
b-N APPROACH TO APPLYING THE CONTOUR MODEL

TO THE DESIGN OF A HYPOTHETICAL

MULTIPLE-REGISTER-WINDOW

ARCHITECTURE FOR THE

BLOCK-STRUCTURED

PROCESS

By

HSU-KU BRUCE YING
1/

Bachelor of Science

Chung-Yuan Christian University

Chungli, Taiwan

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1992

AN APPROACH TO APPLYING THE CONTOUR MODEL

TO THE DESIGN OF A HYPOTHETICAL

MULTIPLE-REGISTER-WINDOW

ARCHITECTURE FOR THE

BLOCK-STRUCTURED

PROCESS

Thesis Approved:

Dean of theraduateOege

ii

PREFACE

The concepts described in this thesis are towards the implementation of the basic

functions of a pipelined, load/store, multiple-register-window and scalar-oriented

uniprocessor architecture. During the formation phase of these concepts, I am glad to

have the opportunity to investigating the interrelation of computer architectures, data

structures and systems programming, which are the fundamentals underlying virtually

every software design. I also took pleasure in learning A WK and C++ programming

languages (only the elementary things of the latter, however) for the simulation

conducted in this thesis and the UNIX® document formatting/typesetting tools for the

preparation of the text and figures presented in this thesis on the UNIX®-based Perkin

Elmer 3230 computer system of the Computer Science Department.

I wish to express sincere gratitude to Dr. George E. Hedrick, my thesis adviser, and to

Dr. Mansur Samadzadeh and Dr. John P. Chandler for serving on my graduate

committee. The useful informations offered by Dr. Samadzadeh vitally benefited this

thesis as well as my graduate study.

Many thanks are due to Mr. Mark Vasoll and Mr. Roland Stolfa, who are always

helpful in the matter of accessing the departmental computing facilities. I am also

grateful to Dr. John B. Johnston of New Mexico State University for his kindness. He

sent me a stack of materials describing his work on the contour model (the contour

model architecture and the contour model assembly language) at New Mexico State

University. Special thanks are due to my friend and classmate, Mr. Yuh-Ching Su, who

kindly offered me extensive access to his microcomputer and Borland C++® software

for debugging the simulator program. And hearty appreciation goes to Van Morrison,

whose songs were my companion through the dismal days.

My deepest gratitude is to my parents, who unconditionally support my education in

both spiritual and financial terms and extend their support throughout my graduate study,

even though they have been in a very difficult financial situation for many years. I am

deeply sorry for aggravating their suffering because of this overdue thesis.

iii

TABLE OF CONTENTS

Chapter Page

I. IN'TRODUCTION .. ~ 1

Motivation.. 1
Review of Literature... 1
Problem Statement ... 3

n. REVIEW OF RELATED DESIGNS 5

Multiple-Register-Window Architectures................... 5
Load/Store Architectures.. 7

Reduced-Instruction-Set Computers..................... 7
The Contour Model.. 9

Til. THE RUN-TIME STORAGE OF HMA 12

The Multi-windowing Register Set............................. 12
Organizing the Objects in the Virtual Memory........... 14

Contour Cells... 14
The Window Activation Vector and

the Register Spilling Algorithm....................... 15
Pointers to Registers and Non-Local Variables 17
An Instance of Block-Structured Program............ 17

IV. THE PROCESSOR ARCHITECTURE OF HMA 20

The Micro architecture 20
Instruction-Fetch Unit.. 20
Instruction-Decode Unit....................................... 20
Control Unit... 21
Integer-Execution Unit... 21
Load/Store Unit.. 21
Instruction Pipe lining 22

The Instruction Set 23

v. THE SIMULATION OF HMA 26

The Test Program... 26

iv

Chapter Page

The Assembler... 27
The Simulator... 27

Abstract Data Types of the Virtual Memory......... 27
Miscellaneous Objects in the Simulation.............. 29
Loader.. 29
Virtual Processor.. 29
The Window-Overflow Handler and

the Window-Underflow Handler...................... 30
The Execution Monitor .. 31
Simulation Results 31

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK 33

BffiLIOGRAPHY ... 35

APPENDIXES .. 38

APPENDIX A- THE ASSEMBLY-INSTRUCTION
SET AND MACHINE-CODE
FORMATS OF HMA.............................. 39

APPENDIX B - LISTINGS OF THE TEST PROGRAMS 45

APPENDIX C- THE SIMULATOR-GENERATED
PROFILES.. 63

APPENDIX D - FIGURES.. 68

APPENDIX E- GLOSSARY OF TERMS........................ 88

v

LIST OF TABLES

T~k p.
I. The Machine-Code Size of the Test Programs 27

II. The Instruction Distribution of The Towers of Hanoi 65

III. The Instruction Distribution of The Shortest Path 67

vi

LIST OF FIGURES

Figure Page

1. A Register Window .. . 69

2. The Overlapped Register Windows of Nested Procedure Calls 69

3. The Generic Format of a Contour Cell 69

4. The Circular Buffer Organization of the
Multi-Windowing Register Set 70

5. The Organization of an Execution Contour 71

6. The Window Activation Vector .. . 71

7. The Block Structure of a Pascal Program 72

8. The Topographic Contour Map of a Snapshot During
the Execution of the Program in Figure 7 73

9. The Control Structure of the Snapshot in Figure 8 74

10. The Block Diagram of HMA' s Processor Design 75

11. The Instruction Pipelining 76

12. Data Dependency and Pipeline ''Bubble'' 76

13. The Delayed Branch 77

14. The Flowchart of the Simulation Project 78

15. The Flowchart of the Instruction Pipelining 79

16. The Flowchart of the Fetch-Instruction Pipestage 80

17. The Flowchart of the Decode-= Instruction Pipestage 81

vii

Figure Page

18. The Flowchart of the Execute-Instruction Pipestage 82

19. The Flowchart of the Write-Back Pipestage 83

20. The Nested Procedure-Calling Depth During the
Execution of The Shonest Path .. . 84

21. The Data Size Distribution During the
Execution of The Shortest Path .. . 85

22. The Nested Procedure-Calling Depth During the
Execution of The Towers of Hanoi.. 86

23. The Data Size Distribution During the
Execution of The Towers of Hanoi.. 87

viii

CIP

CIR

CWP

FIP

HMA

SWP

WAV

XIP

NOMENCLATURE

the current instruction pointer

the current instruction register

the current window pointer

the fetch instruction pointer

a Hypothetical Multiple-Register-Window Architecture

the saved window pointer

the window activation vector

the execute instruction pointer

ix

CHAPTER I

INTRODUCTION

Motivation

This thesis work expands the results of two papers: the contour model, which was

proposed by Johnston [Johns71]; and the Berkeley RISC architecture, which was pro

posed by Patterson and Sequin [PaSe82]. The study of the implementation of the Berke

ley RISC [Kate85] motivated the author to develop a scheme which takes advantage of

both models and apply it to a microprocessor-based computer design which makes exten

sive use of its on-chip storage and expects high performance with the synergy of

hardware and software.

Review of Literature

The contour model is an attempt to close the gap between the semantic mechanisms

of programming languages and the computer architectures to be implemented in

hardware. It contains a powerful exposition of the data structures of block-structured

processes. However, the contour model's methodology is independent of the memory

techniques for achieving high speed data access, which is an important aspect in comput

er architectures. Fortunately, the concept of contour cells may be converted into a

hardware implementation using high-speed on-chip storage.

In the development of a high-performance computer architecture, the memory subsys

tem has been a bottleneck [HaLi91, Hsu87, SoFr91]. This is because off-chip memory

access is slow, and more importantly, the pin bandwidth is limited. However, this prob

lem would be alleviated by incorporating a large on-chip storage which the processor can

directly access.

1

2

To use on-chip storage effectively, two kinds of memory access: instruction access

and data access, must be examined separately. Instruction access typically has higher

locality than data access and hence an instruction cache is satisfactory for the purpose of

efficient instruction access due to its high hit-ratio. The implementation of an instruction

cache is relatively simple since it can be read-only. Hennessy suggested the use of a

small on-chip instruction cache to lower the required off-chip instruction bandwidth

[Henn84].

The problem in bandwidth consumption for data access is more serious because data

access is less predictable than instruction access [Henn84]. Having the chip use a data

cache is not the most efficient method: the unit of every read/write for the cache is a

block, but for scalar data, only one word may be needed after a whole block is

transferred into the cache after a miss. The other data in that block may be unused

before that block is replaced by another one.

Registers as on-chip storage are usually a scarce resource, but in respect of processing

scalar data, registers have the following advantages over the cache: (1) a register set can

yield double the performance of a data cache in both speed and cost [DiMc82]; (2) regis

ters can be specified explicitly in the program; cache memory does not have this flexibili

ty. Compilers optimize for register allocation, while the management of cache is handled

by hardware, hence is transparent to assembly-language programmers; (3) register allo

cation potentially can achieve lower bus traffic [GoHs86] and involves less overhead

than using a cache; (4) it is possible to put a reasonably large register set on the chip be

cause the area per stored bit in registers is smaller than in a cache [Henn84].

A large register set has been considered for fast data access since as early as 1978

[Russ78]. The VLSI technology has made it possible to implement a large register set

on a processor chip. Ditzel and McLellan surveyed numerous designs that take advan

tage of a large register set [DiMc82]. Those designs include Sites' advocating using ei

ther a renaming mechanism or banks of registers for efficiently using 100 to 1000 regis

ters [Site79], Dannenberg's proposal for using many registers for holding local variables

in block structured languages but avoiding the problem of aliasing or compiler complexi-

3

ty [Dann79], BBN cno•s design which divides 1024 registers into multiple register sets

and treats them as a circular buffer [Kral80], and finally, the multiple register windows

on the Berkeley RISC which has a total of 138 registers [PaSe82]. An even earlier case

is CRAY-1, which has 656 registers [Russ78]. Similar approaches are used in the

designs of the C Machine [DiMc82] and the Adept [WaF187] architectures.

Although there are different opinions that advocate using register allocation to keep

the operands in a smaller register set [Henn82, Hsu87, Radi83, Wall88], a multiple

register-window approach which requires more techniques on the hardware still is attrac

tive because of the ease of implementation of compilers and less register saving/restoring

overhead associated with procedure calls [GoHs86, PaSe82, Patt85]. Moreover, if the

hardware is able to handle overlapped register windows, the cost of passing parameters

of procedure calls can be reduced. It can be expected that, with the multiple-register

window approach, two essential advantages can be achieved: (1) operands can be ac

cessed at high speed; and (2) memory traffic can be minimized.

Both Tanenbaum [Tane78] and Patterson, et al. [PaSe82] point out that the dynamic

percentage of the use of constants and scalar data in the average programs written in pro

cedural languages is approximately 75 percent. The constants can be encoded directly in

the instructions; the scalar data can be accommodated by registers; and the remaining 25

percent of data requires memory references. Hence, a load/store architecture (or

register-oriented architecture) with a reduced instruction set is chosen for the target

machine. This approach might increase the number of instructions, but in the tradeoff

between instruction bandwidth and data bandwidth, a reduced data bandwidth is desir

able.

Problem Statement

The objectives of this thesis are to extend the existing multiple-register-window ar

chitecture and to explore a new approach to supporting block-structured languages such

as Pascal, Ada, and Modula-2. The development of the target machine architecture,

which is subsequently referred to as HMA (Hypothetical Multiple-Register-Window Ar-

4

chitecture) in this thesis, involves the following subject matters:

(1) A major interest of this research is on the storage hierarchy that includes the on-chip

register set, caches, and the main memory. A large multiwindowing register set is placed

on the top of the storage hierarchy. However, there are several problems accompanying

the register set, such as the window overflow/underflow related to the dynamic

call/return, referencing registers with pointers that need memory addresses, the allocation

of overabundant local scalar variables and non-scalar data that cannot be held by the

register set, and the access to non-local variables. The Berkeley RISC's approach to

resolving the problems of window overflow/underflow and pointers to registers is

adopting a conceptual window stack which is a one-to-one mapping from registers to

memory and vice versa; and it resolves the rest of the problems with a conventional stack

for activation records. Both stacks imply a strict last-in-first-out (LIFO) nature of the

architecture. In HMA's strategy the stacks are replaced by contour cells that are similar

to the ones developed in the contour model. But the data structure of the contour cell is

extended, and a method which orchestrates the register windows and contour cells is

developed in Chapter 3.

(2) As the workhorse of HMA, the micro architecture of a pipelined load/store processor

is to be developed. Its hardware organization and instruction set are described in

Chapter 4.

(3) The entire design of HMA presented in Chapter 3 and Chapter 4 contains a simula

tion with two test programs, The Towers of Hanoi and The Shortest Path, both written in

assembly code then translated into HMA's machine code by an assembler written in the

A WK programming language. The simulator is written in the C++ programming

language. It generates traces and profile of the simulation as discussed in Chapter 5.

CHAPTER II

A REVIEW OF RELATED DESIGNS

This chapter reviews the previous designs of: (1) multiple-register-window architec

tures, (2) load/store architectures, and (3) the contour model, that constitute the founda

tion of this thesis.

Multiple-Register-Window Architectures

Patterson and Sequin point out that the procedure call is the most time-consuming

operation in the programs written in procedural languages [PaSe82]. On the Berkeley

RISC, multiple overlapped register windows are used to reduce the saving/restoring of

registers upon each procedure calVretum, and passing arguments/results to/from pro

cedures is through the overlapped registers instead of the memory. Those operations are

considered the major factors causing procedure calls to be slow.

The fundamental mechanisms of the overlapped register windows of the Berkeley

RISC are: (1) allocate a new window of registers upon each procedure call. A Berkeley

RISC processor has a large register set (138 general-purpose registers), divided into

eight windows. A pointer called CWP (current window pointer) points to the youngest

register window, which contains the parameters and local scalar variables of the most re

cently activated procedure. A procedure call advances the CWP forward and a new re

gister window is prepared for it; and the CWP ''backs out'' to restore the old register

window upon a procedure return; (2) the registers containing the outgoing arguments of

the caller and the registers containing the incoming arguments of the called procedure

overlap. Thus, the parent procedure copies the actual parameters to the child procedure's

input-argument registers before the control is transferred to the child procedure.

5

6

The set of registers available to every procedure are shown in Figure 1 t [PaSe82].

Six registers are available on each of the overlapped sections (HIGH and LOW); ten

registers on the LOCAL section are available for local scalar variables; and ten registers

on the GLOBAL section are available for the global scalar variables that are common to

all procedures; i.e., every procedure shares the same set of global registers. The new set

of registers that are allocated to each procedure activation are numbered from RlO to

R31. High registers R26 to R31 contain incoming arguments passed from the parent

procedure. Local registers R16 to R25 contain a procedure's local scalar variables. Low

registers RlO to R15 contain temporaries and outgoing arguments passed to the child

procedure. Registers RlO to R15 of the parent procedure become registers R26 to R31

of the child procedure. Thus, parameters are transferred by registers, without memory

references. Figure 2 illustrates an instance of nested calls, where procedure A calls

procedure B, which calls procedure C [PaSe82].

The multi-windowing register set of the Berkeley RISC is arranged as a circular

buffer to facilitate the allocation of register windows, so that when the register windows

are used up in the first cycle, another cycle is ready to start and reuse the register win

dows.

The Berkeley RISC maintains a window stack in the memory; it is referred to as a

conceptual window stack (CWS) [Kate85]. When the nesting depth of procedure calls is

so large as to use up all physical register windows, a window overflow occurs. The old

est register window(s) is (are) saved in the CWS upon a window overflow. Conversely,

a register window (or a series of register windows) is (are) restored from the CWS upon

a window underflow. The register saving/restoring caused by window

overflow/underflow automatically are handled by the hardware. In addition to the han

dling of overflow/underflow problems, the conceptual window stack of the Berkeley

RISC also provides the registers with addresses to solve for the problems of up-level ad-

t All figures are presented in Appendix D.

dressing and pointers to registers.

Hitchcock et al. [HiSp85] and Eickemeyer [Eick88] emphasize that Berkeley RISC's

multiple register windows have substantial contribution to its high performance. They

ran several trace-driven simulations on VAX 11nso, Motorola 68000, and RISC I, and

found that the performance gain achieved by the multiple-register-window scheme is

very significant even though the architectures vary.

7

The C Machine stack cache proposed by Ditzel and McLellan [DiMc82] also takes a

multiple-window approach, but the windows are implemented on a stack cache instead of

a register stack, and the window size for each procedure activation is variable. Neverthe

less, there is strong similarity between the structure of the C Machine stack cache and

the structure of the Berkeley RISC's conceptual window stack. Wakefield and Flynn im

plemented the Adept architecture at Stanford University as contour storage on multiple

register sets [WaF187]. In [Eick88], the register sets are organized as parallel stacks.

Other variations of the fixed-size multiple-register-window architecture are a reduced,

multi-size-register-windows, RISC architecture which was proposed by Huguet and

Lang [HuLa85] and a two-size, overlapping-register-windows, RISC architecture which

was proposed by Furht [Furht88].

Load/Store Architectures

The load/store architecture is also known as the register-oriented architecture. The

philosophy of the instruction set design of the load/store architecture class emphasizes

register-to-register operations with only load and store instructions accessing memory.

Both load and store instructions need multiple CPU cycles to execute, while most of the

other instructions operating on registers only need a single CPU cycle. Another

significant advantage of the load/store architecture is its effectiveness in lowering the

data bandwidth [Henn84]. CDC 6600 designed by Seymour Cray is conceived of as the

earliest load/store architecture; this computer architect also originates the Cray super

computers that belong to the same architecture class [Milu89].

8

Reduced-Instruction-Set Computers

The RISC architecture is a variant of the load/store architecture antecedent. The first

RISC machine is the ffiM 801, which was built in 1979 [Radi83]. David Patterson, Car

los Sequin, and their graduate students at University of California, Berkeley designed

and implemented RISC I and RISC II VLSI microprocessors which formally used the

acronym "RISC" [PaSe82]. About the same time, John Hennessy and his research

group at Stanford University embarked on their project of MIPS, another streamlined

VLSI microprocessor [Henn83]. And there have been many more RISC designs

developed by both academic and commercial organizations. Generally speaking, the

features of RISCs are: (1) They are load/store architectures and they take advantage of a

large set of general-purpose registers [Milu89, Patt85]; (2) A reduced instruction set is

used. Patterson pointed out that for the VAX -11, 20 percent of its instructions are

responsible for 60 percent of the microcode and are only 0.2 percent of all instructions

executed [Patt85]. Those complex instructions that lead to heavy microcode are primari

ly designed for emulating high-level-language statements, but as in the case of the

V AX-11, they are not used frequently. Further, they lengthen the clock period, and

thereby slow down the microprogram [Patt85, Radi83]. Hence, he proposed using a re

duced instruction set which contains only those primitive instructions that are as simple

as microinstructions and compiling programs down to microinstruction level [Patt85];

(3) Regular instruction format is used. The size of all RISC instructions is one word

long. Opcode and register operands should always be in the same place for all instruc

tions. This feature simplifies the instruction-decoding logic [Patt85]; (4) Simple address

ing modes are used. With few addressing modes, it is easier to map instructions onto a

pipeline, since the pipeline can be designed to avoid a number of computation related

conflicts [Milu89]; (5) Instruction pipelining is used for all RISCs to simultaneously exe

cute multiple instructions [Milu89, Patt85].

Both the mM 801 [Radi83] and the Intel80960 [MyBu88] microprocessor require

that all operands be aligned on boundaries consistent with their size, and the Stanford

9

MIPS provides only word addressing [Henn84]. There are differences among various

RISCs in their approaches to handling pipeline hazards. Both the ffiM 801 and the

Berkeley RISC use a hardware internal forwarding technique to avoid pipeline interlocks

[Patt85, Radi83]. The Stanford MIPS uses a reorganizer, which is a software interface

for its compiler, to prevent pipeline interlocks from occurring [Henn82].

Support to delayed branches is also important to RISCs. A delayed branch means the

instruction following a branch instruction in the source code is always fetched and

executed no matter whether the branch will be taken. The compiler can support delayed

branches by either rearranging the instructions or inserting no-operation instructions

following the branch instructions. The IBM 801, the Berkeley RISC, and the Stanford

MIPS use this mechanism in their architectures and compilers. Hennessy reported that

21 percent of CPU cycles could be saved by using delayed branches [Henn84].

In addition to the advantages of reduced memory traffic, execution speed-up, and a

highly regular hardware design, the RISC design also results in reducing control-unit

area due to the reduced instruction set [PaSe82].

The Contour Model

The contour model, proposed by Johnston, is a vehicle to interpret the block

structured process [Johns71]. It views the morphological structure in the procedural

language as nested contours; it presents this nesting property in a topographic map of

contours and defines the cellular storage organization of various objects.

In the contour model, algorithm and record of execution are disjoint but related com

ponents of a process. Johnston made the following definitions: ''A process is a sequence

of snapshots, each containing the invariant algorithm and a stage of the record of execu

tion. Both the algorithm and the record are basically nested sets of contours ... The

contour structure of the algorithm functions as a template for the formation of the con

tour structure of the record.''

An algorithm contour contains the code and compile-time information of the symbols

of the program block it represents. Algorithm contours spawn their record-of-execution

10

counterparts, which are referred to as record contours in Johnston's paper, during run

time. In his paper, Johnston demonstrates the execution of SAM, an Algol-60 program,

with a series of snapshots of the algorithm and the record of execution. The

allocation/deallocation of record contours follows the change of the locus of control (or

the site of activity). The locus of control is realized by the virtual processor with two

pointers in its cell- an environment pointer (ep) and an instruction pointer (ip). The

access environment of a virtual processor comprises the record contour pointed to by ep

and all the record contours enclosing that record contour. They are extension of the

activation records linked by access links in the stack model [Aho86].

Figure 3 illustrates the generic format of the contour cell described by Johnston

[Johns71]. The organization part of a contour cell consists of a contour valid bit (cvb)

and three special subcells: static link, antecedent link, and height; the residence part con

tains the declaration array subcells. The static link of contour A whose height is i+ 1

must point to contour B which both has height i and immediately encloses contour A.

The antecedent link of a record contour must point to an algorithm contour of the same

height. The antecedent links of algorithm contours are left unspecified. The height of a

contour indicates how deep it is nested. A contour which is not enclosed by any con

tours has a 0 height and has a null static link. The array subcells contain the parameters,

variables, labels, and the return parameter that a procedure/block has access to. Every

label and the return parameter consists of two pointers: an environment pointer (ep) and

an instruction pointer (ip), together they can direct the virtual processor to a specific site

of activity and to branch to a specific instruction.

Following the 1971 paper, Johnston developed the Contour Model Architecture

(CMA) and the Contour Model Assembly Language (CMAL) [Johns80]. In his words,

CMA is a relatively conventional, stack-oriented architecture whose tagged record struc

ture and assembly language are intended to be implemented in microcode. In CMA, the

cell structures are defined formally as combinations of mono-records and/or poly

records. The assembly language CMAL contains 180 instructions. The execution of

most of the instructions includes updating an operand stack, from/onto which instruc-

tions retrieve/store informations in the form of mono-records or poly-records. The

Burroughs B5700/B6700 computers use data structures that strongly resemble those of

the contour model's. Organick' s monograph [Orga73] contains· documentation of the

B5700/B6700 series.

11

Two more features provided by the contour model are proliferation of processors and

cell retention. The proliferation of processors is for realization of the multiple-activity

processes, which for example may be operating system processes, tasking, or coroutines.

The principle of cell retention is: a storage cell C in the record of execution of a process

must be retained; i.e., not be deallocated, if either Cis an awake virtual processor or if

one or more pointers still points to C which thereby remains accessible.

Instead of fully exploiting the versatility of the contour model, this thesis follows its

concepts only to the extent of using contour cells.

CHAPTER Ill

THE RUN-TIME STORAGE OF HMA

The storage hierarchy associated with the scope of this thesis includes the on-chip

multi-windowing register set, caches, and the virtual memory. This chapter discusses the

management of HMA's run-time storage, especially the multi-windowing register set and

the virtual memory.

The Multi-Windowing Register Set

Like the Berkeley RISC predecessor, multiple windows of registers are incorporated

in the HMA design, and they are arranged as a circular buffer to let the programmer have

an illusion that the number of register windows logically is unbounded.

Figure 4 illustrates the circular buffer organization which is a modification of the

Berkeley RISC's [Kate85]. Two pointers, the saved-window pointer (SWP) and the

current-window pointer (CWP), are used to keep track of the allocation of register win

dows. SWP points to the window which is most recently saved in the memory due to a

window overflow (the cause and handling of window overflow are discussed later on this

section). CWP points to the window of the most recently activated procedure. As

shown in snapshot (a), eight register windows (wO to w7) are physically available, and

six of them (wO to w5, that are marked in shade) are occupied. A register window, as

delimited by solid lines, contains the incoming arguments (denoted as a procedure's

name followed by .in) and the local scalar variables (denoted as a procedure's name fol

lowed by Joe) of a procedure. For the convenience in notation, the overlapped registers

that contain the outgoing arguments of the parent procedure's are depicted as belonging

to the window of the child procedure's in which they constitute the incoming arguments.

12

The windows grow clockwise in the circular buffer as the nesting depth of procedure

calls increases. When the circular buffer is fully loaded; i.e., in case of window

overflow, the oldest windows must be spilled into memory.

13

The following hypothetical case demonstrates this scenario. If procedure F in

snapshot (a) calls procedure G, then it writes the parameters into its outgoing-argument

registers (the incoming-argument registers of G) and executes a call instruction. The call

instruction moves CWP forward by one window in the circular buffer. The snapshot of

the circular buffer right after performing ''F calls G'' is illustrated in snapshot (b). If G

calls another procedure, H, then an overflow trap is invoked immediately after the call

instruction is executed; otherwise H may destroy the contents of A.in, the incoming

argument registers of A, in case that H further calls another procedure. The overflow

trap transfers control to the window-overflow handler, an interrupt service routine, which

then saves A.in and A.loc of window 0 in the memory and moves SWP forward by one

window to the beginning point of B.in. The snapshot of the circular buffer after per

forming "G calls H" is illustrated in snapshot (c). From the observation on this exam

ple, an overflow of register windows occurs when a call instruction attempts to modify

CWP and make it equal to SWP.

The underflow of register windows is handled in an analogous way. A return instruc

tion moves CWP back by one window (counter-clockwise in the circular buffer in Figure

4). When a return causes CWP to coincide with SWP, an underflow happens and control

is transferred to the window-underflow handler which restores the current register win

dow from memory and moves SWP backward by one window.

Although the cost of handling window overflow/underflow is expensive, previous

research has found that typically the fluctuation of nesting depth for programs written in

C and Pascal are fairly small. In other words, programs seldom execute a long sequence

of nested calls and followed by a long sequence of returns [DiMc82, Patt85]. Thus, it is

not a large problem for the multiple-register-window scheme to deal with the rare oc

currence of window overflows and underflows.

14

Organizing the Objects in Virtual Memory

Contour Cells

The on-chip storage has limitations. First, register windows must be spilled into

memory in case of window overflow. Second, registers are not suitable for storing non

scalar data. Third, sometimes the register set is not large enough to hold all of the scalar

variables in a program. And fourth, non-local data must be stored or retrieved into/from

main memory rather than registers. The Berkeley RISC uses a conceptual wfudow stack

and a conventional activation-record stack in handling these problems. However, Johns

ton points out that there are two unfortunate connotations - the strict LIFO nature and

the limitation for multitasking applications - that are associated with the stack model

[Johns71]. Hence he proposed the contour model, in which a process' run-time environ

ment consists of two components: the algorithm and the record of execution; both are

data structures consisting of contour cells. In the following text and figures, the contour

cells that dynamically are allocated to the record of execution are referred to as execution

contours, and the contour cells of the lifetime-invariant algorithm are referred to as algo

rithm contours. Opposed to the stack model where the activation records are organized

as contiguous frames on a last-in-first-out basis, rather, the contour cells can flexibly be

managed with a series of threads.

Figure 5 illustrates the organization of an execution contour, in which both the control

record and the data record are combined together. The control record further is divided

into two subrecords. The register-spilling-information subrecord contains the base

relative word offsets of those receptacles which is tied to their register counterparts (r16

to r31 in a register window). Each register's offset is an 8-bit item in which the most

significant bit is a valid offset bit (vob) where a one indicates that the following word

offset is valid and otherwise a zero indicates the invalidity of that offset. The thread

subrecord contains four pointers: a-link (the antecedent link) points to an algorithm con

tour which is the execution-contour's template in the algorithm; s-link (the static link)

points to the execution contour which immediately encloses the execution contour to

15

which the static link belongs; z.ip functions as a saved program counter; z.ep points to

the execution contour which is both innermost to the instruction which z.ip points to and

about to be the locus of control (or site of activity) when the block exit happens. The

data record contains the input arguments, the local scalar variables, the base addresses of

local arrays that are allocated in the heap, and other local data structures.

The Window Activation Vector and the Register Spilling Algorithm

When a procedure is activated, a register window as well as an execution contour are

prepared for its use. The allocation of register windows was discussed on last section.

The allocation of an execution contour is explicitly defined by a memory-allocation in

struction which is interpreted into a system routine at run-time. After the allocation of

an execution contour, a base register specified in the memory-allocation instruction con

tains the base address of that execution contour, which is also automatically kept in the

window activation vector (W A V). As illustrated in Figure 6, the W A V is an array of re

gisters maintaining the threads of existing execution contours that are represented by

c 0, C1• and c J in the figure.

Unlike the circular-buffer organization of the register windows, the WA V registers

are straightened and the number of elements in this vector is multiple times the number

of register windows that are physically available. In this case, 32 W A V registers are

available and they are capable of handling 32 nested procedure calls. Two indexes to the

W A V registers, SWP and CWP , are the 5-bit saved-window pointer and the 5-bit paw piW

current-window pointer in the processor status word. Actually, the SWP and CWP used

by the register windows are the three least significant bits of SWP pew and CWP pew , respec

tively. SWP and CWP are advanced (i.e., moved right-hand-bound in Figure 6) or pn paw

backed up (i.e., moved left-hand-bound in Figure 6) when they need to be relocated upon

the allocation/deallocation of register windows discussed on last sectiont. SWP delim-paw

t Note that SWP and CWP contain the carry-oven as the SWP and CWP discussed on lut section arc incremented.

its the stream of the elements (WA v 0 to w A vi in Figure 6) that stand for the windows

spilled into memory. The elements following WAV. delimited by SWP until WAV·.
1 psw J

16

delimited by CWPpsw stand for the windows that are still using the on-chip storage. The

window activation vector is an important aid to the saving/restoring of register windows

upon window overflow/underflow. The algorithms of saving and restoring register win

dows are written inC-like pseudo-code and are shown as follows.

/***
* Saving a register window in the main memory in case of
* window overflow
***/

if (CWP psw - SWP psw = 8) /*overflow* I
{

}

/* Copy the pointer to the base of the target execution
* contour where the register window is spilled.
*I

BasePtr = WAV [++SWPpsw];

/* Consult the register spilling information and store
* the object GPR (general-purpose register) into the
* appropriate receptacle in the target execution contour
* if and only if the valid offset bit (vob) is set.
*I

for (reg_ no = FirstLocalReg; reg_no <= LastLocalReg; reg_no++)
if (BasePtr->RegSpilllnfo[reg_no].vob == 1)
/* save the register in memory*/

BasePtr->DataCell[BasePtr->RegSpilllnfo[reg_no].offset] \
= GPR[current_window][reg_no];

else /* doing nothing * /;

/***
* Restoring a register window from the main memory in case of
* window underflow.
***/

if (CWP sw = SWPpsw) /*underflow* I
{ p

/* Copy the pointer to the base of the object execution
* contour from which the register window is restored.
*I

BasePtr = W A V [SWP psw -];

}

/* Consult the register spilling information and load
• the target GPR (general-purpose register) with the
* appropriate receptacle in the object execution contour
* if and only if the valid offset bit (vob) is set.
*I

for (reg_no = FirstLocal.Reg; reg_no <= LastLocal.Reg; reg_no++)
if (BasePtr->RegSpilllnfo[reg_no].vob == 1)
/* restore the register from memory *I

GPR[current_window][reg_no] = \
BasePtr-> DataCell[BasePtr->RegSpilllnfo[reg_no].offset];

else /* doing nothing * /;

Pointers to Registers and Non-Local Variables

17

The window activation vector also facilitates handling pointers to registers. The cus

tomized address for a register contains a [tag, window#, register#] triple. A tag of '' 11 ''

on the two most significant bits of the virtual address denotes a register address; if

SWP S window# S CWP then the reference automatically is directed to a register pN pw

window; register# is the offset of the target register within the register window. If win-

dow# < SWP pw then the reference goes to an execution contour.

To reference a non-local variable, a [levels-back, id#] pair must be known at

compile-time. levels-back is the difference in nesting depth between the procedure/block

which references the non-local variable and the procedure/block which declares it as a lo

cal variable. id# is the offset of the non-local within its execution contour. A display of

access environment according to the locus of control is updated during run-time by trac

ing the static links. Thus, the receptacle of a non-local variable can be pinpointed by us

ing levels-back to fetch a thread of execution contour from the display vector and using

id# to find out the non-local's offset within that execution contour.

An Instance of Block-Structured Program

A block-structured program consists of nested algorithm contours that spawn execu

tion contours at run-time. An algorithm contour contains the code and the definition of

the variables of a procedure/block. Algorithm contours remain invariant during execu-

18

tion, while the contents of execution contours may vary during execution. Also unlike

the execution contours, there is only one algorithm contour for each procedure or block.

A static height is associated with every algorithm contour according to the nesting depth

of the procedure/block in the program. For example, Figure 7 shows a Pascal program in

which the height of the algorithm contour of MAIN is 0; both the height of the algorithm

contour of BB and the height of the algorithm contour of DD are 1; the height of the

algorithm contour of CC is 2. The execution contours spawned by a specific algorithm

contour have the same static height.

Both Figure 8 and Figure 9 illustrate a process snapshot which may occur during the

execution of the program in Figure 7. In this example, the actions that have taken place

so far are the following: MAIN calls procedure BB; BB makes a recursive call; and pro

cedure CC is called during the execution of this recursive call. Figure 8 shows the topo

graphic map of the nested execution contours in this snapshot. Figure 9 is a more accu

rate portrait of the cellular structures of the run-time objects in the same snapshot. How

ever, for those execution contours, only the control-organization part is shown in this

figure, and the configuration of the algorithm is omitted since it is identical to the one

shown in Figure 7. To differentiate execution contours from algorithm contours, an

apostrophe (or a couple of apostrophes) is put on the upper-right corner of every execu

tion contour's name. The antecedent link of each execution contour respectively points

to its template, an algorithm contour. The static link, z.ip, and z.ep of MAIN' are null

pointers. The static link of BB', the execution contour which was formed right after the

first call on procedure BB, is a pointer to MAIN'; z.ip of BB' points to the next-to

execute instruction in the algorithm of MAIN after the exit of BB'; z.ep of BB' points to

MAIN' because the locus of control will be in MAIN' after the exit of BB'. The static

link of BB", the execution contour which was formed right after the second call (a recur

sive call) on procedure BB, is a pointer to MAIN'; z.ip of BB" points to the next-to

execute instruction in the algorithm of BB after the exit of BB"; z.ep of BB' points to

BB' because the locus of control will be in BB' after the exit of BB". The static link of

CC" points to BB" because the locus of control was in BB" when procedure CC was

19

called; z.ip of CC" points to the next-to-execute instruction in the algorithm of BB after

the exit of CC"; z.ep of CC" points to BB" because the locus of control will be in BB"

after the exit of CC". The window activation vector- w A v 0, W A v 1, w A v 2 and w A v 3

-indicates that the order of the activations of procedures is: MAIN', BB', BB", CC".

However, since the present locus of control is in CC" (as shown in Figure 8 with a ''@ ''

in it), therefore the elements in the display - D 0 , D 1 and D 2 - point to MAIN', BB ",

and CC", respectively.

CHAPTER IV

THE PROCESSOR ARCHITECTURE OF HMA

A 32-bit microprocessor is intended to be the engine of the present HMA design.

This chapter discusses the microarchitecture and the instruction set of the target proces

sor design.

The Microarchitecture

Figure 10 illustrates the layout of the hardware units and the data path on the HMA

processor. The hardware organization of the HMA processor is described as follows.

Instruction-Fetch Unit

The instruction-fetch unit prefetches instructions from the instruction cache and

dispatches an instruction to the instruction decode unit during every clock period. It has

three instruction pointers: the Fetch Instruction Pointer (PIP), the Current Instruction

Pointer (CIP), and the Execute Instruction Pointer (XIP). PIP specifies the address of the

instruction which is latched for the Current Instruction Register (CIR). CIP specifies the

address of the instruction which is in CIR and is being decoded by the instruction decode

unit. XIP specifies the address of the instruction which is dispatched to the integer exe

cution unit. This arrangement, like the Intel80960's [MyBu88], takes precaution of sav

ing the state of the processor and allows the machine to recover from exception handling.

Instruction-Decode Unit

The instruction-decode unit is responsible for decoding the instruction delivered by

the instruction fetch unit, looking up the jump table for microinstruction sequencing, and

sending the identifications of the referenced registers to the integer-execution unit, which

20

21

thereafter fetches the register operands. If the instruction decode unit detects a memory

referencing instruction, then it prepares the integer-execution unit to compute the

effective address of the memory operand.

Control Unit

The control unit contains a microprogram sequencer and a microprogrammed

control-memory. It generates the control signals that activate or deactivate the data paths

of the processor to execute the instruction decoded by the instruction-decode unit.

Integer-Execution Unit

The integer-execution unit contains the most important resources of this microengine.

The ALU-Shifter-Merger (ASM) sub-unit carries out the micro-operations of the compu

tation instructions. A register file comprising 138 general-purpose registers (that in

cludes ten global registers and eight register windows with sixteen registers belonging to

each window) has four ports- two read ports and two write ports. The ASM sub-unit

fetches source operands (srcl, src2 and/or an immediate operand) through the read ports

(for srcl and src2), and the result of a computation is sent to the result bus and written

into the destination register through a write port. Another write port is used to load a re

gister with the data on the external data-bus. The external data bus transfers data from/to

the data cache for load/store instructions, that take more than one clock cycle.

Load/Store Unit

The load/store unit has two buffers- an input FIFO (first-in-first-out) buffer and an

output FIFO buffer - to resolve the bus conflict with consecutive loads and stores. If a

load or a store which is using a bus cycle is followed by a load instruction, then the latter

is suspended and the effective address is held in the input FIFO until a new bus cycle is

available; on the other hand, if a load or a store which is using a bus cycle is followed by

a store instruction, then the latter is suspended and both the effective address and data are

held in the output FIFO until a new bus cycle is available.

22

Instruction Pipelining

The instruction pipeline has four pipestages: instruction fetch (IF), instruction decode

(ID), instruction execution (EX), and operand write-back (WB). For an instruction

which performs only register-to-register operations, it is latched for the input of CIR dur

ing pipestage IF; it is decoded by the instruction decode unit and the source operands are ·

fetched during pipestage ID; it triggers an ALU operation during pipestage EX; and the

result operand is written into the destination register during pipestage WB. Normally,

each pipestage takes one clock cycle to finish. As shown in Figure 11, a maximum of

four instructions can concurrently be in the pipeline. However, the execution pipestage

of a load/store instruction takes at least two clock cycles - one for computing the

effective address and one for transferring data from/to cache. In this case, a scenario

without stalling the pipeline is used: the instructions following a load or store continue

being executed while the load/store instruction is accessing memory until the register

which is being loaded is needed for a source operand. A register-scoreboarding

hardware must be incorporated in this approach. A register is marked as invalid in the

scoreboard during the execution of a load, and when the load is completed, the invalid

mark is removed. If an instruction references a register which is marked as invalid then

the pipeline is blocked until the register is available; otherwise the pipeline continues as

usual. Sometimes the pipeline is blocked because of data dependencies. Figure 12 illus

trates an example of read-after-write data dependency. The "add" instruction modifies

r3 which is a source register of the ''and'' instruction. r3 is score boarded during the

instruction-decode pipestage of ''add''; hence ''and'' cannot fetch r3 until ''add'' writes

the result into r3 and removes r3 from the register scoreboard. The consequence is the

"bubble" pipestages; it is also referred to as the pipeline interlock. Usually, an optimiz

ing compiler would detect and avoid data dependencies during code generation.

Another kind of pipeline interlock is caused by branches. Since the target of a branch

is not known until the execution pipestage of the branch instruction, the fetching of the

instructions following the branch must suspend. In this case, an optimizing compiler

23

moves an useful instruction to the place immediately after the branch instruction, and the

instruction pipeline fetches, decodes, and executes this instruction as usual while it is

processing the branch instruction. An example is shown in Figure 13. In code sequence

(b), the subtract instruction is executed before the control is branched to the instruction at

Ll. The execution of the rearranged code sequence must yield the same result as the

original code sequence. This approach is called a delayed branch. The delayed-branch

approach effectively utilizes one instruction slot on each instruction branch; otherwise

the CPU will sit idle.

The Instruction Set

The assembly-instruction set of HMA is listed in Appendix A. It has forty instruc

tions of four instruction types: computation instructions, data-transfer instructions,

control-flow instructions, and extended instructions. Each instruction type may have

several groups of instructions so that all the instructions of each group have a uniform

instruction format. Essentially, these instructions are selected from the instruction set of

the Hewlett-Packard Precision Architecture [HP86], but a few instructions; i.e., the

unconditional-branch instructions, are redefined. Further, four new instructions are ex

trapolated for HMA and given an identical instruction format under the category of ex

tended instructions.

Only data-transfer instructions- i.e., loads and stores- can access memory. The

addressing modes used by this group include: (1) base-plus-displacement mode, in which

an operand's virtual address is the sum of the following items: the value in a base regis

ter, a 14-bit signed displacement, and the value in a space register which identifies a

module of the virtual memory, and (2) indexed mode, in which an operand's virtual ad

dress is the sum of the following items: the value in a base register, the value in an index

register, and the value in a space register which identifies a module of the virtual

memory. Load Byte and Store Byte instructions are used for memory-mapped I/0 and

they reference absolute addresses. Load Immediate Left and Load Offset actually are not

memory reference instructions. They are included for loading 32-bit constants.

24

Branches can be conditional or unconditional ones. The target address of a branch

can be specified by using the following modes: (1) PC-relative with static displacement,

in which the target address is the location of the current instruction plus a 17-bit signed

word displacement which is encoded in the instruction, (2) PC-relative with dynamic dis

placement, in which the target address is the location of the current instruction plus a

shifted value of an index register, (3) base-relative with static displacement, in which the

target address is the value in a base register plus a 17-bit signed word displacement

which is encoded in the instruction, and (4) base-relative with dynamic displacement, in

which the target address is the value in a base register plus a shifted value of an index re

gister. Unconditional-branch instructions unanimously are dedicated to the procedure

call/return. Branch and Link ("bl") is used for intrasegment procedure-calls. The

branch address is the result of adding a 17-bit word-displacement, which is formed by

concatenating x-, y-, and z-field in the instruction, to the current instruction address.

Branch and Link External ("ble") is used for intersegment procedure-calls. The branch

address is the result of adding a 12-bit word-displacement, which is formed by con

catenating y- and z-field in the instruction, to the value in code-segment register x (x also

is encoded in the instruction), which identifies the code segment that contains the pro

cedure callee. For both "bl" and "ble" instructions, the sequential fetch-instruction

pointer is saved in register t before the address of the target of the branch is formed.

Branch Vectored ("bv") is used for both intrasegment and intersegment procedure

returns. The branch address is the sum of the values in register band register x.

The Extended Instructions category contains four instructions developed for HMA.

Customize Register Address ("era") assigns an address to any general-purpose register

which may belong in a procedure's register window. The new address is placed in regis

ter t, which thereafter is used to pinpoint the target register with a triple ['' 11' ', win

dow#, reg#] in its content. The binaries '' 11'' are the MSB 's of the new address which

identifies that the referenced item is a register; window# is equal to CWPpsw; and reg#

is encoded in im5-field in the instruction. Allocate Memory ("alloc") allocates a con

tiguous block in the memory module of execution contours (if s = 0) or in the heap (if s

= 1). len (whose complement is encoded in cleo-field) is the length (in bytes) of this

block. The base address of this block is placed in register b. No Operation ("nop") is

used for delayed branches. And the "ret" instruction terminates the user's program.

25

CHAPTER V

THE SIMULATION OF HMA

The simulation was developed on the Perkin-Elmer 3230 computer system. The

flowchart of the simulation process is shown in Figure 14. In the first phase, a test pro

gram prepared in HMA's assembly language is converted into HMA's machine code by

an assembler; in the second phase; a software simulator accepts the object file and the

d_ata requested by the test program as input and generates an intermixed trace/statistics

file in addition to the normal output of the test program; in the third phase, a simple

profiler sorts out the trace/statistics file and breaks it down into separate files; i.e., an

instruction-address trace-file, a data-address trace-file, a data-size statistics-file, a

window-depth statistics-file, and an execution profile.

The Test Programs

Two test programs, The Towers of Hanoi and The Shortest Path, are listed in Appen

dix B. The assembly-language format is rather intuitive. In the beginning of each code

segment (or algorithm contour), the register-spilling information and control threads of

the to-be-allocated execution contour are properly set up for the housekeeping work.

The assembly programmer does not need to worry about which register window it is us

ing, but the consistency of passing arguments to/from each caller/callee must be handled

carefully. The code is organized in such a way that the elimination of pipeline interlocks

caused by data dependencies and the utilization of delayed-branch slots are taken care of,

but however, one-hundred-percent optimization is not achieved.

26

27

The Assembler

A simple two-pass assembler was written in the A WK programming language

[Aho88]. The first pass of the assembler eliminates comments, labels, leading spaces,

and blank lines from an assembly program and assigns memory locations to the segment

identifiers and labels; thus filters the source assembly program into an intermediate file

which contains only segment identifiers and assembly instructions. The second pass

directly maps the assembly instructions into machine code and annotates the segment ad

dresses and segment lengths in the object file. The filename extensions used for the

assembly-program source file, the intermediate file, and the object file are '' .asm' ',

".tmp", and ".obj", respectively. The static sizes of the two test programs' object code

are listed on the table shown below.

TABLE I

THE MACHINE-CODE SIZE
OF THE TEST PROGRAMS

program machine-code size

Towers of Hanoi 792 bytes

Shortest Path 1372 bytes

The Simulator

The software simulator of HMA was developed in the C++ programming language

[Stro87]. The major components of this program are described as follows.

The Abstract Data Types of the Virtual Memory

The objects in the virtual memory consist of three abstract data types. They are im

plemented with classes in C++:

I*
Class program is an abstract data type that
handles the operations on the code module.

*I
class program {
instruction cell[CodeModuleSize];

public:
void read(unsigned addr, instruction& buffer);
void write(unsigned addr, instruction inst);
void dump();

};

/*
Class record is an abstract data type that
handles the run-time activation record.

*I
class record {
CELL* head; II pointer to the header cell
unsigned base; II base address
unsigned length; II record length

public:
record(unsigned size); II constructor
-record(); II destructor
void read(unsigned offset, void* bufaddr);
void write(unsigned offset, CELL item);

};

/*
Class heapobj is an abstract data type that
handles the vectors in the heap.

*I
class heapobj {

VecElem* head;
unsigned base;
unsigned length;

public:

II pointer to the header vector element
II base address
II vector length

heapobj(unsigned size); II constructor
'"heapobj(); II destructor
void read(unsigned offset, VecElem& buffer);
void write(unsigned offset, VecElem item);

};

28

29

Methods program::write() and program::read() are accessed only by the loader and the

instruction-fetch module, respectively. And program::dump() is included for debugging.

The organizations of classes record and heapobj are akin to each other. In both's initiali

zation stages, linked lists are constructed as the data structures for each class' read() and

write() methods to access. Both classes' functionalities include interpreting load and

store instructions (with methods read() and write(), respectively), albeit there is a subtle

point of method record::read(), whose argument bufaddr use a void-type pointer, because

in addition to ordinary integers that are accepted by the CELL element, it also· processes

the register-spilling information upon window overflow/underflow. The register-spilling

informations of four registers are grouped into a word which has the following format:

struct RSI_ WORD {
unsigned vobO: 1;
unsigned ofsO: 7;
unsigned vob1: 1;
unsigned ofs1: 7;
unsigned vob2: 1;
unsigned ofs2: 7;
unsigned vob3: 1;
unsigned ofs3: 7;

};

II valid-offset bit of register 4*k
II offset of register 4*k
II valid-offset bit of register 4*k+1
II offset of register 4*k+ 1
II valid-offset bit of register 4*k+2
II offset of register 4*k+2
II valid-offset bit of register 4*k+3
II offset of register 4*k+3

Miscellaneous Objects in the Simulation

There are a variety of run-time objects defined as global variables in the simulator

program. They include a global-register array, a local-register array, an array of flags on

the register scoreboard, the special-purpose registers like the processor-status word and

code-segment registers, a code module which is an instance of the program class, execu

tion contours of the record class, heap vectors of the heapobj class, and an array

representing the window-activation vector. The virtual processor, a major object of the

simulation, is left for an individual discussion later.

Loader

The loader() function installs a test program's machine code in the code module in ac-

cordance with the segment addresses and segment lengths annotated in the object file.

Code-segment registers are properly set up during the loading procedure.

Vinual Processor

The vinual processor is an abstract data type which defines the operations on the

instruction pipeline and packages the information related to those operations. The

definition of a vinual processor is as follows.

class pipeline {
unsigned fip, II fetch-instruction pointer

cip, II current-instruction pointer
xip, II execute-instruction pointer
gip; II graduate-instruction pointer

INST cir, II instruction buffer between fetch and decode stages.
id_latch, II instruction buffer between decode and execute stages.
exc_latch; II instruction buffer between execute and write-back stages.

short dd, II data-dependency semaphore
blocked, II pipeline blocked
close_pipe; II pipeline· terminates

unsigned t_resume; II the time for resuming the pipeline.
public:

pipeline(); II constructor
void fch_inst(program&); II fetch instruction
void dec_inst(); II decode instruction
void exc_inst(); II execute instruction
void writeback(); II write back result
void xtrace(); II instruction trace
int chk_status(); II check pipeline status

};
pipeline vp; II virtual processor

30

Figure 15 illustrates the flowchart of the instruction pipelining. The flowcharts of the

four pipestage-methods- namely, pipeline::fch_inst(), pipeline::dec_inst(),

pipeline::exc_inst(), and pipeline::writeback()- are illustrated on Figure 16 through

Figure 19. Several architectural parameters- e.g., the number of register windows, the

number of global registers, the number of local registers in a register window, and the

maximum nesting depth of procedure calls, etc. - are defined in the header files and can

31

be changed for different platforms.

The Window-Overflow Handler and the Window-Underflow Handler

Two functions, window _overflow() and window _underflow(), respectively emulate

the window-overflow handler and window-underflow handler that implements the

register-spilling algorithm discussed in Chapter 3. Saving and restoring register

windows are carried out by calling the execution contour's member functions write() and

read(), respectively.

The Execution Monitor

During the simulated execution of a test program, various performance-related metric

values are monitored to reflect the run-time statistics, or the execution profile. They

include the execution time in clock cycles, dynamic instruction count, dynamic branch

count, saved CPU cycles due to the delayed-branch approach, the dynamic count of no

operation instruction, the utilization of the buses, the dynamic count of loads and stores,

the number of window overflow /underflow, and the number of register saved/restored.

Also presented on the profile are the register-usage table, which reports the accumulated

reference counts of the general-purpose registers, and the instruction histogram, which

repons the times and percentage each instruction is executed among the instruction set.

Simulation Results

The results of a simulation-run are generated through the following sequential

processes. First, run the assembler by issuing:

awk -f asm source-assembly-program intermediate-file

Second, run the simulator by issuing:

sim -option object-file tracelstats-file

At last, run the profiler by issuing:

awk -f pfl tracelstats-file [>filename 1

The options used by the simulator are:

i - enables the instruction trace;

d - enables the data trace;

id - enables both instruction trace and data trace;

others - neither instruction trace nor data trace is enabled.

32

If enabled, the instruction address and/or the data address are/is collected every clock

cycle in the trace files. The simulator samples the data size allocated to the test program

and the nested depth of procedure calls; i.e., the number of active windows, every 50

clock cycles; they are collected in different files by the profiler and can be produced as

line charts by the commercial spreadsheet program. The standard output of the profiler,

the execution profile, can be redirected to a file. Appendix C shows two sample results

- one is generated by running The Shortest Path with eight nodes, and another is

generated by running The Towers of Hanoi with 15 disks. Figure 20 through Figure 23

show the fluctuations of the depth of the window stack and the data size of the two

simulation-runs.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND FUTURE WORK

This thesis presents the design and simulation of HMA, which contains a pipelined,

load/store and multiple-register-window processor architecture and a method of manag

ing its run-time storage. The contour model, rather than the conventional stack model,

was adapted to handle the dynamic data structures at the run-time. The target processes

for this computer architecture are the programs written in block-structured languages

such as Pascal, Ada, or Modula-2.

A simulation was conducted to investigate this computer architecture. Two test pro

grams, The Shortest Path and The Towers of Hanoi, were used in this simulation. They

were translated into assembly programs from their Pascal-language counterparts by

hand-coding in the assembly-instruction set developed in this thesis. The assembler was

written in the A WK programming language to translate the assembly programs into

HMA's machine code. The simulator was developed in the C++ programming language,

which generates both instruction and data traces as well as the statistics of the execution

of the test programs. From the two tentative simulation-runs, the HMA on the average

executes an instruction for 1.35 clock cycles; the average speed-up of delayed branches

is 19.78 percent; the fraction of memory-referencing instructions is 9.15 percent for the

Towers of Hanoi and 13.48 percent for the Shortest Path- the major factor of the

memory traffic is the housekeeping work (namely, storing register-spilling information

into execution contours and saving/restoring registers for occasional window

overflow/underflow) for the former and the frequent access of array elements for the

latter. There are many places in the test programs that can be optimized further.

In the preparation of test programs, considerable time was consumed in hand-coding,

33

34

optimization, and debugging. For the future work, a compiler must be built first so that a

substantial set of benchmarks may be selected for simulation. Further, the traces

generated by the simulator are useful data for the ultimate design of the caches.

BffiLIOGRAPHY

[Aho86] Abo, A. V ., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques,
and Tools, Second Edition, Addison-Wesley, 1986.

[Aho88] Aho, A. V., Kernighan, B. K., and Weinberger, P. J. The AWK Programming
Language, Addison-Wesley, 1988.

[Dann79] Dannenberg, R. B. "An Architecture with Many Operand Registers to
Efficienyly Execute Block-Structured Languages," Proceedings of the 6th Annual
Symposium on Computer Architecture, Aprll1979, pp. 50-57.

[DiMc82] Ditzel, D. R. and McLellan, H. R. "Register Allocation for Free: The C
Machine Stack Cache," Proceedings of the First Symposium on Architectural Support
for Programming Languages and Operating Systems, March 1982, pp. 48-54.

[Eick88] Eickemeyer, R. J. "Performance Evaluation of Multiple Register Set
Architectures and Cache Memories," Ph. D. dissertation, U. of lllinois at Urbana
Champaign, 1988;

[Furht88] Furht, B. "A RISC Architecture with Two-Size, Overlapping Register
Windows," IEEE Micro, Vol. 8, No.2, April1988, pp.67-80.

[GoHs86] Goodman, J. R. and Hsu, W. "On the Use of Registers vs. Cache to Minimize
Memory Traffic," Computer Architecture News, Vol. 14, No.2, June 1986, pp. 375-383.

[HaLi91] Harper ill, D. T. and Linebarger, D. A. "Conflict-Free Vector Access Using a
Dynamic Storage Scheme," IEEE Transactions on Computers, Vol. 40, No.3, March
1991,pp.276-283 ..

[Henn82] Hennessy, J., Jouppi, N., Baskett, F., Gross, T., and Gill, J.
"Hardware/Software Tradeoff's for Increased Performance," Proceedings of the First
Symposium on Architectural Support for Programming Languages and Operating
Systems, March 1982, pp. 2-11.

[Henn83] Hennessy, J. L., Jouppi, N. P., Przybylski, S., Rowen, C., and Gross, T.
"Design of a High Performance VLSI Processor," Proceedings of the 3rd Caltech
Conference on VLSI, March 1983, pp. 33-54.

[Henn84] Hennessy, J. L. "VLSI Processor Architecture," IEEE Transaction on
Computers, Vol. C-33, No. 12, Dec. 1984, pp. 1221-1246.

35

[HiSp85] Hitchcock ill, C. Y. and Sprunt, H. M. Brinkley. 11Analyzing Multiple
Register Sets," Proceedings of the 12th International Symposium on Computer
Architecture, Boston, MA, June 1985, pp. 55-63.

[HP86] HP 3000/930 and HP 9000/840 Computers, Precision Architecture and
Instruction Reference Manual, Hewlett-Packard Company, 1986.

[Hsu87] Hsu, Wei-Chung. "Register Allocation and Code Scheduling for Load/Store
Architectures," Ph. D. dissertation, U. of Wisconsin at Madison, 1987.

36

[HuLa85] Huguet, M. and Lang, T. "A Reduced Register File for RISC Architectures,"
Computer Architecture News, Vol. 13, No.4, Sept. 1985, pp. 22-31.

[HwBr84] Hwang, K. and Briggs, F. A. Computer Architecture and Parallel Processing,
McGraw-Hill, 1984.

[Johns71] Johnston, J. B. "The Contour Model of Block Structured Processes,"
SIGPLAN Notices, Vol. 6, No.2, Feb. 1971, pp. 55-82.

[Johns80] Johnston, J. B. "The Contour Model Architecture and Assembly Language,"
unpublished monograph, revised in August 1980.

[Kate85] Katevenis, M. G. H. Reduced Instruction Set Computer Architectures for
VLSI, MIT Press, Cambridge, MA, 1985.

[Kral80] Kraley, M., Rettberg, R., Herman, P., Bressler, R., and Lake, A. "Design of a
User-Microprogrammable Building Block," Proceedings of the 13th Annual
Microprogramming Workshop, Dec. 1980, pp. 106-114.

[Milu89] Milutinovic, V. M. and Gimarc, C. E. "RISC Principles, Architecture, and
Design," High-Level Language Computer Architecture, edited by V. M. Milutinovic,
Computer Science Press, 1989, pp. 1-64.

[0rga73] Organick, E. I. Computer System Organization: The B5700/B6700 Series,
Academic Press, 1973.

[PaSe82] Patterson, D. A. and Sequin, C. H. "A VLSI RISC," IEEE Computer, Vol. 15,
No. 9, Sept. 1982, pp. 8-21.

[Patt85] Patterson, D. A. "Reduced Instruction Set Computers," _Communications of the
ACM, Vol. 28, No. 1, Jan. 1985, pp.8-21.

[Radi83] Radin, G. "The 801 Minicomputer," ffiM Journal of Research and
Development, Vol. 27, No.3, May 1983, pp. 237-246.

[Russ78] Russell, R. M. "The CRAY-1 Computer Systems," Communications of the
ACM, Vol. 21, No.1, pp. 63-72, Jan. 1978.

[Site79] Sites, R. "How to Use 1000 Registers," Proceedings of 1st Caltech Conference

on VLSI, Calif. Inst. Tech., Pasadena, California, Jan. 1979, pp. 527-532.

[SoFr91] Sohi, G. and Franklin, M. "High-Bandwidth Data Memory Systems for
Superscalar Processors," Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, Apri18-11,
1991, pp. 53-62.

37

[Stro87] Stroustrup, B. The C++ Programming Language, Addison-Wesley, 1987.

[Tane78] Tanenbaum, A. S. "Implications of Structured Programming for Machine
Architecture," Communications of the ACM, Vol. 21, No.3, March 1978, pp. 237-246.

[WaF187] Wakefield, S. P. and Flynn, M. J. "Reducing Execution Parameters Through
Correspondence in Computer Architecture," ffiM Journal of Research and Development,
Vol. 31, No.4, July 1987, pp.420-434.

[Wall88] Wall, D. W. "Register Windows vs. Register Allocation," SIGPLAN Notices,
Vol. 23, No.7, July 1988, pp. 67-78.

APPENDIXES

38

APPENDIX A

THE ASSEMBLY-INSTRUCTION SET AND

MACHINE-CODE FORMATS OF HMA

39

40

I. Computation Instructions

1. Arithmetic/Logical:

I op r2 rl ext t

6 5 5 7 5

assembly instruction annotation

add,cond r1, r2, t Add, op=02 hex, ext=30 hex

addc,cond r1, r2, t Add with Carry, op=02 hex, ext=38 hex

and,cond r1, r2, t And, op=02 hex, ext=10 hex

or,cond r1, r2, t Inclusive Or, op=02 hex, ext=12 hex

sub,cond r1, r2, t Subtract, op=02 hex, ext=20 hex

xor,cond r1, r2, t Exclusive Or, op=02 hex, ext=14 hex

sh2add,cond r1, r2, t Shift Two and Add, op=02 hex, ext=34 hex

sh3add,cond r1, r2, t Shift Three and Add, op=02 hex, ext=36 hex

2. Arithmetic Immediate:

op r t I c H·l imll

6 5 5 3 1 1 11

assembly instruction annotation

addi,cond i, r, t Add to Immediate, op=2D hex, e=O

41

3. Shift:

op r2 rl t

6 5 5 3 3 5 5

assembly instruction annotation

shd,cond rl, r2, p, t Shift Double, op=34 hex, ext=2

4. Extract:

op r t p clen

6 5 5 3 3 5 5

assembly instruction annotation

extru,cond r, p, len, t Extract Unsigned, op=34 hex, ext=6

extrs,cond r, p, len, t Extract Signed, op=34 hex, ext=7

5. Deposit:

op t r/im5 cp clen

6 5 5 3 3 5 5

assembly instruction annotation

dep,cond r, p, len, t Deposit, op=35 hex, ext=3

depi,cond i, p, len, t Deposit Immediate, op=35 hex, ext=7

II. Data-Transfer Instructions

1. Base-plus-Displacement Mode:

op b

6 5

assembly instruction

ldw d{s,b), t

stw r, d(s,b)

ldo d(b), t

ldb d(b), t

stb r, d(b)

2. Indexed Mode:

op

6

b

5

im14

annotation

Load Word, op=12 hex

Store Word, op=lA hex

Load Offset, op=OD hex

Load Byte, op=lO hex, s=O

Store Byte, op=18 hex, s=O

X

14

5 2 1 1 2 4 1

assembly instruction annotation

t

5

ldwx,cmplt x(s,b),t Load Word Indexed, op=03 hex, ext=2

3. Long Immediate:

op t/r im21

6 5 21

assembly instruction annotation

ldil i, t Load Immediate Left, op=08 hex

42

43

III. Control-Flow Instructions

1. Conditional Branches:

op r2/p rl/im wl

6 5 5 11

assembly instruction annotation

movb,cond,n rl,r2,target Move and Branch, op=32 hex

movib,cond,n i,r2,target Move Immediate and Branch, op=33 hex

combt,cond,n rl,r2,target Compare and Branch if True, op=20 hex

combf,cond,n rl,r2,target Compare and Branch if False, op=22 hex

comibt,cond,n i,r2,target Compare Immediate and Branch if true, op=21 hex

comibf,cond,n i,r2,target Compare Immediate and Branch if false, op=23 hex

addbt,cond,n i:l ,r2,target Add and Branch if True, op=28 hex

addbf,cond,n rl ,r2,target Add and Branch if False, op=2A hex

addibt,cond,n i,r2,target Add Immediate and Branch if true, op=29 hex

addibf,cond,n i,r2,target Add Immediate and Branch if false, op=2B hex

bb,cond,n rl, p, target Branch on Bit, op=31 hex

2. Unconditional Branches:

op b/t X y H·l
1 1 6 5 5 11

assembly instruction annotation

bl,n target, t Branch and Link, op=3A hex, ext=O

ble,n target, t Branch and Link External, op:3A hex, ext=3

bv ,n x(b) Branch Vectored, op=3A hex, ext=6, y=z=O

IV. Extended Instructions

op b/t

6 5

assembly instruction

era reg#, t

alloc,s len, b

nop

ret

im5 clen

5 2 3

annotation

Customize Register Address,
op=OC hex, ext=1, s=O, clen=O

Allocate Memory,
op=OC hex, ext=2, im5=0

11

No Operation, op=OC hex, ext=3,
other fields are 0' s

Terminate Program, op=OC hex, ext=4,
other fields are 0 's

44

APPENDIXB

LISTINGS OF THE TEST PROGRAMS

45

·**
' ; hanoi.asm --assembly code of The Towers of Hanoi *
•** '

MAIN algcon

;--- data --
;r1: integer N

; --- code ---
alloc,O 7FA, r16 ;allocate MAIN's exec. contour

;store register-spilling information
stw rO, 0000(2,r16)
stw rO, 0004(2,r16)
stw rO, 0008(2,r16)
addi 085, rO, r17
dep rO, 1F,08,r18
dep r17,07, 18,r18
stw r18, OOOC(2,r16)

;store antecedent link in MAIN'
ldil l%MAIN, r17
ldo r%MAIN(r17), r18
stw r18, 0010(2,r16)

;input prompt
addi 069, rO, r17
stb r17, 0001(r0)
addi 06E, rO, r17
stb r17,0001(r0)
addi 070, rO, r17
stb r17,0001(r0)
addi 075, rO, f17
stb r17, 0001 (rO)
addi 074, rO, r17
stb r17, 0001(r0)
addi 020, rO, r17
stb r17,0001(r0)
addi 04E, rO, r17
stb r17, 0001(r0)
addi 03A, rO, r17
stb r17, 0001(r0)

addi 000, rO, rl

INPUTC:
ldb OOOO(rO), r17
addi 020, rO, r18
addi 041, rO, r19

;'i'

;'n,

;'p'

; 'u,

;'t'

. ' '
'

;'N'

. '.' ' .

;initialize N for accumulation

;read N
;input a character to r17
;r18 =ASCII# of space
;r19 =ASCII# of' A'

46

comibt,= OA, r17, CRSP ;line feed?
nop
comibt,= OD, rl7, CRSP ;carriage return?
nop
combt,= rl8, rl7, CRSP ;space?
nop
combt,<= r19, r17, ALPHA ;the character belongs to 'A' to 'F'
nop
comibt,= 00, rO, ACCUM ;delayed branch to ACCUM
addi 7DO, r17, r17 ;convert '0' to '9' into hex value

ALPHA:
addi 7C9, rl7, r17 ;convert 'A' to 'F' into hex value

ACCUM:
shd rl, rO, 03, rl ;rl <- rl * 16
comibt,= 00, rO, INPUTC ;delayed branch back to INPUTC
add r17, rl, rl ;rl <- r17 + rl

CRSP:
addi 04E, rO, r17 ;r17 = 'N'
stb r17, OOOl(rO) ;output 'N' onto screen
addi 03D, rO, r17 ;r17 = '='
stb rl7, OOOl(rO) ;output'=' onto screen
addi 020, rO, r17 ;r17 = ' '
stb r17, 0001 (rO) ;output ' ' onto screen

;output the rightmost two hex digits of N
N_DIGITl:

extru rl, 04, lC, r18 ;the 1st hex digit of N
comibt,<= OA, rl8, N_NONDIGITl
nop
addi 030, rl8, r18 ;convert '0' to '9' into ASCU code
comibt,= 00, rO, N_DIGIT2 ;delayed branch to next digit
stb rl8, OOOl(rO) ;output the hex digit

N_NONDIGITl:
addi 037,r18,r18
stb r18, OOOl(rO)

N_DIGIT2:

;convert 'A' to 'F' into ASCII code
;output the hex digit

extru rl, 00, lC, r18 ;the 2nd hex digit of N
comibt,<= OA, r18, N_NONDIGIT2
nop
addi 030,rl8,r18
comibt,= 00, rO, N_EXIT
stb r18, OOOl(rO)

;convert '0' to '9' into ASCII code
;delayed branch to exit
;output the hex digit

N_NONDIGIT2:
addi 037,rl8,r18
stb rl8, OOOl(rO)

N_EXIT:
addi OOD, rO, r18
stb rl8, OOOl(rO)
addi OOA,r0,r18
stb rl8, OOOl(rO)

;convert' A' to 'F' into ASCII code
;output the hex digit

;r18 = CR
;output CR onto screen
;r18 = LF
;output LF onto screen

47

;pass parameters and call TOWERS
add r1, rO, r10 ;pass N to dummy parameter N
addi 041, rO, r17 ;r17 =ASCII# of' A'
addi 042, rO, r18 ;r18 =ASCII# of 'B'
dep r17, OF, 18, rll ;pass 'A' to FROMA
dep r18, 17, 18,rll ;pass 'B' toTOB
addi 043, rO, r18 ;r18 =ASCII# of 'C'
add r16, rO, r12 ;pass static link
dep r18, 1F, 18, r11 ;pass 'C' to BYC
add r16, rO, r13 ;pass z.ep
ble TOWERS, r14 ;call TOWERS and save z.ip in r14
nop
ret ;terminate program
nop

MAIN END

TOWERS algcon
;--- data ---
;r26: integer N as input argument
;the input argument in r27 contains the following data:
;FROMA: character
;TOB: character
;BYC: character

;--- code ---
alloc,O 7F5, r16 ;allocate TOWERS's exec. contour

;store register-spilling information
addi 085, rO, r17
addi 086, rO, r19
dep r17,07, 18,r18
dep r19,0F, 18,r18
addi 087, rO, r17
dep rO, 1F, 18,r18
dep r17, 17, 18,r18
stw r18, 0000(2,r16)
dep rO,OF, 10,r18
addi 088, rO, r17
addi 089, rO, r19
dep r17, 17, 18,r18
dep r19, 1F, 18,r18
stw r18, 0004(2,r16)
stw rO, 0008(2,r16)
addi 08A, rO, r17
dep rO, 1F,08,r18
dep r17,07, 18,r18
stw r18, OOOC(2,r16)

48

;store antecedent link
ldil !%TOWERS, r17
ldo r%TOWERS(r17), r18
stw rl8, 0010(2,r16)

;static link in r28
;z.ep in r29
;z.ip in r30

;if N <= 0 then go to T _EXIT
combt,<= r26, rO, T _EXIT
nop

;pass parameters and call recursively
addi 7FF, r26, rlO ;pass N- 1 toN
extru r27, 10, 18, r17 ;extract FROMA
extru r27, 00, 18, r18 ;extract BYC
dep r17, OF, 18, rll ;pass FROMA to FROMA
dep rl8, 17, 18, rll ;pass BYC to TOB
extru r27, 08, 18, r17 ;extract TOB
add r28, rO, r12 ;pass static link
dep r17, lF, 18, rll ;pass TOB to BYC
add r16, rO, r13 ;pass z.ep
bl TOWERS, r14 ;call recursively and save z.ip in r14
nop

addi 04D, rO, r17
stb r17, OOOl(rO)
addi 04F, rO, r17
stb r17, OOOl(rO)
addi 056, rO, r17
stb r17, OOOl(rO)
addi 045, rO, r17
stb rl7,000l(r0)
addi 020, rO, r17
stb r17, OOOl(rO)
addi 044, rO, r17
stb rl7,0001(r0)
addi 049, rO, r17
stb rl7, OOOl(rO)
addi 053, rO, r17
stb r17, OOOl(rO)
addi 04B, rO, r17
stb r17, OOOl(rO)
addi 020, rO, r17
stb rl7,000l(r0)

;r17='M'
;output 'M' onto screen
;r17 = '0'
;output '0' onto screen
;r17 = 'V'
;output 'V' onto screen
;r17 = 'E'
;output 'E' onto screen
;r17 = ' '
;output ' ' onto screen
;r17 = 'D'
;output 'D' onto screen
;r17 = 'I'
;output 'I' onto screen
;r17 = 'S'
;output 'S' onto screen
;r17='K'
;output 'K' onto screen
;r17 = ' '
;output ' ' onto screen

;output the rightmost two digits of N
N_DGTl:

extru r26, 04, lC, r17 ;the 1st hex digit of N

49

comibt,<= OA, r17, N_NONDGTl
nop
addi 030,rl7,r17
comibt,= 00, rO, N_DGT2
stb r17, OOOl(rO)

;convert '0' to '9' into ASCII code
;delayed branch to next digit
;output the hex digit

N_NONDGTl:
addi 037,rl7,r17
stb rl7, OOOl(rO)

N_DGT2:

;convert 'A' to 'F' into ASCII code
;output the hex digit

extru r26, 00, lC, r17 ;the 2nd hex digit of N
comibt,<= OA, r17, N_NONDGT2
nop
addi 030, r17, r17 ;convert '0' to '9' into ASCII code
comibt,= 00, rO, N_NEXT ; and go to N_NEXT
stb r17,0001(r0)

N_NONDGT2:
addi 037,r17,r17
stb r17, OOOl(rO)

N_NEXT:
addi 020, rO, r17
stb rl7, OOOl(rO)
addi 046, rO, r17
stb rl7, OOOl(rO)
addi 052, rO, r17
stb r17, OOOl(rO)
addi 04F, rO, r17
stb r17, OOOl(rO)
addi 040, rO, r17
stb r17, OOOl(rO)
addi 020, rO, r17
stb rl7, OOOl(rO)

;output FROMA
extru r27, 10, 18,r17
stb rl7, OOOl(rO)

addi 020, rO, r17
stb r17, OOOl(rO)
addi 054, rO, r17
stb rl7, OOOl(rO)
addi 04F, rO, r17
stb rl7, OOOl(rO)
addi 020, rO, r17
stb r17, OOOl(rO)

;output TOB
extru r27,08, 18,r17
stb r17, OOOl(rO)

addi OOD, rO, r17
stb r17, OOOl(rO)

;output the hex digit

;convert 'A' to 'F' into ASCII code
;output the hex digit

;r17 = ' '
;output ' ' onto screen
;r17 = 'F'
;output 'F' onto screen
;r17 = 'R'
;output 'R' onto screen
;r17 = '0'
;output '0' onto screen
;r17 = 'M'
;output 'M' onto screen
;r17 = ' '
;output ' ' onto screen

;extract FROMA
;output FROMA onto screen

;r17 = ' '
;output ' ' onto screen
;r17 = 'T'
;output 'T' onto screen
;r17 = '0'
;output '0' onto screen
;r17 = ' '
;output ' ' onto screen

;extract TOB
;output TOB onto screen

;r17 = CR
;output CR onto screen

50

addi OOA, rO, r17
stb r17, 0001(r0)

;r17 = LF
;output LF onto screen

;pass parameters and call recursively
addi 7FF, r26, r10 ;pass N- 1 toN
extru r27, 00, 18, r17 ;extract BYC
extru r27, 08, 18, r18 ;extract TOB
dep r17, OF, 18, rll ;pass BYC to FROMA
dep r18, 17, 18, rll ;pass TOB to TOB
extru r27, 10, 18, r17 ;extract FROMA
add r28, rO, r12 ;pass static link
dep r17, 1F, 18, rll ;pass FROMA to BYC
add r16, rO, r13 ;pass z.ep
bl TOWERS, r14 ;call recursively and save z.ip in r14
nop

;retrieve parent's algorithm contour and return
T_EXIT:

ldw 0010(2,r29), r17
bv r30(r17)
nop

TOWERS END

51

·***
' ; shortest.asm -- assembly code of The Shortest Path *
·***
'
' .

MAIN algcon

;--- data ---
;r17: base of array A
;r18: base of array B
;r19: base of array L
; r1: integer I
; r2: integer NODE

;--- code ---
alloc,O 7F5, r16 ;allocate MAIN's exec. contour

;store the register-spilling information
stw rO, 0000(2,r16)
stw rO, 0004(2,r16)
addi 089, rO, r20
addi 08A, rO, r22
dep r20,07, 18,r21
dep r22,0F, 18,r21
dep rO, 1F, 10, r21
stw r21, 0008(2,r16)
addi 088, rO, r20
addi 085, rO, r22
dep r20,07, 18,r21
dep r22,0F, 18,r21
addi 086, rO, r20
addi 087, rO, r22
dep r20, 17, 18,r21
dep r22, 1F, 18,r21
stw r21, OOOC(2,r16)

ldill%MAIN, r20
ldo r%MAIN(r20), r21
stw r21, 0010(2,r16) ;store antecedent link
alloc,1 7CO, r17 ;allocate array A in heap
alloc,1 7F8, r18 ;allocate array B in heap
stw r18, 0018(2,r16) ;store B's base offset in MAIN'
alloc,1 7F8, r19 ;allocate array Lin heap
alloc,1 7F8, r3 ;allocate set V in heap
alloc,1 7F8, r4 ;allocate setS in heap

;initialize set V
addi 001, rO, r20
addi 000, rO, r21

LOADV:
stwx,S r20, r21(1,r3)

;r20 = 1, initial value of I
;r21 = 0, index of V

;store I in set V

52

addi 001, r21, r21
comibf,> 08, r20, LOADV
addi 00l,r20,r20

;input prompt
addi 069, rO, r20 ;'i'
stb r20, OOOl(rO)
addi 06E, rO, r20 ;'n'
stb r20, OOOl(rO)
.addi 070, rO, r20 ; 'p'
stb r20, OOOl(rO)
addi 075, rO, r20 ;'u'
stb r20, OOOl(rO)
addi 074, rO, r20 ;'t'
stb r20, OOOl(rO)
addi 020, rO, r20 ; • •
stb r20, OOOl(rO)
addi 036, rO, r20 ;'6'
stb r20, OOOl(rO)
addi 034, rO, r20 ;'4'
stb r20, OOOl(rO)
addi 020, rO, r20 ; • •
stb r20, OOOl(rO)
addi 06E, rO, r20 ; 'n •
stb r20, OOOl(rO)
addi 075, rO, r20 ;'u'
stb r20, OOOl(rO)
addi 06D, rO, r20 ; 'm'
stb r20, OOOl(rO)
addi 062, rO, r20 ; 'b •
stb r20, OOOl(rO)
addi 065, rO, r20 ;'e'
stb r20, OOOl(rO)
addi 072, rO, r20 ; 'r'
stb r20, OOOl(rO)
addi 073, rO, r20 ;'s'
stb r20, OOOl(rO)
addi 03A, rO, r20 ; ':'
stb r20, OOOl(rO)
addi OOD, rO, r20 ;CR
stb r20, OOOl(rO)
addi OOA, rO, r20 ;LF
stb r20, OOOl(rO)

;increment the index of set V
;if I< 8 then
;increment I and go back to LOADV

;pass parameters and call READINDAT A
add r17, rO, rlO ;pass A's base offset
add r16, rO, rll ;pass stat. link and z.ep
ble READINDATA, r12 ;call READINDATA and save z.ip in r12
nop

53

addi 001, rO, r2 ;NODE= 1
;[for NODE= 1 to 8 do]
M_LOOPl:
;pass parameters and call DUKSTRA

add r17, rO, rlO ;pass A's base offset
add rl9, rO, rll ;pass L's base offset
add rl8, rO, r12 ;pass B's base offset
addi 000, r2, r13 ;pass NODE
add rl6, rO, r14 ;pass stat. link and z.ep
ble DUKSTRA, r15 ;call DUKSTRA and save z.ip in r15
nop

addi. 001, rO, rl ;I= 1
; [for I = 1 to 8 do]
M_LOOP2:

addi 04C, rO, r20
stb r20, OOOl(rO)
addi 045, rO, r20

·stb r20, OOOl(rO)
addi 04E, rO, r20
stb r20, OOOl(rO)
addi 047, rO, r20
stb r20, OOOl(rO)
addi 054, rO, r20
stb r20, OOOl(rO)
addi 048, rO, r20
stb r20, OOOl(rO)
addi 020, rO, r20
stb r20, OOOl(rO)
addi 03D, rO, r20
stb r20, OOOl(rO)

;r20 = 'L'
;output 'L' onto screen
;r20 = 'E'
;output 'E' onto screen
;r20 = 'N'
;output 'N' onto screen
;r20 = 'G'
;output 'G' onto screen
;r20 = 'T'
;output 'T' onto screen
;r20 = 'H'
;output 'H' onto screen
;r20 = ' '
;output ' ' onto screen
;r20 = '='
;output'=' onto screen

addi 7FF, rl, r20 ;r20 =I- 1
ldwx,S r20(1,r19), r21 ;load L[I] into r21

;output the rightmost 4 hex digits of the value L[I]
L_DIGITl:

extru r21, OC, lC, r20 ;the 1st hex digit of L[I]
comibt,<= OA, r20, L_NONDIGITl
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCIT #
comibt,= 00, rO, L_DIGIT2 ;delayed-branch to next digit
stb r20, OOOl(rO) ;output the hex digit

L_NONDIGITl:
addi 037,r20,r20
stb r20, OOOl(rO)

;convert 'A' to 'F' into ASCII #
;output the hex digit

54

L_DIGIT2:
extru r21, 08, lC, r20 ;the 2nd hex digit of L[I]
comibt,<= OA, r20, L_NONDIGIT2
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCII#
comibt,= 00, rO, L_DIGIT3 ;delayed-branch to next digit
stb r20, OOOl(rO) ;output the hex digit ·

L_NONDIGIT2:
addi 037, r20, r20
stb r20, OOOl(rO)

L_DIGIT3:

;convert 'A' to 'F' into ASCII #
;output the hex digit

extru r21, 04, lC, r20 ;the 3rd hex digit of L[I]
comibt,<= OA, r20, L_NONDIGIT3
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCII#
comibt,= 00, rO, L_DIGIT4 ;delayed branch to next digit
stb r20, OOOl(rO) ;output the hex digit

L_NONDIGIT3:
addi 037,r20,r20
stb r20, OOOl(rO)

L_DIGIT4:

;convert 'A' to 'F' into ASCII #
;output the hex digit

extru r21, 00, lC, r20 ;the 4th hex digit of L[I]
comibt,<= OA, r20, L_NONDIGIT4
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCII#
comibt,= 00, rO, L_EXIT ;delayed branch to exit
stb r20, OOOl(rO) ;output the hex digit

L_NONDIGIT4:
addi 037,r20,r20
stb r20, OOOl(rO)

' .

L_EXIT:
addi 020, rO, r20
stb r20, OOOl(rO)
addi 046, rO, r20
stb r20, OOOl(rO)
addi 052, rO, r20
stb r20, OOOl(rO)
addi 04F, rO, r20
stb r20, OOOl(rO)
addi 040, rO, r20
stb r20, OOOl(rO)
addi 020, rO, r20
stb r20, OOOl(rO)
addi 04E, rO, r20
stb r20, OOOl(rO)
addi 04F, rO, r20

;convert 'A' to 'F' into ASCII #
;output the hex digit

;r20 =' '
;output ' ' onto screen
;r20 = 'F'
;output 'F' onto screen
;r20 = 'R'
;output 'R' onto screen
;r20 = '0'
;output '0' onto screen
;r20 = 'M'
;output 'M' onto screen
;r20 =' '
;output ' ' onto screen
;r20 = 'N'
;output 'N' onto screen
;r20 = '0'

ss

stb r20, OOOl(rO)
addi 044, rO, r20
stb r20, OOOl(rO)
addi 045, rO, r20
stb r20, OOOl(rO)
addi 020, rO, r20
stb r20, OOOl(rO)

;output '0' onto screen
;r20 = 'D'
;output 'D' onto screen
;r20 = 'E'
;output 'E' onto screen
;r20 = ' '
;output ' ' onto screen

;output the rightmost two hex digits of NODE in r2
N_DIGITl:

extru r2, 04, lC, r20 ;the 1st hex digit of NODE
comibt,<= OA, r20, N_NONDIGITl
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCII#
comibt,= 00, rO, N_DIGIT2 ;delayed branch to next digit
stb r20, OOOl(rO) ;output the hex digit

N_NONDIGITl:
addi 037, r20, r20
stb r20, OOOl(rO)

;convert 'A 'to 'F' into ASCII#
;output the hex digit

' N_DIGIT2:
extru r2, 00, lC, r20 ;the 2nd hex digit of NODE
comibt,<= OA, r20, N_NONDIGIT2
nop
addi 030, r20, r20 ;convert '0' to '9' into ASCII#
comibt,= 00, rO, N_EXIT ;and go to N_EXIT
stb r20, OOOl(rO) ;output the hex digit

N_NONDIGIT2:
addi 037,r20,r20
stb r20, OOOl(rO)

N_EXIT:

;convert 'A' to 'F' into ASCII #
;output the hex digit

;pass parameters and call PRINTP A TH
addi 000, r2, rlO ;pass NODE
addi 000, rl, rll ;pass I
add rl6, rO, r12 ;pass stat. link
add r16, rO, r13 ;pass z.ep
ble PRINTPATH, r14 ;call PRINTPATH and save z.ip in r14
nop

addi OOD, rO, r20 ;r20 = CR
stb r20, OOOl(rO) ;output CR onto screen
addi OOA, rO, r20 ;r20 = LF
stb r20, OOOl(rO) ;output LF onto screen
comibf,> 08, rl, M_LOOP2 ;if I< 8 then
addi 001, rl, rl ;increment I and go to M_LOOP2
comibf,> 08, r2, M_LOOPl ;if NODE < 8 then
addi 001, r2, r2 ;increment NODE and go to M_LOOPl
ret

56

nop

MAIN END

READINDAT A algcon
; --- data ---
;r26: base of array A as input argument
;r17: integer I
;r18: integer J

;--- code --
;z.ep in r27
;z.ip in r28

addi 001, rO, r17 ;I= 1
; [for I = 1 to 8 do]
R_LOOP1:

addi 001, rO, r18 ;J = 1
; [for J = 1 to 8 do]
R_LOOP2:

addi 000, rO, r19 ;r19 as accumulator
INPUTC:

ldb OOOO(rO), r20 ;input a character to r20
addi 020, rO, r21 ;r21 =ASCII# of space
addi 041, rO, r22 ;r22 = 41 hex
comibt,= OA, r20, _CRSP ;line feed?
nop
comibt,= OD, r20, _CRSP ;carriage return?
nop
combt,= r21, r20, _CRSP ;space?
nop
combt,<= r22, r20, ALPHA ;character belongs to 'A' to 'F'
nop
comibt,= 00, rO, ACCUM ;delayed branch to ACCUM
addi 700, r20, r20 ;convert '0' to '9' into hex value

ALPHA:
addi 7C9, r20, r20

ACCUM:
shd r19,r0,03,r19
comibt,= 00, rO, INPUTC
add r20, r19, r19

_CRSP:

;convert' A' to 'F' into hex value

;r19 <- r19 * 16
;delayed branch to INPUTC
;r19 <- r19 + r20

;put the entered value into A[I,J]
addi 7FF, r17, r20 ;r20 =I- 1
addi 7FF, r18, r21 ;r21 = J- 1
sh3add r20, r21, r20 ;r20 =(I- 1)*8 + (J- 1)
stwx,S r19, r20(1,r26) ;store the entered value in A[I,J]
comibf,> 08, r18, R_LOOP2 ;if J < 8 then increment J

57

addi 001, r18, r18 ;and go back to R_LOOP2
comibf,> 08, r17, R_LOOP1 ;if I< 8 then increment I
addi 001, r17, r17 ;and go back to R_LOOP1

;retrieve parent's algorithm contour and return
ldw 0010(2,r27), r19
bv r28(r19)
nop

READINDATA END

DUKSTRA algcon
;---data---
;r26: base of array A as input argument
;r27: base of array Las input argument
;r28: base of array Bas input argument
;r29: integer FROM as input argument
;r17: integer I
;r18: integer J
;r19: integer K
;r20: integer M
;r21: integer MIN

;---code --
;z.ep in r30
;z.ip in r31

addi 001, rO, r17 ;I= 1
; [for I = 1 to 8 do]
D_LOOP1:

addi 7FF, r17, r24 ;r24 =I- 1
addi 7FF, r29~ r25 ;r25 =FROM - 1
sh3add r25, r24, r25 ;r25 = (FROM-1)*8+(1-1)
ldwx,S r25(1,r26), r25 ;r25 = A[FROM, I]
stwx,S r25, r24(1,r27) ;L[I] = A[FROM, I]
stwx,S r29, r24(1,r28) ;B[I] =FROM
comibf,> 08, r17, D_LOOP1 ;if I< 8 then
addi 001, r17, r17 ;increment I and go back to D_LOOP1

;initialize set S
stw r29, 0000(1,r4) ;store FROM in setS
addi 000, rO, r24 ;r24 serves as the top-of-set index to S

addi 001, rO, r20
;[forM= 1 to 8 do]
D_LOOP2:

ldil 00001F, r21
ldo 07FF(r21), r21
addi 001, rO, r17

;M=1

;MIN = X'FFFF
;I =1

58

;[for I = 1 to 8 do]
D_LOOP3:
;if (I in V -S) and (MIN > L[I]) then K = I and MIN = L[I]

add r24, rO, r22 ;copy the index
;IinV-S?
I_VMINUSS:

ldwx,S r22(1,r4), r25 ;load the top element of S into r25
combt,= r17, r25, D_EXITIF1 ;I is inS, quit testing
nop
addi 7FF, r22, r22 ;decrement the index
comibt,<= 00, r22, I_ VMINUSS ;go for next element inS
nop

;MIN> L[I]?
addi 7FF, r17, r22 ;r22 =I- 1
ldwx,S r22(1,r27), r25 ;r25 = L[I]
combt,<= r21, r25, D_EXITIF1 ;MIN<= L[I], quit testing
nop
add r17,rO,r19
add r25, rO, r21

D_EXITIF1:

;K =I
;MIN= L[I]

comibf,> 08, r17, D _LOOP3 ;if I < 8 then
addi 001, r17, r17 ;increment I and go to D_LOOP3

addi 001, r24, r24
addi 001, rO, r18
stwx,S r19, r24(1,r4)

; [for J = 1 to 8 do]
D_LOOP4:

;increment top-of-stack index
;J = 1
;store K as the top-of-set element inS

;if (J in V -S) and (L[K] + A[K,J] < L[J]) then
;L[J] = L[K] + A[K,J] and B[J] = K

add r24, rO, r22 ;copy the index
;J in V-S?
J_VMINUSS:

ldwx,S r22(1,r4), r25 ;load the topmost element of S into r25
combt,= r18, r25, D_EXITIF2 ;J is in S, quit testing
nop
addi 7FF, r22, r22 ;decrement index
comibt,<= 00, r22, J_ VMINUSS ;check next element inS
nop

;L[K] + A[K,J] < L[J] ?
addi 7FF, r19, r15
addi 7FF, r18, r14
ldwx,S r15(1,r27), r22
sh3add r15,r14,r15

;r15 = K- 1
;r14 = J- 1
;r22 = L[K]
;r15 = (K - 1)*8 + (J - 1)

59

ldwx,S r15(1 ,r26), r25 ;r25 = A[K, J]
add r22, r25, r22 ;r22 = L[K] + A[K,J]
ldwx,S r14(1,r27), r25 ;r25 = L[J]

;if L[K] + A[K,J] >= L[J] then quit testing
combf,>= r22, r25, D_EXITIF2
nop
stwx,S r22, r14(1,r27)
stwx,S r19, r14(1,r28)

;L[J] = L[K] + A[K,J]
;B[J] = K

' D_EXITIF2:
comibf,> 08, r18, D_LOOP4
addi 00l,rl8,r18
comibf,> 08, r20, D_LOOP2
addi 001,r20,r20

;if J < 8 then increment J
;and go to D _LOOP4
;if M < 8 then increment M
;and go to D_LOOP2

;retrieve parent's algorithm contour and return
ldw 0010(2,r30), r24
bv r31(r24)
nop

DUKSTRA END

PRINTP A TH algcon
;--- data ---
;r26: integer I as input argument
;r27: integer J as input argument

;--- code ---
alloc,O 7F2, r16 ;allocate PRINTPATH's exec. contour

;store the register-spilling information
addi 085, rO, r17
addi 086, rO, r19
dep r17,07, 18,r18
dep r19,0F, 18,r18
addi 087, rO, r17
dep rO, 1F, 18, r18
dep r17, 17, 18,r18
stw r18, 0000(2,r16)
dep rO,OF, 10,r18
addi 088, rO, r17
addi 089, rO, r19
dep r17, 17, 18,r18
dep r19, 1F, 18,r18
stw r18, 0004(2,r16)
stw rO, 0008(2,r16)
addi 08A, rO, r17
addi 08B, rO, r19
dep r17,07, 18,r18

60

dep r19,0F, 18,r18
addi 08C, rO, r17
addi 080, rO, r19
dep rl7, 17, 18, r18
dep r19, lF, 18,r18
stw rl8, OOOC(2,r16)

;store antecedent link
ldill%PRINTPATH, r17
ldo r%PRINTPATH(r17), r18
stw r18, 0010(2,r16)

;static link in r28
;z.ep in r29
;z.ip in r30

ldw 0018(2,r28), r17 ;load array B 's base offset in r17
addi 7FF,r27,r18 ;r18=J-1
ldwx,S r18(1,r17), r18 ;r18 = B[J]
combt,= rl8, r26, P _EXIT ;if B[J] =I then go toP _EXIT
nop

· addi 000, r26, rlO
addi 000, rl8, r11
add r28,r0,r12

;pass I (dummy parameter I)
;pass B[J] (dummy parameter J)
;pass stat. link

add rl6, rO, r13 ;pass z.ep
bl PRINTPATH, r14 ;recursive call and save z.ip in r14
nop

P_EXIT:
addi 020, rO, r19 ;r19 =' '
stb r19, OOOl(rO) ;output' 'onto screen
addi 054, rO, r19 ;r19 = 'T'
stb rl9, OOOl(rO) ;output 'T' onto screen
addi 04F, rO, r19 ;r19 = '0'
stb r19, OOOl(rO) ;output '0' onto screen
addi 020, rO, r19 ;r19 = ' '
stb rl9, OOOl(rO) ;output' 'onto screen

;output the rightmost two hex digits of J
J_DIGIT1:

extru r27, 04, lC, r19 ;the 1st hex digit of J
comibt,<= OA, r19, J_NONDIGITl
nop
addi 030, rl9, r19 ;convert '0' to '9' into ASCII code
comibt,= 00, rO, J_DIGIT2 ;delayed branch to next digit
stb r19, OOOl(rO) ;output the hex digit

J_NONDIGITl:
addi 037, r19, r19 ;convert 'A' to 'F' into ASCII code
stb r19, OOOl(rO) ;output the hex digit

J_DIGIT2:
extru r27, 00, 1 C, r19 ;the 2nd hex digit of J
comibt,<= OA, rl9, J_NONDIGIT2
nop

61

addi 030,r19,r19
comibt,= 00, rO, J_EXIT
stb rl9, OOOl(rO)

J_NONDIGIT2:

;convert '0' to '9' into ASCII code
;and go to J_EXIT
;output the hex digit

addi 037, rl9, r19 ;convert' A' to 'F' into ASCII code
stb rl9, OOOl(rO) ;output the hex digit

J_EXIT:
ldw 0010(2,r29), r19 ;load return algorithm-contour into r19
bv r30(rl9) ;return
nop

PRINTPA TH END

62

APPENDIXC

THE SIMULATOR-GENERATED PROFILES

63

1. The Simulation Results of The Towers of Hanoi

*** simulator-generated profile***

test program: /v /ying/thesis/code/hanoi.asm

Clocks:
#of Instructions:
of Saved CPU Slots:
#of Branches:
#ofNOPs:
#of Bus Cycles (src1):
of Bus Cycles (src2):
of Bus Cycles (result):
#of Bus Cycles (external):
#of Loads:
#of Stores:
of Register-Spills:
#of Register-Restores:
of Window Overflows:
of Window Underflows:

5832662 cycles
4521892
65473
229377
262146
2752487
720837
2752487
1114110
79852
333813
6133
6133
1023
1023

* Register Usage *

Global Registers (r0--r9): 1638330 8 0 0 0 0 0 0 0 0
Local Registers (r16--r31) of Window 0--7:
wO: 197640 403238 461082 131587 0 0 0 0

0 0 66304 99712 33152 65792 65792 0
w1: 2056 20046 4626 1028 0 0 0 0

0 0 1542 2827 771 514 514 0
w2: 4112 40092 9252 2056 0 0 0 0

0 0 3084 5654 1542 1028 1028 0
w3: 8224 80184 18504 4112 0 0 0 0

0 0 6168 11308 3084 2056 2056 0
w4: 16448 160368 37008 8224 0 0 0 0

0 0 12336 22616 6168 4112 4112 0
w5: 32896 320736 74016 16448 0 0 0 0

0 0 24672 45232 12336 8224 8224 0
w6: 65792 641472 148032 32896 0 0 0 0

0 0 49344 90464 24672 16448 16448 0
w7: 131584 1282944 296064 65792 0 0 0 0

0 0 98688 180928 49344 32896 32896 0

64

65

TABLE II

THE INSTRUCTION DISTRIBUTION TABLE
OF THE TOWERS OF HANOI

Instruction count percentage

add 131072 2.90%
addc 0 0.00%
and 0 0.00%
or 0 0.00%
sub 0 0.00%
xor 0 0.00%
sh2add 0 0.00%
sh3add 0 0.00%
addi 1245177 27.54%
shd 1 0.00%
extru 327672 7.25%
extrs 0 0.00%
dep 786422 17.39%
de pi 0 0.00%
ldw 65535 1.45%
stw 327680 7.25%
I do 65536 1.45%
ldb 2 0.00%
stb 851957 18.84%
ldwx 0 0.00%
stwx 0 0.00%
ldil 65536 1.45%
bl 65534 1.45%
ble 1 0.00%
bv 65535 1.45%
movb 0 0.00%
movib 0 0.00%
combt 65537 1.45%
combf 0 0.00%
comibt 131012 2.90%
comibf 0 0.00%
addbt 0 0.00%
addbf 0 0.00%
addibt 0 0.00%
addibf 0 0.00%
bb 0 0.00%
alloc 65536 1.45%
nop 262146 5.80%
ret 1 0.00%

2. The Simulation Results of The Shortest Path

simulator-generated profile

test program: /v /ying/thesis/code/shortest.asm

Clocks:
of Instructions:
of Saved CPU Slots:
#of Branches:
ofNOPs:
#of Bus Cycles (src1):
of Bus Cycles (src2):
#of Bus Cycles (result):
#of Bus Cycles (external):
#of Loads:
#of Stores:
of Register-Spills:
#of Register-Restores:
of Window Overflows:
of Window Underflows:

59507 cycles
42553
2112
5879
8674
24039
18421
14793
12436
4769
966
0
0
0
0

* Register Usage *

Global Registers (r0--r9): 6440 328 225 9 3617 0 0 0 0 0
Local Registers (r16--r31) of Window 0--7:
wO: 144 10 10 73 4815 356 6 0

00000000
w1: 420 4801 5260 2942 1992 1084 14856 0

1496 8688 469 934 282 272 144 16
w2: 232 504 736 1008 0 0 0 0

0 0 88 144 88 72 664 840
w3: 100 224 324 448 0 0 0 0

0 0 36 64 36 32 32 0
w4: 24 56 80 112 0 0 0 0

0 0 8 16 8 8 8 0
w5: 00000000

00000000
w6: 0 0 0 0 0 0 0 0

00000000
w7: 0 0 0 0 0 0 0 0

00000000

66

67

TABLE III

THE INSTRUCTION DISTRIBUTION TABLE
OF THE SHORTEST PATH

Instruction count percentage

add 1820 4.28%
addc 0 0.00%
and 0 0.00%
or 0 0.00%
sub 0 0.00%
xor 0 0.00%
sh2add 0 0.00%
sh3add 296 0.70%
addi 9939 23.36%
shd 162 0.38%
extru 624 1.47%
extrs 0 0.00%
dep 1327 3.12%
de pi 0 0.00%
ldw 249 0.59%
stw 614 1.44%
ldo 185 0.43%
ldb 226 0.53%
stb 2467 5.80%
ldwx 4520 10.62%
stwx 352 0.83%
ldil 185 0.43%
bl 56 0.13%
ble 73 0.17%
bv 129 0.30%
movb 0 0.00%
movib 0 0.00%
combt 4268 10.03%
combf 168 0.39%
comibt 4788 11.25%
comibf 1304 3.06%
addbt 0 0.00%
addbf 0 0.00%
addibt 0 0.00%
addibf 0 0.00%
bb 0 0.00%
alloc 126 0.30%
nop 8674 20.38%
ret 1 0.00%

APPENDIXD

FIGURES

68

c I
v I
bl

LOCAL LOW

HIGH: [R31..R26]
LOCAL: [R25 .. R16]
LOW: [R15 .. R10]
GLOBAL: [R9 .. RO]

GLOBAL l
Figure 1. A Register Window

HIGH

LOCAL

LOW HIGH

A
LOCAL

LOW HIGH

B
LOCAL

LOW

c

Figure 2. The Overlapped Register Windows
of Nested Procedure Calls

static an tee-

link edent height array subcells
link

organization residence

Figure 3. The Generic Format of a Contour Cell

69

.. ,

Snapshot (a)

SWP

Snapshot (b)

Snapshot (c)

Figure 4. The Circular Buffer Organization
of the Multi-Windowing
Register Set

70

71

,._.. register-spilling info. - ••1••- threads of the control ---1
viR31's vi R16's

a-link s-link z.ip 0 1 offset 0 I offset z.ep
bl bl

(a) The Control Pan

input arguments and base addresses other local
local scalar variables of local arrays data structures

(b) The Data Pan

Figure 5. The Organization of an Execution Contour

SWP CWP prw prw

~ ~
WAV. WAV.

I J

-C. -
J

Figure 6. The Window Activation Vector

PROGRAM MAIN (INPUT. OUTPUT);
VAR

P. Q : INTEGER;

PROCEDURE BBj(PARl, PAR2: INTEGER);
VAR

P, R, S: INTEGER;

PROCEDURE CCj(VAR PARl: INTEGER);
VAR

X, Y : INTEGER;
BEGIN

.
END; {CC} ·

BEGIN

.
END; {BB}

FUNCTION DDi(PARl :INTEGER): REAL;
VAR
Z: INTEGER;

BEGIN

END; {DD}

BEGIN

END. {MAIN}

Figure 7. The Block Structure of a Pascal Program

72

MAIN'

p

Q

BB'

PARI

PAR2

p

R

s

BB"

PARI

PAR2
CC"

p PARI

X
R @ y
s

Figure 8. The Topographic Contour-Map of a Snapshot
During the Execution of the Program in
Figure 7

73

1._ -~

MA

MAIN'

WAV0 WAV 1 WAV2 WAV3

r····l , ... u,-····1
~ ~ ~ ~

MAIN' BB' BB" CC"

BB'

a-link BB

MAIN'

MAIN'

a-link

s-link

z.ep

z.ip 1

s-link

z.ep

z.ip

BB

MAIN'

BB'

Do Dt D3

r l---~-~~- ,---,
MAIN' BB" CC"

BB"

a-link cc

s-link BB"

z.ep BB"

1 z.ip

Figure 9. The Control Structure of the Snapshot Shown in Figure 8

CC"
a-link

s-link

z.ep

1 z.ip

~

Instruction Cache

Instruction
Bus------~-+--------

Instruction
Fetch Unit

I FIP

ICiP
Xli' UK I

Instruction
Decode

Unit

Control Unit

Sequencer

Control
Memory

Control Signals

re~ister id.

immediate
operands

Data Cache

srcl src2

\ / I
I

ALU&
Shifter/Merger

Result
Bus

Figure 10. The Block Daigram of HMA's Processor Design

75

IF

I
ID

I
EX WB instruction

n

I I

I I I
IF ID EX WB instruction

n+1

I I

I I
IF ID EX WB

I
instruction

n+2

I I

I I IF ID EX WB instruction
n+3

Figure 11. Instruction Pipelining

add rl, r2, r3 ;rl + r2 ~ r3
and r3, r4, r4 ;r3 & r4 ~ r4

add

IF ID r3 & r4 ~r4 and

" ' bubble p1pestage

Figure 12. Data Dependency and Pipeline "Bubble"

76

L1:

ldw 0(1,r6), r1
sub r2, rl, r3
addi 1, r7, r7
comibt,= 0, rO, Ll

;load a word into r1
;r3 ~ r2 -rl
;increment r7 by 1
;jump to L1

(a) Before Optimization

L1:

ldw 0(1,r6), r1
addi 1, r7, r7
comibt,= 0, rO, L1
sub r2, r1, r3

;load a word into r1
;increment r7 by 1
;jump to L1
;r3 ~ r2-r1

(b) After Optimization

Figure 13. The Delayed Branch

77

Test Program
(Assembly Code)

Data Input ___ ...,...

Object
File

1---,..Normal Output

Trace/Stats
File

Instruction Trace

Data Trace

Window Statistics

Data Statistics

Execution Profile

Figure 14. The Flowchart of the Simulation Project

78

79

Begin

initialize system clock and the
pipeline information; reset the

data-dependency flag and
the pipeline-interlock signal.

-
write-back
pipestage

update the end of execute-instruction y f instruction y End pipestage trace ?

N

~
decode-instruction

pipestage

fetch-instruction
pipestage

increment
system clock

Figure 15. The Flowchart of the Instruction Pipelining

Begin

N

fetch anew
instruction
into CIR

CIP~FIP

increment
FIP

End

y

Figure 16. The Flowchart of the
Fetch -Instruction
Pipestage

80

decode
CIR

set data
dependency

flag

t_resume E
themaximum
timestamp of

the scoreboard
ed registers

XIPE- CIP
N

id_latch E- CIR

y

End

N

Figure 17. The Flowchart of the Decode-Instruction
Pipestage

81

reset data-dependency
& pipeline-interlock

scoreboard the
destination register

update the time
stamp of the score

boarded register

interpret the
instruction in

id_latch

update the
execution
statistics

GIP~XIP

exc_latch~
id_latch

N set pipeline-
interlock

End

Figure 18. The Flowchart of the Execute-Instruction
Pipestage

82

Begin

N

write the
result into
destination

register

clear the
scoreboard
of the dest
ination
register

N

y

Figure 19. The Flowchart of the
Write-Back
Pipestage

83

.r.

.+J
a.
Q1

"'0

"0
Q)

+J
(/)
Q)

c

The Shortest Path

4

3

2

1 -JIIItlllllllllllltlllll_,,,,,,,,,,,_ ,,.,, .. ,,lll_,llllllllllll-lllllllllllll-1111111111111-llllllllllllll-1111111111111

o----....
(X)

,..... , 10 0) ~ 10 "'>- ,..... o .., co 0) ,..... 10 co .- ~ ,..... o "'> m
..- N .., v ~ co co ~ ro m ,

time (I times 50 cycles)

Figure 20. The Nested Procedure-Calling Depth During the
Execution of The Shonest Path

f

The Shortest Pa1h

I I i j I - l l
; ; I ~ i I l &

oro ..-I.()~~ ~m t')ta .q-n ao 0 ao,.._ co..;t o..- ..-co c--. I"')t I[) <D ,...... oo m ..- " ..- "
tine (I lila !iJ qdea)

Figure 21. The Distribution of the Data Size During the
Execution of The Shortest Path

-+-comu
-o-heap

--+-~t.~n

00
u.

16

14

.r. 12 -0.
<U 10

""0

""0 8
~ 6
C/)
Q)
1: 4

2

The Towers of Hanoi

0~-----------------------------------..... I") 0 l{) tO I' 0 0') <D .- I") <D tO .- I' <D Ol N I' I") N tO I' I' tO .- .- N N.- I") I") V V tO.- lO <D <D

tine (I tinea DXl qdet)
Figure 22. The Nested Procedure-Calling Depth During the

Execution of The Towers of Hanoi

00
0\

200
1Bl -r/)160

"0

o140
1 120
~
--1oo

G>
Bl N ·;;;
60 0

+" 40 c
"0

20
0

.....

The Towers of Hanoi

en ,.,.,,....
(() 0 ,.... v 0 ,.... v w

N If) N I") I") ...- V en --t ,.... L() If) <0 I") <0 ..-

line (tl ... !10) cycles)
Figure 23. The Distribution of the Data Size During the

Execution of The Towers of Hanoi

-+-como
-o-t.eap

-+-sun

OD
~

APPENDIXE

GLOSSARY OF TERMS

88

89

Cache Hit-Ratio: The probability for the cache to exactly contain the requested memory

reference.

Data Dependency: An phenomenon in processing the data flow of sequential instructions

which comprises the following eventst:

(1) Read-After-Write Dependency- when a source operand of an instruction is the tar

get operand which is overwritten by any instructions preceding it.

(2) Write-After-Read Dependency- when the target operand which an instruction

overwrites is referenced by any instructions preceding it as a source operand.

(3) Write-After-Write Dependency- when the target operand which an instruction

overwrites is also overwritten by other instruction(s).

Instruction Pipeline: A structure of partitioning the process of an instruction execution

into multiple stages in order to exploit the instruction-level parallelism.

Memory Bandwidth: The average amount of information transferred from/to the

memory per second.

pn-Chip Storage: The storage which resides on the processor chip.

~eline Interlock: A "hazard" state of the instruction pipeline due to data dependen

cies.

Register Scoreboard: A hardware which contains flags indicating the availability of the

registers. It is used to detect data dependencies relating to references to registers.

t Please see Section 3.3.4 of [Hw8r84) for a fonnal description of the data dependency.

... ,_.

VITA,

Hsu-Ku B. Ying

Candidate for the Degree of

Master of Science

Thesis: AN APPROACH TO APPLYING THE CONTOUR MODEL TO A
HYPOTHETICAL MULTIPLE-REGISTER-WINDOW ARCHITECTURE
FOR THE BLOCK-STRUCTURED PROCESS

Major Field: Computer Science

Biographical:

Personal Data: Born in Kaohsiung, Taiwan, October 15, 1960, the son of
Ping-Han and Lan-Hsing Ying.

Education: Graduated from Tsai-Hsing High School, Taipei, Taiwan, in
June 1978; received Bachelor of Science Degree in Civil Engineering from
Chung-Yuan Christian University, Chungli, Taiwan, in June 1983;
completed requirements for the Master of Science Degree in Computer
Science at Oklahoma State University, Stillwater, Oklahoma, in May 1992.

Professional Experience: Reserve officer, the Survey Corps of the R. 0. C.
army, February 1984 to August 1985; civil engineer, Chien-Hwa
Engineering Consultants, Inc., November 1985 to December 1986.

