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NOMENCLATURE 

The following list describes the nomenclature and symbols used throughout the 
report. Any deviations to this list are noted whenever needed in the report. In addition, 
the SI units are shown in parenthesis for those variables which contain units. 

gi, gj, gk Tensor notation for gravitational acceleration (mfs2) 

h Enthalpy (J/kg) 

k Thermal conductivity CN/m·K) 
k Turbulent kinetic energy (m2fs2) 

kin Turbulent energy at room inlet (m2/s2) 

k· "k l,J, Turbulent energy at cell (i,j,k) (m2fs2) 

t Time (s) 
Xi, Xj, Xk Tensor notation for principle directions 

Xn Normal direction 

q" Heat flux vector (J/m2·s) 
u', v', w' Velocity fluctuations in x, y, and z-directions (m/s) 

Yn Normal distance (m) 

A Generic property 

Ain• Aout Inlet and outlet cross-sectional areas (m2) 

c;, Specific heat (J/kg·K) 

ell, cl, Cz Constants for the k-e model 

D Mass divergence (1/s) 
FJl' F1, F2, E Empirical functions for the k-e model 
p Pressure (Pa) 
p. "k l,J, Pressure at cell (i,j,k) (Pa) 

RT Turbulent Reynolds number 
Ry Local Reynolds number 
T Temperature (K) 

To Reference temperature (K) 

T- "k l,J, Temperature at cell (i,j,k) (K) 

U, V, W Velocity components in x, y, and z-directions (m/s) 

Ujet Inlet velocity (m/s) 

xi 



Un Normal Velocity (m/s) 

Uout Outlet velocity (m/s) 

Ut Tangential velocity (m/s) 
Ui, Uj, Uk Tensor notation for velocity components (m/s) 
---
ui, vi, wi Tensor notation for mean velocity components (m/s) 

0, V, w Time-advanced velocity values (m/s) 
U· ',k l,J U velocity at cell (ij,k) (m/s) 
V··k l,j, V velocity at cell (i,j,k) (m/s) 
W··k l,j, W velocity at cell (ij,k) (m/s) 

a Thermal diffusivity (m2/s) 

& Donor cell coefficient 

J3 Thermal expansion coefficient (1/K) -
J3 Pressure divisor 

E Turbulent energy dissipation rate (m2fs3) 

Eij,k Turbulence dissipation rate at cell (i,j,k) (m2fs3) 

Ein Turbulent dissipation rate at room inlet (m2fs3) 

cj> Generic scalar quantity 
p Density (kg!m3) 

J.1 Dynamic viscosity (kg/m·s) 
v Kinematic viscosity (m2fs) 

Vt Turbulent viscosity (m2/s) 

O'k, O'e Constants for the k-E model 

m Relaxation factor 

~ Constant 
Ax, Ay, Az Cell dimensions (m) 
At Time Step (s) 
AP Pressure change or correction (Pa) 
r. 

1 Tensor notation for function in turbulent equation 

II Function in turbulent equation 
e Function in turbulent equation 

xii 



CHAPTER I 

INTRODUCTION 

Overview 

The accurate prediction of flow behavior within a room may significantly 

improve heating, ventilation, and air-conditioning (HV AC) design techniques. 

Successful predictions of room air flow yield such information as velocities, 

temperatures, and contaminant distributions which are useful to building design and 

analysis. Ventilation and indoor air quality are only two of the many areas which would 

benefit by the development and refinement of room air flow modeling. 

The nature of room air flow requires the solution of the continuity and 

momentum (Navier-Stokes) equations in three dimensions. For typical room/system 

combinations, the flow is at least partially turbulent. Therefore, the solution process 

should somehow account for turbulence. 

Advanced numerical methods and algorithms for the solution of the partial­

differential equations governing fluid dynamics have existed for some time [Harlow, 

1965;Launder, 1972]. However, the lack of sufficient computational capabilities 

hindered the existence of turbulent solutions which adequately modelled fluid flow in 

practical situations [Launder, 1974]. 

The overwhelming need for turbulent flow solutions has led to the development 

of numerous turbulent models. Coupled and uncoupled differential and algebraic 

equations were derived in an effort to approximate the nature of practical turbulent flows. 
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Recent technological advances in computing capabilities have broadened the 

potential for applications of numerical prediction in fluid flow. These applications are 

generally referred to as Computational Fluid Dynamics (CFD) and are increasingly being 

used to obtain solutions for problems which were previously deemed "unsolvable" due to 

their complexity or the lack of sufficient computing power. 

The goal of this investigation is to research the various modeling techniques 

applicable in room air flow prediction, including turbulence models. These models 

would then be implemented in an attempt to evaluate the models through comparison to 

experimental data. 

Fluid Dynamics Theory 

This section details the basic fluid dynamic principles and equations which 

govern and describe the various facets of this project. In every instance, the minimal 

amount of explanation is presented, as it is assumed that the reader possesses a working 

knowledge of fluid mechanics. Some steps of the equation derivations have been omitted 

since derivations are provided in sufficient detail in most fluid mechanics references. 

Conservation of Mass and Momentum 

If an Eulerian description is applied to a laminar flow field and constant density is 

assumed, the following continuity (conservation of mass) equation results. 

au. 
1 0 ax· = 
1 

(1.1) 

The conservation of momentum equations are given by Eq(l.2), which is written 

in conservative form. 
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1 ()p 2 
---+g· +vV U· p dXj 1 1 

(1.2) 

Energ;y Eg,uation 

If the conservation of energy is considered for a fluid engaged in laminar flow, 

the following equation represents the transport of heat within the flow field. 

(1.3) 

Mean-Value Approach to Turbulence 

Before a study of turbulence modeling in room air flow may begin, it is important 

to develop an understanding of the nature of turbulent flow. Turbulent flow has two 

primary characteristics, random and chaotic fluctuations in the fluid's velocity, and 

intense mixing on the macroscopic level. 

These fluctuations and mixing create a fluid motion so complex that the exact 

details of the motion are undeterminable by a direct analytic approach. Therefore, 

solutions must be obtained using either a statistical or mean-value approach. This study 
I 

uses theory derived from the mean-value approach. 

Although the parameters associated with turbulent flow exhibit random 

fluctuations, these properties may be expressed instantaneously as the sum of the mean 

value ( A ) and an instantaneous fluctuation (a'). Thus, for any property (A) in a flow 

field, its instantaneous value may be expressed as 

A= A +a' (1.4) 

where the mean value ( A ) is defined by the following equation. 
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t2 
- 1 f A=- Adt 

~t 
(1.5) 

t1 

where ~t = t2- t1 

The time increment (~t) of Eq(1.5) is considered large in comparison to the 

period of the fluctuations. Because Eq(1.5) is true for any lower limit of the integration, 

the following equation is true for most practical situations. 

(1.6) 

Applying the mean-value theory of Eq(l.4) to the properties within a flow field, 

the following equations are obtained for the velocity components. 

U= U +u' 

V= V +v' (1.7) 

W= W +w' 

The density and pressure may also be represented in the same way. However, 

any changes in density are assumed to be the result of temperature changes within the 

flow field. 

Turbulent Flow Eqyations - Continuity 

If the velocity expressions of Eq(1.7) are substituted into the continuity equation 

of Eq(1.1), the following equation results after a time average is taken. 



Subtracting Eq(l.8) from Eq(l.1), 

au· 1 
-=O 
ax· 1 

aui 
-=O 
ax· 1 

Thus, both the mean and fluctuating velocity components must individually 

5 

(1.8) 

(1.9) 

satisfy the continuity equation. It is important to note that these equations are based 

strongly on the assumption that no turbulent density fluctuations exist. For most 

practical flow situations, it is generally sufficient to ignore Eq(1.9) and focus only on the 

continuity equation of the mean flow [Hinze, 1987]. 

Turbulent Flow EQJiations - Momentum 

If the velocity expressions of Eq(1. 7) are substituted into the momentum 

equation, Eq(1.2), and a time average is taken, the following equation will result. 

aui a a(-) --+-(U· U·) +- u~u~ at ax· 1 J ax· 1 J J J 

a (P] 2-= -- - + g· + vV U· axi p 1 1 
(1.10) 

Although the mathematics of this process are anything but trivial, they are 

omitted. Detailed derivations are provided in several references [Hinze, 1987]. Eq(l.lO) 

may be manipulated slightly to distinguish the right-hand side of the equation as 

containing both viscous and turbulent (Reynolds) stresses as shown by the following 

equation. 
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= - ~:. + pgi + a:.[~'aa~i] + a:.[-P u;u;) (1.11) 
I J J J 

Viscous Reynolds 
stresses stresses 

The fact that these Reynolds stresses consist of correlations of velocity 

fluctuations render the stresses impossible to solve. This incapacity to predict the 

correlations is known as the "Closure Problem." As a result, exact solutions are not 

possible. 

Turbulence Modeling Theory 

As mentioned in the previous section, the presence of the Closure Problem in 

turbulent flow poses an intractable problem. In an effort to meet the overwhelming need 

for computational results of turbulent flows, turbulence models were developed. 

Turbulence models consist of a set of several equations which, when solved in 

conjunction with the proper forms of the momentum and continuity equations, 

approximate the behavior of the Reynolds stresses. Numerous models have been 

introduced through the years, with varying degrees of success. The success of a model is 

determined by the following three criteria. 

Accuracy-

Generality -

Easily­
Implemented 

The model must be capable of providing solutions which are within 
tolerable bounds of accepted experimental results and the basic 
governing equations of fluid dynamics. 

The model must be capable of being implemented into a wide variety 
of flow conditions and geometry without requiring significant 
changes. 

Although computational capabilities have significantly increased, 
overly-complex models may increase the required computational time 
beyond the limits of feasibility. 
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Turbulence models are divided into the following classes, based on the number of 

additional partial-differential equations which must be solved. 

Zero Equation­
Model 

One Equation -
Model 

Two Equation -
Model 

The turbulence is described through the use of algebraic equations. 
Thus, the only partial differential equations requiring solution are the 
mean flow continuity and momentum equations. 

A partial-differential equation for the turbulent velocity scale is solved 
in addition to the mean flow partial-differential equations. 

Two partial-differential equations for the turbulent velocity scales are 
solved in addition to the mean flow equations. 

Although there are numerous models which may be employed, this study makes 

use of a two-equation model. See Rodi [1980] for descriptions of the other models. 

k -e Turbulence Model 

To numerically simulate the turbulent flow, this study uses the k-e turbulence 

model. It is a two-equation model which couples differential equations for the turbulent 

kinetic energy (k) and the turbulence dissipation rate (e). The mathematics of the model 

begin by defining the turbulent kinetic energy as 

(1.12) 

The Reynolds stresses of Eq(l.11) are then modelled by the product of a new 

term, the turbulent viscosity (vt), and the mean velocity gradient as shown by 

where Oij = 1 for i=j 

0 for i;t:j 

(1.13) 
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If this new expression for the Reynolds stresses is substituted into the momentum 

equation, the following new equation may be used as the conservation of momentum 

equation for turbulent flow. Note that the viscous stress is assumed negligible and that 

the equation is now coupled with the turbulent kinetic energy. 

(1.14) 

(Note that the mean velocity values are assumed, and the bars denoting mean velocities 
have been omitted.) 

This turbulent viscosity term (vJ is not a property of the fluid in the same way as 

the Newtonian viscosity. Rather, it is dependent upon the structure of the turbulence in 

the flow and may differ at various points throughout the flow. The turbulent viscosity 

may be determined empirically from Eq(1.15). although it is only one of several possible 

choices for the turbulent viscosity equation. 

(1.15) 

where ell= constant (generally 0.09) 

The resulting transport equations for the turbulent kinetic energy and its rate of 

dissipation are shown in the following equations. Again, it must be emphasized that only 

a very brief summary of this model is being presented. Further detail may be found in 

Rodi [1980] or Hinze [1987], as these references were used extensively in the 

development of this summary. 
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ak a a [vt ak] aui [aui aui] -+-(U·k)=- -- +v- -+ -E at ax· J ax· crkax· tax· ax· ax· (1.16) 
J J J J J I 

(1.17) 

It is very important to realize that intermediate steps in the derivation of Eq(1.16) 

arid Eq(l.17) result in the presence of higher order correlations. The unsolvable nature 

of these correlations is alleviated by modeling the correlations in the equations. 

The recommended values of the empirical constants and functions are given in 

Table 1.1. These values represent what is considered the "standard" k-e model. 

ct-t 
0.09 

TABLE 1.1 

CONSTANTS FOR THE "STANDARD" k-e MODEL 
[Launder, 1974] 

1.44 1.92 1.0 

Justification for k -E Use 

1.3 

While detailed derivations of other turbulence models are not included, the 

justification for the use of the k-e model should be addressed. With all of the potential 



10 

turbulence models available, it is certainly valid to question the preference of one model 

over the others. 

Because this project's researcher lacks sufficient experience in the area of 

turbulence modeling, he is forced to rely on the experience of others. As discussed later 

in the literature review, all the researchers modeling room air flow have used the k-e 

model. Some of the researchers commented on the reason for the model's use, while 

others implied its use due to popularity. This "popularity" argument contains a 

reasonable amount of validity. Using the same model as others should allow a better 

comparison of numerical results, as it eliminates a variable in the experimental process. 

The model's popularity also reduces the implementation difficulty since there are several 

references available discussing the numerical aspects of modeling turbulence through the 

use of the k -e equations. 

Because the k-e model is a two-equation model, improved accuracy is obtained in 

comparison to less-complicated models. Researchers investigating some of the primary 

two-equation models have discovered that only the k-e model yields experimentally 

substantiated results for regions far from solid boundaries or walls [Launder, 1974; 

Launder, et al., 1972]. For the other models to match the results, it was found necessary 

to replace some of the constants with empirical functions which added to the complexity 

of the models. 

Necessity of Low-Reynolds Number Model 

When discussing turbulent flow, it is convenient to mention an additional 

parameter, the Turbulent Reynolds Number (RT). 

(1.18) 
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Due to the nature of room air flow, there will always be regions (particularly near 

the walls) in which this number is quite small. In these regions, the viscous effects 

become significantly greater than any turbulent effects. Because the standard form of the 

k-E model is valid only for high Reynolds number turbulent flows, difficulty arises. 

There are two ways in which the fully turbulent k-E model may be used for low­

Reynolds number flow. These methods are known as wall functions and low-Reynolds 

models. 

The wall functions, when used in conjunction with the standard k-E equations, are 

intended to reproduce the logarithmic velocity profile of a turbulent boundary layer near 

the wall. No changes are made to the k-E equations. Instead, the velocity profile is 

created through the use of complex expressions imposed as boundary conditions at the 

walls. Although a detailed derivation and explanation is not included, equations 

Eq(1.19)- Eq(l.22) represent wall functions introduced by Launder and Spalding [1974]. 

It is important to note in the following equations that values with the "wall" subscript (w) 

denote values at the wall, while values of Ut, k, and E are values at the first node adjacent 

to the wall. 

[ ( l/2 ] l/2] 
~ (cl/2k] 1/2 = lln Eyn CJ.t k 
t,Jp ll K V 

(1.19) 

[ vt ak] -- -0 
cr.J)y n wall -

(1.20) 
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c~ k Ey0 c~ k ( 1/2 ] 3/2 [ ( 1/2 ] l/2] 

e* = ln 
Kyn v 

(1.21) 

E= 

( 1/2 ] 3/2 
c~ k 

where k = von Karman's constant (0.4) 
't = shear stress at the wall w 

E = function determined by wall roughness (9.0 for a smooth wall) 
e* = value of E used in the k-equation 
E = value of E used in the E-equation 

(1.22) 

Wall functions have the significant benefits of reducing computational needs as 

well as allowing the addition of other empirical functions necessary for special boundary 

conditions. The primary concern with this method is that the high-Reynolds k-E model 

with the logarithmic wall functions may not be suitable for use both near the wall and far 

away from it [Chen, 1990]. In addition, the traditional wall functions may not be 

appropriate for complex three-dimensional flow. 

The second method for describing low-Reynolds number flow involves 

modifying the standard k-E equations, making them valid throughout the full range of 

flow regions (laminar, buffer, and fully turbulent). Changes are made through the 

addition of the empirical functions Fw F1, F2, and E, as shown in the following low-

Reynolds equations. 

ak a a [vt ak] aui [aui aui] -+-(U·k)=--- +v--+ -E 
dt C>x· J dx· crkdx· tax· dx· dx· J J J J J l 

(1.23) 



k2 
R-­T-ve 

...Jkyn 
Ry=-v-

where Yn = distance normal to the wall (m) 
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(1.24) 

(1.25) 

(1.26) 

(1.27) 

The following table contains the various empirical constants for three of the more 

popular low-Reynolds number k-e models. For comparison, values are also given for the 

standard, high-Reynolds number model. 

Model 

Standard 
Launder-Sharma 
Chien 
Lam-Bremhorst 

TABLE 1.2 

LOW-REYNOLDS k-e CONSTANTS 
[Patel, 1984] 

ell cl c2 
0.09 1.44 1.92 1.0 
0.09 1.44 1.92 1.0 
0.09 1.35 1.8 1.0 
0.09 1.44 1.92 1.0 

(J'k O'e 

1.3 
1.3 
1.3 
1.3 



Table 1.3 contains the values and expressions for the empirical functions which 

have been added to the original k-e equations to model low-Reynolds number flow. 

Model 

Standard 

Launder-Sharma 

Chien 

Lam-Bremhorst 

TABLE 1.3 

WW-REYNOLDS k-e FUNCITONS 
[Patel, 1984] 

Fll Fl F2 
1.0 1.0 1.0 

[ -3.4 ] 
exp (l+RT/50)2 

1.0 1-0.3exp(-R,.2} 

1 - exp(- 1.0 
1-0.22exp (- (:T) 2 

0.0115y+) 

2 
1 + [oF~r 2 [1- exp(- 0.0165Ry)] 1- exp(-R, ) 

* ( 1 + 2~5] 

E 

0 

[a>ur 2wt-2 
ayn 

-2ve 
- 2 exp( -0.5y+) 
y 

0 

As shown by Table 1.3, the "standard" k-e model for fully turbulent flow is a 

special case of the low-Reynolds equations of Eq(1.23) and Eq(1.24). Therefore, a 
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solution algorithm could easily employ the wall function or low-Reynolds algorithms by 

simply using the corresponding values of Fw F1, and F2. 

Literature Review 

This section presents brief descriptions of the published literature and recorded 

experimental results in the field of room air flow modeling and prediction. Although the 
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list should not be considered exhaustive, the review should sufficiently represent the 

advances, findings, and contributions which are of particular relevance to this project. 

Spitler 

The experimental data used for comparative purposes in this project has been 

provided by Spitler [1990]. Spitler researched air movement and convective heat transfer 

using a full-scale 9 x 9 x 15ft (2.74 x 2.74 x 4.57 m) room with 53 controllable heated 

panels, two ventilation inlets, and one outlet (see Figure 1.1 ). 

The facility incorporated sixteen omni-directional air speed probes and numerous 

thermocouples which measured air temperatures within the room, air temperatures 

entering and leaving the room, and the various surface temperatures necessary in 

determining the convective fluxes at the walls. These probes obtained measurements at 

896 locations within the room, thus providing an experimental grid of approximately 1 ft 

(0.30 m). Experimental data was collected using the seven room configurations 

described in Table 1.4. 

Configuration 
1 
2 
3 
4 
5 
6 
7 

TABLE 1.4 

EXPERIMENTAL CONFIGURATIONS 
[Spitler, 1990] 

Description 
One inlet on the side wall 

One square radial diffuser inlet in the ceiling 

The side wall inlet with area reduced to l/3 

The side wall inlet with area reduced to 2/3 

The side wall inlet with its jet being diverted toward the center of the room 

The side wall inlet with furniture located in the center of the room 

The side wall inlet with cabinets located throughout the room 



15' 
(4.57m) 

Inlet ., 
~N 

Figure 1.1. Experimental Facility 
[Spitler, 1990] 

9' 
(2.74m) 

In all of the room configurations, one ventilation outlet located on the east wall 

was used (see Figure 1.1). The dimensions of the inlets and outlets are shown in Table 

1.5. 

With the presentation of Table 1.5, it is important to note how inlet dimensions 

are generally used in room air flow studies to define non-dimensional parameters and 

distances. Throughout this report, dimensional distances are presented. In addition, 

results will be presented by defining distances with respect to the inlet width. Thus, 

ytvf=2 would correspond to a distance equal to twice the inlet width. 
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Location 
Side Wall Inlet 
Ceiling Inlet 
East Outlet 

TABLE 1.5 

INLET AND OUTLET DIMENSIONS 
[Spitler, 1991] 

Width Length Width 
(in) (in) (m) 

15.75 35.58 0.40 
15.75 15.75 0.40 
15.75 35.58 0.40 

Length 
(m) 
0.90 
0.40 
0.90 

The ventilation system was capable of providing between 2 and 100 ACH ("air 

changes per hour") of ventilation. This corresponds to volumetric flow rates of 40.5 -

2025 cfm (0.019- 0.945 m3/s). A total of 44 separate experimental tests were 

performed, as described in Table 1.6. 

The use of the 53 controllable panels is of particular interest to the modeling 

aspect of this study. By controlling the temperature of the walls, the convective heat 

fluxes were measured and film coefficients for all surfaces were calculated. This data 

allows the imposition of temperature boundary conditions which are consistent with 

experimental data. 
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Configuration 

1 
2 
3 
4 
5 
6 
7 

TABLE 1.6 

EXPERIMENTAL TESTS 
[Spitler, 1991] 

Inlet Temperature 
(OC) 

16, 21, 26 
16,21,26 

21 
21 
21 
21 
21 

Ventilation Rate 
(ACH) 

15,30,50, 70,100 
15,30,50, 70,100 

15,30,50, 70 
15,30, 70 
15,30, 70 

30, 70 
30, 70 

An extensive review of the k-E model for low Reynolds number flow was 

compiled by Patel [Patel, 1985]. In addition to the nature and derivation of the model, 

Patel also detailed the following eight variations or extensions of the model: 

• Launder-Sharma 
• Hassid-Poreh 
• Hoffman 
• Dutoya-Michard 
• Chien 
• Reynolds 
• Lam-Bremhorst 

In an attempt to compare the models, each model was implemented with the 

addition of the following equations to numerically predict flow in a two-dimensional 

boundary layer. 
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(1.28) 

au au 1aP a au -
u-+v-=--+-<~- uv) 

ax ay pax ay ay 
(1.29) 

The proposed models of Hassid-Poreh, Hoffman, Dutoya-Michard, and Reynolds 

failed to reproduce the simple case of this flat-plate boundary layer. Comparable results 

to experimental data were achieved through the use of the Launder-Sharma, Chien, and 

Lam-Bremhorst models. Despite these successful results, a refinement to the models was 

determined necessary if near-wall and low Reynolds number flows were to be calculated. 

Patel offered the following suggestions: 

• Select a damping function for the shear stress which is in agreement with 
experimental evidence. 

• Choose the low Reynolds number functions in the dissipation rate equation 
with a mathematically consistent near-wall behavior. 

• "Fine tune" the functions to ensure that well-published features of wall­
bounded shear flows over a range of pressure gradients would be produced. 

• Distinct improvement of the predictions for adverse pressure gradient flows 
would require additional modifications to the high Reynolds number models. 

Lam and Bremhorst 

Since the emergence of the k-e turbulence model, numerous researchers have 

introduced modifications to the basic models, particularly in an attempt to accurately 

predict low-Reynolds number turbulent flow. Perhaps one of the more significant 

modifications was introduced by Lam and Bremhorst [Lam & Bremhorst, 1981]. As 

with the previous models, the turbulent energy and its dissipation rate were modelled 



using Eq(l.23) and (1.24). The constants being used were the same as the original 

model: O'k=l.O, O'e=l.3, c11=0.09, C1=1.44, and C2=1.92. 
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The primary difference exists in the functions FJ.l, F1, and F2 in the low-Reynolds 

equations of Eq(l.23) and Eq(l.24). Previously, the values of these functions were 

assumed to be equal, or very close to unity. The research of Lam and Bremhorst found 

these assumptions to be invalid within a laminar or viscous sublayer. A new equation for 

FJ.l was found to be 

-A R 2[ At] FJ.l = (1 - e ~-t~'Y) 1 + Rt 

where All= constant (0.0165) 

At = constant (20.5) 

(1.30) 

This new equation is directly influenced by the presence of a wall, as FJ.l will 

approach unity at large distances from a wall for increasingly high levels of turbulence. 

The proposed equation for F 1 was 

(1.31) 

Investigation showed that ifF 1 was equal to unity, as previously assumed, 

additional terms would be required in the k-E equations to yield reasonable results. In an 

effort to produce an equation which approaches zero as RT approaches zero, the 

following equation for F2 was introduced. 

(1.32) 



This new low-Reynolds form of the k-e model was tested by applying the 

technique to the case of fully developed turbulent pipe flow. Strong agreement was 

found with the experimental data. The principle advantage, as emphasized by the 

researchers, is that the presence of a wall function formula is not required. 
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As discussed earlier, one of the particular difficulties with modeling room air 

flow is that the k-e model, although suitable for fully turbulent flow, requires the use of 

empirical functions near the wall. Chen explored the wall function problem as he 

attempted to accurately prediction low-Reynolds, turbulent, buoyant flow [Chen, 1990]. 

Chen used the Lam-Bremhorst version of the k-e model [Lam & Bremhorst, 1981] to 

predict natural convection flow within cavities. This version of the model was chosen 

based on recommendations by previous researchers [Patel, 1985] and its relative ease of 

implementation into a computer algorithm. It was assumed that any temperature 

gradients within the cavity were small, therefore the use of Boussinesq approximation for 

buoyancy was performed through the addition of the following term in the momentum 

equations. 

(1.33) 

The effects of buoyancy in the turbulence equations were approximated using the 

following terms in the k-e equations. 

(1.34) 
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(1.35) 

These source terms would then be included in the right-hand side of Eq(l.23) and 

Eq(l.24). 

The first of the two simulations was performed on a small-scale, water-filled 

cavity. The second simulation was made on a full-scale, air filled cavity. The resulting 

velocity profiles were in good agreement with the measured values. However, the high­

Reynolds number k-e model with wall functions produced results which differed by as 

much as 61% from the experimental results. 

Perhaps the most significant application of CFD analysis in room air flow may be 

in the area of ventilation. Studies have shown that the thermal condition within a room is 

dependent on the turbulence intensity of the air motion and frequency of flow 

fluctuations, in addition to the air velocity and temperature distributions. Awbi presented 

numerical studies of various ventilation configurations through the use of CFD [Awbi, 

1989]. 

Using the standard k-e model, coupled with logarithmic wall functions, 

simulations were performed on the ventilation of both two and three-dimensional 

enclosures. Other simulations involved creating a fixed or constant load within the room 

to better investigate the effects of buoyancy. The numerical solutions produced 

reasonably good predictions of the velocity vectors within the room when compared to 

experimental results. Awbi carefully noted, though, that considerably more studies are 

necessary if CFD techniques are to be used as design tools with any degree of 

confidence. 
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Murak:ami. et al. 

Murakami, et al. from the University of Tokyo, have contributed greatly to the 

study of numerically modeling room air flow. Each study has emphasized different 

facets of the overall problem, thus providing a better insight concerning the potential for 

CFD in ventilation design and analysis. 

The first investigations were performed with the intention of verifying the 

validity of a three-dimensional numerical simulation for turbulence [Murakami, et al., 

1987]. Simulations were performed and compared to experimental rooms with a 1:6 

scale. The experimental rooms were scaled so that the Reynolds number would be 

identical to a full scale room based on the following equation. 

(1.36) 

where U0 = inlet velocity (m/s) 

L0 = width of the supply outlet (m) 

The flow domain was covered with a rectangular mesh. Later investigations 

employed the use of boundary-fitted curvilinear coordinate systems [Murakami, et al., 

1989a]. The air temperature was assumed to be completely uniform. Thus, buoyant 

effects were completely ignored. The high-Reynolds k-E. equations (Eq(1.16) and 

Eq(1.17)) were solved in conjunction with the momentum equation ofEq(1.14). The 

standard values for the equation constants were used and wall functions were used to 

simulate viscous effects near the wall. 

The numerical simulations were reported to correspond "fairly good" with the 

experimental results from the scaled room. 

Later investigations focused on the diffusion of particles within a ventilated room, 

with particular emphasis on the design and analysis of clean rooms [Murakami, et al., 
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1989b, 1990]. The same sets of equations and wall functions were used to analyze other 

scaled room configurations. 

Scaling the room based on the inlet velocity and inlet width is questionable when 

investigating turbulent room air flow. Scaling in this way does not insure identical 

turbulent Reynolds numbers. In addition, the development of turbulent jets is based on 

other parameters which are completely independent of the Reynolds number at the inlet. 

Objectives 

The primary objective of this project is to evaluate the usefulness of 

computational fluid dynamic techniques in modeling room air flow. This evaluation 

process involves the implementation of the two models available for modeling turbulent 

air flow, in addition to a laminar flow algorithm. Through comparison to experimental 

data, model limitations, weaknesses, and strengths may be determined. 

The secondary objective of the project is to investigate the potential usefulness of 

CFD analysis for building designers. Typically, the error of a simulation is in some way 

inversely proportional to the necessary computational resources (i.e., reducing the error 

requires greater computing resources). Obviously, simulations must be provided within 

tolerable limits of error. Depending upon the application, however, relatively simple 

models may provide acceptable results at reduced computing costs. This project will 

address these trade-offs between accuracy and computational resources. 



CHAPTER II 

SOLUTION METHODOLOGY 

This chapter details the solution methodology for the project including 

discussions on discretization, grid selection, solution algorithm, and boundary conditions. 

This methodology was implemented through the development of a Fortran 77 

computer program capable of modeling three-dimensional, turbulent, buoyant flow using 

finite-difference techniques. The basis of this new program was a program previously 

developed for three-dimensional, laminar, constant density flow by Lilley [1988], in 

which the analysis and finite-difference methods are documented. These details for the 

p-u-v-w solution were implemented in the original laminar, constant density code [Lilley, 

1991], which formed the framework on which the present study is based- the extension 

to turbulent flows via the two-equation k-E model and the inclusion of buoyancy via the 

Boussinesq approximation. 

Marker-and-Cell Representation 

This investigation uses the Marker-and-Cell (MAC) method of defining variables 

within a flow field [Harlow & Welch, 1965]. For a given cell of dimensions Ax, Ay, and 

Az, velocities are defined on the center of cell faces, while scalar quantities are defined at 

the center of the cell as shown in Figure 2.1. 
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k:z 
X 

\li,j,k 

• lli,j,k 

i.i:i<----~ U.i.k Ei,j,k ........................ .. 

ki,j,k 

Figure 2.1. Marker-and-Cell Representation 

Finite-Difference Approximations - Laminar Flow 
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Because the forms of the momentum and transport equations differ based on the 

nature of the flow, the resulting finite-difference equations will differ for laminar and 

turbulent flow. For this reason, the discussions on these representations will be presented 

separately. The finite-difference solution of the laminar flow equations is important for 

two reasons. First, some of the terms in the complex turbulent equations are identical to 

terms in the laminar equations. Thus, solution representations and algorithms may be 

easily developed for laminar flows before implementing the terms into the solution of the 

turbulent equations. Secondly, this project will investigate the simulation of the air flow 



using the laminar equations. This will allow conclusions to be drawn concerning how 

well the laminar equations approximate the room air flow. 
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While several methods of approximating the continuity and momentum equations 

have been proposed, this study makes use of a method introduced by the Los Alamos 

Laboratory [Hirt, et al., 1975], a report which detailed the simplicity of the solution of 

laminar, time-dependent, incompressible fluid flow problems in two-dimensions. Its 

extension to three-dimensional flow was well-documented by Lilley [1988] with details 

incorporated into his computer code [Lilley, 1991], which formed the starting point of 

the present study. 

Continuity Eqyation 

The finite difference representation of the continuity equation, Eq(l.1), is shown 

by the following equation. For simplicity, tensor notation is dropped whenever finite­

difference representations are discussed. 

1 1 1 
- (U .. k- U· 1 ·,k) +-(y .. k- y .. t,k) +-(W .. k- W· · k 1) = 0 (2.1) Ax IJ, 1- ,J Ay t,J, tJ- Az t,J, IJ, -

Momentum EQ.yations 

The momentum equations, Eq(1.2), can be manipulated to form explicit equations 

for the time-advanced velocity components. Using the original authors' notation for two­

dimensional problems [Hirt, et al., 1975], Eq(l.2) is rearranged to form an explicit 

formulation for the time-advanced values of the x-component velocity (U) in the present 

three-dimensional problem. Similar expressions for the other velocity components are 

omitted in the interest of space, as they are provided in Appendix A. 



Note that the terms over-scored with the tilde(-), denote any value at time 

t=t+At. The convective (FUX, FUY, FUZ) and viscous (VISZ) fluxes are defined by the 

following equations. The details for constant density three-dimensional laminar flows 

have been incorporated in an early study [Lilley, 1988] and the original computer code 

[Lilley, 1991]. 
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FUX = 4!x { (Ui,j,k+Ui+1j,k)2 + &1Ui,j,k+Ui+1j,ki(Ui,j,k-Ui+1,j,k) 

- (U·-1 · k+U· · k)2 - &IU·-1 · k+U· · ki(U·-1 · k-U· · k)} 

(2.3) 

1 ,j, 1,J, 1 ,j, 1,J, 1 ,j, 1,J, 

FUY = 4!y { (Vi,j,k+Vi+1j,k)(Ui,j,k+Ui,j+1,k) + &1Vi,j,k+Vi+1j,ki(Uij,k-Uij+1,k) (2.4) 

- (V· ·-1,1c+V· 1 ·-1 k)(U· ·-1 k+U· · k)- &IV· ·-1,1c+V· 1 ·-1,ki(U· ·-1 k-U· · k)} 1J 1+ ,j , 1J , 1,J, 1J 1+ ,J 1J , 1,j, 

FUZ = 4!z { (Wi,j,k+Wi+1,j,k)(Ui,j,k+Ui,j,k+1) + &1Wij,k+Wi+1j,ki(Uij,k-Ui,j,k+1) (2.5) 

- (W· · k-1+W· 1 ",k-1)(U· · k-1+U· ·,k) - &IW· · k-1+W· 1 ",k-11(U· · k-1-U· · k)} 1J, 1+ ,j 1J, 1,j 1J, 1+ ,J 1,j, 1,J, 

{ 1 1 
VISX = V Ax2(Ui+1j,k-2Ui,j,k+Ui-1,j,k) + Al(Uij+1,k-2Uij,k+Ui,j-1,k) (2.6) 

+ A:2(Ui,j,k+1-2Uij,k+Ui,j,k-1)} 

The donor-cell coefficient (&) in the above equations represents the amount of 

upstream differencing which is used when determining the first-derivatives of the 

convective terms. The introduction of the coefficient is used to insure numerical stability 

without avoidable round-off errors. The necessary level of upstream differencing may be 

performed by using the following equation [Lilley, 1988]. 
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(t = ~ . max {IUIAt : IVIAt : IWIAt} 
Ax Ay Az 

(2.7) 

where 1.2 < ~ < 1.5 

Scalar Quantities 

For any scalar quantity, cp, the same types of equations as Eqs(2.2-2.6) may be 

employed to obtain an explicit equation for time-advanced scalar quantities. For 

example, the heat transport equation of Eq(1.3) may be approximated by the following 

set of equations. 

1\ J. k = T1• J. k + At(VIST - FIX - FfY - FI'Z) 
' ' ' ' 

(2.8) 

where: 

FIX= 2!x { Ui,j,k(Ti,j,k + Ti+1,j,k) + ltiUij,ki(Ti,j,k- Ti+l,j,k) (2.9) 

- U·-1 · k(T_t · k + T · k)- ltiU·-1 · ki(T·-1 · k-T · k)} 1 ,J, 1 ,J, 1,J, 1 J, 1 ,J, 1,J, 

(2.10) 

- Y._t·k(T_t·k+T· ·k)- ltiY._t·ki(T_1·k-T ·k)} 1 ,J, 1 ,J, 1,J, 1 ,J, I J, I,J, 

FTZ = 2!z { wi,j,k(Ti,j,k + Ti+t,j,k) + &lwi,j,kiCTi,j,k- Ti+l,j,k) (2.11) 

- W·-1 · k(T_t · k + T · k)- ltiW·-1 · ki(T·-1 · k-T · k)} 1 ,J, I J, I,J, 1 ,J, 1 ,J, I,J, 

(2.12) 
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The value of a in the above equations is the same value as was determined in the 

previous section. 

Buoyancy 

The Boussinesq approximation is used to simulate the effects of buoyancy. The 

basis of this approximation is that while constant density may be used in the solution 

process, changes in density due to temperature differences may be modelled through the 

use of a coefficient of thermal expansion. In any, or all, of the momentum equations, the 

following term may replace the existing term representing exterior forces due to gravity. 

(2.13) 

Typically, in a transient analysis, the reference temperature, T 0 , is given the value 

of the temperature within the room at time t=O. Using this approximation, Eq(2.2) for 

they-component of velocity (V) would include the following term on the right-hand side. 

(2.14) 

Finite Difference Approximations - Turbulent Flow 

As mentioned previously, the turbulent equations require different finite­

difference representations than those approximating the laminar flow. Because the mean 

velocity values need only to be considered when imposing the continuity equation, the 

finite-difference equation of Eq(2.1) may be used to impose the conservation of mass for 

turbulent, as well as laminar flow. 
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Momentum Eqyations 

For convenience and ease of implementation into a numerical scheme, the 

momentum equations derived for turbulent flow, Eq(1.4), will be re-written using a new 

term, ri. 

where 

This new momentum equation may be easily manipulated to form explicit 

equations for the time-advanced velocities. Using notation consistent with finite-

(2.15) 

(2.16) 

difference approximations, the following equation may be written for the x-component of 

velocity (U). 

(2.17) 

Because the convective terms FUX, FUY, and FUZ are identical to the terms 

detailed previously, they may be determined from the equations Eq(2.3), Eq(2.4), and 

Eq(2.5). The finite-difference representation of the term, ri, is not included in this 

section. This term and other terms which will be introduced later, are comprised of a 

complex arrangement of first and second derivatives. For this reason, finite-difference 

discussions for each of these terms and functions is presented in Appendix B. 



32 

Turbulent Ener2Y Eg,uation 

For simplicity, the turbulent energy equation for low-Reynolds flow, Eq(l.19), is 

re-written through the use of a new term (II) and a new function (E>). 

where II and E> are defined by 

aui[aui au.] II =- - + ::::.:::1 
ax· ax· ax· J J 1 

a [vtak] E>(k)=- --
ax· crkax· J J 

(2.18) 

(2.19) 

(2.20) 

Time-advanced values for the turbulent energy may be determined explicitly from 

the following equation. 

lCij,k = ki,j,k + ~t(THETAK + VfPI- FKX- FKY- FKZ- E) (2.21) 

Because the turbulent energy (k) is a scalar quantity, the terms FKX, FKY, and FKZ 

may be determined from the equations similar to Eq(2.9), (2.10), and (2.11). Because 

the new terms of II and E> are similar in nature tori, the finite-difference representations 

of II and E> are also given in Appendix B. 



Turbulent Ener~ Dissjpation Eqyation 

Similar to the turbulent energy, the equation for the dissipation of turbulent 

energy may be written as 
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(2.22) 

The time-advanced values of the turbulent energy dissipation may then be 

determined explicitly from the following equation. 

,.., C1F1v1e e 
[ 2 l Eij,k = Eij,k + At THET AE + k PI - C2Fik + E - FEX - FEY - FEZ 

Solution Procedure 

(2.23) 

Now that the finite-difference issues have been addressed, the numerical scheme 

or algorithm by which the equations are solved, may be discussed. 

Time Step Selection 

This project uses a solution algorithm which is completely explicit. Simply 

stated, this means that the time-advanced values (t=t1+At) are determined from values 

and derivatives evaluated at the previous time (t=t1). Because the method is explicit, 

restrictions must be placed on the size of the time step to insure numerical stability. 

The first time step criterion is based on the obvious condition that material should 

not be allowed to move a distance greater than the cell size over a given time step. This 

criterion is sometimes referred to as the "cell transit time" and is given by the following 

equation. 



. {Ax .~. Az } 
(At)t = ~ . rmn ilJI · IV I · IW I 

max max max 
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(2.24) 

The second criterion maintains that if the kinematic viscosity is considered non­

zero, momentum cannot diffuse more than one cell during a time step. Therefore, 

(2.25) 

Similarly, 

1 [ 1 1 1 l-1 
(At) -- --+--+--

3 - 2v (Ax)2 (Ay)2 (Az)2 
(2.26) 

When the energy equation is used to determine temperature values and model 

buoyancy, the following additional criterion must be enforced [Hirt & Cook, 1972]. This 

imposes the condition that heat cannot diffuse more than one cell during a given time 

step. 

1 [ 1 1 1 l-1 (At) -- --+--+--
4 - 2a (Ax)2 (Ay)2 (Az)2 

(2.27) 

Because each of these time step criteria must be met, the overall time step for the 

simulation is taken as the minimum value of all imposed criteria. 
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Laminar Solution Alfiorithm 

Several methods exist for the simultaneous solution of the continuity and 

momentum equations. The computer programs developed for this project employ a 

method introduced by Hirt and Cook [1972]. 

Equation Eq(2.2) may be used to obtain time-advanced velocities. These new 

velocities may, or may not, satisfy the continuity equation. The mass divergence (D) at 

each cell may be calculated using the continuity equation as 

D =...!... (U· · k- U· 1 · k) + ...!..(V· · k- V· · 1 k) + l...(W. · k- W· · k 1) ~X I,J, 1- ,J, ~y I,J, IJ- , ~z l,J, IJ, - (2.28) 

Because the flow is assumed to be incompressible, the value of IDI must be 

smaller than some prescribed value to insure that the time-advanced velocities satisfy the 

continuity equation. If IDI is greater than the acceptable value, the cell pressure is 

corrected by the following amount. 

where 

ro is a relaxation factor (1 < ro < 2) which is used to accelerate the pressure 

convergence process. 

The new velocity values at the new time step may then be updated using the 

following equations. 

(2.29) 

(2.30) 
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APAt 
Q. 'k = Q. ·tr_ +-

1,J, NEW 1•l•noLD Ax (2.31) 

APAt 
U· 1 · k = 0· 1 · ~r_ - -1- ,J, NEW 1- ,J,noLD Ax (2.32) 

APAt 
'1· 'k = v. 'lr_ +-

1,J, NEW 1·l•noLD Ay (2.33) 

APAt v .. 1 k - v .. 1k + --
1J- ' NEW - 1J- >"'LD Ay (2.34) 

APAt -w .. ,k = -w .. lr_ +-
1,J NEW 1·l•noLD Az (2.35) 

APAt 
W· · k 1 - W· · k 1 + --1J, - NEW - 1J, - OLD Az (2.36) 

The mass divergence of the updated velocities is calculated using Eq(2.28). 

Continual updates in cell pressure and velocities are made untiliDI is less than the 

acceptable value (generally on the order of 1 o-6). A flowchart for this process is given in 

Figure 2.2, which illustrates the iterative process for each time step. 

Turbulent Solution Al~orithm 

The algorithm for the calculation of turbulent flow is almost identical to the 

procedure for laminar flow discussed in the previous section. The differences between 

the two methods are: 

• Different equations are used for the calculation of the velocities. 

• The explicit equations of Eq(2.21) and Eq(2.23) are solved at the same 
time as the explicit equations for the velocity components. 

• Boundary conditions for the turbulent equations are added. 

• The additional turbulent parameters must be determined (RT, Vt, etc.). 
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Because the iteration procedure on the velocity components is unchanged from 

the laminar scheme, the flowchart of Figure 2.2 may also be used to illustrate the 

algorithm for the solution of turbulent flow. The only changes would be those 

mentioned above. 

Boundary Conditions 

Perhaps the most important discussion pertaining to the numerical approximation 

of room air flow focuses on the boundary conditions which are imposed. In this section, 

the potential boundary conditions at each of the three boundaries are described. A table 

of these boundary conditions is also provided at the end of this section in Table 2.2. 

A uniform velocity distribution is generally assumed over the inlet area. 

Imposing this boundary condition allows the tangential velocity to be set equal to zero 

(U1=0). The normal velocity component (U0 ) is then determined based on the desired air 

flow rate (ACH) using the following equation. 

ACH • Volroom 
U· ----.....:.== 

Jet- 3600·A 
m 

(2.37) 
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The desired air flow rate of Eq(2.37) could be taken as the nominal value (15, 30, 

50, or 100 ACH). Because volumetric flow values were measured during the 

experimental process, actual values may be used, rather than the nominal values. 

However, discrepancies between actual and nominal values may be considered 

negligible. 

Because the flow is considered uniform, scalar quantities are considered constant 

over the room inlet. Therefore, the inlet temperature may be set as a simulation 

parameter. The kinetic energy and dissipation rate at the inlet may be determined from 

the following equations given by Awbi [1989]. 

(2.38) 

k~/2 
tn 

ein = AH (2.39) 

where turbulence intensity of the x-velocity 

A.= constant(:= 0.005) 
H = room height or square root of inlet area (m) 

The value of I~ may be taken as 0.14 in the absence of any measured values. 

Different values of kin and ein have been shown to have little effect on the results of 

simulations [Awbi, 1989]. 

Although convenient, the use of this uniform velocity profile boundary 

condition may be in direct contradiction with experimental evidence. Various factors, 

including a temperature difference between the room and supply air, may create velocity 

profiles at the entrance which are far from uniform. 

Figure 2.3 on the following page shows the inlet velocity magnitude (airspeed) 



profiles for several flow rates based on the experimental results. These values were 

measured at locations 12.7 em (z!lt'=0.32) from the side wall and 18.0 em (x/lt'=0.45) 

downstream from the inlet. In each case, horizontal lines are used to illustrate the 

approximate location of the inlet. 
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As shown by the figure, the uniform profile assumption loses validity as the air 

flow rates into the room decrease. In each case, there exists a relationship between the 

inlet velocity and they-location at the inlet. Therefore, significant errors in the over-all 

simulation may be introduced through the assumption of an uniform velocity profile at 

the inlet. 

In addition to the uniform profile boundary condition, simulations will also be 

performed using estimated inlet profiles which are based on the plots shown in Figure 

2.3. Figure 2.4 shows alternative approximating functions superimposed with the 

experimental velocity profiles at the inlets. The equations for these functions are given 

in Table 2.1. 

These alternative approximations consist of piecewise linear functions. The 

simplest of these new approximations is for 15 ACH. For this case, the inlet is 

approximated by reducing the area by one-half and doubling the inlet velocity to achieve 

the same volumetric air flow rate. More complex functions are used to model the profile 

for 50 and 100 ACH. 
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Figure 2.3. Experimental Inlet Velocity Profiles 

As shown by the figure, these new profile approximations model the behavior of 

the inlet better than a uniform profile. However, the values of the new profiles are 

generally less than the experimental values. This occurs primarily because the inlet used 

to model the flow is slightly larger than the actual room inlet. More information on this 

is discussed later in the error analysis. 
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Figure 2.4. Approximation of Inlet Profiles 

Using a non-uniform velocity profile at the inlet will obviously affect the profiles 

of the turbulent kinetic energy(k) and its rate of dissipation (E). Therefore, equations 

Eq(2.38) and Eq(2.39) may be used in conjunction with the new velocity profiles to 

approximate the distribution of these variables at the inlet. 

While the desired volumetric flow rate is maintained through the use of the 

approximated profiles, certain flow characteristics will inevitably be altered as well. 

These characteristics include the turbulent Reynolds number and momentum diffusion at 



the inlet. Only through simulation can it be determined how the use of approximated 

profiles will affect the flow. 

TABLE 2.1 

INLET PROFILE APPROXIMATIONS 

Flow Rate Uniform Profile Profile Approximation 
(ACH) (rnls) (m/s) 

15 0.345 0.690 (o < Y <~] 
0 (~ < y < h] 

30 0.690 l.O- o.:y (0 < y <h) 

~ 
1.1 + 5h (o < Y <~] 

50 1.150 (h 3h] 1.5 4<y<4 

~ 
2.7- 5h (34h < y <h) 

~ 
2.35 + 5h (o <y <~] 

100 2.300 [h 3h] 2.75 4<y<4 

~ 
3.95- 5h (34h < y <h) 
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Similar to the room inlet, a uniform velocity distribution may be assumed over 

the room outlet. Because there is no experimental data available on the outlet profile, 

this is the only feasible outlet boundary condition. Tangential velocities are considered 

zero (Ut=O) and the normal velocity is computed from a mass balance on the room as 

given by the following equation. 

(2.40) 

Because a constant density flow is assumed, Eq(2.40) simply allows the exit 

velocity to be determined by the ratio of the inlet area to the outlet area. The uniform 

distribution forces the gradients of all scalar properties to be zero at the exit. Therefore, 

(2.41) 

While most researchers tend to agree on the inlet and outlet boundary conditions, 

there is significant discrepancy concerning the boundary conditions at the walls. 

Because the walls are impermeable, the normal velocities (U0 ) must be zero at the 

boundaries. The simplest way of imposing tangential velocity (UJ values is to allow 

either free-slip or no-slip conditions. However, this conditions may only be imposed 

when the wall functions are not used in conjunction with the k-E model. The imposition 

of a boundary condition based on Eq(1.19) is very difficult. Therefore, some researchers 



have simplified Eq(1.19), and have imposed the following boundary condition 

[Murakami, et al., 1989,1990]. 

where m = 

Yn = 
Ut= 

aut __ mu_t 
dXn wall Yn 

constant (ln) 
normal distance from the wall to the cell center (m) 
tangential velocity component at Yn (m/s) 
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(2.42) 

Regardless of whether wall functions or a low-Reynolds model is being used, 

boundary conditions for the turbulent energy may be fixed by the following equation. 

(2.43) 

If a low-Reynolds model is used, boundary conditions fore may be imposed 

several ways, including any one of the following conditions. 

[Lam and Brernhorst, 1981] 

[Lam and Brernhorst, 1981] 

[Chen, 1990] 

de =O 
dx0 

()2k 
e ="'"2 

dX0 

2vk e=----z 
Yn 

When wall functions are used, boundary conditions may be imposed using 

(2.44a) 

(2.44b) 

(2.44c) 

Eq(1.21) and Eq(1.22). However, successful results have been achieved by replacing the 

use of two different values of e by one value obtained from the following equation 

[Murakami, et al., 1989]. 
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e=--- (2.45) 

where ell = constant (0.09) 

K = von Karman constant (0.4) 

In addition to velocities and turbulent parameters, boundary conditions for the 

heat transport equation must be imposed at the walls. The simplest boundary condition 

involves assuming that there is no temperature gradient at the wall boundaries 

(aT(c)x0=0). This boundary condition implies no heat transfer at the walls. If an 

adiabatic condition actually existed, the steady-state temperature distribution would 

approach the inlet temperature. 

Figure 2.5 shows the illustration of a typical wall boundary, both physically and 

numerically. The numerical representation replaces the physical wall by fictitious cells 

which are used to impose the various boundary conditions. 

The heat flux at the wall (x0 =Ax0 ) due to convection is 

(2.46) 

As shown by the figure, temperatures are defined at cell centers. However, the 

heat flux at the boundary (x0 =Ax0 ) must be maintained, and may be defined by Eq(2.47). 

(2.47) 
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Figure 2.5. Wall Boundary 
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Using a forward-difference representation of the derivative, Eq(2.47) may be set 

equal to the convective heat flux of Eq(2.46) to solve for the necessary value ofT F which 

must be imposed. The resulting expression is given in Eq(2.48). 

(2.48) 

where 

(2.49) 



48 

Tabulated values for the film coefficient (h) may be used. However, because 

values were determined during the experimental process, actual values should be used to 

better model the flow. 

TABLE2.2 

BOUNDARY CONDITIONS 

Turbulence Turbulence 
Boundary Velocities Tem_l!erature Ene~ Diss!l!ation 

INLET Ut=O 3 2 2 k~/2 
Un=Ujet Tin km =z 1uujet m 

Ein = A.H 

OUTLET Ut=O aT ak ae 
Am a"n -0 a"n -O a"n -0 

Un=U- tA-
Je out 

WALLS U0 =0 
No Slip Ut=O 

WALLS U0 =0 
Free Slip aut 

a"n -0 

WALLS aT 
low -Reynolds a"n- ak 2vk 
[Chen, 1990] h a"n -0 E=2 

k(T- Tw) Yn 

Walls U0 =0 
wall functions 

aut = mUt 
(d12k)312 

[Murakami, et al.,1989] J.l 

a"n E= 
w Yn lCYn 



CHAPTER ill 

ERROR ANALYSIS 

When attempting to correlate or compare experimental results with numerical 

simulations, it is imperative that the issues of errors and uncertainties be addressed. In 

this chapter, the various sources for errors and uncertainties in both the experimental and 

numerical procedures for this project are identified. For simplicity, these discussions are 

presented on three levels, which represent how the errors and uncertainties may be 

classified. These levels are experimental, numerical, and analytical, as shown below in 

Table 3.1. 

TABLE 3.1 

CLASSIFICATION OF PROJECT ERRORS AND UNCERTAINTIES 

Error 
Experimental 

Numerical 

Analytical 

Description 
Errors introduced during the experimental investigation. 
(measurement uncertainties, etc.) 
Errors introduced during the numerical simulation. 
(fmite-difference representations, grid size, etc.) 
Errors introduced during the analysis and comparison of the 
experimental data. 
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Experimental Errors 

An in-depth analysis and discussion of the errors and uncertainties involved in the 

measurement of the air flow within the room has already been performed by Spitler 

[1990]. The results of this analysis may be summarized by Table 3.2, which contains the 

uncertainties which are important to this project. 

TABLE 3.2 

EXPERIMENTAL UNCERTAINTIES 

Measurement 
Inlet Temperature 
Outlet Temperature 

Volumetric Flow Rate 
Airspeed 

Uncertainty 
± 0.5 °C 
± 0.6 °C 
±2% 
+12/-23% +10/-14 fpm 
(+12/-23% +0.05/-0.07 m/s) 

The temperature uncertainties were based on the individual measurement 

uncertainties as well as a statistical analysis of a sample of temperature measurements. 

The uncertainty in the volumetric flow rate was determined by errors in the flow and fan 

configuration, as well as errors in manometer readings. The sources of error which 

comprised the airspeed uncertainty were determined to be the perturbation error, sensor 

orientation, and the sensor accuracy. A very conservative estimate of ±10% was given to 

the perturbation error and great care was taken to reduce errors due to sensor orientation. 
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Therefore, actual experimental errors in airspeed measurements were probably less than 

the value indicated in Table 3.2. 

Numerical Errors 

The errors introduced during the numerical simulation are discussed in this 

section. The following list contains those areas of the numerical simulation which may 

possibly influence the propagation of errors of the project. 

• Finite-difference approximations 
• Grid size 
• Grid coverage 
• Boundary conditions 

Finite-Difference Approximation Errors 

Because numerical solutions consist of approximate solutions of unsolvable 

partial differential equations, errors are introduced in the approximation of the derivative 

terms. First and second derivative terms are approximated through the use of a Taylor 

series expansion. Therefore, 

~- <l>i+l - <l>i E(A ) 
dX- /l.x + oX (3.1) 

(3.2) 

While Eq(3.1) displays the first derivative via the forward difference method, a 

similar expression may be used for the backward difference method. The terms E(Ax) 



and E(Ax2) represent the errors associated with each approximation. Thus, first and 

second-order accuracy is obtained for the first and second derivatives, respectively. 

Grid Size 

As shown by the error terms of Eq(3.1) and Eq(3.2), the resolution of the grid is a 

strong factor in the magnitude of the overall simulation error. Clearly, as the cell 

dimensions are reduced, the terms more closely approximate a true derivative and the 

error is reduced. Time and computational constraints, however, limit the resolution of 

the computational mesh. 

As increasingly finer grids are used, computed values will begin to show less 

sensitivity to the grid size. At some point in this process, it will become apparent that 

noticeable increases in accuracy are no longer obtained, and the feasibility limit on the 

grid resolution has been reached. 

Grid Covera~e 

Errors introduced by grid coverage are associated with the question "How well 

does the computational mesh cover the physical domain?" In the case of this project's 

simulations, some approximations were made. These approximations were made to 

allow the use of a uniform mesh, evenly spaced in all three directions (Ax=Ay=Az). 

As shown in Figure 1.1, the physical dimensions of the experimental room were 

15 x 9 x 9ft (4.57 x 2.74 x 2.74 m). However, the air flow was simulated using a room 

of size 4.5 x 2.75 x 2.75 m. Therefore, each dimension of the numerically simulated 

room differs by approximately 1%, excluding any uncertainties in measurements of the 

experimental room. 

The physical dimensions ofthe inlet and outlet are 15.75 x 35.58 in (0.4 x 0.9 m). 

The inlet and outlet were modelled, however, by assigning width and height dimensions 
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which were 1!6 and 1!3 the dimension of the room height. Thus, the dimensions were 

0.458 x 0.916 m. The resulting error is+ 14% for the width and +2% for the height. 

Thus, the inlet area is being modelled by an area which is approximately 16.5% larger 

than the actual experimental area. Because simulations are performed and compared on 

the basis of the volumetric flow rate, the normal components of velocity at the inlet for 

the modelled room will be slightly less than the experimental room, depending upon 

what type of velocity profile is being used. 

Boundary Conditions 

As discussed in the end of the previous chapter, the numerical solution may 

assume a uniform velocity distribution at the inlet, which was shown to quite 

questionable. Even the approximated forms of the velocity profiles may not match the 

experimental results well enough to prevent discrepancies between the experimental and 

numerical data. This discrepancy in the velocity profiles will not only affect the velocity 

distribution near the jets, but will also affect the nature of the turbulent kinetic energy 

and dissipation distributions as well. 

In addition to the velocity distribution at the inlet, there may exist pressure 

gradients at the inlet and exit ignored during the numerical simulation which would cause 

discrepancies between numerical and experimental results. 

Analytical Errors 

Two significant sources exist for errors which may be introduced during the 

analysis and comparison of the experimental data. The first involves the determination 

of velocity magnitudes. Because the experimental data consists of airspeeds, the 

individual components of velocity determined during the numerical simulations, must be 

resolved into a single magnitude of velocity. The difficulty arises because velocities are 
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defined using the Marker-and-cell formulation on the faces of the cells, rather than at the 

cell center (see Figure 2.1). Since each of the three velocity components is defined at 

different locations, some method of approximation must be used in determining the 

velocity components at the center of the cell. This problem may be solved by assuming 

that a component of velocity varies linearly within the cell, so that the following 

approximations may be made at the cell center. 

1 
Ux,y,z = 2(Ui,j,k + Ui-l,j,0 (3.4) 

(3.5) 

1 
Wx,y,z = 2(Wi,j,k + Wij,k-1) (3.6) 

[ 2 2 __ _2 ] 1!2 
IVIx,y,z = Ux,y,z + V x,y,z + W x,y,z (3.7) 

By using the above equations, velocity magnitudes may be determined from the 

numerical results for (x,y,z) coordinates. However, the second source of error arises if 

numerical results are not available for the same coordinates at which data was collected 

during the experimental investigation. An interpolation scheme must be used to obtain 

approximate results of the numerical simulations at each of the experimental coordinates. 
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While several methods of interpolating data exists, this project uses a linear interpolation 

scheme to approximate values which fall within a volume bounded by eight numerically 

determined values. 

In addition to these potential errors, an additional issue must be addressed which 

is more of a strong concern than an error. In Chapter 4, contour plots are presented for 

the velocity magnitudes. These plots were created by the statistical package SystatTM. 

Using discrete data points from the experimental and numeric investigations, the 

software uses a quadratic interpolation scheme to approximate values within the room. 

While it would appear that values between data points are sufficiently estimated, there is 

a tendency to generate "artifacts" while extrapolating values near the wall. These 

artifacts generally appear as unusually high values. The distances between the walls and 

the nearest data points range between 12 to 40 em. Therefore, one must be careful when 

interpreting the plots, particularly when looking at phenomena near the boundaries. 



CHAPTER IV 

RESULTS & DISCUSSION 

Overview of Simulations 

Although the previous experimental research has provided a significant amount of 

data, only four of the experimental tests (15, 30, 50, and 100 ACH) were investigated. 

Only the side wall inlet configuration of Table 1.4 was used. The other configurations 

and experimental tests have been saved for continuation studies. In addition to the flow 

rates, other parameters were varied during the investigation process. These parameters in 

included inlet boundary conditions, wall boundary conditions, and the two forms of the 

k-e model. A summary of these parameters is given in Table 4.1 

TABLE4.1 

INVESTIGATION PARAMETERS 

Parameter 
Flow Rate 
Flow Type 

Wall Boundary Conditions 
Inlet Profiles 

Variations 
15, 30, 50, and 100 ACH 
Laminar, Turbulent with wall functions, and 
low-Reynolds turbulent models 
Free-slip and No-slip 
Uniform and Approximated 
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As described by Table 4.1, a total of 48 different combinations of investigation 

parameters were simulated. However, significantly more simulations were performed, as 

up to five different grid resolutions were used. These grid resolutions are given in Table 

4.2, below. 

TABLE4.2 

GRID RESOLUTIONS 

X y z Cell Size 
Name Abbreviation Cells Cells Cells (m) 

Very Coarse vc 10 6 6 0.458 
Coarse c 20 12 12 0.229 
Fine F 30 18 18 0.153 
Very Fine VF 40 24 24 0.115 
Ultra Fine UF 46 30 30 0.092 

Table 4.3 details the various properties of air and other numerical parameters 

used during all simulations. It is important to note that the density value used is a "base 

density." The temperature differences within the room will obviously create density 

differences throughout the room, which are the cause of buoyant effects. However, 

because the maximum temperature difference is only 9 °C, flow may be approximated 

through the use of a single value of the density. 
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TABLE 4.3 

FLOW PARAMETERS 

Parameter Value 
Density (p) 1.19 kgfm3 
Kinematic Viscosity (v) m2 

1.56x1Q-5-
s 

Thermal Conductivity (k) 
0.026 _:Jf_ 

m·°K 
Specific Heat (Cp) 1003.6 _J_ 

kg·°K 

Thermal Expansion Coefficient (~) 1 
3.47xl0-3 OK 

Inlet Temperature (Tin) 21 °C 
Initial Temperature (Tinit) 30 °C 
Wall Temperature (Tw) 30 °C 

Visualization of three-dimensional CFD results is a difficult problem. One way 

of presenting data graphically is to show "slices" of the flow, in which one of the (x,y,z) 

coordinates is held constant. Contours of constant values may then be made, showing the 

distribution of velocity magnitudes on that plane in the room. To provide plots for 

several planes for each of the simulations would tend to be confusing. Therefore, unless 

explicitly noted otherwise, all graphical results will be plotted on one of the two planes 

shown in Figure 4.1. 

Because the numerical simulations provide values for the individual velocity 

components, it is possible to plot results using arrows representing the direction as well 

as the relative magnitude of each of the velocity vectors. However, data was chosen not 

to be presented in this manner when performing comparisons to experimental data since 

the experimental data consists only of air speeds, without any resolution into velocity 
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components. Because vector plots would provide informative insight into the room air 

flow pattern, velocity vector plots, with discussions, are presented later, at the end of this 

chapter. 

z=0.127m (z!W=0.32) X=2.24m (x/W =5.6) 

Figure 4.1. Description of Plot Views 

Grid Size 

As shown in Table 4.2, five different grid sizes were investigated. Rather than 

attempt to display results for all grid resolutions, this section attempts to determine the 
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optimum grid size for all subsequent plots. To compare grid sizes, the simple case of 

100 ACH was used and results were compared at two different constant (x,z) lines. Both 

lines were located 0.127 m (ztw'=0.32) from the side wall. One line was located 0.470 m 

(x!lf=1.18), while the second was located 2.24 m (xf/{=5.6) downstream of the inlet. 

Figure 4.2 illustrates the location of these lines, as "dots" are used to show the location of 

the discrete points along the lines. 

• • 
• • • • • • • • • • • • 
• • 

X=0.470 X=2.24Q 

Figure 4.2. Location of Grid Comparisons 

Figure 4.3 on the following page displays the velocity magnitude results for these 

locations using the five grid resolutions of Table 4.2. 
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An inspection of the data in Figure 4.3 illustrates that the velocity magnitudes for 

each location seem to "converge" on a value as the grid size decreases. While one would 

expect this convergent process to continue for even finer meshes than the five 

investigated, for the purpose of this project the Very Fine mesh appears to provide 

sufficient accuracy. The sufficiency of a "grid-independent solution" is emphasized 

when the necessary computational time is considered. Therefore, all subsequent results 

in the report will be presented for the Very Fine (40x24x24) mesh. 

In addition to the comparison of velocity magnitudes, the grid resolutions were 

compared on the basis of computational time. Figure 4.4 shows the computational time 

required by each grid size for the same simulation as Figure 4.3, using an IBM RISC-

6000 computer. 

300 

250 

200 

CPU Time 150 
(min) 

100 

50 
1.8 6.7 

0 +---------~----~ 
Very Coarse 

Coarse 

250.8 

Fine Very Fine Ultra Fine 

Figure 4.4. Computational Time for Grid Sizes 
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Inlet Profiles 

Chapter 2 described how the common assumption of a uniform inlet velocity 

profile could be replaced by some form of an approximated velocity profile. This section 

briefly illustrates the advantage of an approximated profile over a uniform profile. 

As shown by Figure 2.4, the most dramatic case of a non-uniform profile occurs 

at the lowest flow rate, 15 ACH. Therefore, this flow rate will be used to compare the 

uniform profile with the approximated profile. 

Figure 4.5 shows plots of the velocity magnitudes for the uniform and the 

experimental profile in the region immediately near the inlet. Two primary 

characteristics are displayed which serve to show the inadequacy of the approximation. 

First, the velocity magnitude values for the uniform inlet are considerably less than the 

experimentally measured values. Second, the uniform profile approximation generates a 

jet which is larger in cross-sectional area than the experimental jet. The increase in jet 

size is expected, as the uniform profile assumes an inlet jet occupying the entire cross­

sectional area of the inlet. As shown earlier in Figure 2.4 and now in Figure 4.5, the 

experimental profile appears to only occupy the lower half of the inlet area. 

Figure 4.6 shows the effect of reducing the inlet area. As shown by the figure, 

reducing the inlet area not only results in increased velocity magnitudes, but also 

produces a jet which matches better in size with the experimental profile. Thus, a simple 

comparison of Figures 4.5 and 4.6 emphasizes how a uniform inlet assumption is very 

inconsistent with the experimental data. 
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While Figures 4.5 and 4.6 certainly highlight the need for some form of an 

assumed profile, even more convincing evidence may be obtained by viewing the inlet 

jets from the side. Figure 4.7 on the following page shows the entering jets for the 
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conditions of Figure 4.5 and 4.6. In addition, a plot of the experimental results is 

included for comparison. 
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A simple analysis of Figures 4.5-4.7 shows that the simulation error is decreased 

when the approximated inlet profile is used. Thus, discrepancies to experimental data are 

reduced in the region near the inlet, and should also be reduced "downstream" of the inlet 

jet. 

The graphical comparison of the uniform and assumed profiles results sufficiently 

proves that the uniform velocity profile is somewhat inconsistent with experimental data. 

Because the use of approximated profiles at the inlet seems to provide more comparable 

results, all flow plots shown will be the result of simulations using the approximated 

profiles. 

Wall Boundary Conditions 

While normal velocities are certainly easy to describe at walls, tangential velocity 

boundary conditions may be imposed any one of several ways. When using the k-E 

model with wall functions, the "power law" boundary condition must be used because the 

basis of the model is the imposition of the log profile at the wall. The laminar and low­

Reynolds models do not necessarily require the same boundary condition. Therefore, 

free-slip and no-slip conditions were investigated to determine which, if either, of the 

conditions provided results more consistent with the experimental data. 

Although slight differences in the results were noted at 50 and 100 ACH, 

significant differences were noted at the lower flow rates. The most drastic of these 

differences can be seen in Figure 4.8 on the following page, in which plots of 15 ACH 

for free-slip and no-slip simulations are presented in addition to the experimental results. 

As shown by Figure 4.8, the imposition of no-slip conditions at the wall provide 

velocity magnitudes which are noticeably smaller than both the free-slip and 
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experimental results. Similar results, though less dramatic, were obtained for 30, 50, and 

100 ACH. Therefore, the resulting plots in the following section were obtained using 

free-slip conditions at the walls for tangential velocities for the laminar and low­

Reynolds models. 

The use of free-slip conditions does not imply that slippage physically occurs at 

the wall. It merely means that from a computational stand-point, free-slip conditions 

better approximate the actual flow. 

Buoyancy 

Because simulations are performed for a jet entering a room with a temperature 

difference of 9 oc, it is expected that buoyant effects should be considered. Because the 

maximum external force on a control volume due to buoyancy is dependent only on the 

temperature difference and not the velocity, there may be cases in which the buoyant 

forces are negligible compared to the other forces. If these cases do exist, computational 

time could be reduced since the solution of the energy equation would not be required. 

Simulations were performed for each of the four flow rates, ignoring buoyancy. 

The most dramatic differences, as expected, were produced when simulating 15 ACH. 

Figure 4.9 shows the result for this set of simulations. 

Similar, though less drastic, results were obtained for 30 and 50 ACH. Only in 

the case of 100 ACH were the differences negligible. Therefore, all presentation of 

simulation results will be for simulations performed using the Boussinesq approximation 

for buoyancy. 
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Simulation Results 

The following pages contain the results of the simulations for 15, 30, 50, and 100 

ACH, using the boundary conditions and grid size discussed earlier in this chapter. 

Each page contains four plots, all of the same plane within the room. Laminar, 

turbulent/wall functions, and turbulent/low-Reynolds solutions are represented. The 

experimental results are included as the fourth plot to allow for easier comparison. 

Although units are not shown in the plots, all velocity magnitude contours are 

given in 'meters per second' and axis labels are shown in 'meters'. 

For convenience, the plots of each of the flow rates are presented in the two pages 

following the discussion page for the corresponding flow rate. 
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15ACH 

As shown by Figure 4.10, all three methods predicted the basic pattern of the 

flow. However, none of the methods sufficiently predicted the strong buoyant effect of 

the flow immediately upon entering the room. The low-Reynolds model appears to 

better approximate the inlet jet, although all the models appeared to have generated 

magnitudes which are slightly less than the experimental results. One possible reason for 

this may be found in Figure 4.11, which represents a lateral view from the center of the 

room. All three models predicted far more lateral diffusion, which would certainly help 

explain the reduced values in Figure 4.10. Despite variations in boundary conditions, 

this over-prediction of lateral diffusion still continued. 

These figures also illustrate the extrapolation concern discussed in the previous 

chapter. As shown at the bottom of the experimental results in Figure 4.10, unusually 

high velocity magnitudes were extrapolated. Additionally, values are shown in the upper 

left comer of the experimental and laminar plots of Figure 4.11 which appear to be 

unrealistic with respect to the main pattern of the flow. 
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30ACH 

As Figure 4.12 shows, the predicted flow patterns of 30 ACH appear to model the 

experimental flow pattern better than the predictions of the 15 ACH flow. However, the 

magnitudes are consistently less than the experimental results. In addition, the lateral 

plots of Figure 4.13 do not show predicted lateral diffusion which greatly exceeds the 

experimental flow. 

This difference in velocity magnitudes may be due, in part, to the grid coverage. 

As discussed earlier, the computational inlet is approximately 16.5% greater than the 

actual inlet. If the experimental and numerical volumetric flow rates are equal, this inlet 

area difference creates numerical results which are on the order of 14% less than the 

experimental results. Another possible explanation is that a significant improvement in 

the inlet profile approximation may be necessary. 

Based on Figures 4.12 and 4.13, it is difficult to discern which model is superior. 

However, it would appear that the low-Reynolds model more closely predicted both the 

pattern and magnitudes of the flow. 
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50ACH 

Significant differences in the models begin to emerge at 50 ACH. As shown by 

Figure 4.14, the simulation results of all the models under-predicted the dissipation of the 

jet. Only the low-Reynolds model appeared to show significant dissipation as well as 

predicting magnitudes near the inlet which are in good agreement with the experimental 

data. In the case of the laminar and wall-function models, a jet was predicted which 

appeared to dissipate only due to the presence of the opposite wall. The experimental 

profile shows significant dissipation of the jet well before reaching the opposite wall. 
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lOOACH 

As with the 50 ACH profiles, Figure 4.16 shows 100 ACH profiles which "under 

predicted" the amount of diffusion and reduction of magnitude as the jet entered the 

room. In fact, the laminar model appears to more closely approximate a stream striking 

the opposite wall, rather than a jet diffusing into a room. This is further shown by the 

lateral plot in Figure 4.17, in which the laminar jet appears to remain intact much more 

than the experimental jet, or the jets predicted by the turbulent models. 

In terms of the turbulent predictors, the k-E model with wall functions appears to 

better approximate the jet, particularly in the region near the inlet. One might expect this 

as the standard k-E model was developed for fully turbulent flows. 
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Error Distributions 

In most of the cases, a simple examination of the predicted profiles in comparison 

to the experimental profiles can adequately distinguish how well the flow is predicted by 

the various models. However, in an effort to highlight the extent to which predicted 

flows differ from the experimental results, plots have been generated for the absolute 

errors for each of the plots shown in Figures 4.10 - 4.17, where the absolute error is 

defined by the following equation. 

Eabs = lvexp- Vnuml 
x,y,z 

(4.1) 

These plots are presented on the following pages. Because the generated plots 

have been shown to contain unrealistic extrapolations, one must be careful as to the 

amount of confidence placed on the following error distributions. Despite this, the plots 

do adequately show the "problem areas" for each of the models, in addition to the relative 

amounts by which the models varied. 
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15ACH 

Figure 4.18 supports the previous statement concerning how the models did not 

sufficiently predict the immediate buoyant effects for the 15 ACH flow. As shown by 

the figure, values were predicted in the region where experimental evidence showed 

velocity magnitudes being decreased due to buoyant effects. However, the absolute error 

was reduced through the use of the low-Reynolds model. 

Figure 4.19 demonstrates how the artifact problem surfaces while extrapolating 

values of the absolute error. These artifacts appear in the lower right portion of each of 

the plots. In addition, it is clear that the over-estimation of lateral diffusion by the 

models results in errors in the region where the jet actually remained intact, as well as in 

the area where the models estimated diffusion away from the wall. 
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30ACH 

The primary feature shown by Figure 4.20 is how the predicted velocity 

magnitudes were less than the actual magnitudes in the region immediately in front of the 

jet. The laminar model produced the greatest errors in the region, while the low­

Reynolds model reduced the discrepancies. 

Interesting "errors" appear just below the inlet entrance, which one would not 

expect after viewing the velocity magnitude distributions of Figure 4.12. These errors 

were probably introduced as results were extrapolated to the walls, as all three models in 

addition to the experimental results did not show any significant flow in this area. 



0 
0 

· ... ., .. , ·.·.· .. :, .. 

2 -

1 

LAMINAR 

., .. , . ·.·.·.·. . 

1 2 3 

TURBULENT 
WALL FUNCTIONS 

I 

.o.s 

.0.4 

.0.3 
liil 0.2 
C0.1 
co.o 

.o.s 
- .0.4 

.0.3 
liil 0.2 
C0.1 .· .. .._ _______ ...~.. ____ ...._ ·---..111..---' c 0.0 0 

2 

1 

0 

0 1 

:• 

2 3 

TURBULENT 
LOW-REYNOLDS 

I 

I 

0 1 2 3 

4 

4 

.0.5 
- .0.4 

.0.3 
liil 0.2 
co.1 
co.o 

Figure 4.20. Error Distributions for 30 ACH (z=0.127 m) 

89 



2 
::. 
i•.• 

.":·. 
1 

0 
0 

LAMINAR 

.. ·.•.·.· .. 
1 

I 

=~== 

2 

2 

1 

2 
. 

.·~:,:: 
·:!!I :-·u ·.·.·· ..-:•: 10.5 

.0.4 1 

10.3 
mo.2 
00.1 
oo.o 0 

0 

TURBULENT 
LOW-REYNOLDS 

I I 

TURBULENT 
WALL FUNCTIONS 

• 

1 

IO.S 
.0.4 
10.3 
mo.2 
00.1 

J 

2 

0 "'----~o..--'---"'1......0.---- oo.o 
0 1 2 

Figure 4.21. Error Distributions for 30 ACH (x=2.24 m) 

90 

· .•.. , .. • • u 
'~:· .· IO.S 

.0.4 
10.3 
mo.2 
00.1 . oo.o 



91 

50ACH 

At first glance, Figure 4.22 appears as if the coordinate system was altered and 

flow was entering from the opposite end of the room. In fact, this figure highlights how 

the models under-predicted the dissipation of the flow into the room. As shown by the 

figure, there is insignificant discrepancy in the region near the location of the inlet. 

There is severe discrepancy, especially for the laminar and wall function models, at the 

wall opposite the jet. The inability of these models to predict the diffusion into the room 

is further shown by the errors existing "beneath" the jet. In this region, the jet is 

diffusing into the room, perhaps partially due to buoyancy. While none of the models 

accurately predicted this, at least the low-Reynolds model reduced the discrepancy with 

experimental data. 
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lOOACH 

The interesting regions of errors occurring at 100 ACH can be seen in Figure 

4.25. Although it is difficult to discern, it would appear that the experimental results are 

showing the tendency of the jet to diffuse toward the outlet, which would be located at 

the lower right-hand comer of each of the plots. Again, this diffusion process appears to 

have been under-estimated by the models. 
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Solution Errors 

Figures 4.18- 4.25 adequately show how the computed results differ from 

experimental results at various locations within the room. However, it is difficult to use 

these plots to compare the overall accuracy of the various methods for a given 

simulation. It is then necessary to define some type of global error which may be 

compared, regardless of the flow rate. This error could be defined several ways. For the 

purpose of comparison, the global error number (G.E.N.) will be defined by the 

following equation. 

E abs 
G.E.N.=y-

max 

where E abs =Average absolute error ( ~L Eabsi] 

V max = Maximum velocity magnitude from experimental data 

(4.2) 

The summation of Eq(4.2) is for all 896 points at which experimental data was 

collected (i.e., n=the number of experimental points). 

Using Eq(4.2), values for the general error number were calculated and are given 

in Table 4.4. A graphical representation is also provided in Figure 4.26. 

TABLE4.4 

GLOBAL ERROR NUMBER VALUES 

Model lSACH 30ACH SOACH lOOACH 
Laminar 0.0498 0.0570 0.0767 0.0796 
Turbulent - Wall Functions 0.0505 0.0560 0.0683 0.0743 
Turbulent- Low-Reynolds 0.0358 0.0449 0.0554 0.0596 
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Figure 4.26. G.E.N. vs Flowrate Comparisons 

As shown by Figure 4.26, the simulation error increases as the flow rate is 

increased. If the trends of the graph are examined, it would appear that as the flow rate is 

further increased beyond 100 ACH, there would exist some maximum global error 

number. However, the existence of such an upper limit on the solution error could only 

be proven by further comparison to experimental data. 

For all three models, the strongest error sensitivity to the flow rate occurs for 

flows less than 50 ACH. In fact, the sensitivity for all three models (i.e., the slope of the 

lines) is nearly the same both above, and below 50 ACH. 

An interesting fact is that the global error numbers for the laminar and turbulent 

wall function models do not begin to differ much until 50 ACH. One might expect such 
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a relationship, as the standard k-E model is considered valid for high Reynolds number 

flow. Therefore, as the flow rate increases, so does its level of turbulence, until the level 

reaches a point in which the laminar model can no longer predict its behavior as well as 

the wall function model. 

The basic trend of the graph, is what one would intuitively predict. That is, the 

laminar model contains the greatest global error, with the two turbulence models 

containing less discrepancies to the experimental data. For all flow rates, the difference 

between the G .E.N. for the low-Reynolds model and the other two models remains 

nearly constant. 

Computational Time 

While the previous discussion of computational time was concerned with grid 

size, it is important to address the computational requirements of each of the three 

modeling techniques. 

All simulations were performed on an IBM RISC-6000 mainframe. Table 4.5 

details the computational time (minutes) required by the computer to complete the 

simulations. Actual simulation times varied, as all simulations were performed in the 

background through the use of batch files. 

TABLE4.5 

COMPUTATIONAL TIMES FOR MODELS 

ompu a 1ona 1me mmu es C tf IT" (. t) 
Model 15ACH 30ACH SOACH lOOACH 

Laminar 116.35 110.03 149.06 172.37 
Turbulent - Wall Functions 178.13 169.37 235.77 253.92 
Turbulent- Low-Reynolds 217.12 198.35 256.18 302.12 
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It is very important to note that any discussion on computational time is highly 

subjective and care should be taken when comparing the values in Table 4.5. Obviously, 

the necessary computational time is determined by the computer used for simulations. In 

addition, this subjectivity is due to two other reasons. 

First, the computational time is strongly dependent on the size of the time step. 

Thus, the proper or improper selection of the simulation time step could significantly 

reduce or increase the necessary computational time. 

The most significant subjectivity in the computational times of Table 4.5 involves 

the program being used to model the flow. While diligence was used during the program 

development, there is no guarantee concerning its computational efficiency. The use of 

other modeling algorithms would also increase or decrease the computational 

requirements. It is anticipated that modifications could be made to the program to 

increase its efficiency, including the use of initial velocity profiles within the room. 

For the sake of discussion, it could be assumed that the relative times in Table 4.5 

could be compared to determine the necessary computational requirements of a model in 

comparison to the others. Averaging the computational times of Table 4.5, and dividing 

by the smallest value, new computational times can be calculated. The values for these 

times are in Table 4.6. 

TABLE4.6 

COMPUTATIONAL TIME COMPARISON 

15 30 50 100 Average 
Model ACH ACH ACH ACH Time 

Laminar 1.0 1.0 1.0 1.0 1.0 
Turbulent - Wall Functions 1.53 1.54 1.58 1.47 1.53 
Turbulent- Low-Reynolds 1.87 1.80 1.71 1.75 1.78 
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These relative computational times reduce the subjectivity of a discussion on 

computational costs. Based on this data, it takes 53% more computational time to use the 

k-E model with wall functions and 78% more time with the low-Reynolds model, than 

what it would to perform the simulations using only the laminar flow assumptions. Such 

a distribution is expected, as the low-Reynolds model requires the computation of several 

additional parameters including turbulent viscosity and local Reynolds numbers, in 

addition to the solution of the k-E equations., The k-E model with wall functions only 

requires the additional solution of the two partial differential equations, and no solution 

of any additional turbulent parameters. 

Flow Patterns 

While the contour plots of velocity magnitudes allow an adequate graphical 

comparison to be made between numerical and experimental data, the overall flow 

pattern is difficult to discern from the plots. In an effort to provide additional insight 

into the room air flow patterns, two-dimensional velocity vector plots are presented in 

this section for simulations of 15 and 100 ACH using the low-Reynolds model. For each 

flow rate, results are presented on four different planes within the room. Different 

scaling factors are used for each flow rate. Thus, the 15 ACH results are not scaled by 

the same ratio as the 100 ACH results. 
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15ACH 

Figure 4.27 shows how the buoyant forces act on the low velocity jet, causing the 

jet to travel downward upon entering the room. The jet appears to then travel along the 

floor, causing a slight amount of recirculation immediately beneath the inlet as well as 

near the central region by the far wall on the right side of the plot. The figure also shows 

that the upper half of the room is relatively unaffected by the presence of the low 

velocity jet. 

Figure 4.28, located by the side wall adjacent to the outlet, shows very little sign 

of air movement, except for the region immediately in front of the outlet. 

Figures 4.29 and 4.30 show the primary flow pattern in the lower half of the 

room. In Figure 4.29, it can be seen how the air flows along the floor toward the outlet. 

Slight recirculation is shown in the upper left portion of the plot. In Figure 4.30, the jet 

seems to disappear, as the only region showing significant flow is immediately 

downstream of the inlet. Thus, the air is flowing beneath this plane, leaving the upper 

half of the room relatively unaffected. 
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100ACH 

The dramatic differences between the low and high velocity air flow patterns are 

highlighted with the plots of 100 ACH. The lack of dissipation mentioned earlier is 

shown in Figure 4.31, as the jet dissipates very little before reaching the far wall. 

Regions of recirculation appear above and below the jet, as it appears that some amount 

of entrainment occurs. 

Figure 4.32 shows more air movement along the far wall for 100 ACH than what 

was previously shown for 15 ACH. Still, it would appear that there are some unaffected 

regions of the room, despite the significant increase in the inlet jet velocity. 

Figure 4.33 shows a flow pattern along the floor which is quite similar to the flow 

pattern of 15 ACH at the same location. Figure 4.34 shows a jet being discharged along 

the side wall, before being diverted toward the outlet by the wall on the right side. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Summary 

Application of computational fluid dynamic techniques to room flows was 

evaluated by comparing numerical predictions to experimental data. The room was 15 x 

9 x 9ft. with air flow rates of 15, 30, 50, and 100 ACH. 

Computer code was developed to solve incompressible, buoyant flow problems 

with the room. Turbulence was modelled through the implementation of the k -E model, 

both with the wall functions and in low-Reynolds form (Lam-Brernhorst version). 

Investigations were made concerning grid size, wall boundary conditions, and inlet 

profiles. 

Conclusions 

Based on the numerical simulations and comparisons to the experimental data 

during the course of this project, the following conclusions may be drawn. 

(1) A 40 x 24 x 24 mesh was found to adequately model the flow. The use ofthis 
mesh provides approximately 25 times more discrete data points than what was 
provided by the experimental data. Any additional accuracy of a finer mesh was 
found to be insignificant in comparison to the additional computational time. 

(2) Free-slip conditions at the wall when using the laminar and low-Reynolds models 
provide results in better agreement with the experimental data than the no-slip 
condition. 

(3) The use of an approximate non-uniform inlet profile based on experimental data 
provided better comparisons than a uniform velocity profile. This project is 
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unique because most modeling situations will not have access to experimentally 
measured inlet profiles. However, this does highlight the need for particular 
attention when modeling the inlet profile. 

(4) By defining a dimensionless global error number, the three modeling methods 
could be compared regardless of the flow rate. The low-Reynolds k-e model was 
found to consistently generate better comparisons with the experimental data. 
Listed by increasing global error number, the methods are: low-Reynolds k-e 
model, k-e model with wall functions, and the laminar model. 

(5) The k-e model with wall functions required 53% more computational time and 
the low-Reynolds model required 78% more computational time than the laminar 
solution algorithm. 

(6) There exists a strong trade-off between computational accuracy and required 
computational resources. While the use of the laminar model did not predict the 
flow as well as the turbulent equations, it did produce results which adequately 
modelled the general nature of the flow patterns at greatly reduced computational 
requirements. Therefore, depending on the application, the solution of the 
laminar continuity and momentum equations may sufficiently predict room air 
flow. 

(7) Results were obtained which matched well with the experimental data. However, 
the following questions remain unanswered, and are topics for future research. 

• Why do the models over-predict in some situations and under-predict in 
others? 

• Why did the models have difficulty predicting the drastic buoyant effects 
exhibited at the low flow rates? 

• Why do all three models predict more lateral diffusion at 15 ACH than what 
was experimentally measured? 

• Why did the models, particularly the turbulence models, fail to predict the 
dissipation of the jet at the high flow rates? 

Recommendations 

(1) Develop a computer code which would allow greater flexibility in grid coverage, 
specifically an algorithm capable of variable grid size. This would allow the 
room to be better covered by the computational mesh and a finer grid could be 
used at the inlet. 



(2) Perform simulations with varying turbulent parameters. 

(3) Perform simulations on a typical personal computer to further investigate the 
feasibility of CFD use in a typical design situation. 
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(4) Better experimental data would allow a more extensive comparison to be made. 
The measurement of velocities, rather than velocity magnitudes, would be 
beneficial. Other desired modifications would include a finer experimental grid 
and the collection of measurements at the inlet. 

(5) Investigate different algorithms for predicting convective heat transfer at the 
walls. 

(6) Investigate the implementation of a contaminant transport model for use in 
studying indoor air quality. 

(7) Investigate the simulation of ceiling diffusers to determine what numerical 
difficulties might arise when attempting to model the Coanda effect. 
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APPENDIX A 

FINITE-DIFFERENCE REPRESENTATIONS 

OF VELOCITIES 

In Chapter 2, the finite-difference approximation was given for the explicit 

equation for the time-advanced x-component of velocity (U). The following are the 

equations and finite-difference representations of the other components of velocity. 

These details have been extracted from the earlier studies of Lilley [1988 and 1991]. 

(A-1) 

FVX- - 1-{ (U· · k+U· · 1 k)(Y. · k + V· 1 · k) + ltiU· · k+U· · 1 ki(V· · k-V· 1 · k) - 4.ilx 1,J, 1,J+ , 1,J, 1+ ,J, 1,J, 1,J+ , 1,J, 1+ ,J, (A-2) 

- (U·-1 · k+U· · k)(V·-1 · k+V· · k)- ltiU·-1 · k+U·-1 · 1 ki(V·-1 · k-V· · k)} 1 ,J, 1,J, 1 ,J, 1,J, 1 ,J, 1 ,J+ ' 1 ,J, 1,J, 

FVY = 4!y { (Vi,j,k+Vi+1,j,k)2 + lt1Vi,j,k+Vi,j+1,ki(Vi,j,k-Vi,j+1,k) (A-3) 

- (Y. ·-1 k+V· · k)2 - ltiV· ·-1 k+V· · ki(Y. ·-1 k-V· · k)} 1J ' 1,J, 1J ' 1,J, 1J ' 1,J, 

FVZ = 4!z { (Wi,j,k+Wi,j+1,k)(Vi,j,k+Vi,j,k+1) + lt1Wi,j,k+Wi,j+1,ki(Vi,j,k-Vi,j,k+1) (A-4) 

- (Wij,k-1+Wij+1,k-1)(Vij,k-1+Vi,j,k)- ltiWij,k-1+Wij+1,k-11(Vij,k-rVi,j,k)} 

(A-5) 
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FWX = 4!x { (Ui,j,k+Ui,j,k+1)(Wi,j,k + Wi+1,j,k) + &1Uij,k+Ui,j,k+11(Wi,j,k-Wi+1,j,k) (A-8) 

- (U·-1 · k+U·-1 · k 1)(W·-1 · k+W· · k)- &IU·-1 · k+U·-1 · k 1I(W·-1 · k-W· · k)} l ,J, l ,J, + l ,J, l,J, l ,j, l ,J, + l ,J, l,J, 

FWY = 4!y { (Vi,j,k+Vi,j,k+l)(Wij,k+Wi,j+1,k) + &1Vi,j,k+Vi,j,k+11(Wi,j,k-Wi,j+1,k) (A-9) 

- (V· ·-1 k+V· ·-1 k 1)(W· ·-1 k+W· · k)- &IV· ·-1,k+V· ·-1 k 1I(W· ·-1 k-W· · k)} l,J , lJ , + l,J , l,J, lJ l,J , + lJ , l,J, 

FWZ = 4~z { (Wi,j,k+Wi,j,k+1)2 + &1Wi,j,k+Wi,j,k+11(Wi,j,k-Wi,j,k+1) 

- (W· · k-1+W· · k)2 - &IW· · k-1+W· · ki(W· · k-1-W· · k)} lJ, l,J, lJ, lJ, l,J, l,J, 

{ 1 1 
VISZ = V - 2(Wi+1 J. k-2WiJ. k+Wi-1 J. k) + - 2(WiJ"+l k-2WiJ. k+W1· J'-1 k) 

Ax '" ' ' ' ' ' Ay ' ' ' ' ' ' 

1 } +- · · -2W· · +W· · ~i(Wt,j,k+l l,j,k l,j,k-1) 

W- ·,k. = W. ",k. + at (..!..(P. ·,k. - p. ·,k. 1) + g + GAMMAZ - FWX - FWY - FWZJ 
IJ IJ ax IJ IJ + Z 

(A-10) 

(A-ll) 

(A-12) 



APPENDIXB 

FINITE-DIFFERENCE REPRESENTATIONS 

OF FIRST DERIVATIVES 

For any value ( cj> ), its first derivative with respect to a spatial coordinate (ocj>/ox) 

may be approximated by one of several ways. Two of these ways are referred to as the 

forward and backward difference approximations, which are shown in the following 

equations. 

Forward Difference 

Backward Difference 

Both of the equations may be expressed in the following general form. 

where A=O, B=-1, C=1 for forward difference 
A=-1, B=1, C=O for backward difference 

"Cross derivatives" may be represented in a similar manner. 

(B-1) 

(B-2) 

(B-3) 

A _1_ 
oxoy = ~~y[ A(cl>i-1,j-1- cl>i-1,j- cl>i,j-1) + Bcl>i,j + C(cj>i+1,j+1- cl>i,j+1 + cl>i+1,j)] (B-4) 

Rather than strictly use either the forward or backward difference method, this 

investigation will alternate the two methods for approximating the first derivatives, based 
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on the simulation time step. It is very important to note that this method is only applied 

for the source terms of the equations (i.e., the terms generally appearing on the right­

hand side of the partial differential equations). 

For odd time steps, the forward difference method will be used. Conversely, 

even time steps will use the backward difference method. 

Using these expressions, the various derivative terms discussed earlier in the 

report may be expanded and defined. 

8(k) 

Q(E) 

I1 

r-• 

= aui [aui + aui] 
ax· ax· ax-J J l 

= 2 [au]2 + au[au + av] + au[au + aw] 
ax ay ay ax az az ax 

+ av[av +au] + 2 [av]2 + av[av + aw) 
ax ax ay ay az az ay 

+ aw(aw +au] + aw(aw + av] + 2 (aw]2 
ax ax az ay ay az az 
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