuations and 
. . 

the change in the direction ~f ground-water flow, amounting 

to as much as 125 degrees, which had been reported by Hoyle 

(1987) and Hagen (1986). He suggested that this shift is 

due to a ~easonal iimitation of ground-water discharge 

areas. 

Melby (1989) measured hydraulic conductivity of the 

aquifer using constant rate, slug, and lab permeameter 

tests. Values of hydr3ulic conductivity based on 

permeameter tests were several orders of magnitude less 

than those determined ~Y field methods, which lead Melby to 

theorize that macropores account for a significant 

part of the aquifer transmissivity. 

Macropores 

The idea that macropores could affect water and solute 

flow through soil was being considered as early as the mid 

1800's. Schumacher (1864) and Lawes and others (1882) 

noted that macropo~es control infiltration, moving 

rainwater to considerable depths with little change in 

composition. Since that time, work on the macropore theory 

has abounded, and this has resulted in extensive literature 

on the topic. 
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Classification 

The literature contains many systems for classifying 

macropores. Brewer (1964) categorized them on the basis of 

size, using macro to mean pores that are at least 100 

micrometers in diameter. Luxmoore (1981), who expanded 

Brewer's work, described three classes of macropore sizes. 

Skopp (1981) refined size classification by incorporating 

function in the definition of macroporosity. Techniques 

for measuring macropore size include timing and measuring 

water flow through cores, tracing visible voids, staining 

with methylene blue, and scanning soil photographs with an 

image analyzer (Smettem, 1987; Louren and others, 1988; 

Radulovich and others, 1989; Edwards and others, 1988). 

Beven and others (1982) group macropores on the basis of 

type (ie. cracks and fissures, soil fauna, plant roots). 

Water Transport 

Researchers, such as Cheng (1988), Hoogmoed (1980), 

Beven and German (1981), Armstrong and Arrowsmith (1986), 

and Mclntrye and Sleeman (1982) demonstrated the importance 

of macropores in the infiltration of rainwater. Bouma and 

others (1978) described this process of rapid flow through 

macropores as "short circuiting". 

Rogowski and Simmons (1988) verified that macropores 

cause field measured hydraulic conductivities to be greater 

than the nature of aquifer material or lab calculated 

values might indicate. Further substantiation of this 
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exists in the works of Rogowski and Richie (1984) and Heard 

and others (1988). 

Solute Transport 

A considerable number of articles document the fact 

that macropores enh~nce chemical mig'ration through the 

soil. Quisenberry and Phillips' (1976) found that 

macropores caused water laced with chloride to percolate 

through a silt loam aqu'ifer with very little change in 

composition. In a similar study, Priebe and Blackmer 

(1989) observed the same behavior using oxygen-18 labeled 

water and nitrogen-15 labeled urea. Other studies 

utilizing tritium, chloride, and lime provide further 

evidence for enhanqed chemical migration (Edwards and 

others 198&; Minhas and Khosla, 1986; Blake and others, 

1973). 

Ground-Water Tracer Testing 

Roughly 2,000 years ago, Phillip, the tetrarch of 

T,rachonitis, pioneered the art of tracer testing by noting 

the migration of chaff tossed into Ram Crater Lake, which 

is located in the Middle East (Mazor, 1976). In the years 

that followed, tracer testing has grown into an important 

tool in the understanding of water flow and contaminant 

transport. The use of salts as tracers is documented as 

early as 1869 in Europe (Davis and others, 1985). In 

Germany, Adolph Thiem, in 1889, used a sodium chloride 



tracer to measure ground-water flow rates in a sandstone 

aquifer (Davis and others, 1985). 
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There are numerous examples of t~e use of bromide 

tracers to evaluate the effect of macropores on 

infiltration and ground-water recharge, and' contaminant 

transport. Chan and Mead (1989), who tracked the migration 

of bromide laced "rain" into the soil by taking core 

samples, concluded that macropores significantly decreased 

runoff. Zachman and others (1987) used bromide to show 

that worm burrow-formed macropores increase infiltration to 

a considerable depth. The f~ct that macropores cause field 

measured values of hYdraulic conductivity to be greater 

than those measured in the lab was demonstrated by Tennyson 

and Settergren (1980) using bromide. Germann and others 

(1984) employed bromide to verify that water infiltrates 

deeper into soils containing macropores. Other similar 

studies include Gerritse and Singh (1988), Smith and Davis 

(1974), Onken and others (1977), LeBlanc and Garabedian 

(1986), and D'Lugsoz (1976). 

Iodide 

Although not as popular as bromide, iodide has proven 

to be a reliable ground-water tracer. A study by Haaser 

(1978) demonstrated that iodide can be used successfully as 

a tracer in shallow soil systems. Osmin (1977) used iodide 



to determine hydraulic conductivity and ground-water flow 

direction. Bradbury and Green (1985) measured matrix 

diffusion with an iodide tracer. In 1965, Rowe and others 

traced water circulation in underground hot springs and 

geysers with iodide. Leap and Sun (1987) utilized iodide 

in tracer tests in souther~ Nevada. Soil extracts were 

analyzed for iodide tracer ions, by Bowman (1984). 

8 



CHAPTER III 

SITE DESCRIPTION 

Location 

Research was conducted in a residential area in 

Stillwater, Payne County, Oklahoma (figure 1). The 26,000 

square foot site is bordered by streets on the north and 

east and by adjacent yards to the south and west (figure 

2). An unnamed tributary to Boomer Creek lies just west of 

the property. 

-~ .... ·-·-·--.-.. 

Figure 1. location of Study Aquifer (after Hagen, 1986) 

9 



10 

Figure 2. Aerial Photograph of site 

Topography 

Lying on Boomer Creek's floodplain, the nearly flat 

study area is approximately 886 feet above sea level. Total 

relief across the site is less than half a foot. 

About 250 feet to the east, shale crops out, rising 

nearly 14 feet higher than the site. Approximately 400 

feet westward, the elevation declines to 880 feet above sea 

level on the bank of the tributary (figure 3). 
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Figure 3. Topographic Map (USGS, 1979) 
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Site Features 

Buildings and Roads 

Neoarly 27 percent of the yard is covered by concrete 

driveways, walkways, and one-story buildings that are built 

on concrete foundation slabs (Froneberger, 1989). 

Downspotits draining the buildings dischar~e onto the lawn. 

The bordering streets have curbs and drains that prevent 

storm runoff from entering the yard. 

Utilities 

Underground sewer, water, gas, and telephone lines 

service the buildings (figure 4). Lying at a depth of five 

feet is an 8-inch diameter sewer line that trends across 

site's southern boundary, while a 15-inch diameter sewer 

eight feet below the s~rface parallels the western 

boundary. In the southwestern corner of the yard, the 8-

inch pipe discharges into the 15-inch pipe. A water main, 

6 inches in diameter, lies between the property line and 

Wildwood Drive (Hoyle, 1987). Submerged roughly three 

feet, a telephone cable skirts the site's southern border. 

A direct hook-ups to the house is located in the southern 

half of the plot. 

Flora 

The yard's southern border and much of the western 

border are outlined by a variety of trees (figure 5). Tree 
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Figure 4. Location of Utilities 
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types include hackberry, pecan, redbud and pear. The 

trunks vary from 3 to 48 inches in diameter with dripline 

diameters ranging from 10 to 86 feet (Nelson, 1989). 

Flower beds and ornamental shrubs outline the house and 

garage. The lawn consists primarily of bermuda grass. 

Hackberry 
Redbud Pecan w 

DWells 

Figure 5. Tree Types Along the Site's Southern Border 
(after Hoyle, 1987) 

Instrumentation 

The site is equipped with 43 ground-water monitoring 

wells, 8 soil-water suction lysimeters, and 5 soil moisture 

neutron probe access tubes. An on site lab houses 

equipment for meteorological monitoring and measurement of 

ground-water field parameters (figure 6). 
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Figure 6. Site Instrumentation 
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Climate 

Central Oklahoma is characterized by warm, humid 

summers and moderate winters. While summer temperatures 

average go· F, tempe~atures in ~xcess of too· F during July 

a11d August ar,e not uncommon ( SCS, ,1987). Rains in the form 

of high intensity, short duration convective thunderstorms 

mainly occ·ur during spring and early summer. Most of the 

region's ann~al 34 inches of rain falls during this period 

(Pettyjohn and others, 1983). 

Winter temperatures average 39•p and snowfall averages 

6 inches per year (Pettyjohn and others, 1983). The 

occasional snows melt in a day or two. Low intensity, 

steady rains from cyclonic storm systems are typical during 

the fall and winter. 

About 30 inches of water per year is lost due to 

evapotranspiratiorr (Pettyjohri and others, 1983). The rate 

of. evapotranspiration is h'i ghes t during the dry summer 

months. Runoff for the region averages 4.5 inches per 

year. The mean effective regional ground-water recharge 

rate is 1 inch· per year (Petty john and othe.rs, 1983). 

Precipitation at the research site totaled 28.9 inches 

in·1989, 30.9 inches in 1990, and 3.94 inches from January 

to 5 May 1991. 

General Geologic Setting 

The research site lies on Late Quaternary alluvial 

deposits that fill a valley cut into the Doyle Shale, which 



is Pennsylvanian in age (figure 7). The unconsolidated 

alluvium extends to a depth of 43 feet where it lies 

unconformably on the shale (Ross, 1988). Beneath the 

alluvium, 5000 feet of Paleozoic strata, consisting of 

shale, limestone and dolomite, lie unconformably on 

granitic basement rock (Shelton and others, 1985). 

w 

710 

KEY 

Q~aternarJ 

AI lu lu• . 
PennaJitanian 

Herrinc Liteatone 
Enterprise Shale 
DoJle Shale 
Fort RileJ Li1estone 

E 

Vertical E•acceratlon: lOx 

IDO ft Horinntal Scale: 1.,__--....-..-t 

Figure ?. Geologic Cross Section (after Shelton 
and others, 1985) 
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CHAPTER IV 

SURFACE-WATER HYDROLOGY 

Drainage 

Flowing sluggishly from northwest to the southeast, 

Boomer Creek and its tributaries dominate the area (figure 

8). While Boomer Creek flows year round, the tributaries 

are commonly dry during the summer (Hagen, 1986). The 

tributary lying approximately 200 feet west of the site, 

which has a drainage areas that is slightly less than two 

square miles, is dammed near its confluence with Boomer 

Creek and forms a small, peanut shaped pond, which is known 

as Chiquita Lake (figu~e 3). The pond contains water 

throughout the year (Ross, 1988). Downstream from the 

confluence of Boomer Creek and its tributary, several pumps 

remove water from the creek for lawn irrigation during the 

spring and summer (Nelson, 1989). Nelson (1989) installed 

gaging staffs in Chiquita Lake and Boomer Creek and made 

periodic water-level measurements. The pond's maximum 

stage is controlled by a spillway, which has an elevation 

of 880.6 feet (Nelson, 1989). 

18 
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Figure _8. Aerial Photograph Showing Tributary 

Surface runoff in the study area is low, attributable 

to the nearly flat surface of the flood plain. Concrete 

driveways, streets and sidewalks affect runoff by directing 

water into city drains. During periods of heavy rain, 

water may pond on the surface of the site when the 

infiltration capacity of the soil is exceeded. Even after 

an hour of ponding, the infiltration rate is approximately 

one inch per hour. 
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Surface-Water/Ground-Water Relationships 

Withdrawal of water by the pumps installed in Boomer 

Creek do not appear to affect the water table at the 

research site. However, the stage of Chiquita Lake may 

have a significant influence on the direction of ground­

water flow (Nelson 1989). The dammed tributary and the 

alluvial aquifer appear to be hydrologically connected when 

the water table is less than 7.5 feet below land surface. 

This results in a west-southwesterly flow of ground water 

from the yard to the tributary. When the water table drops 

below the base of the tributary, ground water flow shifts 

to the southeast, as the tributary changes from a gaining 

stream to a losing stream, and Boomer Creek becomes the 

major line of ground-water discharge (Froneberger, 1989). 



CHAPTER V 

HYDROGEOLOGY 

Aquifer Material 

Wells at the research site tap a fine grained, silty 

clay alluvial aquifer that is 43 feet thick (figure 9). 

The lower 8.5 feet of the aquifer consists of a clay-rich 

lag gravel that grades upward into very fine sand. The 

gravel lies on weathered Doyle Shale. The upper 35.5 feet 

of the aquifer consists of a clay, silt, and very fine sand 

mixture that contains soil characteristics. The upper four 

feet belong to the Ashport series (SCS, 1987). Two buried 

soil horizons have been identified. The first, located at 

a depth of 4 to 27.5 feet, is approximately 1300 ~ 70 years 

B.P. old. Dated at 10,600 ~ 170 years B.P., the second 

horizon lies at a depth of 27.5 to 29.5 feet (Ross, 1988). 

Textural classes present include loam, silt loam, silty 

clay loam, silty clay, and clay loam. A weak to moderate, 

medium, subangular blocky structure dominates, and soil 

peds and root casts are present. Bulk density, in the 

first five feet of the profile, range from 1.50 to 1.75 gm 

soil/cm3 (Ross, 1988). 
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Mineralogy 

The sand and silt is composed largely of quartz 

grains, with feldspar making up 3 to 5 percent of the 

grains. Kaolinite, smectite, illite, and mixed layer 

illite-smectite constitute the clay fraction of the 

aquifer. Calcite concretions, composed of very fine­

grained calcite, are present in the profile. Black 

nodules, which occur throughout the aquifer, consist of 

silica, aluminum, iron, and manganese oxides and 

hydroxides. Cyclic deposition of clays and ferromangans is 

indicated by concentric coatings of iron and manganese 

oxide and hydroxide stains on pore walls (Ross, 1988). 

Recharge and Discharge 

Recharge 

Precipitation is the primary source of recharge to the 

aquifer. Most recharge occurs from March to June and in 

September, which are traditionally the wettest months of 

the year. Hagen (1986), estimated that the total amount of 

recharge equals roughly 47 percent of the total amount of 

precipitation. This high rate of recharge is most likely 

due to the flat nature of the area, which favors ponding, 

and to the presence of macropores. Periodic watering of 

the lawn during the summer months also contributes to 

recharge. 
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Discharge 

Evapotranspiration and underflow are the primary 

sources of discharge from the aquifer. Nelson (1989), 

found that transpirative losses were greatest from March to 

August. A small amount of discharge also occurs as 

resulting of pumping of the wells. On site, wells are 

pumped regularly for ground-water sample collection and 

occasionally for aquifer testing. Well Fl may be pumped 

for short periods during the summer months for lawn 

watering. A well that may tap the aquifer is located 

approximately 800 feet south of the D site. This well is 

also pumped for irrigation purposes. Nelson (1989), 

however, determined that this off-site well does not affect 

water levels at the site. During periods of high water 

table, ground water appears to discharge into the tributary 

located west of the study site and at other times underflow 

is southwest toward Boomer Creek (Froneberger, 1989). 

Unsaturated Zone Characteristics 

Thickness 

The thickness of the unsaturated zone varies 

seasonally from about 3 to 12.5 feet below surface. Ross 

(1988) estimated that .the capillary fringe for the silt 

loam aquifer rises roughly 2.5 feet above the water table; 

Froneberger (1989) estimates a rise of 6 feet. 
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Moisture Content 

Soil-moisture levels, on a volume basis, typically 

range from .11 to .35 cm3 H20/cmJ soil (Ross, 1988; 

Froneberger, 1989). The position of the water table, 

amount of precipitation, and rate of evapotranspiration 

have a combined effect on the moistu~e profile. When the 

water table is high, moisture levels tend to be relatively 

uniform with depth. Precipitation will commonly cause soil 

moisture to increase in the lower portion of the 

unsaturated zone, but little affect has been recorded in 

the upper 2 feet, except during and immediately following a 

rain (Froneberger, 1989). When the water table is low, 

moisture levels tend to show greater variation with depth. 

During these intervals, generally June through September, 

precipitation may cause a significant fluctuation in 

moisture content in the upper 2 feet of the unsaturated 

zone, while having little effect on moisture content deeper 

in the unsaturated zone (Froneberger, 1989). Soil-moisture 

levels are typically lowest along the site's tree dominated 

southern boundary {Hagen, 1986). 

Ground-Water Movement 

Direction of Flow 

The direction of ground-water flow vacillates between 

145 and 225 degrees from true north (Ross, 1988). In 

general, flow is to the west-southwest when the water table 



is high and to the southeast when the water table is low 

(Froneberger, 1989). 
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Hagen (1986) and Hoyle {1987) hypothesized that the 

shift in flow direction is due to evapotranspiration from 

large trees located along the site's southern border. 

Ground water is constantly discharging into Boomer Creek 

and, part of the time, into the unnamed tributary to the 

west. The direction of flow is controlled by the location 

of the dischar~e line. Evapotranspiration dewaters the 

aquifer at a rate of about .1 feet/day, in the absence of 

recharge. Consequently, evapotranspiration lowers the 

water table quite rapidly starting in the spring, which 

causes the water table to decline below the bottom of the 

unnamed tributary sometime in April, May, or June. Once 

this occurs, flow direction must change. 

Hage~'s (1986) 1985:1986 hydrograph (figure 10) shows 

almost no fluctuation during winter, even though the water 

table was quite high. This indicates that ground-water 

runoff was about equal to recharge. Only in the spring of 

1986 did the water table begin to decline rapidly, 

reflecting evapotranspiration. 

Froneberger (1989), as discussed in Chapter IV, 

attributes the shift in flow direction to the relationship 

between the grbund water and the tributary located west of 

the site. 
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Figure 10. 1985-1986 Hydrograph for Well A4 (Hagen, 1986) 

Rate of Flow 

Calculations performed by Hoyle (1987) and Froneberger 

(1989) indicate that the lateral ground-water velocity 

varies from 0.1 to 1.12 ft/day. Ground water moving at a 

rate of 0.1 ft/day would take 225 days to migrate beneath 

Wildwood Court to the research site and 560 days to pass 

beneath the house to the I wells (Froneberger, 1989). 

Assuming the velocity is 1.12 ft/day, travel time beneath 

the Wildwood Court and house decrease to 20 days and 50 

days respectively. 
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Aquifer Test Results. Hagen (1986), Hoyle (1987), 

and Melby (1989) conducted several aquifer tests at the 

research site using slug and constant-rate pumping methods. 

Analysis of the data from these tests provided information 

on the ~quifer par~meters contained in Table I. Values of 

hydraulic condu~tivity estimated for the D and E wells tend 

to be high (>100 gpd/ft2), Hoyle (1987) attributed these 

higher values to an increase in aquifer material grain size 

in the vicinity of the D and E sites. Low values of 

storativity (10-4) were consistently calculated for the B 

well site by Melby (1989). These low values could be the 

result of short term pumping dur·ing which gravity drainage 

was not complete. Transmissivity appears to increase from 

west to east across the site due to increasing grain size 

and permeability. Within the well clusters, 

transmissivities are greater in the #5 wells, which 

penetrate a greater thickness of the aquifer. 

Hoyle (1987) estimated· a specific yield of 10 to 25 

percent and a specific capacity of 0.11 to 1.5 gpm/ft, 

the latter occurring when the water table was within 5 feet 

of land surface. 
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TABLE I 

AQUIFER PARAMETERS 

Minimum 

27 gpd/ftZ 

.0001 

'190 gpd/ft 

Maximum 

125 gpd/ft2 

.370 

4930 gpd/ft 
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Mean 

67 gpd/ftZ 

.026 

2149 gpd/ft 

Gradien~. The horizontal hydraulic gradient, as 

calculated from water-table elevation maps, typically 

varies from 0.003 to 0.009 ft/ft. Vertical gradients were 

estimated on tQe basis of head differences between 

individual wells ·in a cluster (usually 0 to 0.10 ft). 

Hoyle (1987), found that the upward hydraulic gradient 

ranged from .002 to .348 ft/ft. The vertical gradient is 

greatest during the summer· months. Gradients at' the tree 

dominated C and D clusters tend to be steeper than at the 

other well clusteri (Hoyle, 1987). Fluctuations in the 

water table occur daily as a result of transpiration. 

Permeability and Porosity. Effective porosity of the 

studied aquifer, es~imated from volumetric soil-moisture 

content measurements, is approximately 33 percent 

(Froneberger, 1989). P1llable porosity varies from .11 to 

.27 (Nelson, 1989). A continuous series of precipitation 

events causes fillable porosity to decrease as soil 
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moisture increases. Precipitation events of_ low volume, 

however, appear to have little effect on fillable porosity 

values (Nelson, 1989). Permeability appears to increase 

eastward across the site and with depth in the C and D 

wells. Hoyle (1987) suggests that {his is due to increasing 

grain size brought about by ~n increase in the sand 

fraction. 



CHAPTER VI 

METHODS OF DATA COLLECTION 

Meteorological Data 

Meteorological conditions were constantly monitored 

throughout the study in an on-site laboratory. A 

continuously recording aneroid barograph, accurate to 

± 0.2 percent full scale, monitored of fluctuations in 

barometric pressure. Air temperature data were collected 

using a Springfield Instrument patio thermometer and a 

continuously recording thermogragh. A clear, cylindrical 

rain gauge with .01 inch graduations and a continuously 

recording tipping bucket rain gauge served to measure 

precipitation. 

D~pth to Ground Water 

Depth to ground water was determined by a weighted, 

chalked steel tape and two In-Site; Inc. Model- SE1000 

pressure transducers. Surveyed marks on the well casings 

served as measuring points. The transducers, installed in 

wells A5 and D5, reporded continuously at 1 hour intervals. 

Both the tape and the transducers produced measurements 

accurate to .01 feet. Water-table elevation for a given 

well was calculated by subtracting depth to water from the 

31 
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altitude of the top of the well casing at the measuring 

point. 

Soil-Moisture Measurements 

A Troxler model 3330 depth-moisture gauge was used to 

determine the soil-moisture content. Aluminum access 

tubes, installed by Acre (1989) at sites A,C,D and E, 

allowed the probe to be lowered into the soil down to a 

depth of 7 feet. Readings were taken by Alspach (in prep) 

every 6 inches to a depth of 78 inches. A standard count 

taken prior to sampling minimized error due to changes in 

field conditions. 

Ground-Water Quality 

Monitoring Wells 

The site is monitored by 43 wells distributed among 10 

sites designated as A through J. As illustrated in figures 

11 and 12, the combination of lysimeters and the wells 

screen each of the 14 horizons located in the upper 15 feet 

of the soil profile. Sites·c ~nd H, located along the 

upgradient perimeter, provide information on the quality of 

water flowing into the property. Site I resides inside the 

house. Because of its unique location, site I provides 

information on the effect of a building (which prohibits 

recharge) on ground-water quality. 

The wells are grouped in clusters to monitor water 

quality at discrete depths in the aquifer. Holes for wells 
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at sites A,C,D,E,G,H,I, and J were excavated by hand auger. 

A hollow stem auger was used to drill the holes for the 

wells at sites Band F. All wells except Bll, B12, 13, and 

Jl were completed with hand-slotted polyvinyl chloride 

casing wrapped with nylon screen. Wells Bll, 13, and Jl 

contain a stainless steel well point attached to the lower 

end of the casing. Well Bl2 has a Johnson PVC, 0.006 inch 

slot well screen (Melby, 1989). The filter pack in all 

wells is composed of medium-grained sand that extends 

several inches above the slotted interval. The annular 

space is filled with bentonite. 

Wells B6 th~ough BlO are installed in the same 

borehole as a nested cluster. Bentonite seals separate 

each well screen interval. Well pairs Fl and P2, and Bl2 

and Bl3 share the same hole (Melby, 1989). Specifications 

for each well are listed in Table 2. 

Sample Collection 

500 ml Nalgene plastic sample bottles were cleansed 

before each use following EPA approved procedures. The 

cleaning method involved washing with a nonphosphate, 

neutral detergent in hot water, rinsing with deionized 

distilled water, rinsing with .1 N hydrochloric acid, and 

rinsing once again with deionized distilled water. A 

cardboard box with a lid provided storage for the capped, 

laundered bottles. Prior to sampling, information on the 

static water level in each well, air temperature, 
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TABLE II 

WELL SPECIFICATIONS 

WELL TOTAL DEPTH SCREENED DIAMETER TOP OF CASING 
INTERVAL ELEVATION 

(ft. from (ft. from (inches) (ft. above sea 
concrete pad) concrete pad) level) 

Al 8.5 8.0 - 8.2 2.00 885.97 
A2 9.2 8.7 - 8.9 2.00 885.97 
A3 10. 3 9.9 - 10.1 2.00 885.96 
A4 1 3. 8 13.3 - 13.6 2.00 885.94 
A5 14.0 7.0- 14.0 2.00 886.00 
B1 6.6 6. 1 - 6.4 .75 886.01 
B2 9.3 8.8 - 9 . 1 2.00 885.99 
B3 11.0 10.5 - 10.8 2.00 886.10 
B4 13.2 12.7 - 13.0 2.00 886.03 
B5 1 3. 4 4.4 - 13.2 6.00 886.04 
B6 11. 3 11.0- 11.2 .50 885.92 
B7 13.9 13.6 - 13.8 .50 885.96 
B8 1 8. 7 18.4 - 18.6 .50 885.94 
B9 21.2 20.9-21.1 .50 885.94 
B10 25.7 25.4 - 25.6 .50 885.96 
B 11 40.3 38.4 - 40.0 1. 25 886.19 
C1 8.3 7.9 - 8. 1 2.00 885.75 
C2 9.2 8.9 - 9. 1 2.00 885.73 
C3 10.6 9.9 - 10.4 2.00 885.70 
C4 14.6 14.2'- 14.4 2.00 885.71 
C5 14.0 7.0 - 14.0 2.00 885.74 
D1 8.2 8.0 - 8.2 2.00 885.82 
D2 9.3 9.0 - 9.2 2.00 885.82 
D3 10.8 9.9 - 10.4 2.00 885.84 
D4 14.2 13.6 - 13.9 2.00 885.80 
D5 14.0 7.0- 14.0 2.00 885.80 
El 8.7 8.3 - 8.5 2.00 886.08 
E2 9.7 9.3 - 9.5 2.00 886.08 
E3 10. 5 10.1- 10.3 2.00 886.06 
E4 14. 1 13.6 - 13.9 2.00 886.05 
E5 14. 0 7.0 - 14.0 2.00 886.03 
F1 40.0 10.0 - 40.0 4.00 886.41 
F2 40.0 10.0 - 40.0 2.00 886.29 
C1 10. 3 9.7- 10.1 1. 00 885.07 
C2 14.0 13.5 - 13.8 1.00 884.92 
H1 10.2 9.6 - 10.0 1. 00 885.35 
H2 13.9 13.4 - 13.7 1. 00 885.38 
I 1 11.0 10.4 - 10.8 1. 00 886.00 
12 14.5 14.0 - 14.3 1.00 886.01 
13 14.9 10.0 - 14.4 2.00 885.99 
J1 13.5 11.6- 13.2 1. 25 885.63 
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barometric pressure, and rainfall were collected. The 

peristaltic pump and Tygon tubing used in sample collection 

was bathed using the sample bottle cleaning method 

described earlier. ':Before taking samples, one well volume 

was purged f~om each well ~o ensure that fresh formation 

water was obtained. Hagen (1986) determined experimentally 

that one well volume achieved this purpose. The evacuated 

water was discharged 10 feet downgradient from the wells in 

order to avoid ground-water recharge in the vicinity of the 

well. Sample bottles received a rinse of water from the 

well before being filled. The passage of deionized 

distilled water and at least 200 ml of formation water 

through the pump and tubing before each sample collection 

aided in the prevention of cross contamination between 

wells. 

Field Parameters 

An on-site laboratory equipped with a digital 

thermometer, pH meter, Hach digital titrator, and a 

temperat~re compensating electrical conductivity meter 

ptovided for the measurement of field parameters 

immediately after sample collection·. The instruments were 

calibrated prior to each sampling event and thoroughly 

cleansed with deionized distilled water. Continued 

equipment rinsing between samples prevented cross 

contamination. Titration of 100 ml of each sample to a pH 

4.5 color end-point with 2N HCl furnished bicarbonate 
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concentrations. 

Sample Preparation 

After the measurement of field parameters, the samples 

were pressure filtered through .2 micrometer Gelman acetate 

filters using a hand syringe and then were split into two 

portions. One portion was acidized with HN03 to pH<2 for 

cation analysis. The prepared, filtered samples were 

stored in a, refrigerator set at approximately 4° Celsius in 

clean, 60 ml Nalgene plastic bottles. 

Analytical Methods 

A Dionex 2000i ion chromatograph was used to measure 

F-, Cl-, Br- , N03- , S04= , and I- concentrations. The 

chromatograph was calibrated using standards prepared by 

the dilution of 1000 ppm stock solutions of each of the 

anions. The eluent consisted of .00170 m NaHC03 and the 

regenerant of .025 N H2S04, The analyses were conducted in 

the Noble Center chromotog~aphy lab at Oklahoma State 

University, Stillwater, Oklahoma. 

Agronomic Services, a laboratory located at Oklahoma 

State University, determined Ca+ + , Mg+ + , Na+ , K+ , total 

Fe, and silica concentrations using inductively coupled 

plasma atomic emi~sion spectroscopy. 
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Quality Control 

Cleanliness of a batch of bathed sample bottles was 

verified by filling a test bottle with deionized distilled 

water and subjecting the water to the same analyses as the 

ground-water samples. Field duplicates tested the precision 

of both field and laboratory analyses. Performance of the 

ion chromatograph was documented by frequent analysis of 

duplicate samples, calibration standards, and Dionex test 

standards. Further checks on the data included cation-anion 

balances, which were calculated by the computer program 

WATEVAL (Hounslow, 1989), and comparison with data 

collected by past researchers at the site. 

Possible Sources of Error 

Hydrogen, unrelated to moveable water in clay and 

organic matter rich soils, may cause the neutron probe to 

read too high a soil-moisture level (Hillel, 1980). Use of 

the peristaltic pump may have caused water samples to lose 

dissolved gasses while gaining atmospheric gas. This could 

result in a lowering of pH and HC03- values., Because of 

oxidation, Fe++ and Mn++ concentrations could have been 

erroneously lowered by the peristaltic pump and/or by 

sample filtering (Griffin and others, 1981). 

Nitrate 

Nitrate values determined by Ross (1988) and 

Froneberger (1989) are roughly 36 times higher then those 
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measured by Hagen (1986), Hoyle (1987), and the author 

(figure 13). This discrepancy is most likely due to 

analytical error. Hagen and Hoyle measured N03- levels in 

the field with a ion sensitive electrode. Ross, 

Froneberger, and the author used an ion chromatograph. 

Personal communication with Froneberger and Ross revealed 

that the nitrate stock solution and the calibration 

solutions were stored in plastic bottles at room 

temperature. New calibrati~n standards were not mixed 

before each analytical session. Storage at room 

temperature in plastic bottles probably resulted in the 

breakdown of N03-. During calibration, for example, the 

chromatograph may have been standardized with a 5 mg/1 N03-

solution that in fact was only l mg/1. This resulted in 

the chromatograph reading 1 mg/1 as 5 mg/1, hence creating 

erroneously high N03- values. 

The discrepancy in nitrate values also may be due to a 

change in fertilizer. A-liquid fertilizer, much more 

mobile than the pellet type applied from 1988 to present, 

was used when Hagen (1986} and Hoyle (1987) did their work. 

The data, however, do not support this theory for elevated 

nitrate levels. If the switch to solid fertilizer caused 

the increase in nitrate values, than concentrations 

recorded by the author should have matched those recorded 

by Ross (1988) and Froneberger (1989). Furthermore, sample 

collection by Ross (1988} and Hoyle (1987) overlapped for a 

period from January 1987 to April 1987. Hoyle (1987), 
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however, makes no mention of a sudden increase in nitrate 

concentration. 

Another possible explanation for the elevated nitrate 

levels recorded by Ross (1988) and Froneberger (1989) is an 
' ' 

upgradient change in water quali~y during their sampling 

period. In addition, the ,site had not been fertilized for 

several years prior to the time Hagen began sampling. 



CHAPTER VII 

GROUND-WATER QUALITY 

Data Analysis 

Methods 

Geochemical data for all 41 monitoring wells was 

compiled from the start of research in 1985 to May 1991. 

Statistical analysis of the data (appendix D) served to 

identify maximum, minimum, and average values in ion 

concentrations over the past 6 years. Graphs of the_ data 

aided in the identificatipn of water-quality trends. 

Water Quality 

Ground water at the research site is classified as 

high bicarbonate, mixed calcium-magnesium-sodium type 

(Hoyle, 1987). The geochemical environment is neutral, 

with pH ran1ing from 6.4 to 7.8. Hagen (1986), Hoyle 

(1987), Ross (1988), and Froneberger (1989} established 

that water quality varies considerably with respect to both 

time and space. Ion concentrations vary considerably 

across the yard from well site to well site and with depth. 

The only exception to this appears to be the Si2 ion, 

which, as illustrated in figure 14, shows little variation 
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fluctuate considerably. An example of this is a bar graph 

of the maximum and minimum SO~= values of each well (figure 

15). Distinct yearly trends in geochemistry are difficult 

to discern from the compiled data. This is mainly because 

most of the data collection occurred during the spring and 

early summer months. Few data are available for fall and 

early winter. Ranges in ion concentration for the ground 

water are displayed in Table III. The following sections 

discuss possible explanations for these ranges. 
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TABLE I I I 

RANGES IN ION CONCENTRATION 

Ion Maximum Minimum 
(mg/1) (mg I 1) 

Ca++ 1 90. 1 16. 3 
Fe++ 1 5. 1 0.001 
K+, 4·. 4 0.03 
Mg++ 112.0 14.7 
Mn++ 4.6 0.001 
Na+ 179.8 10.8 
Si2 19.9 4.7 
Cl- 163.0 3.5 

· HC03- 1 341 . 0 198.0. 
N03- '113.2 0.01 
so,= 180. 1 .7.9 

Factors Affecting Ground-Water Quality 

Fertilizer. Vegetation, and Concrete 

Fertilizer, vegetation,_and the presence of concrete 

greatly affect K~, N03-, and S04= concentrations in the 

ground water. Fertili,zer applied to the lawn in the spring 

and fall provides a source for the three ions. According 

to Reasors Lawn Service, Stiilwater 4 Oklahoma, it is 

typically applied as: 

Nitrogen 
P205 
KzO 
s 

1 lb/1000 ft2 
0.16 lb/1000 ft2 
0.24 lb/1000 ft2 
0.40 lb/1000 ft2 

as methyl urea 

Rises in N03- and S04= concentration in many of the 

monitoring wells following fertilizer application is 

documented in the works of the previous site researchers 
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Examination of the compiled data suggests that K+ 

concentrations also rise in response to fertilization. 

Wells A3, A4, C4, D3, and D4 reached their peak K+ 

concentrations in April 1988·after spring fertilization. 

Vegetative. cover, .or lack o1 it, also greatly affects 

water quality. K+ ,· N03-., and S04= are essential elements 

for sustaining plant life (Hem, 1985) .. As such, they are 

removed by roo.ts, thus redu.cing. concentrations' in the soi 1. 

Inspection of Figures 16, 17, and 18 .illustrate this point. 
' ' ' 

Well sites A, B, C, D, E, and F, which are located near 

abundant flora, exhibit relatively low average K+, N03-, 

and SO~= concentrations. In sites G, H, I, and J however, 

concentrations of the three ions are at their highest. 

Sites G, H, I, and J are located immediately down gradient 

of a concrete road, the ho~se, and a concrete driveway 

respectively (figure 6). Since no vegetation is present to 

remove the ions, and iecharge cannot occur to dilute the 

ground water, th~ ions are ~resent in elevated 

concentrations. 

Vegetation further .affects water ~uality by providing 

a sou·r·ce of ions. Decay of vegetation during the fall and 

winter months produces a source of N03- and K+ that can be 

leached into the ground water (Hem, 1985). Plant root 

respiration pr~duces C92, which increases the HCOJ-

concentrations. Bicarbonate concentrations are greatest 

in the C and D sites where extensive tree root systems 

dominate the site (figure 19), but the concentration 
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decreases with depth (from well #1 to well #5) as do the 

number of plant roots. Since plants affect HCOJ­

concentrations in the aquifer, they also indirectly 

influence electrical conductivity. Bicarbonate compromises 

roughly half of the total ions measured in the water, 

giving the ion control over measured electrical 

conductivity. The graphs of average conductivity and HC03-

concentration (figures 19 and 20) are virtually identical. 

Sewer Pipes 

Leakage from the 5 foot deep 8 inch diameter sewer 

line that occurs along the site's southern border appears 

to affect Cl- concentrations in the C and Dwell sites. As 

illustrated in fig~res 21 and 22, these two sites possess 

the most variation in and the highest average Cl­

concentrations. Cl- conta~ination from the sewer appears 

to reach its maximum when the water table drops below the 

line. Vertical gradients shift from upward to downward 

indicating that water is fl~wing out of the sewer line into 

the ground water (Hoy!~, 1987). 

Cation Exchange 

Clay particles in the aquifer may affect water quality 

by exchanging Na+ ions for Ca++ ions. In well clusters A, 

B, D, G, H, and I, average Ca++ concentrations decrease 

with depth while Na+ concentrations increase, thus 

suggesting exchange. This is illustrated in figures 23 and 
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24,' Ca++ concentrations decrease from the shallow Ill wells 

to the deeper #5 wells, whil~ Na+ concentrations increase. 

Redox Reactions 

Variation in redox potential may be responsible for 

the elevated Fe++, Mn++,,and S04= c:;oncentrations at the B 

site. As illustrated in figures 16, 25, and 26, levels of 

these ions are much higher at B than at the other sites. 

According to Bricker (1982), the geochemical behavior of 

these elements is dependent on redox potential. The source 

of Fe++ and Mn+ + is most 1 i kel y the 1 ron-manganese nodu 1 es 

that appear throughout the soil profile (Ross, 1988). 

Downspout 

Water quality at the E cluster is significantly 

affected by an adjacent downspout. Hagen (1986), Hoyle 

(1987), and Froneberger (.1989) found that ion levels 

decreased significantly at this site following 

precipitation events. Rain water that discharges from the 

downspout apparently quickly infiltrates and dilutes the 

ground water. 

Precipitation 

Samples taken during and after rain events show that 

precipitation has a significant impact on water quality. 

Ion concentrations rise as contaminants are flushed from 

the surface and unsaturated zone into the ground water. In 
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addition, the rising water table dissolves water-soluable 

compounds in the soil matrix. Changes in water quality due 

to rain occur very quickly, as illustrated in figure 27. 

Cl- levels quadrupled in Dz in response to a 1 March 1991 

simulated rain falling at the rate of 1 inch/hour. This 

effect is in part due to macropore flow, as discussed in 

detail in chapter 8. 
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CHAPTER VIII 

EVIDENCE OF MACROPORES 

Soil Structure 

Cracks 

Desiccation crack macropores are very effective at 

transporting precipitation rapidly through the unsaturated 

zone (Pettyjohn, 1982; Blake and others, 1973; Buol and 

others, 1980; Hoogmoed and Bouma, 1980). Such cracks, with 

surface openings as much as a half inch wide, commonly form 

at the site during prolonged dry periods. Cracks between 

ped faces also may contribute to macropore flow (Beven, and 

Germann 1982). Hagen (1986) and Ross (1988) noted the 

existence of such pathways in the study aquifer. 

Roots 

Tubular macropores, associated with both live and 

decayed roots, provide avenues for rapid water transit 

through the unsaturated zone (Beven and others, 1982). 

Renyolds (1966) showed that a significant amount of rain 

water percolates down tree trunks. 

Root macropores are abundant at the research site. 

The earth materials are characterized by deep root zones, 
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which are typical of Ashport soils (SCS, 1986). Large 

trees with extensive root systems line the site's southern 

border (figure 5}. Root casts a-re prevalent throughout 

soil profile (Ross, 1988). 

Faunal Ch-annels 

Macropor~s formed by burrowing organi~ms, such as 

earthworms and gophers, are' effective in conducting water 

to appreciable depths (Wild and others, 1976; Ehlers, 1975; 

1982; Edwards and others, 1988; Zachmann and others ,1987) . 

Earthworm channels typically range from 2 to 10 mm in 

diameter, while those formed by gophers may exceed 50 mm 

(Beven and others, 1982). Macropores formed by burrowing 

organisms may play a role in water transport at the study 

site. Tunneling earthworms were observed in soil cores 
' ' 

obtained by use of 'a Giddings probe. 

Recharge Rate 

Macropores may cause an aquifer to have a higher 

vertical infiltration rate than normal!~ expected (Beven 

and oth'ers, 1982). Such is the case at the field -site, 

providing further proof of the significance of macropore 

flow. Hagen (1986) estimated that 47 percent of total 

annual precipitation reached the water table as recharge. 

This value, which is unusually high for such fin-e-grained 

material, is indicative of macropore flow. Precipitation, 

water-table elevation, and soil-moisture data collected by 
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Hagen (1986), Ross (1988), Nelson (1989), and Froneberger 
' 

(1989) indicate that ground-water recharge occurs even when 

soil-moisture levels are well below field capacity. The 

rapid respons~ of the water table to a short lived but 

intens~ 3.76 inch rainfall is iJlustrated in figure 28. In 

this case, nearly all of the rain fell within an hour at a 

time when the water table was about 7.5 feet below land 

surface. ·The water table pegan to rise within a half hour 

of the start of the rain. This implies that movement of 

water through the dry unsaturated zone occurs at a rate of 

15 feet per hou~. Flow through macropores was the probable 

cause of this rapid recharge. 
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Additional evidence of macropore flow is provided by 

a comparison of horizontal and vertical flow rates. The 

horizontal flow rate, as determined by hydrograph analyses, 

is around 1 ft/day. The vertical flow rate, however, is 

about 5 ,ft/day (Hoyle, 1987).'., 

Hydraulic Conductivity 

Hydraulic conduc1ivity determined by field tests is 

conmonly greater ~han expected in aquifers with macropores 

(Rogowski and Siffimons, 1988). This also. is the case at the 

study site, where hydraulic conductivity values calculated 

from aquifer tests are higher than published data for silt 

loams (Hoyle, 1987). The 27 to 125 gpd/ft2 range seems 

high considering the fine grained nature of the alluvium. 

For a silty clay loam, values around 4 gpd/ft2 are commonly 

expected (Li and other_s, 1976 in Clapp and Hornberger, 

1978). 

Where macropores play a role in fluid flow, hydraulic 

conductivities measured in the lab commonly will be much 

lower than those measured in the field (Olsen and others, 

1981; Pollock and others, 1983; Keller and others, 1,986). 

Melby (1989) found this to he the, case at the study site. 

According to Melby (1989), hydraulic' conductivity values 

determined by permeameter tests were three to six orders of 

magnitude lower than values obtained from aquifer tests. 

Regardless of the care exercised by Melby, the 

unconsolidated cores, which were obtained by hollow-stem 
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auger, were compacted during drilling and during 

permeameter preparation, and the compaction destroyed the 

secondary openings. 

Geochemical 'Evidence 

Rapid variations Ln water quality frequently occur 

in aquifers recharged through macropores (G~rhart, 1986; 
' ' 

Thomas andPhillips, 1979; Pettyjohn, 1971, 1976, 1982). 

Rapid change in ground-water quality is characteristic of 

the research site. Changes in the concentration of a given, 

ion may occur in the deeper #4 and #5 wells, while the 

shallower #1, #2, and #3 wells remain unaffected. 

Examination of the nitrate data for the ,Dwell's illustrates 

this point (figure 29). Nitrate concentrations in D4 

peaked in April in response to rainfall events occurring 

after nitrate bas~d fertilizer has been applied to the 

yard. Nitrate concentrations in the shallower D1, D2, and 

D3 wells for April remained unchanged. 

Hoyle (1987), attributed dilution of ground water at 

the,E well site to 'the ra'pid infiltration of downspout 

'water via macropores. Hoyle also credited infiltration 

through macropores for causirig ~ells C4 and E4 to become 

undersaturated with respect to calcite (diluted), while 

calcite saturation' in bther ~ells remained unchanged. 

The effect of macropores on water quality also is 

evidenced by geochemical data from lysimeters. Ross (1988) 

reported an order of magnitude increase in nitrate in 
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lysimeter L4 following fertilizer application to the yard, 

while nitrate concentrations in shallower lysimeters showed 

little to no change. Ross (1988) attributed this 

phenomenon to the vertical movement of nitrate-enriched 

water though macropores. 

Bromide and chloride tracer testing of the unsaturated 

zone by Froneberger (1989) indicated preferential movement 

along macropores. Froneberger (1989) reported the presence 

of bromide in lysimeters L6B and L7 just one day after 

application of the tracer to the land surface. He 

theorized that short circuiting via macropores enabled the 

tracer to reach these lysimeters. The distribution of a 

surface applied chloride tracer in an 8-foot long soil core 

obtained from the tracer plot provided Froneberger (1989) 

with further evidence of macropore flow. Froneberger 

(1989) recorded a chloride peak of 42.1 mg/1 at the 28 to 

32 inch depth interval, indicating preferential movement to 

this depth. 



CHAPTER IX 

TRACER TESTING 

Selection of Tracers 

Bromide and iodide we~e selected as tracers for this 

experiment because they met the following criteria. Both 

move with the infiltrating water, interacting very little 

with the aquifer material. They are inexpensive tracers 

and are easily detected with the Geology Department's 

Dionex ion chromatograph. Background concentrations of 

bromide and iodide ar~ low to none. Work done by other 

researchers has helped define the chemical and physical 

behavior of bromide and iodide in ground water, proving 

they are effective ground-w~ter tracers (Davis and others, 

1985). 

Bromide 

Background levels of bromide in the study aquifer are 

less than 1 mg/1. It i~ 'bi~logically stable and does not 

tend to precipitate (Davis and others, 1985). Some 

sorption of Br- by plants, organic material in soils and 

certain soil minerals may occur, however, this tendency of 

sorption is weak (Bowman, 1983; Smith, 1974). Bromide is 

easily detected by ion chromatography in concentrations as 
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low as 50 ppb (Stezenbach and Thompson, 1983). A number of 

potential sources could contribute to the background 

bromide levels, although none are likely at the research 

site. Wheat farmers may fumigate their soils with methyl 

bromide (Jreht and others, 1989). Bromine is present in 

the atmosp~ere, and in oil-field brines typical of Oklahoma 

(Faiq and others, 1988; Hem, 1985). R.'ain and snow common.ly 

contain bromine in concentrations ranging .from 5 to 

150 pg/1 (Hem, 1985). 

Iodide 

Background levels of iodide in the study aquifer are 

below the set detection limits of the ion chromatograph. 

Muramatsu and others (1990), found that iodide was not well 

sorbed by clay minerals or quartz sand. Iodide may be 

affected by microbiological activity (Davis and others, 

1985). The ion chromatograph is capable of detecting 

iodide at levels ranging fFom 0 to 10 pg/1 (Ubom and 

Tsuchiya, 1988). 

Bromide Versus Iodide 

Bromide and iodide differ slightly in their behavior 

as tracers. The iodide ion, with a radius of 2.19 A, is 

slightly larger than the bromide ion, whose ra~ius is 1.96 

A (Brown, 1981). Because of its larger size, the iodide 

ion may migrate more slowly than the bromide ion. Iodide 

may be sorbed to a greater extent than Br- thereby reducing 
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its concentration in the ground water (Davis, 1978; Leap, 

1978). 

Experimental Methods 

Set Up 

The D site was selected fo~ the tracer study because 

it is the only site in which there is a large, unobstructed 

area upgradient of the wells. This area allowed for easy 

installation of the tracer plot and ready accesses by a 

truck mounted Gidding's probe. The test plot encompassed 

an area approximately 25 ft x 23 ft. Plastic landscape 

border, buried 1 inch deep, partitioned off two 4 ft x 4 ft 

areas and a 6 ft x 10 ft area for tracer application 

(figure 30). The intentional location of these plots away 

from the wells and buried utilities prevented the tracer 

solution from flowing down ,the well casings, sewer pipe and 

utility cables. Drip irrigation tubing, with 6 inch 

spacing, surrounded the tracer application plots (figure 

30). Based on work done by Bouwer (1986), tap water 

flowing from the tubing served to minimize l~teral flow of 

the tracer during the experiment. 

Preparation of the tracer solutions involved adding a 

calculated amount of oven dried KI and KBr salt to 

deionized distilled water. Five 30 gallon containers and 

one 22 gallon container held the prepared tracer solution 

in the field (figure 31). The containers were bathed with 

nonphosphate, neutral detergent in hot water and given a 
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Figure 31. Photographs of Test Set Up 



deionized distilled water rinse before being used. The 

tracer water flowed by gravity through Tygon tubing from 

the elevated containers (figure 31). 

Procedure 
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The' bromide tracer' test was conducted on March 1 , 1991 

under initially "dry" (.093 cc/cc at 30 inches) soil­

moisture conditions. The iodide tracer test was performed 

on April 29, 1991', when "wetter" (.185 cc/cc at 30 inches) 

soil-moisture conditions prevailed. The difference in 

initial soil-moisture content between the two tests is 

illustrated in figure 32. Measurements of soil moisture 

were made in order to compare the effect of the initial 

soil-moisture content on solute movement. The initial 

soil-moisture content in the I- test was two times higher 

than the Br- test at the 30 inch depth (figure 32). 

In both tracer tests, a 3 inch rain event, falling at 

the rate of 1 inch/hour, was simulated over the entire 

tracer plot area. Ground-water samples were taken 

approximately every 5 minutes for the first five hours of 

the experiment, and then every 10 to 15 minutes' for the 

remainder of the test. Alspach (in prep.) measured soil 

moisture in 6-inch depth increments, and also took soil 

cores from the 6 ft x 10 ft tracer application area. The 

holes left by the coring were immediately packed with 

bentonite to prevent the tracer solution from flowing down 

them. Water levels measured prior to testing verified 



ground water flow toward the Dwells (figures 33 and 34). 

A pressure transducer in well Ds continuously measured 

depth to water during the bromide experiment. 
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Bromide Tracer Test Results 

Bro~ide appeared in two wells, D2 and D4, during the 

experiment (figure 35). Desiccation cracks were present on 

the land'surface prior to the start of the test. A summary 

of the estimaied rates of Br~ movement are given in Table 

IV. 

The bromide tracet appears to have reached a depth of 

9 feet in the soil profile between 125 minutes, and 485 

minutes after application of the tracer. As seen in figure 

36, Br- concentrations for well D2, which is screened from 

9 to 9.2 feet, gradually increased, peaked at 335 minutes, 

and then declined to background levels during this time 

period. Potassium concentrations also peaked during this 

interval, providing further evidence that the KBr tracer 

reached this well (figure·36). Bromide concentrations at 

the 9 foot depth increased from .289 mg/1 to .798 mg/1 

during this period. It was.not possible to explicitly 

indentify the arrival time of Br- at this depth, however, 

the arrival of the tracer at 9 feet between 125 and 485 

minutes indicates the rate of-movement of bromide to be 

somewhere between 1.11 ft/hr and 4.32 ft/hr. 

Bromide levels dramatically peaked in well D4, which 

is screened at a depth of 13.6 to 13.9 feet, 285 minutes 

after applicati6n of the tracer. Concentrations of both 

Br- and K+ hovered near natural background levels, suddenly 

peaked, then immediately dropped back to background level 

as illustrated in figure 37. Further evidence that this 
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peak represented tracer solution is provided by the 

conductivity data for well D4. The peak in Br- and K+ 

levels in the well was accompanied by a sharp drop in 
_, 

conductivity (figure 38}. The traceF solution had a lower 

conductivity, 880 pmhos/cm, than the background ground 

water, which had a conduct i vl ty of q 80 pmhos/cm. 
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The data for well D4 suggest that the tracer moved 

through the upper 13.9 feet of the soil within 4.75 hours. 

Bromide levels increased from a background level of .144 

mg I 1 to 2 . 0 4 mg I 1 i n 2 8 5 m i'n u t e s , i n d i c a t i n g a r at e o f B r -

movement at 2.86 ftlh~ur. ~ In order to verify the Br- peak 
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of 2.04 mgll, another portion of the sample was taken from 

the original collection bottle, filtered, and analyzed. In 

repeated analyses d~ne on different days, the Br-

concentration iemained at 2 mgll. 

Little change appeared to occur in the elevation of 

the water table during the bromide test (figure 39). The 
' ' 

sharp peaks in- the graph correspond to times the we 11 was 

pumped for sample collectio~, thus quickly dropping depth 

to water in the 'well. There are two reasons why the 

expected rise in the elevation of the water table did not 

occur. First, the simulated 3 inch tracer "rain" fell on 

only a small 23 ft x 25 ft area. The 3.76 inch natural 

rain that produced the dramatic water-table rise discussed 

in Chapter VIII fell over several square miles, thereby 

providing a much greater volume of infiltrating water. The 

larger area also provided access to a greater number of 

macropores, increasing the amount of ,water reaching the 

water table. Secondly, any water-table rise from the 

tracer "precipitation" in the monitored well was cancelled 

out by the continuous withdrawal of water fo~ sampling. 
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Iodide Tracer Test Results 

Considerable ponding occurred during the iodide test 

in which the initial soil-moisture level was_high (.185 vs 

.093 cc/cc at 30 inches during the Br- test). Because of 

the higher moisture levels, the s~il rapidly became 

saturated at the surface causing the infiltration rate to 

decrease and ponding to occur. During this test, plastic 

landscape border surrounding the application plots 

prevented surface runoff of the tracer solution. A summary 

of the estimated rates of I- movement are shown in Table 



IV. No depth to water data were collected due to 

transducer failure. 

Breakthrough curves for the I~ tracer test are shown 

in figure 40. The arrival of the tracer in well Dt 

(screened from 8.0 to 8.2 feet) at 3~0 minutes after the 

start of tracer application indicates the r~te of movement 

of I- to be around 1.41 feet per hour. Concentrations of 

I - r an g e d f rom' . 2 3 3 to . 9 9 4 mg I 1 . Af t e r i t s i n i t i a 1 

appearance at 350 minutes, I- continued to be present in 

the well throughout the remainder of the experiment. 

I- reached. a depth of 9 fe~t 280 minutes after the 

tracer. was applied to the surface, thus indicating a rate 

of I- movement of around 1.93 ft/hour. As seen in 
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f i g u r e 4 0 , I - i n we 11 D2 ( screened f rom 9 to 9 . 2 fee t ) , 

first appeared at 280 minutes, peaked at 3.23 mg/1, leveled 

out at around 1 mg/1, and persisted throughout the 

remainder of the study. 

Discussion 

the I- and Br- tracer tests showed that the applied 

solution did not move as a steady, even front through the 

soil profile, but rather moved erratically due to short­

circuiting through macropores. Bot~ tra~er tests used the 

same site, soil profile, tracer volume, and application 

rate, but varied in initial soil-moisture content. The 

initial soil-moisture content appeared to affect the depth, 

rate, and volume of tracer movement. A summary of the test 



results is given in Tables IV and V. 
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Figure 40. )- Concentration vs Time 
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TABLE IV 

ESTIMATED RATES OF TRACER MOVEMENT 

Well #J Tracer Depth Time of Arrival Rate 
(feet) (minutes) (ft/hour) 

Dt I- 8.2 350 1. 41 
Dz I- 9.0 280 1. 93 
Dz Br- 9.0 125-485 1.11-4.32 
04 Br- 13.9 285 2.93 
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TABLE V 

BROMIDE AND IODIDE TEST RESULTS 

Initial Depth to Water (feet)-

Tracer Water pH (units) 

Tracer Water Conductivity 
(pmhos/cm) 

Initial Soil Mois~ure Content 
at 30 inches (cc/cc) 

Background Concentration of 
Tracer (mg/ l) 

Time from Start of Tracer 
Application to Fir~t 
Breakthrough of Tracer 
(minutes) 

Wells Tracer Appeared In 

Concentration of Tracer 
Detected in Ground-Water 
(mg/ l) 

Bromide Test 

8.36 

5.90 

880 

.093-

.192 

around 
200 

D2, D4 

.798-2.04 
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Iodide Test 

7.83 

6.22 

540 

.185 

0 

280 

D1, D2 

.233-3.23 



The 1.11 to 4.32 ft/hour rates of tracer movement 

calculated for the Br- and I- tests are much higher than 

the 3 x 10-7 to 2 x 10-4 ft/hour saturated hydraulic 

conductivitiei measured in th~ lab by Melby (1989). This 

indicates that the tracer moved through the soil at least 

2 x 104 times faster than it would have moved had 

macropores not been present. 
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With fast flow rates (around 3 ft/hour) the anions 

flowing through macropores had little time to associate 

with the resident soil water before passing through the 

profile to the wells. The macropores acted like a straw, 

limiting lateral dispersion of the tracer, and favoring 

downward vertical dispersion and movement. This enabled 

slugs of the tracer, such as the 2.04 mg/1 slug detected in 

well D4, to reach depth at such high concentrations. When 

the flow rate was slower (around 1.1 ft/hour), however, the 

tracer solution had more time to mix with the resident 

water. This diluted the tracer solution causing it to be 

present in lower concentrations at depth (.798 mg/1 Br- in 

Dz for example). 

Tracer ions appeared in deeper wells before they were 

detected in the shallower wells during both studies. 

Iodide appeared first in well D2, and then arrived at well 

Dt 70 minutes later. During the Br- experiment, tracer 

levels peaked at the 13.6 foot depth (well D4) 50 minutes 

before the shallower 9 foot depth (well Dz). In both 



---------
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cases, the tracer moved to the deeper wells first by way of 

root channels and other types of macropores in the profile, 

as discussed in Chapter VIII. 

An increase in Br- concentration occurred in well 

D2 during the I- tracer test ('fi'gure 41). As the I- tracer 

water moved into the soil profile it displaced some of the 

residual soil solution ~ontaining Br- from the previous 

experiment. The displacement of the Br- enriched water 

could have significance in terms of the leaching of mobile 

toxins. 

~~~~--~~~~~_.--~~~--.__.~ 
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Figure 41. Br- Concentration Well 02 I- Tracer Test 
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The amount of water pumped from each well during both 

tests was kept at a low value in order, to reduce any effect 

of drawdown on increasing the rate of flow from the water 
\ -- . 

table to the well screen. Less than 500 ml was withdrawn 

each time ~ sample was collected. The effort appeared to 

be successful as illustrated in figure·39. With the 

exception of the peaks caused by pumping of the well Ds for 

sample collection, no significant decline. in depth to water 

occurred. Th~ position of the water table remained fairly 

constant throughout the experiment. 

The time it took for the tracer to first appear in the 

saturated zone remained the same for the two tests (table 

IV) • In both experiments the tracers were first detected 

roughly 4 hours aft~r the tracer solution was first applied 

to the land surface. 

Data indicate that the initial soil-moisture content 

affected the depth of trac~r movement, although the depth 

to water differed by 0.53 feet (8.36 during the Br- test 

versus 7.83 feet dulng the I- test). The trac~r penetrated 

th~ soi1 prof1le the farth~st when the initial soil-

moisture content was lower. The greatest recorded depth 

reached by a tracer was 13.6 ft in well D4 during the Br-

experiment. In this experiment, the initial soil-moisture 

content was only half that of the I- test, and desiccation 

cracks abounded on the soil surface. For comparison, the 

greatest depth reached by the I- test was only 9 feet 
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(figure 35 . Perhaps the period of drying prior to the Br-

test enlarged the macropores to depth allowing the tracer 

' 

to move further. When higher initial soil-moisture 

conditions !prevailed, as in the. I- test, macropore flow 
r 1 •• , ' 

affected -t;he shallower Dt and Di wells. Tracer movement 

seemed to be slowest when the initial soil-moisture content 

was higherJ The data suggest that the tracer traveled 1.5 

times slowJr during the I- test than during the Br- test, 

when the iJitial soil-moist~re content was highest (table 

IV). The nfi'ltration capacity was exce.eded much more 

quickly du ing the I- test, resulting in considerable 

pending of the tracer on the surface. As a result, it took 

a longer p~riod of time for the tracer to infiltrate. The 
i 

variation ~n travel time between the two tests.also may be 

due, in pa~t, to the presence of more surface desiccation 
! 

crack macropores were during the Br- test. The greater 

number of qesiccation cracks perhaps served to increase the 

infiltratidn rate (Be~en and Germann, 1982). Another 
i 

factor that may have slowed the rate of tracer movement 

under "wetter" ~nitial soil..,.moisture conditions i's the 

expansion Jf clays. The clay fraction of the aq~ifer 
I 
I 

contains smectite, an expanding clay.(Ross, 1988). 
I 
I 

Swelling o~ the smectite under the "wet" conditions perhaps 

narrowed 

I 

' I on 

tracer flo\V. 
i 

closed some flow pathways reducing the rate of 

It ap~ears that a greater volume of tracer migrated 

into the s~turated zone during the I- test, in which the 



i 
initial soil-moisture content was twice as high as the Br-

' I 
study and the fillable porosity was smaller. Iodide 

appeared in two wells and continued to be present in both 
I 

of them for ·the remainder of the experiment (figure 40). 

In the Br- i test, however, the tracer appeared once as a 

' slug in th¢ D4 well, and for approximately 360 minutes in 
! 
I 

85 

well D2. ~nlike the I-, Br- did not persist throughout the 
' 

experiment; Perhaps the high levels of pending reached 

during theji- experiment increased cumulative vertical 
! 

infiltratiGn. Because the initial soil-moisture content 

was higher~ the soil did not adsorb as much water, hence 

more of thl tracer flowed through. Once in the ground, the 
I 

I 

rate of lo~s of tracer water· from saturated macropores to 
I 

the surrouf]lding "wet" micropores slowed. During the Br­
' I 

study, theidryer upper few feet of the soil accepted most 

of the traler solution. Much ~f the tracer entering 

through cracks on the surface may have moved from the 

I 
macropores ;to the unsaturated matrix due to capillarity. 

Therefore, lless Br- solution was available for short-

circuit flow. 



CHAPTER X 

SUMMARY ANO CONCLUSIONS 

Tracer testing confirmed that surf~ce-applied 

pollutants may· quickly migrate throug'h silt and clay to the 

ground water via macropores. In both the Br- and I- tests, 

it took only a little over four 'hours for- the tracer to 

reach the satu~ated zone. The rate of tracer movement was 

2 x 104 times taster than the rate measured in the lab by 

Melby (1989). The tracer experiments showed that some of 

the applied water moved through the soil profile without 

displacing much of the resident water. The tracer solution 

did not move as a steady front through the soil, but rather 

moved erratically due to s~ort-circuiting through 

m¥lcropores. 

Initial soil-moisture content appeared to affect the 

depth, rate, and volume ~f tracer movement. The tracer 

penetrated the soil profile the fart~est when the initial 

soil-moisture content was lower, the unsaturated zone 

thicker, ,and fillable porosity larger. Tracer movement 

seemed to be l.S·times slower when ~he initial soil­

moisture content was higher. Apparently, a greater volume 

of tracer migrated to the saturated zone during the I­

test, in which the initial soil-moisture was twice as high 
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as the Br- study. 

The quantity of tracer reaching the ground water, 

relative to the total input, is easy to dismiss as 

insignificant. Applied to the surface at a concentration 

of 500 mg/1, the tracers appea~ed at depth at a level of 

only 0.7~8 to 3.23 mg/1. This may not seem like a 

significant am6unt df pollu~ant, but had the contaminant 

been a toxin,_ such as TEPP, it would have been considered 

high enough to pose a potential health risk. Detected at 

these levels, -a hazardous waste facility would be required 

to notify the EPA and perhaps ente~ into corrective action. 

In addition, storage in the unsaturated zone may be 

measured in months or years, but it is the short term, 

concentrated mass released during a period of infiltration 

that determines the rate of leaching. 

Considering the total amount of tracer applied at the 

surface, the amount actually reaching the water table also 

may seem negligible. On the other hand, if the tracer had 

been applied over a large area instead of over a small one 

the total mass reaching the ground-water reservoir would 

have been significant. The evidence (water-table rise in 

response to precipitation illustrated in figure 28) 

indicates that cumulative macropore flow could add up to 

allow a significant volume of pollutant to reach the ground 

water, enough to even cause the water table to rise. 

This research illustrates the danger in assuming that 

silt and clay-rich soils provide shallow ground water 
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protection from surface applied pollutants. Siting a 

landfill or land treatment unit on a soil of this type, 

especially if recharge is affected by macropores, may no 

more gua~d the aquifer then if the facility were situated a 

more coarse-grained material. Haza~dous chemical spills or 

waste water applied on silt and clay may migrate more 

quickly to ground·water than previously realized. As a 

result, this research highlights the necessity of taking 

macropore contaminant flow into account when developing 

protection plans for shallow, silt and clay aquifer 

systems. 

Suggestions For Further Research 

More research at the study site needs to be done 

in order to develop a better understanding of contaminant 

migration to the saturated zone. The 13.6 foot interval 

appears to be most gusceptible to contamination from the 

surface (table 5). Geoc~emical evidence for this is 

discussed in Chapter VIII. Coring of the soil at least to 

this depth and measurement 0f macropore size may shed some 

light on this· phenomenon. Another interesting experiment 

would be to see how different application rates affect 

tracer movement. Tracer migration may occur differently if 

the rate of app~ication were sl6w enough to prohibit 

pending, or if the tracer were applied as a solid to the 

land surface and moved into the aquifer via natural rain 

events. 



TABLE VI 

WELLS SHOWING GEOCHEMICAL EVIDENCE OP 
RAPID CONTAMINATION VIA MACROPORES 

Well Start of Screen 
(ft below surface) 

D4 13.6 
E4 13.6 
C4 14.2 

Soil Horizon 
Screened 

2BC2 
2BC2 
2BC3 
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INCHES OF PRECIPITATION 1989 

Day Jan. Feb. II a r .. , Apr . · Ua y - 'June Ju 1 y ·Aug. Sept. Oct. Nov. Dec. 

-
I 0.00 0.00 0.00 0.00 0.00 o.u 0.00 I 0.51 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 O.H 0.32 O.H I 0.00 0.00 0.02 0.33 
3 0.00 0.00 0.00 0.00 0.00 o.u 0.00 I 0.00 0.00 0.00 0.0. 
4 0.3, 0.00 0.00 0.00 o .• , 0.31 0.00 I ' 1.10 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I 0.00 0.00 0.00 0.00 
6 0.00 0.20 0.00 0.00 0.00 0.02 0.00 I 0.00 0.77 0.00 0.00 
7 0.00 0.25 0.00 0.00 0.00 0.02 0.00 I 0.00 0.00 0.00 0.00 
g 0.03. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9 0.00 o.o• 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 

l 0 0.00 '0. 00 0.00 0.00 0.00 0.00 0.00: 0.00 0.00 0.00 0.00 0.00 
II 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 
12 O.DI o.•s· o.oo 0.00 I .0.31 0.00 0.00 0.00 0.00 0.00 0.00 
13 0.00 0.00 0.00 0.00 I , 0.73 0.00 0.00 0.00 0.00 0.00 0.00 
l4 0.12 0.00 '0.00 0.00 f 0.00 3.76 1.16 0.00 -0. 00 0.00 0.00 
15 0.00 0.00 0.00 0.00 I 0.00 0.00 o.u 0.00 0.00 0.00 0.00 
16 0.00 0.00 0.00 0.00 f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 0.32 0.00 0.01 0.00 0.00 0.00 0.00 0.01 
18 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
19 0.00 0." 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.09 0.00 0.00 ·o.oo 0.02 0.00 0.00 0.00 0.00 
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 2S 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 to• 0,5, 0.32 o.n 0.00 0.00 0.00 0.00 
23 0.00 0.10 0.00 0.00 0.00 o.sa o.n 0.00 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0.00 0 :oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
25 o.u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
26 0.00 0.12 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
27 D.SO 0.00 l.U 0.00 0.00 o.n 0.00 0.00 0.00 0.02 0.00 0.00 
28 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.1, 0.00 1,0, 
29 0.00 0.00 0.00 . 0.00 0.00 I o .oo· 0.00 1.31 0.00 0.00 
30 0.00 o.n 0.00 0.00 0.00 I O.DI 0.00 0.00 · o·. oo 0.00 
31 0.00 0.00 0.00 0.00 0.00 0.00 

Total 1.53 1.30 1.78 0.11 3.&5 5.23 L91 2.16 ~.59 2.27 0.02 0. 44 

Total Annual: 28.91 

1 Data unaYailable dae to equip1ent failure. 
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INCHES OF PRECIPITATION 1990 

Day Jan. Feb. liar. Apr. lilay June July Aug. Sept. Oct. Nov. Dec. 

I 0.00 0.38 0.00 0.00 0." 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.02 0.00 0.00 0.00 1.7' 0.32 0.00 o.u 0.00 O.H 0.00 0.02 
3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 uo 0.00 0.00 0.30 0.00 
4 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0." 0.00 
5 0.00 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0 • .0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 o.u 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.26 0.00 
9 0.00 0.02 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 2.36 0.20 0.00 0.00 0.00 0.06 1.3. 0.00 0.00 0.00 
II 0.00 0.00 0.36 0.00 o.n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
12 0.00 0.00 0.0. 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 
13 0.00 0.00 O.i2 0.~0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
14 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 
I 5 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
16 0.06 0.11 0.00 t.n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 
17 0.06 0.06 0.00 0.00 0.00 0.00 0.00 o.o• 0. 23 0.00 0.00 0.56 
I & o.o• 0.00 0.00 0.06 a.n 0.00 0.00 o.o• 0.41 0.00 0.00 0.00 
19 0.97 0.00 0.00 0.00 0.00 0.00 0. 32 0.00 0. 3' 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0." 0.01 0.00 0.00 
21 0.00 0.56 0.00 0.00 0.00 0. 52 o.oa 0.00 D.IS 0.00 0.00 0.00 
l2 0.00 0.52 0.00 0.02 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 
23 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0. 3. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
26 0.00 0.00 0.01 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
27. 0.00 o.u 0.23 o.n 0.00 0.18 0.02 0.00 0.00 0.00 0.00 0.00 
28 0.00 1.16 0.10 0.00 0.00 0.00 0.00 0.00 0.01 o.oo 0.00 0.00 
29 0.00 0.12 0.00 0.21 0.00 0.31 0.00 1.17 0.00 0.00 0.00 
30 0.00 0.11 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 
31 0.00 0.00 0.00 0.00 0.00 0.02 

Total I. IS 3.1. uo •. 29 3.26 I. 02 I. 61 3. 31 ~.53 I .19 I. 20 0.75 

Total Annual: 30.85 
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INCHES OF PRECIPITATION 1991 

Day Jan. Feb. Uar. Apr. May June 

I 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.02 0.00 0.71 
3 0.00 0.00 0.00 Ul 0.00 
4 0.00 0.00 0.00 0.00 O.IS 
5 o.u 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 
9 0.02 0.00 0.00 0.00 

10 0.01 0.00 0.00 0.00 
II 0.00 0.00 0.00 0.00 
12 0.00 0.00 0.00 0.00 
13 0.00 0.00 0.00 0.00 
I~ 0.01 0.00 0.00 0.00 
15 0.05 0.00 0.00 0.00 
16 0.00 0.00 0. 00 . 0.00 
17 0.00 0.00 0.27 0.00 
18 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 
20 . 0;00 0.00 0.00 0.00 
21 0.00 0.00 0.00 o.oa 
22 0.00 0.00 0.00 0.00 
23 0.00 0.00 0.00 0.00 
H 0.00 0.02 0.00 0.55 
25 0.00 0.00 0.00 0.00 
26 0.00 0.00 0.00 0.1, 
27 0.00 0.00 0.0, 0.00 
28 0. 0.0 0.00 0.00 0.00 
29 0.00 0.19 0.00 
30 0.00 0.00 0.00 
3 I 0.00 0.00 

Total 0.30 0.02 0.54 2.22 0.86 

Total To Date: 3.94 
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WATER TABLE ELEVATION 
(Feet Above Sea Level) 

1989 

Month and Day 

WELL 4-12 4-23 5-3 5-1 1 5-17 5-31 6-1 

A1 878.37 879.04 878.78 878.51 878.75 878.81 878.92 
A2 878.85 879.06 878.78 878.51 878.80 878.80 878.92 
A3 878.88 879.07 878.78 878.52 878.83 878.81 878.96 
A4 878.89 ,879.09 878.79 878.53 878.83 878.82 878.94 
A5 878.88 879. 09' 878.80 878.54 878.87 878.82 878.97 
B2 878.50 879.17 878.98 878.69 878.95 878.95 878.09 
B3 878.52 879.19 873.89 878.64 878.76 878.95 878.93 
B4 878.53 879.20 878.90 878.63 878.97 873.98 879. ll 
B5 378.54 879.23 879.02 879.70 879.02 879.01 879.13 
B6 878.56 379.22 878.93 878.66 878.93 879.00 879.01 
B7 878.53 879.21 873.94 878.65 879.09 378.98 879.05 
B8 878.54 879.22 878.93 878.66 879.05 878.98 879.00 
B9 878.52 879.19 878.89 878.64 879.08 878.97 879.06 
B10 878.57 879.19 878.94 878.67 879.10 879.01 879.17 
C1 879.51 879.15 873.79 873.51 878.63 378.77 873.90 
C2 878.51 8 i9. 1 6 878.80 878.51 878.83 878.79 S7S.S2 
C3 878.47 879.14 878.79 878.49 878.76 878.76 878.83 
C4 878.46 879.15 878.79 878.49 878.83 878.77 878.93 
C5 878.47 879.13 878.78 878.50 878.84 878.78 878.90 
D1 879.77 879.44 878.95 878.64 878.78 879.06 879.02 
D2 878.79 879.46 878.96 878.67 878.79 879.07 879.15 
03 877.78 879.43 878.92 878.65 878.70 879.07 879.01 
04 877.75 879.39 878.97 878.65 878.88 879.02 379.11 
D5 877.77 879.41 878.96 878.68 878.33 879.05 879.04 
El 879.38 879.53 879.08 878.82 879.38 879.28 879.39 
E2 879.87 879.52, 879.99 878.82 879.28 879.25 879.37 
E") _) 878.90 879.50 879.39 878.83 879.61 879.2S 879.45 
E4 878.88 879.51 879.10 878.82 879.12 879.25 879.36 
E5 878.89 879.52 879.03 878.83 879.14 879.26 879.39 
F1 878.04 879.23 879.92 878.63 878.95 878.96 879.10 
F2 878.04 879.24 878.91 878.65 879.01 878.96 879.12 
G1 879.83 879.49 879.36 879.07 879.32 879.60 879.53 
G2 879.81 879.47 879.24 879.07 879.31 879.41 879.52 
H1 879.25 879.77 879.44 879.30 879.27 880.13 879.98 
H2 878.15 879.75 879.49 879.30 879.43 879.33 879.74 
I 1 879.34 879.13 
I 2 379.33 879.10 
I 3 879.30 879.05 
J1 879.03 879.65 879.23 878.99 879.22 879.49 879.46 
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WATER TABLE ELEvATION 
(Feet Above Sea Level) 

1989 - 1990 

Month and Day 

1989 1990 

WELL 6-12 6-14 6-20 10-6 1 1 -7 1 - 1 1 6- 1 1 

Al 879.23 379.59 878.99 877.39 877.42 877.42 879.06 
A2 879.23 879.57 878.99 876.97 877.55 877.52 879.04 
A3 879.21 879.59' 879.00 877.01 877.57 877.54 879.07 
A4 87 9-. 24 879.58 879.00 876.99 876.56 876.52 879.06 
A5 879.25 879.50 879.03 877.01 877.59 877.56 879.09 
B1 379.92 879.39 
B2 8 79 .. 36 879.76 879.13 ,8 77. 49 877-.66 877.65 879.22 
B3 879.36 379.72 879.15 877.15 877.66 877.66 879.21 
B4 879.38 879.75 879.15 877.16 877.67 877.66 879.26 
B5 879.42 8(9.79 879.20 877.20 877.67 877.68 879.27 
B6 879.37 879.78 879.'17 877.15 877.69- 877.65 879.25 
B7 879.38 879.79 879.18 877. 17 877.70 877.75 879.25 
B8 879.38 879.78 879.17 877.15 877.69 877.66 879.26 
B9 879.39 879.79 879.17 877.15 877.67 877.63 879.24 
B10 879.42 879.79' 879.20 877.29 877.80 877.75 879.36 
Cl 879.28 879.66 879.00 877.38 879.28 
C2 879.29 879.64 879.01 876.73 877.37 877.43 879.14 
C3 879.26 879.63 878.98 876.71 877.34 877.40 879.16 
C4 879.27 879.63 879.00 876.73 877-.38 877.42 879.13 
C5 879.26 879.61 879.00 876.74 877.37 877.41 879.16 
D1 879.47 879.77 879.27 876.68 879.13 
D2 879.47 879.77 879.27 876.69 877.25 877.42 879.53 
D3 879.47 879.81 879.26 876.75 877.28 877.46 879.54 
D4 879.51 879.86 879 .. 27 876.77 877.33 877.42 879.53 
D5 879.49 879.88 879.26 877.02 877.34 877.43 879.52 
El 879.72 880.09 879.51 877.08 877.51 877.53 879.53 
E2 879.71 880.08 879.48 877.09 877.54 877.59 879.74 
E3 879.71 380.08 879.50 877.06 8}7. 54 877.63 879.73 
E4. 879.68 880.09 879.51 877.08 87}. 54 8·77. 58 879.73 
E5 879.75 880. 1 2 879.53 877.06 877.5'7 877.58 879.72 
F1 879.38 879.77 879.18 877.06 877.57 877.58 879.74 
F2 879.40 879.78 879.18 877.69 877.58 877.58 879.28 
G1 879.94 880.09 879.70 877.70 878.11 877.92 879.31 
G2 879.96 -880. 15 879.92 877.68 878.08 877.93 879.68 
H1 880. 19 880.31 880.20 877.69 877.94 877.87 880.28 
H2 880.31 880.49 8 80. 15 879.30 877.91 877.86 880.27 
I 1 879.94 
I 2 879.86 
I 3 -879.83 
J1 879.91 880.25 879.75 879.99 
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WATER TABLE ELEVATION 
(Feet Above Sea Level) 

1991 

Month and Day 

WELL 2-7 3-1 4-29 

A1 877.17 877.64 878.05 
A2 877.56 877".·65 878.05 
A3 .~77.61 877.68 373.03 
A4 876.58 8·76. 67 878.01 
A5 877.63 877.73 878.04 
B2 877.69 877.81 878.14 
B3 877.69 877.80 878.15 
B4 877.72 &77.81 8 7 8 .. 1 7 
B5 877.72 877.82 878.17 
BG 877.72, 
B7 877.73 
B8 877.73 
B9 877. 7,2 
B 1 1 877.83 
C1 877.46 877.57 877.92 
C2 · 877.45 877.58 877.95 
C3 877.43 877.57 877.91 
C4 877.45 877.58 877.93 
C5 877.45 877.57 877.92 
01 877.90 
02 877.37 877.94 
03 877.37 877.92 
04 '877.39 877.97 
05 877.39 877.44 877.97 
E1 8 7 7, .. 56 877.75 878.15 
E2 .8 7 7 ~56 877.74 878.13 
£3 877.55 877.75 878.12 
E4 877.61 877.72 878.11 
E5 877.63 877.73 878.13 
Fl 878.06 
F2 877.62 877.74 87,8. 09 
G1 878.17 878.10 878.49 
G2 878.11 878.07 878.38 
H1 877.85 877.85 878.44 
H2 877.97 877.04 878.46 
Jl 877.73 877.85 879.25 
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lATER QUALITY DATA 
Date Of Sample Collection: 

l 2 April 19 8 9 

le II I 

A1 Al AJ A• As 

Ca .. 80.25 23. !6 
(mg/1) 

Ug~t 37.76 ~ 3. 56 
(mg/ I) 

Na• 1&.50 44 '56 
(mg/1) 

Cl- 30.373 18. 18 2 15. 2&3 12.596 14.758 
(mg/ 1) 

NOr 57.680 31.174 23.781 24' 115 25 '72 3 
(mg/ I) 

S04' 54o757 33o975 27.582 h 0031 24.01& 
(mg/1) 

pH 6097 6o86 6067 6090 6069 
( u n 1 t s) 

Temperature 15 0 2 14 0 9 15 o I l5o5 15 0 5 
(·c) 

Hardness 450 ~76 633 410 564 
(mg/1 HC01) 

Con duet 1 Jl ty 900 832 9&5 873 897 
(pmhos/cm) 

Cation/An1on -&042 -6 0 1 & 
Balance (\) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

23 April 19&9 

le II t 

At Az Al A• As 

Cl- 22.572 ' 20.783' i 7. 53 5 16.269 16. 5 54 
(mg/ 1) 

N03· 26.017 27.675 25. 615 25.771 26.554 
(mg/1) 

504= 3 7. &4 3 33.642 28 .181 26.824 26. 161 
(mg/ I) 

pH 6. 4 4 6.66 6.68 6.68 6. 71 
(units) 

Temperature 21.0 18.0 17.2 18. 2 18.2 
(. c l 

Hardness 587 59& 657 642 651 
(mg/1 HCOJ) 

Conductivity 95& 932 980 950 926 
(pmhos/cml 
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lATER QUALITY DATA 
Date Of Sample Collection: 

5 May 1989 

le 11 t 

At Az AJ Al 

CJ· 21.050 20.705 17.515 17.515 
(mg/l) 

NOJ · 22.380 25.703 25.338 23. 3 38 
(mg/l) 

504' 35.217 32.644 28.208 28.208 
(mg/ 1) 

pH 6.57 6.55 6.89 6.72 
( un 1 t s) 

Temperature 18. I 17.5 16.7 16. 8 
('C) 

Hardness 638 629 645 640 
(mg/1 HCOJ) 

Conduct !Vi ty 954 960 987 953 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

17 Uay 1989 

lell t and Time Of Collection (24 hour clock) 

·At At At Al Az Az 
1020 1240 2145 1050 1245 2155 

CJ- 96.263 72. 20 2 61 . 404 28.863 27.178 26.616 
(mg/ I) 

N03· 14. 871 17.115 15.899 26 .I 09 24.&27 24.635 
(mg/ I) 

S04= 57.678 48.278 43.816 32.887 32.895 32.708 
(mg/1) 

pH 6.56 6.40 6.66 6. 36 6.44 6.64 
(units) 

Temperature 17. 3 17.7 17.3 17. I 17. 3 17.1 
(·c) 

Hardness 452 496 52& 565 593 5&9 
(mg/1 HC03) 

Conductivity I 0 II 1 ooi 991 914 908 961 
(pmhos/cm) 

NOTE: Samples tere taken during a rainstorm. 



1 l 2 

lATER QUALITY DATA 
Date Of Sample Collection: 

17 Yay 1989 

lell land Time Of Collection (2~ hour clock) 

AJ ·AJ A1 A• AI A• 
II 0 5 1300 2205 1115 1315 2215 

Cl- 21 0 188 200537 190&69 30.114 17 0 773 17.935 
(mg/ 1) 

NOJ- 26o081 26.9&8 270310 24 o155 28.336 29o010 
(mg/ 1) 

504= 30.306 30. 404 30.657 330238 29.914 30o93Z 
(mg/1) 

pH 6. 49 6. 51 6.77 6o51 6 0 51 6o78 
(units) 

Temperature 17 0 0 17 0 2 17. 1 17 0 J 17 .! 17 0 3 
('C) 

Hardness 625 610 594 593 603 581 
(mg/1 HCOJ) 

Conductivity 950 940 975 994 896 904 
(pmhos/cm) 

NOTE: Samples were taken during a ratnstorm. 



1 1 3 

lATER QUALITY DATA 
Date Of Sample Collection: 

17 Uay 198 9 

lei! t and Time Of Collectton (24 hour clock) 

As As 
1325 2225 

C1- 17.869 17.991 
(mg/ I) 

NOJ- 29.088 28.763 
(mg/ I) 

S04' 29.!H 29.301 
(mg/ I) 

pH 6.52 6.71 
( un 1 t s) 

Temperature 17. I 17.0 
('C) 

Hardness 587 599 
(mg/1 HC03) 

Conducttvtty 884 884 
l11mhos/cm) ., 

NOTE: Samples •ere taken durtng a ratnstorm. 



114 

lATER QUALITY DATA 
Date Of Sample Collection: 

17 Way 1989 

le II t 

Bz Bi s. Bs s, 87 

Cl· 16.872 17.629 IUO& !"5.137 12.394 10.427 
(mg/ I) 

N03· 6. 411 16. 284 5. 9 53 6.&41 5.834 
(mg/1) 

504' 84.163 15 3. 416 26.016 32.&7& 25.6&9 29.463 
(mg/l) 

pH 6.64 6' 61 6' 77 6.70 6.60 6.90 
(units) 

Temperature 19. I 19.0 19.2 18.8 19.9 19.7 
('C) 

Hardness 667 732 639 515 i 882 
(mg/1 HCOJ) 

ConductIVity 1076 1 172 874 81 1 1226 1131 
(pmhos/cm) 

1 Concentration below detectable limit. 
t Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

17 May 1989 

le II t 

B1 89 Bto Ct C2 Cl 

Ca11 57. 15 
(mg/l) 

UgH 62.86 
(mg/!) 

Na 1 105.60 
(mg/l) 

Cl· 17.683 15.853 17.405 139.956 59.329 73.330 
(mg/l) 

NOr 4.389 27.282 4.739 7.486 5.729 12.809 
(mg/!) 

504= &2.993 23.534 32.605 !19. 53 7 63.092 7&.626 
(rng/1) 

pH 6.64 6.6& 6.&2 6.76 6.83 6.56 
( un 1 t s) 

Temperature ! 8. 5 18.4 l 8. 5 15. 7 15. & !5. 4 
( ·c l 

Hardness 793 552 526 7(( 
J) 637 &05 

(mg/ I HC01) 

Conduct i vt ty 1176 823 792 !583 1127 1405 
(pmhos/cm) 

Cat ton/Anion -3 .18 
Balance (S) 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

17 llay 1989 

Je II t 

c. Cs Dt Dz Dl D• 

P· !. 5 54 I . 2 4 7 I. 233 2.15 3 l '008 1 . 4 3 7 
(mg/ I) 

Cl· 45. 7& I 78.394 74.205 80.610 &0.691 22.766 
(mg/ I) 

NOr 14' 84 9 !7.676 U&l 5 .14 9 29.7&6 
(mg /1) 

504' 45.704 92.053 53.328 42. 92! 35.833 34.16 3 
(rng/1) 

pH 6.6& 6.59 7 .I& 6.&2 7.00 7.00 
(units) 

Temperature 15' 8 !U 17.! 16.2 15' 9 15.5 
('C) 

Hardness 653 766 729 749 770 654 
(mg/ I HCOJ) 

ConductiYtty 1118 1415 1062 10&8 1160 1042 
(pmhos/cm) 

1 Concentration below detectable limtt. 



11 7 

lATER QUALITY DATA 
Date Of Sample Collection: 

17 Yay I 989 

le II t-

Ds · Et Ez EJ El Es 

Ca11 62.53 41 . 3 3 22.46 
(mg/1) 

K• .3809 I. 744 
(mg/ I) 

Ugtt 19.47 16.7 4 51 . 57 
(mg/ I) 

Na• 2.944 4 .181 3 6. 29 
(mg/1) 

Cl- 2&. 228 3. 61 6 3.504 3.798 &.793 6.635 
(mg/1) 

N01· 24.957 8.530 7.008 10.416 22.546 19.490 
(mg/ I ) 

504' 34.730 14' 325 13.045 13.065 29.535 25.218 
(mg/1) 

pH 7.03 6.75 6.62 7.03 6.90 6.89 
(units) 

Temperature 15' 2 17.8 17' 3 16.9 16' 7 16. 3 
('C) 

Hardness 641 272 253 198 458 402 
(mg/1 HCOJ) 

Conduct lVl ty I 053 463 378 313 643 640 
(~mhos/em) 

Cation/Anion -0.01 0.58 -9.32 
Balance (\) 

1 Concentration below detectable lim1t. 
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lATER QUALITY DATA 
Date Of Sample Co!lect1on: 

17 llay 1989 

lei! t 

Ft Fz Gt Gz Ht It 

Ca11 45.15 
(mg/ I) 

llgtt 53.65 
(mg/ I) 

Na• 77. 3 7 
(mg/1) 

CJ- 16. 6 91 18.320 17. 122 23.015 21.084 22.056 
(mg/1) 

NOJ- 18. 12 3 14.252 55.812 2 7. 3 36 52.348 61.455 
(mg/ I) 

504' 43.682 1! I. 840 51.540 29' 7 34 83.281 86.614 
(mg/1) 

pH 6.63 6.61 6.&7 6' 91 6.87 6.68 
(units) 

Temperature 17 . 8 18. 2 18.6 17. 0 19.0 ! 9. 3 
('C) 

Hardness 545 551 616 664 639 595 
(mg/ 1 HC01 ) 

ConductiVIty 845 857 !028 1033 1048 1137 
(pmhos/cm) 

Cation/An1on -9.55 
Balance (') 



l l 9 

lATER QUALITY DATA 
Date Of Sample Collection: 

17 llay 1989 

le II t 

lz Jt Rain Puddle Downspout 

CJ- 15 0 3 90 17 0 560 
(mg/1) 

NOJ- 8 I o 606 330508 
(mg/ I i 

504' 49o863 36 0 I 92 60560 8o536 9 0 818 
(mg/ l) 

pH 6.75 6.88 6.57 6o56 6o88 
(units) 

Temperature I & • 5 17 o I 20o3 19.6 19 0 3 
( ·c l 

Hardness 477 648 35 48 
(mg/1 HC01) 

Conductiv1 ty 920 1050 14 76 I 0 
(Ju11hos I em) 

1 Concentration below detectable limi to 
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lATER QUA~ITY DATA 
Date Of Sample Collection: 

31 Way 1989 

lell t 

At Al · AH A~ As Tap 

Ca+~ 29.35 
(mg /1) 

K'. 4.798 
(!Dg/1) 

llgH 15.45 
(mg/1) 

Na• 150.8 
(mg/1) 

F· .095 '185 . 386 .307 .332 l '342 
(mg/l) 

c !· 50.682 3! '440 22. 68 3 16.689 17.294 224.049 
(mg/1) 

Sr- '9!3 .579 .429 .334 .295 .253 
(mg /1) 

N01· 3.915 ' 4.44& 4.747 5.293 5 '925 '351 
(mg/ I) 

504' 42.826 32.682 29' 74 2 28.823 28.777 !17. 267 
(mg/1) 

pH . 6.64 6.56 6.94 .6 .44 6.50 8.54 
· ( un 1 t s) 

Temperature 20.3 20.0 19.5 19.6 19.0 21.1 
(.c) 

Hardness 929 578 609 593 580 53 
(mg /1 HC01) 

Conductivity 1026 986 !058 987 982 1085 
(pmhos/cm) 

Cation/Anion -! '11 
Balance ('l 



1 2 1 

lATER QUALITY DATA 
Date Of Sample Collection: 

I June 1989 

lei! t 

.At A2 Al A• AlA 

p- .123 .162 .356 .342 .333 
(mg/ I) 

CJ- 41.565 15.845 22.646 17.431 15.90& 
(mg/1) 

Br- . & 16 .54 2 .462 .364 .353 
(mg/ 1) 

NOJ- 3.473 4.717 4.756 5.466 5. 4& I 
(mg/1) 

504= 39.&12 30.649 29.593 30.374 29.373 
(mg/1) 

pH & & 
( un 1 ts) 

Temperature 1&.7 1&.2 1 & .1 1 g. 5 1 & .I 
('C) 

Hardness 513 5 31 596 569 566 
(mg/1 HCOJ) 

Conductivity 956 924 I 010 973 973 
(pmhos/cm) 

& Unable to measure pH due to fteld equipment failure. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

12 June 1989 

lell t 

AI Az A1 A• Au 

F- .OH . 193 .356 .316 .309 
(q/1) 

Cl- 2s.m 20.670 19 .• 15 14.956 16.02& 
(11&/1 I 

Br- .897 .577 .443 .293 .2&6 
(lq/11 

N01· ~.635 •• 61f7 •. HZ 5. 311 5.700 
(1&/1) 

so•= 35.382 30.03. ~9.623 29.946 29.H1 
l•s/1) 

pH 6.32 6.25 6.32 6.33 6.33 
(ani ts) 

Temperature 20.4 20.5 20.2 21 •• 20.1 
("C) 

Hardness 615 5n 590 589 567 
(ta&/1 HC01) 

ConductiYity 995 ,.6 996 992 965 
(pabos/c•~ 
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lATER QUALITY DATA 
Date Of Sample CollectJon: 

14 June 1989 

lei! t 

Dt , Dz D1 o, Ds 

Ca" 13 .I 26.2 27.6 13. 3 18.9 
(mg/1) 

KgH 48.7 53 .I 51 • 7 39.6 41.6 
(mg/1) 

Na1 134.6 104.& 116. 3 119 .I 114.4 
(mg/1) 

F- .636 .60& . 6 31 . 571 . 577 -
(m~/1) 

CI- 64.820 42.307 4&.943 19.970 20.010 
(mg/1) 

Br- .631 .466 .462 .255 . 224 
(mg/1) 

NOJ- . 411 . 341 I. 629 7.038 6.074 
(mg I I) 

504' 42.37& 32.421 30.171 29.686 30.344 
(mg/1) 

pH 6. 92 6.73 6.68 6.82 6.76 
(units) 

Temperature I & . 5 17.6 17 .I 16.0 15.8 
('C) 

Hardness 776 567 555 613 485 
(mg/1 HCOl) 

Conduct! illy 1284 1169 116 5 1005 986 
(pmhos/cm) 

Cat1on/An1on -19.0 -4.25 -I . 88 -10.48 0.73 
Balance (') 
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lATER QUALITY DATA 
Date Of Sample Collection: 

20 June 1989 

le II I 

At Az Al A• As A 

F- .094 '172 ' .327 '316 '31 0 
(mg/ I) 

Cl- 22.532 19.064 17.895 15' 274 15. 2 39 
(mg/1) 

Br- .895 .583 .460 ' 316 '27 5 
(mg/1) 

NOJ- 4.602 4.821 4' 5 61 5.200 5' 549 
(mg/1) 

504' 34.116 29.993 29.977 30.635 30' 892 
(mg/ 1) 

pH 6' 21 6.23 6' 38 6' 22 6.26 
(units) 

Temperature 21.2 21.8 20.4 21.1 20.2 
('C) 

Hardness 453 586 609 589 587 
(mg/1 HC01) 

ConductiVIty I 023 1050 1039 I 013 1007 
(pmhos/cm) 
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lATER QUALITY OAT A 
Date Of Sample Collecllon. 

6 October 1989 

fell t 

A! A1 A• B11 Bll B• 

Ca" 118. I 00 118. 200 II 0. 300 73. 21 0 16. 310 135.700 
{as/ll 

Fe" 0 .'163 0. 096 o.m 1.116 o.m 15. 1-0 
{ag/l) 

K• 0.236 o.m 0.119 2.286 2.14 2 U56 
(ag/l) 

Ks" 29. 710 t&. 510 H.7&0 33:310 IUJO 33.550 
(mg/1) 

Kn" 0.013 0 088 0.006 om a. 566 3. 5 50 
(rag /I) 

Na" 18. 600 33.&60 36.730 45.950 15UOO 76.!70 
(~/1) 

Su 10.510 IU70 IU60 13 .II 0 U61 12.530 
(ag/1) 

F· 0.130 0.366 0.362 0.499 o.m 0. 370 
(ag/1) 

Cl- 12.638 19.797 18.443 1 7 317 39.224 U8l 
(ag/1) 

Br- 0. 556 I. 35 3 1.122 0.287 0.212 0.714 
(lg/1) 

NOJ- I 4 52 2. I 05 3.013 2.660 0. 022 0.352 
(ag/1) 

504' 22.647 25.738 25.988 15.879 26.008 7.905 
lac/ll 

pH 6.H U9 '6 .41 6.83 7.95 6.83 
(antis) 

Teaperature 17.9 19 2 IU 17. 9 17.7 22.0 
('C) 

Hardness II 08 m m 342 517 552 
(lg/1 HCOJ) 

Conductlflly 832 1184 IIH 945 1050 m 
{pahos/ca) 

Catton/Anion -JU5 -12.50 -1.51 13.62 -7.75 15.76 
Balance {S) 
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lATER QUALITY DATA 
Date Of Sample Co1!ect1on: 

6 October 1m 

. le II I 

B1 s, ~~ D1 o, 

(a" !08.300 '95.660 91.610 82.920 66.980 
!•ell l 

t'e11 5.501 0.093 0. 627 a.a79 0 a39 
!•&I t l 

K• 1.1H a. 316 0 Ja& 0 10 I 0 089 
(lie II) 

Ill" 35.820 37.&70 '3 .190 41 680 J3.,77a 
(m&/1) 

lin" U2! 0. 223 0. !79 0.024 
(•ell) 

Na" 79.67a 36. 9&a 86. 300 96.380 la5 &oa 
(m&/l) 

512 ' IU&a !6.650 9.8!6 !0.360 10.290 
(ag/1) 

F· U90 a. 354 0.607 0.622 0.69a 
(•&/ 1) 

C1· 11m· 15.261 32.935 2U!7 22.m 
(agll) 

Rr om a.J68 0.267 O.Hl 
(mgll) 

NOJ · A. 025 5.812 O.OH !.12! 6' 351 
!•ell) 

504' H.m 20.165 2U02 22.875 29.313 
(acl1)' 

pH 6.60 U4 1. a 1 6.90 7.03 
(anlls) 

Teaperature 20. 5 19.4 16. a 15.8 15. 3 
('C) 

Hardness m 384 676 m 
(as/! HC01) 

Conductu1 ty 1285 !068 1271 1H8 llH 
(pahos/c•l 

Cat1on/An1on -us lt.19 -I. 72 uo 
Balance (S) 

I Hot enoash sample to perfora f1eld test. 
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fA TER QUALITY DATA 
Date Of Sample Collection 

7 Nom1ber 1989 

fe II I 

Az Al ~ Bt o Btt 81 

Ca" 96.HO 109.900 108.000 7J. 980 27.920 117. iOO 
(1&/1) 

Fe" 0.158 0 075 o.m 1.115 U33 3.080 
(1&/1) 

K• 0.296 0.157 O.HJ 2 210 2.358 U23 
(1&/.1) 

Y&" 33.140 44.960 i5. 710 J3. 260 II. 320 23970 
(a&/ I) 

Yn" 0. 0 32 0. 02i om 1.5119 I 003 
(11&/ I) 

Na" 21.260 31.]90 35.900 H 350 166.200 13.830 
(a&/ I) 

s iz 10.600 12.990 IU20 13. 290 6.299 13.500 
(1&/1) 

F 0. 227 o.m 0. 615 0.622 0.961 O.H& 
(mg/1) 

Cl· 21. i59 21.229 18.632 17 722 3Ul6 IU91 
(a&/ I) 

Br- 1.083 1.&91 1.3&6 0.26& 0 .I & I Q. 58 5 
(llg 11) 

N03 · 2. 113 l.652 U37 2.639 0.027 Q. 699 
(•&II l 

so•, 2!.939 16.133 2s m 15.552 1o.m 21.609 
(ag/1) 

pH U5 6.H 6.73 6.&0 7.8i U5 
(antis) 

Teaperature 15.7 16.5 17 1 17.2 17.7 19.1 
('C) 

Hardness 639 639 611 H& 391 i90 
(ag/ I HCOJ) 

Conduct HI ty l!H 11 &5 Ill 8 931 1193 1125 
(,ahos/ca) 

Cat ton/Anton -13.h -U2 -1.59 13.13 6.35 2.12 
Balance [\) 

• Concentralton belo• detectable 11111. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

7 No rember 19&9 

le II t 

s, Ba Bt Oz 0] o, 

Ca" 129.600 106.600 95 .II 0 9UIO &l. 660 70.HO 
!•s/ll 

,Fe• • 5.7H U93 O.OH I 038 0.067 0. 026 
(•s/1 l 

K• 3.600 1.141 o.m 0.186 0.122 0.139 
(•s/1 l 

Ms" 33.410 3U60 37.270 49.120 . 43.&90 3 5. 230 
(•s/1 l 

Mn" 2. 86 9 U59 0.259 0.055 0.055 
(•«11) 

Na" 71.560 83.DU 3UIO 91.270 98.680 II 0. 700 
(•&/1) 

s 1! 11.m IU40 13.750 11.520 10.530 10.670 
(mg/l) 

F- 0.576 0.445 0.427 0.699 0.703 0. 78 3 
(mg/1) 

Cl- 18. 7 64 13.338 16.179 33.953 ZU39 20.788 
(llg/l) 

Br- 0. &99 0. 602 o.m 0.471 0.345 0.235 
(•s/ll 

H01· 0. 368 0.859 5.634 0.095 1.197 6. 326 
(q/1) 

so•, 13.328 57.610 19.352 28 .I 37 H.m 30.765 
(11/1) 

pH 7.12 u• 6.78 7.06 6.83 7. 05 
( 001 Is) 

Temperature 20. 4 2!.2 13.5 15.6 15. 6 15 .I 
('C) 

Hardness 622 m U3 671 612 5 37 
(q/1 HCOJ) 

Conductm ty 1330 1263 I 035 14 31 1287 mo 
[pahos/c•) 

Cat ton/Anion 6.06 -3.94 11.75 1.71 3.70 5. 66 
Balance (S) 

• Concentration below detectable 11111. 
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lATER QUALITY DATA 
Date Of Sample Collect1on 

II January 1990 

le 11 I 

A! A. 811 Bt t 8• 81 

(a" 116.600 105 600 7U60 25.580 I 30. 500 111.300 
(111/ I) 

Fe" 0.053 0.037 0. 913 0. 508 7.138 U26 
(mg/1) 

K• 0. 312 0.320 1.m 3.178 2.767 1.22& 
(lg/ I l 

Yg" H.l&O H.l70 Jl.HO IU20 32 960 36.HO 
(•g/ I) 

Yn" 0.024 o.m I. 292 2.t&J J. 811 
(•g/ I) 

Na" 31.530 3UIO 47.370 170 .I 00 6U40 70.290 
(111g/ I) 

Stz 12 000 13.270 IU50 6.027 II. 9 30 I~ .150 
(mg/ I) 

F- o.m 0..80 o.m 0.868 0..48 0. 926 
(•g/ I l 

Cl-
(mg/ I) IU83 15.929 18.269 38. 16 4 II. 521 12.ll5 

8r 1m 0.784 0.267 0. !H 0. 815 0.525 
(11g/ I) 

H01· U37 5.736 2.m 3. 399 2.857 
(lg/ I) 

SO~' 26.089 2 3. 900 15.618 75.590 15.82& n.m 
(•s/1) 

pH 6.69 6.75 6.90 7. 88 6.6~ 6. 80 
( unt Is) 

Te1pera t ure II. 9 13.3 15.0 IU II. I 13.7 
('C) 

Hardness 
(1g/l HCOJ) 

Conduct HI ty l!75 1090 913 ! !50 1330 1161 
(p1hos/c1) 

Cat ton/Anton 
Balance (\) 

'Hardness data unaTatlable due to fteld equtplent fatlure 
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lATER QUAWY DATA 
Date Of Sample CollectJon 

11 Januaq 1990 

Je 11 I 

s, Oz OJ o. 

Ca" 9U60 107.400 & 5. 100 7 2.120 
[11&/ 1) .. 
Fe" O.OH 0.312 0. 039 0.026 

l•s/11 

K• 0. 3511 0 082 0 053 0.077 
!•~/! I 

M«" 36.530 52.900 H.410 36.210 
1•«11 I 

Un" 0.275 0.055 
!•&/! I 

Na" 37.010 97.4 50 97 .&00 112.000 
(•g/1) 

s J l I 3. 610 11.320 9. 616 10.290 
(mg/ 1) 

F· 0.530 o.m 0.705 0. 646 
(lg/ 1) 

Cl 15. 931 11m 2U60 10.400 
(111g I 1 I 

Br· 0. 2&& o.m 0.29& 0.207 
(•g/1) 

N01· 5.32& z.m s.m 
(ag/1 I 

sw 18.207 27.567 20.46~ 31.970 
!as/! 1 

pH 6.70 U6 6.90 7.00 
[m ts I 

Te1pen lure 15.6 10.9 II. I 12.1 
('C) 

Hardness 
(q/1 HCOJ) 

Conductt 'IIY 976 153 3 13H 1225 
(plhos/c•l 

Cat ton/Anton 
Balance (SI 

• Hardness Data una,atlable dae to fteld eqa1p1ent failare. 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

7 February 1991 

le II t 

A2 AJ A4. As A!Q 

Ca 11 96. ~I,. 92.02 52.40 69.79 H.31 

(mg/1) 
K' .3764 . 2161 

(mg/ I) 

UgH 53.6& 50. & I 42.86 40.15 40.27 
( mg I I ) 

Na• 26. 55 35.97 49.85 
{mg/ I) 

F· .442 .617 . 61 & .599 .605 
{mg/ I) 

Cl· 17.931 11.937 14.61 & 15.335 15.234 
( llg /1 ). 

Br- .774 .490 .326 .264 . 299 
{mg/1) 

NOJ- 2.243 2.&62 2.9H 2.&49 
(mg/ I) 

504= 26.638 22.193 22.082 I & .179 I & . 17& 
{mg/1) 

pH 6.65 6.64 6.&3 6.64 6.67 
(units) 

Temperature I 0. 7 12.4 13. 2 13.2 13.2 
('C) 

Hardness 671 622 529 510 505 
(•g/1 HC03) 

Conducti fl ty 1120 950 &&0 900 900 
(pmhos/cm) 

Cation/Anion -7.42 -3.05 -6.53 -14.94 -16.42 
Balance (\) 

1 Concentration below detectable ltmi t. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

7 rebruary 1991 

Jell t 

Dz D1 D• Ds TAP Cs 

Ca11 28.41 37.28 54; 22 47.22 38.84 70.04 
(m~/1) 

K• • 533 5.683 .219 
(mg /1) 

Jig" 59.92 47.96 41.57 43.32- 17' 44 60.95 
(•~/!) 

Na1 105.9 107.& 11U 121 '6 15 3' 3 56.01 
(mg/1) 

F· '641 '672 '7 3 3 .737 1 '279 .758 
(mg/1) 

CJ- 32.225 31 '638 13' 599 15' 3& 27.666 
(mg/1) 

Br· .399 '341 .184 .207 .255 ' 3 7 4 
(mg/1) 

N03· 5' 626 4.535 5.53 
(mg/1) 

so•= 11.1111 19.766 32.257 32.664 107.659 33.4 26 
(•g/1) 

pH 6.66 6.9 6.72 6.70 7.42 6.55 
(units) 

Temperature 11.6 11.8 II. 9 11.5 7 .! 11.4 
( ·c l 

Hardness 841 670 665 659 87 586 
(mg /1 HC01 ) 

Conduct 1 l! ty 1280 1120 1120 1020 1040 1000 
(pmhos/ca) 

Cation/Anion -15.8 -7.86 -I. 85 -3.05 -47.05 -'59 
Balance (\) 

1 Concentration beloJ detectable limit. 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

28 February 1991 

lell I 

Dz D1 D• D! 

Ca11 50.15 60.07 45.22 ;o.o7 
(mg /I) 

K' .&500 .3108 .3014 .2996 
(mg/ I) 

Mg" 59.68 47. r6 40.77 42.84 
, -(mg/1) 

Na' 110.90 107.90 122.90 121 . 50 
(mg/ I) 

F· . &14. .7&-8 .836 .&51 
(mg/1) 

Cl· 31.453 30.042 12.5&7 13.903 
-(mg /1) 

Br· . 410 .403 . 194 .2!& 
(mg/1) 

N01· . 034 . 641 5.682 4.854 
(IBg/1) 

so-= 12.499 20.709 31.600 32.029 
(IBg/1) 

pH 7 .! 0 6. 74 6.83 6.90 
(unt ts) 

Temperature 15.5 12.5 12.5 12.1 
('C) 

Hardness 761 664 680 667 
(mg /1 HCOl) 

Conductivity 1240 1040 1040 10&0 
(pmhos/cm) 

Cation/Anton -5.26 -2.45 -5.16 -2.91 
Balance (l) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

II June 1990 

le II t 

At ·Az A1 Al A,o 

p- .399 . 31 & . 513 . 544 .60& 
(mg/1) 

C I- 16.599 17.228 JU20 13.675 14.069 
(mg/l) 

Br· I. 019 .666 .375 .220 '222 
(mg/1) 

N01· 4.595 6. 142 7.780 10.424 10.2&4 
(mg/ I) 

504= 25. 7 52 26.440 27.166 27.611 28. 292 
(mg /1) 

pH 6.34 6.51 6.75 6.&6 6.23 
(units) 

Temperature 19.5 19.0 17.7 19.4 19. & 
(·c) 

·Hardness 584 555 534 491 491 
(mg I I HCOJ) 

Conduct i" ty 904 978 915 895 897 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

11 June 1990 

le ll t 

B6 Ba s, Bto Btt 

F- . 31 8 . 4 31 .449 .496 .892 
(mg/1) 

Cl- 10. 129 12.398 18.902 20.339 3 3. 7 51 
(mg/ I) 

Br- .559 .519 . 3!4 .29& .179 
(mg/ 1) 

N01· .386 !. 929 6. &96 4.864 . !37 
(mg/l) 

504' !5.599 38.0!9 24.361 24.347 81.003 
(mg/1) 

pH 6. & 1 6. 81 6.90 6. 92 7.4& 
( un 1 ts) 

Temperature 24.2 20.3 !7.7 !8. 2 20.3 
('C) 

Hardness 5&6 920 725 572 5&1 
(•g/ I HC03 ) 

Conducti•ity I 015 l 051 977 93& 1041 
(~mhos/em) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

ll June !990 

le 11 t 

Dt Dz Dl D• 

F- .560 .593 .589 .759 
(mg/ I) 

CJ- 26.&24 25.792 25.87! 39.915 
(mg/ l) 

Br- .367 .355 .332 .347 
(mg/ l) 

. NOl- I. 623 .746 ' 1.551 8.4!6 
(mg/ I) 

504' 28.908 21.5!8 !8. 884 26.827 
(mg/1) 

pH 6. 7 4 6.88 7. 08 7.04 
( un 1 ts) 

Temperature 17.6 !9 ,] 19.2 14.7 
('C) 

Hardness ' 702 799 747 638 
(mg/1 HCOJ) 

ConductiYity 1100 1230 1128 1028 
,! pmhos I em) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I March 1991 
Bromide Tracer Test 

lell t and Ttme Of Collection (24 hour clock) 

Oz OJ Da Ds 02 OJ 
0909 0912 0914 0915 0952 0955 

Ca11 69.95 53.53 51.18 54.39 58. 3 5 8 5. 37 
(mg/1) 

K• .5068 .2555 .2602 .3707 .4062 .2256 
(mg/1) 

UgH 59.77 47.03 41.40 42.96 58.41 50.24 
(mg/1) 

Na' 115.0 105.5 124 .I 120.6 109.8 108.9 
(mg /1) 

F- .721 . 714 .765 .730 .716 . 729 
(mg/ I) 

C1· 30.5&1 30.803 12. 90 4 14.124 30.937 31.396 
(mg/1) 

8r- .401 .362 .144 .1 86 .347 .358 
(mg/1) 

N03· .220 .647 5.699 4.805 .023 .660 
(mg I I l 

S04= 16.H6 16.664 32.634 31.719 20.942 16.933 
(mg/1) 

pH 6.89 6.&5 7.0& 6.97 7.11 6.77 
(units) 

Temperature 16. & 14.4 15. l 14.9 14.7 11. & 
( ·c l 

Hardness &42 708 683 688 805 711 
(mg /1 HC01 ) 

Conducti•ity 1320 1190 1180 1180 1340 1130 
(pmhos/cm) 

Cation/Anion -5.57 -7.03 -3.70 -3.49 -30.45 .94 
Balance (\) 
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lATER QUALITY DATA 
Date Of Sample Coilect1on: 

I Karch 1991 
Brom1de :~acer Test 

lei! t and Ttme Of Collection (2' hour clock) 

o. D1 DZ DJ o, Ds 
0958 !000 1007 !009 l 013 I 015 

Ca•• 27.73 51.53 36 0 7 3 H.59 7U5 •o. B 
(mg/ I) 

K• .2883 5072 0 2396 .3707 0 31 '5 
(mg/ I) 

llg" 39.&7 •uo 53.93 49.36 41 0 96 42.24 
(mg/1) 

Na• 117 0 0 118.0 I 05.3 I 08.6 124 0 g 118. I 
(•!/ I) 

F- .708 .730 .652 0 725 .815 .867 
(llg/l) 

CJ· 13.223 IUH 28.616 29.958 12.993 15.829 
(•!/1) 

Br- .177 . I &6 .367 .328 0 17 5 0 181 
(111!/ I) 

N01· 50 365 4.S05 .HI .789 50 139 U83 
(mg/1) 

so•= 31.939 31 0 719 25.065 17.92& 32.030 33.091 
(1!/ 1) 

pH 7.04 6 0 98 7 0 7 3 6.98 7.08 7.02 
( un 1 ts) 

Teaperatare 1'.5 16 0 7 IU 16 0 3 12.3 13 0 7 
(.c) 

Hardness 682 685 t 722 676 693 
(•«/ 1 HC01) 

Conduct,lfl ty 1180 1160 11 •o 1220 1100 1160 
(pahos/ca) 

Cat 1on/An1on -II. 21 -•.66 -7.79 I. 27 -8.02 
Balance (\) 

• Concentration below detectable ltait. 
I Not enoa«h sa.ple to perfor1 f1eld test. 



139 

lATER QUALITY DATA 
Date Of Sample Collection: 

I Karch 1991 
Bromtde Tracer Test 

lei! t and Ttme Of Collection (24 hour clock) 

OJ o. .. D1 Dz DJ o. 
10 30 ·1035 1040 1050 1055 II 00 

· Ca•• 72.59 4&.23 65.69 27.91 &1.72 u.•3 
(11«/ll 

K• . 2621 .3875 .5586 .3108 
(rag I I ) 

'· 
II«" 48.94 41.03 ij),57 55.87 48.51 41.06 

(11~/1) 

Ha• 108.9 123. I 122.4 108.9 I 07.5 123. I 
( llg /I) 

F· . 710 'g 15 . g 15 .733 .72& . 812 
(ag/1) 

CJ. 29.&38 12.796 15. 561 30 .134 29.798 12.878 
(ag/1) 

8r' .346 . 17 3 .m .355 .350 .169 
(11g/ I) 

H01· . 910 U39 4.259 .m .m 5. 311 
(ag/1) 

504' 18.115 32.313 32.532 15.184 lUIS 32.312 
(ag/1) 

pH 6. 84 7.12 7.01 7.20 6. 92 7.06 
(units) 

Teaperature 11.1 13 .• 12.7 15.7 13.5 12. 6 
('C) 

Hardness 00 .532 665 t 696 676 
(ag/1 HC01) 

Conduct l" ty 1120 1100 II 00 10&0 1120 1100 
(pahos/ca) 

Cat ton/Anton -I. 22 6.65 .75 .45 -4.12 
Balance (') 

• Concentration below detectable fiatt. 
t Hot enough sa1ple to perfora field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I llarch 1991 
Bromide Tracer Test 

lei! t and Time Of Collectton (H hour clock) 

Ds Dz DJ o. Ds Dz 
1105 1115 1120 1125 1130 1140 

CaH H. 33 52.63 59.91 # 5. 24 42.07 64.15 
(mg/1) 

K• . 3220 . 3 913 .2707 .2003 .25&4 .5606 
(mg/ I) 

ligH 42.62 55.92 48.53 40.76 42.44 54.21 
(mg/1) 

Na11 121.4 109.8 II 0. & 121.1 119 .I 111.1 
(mg/1) 

F- . 796 .755 .736 .800 .727 .7&7 
(mg/1) 

Cl- 15.9&7 29.531 28.463 12.770 15.168 27.740 
(a~/ I) 

Br- .217 .381 .335 .176 • 211 .289 
(mg/1) 

NOJ- 4.593 .424 .950 5.364 4. 677 .900 
(m&/1) 

S04' 3 3. 198 26.078 18.244 31.982 32.9&3 27 .I 0 3 
(mg/1) 

pH 7.02 7.43 7.00 7.0& 7.00 7. 34 
(units) 

Temperature 16.2 16 .I IU 15.9 16. 3 21.1 
('C) 

Hardness 711 f 709 638 662 t 
(mg/1 HCOJ) 

Conductni ty 1160 IHO 1140 1140 1140 1320 
(pmhos/cm) 

Cation/Anion -7.06 -4.04 -2.6& -5.22 
Balance (') 

t Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

1 Karch 1991 
Bromtde Tracer Test 

lei! t and T1me Of Collectton (l' hour clock) 

DJ o. Ds Dz DJ o. 
rr• 5 !!50 I ,15 5 !205 1210 1215 

Ca11 54.32 54.24 42.65 67.70 5&.00 50.82 
(mg/ 1) 

K• .2509 .2509 .3295 . 466; .2621 
(mg I I ) 

Yg+~ ' 49.77 4!. 61 .2.67 56.94 4 8. 3 3 •o.7o 
(mg/l) 

Na 11 Ill. 3 111.6 110.8 113. 8 107.4 111.6 
(mg/ I) 

F- .732 .830 .800 . 77 I 765 .779 
(ag/ 1) 

CI- 28.702 12.5!9 15.H5 3 7. 3 50 29.478 13.432 
(a~/!) 

Br- .308 .!H . 212 .425 . 345 .207 
(ag/1) 

NOJ- .863 5.419 UH .OH .982 s.m 
(•~/ 1) 

so•= 18.559 32.404 3 2' 925 31.565 19.377 31 '67 5 
(ag /1 ) 

pH 6.93 7.08 7.0. 7 .I! u• 7.08 
(anits) 

Temperature 16.6 15' 7 15.0 17.6 16.2 15.7 
( ·c l 

Hardness 6&5 662 682 t 668 662 
(ag/l HCOJ) 

Conducti fl ty 1180 I 1.20 1100 1320 1160 1120 
(pahos/cii) 

Cation/Anton -3.20 -!. 94 -6.02 -2.70 -3.07 
Balance (S) 

1 Concentration belor detectable lilt!. 
t Not enough sa.ple to perfora field test. 
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lATER QUA~ITY DATA 
Date Of Sample Collectton: 

I llarch 1991 
Bromtde Tracer Test 

lei I t and Tuae Of Collectton (H hour clock) 

Ds Dz Dl o, Ds Dz 
1220 12)0 1-235 tHO 1245 1255 

Ca" , 48.81 82.77 65.88 40.32 53.21 80.8 I 
(m~/1) 

K• .2546 .4584 ."2546 .2509 .4665 
(mg/l) 

Yg• • 41.96 57.31 •9.H •o.H 42.03 53.67 
(mg/ U 

Na" 117. 6 132 .I , I 09. 2 122.3 117.9 129.8 
(ag/l) 

F- .832 .949 .730 .770 .833 .822 
(mg/1) 

Cl- I5.m 8&.645 28.961 13. 565 15. 86 2 112.039 
( mg /I ) 

Br- .215 .678 .293 .202 .m .772 
(mg /I) 

N01· 4.662 > . 158 . 921 s.m •. h2 .269 
(1&/1) 

S04' 32.970 59.827 18.628 31.925 33.257 67.519 
(•&/1) 

pH 6. 96 7. 04 6.88 7.06 7.02 7.07 
(un1 ts) 

Te1perature 16.6 IU 1U 19.6 U.6 16.4 
( ·c l 

Hardness 657 m 688 700 m t 
(as/ I HC01) 

Conductiuty 1160 1420 ll40 1130 1090 tHO 
(p1hos/e1) 

Cat ton/Anton -3.85 -2.0 I -I. 6 3 -8.00 -5.66 
Balance (l) 

1 Concentration belo• detectable lt11t. 
t Not enough saaple to perfor• fteld test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I March 1991 
Bromide Tracer Test 

lei! I and Time Of Collection (24 hour clock) 

D1 o, Ds Dz 0] o, 
1300 1305 .. 1310 1320 1325 1330 

Ca" 62.85 4.7. 34 37.30 95.22 65.61 50.54 
. (mg/l) 

K+ .2996 .3707 .6826 .2584 
(mg/1) 

UgH 49.02 41.1 i 41 . 79 53.30 49.47 41.04 
(mg/1), 

Na" 109. 3 122.6 11 & • 0 136.7 II 0. 2 122.9 
(mg/1) 

~ 

F- . 743 .803 .736 .878 .789 .749 
(mg/1) 

CJ- 26.061 13.503 13.618 125.749 2 9. 6 25 12.922 
(mg/1) 

Br- .332 '169 .18 3 .779 .316 .167 
(mg/ 1) 

NOJ- .871 5. 692 5.405 .295 . 741 5.720 
(mg/1) 

S04= 18.515 32.269 3l.H9 69.659 18.530 32.03& 
(mg/1) 

pH 6.97 7. 03 7.07 7. 08 6.97 7.13 
(units) 

Temperature 15.6 It& 14.6 17.2 17.0 17.4 
(.c) 

Hardness 726 644 615 741 761 679 
(mg/ 1 HC01) 

ConductiYity 1140 1080 1090 1440 11&0 1160 
(~mhos/em) 

-

Cation/Anion -4.40 -2.28 -3.91 -6.29 -6.03 -3.&9 
Balance (') 

• Concentration below detectable limit. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

1 March 1991 
8rom1de Tracer Test 

lei! I and T1me Of Collection (2~ hour clock) 

Ds Dt Dz DJ o. Ds 
1335 mo IH5 1350 !355 !.aD 

Ca 11 90.76 57.08 7 5 .!5 53.30 26.61 51.71 
(mg/ I) 

K• .2771 .2012 .H65 .2509 . 31&3 
(•~/I) 

Ug" 40.55 4U6 52.58 50.00 40.01 il2.62 
(mg/1 r 
Na• II & • 7 i 36. 2 132.7 111.1 120. 6 120 .I 

(mg/ I) 

F- .762 .798 .Hl .730 .627 . 7 61 
(llg/1) 

Cl· 15.095 19.181 119:871 32.025 13. 321 13.597 
(mg/1) 

Br· . 225 .186 .H5 .386 . 19 7 . 15 7 
(mg/ I) 

N01· U67 1.953 .m . 835 5. 819 5.H7 
(mg/1) 

504' 32.839 37.652 67.665 20.490 32.071 31.758 
(mg/1) 

pH 7.07 7.68 7.19 6.95 7.18 7 .II 
(anits) 

Temperature 17.~ 16 .I 18. 3 17.5 17.5 1U 
('C) 

Hardness 682 728 726 665 722 
(q/1 HCOJ) 

Conductulty 1160 10.0 1460 1220 1160 1160 
(pahos/ca) 

Cation/Anion 2.94 -9. 36 -6.54 -9.49 -6.H 
Balance (') 

1 Concentration belo1 detectable liait. 
I Not enou&h saaple to perfora field test. 



145 

lATER QUALITY DATA 
Date Of Sample ColJectJon: 

I Yarch 1991 
Brom1de Tracer Test 

lell t and T1me Of Collection (24 hour clock) 

Dt Dz DJ D~ Ds Dt 
1405 i'IO IW IHO 1425 I~ 30 

Ca .. 27.82 86.86 59.87 54-. 33 29. 15 33.28 
(lllg/11 

K• . 466 5 .969& .2172 
(~~gIll 

Ug" 42.28 53.08 35 .I 0 4 2. I & 41.65 42.6& 
(mg/ I) 

Na" 126.0 134.7 77.67 122.6 11 8. 0 121.6 
(mg /I) 

F· .742 .897 . 443 • 8 13 .775 .720 
(mg/11 

Cl· 17.175 !!7. 703 26.618 14 .!!5 16.728 IU21 
(11g/ I) 

Br· .201 . 7 56 . 269 2.040 . 216 .166 
(llg/1) 

N01· 2.987 . 302 .597 5.557 4.782 U&O 
(1Dg/l) 

504' 34.524 66' !65 !6' 166 31.935 JJ.m 32.971 
(~~~g/1) 

pH t 7.20 7 .I 0 7.08 7.15 t 
(mntts) 

Tetpera lure 17.2 11'.7 1&. 6 15.9 IU 1 &. 7 
('C) 

Hardness 708 767 664 723 t 
(•g/ 1 HCOJ) 

Condactm ty t 1m 1220 1060 1100 990 
(pthos/ca) 

Cat1on/An1on -5.60 -19.22 -1.73 -13.02 
Balance !') 

• Concentratton belo1 detectable li11t. 
t Not enough saapie to perfora field test. 
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lATER QUALITY DATA 
Date Of Sample Collect1on: 

I March 1991 
Bromide Tracer Test 

lell I and Time Of Collection (24 hour clock) 

02 D1 o, Ds Dt Dz 
14 35 1440 1445 1450 1500 151 0 

Ca11 30.73 50.58 51.67 H.67 20.39 88. 9& 
(mg/1) 

K' .2180 .3203 . 2509 . 3744 .2609 .4658 
(mg/l) 

llg' I 15.89 49.16 41.00 42.72 40.24 53.89 
(mg/1) 

Na" 38.17 111.7 121.4 121.1 116.1 139.9 
(mg/l) 

F· .169 .697 .777 1.790 .768 .881 
(mg/l) 

CJ· 26. 379 37.934 14.377 14.629 17.144 116.027 
(mg /l) 

Br- .173 .388 .223 .184 .179 .798 
(•~/!) 

N01· .1114 .889 5. 233 5. 486 3.802 .3&4 
(mg/ 1) 

504= 14. &27 22.951 32.201 31.649 31. 2&6 66.578 
(m~/1) 

pH 7.24 7.16 7.13 7.08 I 7.17 
(units) 

Temperature 17. & 19.7 I&. 6 17.9 20.1 15.6 
('C) 

Hardness 694 719 6.7 691 t 679 
(mg/ I HC01) 

Conduct Hi ty IHO 1200 1110 1080 980 1360 
(pmhos/cm) 

Cat Jon/Anion -46. 77 -7.35 -1.&7 -4. 9& -2.66 
Balance (\) 

I Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Samoie Collectton: 

I llarch 1991 
Bromtde Tracer Test 

fell t and T1me Of CollectJon (24 hour clock) 

DJ D• Ds Dt D2 DJ 
15 20 1530 IHO 15 50 1600 1610 

Ca" 7 6. I & 32.40 98.33 23.66 77.24 49.34 
(mg/1) 

K• .377 5 .. 2509 .2007 .~053 .2996 
(•g/1) 

llg" 49.65 40.38 42.25 41. 0& 52.72 .9.66 
(1&/1) 

Na" 113.4 120.& l J 9. 2 116.0 128. 6 112. l 
(mg/1) 

F .708 .719 .849 .575 .866 .793 
(mg/ I ) 

Cl· 34.77 5 I 3. 860 16.422 15.292 99.283 32.747 
(mg/1) 

Br· .379 . 199 . 218 . 166 .676 . 46 3 
(m~/1) 

N03· .915 5. 341 4.776 U37 .298 1. 165 
(•«/ I) 

504' 21.699 32.66& 33.461 32.H9 59.127 22.562 
(ag/ I) 

pH 7.03 7.14 7.H t 7. 21 7.03 
(ani ts) 

Temperature 17. 5 17. 2 17.1 19.6 18.0 16.4 
('C) 

Hardness 760 667 635 I 635 m 
[q/1 HCOJ) 

Conduct Hi ty 1140 1080 1080 1020 1360 1130 
· (11mhos/c1) 

Cation/Anion -3.97 -8. 15 -2.16 -2.28 -7.71 
Balance (') 

1 Concentratton below detectable !till. 
I Not enoush saaple to perfora field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I March 1991 
Bromide Tracer Test 

lei! I and Time Of Collection (2~ hour clock) 

Q~, Ds Dz Dl o, Ds 
1620 1630 1650 1700 1710 1720 

Ca~+ 46.65 28.90 5&.88 47:76 47.66 48.78 
(mg/1) 

K+ .2546 .2677 .5072 .1958 .2808 .2771 
(mg/1) 

Jlgt+ 41.16 41.86 54.3& 49.94 41.05 42.40 
(mg/ I) 

Na++ 122.7 119 .I 12U 112.2 122.6 119.8 
(mg/1) 

F· .786 .787 . 824 .700 .801 .863 
(mg/l) 

Cl· 14.247 14.444 7 5.110 13.634 15.128 
(mg/l) 

Br· . 199 .188 .546 .48& .197 .17 4 
(mg/ I) 

N03· 5.309 5.665 .178 .&76 5.339 4. 816 
(mg/ I) 

504' 32.520 33.177 48.089 21.724 32.649 33.511 
(ag/1) 

pH 7.22 7.19 7.16 6.99 7. 08 7.07 
( un 1 ts) 

Temperature 17.9 16.0 15.6 17.7 16.6 16. 3 
('C) 

Hardness 676 670 734 740 709 694 
(mg/1 HC03) 

Conductivity 1080 1060 1280 1140 1090 1060 
(pllhos/ca) 

Cation/Anion -4.74 -9.06 -8.44 -5.01 -6.68 -5.75 
Balance (') 



149 

lATER QUALITY DATA 
Date Of Sample Collectton: 

I Karch 1991 
Bromtde Tracer Test 

lell I and Ttme Of Collection (H hour clock) 

Dt Dz DJ o. Ds Dz 
1730 1740 17 50 1800 1810 1830 

Ca11 16.28 73.87 70.16 48.02 53.46 65.17 
(as/!) 

K• .4550 .3775 .28&3 . 314 5 .3HZ 
(lllg/ !) 

Kg++ '1.86 55.63 49.64 40.94 43.29 55.5! 
(Ill~/!) 

' 

Na 11 116.2 118.1 113.5 122.6 12 2. 5 Ill. 8 
(11g/ I) 

F- .637 .789 . 6 9 3 . 816 .733 .770 
(•c/ 1 l 

Cl- 13. &&9 56.868 34.723 15. 24& 13.479 47.921 
(11~/ I) 

Br- .181 .455 .372 . 282 . 18 3 . 4 25 
(II~ /I) 

NOJ- 5.130 .081 .920 6.113 5.486 .067 
(mg/1) 

504= 31.396 40.194 Zl. 322 32.848 31.872 36.551 
(mg/ I) 

pH t 7.04 6.97 7.03 7.04 7.02 
(ani ts) 

Teaperatue 17.9 16.& 17.1 10.8 IL3 15.3 
('C) , 

Hardness t 772 709 680 680 772 
(ag/1 HC01) 

Conduct 1 ll ty t 1360 1170 1080 1070 1250 
(~llhos/clll) 

Cat ton/Anton -5.90 -2.00 ·4.94 -2.62 -7.56 
Balance (l) 

1 Concentration belo• detectable li1it. 
I Not enough saaple to perfora field test. 
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IATtR QUALITY DATA 
Date Of Sample Collection: 

I Yarch 1991 
Brom1de Tracer Test 

Jell t and Time Of Collection (2~ hour clock) 

DJ o, Ds D1 Dl n. 
!&40 1&50 I900 !930 !945 2000 

CaH 52. I I 52.65 44.99 50.65 3&.65 40.5! 
{mg/1) 

, K• .2602 .3707 .4385 '3707 .2434 
.(mg/1) 

\lgH 49.49 4!. 72 4 3. I I 54' 42 50.22 40.63 
(mg/ I) 

Na11 l I 0. 3 122.3 !21. 9 I I 0.3 112.6 121 '8 
(mg/ 1) 

F- '776 • 7 7 I .768 . 8 I 3 . 6 6 I .769 
(mg/1) 

C I- 33.337 !4.574 14.57& 44.642 3 3. 3 21 IJ.m 
(mg/l) 

Br· .373 '197 . 218 .448 .391 .!99 
(mg/l) 

NOJ- '892 UOI 4.892 .095 .782 5.862 
(mg/1) 

S04' 21.365 32.802 3'3.465 35.761 21.724 32.3H 
(mg/ I) 

pH 6.82 7. 04 7.05 6.97 7. 03 7.02 
(units) 

Temperature. I •. 8 1 J. 9 13.2 I 3. 0 · 13.3 12.7 
(. c l 

Hardness 683 680 632 743 705 661 
(mg/ I HC01 ) 

ConductiYity 1160 1080 1070 1260 1130 1080 
(pmhos/cm) 

Cation/Anion -4.62 -3.61 -!.61 -9.11 -8.28 -5.39 
Balance (') 

1 Concentration belo• detectable limit. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I llarch 1991 
Brom1de 'Tracer Test 

lell I and Time Of Collec!Jon (H hour clock) 

05 Dz 0) D• 05 
2015 2045 ' 2100 2115 2130 

Ca" ~3.03 65.70 2U2 47.21 51.89 
(mg/ I) 

K• .2&83 .4995 .2546 . 26 59 
(ag/ I) 

llg" 42.07 53.85 48.95 41.54 • 2. 44 
(ag/1) 

Na" 118.9 109.0 11!. I 12 2. 3 119.2 
(ag/ I) 

F· . 8 51 .772 o6H oH8 o839 
(a«/ I) 

C!· 16.4 27 42o6H 32.925 13.533 15 0 977 
(lllg/1) 

Br· 0 214 '4 3 2 .383 ol9 3 0 212 
{ag/ I) 

N03· 5·o 012 .063 .79& 5.359 4.898 
(•«/!) 

504' 34.335 3U99 21.662 32o538 3!.180 
(ag/1 J 

pH 6.98 6.93 6o87 6.99 7002 
( Dnl ts) 

Tetperature 12.2 ' 11.5 1!.6 10.9 !006 
(.c) 

Hardness 670 783 719 674 711 
(13 II HC01) 

Conduct i fl ty 1080 1260 ' !170 !090 Ill 0 
(pahos/ca) 

Cation/AnJon -5.98 -8045 -l3o20 -·. 37 -6.16 
Balance (\) 

• Concentration below detectable !tmit. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

2 llarch 1991 

fell t 

Dz D1 D• Ds Tap 

Ca 11 53.950 56.700 77.980 58. 360 37.510 
(ag/ I) 

K• 0.3&0 . 5.810 
(mg/ l) 

llg" 58.020 50.830 42.020 4 3.160 16.220. 
(mg/1) 

Na• II 0. 600 ! 12.500 123.600 119.300 151.600 
(mg/ I) 

f; 0.755 0.701 0. 762 0. 726 I. 319 
(mg/1) 

Cl· 40. 617 31.723 13.312 13.245 m.oo5 
(mg/1) 

Br· · 0. 441 0.335 0.180 0 .17 3 0.356 
(mg/1) 

N01· I. 400 5.965 5. & 13 0.217 
(mg/1) 

504= 34.726 20.259 32.856 32.160 106.992 
(mg/ I) 

pH 7.01 7. 08 6.92 6.98 II. 27 
(units) 

Temperature 3.9 5.5 8.8 7.8 15.& 
(.c) 

Hardness Ul 73. 676 659 82 
(mg/ I HC01) 

Conductivity 1230 · I 040 1060 890 1100 
(pmhos/cm) 

Cation/Anion -12.05 -5.71 2. 26 -0.80 0.30 
Balance (\) 

1 Concentration below detectable limit. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

~ Karch 1991 

Jell I 

Dz 0) D• Ds 

Ca11 59. I 00 91.030 78.490 63.360 
(mg/1) 

K• 0.693 
(mg I l) 

llgtt 59.840 50.730 42.020 43.320 
(mg/1) 

Na• 112 .I 00 113.800 125.200 12!.700 
(mgll) 

F- 0.762 0.686 0.765 0. 7 35 
( 11g I I l 

C!· 38.814 30. 6! I 12. 365 13.205 
(mgl l) 

Br- 0. 433 0.365 0. 182 0.210 
(mg/1) 

NOJ- 0.046 0. 925 6.180 4.87& 
(mgll) 

504= 31. 060 19.52! 32.221 32.049 
(mg/l) 

pH 6.98 6.89 6.95 6.93 
(un1ts) 

Temperature 12. 8 12.1 12.2 12.1 
(. c l 

Hardness I 723 706 683 
( mg /1 HC01 ) 

ConductlJity !400 !21 0 1160 1140 
(pmhos/c•) 

Cation/Anion 2.04 0.90 -0.89 
Balance (\) 

1 Concentration below detectable l1m1t. 
t Not enough sample to perform field test. 
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lATER QUAL1TY DATA 
Date Of Sample Collection: 

6 llarch 199,[ 

lei! I 

1)2 D1 o. Ds 

Ca11 83.690 87.360 68.260 79. 300 
(m« I I) 

K• 0..314 . 272 
(mg/ 1) 

llgH 58.400 5 I. 000 42.530 43.850 
(111«/1) 

Na• 112.000 115. 600 125.500 121.900 
(mg/1) 

F· 0.796 0.710 0.763 0.781 
(rag/!) 

CJ- 38. 465 29.320 12.229 13. 365 
( mg I I ) 

Sr- 0. 4 3 3 0. 344 0.169 0.189 
(mg/1) 

NOJ- 0.072 0.919 5.654 4.953 
(mg/ 1) 

so•= 3 2 ;40 2 20.112 32.151 32.760 
(mg/1) 

pH ' 7. 0 I 6.99 7.03 7.07 
(onits) 

Temperature 10 .I 9.9 I 0. 9 10.6 
(.c) 

Hardness I 73& 6&2 679 
(11g/l HC03 ) 

Conduct m ty 1260 1140 II 30 1060 
(pllhos/cll) 

Cation I Ani on 0. 92 0.70 2. 71 
Balance ('l 

1 Concentration belo• detectable l,imit. 
t Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

I 0 llarch 1991 

le II J 

Dz Dl D• Ds 

Ca++ 94.250 &&.530 77.710 77.500 
(m~/1) 

K+ 0.359 I 0.222 
(mg/1) 

llg" 59. 140 50.250 41.700 44.510 
(mg/1) 

Na• 113.800 112.500 124.200 115.700 
(mg/1) 

F· 0.755 0.6&1 0.739 0.75& 
(mg/l) 

Cl· 39.090 29.730 12.491 13. 16 2 
(mg/1) 

Br· 0. 419 0. 337 0.166 0. 17 5 
(mg/1) 

N01·, 0.025 0.&33 5.815 4.69& 
(mg I I) 

SOli' 29.376 19.791 31.768 31 . 462 
(mg/ I) 

pH 7. 0 I 6. 9& 7.02 7. 0 I 
(units) 

Temperature 13. 4' ' 12.7 12.2 12. 3 
( ·c l 

Hardness 685 722 682 670 
(mg/1 HCOl) 

Cond u,c t !Vi t y 1340 1140 II 00 10&0 
(pmhos/cm) 

Cation/Anion 5.78 I. 36 2.08 3.98 
Balance (') 

1 Concentration below detectable limit. 
t Not enough sample to perform field test. 



156 

lATER QUALITY DATA 
Date Of Sample Collection: 

13 Karch 1991 

lell I 

Dz DJ D• Ds 

Ca 11 96.4 70 86.050 79.840 78.570 
(mg/1) 

K• 0.462 
(mg/1) 

Ug" 60. !60 49.890 42.180 4 3' 320 
(mg/ I) 

Na• 117.600 II 0. 000 125.300 120.000 
(mg/1) 

F· 0. 778 0.696 0.7&1 a. 7&9 
(mg/ I) 

Cl· 37.600 29.108 12.699 13.768 
(mg/ l) 

Br- 0.40& 0' 313 0,) 41 0.175 
(mg/1) 

NOJ · 0.029 0.185 5.631 9.869 
(mg/ I) 

504' 26.777 19.603 32.8H 31.7 20 
(mg/1) 

pH 7.01 6.99 7. 03 . 7.03 
(units) 

Temperature 6.7 &.9 9.9 9.6 
(.c) 

Hardness I 699 661 697 
(11g/ I HC01 ) 

ConductJVlty 1290 1050 1140 1140 
(~mhos/ell!) 

Cation/Anion 1.90 4.18 .92 
Balance (\) 

1 Concentration below detectable ltmit. 
t Not enough sample to perform field test. 
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lATER QUAliTY DATA 
Date Of Sample Collection: 

17 llarch 1991 

Jell I 

Dz Dl o, Ds 

Ca11 99.010 88.900 77.540 62.950 
( mg I U 

Kl 0.555 
(!n!/1) 

llgtt 60.760 50.750 4 2.240 43.590 
(mg/1) 

Na 1 115. •oo 112. 600 124.400 121 . 200 
(ag/1) 

F· 0.762 0. 722 0.780 0.777 
(mg/1) 

Cl· 35.002 27.735 11.937 12.741 
(lllg/1) 

Br· 0.371 0.327 0.159 0.173 
( mg I l) 

N01· 0.015 0.&25 5.708 4. 5 97 
(mg/1) 

S04' 21 . 408 19.636 32.132 31.785 
(mg/ I) 

pH 7 .17 7.19 7.15 7.14 
(units) 

Temperature 8.8 & . 2 10.2 9.9 
('C) 

Hardness &57 741 673 697 
(mgl I HC03) 

Conductivity 1260 920 1120 980 
(pmhoslcml 

CatJaniAnion -I. 66 .64 2.90 -1.82 
Balance ('I 

'Concentration below detectable ltmit. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

211 Karch 1991 

le II t 

D2 DJ o. Ds 

Ca 11 99.HO 87.370 80.~50 77.610 
(mg/1) 

K+ 0. 4 51 
(mg I l) 

YgH 58.970 4&. &40 42.140 43.430 
(mg/ I) 

Na+ Ill. 700 Ill. 200 125.600 121.&00 
(mg/1) 

F- 0.&46 0.697 0.7 52 0.778 
(mg/ l) 

C!- 36.656 26.994 11.885 12.847 
(mg/ I) 

Br- 0.367 0. 312 0.156 0.167 
(mg/1) 

NOl- 0.081 0.899 5.986 4.459 
(mg /1) 

so•, 18.926 19.819 32.Hl 31.521 
(mg/1) 

pH 7.14 7.18 7.28 7.23 
(units) 

Te1perature 17.8 17.1 17.1 17.3 
('C) 

Hardness 856 714 696 697 
(mg I I HC01) 

Conductivity 1260 990 1040 1020 
(p11hos/cm) 

Cation/Anion -2.56 I. 30 2.08 1.20 
Balance (\) 

1 Concentration belo• detectable limit. 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

13 Ap n I 1991 

lell t 

Dt Dz D1 D• Ds 

Ca 11 76.320 106.700 81.770 81.890 80.540 
I 

(mg/ I) 

K+ 0. 321 0.458 
(mg/ l) 

UgH 45.910 58.360 47.470 4 2 .I 00 43.600 
(mg I I ) 

Na1 129.900 113. l 00 l 09 .500 126.000 123.100 
(mg/ I) 

F- 0.863 0. 896 0.714 0.782 0.787 
(mg/l) 

CJ- 15' 7 34 35.619 H.477 13' 474 14.040 
(mg /!) 

Br- 0. 245 0.421 0 .30& 0' 182 0' 146 
(mg /!) 

NOl- 0. I 03 0.018 ' 1.284 5.472 4.542 
(mg/l) 

504' 24.642 15. 146 20.511 31.370 30.368 
(11&/1) 

pH 7.96 7. 25 7.27 7.36 7.38 
(ontts) 

Temperature 8.5 23.5 23.6 32.4 37.5 
(.c) 

Hardness 775 863 728 683 696 
(m&/ I HC03 ) 

Conductui ty 1020 1170 1020 1030 1020 
(pmhos/ca) 

Cation/Anion -I. 54 -1.34 -I' 17 3' 18 2. 07 
Balance (') 

1 Concentration below detectable li1it. 



160 

lATER QUALITY DATA 
Date Of Sample Collection: 

29 April 1991 
lod1de Tracer Test 

Jell t and Time Of Collection (24 hour clock) 

Dt Dt 0! 0! Dt Ot 
0953 1200 '1225 1250 1 315 1340 

I· 
{mg/ t) 

F· 1.369 . 948 .765 .657 . 632 .614 
(mg/1) 

Cl· I 5. 868 16.337 17.943 16.993 36.612 17.272 
(mg /1 ) 

Sr· . 26 I .258 .220 .216 . 218 .1 89 
(mg/1) 

N03 .083 .OI6 .307 .935 l. 250 .946 
{mg/l) 

504' 12.951 15.640 I7 .&74 21.69 3 23.287 21.459 
(mg/1) 

pH 7.42 ' 7. 49 8.42 8.25 8.29 8.52 
(units) 

Temperature 14.2 14.6 16.6 16.9 17 .• 17. 3 
('C) 

Hardness 767 t t t I 
(mg/ 1 HC01) 

ConductiYity 10&0 9&0 970 830 1010 900 
(pmhos/cm) 

I Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 April 199! 
Iodide Tracer Test 

Jell I and Time Of Collectton (2t hour clock) 

Dt Dt Dt. Dt- Dt Dt 
U05 1430 !455 !520 1545 1610 

! -
(mg/1) 

F- . 672 .5&8 .594 .634 .687 . 692 
(mg /!) 

CI- 16. 9 58 16. f87. 17 :D5 15. g 53 16. g 17 17.273 
(mg /1) 

Br- .203 .197 .191 .220 .227 .226 
(mg/1) 

N03· 2.325 I . 5 51 .622 I. 209 .594 .624 
(mg/1) 

504= 25. 319 23.620 21.400 24.083 23.886 25.069 
(mg/1) 

pH 8.36 8.29 8.42 7.90 7.85 7.86 
(units) 

Temperature 19 ,'3 19.8 20.0 20.2 19.7 19.6 
('C) 

Hardness t I t t t t 
(mg/1 HC01) 

Conductility 970 1010 920 1040 1040 1000 
(pmhos/c11) 

I Not enough sampfe to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apri I 1991 
Iodide Tracer Test 

lell t and Time Of Collection (24 hour clock) 

Dt Dt Dt Dt Dt Dt 
1635 1700 1725 1750 1&15 1&40 

I- .246 . 4 31 ,.J7 6 > • 399 .300 .378 
(mg/1) 

F- , .769 J23 .739 .683 . 619 .622 
(mg/1) 

CI- 1&.&45 19.710 27.033 20.364 20.029 17.966 
(lllg/l) 

Br- .220 .206 ' . 215 .214 . 210 .178 
(mg/ I) 

NOJ- .653 1. 048 I. 564 1.828 2. 440 3.057 
(mg/1) 

504= 26.692 28.677 29.014 30.204 3 l. 46 2 31.132 
(mg/1) 

pH 7.73 7. 71 7.99 8.06 8 .II 8. 14 
(units) 

Temperature 19. 3 19.5 19.6 19.3 19.2 19.0 
(.C) 

Hardness t t t t t t 
( mg I I HC01 ) 

Conduct u i ty 1030 1040 1020 I 0 I 0 1000 t 
(pmhos/cm) 

t Not enough sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Aprt! 1991 
Iodide Tracer Test 

fell I and Time Of Collection (24 hour clock) 

Dt Dt Dt Dt Barrel Tap 
1905 1930 2000 2055 

I· . 4 l 3 .233 .994 6.73 
(s~/l) 

F· .606 .619 .60& .759 I. II 0 
(mg/ I) 

Cl- 18.667 14.539 17.506 21.020 .676 247.440 
(mg/l) 

Br· .196 .14 3 .192 .209 .217 
(mg/ l) 

NOJ- 2. 992 5.378 3.526 !. 604 .528 
(mg/1) 

504' 3 l. 689 33.637 31.584 31.219 31.600 132.072 
(mg/ I) 

pH 8.22 8.17 8.13 7. 77 6.22 8. 46 
( un 1 t s) 

Temperature I 8. 6 17.9 17.0 15.5 18.8 17.5 
(·c) 

Hardness t J t 61 49 
( 11g /1 HC03 ) 

Conductivity 940 960 970 1010 HO 1040 
(pmhos/cm) 

t Not enough sample to perfors f1eld test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29Apnll991 
Iodide Tracer Test 

lell t and Time Of Collection (24 hour clock) 

Dz. Qz Dz Dz Dz Dz 
1021 1205 1230 125 5 1320 1345 

I-
(mg/ I) 

F· . 1.302 1.184 .527 .575 I. 1&2 .554 
(m&/ I ) 

CJ· 37.053 35.474 35.299 3 5. 219 35.766 35.234 
(mg/1) 

Br- .369 .382 . 344 .370 .380 .347 
(mg/ I) 

NOr .008 .030 . 029 .039 .036 .035 
(mg/ I) 

S04' 12. 355 26.359 27.501 30.181 30.701 30.&09 
(mg/ I) 

pH 7.22 7.09 7.99 7.27 7.27 7.29 
(units) 

Te1perature 14.7 14. & 16.5 15.7 16.3 16.9 
('C) 

Hardness 819 822 t 763 747 t 
(mg/1 HC01) 

Conductivity 1230 1160 10&0 1140 II 80 1180 
(pmhos/c•) 

t Not enough' sample to perform field test. 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 April 1991 
Iodide Tracer Test 

lell t and Time Of Collectton (2~ hour clock) 

Dz Dz Dz Dz Dz Dz 
1410 1435 1500 1525 1550 1615 

[· 1.319 1.759 L 938 
(mg/ I) 

F· !.HI .600 . 615 .636 .652 . 776 
(mg/l) 

Cl· 3 7. I 04 3 5. 851 36.489 40.452 51.630 59.672 
(mg/l) 

Br- .366 .m .386 .375 .405 .378 
(m~/ I) 

NOJ · . 045' .OH .036 .044 .067 . 125 

(mg/ I) 
504• 32.580 - 31.863 33.m 36.129 41. 28 9 43.935 

(mg/l) 

pH 7' 31 7.28 7.26 7.22 7.23 7.10 
(units) 

Temperature I 8. l I 8. 5 18.0 18.4 I 8. 2 18.0 
('C) 

Hardness 860 6U 801 805 775 729 
(mg/l HC03) 

Conductivity 1180 1180 I 180 1180 1190' 1200 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 April 1991 
Iodide Tracer Test 

lell t and Time Of Collection (24 hour clock) 

Dz Dz Dz Dz Dz Dz 
1640 1705 1730 1755 1820 1&45 

I- 3.227 3.090 Ul7 2. 239 I. 647 1.003 
(mg/ I) 

F- .793 1.167 I. l &9 1.199 I . 20 I l. 217 
(mg/ l) 

Cl· 66.541 69.572 62.&&1 6 2. 5 20 63.074 56.455 
(mg/ I) 

Br- .404 . 460 .463 .419 . 413 .399 
(mg/l) 

N03· . I 03 . l 0 3 .0&2 .066 .057 .060 
(mg/ l) 

504' 46.542 4 7. 171 45.220 45 .I &9 44.536 41.242 
(mg/1) 

pH 7.22 7.H 7.26 7.28 7.H 7.30 
(units) 

Temperature 17.5 18.2 17.& 17.6 17.7 17.6 
('C) 

Hardness 722 723 747 726 792 776 
(mg/l HC03) 

. ConductiYity 1210 1220 1220 1220 11&0 1200 
(11mhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apri I 1991 
Iodide Tracer Test 

lell t and T1me Of Collection (24 hour clocK) 

D2 D2 D2 D2 D1 D1 
1910 1935 2010 Zll 0 1042 1210 

1- 1.136 . 926 I. 217 .&5& 
(mg/ I) 

F- I. 231 1.199 .134 1.191 .739 .7&& 
(mg/ I) 

Cl- H.&76 44.5&3 45.6&2 45.632 24.881 2U74 
(mg/ I) 

Br- .409 .397 .398 .357 . 218 .273 
(mg/1) 

NOJ- .056 .069 .059 .052 1.722 1.642 
(mg/1) 

504' 37.566 35.630 36.267 36.848 24.2&6 21.869 
(mg/ I) 

pH 7.32 7. 31 7.25 7.20 7.24 7. II 
(units) 

Temperature 17. 5 16.7 15.7 14.6 15.0 14.9 
( ·c l 

Hardness 796 786 821 7&0 699 683 
(111~/1 HC01) 

Conductivity 1190 1170 II &0 1160 1040 1040 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apri I 1991 
Iodide Tracer Test 

lell t and Time Of Collection 12• hour clock) 

Dl Dl Dl DJ DJ Dl 
1235 1300 1325 1350 1415 1440 

I-
(mg/1) 

F- .708 .755 .750 .. 773 . 791 .783 
(mg/1) 

Cl- 23.0&7 23.829 24.204 24.694 258.242 24.825 
(mg/i) 

Br- .234 .275 .23& .279 .266 .275 
(aag/1) 

NOJ- 1.712 I. 702 I. 667 1.&01 1.769 I . 7 56 
(mg/ I) 

504' 21.656 2!. 792 21.740 22.561 22.70& 22.795 
(mg/l) 

pH 7.12 7. 16 7.15 7.16 7.08 7 .II 
(units) 

Temperature 14.9 15. 3 15 .& 16.2 16.6 17.7 
('C) 

Hardness 715 712 734 H3 705 &15 
(mg/ I HC01) 

Conduct Hi ty 970 990 1030 1040 1050 1040 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collec!Jon: 

29 April 1991 
. Iodide Tracer Test 

lell t and Time Of Collection (24 hour clock) 

D1 D1 D1 D1 DJ D1 
1505 1530 1555 1620 1645 1710 

[· 

(mg/1) 

F- .775 .780 . 729 . 714 . 822 .753 
(mg/1) 

CI · 25.094 24. 88 3 26.119 26.612 26.675 27.275 
(mg/l) 

Br· .281 .277 .280 . 284 .284 .236 
(mg/1) 

N03· 1.710 1. 722 I. 581 1. 70 7 I. 606 1.700 
(mg/ I) 

504" 22.968 23.033 23.959 23.509 24.530 2U72 
(mg/l) 

pH 7.13 7.12 7.15 7.16 7.10 7.13 
(units) 

Temperature 17' 5 17.9 18.1 17.& 17. g 17.6 
('C) 

Hardness 714 755 720 918 &59 728 
(rug/ 1 HC01) 

Conduct1vi ty 1030 1050 1050 1050 1050 1050 
(pmhos/cll) 
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lATER QUALITY DATA 
Date Of Sample Collectton: 

29 April 1991 
lodtde Tracer Test 

lell t and Time Of Collectton (24 hour clock) 

OJ OJ DJ DJ DJ DJ 
1735 1&00 1&25 1850 1915 1940 

1-
(mg/ I) 

F- .HI .769 .751 .7&3 .764 .717 
(mg/1) 

Cl- 27.404 27.39& 27.647 27.621 2 6. 7 81 27.344 
(mg/ I) 

Br- . 272 .285 .22& .227 .295 . 291 
(mg/ I) 

NOr I. 700 !. 678 I. 729 1.730 I . 7 54 I. 6 7 4 
(mg/ I) 

504' 15. 4'35 25.226 25.6&4 25.791 25.360 25.495 
(m~/1) 

pH 7 .I 8 7. 13 7.12 7.07 7. 16 7.13 
(units) 

Temperature 17. 3 17.7 17. 5 17.2 16.7 16.5 
('C) 

Hardness 715 705 781 743 H7 722 
(mg/ I HCOJ ) 

Conductivity 1040 !050 1050 1050 1040 1060 
(pmhos/ca) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29Aprill99l 
Iod1de Tracer Test 

lett t and Time Of Collection (24 hour clock) 

03 Dl , . o. o. o. Dt 
2020 2125 1052 1215' 1240 1305 

j-

(mg/l) 

F· '772 .803 '816 ' . &52 .822 .823 
(mg/1) 

CJ- . 28.195 17.571 12.143 12' 114 12' 138 12.230 
(mg/ I) 

Sr- . 245 .269 . I 22 ' 13 3 '145 .1u 
(mg /I ) 

N03· I. 631 1.490 7 .I 01 4.762 5.935 6.067 
(mg /I) 

S04' 25.830 24.940 35.m 36' 156 36.025 36.370 
(mg/1) 

pH 7. 15 7.21 7 .I 8 7.26 7' 30 7.30 
(uni Is) 

Temperature 15.4 14' 3 14' 7 15 .I 15' 6 15.8 
(·c) 

Hardness 755 761 661 642 746 699 
(mg/1 HC01) 

Conducti•ity 1050 1050 1030 1010 1020 1020 
(~mhos/em) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apri I 1991 
lod1de Tracer Test 

fell t and Time Of Collection (2- hour clock) 

D• D• D• o. o. o. 
1330 1355 H20 1445 1510 1535 

1-
(mg/1) 

p- .&73 . &19 .&63 .919 .867 .886 
(mg/1) 

Cl- 12.~29 12.289 12.124 12.982 12.329 12.247 
(;g/ I ) 

Sr- .!50 .126 .145 .126 .120 .150 
(mg/1) 

NOJ- 6.635 6. 848 7.063 6.&33 7.034 7.075 
(mg/1) 

504= 36. 92& 36.585 37.703 36.595 37.506 37.153 
(mg/1) 

pH 7.2& 7. 31 7.2& 7.30 7.27 7.26 
( un 1 ts) 

Temperature 16.0 16.9 17.7 17. 5 17.7 17.5 
('C) 

Hardness 697 712 659 700 657 705 
(mg/ I HC01) 

CondoctiYity 1000 1020 1020 1000 1020 1020 
(pmhos/ca) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apr 11 1991 
Iodide Tracer Test 

lei! t and Time Of Collection (24 hour clock) 

D• D• o. o. o. o. 
1600 1625 1650 1715 1740 1805 

I· 
(mg/ I) 

r·. .860 .885 .907 .884 .933 .875 
(mg/1) 

CJ· 12.975 12.966 13.607 13.079 13.971 13.313 
(mg/ I) 

Br- .149 .145 .136 . 13 4 .144 .134 
(mg/1) 

N01· 7.345 7.579 7.740 7.710 7. 812 7.875 
(mg/1) 

504' 37.415 3& .17 5 39.051 39.661 39.352 39.551 
(mg/1) 

pH 7.2& 7.25 7. 25 7.27 7.29 7.27 
(units) 

Temperature 1&.1 17.7 17. 6 17.4 17.1 17. 3 
('C) 

Hardness 834 703 744 708 665 657 
(ag/1 HCOJ) 

Conduct hi ty 1020 1010 I 0 I 0 1000 1000 1000 
(pmhos/ca) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29Apri11991 
Iodide Tracer Test 

lei! f and Time Of Collectton (29 hour clock) 

D~ D~ D• D~ Dt Dt 
1&30 1&55 1920 1945 2030 2140 

!-

(mg/1) 

F- .957 .97& .899 . 924 .996 .90& 
(mg /I) 

C1- 13.6&9 14. 136 13.484 13.670 14.0 1& I 3.413 
(mg/ 1) 

Br· .138 .138 .139 .139 . I i 7 . 130 
(mg/ 1) 

N01· 7.875 7.807 7. 744 8.207 7.7&5 7.706 
(mg/1) 

SOq' 39.5 32 39.236 38.901 41.274 41.164 39' 193 
(111g/ I) 

pH 7.24 -7' 26 7.15 7.29 7.32 7.30 
(units ) 

Temperature 17' 3 17. I 16' 6 16.2 15.2 1U 
('C) 

Hardness 6&3 665 665 657 676 670 
(mg/ 1 HC01) 

Conducti•ity 1000 1010 1000 990 980 990 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apr i l 19 91 
lodtde Tracer Test 

tell I and Ttme Of Collection (2~ hour clock) 

Ds Ds Ds Ds Ds Ds 
11,00 1220 1245 1310 1335 1400 

[-

(mg/1) 

F- .740 . 739 . 734 .737 .733 . 7 36 
(m~/1) 

CJ- 12.544 II. 703 I 1.690 12.732 12.601 II. 521 
(mg/l) 

Br- .13 7 .130 .Ill .136 . i 37 . 134 
(~~g/1) 

NOJ- 4. 692 5.360 5.932 6.005 6.043 5.962 
(111g/ I) 

S04' 31.335 32.213 34.567 34.672 35. 197 34.336 
(mg/1) 

pH 7.05 7.24 7.29 7.29 7.28 7.28 
(units) 

Temperature 14.4 15.4 15.6 15.8 15.8 17.0 
(·c) 

Hardness 697 677 695 703 696 679 
(mg/ I HC01) 

ConductiYity 1000 990 1030 1020 920 1020 
(JIIIhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29Aprill991 
Iodide Tracer Test 

tell t and Time Of Collect1on (24 hour clock) 

Ds Ds Ds Ds Ds Ds 
1425 1450 1515 1540 1605 1630 

I-
(mg/l) 

F- .736 .749 .748 .765 . 79 I .774 
(mg /1) 

Cl- 12.492 11.902 11.7 36 I 1.&78 12.032 11.816 
(mg/1) 

Br- .I 08 .138 .I 07 .129 . I 25 .125 
(mg/1) 

NOJ- 6.157 6.089 6. 224 6.291 6. 3 34 6 .15& 
(mg/1) 

504' 35.190 34.909 35.369 35.560 35.437 35.645 
(mg/1), 

pH 7.27 7.26 7.26 7.28 7.29 7.24 
(units) 

Temperature 17.9 17.6 1 & .I 17.6 I & • 2 17.7 
(·c) 

Hardness 796 694 719 702 674 679 
(mg/ I HC01) 

ConductiYity 1020 1020 1020 1000 1020 1010 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 Apr 11 19 91 
Iodide Tracer Test 

lell t and Time Of Collection (24 hour clock) 

Ds Ds Ds Ds Ds Ds 
1655 1720 1745 1 & I 0 1835 1900 

I-
(mg/1) 

F- .790 . 776 .75& . 771 .795 .75& 
(m~/1) 

CJ- 11.9&6 I l. 7 57 I 1.834 I 1.6&9 I I. &90 11. 595 
(mg/1) 

Br- . 133 . 13 3 .134 . 13 8 .131 .13 7 
(•&11) 

N03- 6.356 6. 433 6.369 6.420 6.4&0 6. 446 
(mg/ 1) 

504' 36.008 36.377 35.716 35.869 36.3&1 35.617 
(mg/1) 

pH 7.24 7.26 7.27 7.26 7.26 7.26 
(un1ts) 

Temperature 17.7 I 7. 6 17.5 I 7. 5 17. 3 17.2 
( ·c l 

Hardness 693 686 676 711 668 642 
(mg/ 1 HC01) 

Conducti•ity 1010 1000 1000 1000· 1000 1000 
(pmhos/cm) 
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lATER QUALITY DATA 
Date Of Sample Collection: 

29 April 1991 
Iodide Tracer Test 

fell t and Time Of Collection (24 hour clock) 

Ds Ds Ds 
1925 1950 2040 

[-

(mg/1) 

F- .740 .752 .743 
(mg I I J 

CI- I 2. 916 12.578 11.324 
(mg/1) 

Br- . 13 7 . 13 5 .131 
(mg/1) 

NOJ- 6. 415 6.667 6. 373 
(mg/1) 

504' 35.57& 3 5. 612 3 5. 71 0 
(mg/1) 

pH 7. 25 7.26 7.29 
(on its) 

Temperature 16.6 16.2 15. I 
('C) 

Hardness 664 700 674 
(sg/1 HC01) 

Conductivity 1000' 1000 1000 
(pmhos/cm) 
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DESCRIPTIVE STATISTICS FOR 
Ca++ 

We 11 Maximum Minimum Mean Standard Number of 
(mg/ 1) (mg/1) (mg/ 1) Deviation Samples 

A1 179.4 38.9 113. 8 38.5 25 
A2 144,. 1 2 2. 1 106.4 31 . 3 28 
A3 118. 8 44.4 92,. 5 20.4 28 
A4 190. 1 29.5 88.:4 26.2 30 
A5 9 3. 1 41 . 0 75.9 19.4 5 
B6 135.7 129.6 131.9 2.7 3 
88 111. 3 106.6 108.7 1.9 3 
89 95.7 94.7 95.2 0.41 3 
810 7 4 ,,3 73.2 73.8 0.45 3 
B11 27.9 16. 3 23.3 5.0 3 
C1 74.0 64.0 68.5 4. 1 3 
C2 80.3 65.0 7 3. 1 5.5 4 
C3 99.7 68.0 80.9 13.0 6 
C4 103.4 81.0 91 . 9 10.2 7 
C5 154.0 70.0 94.0 27.9 6 
D1 127.0 76.3 106.4 21.8 3 
D2 137.7 28.4 89.9 27.7 18 
D3 112.0 37.3 82~8 18.6 19 
D4 109.0 45.2 73.5 14.3 20 
D5 80.5 47.2 67.8 11.3 1 5 
E1 63.3 32.0 50. 1 1 3 . 2 3 
E2 67.6 58.0 61. 7 3.6 4 
E3 81.0 59. 1 67.8 8.7 6 
E4 8 7. 1 55.0 ' 69.4 11.7 7 
E5 71.9 55.0 61.5 6.5 4 
Gl 104.9 100.2 1'02.6 3. 3 2 
G2 95.9 93.8 94;9 1.5 2 
H1 102.3 1 0 1 . 1 101 . 7 0.85 2 
H2 62.5 59.9 ~1.2 1.8 2 
I 1 118. 3 11 2. 2 1 15. 3 4.3 2 
I 2 88. 1 82.2 85.2 4.2 2 
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DESCRIPTIVE STATISTICS FOR 
Fe++ 

Well Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

A1 0.08 0.002 0.01 0.24 10 
A2 0. 16 0.002 0.04 0.06 1 1 
A3 0. 10 0.002 0.03 0.04 12 
A4 0. 10 0.001 "0·. 02 0.04 12 
B6 15. 10 5.700 9.30 5.07 3 
B8 5.50 4. 100 5.03 0.81 3 
B9 0.09 0.044 0.06 0.02 3 
B10 l. 19 0.922 l. 08 0. 14 3 
B 1 1 0. 51 0.433 0.47 0.04 3 
D2 l. 04 0.312 0.66 0.37 3 
D3 0.08 0.039 0.06 0.02 3 
D4 0.04 0.026 0.03 0. 01 3 
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DESCRIPTIVE STATISTICS FOR 
K+ 

We 11 Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

A1 1. 70 0.06 0.35 0.35 20 
A2 0.38 0.08 0.22 0.09 23 
A3 1. 30 0. 10 0.30 0.25 22 
A4 l. 40 0.03 0.27 0.27 22 
B6 4.40 2.80 3.60 0.65 3 
B8 l. 23 1. 14 1. 19 0.64 3 
B9 0.48 0.35 0.39 0.06 3 
B10 2.29 1. 26 l. 92 0.47 3 
B 11 3.20 2. 14 2.58 0.45 3 
C4 l. 40 0.24 0. 91 0.49 3 
C5 0.22 0. 18 0 .. 19 ().02 2 
Dl 0.34 0.32 0.33 0.01 2 
D2 0.85 0.08 0.42 0.20 15 
D3 l. 40 0.05 0.42 0.51 9 
D4 1. 40 0.08 0.46 0.56 8 
D5 0.37 0.29 0.34 0.04 2 
E3 l. 60 1. 30 l. 45 0. 15 2 
E4 l. 30 l. l 0 l. 20 0. l 0 2 
Gl l. 40 1. 20 1. 30 0. 14 2 
G2 l. 40 l. 20 l. 30 0. 14 2 
H1 1. 40 1. 20 l. 30 0. 14 . 2 
H2 1. 40 l. 10 1. 25 0.21 2 
I 1 2.70 2.60 2.65 0.07 2 
I 2 l . 40 1. 40 l. 40 l. 40 2 
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DESCRIPTIVE STATISTICS FOR 
Mg++ 

We 11 Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

Al 49.2 41 . 0 44.6 25.0 25 
A3 58.8 43.8 47.3 2.9 28 
A4 55.0 42.9 46.0 '2. 2 30 
A5 43.8 . 40.2 41 . 6' - l. 2 5 
B6 33.6 32.9 33.3 0.29 3 
B8 36,. 5 35.5 35.9 0.42 3 
B9 37.9 36.5 37.2 0.57 3 
BlO 33.7 33.3 33.4 0. 19 3 
B 1 1 18.4 14.7 1 7 . 1 1.7 3 
C1 I 12. 0 96.3 102.4 6.9 3 
C2 70.0 64.0 67.8 2.5 4 
C3 66.8 48.0 57.9 7.7 6 
C4 56.6 49.0 52.3 2.7 7 
C5 60.9 51.0 55.8 3.8 6 
Dl 69.2 45.9 59.7 9.9 3 
02 75.4 43.2 59.5 6.9 18 
03 63 42.7 50.8 5.3 19 
04 47.7 33.8 41.3 3.3 18 
D5 48.3 42.0 43.6 1.4 15 
El 28.8 23.0 25.6 2.4 3 
E2 39.0 31.0 36. 1 3. 1 4 
E3 38.0 30.5 33.6 2.9 6 
E4 68.3 55.0 61.2 5.8 7 
E5 60.4 52.0 56. 1 3. 1 4 
Gl 52.4 51.7 52. 1 0.49 2 
G2 52.7 51 . 8 52.3 0.64 2 
Hl 46.8 45.5 46.2 0.92 2 
H2 52.0 49.9 50.9 1.5 2 
I 1 67.9 65.4 66.7 1.8 2 
I 2 56.2 55.6 55.9 0.42 2 
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DESCRIPTIVE STATISTICS FOR 
Mn++ 

We 11 Maximum Minimum Mean Standard Number of 
(mg/1) (mg/ 1) (mg/ 1) Deviation Samples 

A1 0.040 0.001 0.014 0.012 10 
A2 0.013 0.001 0.006 0.003 10 
A3 0.088 0.003 0.020 0.024 1 1 
A4 0.024 0.004 0.011 0.006 10 
B6 3.550 2.500 2.980 0.430 3 
B8 4.600 3.800 4.300 0.360 3 
B9 0.275 .0.223 0.252 0. 020,. 3 
BlO 0.942 0.754 0.857 0.080 3 
B 11 1. 500 0.566 1.120 0.400 3 
D2 0. l 79 0.055 0. 0'96 0.072 3 
D3 0.055 0.024 0.039 0.022 3 
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DESCRIPTIVE STATISTICS FOR 
Na+ 

Well Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/ 1) Deviation Samples 

Al 27.4 10.8 20.3 3.6 23 
A2 45.7 18.6 30.4 5.7 26 
A3 47.0 27.5 35. 2, 4.0 26 
A4 55.0 34.9 43.8 5.2 30 
A5 43.5 42.0 42.9 0.5 4 
B6 76.9 69.4 72.6 3. 1 3 
B8 83.0' 70.3 77.7 5.4 3 
B9 37.4 36.9 37. 1 0.22 3 
B10 47.4 45.9 46.6 0.61 3 
B 1 1 1 7 0 . 1 151 . 4 162.6 8. 1 3 
C1 158.0 1 1 6 . 1 141 . 0 1 8 . 0 3 
C2 179.8 171.0 176.5 3. 3 4 
C3 177.0 '115.5 144.9 23.3 6 
C4 61.8 47.4 54.0 5.5 7 
C5 98.0 49.0 74.6 20.0 6 
Dl 139.7 129.9 136.2 4.5 3 
D2 128.0 86.3 1 1 2. 1 1 1 . 4 1 8 
D3 115. 6 93.2 105.5 7.4 19 
D4 126.0 102.0 116. 3 9.0 20 
D5 12 3. 1 97.4 1 1 4 . 6 9.9 15 
El 20.3 12.0 1 5. 1 3.7 3 
E2 15.0 9.7 1 2. 2 2.4 4 
E3 17.0 8.7 1 2. 8 3.0 6 
E4 110. 0 57.3 85.5 24.0 7 
E5 100.0 41 . 4 56.6 38. 1 4 
G1 60.8 60.3 60.6 0.35 2 
G2 74.9 74.3 74.6 0.42 2 
H1 89.4 88.6 89.0 0.57 2 
1-12 130.0 128.3 129.2 1.2 2 
I 1 35.6 34.7 35.2 0.64 2 
I 2 45.6 45. 1 45.4 0.36 2 
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DESCRIPTIVE STATISTICS FOR 
Sl2 

Well Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

Al 19.9 11.9 13.7 2.08 15 
A2 1 3. 7 10.5 1 2. 6 0.88 17 
A3 14. 1 10. 3 12.7 1. 06 15 
A4 14.8 11.4 1 3. 5 0.94 16 
B6 13.5 11.9 12. 6 0.81 3 
B8 14.4 1 4 . 2 14. 3 0. 12 3 
B9 13.8 13.6 13.7 0. 10 3 
BlO 13.5 1 3. 1 1 3. 3 0.20 3 
B 11 6.3 4.7 5.7 0.88 3 
D2 11.5 8.2 10.9 0.93 3 
D3 10.6 9.6 1 0. 2 0.54 3 
D4 10.7 10. 3 10.4 0.22 3 
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DESCRIPTIVE STATISTICS FOR 
CONDUCTIVITY 

Well Maximum Minimum Mean Standard Number of 
(pmhos/cm) Deviation Samples 

A1 1210 584 1018 108.9 88 
A2 1280 832 1038 75.9 102 
A3 1,455 902. 1029 76. 1 120 
A4 1160 840 978 65.2 172 
A5 1165 803 985 68. 1 77 
B4 1125 874 999 125.5 2 
B6 1341 974 1186 160.5 7 
B7 1270 l 1 31 1 196 49.5 4 
B8 1479 1051 1277 152.9 7 
B9 1068 864 986 66.2 7 
BlO 990 793 916 60.9 7 
B 1 1 1 l 9 3 848 1056 133.4 5 
C1 1979 1 41 1 1673 130.7 53 
C2 1768 1127 1502 136.5 57 
C3 1800 990 1335 162.9 93 
C4 1208 862 1025 57. 1 140 
C5 1486 933 1138 134.4 68 
D1 1881 1020 1479 210.8 46 
D2 1879 1169 1504 172.6 73 
03 1904 920 1271 148.9 99 
04 1329 1004 1134 63.5 156 
D5 1302 890 1123 76.6 79 
E1 720 437 61 1 64.4 55 
E2 879 255 613 143.8 68 
E3 875 284 595 144. 1 87 
E4 1433 407 986 228.8 138 
E5 1333 481 1060 173.3 68 
G1 1104 936 1050 43.0 20 
G2 1169 981 1078 48.0 29 
H1 11 36 970 1068 47.0 15 
H2 1274 1147 11 2 1 29.0 29 
I 1 1 1 7 1 865 1063 98.0 14 
I 2 991 839 934 30.0 29 
I 3 960 825 895 55.3 3 
J 1077 1026 1054 18.6 4 
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DESCRIPTIVE STATISTICS FOR 
Cl-

We 11 Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

A1 96.3 14.4 24:9 12.7 51 
A2 49.2 12.6 22 .. 9 6 . 1 62 
A3 32.4 13.8 20.3 4.7 76 
A4 33.7 12.6 20.4 5·. 2 108 
A5 38 ,'4 14. 6 23'. 7 5.9 58 
B4 14.9 11.4 t 3. 2 1.8 2 
B6 18.8 8.4 12. 4 3.3 7 
B7 16.5 10.4 14.6 2.4 4 
B8 23.0 1 2 . 1 15.9 4.3 7 
B9 21.0 15. 1 17.4 2.3 7 
B10 21.2 15.8 18.5 1.8 7 
B 11 39.2 3 3 ,'8 36.8 2.4 5 
Cl 139.9 18.4 47.8 28.0 25 
C2 59.3 17.0 29. 1 10.9 29 
C3 73.3 18.7 35.4 16.8 48 
C4 45.8 16.3 26.4 5.6 82 
C5 78.4 1 8 . 1 29.8 8.6 51 
D1 144.3 1 5 . 7 53.5 27. 1 20 
D2 163.0 25.8 51.9 31.2 42 
D3 162.7 24. 1 50.4 31 . 6 61 
D4 72.0 11.9 32:5 10.2 97 
D5 51 . 2 11.7 32.8 10.6 62 
El 14.8 3.6 8.9 2.9 26 
E2 22.3 3.5 12.2 3.9 30 
E3 26.3 3.8 1 2. 1 5.9 47 
E4 44.4 4.4 25.3 9.8 80 
E5 42.4 6.64 27.2 8.7 50 
G1 20.3 1 2. 1 16.9 2.5 20 
G2 24.0 14.8 19.9 2.5 29 
Hl 27.6 12.9 20 ~ 1 4.6 15 
H2 32.9 27.5 30.5 1.6 29 
I 1 28 .. 8 18. 7 24.0 2.5 14 
12 1 7 . 1 12.6 14.9 1 . 4 29 
I 3 15.9 14.0 14.7 .85 3 
J 18.4 11.9 16.0 2.5 4 



189 

DESCRIPTIVE STATISTICS FOR 
HC03= 

Well Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

Al 802 429 606 69.6 47 
A2 1108 476 615 78.4 60 
A3 781 473 612 52.9 76 
A4 653 410 57) 42.7 105 
A5 732 497 581 35.2 55 
B4 639 490 564 1p5.4 2 
B7 882 757 809 57.9 4 
B8 920 674 773 99.2 5 
B9 725 384 552 134. 1 6 
B10 592 342 484 111. 5 6 
B 1 1 581 398 509 78.3 4 
C1 113 7 755 1041 98. 1 20 
C2 1341 638 996 '1 1 9 . 2 26 
C3 1028 686 838 10 l . 2 47 
C4 691 551 613 24.7 78 
C5 868 568 687 84.8 48 
D1 982 639 808 94.4 15 
D2 1016 516 865 99.9 37 
D3 1056 555 74;3 61.2 59 
D4 742 488 651 28.5 92 
D5 796 485 657 33.4 53 
E1 414 271 345 38.9 1 8 
E2 497 232 369 69.9 30 
E3 491 198 359 64.2 46 
E4 690 237 578 1 1 6 . 3 77 
E5 795 254 571 96.9 47 
Gl 690 584 633 32.0 20 
G2 683 623 657 15.0 29 
Hl 633 583 612 16.0 14 
H2 662 573 629 26.0 29 
I 1 659 397 562 80.0 14 
I 2 505 458 479 13.0 29 
I 3 500 424 474 43.0 3 
J 675 648' 661 1 1 . 9 4 
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DESCRIPTIVE STATISTICS FOR 
N03= 

We 11 Maximum Minimum Mean Standard Number of 
(mg/1) (mg/ 1) (mg/1) Deviation Samples 

At 57.7 3.5 21.9 10.8 58 
A2 41.8 1.5 18.3 1 2. 3 67 
A3 53.4 2. 1 18. 3 16.2 85 
A4 65.6 1.8 19..6 18.9 120 
A5 41+.5 2.7 10.5 10.3 33 
B4 5.95 . 7 3. 3 3.7 2 
B6 5.0 .4 2.2 2.5 5 
B7 7. 1 4.4 5.3 l. 5. 3 
B8 6.5 . 9 3. 1 2.2 7 
B9 30.4 5.3 14.7 11.2 7 
BlO 29.6 2.6 1 1 . 4 10.8 7 
B l l 3.4 .02 0.89 1 . 7 4 
C1 9. 1 .95 2.5 1 . 9 29 
C2 9.8 1 . 9 3.3 1.4 . 31 
C3 31'.6 1.3 6.5 6.5 54 
C4 35.5 1.8 1 3. 5 11. 8 89 
C5 31.5 5.5 20.7 9.9 5 
01 8.6 .08 1 . 7 1.6 29 ° 

02 4.4 . 0 1 0.99 . 9 45 
03 7.4 0.3 2.3 1.9 63 
04 39.7 3.2 12.8 10.5 104 
05 30.0 3.4 8.6 6.2 37 
El 1 9. 9 2.7 4.9 3. 1 31 
E2 19.9 1.4 5.6 3.6 38 
E3 24.7 0.7 8.9 7. 2 51 
E4 40.9 4.4 16.9 10.2 90 
E5 37.2 4.5 1 3. 1 7.3 25 
Gl 77.9 40.7 57.6 14. 4 20 
G2 60.8 2 1 . 1 43.4 11.5 29 
Hl 63.9 49.2 54.4 4.2 15 
H2 43.5 34.2 38.7 3. 1 29 
I 1 60.9 ·27.0 51.6 11.0 14 
I 2 113. 2 74.5 92.9 13.5 29 
I 3 80.5 67.7 72.6 6.9 3 
J 46.4 33.5 38.3 5.7 4 
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DESCRIPTIVE STATISTICS FOR 
so,.= 

Well Maximum Minimum Mean Standard Number of 
(mg/1) (mg/1) (mg/1) Deviation Samples 

A1 57.7 23.4 31 . 3 8.2 32 
A2 41.9 22.6 27.7 3.79 38 
A3 34.7 18.0 27 '" 5 2.82 47 
A4 35.0 19.0 28.9. 3.3 64 
A5 32. 1 18. 2 26". 4 4: • 1 15 
B4 26.0 21.6 '23. 8 3. 1 2 
B6 35.2 7.9 20. 1 9 .'74 7 
B7 69.3 20. 1 41 ;9 21.8 4 
B8 172.8 38.0 89.9 55.4 7 
B9 42.9 18. 2 25.6 8.9 7 
B10 27.7 15. 6 20.5 5.4 7 
B 1 1 81.0 18.0 54.2- 29.8 5 
Cl 11 9. 5 48.4 82. 1 32.5 5 
C2 88.8 42.0 57.8 1 6 . 7 6 
C3 91.0 33.8 64.2 20.2 19 
C4 50.8 27.0 37.5 5.2 35 
C5 92.0 30. 1 43.6 18.9 10 
D1 64.7 13.0 39.9 18.9 7 
D2 52.7 1 r. 1 27.6 1 1 . 7 21 
D3 42.0 1 6 . 7 2'8. 8 7.7 35 
D4 54.6 26.8 34. 1 5.2 51 
D5 50.0 30.3 34.2 5.2 21 
E1 41 . 3 14. 3 22.8 12.5 4 
E2 41 . 0 13.0 23.0 10.0 6 
E3 36.0 1 3. 1 20.7 5.7 19 
E4 58.3 18.0 37.8 8.0 35 
E5 65.0 21.7 41 . 5 14. 5 8 
C1 41.3 33.2 36.3 2.3 20 
C2 36.8 31.9 34.9 1 . 3 29 
H1 78.8 46.7. 59.2 9.8 15 
H2 180. 1 88.7 124.8 29. 1 29 
I 1 145.6 93.9 1 1 5 . 8 15. 3 14 
I 2 48.3 43.0 45.5 1 . 6 29 
I 3 49.6 43.7 46.3 3.0 3 
J 40.4 31.9 .35. 6 3.7 4 
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